Sample records for body detection system

  1. The Transiting Exocomets of HD 172555

    NASA Technical Reports Server (NTRS)

    Grady, C. A.; Brown, Alex; Kamp, Inga; Riviere-Marichalar, Pablo; Roberge, Aki; Welsh, Barry

    2016-01-01

    While most attention has been garnered by searches for super-Jovian mass exo-planets the presence of minor bodies can be detected, at least through their dissociation products in suitably oriented systems. The principal detection technique is line-of-sight absorption spectroscopy of systems viewed close to edge-on. I review what we have learned about such bodies in beta Pictoris, and HD 172555, their link to more massive bodies in their systems, and what this tells us about the frequency and potential locations of Jovian-mass bodies in advance of their direct imaging detection.

  2. Noninvasive photoacoustic detecting intraocular foreign bodies with an annular transducer array.

    PubMed

    Yang, Diwu; Zeng, Lvming; Pan, Changning; Zhao, Xuehui; Ji, Xuanrong

    2013-01-14

    We present a fast photoacoustic imaging system based on an annular transducer array for detection of intraocular foreign bodies. An eight-channel data acquisition system is applied to capture the photoacoustic signals using multiplexing and the total time of data acquisition and transferring is within 3 s. A limited-view filtered back projection algorithm is used to reconstruct the photoacoustic images. Experimental models of intraocular metal and glass foreign bodies were constructed on ex vivo pig's eyes and clear photoacoustic images of intraocular foreign bodies were obtained. Experimental results demonstrate the photoacoustic imaging system holds the potential for in clinic detecting the intraocular foreign bodies.

  3. Computer vision for foreign body detection and removal in the food industry

    USDA-ARS?s Scientific Manuscript database

    Computer vision inspection systems are often used for quality control, product grading, defect detection and other product evaluation issues. This chapter focuses on the use of computer vision inspection systems that detect foreign bodies and remove them from the product stream. Specifically, we wi...

  4. Markerless video analysis for movement quantification in pediatric epilepsy monitoring.

    PubMed

    Lu, Haiping; Eng, How-Lung; Mandal, Bappaditya; Chan, Derrick W S; Ng, Yen-Ling

    2011-01-01

    This paper proposes a markerless video analytic system for quantifying body part movements in pediatric epilepsy monitoring. The system utilizes colored pajamas worn by a patient in bed to extract body part movement trajectories, from which various features can be obtained for seizure detection and analysis. Hence, it is non-intrusive and it requires no sensor/marker to be attached to the patient's body. It takes raw video sequences as input and a simple user-initialization indicates the body parts to be examined. In background/foreground modeling, Gaussian mixture models are employed in conjunction with HSV-based modeling. Body part detection follows a coarse-to-fine paradigm with graph-cut-based segmentation. Finally, body part parameters are estimated with domain knowledge guidance. Experimental studies are reported on sequences captured in an Epilepsy Monitoring Unit at a local hospital. The results demonstrate the feasibility of the proposed system in pediatric epilepsy monitoring and seizure detection.

  5. Wearable Networked Sensing for Human Mobility and Activity Analytics: A Systems Study.

    PubMed

    Dong, Bo; Biswas, Subir

    2012-01-01

    This paper presents implementation details, system characterization, and the performance of a wearable sensor network that was designed for human activity analysis. Specific machine learning mechanisms are implemented for recognizing a target set of activities with both out-of-body and on-body processing arrangements. Impacts of energy consumption by the on-body sensors are analyzed in terms of activity detection accuracy for out-of-body processing. Impacts of limited processing abilities in the on-body scenario are also characterized in terms of detection accuracy, by varying the background processing load in the sensor units. Through a rigorous systems study, it is shown that an efficient human activity analytics system can be designed and operated even under energy and processing constraints of tiny on-body wearable sensors.

  6. Spot test kit for explosives detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pagoria, Philip F; Whipple, Richard E; Nunes, Peter J

    An explosion tester system comprising a body, a lateral flow membrane swab unit adapted to be removeably connected to the body, a first explosives detecting reagent, a first reagent holder and dispenser operatively connected to the body, the first reagent holder and dispenser containing the first explosives detecting reagent and positioned to deliver the first explosives detecting reagent to the lateral flow membrane swab unit when the lateral flow membrane swab unit is connected to the body, a second explosives detecting reagent, and a second reagent holder and dispenser operatively connected to the body, the second reagent holder and dispensermore » containing the second explosives detecting reagent and positioned to deliver the second explosives detecting reagent to the lateral flow membrane swab unit when the lateral flow membrane swab unit is connected to the body.« less

  7. Detection of contraband concealed on the body using x-ray imaging

    NASA Astrophysics Data System (ADS)

    Smith, Gerald J.

    1997-01-01

    In an effort to avoid detection, smugglers and terrorists are increasingly using the body as a vehicle for transporting illicit drugs, weapons, and explosives. This trend illustrates the natural tendency of traffickers to seek the path of least resistance, as improved interdiction technology and operational effectiveness have been brought to bear on other trafficking avenues such as luggage, cargo, and parcels. In response, improved technology for human inspection is being developed using a variety of techniques. ASE's BodySearch X-ray Inspection Systems uses backscatter x-ray imaging of the human body to quickly, safely, and effectively screen for drugs, weapons, and explosives concealed on the body. This paper reviews the law enforcement and social issues involved in human inspections, and briefly describes the ASE BodySearch systems. Operator training, x-ray image interpretation, and maximizing systems effectiveness are also discussed. Finally, data collected from operation of the BodySearch system in the field is presented, and new law enforcement initiatives which have come about due to recent events are reviewed.

  8. A novel approach to simulate chest wall micro-motion for bio-radar life detection purpose

    NASA Astrophysics Data System (ADS)

    An, Qiang; Li, Zhao; Liang, Fulai; Chen, Fuming; Wang, Jianqi

    2016-10-01

    Volunteers are often recruited to serve as the detection targets during the research process of bio-radar life detection technology, in which the experiment results are highly susceptible to the physical status of different individuals (shape, posture, etc.). In order to objectively evaluate the radar system performance and life detection algorithms, a standard detection target is urgently needed. The paper first proposed a parameter quantitatively controllable system to simulate the chest wall micro-motion caused mainly by breathing and heart beating. Then, the paper continued to analyze the material and size selection of the scattering body mounted on the simulation system from the perspective of back scattering energy. The computational electromagnetic method was employed to determine the exact scattering body. Finally, on-site experiments were carried out to verify the reliability of the simulation platform utilizing an IR UWB bioradar. Experimental result shows that the proposed system can simulate a real human target from three aspects: respiration frequency, amplitude and body surface scattering energy. Thus, it can be utilized as a substitute for a human target in radar based non-contact life detection research in various scenarios.

  9. Highly Portable, Sensor-Based System for Human Fall Monitoring.

    PubMed

    Mao, Aihua; Ma, Xuedong; He, Yinan; Luo, Jie

    2017-09-13

    Falls are a very dangerous situation especially among elderly people, because they may lead to fractures, concussion, and other injuries. Without timely rescue, falls may even endanger their lives. The existing optical sensor-based fall monitoring systems have some disadvantages, such as limited monitoring range and inconvenience to carry for users. Furthermore, the fall detection system based only on an accelerometer often mistakenly determines some activities of daily living (ADL) as falls, leading to low accuracy in fall detection. We propose a human fall monitoring system consisting of a highly portable sensor unit including a triaxis accelerometer, a triaxis gyroscope, and a triaxis magnetometer, and a mobile phone. With the data from these sensors, we obtain the acceleration and Euler angle (yaw, pitch, and roll), which represents the orientation of the user's body. Then, a proposed fall detection algorithm was used to detect falls based on the acceleration and Euler angle. With this monitoring system, we design a series of simulated falls and ADL and conduct the experiment by placing the sensors on the shoulder, waist, and foot of the subjects. Through the experiment, we re-identify the threshold of acceleration for accurate fall detection and verify the best body location to place the sensors by comparing the detection performance on different body segments. We also compared this monitoring system with other similar works and found that better fall detection accuracy and portability can be achieved by our system.

  10. Highly Portable, Sensor-Based System for Human Fall Monitoring

    PubMed Central

    Mao, Aihua; Ma, Xuedong; He, Yinan; Luo, Jie

    2017-01-01

    Falls are a very dangerous situation especially among elderly people, because they may lead to fractures, concussion, and other injuries. Without timely rescue, falls may even endanger their lives. The existing optical sensor-based fall monitoring systems have some disadvantages, such as limited monitoring range and inconvenience to carry for users. Furthermore, the fall detection system based only on an accelerometer often mistakenly determines some activities of daily living (ADL) as falls, leading to low accuracy in fall detection. We propose a human fall monitoring system consisting of a highly portable sensor unit including a triaxis accelerometer, a triaxis gyroscope, and a triaxis magnetometer, and a mobile phone. With the data from these sensors, we obtain the acceleration and Euler angle (yaw, pitch, and roll), which represents the orientation of the user’s body. Then, a proposed fall detection algorithm was used to detect falls based on the acceleration and Euler angle. With this monitoring system, we design a series of simulated falls and ADL and conduct the experiment by placing the sensors on the shoulder, waist, and foot of the subjects. Through the experiment, we re-identify the threshold of acceleration for accurate fall detection and verify the best body location to place the sensors by comparing the detection performance on different body segments. We also compared this monitoring system with other similar works and found that better fall detection accuracy and portability can be achieved by our system. PMID:28902149

  11. Searching for Survivors through Random Human-Body Movement Outdoors by Continuous-Wave Radar Array

    PubMed Central

    Liu, Miao; Li, Zhao; Liang, Fulai; Jing, Xijing; Lu, Guohua; Wang, Jianqi

    2016-01-01

    It is a major challenge to search for survivors after chemical or nuclear leakage or explosions. At present, biological radar can be used to achieve this goal by detecting the survivor’s respiration signal. However, owing to the random posture of an injured person at a rescue site, the radar wave may directly irradiate the person’s head or feet, in which it is difficult to detect the respiration signal. This paper describes a multichannel-based antenna array technology, which forms an omnidirectional detection system via 24-GHz Doppler biological radar, to address the random positioning relative to the antenna of an object to be detected. Furthermore, since the survivors often have random body movement such as struggling and twitching, the slight movements of the body caused by breathing are obscured by these movements. Therefore, a method is proposed to identify random human-body movement by utilizing multichannel information to calculate the background variance of the environment in combination with a constant-false-alarm-rate detector. The conducted outdoor experiments indicate that the system can realize the omnidirectional detection of random human-body movement and distinguish body movement from environmental interference such as movement of leaves and grass. The methods proposed in this paper will be a promising way to search for survivors outdoors. PMID:27073860

  12. Searching for Survivors through Random Human-Body Movement Outdoors by Continuous-Wave Radar Array.

    PubMed

    Li, Chuantao; Chen, Fuming; Qi, Fugui; Liu, Miao; Li, Zhao; Liang, Fulai; Jing, Xijing; Lu, Guohua; Wang, Jianqi

    2016-01-01

    It is a major challenge to search for survivors after chemical or nuclear leakage or explosions. At present, biological radar can be used to achieve this goal by detecting the survivor's respiration signal. However, owing to the random posture of an injured person at a rescue site, the radar wave may directly irradiate the person's head or feet, in which it is difficult to detect the respiration signal. This paper describes a multichannel-based antenna array technology, which forms an omnidirectional detection system via 24-GHz Doppler biological radar, to address the random positioning relative to the antenna of an object to be detected. Furthermore, since the survivors often have random body movement such as struggling and twitching, the slight movements of the body caused by breathing are obscured by these movements. Therefore, a method is proposed to identify random human-body movement by utilizing multichannel information to calculate the background variance of the environment in combination with a constant-false-alarm-rate detector. The conducted outdoor experiments indicate that the system can realize the omnidirectional detection of random human-body movement and distinguish body movement from environmental interference such as movement of leaves and grass. The methods proposed in this paper will be a promising way to search for survivors outdoors.

  13. Feasibility of assessing health state by detecting redox state of human body based on Chinese medicine constitution.

    PubMed

    Li, Ling-Ru; Wang, Qi; Wang, Ji; Wang, Qian-Fei; Yang, Ling-Ling; Zheng, Lu-Yu; Zhang, Yan

    2016-08-01

    This article discussed the feasibility of assessing health state by detecting redox state of human body. Firstly, the balance of redox state is the basis of homeostasis, and the balance ability of redox can reflflect health state of human body. Secondly, the redox state of human body is a sensitive index of multiple risk factors of health such as age, external environment and psychological factors. It participates in the occurrence and development of multiple diseases involving metabolic diseases and nervous system diseases, and can serve as a cut-in point for treatment of these diseases. Detecting the redox state of high risk people is signifificantly important for early detection and treatment of disease. The blood plasma and urine could be selected to detect, which is convenient. It is pointed that the indexes not only involve oxidation product and antioxidant enzyme but also redox couple. Chinese medicine constitution reflflects the state of body itself and the ability of adapting to external environment, which is consistent with the connotation of health. It is found that there are nine basic types of constitution in Chinese population, which provides a theoretical basis of health preservation, preventive treatment of disease and personalized treatment. With the combination of redox state detection and the Chinese medicine constitution theory, the heath state can be systemically assessed by conducting large-scale epidemiological survey with classifified detection on redox state of human body.

  14. Multi-modal intelligent seizure acquisition (MISA) system--a new approach towards seizure detection based on full body motion measures.

    PubMed

    Conradsen, Isa; Beniczky, Sandor; Wolf, Peter; Terney, Daniella; Sams, Thomas; Sorensen, Helge B D

    2009-01-01

    Many epilepsy patients cannot call for help during a seizure, because they are unconscious or because of the affection of their motor system or speech function. This can lead to injuries, medical complications and at worst death. An alarm system setting off at seizure onset could help to avoid hazards. Today no reliable alarm systems are available. A Multi-modal Intelligent Seizure Acquisition (MISA) system based on full body motion data seems as a good approach towards detection of epileptic seizures. The system is the first to provide a full body description for epilepsy applications. Three test subjects were used for this pilot project. Each subject simulated 15 seizures and in addition performed some predefined normal activities, during a 4-hour monitoring with electromyography (EMG), accelerometer, magnetometer and gyroscope (AMG), electrocardiography (ECG), electroencephalography (EEG) and audio and video recording. The results showed that a non-subject specific MISA system developed on data from the modalities: accelerometer (ACM), gyroscope and EMG is able to detect 98% of the simulated seizures and at the same time mistakes only 4 of the normal movements for seizures. If the system is individualized (subject specific) it is able to detect all simulated seizures with a maximum of 1 false positive. Based on the results from the simulated seizures and normal movements the MISA system seems to be a promising approach to seizure detection.

  15. Explosives tester with heater

    DOEpatents

    Del Eckels, Joel [Livermore, CA; Nunes, Peter J [Danville, CA; Simpson, Randall L [Livermore, CA; Whipple, Richard E [Livermore, CA; Carter, J Chance [Livermore, CA; Reynolds, John G [San Ramon, CA

    2010-08-10

    An inspection tester system for testing for explosives. The tester includes a body and a swab unit adapted to be removeably connected to the body. At least one reagent holder and dispenser is operatively connected to the body. The reagent holder and dispenser contains an explosives detecting reagent and is positioned to deliver the explosives detecting reagent to the swab unit. A heater is operatively connected to the body and the swab unit is adapted to be operatively connected to the heater.

  16. A soft robot capable of 2D mobility and self-sensing for obstacle detection and avoidance

    NASA Astrophysics Data System (ADS)

    Qin, Lei; Tang, Yucheng; Gupta, Ujjaval; Zhu, Jian

    2018-04-01

    Soft robots have shown great potential for surveillance applications due to their interesting attributes including inherent flexibility, extreme adaptability, and excellent ability to move in confined spaces. High mobility combined with the sensing systems that can detect obstacles plays a significant role in performing surveillance tasks. Extensive studies have been conducted on movement mechanisms of traditional hard-bodied robots to increase their mobility. However, there are limited efforts in the literature to explore the mobility of soft robots. In addition, little attempt has been made to study the obstacle-detection capability of a soft mobile robot. In this paper, we develop a soft mobile robot capable of high mobility and self-sensing for obstacle detection and avoidance. This robot, consisting of a dielectric elastomer actuator as the robot body and four electroadhesion actuators as the robot feet, can generate 2D mobility, i.e. translations and turning in a 2D plane, by programming the actuation sequence of the robot body and feet. Furthermore, we develop a self-sensing method which models the robot body as a deformable capacitor. By measuring the real-time capacitance of the robot body, the robot can detect an obstacle when the peak capacitance drops suddenly. This sensing method utilizes the robot body itself instead of external sensors to achieve detection of obstacles, which greatly reduces the weight and complexity of the robot system. The 2D mobility and self-sensing capability ensure the success of obstacle detection and avoidance, which paves the way for the development of lightweight and intelligent soft mobile robots.

  17. The Lord of the Rings - Deep Learning Craters on the Moon and Other Bodies

    NASA Astrophysics Data System (ADS)

    Silburt, Ari; Ali-Dib, Mohamad; Zhu, Chenchong; Jackson, Alan; Valencia, Diana; Kissin, Yevgeni; Tamayo, Daniel; Menou, Kristen

    2018-01-01

    Crater detection has traditionally been done via manual inspection of images, leading to statistically significant disagreements between scientists for the Moon's crater distribution. In addition, there are millions of uncategorized craters on the Moon and other Solar System bodies that will never be classified by humans due to the time required to manually detect craters. I will show that a deep learning model trained on the near-side of the Moon can successfully reproduce the crater distribution on the far-side, as well as detect thousands of small, new craters that were previously uncharacterized. In addition, this Moon-trained model can be transferred to accurately classify craters on Mercury. It is therefore likely that this model can be extended to classify craters on all Solar System bodies with Digital Elevation Maps. This will facilitate, for the first time ever, a systematic, accurate, and reproducible study of the crater records throughout the Solar System.

  18. A microcomputer-based daily living activity recording system.

    PubMed

    Matsuoka, Shingo; Yonezawa, Yoshiharu; Maki, Hiromichi; Ogawa, Hidekuni; Hahn, Allen W; Thayer, Julian F; Caldwell, W Morton

    2003-01-01

    A new daily living activity recording system has been developed for monitoring health conditions and living patterns, such as respiration, posture, activity/rest ratios and general activity level. The system employs a piezoelectric sensor, a dual axis accelerometer, two low-power active filters, a low-power 8-bit single chip microcomputer and a 128 MB compact flash memory. The piezoelectric sensor, whose electrical polarization voltage is produced by mechanical strain, detects body movements. Its high-frequency output components reflect body movements produced by walking and running activities, while the low frequency components are mainly respiratory. The dual axis accelerometer detects, from body X and Y tilt angles, whether the patient is standing, sitting or lying down (prone, supine, left side or right side). The detected respiratory, behavior and posture signals are stored by the compact flash memory. After recording, these data are downloaded to a desktop computer and analyzed.

  19. Bell Correlations in a Many-Body System with Finite Statistics

    NASA Astrophysics Data System (ADS)

    Wagner, Sebastian; Schmied, Roman; Fadel, Matteo; Treutlein, Philipp; Sangouard, Nicolas; Bancal, Jean-Daniel

    2017-10-01

    A recent experiment reported the first violation of a Bell correlation witness in a many-body system [Science 352, 441 (2016)]. Following discussions in this Letter, we address here the question of the statistics required to witness Bell correlated states, i.e., states violating a Bell inequality, in such experiments. We start by deriving multipartite Bell inequalities involving an arbitrary number of measurement settings, two outcomes per party and one- and two-body correlators only. Based on these inequalities, we then build up improved witnesses able to detect Bell correlated states in many-body systems using two collective measurements only. These witnesses can potentially detect Bell correlations in states with an arbitrarily low amount of spin squeezing. We then establish an upper bound on the statistics needed to convincingly conclude that a measured state is Bell correlated.

  20. Bell Correlations in a Many-Body System with Finite Statistics.

    PubMed

    Wagner, Sebastian; Schmied, Roman; Fadel, Matteo; Treutlein, Philipp; Sangouard, Nicolas; Bancal, Jean-Daniel

    2017-10-27

    A recent experiment reported the first violation of a Bell correlation witness in a many-body system [Science 352, 441 (2016)]. Following discussions in this Letter, we address here the question of the statistics required to witness Bell correlated states, i.e., states violating a Bell inequality, in such experiments. We start by deriving multipartite Bell inequalities involving an arbitrary number of measurement settings, two outcomes per party and one- and two-body correlators only. Based on these inequalities, we then build up improved witnesses able to detect Bell correlated states in many-body systems using two collective measurements only. These witnesses can potentially detect Bell correlations in states with an arbitrarily low amount of spin squeezing. We then establish an upper bound on the statistics needed to convincingly conclude that a measured state is Bell correlated.

  1. Non-contact and noise tolerant heart rate monitoring using microwave doppler sensor and range imagery.

    PubMed

    Matsunag, Daichi; Izumi, Shintaro; Okuno, Keisuke; Kawaguchi, Hiroshi; Yoshimoto, Masahiko

    2015-01-01

    This paper describes a non-contact and noise-tolerant heart beat monitoring system. The proposed system comprises a microwave Doppler sensor and range imagery using Microsoft Kinect™. The possible application of the proposed system is a driver health monitoring. We introduce the sensor fusion approach to minimize the heart beat detection error. The proposed algorithm can subtract a body motion artifact from Doppler sensor output using time-frequency analysis. The body motion artifact is a crucially important problem for biosignal monitoring using microwave Doppler sensor. The body motion speed is obtainable from range imagery, which has 5-mm resolution at 30-cm distance. Measurement results show that the success rate of the heart beat detection is improved about 75% on average when the Doppler wave is degraded by the body motion artifact.

  2. Development of a new measurement system to detect selectively volatile organic compounds derived from the human body.

    PubMed

    Kanou, S; Nagaoka, T; Kobayashi, N; Kurahashi, M; Takeda, S; Aoki, T; Tsuji, T; Urano, T; Abe, T; Magatani, K

    2013-01-01

    A new concept expired gas measurement system used double cold-trap method was developed. The system could detect selectively volatile organic compound (VOC) derived from the human body. The gas chromatography (GC) profiles of healthy volunteer's expired gas collected by our system were analyzed. As a result, 60 VOCs were detected from the healthy volunteer's expired gas. We examined 14 VOCs among them further, which could be converted to the concentration from the GC profiles. The concentration of almost VOCs decreased when the subjects inspired purified air compared with the atmosphere. On the other hand, isoprene was almost the same. It was strongly suggested that these VOCs were derived from the human body because the concentration of these VOCs in the atmosphere were nearly zero. Expired gas of two sleep apnea syndrome (SAS) patients were analyzed as preliminary study. As a result of the study, the concentration of some VOCs contained in the expired gas of the SAS patients showed higher value than a healthy controls.

  3. Water Detection Based on Color Variation

    NASA Technical Reports Server (NTRS)

    Rankin, Arturo L.

    2012-01-01

    This software has been designed to detect water bodies that are out in the open on cross-country terrain at close range (out to 30 meters), using imagery acquired from a stereo pair of color cameras mounted on a terrestrial, unmanned ground vehicle (UGV). This detector exploits the fact that the color variation across water bodies is generally larger and more uniform than that of other naturally occurring types of terrain, such as soil and vegetation. Non-traversable water bodies, such as large puddles, ponds, and lakes, are detected based on color variation, image intensity variance, image intensity gradient, size, and shape. At ranges beyond 20 meters, water bodies out in the open can be indirectly detected by detecting reflections of the sky below the horizon in color imagery. But at closer range, the color coming out of a water body dominates sky reflections, and the water cue from sky reflections is of marginal use. Since there may be times during UGV autonomous navigation when a water body does not come into a perception system s field of view until it is at close range, the ability to detect water bodies at close range is critical. Factors that influence the perceived color of a water body at close range are the amount and type of sediment in the water, the water s depth, and the angle of incidence to the water body. Developing a single model of the mixture ratio of light reflected off the water surface (to the camera) to light coming out of the water body (to the camera) for all water bodies would be fairly difficult. Instead, this software detects close water bodies based on local terrain features and the natural, uniform change in color that occurs across the surface from the leading edge to the trailing edge.

  4. DETECTION OR WARNING SYSTEM

    DOEpatents

    Tillman, J E

    1953-10-20

    This patent application describes a sensitive detection or protective system capable of giving an alarm or warning upon the entrance or intrusion of any body into a defined area or zone protected by a radiation field of suitable direction or extent.

  5. Video-CRM: understanding customer behaviors in stores

    NASA Astrophysics Data System (ADS)

    Haritaoglu, Ismail; Flickner, Myron; Beymer, David

    2013-03-01

    This paper describes two real-time computer vision systems created 10 years ago that detect and track people in stores to obtain insights of customer behavior while shopping. The first system uses a single color camera to identify shopping groups in the checkout line. Shopping groups are identified by analyzing the inter-body distances coupled with the cashier's activities to detect checkout transactions start and end times. The second system uses multiple overhead narrow-baseline stereo cameras to detect and track people, their body posture and parts to understand customer interactions with products such as "customer picking a product from a shelf". In pilot studies both systems demonstrated real-time performance and sufficient accuracy to enable more detailed understanding of customer behavior and extract actionable real-time retail analytics.

  6. D Scanning of Live Pigs System and its Application in Body Measurements

    NASA Astrophysics Data System (ADS)

    Guo, H.; Wang, K.; Su, W.; Zhu, D. H.; Liu, W. L.; Xing, Ch.; Chen, Z. R.

    2017-09-01

    The shape of a live pig is an important indicator of its health and value, whether for breeding or for carcass quality. This paper implements a prototype system for live single pig body surface 3d scanning based on two consumer depth cameras, utilizing the 3d point clouds data. These cameras are calibrated in advance to have a common coordinate system. The live 3D point clouds stream of moving single pig is obtained by two Xtion Pro Live sensors from different viewpoints simultaneously. A novel detection method is proposed and applied to automatically detect the frames containing pigs with the correct posture from the point clouds stream, according to the geometric characteristics of pig's shape. The proposed method is incorporated in a hybrid scheme, that serves as the preprocessing step in a body measurements framework for pigs. Experimental results show the portability of our scanning system and effectiveness of our detection method. Furthermore, an updated this point cloud preprocessing software for livestock body measurements can be downloaded freely from https://github.com/LiveStockShapeAnalysis to livestock industry, research community and can be used for monitoring livestock growth status.

  7. Insulation detection of electric vehicle batteries

    NASA Astrophysics Data System (ADS)

    Dai, Qiqi; Zhu, Zhongwen; Huang, Denggao; Du, Mingxing; Wei, Kexin

    2018-06-01

    In this paper, an electric vehicle insulation detection method with single side switching fixed resistance is designed, and the hardware and software design of the system are given. The experiment proves that the insulation detection system can detect the insulation resistance in a wide range of resistance values, and accurately report the fault level. This system can effectively monitor the insulation fault between the car body and the high voltage line and avoid the passengers from being injured.

  8. Effect of flow velocity on the photoacoustic detection for glucose aqueous solutions

    NASA Astrophysics Data System (ADS)

    Ren, Zhong; Liu, Guodong; Ding, Yu; Yao, Qingkai

    2018-01-01

    The blood glucose non-invasive detection has become the research hot-spot. The photoacoustic spectroscopy is a well-promising, high-efficient and noninvasive detection method because it combines the advantages of the pure optic and pure ultrasonic. In practice, the photoacoustic detection of blood glucose is impacted by many factors because the human body is a complicated bio-system. To study the effect of flow velocity in the blood vessel on the photoacoustic detection of blood glucose, a photoacoustic detection system based on optical parameter oscillator (OPO) pulsed laser induced ultrasonic was established. In this system, a 532nm pumped Nd: YAG OPO pulsed laser was used as the excitation source, and the photoacoustic signals of glucose were captured by ultrasonic transducer. Moreover, a set of blood circulation system was built to simulate the real blood flow situation in the human body. The experiments of the photoacoustic detection of glucose aqueous solutions with different concentrations at different flow velocities were experimentally investigated. Experimental results show that the photoacoustic peak-to-peak value linearly increases with the glucose concentration, but it decreases with the increase of the flow velocity although the profiles of photoacoustic signals don't change.

  9. Design and analysis of x-ray vision systems for high-speed detection of foreign body contamination in food

    NASA Astrophysics Data System (ADS)

    Graves, Mark; Smith, Alexander; Batchelor, Bruce G.; Palmer, Stephen C.

    1994-10-01

    In the food industry there is an ever increasing need to control and monitor food quality. In recent years fully automated x-ray inspection systems have been used to detect food on-line for foreign body contamination. These systems involve a complex integration of x- ray imaging components with state of the art high speed image processing. The quality of the x-ray image obtained by such systems is very poor compared with images obtained from other inspection processes, this makes reliable detection of very small, low contrast defects extremely difficult. It is therefore extremely important to optimize the x-ray imaging components to give the very best image possible. In this paper we present a method of analyzing the x-ray imaging system in order to consider the contrast obtained when viewing small defects.

  10. Wearable vital parameters monitoring system

    NASA Astrophysics Data System (ADS)

    Caramaliu, Radu Vadim; Vasile, Alexandru; Bacis, Irina

    2015-02-01

    The system we propose monitors body temperature, heart rate and beside this, it tracks if the person who wears it suffers a faint. It uses a digital temperature sensor, a pulse sensor and a gravitational acceleration sensor to monitor the eventual faint or small heights free falls. The system continuously tracks the GPS position when available and stores the last valid data. So, when measuring abnormal vital parameters the module will send an SMS, using the GSM cellular network , with the person's social security number, the last valid GPS position for that person, the heart rate, the body temperature and, where applicable, a valid fall alert or non-valid fall alert. Even though such systems exist, they contain only faint detection or heart rate detection. Usually there is a strong correlation between low/high heart rate and an eventual faint. Combining both features into one system results in a more reliable detection device.

  11. A search for minor bodies in the Jovian tenuous ring system

    NASA Astrophysics Data System (ADS)

    Malinnikova Bang, A.; Joergensen, J. L.; Connerney, J. E.; Benn, M.; Denver, T.; Oliversen, R. J.; Lawton, P.

    2013-12-01

    The magnetometer experiment on the Juno spacecraft, is equipped with four fully autonomous star trackers, which apart from delivering highly accurate attitude information for the magnetometer sensors, and the inherent imaging capabilities of a low light camera system, also can detect and track luminous objects that exhibit an apparent motion rate relative to the background. The Juno magnetometer star trackers are pointed 13deg of the spacecraft anti-spin vector, each having a field of view of 13 by 18 degrees and operated at 4Hz. As the spacecraft spin, each camera will cover an annulus shaped disk with an inner radius of 7.5 degrees, and an outer radius of 20.5deg. When in science orbit, the Juno trajectory near peri-jove, will result in the anti-spin vector scanning across the tenuous rings. The combination of this scanning motion with the rotation of the camera field of view results in a near perfect opportunity to detect and track minor bodies in the inner part of the rings. The operations of this mode, is first tested in flight during the Juno Earth Flyby 9th October 2013, where the Moon is used as a known target. We present a few results of this test, and based on scale laws we will discuss the systems capability of detecting minor bodies in the Jovian ring system in terms of distance, velocity, albedo and range. Also, because the magnetometer star trackers are offset from the spin axis, the distance to a detected object can be derived by simple triangulation of the apparent direction as observed before, under and after passage under the rings. We discuss how this technique may be used to determine the orbit, size and albedo, of minor bodies thus detected and tracked.

  12. Systems and Methods for Automated Water Detection Using Visible Sensors

    NASA Technical Reports Server (NTRS)

    Rankin, Arturo L. (Inventor); Matthies, Larry H. (Inventor); Bellutta, Paolo (Inventor)

    2016-01-01

    Systems and methods are disclosed that include automated machine vision that can utilize images of scenes captured by a 3D imaging system configured to image light within the visible light spectrum to detect water. One embodiment includes autonomously detecting water bodies within a scene including capturing at least one 3D image of a scene using a sensor system configured to detect visible light and to measure distance from points within the scene to the sensor system, and detecting water within the scene using a processor configured to detect regions within each of the at least one 3D images that possess at least one characteristic indicative of the presence of water.

  13. Deep Neural Network Detects Quantum Phase Transition

    NASA Astrophysics Data System (ADS)

    Arai, Shunta; Ohzeki, Masayuki; Tanaka, Kazuyuki

    2018-03-01

    We detect the quantum phase transition of a quantum many-body system by mapping the observed results of the quantum state onto a neural network. In the present study, we utilized the simplest case of a quantum many-body system, namely a one-dimensional chain of Ising spins with the transverse Ising model. We prepared several spin configurations, which were obtained using repeated observations of the model for a particular strength of the transverse field, as input data for the neural network. Although the proposed method can be employed using experimental observations of quantum many-body systems, we tested our technique with spin configurations generated by a quantum Monte Carlo simulation without initial relaxation. The neural network successfully identified the strength of transverse field only from the spin configurations, leading to consistent estimations of the critical point of our model Γc = J.

  14. System and method of reducing motion-induced noise in the optical detection of an ultrasound signal in a moving body of material

    DOEpatents

    Habeger, Jr., Charles C.; LaFond, Emmanuel F.; Brodeur, Pierre; Gerhardstein, Joseph P.

    2002-01-01

    The present invention provides a system and method to reduce motion-induced noise in the detection of ultrasonic signals in a moving sheet or body of material. An ultrasonic signal is generated in a sheet of material and a detection laser beam is moved along the surface of the material. By moving the detection laser in the same direction as the direction of movement of the sheet of material the amount of noise induced in the detection of the ultrasonic signal is reduced. The scanner is moved at approximately the same speed as the moving material. The system and method may be used for many applications, such in a paper making process or steel making process. The detection laser may be directed by a scanner. The movement of the scanner is synchronized with the anticipated arrival of the ultrasonic signal under the scanner. A photodetector may be used to determine when a ultrasonic pulse has been directed to the moving sheet of material so that the scanner may be synchronized the anticipated arrival of the ultrasonic signal.

  15. A Novel Lead Configuration for Optimal Spatio-Temporal Detection of Intracardiac Repolarization Alternans

    PubMed Central

    Weiss, Eric H.; Merchant, Faisal M.; d’Avila, Andre; Foley, Lori; Reddy, Vivek Y.; Singh, Jagmeet P.; Mela, Theofanie; Ruskin, Jeremy N.; Armoundas, Antonis A.

    2011-01-01

    Background Electrical alternans is a pattern of variation in the shape of electrocardiographic waveform that occurs every other beat. In humans, alternation in ventricular repolarization, known as repolarization alternans (RA), has been associated with increased vulnerability to ventricular tachycardia/fibrillation and sudden cardiac death. Methods and Results This study investigates the spatio-temporal variability of intracardiac RA and its relationship to body surface RA in an acute myocardial ischemia model in swine. We developed a real-time multi-channel repolarization signal acquisition, display and analysis system to record electrocardiographic signals from catheters in the right ventricle, coronary sinus, left ventricle, and epicardial surface prior to and following circumflex coronary artery balloon occlusion. We found that RA is detectable within 4 minutes following the onset ischemia, and is most prominently seen during the first half of the repolarization interval. Ischemia-induced RA was detectable on unipolar and bipolar leads (both in near- and far-field configurations) and on body surface leads. Far-field bipolar intracardiac leads were more sensitive for RA detection than body surface leads, with the probability of body surface RA detection increasing as the number of intracardiac leads detecting RA increased, approaching 100% when at least three intracardiac leads detected RA. We developed a novel, clinically-applicable intracardiac lead system based on a triangular arrangement of leads spanning the right ventricular (RV) and coronary sinus (CS) catheters which provided the highest sensitivity for intracardiac RA detection when compared to any other far-field bipolar sensing configurations (p < 0.0001). Conclusions In conclusion, intracardiac alternans, a complex spatio-temporal phenomenon associated with arrhythmia susceptibility and sudden cardiac death, can be reliably detected through a novel triangular RV-CS lead configuration. PMID:21430127

  16. Nonlocality in many-body quantum systems detected with two-body correlators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tura, J., E-mail: jordi.tura@icfo.es; Augusiak, R.; Sainz, A.B.

    Contemporary understanding of correlations in quantum many-body systems and in quantum phase transitions is based to a large extent on the recent intensive studies of entanglement in many-body systems. In contrast, much less is known about the role of quantum nonlocality in these systems, mostly because the available multipartite Bell inequalities involve high-order correlations among many particles, which are hard to access theoretically, and even harder experimentally. Standard, “theorist- and experimentalist-friendly” many-body observables involve correlations among only few (one, two, rarely three...) particles. Typically, there is no multipartite Bell inequality for this scenario based on such low-order correlations. Recently, however,more » we have succeeded in constructing multipartite Bell inequalities that involve two- and one-body correlations only, and showed how they revealed the nonlocality in many-body systems relevant for nuclear and atomic physics [Tura et al., Science 344 (2014) 1256]. With the present contribution we continue our work on this problem. On the one hand, we present a detailed derivation of the above Bell inequalities, pertaining to permutation symmetry among the involved parties. On the other hand, we present a couple of new results concerning such Bell inequalities. First, we characterize their tightness. We then discuss maximal quantum violations of these inequalities in the general case, and their scaling with the number of parties. Moreover, we provide new classes of two-body Bell inequalities which reveal nonlocality of the Dicke states—ground states of physically relevant and experimentally realizable Hamiltonians. Finally, we shortly discuss various scenarios for nonlocality detection in mesoscopic systems of trapped ions or atoms, and by atoms trapped in the vicinity of designed nanostructures.« less

  17. [Application of Vojta's method for early detection of developmental disturbances in very low birthweight infants with regard to Apgar score and asymmetric body positions].

    PubMed

    Gajewska, Ewa; Samborski, Włodzimierz

    2006-01-01

    This work focuses on the usefulness of assessment based on seven body positions according to Vojta for early detection of developmental abnormalities of the central nervous system. As additional factors, Apgar score at 1st and 5th minute of life, as well as asymmetry of head or of whole body at the time of investigation (usually third month of life) were analyzed in correlation with subsequent diagnosis of cerebral palsy usually established after the first year of life. The study group consisted of 57 children with birthweight lower than 1500 grams. Seven children were diagnosed with cerebral palsy at the age of one year. The following conclusions were drawn: Vojta's diagnostic method is very sensitive in detecting injury of the central nervous system early in life; high correlation was found between cerebral palsy and asymmetry of the body, but not of the head; low Apgar score at 5th but not at 1st minute is highly predictive for progression to cerebral palsy in infants with very low birthweight.

  18. A new bed-exiting alarm system for welfare facility residents.

    PubMed

    Ogawa, Hidekuni; Yonezawa, Yoshiharu; Maki, Hiromichi; Caldwell, W

    2009-01-01

    A newly developed alarm system detects welfare facility residents leaving their beds, and does not respond to the care staff, who wear shoes or slippers. It employs a stainless steel tape electrode, several linear integrated circuits and a low-power 8-bit single chip microcomputer. The electrode, which is used as a bed-exiting detection sensor, is attached to the floor mat to record changes in the always-present AC (alternating current) voltage induced on the patient's body by electrostatic coupling from the standard 100 volt, 60 Hz AC utility power wiring in the room walls and ceiling. The resident's body movements, before trying to get out of bed and after leaving the bed, are detected by the microcomputer from changes in the induced AC voltage. The microcomputer alerts the care staff station, via a power line communication system or PHS (personal handy phone System).

  19. Implementation of infants risk detection sensing system using IoT

    NASA Astrophysics Data System (ADS)

    Yang, Youseok; Lee, Taeo; Lee, Yechan; Choi, Jaehyeon; Park, Eunju; Lim, Hankyu

    2017-06-01

    Infants are vulnerable to surrounding environment and they receive large influence from even a small change. As their body composition is not complete yet, infants receive huge impact from small pressure. Small change can cause disease or even death of infants. This paper designed and implemented a risk-detection system for infants. In addition to the fundamental function of safety management system, the risk-detection system implemented in this paper in corporate child-caring function by using a variety of sensors.

  20. Clinical Perspective of 3D Total Body Photography for Early Detection and Screening of Melanoma.

    PubMed

    Rayner, Jenna E; Laino, Antonia M; Nufer, Kaitlin L; Adams, Laura; Raphael, Anthony P; Menzies, Scott W; Soyer, H Peter

    2018-01-01

    Melanoma incidence continues to increase across many populations globally and there is significant mortality associated with advanced disease. However, if detected early, patients have a very promising prognosis. The methods that have been utilized for early detection include clinician and patient skin examinations, dermoscopy (static and sequential imaging), and total body photography via 2D imaging. Total body photography has recently witnessed an evolution from 2D imaging with the ability to now create a 3D representation of the patient linked with dermoscopy images of individual lesions. 3D total body photography is a particularly beneficial screening tool for patients at high risk due to their personal or family history or those with multiple dysplastic naevi-the latter can make monitoring especially difficult without the assistance of technology. In this perspective, we discuss clinical examples utilizing 3D total body photography, associated advantages and limitations, and future directions of the technology. The optimal system for melanoma screening should improve diagnostic accuracy, be time and cost efficient, and accessible to patients across all demographic and socioeconomic groups. 3D total body photography has the potential to address these criteria and, most importantly, optimize crucial early detection.

  1. Appearance-based multimodal human tracking and identification for healthcare in the digital home.

    PubMed

    Yang, Mau-Tsuen; Huang, Shen-Yen

    2014-08-05

    There is an urgent need for intelligent home surveillance systems to provide home security, monitor health conditions, and detect emergencies of family members. One of the fundamental problems to realize the power of these intelligent services is how to detect, track, and identify people at home. Compared to RFID tags that need to be worn all the time, vision-based sensors provide a natural and nonintrusive solution. Observing that body appearance and body build, as well as face, provide valuable cues for human identification, we model and record multi-view faces, full-body colors and shapes of family members in an appearance database by using two Kinects located at a home's entrance. Then the Kinects and another set of color cameras installed in other parts of the house are used to detect, track, and identify people by matching the captured color images with the registered templates in the appearance database. People are detected and tracked by multisensor fusion (Kinects and color cameras) using a Kalman filter that can handle duplicate or partial measurements. People are identified by multimodal fusion (face, body appearance, and silhouette) using a track-based majority voting. Moreover, the appearance-based human detection, tracking, and identification modules can cooperate seamlessly and benefit from each other. Experimental results show the effectiveness of the human tracking across multiple sensors and human identification considering the information of multi-view faces, full-body clothes, and silhouettes. The proposed home surveillance system can be applied to domestic applications in digital home security and intelligent healthcare.

  2. Appearance-Based Multimodal Human Tracking and Identification for Healthcare in the Digital Home

    PubMed Central

    Yang, Mau-Tsuen; Huang, Shen-Yen

    2014-01-01

    There is an urgent need for intelligent home surveillance systems to provide home security, monitor health conditions, and detect emergencies of family members. One of the fundamental problems to realize the power of these intelligent services is how to detect, track, and identify people at home. Compared to RFID tags that need to be worn all the time, vision-based sensors provide a natural and nonintrusive solution. Observing that body appearance and body build, as well as face, provide valuable cues for human identification, we model and record multi-view faces, full-body colors and shapes of family members in an appearance database by using two Kinects located at a home's entrance. Then the Kinects and another set of color cameras installed in other parts of the house are used to detect, track, and identify people by matching the captured color images with the registered templates in the appearance database. People are detected and tracked by multisensor fusion (Kinects and color cameras) using a Kalman filter that can handle duplicate or partial measurements. People are identified by multimodal fusion (face, body appearance, and silhouette) using a track-based majority voting. Moreover, the appearance-based human detection, tracking, and identification modules can cooperate seamlessly and benefit from each other. Experimental results show the effectiveness of the human tracking across multiple sensors and human identification considering the information of multi-view faces, full-body clothes, and silhouettes. The proposed home surveillance system can be applied to domestic applications in digital home security and intelligent healthcare. PMID:25098207

  3. Theoretical assessment of whole body counting performances using numerical phantoms of different gender and sizes.

    PubMed

    Marzocchi, O; Breustedt, B; Mostacci, D; Zankl, M; Urban, M

    2011-03-01

    A goal of whole body counting (WBC) is the estimation of the total body burden of radionuclides disregarding the actual position within the body. To achieve the goal, the detectors need to be placed in regions where the photon flux is as independent as possible from the distribution of the source. At the same time, the detectors need high photon fluxes in order to achieve better efficiency and lower minimum detectable activities. This work presents a method able to define the layout of new WBC systems and to study the behaviour of existing ones using both detection efficiency and its dependence on the position of the source within the body of computational phantoms.

  4. Early Detection of Infection in Pigs through an Online Monitoring System.

    PubMed

    Martínez-Avilés, M; Fernández-Carrión, E; López García-Baones, J M; Sánchez-Vizcaíno, J M

    2017-04-01

    Late detection of emergency diseases causes significant economic losses for pig producers and governments. As the first signs of animal infection are usually fever and reduced motion that lead to reduced consumption of water and feed, we developed a novel smart system to monitor body temperature and motion in real time, facilitating the early detection of infectious diseases. In this study, carried out within the framework of the European Union research project Rapidia Field, we tested the smart system on 10 pigs experimentally infected with two doses of an attenuated strain of African swine fever. Biosensors and an accelerometer embedded in an eartag captured data before and after infection, and video cameras were used to monitor the animals 24 h per day. The results showed that in 8 of 9 cases, the monitoring system detected infection onset as an increase in body temperature and decrease in movement before or simultaneously with fever detection based on rectal temperature measurement, observation of clinical signs, the decrease in water consumption or positive qPCR detection of virus. In addition, this decrease in movement was reliably detected using automatic analysis of video images therefore providing an inexpensive alternative to direct motion measurement. The system can be set up to alert staff when high fever, reduced motion or both are detected in one or more animals. This system may be useful for monitoring sentinel herds in real time, considerably reducing the financial and logistical costs of periodic sampling and increasing the chances of early detection of infection. © 2015 Blackwell Verlag GmbH.

  5. Mapping multisensory parietal face and body areas in humans.

    PubMed

    Huang, Ruey-Song; Chen, Ching-fu; Tran, Alyssa T; Holstein, Katie L; Sereno, Martin I

    2012-10-30

    Detection and avoidance of impending obstacles is crucial to preventing head and body injuries in daily life. To safely avoid obstacles, locations of objects approaching the body surface are usually detected via the visual system and then used by the motor system to guide defensive movements. Mediating between visual input and motor output, the posterior parietal cortex plays an important role in integrating multisensory information in peripersonal space. We used functional MRI to map parietal areas that see and feel multisensory stimuli near or on the face and body. Tactile experiments using full-body air-puff stimulation suits revealed somatotopic areas of the face and multiple body parts forming a higher-level homunculus in the superior posterior parietal cortex. Visual experiments using wide-field looming stimuli revealed retinotopic maps that overlap with the parietal face and body areas in the postcentral sulcus at the most anterior border of the dorsal visual pathway. Starting at the parietal face area and moving medially and posteriorly into the lower-body areas, the median of visual polar-angle representations in these somatotopic areas gradually shifts from near the horizontal meridian into the lower visual field. These results suggest the parietal face and body areas fuse multisensory information in peripersonal space to guard an individual from head to toe.

  6. Synchronous wearable wireless body sensor network composed of autonomous textile nodes.

    PubMed

    Vanveerdeghem, Peter; Van Torre, Patrick; Stevens, Christiaan; Knockaert, Jos; Rogier, Hendrik

    2014-10-09

    A novel, fully-autonomous, wearable, wireless sensor network is presented, where each flexible textile node performs cooperative synchronous acquisition and distributed event detection. Computationally efficient situational-awareness algorithms are implemented on the low-power microcontroller present on each flexible node. The detected events are wirelessly transmitted to a base station, directly, as well as forwarded by other on-body nodes. For each node, a dual-polarized textile patch antenna serves as a platform for the flexible electronic circuitry. Therefore, the system is particularly suitable for comfortable and unobtrusive integration into garments. In the meantime, polarization diversity can be exploited to improve the reliability and energy-efficiency of the wireless transmission. Extensive experiments in realistic conditions have demonstrated that this new autonomous, body-centric, textile-antenna, wireless sensor network is able to correctly detect different operating conditions of a firefighter during an intervention. By relying on four network nodes integrated into the protective garment, this functionality is implemented locally, on the body, and in real time. In addition, the received sensor data are reliably transferred to a central access point at the command post, for more detailed and more comprehensive real-time visualization. This information provides coordinators and commanders with situational awareness of the entire rescue operation. A statistical analysis of measured on-body node-to-node, as well as off-body person-to-person channels is included, confirming the reliability of the communication system.

  7. Synchronous Wearable Wireless Body Sensor Network Composed of Autonomous Textile Nodes

    PubMed Central

    Vanveerdeghem, Peter; Van Torre, Patrick; Stevens, Christiaan; Knockaert, Jos; Rogier, Hendrik

    2014-01-01

    A novel, fully-autonomous, wearable, wireless sensor network is presented, where each flexible textile node performs cooperative synchronous acquisition and distributed event detection. Computationally efficient situational-awareness algorithms are implemented on the low-power microcontroller present on each flexible node. The detected events are wirelessly transmitted to a base station, directly, as well as forwarded by other on-body nodes. For each node, a dual-polarized textile patch antenna serves as a platform for the flexible electronic circuitry. Therefore, the system is particularly suitable for comfortable and unobtrusive integration into garments. In the meantime, polarization diversity can be exploited to improve the reliability and energy-efficiency of the wireless transmission. Extensive experiments in realistic conditions have demonstrated that this new autonomous, body-centric, textile-antenna, wireless sensor network is able to correctly detect different operating conditions of a firefighter during an intervention. By relying on four network nodes integrated into the protective garment, this functionality is implemented locally, on the body, and in real time. In addition, the received sensor data are reliably transferred to a central access point at the command post, for more detailed and more comprehensive real-time visualization. This information provides coordinators and commanders with situational awareness of the entire rescue operation. A statistical analysis of measured on-body node-to-node, as well as off-body person-to-person channels is included, confirming the reliability of the communication system. PMID:25302808

  8. Research of the absorbance detection and fluorescence detection for multifunctional nutrition analyzer

    NASA Astrophysics Data System (ADS)

    Ni, Zhengyuan; Yan, Huimin; Ni, Xuxiang; Zhang, Xiuda

    2017-10-01

    The research of the multifunctional analyzer which integrates absorbance detection, fluorescence detection, time-resolved fluorescence detection, biochemical luminescence detection methods, can make efficient detection and analysis for a variety of human body nutrients. This article focuses on the absorbance detection and fluorescence detection system. The two systems are modular in design and controlled by embedded system, to achieve automatic measurement according to user settings. In the optical path design, the application of confocal design can improve the optical signal acquisition capability, and reduce the interference. A photon counter is used for detection, and a high performance counter module is designed to measure the output of photon counter. In the experiment, we use neutral density filters and potassium dichromate solution to test the absorbance detection system, and use fluorescein isothiocyanate FITC for fluorescence detection system performance test. The experimental results show that the absorbance detection system has a detection range of 0 4OD, and has good linearity in the detection range, while the fluorescence detection system has a high sensitivity of 1pmol/L concentration.

  9. Design of Secure ECG-Based Biometric Authentication in Body Area Sensor Networks

    PubMed Central

    Peter, Steffen; Pratap Reddy, Bhanu; Momtaz, Farshad; Givargis, Tony

    2016-01-01

    Body area sensor networks (BANs) utilize wireless communicating sensor nodes attached to a human body for convenience, safety, and health applications. Physiological characteristics of the body, such as the heart rate or Electrocardiogram (ECG) signals, are promising means to simplify the setup process and to improve security of BANs. This paper describes the design and implementation steps required to realize an ECG-based authentication protocol to identify sensor nodes attached to the same human body. Therefore, the first part of the paper addresses the design of a body-area sensor system, including the hardware setup, analogue and digital signal processing, and required ECG feature detection techniques. A model-based design flow is applied, and strengths and limitations of each design step are discussed. Real-world measured data originating from the implemented sensor system are then used to set up and parametrize a novel physiological authentication protocol for BANs. The authentication protocol utilizes statistical properties of expected and detected deviations to limit the number of false positive and false negative authentication attempts. The result of the described holistic design effort is the first practical implementation of biometric authentication in BANs that reflects timing and data uncertainties in the physical and cyber parts of the system. PMID:27110785

  10. Design of Secure ECG-Based Biometric Authentication in Body Area Sensor Networks.

    PubMed

    Peter, Steffen; Reddy, Bhanu Pratap; Momtaz, Farshad; Givargis, Tony

    2016-04-22

    Body area sensor networks (BANs) utilize wireless communicating sensor nodes attached to a human body for convenience, safety, and health applications. Physiological characteristics of the body, such as the heart rate or Electrocardiogram (ECG) signals, are promising means to simplify the setup process and to improve security of BANs. This paper describes the design and implementation steps required to realize an ECG-based authentication protocol to identify sensor nodes attached to the same human body. Therefore, the first part of the paper addresses the design of a body-area sensor system, including the hardware setup, analogue and digital signal processing, and required ECG feature detection techniques. A model-based design flow is applied, and strengths and limitations of each design step are discussed. Real-world measured data originating from the implemented sensor system are then used to set up and parametrize a novel physiological authentication protocol for BANs. The authentication protocol utilizes statistical properties of expected and detected deviations to limit the number of false positive and false negative authentication attempts. The result of the described holistic design effort is the first practical implementation of biometric authentication in BANs that reflects timing and data uncertainties in the physical and cyber parts of the system.

  11. Automated Planar Tracking the Waving Bodies of Multiple Zebrafish Swimming in Shallow Water.

    PubMed

    Wang, Shuo Hong; Cheng, Xi En; Qian, Zhi-Ming; Liu, Ye; Chen, Yan Qiu

    2016-01-01

    Zebrafish (Danio rerio) is one of the most widely used model organisms in collective behavior research. Multi-object tracking with high speed camera is currently the most feasible way to accurately measure their motion states for quantitative study of their collective behavior. However, due to difficulties such as their similar appearance, complex body deformation and frequent occlusions, it is a big challenge for an automated system to be able to reliably track the body geometry of each individual fish. To accomplish this task, we propose a novel fish body model that uses a chain of rectangles to represent fish body. Then in detection stage, the point of maximum curvature along fish boundary is detected and set as fish nose point. Afterwards, in tracking stage, we firstly apply Kalman filter to track fish head, then use rectangle chain fitting to fit fish body, which at the same time further judge the head tracking results and remove the incorrect ones. At last, a tracklets relinking stage further solves trajectory fragmentation due to occlusion. Experiment results show that the proposed tracking system can track a group of zebrafish with their body geometry accurately even when occlusion occurs from time to time.

  12. Automated Planar Tracking the Waving Bodies of Multiple Zebrafish Swimming in Shallow Water

    PubMed Central

    Wang, Shuo Hong; Cheng, Xi En; Qian, Zhi-Ming; Liu, Ye; Chen, Yan Qiu

    2016-01-01

    Zebrafish (Danio rerio) is one of the most widely used model organisms in collective behavior research. Multi-object tracking with high speed camera is currently the most feasible way to accurately measure their motion states for quantitative study of their collective behavior. However, due to difficulties such as their similar appearance, complex body deformation and frequent occlusions, it is a big challenge for an automated system to be able to reliably track the body geometry of each individual fish. To accomplish this task, we propose a novel fish body model that uses a chain of rectangles to represent fish body. Then in detection stage, the point of maximum curvature along fish boundary is detected and set as fish nose point. Afterwards, in tracking stage, we firstly apply Kalman filter to track fish head, then use rectangle chain fitting to fit fish body, which at the same time further judge the head tracking results and remove the incorrect ones. At last, a tracklets relinking stage further solves trajectory fragmentation due to occlusion. Experiment results show that the proposed tracking system can track a group of zebrafish with their body geometry accurately even when occlusion occurs from time to time. PMID:27128096

  13. Estimating the cost of skin cancer detection by dermatology providers in a large health care system.

    PubMed

    Matsumoto, Martha; Secrest, Aaron; Anderson, Alyce; Saul, Melissa I; Ho, Jonhan; Kirkwood, John M; Ferris, Laura K

    2018-04-01

    Data on the cost and efficiency of skin cancer detection through total body skin examination are scarce. To determine the number needed to screen (NNS) and biopsy (NNB) and cost per skin cancer diagnosed in a large dermatology practice in patients undergoing total body skin examination. This is a retrospective observational study. During 2011-2015, a total of 20,270 patients underwent 33,647 visits for total body skin examination; 9956 lesion biopsies were performed yielding 2763 skin cancers, including 155 melanomas. The NNS to detect 1 skin cancer was 12.2 (95% confidence interval [CI] 11.7-12.6) and 1 melanoma was 215 (95% CI 185-252). The NNB to detect 1 skin cancer was 3.0 (95% CI 2.9-3.1) and 1 melanoma was 27.8 (95% CI 23.3-33.3). In a multivariable model for NNS, age and personal history of melanoma were significant factors. Age switched from a protective factor to a risk factor at 51 years of age. The estimated cost per melanoma detected was $32,594 (95% CI $27,326-$37,475). Data are from a single health care system and based on physician coding. Melanoma detection through total body skin examination is most efficient in patients ≥50 years of age and those with a personal history of melanoma. Our findings will be helpful in modeling the cost effectiveness of melanoma screening by dermatologists. Copyright © 2017 American Academy of Dermatology, Inc. Published by Elsevier Inc. All rights reserved.

  14. Infrared techniques for detecting carbonization at onset of device failure

    NASA Astrophysics Data System (ADS)

    Farr, Norman; Sinofsky, Edward L.

    1997-05-01

    We describe the design, and development of an infrared detection system which detects the onset of carbonization of fluoropolymers in the presence of up to 60 watts of 1.06 micrometer laser energy. This system is used to shut down a therapeutic laser system before significant damage is done to a laser delivery device and patient. Black body radiation emitting from the diffusion tip is transmitted, backwards, through the same optical fiber as the therapeutic wavelength. Using a high power 1.06 micrometer laser mirror at 45 degrees, most of the 1.06 micrometer light is reflected while the black body radiation is passed to a holographic notch filter which further filters the signal. Still more filtering was needed before the 1.1 to 2 micrometer signal could be detected within the presence the therapeutic light using an extended indium gallium arsenide photodetector. There was still a significant detected offset which increased with laser power which necessitated a means to automatically null the offset for different laser power settings. The system is designed to be used with any unmodified laser system. It interfaces directly to or in series with most common external safety interlocks and can be used with various diffusing tips, probes or bare fibers.

  15. Multi-Sensor Based Online Attitude Estimation and Stability Measurement of Articulated Heavy Vehicles.

    PubMed

    Zhu, Qingyuan; Xiao, Chunsheng; Hu, Huosheng; Liu, Yuanhui; Wu, Jinjin

    2018-01-13

    Articulated wheel loaders used in the construction industry are heavy vehicles and have poor stability and a high rate of accidents because of the unpredictable changes of their body posture, mass and centroid position in complex operation environments. This paper presents a novel distributed multi-sensor system for real-time attitude estimation and stability measurement of articulated wheel loaders to improve their safety and stability. Four attitude and heading reference systems (AHRS) are constructed using micro-electro-mechanical system (MEMS) sensors, and installed on the front body, rear body, rear axis and boom of an articulated wheel loader to detect its attitude. A complementary filtering algorithm is deployed for sensor data fusion in the system so that steady state margin angle (SSMA) can be measured in real time and used as the judge index of rollover stability. Experiments are conducted on a prototype wheel loader, and results show that the proposed multi-sensor system is able to detect potential unstable states of an articulated wheel loader in real-time and with high accuracy.

  16. Multi-Sensor Based Online Attitude Estimation and Stability Measurement of Articulated Heavy Vehicles

    PubMed Central

    Xiao, Chunsheng; Liu, Yuanhui; Wu, Jinjin

    2018-01-01

    Articulated wheel loaders used in the construction industry are heavy vehicles and have poor stability and a high rate of accidents because of the unpredictable changes of their body posture, mass and centroid position in complex operation environments. This paper presents a novel distributed multi-sensor system for real-time attitude estimation and stability measurement of articulated wheel loaders to improve their safety and stability. Four attitude and heading reference systems (AHRS) are constructed using micro-electro-mechanical system (MEMS) sensors, and installed on the front body, rear body, rear axis and boom of an articulated wheel loader to detect its attitude. A complementary filtering algorithm is deployed for sensor data fusion in the system so that steady state margin angle (SSMA) can be measured in real time and used as the judge index of rollover stability. Experiments are conducted on a prototype wheel loader, and results show that the proposed multi-sensor system is able to detect potential unstable states of an articulated wheel loader in real-time and with high accuracy. PMID:29342850

  17. Very low cost stand-off suicide bomber detection system using human gait analysis to screen potential bomb carrying individuals

    NASA Astrophysics Data System (ADS)

    Greneker, Gene, III

    2005-05-01

    Individuals who carry bombs on their bodies and detonate those bombs in public places are a security problem. There is belief that suicide bombings currently used in the mid-east may spread to the United States if the organized terrorist groups operating in the United States are not identified and the cell members arrested. While bombs in vehicles are the primary method currently used to spread terror in Iraq, U. S. warfighters are starting to face suicide bombers. This may become more of the situation if a stand-off detection capability is developed for the vehicle bomb case. This paper presents a concept, that if developed and commercialized, could provide an inexpensive suicide bomber screening system that could be used to screen individuals approaching a checkpoint while the individual is still 500 to 1,000 feet from the checkpoint. The proposed system measures both the radar cross-section of the individual and the radar derived gait characteristics that are associated with individuals carrying a bomb on their body. GTRI researchers propose to use human gait characteristics, as detected by radar, to determine if a human subject who is carrying no visible load on the body is actually carrying a concealed load under their clothes. The use of radar gait as a metric for the detection (as opposed to a video system) of a suicide bomber is being proposed because detection of gait characteristics are thought to be less sensitive to where the bomb is located on the body, lighting conditions, and the fact that the legs may be shrouded in a robe. The detection of a bomb using radar gait analysis may also prove to be less sensitive to changing tactics regarding where the bomb is placed on the body. An inert suicide bomb vest was constructed using water pipes to simulate the explosive devices. Wiring was added to simulated detonators. The vest weighs approximately 35 pounds. Radar data was taken on the volunteer subject wearing the vest that simulated the suicide bomb. This paper discusses the findings after the data was analyzed. A Provisional Patent has been filed by Georgia Tech Research Corporation on the subject matter that is discussed in this paper.

  18. Driver drowsiness detection using multimodal sensor fusion

    NASA Astrophysics Data System (ADS)

    Andreeva, Elena O.; Aarabi, Parham; Philiastides, Marios G.; Mohajer, Keyvan; Emami, Majid

    2004-04-01

    This paper proposes a multi-modal sensor fusion algorithm for the estimation of driver drowsiness. Driver sleepiness is believed to be responsible for more than 30% of passenger car accidents and for 4% of all accident fatalities. In commercial vehicles, drowsiness is blamed for 58% of single truck accidents and 31% of commercial truck driver fatalities. This work proposes an innovative automatic sleep-onset detection system. Using multiple sensors, the driver"s body is studied as a mechanical structure of springs and dampeners. The sleep-detection system consists of highly sensitive triple-axial accelerometers to monitor the driver"s upper body in 3-D. The subject is modeled as a linear time-variant (LTV) system. An LMS adaptive filter estimation algorithm generates the transfer function (i.e. weight coefficients) for this LTV system. Separate coefficients are generated for the awake and asleep states of the subject. These coefficients are then used to train a neural network. Once trained, the neural network classifies the condition of the driver as either awake or asleep. The system has been tested on a total of 8 subjects. The tests were conducted on sleep-deprived individuals for the sleep state and on fully awake individuals for the awake state. When trained and tested on the same subject, the system detected sleep and awake states of the driver with a success rate of 95%. When the system was trained on three subjects and then retested on a fourth "unseen" subject, the classification rate dropped to 90%. Furthermore, it was attempted to correlate driver posture and sleepiness by observing how car vibrations propagate through a person"s body. Eight additional subjects were studied for this purpose. The results obtained in this experiment proved inconclusive which was attributed to significant differences in the individual habitual postures.

  19. Lidar point density analysis: implications for identifying water bodies

    USGS Publications Warehouse

    Worstell, Bruce B.; Poppenga, Sandra K.; Evans, Gayla A.; Prince, Sandra

    2014-01-01

    Most airborne topographic light detection and ranging (lidar) systems operate within the near-infrared spectrum. Laser pulses from these systems frequently are absorbed by water and therefore do not generate reflected returns on water bodies in the resulting void regions within the lidar point cloud. Thus, an analysis of lidar voids has implications for identifying water bodies. Data analysis techniques to detect reduced lidar return densities were evaluated for test sites in Blackhawk County, Iowa, and Beltrami County, Minnesota, to delineate contiguous areas that have few or no lidar returns. Results from this study indicated a 5-meter radius moving window with fewer than 23 returns (28 percent of the moving window) was sufficient for delineating void regions. Techniques to provide elevation values for void regions to flatten water features and to force channel flow in the downstream direction also are presented.

  20. Infomechanical specializations for prey capture in knifefish

    NASA Astrophysics Data System (ADS)

    Maciver, Malcolm; Patankar, Neelesh; Curet, Oscar; Shirgaonkar, Anup

    2007-11-01

    How does an animal's mechanics and its information acquisition system work together to solve crucial behavioral tasks? We examine this question for the black ghost weakly electric knifefish (Apteronotus albifrons), which is a leading model system for the study of sensory processing in vertebrates. These animals hunt at night by detecting perturbations of a self-generated electric field caused by prey. While the fish searches for prey, it pitches at 30 . Fully resolved Navier-Stokes simulations of their swimming, which occurs through undulations of a long ribbon-like fin along the bottom edge of the body, indicates that this configuration enables maximal thrust while minimizing pitch moment. However, pitching the body also increases drag. Our analysis of the sensory volume for detection of prey shows this volume to be similar to a cylinder around the body. Thus, pitching the body enables a greater swept volume of scanned fluid. Examining the mechanical and information acquisition demands on the animal in this task gives insight into how these sometimes conflicting demands are resolved.

  1. A New Tool For The Hospital Lab

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The multi-module AutoMicrobic System (AMS), whose development stemmed from space-biomedical research, is an automatic, time-saving system for detecting and identifying disease-producing microorganisms in the human body.

  2. Minor Body Surveyor: A Multi-Object, High Speed, Spectro-Photometer Space Mission System Employing Wide-Area Intelligent Change Detection

    NASA Astrophysics Data System (ADS)

    Kaplan, M. L.; van Cleve, J. E.; Alcock, C.

    2003-12-01

    Detection and characterization of the small bodies of the outer solar system presents unique challenges to terrestrial based sensing systems, principally the inverse 4th power decrease of reflected and thermal signals with target distance from the Sun. These limits are surpassed by new techniques [1,2,3] employing star-object occultation event sensing, which are capable of detecting sub-kilometer objects in the Kuiper Belt and Oort cloud. This poster will present an instrument and space mission concept based on adaptations of the NASA Discovery Kepler program currently in development at Ball Aerospace and Technologies Corp. Instrument technologies to enable this space science mission are being pursued and will be described. In particular, key attributes of an optimized payload include the ability to provide: 1) Coarse spectral resolution (using an objective spectrometer approach) 2) Wide FOV, simultaneous object monitoring (up to 150,000 stars employing select data regions within a large focal plane mosaic) 3) Fast temporal frame integration and readout architectures (10 to 50 msec for each monitored object) 4) Real-time, intelligent change detection processing (to limit raw data volumes) The Minor Body Surveyor combines the focal plane and processing technology elements into a densely packaged format to support general space mission issues of mass and power consumption, as well as telemetry resources. Mode flexibility is incorporated into the real-time processing elements to allow for either temporal (Occultations) or spatial (Moving targets) change detection. In addition, a basic image capture mode is provided for general pointing and field reference measurements. The overall space mission architecture is described as well. [1] M. E. Bailey. Can 'Invisible' Bodies be Observed in the Solar System. Nature, 259:290-+, January 1976. [2] T. S. Axelrod, C. Alcock, K. H. Cook, and H.-S. Park. A Direct Census of the Oort Cloud with a Robotic Telescope. In ASP Conf. Ser. 34: Robotic Telescopes in the 1990s, pages 171-181, 1992. [3] F. Roques and M. Moncuquet. A Detection Method for Small Kuiper Belt Objects: The Search for Stellar Occultations. Icarus, 147:530-544, October 2000.

  3. Measuring entanglement entropy of a generic many-body system with a quantum switch.

    PubMed

    Abanin, Dmitry A; Demler, Eugene

    2012-07-13

    Entanglement entropy has become an important theoretical concept in condensed matter physics because it provides a unique tool for characterizing quantum mechanical many-body phases and new kinds of quantum order. However, the experimental measurement of entanglement entropy in a many-body system is widely believed to be unfeasible, owing to the nonlocal character of this quantity. Here, we propose a general method to measure the entanglement entropy. The method is based on a quantum switch (a two-level system) coupled to a composite system consisting of several copies of the original many-body system. The state of the switch controls how different parts of the composite system connect to each other. We show that, by studying the dynamics of the quantum switch only, the Rényi entanglement entropy of the many-body system can be extracted. We propose a possible design of the quantum switch, which can be realized in cold atomic systems. Our work provides a route towards testing the scaling of entanglement in critical systems as well as a method for a direct experimental detection of topological order.

  4. Pedestrian detection in crowded scenes with the histogram of gradients principle

    NASA Astrophysics Data System (ADS)

    Sidla, O.; Rosner, M.; Lypetskyy, Y.

    2006-10-01

    This paper describes a close to real-time scale invariant implementation of a pedestrian detector system which is based on the Histogram of Oriented Gradients (HOG) principle. Salient HOG features are first selected from a manually created very large database of samples with an evolutionary optimization procedure that directly trains a polynomial Support Vector Machine (SVM). Real-time operation is achieved by a cascaded 2-step classifier which uses first a very fast linear SVM (with the same features as the polynomial SVM) to reject most of the irrelevant detections and then computes the decision function with a polynomial SVM on the remaining set of candidate detections. Scale invariance is achieved by running the detector of constant size on scaled versions of the original input images and by clustering the results over all resolutions. The pedestrian detection system has been implemented in two versions: i) fully body detection, and ii) upper body only detection. The latter is especially suited for very busy and crowded scenarios. On a state-of-the-art PC it is able to run at a frequency of 8 - 20 frames/sec.

  5. Miniature sonar fish tag

    NASA Technical Reports Server (NTRS)

    Lovelady, R. W.; Ferguson, R. L.

    1975-01-01

    Self-powered sonar device may be implanted in body of fish. It transmits signal that can be detected with portable tracking gear or by automatic detection-and-tracking system. Operating life of over 4000 hours may be expected. Device itself may be used almost indefinitely.

  6. Universal design of a microcontroller and IoT system to detect the heart rate

    NASA Astrophysics Data System (ADS)

    Uwamahoro, Raphael; Mushikiwabeza, Alexie; Minani, Gerard; Mohan Murari, Bhaskar

    2017-11-01

    Heart rate analysis provides vital information of the present condition of the human body. It helps medical professionals in diagnosis of various malfunctions of the body. The limitation of vision impaired and blind people to access medical devices cause a considerable loss of life. In this paper, we intended to develop a heart rate detection system that is usable for people with normal and abnormal vision. The system is based on a non-invasive method of measuring the variation of the tissue blood flow rate by means of a photo transmitter and detector through fingertip known as photoplethysmography (PPG). The signal detected is firstly passed through active low pass filter and then amplified by a two stages high gain amplifier. The amplified signal is feed into the microcontroller to calculate the heart rate and displays the heart beat via sound systems and Liquid Crystal Display (LCD). To distinguish arrhythmia, normal heart rate and abnormal working conditions of the system, recognition is provided in different sounds, LCD readings and Light Emitting Diodes (LED).

  7. Single-trial lie detection using a combined fNIRS-polygraph system

    PubMed Central

    Bhutta, M. Raheel; Hong, Melissa J.; Kim, Yun-Hee; Hong, Keum-Shik

    2015-01-01

    Deception is a human behavior that many people experience in daily life. It involves complex neuronal activities in addition to several physiological changes in the body. A polygraph, which can measure some of the physiological responses from the body, has been widely employed in lie-detection. Many researchers, however, believe that lie detection can become more precise if the neuronal changes that occur in the process of deception can be isolated and measured. In this study, we combine both measures (i.e., physiological and neuronal changes) for enhanced lie-detection. Specifically, to investigate the deception-related hemodynamic response, functional near-infrared spectroscopy (fNIRS) is applied at the prefrontal cortex besides a commercially available polygraph system. A mock crime scenario with a single-trial stimulus is set up as a deception protocol. The acquired data are classified into “true” and “lie” classes based on the fNIRS-based hemoglobin-concentration changes and polygraph-based physiological signal changes. Linear discriminant analysis is utilized as a classifier. The results indicate that the combined fNIRS-polygraph system delivers much higher classification accuracy than that of a singular system. This study demonstrates a plausible solution toward single-trial lie-detection by combining fNIRS and the polygraph. PMID:26082733

  8. Application research of rail transit safety protection based on laser detection

    NASA Astrophysics Data System (ADS)

    Wang, Zhifei

    2016-10-01

    Platform screen door can not only prevent the passengers fell or jumped the track danger, to passengers bring comfortable waiting environment, but also has the function of environmental protection and energy saving. But platform screen door and train the full-length gap region is insecure in the system design of a hidden, such as passengers for some reason (grab the train) in the interstitial region retention, is sandwiched between the intercity safety door and the door, and such as the region lacks security detection and alarm system, once the passengers in the gap region retention (caught), bring more serious threat to the safety of passengers and traffic safety. This paper from the point of view of the design presents the physical, infrared, laser three safety protection device setting schemes. Domestic intelligence of between rail transit shield door and train security clearance processing used is screen door system standard configuration, the obstacle detection function for avoid passengers stranded in the clearance has strong prevention function. Laser detection research and development projects can access to prevent shield door and train gap clamp safety measures. Rail safety protection method are studied applying laser detection technique. According to the laser reflection equation of foreign body, the characteristics of laser detection of foreign bodies are given in theory. By using statistical analysis method, the workflow of laser detection system is established. On this basis, protection methods is proposed. Finally the simulation and test results show that the laser detection technology in the rail traffic safety protection reliability and stability, And the future laser detection technology in is discussed the development of rail transit.

  9. Breast Cancer Detection

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The BioScan System was developed by OmniCorder Technologies, Inc. at the Jet Propulsion Laboratory. The system is able to locate cancerous lesions by detecting the cancer's ability to recruit a new blood supply. A digital sensor detects infrared energy emitted from the body and identifies the minute differences accompanying the blood flow changes associated with cancerous cells. It also has potential use as a monitoring device during cancer treatment. This technology will reduce the time taken to detect cancerous cells and allow for earlier intervention, therefore increasing the overall survival rates of breast cancer patients.

  10. Edge detection techniques for iris recognition system

    NASA Astrophysics Data System (ADS)

    Tania, U. T.; Motakabber, S. M. A.; Ibrahimy, M. I.

    2013-12-01

    Nowadays security and authentication are the major parts of our daily life. Iris is one of the most reliable organ or part of human body which can be used for identification and authentication purpose. To develop an iris authentication algorithm for personal identification, this paper examines two edge detection techniques for iris recognition system. Between the Sobel and the Canny edge detection techniques, the experimental result shows that the Canny's technique has better ability to detect points in a digital image where image gray level changes even at slow rate.

  11. Astronomical aspects of cosmic threats: new problems and approaches to asteroid—comet hazard following the chelyabinsk event of February 15, 2013

    NASA Astrophysics Data System (ADS)

    Shustov, B. M.; Shugarov, A. S.; Naroenkov, S. A.; Prokhorov, M. E.

    2015-10-01

    A new definition of hazardous celestial bodies (HCBs) is introduced, in which the lower limit of the size of a HCB is reduced to 10 m. A new definition for threatening and collisional orbits of DCBs is introduced. The main astronomical factors that must be taken into account when creating systems for the detection of HCBs are analyzed. The most important of these are the uniformity of the distribution of points (regions) for the appearance of HCBs on the celestial sphere in near-Earth space and the practical limit for the velocity of approach of a HCB of 20 km/s (for 90% of bodies). It is shown that the creation of a system for the nearby detection of asteroids and comets arriving from the daytime sky requires the use of a space-based system. A concept for such a system, in which one or several optical telescopes are placed in the vicinity of the libration point L1 for the Sun—Earth system, is developed. Preliminary plans for such a system, called the System for the Detection of Daytime Asteroids (SDDA), are briefly described.

  12. Foreign body ingestion in children

    PubMed Central

    Dereci, Selim; Koca, Tuğba; Serdaroğlu, Filiz; Akçam, Mustafa

    2015-01-01

    Aim: Foreign bodies ingested by the oral route enter into the gastrointestinal tract and are considered a significant health problem in the childhood. In this study, we evaluated the pediatric patients who presented to our hospital with the complaint of ingestion of foreign body. Material and Methods: The hospital records of all children who presented to our clinic because of ingestion of foreign body between January 2008 and January 2015 were examined retrospectively. The complaints at admission, the types of foreign bodies ingested, the localization of the foreign body in the gastrointestinal tract and the approaches and treatment methods used were examined. Results: Thirty-six (56%) of 64 patients included in the study were male and 28 (44%) were female and the mean age was 5.7±4.6 years (10 months–17 years). Thirty eight (59%) of 64 children who were included in the assessment were below the age of five years. The most common complaint at presentation was parental recognition of the ingested object and dysphagia. The most commonly ingested foreign bodies included coins, sewing pins, safety pins and hairclips. Nail clipper detected in the stomach, sewing pin which penetrated through the duodenal wall and stuck to hepatic parenchyma were the first pediatric cases in the literature. Upper esophagus was the most common location for foreign bodies. Endoscopic examinations were performed in 55 of 64 children. Conclusions: Early detection and treatment of ingested foreign bodies in the upper gastrointestinal system is important in terms of preventing possible complications. In our study, the most frequent foreign bodies detected in the upper digestive tract were coins and they were most frequently detected in the upper esophagus. Most of our patients were below the age of five years. Flexible endoscopic method was used commonly for treatment. PMID:26884693

  13. Smart Multi-Level Tool for Remote Patient Monitoring Based on a Wireless Sensor Network and Mobile Augmented Reality

    PubMed Central

    González, Fernando Cornelio Jimènez; Villegas, Osslan Osiris Vergara; Ramírez, Dulce Esperanza Torres; Sánchez, Vianey Guadalupe Cruz; Domínguez, Humberto Ochoa

    2014-01-01

    Technological innovations in the field of disease prevention and maintenance of patient health have enabled the evolution of fields such as monitoring systems. One of the main advances is the development of real-time monitors that use intelligent and wireless communication technology. In this paper, a system is presented for the remote monitoring of the body temperature and heart rate of a patient by means of a wireless sensor network (WSN) and mobile augmented reality (MAR). The combination of a WSN and MAR provides a novel alternative to remotely measure body temperature and heart rate in real time during patient care. The system is composed of (1) hardware such as Arduino microcontrollers (in the patient nodes), personal computers (for the nurse server), smartphones (for the mobile nurse monitor and the virtual patient file) and sensors (to measure body temperature and heart rate), (2) a network layer using WiFly technology, and (3) software such as LabView, Android SDK, and DroidAR. The results obtained from tests show that the system can perform effectively within a range of 20 m and requires ten minutes to stabilize the temperature sensor to detect hyperthermia, hypothermia or normal body temperature conditions. Additionally, the heart rate sensor can detect conditions of tachycardia and bradycardia. PMID:25230306

  14. Smart multi-level tool for remote patient monitoring based on a wireless sensor network and mobile augmented reality.

    PubMed

    González, Fernando Cornelio Jiménez; Villegas, Osslan Osiris Vergara; Ramírez, Dulce Esperanza Torres; Sánchez, Vianey Guadalupe Cruz; Domínguez, Humberto Ochoa

    2014-09-16

    Technological innovations in the field of disease prevention and maintenance of patient health have enabled the evolution of fields such as monitoring systems. One of the main advances is the development of real-time monitors that use intelligent and wireless communication technology. In this paper, a system is presented for the remote monitoring of the body temperature and heart rate of a patient by means of a wireless sensor network (WSN) and mobile augmented reality (MAR). The combination of a WSN and MAR provides a novel alternative to remotely measure body temperature and heart rate in real time during patient care. The system is composed of (1) hardware such as Arduino microcontrollers (in the patient nodes), personal computers (for the nurse server), smartphones (for the mobile nurse monitor and the virtual patient file) and sensors (to measure body temperature and heart rate), (2) a network layer using WiFly technology, and (3) software such as LabView, Android SDK, and DroidAR. The results obtained from tests show that the system can perform effectively within a range of 20 m and requires ten minutes to stabilize the temperature sensor to detect hyperthermia, hypothermia or normal body temperature conditions. Additionally, the heart rate sensor can detect conditions of tachycardia and bradycardia.

  15. Event detection in an assisted living environment.

    PubMed

    Stroiescu, Florin; Daly, Kieran; Kuris, Benjamin

    2011-01-01

    This paper presents the design of a wireless event detection and in building location awareness system. The systems architecture is based on using a body worn sensor to detect events such as falls where they occur in an assisted living environment. This process involves developing event detection algorithms and transmitting such events wirelessly to an in house network based on the 802.15.4 protocol. The network would then generate alerts both in the assisted living facility and remotely to an offsite monitoring facility. The focus of this paper is on the design of the system architecture and the compliance challenges in applying this technology.

  16. The rf coil as a sensitive motion detector for magnetic resonance imaging.

    PubMed

    Buikman, D; Helzel, T; Röschmann, P

    1988-01-01

    A new sensor principle for detection of patient movement in magnetic resonance imaging has been successfully applied for the reduction of motion artifacts. It uses a device that is already present in every MRI system, namely the rf coil. Patient movement within the coil causes changes in the rf impedance match of the coil, which can be measured as variations in the reflected rf power. The principle used for the detection of respiratory and cardiac motion is described, and experimental results measured with several coil arrangements are given. Images are presented which were acquired with respiratory gating derived from the rf body coil of a 2 Tesla whole body MRI system.

  17. Invariance Detection within an Interactive System: A Perceptual Gateway to Language Development

    ERIC Educational Resources Information Center

    Gogate, Lakshmi J.; Hollich, George

    2010-01-01

    In this article, we hypothesize that "invariance detection," a general perceptual phenomenon whereby organisms attend to relatively stable patterns or regularities, is an important means by which infants tune in to various aspects of spoken language. In so doing, we synthesize a substantial body of research on detection of regularities across the…

  18. An airborne laser fluorosensor for the detection of oil on water

    NASA Technical Reports Server (NTRS)

    Kim, H. H.; Hickman, G. D.

    1973-01-01

    The successful operation of an airborne laser fluorosensor system is reported that makes it possible to detect and map surface oil, either of natural-seepage or spill origin, on large bodies of water. Preliminary results indicate that the sensitivity of the instrument exceeds that of conventional passive remote sensors currently available for oil spill detection.

  19. The Whipple Mission: Exploring the Kuiper Belt and the Oort Cloud

    NASA Astrophysics Data System (ADS)

    Holman, Matthew J.; Alcock, Charles; Kenter, Almus T.; Kraft, Ralph P.; Nulsen, Paul; Payne, Matthew John; Vrtilek, Jan M.; Murray, Stephen S.; Murray-Clay, Ruth; Schlichting, Hilke; Brown, Michael E.; Livingston, John H.; Trangsrud, Amy R.; Werner, Michael W.

    2015-01-01

    Whipple will characterize the small body populations of the Kuiper Belt and the Oort Cloud with a blind occultation survey, detecting objects when they briefly (~1 second) interrupt the light from background stars, allowing the detection of much more distant and/or smaller objects than can be seen in reflected sunlight. Whipple will reach much deeper into the unexplored frontier of the outer solar system than any other mission, current or proposed. Whipple will look back to the dawn of the solar system by discovering its most remote bodies where primordial processes left their imprint.Specifically, Whipple will monitor large numbers of stars at high cadences (~12,000 stars at 20 Hz to examine Kuiper Belt events; as many as ~36,000 stars at 5 Hz to explore deep into the Oort Cloud, where events are less frequent). Analysis of the detected events will allow us to determine the size spectrum of bodies in the Kuiper Belt with radii as small as ~1 km. This will allow the testing of models of the growth and later collisional erosion of planetesimals in the earlysolar system. Whipple will explore the Oort Cloud, detecting objects as far out as ~10,000 AU. This will be the first direct exploration of the Oort Cloud since the original hypothesis of 1950.Whipple is a Discovery class mission that will be proposed to NASA in response to the upcoming Announcement of Opportunity. The mission is being developed jointly by the Smithsonian Astrophysical Observatory, Jet Propulsion Laboratory, and Ball Aerospace & Technologies, with telescope optics from L-3 Integrated Optical Systems.

  20. The Whipple Mission: Exploring the Kuiper Belt and the Oort Cloud

    NASA Astrophysics Data System (ADS)

    Alcock, Charles; Brown, Michael; Gauron, Tom; Heneghan, Cate; Holman, Matthew; Kenter, Almus; Kraft, Ralph; Livingston, John; Murray, Stephen; Murray-Clay, Ruth; Nulsen, Paul; Payne, Matthew; Schlichting, Hilke; Trangsrud, Amy; Vrtilek, Jan; Werner, Michael

    2014-11-01

    Whipple will characterize the small body populations of the Kuiper Belt and the Oort Cloud with a blind occultation survey, detecting objects when they briefly 1 second) interrupt the light from background stars, allowing the detection of much more distant and/or smaller objects than can be seen in reflected sunlight. Whipple will reach much deeper into the unexplored frontier of the outer solar system than any other mission, current or proposed. Whipple will look back to the dawn of the solar system by discovering its most remote bodies where primordial processes left their imprint.Specifically, Whipple will monitor large numbers of stars at high cadences 12,000 stars at 20 Hz to examine Kuiper Belt events; as many as ~36,000 stars at 5 Hz to explore deep into the Oort Cloud, where events are less frequent). Analysis of the detected events will allow us to determine the size spectrum of bodies in the Kuiper Belt with radii as small as ~1 km. This will allow the testing of models of the growth and later collisional erosion of planetesimals in the early solar system. Whipple will explore the Oort Cloud, detecting objects as far out as ~10,000 AU. This will be the first direct exploration of the Oort Cloud since the original hypothesis of 1950.Whipple is a Discovery class mission that will be proposed to NASA in response to the 2014 Announcement of Opportunity. The mission is being developed jointly by the Smithsonian Astrophysical Observatory, Jet Propulsion Laboratories, and Ball Aerospace & Technologies, with telescope optics from L-3 Integrated Optical Systems.

  1. The Whipple Mission: Exploring the Kuiper Belt and the Oort Cloud

    NASA Astrophysics Data System (ADS)

    Alcock, C.; Brown, M. E.; Gauron, T.; Heneghan, C.; Holman, M. J.; Kenter, A.; Kraft, R.; Lee, R.; Livingston, J.; Mcguire, J.; Murray, S. S.; Murray-Clay, R.; Nulsen, P.; Payne, M. J.; Schlichting, H.; Trangsrud, A.; Vrtilek, J.; Werner, M.

    2014-12-01

    Whipple will characterize the small body populations of the Kuiper Belt and the Oort Cloud with a blind occultation survey, detecting objects when they briefly (~1 second) interrupt the light from background stars, allowing the detection of much more distant and/or smaller objects than can be seen in reflected sunlight. Whipple will reach much deeper into the unexplored frontier of the outer solar system than any other mission, current or proposed. Whipple will look back to the dawn of the solar system by discovering its most remote bodies where primordial processes left their imprint. Specifically, Whipple will monitor large numbers of stars at high cadences (~12,000 stars at 20 Hz to examine Kuiper Belt events; as many as ~36,000 stars at 5 Hz to explore deep into the Oort Cloud, where events are less frequent). Analysis of the detected events will allow us to determine the size spectrum of bodies in the Kuiper Belt with radii as small as ~1 km. This will allow the testing of models of the growth and later collisional erosion of planetesimals in the early solar system. Whipple will explore the Oort Cloud, detecting objects as far out as ~10,000 AU. This will be the first direct exploration of the Oort Cloud since the original hypothesis of 1950. Whipple is a Discovery class mission that will be proposed to NASA in response to the 2014 Announcement of Opportunity. The mission is being developed jointly by the Smithsonian Astrophysical Observatory, Jet Propulsion Laboratories, and Ball Aerospace & Technologies, with telescope optics from L-3 Integrated Optical Systems.

  2. Precise determination of anthropometric dimensions by means of image processing methods for estimating human body segment parameter values.

    PubMed

    Baca, A

    1996-04-01

    A method has been developed for the precise determination of anthropometric dimensions from the video images of four different body configurations. High precision is achieved by incorporating techniques for finding the location of object boundaries with sub-pixel accuracy, the implementation of calibration algorithms, and by taking into account the varying distances of the body segments from the recording camera. The system allows automatic segment boundary identification from the video image, if the boundaries are marked on the subject by black ribbons. In connection with the mathematical finite-mass-element segment model of Hatze, body segment parameters (volumes, masses, the three principal moments of inertia, the three local coordinates of the segmental mass centers etc.) can be computed by using the anthropometric data determined videometrically as input data. Compared to other, recently published video-based systems for the estimation of the inertial properties of body segments, the present algorithms reduce errors originating from optical distortions, inaccurate edge-detection procedures, and user-specified upper and lower segment boundaries or threshold levels for the edge-detection. The video-based estimation of human body segment parameters is especially useful in situations where ease of application and rapid availability of comparatively precise parameter values are of importance.

  3. Human location estimation using thermopile array sensor

    NASA Astrophysics Data System (ADS)

    Parnin, S.; Rahman, M. M.

    2017-11-01

    Utilization of Thermopile sensor at an early stage of human detection is challenging as there are many things that produce thermal heat other than human such as electrical appliances and animals. Therefrom, an algorithm for early presence detection has been developed through the study of human body temperature behaviour with respect to the room temperature. The change in non-contact detected temperature of human varied according to body parts. In an indoor room, upper parts of human body change up to 3°C whereas lower part ranging from 0.58°C to 1.71°C. The average changes in temperature of human is used as a conditional set-point value in the program algorithm to detect human presence. The current position of human and its respective angle is gained when human is presence at certain pixels of Thermopile’s sensor array. Human position is estimated successfully as the developed sensory system is tested to the actuator of a stand fan.

  4. Fall Detection System for the Elderly Based on the Classification of Shimmer Sensor Prototype Data

    PubMed Central

    Ahmed, Moiz; Mehmood, Nadeem; Mehmood, Amir; Rizwan, Kashif

    2017-01-01

    Objectives Falling in the elderly is considered a major cause of death. In recent years, ambient and wireless sensor platforms have been extensively used in developed countries for the detection of falls in the elderly. However, we believe extra efforts are required to address this issue in developing countries, such as Pakistan, where most deaths due to falls are not even reported. Considering this, in this paper, we propose a fall detection system prototype that s based on the classification on real time shimmer sensor data. Methods We first developed a data set, ‘SMotion’ of certain postures that could lead to falls in the elderly by using a body area network of Shimmer sensors and categorized the items in this data set into age and weight groups. We developed a feature selection and classification system using three classifiers, namely, support vector machine (SVM), K-nearest neighbor (KNN), and neural network (NN). Finally, a prototype was fabricated to generate alerts to caregivers, health experts, or emergency services in case of fall. Results To evaluate the proposed system, SVM, KNN, and NN were used. The results of this study identified KNN as the most accurate classifier with maximum accuracy of 96% for age groups and 93% for weight groups. Conclusions In this paper, a classification-based fall detection system is proposed. For this purpose, the SMotion data set was developed and categorized into two groups (age and weight groups). The proposed fall detection system for the elderly is implemented through a body area sensor network using third-generation sensors. The evaluation results demonstrate the reasonable performance of the proposed fall detection prototype system in the tested scenarios. PMID:28875049

  5. Human care system for heart-rate and human-movement trajectory in home and its application to detect mental disease

    NASA Astrophysics Data System (ADS)

    Hata, Yutaka; Kanazawa, Seigo; Endo, Maki; Tsuchiya, Naoki; Nakajima, Hiroshi

    2012-06-01

    This paper proposes a heart rate monitoring system for detecting autonomic nervous system by the heart rate variability using an air pressure sensor to diagnose mental disease. Moreover, we propose a human behavior monitoring system for detecting the human trajectory in home by an infrared camera. In day and night times, the human behavior monitoring system detects the human movement in home. The heart rate monitoring system detects the heart rate in bed in night time. The air pressure sensor consists of a rubber tube, cushion cover and pressure sensor, and it detects the heart rate by setting it to bed. It unconstraintly detects the RR-intervals; thereby the autonomic nervous system can be assessed. The autonomic nervous system analysis can examine the mental disease. While, the human behavior monitoring system obtains distance distribution image by an infrared camera. It classifies adult, child and the other object from distance distribution obtained by the camera, and records their trajectories. This behavior, i.e., trajectory in home, strongly corresponds to cognitive disorders. Thus, the total system can detect mental disease and cognitive disorders by uncontacted sensors to human body.

  6. Flashback detection sensor for lean premix fuel nozzles

    DOEpatents

    Thornton, Jimmy Dean [Morgantown, WV; Richards, George Alan [Morgantown, WV; Straub, Douglas L [Morgantown, WV; Liese, Eric Arnold [Morgantown, WV; Trader, Jr., John Lee; Fasching, George Edward [Morgantown, WV

    2002-08-06

    A sensor for detecting the flame occurring during a flashback condition in the fuel nozzle of a lean premix combustion system is presented. The sensor comprises an electrically isolated flashback detection electrode and a guard electrode, both of which generate electrical fields extending to the walls of the combustion chamber and to the walls of the fuel nozzle. The sensor is positioned on the fuel nozzle center body at a location proximate the entrance to the combustion chamber of the gas turbine combustion system. The sensor provides 360.degree. detection of a flashback inside the fuel nozzle, by detecting the current conducted by the flame within a time frame that will prevent damage to the gas turbine combustion system caused by the flashback condition.

  7. Microwave hemorrhagic stroke detector

    DOEpatents

    Haddad, Waleed S.; Trebes, James E.

    2002-01-01

    The microwave hemorrhagic stroke detector includes a low power pulsed microwave transmitter with a broad-band antenna for producing a directional beam of microwaves, an index of refraction matching cap placed over the patients head, and an array of broad-band microwave receivers with collection antennae. The system of microwave transmitter and receivers are scanned around, and can also be positioned up and down the axis of the patients head. The microwave hemorrhagic stroke detector is a completely non-invasive device designed to detect and localize blood pooling and clots or to measure blood flow within the head or body. The device is based on low power pulsed microwave technology combined with specialized antennas and tomographic methods. The system can be used for rapid, non-invasive detection of blood pooling such as occurs with hemorrhagic stroke in human or animal patients as well as for the detection of hemorrhage within a patient's body.

  8. Microwave hemorrhagic stroke detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haddad, Waleed S; Trebes, James E

    The microwave hemorrhagic stroke detector includes a low power pulsed microwave transmitter with a broad-band antenna for producing a directional beam of microwaves, an index of refraction matching cap placed over the patients head, and an array of broad-band microwave receivers with collection antennae. The system of microwave transmitter and receivers are scanned around, and can also be positioned up and down the axis of the patients head. The microwave hemorrhagic stroke detector is a completely non-invasive device designed to detect and localize blood pooling and clots or to measure blood flow within the head or body. The device ismore » based on low power pulsed microwave technology combined with specialized antennas and tomographic methods. The system can be used for rapid, non-invasive detection of blood pooling such as occurs with hemorrhagic stoke in human or animal patients as well as for the detection of hemorrhage within a patient's body.« less

  9. Cyclooxygenase and lipoxygenase-like activity in Drosophila melanogaster.

    PubMed

    Pagés, M; Roselló, J; Casas, J; Gelpí, E; Gualde, N; Rigaud, M

    1986-11-01

    To determine the possible activity of cyclooxygenase and lipoxygenase like enzymes in Drosophila melanogaster, we have investigated whether fly homogenates can biosynthesize prostaglandins and HETEs. Incubation of fly extracts with AA yields a mixture of 15- 12- 9- and 8-HETE as detected by selected ion monitoring GC-MS. Also the combination of HPLC-RIA using a PGE antibody shows the presence of endogenous PGE2 immunoreactivity in the extracts (405 pg/g in males and 165 pg/g in females). We have also detected the presence of lipoxygenase like immunoreactivity in the reproductive male system by using immunocytochemical techniques in whole body sections of the fly as well as reactivity in the digestive system of both males and females. Finally, we have not been able to detect endogenous AA in the fly by GC-MS methods. However, estimates by GC-MS of the total body fatty acids indicate substantial amounts of potential AA precursors.

  10. Low-Cost Ultra-Wideband EM Sensor for UXO Detection and Classification

    DTIC Science & Technology

    2012-04-01

    Mechanical System MOTU Mark of the Unicorn – a brand name for audio equipment MR Magneto-Resistance NIST National Institute of Standards and...magnetic surveys are able to detect ferrous bodies at a further distance than EMI measurements. Consequently , the magnetic anomaly is broader

  11. Ejection of rocky and icy material from binary star systems: implications for the origin and composition of 1I/`Oumuamua

    NASA Astrophysics Data System (ADS)

    Jackson, Alan P.; Tamayo, Daniel; Hammond, Noah; Ali-Dib, Mohamad; Rein, Hanno

    2018-06-01

    In single-star systems like our own Solar system, comets dominate the mass budget of bodies ejected into interstellar space, since they form further away and are less tightly bound. However, 1I/`Oumuamua, the first interstellar object detected, appears asteroidal in its spectra and lack of detectable activity. We argue that the galactic budget of interstellar objects like 1I/`Oumuamua should be dominated by planetesimal material ejected during planet formation in circumbinary systems, rather than in single-star systems or widely separated binaries. We further show that in circumbinary systems, rocky bodies should be ejected in comparable numbers to icy ones. This suggests that a substantial fraction of interstellar objects discovered in future should display an active coma. We find that the rocky population, of which 1I/`Oumuamua seems to be a member, should be predominantly sourced from A-type and late B-star binaries.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    McMakin, Douglas L.; Sheen, David M.; Hall, Thomas E.

    Pacific Northwest National Laboratory researchers have been at the forefront of developing innovative screening systems to enhance security and a novel imaging system to provide custom-fit clothing using holographic radar imaging techniques. First-of-a-kind cylindrical holographic imaging systems have been developed to screen people at security checkpoints for the detection of concealed, body worn, non-metallic threats such as plastic and liquid explosives, knifes and contraband. Another embodiment of this technology is capable of obtaining full sized body measurements in near real time without the person under surveillance removing their outer garments. Radar signals readily penetrate clothing and reflect off the watermore » in skin. This full body measurement system is commercially available for best fitting ready to wear clothing, which was the first “biometric” application for this technology. One compelling feature of this technology for security biometric applications is that it can see effectively through disguises, appliances and body hair.« less

  13. Inorganic nanoparticles and the immune system: detection, selective activation and tolerance

    NASA Astrophysics Data System (ADS)

    Bastús, Neus G.; Sánchez-Tilló, Ester; Pujals, Silvia; Comenge, Joan; Giralt, Ernest; Celada, Antonio; Lloberas, Jorge; Puntes, Victor F.

    2012-03-01

    The immune system is the responsible for body integrity and prevention of external invasion. On one side, nanoparticles are no triggers that the immune system is prepared to detect, on the other side it is known that foreign bodies, not only bacteria, viruses and parasites, but also inorganic matter, can cause various pathologies such as silicosis, asbestosis or inflammatory reactions. Therefore, nanoparticles entering the body, after interaction with proteins, will be either recognized as self-agents or detected by the immune system, encompassing immunostimulation or immunosuppression responses. The nature of these interactions seems to be dictated not specially by the composition of the material but by modifications of NP coating (composition, surface charge and structure). Herein, we explore the use of gold nanoparticles as substrates to carry multifunctional ligands to manipulate the immune system in a controlled manner, from undetection to immunostimulation. Murine bone marrow macrophages can be activated with artificial nanometric objects consisting of a gold nanoparticle functionalized with peptides. In the presence of some conjugates, macrophage proliferation was stopped and pro-inflammatory cytokines were induced. The biochemical type of response depended on the type of conjugated peptide and was correlated with the degree of ordering in the peptide coating. These findings help to illustrate the basic requirements involved in medical NP conjugate design to either activate the immune system or hide from it, in order to reach their targets before being removed by phagocytes. Additionally, it opens up the possibility to modulate the immune response in order to suppress unwanted responses resulting from autoimmunity, or allergy or to stimulate protective responses against pathogens.

  14. A wearable, mobile phone-based respiration monitoring system for sleep apnea syndrome detection.

    PubMed

    Ishida, Ryoichi; Yonezawa, Yoshiharu; Maki, Hiromichi; Ogawa, Hidekuni; Ninomiya, Ishio; Sada, Kouji; Hamada, Shingo; Hahn, Allen W; Caldwell, W Morton

    2005-01-01

    A new wearable respiration monitoring system has been developed for non-invasive detection of sleep apnea syndrome. The system, which is attached to a shirt, consists of a piezoelectric sensor, a low-power 8-bit single chip microcontroller, EEPROM and a 2.4 GHz low-power transmitting mobile phone (PHS). The piezoelectric sensor, whose electrical polarization voltage is produced by body movements, is installed inside the shirt and closely contacts the patient's chest. The low frequency components of body movements recorded by the sensor are mainly generated by respiration. The microcontroller sequentially stores the movement signal to the EEPROM for 5 minutes and detects, by time-frequency analysis, whether the patient has breathed during that time. When the patient is apneic for 10 sseconds, the microcontroller sends the recorded respiration waveform during and one minute before and after the apnea directly to the hospital server computer via the mobile phone. The server computer then creates apnea "filings" automatically for every patient. The system can be used at home and be self-applied by patients. Moreover, the system does not require any extra equipment such as a personal computer, PDA, or Internet connection.

  15. Atomic Bose-Hubbard Systems with Single-Particle Control

    NASA Astrophysics Data System (ADS)

    Preiss, Philipp Moritz

    Experiments with ultracold atoms in optical lattices provide outstanding opportunities to realize exotic quantum states due to a high degree of tunability and control. In this thesis, I present experiments that extend this control from global parameters to the level of individual particles. Using a quantum gas microscope for 87Rb, we have developed a single-site addressing scheme based on digital amplitude holograms. The system self-corrects for aberrations in the imaging setup and creates arbitrary beam profiles. We are thus able to shape optical potentials on the scale of single lattice sites and control the dynamics of individual atoms. We study the role of quantum statistics and interactions in the Bose-Hubbard model on the fundamental level of two particles. Bosonic quantum statistics are apparent in the Hong-Ou-Mandel interference of massive particles, which we observe in tailored double-well potentials. These underlying statistics, in combination with tunable repulsive interactions, dominate the dynamics in single- and two-particle quantum walks. We observe highly coherent position-space Bloch oscillations, bosonic bunching in Hanbury Brown-Twiss interference and the fermionization of strongly interacting bosons. Many-body states of indistinguishable quantum particles are characterized by large-scale spatial entanglement, which is difficult to detect in itinerant systems. Here, we extend the concept of Hong-Ou-Mandel interference from individual particles to many-body states to directly quantify entanglement entropy. We perform collective measurements on two copies of a quantum state and detect entanglement entropy through many-body interference. We measure the second order Renyi entropy in small Bose-Hubbard systems and detect the buildup of spatial entanglement across the superfluid-insulator transition. Our experiments open new opportunities for the single-particle-resolved preparation and characterization of many-body quantum states.

  16. Radar mechanocardiography: a novel analysis of the mechanical behavior of the heart.

    PubMed

    Tavakolian, Kouhyar; Zadeh, Faranak M; Chuo, Yindar; Siu, Tiffany; Vaseghi, Ali; Kaminska, Bozena

    2008-01-01

    In this paper a novel system for detection of the mechanical movement of heart, mechanocardiography (MCG), with no connection to the subject's body is presented. This signal is based on radar technology. The acquired signal is highly correlated to the acceleration-based ballistocardiograph signal (BCG) recorded directly from the sternum. It is shown that the heart and breathing rates can be reliably detected using this system.

  17. Finding mountains with molehills: the detectability of exotopography

    NASA Astrophysics Data System (ADS)

    McTier, Moiya A. S.; Kipping, David M.

    2018-04-01

    Mountain ranges, volcanoes, trenches, and craters are common on rocky bodies throughout the Solar system, and we might expect the same for rocky exoplanets. With ever larger telescopes under design and a growing need to not just detect planets but also to characterize them, it is timely to consider whether there is any prospect of remotely detecting exoplanet topography in the coming decades. To test this, we devised a novel yet simple approach to detect and quantify topographical features on the surfaces of exoplanets using transit light curves. If a planet rotates as it transits its parent star, its changing silhouette yields a time-varying transit depth, which can be observed as an apparent and anomalous increase in the photometric scatter. Using elevation data for several rocky bodies in our Solar system, we quantify each world's surface integrated relief with a `bumpiness' factor, and calculate the corresponding photometric scatter expected during a transit. Here, we describe the kinds of observations that would be necessary to detect topography in the ideal case of Mars transiting a nearby white dwarf star. If such systems have a conservative occurrence rate of 10 per cent, we estimate that the upcoming Colossus or Overwhelmingly Large telescopes would be able to detect topography with <20 h of observing time, which corresponds to ˜400 transits with a duration of 2 min and orbital period of ˜10 h.

  18. Remotely detected differential pulse transit time as a stress indicator

    NASA Astrophysics Data System (ADS)

    Kaur, Balvinder; Tarbox, Elizabeth; Cissel, Marty; Moses, Sophia; Luthra, Megha; Vaidya, Misha; Tran, Nhien; Ikonomidou, Vasiliki N.

    2015-05-01

    The human cardiovascular system, controlled by the autonomic nervous system (ANS), is one of the first sites where one can see the "fight-or-flight" response due to the presence of external stressors. In this paper, we investigate the possibility of detecting mental stress using a novel measure that can be measured in a contactless manner: Pulse transit time (dPTT), which refers to the time that is required for the blood wave (BW) to cover the distance from the heart to a defined remote location in the body. Loosely related to blood pressure, PTT is a measure of blood velocity, and is also implicated in the "fight-or-flight" response. We define the differential PTT (dPTT) as the difference in PTT between two remote areas of the body, such as the forehead and the palm. Expanding our previous work on remote BW detection from visible spectrum videos, we built a system that remotely measures dPTT. Human subject data were collected under an IRB approved protocol from 15 subjects both under normal and stress states and are used to initially establish the potential use of remote dPPT detection as a stress indicator.

  19. The two types of stethoscope systems for respiration system diagnostics of the human body

    NASA Astrophysics Data System (ADS)

    Abashkin, Vladimir; Achimova, Elena

    2003-12-01

    An acoustic multimode fiber optic sensors for medical diagnostics based upon the shutter principle has been elaborated with semiconductor laser diode as light source. The construction and the method of component preparation are described. Other type of stethoscope is electrical one. Both stethoscopes are four channels. The kinetics and dynamic vibrations and sounds of the human body can be detected, acquired and then processing by personal computer for medical diagnostics.

  20. Crossed beam roof target for motion tracking

    NASA Technical Reports Server (NTRS)

    Olczak, Eugene (Inventor)

    2009-01-01

    A system for detecting motion between a first body and a second body includes first and second detector-emitter pairs, disposed on the first body, and configured to transmit and receive first and second optical beams, respectively. At least a first optical rotator is disposed on the second body and configured to receive and reflect at least one of the first and second optical beams. First and second detectors of the detector-emitter pairs are configured to detect the first and second optical beams, respectively. Each of the first and second detectors is configured to detect motion between the first and second bodies in multiple degrees of freedom (DOFs). The first optical rotator includes a V-notch oriented to form an apex of an isosceles triangle with respect to a base of the isosceles triangle formed by the first and second detector-emitter pairs. The V-notch is configured to receive the first optical beam and reflect the first optical beam to both the first and second detectors. The V-notch is also configured to receive the second optical beam and reflect the second optical beam to both the first and second detectors.

  1. Flexible Piezoelectric Sensor-Based Gait Recognition.

    PubMed

    Cha, Youngsu; Kim, Hojoon; Kim, Doik

    2018-02-05

    Most motion recognition research has required tight-fitting suits for precise sensing. However, tight-suit systems have difficulty adapting to real applications, because people normally wear loose clothes. In this paper, we propose a gait recognition system with flexible piezoelectric sensors in loose clothing. The gait recognition system does not directly sense lower-body angles. It does, however, detect the transition between standing and walking. Specifically, we use the signals from the flexible sensors attached to the knee and hip parts on loose pants. We detect the periodic motion component using the discrete time Fourier series from the signal during walking. We adapt the gait detection method to a real-time patient motion and posture monitoring system. In the monitoring system, the gait recognition operates well. Finally, we test the gait recognition system with 10 subjects, for which the proposed system successfully detects walking with a success rate over 93 %.

  2. Automated Detection, Localization, and Classification of Traumatic Vertebral Body Fractures in the Thoracic and Lumbar Spine at CT

    PubMed Central

    Burns, Joseph E.; Yao, Jianhua; Muñoz, Hector

    2016-01-01

    Purpose To design and validate a fully automated computer system for the detection and anatomic localization of traumatic thoracic and lumbar vertebral body fractures at computed tomography (CT). Materials and Methods This retrospective study was HIPAA compliant. Institutional review board approval was obtained, and informed consent was waived. CT examinations in 104 patients (mean age, 34.4 years; range, 14–88 years; 32 women, 72 men), consisting of 94 examinations with positive findings for fractures (59 with vertebral body fractures) and 10 control examinations (without vertebral fractures), were performed. There were 141 thoracic and lumbar vertebral body fractures in the case set. The locations of fractures were marked and classified by a radiologist according to Denis column involvement. The CT data set was divided into training and testing subsets (37 and 67 subsets, respectively) for analysis by means of prototype software for fully automated spinal segmentation and fracture detection. Free-response receiver operating characteristic analysis was performed. Results Training set sensitivity for detection and localization of fractures within each vertebra was 0.82 (28 of 34 findings; 95% confidence interval [CI]: 0.68, 0.90), with a false-positive rate of 2.5 findings per patient. The sensitivity for fracture localization to the correct vertebra was 0.88 (23 of 26 findings; 95% CI: 0.72, 0.96), with a false-positive rate of 1.3. Testing set sensitivity for the detection and localization of fractures within each vertebra was 0.81 (87 of 107 findings; 95% CI: 0.75, 0.87), with a false-positive rate of 2.7. The sensitivity for fracture localization to the correct vertebra was 0.92 (55 of 60 findings; 95% CI: 0.79, 0.94), with a false-positive rate of 1.6. The most common cause of false-positive findings was nutrient foramina (106 of 272 findings [39%]). Conclusion The fully automated computer system detects and anatomically localizes vertebral body fractures in the thoracic and lumbar spine on CT images with a high sensitivity and a low false-positive rate. © RSNA, 2015 Online supplemental material is available for this article. PMID:26172532

  3. Non-EEG seizure detection systems and potential SUDEP prevention: State of the art: Review and update.

    PubMed

    Van de Vel, Anouk; Cuppens, Kris; Bonroy, Bert; Milosevic, Milica; Jansen, Katrien; Van Huffel, Sabine; Vanrumste, Bart; Cras, Patrick; Lagae, Lieven; Ceulemans, Berten

    2016-10-01

    Detection of, and alarming for epileptic seizures is increasingly demanded and researched. Our previous review article provided an overview of non-invasive, non-EEG (electro-encephalography) body signals that can be measured, along with corresponding methods, state of the art research, and commercially available systems. Three years later, many more studies and devices have emerged. Moreover, the boom of smart phones and tablets created a new market for seizure detection applications. We performed a thorough literature review and had contact with manufacturers of commercially available devices. This review article gives an updated overview of body signals and methods for seizure detection, international research and (commercially) available systems and applications. Reported results of non-EEG based detection devices vary between 2.2% and 100% sensitivity and between 0 and 3.23 false detections per hour compared to the gold standard video-EEG, for seizures ranging from generalized to convulsive or non-convulsive focal seizures with or without loss of consciousness. It is particularly interesting to include monitoring of autonomic dysfunction, as this may be an important pathophysiological mechanism of SUDEP (sudden unexpected death in epilepsy), and of movement, as many seizures have a motor component. Comparison of research results is difficult as studies focus on different seizure types, timing (night versus day) and patients (adult versus pediatric patients). Nevertheless, we are convinced that the most effective seizure detection systems are multimodal, combining for example detection methods for movement and heart rate, and that devices should especially take into account the user's seizure types and personal preferences. Copyright © 2016 British Epilepsy Association. Published by Elsevier Ltd. All rights reserved.

  4. A posture recognition based fall detection system for monitoring an elderly person in a smart home environment.

    PubMed

    Yu, Miao; Rhuma, Adel; Naqvi, Syed Mohsen; Wang, Liang; Chambers, Jonathon

    2012-11-01

    We propose a novel computer vision based fall detection system for monitoring an elderly person in a home care application. Background subtraction is applied to extract the foreground human body and the result is improved by using certain post-processing. Information from ellipse fitting and a projection histogram along the axes of the ellipse are used as the features for distinguishing different postures of the human. These features are then fed into a directed acyclic graph support vector machine (DAGSVM) for posture classification, the result of which is then combined with derived floor information to detect a fall. From a dataset of 15 people, we show that our fall detection system can achieve a high fall detection rate (97.08%) and a very low false detection rate (0.8%) in a simulated home environment.

  5. Daytime Water Detection Based on Color Variation

    NASA Technical Reports Server (NTRS)

    Rankin, Arturo L.; Matthies, Larry H.

    2010-01-01

    Robust water detection is a critical perception requirement for unmanned ground vehicle (UGV) autonomous navigation. This is particularly true in wide open areas where water can collect in naturally occurring terrain depressions during periods of heavy precipitation and form large water bodies (such as ponds). At far range, reflections of the sky provide a strong cue for water. But at close range, the color coming out of a water body dominates sky reflections and the water cue from sky reflections is of marginal use. We model this behavior by using water body intensity data from multiple frames of RGB imagery to estimate the total reflection coefficient contribution from surface reflections and the combination of all other factors. Then we describe an algorithm that uses one of the color cameras in a forward- looking, UGV-mounted stereo-vision perception system to detect water bodies in wide open areas. This detector exploits the knowledge that the change in saturation-to-brightness ratio across a water body from the leading to trailing edge is uniform and distinct from other terrain types. In test sequences approaching a pond under clear, overcast, and cloudy sky conditions, the true positive and false negative water detection rates were (95.76%, 96.71%, 98.77%) and (0.45%, 0.60%, 0.62%), respectively. This software has been integrated on an experimental unmanned vehicle and field tested at Ft. Indiantown Gap, PA.

  6. A Set of Image Processing Algorithms for Computer-Aided Diagnosis in Nuclear Medicine Whole Body Bone Scan Images

    NASA Astrophysics Data System (ADS)

    Huang, Jia-Yann; Kao, Pan-Fu; Chen, Yung-Sheng

    2007-06-01

    Adjustment of brightness and contrast in nuclear medicine whole body bone scan images may confuse nuclear medicine physicians when identifying small bone lesions as well as making the identification of subtle bone lesion changes in sequential studies difficult. In this study, we developed a computer-aided diagnosis system, based on the fuzzy sets histogram thresholding method and anatomical knowledge-based image segmentation method that was able to analyze and quantify raw image data and identify the possible location of a lesion. To locate anatomical reference points, the fuzzy sets histogram thresholding method was adopted as a first processing stage to suppress the soft tissue in the bone images. Anatomical knowledge-based image segmentation method was then applied to segment the skeletal frame into different regions of homogeneous bones. For the different segmented bone regions, the lesion thresholds were set at different cut-offs. To obtain lesion thresholds in different segmented regions, the ranges and standard deviations of the image's gray-level distribution were obtained from 100 normal patients' whole body bone images and then, another 62 patients' images were used for testing. The two groups of images were independent. The sensitivity and the mean number of false lesions detected were used as performance indices to evaluate the proposed system. The overall sensitivity of the system is 92.1% (222 of 241) and 7.58 false detections per patient scan image. With a high sensitivity and an acceptable false lesions detection rate, this computer-aided automatic lesion detection system is demonstrated as useful and will probably in the future be able to help nuclear medicine physicians to identify possible bone lesions.

  7. The Whipple Mission: Exploring the Kuiper Belt and the Oort Cloud

    NASA Astrophysics Data System (ADS)

    Alcock, Charles; Brown, Michael; Gauron, Tom; Heneghan, Cate; Holman, Matthew; Kenter, Almus; Kraft, Ralph; Livingstone, John; Murray-Clay, Ruth; Nulsen, Paul; Payne, Matthew; Schlichting, Hilke; Trangsrud, Amy; Vrtilek, Jan; Werner, Michael

    2015-11-01

    Whipple will characterize the small body populations of the Kuiper Belt and the Oort Cloud with a blind occultation survey, detecting objects when they briefly (~1 second) interrupt the light from background stars, allowing the detection of much more distant and/or smaller objects than can be seen in reflected sunlight. Whipple will reach much deeper into the unexplored frontier of the outer solar system than any other mission, current or proposed. Whipple will look back to the dawn of the solar system by discovering its most remote bodies where primordial processes left their imprint.Specifically, Whipple will monitor large numbers of stars at high cadences (~12,000 stars at 20 Hz to examine Kuiper Belt events; as many as ~36,000 stars at 5 Hz to explore deep into the Oort Cloud, where events are less frequent). Analysis of the detected events will allow us to determine the size spectrum of bodies in the Kuiper Belt with radii as small as ~1 km. This will allow the testing of models of the growth and later collisional erosion of planetesimals in the early solar system. Whipple will explore the Oort Cloud, potentially detecting objects as far out as ~10,000 AU. This will be the first direct exploration of the Oort Cloud since the original hypothesis of 1950.Whipple is a Discovery class mission that was proposed to NASA in response to the 2014 Announcement of Opportunity. The mission is being developed jointly by the Smithsonian Astrophysical Observatory, Jet Propulsion Laboratories, and Ball Aerospace & Technologies, with telescope optics from L-3 Integrated Optical Systems and imaging sensors from Teledyne Imaging Sensors.

  8. Tablet PC Enabled Body Sensor System for Rural Telehealth Applications

    PubMed Central

    Panicker, Nitha V.; Kumar, A. Sukesh

    2016-01-01

    Telehealth systems benefit from the rapid growth of mobile communication technology for measuring physiological signals. Development and validation of a tablet PC enabled noninvasive body sensor system for rural telehealth application are discussed in this paper. This system includes real time continuous collection of physiological parameters (blood pressure, pulse rate, and temperature) and fall detection of a patient with the help of a body sensor unit and wireless transmission of the acquired information to a tablet PC handled by the medical staff in a Primary Health Center (PHC). Abnormal conditions are automatically identified and alert messages are given to the medical officer in real time. Clinical validation is performed in a real environment and found to be successful. Bland-Altman analysis is carried out to validate the wrist blood pressure sensor used. The system works well for all measurements. PMID:26884757

  9. A signal-on fluorosensor based on quench-release principle for sensitive detection of antibiotic rapamycin.

    PubMed

    Jeong, Hee-Jin; Itayama, Shuya; Ueda, Hiroshi

    2015-03-26

    An antibiotic rapamycin is one of the most commonly used immunosuppressive drugs, and also implicated for its anti-cancer activity. Hence, the determination of its blood level after organ transplantation or tumor treatment is of great concern in medicine. Although there are several rapamycin detection methods, many of them have limited sensitivity, and/or need complicated procedures and long assay time. As a novel fluorescent biosensor for rapamycin, here we propose "Q'-body", which works on the fluorescence quench-release principle inspired by the antibody-based quenchbody (Q-body) technology. We constructed rapamycin Q'-bodies by linking the two interacting domains FKBP12 and FRB, whose association is triggered by rapamycin. The fusion proteins were each incorporated position-specifically with one of fluorescence dyes ATTO520, tetramethylrhodamine, or ATTO590 using a cell-free translation system. As a result, rapid rapamycin dose-dependent fluorescence increase derived of Q'-bodies was observed, especially for those with ATTO520 with a lowest detection limit of 0.65 nM, which indicates its utility as a novel fluorescent biosensor for rapamycin.

  10. Comet/Asteroid Protection System (CAPS): A Space-Based System Concept for Revolutionizing Earth Protection and Utilization of Near-Earth Objects

    NASA Technical Reports Server (NTRS)

    Mazanek, Daniel D.; Roithmayr, Carlos M.; Antol, Jeffrey; Kay-Bunnell, Linda; Werner, Martin R.; Park, Sang-Young; Kumar, Renjith R.

    2002-01-01

    There exists an infrequent, but significant hazard to life and property due to impacting asteroids and comets. There is currently no specific search for long-period comets, smaller near-Earth asteroids, or smaller short-period comets. These objects represent a threat with potentially little or no warning time using conventional ground-based telescopes. These planetary bodies also represent a significant resource for commercial exploitation, long-term sustained space exploration, and scientific research. The Comet/Asteroid Protection System (CAPS) would expand the current detection effort to include long-period comets, as well as small asteroids and short-period comets capable of regional destruction. A space-based detection system, despite being more costly and complex than Earth-based initiatives, is the most promising way of expanding the range of detectable objects, and surveying the entire celestial sky on a regular basis. CAPS is a future spacebased system concept that provides permanent, continuous asteroid and comet monitoring, and rapid, controlled modification of the orbital trajectories of selected bodies. CAPS would provide an orbit modification system capable of diverting kilometer class objects, and modifying the orbits of smaller asteroids for impact defense and resource utilization. This paper provides a summary of CAPS and discusses several key areas and technologies that are being investigated.

  11. An ECG electrode-mounted heart rate, respiratory rhythm, posture and behavior recording system.

    PubMed

    Yoshimura, Takahiro; Yonezawa, Yoshiharu; Maki, Hiromichi; Ogawa, Hidekuni; Ninomiya, Ishio; Morton Caldwell, W

    2004-01-01

    R-R interval, respiration rhythm, posture and behavior recording system has been developed for monitoring a patient's cardiovascular regulatory system in daily life. The recording system consists of three ECG chest electrodes, a variable gain instrumentation amplifier, a dual axis accelerometer, a low power 8-bit single-chip microcomputer and a 1024 KB EEPROM. The complete system is mounted on the chest electrodes. R-R interval and respiration rhythm are calculated by the R waves detected from the ECG. Posture and behavior such as walking and running are detected from the body movements recorded by the accelerometer. The detected data are stored by the EEPROM and, after recording, are downloaded to a desktop computer for analysis.

  12. Development of Abnormality Detection System for Bathers using Ultrasonic Sensors

    NASA Astrophysics Data System (ADS)

    Ohnishi, Yosuke; Abe, Takehiko; Nambo, Hidetaka; Kimura, Haruhiko; Ogoshi, Yasuhiro

    This paper proposes an abnormality detection system for bather sitting in bathtub. Increasing number of in-bathtub drowning accidents in Japan draws attention. Behind this large number of bathing accidents, Japan's unique social and cultural background come surface. For majority of people in Japan, bathing serves purpose in deep warming up of body, relax and enjoyable time. Therefore it is the custom for the Japanese to soak in bathtub. However overexposure to hot water may cause dizziness or fainting, which is possible to cause in-bathtub drowning. For drowning prevention, the system detects bather's abnormal state using an ultrasonic sensor array. The array, which has many ultrasonic sensors, is installed on the ceiling of bathroom above bathtub. The abnormality detection system uses the following two methods: posture detection and behavior detection. The function of posture detection is to estimate the risk of drowning by monitoring bather's posture. Meanwhile, the function of behavior detection is to estimate the risk of drowning by monitoring bather's behavior. By using these methods, the system detects bathers' different state from normal. As a result of experiment with a subject in the bathtub, the system was possible to detect abnormal state using subject's posture and behavior. Therefore the system is useful for monitoring bather to prevent drowning in bathtub.

  13. On the Unreasonable Effectiveness of post-Newtonian Theory in Gravitational-Wave Physics

    ScienceCinema

    Will, Clifford M.

    2017-12-22

    The first indirect detection of gravitational waves involved a binary system of neutron stars.  In the future, the first direct detection may also involve binary systems -- inspiralling and merging binary neutron stars or black holes. This means that it is essential to understand in full detail the two-body system in general relativity, a notoriously difficult problem with a long history. Post-Newtonian approximation methods are thought to work only under slow motion and weak field conditions, while numerical solutions of Einstein's equations are thought to be limited to the final merger phase.  Recent results have shown that post-Newtonian approximations seem to remain unreasonably valid well into the relativistic regime, while advances in numerical relativity now permit solutions for numerous orbits before merger.  It is now possible to envision linking post-Newtonian theory and numerical relativity to obtain a complete "solution" of the general relativistic two-body problem.  These solutions will play a central role in detecting and understanding gravitational wave signals received by interferometric observatories on Earth and in space.

  14. A Locomotion Intent Prediction System Based on Multi-Sensor Fusion

    PubMed Central

    Chen, Baojun; Zheng, Enhao; Wang, Qining

    2014-01-01

    Locomotion intent prediction is essential for the control of powered lower-limb prostheses to realize smooth locomotion transitions. In this research, we develop a multi-sensor fusion based locomotion intent prediction system, which can recognize current locomotion mode and detect locomotion transitions in advance. Seven able-bodied subjects were recruited for this research. Signals from two foot pressure insoles and three inertial measurement units (one on the thigh, one on the shank and the other on the foot) are measured. A two-level recognition strategy is used for the recognition with linear discriminate classifier. Six kinds of locomotion modes and ten kinds of locomotion transitions are tested in this study. Recognition accuracy during steady locomotion periods (i.e., no locomotion transitions) is 99.71% ± 0.05% for seven able-bodied subjects. During locomotion transition periods, all the transitions are correctly detected and most of them can be detected before transiting to new locomotion modes. No significant deterioration in recognition performance is observed in the following five hours after the system is trained, and small number of experiment trials are required to train reliable classifiers. PMID:25014097

  15. A locomotion intent prediction system based on multi-sensor fusion.

    PubMed

    Chen, Baojun; Zheng, Enhao; Wang, Qining

    2014-07-10

    Locomotion intent prediction is essential for the control of powered lower-limb prostheses to realize smooth locomotion transitions. In this research, we develop a multi-sensor fusion based locomotion intent prediction system, which can recognize current locomotion mode and detect locomotion transitions in advance. Seven able-bodied subjects were recruited for this research. Signals from two foot pressure insoles and three inertial measurement units (one on the thigh, one on the shank and the other on the foot) are measured. A two-level recognition strategy is used for the recognition with linear discriminate classifier. Six kinds of locomotion modes and ten kinds of locomotion transitions are tested in this study. Recognition accuracy during steady locomotion periods (i.e., no locomotion transitions) is 99.71% ± 0.05% for seven able-bodied subjects. During locomotion transition periods, all the transitions are correctly detected and most of them can be detected before transiting to new locomotion modes. No significant deterioration in recognition performance is observed in the following five hours after the system is trained, and small number of experiment trials are required to train reliable classifiers.

  16. Chemosensory danger detection in the human brain: Body odor communicating aggression modulates limbic system activation.

    PubMed

    Mutic, Smiljana; Brünner, Yvonne F; Rodriguez-Raecke, Rea; Wiesmann, Martin; Freiherr, Jessica

    2017-05-01

    Although the sense of smell is involved in numerous survival functions, the processing of body odor emitted by dangerous individuals is far from understood. The aim of the study was to explore how human fight chemosignals communicating aggression can alter brain activation related to an attentional bias and danger detection. While the anterior cingulate cortex (ACC) was seen involved in processing threat-related emotional information, danger detection and error evaluation, it still remains unknown whether human chemosignals communicating aggression can potentially modulate this activation. In the fMRI experiment, healthy male and female normosmic odor recipients (n=18) completed a higher-order processing task (emotional Stroop task with the word categories anger, anxiety, happiness and neutral) while exposed to aggression and exercise chemosignals (collected from a different group of healthy male donors; n=16). Our results provide first evidence that aggression chemosignals induce a time-sensitive attentional bias in chemosensory danger detection and modulate limbic system activation. During exposure to aggression chemosignals compared to exercise chemosignals, functional imaging data indicates an enhancement of thalamus, hypothalamus and insula activation (p<.05, FWE-corrected). Together with the thalamus, the ACC was seen activated in response to threat-related words (p<.001). Chemosensory priming and habituation to body odor signals are discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Probe Scanning Support System by a Parallel Mechanism for Robotic Echography

    NASA Astrophysics Data System (ADS)

    Aoki, Yusuke; Kaneko, Kenta; Oyamada, Masami; Takachi, Yuuki; Masuda, Kohji

    We propose a probe scanning support system based on force/visual servoing control for robotic echography. First, we have designed and formulated its inverse kinematics the construction of mechanism. Next, we have developed a scanning method of the ultrasound probe on body surface to construct visual servo system based on acquired echogram by the standalone medical robot to move the ultrasound probe on patient abdomen in three-dimension. The visual servo system detects local change of brightness in time series echogram, which is stabilized the position of the probe by conventional force servo system in the robot, to compensate not only periodical respiration motion but also body motion. Then we integrated control method of the visual servo with the force servo as a hybrid control in both of position and force. To confirm the ability to apply for actual abdomen, we experimented the total system to follow the gallbladder as a moving target to keep its position in the echogram by minimizing variation of reaction force on abdomen. As the result, the system has a potential to be applied to automatic detection of human internal organ.

  18. Photoacoustic tomography of foreign bodies in soft biological tissue.

    PubMed

    Cai, Xin; Kim, Chulhong; Pramanik, Manojit; Wang, Lihong V

    2011-04-01

    In detecting small foreign bodies in soft biological tissue, ultrasound imaging suffers from poor sensitivity (52.6%) and specificity (47.2%). Hence, alternative imaging methods are needed. Photoacoustic (PA) imaging takes advantage of strong optical absorption contrast and high ultrasonic resolution. A PA imaging system is employed to detect foreign bodies in biological tissues. To achieve deep penetration, we use near-infrared light ranging from 750 to 800 nm and a 5-MHz spherically focused ultrasonic transducer. PA images were obtained from various targets including glass, wood, cloth, plastic, and metal embedded more than 1 cm deep in chicken tissue. The locations and sizes of the targets from the PA images agreed well with those of the actual samples. Spectroscopic PA imaging was also performed on the objects. These results suggest that PA imaging can potentially be a useful intraoperative imaging tool to identify foreign bodies.

  19. Plasmon-enhanced Raman detection of body-fluid components

    NASA Astrophysics Data System (ADS)

    Matteini, Paolo; Banchelli, Martina; De Angelis, Marella; D'Andrea, Cristiano; Pini, Roberto

    2018-02-01

    Plasmon-enhanced spectroscopies such as surface-enhanced Raman spectroscopy (SERS) concern the detection of enhanced optical responses of molecules in close proximity to plasmonic structures, which results in a strong increase in sensitivity. Recent advancements in nanofabrication methods have paved the way for a controlled design of tailor-made nanostructures with fine-tuning of their optical and surface properties. Among these, silver nanocubes (AgNCs) represent a convenient choice in SERS owing to intense electromagnetic fields localized at their extremities, which are further intensified in the gap regions between closely spaced nanoparticles. The integration of AgNCs assemblies within an optofluidic platform may confer potential for superior optical investigation due to a molecular enrichment on the plasmonic structures to collect an enhanced photonic response. We developed a novel sensing platform based on an optofluidic system involving assembled silver nanocubes of 50 nm in size for ultrasensitive SERS detection of biomolecules in wet conditions. The proposed system offers the perspective of advanced biochemical and biological characterizations of molecules as well as of effective detection of body fluid components and other molecules of biomedical interest in their own environment.

  20. Moving human full body and body parts detection, tracking, and applications on human activity estimation, walking pattern and face recognition

    NASA Astrophysics Data System (ADS)

    Chen, Hai-Wen; McGurr, Mike

    2016-05-01

    We have developed a new way for detection and tracking of human full-body and body-parts with color (intensity) patch morphological segmentation and adaptive thresholding for security surveillance cameras. An adaptive threshold scheme has been developed for dealing with body size changes, illumination condition changes, and cross camera parameter changes. Tests with the PETS 2009 and 2014 datasets show that we can obtain high probability of detection and low probability of false alarm for full-body. Test results indicate that our human full-body detection method can considerably outperform the current state-of-the-art methods in both detection performance and computational complexity. Furthermore, in this paper, we have developed several methods using color features for detection and tracking of human body-parts (arms, legs, torso, and head, etc.). For example, we have developed a human skin color sub-patch segmentation algorithm by first conducting a RGB to YIQ transformation and then applying a Subtractive I/Q image Fusion with morphological operations. With this method, we can reliably detect and track human skin color related body-parts such as face, neck, arms, and legs. Reliable body-parts (e.g. head) detection allows us to continuously track the individual person even in the case that multiple closely spaced persons are merged. Accordingly, we have developed a new algorithm to split a merged detection blob back to individual detections based on the detected head positions. Detected body-parts also allow us to extract important local constellation features of the body-parts positions and angles related to the full-body. These features are useful for human walking gait pattern recognition and human pose (e.g. standing or falling down) estimation for potential abnormal behavior and accidental event detection, as evidenced with our experimental tests. Furthermore, based on the reliable head (face) tacking, we have applied a super-resolution algorithm to enhance the face resolution for improved human face recognition performance.

  1. Aether drift and the isotropy of the universe: a measurement of anisotropies in the primordial black-body radiation

    NASA Technical Reports Server (NTRS)

    Muller, R. A.

    1979-01-01

    This experiment detected and mapped large-angular-scale anisotropies in the 3 K primordial black-body radiation with a sensitivity of 2x.0001k and an angular resolution of about 10 degs. It measured the motion of the Earth with respect to the distant matter of the Universe (Aether Drift), and probed the homogeneity and isotropy of the Universe (the Cosmological Principle). The experiment used two Dicke radiometers, one at 33 GHz to detect the cosmic anisotropy, and one at 54 GHz to detect anisotropies in the residual oxygen above the detectors. The system was installed in the NASA-Ames Earth Survey Aircraft (U-2), and operated successfully in a series of flights.

  2. A Synchronous Multi-Body Sensor Platform in a Wireless Body Sensor Network: Design and Implementation

    PubMed Central

    Gil, Yeongjoon; Wu, Wanqing; Lee, Jungtae

    2012-01-01

    Background Human life can be further improved if diseases and disorders can be predicted before they become dangerous, by correctly recognizing signals from the human body, so in order to make disease detection more precise, various body-signals need to be measured simultaneously in a synchronized manner. Object This research aims at developing an integrated system for measuring four signals (EEG, ECG, respiration, and PPG) and simultaneously producing synchronous signals on a Wireless Body Sensor Network. Design We designed and implemented a platform for multiple bio-signals using Bluetooth communication. Results First, we developed a prototype board and verified the signals from the sensor platform using frequency responses and quantities. Next, we designed and implemented a lightweight, ultra-compact, low cost, low power-consumption Printed Circuit Board. Conclusion A synchronous multi-body sensor platform is expected to be very useful in telemedicine and emergency rescue scenarios. Furthermore, this system is expected to be able to analyze the mutual effects among body signals. PMID:23112605

  3. A new kind of universal smart home security safety monitoring system

    NASA Astrophysics Data System (ADS)

    Li, Biqing; Li, Zhao

    2018-04-01

    With the current level of social development, improved quality of life, existence and security issues of law and order has become an important issue. This graduation project adopts the form of wireless transmission, to STC89C52 microcontroller as the host control human infrared induction anti-theft monitoring system. The system mainly consists of main control circuit, power supply circuit, activities of the human body detection module, sound and light alarm circuit, record and display circuit. The main function is to achieve exploration activities on the human body, then the information is transmitted to the control panel, according to the system microcontroller program control sound and light alarm circuit, while recording the alarm location and time, and always check the record as required, and ultimately achieve the purpose of monitoring. The advantage of using pyroelectric infrared sensor can be installed in a hidden place, not easy to find, and low cost, good detection results, and has broad prospects for development.

  4. New problems and opportunities of oil spill monitoring systems

    NASA Astrophysics Data System (ADS)

    Barenboim, G. M.; Borisov, V. M.; Golosov, V. N.; Saveca, A. Yu.

    2015-04-01

    Emergency oil and oil products spills represent a great danger to the environment, including ecosystems, and to the population. New problems of such dangerous spills and methods of early detection are discussed in this paper. It is proposed to conduct assessment of biological hazards of such spills on the basis of data on the distribution of individual oil hydrocarbons within the column of the water body and computer predictions of their toxicity. Oil radioactivity, which is associated with uranium and thorium, is seen as the important aspect of the oil spill danger, especially in watercourses. The need for an automated monitoring system for the early detection of oil spills in water bodies is analysed. The proposed system consists of three subsystems. The first remote sensing subsystem is based on powerful fluorescent lidars; experimental results on lidar registration of oil pollution of water are reported. The second subsystem uses a network of automatic monitoring stations with contact detectors. The third subsystem is the combined sensor system based on remote and contact technologies.

  5. The feasibility test of state-of-the-art face detection algorithms for vehicle occupant detection

    NASA Astrophysics Data System (ADS)

    Makrushin, Andrey; Dittmann, Jana; Vielhauer, Claus; Langnickel, Mirko; Kraetzer, Christian

    2010-01-01

    Vehicle seat occupancy detection systems are designed to prevent the deployment of airbags at unoccupied seats, thus avoiding the considerable cost imposed by the replacement of airbags. Occupancy detection can also improve passenger comfort, e.g. by activating air-conditioning systems. The most promising development perspectives are seen in optical sensing systems which have become cheaper and smaller in recent years. The most plausible way to check the seat occupancy by occupants is the detection of presence and location of heads, or more precisely, faces. This paper compares the detection performances of the three most commonly used and widely available face detection algorithms: Viola- Jones, Kienzle et al. and Nilsson et al. The main objective of this work is to identify whether one of these systems is suitable for use in a vehicle environment with variable and mostly non-uniform illumination conditions, and whether any one face detection system can be sufficient for seat occupancy detection. The evaluation of detection performance is based on a large database comprising 53,928 video frames containing proprietary data collected from 39 persons of both sexes and different ages and body height as well as different objects such as bags and rearward/forward facing child restraint systems.

  6. Body size and lower limb posture during walking in humans.

    PubMed

    Hora, Martin; Soumar, Libor; Pontzer, Herman; Sládek, Vladimír

    2017-01-01

    We test whether locomotor posture is associated with body mass and lower limb length in humans and explore how body size and posture affect net joint moments during walking. We acquired gait data for 24 females and 25 males using a three-dimensional motion capture system and pressure-measuring insoles. We employed the general linear model and commonality analysis to assess the independent effect of body mass and lower limb length on flexion angles at the hip, knee, and ankle while controlling for sex and velocity. In addition, we used inverse dynamics to model the effect of size and posture on net joint moments. At early stance, body mass has a negative effect on knee flexion (p < 0.01), whereas lower limb length has a negative effect on hip flexion (p < 0.05). Body mass uniquely explains 15.8% of the variance in knee flexion, whereas lower limb length uniquely explains 5.4% of the variance in hip flexion. Both of the detected relationships between body size and posture are consistent with the moment moderating postural adjustments predicted by our model. At late stance, no significant relationship between body size and posture was detected. Humans of greater body size reduce the flexion of the hip and knee at early stance, which results in the moderation of net moments at these joints.

  7. Comet/Asteroid Protection System (CAPS): Preliminary Space-Based Concept and Study Results

    NASA Technical Reports Server (NTRS)

    Mazanek, Daniel D.; Roithmayr, Carlos M.; Antol, Jeffrey; Park, Sang-Young; Koons, Robert H.; Bremer, James C.; Murphy, Douglas G.; Hoffman, James A.; Kumar, Renjith R.; Seywald, Hans

    2005-01-01

    There exists an infrequent, but significant hazard to life and property due to impacting asteroids and comets. There is currently no specific search for long-period comets, smaller near-Earth asteroids, or smaller short-period comets. These objects represent a threat with potentially little or no warning time using conventional ground-based telescopes. These planetary bodies also represent a significant resource for commercial exploitation, long-term sustained space exploration, and scientific research. The Comet/Asteroid Protection System (CAPS) is a future space-based system concept that provides permanent, continuous asteroid and comet monitoring, and rapid, controlled modification of the orbital trajectories of selected bodies. CAPS would expand the current detection effort to include long-period comets, as well as small asteroids and short-period comets capable of regional destruction. A space-based detection system, despite being more costly and complex than Earth-based initiatives, is the most promising way of expanding the range of detectable objects, and surveying the entire celestial sky on a regular basis. CAPS would provide an orbit modification system capable of diverting kilometer class objects, and modifying the orbits of smaller asteroids for impact defense and resource utilization. This Technical Memorandum provides a compilation of key related topics and analyses performed during the CAPS study, which was performed under the Revolutionary Aerospace Systems Concepts (RASC) program, and discusses technologies that could enable the implementation of this future system.

  8. Irradiation Products On Dwarf Planet Makemake

    NASA Astrophysics Data System (ADS)

    Brown, M. E.; Schaller, E. L.; Blake, G. A.

    2015-03-01

    The dark, reddish tinged surfaces of icy bodies in the outer solar system are usually attributed to the long term irradiation of simple hydrocarbons leading to the breaking of C-H bonds, loss of hydrogen, and the production of long carbon chains. While the simple hydrocarbon methane is stable and detected on the most massive bodies in the Kuiper Belt, evidence of active irradiation chemistry is scant except for the presence of ethane on methane-rich Makemake and the possible detections of ethane on more methane-poor Pluto and Quaoar. We have obtained deep high signal-to-noise spectra of Makemake from 1.4 to 2.5 μm in an attempt to trace the radiation chemistry in the outer solar system beyond the initial ethane formation. We present the first astrophysical detection of solid ethylene and evidence for acetylene and high-mass alkanes—all expected products of the continued irradiation of methane, and use these species to map the chemical pathway from methane to long-chain hydrocarbons.

  9. Ice chemistry on outer solar system bodies: Carboxylic acids, nitriles, and urea detected in refractory residues produced from the UV photolysis of N{sub 2}:CH{sub 4}:CO-containing ices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Materese, Christopher K.; Cruikshank, Dale P.; Sandford, Scott A.

    Radiation processing of the surface ices of outer solar system bodies may result in the production of new chemical species even at low temperatures. Many of the smaller, more volatile molecules that are likely produced by the photolysis of these ices have been well characterized by laboratory experiments. However, the more complex refractory material formed in these experiments remains largely uncharacterized. In this work, we present a series of laboratory experiments in which low-temperature (15-20 K) N{sub 2}:CH{sub 4}:CO ices in relative proportions 100:1:1 are subjected to UV irradiation, and the resulting materials are studied with a variety of analyticalmore » techniques including infrared spectroscopy, X-ray absorption near-edge structure spectroscopy, gas chromatography coupled with mass spectrometry, and high-resolution mass spectroscopy. Despite the simplicity of the reactants, these experiments result in the production of a highly complex mixture of molecules from relatively low-mass volatiles (tens of daltons) to high-mass refractory materials (hundreds of daltons). These products include various carboxylic acids, nitriles, and urea, which are also expected to be present on the surface of outer solar system bodies, including Pluto and other transneptunian objects. If these compounds occur in sufficient concentrations in the ices of outer solar system bodies, their characteristic bands may be detectable in the near-infrared spectra of these objects.« less

  10. Introducing Exotopography

    NASA Astrophysics Data System (ADS)

    McTier, Moiya; Kipping, David

    2018-01-01

    Mountain ranges, volcanoes, trenches, and craters are common on rocky bodies throughout the Solar System, and we might we expect the same for rocky exoplanets. With ever larger telescopes under design and a growing need to not just detect planets but also to characterize them, it is timely to consider whether there is any prospect of remotely detecting exoplanet topography in the coming decades. To test this, we devised a novel yet simple approach to detect and quantify topographical features on the surfaces of exoplanets using transit light curves. If a planet rotates as it transits its parent star, its changing silhouette yields a time-varying transit depth, which can be observed as an apparent and anomalous increase in the photometric scatter. Using elevation data for several rocky bodies in our solar system, we quantify each world's surface integrated relief with a "bumpiness'' factor, and calculate the corresponding photometric scatter expected during a transit. Here we consider the ideal case of Mars transiting a nearby white dwarf star. If such systems have a pessimistic occurrence rate of 10%, we estimate that the upcoming Colossus or OWL telescopes would be able to detect topography with fewer than 20 hours of observing time, which corresponds to several years of wall time given the very short (but frequent) transits expected.

  11. Development of a belt-type wearable sensor system with multi-function for home health care

    NASA Astrophysics Data System (ADS)

    Ban, Yunho; Choi, Samjin; Jiang, Zhongwei; Park, Chanwon

    2005-12-01

    Some reports show that the physiological information measured in hospital is not enough without the one measured in home. The physiological information monitored in home, therefore, is strongly required recently. The goal of this research is to develop a wearable and tractable sensor system for detecting biomedical signals such as cardiac rhythm, respiration, body movement, and percentage of body fat (%BF) and for home health care. A belt type sensor for this purpose is developed, which consists of sensing materials of PVDF film and conductive fabrics. Also several data processing techniques, such as the discrete wavelet transform, cross correlation and adaptive filtering method, were introduced to eliminate noises and base wandering and to extract the specified components. The ECG and respiration signals obtained by the proposed belt type sensor system gave good agreements with commercial medical system. Furthermore, the body fat (%BF) measurement based on the four-electrode BIA was also built in the belt sensor. The body fat was calculated by measuring the body impedance from the belt type sensor and compared with the predicted %BF measured by the commercial adipometer (TBF-607). The results validated also the efficiency of the belt type sensor system.

  12. Chiral Determination of Amino Acids Using X-Ray Diffraction of Thin Films

    NASA Technical Reports Server (NTRS)

    Dragoi, D.; Kulleck, J.; Kanik, I.; Beegle, L. W.

    2003-01-01

    The astrobiological search for life, both extinct and extant, on other solar system bodies will take place via several planned lander missions to Mars Europa and Titan. The detection and identification of organic molecules that have been associated with life is a major technical challenge. Terrestrial life utilizes organic molecules, such as amino acids, as its basic building block. Amino acids can be synthesized by natural processes as is demonstrated by their detection in meteoritic material. In this process, the organic molecules are produced roughly in a even mixture of D and L forms. Biological process, however, can utilize almost uniquely one form or the other. In terrestrial biology, only the L-amino acids is common in biological processes. If signature of life existed elsewhere in the D form it then be concluded that life had evolutionary beginning on that body. Detection of an enantiomeric excess of L over D would also be a powerful sign that life had existed on that body at one time.

  13. Detection of circulating breast cancer cells using photoacoustic flow cytometry

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, Kiran

    According to the American Cancer Society, more than 200,000 new cases of breast cancer are expected to be diagnosed this year. Moreover, about 40,000 women died from breast cancer last year alone. As breast cancer progresses in an individual, it can transform from a localized state to a metastatic one with multiple tumors distributed through the body, not necessarily contained within the breast. Metastasis is the spread of cancer through the body by circulating tumor cells (CTCs) which can be found in the blood and lymph of the diagnosed patient. Diagnosis of a metastatic state by the discovery of a secondary tumor can often come too late and hence, significantly reduce the patient's chance of survival. There is a current need for a CTC detection method which would diagnose metastasis before the secondary tumor occurs or reaches a size resolvable by current imaging systems. Since earlier detection would improve prognosis, this study proposes a method of labeling of breast cancer cells for detection with a photoacoustic flow cytometry system as a model for CTC detection in human blood. Gold nanoparticles and fluorescent polystyrene nanoparticles are proposed as contrast agents for T47D, the breast cancer cell line of choice. The labeling, photoacoustic detection limit, and sensitivity are first characterized and then applied to a study to show detection from human blood.

  14. Sniper detection using infrared camera: technical possibilities and limitations

    NASA Astrophysics Data System (ADS)

    Kastek, M.; Dulski, R.; Trzaskawka, P.; Bieszczad, G.

    2010-04-01

    The paper discusses technical possibilities to build an effective system for sniper detection using infrared cameras. Descriptions of phenomena which make it possible to detect sniper activities in infrared spectra as well as analysis of physical limitations were performed. Cooled and uncooled detectors were considered. Three phases of sniper activities were taken into consideration: before, during and after the shot. On the basis of experimental data the parameters defining the target were determined which are essential in assessing the capability of infrared camera to detect sniper activity. A sniper body and muzzle flash were analyzed as targets. The simulation of detection ranges was done for the assumed scenario of sniper detection task. The infrared sniper detection system was discussed, capable of fulfilling the requirements. The discussion of the results of analysis and simulations was finally presented.

  15. Development of novel algorithm and real-time monitoring ambulatory system using Bluetooth module for fall detection in the elderly.

    PubMed

    Hwang, J Y; Kang, J M; Jang, Y W; Kim, H

    2004-01-01

    Novel algorithm and real-time ambulatory monitoring system for fall detection in elderly people is described. Our system is comprised of accelerometer, tilt sensor and gyroscope. For real-time monitoring, we used Bluetooth. Accelerometer measures kinetic force, tilt sensor and gyroscope estimates body posture. Also, we suggested algorithm using signals which obtained from the system attached to the chest for fall detection. To evaluate our system and algorithm, we experimented on three people aged over 26 years. The experiment of four cases such as forward fall, backward fall, side fall and sit-stand was repeated ten times and the experiment in daily life activity was performed one time to each subject. These experiments showed that our system and algorithm could distinguish between falling and daily life activity. Moreover, the accuracy of fall detection is 96.7%. Our system is especially adapted for long-time and real-time ambulatory monitoring of elderly people in emergency situation.

  16. Electro-optical system for gunshot detection: analysis, concept, and performance

    NASA Astrophysics Data System (ADS)

    Kastek, M.; Dulski, R.; Madura, H.; Trzaskawka, P.; Bieszczad, G.; Sosnowski, T.

    2011-08-01

    The paper discusses technical possibilities to build an effective electro-optical sensor unit for sniper detection using infrared cameras. This unit, comprising of thermal and daylight cameras, can operate as a standalone device but its primary application is a multi-sensor sniper and shot detection system. At first, the analysis was presented of three distinguished phases of sniper activity: before, during and after the shot. On the basis of experimental data the parameters defining the relevant sniper signatures were determined which are essential in assessing the capability of infrared camera to detect sniper activity. A sniper body and muzzle flash were analyzed as targets and the descriptions of phenomena which make it possible to detect sniper activities in infrared spectra as well as analysis of physical limitations were performed. The analyzed infrared systems were simulated using NVTherm software. The calculations for several cameras, equipped with different lenses and detector types were performed. The simulation of detection ranges was performed for the selected scenarios of sniper detection tasks. After the analysis of simulation results, the technical specifications of infrared sniper detection system were discussed, required to provide assumed detection range. Finally the infrared camera setup was proposed which can detected sniper from 1000 meters range.

  17. The immune system as a biomonitor: explorations in innate and adaptive immunity

    PubMed Central

    Thomas, Niclas; Heather, James; Pollara, Gabriel; Simpson, Nandi; Matjeka, Theres; Shawe-Taylor, John; Noursadeghi, Mahdad; Chain, Benjamin

    2013-01-01

    The human immune system has a highly complex, multi-layered structure which has evolved to detect and respond to changes in the internal microenvironment of the body. Recognition occurs at the molecular or submolecular scale, via classical reversible receptor–ligand interactions, and can lead to a response with great sensitivity and speed. Remarkably, recognition is coupled to memory, such that responses are modulated by events which occurred years or even decades before. Although the immune system in general responds differently and more vigorously to stimuli entering the body from the outside (e.g. infections), this is an emergent property of the system: many of the recognition molecules themselves have no inherent bias towards external stimuli (non-self) but also bind targets found within the body (self). It is quite clear that the immune response registers pathophysiological changes in general. Cancer, wounding and chronic tissue injury are some obvious examples. Against this background, the immune system ‘state’ tracks the internal processes of the body, and is likely to encode information regarding both current and past disease processes. Moreover, the distributed nature of most immune responses (e.g. typically involving lymphoid tissue, non-lymphoid tissue, bone marrow, blood, extracellular interstitial spaces, etc.) means that many of the changes associated with immune responses are manifested systemically, and specifically can be detected in blood. This provides a very convenient route to sampling immune cells. We consider two different and complementary ways of querying the human immune ‘state’ using high-dimensional genomic screening methodologies, and discuss the potentials of these approaches and some of the technological and computational challenges to be overcome. PMID:24427535

  18. Detected Timing for Exoplanet TrES-5b. Possible Existence of Exoplanet TrES-5c

    NASA Astrophysics Data System (ADS)

    Sokov, E. N.; Sokova, I. A.; Dyachenko, V. V.; Rastegaev, D. A.; Rusov, S. A.

    2017-06-01

    In this paper, we present timing variations detected for the TrES-5b exoplanet. To obtain necessary photometric data for this exoplanet, we have organized an international campaign for exoplanet searching based on the Transit Timing Variation (TTV) method. We managed to collect N light curves for TrEs-5b. On the basis of the obtained data, we detected timing variations with the period P ≍ 100 days. We carried out the N-body modelling by means of the three-body problem. We detected a perturbation of TrES-5b which can be caused by a second exoplanet in the TrES-5 system. We calculated possible masses and resonances of the objects: M ˜ 0.24 Mjup on the 1:2 Resonance and M ˜ 3.15 Mjup on the 1:3 Resonance.

  19. Stability of Moons in the Trappist-1 System

    NASA Astrophysics Data System (ADS)

    Allen, John; Becker, Christopher; Fuse, Christopher

    2018-01-01

    In the last 20 years, numerous exoplanets have been discovered and it has become clear that habitable bodies are rare. Exomoons mark the next stage in identifying habitable environs. In our own Solar system, several moons have been identified as having features suitable to sustain life. The Trappist-1 system (Gillon et al. 2017) is a compact configuration of seven Earth-like planets orbiting a M-type dwarf star. The presence of moons cannot be confirmed in the transit data. Kane et al. (2017) suggests that it would be highly improbable for a moon to maintain a stable orbit around any Trappist-1 planet. The current study investigates the claim by Kane et al. (2017), examining the stability of the Trappist-1 system in the presence of forming satellites. Moon disks are simulated by distributing 100 bodies, each with mass 5.26 x 1018 kg randomly within 10% - 90% of the exoplanet’s Hill sphere. Utilizing N-body simulations, the planets and theoretical moons were tracked for 500 kyrs, allowing for gravitational interactions and mergers. Instabilities in the orbital parameters of the Trappist-1 planets was detected, in agreement with previous authors (Burgasser & Mamajerk 2017). Some of the planets are found to retain at least a single satellite for the same duration as the planetary stability. These data suggest that additional observation of the Trappist-1 system may yield the first detection of an exomoon.

  20. A Comparison of the effectiveness of Mammographic Film-Screen and Standard Film-Screen in the Detection of Small Bone Fractures

    PubMed Central

    Sani, Karim Ghazikhanlou; Jafari, Mahmoodreza; Rostampoor, Nima

    2011-01-01

    The use of mammography film-screen is limited in general radiography. The purpose of this study was to compare the effectiveness of mammographic film-screen and standard film-screen systems in the detection of small bone fractures. Radiographs were taken from patients' extremities and neck areas using mammography film-screen and standard film-screen (n=57 each). Fourteen other radiographs were taken from other views (predominantly oblique views), making a total number of 128 radiographs. Paired radiographs, taken from the same areas, were compared by two radiologists in terms of image visual sharpness, presence of bony fractures, and soft tissue injuries. The surface dose received by patients in the two systems was also compared. The radiographs taken by mammography film-screen had a statistically better visual sharpness compared to those taken by the standard film-screen system. However, there was no statistically significant difference between the diagnostic accuracy of the two systems. Mammography film-screen was able to detect only one out of 57 lesions, whereas standard film-screen system did not detec any lesion. The surface dose received by patients in mammography film-screen was higher than that in standard film-screen system. The findings of the present study suggest that mammography film-screen may be recommended as a diagnostic tool for the detection of small fractures of tinny parts of body such as fingers, hand or foot. They also suggest that mammography film-screen has no advantage over standard film-screen for radiography of thick body parts such as neck and knee. PMID:23115417

  1. Detection of solid C(triple bond)N bearing materials on solar system bodies

    NASA Technical Reports Server (NTRS)

    Cruikshank, Dale P.; Hartmann, W. K.; Tholen, David J.; Allamandola, L. J.; Brown, R. H.; Matthews, C. N.; Bell, J. F.

    1991-01-01

    We found observational evidence for the presence of C(triple bond)N-bearing solid materials on four classes of Solar System bodies: comets, asteroids, the rings of Uranus, and Saturn's satellite Iapetus. Gaseous CN was known in comet spectra, and the IR spectra of Comet P/Halley show emission of the CN fundamental at 4.5 microns interpreted as solids containing CN- group in the grains of the inner coma. The presented data offer the first evidence for chemically related material on the other objects.

  2. Millimeter and Submillimeter Observations of Ceres

    NASA Astrophysics Data System (ADS)

    Kuan, Yi-Jehng; Chuang, Yo-Ling; Tseng, Wei-Ling; Coulson, Iain M.; Chung, Ming-Chi

    2016-07-01

    1 Ceres is the largest celestial body in the Main Asteroid Belt and is also the sole dwarf planet in the inner solar system. Water vapor from small icy solar-system bodies, including Ceres and Europa, was detected by Herschel infrared space telescope recently. Data taken from Dawn spacecraft suggest that a subsurface layer of briny water ice, together with ammonia-rich clays, may exist on Ceres. We hence observed Ceres using the 15-m James Clerk Maxwell Telescope (JCMT) to search for other atmospheric molecules besides H _{2}O. Submillimeter continuum observations employing SCUBA-2 were also carried out. Here we report the tentative detection of hydrogen cyanide in the atmosphere of Ceres. If confirmed, our finding could imply that Ceres may have a comet-like chemical composition. However, further observational confirmation and more detailed analysis is needed.

  3. Exploitation of Ubiquitous Wi-Fi Devices as Building Blocks for Improvised Motion Detection Systems.

    PubMed

    Soldovieri, Francesco; Gennarelli, Gianluca

    2016-02-27

    This article deals with a feasibility study on the detection of human movements in indoor scenarios based on radio signal strength variations. The sensing principle exploits the fact that the human body interacts with wireless signals, introducing variations of the radiowave fields due to shadowing and multipath phenomena. As a result, human motion can be inferred from fluctuations of radiowave power collected by a receiving terminal. In this paper, we investigate the potentialities of widely available wireless communication devices in order to develop an improvised motion detection system (IMDS). Experimental tests are performed in an indoor environment by using a smartphone as a Wi-Fi access point and a laptop with dedicated software as a receiver. Simple detection strategies tailored for real-time operation are implemented to process the received signal strength measurements. The achieved results confirm the potentialities of the simple system here proposed to reliably detect human motion in operational conditions.

  4. Expanded opportunities of THz passive camera for the detection of concealed objects

    NASA Astrophysics Data System (ADS)

    Trofimov, Vyacheslav A.; Trofimov, Vladislav V.; Kuchik, Igor E.

    2013-10-01

    Among the security problems, the detection of object implanted into either the human body or animal body is the urgent problem. At the present time the main tool for the detection of such object is X-raying only. However, X-ray is the ionized radiation and therefore can not be used often. Other way for the problem solving is passive THz imaging using. In our opinion, using of the passive THz camera may help to detect the object implanted into the human body under certain conditions. The physical reason of such possibility arises from temperature trace on the human skin as a result of the difference in temperature between object and parts of human body. Modern passive THz cameras have not enough resolution in temperature to see this difference. That is why, we use computer processing to enhance the passive THz camera resolution for this application. After computer processing of images captured by passive THz camera TS4, developed by ThruVision Systems Ltd., we may see the pronounced temperature trace on the human body skin from the water, which is drunk by person, or other food eaten by person. Nevertheless, there are many difficulties on the way of full soution of this problem. We illustrate also an improvement of quality of the image captured by comercially available passive THz cameras using computer processing. In some cases, one can fully supress a noise on the image without loss of its quality. Using computer processing of the THz image of objects concealed on the human body, one may improve it many times. Consequently, the instrumental resolution of such device may be increased without any additional engineering efforts.

  5. A ubiquitous and low-cost solution for movement monitoring and accident detection based on sensor fusion.

    PubMed

    Felisberto, Filipe; Fdez-Riverola, Florentino; Pereira, António

    2014-05-21

    The low average birth rate in developed countries and the increase in life expectancy have lead society to face for the first time an ageing situation. This situation associated with the World's economic crisis (which started in 2008) forces the need of equating better and more efficient ways of providing more quality of life for the elderly. In this context, the solution presented in this work proposes to tackle the problem of monitoring the elderly in a way that is not restrictive for the life of the monitored, avoiding the need for premature nursing home admissions. To this end, the system uses the fusion of sensory data provided by a network of wireless sensors placed on the periphery of the user. Our approach was also designed with a low-cost deployment in mind, so that the target group may be as wide as possible. Regarding the detection of long-term problems, the tests conducted showed that the precision of the system in identifying and discerning body postures and body movements allows for a valid monitorization and rehabilitation of the user. Moreover, concerning the detection of accidents, while the proposed solution presented a near 100% precision at detecting normal falls, the detection of more complex falls (i.e., hampered falls) will require further study.

  6. A perception theory in mind-body medicine: guided imagery and mindful meditation as cross-modal adaptation.

    PubMed

    Bedford, Felice L

    2012-02-01

    A new theory of mind-body interaction in healing is proposed based on considerations from the field of perception. It is suggested that the combined effect of visual imagery and mindful meditation on physical healing is simply another example of cross-modal adaptation in perception, much like adaptation to prism-displaced vision. It is argued that psychological interventions produce a conflict between the perceptual modalities of the immune system and vision (or touch), which leads to change in the immune system in order to realign the modalities. It is argued that mind-body interactions do not exist because of higher-order cognitive thoughts or beliefs influencing the body, but instead result from ordinary interactions between lower-level perceptual modalities that function to detect when sensory systems have made an error. The theory helps explain why certain illnesses may be more amenable to mind-body interaction, such as autoimmune conditions in which a sensory system (the immune system) has made an error. It also renders sensible erroneous changes, such as those brought about by "faith healers," as conflicts between modalities that are resolved in favor of the wrong modality. The present view provides one of very few psychological theories of how guided imagery and mindfulness meditation bring about positive physical change. Also discussed are issues of self versus non-self, pain, cancer, body schema, attention, consciousness, and, importantly, developing the concept that the immune system is a rightful perceptual modality. Recognizing mind-body healing as perceptual cross-modal adaptation implies that a century of cross-modal perception research is applicable to the immune system.

  7. Body size and lower limb posture during walking in humans

    PubMed Central

    Hora, Martin; Soumar, Libor; Pontzer, Herman; Sládek, Vladimír

    2017-01-01

    We test whether locomotor posture is associated with body mass and lower limb length in humans and explore how body size and posture affect net joint moments during walking. We acquired gait data for 24 females and 25 males using a three-dimensional motion capture system and pressure-measuring insoles. We employed the general linear model and commonality analysis to assess the independent effect of body mass and lower limb length on flexion angles at the hip, knee, and ankle while controlling for sex and velocity. In addition, we used inverse dynamics to model the effect of size and posture on net joint moments. At early stance, body mass has a negative effect on knee flexion (p < 0.01), whereas lower limb length has a negative effect on hip flexion (p < 0.05). Body mass uniquely explains 15.8% of the variance in knee flexion, whereas lower limb length uniquely explains 5.4% of the variance in hip flexion. Both of the detected relationships between body size and posture are consistent with the moment moderating postural adjustments predicted by our model. At late stance, no significant relationship between body size and posture was detected. Humans of greater body size reduce the flexion of the hip and knee at early stance, which results in the moderation of net moments at these joints. PMID:28192522

  8. Automated Detection of Small Bodies by Space Based Observation

    NASA Astrophysics Data System (ADS)

    Bidstrup, P. R.; Grillmayer, G.; Andersen, A. C.; Haack, H.; Jorgensen, J. L.

    The number of known comets and asteroids is increasing every year. Up till now this number is including approximately 250,000 of the largest minor planets, as they are usually referred. These discoveries are due to the Earth-based observation which has intensified over the previous decades. Additionally larger telescopes and arrays of telescopes are being used for exploring our Solar System. It is believed that all near- Earth and Main-Belt asteroids of diameters above 10 to 30 km have been discovered, leaving these groups of objects as observationally complete. However, the cataloguing of smaller bodies is incomplete as only a very small fraction of the expected number has been discovered. It is estimated that approximately 1010 main belt asteroids in the size range 1 m to 1 km are too faint to be observed using Earth-based telescopes. In order to observe these small bodies, space-based search must be initiated to remove atmospheric disturbances and to minimize the distance to the asteroids and thereby minimising the requirement for long camera integration times. A new method of space-based detection of moving non-stellar objects is currently being developed utilising the Advanced Stellar Compass (ASC) built for spacecraft attitude determination by Ørsted, Danish Technical University. The ASC serves as a backbone technology in the project as it is capable of fully automated distinction of known and unknown celestial objects. By only processing objects of particular interest, i.e. moving objects, it will be possible to discover small bodies with a minimum of ground control, with the ultimate ambition of a fully automated space search probe. Currently, the ASC is being mounted on the Flying Laptop satellite of the Institute of Space Systems, Universität Stuttgart. It will, after a launch into a low Earth polar orbit in 2008, test the detection method with the ASC equipment that already had significant in-flight experience. A future use of the ASC based automated detection of small bodies is currently on a preliminary stage and known as the Bering project - a deep space survey to the asteroid Main-Belt. With a successful detection method, the Bering mission is expected to discover approximately 6 new small objects per day and 1 will thus during the course of a few years discover 5,000-10,000 new sub-kilometer asteroids. Discovery of new small bodies can: 1) Provide further links between groups of meteorites. 2) Constrain the cratering rate at planetary surfaces and thus allow significantly improved cratering ages for terrains on Mars and other planets. 3) Help determine processes that transfer small asteroids from orbits in the asteroid Main-Belt to the inner Solar System. 2

  9. Human body motion tracking based on quantum-inspired immune cloning algorithm

    NASA Astrophysics Data System (ADS)

    Han, Hong; Yue, Lichuan; Jiao, Licheng; Wu, Xing

    2009-10-01

    In a static monocular camera system, to gain a perfect 3D human body posture is a great challenge for Computer Vision technology now. This paper presented human postures recognition from video sequences using the Quantum-Inspired Immune Cloning Algorithm (QICA). The algorithm included three parts. Firstly, prior knowledge of human beings was used, the key joint points of human could be detected automatically from the human contours and skeletons which could be thinning from the contours; And due to the complexity of human movement, a forecasting mechanism of occlusion joint points was addressed to get optimum 2D key joint points of human body; And then pose estimation recovered by optimizing between the 2D projection of 3D human key joint points and 2D detection key joint points using QICA, which recovered the movement of human body perfectly, because this algorithm could acquire not only the global optimal solution, but the local optimal solution.

  10. Association Reactions at Low Pressure: 5. The CH(sub 3)+/HCN System. A Final Word?

    NASA Technical Reports Server (NTRS)

    Anicich, V.; Sen, A.; Huntress, W.; McEwan, M.

    1994-01-01

    The reaction of the methyl cation with hydrogen cyanide is revisited. We have confidence that we have resolved a long standing apparent contradiction of experimental results. A literature history is presented along with one new experiment and a reexamination of an old experiment. In this present work it is shown that all of the previous studies had made consistent observations. Yet, each of the previous studies failed to observe all of the information present. The methyl cation does react with HCN by radiative association, a fact which had been in doubt. The product ions formed in the two-body and three-body processes react differently with HCN. The collisionally stabilized association product formed by a three-body mechanism does not react with HCN and is readily detected in the experiments. The radiatively stabilized association product, formed by a slow two-body reaction, is not detected because it reacts with HCN by a fast proton transfer reaction forming the protonated HCN ion.

  11. Micro-Detection System for Determination of the Biotic or Abiotic Origin of Amino Acids

    NASA Technical Reports Server (NTRS)

    Bada, Jeffrey L.; Betts, Bruce (Technical Monitor)

    2002-01-01

    The research involved the development of a breadboard version of a spacecraft based system for the detection of amino acid chirality (handedness) on solar system bodies. The design concept has three distinct components: a sublimation chamber for the release of amino acids from an acquired sample; a microchip based capillary electrophoresis (CE) chip for the separation of amino acids and their enantiomers; and a fluorescent based detection system. In addition, we have investigated the use of a microfluidics system for the extraction of amino acids in samples in which sublimation has proven to be problematic. This is a joint project carried out at the Scripps Institution of Oceanography (SIO), University of California at San Diego; the Jet Propulsion Laboratory (JPL), Pasadena; and the Department of Chemistry, University of California, Berkeley.

  12. Tele-operated search robot for human detection using histogram of oriented objects

    NASA Astrophysics Data System (ADS)

    Cruz, Febus Reidj G.; Avendaño, Glenn O.; Manlises, Cyrel O.; Avellanosa, James Jason G.; Abina, Jyacinth Camille F.; Masaquel, Albert M.; Siapno, Michael Lance O.; Chung, Wen-Yaw

    2017-02-01

    Disasters such as typhoons, tornadoes, and earthquakes are inevitable. Aftermaths of these disasters include the missing people. Using robots with human detection capabilities to locate the missing people, can dramatically reduce the harm and risk to those who work in such circumstances. This study aims to: design and build a tele-operated robot; implement in MATLAB an algorithm for the detection of humans; and create a database of human identification based on various positions, angles, light intensity, as well as distances from which humans will be identified. Different light intensities were made by using Photoshop to simulate smoke, dust and water drops conditions. After processing the image, the system can indicate either a human is detected or not detected. Testing with bodies covered was also conducted to test the algorithm's robustness. Based on the results, the algorithm can detect humans with full body shown. For upright and lying positions, detection can happen from 8 feet to 20 feet. For sitting position, detection can happen from 2 feet to 20 feet with slight variances in results because of different lighting conditions. The distances greater than 20 feet, no humans can be processed or false negatives can occur. For bodies covered, the algorithm can detect humans in cases made under given circumstances. On three positions, humans can be detected from 0 degrees to 180 degrees under normal, with smoke, with dust, and with water droplet conditions. This study was able to design and build a tele-operated robot with MATLAB algorithm that can detect humans with an overall precision of 88.30%, from which a database was created for human identification based on various conditions, where humans will be identified.

  13. Automated patient identification and localization error detection using 2-dimensional to 3-dimensional registration of kilovoltage x-ray setup images.

    PubMed

    Lamb, James M; Agazaryan, Nzhde; Low, Daniel A

    2013-10-01

    To determine whether kilovoltage x-ray projection radiation therapy setup images could be used to perform patient identification and detect gross errors in patient setup using a computer algorithm. Three patient cohorts treated using a commercially available image guided radiation therapy (IGRT) system that uses 2-dimensional to 3-dimensional (2D-3D) image registration were retrospectively analyzed: a group of 100 cranial radiation therapy patients, a group of 100 prostate cancer patients, and a group of 83 patients treated for spinal lesions. The setup images were acquired using fixed in-room kilovoltage imaging systems. In the prostate and cranial patient groups, localizations using image registration were performed between computed tomography (CT) simulation images from radiation therapy planning and setup x-ray images corresponding both to the same patient and to different patients. For the spinal patients, localizations were performed to the correct vertebral body, and to an adjacent vertebral body, using planning CTs and setup x-ray images from the same patient. An image similarity measure used by the IGRT system image registration algorithm was extracted from the IGRT system log files and evaluated as a discriminant for error detection. A threshold value of the similarity measure could be chosen to separate correct and incorrect patient matches and correct and incorrect vertebral body localizations with excellent accuracy for these patient cohorts. A 10-fold cross-validation using linear discriminant analysis yielded misclassification probabilities of 0.000, 0.0045, and 0.014 for the cranial, prostate, and spinal cases, respectively. An automated measure of the image similarity between x-ray setup images and corresponding planning CT images could be used to perform automated patient identification and detection of localization errors in radiation therapy treatments. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Development of a Ballistic Impact Detection System

    DTIC Science & Technology

    2004-09-01

    body surface remains the largest variable to overcome. The snug fit of the body amour stabilizes the sensors and their response . The data from the...estimated to average 1 hour per response , including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data...ABSTRACT 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT UU 18. NUMBER OF PAGES 22 19a. NAME OF RESPONSIBLE PERSON

  15. Entanglement detection in the vicinity of arbitrary Dicke states.

    PubMed

    Duan, L-M

    2011-10-28

    Dicke states represent a class of multipartite entangled states that can be generated experimentally with many applications in quantum information. We propose a method to experimentally detect genuine multipartite entanglement in the vicinity of arbitrary Dicke states. The detection scheme can be used to experimentally quantify the entanglement depth of many-body systems and is easy to implement as it requires measurement of only three collective spin operators. The detection criterion is strong as it heralds multipartite entanglement even in cases where the state fidelity goes down exponentially with the number of qubits.

  16. Sensor Data Quality and Angular Rate Down-Selection Algorithms on SLS EM-1

    NASA Technical Reports Server (NTRS)

    Park, Thomas; Smith, Austin; Oliver, T. Emerson

    2018-01-01

    The NASA Space Launch System Block 1 launch vehicle is equipped with an Inertial Navigation System (INS) and multiple Rate Gyro Assemblies (RGA) that are used in the Guidance, Navigation, and Control (GN&C) algorithms. The INS provides the inertial position, velocity, and attitude of the vehicle along with both angular rate and specific force measurements. Additionally, multiple sets of co-located rate gyros supply angular rate data. The collection of angular rate data, taken along the launch vehicle, is used to separate out vehicle motion from flexible body dynamics. Since the system architecture uses redundant sensors, the capability was developed to evaluate the health (or validity) of the independent measurements. A suite of Sensor Data Quality (SDQ) algorithms is responsible for assessing the angular rate data from the redundant sensors. When failures are detected, SDQ will take the appropriate action and disqualify or remove faulted sensors from forward processing. Additionally, the SDQ algorithms contain logic for down-selecting the angular rate data used by the GNC software from the set of healthy measurements. This paper explores the trades and analyses that were performed in selecting a set of robust fault-detection algorithms included in the GN&C flight software. These trades included both an assessment of hardware-provided health and status data as well as an evaluation of different algorithms based on time-to-detection, type of failures detected, and probability of detecting false positives. We then provide an overview of the algorithms used for both fault-detection and measurement down selection. We next discuss the role of trajectory design, flexible-body models, and vehicle response to off-nominal conditions in setting the detection thresholds. Lastly, we present lessons learned from software integration and hardware-in-the-loop testing.

  17. Assessing new terminal body and facial hair growth during pregnancy: toward developing a simplified visual scoring system for hirsutism.

    PubMed

    Yang, Yabo; Han, Yang; Wang, Wenjun; Du, Tao; Li, Yu; Zhang, Jianping; Yang, Dongzi; Zhao, Xiaomiao

    2016-02-01

    To study the distribution and progression of terminal hair growth in pregnant women and to determine the feasibility of a simplified scoring system for assessing hirsutism. Prospective follow-up observational study. Academic hospital. A total of 115 pregnant women (discovery cohort) and 1,159 women with polycystic ovary syndrome (PCOS) (validation cohort). Facial and body terminal hair growth assessed by modified Ferriman and Gallwey score system (mFG score), and total testosterone (TT) level detected by liquid chromatography with tandem mass spectrometry. Degree of facial and body terminal hair growth. The serum TT level and mFG score increased as pregnancy progressed. Both the prospective study and receiver operating characteristics curve indicated that the body areas with the greatest contribution to hirsutism (defined as an mFG score ≥5) with new terminal hair growth were the upper lip, lower back, lower abdomen, and thigh. A simplified mFG scoring system (sFG) was developed, and a cutoff value of ≥3 was defined as hirsutism. Pregnant hirsute women were distinguished from nonhirsute women with an accuracy of 95.2%, sensitivity of 96.8%, and specificity of 94.3% for detecting hirsutism. This was further validated in the PCOS population with a sensitivity, specificity, and positive predictive value of 97.6%, 96.4%, and 96.4%, respectively. This study suggests that the upper lip, lower back, lower abdomen, and thigh may be an effective simplified combination of the mFG system for the evaluation of excess hair growth in Chinese women. ChiCTR-OCH-14005012. Copyright © 2016 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  18. A motion detection system for AXAF X-ray ground testing

    NASA Technical Reports Server (NTRS)

    Arenberg, Jonathan W.; Texter, Scott C.

    1993-01-01

    The concept, implementation, and performance of the motion detection system (MDS) designed as a diagnostic for X-ray ground testing for AXAF are described. The purpose of the MDS is to measure the magnitude of a relative rigid body motion among the AXAF test optic, the X-ray source, and X-ray focal plane detector. The MDS consists of a point source, lens, centroid detector, transimpedance amplifier, and computer system. Measurement of the centroid position of the image of the optical point source provides a direct measure of the motions of the X-ray optical system. The outputs from the detector and filter/amplifier are digitized and processed using the calibration with a 50 Hz bandwidth to give the centroid's location on the detector. Resolution of 0.008 arcsec has been achieved by this system. Data illustrating the performance of the motion detection system are also presented.

  19. Detection by MEGNO of the gravitational resonances between a rotating ellipsoid and a point mass satellite

    NASA Astrophysics Data System (ADS)

    Compère, A.; Lemaître, A.; Delsate, N.

    2012-01-01

    Nowadays the scientific community considers that more than a third of the asteroids are double. The study of the stability of these systems is quite complex, because of their irregular shapes and tumbling rotations, and requires a full body-full body approach. A particular case is analysed here, when the secondary body is sufficiently small and distant from the primary to be considered as a point mass satellite. Gravitational resonances (between the revolution of the satellite and the rotation of the asteroid) of a small body in fast or slow rotation around a rigid ellipsoid are studied. The same model can be used for the motion of a probe around an irregular asteroid. The gravitational potential induced by the primary body is modelled by the MacMillan potential. The stability of the satellite is measured thanks to the MEGNO indicator (Mean Exponential Growth Factor of Nearby Orbits). We present stability maps in the plane {(b/d, c/d)} where d, b, and c are the three semi-axes of the ellipsoid shaping the asteroid. Special stable conic-like curves are detected on these maps and explained by an analytical model, based on a simplification of the MacMillan potential for some specific resonances (1 : 1 and 2 : 1). The efficiency of the MEGNO to detect stability is confirmed.

  20. Development of a triage engine enabling behavior recognition and lethal arrhythmia detection for remote health care system.

    PubMed

    Sugano, Hiroto; Hara, Shinsuke; Tsujioka, Tetsuo; Inoue, Tadayuki; Nakajima, Shigeyoshi; Kozaki, Takaaki; Namkamura, Hajime; Takeuchi, Kazuhide

    2011-01-01

    For ubiquitous health care systems which continuously monitor a person's vital signs such as electrocardiogram (ECG), body surface temperature and three-dimensional (3D) acceleration by wireless, it is important to accurately detect the occurrence of an abnormal event in the data and immediately inform a medical doctor of its detail. In this paper, we introduce a remote health care system, which is composed of a wireless vital sensor, multiple receivers and a triage engine installed in a desktop personal computer (PC). The middleware installed in the receiver, which was developed in C++, supports reliable data handling of vital data to the ethernet port. On the other hand, the human interface of the triage engine, which was developed in JAVA, shows graphics on his/her ECG data, 3D acceleration data, body surface temperature data and behavior status in the display of the desktop PC and sends an urgent e-mail containing the display data to a pre-registered medical doctor when it detects the occurrence of an abnormal event. In the triage engine, the lethal arrhythmia detection algorithm based on short time Fourier transform (STFT) analysis can achieve 100 % sensitivity and 99.99 % specificity, and the behavior recognition algorithm based on the combination of the nearest neighbor method and the Naive Bayes method can achieve more than 71 % classification accuracy.

  1. A system for gathering small mammal data

    Treesearch

    Robert D. Neely; Robert W. Campbell

    1973-01-01

    As an aid to studying vertebrate predators of the gypsy moth, a radio telemetry system was designed to detect the death of small mammals and facilitate recovery of the remains. An intraperitoneally implanted radio transmitter is triggered by the drop in body temperature when the animal dies. The device was tested in white-footed mice.

  2. Compact DD generator based in vivo neutron activation analysis (IVNAA) system to determine sodium concentrations in human bone.

    PubMed

    Coyne, Mychaela Dawn; Neumann, Colby R; Zhang, Xinxin; Byrne, Patrick; Liu, Yingzi; Weaver, Connie M; Nie, Linda Huiling

    2018-04-16

    This study presents the development of a non-invasive method for monitoring Na in human bone. Many diseases, such as hypertension and osteoporosis, are closely associated with sodium (Na) retention in the human body. Na retention is generally evaluated by calculating the difference between dietary intake and excretion. There is currently no method to directly quantify Na retained in the body. Bone is a storage for many elements, including Na, which renders bone Na an ideal biomarker to study Na metabolism and retention. Approach: A customized compact deuterium-deuterium (DD) neutron generator was used to produce neutrons for in vivo neutron activation analysis (IVNAA), with a moderator/ reflector/ shielding assembly optimized for human hand irradiation in order to maximize the thermal neutron flux inside the irradiation cave and to limit radiation exposure to the hand and the whole body. Main Results: The experimental results show that the system is able to detect sodium levels in the bone as low as 12 g Na/g dry bone with an effective dose to the body of about 27 μSv. The simulation results agree with the numbers estimated from the experiment. Significance: This is expected to be a feasible method for measuring the change of Na in bone. The low detection limit indicates this will be a useful system to study the association between Na retention and related diseases. © 2018 Institute of Physics and Engineering in Medicine.

  3. Flexible coordinate measurement system based on robot for industries

    NASA Astrophysics Data System (ADS)

    Guo, Yin; Yang, Xue-you; Liu, Chang-jie; Ye, Sheng-hua

    2010-10-01

    The flexible coordinate measurement system based on robot which is applicable to multi-model vehicle is designed to meet the needs of online measurement for current mainstream mixed body-in-white(BIW) production line. The moderate precision, good flexibility and no blind angle are the benefits of this measurement system. According to the measurement system, a monocular structured light vision sensor has been designed, which can measure not only edges, but also planes, apertures and other features. And a effective way to fast on-site calibration of the whole system using the laser tracker has also been proposed, which achieves the unity of various coordinate systems in industrial fields. The experimental results show satisfactory precision of +/-0.30mm of this measurement system, which is sufficient for the needs of online measurement for body-in-white(BIW) in the auto production line. The system achieves real-time detection and monitoring of the whole process of the car body's manufacture, and provides a complete data support in purpose of overcoming the manufacturing error immediately and accurately and improving the manufacturing precision.

  4. [Quantitative measures for assessing the functional state of the human body during diagnostic procedure].

    PubMed

    Artemenko, M V

    2008-01-01

    Two approaches to calculation of the qualitative measures for assessing the functional state level of human body are considered. These approaches are based on image and fuzzy set recognition theories and are used to construct diagnostic decision rules. The first approach uses the data on deviation of detected parameters from those for healthy persons; the second approach analyzes the degree of deviation of detected parameters from the approximants characterizing the correlation differences between the parameters. A method for synthesis of decision rules and the results of blood count-based research for a number of diseases (hemophilia, thrombocytopathy, hypertension, arrhythmia, hepatic cirrhosis, trichophytia) are considered. An effect of a change in the functional link between the cholesterol content in blood and the relative rate of variation of AST and ALT enzymes in blood from direct proportional (healthy state) to inverse proportional (hepatic cirrhosis) is discussed. It is shown that analysis of correlation changes in detected parameters of the human body state during diagnostic process is more effective for application in decision support systems than the state space analysis.

  5. A Signal-On Fluorosensor Based on Quench-Release Principle for Sensitive Detection of Antibiotic Rapamycin

    PubMed Central

    Jeong, Hee-Jin; Itayama, Shuya; Ueda, Hiroshi

    2015-01-01

    An antibiotic rapamycin is one of the most commonly used immunosuppressive drugs, and also implicated for its anti-cancer activity. Hence, the determination of its blood level after organ transplantation or tumor treatment is of great concern in medicine. Although there are several rapamycin detection methods, many of them have limited sensitivity, and/or need complicated procedures and long assay time. As a novel fluorescent biosensor for rapamycin, here we propose “Q’-body”, which works on the fluorescence quench-release principle inspired by the antibody-based quenchbody (Q-body) technology. We constructed rapamycin Q’-bodies by linking the two interacting domains FKBP12 and FRB, whose association is triggered by rapamycin. The fusion proteins were each incorporated position-specifically with one of fluorescence dyes ATTO520, tetramethylrhodamine, or ATTO590 using a cell-free translation system. As a result, rapid rapamycin dose-dependent fluorescence increase derived of Q’-bodies was observed, especially for those with ATTO520 with a lowest detection limit of 0.65 nM, which indicates its utility as a novel fluorescent biosensor for rapamycin. PMID:25822756

  6. Has Nemesis' orbit been detected?

    NASA Technical Reports Server (NTRS)

    Delsemme, A. H.

    1986-01-01

    The orbital angular momenta of 126 very young comets are calculated from the orbital data of Marsden and Roemer (1982) and analyzed statistically. A large anisotropy is detected in a plane almost perpendicular to the ecliptic and shown to have a characteristic dissipation lifetime of 10-30 Myr. Dynamic evolution computations indicate that the impulse which produced the anisotropy is that of a very slow massive (10-90 Jupiter mass) body, which is bound to the solar system, passed its 15,000-35,000-AU perihelion about 2-15 Myr ago, and has period 5-50 Myr. It is suggested that this body could well be identical to Nemesis, the object proposed to explain mass faunal extinctions.

  7. A study on detection of glucose concentration using changes in color coordinates.

    PubMed

    Kim, Ji-Sun; Oh, Han-Byeol; Kim, A-Hee; Kim, Jun-Sik; Lee, Eun-Suk; Baek, Jin-Young; Lee, Ki Sung; Chung, Soon-Cheol; Jun, Jae-Hoon

    2017-01-02

    Glucose concentration is closely related to the metabolic activity of cells and it is the most important substance as the energy source of a living body which plays an important role in the human body. This paper proposes an optical method that can measure the concentration of glucose. The change in glucose concentration was observed by using CIE diagram, and wavelength and purity values were detected. Also, even small changes in glucose concentration can be evaluated through mathematical modeling. This system is simple, economical, and capable of quantifying optical signals with numerical values for glucose sensing. This method can be applicable to the clinical field that examines diabetes mellitus or metabolic syndrome.

  8. Measured Correlated Motion of theThree Body Coulomb Interacting System H^+ + H^+ + H^-

    NASA Astrophysics Data System (ADS)

    Wiese, L. M.

    1998-05-01

    The problem of three bodies interacting through a 1/r potential is a fundamental problem of physics. While its longstanding fame stems from its application to celestial mechanics, in atomic physics its importance arises from application to Coulomb-interacting systems, in which all three bodies carry some net charge. Because the three bodies interact through long range Coulomb forces over their entire path, their motion can be highly correlated. The effect of the interaction among the three bodies and any resulting correlated motion is reflected in how the available energy is ultimately shared among the three particles. By experimentally determining the energy sharing in a three body system, we can gain insight into the interactions governing the system. For the three body Coulomb interacting system of H^+ + H^+ + H^-, we have measured the partitioning of available center of mass (c.m.) energy among the particles when the system is in a near collinear configuration. By colliding 4 keV H_3^+ with a He target gas cell, we produce the H^+ + H^+ + H^- system a few eV above the dissociative limit. All three fragments are laboratory energy and angle resolved. By detecting all three in triple coincidence, we determine unambiguously the final state dynamics for each triply coincident event. Transforming our results to the c.m. frame, we determine the partitioning of available energy among the three particles. We have modified the Dalitz plot of high energy physics to elucidate correlations in the motion of any three body atomic system. Correlated motion in the H^+ + H^+ + H^- system is indicated by a nonuniform distribution on the Dalitz plot. For the near collinear breakup of H_3^+, we have observed the H^- to reside anywhere between the two H^+, from the Coulomb saddle point to the near vicinity of a proton. This work is supported by NSF Grant Number 9419505.

  9. Automatic Detection of Lung and Liver Lesions in 3-D Positron Emission Tomography Images: A Pilot Study

    NASA Astrophysics Data System (ADS)

    Lartizien, Carole; Marache-Francisco, Simon; Prost, Rémy

    2012-02-01

    Positron emission tomography (PET) using fluorine-18 deoxyglucose (18F-FDG) has become an increasingly recommended tool in clinical whole-body oncology imaging for the detection, diagnosis, and follow-up of many cancers. One way to improve the diagnostic utility of PET oncology imaging is to assist physicians facing difficult cases of residual or low-contrast lesions. This study aimed at evaluating different schemes of computer-aided detection (CADe) systems for the guided detection and localization of small and low-contrast lesions in PET. These systems are based on two supervised classifiers, linear discriminant analysis (LDA) and the nonlinear support vector machine (SVM). The image feature sets that serve as input data consisted of the coefficients of an undecimated wavelet transform. An optimization study was conducted to select the best combination of parameters for both the SVM and the LDA. Different false-positive reduction (FPR) methods were evaluated to reduce the number of false-positive detections per image (FPI). This includes the removal of small detected clusters and the combination of the LDA and SVM detection maps. The different CAD schemes were trained and evaluated based on a simulated whole-body PET image database containing 250 abnormal cases with 1230 lesions and 250 normal cases with no lesion. The detection performance was measured on a separate series of 25 testing images with 131 lesions. The combination of the LDA and SVM score maps was shown to produce very encouraging detection performance for both the lung lesions, with 91% sensitivity and 18 FPIs, and the liver lesions, with 94% sensitivity and 10 FPIs. Comparison with human performance indicated that the different CAD schemes significantly outperformed human detection sensitivities, especially regarding the low-contrast lesions.

  10. Uncovering many-body correlations in nanoscale nuclear spin baths by central spin decoherence

    PubMed Central

    Ma, Wen-Long; Wolfowicz, Gary; Zhao, Nan; Li, Shu-Shen; Morton, John J.L.; Liu, Ren-Bao

    2014-01-01

    Central spin decoherence caused by nuclear spin baths is often a critical issue in various quantum computing schemes, and it has also been used for sensing single-nuclear spins. Recent theoretical studies suggest that central spin decoherence can act as a probe of many-body physics in spin baths; however, identification and detection of many-body correlations of nuclear spins in nanoscale systems are highly challenging. Here, taking a phosphorus donor electron spin in a 29Si nuclear spin bath as our model system, we discover both theoretically and experimentally that many-body correlations in nanoscale nuclear spin baths produce identifiable signatures in decoherence of the central spin under multiple-pulse dynamical decoupling control. We demonstrate that under control by an odd or even number of pulses, the central spin decoherence is principally caused by second- or fourth-order nuclear spin correlations, respectively. This study marks an important step toward studying many-body physics using spin qubits. PMID:25205440

  11. The scent of disease: human body odor contains an early chemosensory cue of sickness.

    PubMed

    Olsson, Mats J; Lundström, Johan N; Kimball, Bruce A; Gordon, Amy R; Karshikoff, Bianka; Hosseini, Nishteman; Sorjonen, Kimmo; Olgart Höglund, Caroline; Solares, Carmen; Soop, Anne; Axelsson, John; Lekander, Mats

    2014-03-01

    Observational studies have suggested that with time, some diseases result in a characteristic odor emanating from different sources on the body of a sick individual. Evolutionarily, however, it would be more advantageous if the innate immune response were detectable by healthy individuals as a first line of defense against infection by various pathogens, to optimize avoidance of contagion. We activated the innate immune system in healthy individuals by injecting them with endotoxin (lipopolysaccharide). Within just a few hours, endotoxin-exposed individuals had a more aversive body odor relative to when they were exposed to a placebo. Moreover, this effect was statistically mediated by the individuals' level of immune activation. This chemosensory detection of the early innate immune response in humans represents the first experimental evidence that disease smells and supports the notion of a "behavioral immune response" that protects healthy individuals from sick ones by altering patterns of interpersonal contact.

  12. Computer-aided diagnosis for osteoporosis using chest 3D CT images

    NASA Astrophysics Data System (ADS)

    Yoneda, K.; Matsuhiro, M.; Suzuki, H.; Kawata, Y.; Niki, N.; Nakano, Y.; Ohmatsu, H.; Kusumoto, M.; Tsuchida, T.; Eguchi, K.; Kaneko, M.

    2016-03-01

    The patients of osteoporosis comprised of about 13 million people in Japan and it is one of the problems the aging society has. In order to prevent the osteoporosis, it is necessary to do early detection and treatment. Multi-slice CT technology has been improving the three dimensional (3-D) image analysis with higher body axis resolution and shorter scan time. The 3-D image analysis using multi-slice CT images of thoracic vertebra can be used as a support to diagnose osteoporosis and at the same time can be used for lung cancer diagnosis which may lead to early detection. We develop automatic extraction and partitioning algorithm for spinal column by analyzing vertebral body structure, and the analysis algorithm of the vertebral body using shape analysis and a bone density measurement for the diagnosis of osteoporosis. Osteoporosis diagnosis support system obtained high extraction rate of the thoracic vertebral in both normal and low doses.

  13. Three applications of backscatter x-ray imaging technology to homeland defense

    NASA Astrophysics Data System (ADS)

    Chalmers, Alex

    2005-05-01

    A brief review of backscatter x-ray imaging and a description of three systems currently applying it to homeland defense missions (BodySearch, ZBV and ZBP). These missions include detection of concealed weapons, explosives and contraband on personnel, in vehicles and large cargo containers. An overview of the x-ray imaging subsystems is provided as well as sample images from each system. Key features such as x-ray safety, throughput and detection are discussed. Recent trends in operational modes are described that facilitate 100% inspection at high throughput chokepoints.

  14. Three-dimensional x-ray inspection of food products

    NASA Astrophysics Data System (ADS)

    Graves, Mark; Batchelor, Bruce G.; Palmer, Stephen C.

    1994-09-01

    Modern food production techniques operate at high speed and sometimes fill several containers simultaneously; individual containers never become available for inspection by conventional x- ray systems. There is a constant demand for improved methods for detecting foreign bodies, such as glass, plastic, wood, stone, animal remains, etc. These requirements lead to significant problems with existing inspection techniques, which are susceptible to noise and are unable to detect long thin contaminants reliably. Experimental results demonstrate these points. The paper proposes the use of two x-ray inspection systems, with orthogonal beams to overcome these difficulties.

  15. Detecting submerged bodies: controlled research using side-scan sonar to detect submerged proxy cadavers.

    PubMed

    Healy, Carrie A; Schultz, John J; Parker, Kenneth; Lowers, Bim

    2015-05-01

    Forensic investigators routinely deploy side-scan sonar for submerged body searches. This study adds to the limited body of literature by undertaking a controlled project to understand how variables affect detection of submerged bodies using side-scan sonar. Research consisted of two phases using small and medium-sized pig (Sus scrofa) carcasses as proxies for human bodies to investigate the effects of terrain, body size, frequency, swath width, and state of decomposition. Results demonstrated that a clear, flat, sandy pond floor terrain was optimal for detection of the target as irregular terrain and/or vegetation are major limitations that can obscure the target. A higher frequency towfish was preferred for small bodies, and a 20 m swath width allowed greater visibility and easier maneuverability of the boat in this environment. Also, the medium-sized carcasses were discernable throughout the 81-day study period, indicating that it is possible to detect bodies undergoing decomposition with side-scan sonar. © 2015 American Academy of Forensic Sciences.

  16. Utilization of an Airborne Plant Chlorophyll Imaging System for Detection of Septic System Malfunction

    NASA Technical Reports Server (NTRS)

    Spiering, Bruce A.; Carter, Gregory A.

    2001-01-01

    Malfunctioning, or leaking, sewer systems increase the supply of water and nutrients to surface vegetation. Excess nutrients and harmful bacteria in the effluent pollute ground water and local water bodies and are dangerous to humans and the aquatic ecosystems. An airborne multispectral plant chlorophyll imaging system (PCIS) was used to identify growth patterns in the vegetation covering onsite and public sewer systems. The objective was to evaluate overall performance of the PCIS as well as to determine the best operational configuration for this application. The imaging system was flown in a light aircraft over selected locations Mobile County, Alabama. Calibration panels were used to help characterize instrument performance. Results demonstrated that the PCIS performed well and was capable of detecting septic leakage patterns from altitudes as high as 915 m. From 915 m, 6 of 18 sites were suspected to have sewage leakage. Subsequent ground inspections confirmed leakage on 3 of the 6 sites. From 610 m, 3 of 8 known leakage sites were detected. Tree cover and shadows near residential structures prevented detection of several known malfunctioning systems. Also some leakages known to occur in clear areas were not detected. False detections occurred in areas characterized by surface water drainage problems or recent excavation.

  17. Implications for Planetary System Formation from Interstellar Object 1I/2017 U1 (‘Oumuamua)

    NASA Astrophysics Data System (ADS)

    Trilling, David E.; Robinson, Tyler; Roegge, Alissa; Chandler, Colin Orion; Smith, Nathan; Loeffler, Mark; Trujillo, Chad; Navarro-Meza, Samuel; Glaspie, Lori M.

    2017-12-01

    The recently discovered minor body 1I/2017 U1 (‘Oumuamua) is the first known object in our solar system that is not bound by the Sun’s gravity. Its hyperbolic orbit (eccentricity greater than unity) strongly suggests that it originated outside our solar system; its red color is consistent with substantial space weathering experienced over a long interstellar journey. We carry out a simple calculation of the probability of detecting such an object. We find that the observed detection rate of 1I-like objects can be satisfied if the average mass of ejected material from nearby stars during the process of planetary formation is ˜20 Earth masses, similar to the expected value for our solar system. The current detection rate of such interstellar interlopers is estimated to be 0.2 yr-1, and the expected number of detections over the past few years is almost exactly one. When the Large Synoptic Survey Telescope begins its wide, fast, deep all-sky survey, the detection rate will increase to 1 yr-1. Those expected detections will provide further constraints on nearby planetary system formation through a better estimate of the number and properties of interstellar objects.

  18. Local Leak Detection and Health Monitoring of Pressurized Tanks

    NASA Technical Reports Server (NTRS)

    Polzin, Kurt; Witherow, William; Korman, Valentin; Sinko, John; Hendrickson, Adam

    2011-01-01

    An optical gas-detection sensor safely monitors pressurized systems (such as cryogenic tanks) and distribution systems for leaks. This sensor system is a fiber-coupled, solid optical body interferometer that allows for the miniaturized sensing element of the device to be placed in the smallest of recesses, and measures a wide range of gas species and densities (leaks). The deflection of the fringe pattern is detected and recorded to yield the time-varying gas density in the gap. This technology can be used by manufacturers or storage facilities with toxic, hazardous, or explosive gases. The approach is to monitor the change in the index of refraction associated with low-level gas leaks into a vacuum environment. The completion of this work will provide NASA with an enabling capability to detect gas system leaks in space, and to verify that pressurized systems are in a safe (i.e. non-leaking) condition during manned docking and transit operations. By recording the output of the sensor, a time-history of the leak can be constructed to indicate its severity. Project risk is mitigated by having several interferometric geometries and detection techniques available, each potentially leveraging hardware and lessons learned to enhance detectability.

  19. Joint detection and localization of multiple anatomical landmarks through learning

    NASA Astrophysics Data System (ADS)

    Dikmen, Mert; Zhan, Yiqiang; Zhou, Xiang Sean

    2008-03-01

    Reliable landmark detection in medical images provides the essential groundwork for successful automation of various open problems such as localization, segmentation, and registration of anatomical structures. In this paper, we present a learning-based system to jointly detect (is it there?) and localize (where?) multiple anatomical landmarks in medical images. The contributions of this work exist in two aspects. First, this method takes the advantage from the learning scenario that is able to automatically extract the most distinctive features for multi-landmark detection. Therefore, it is easily adaptable to detect arbitrary landmarks in various kinds of imaging modalities, e.g., CT, MRI and PET. Second, the use of multi-class/cascaded classifier architecture in different phases of the detection stage combined with robust features that are highly efficient in terms of computation time enables a seemingly real time performance, with very high localization accuracy. This method is validated on CT scans of different body sections, e.g., whole body scans, chest scans and abdominal scans. Aside from improved robustness (due to the exploitation of spatial correlations), it gains a run time efficiency in landmark detection. It also shows good scalability performance under increasing number of landmarks.

  20. Wavelet Fusion for Concealed Object Detection Using Passive Millimeter Wave Sequence Images

    NASA Astrophysics Data System (ADS)

    Chen, Y.; Pang, L.; Liu, H.; Xu, X.

    2018-04-01

    PMMW imaging system can create interpretable imagery on the objects concealed under clothing, which gives the great advantage to the security check system. Paper addresses wavelet fusion to detect concealed objects using passive millimeter wave (PMMW) sequence images. According to PMMW real-time imager acquired image characteristics and storage methods firstly, using the sum of squared difference (SSD) as the image-related parameters to screen the sequence images. Secondly, the selected images are optimized using wavelet fusion algorithm. Finally, the concealed objects are detected by mean filter, threshold segmentation and edge detection. The experimental results show that this method improves the detection effect of concealed objects by selecting the most relevant images from PMMW sequence images and using wavelet fusion to enhance the information of the concealed objects. The method can be effectively applied to human body concealed object detection in millimeter wave video.

  1. Detecting Vital Signs with Wearable Wireless Sensors

    PubMed Central

    Yilmaz, Tuba; Foster, Robert; Hao, Yang

    2010-01-01

    The emergence of wireless technologies and advancements in on-body sensor design can enable change in the conventional health-care system, replacing it with wearable health-care systems, centred on the individual. Wearable monitoring systems can provide continuous physiological data, as well as better information regarding the general health of individuals. Thus, such vital-sign monitoring systems will reduce health-care costs by disease prevention and enhance the quality of life with disease management. In this paper, recent progress in non-invasive monitoring technologies for chronic disease management is reviewed. In particular, devices and techniques for monitoring blood pressure, blood glucose levels, cardiac activity and respiratory activity are discussed; in addition, on-body propagation issues for multiple sensors are presented. PMID:22163501

  2. Calcification detection of abdominal aorta in CT images and 3D visualization in VR devices.

    PubMed

    Garcia-Berna, Jose A; Sanchez-Gomez, Juan M; Hermanns, Judith; Garcia-Mateos, Gines; Fernandez-Aleman, Jose L

    2016-08-01

    Automatic calcification detection in abdominal aorta consists of a set of computer vision techniques to quantify the amount of calcium that is found around this artery. Knowing that information, it is possible to perform statistical studies that relate vascular diseases with the presence of calcium in these structures. To facilitate the detection in CT images, a contrast is usually injected into the circulatory system of the patients to distinguish the aorta from other body tissues and organs. This contrast increases the absorption of X-rays by human blood, making it easier the measurement of calcifications. Based on this idea, a new system capable of detecting and tracking the aorta artery has been developed with an estimation of the calcium found surrounding the aorta. Besides, the system is complemented with a 3D visualization mode of the image set which is designed for the new generation of immersive VR devices.

  3. Targeting SMN to Cajal bodies and nuclear gems during neuritogenesis

    PubMed Central

    Navascues, Joaquin; Berciano, Maria T.; Tucker, Karen E.

    2006-01-01

    Neurite outgrowth is a central feature of neuronal differentiation. PC12 cells are a good model system for studying the peripheral nervous system and the outgrowth of neurites. In addition to the dramatic changes observed in the cytoplasm, neuronal differentiation is also accompanied by striking changes in nuclear morphology. The large and sustained increase in nuclear transcription during neuronal differentiation requires synthesis of a large number of factors involved in pre-mRNA processing. We show that the number and composition of the nuclear subdomains called Cajal bodies and gems changes during the course of N-ras-induced neuritogenesis in the PC12-derived cell line UR61. The Cajal bodies found in undifferentiated cells are largely devoid of the survival of motor neurons (SMN) protein product. As cells shift to a differentiated state, SMN is not only globally upregulated, but is progressively recruited to Cajal bodies. Additional SMN foci (also known as Gemini bodies, gems) can also be detected. Using dual-immunogold labeling electron microscopy and mouse embryonic fibroblasts lacking the coilin protein, we show that gems clearly represent a distinct category of nuclear body. PMID:15164213

  4. A new microcomputer-based safety and life support system for solitary-living elderly people.

    PubMed

    Miyauchi, Kosuke; Yonezawa, Yoshiharu; Maki, Hiromichi; Ogawa, Hidekuni; Hahn, Allen W; Caldwell, W Morton

    2003-01-01

    A new safety and life support system has been developed to detect emergency situations of solitary-living elderly persons. The system employs a dual axis accelerometer, two low-power active filters, a low-power 8-bit single chip microcomputer and a personal handy phone. Body movements due to walking, running and posture changes are detected by the dual axis accelerometer and sent to the microcomputer. If the patient is in an inactive state for 5 minutes after falling, or for 64 minutes without previously falling, then the system automatically alarms the emergency situation, via the personal handy phone, to the patient's family, the fire station or the hospital.

  5. Localization of firearm projectiles in the human body using a superconducting quantum interference device magnetometer: A theoretical study

    NASA Astrophysics Data System (ADS)

    Hall Barbosa, C.

    2004-06-01

    A technique had been previously developed, based on magnetic field measurements using a superconducting quantum interference device sensor, to localize in three dimensions steel needles lost in the human body. In all six cases that were treated until now, the technique allowed easy surgical localization of the needles with high accuracy. The technique decreases, by a large factor, the surgery time for foreign body extraction, and also reduces the generally high odds of failure. The method is accurate, noninvasive, and innocuous, and with clear clinical importance. Despite the importance of needle localization, the most prevalent foreign body in the modern society is the firearm projectile (bullet), generally composed of lead, a paramagnetic material, thus not presenting a remanent magnetic field as steel needles do. On the other hand, since lead is a good conductor, eddy current detection techniques can be employed, by applying an alternating magnetic field with the aid of excitation coils. The primary field induces eddy currents on the lead, which in turn generate a secondary magnetic field that can be detected by a magnetometer, and give information about position and volume of the conducting foreign body. In this article we present a theoretical study for the development of a localization technique for lead bullets inside the human body. Initially, we present a model for the secondary magnetic field generated by the bullet, given a known applied field. After that, we study possible excitation systems, and propose a localization algorithm based on the detected magnetic field.

  6. Zinc pharmacokinetic parameters in the determination of body zinc status in children.

    PubMed

    Vale, S H L; Leite, L D; Alves, C X; Dantas, M M G; Costa, J B S; Marchini, J S; França, M C; Brandão-Neto, J

    2014-02-01

    Serum or tissue zinc concentrations are often used to assess body zinc status. However, all of these methods are relatively inaccurate. Thus, we investigated three different kinetic methods for the determination of zinc clearance to establish which of these could detect small changes in the body zinc status of children. Forty apparently healthy children were studied. Renal handling of zinc was investigated during intravenous zinc administration (0.06537 mg Zn/kg of body weight), both before and after oral zinc supplementation (5 mg Zn/day for 3 months). Three kinetic methods were used to determine zinc clearance: CZn-Formula A and CZn-Formula B were both used to calculate systemic clearance; the first is a general formula and the second is used for the specific analysis of a single-compartment model; CZn-Formula C is widely used in medical practices to analyze kinetic routine. Basal serum zinc values, which were within the reference range for healthy children, increased significantly after oral zinc supplementation. The three formulas used gave different results for zinc clearance both before and after oral zinc supplementation. CZn-Formula B showed a positive correlation with basal serum zinc concentration after oral supplementation (R2=0.1172, P=0.0306). In addition, CZn-Formula B (P=0.0002) was more effective than CZn-Formula A (P=0.6028) and CZn-Formula C (P=0.0732) in detecting small variations in body zinc status. All three of the formulas used are suitable for studying zinc kinetics; however, CZn-Formula B is particularly effective at detecting small changes in body zinc status in healthy children.

  7. Spectroscopy and imaging with a 4 tesla whole-body MR system.

    PubMed

    Bomsdorf, H; Helzel, T; Kunz, D; Röschmann, P; Tschendel, O; Wieland, J

    1988-06-01

    Magnetic resonance (MR) spectroscopy and imaging experiments on humans were performed with a whole-body MR system at a static field of 4 tesla. Spectroscopic studies focussed on 1H, 13C, and 31P. Imaging of humans turned out to be possible, although below the optimum at this field. This holds especially for body imaging, since RF penetration effects and dielectric resonances influence the RF field homogeneity. Excellent volume selective proton spectra of the human cerebrum and cerebellum were obtained using the stimulated echo method. Natural abundance carbon spectra of the human calf were acquired both undecoupled and with narrowband decoupling, resolving the various triglyceride resonances. Broadband decoupling, however, would have violated SAR guidelines. Liver glycogen was detected on natural abundance 13C spectra.

  8. A Fresh Cadaver Study on Indocyanine Green Fluorescence Lymphography: A New Whole-Body Imaging Technique for Investigating the Superficial Lymphatics.

    PubMed

    Shinaoka, Akira; Koshimune, Seijiro; Yamada, Kiyoshi; Kumagishi, Kanae; Suami, Hiroo; Kimata, Yoshihiro; Ohtsuka, Aiji

    2018-05-01

    Identification of the lymphatic system in cadavers is painstaking because lymphatic vessels have very thin walls and are transparent. Selection of appropriate contrast agents is a key factor for successfully visualizing the lymphatics. In this study, the authors introduce a new imaging technique of lymphatic mapping in the whole bodies of fresh cadavers. Ten fresh human cadavers were used for this study. The authors injected 0.1 ml of indocyanine green fluorescence solution subcutaneously at multiple spots along the watershed lines between lymphatic territories and hand and foot regions. After the body was scanned by the near-infrared camera system, fluorescent tissues were harvested and histologic examination was performed under the microscope equipped with the infrared camera system to confirm that they were the lymphatics. Subcutaneously injected indocyanine green was immediately transported into the lymphatic vessels after gentle massage on the injection points. Sweeping massage along the lymphatic vessels facilitated indocyanine green transport inside the lymphatic vessel to move toward the lymph nodes. The lymphatic system was visualized well in the whole body. Histologic examinations confirmed that indocyanine green was detected in the lymphatic lumens specifically, even when located far from the injected points. The lymphatic system could be visualized in whole-body fresh cadavers, as in living bodies, using indocyanine green fluorescence lymphography. Compatibility of indocyanine green lymphography would facilitate the use of cadaveric specimens for macroscopic and microscopic analyses.

  9. Vital Sign Monitoring Through the Back Using an UWB Impulse Radar With Body Coupled Antennas.

    PubMed

    Schires, Elliott; Georgiou, Pantelis; Lande, Tor Sverre

    2018-04-01

    Radar devices can be used in nonintrusive situations to monitor vital sign, through clothes or behind walls. By detecting and extracting body motion linked to physiological activity, accurate simultaneous estimations of both heart rate (HR) and respiration rate (RR) is possible. However, most research to date has focused on front monitoring of superficial motion of the chest. In this paper, body penetration of electromagnetic (EM) wave is investigated to perform back monitoring of human subjects. Using body-coupled antennas and an ultra-wideband (UWB) pulsed radar, in-body monitoring of lungs and heart motion was achieved. An optimised location of measurement in the back of a subject is presented, to enhance signal-to-noise ratio and limit attenuation of reflected radar signals. Phase-based detection techniques are then investigated for back measurements of vital sign, in conjunction with frequency estimation methods that reduce the impact of parasite signals. Finally, an algorithm combining these techniques is presented to allow robust and real-time estimation of both HR and RR. Static and dynamic tests were conducted, and demonstrated the possibility of using this sensor in future health monitoring systems, especially in the form of a smart car seat for driver monitoring.

  10. Strategies to Improve Activity Recognition Based on Skeletal Tracking: Applying Restrictions Regarding Body Parts and Similarity Boundaries †

    PubMed Central

    Gutiérrez-López-Franca, Carlos; Hervás, Ramón; Johnson, Esperanza

    2018-01-01

    This paper aims to improve activity recognition systems based on skeletal tracking through the study of two different strategies (and its combination): (a) specialized body parts analysis and (b) stricter restrictions for the most easily detectable activities. The study was performed using the Extended Body-Angles Algorithm, which is able to analyze activities using only a single key sample. This system allows to select, for each considered activity, which are its relevant joints, which makes it possible to monitor the body of the user selecting only a subset of the same. But this feature of the system has both advantages and disadvantages. As a consequence, in the past we had some difficulties with the recognition of activities that only have a small subset of the joints of the body as relevant. The goal of this work, therefore, is to analyze the effect produced by the application of several strategies on the results of an activity recognition system based on skeletal tracking joint oriented devices. Strategies that we applied with the purpose of improve the recognition rates of the activities with a small subset of relevant joints. Through the results of this work, we aim to give the scientific community some first indications about which considered strategy is better. PMID:29789478

  11. A Respiratory Movement Monitoring System Using Fiber-Grating Vision Sensor for Diagnosing Sleep Apnea Syndrome

    NASA Astrophysics Data System (ADS)

    Takemura, Yasuhiro; Sato, Jun-Ya; Nakajima, Masato

    2005-01-01

    A non-restrictive and non-contact respiratory movement monitoring system that finds the boundary between chest and abdomen automatically and detects the vertical movement of each part of the body separately is proposed. The system uses a fiber-grating vision sensor technique and the boundary position detection is carried out by calculating the centers of gravity of upward moving and downward moving sampling points, respectively. In the experiment to evaluate the ability to detect the respiratory movement signals of each part and to discriminate between obstructive and central apneas, detected signals of the two parts and their total clearly showed the peculiarities of obstructive and central apnea. The cross talk between the two categories classified automatically according to several rules that reflect the peculiarities was ≤ 15%. This result is sufficient for discriminating central sleep apnea syndrome from obstructive sleep apnea syndrome and indicates that the system is promising as screening equipment. Society of Japan

  12. Optimization of Breast Tomosynthesis Imaging Systems for Computer-Aided Detection

    DTIC Science & Technology

    2011-05-01

    R. Saunders, E. Samei, C. Badea, H. Yuan, K. Ghaghada, Y. Qi, L. Hedlund, and S. Mukundan, “Optimization of dual energy contrast enhanced breast...14 4 1 Introduction This is the final report for this body of research. Screen-film mammography and...digital mammography have been used for over 30 years in the early detection of cancer. The combination of screening and adjuvant therapies have led to

  13. Black Hole Solar Systems Extreme Mass Ratio Inspirals

    NASA Technical Reports Server (NTRS)

    Drasco, Steve

    2006-01-01

    Waveforms known well enough to detect some EMRIs today. Soon, enough to realize Gair et al estimate of approx. 100's to 1000's of detections to z = 1. Not yet enough to for precision parameter estimation of Barack and Cutler (mass and spin to 10(exp -4)). Some turning to the more exotic: non-Kerr background, gas interaction, third body, ... More status and refs: Drasco, gr-qc/0604115.

  14. LandingNav: a precision autonomous landing sensor for robotic platforms on planetary bodies

    NASA Astrophysics Data System (ADS)

    Katake, Anup; Bruccoleri, Chrisitian; Singla, Puneet; Junkins, John L.

    2010-01-01

    Increased interest in the exploration of extra terrestrial planetary bodies calls for an increase in the number of spacecraft landing on remote planetary surfaces. Currently, imaging and radar based surveys are used to determine regions of interest and a safe landing zone. The purpose of this paper is to introduce LandingNav, a sensor system solution for autonomous landing on planetary bodies that enables landing on unknown terrain. LandingNav is based on a novel multiple field of view imaging system that leverages the integration of different state of the art technologies for feature detection, tracking, and 3D dense stereo map creation. In this paper we present the test flight results of the LandingNav system prototype. Sources of errors due to hardware limitations and processing algorithms were identified and will be discussed. This paper also shows that addressing the issues identified during the post-flight test data analysis will reduce the error down to 1-2%, thus providing for a high precision 3D range map sensor system.

  15. Detection of chikungunya viral RNA in mosquito bodies on cationic (Q) paper based on innovations in synthetic biology.

    PubMed

    Glushakova, Lyudmyla G; Alto, Barry W; Kim, Myong Sang; Bradley, Andrea; Yaren, Ozlem; Benner, Steven A

    2017-08-01

    Chikungunya virus (CHIKV) represents a growing and global concern for public health that needs inexpensive and convenient methods to collect mosquitoes as potential carriers so that they can be preserved, stored and transported for later and/or remote analysis. Reported here is a cellulose-based paper, derivatized with quaternary ammonium groups ("Q-paper") that meets these needs. In a series of tests, infected mosquito bodies were squashed directly on Q-paper. Aqueous ammonia was then added on the mosquito bodies to release viral RNA that adsorbed on the cationic surface via electrostatic interactions. The samples were then stored (frozen) or transported. For analysis, the CHIKV nucleic acids were eluted from the Q-paper and PCR amplified in a workflow, previously developed, that also exploited two nucleic acid innovations, ("artificially expanded genetic information systems", AEGIS, and "self-avoiding molecular recognition systems", SAMRS). The amplicons were then analyzed by a Luminex hybridization assay. This procedure detected CHIKV RNA, if present, in each infected mosquito sample, but not in non-infected counterparts or ddH 2 O samples washes, with testing one week or ten months after sample collection. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Aether Drift and the isotropy of the universe: A measurement of anisotropes in the primordial black-body radiation

    NASA Technical Reports Server (NTRS)

    Smoot, G. F.

    1981-01-01

    Large-angular-scale anisotropies in the 3 K primordial black-body radiation were detected and mapped with a sensitivity of 2 x to the minus 4 power K and an angular resolution of about 10 deg. The motion of the Earth with respect to the distant matter of the Universe ("Aether Drift") was measured and the homogeneity and isotropy of the Universe (the "Cosmological Principle") was probed. The experiment uses two Dicke radiometers, one at 33 GHz to detect the cosmic anisotropy, and one at 54 GHz to detect anisotropies in the residual oxygen above the detectors. The system was installed in the NASA-Ames Earth survey aircraft (U-2), and operated successfully in a series of flights in both the Northern and Southern Hemispheres. Data taking and analysis to measure the anisotropy were successful.

  17. Body temperature and motion: Evaluation of an online monitoring system in pigs challenged with Porcine Reproductive & Respiratory Syndrome Virus.

    PubMed

    Süli, Tamás; Halas, Máté; Benyeda, Zsófia; Boda, Réka; Belák, Sándor; Martínez-Avilés, Marta; Fernández-Carrión, Eduardo; Sánchez-Vizcaíno, José Manuel

    2017-10-01

    Highly contagious and emerging diseases cause significant losses in the pig producing industry worldwide. Rapid and exact acquisition of real-time data, like body temperature and animal movement from the production facilities would enable early disease detection and facilitate adequate response. In this study, carried out within the European Union research project RAPIDIA FIELD, we tested an online monitoring system on pigs experimentally infected with the East European subtype 3 Porcine Reproductive & Respiratory Syndrome Virus (PRRSV) strain Lena. We linked data from different body temperature measurement methods and the real-time movement of the pigs. The results showed a negative correlation between body temperature and movement of the animals. The correlation was similar with both body temperature obtaining methods, rectal and thermal sensing microchip, suggesting some advantages of body temperature measurement with transponders compared with invasive and laborious rectal measuring. We also found a significant difference between motion values before and after the challenge with a virulent PRRSV strain. The decrease in motion values was noticeable before any clinical sign was recorded. Based on our results the online monitoring system could represent a practical tool in registering early warning signs of health status alterations, both in experimental and commercial production settings. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Differential gene expression in laboratory strains of human head and body lice when challenged with Bartonella quintana, a pathogenic bacterium

    PubMed Central

    Previte, D.; Olds, B. P.; Yoon, K.; Sun, W.; Muir, W.; Paige, K. N.; Lee, S. H.; Clark, J.; Koehler, J. E.; Pittendrigh, B. R.

    2014-01-01

    Human head and body lice are obligatory hematophagous ectoparasites that belong to a single species, Pediculus humanus. Only body lice, however, are vectors of the infectious Gram-negative bacterium Bartonella quintana. Because of their near identical genomes, yet differential vector competence, head and body lice provide a unique model system to study the gain or loss of vector competence. Using our in vitro louse-rearing system, we infected head and body lice with blood containing B. quintana in order to detect both differences in the proliferation of B. quintana and transcriptional differences of immune-related genes in the lice. B. quintana proliferated rapidly in body lice at 6 days postinfection, but plateaued in head lice at 4 days postinfection. RNAseq and quantitative real-time PCR validation analyses determined gene expression differences. Eight immunoresponse genes were observed to be significantly different with many associated with the Toll pathway: Fibrinogen-like protein, Spaetzle, Defensin 1, Serpin, Scavenger receptor A and Apolipoporhrin 2. Our findings support the hypothesis that body lice, unlike head lice, fight infection from B. quintana only at the later stages of its proliferation. PMID:24404961

  19. Differential gene expression in laboratory strains of human head and body lice when challenged with Bartonella quintana, a pathogenic bacterium.

    PubMed

    Previte, D; Olds, B P; Yoon, K; Sun, W; Muir, W; Paige, K N; Lee, S H; Clark, J; Koehler, J E; Pittendrigh, B R

    2014-04-01

    Human head and body lice are obligatory hematophagous ectoparasites that belong to a single species, Pediculus humanus. Only body lice, however, are vectors of the infectious Gram-negative bacterium Bartonella quintana. Because of their near identical genomes, yet differential vector competence, head and body lice provide a unique model system to study the gain or loss of vector competence. Using our in vitro louse-rearing system, we infected head and body lice with blood containing B. quintana in order to detect both differences in the proliferation of B. quintana and transcriptional differences of immune-related genes in the lice. B. quintana proliferated rapidly in body lice at 6 days post-infection, but plateaued in head lice at 4 days post-infection. RNAseq and quantitative real-time PCR validation analyses determined gene expression differences. Eight immunoresponse genes were observed to be significantly different with many associated with the Toll pathway: Fibrinogen-like protein, Spaetzle, Defensin 1, Serpin, Scavenger receptor A and Apolipoporhrin 2. Our findings support the hypothesis that body lice, unlike head lice, fight infection from B. quintana only at the later stages of its proliferation. © 2014 The Royal Entomological Society.

  20. Variation in detection among passive infrared triggered-cameras used in wildlife research

    USGS Publications Warehouse

    Damm, Philip E.; Grand, James B.; Barnett, Steven W.

    2010-01-01

    Precise and accurate estimates of demographics such as age structure, productivity, and density are necessary in determining habitat and harvest management strategies for wildlife populations. Surveys using automated cameras are becoming an increasingly popular tool for estimating these parameters. However, most camera studies fail to incorporate detection probabilities, leading to parameter underestimation. The objective of this study was to determine the sources of heterogeneity in detection for trail cameras that incorporate a passive infrared (PIR) triggering system sensitive to heat and motion. Images were collected at four baited sites within the Conecuh National Forest, Alabama, using three cameras at each site operating continuously over the same seven-day period. Detection was estimated for four groups of animals based on taxonomic group and body size. Our hypotheses of detection considered variation among bait sites and cameras. The best model (w=0.99) estimated different rates of detection for each camera in addition to different detection rates for four animal groupings. Factors that explain this variability might include poor manufacturing tolerances, variation in PIR sensitivity, animal behavior, and species-specific infrared radiation. Population surveys using trail cameras with PIR systems must incorporate detection rates for individual cameras. Incorporating time-lapse triggering systems into survey designs should eliminate issues associated with PIR systems.

  1. What Do Millimeter Continuum and Spectral Line Observations Tell Us about Solar System Bodies?

    NASA Technical Reports Server (NTRS)

    Milam, Stefanie N.

    2013-01-01

    Solar system objects are generally cold and radiate at low frequencies and tend to have strong molecular rotational transitions. Millimeter continuum and spectral line observations provide detailed information for nearly all solar system bodies. At these wavelengths, details of the bulk physical composition of icy surfaces, the size and albedo of small objects, the composition of planetary atmospheres can be measured as well as monitoring of time variable phenomena for extended periods (not restricted to nighttime observations), etc. Major issues in solar system science can be addressed by observations in the millimeter/sub-millimeter regime such as the origin of the solar system (isotope ratios, composition) and the evolution of solar system objects (dynamics, atmospheric constituents, etc). ALMA s exceptional sensitivity, large spectral bandwidth, high spectral resolution, and angular resolution (down to 10 milliarcsec) will enable researchers for the first time to better resolve the smallest bodies in the solar system and provide detailed maps of the larger objects. Additionally, measurements with nearly 8 GHz of instantaneous bandwidth to fully characterize solar system object s spectrum and detect trace species. The spatial information and line profiles can be obtained over 800 GHz of bandwidth in 8 receiver bands to not only assist in the identification of spectral lines and emission components for a given species but also to help elucidate the chemistry of the extraterrestrial bodies closest to us.

  2. High-fidelity gravity modeling applied to spacecraft trajectories and lunar interior analysis

    NASA Astrophysics Data System (ADS)

    Chappaz, Loic P. R.

    As the complexity and boldness of emerging mission proposals increase, and with the rapid evolution of the available computational capabilities, high-accuracy and high-resolution gravity models and the tools to exploit such models are increasingly attractive within the context of spaceflight mechanics, mission design and analysis, and planetary science in general. First, in trajectory design applications, a gravity representation for the bodies of interest is, in general, assumed and exploited to determine the motion of a spacecraft in any given system. The focus is the exploration of trajectories in the vicinity of a system comprised of two small irregular bodies. Within this context, the primary bodies are initially modeled as massive ellipsoids and tools to construct third-body trajectories are developed. However, these dynamical models are idealized representations of the actual dynamical regime and do not account for any perturbing effects. Thus, a robust strategy to maintain a spacecraft near reference third-body trajectories is constructed. Further, it is important to assess the perturbing effect that dominates the dynamics of the spacecraft in such a region as a function of the baseline orbit. Alternatively, the motion of the spacecraft around a given body may be known to extreme precision enabling the derivation of a very high-accuracy gravity field for that body. Such knowledge can subsequently be exploited to gain insight into specific properties of the body. The success of the NASA's GRAIL mission ensures that the highest resolution and most accurate gravity data for the Moon is now available. In the GRAIL investigation, the focus is on the specific task of detecting the presence and extent of subsurface features, such as empty lava tubes beneath the mare surface. In addition to their importance for understanding the emplacement of the mare flood basalts, open lava tubes are of interest as possible habitation sites safe from cosmic radiation and micrometeorite impacts. Tools are developed to best exploit the rich gravity data toward the numerical detection of such small features.

  3. A novel image-based BRDF measurement system and its application to human skin

    NASA Astrophysics Data System (ADS)

    Bintz, Jeffrey R.; Mendenhall, Michael J.; Marciniak, Michael A.; Butler, Samuel D.; Lloyd, James Tommy

    2016-09-01

    Human skin detection is an important first step in search and rescue (SAR) scenarios. Previous research performed human skin detection through an application specific camera system that ex- ploits the spectral properties of human skin at two visible and two near-infrared (NIR) wavelengths. The current theory assumes human skin is diffuse; however, it is observed that human skin exhibits specular and diffuse reflectance properties. This paper presents a novel image-based bidirectional reflectance distribution function (BRDF) measurement system, and applies it to the collection of human skin BRDF. The system uses a grid projecting laser and a novel signal processing chain to extract the surface normal from each grid location. Human skin BRDF measurements are shown for a variety of melanin content and hair coverage at the four spectral channels needed for human skin detection. The NIR results represent a novel contribution to the existing body of human skin BRDF measurements.

  4. Detection of water bodies in Saline County, Kansas

    NASA Technical Reports Server (NTRS)

    Barr, B. G. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. A total of 2,272 water bodies were mapped in Saline County, Kansas in 1972 using ERTS-1 imagery. A topographic map of 1955 shows 1,056 water bodies in the county. The major increase took place in farm ponds. Preliminary comparison of image and maps indicates that water bodies larger than ten acres in area proved consistently detectable. Most water areas between four and ten acres are also detectable, although occasionally image context prevents detection. Water areas less than four acres in extent are sometimes detected, but the number varies greatly depending on image context and the individual interpretor.

  5. A real-time posture monitoring method for rail vehicle bodies based on machine vision

    NASA Astrophysics Data System (ADS)

    Liu, Dongrun; Lu, Zhaijun; Cao, Tianpei; Li, Tian

    2017-06-01

    Monitoring vehicle operation conditions has become significantly important in modern high-speed railway systems. However, the operational impact of monitoring the roll angle of vehicle bodies has principally been limited to tilting trains, while few studies have focused on monitoring the running posture of vehicle bodies during operation. We propose a real-time posture monitoring method to fulfil real-time monitoring requirements, by taking rail surfaces and centrelines as detection references. In realising the proposed method, we built a mathematical computational model based on space coordinate transformations to calculate attitude angles of vehicles in operation and vertical and lateral vibration displacements of single measuring points. Moreover, comparison and verification of reliability between system and field results were conducted. Results show that monitoring of the roll angles of car bodies obtained through the system exhibit variation trends similar to those converted from the dynamic deflection of bogie secondary air springs. The monitoring results of two identical conditions were basically the same, highlighting repeatability and good monitoring accuracy. Therefore, our monitoring results were reliable in reflecting posture changes in running railway vehicles.

  6. Pathogenesis of Congenital Rubella Virus Infection in Human Fetuses: Viral Infection in the Ciliary Body Could Play an Important Role in Cataractogenesis.

    PubMed

    Nguyen, Thong Van; Pham, Van Hung; Abe, Kenji

    2015-01-01

    Development of congenital rubella syndrome associated with rubella virus infection during pregnancy is clinically important, but the pathogenicity of the virus remains unclear. Pathological examination was conducted on 3 aborted fetuses with congenital rubella infection. At autopsy, all 3 aborted fetuses showed congenital cataract confirmed by gross observation. Rubella virus infection occurred via systemic organs including circulating hematopoietic stem cells confirmed by immunohistochemical and molecular investigations, and major histopathogical changes were found in the liver. It is noteworthy that the virus infected the ciliary body of the eye, suggesting a possible cause of cataracts. Our study based on the pathological examination demonstrated that the rubella virus infection occurred via systemic organs of human fetuses. This fact was confirmed by immunohistochemistry and direct detection of viral RNA in multiple organs. To the best of our knowledge, this study is the first report demonstrating that the rubella virus infection occurred via systemic organs of the human body. Importantly, virus infection of the ciliary body could play an important role in cataractogenesis.

  7. Automated analysis of whole skeletal muscle for muscular atrophy detection of ALS in whole-body CT images: preliminary study

    NASA Astrophysics Data System (ADS)

    Kamiya, Naoki; Ieda, Kosuke; Zhou, Xiangrong; Yamada, Megumi; Kato, Hiroki; Muramatsu, Chisako; Hara, Takeshi; Miyoshi, Toshiharu; Inuzuka, Takashi; Matsuo, Masayuki; Fujita, Hiroshi

    2017-03-01

    Amyotrophic lateral sclerosis (ALS) causes functional disorders such as difficulty in breathing and swallowing through the atrophy of voluntary muscles. ALS in its early stages is difficult to diagnose because of the difficulty in differentiating it from other muscular diseases. In addition, image inspection methods for aggressive diagnosis for ALS have not yet been established. The purpose of this study is to develop an automatic analysis system of the whole skeletal muscle to support the early differential diagnosis of ALS using whole-body CT images. In this study, the muscular atrophy parts including ALS patients are automatically identified by recognizing and segmenting whole skeletal muscle in the preliminary steps. First, the skeleton is identified by its gray value information. Second, the initial area of the body cavity is recognized by the deformation of the thoracic cavity based on the anatomical segmented skeleton. Third, the abdominal cavity boundary is recognized using ABM for precisely recognizing the body cavity. The body cavity is precisely recognized by non-rigid registration method based on the reference points of the abdominal cavity boundary. Fourth, the whole skeletal muscle is recognized by excluding the skeleton, the body cavity, and the subcutaneous fat. Additionally, the areas of muscular atrophy including ALS patients are automatically identified by comparison of the muscle mass. The experiments were carried out for ten cases with abnormality in the skeletal muscle. Global recognition and segmentation of the whole skeletal muscle were well realized in eight cases. Moreover, the areas of muscular atrophy including ALS patients were well identified in the lower limbs. As a result, this study indicated the basic technology to detect the muscle atrophy including ALS. In the future, it will be necessary to consider methods to differentiate other kinds of muscular atrophy as well as the clinical application of this detection method for early ALS detection and examine a large number of cases with stage and disease type.

  8. An exergame system based on force platforms and body key-point detection for balance training.

    PubMed

    Lavarda, Marcos D; de Borba, Pedro A; Oliveira, Matheus R; Borba, Gustavo B; de Souza, Mauren A; Gamba, Humberto R

    2016-08-01

    Postural instability affects a large number of people and can compromise even simple activities of the daily routine. Therapies for balance training can strongly benefit from auxiliary devices specially designed for this purpose. In this paper, we present a system for balance training that uses the metaphor of a game, what contributes to the motivation and engagement of the patients during a treatment. Such approach is usually named exergame, in which input devices for posturographic assessment and a visual output perform the interaction with the subject. The proposed system uses two force platforms, one positioned under the feet and the other under the hip of the subject. The force platforms employ regular load cells and a microcontroller-based signal acquisition module to capture and transmit the samples to a computer. Moreover, a computer vision module performs body key-point detection, based on real time segmentation of markers attached to the subject. For the validation of the system, we conducted experiments with 20 neurologically intact volunteers during two tests: comparison of the stabilometric parameters obtained from the system with those obtained from a commercial baropodometer and the practice of several exergames. Results show that the proposed system is completely functional and can be used as a versatile tool for balance training.

  9. A design of endoscopic imaging system for hyper long pipeline based on wheeled pipe robot

    NASA Astrophysics Data System (ADS)

    Zheng, Dongtian; Tan, Haishu; Zhou, Fuqiang

    2017-03-01

    An endoscopic imaging system of hyper long pipeline is designed to acquire the inner surface image in advance for the hyper long pipeline detects measurement. The system consists of structured light sensors, pipe robots and control system. The pipe robot is in the form of wheel structure, with the sensor which is at the front of the vehicle body. The control system is at the tail of the vehicle body in the form of upper and lower computer. The sensor can be translated and scanned in three steps: walking, lifting and scanning, then the inner surface image can be acquired at a plurality of positions and different angles. The results of imaging experiments show that the system's transmission distance is longer, the acquisition angle is more diverse and the result is more comprehensive than the traditional imaging system, which lays an important foundation for later inner surface vision measurement.

  10. Odors and incontinence: What does the nose know?

    PubMed

    Dalton, Pamela; Maute, Christopher

    2018-06-01

    The fear of producing malodors that can be detected by others is a daily cause of anxiety for millions of people with incontinence. For many, the risk-whether real or imagined-that leaked waste products will be detectable by odor is sufficiently concerning to result in limitations on many types of activities. However, worry about personal odors can sensitize our olfactory system and cause us to be more aware of odors that may otherwise not be perceptible. In addition, heightened olfactory attention can often lead to odor misattributions, such as when we erroneously identify our body as the source of an odor that may simply be present in the environment. Odors produced by our bodies (endogenous odors) do enjoy a greater access to emotional brain centers and are processed faster than general odors. Here we provide examples from both everyday life and laboratory studies to explain how and why the olfactory system is unique among our sensory systems and how this knowledge can provide insights to our concerns about smell and incontinence and inform the development of products and solutions for incontinence.

  11. Automatic bio-sample bacteria detection system

    NASA Technical Reports Server (NTRS)

    Chappelle, E. W.; Colburn, M.; Kelbaugh, B. N.; Picciolo, G. L.

    1971-01-01

    Electromechanical device analyzes urine specimens in 15 minutes and processes one sample per minute. Instrument utilizes bioluminescent reaction between luciferase-luciferin mixture and adenosine triphosphate (ATP) to determine number of bacteria present in the sample. Device has potential application to analysis of other body fluids.

  12. Water Detection Based on Object Reflections

    NASA Technical Reports Server (NTRS)

    Rankin, Arturo L.; Matthies, Larry H.

    2012-01-01

    Water bodies are challenging terrain hazards for terrestrial unmanned ground vehicles (UGVs) for several reasons. Traversing through deep water bodies could cause costly damage to the electronics of UGVs. Additionally, a UGV that is either broken down due to water damage or becomes stuck in a water body during an autonomous operation will require rescue, potentially drawing critical resources away from the primary operation and increasing the operation cost. Thus, robust water detection is a critical perception requirement for UGV autonomous navigation. One of the properties useful for detecting still water bodies is that their surface acts as a horizontal mirror at high incidence angles. Still water bodies in wide-open areas can be detected by geometrically locating the exact pixels in the sky that are reflecting on candidate water pixels on the ground, predicting if ground pixels are water based on color similarity to the sky and local terrain features. But in cluttered areas where reflections of objects in the background dominate the appearance of the surface of still water bodies, detection based on sky reflections is of marginal value. Specifically, this software attempts to solve the problem of detecting still water bodies on cross-country terrain in cluttered areas at low cost.

  13. Kinect-Based Virtual Game for the Elderly that Detects Incorrect Body Postures in Real Time

    PubMed Central

    Saenz-de-Urturi, Zelai; Garcia-Zapirain Soto, Begonya

    2016-01-01

    Poor posture can result in loss of physical function, which is necessary to preserving independence in later life. Its decline is often the determining factor for loss of independence in the elderly. To avoid this, a system to correct poor posture in the elderly, designed for Kinect-based indoor applications, is proposed in this paper. Due to the importance of maintaining a healthy life style in senior citizens, the system has been integrated into a game which focuses on their physical stimulation. The game encourages users to perform physical activities while the posture correction system helps them to adopt proper posture. The system captures limb node data received from the Kinect sensor in order to detect posture variations in real time. The DTW algorithm compares the original posture with the current one to detect any deviation from the original correct position. The system was tested and achieved a successful detection percentage of 95.20%. Experimental tests performed in a nursing home with different users show the effectiveness of the proposed solution. PMID:27196903

  14. A qualitative review for wireless health monitoring system

    NASA Astrophysics Data System (ADS)

    Arshad, Atika; Fadzil Ismail, Ahmad; Khan, Sheroz; Zahirul Alam, A. H. M.; Tasnim, Rumana; Samnan Haider, Syed; Shobaki, Mohammed M.; Shahid, Zeeshan

    2013-12-01

    A proliferating interest has been being observed over the past years in accurate wireless system development in order to monitor incessant human activities in health care centres. Furthermore because of the swelling number of elderly population and the inadequate number of competent staffs for nursing homes there is a big market petition for health care monitoring system. In order to detect human researchers developed different methods namely which include Field Identification technique, Visual Sensor Network, radar detection, e-mobile techniques and so on. An all-encompassing overview of the non-wired human detection application advancement is presented in this paper. Inductive links are used for human detection application while wiring an electronic system has become impractical in recent times. Keeping in mind the shortcomings, an Inductive Intelligent Sensor (IIS) has been proposed as a novel human monitoring system for future implementation. The proposed sensor works towards exploring the signature signals of human body movement and size. This proposed sensor is fundamentally based on inductive loop that senses the presence and a passing human resulting an inductive change.

  15. A high-fidelity airbus benchmark for system fault detection and isolation and flight control law clearance

    NASA Astrophysics Data System (ADS)

    Goupil, Ph.; Puyou, G.

    2013-12-01

    This paper presents a high-fidelity generic twin engine civil aircraft model developed by Airbus for advanced flight control system research. The main features of this benchmark are described to make the reader aware of the model complexity and representativeness. It is a complete representation including the nonlinear rigid-body aircraft model with a full set of control surfaces, actuator models, sensor models, flight control laws (FCL), and pilot inputs. Two applications of this benchmark in the framework of European projects are presented: FCL clearance using optimization and advanced fault detection and diagnosis (FDD).

  16. The Main Belt Comets and ice in the Solar System

    NASA Astrophysics Data System (ADS)

    Snodgrass, Colin; Agarwal, Jessica; Combi, Michael; Fitzsimmons, Alan; Guilbert-Lepoutre, Aurelie; Hsieh, Henry H.; Hui, Man-To; Jehin, Emmanuel; Kelley, Michael S. P.; Knight, Matthew M.; Opitom, Cyrielle; Orosei, Roberto; de Val-Borro, Miguel; Yang, Bin

    2017-11-01

    We review the evidence for buried ice in the asteroid belt; specifically the questions around the so-called Main Belt Comets (MBCs). We summarise the evidence for water throughout the Solar System, and describe the various methods for detecting it, including remote sensing from ultraviolet to radio wavelengths. We review progress in the first decade of study of MBCs, including observations, modelling of ice survival, and discussion on their origins. We then look at which methods will likely be most effective for further progress, including the key challenge of direct detection of (escaping) water in these bodies.

  17. Dynamical manifestations of quantum chaos: correlation hole and bulge

    NASA Astrophysics Data System (ADS)

    Torres-Herrera, E. J.; Santos, Lea F.

    2017-10-01

    A main feature of a chaotic quantum system is a rigid spectrum where the levels do not cross. We discuss how the presence of level repulsion in lattice many-body quantum systems can be detected from the analysis of their time evolution instead of their energy spectra. This approach is advantageous to experiments that deal with dynamics, but have limited or no direct access to spectroscopy. Dynamical manifestations of avoided crossings occur at long times. They correspond to a drop, referred to as correlation hole, below the asymptotic value of the survival probability and to a bulge above the saturation point of the von Neumann entanglement entropy and the Shannon information entropy. By contrast, the evolution of these quantities at shorter times reflects the level of delocalization of the initial state, but not necessarily a rigid spectrum. The correlation hole is a general indicator of the integrable-chaos transition in disordered and clean models and as such can be used to detect the transition to the many-body localized phase in disordered interacting systems. This article is part of the themed issue 'Breakdown of ergodicity in quantum systems: from solids to synthetic matter'.

  18. Wearable Fall Detector using Integrated Sensors and Energy Devices

    NASA Astrophysics Data System (ADS)

    Jung, Sungmook; Hong, Seungki; Kim, Jaemin; Lee, Sangkyu; Hyeon, Taeghwan; Lee, Minbaek; Kim, Dae-Hyeong

    2015-11-01

    Wearable devices have attracted great attentions as next-generation electronic devices. For the comfortable, portable, and easy-to-use system platform in wearable electronics, a key requirement is to replace conventional bulky and rigid energy devices into thin and deformable ones accompanying the capability of long-term energy supply. Here, we demonstrate a wearable fall detection system composed of a wristband-type deformable triboelectric generator and lithium ion battery in conjunction with integrated sensors, controllers, and wireless units. A stretchable conductive nylon is used as electrodes of the triboelectric generator and the interconnection between battery cells. Ethoxylated polyethylenimine, coated on the surface of the conductive nylon electrode, tunes the work function of a triboelectric generator and maximizes its performance. The electrical energy harvested from the triboelectric generator through human body motions continuously recharges the stretchable battery and prolongs hours of its use. The integrated energy supply system runs the 3-axis accelerometer and related electronics that record human body motions and send the data wirelessly. Upon the unexpected fall occurring, a custom-made software discriminates the fall signal and an emergency alert is immediately sent to an external mobile device. This wearable fall detection system would provide new opportunities in the mobile electronics and wearable healthcare.

  19. Wearable Fall Detector using Integrated Sensors and Energy Devices.

    PubMed

    Jung, Sungmook; Hong, Seungki; Kim, Jaemin; Lee, Sangkyu; Hyeon, Taeghwan; Lee, Minbaek; Kim, Dae-Hyeong

    2015-11-24

    Wearable devices have attracted great attentions as next-generation electronic devices. For the comfortable, portable, and easy-to-use system platform in wearable electronics, a key requirement is to replace conventional bulky and rigid energy devices into thin and deformable ones accompanying the capability of long-term energy supply. Here, we demonstrate a wearable fall detection system composed of a wristband-type deformable triboelectric generator and lithium ion battery in conjunction with integrated sensors, controllers, and wireless units. A stretchable conductive nylon is used as electrodes of the triboelectric generator and the interconnection between battery cells. Ethoxylated polyethylenimine, coated on the surface of the conductive nylon electrode, tunes the work function of a triboelectric generator and maximizes its performance. The electrical energy harvested from the triboelectric generator through human body motions continuously recharges the stretchable battery and prolongs hours of its use. The integrated energy supply system runs the 3-axis accelerometer and related electronics that record human body motions and send the data wirelessly. Upon the unexpected fall occurring, a custom-made software discriminates the fall signal and an emergency alert is immediately sent to an external mobile device. This wearable fall detection system would provide new opportunities in the mobile electronics and wearable healthcare.

  20. Advanced selective non-invasive ketone body detection sensors based on new ionophores

    NASA Astrophysics Data System (ADS)

    Sathyapalan, A.; Sarswat, P. K.; Zhu, Y.; Free, M. L.

    2014-12-01

    New molecules and methods were examined that can be used to detect trace level ketone bodies. Diseases such as type 1 diabetes, childhood hypo-glycaemia-growth hormone deficiency, toxic inhalation, and body metabolism changes are linked with ketone bodies concentration. Here we introduce, selective ketone body detection sensors based on small, environmentally friendly organic molecules with Lewis acid additives. Density functional theory (DFT) simulation of the sensor molecules (Bromo-acetonaphthone tungstate (BANT) and acetonaphthophenyl ether propiono hydroxyl tungstate (APPHT)), indicated a fully relaxed geometry without symmetry attributes and specific coordination which enhances ketone bodies sensitivity. A portable sensing unit was made in which detection media containing ketone bodies at low concentration and new molecules show color change in visible light as well as unique irradiance during UV illumination. RGB analysis, electrochemical tests, SEM characterization, FTIR, absorbance and emission spectroscopy were also performed in order to validate the ketone sensitivity of these new molecules.

  1. Detection and determination of organophosphorus insecticides in tissues by thin-layer chromatography.

    PubMed

    Tewari, S N; Harpalani, S P

    1977-01-11

    The toxicological analysis of 12 common organophosphorus insecticides is described. Suitable methods for the extraction of organophosphorus insecticides from tissues are proposed. The detection, identification and estimation of these insecticides by thin-layer chromatography is described for 25 solvent systems and a series of chromogenic reagents. The distribution of insecticides in human body tissues in five cases of poisoning by ethyl parathion, malathion, dimethoate, sumithion and phosphamidon has also been studied.

  2. Coarse-to-fine markerless gait analysis based on PCA and Gauss-Laguerre decomposition

    NASA Astrophysics Data System (ADS)

    Goffredo, Michela; Schmid, Maurizio; Conforto, Silvia; Carli, Marco; Neri, Alessandro; D'Alessio, Tommaso

    2005-04-01

    Human movement analysis is generally performed through the utilization of marker-based systems, which allow reconstructing, with high levels of accuracy, the trajectories of markers allocated on specific points of the human body. Marker based systems, however, show some drawbacks that can be overcome by the use of video systems applying markerless techniques. In this paper, a specifically designed computer vision technique for the detection and tracking of relevant body points is presented. It is based on the Gauss-Laguerre Decomposition, and a Principal Component Analysis Technique (PCA) is used to circumscribe the region of interest. Results obtained on both synthetic and experimental tests provide significant reduction of the computational costs, with no significant reduction of the tracking accuracy.

  3. Target recognition in passive terahertz image of human body

    NASA Astrophysics Data System (ADS)

    Zhao, Ran; Zhao, Yuan-meng; Deng, Chao; Zhang, Cun-lin; Li, Yue

    2014-11-01

    THz radiation can penetrate through many nonpolar dielectric materials and can be used for nondestructive/noninvasive sensing and imaging of targets under nonpolar, nonmetallic covers or containers. Thus using THz systems to "see through" concealing barriers (i.e. packaging, corrugated cardboard, clothing) has been proposed as a new security screening method. Objects that can be detected by THz include concealed weapons, explosives, and chemical agents under clothing. Passive THz imaging system can detect THz wave from human body without transmit any electromagnetic wave, and the suspicious objects will become visible because the THz wave is blocked by this items. We can find out whether or not someone is carrying dangerous objects through this image. In this paper, the THz image enhancement, segmentation and contour extraction algorithms were studied to achieve effective target image detection. First, the terahertz images are enhanced and their grayscales are stretched. Then we apply global threshold segmentation to extract the target, and finally the targets are marked on the image. Experimental results showed that the algorithm proposed in this paper can extract and mark targets effectively, so that people can identify suspicious objects under clothing quickly. The algorithm can significantly improve the usefulness of the terahertz security apparatus.

  4. Method and apparatus for selectively detecting one of two immiscible liquids in the presence of the other liquid

    DOEpatents

    Cry, J.W.; Kirkham, R.R.; McBride, J.F.; Simmons, C.S.; Gee, G.W.

    1990-02-06

    Oil is detected in the presence of water by placing a translucent, porous body of hydrophobic material in contact with the oil and water and detecting the amount by which light incident on the body is attenuated on propagation through the body. 4 figs.

  5. Integrated optical biosensor for rapid detection of bacteria

    NASA Astrophysics Data System (ADS)

    Mathesz, Anna; Valkai, Sándor; Újvárosy, Attila; Aekbote, Badri; Sipos, Orsolya; Stercz, Balázs; Kocsis, Béla; Szabó, Dóra; Dér, András

    2016-02-01

    In medical diagnostics, rapid detection of pathogenic bacteria from body fluids is one of the basic issues. Most state-of-the-art methods require optical labeling, increasing the complexity, duration and cost of the analysis. Therefore, there is a strong need for developing selective sensory devices based on label-free techniques, in order to increase the speed, and reduce the cost of detection. In a recent paper, we have shown that an integrated optical Mach-Zehnder interferometer, a highly sensitive all-optical device made of a cheap photopolymer, can be used as a powerful lab-on-a-chip tool for specific, labelfree detection of proteins. By proper modifications of this technique, our interferometric biosensor was combined with a microfluidic system allowing the rapid and specific detection of bacteria from solutions, having the surface of the sensor functionalized by bacterium-specific antibodies. The experiments proved that the biosensor was able to detect Escherichia coli bacteria at concentrations of 106 cfu/ml within a few minutes, that makes our device an appropriate tool for fast, label-free detection of bacteria from body fluids such as urine or sputum. On the other hand, possible applications of the device may not be restricted to medical microbiology, since bacterial identification is an important task in microbial forensics, criminal investigations, bio-terrorism threats and in environmental studies, as well.

  6. Integrated optical biosensor for rapid detection of bacteria

    NASA Astrophysics Data System (ADS)

    Mathesz, Anna; Valkai, Sándor; Újvárosy, Attila; Aekbote, Badri; Sipos, Orsolya; Stercz, Balázs; Kocsis, Béla; Szabó, Dóra; Dér, András

    2015-12-01

    In medical diagnostics, rapid detection of pathogenic bacteria from body fluids is one of the basic issues. Most state-of-the-art methods require optical labeling, increasing the complexity, duration and cost of the analysis. Therefore, there is a strong need for developing selective sensory devices based on label-free techniques, in order to increase the speed, and reduce the cost of detection. In a recent paper, we have shown that an integrated optical Mach-Zehnder interferometer, a highly sensitive all-optical device made of a cheap photopolymer, can be used as a powerful lab-on-a-chip tool for specific, labelfree detection of proteins. By proper modifications of this technique, our interferometric biosensor was combined with a microfluidic system allowing the rapid and specific detection of bacteria from solutions, having the surface of the sensor functionalized by bacterium-specific antibodies. The experiments proved that the biosensor was able to detect Escherichia coli bacteria at concentrations of 106 cfu/ml within a few minutes, that makes our device an appropriate tool for fast, label-free detection of bacteria from body fluids such as urine or sputum. On the other hand, possible applications of the device may not be restricted to medical microbiology, since bacterial identification is an important task in microbial forensics, criminal investigations, bio-terrorism threats and in environmental studies, as well.

  7. [Detection of leptospira in the vitreous body of horses without ocular diseases and of horses with equine recurrent uveitis (ERU) using transmission-electron microscopy].

    PubMed

    Niedermaier, G; Wollanke, B; Hoffmann, R; Brem, S; Gerhards, H

    2006-11-01

    Equine recurrent uveitis (ERU) is caused by persistent intraocular leptospira, which appear to use the vitreous body as a refuge. The detection of leptospira in the vitreous body of horses with spontaneous ERU by histological methods has not yet been described. Thirty eight vitreous body samples from 36 horses with ERU (collected during vitrectomy), and 10 vitreous body samples obtained from 5 horses without ocular disease (control group) were examined by transmission electron microscopy. Prior to sample collection, 2 ml of a leptospira culture suspension were injected into the vitreous body of 2 eyes enucleated from horses of the control group. The detection of leptospira in samples, experimentally inoculated with these bacteria was uncomplicated; in vitreous body samples from horses with spontaneous ERU the detection was successful in only a few cases (3/38). The morphologically varying envelope of leptospira in vitreous body samples of horses which developed ERU spontaneously suggests the existence of a bacterial masquerade in vivo.

  8. Security Applications Of Computer Motion Detection

    NASA Astrophysics Data System (ADS)

    Bernat, Andrew P.; Nelan, Joseph; Riter, Stephen; Frankel, Harry

    1987-05-01

    An important area of application of computer vision is the detection of human motion in security systems. This paper describes the development of a computer vision system which can detect and track human movement across the international border between the United States and Mexico. Because of the wide range of environmental conditions, this application represents a stringent test of computer vision algorithms for motion detection and object identification. The desired output of this vision system is accurate, real-time locations for individual aliens and accurate statistical data as to the frequency of illegal border crossings. Because most detection and tracking routines assume rigid body motion, which is not characteristic of humans, new algorithms capable of reliable operation in our application are required. Furthermore, most current detection and tracking algorithms assume a uniform background against which motion is viewed - the urban environment along the US-Mexican border is anything but uniform. The system works in three stages: motion detection, object tracking and object identi-fication. We have implemented motion detection using simple frame differencing, maximum likelihood estimation, mean and median tests and are evaluating them for accuracy and computational efficiency. Due to the complex nature of the urban environment (background and foreground objects consisting of buildings, vegetation, vehicles, wind-blown debris, animals, etc.), motion detection alone is not sufficiently accurate. Object tracking and identification are handled by an expert system which takes shape, location and trajectory information as input and determines if the moving object is indeed representative of an illegal border crossing.

  9. Effects of Simulated Pathophysiology on the Performance of a Decision Support Medical Monitoring System for Early Detection of Hemodynamic Decompensation in Humans

    DTIC Science & Technology

    2014-10-01

    pulse oximeter (Cardiocap/5; Datex-Ohmeda, Louisville, CO). The EKG and pulse oximeter tracings were interfaced with a personal computer for con- tinuous...responses to reduced central venous pressure (CVP) and pulse pressure (PP) elicited during graded lower body negative pressure (LBNP) to those observed...Johnson BD, Curry TB, Convertino VA, & Joyner MJ. The association between pulse pressure and stroke volume during lower body negative pressure and

  10. N-body experiments and missing mass in clusters of galaxies

    NASA Technical Reports Server (NTRS)

    Smith, H.; Hintzen, P.; Sofia, S.; Oegerle, W.; Scott, J.; Holman, G.

    1979-01-01

    It is commonly assumed that the distributions of surface density and radial-velocity dispersion in clusters of galaxies are sensitive tracers of the underlying distribution of any unseen mass. N-body experiments have been used to test this assumption. Calculations with equal-mass systems indicate that the effects of the underlying mass distribution cannot be detected by observations of the surface-density or radial-velocity distributions, and the existence of an extended binding mass in all well-studied clusters would be consistent with available observations.

  11. Robust automatic measurement of 3D scanned models for the human body fat estimation.

    PubMed

    Giachetti, Andrea; Lovato, Christian; Piscitelli, Francesco; Milanese, Chiara; Zancanaro, Carlo

    2015-03-01

    In this paper, we present an automatic tool for estimating geometrical parameters from 3-D human scans independent on pose and robustly against the topological noise. It is based on an automatic segmentation of body parts exploiting curve skeleton processing and ad hoc heuristics able to remove problems due to different acquisition poses and body types. The software is able to locate body trunk and limbs, detect their directions, and compute parameters like volumes, areas, girths, and lengths. Experimental results demonstrate that measurements provided by our system on 3-D body scans of normal and overweight subjects acquired in different poses are highly correlated with the body fat estimates obtained on the same subjects with dual-energy X-rays absorptiometry (DXA) scanning. In particular, maximal lengths and girths, not requiring precise localization of anatomical landmarks, demonstrate a good correlation (up to 96%) with the body fat and trunk fat. Regression models based on our automatic measurements can be used to predict body fat values reasonably well.

  12. An Introduction to Astrobiology

    NASA Astrophysics Data System (ADS)

    Rothery, David A.; Gilmour, Iain; Sephton, Mark A.

    2011-08-01

    1. Origin of life; 2. Habitable world; 3. Mars; 4. Icy bodies: Europa and elsewhere; 5. Titan; 6. The detection of exoplanets; 7. The nature of exoplanetary systems; 8. How to find life on exoplanets; 9. Extraterrestrial intelligence; Answers and comments; Appendices; Glossary; Further reading; Acknowledgements; Figure references; Index.

  13. Radium-226 body burden in U miners by measurement of Rn in exhaled breath.

    PubMed

    Srivastava, G K; Raghavayya, M; Kotrappa, P; Somasundaram, S

    1986-02-01

    Uranium miners were made to inhale Rn-free medical O2 and exhale through a 5.2-1 A1 chamber before reporting to work. The chamber was sealed and isolated from the sampling circuit. An electrostatic plate collected the freshly formed Rn-decay products. The subsequent programmed alpha counting of the plate yielded a Rn concentration in the exhaled breath. Assuming that the exhaled breath represents a certain fraction of the Rn produced inside the body, the body burden of 226Ra was calculated. Standardisation of this procedure and the data collected on 310 miners are discussed. The procedure is simple and applicable for routine measurements. The miner needs to be in the laboratory for only 10 min. The system is also portable for field application. For routine use, the minimum detectable concentration is 3.87 Bq X m-3 which corresponds to a body burden of 0.26 kBq in a typical miner, if one assumes the Rn release fraction from the body as 84%. The system offers a more convenient and sensitive alternative to whole-body counting of workers for 226Ra.

  14. Motorcycle detection and counting using stereo camera, IR camera, and microphone array

    NASA Astrophysics Data System (ADS)

    Ling, Bo; Gibson, David R. P.; Middleton, Dan

    2013-03-01

    Detection, classification, and characterization are the key to enhancing motorcycle safety, motorcycle operations and motorcycle travel estimation. Average motorcycle fatalities per Vehicle Mile Traveled (VMT) are currently estimated at 30 times those of auto fatalities. Although it has been an active research area for many years, motorcycle detection still remains a challenging task. Working with FHWA, we have developed a hybrid motorcycle detection and counting system using a suite of sensors including stereo camera, thermal IR camera and unidirectional microphone array. The IR thermal camera can capture the unique thermal signatures associated with the motorcycle's exhaust pipes that often show bright elongated blobs in IR images. The stereo camera in the system is used to detect the motorcyclist who can be easily windowed out in the stereo disparity map. If the motorcyclist is detected through his or her 3D body recognition, motorcycle is detected. Microphones are used to detect motorcycles that often produce low frequency acoustic signals. All three microphones in the microphone array are placed in strategic locations on the sensor platform to minimize the interferences of background noises from sources such as rain and wind. Field test results show that this hybrid motorcycle detection and counting system has an excellent performance.

  15. Water Detection Based on Sky Reflections

    NASA Technical Reports Server (NTRS)

    Rankin, Arturo L.; Matthies, Larry H.

    2010-01-01

    This software has been designed to detect water bodies that are out in the open on cross-country terrain at mid- to far-range (approximately 20 100 meters), using imagery acquired from a stereo pair of color cameras mounted on a terrestrial, unmanned ground vehicle (UGV). Non-traversable water bodies, such as large puddles, ponds, and lakes, are indirectly detected by detecting reflections of the sky below the horizon in color imagery. The appearance of water bodies in color imagery largely depends on the ratio of light reflected off the water surface to the light coming out of the water body. When a water body is far away, the angle of incidence is large, and the light reflected off the water surface dominates. We have exploited this behavior to detect water bodies out in the open at mid- to far-range. When a water body is detected at far range, a UGV s path planner can begin to look for alternate routes to the goal position sooner, rather than later. As a result, detecting water hazards at far range generally reduces the time required to reach a goal position during autonomous navigation. This software implements a new water detector based on sky reflections that geometrically locates the exact pixel in the sky that is reflecting on a candidate water pixel on the ground, and predicts if the ground pixel is water based on color similarity and local terrain features

  16. A Radar-Based Smart Sensor for Unobtrusive Elderly Monitoring in Ambient Assisted Living Applications.

    PubMed

    Diraco, Giovanni; Leone, Alessandro; Siciliano, Pietro

    2017-11-24

    Continuous in-home monitoring of older adults living alone aims to improve their quality of life and independence, by detecting early signs of illness and functional decline or emergency conditions. To meet requirements for technology acceptance by seniors (unobtrusiveness, non-intrusiveness, and privacy-preservation), this study presents and discusses a new smart sensor system for the detection of abnormalities during daily activities, based on ultra-wideband radar providing rich, not privacy-sensitive, information useful for sensing both cardiorespiratory and body movements, regardless of ambient lighting conditions and physical obstructions (through-wall sensing). The radar sensing is a very promising technology, enabling the measurement of vital signs and body movements at a distance, and thus meeting both requirements of unobtrusiveness and accuracy. In particular, impulse-radio ultra-wideband radar has attracted considerable attention in recent years thanks to many properties that make it useful for assisted living purposes. The proposed sensing system, evaluated in meaningful assisted living scenarios by involving 30 participants, exhibited the ability to detect vital signs, to discriminate among dangerous situations and activities of daily living, and to accommodate individual physical characteristics and habits. The reported results show that vital signs can be detected also while carrying out daily activities or after a fall event (post-fall phase), with accuracy varying according to the level of movements, reaching up to 95% and 91% in detecting respiration and heart rates, respectively. Similarly, good results were achieved in fall detection by using the micro-motion signature and unsupervised learning, with sensitivity and specificity greater than 97% and 90%, respectively.

  17. A Radar-Based Smart Sensor for Unobtrusive Elderly Monitoring in Ambient Assisted Living Applications

    PubMed Central

    Leone, Alessandro; Siciliano, Pietro

    2017-01-01

    Continuous in-home monitoring of older adults living alone aims to improve their quality of life and independence, by detecting early signs of illness and functional decline or emergency conditions. To meet requirements for technology acceptance by seniors (unobtrusiveness, non-intrusiveness, and privacy-preservation), this study presents and discusses a new smart sensor system for the detection of abnormalities during daily activities, based on ultra-wideband radar providing rich, not privacy-sensitive, information useful for sensing both cardiorespiratory and body movements, regardless of ambient lighting conditions and physical obstructions (through-wall sensing). The radar sensing is a very promising technology, enabling the measurement of vital signs and body movements at a distance, and thus meeting both requirements of unobtrusiveness and accuracy. In particular, impulse-radio ultra-wideband radar has attracted considerable attention in recent years thanks to many properties that make it useful for assisted living purposes. The proposed sensing system, evaluated in meaningful assisted living scenarios by involving 30 participants, exhibited the ability to detect vital signs, to discriminate among dangerous situations and activities of daily living, and to accommodate individual physical characteristics and habits. The reported results show that vital signs can be detected also while carrying out daily activities or after a fall event (post-fall phase), with accuracy varying according to the level of movements, reaching up to 95% and 91% in detecting respiration and heart rates, respectively. Similarly, good results were achieved in fall detection by using the micro-motion signature and unsupervised learning, with sensitivity and specificity greater than 97% and 90%, respectively. PMID:29186786

  18. A SQUID-based metal detector—comparison to coil and x-ray systems

    NASA Astrophysics Data System (ADS)

    Bick, M.; Sullivan, P.; Tilbrook, D. L.; Du, J.; Gnanarajan, S.; Leslie, K. E.; Foley, C. P.

    2005-03-01

    The presence of foreign metal bodies and fragments in foodstuff and pharmaceutical products is of major concern to producers. Further, hidden metal objects can pose threats to security. In particular, stainless steel is difficult to detect by conventional coil metal detectors due to its low conductivity. We have employed an HTS SQUID magnetometer for the detection of stainless steel particles which is based on the measurement of the remanent magnetization of the particle. Our aim was to determine the detection limits of HTS SQUID-based remote magnetometry, especially for food inspection purposes, and to make a comparison of this technique to commonly used eddy current coil and x-ray inspection systems. We show that the SQUID system's sensitivity to stainless steel fragments is significantly higher than that of coil systems if the samples are magnetized in a 100 mT magnetic field prior to detection. Further, it has a higher sensitivity than x-ray systems, depending on the density distribution of the product under inspection. A 0.6 mg piece of grade-316 stainless steel (a fragment of a hypodermic needle 0.5 mm long and 0.65 mm diameter) represents the detection limit of our system with a 150 × 150 mm2 inspection orifice.

  19. THE CENTER OF LIGHT: SPECTROASTROMETRIC DETECTION OF EXOMOONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agol, Eric; Jansen, Tiffany; Lacy, Brianna

    2015-10-10

    Direct imaging of extrasolar planets with future space-based coronagraphic telescopes may provide a means of detecting companion moons at wavelengths where the moon outshines the planet. We propose a detection strategy based on the positional variation of the center of light with wavelength, “spectroastrometry.” This new application of this technique could be used to detect an exomoon, to determine the exomoon’s orbit and the mass of the host exoplanet, and to disentangle the spectra of the planet and moon. We consider two model systems, for which we discuss the requirements for detection of exomoons around nearby stars. We simulate themore » characterization of an Earth–Moon analog system with spectroastrometry, showing that the orbit, the planet mass, and the spectra of both bodies can be recovered. To enable the detection and characterization of exomoons we recommend that coronagraphic telescopes should extend in wavelength coverage to 3 μm, and should be designed with spectroastrometric requirements in mind.« less

  20. Proposal for methods of diagnosis of fish bone foreign body in the Esophagus.

    PubMed

    Woo, Seung Hoon; Kim, Kyung Hee

    2015-11-01

    To investigate the methods of diagnosis of fish bone foreign body in the esophagus and suggest a diagnostic protocol. Prospective cohort study. A prospective study was performed on 286 patients with a history of fish bone foreign body impaction. Among them, 88 patients had negative findings in the oral cavity and laryngopharynx. Subsequent radiologic assessment of these patients included plain radiography and computed tomography (CT). Sixty-six patients showed positive findings in the esophagus, and an attempt was made to remove the obstruction using transnasal esophagoscopy. In 66 patients, a fish bone foreign body was detected in the esophagus by CT. In contrast, plain radiography detected a foreign body in only 30 patients. The overall detection rate of plain radiography compared with CT for fish bones was 45.5%. Plain radiography detected 35.9% of the simple type fish bones and 54.5% of the gill bone detected by CT. However, jaw bones had a detection rate of 100% with both methods. The fish bone foreign bodies were most commonly located in the upper esophagus (n=65, 98.5%), followed by the lower esophagus (n=1, 1.5%). CT is a useful method for identification of esophageal fish bone foreign bodies. Therefore, CT should be considered as the first-choice technique for the diagnosis of esophageal fish bone foreign body. 4. © 2015 The American Laryngological, Rhinological and Otological Society, Inc.

  1. Performance evaluation of a high resolution dedicated breast PET scanner

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    García Hernández, Trinitat, E-mail: mtrinitat@eresa.com; Vicedo González, Aurora; Brualla González, Luis

    2016-05-15

    Purpose: Early stage breast cancers may not be visible on a whole-body PET scan. To overcome whole-body PET limitations, several dedicated breast positron emission tomography (DbPET) systems have emerged nowadays aiming to improve spatial resolution. In this work the authors evaluate the performance of a high resolution dedicated breast PET scanner (Mammi-PET, Oncovision). Methods: Global status, uniformity, sensitivity, energy, and spatial resolution were measured. Spheres of different sizes (2.5, 4, 5, and 6 mm diameter) and various 18 fluorodeoxyglucose ({sup 18}F-FDG) activity concentrations were randomly inserted in a gelatine breast phantom developed at our institution. Several lesion-to-background ratios (LBR) weremore » simulated, 5:1, 10:1, 20:1, 30:1, and 50:1. Images were reconstructed using different voxel sizes. The ability of experienced reporters to detect spheres was tested as a function of acquisition time, LBR, sphere size, and matrix reconstruction voxel size. For comparison, phantoms were scanned in the DbPET camera and in a whole body PET (WB-PET). Two patients who just underwent WB-PET/CT exams were imaged with the DbPET system and the images were compared. Results: The measured absolute peak sensitivity was 2.0%. The energy resolution was 24.0% ± 1%. The integral and differential uniformity were 10% and 6% in the total field of view (FOV) and 9% and 5% in the central FOV, respectively. The measured spatial resolution was 2.0, 1.9, and 1.7 mm in the radial, tangential, and axial directions. The system exhibited very good detectability for spheres ≥4 mm and LBR ≥10 with a sphere detection of 100% when acquisition time was set >3 min/bed. For LBR = 5 and acquisition time of 7 min the detectability was 100% for spheres of 6 mm and 75% for spheres of 5, 4, and 2.5 mm. Lesion WB-PET detectability was only comparable to the DbPET camera for lesion sizes ≥5 mm when acquisition time was >3 min and LBR > 10. Conclusions: The DbPET has a good performance for its clinical use and shows an improved resolution and lesion detectability of small lesions compared to WB-PET.« less

  2. Searching for Solar System Wide Binaries with Pan-STARRS-1

    NASA Astrophysics Data System (ADS)

    Holman, Matthew J.; Protopapas, P.; Tholen, D. J.

    2007-10-01

    Roughly 60% of the observing time of the Pan-STARRS-1 (PS1) telescope will be dedicated to a "3pi steradian" survey with an observing cadence that is designed for the detection of near-Earth asteroids and slow-moving solar system bodies. Over this course of its 3.5 year cience mission, this unprecedented survey will discover nearly every asteroid, Trojan, Centaur, long-period comet, short-period comet, and trans-neptunian object (TNO) brighter than magnitude R=23. This census will be used to address a large number of questions regarding the physical and dynamical properties of the various small body populations of the solar system. Roughly 1-2% of TNOs are wide binaries with companions at separations greater than 1 arcsec and brightness differences less than 2 magnitudes (Kern & Elliot 2006; Noll et al 2007). These can be readily detected by PS1; we will carry out such a search with PS1 data. To do so, we will modify the Pan-STARRS Moving Object Processing System (MOPS) such that it will associate the components of resolved or marginally resolved binaries, link such pairs of detections obtained at different epochs, and the estimate the relative orbit of the binary. We will also determine the efficiency with which such binaries are detected as a function of the binary's relative orbit and the relative magnitudes of the components. Based on an estimated 7000 TNOs that PS1 will discover, we anticipate finding 70-140 wide binaries. The PS1 data, 60 epochs over three years, is naturally suited to determining the orbits of these objects. Our search will accurately determine the binary fraction for a variety of subclasses of TNOs.

  3. Whole-body MRI including diffusion-weighted MRI compared with 5-HTP PET/CT in the detection of neuroendocrine tumors

    PubMed Central

    Carlbom, Lina; Caballero-Corbalán, José; Granberg, Dan; Sörensen, Jens; Eriksson, Barbro; Ahlström, Håkan

    2017-01-01

    Aim We wanted to explore if whole-body magnetic resonance imaging (MRI) including diffusion-weighted (DW) and liver-specific contrast agent-enhanced imaging could be valuable in lesion detection of neuroendocrine tumors (NET). [11C]-5-Hydroxytryptophan positron emission tomography/computed tomography (5-HTP PET/CT) was used for comparison. Materials and methods Twenty-one patients with NET were investigated with whole-body MRI, including DW imaging (DWI) and contrast-enhanced imaging of the liver, and whole-body 5-HTP PET/CT. Seven additional patients underwent upper abdomen MRI including DWI, liver-specific contrast agent-enhanced imaging, and 5-HTP PET/CT. Results There was a patient-based concordance of 61% and a lesion-based concordance of 53% between the modalities. MRI showed good concordance with PET in detecting bone metastases but was less sensitive in detecting metastases in mediastinal lymph nodes. MRI detected more liver metastases than 5-HTP PET/CT. Conclusion Whole-body MRI with DWI did not detect all NET lesions found with whole-body 5-HTP PET/CT. Our findings indicate that MRI of the liver including liver-specific contrast agent-enhanced imaging and DWI could be a useful complement to whole-body 5-HTP PET/CT. PMID:27894208

  4. A visible light imaging device for cardiac rate detection with reduced effect of body movement

    NASA Astrophysics Data System (ADS)

    Jiang, Xiaotian; Liu, Ming; Zhao, Yuejin

    2014-09-01

    A visible light imaging system to detect human cardiac rate is proposed in this paper. A color camera and several LEDs, acting as lighting source, were used to avoid the interference of ambient light. From people's forehead, the cardiac rate could be acquired based on photoplethysmography (PPG) theory. The template matching method was used after the capture of video. The video signal was discomposed into three signal channels (RGB) and the region of interest was chosen to take the average gray value. The green channel signal could provide an excellent waveform of pulse wave on the account of green lights' absorptive characteristics of blood. Through the fast Fourier transform, the cardiac rate was exactly achieved. But the research goal was not just to achieve the cardiac rate accurately. With the template matching method, the effects of body movement are reduced to a large extent, therefore the pulse wave can be detected even while people are in the moving state and the waveform is largely optimized. Several experiments are conducted on volunteers, and the results are compared with the ones gained by a finger clamped pulse oximeter. The contrast results between these two ways are exactly agreeable. This method to detect the cardiac rate and the pulse wave largely reduces the effects of body movement and can probably be widely used in the future.

  5. Optical probe for porosity defect detection on inner diameter surfaces of machined bores

    NASA Astrophysics Data System (ADS)

    Kulkarni, Ojas P.; Islam, Mohammed N.; Terry, Fred L.

    2010-12-01

    We demonstrate an optical probe for detection of porosity inside spool bores of a transmission valve body with diameters down to 5 mm. The probe consists of a graded-index relay rod that focuses a laser beam spot onto the inner surface of the bore. Detectors, placed in the specular and grazing directions with respect to the incident beam, measure the change in scattered intensity when a surface defect is encountered. Based on the scattering signatures in the two directions, the system can also validate the depth of the defect and distinguish porosity from bump-type defects coming out of the metal surface. The system can detect porosity down to a 50-μm lateral dimension and ~40 μm in depth with >3-dB contrast over the background intensity fluctuations. Porosity detection systems currently use manual inspection techniques on the plant floor, and the demonstrated probe provides a noncontact technique that can help automotive manufacturers meet high-quality standards during production.

  6. Simulation of a Doppler lidar system for autonomous navigation and hazard avoidance during planetary landing

    NASA Astrophysics Data System (ADS)

    Budge, Scott E.; Chester, David B.

    2016-05-01

    The latest mission proposals for exploration of solar system bodies require accurate position and velocity data during the descent phase in order to ensure safe, soft landing at the pre-designated sites. During landing maneuvers, the accuracy of the on-board inertial measurement unit (IMU) may not be reliable due to drift over extended travel times to destinations. NASA has proposed an advanced Doppler lidar system with multiple beams that can be used to accurately determine attitude and position of the landing vehicle during descent, and to detect hazards that might exist in the landing area. In order to assess the effectiveness of such a Doppler lidar landing system, it is valuable to simulate the system with different beam numbers and configurations. In addition, the effectiveness of the system to detect and map potential landing hazards must be understood. This paper reports the simulated system performance for a proposed multi-beam Doppler lidar using the LadarSIM system simulation software. Details of the simulation methods are given, as well as lidar performance parameters such as range and velocity accuracy, detection and false alarm rates, and examples of the Doppler lidars ability to detect and characterize simulated hazards in the landing site. The simulation includes modulated pulse generation and coherent detection methods, beam footprint simulation, beam scanning, and interaction with terrain.

  7. Removal of organic wastewater contaminants in septic systems using advanced treatment technologies

    USGS Publications Warehouse

    Wilcox, J.D.; Bahr, J.M.; Hedman, C.J.; Hemming, J.D.C.; Barman, M.A.E.; Bradbury, K.R.

    2009-01-01

    The detection of pharmaceuticals and other organic wastewater contaminants (OWCs) in ground water and surface-water bodies has raised concerns about the possible ecological impacts of these compounds on nontarget organisms. On-site wastewater treatment systems represent a potentially significant route of entry for organic contaminants to the environment. In this study, effluent samples were collected and analyzed from conventional septic systems and from systems using advanced treatment technologies. Six of 13 target compounds were detected in effluent from at least one septic system. Caffeine, paraxanthine, and acetaminophen were the most frequently detected compounds, and estrogenic activity was detected in 14 of 15 systems. The OWC concentrations were significantly lower in effluent after sand filtration (p < 0.01) or aerobic treatment (p < 0.05) as compared with effluent that had not undergone advanced treatment. In general, concentrations in conventional systems were comparable to those measured in previous studies of municipal wastewater treatment plant (WWTP) influent, and concentrations in systems after advanced treatment were comparable to previously measured concentrations in WWTP effluent. These data indicate that septic systems using advanced treatment can reduce OWCs in treated effluent to similar concentrations as municipal WWTPs. Copyright ?? 2009 by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. All rights reserved.

  8. Hydroacoustic detection of dumped ammunition in the Ocean with multibeam snippet backscatter analyses. A case study from the 'Kolberger Heide' ammunition dump site (Baltic Sea, Germany)

    NASA Astrophysics Data System (ADS)

    Kunde, Tina; Schneider von Deimling, Jens

    2016-04-01

    Dumped ammunition in the sea is a matter of great concern in terms of safe navigation and environmental threads. Because corrosion of the dumped ammunition's hull is ongoing, future contamination of the ambient water by their toxic interior is likely to occur. The location of such dump sites is approximately known from historical research and ship log book analyses. Subsequent remote sensing of ammunition dumping sites (e.g. mines) on the seafloor is preferentially performed with hydro-acoustic methods such as high resolution towed side scan or by the sophisticated synthetic aperture sonar approach with autonomous underwater vehicles. However, these are time consuming and expensive procedures, while determining the precise position of individual mines remains a challenging task. To mitigate these shortcomings we suggest using ship-born high-frequency multibeam sonar in shallow water to address the task of mine detection and precise localization on the seabed. Multibeam sonar systems have improved their potential in regard to backscatter analyses significantly over the past years and nowadays present fast and accurate tools for shallow water surveying to (1) detect mines in multibeam snippet backscatter data (2) determine their precise location with high accuracy intertial navigation systems. A case study was performed at the prominent ammunition dumping site 'Kolberger Heide' (Baltic Sea, Germany) in the year 2014 using a modern hydro-acoustic multibeam echosounder system with 200-400 kHz (KONGSBERG EM2040c). With an average water depth of not even 20 m and the proximity to the shore line and dense waterways, this investigated area requires permanent navigational care. Previously, the study area was surveyed by the Navy with the very sophisticated HUGIN AUV equipped with a synthetic aperture sonar with best resolution by current technology. Following an evaluation of the collected data, various ammunition bodies on the sea floor could be clearly detected. Analyses of our shipborn multibeam snippet backscatter data now show the feasibility to detect the majority of such ammunition bodies by their distinct snippet backscatter anomaly and shape. By the use of SAPOS correction data, the navigation data of the appropriated multibeam echosounder was postprocessed, which leads to an absolute accuracy of the ammunition bodies of 0.1 m laterally. Thus, the multibeam dataset represents a study providing both, detection and precise positioning of individual mines on the seabed. Apart from the much greater efficiency of multibeam mapping sonar over towed sidescan, precise localization is important for future management of mines, may it be in regard to their dellaboration, or to evaluate if future sediment mass movement (sediment waves) may cover and obscure the ammunition bodies in the future.

  9. Modular optical topometric sensor for 3D acquisition of human body surfaces and long-term monitoring of variations.

    PubMed

    Bischoff, Guido; Böröcz, Zoltan; Proll, Christian; Kleinheinz, Johannes; von Bally, Gert; Dirksen, Dieter

    2007-08-01

    Optical topometric 3D sensors such as laser scanners and fringe projection systems allow detailed digital acquisition of human body surfaces. For many medical applications, however, not only the current shape is important, but also its changes, e.g., in the course of surgical treatment. In such cases, time delays of several months between subsequent measurements frequently occur. A modular 3D coordinate measuring system based on the fringe projection technique is presented that allows 3D coordinate acquisition including calibrated color information, as well as the detection and visualization of deviations between subsequent measurements. In addition, parameters describing the symmetry of body structures are determined. The quantitative results of the analysis may be used as a basis for objective documentation of surgical therapy. The system is designed in a modular way, and thus, depending on the object of investigation, two or three cameras with different capabilities in terms of resolution and color reproduction can be utilized to optimize the set-up.

  10. Detection of vehicle parts based on Faster R-CNN and relative position information

    NASA Astrophysics Data System (ADS)

    Zhang, Mingwen; Sang, Nong; Chen, Youbin; Gao, Changxin; Wang, Yongzhong

    2018-03-01

    Detection and recognition of vehicles are two essential tasks in intelligent transportation system (ITS). Currently, a prevalent method is to detect vehicle body, logo or license plate at first, and then recognize them. So the detection task is the most basic, but also the most important work. Besides the logo and license plate, some other parts, such as vehicle face, lamp, windshield and rearview mirror, are also key parts which can reflect the characteristics of vehicle and be used to improve the accuracy of recognition task. In this paper, the detection of vehicle parts is studied, and the work is novel. We choose Faster R-CNN as the basic algorithm, and take the local area of an image where vehicle body locates as input, then can get multiple bounding boxes with their own scores. If the box with maximum score is chosen as final result directly, it is often not the best one, especially for small objects. This paper presents a method which corrects original score with relative position information between two parts. Then we choose the box with maximum comprehensive score as the final result. Compared with original output strategy, the proposed method performs better.

  11. The art and science of straight lines in radiology.

    PubMed

    Day, Cynthia M; Sodickson, Aaron

    2011-02-01

    The purpose of this article is to review the physical basis for straight radiographic lines, identify the possible components that may form a straight line interface in the body, provide illustrative examples across multiple organ systems and modalities, and explore how the detection of these interfaces can support specific diagnoses. Detection of a straight line interface can help the radiologist recognize otherwise difficult or subtle pathologic processes, and identification of its components can provide valuable clues to diagnosis.

  12. Integrated Micro-Chip Amino Acid Chirality Detector for MOD

    NASA Technical Reports Server (NTRS)

    Glavin, D. P.; Bada, J. L.; Botta, O.; Kminek, G.; Grunthaner, F.; Mathies, R.

    2001-01-01

    Integration of a micro-chip capillary electrophoresis analyzer with a sublimation-based extraction technique, as used in the Mars Organic Detector (MOD), for the in-situ detection of amino acids and their enantiomers on solar system bodies. Additional information is contained in the original extended abstract.

  13. Solid deuterated water in space: detection constraints from laboratory experiments

    NASA Astrophysics Data System (ADS)

    Urso, R. G.; Palumbo, M. E.; Baratta, G. A.; Scirè, C.; Strazzulla, G.

    2018-06-01

    The comparison between astronomical spectra and laboratory experiments is fundamental to spread light on the structure and composition of ices found in interstellar dense molecular clouds and in Solar System bodies. Water is among the most abundant solid-phase species observed in these environments, and several attempts have been made to investigate the presence of its solid-phase isotopologues. In particular, the detection of the O-D stretching mode band at 4.1 μm due to both D2O and HDO within icy grain mantles is still under debate, and no detection have been reported about the presence of these species within icy bodies in the Solar System yet. In the near future, an important contribution could derive from the data acquired in the O-D stretching mode spectral range by the sensitive instruments on board the James Webb Space Telescope. With this in mind, we performed several laboratory experiments to study the O-D stretching mode band in solid mixtures containing water and deuterated water deposited in the temperature range between 17 and 155 K, in order to simulate astrophysical relevant conditions. Furthermore, samples have been studied at various temperature and irradiated with energetic ions (200 keV H+) in order to study the effects induced by both thermal and energetic processing. Our results provide some constraints on the detection of the 4.1 μm band in astronomical environments.

  14. A Primary Study of Indirect ECG Monitor Embedded in a Bed for Home Health Care

    NASA Astrophysics Data System (ADS)

    Ueno, Akinori; Shiogai, Yuuki; Ishiyama, Yoji

    A system for monitoring electrocardiogram (ECG) through clothes inserted between the measuring electrodes and the body surface of a subject when lying on a mattress has been proposed. The principle of the system is based on capacitive coupling involving the electrode, the clothes, and the skin. Validation of the system revealed the following: (1) In spite of the gain attenuation in the pass band of the system, distortion of the detected signal was subtle even when clothes thicker than 1mm were inserted, (2) The system was able to yield a stable ECG from a subject particularly during sound sleep, (3) The system succeeded in detecting ECG after changing the posture into any of supine, right lateral, or left lateral positions by adopting a newly devised electrode configuration. Therefore, the proposed system appears promising for application to bedding as a non-invasive and awareness-free system for ECG monitoring during sleep.

  15. Implementing a modeling software for animated protein-complex interactions using a physics simulation library.

    PubMed

    Ueno, Yutaka; Ito, Shuntaro; Konagaya, Akihiko

    2014-12-01

    To better understand the behaviors and structural dynamics of proteins within a cell, novel software tools are being developed that can create molecular animations based on the findings of structural biology. This study proposes our method developed based on our prototypes to detect collisions and examine the soft-body dynamics of molecular models. The code was implemented with a software development toolkit for rigid-body dynamics simulation and a three-dimensional graphics library. The essential functions of the target software system included the basic molecular modeling environment, collision detection in the molecular models, and physical simulations of the movement of the model. Taking advantage of recent software technologies such as physics simulation modules and interpreted scripting language, the functions required for accurate and meaningful molecular animation were implemented efficiently.

  16. Whole-body ring-shaped confocal photoacoustic computed tomography of small animals in vivo.

    PubMed

    Xia, Jun; Chatni, Muhammad R; Maslov, Konstantin; Guo, Zijian; Wang, Kun; Anastasio, Mark; Wang, Lihong V

    2012-05-01

    We report a novel small-animal whole-body imaging system called ring-shaped confocal photoacoustic computed tomography (RC-PACT). RC-PACT is based on a confocal design of free-space ring-shaped light illumination and 512-element full-ring ultrasonic array signal detection. The free-space light illumination maximizes the light delivery efficiency, and the full-ring signal detection ensures a full two-dimensional view aperture for accurate image reconstruction. Using cylindrically focused array elements, RC-PACT can image a thin cross section with 0.10 to 0.25 mm in-plane resolutions and 1.6  s/frame acquisition time. By translating the mouse along the elevational direction, RC-PACT provides a series of cross-sectional images of the brain, liver, kidneys, and bladder.

  17. Whole-body ring-shaped confocal photoacoustic computed tomography of small animals in vivo

    NASA Astrophysics Data System (ADS)

    Xia, Jun; Chatni, Muhammad R.; Maslov, Konstantin; Guo, Zijian; Wang, Kun; Anastasio, Mark; Wang, Lihong V.

    2012-05-01

    We report a novel small-animal whole-body imaging system called ring-shaped confocal photoacoustic computed tomography (RC-PACT). RC-PACT is based on a confocal design of free-space ring-shaped light illumination and 512-element full-ring ultrasonic array signal detection. The free-space light illumination maximizes the light delivery efficiency, and the full-ring signal detection ensures a full two-dimensional view aperture for accurate image reconstruction. Using cylindrically focused array elements, RC-PACT can image a thin cross section with 0.10 to 0.25 mm in-plane resolutions and 1.6 s/frame acquisition time. By translating the mouse along the elevational direction, RC-PACT provides a series of cross-sectional images of the brain, liver, kidneys, and bladder.

  18. Automatic detection of axillary lymphadenopathy on CT scans of untreated chronic lymphocytic leukemia patients

    NASA Astrophysics Data System (ADS)

    Liu, Jiamin; Hua, Jeremy; Chellappa, Vivek; Petrick, Nicholas; Sahiner, Berkman; Farooqui, Mohammed; Marti, Gerald; Wiestner, Adrian; Summers, Ronald M.

    2012-03-01

    Patients with chronic lymphocytic leukemia (CLL) have an increased frequency of axillary lymphadenopathy. Pretreatment CT scans can be used to upstage patients at the time of presentation and post-treatment CT scans can reduce the number of complete responses. In the current clinical workflow, the detection and diagnosis of lymph nodes is usually performed manually by examining all slices of CT images, which can be time consuming and highly dependent on the observer's experience. A system for automatic lymph node detection and measurement is desired. We propose a computer aided detection (CAD) system for axillary lymph nodes on CT scans in CLL patients. The lung is first automatically segmented and the patient's body in lung region is extracted to set the search region for lymph nodes. Multi-scale Hessian based blob detection is then applied to detect potential lymph nodes within the search region. Next, the detected potential candidates are segmented by fast level set method. Finally, features are calculated from the segmented candidates and support vector machine (SVM) classification is utilized for false positive reduction. Two blobness features, Frangi's and Li's, are tested and their free-response receiver operating characteristic (FROC) curves are generated to assess system performance. We applied our detection system to 12 patients with 168 axillary lymph nodes measuring greater than 10 mm. All lymph nodes are manually labeled as ground truth. The system achieved sensitivities of 81% and 85% at 2 false positives per patient for Frangi's and Li's blobness, respectively.

  19. Non-Invasive Health Diagnostics using Eye as a 'Window to the Body'

    NASA Technical Reports Server (NTRS)

    Ansari, Rafat R.

    2002-01-01

    As a 'window to the body', the eye offers the opportunity to use light in various forms to detect ocular and systemic abnormalities long before clinical symptoms appear and help develop preventative/therapeutic countermeasures early. The effects of space travel on human body are similar to those of normal aging. For example, radiation exposure in space could lead to formation of cataracts and cancer by damaging the DNA and causing gene mutation. Additionally, the zero-gravity environment causes fluid shifts in the upper extremities of the body and changes the way blood flows and organ system performs. Here on Earth, cataract, age-related macular degeneration (AMD), diabetic retinopathy (DR), and glaucoma are major eye diseases and are expected to double in next two decades. To detect, prevent, and treat untoward effects of prolonged space travel in real-time requires the development of non-invasive diagnostic technologies that are compact and powerful. We are developing fiber-optic sensors to evaluate the ocular tissues in health, aging, and disease employing the techniques of dynamic light scattering (cataract, uveitis, Alzheimer's, glaucoma, DR, radiation damage, refractive surgery outcomes), auto-fluorescence (aging, DR), laser-Doppler flowmetry (choroidal blood flow), Raman spectroscopy (AMD), polarimetry (diabetes), and retinal oximetry (occult blood loss). The non-invasive feature of these technologies integrated in a head-mounted/goggles-like device permits frequent repetition of tests, enabling evaluation of the results to therapy that may ultimately be useful in various telemedicine applications on Earth and in space.

  20. Lateral-Line Detection of Underwater Objects: From Goldfish to Submarines

    NASA Astrophysics Data System (ADS)

    van Hemmen, J. Leo

    2010-03-01

    Fish and some aquatic amphibians use their mechanosensory lateral-line system to navigate by means of hydrodynamic cues. How a fish determines an object's position and shape only through the lateral-line system and the ensuing neuronal processing is still a challenging problem. Our studies have shown that both stimulus position and stimulus form can be determined within the range of about one fish length and are encoded through the response of the afferent nerves originating from the detectors. A minimal detection model of a vibrating sphere (a dipole) has now been extended to other stimuli such as translating spheres, ellipsoids, or even wakes (vortex rings). The theoretical model is fully verified by experimental data. We have also constructed an underwater robot with an artificial lateral-line system designed to detect e.g. the presence of walls by measuring the change of water flow around the body. We will show how a simple model fits experimental results obtained from trout and goldfish and how a submarine may well be able to detect underwater objects by using an artificial lateral-line system.

  1. Multi-point laser coherent detection system and its application on vibration measurement

    NASA Astrophysics Data System (ADS)

    Fu, Y.; Yang, C.; Xu, Y. J.; Liu, H.; Yan, K.; Guo, M.

    2015-05-01

    Laser Doppler vibrometry (LDV) is a well-known interferometric technique to measure the motions, vibrations and mode shapes of machine components and structures. The drawback of commercial LDV is that it can only offer a pointwise measurement. In order to build up a vibrometric image, a scanning device is normally adopted to scan the laser point in two spatial axes. These scanning laser Doppler vibrometers (SLDV) assume that the measurement conditions remain invariant while multiple and identical, sequential measurements are performed. This assumption makes SLDVs impractical to do measurement on transient events. In this paper, we introduce a new multiple-point laser coherent detection system based on spatial-encoding technology and fiber configuration. A simultaneous vibration measurement on multiple points is realized using a single photodetector. A prototype16-point laser coherent detection system is built and it is applied to measure the vibration of various objects, such as body of a car or a motorcycle when engine is on and under shock tests. The results show the prospect of multi-point laser coherent detection system in the area of nondestructive test and precise dynamic measurement.

  2. The EXPERT project: part of the Super-FRS Experiment Collaboration

    NASA Astrophysics Data System (ADS)

    Chudoba, V.; "EXPERT project, Recent researches into solid bodies and magnetic fields in the solar system; Proceedings of the Topical Meeting and Symposium, Ottawa, Canada, May 16-June 2, 1982

    NASA Technical Reports Server (NTRS)

    Vette, J. I. (Editor); Runcorn, S. K. (Editor); Gruen, E. (Editor); Mcdonnell, J. A. M.

    1982-01-01

    Topics discussed include the magnetic history of the early solar system, impact processes in solid bodies (e.g., meteoroids and asteroids), and topics related to cometary missions. The section devoted to cometary missions lays particular stress on missions to Comet Halley; attention is given to such aspects of these missions as the investigation of hypervelocity impact on the Giotto Halley mission dust shield, the detection of energetic cometary and solar particles by the EPONA instrument on the Giotto mission, the dust hazard near Comet Halley in regard to the Vega project, and cometary ephemerides for spacecraft flyby missions.

  3. Flexible, Stretchable Sensors for Wearable Health Monitoring: Sensing Mechanisms, Materials, Fabrication Strategies and Features

    PubMed Central

    Liu, Yan; Wang, Hai; Zhao, Wei; Qin, Hongbo; Xie, Yongqiang

    2018-01-01

    Wearable health monitoring systems have gained considerable interest in recent years owing to their tremendous promise for personal portable health watching and remote medical practices. The sensors with excellent flexibility and stretchability are crucial components that can provide health monitoring systems with the capability of continuously tracking physiological signals of human body without conspicuous uncomfortableness and invasiveness. The signals acquired by these sensors, such as body motion, heart rate, breath, skin temperature and metabolism parameter, are closely associated with personal health conditions. This review attempts to summarize the recent progress in flexible and stretchable sensors, concerning the detected health indicators, sensing mechanisms, functional materials, fabrication strategies, basic and desired features. The potential challenges and future perspectives of wearable health monitoring system are also briefly discussed. PMID:29470408

  4. Flexible, Stretchable Sensors for Wearable Health Monitoring: Sensing Mechanisms, Materials, Fabrication Strategies and Features.

    PubMed

    Liu, Yan; Wang, Hai; Zhao, Wei; Zhang, Min; Qin, Hongbo; Xie, Yongqiang

    2018-02-22

    Wearable health monitoring systems have gained considerable interest in recent years owing to their tremendous promise for personal portable health watching and remote medical practices. The sensors with excellent flexibility and stretchability are crucial components that can provide health monitoring systems with the capability of continuously tracking physiological signals of human body without conspicuous uncomfortableness and invasiveness. The signals acquired by these sensors, such as body motion, heart rate, breath, skin temperature and metabolism parameter, are closely associated with personal health conditions. This review attempts to summarize the recent progress in flexible and stretchable sensors, concerning the detected health indicators, sensing mechanisms, functional materials, fabrication strategies, basic and desired features. The potential challenges and future perspectives of wearable health monitoring system are also briefly discussed.

  5. Clump detections and limits on moons in Jupiter's ring system.

    PubMed

    Showalter, Mark R; Cheng, Andrew F; Weaver, Harold A; Stern, S Alan; Spencer, John R; Throop, Henry B; Birath, Emma M; Rose, Debi; Moore, Jeffrey M

    2007-10-12

    The dusty jovian ring system must be replenished continuously from embedded source bodies. The New Horizons spacecraft has performed a comprehensive search for kilometer-sized moons within the system, which might have revealed the larger members of this population. No new moons were found, however, indicating a sharp cutoff in the population of jovian bodies smaller than 8-kilometer-radius Adrastea. However, the search revealed two families of clumps in the main ring: one close pair and one cluster of three to five. All orbit within a brighter ringlet just interior to Adrastea. Their properties are very different from those of the few other clumpy rings known; the origin and nonrandom distribution of these features remain unexplained, but resonant confinement by Metis may play a role.

  6. Locatable-Body Temperature Monitoring Based on Semi-Active UHF RFID Tags

    PubMed Central

    Liu, Guangwei; Mao, Luhong; Chen, Liying; Xie, Sheng

    2014-01-01

    This paper presents the use of radio-frequency identification (RFID) technology for the real-time remote monitoring of body temperature, while an associated program can determine the location of the body carrying the respective sensor. The RFID chip's internal integrated temperature sensor is used for both the human-body temperature detection and as a measurement device, while using radio-frequency communication to broadcast the temperature information. The adopted RFID location technology makes use of reference tags together with a nearest neighbor localization algorithm and a multiple-antenna time-division multiplexing location system. A graphical user interface (GUI) was developed for collecting temperature and location data for the data fusion by using RFID protocols. With a puppy as test object, temperature detection and localization experiments were carried out. The measured results show that the applied method, when using a mercury thermometer for comparison in terms of measuring the temperature of the dog, has a good consistency, with an average temperature error of 0.283 °C. When using the associated program over the area of 12.25 m2, the average location error is of 0.461 m, which verifies the feasibility of the sensor-carrier location by using the proposed program. PMID:24675759

  7. Locatable-body temperature monitoring based on semi-active UHF RFID tags.

    PubMed

    Liu, Guangwei; Mao, Luhong; Chen, Liying; Xie, Sheng

    2014-03-26

    This paper presents the use of radio-frequency identification (RFID) technology for the real-time remote monitoring of body temperature, while an associated program can determine the location of the body carrying the respective sensor. The RFID chip's internal integrated temperature sensor is used for both the human-body temperature detection and as a measurement device, while using radio-frequency communication to broadcast the temperature information. The adopted RFID location technology makes use of reference tags together with a nearest neighbor localization algorithm and a multiple-antenna time-division multiplexing location system. A graphical user interface (GUI) was developed for collecting temperature and location data for the data fusion by using RFID protocols. With a puppy as test object, temperature detection and localization experiments were carried out. The measured results show that the applied method, when using a mercury thermometer for comparison in terms of measuring the temperature of the dog, has a good consistency, with an average temperature error of 0.283 °C. When using the associated program over the area of 12.25 m2, the average location error is of 0.461 m, which verifies the feasibility of the sensor-carrier location by using the proposed program.

  8. Unobstructive Body Area Networks (BAN) for efficient movement monitoring.

    PubMed

    Felisberto, Filipe; Costa, Nuno; Fdez-Riverola, Florentino; Pereira, António

    2012-01-01

    The technological advances in medical sensors, low-power microelectronics and miniaturization, wireless communications and networks have enabled the appearance of a new generation of wireless sensor networks: the so-called wireless body area networks (WBAN). These networks can be used for continuous monitoring of vital parameters, movement, and the surrounding environment. The data gathered by these networks contributes to improve users' quality of life and allows the creation of a knowledge database by using learning techniques, useful to infer abnormal behaviour. In this paper we present a wireless body area network architecture to recognize human movement, identify human postures and detect harmful activities in order to prevent risk situations. The WBAN was created using tiny, cheap and low-power nodes with inertial and physiological sensors, strategically placed on the human body. Doing so, in an as ubiquitous as possible way, ensures that its impact on the users' daily actions is minimum. The information collected by these sensors is transmitted to a central server capable of analysing and processing their data. The proposed system creates movement profiles based on the data sent by the WBAN's nodes, and is able to detect in real time any abnormal movement and allows for a monitored rehabilitation of the user.

  9. Biochemical sensor tubing for point-of-care monitoring of intravenous drugs and metabolites.

    PubMed

    Choi, Charles J; Wu, Hsin-Yu; George, Sherine; Weyhenmeyer, Jonathan; Cunningham, Brian T

    2012-02-07

    In medical facilities, there is strong motivation to develop detection systems that can provide continuous analysis of fluids in medical tubing used to either deliver or remove fluids from a patient's body. Possible applications include systems that increase the safety of intravenous (IV) drug injection and point-of-care health monitoring. In this work, we incorporated a surface-enhanced Raman scattering (SERS) sensor comprised of an array of closely spaced metal nanodomes into flexible tubing commonly used for IV drug delivery and urinary catheters. The nanodome sensor was fabricated by a low-cost, large-area process that enables single use disposable operation. As exemplary demonstrations, the sensor was used to kinetically detect promethazine (pain medication) and urea (urinary metabolite) within their clinically relevant concentration ranges. Distinct SERS peaks for each analyte were used to demonstrate separate detection and co-detection of the analytes.

  10. Imitation-tumor targeting based on continuous-wave near-infrared tomography.

    PubMed

    Liu, Dan; Liu, Xin; Zhang, Yan; Wang, Qisong; Lu, Jingyang; Sun, Jinwei

    2017-12-01

    Continuous-wave Near-Infrared (NIR) optical spectroscopy has shown great diagnostic capability in the early tumor detection with advantages of low-cost, portable, non-invasive, and non-radiative. In this paper, Modified Lambert-Beer Theory is deployed to address the low-resolution issues of the NIR technique and to design the tumor detecting and imaging system. Considering that tumor tissues have features such as high blood flow and hypoxia, the proposed technique can detect the location, size, and other information of the tumor tissues by comparing the absorbance between pathological and normal tissues. Finally, the tumor tissues can be imaged through tomographic method. The simulation experiments prove that the proposed technique and designed system can efficiently detect the tumor tissues, achieving imaging precision within 1 mm. The work of the paper has shown great potential in the diagnosis of tumor close to body surface.

  11. Fall prevention walker during rehabilitation

    NASA Astrophysics Data System (ADS)

    Tee, Kian Sek; E, Chun Zhi; Saim, Hashim; Zakaria, Wan Nurshazwani Wan; Khialdin, Safinaz Binti Mohd; Isa, Hazlita; Awad, M. I.; Soon, Chin Fhong

    2017-09-01

    This paper proposes on the design of a walker for the prevention of falling among elderlies or patients during rehabilitation whenever they use a walker to assist them. Fall happens due to impaired balance or gait problem. The assistive device is designed by applying stability concept and an accelerometric fall detection system is included. The accelerometric fall detection system acts as an alerting device that acquires body accelerometric data and detect fall. Recorded accelerometric data could be useful for further assessment. Structural strength of the walker was verified via iterations of simulation using finite element analysis, before being fabricated. Experiments were conducted to identify the fall patterns using accelerometric data. The design process and detection of fall pattern demonstrates the design of a walker that could support the user without fail and alerts the helper, thus salvaging the users from injuries due to fall and unattended situation.

  12. Detection of bisphenol A in food packaging based on fluorescent conjugated polymer PPESO3 and enzyme system.

    PubMed

    Huang, Hui; Li, Yongxin; Liu, Jintong; Tong, Jin; Su, Xingguang

    2015-10-15

    Bisphenol A (BPA) is a kind of carcinogen, which can interfere with the body's endocrine system. In this paper, a new kind of fluorescent sensor for BPA detection was established based on the fluorescent conjugated polymer PPESO3. The oxidative product of BPA is able to quench PPESO3 in the presence of HRP and H2O2, and the quenched PL intensity of PPESO3 was proportionally to the concentration of BPA in the range of 1-100 μmol/L with a detection limit of 4 × 10(-7) mol/L. The proposed method has been applied to detect BPA in eight food packaging samples with satisfactory results. The proposed method has the potential for the assay of BPA in food or food packaging samples. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. H2/O2 three-body rates at high temperatures

    NASA Technical Reports Server (NTRS)

    Marinelli, William J.; Kessler, William J.; Piper, Lawrence G.; Rawlins, W. Terry

    1990-01-01

    The extraction of thrust from air breathing hypersonic propulsion systems is critically dependent on the degree to which chemical equilibrium is reached in the combustion process. In the combustion of H2/Air mixtures, slow three-body chemical reactions involving H-atoms, O-atoms, and the OH radical play an important role in energy extraction. A first-generation high temperature and pressure flash-photolysis/laser-induced fluorescence reactor was designed and constructed to measure these important three-body rates. The system employs a high power excimer laser to produce these radicals via the photolysis of stable precursors. A novel two-photon laser-induced fluorescence technique is employed to detect H-atoms without optical thickness or O2 absorption problems. To demonstrate the feasibility of the technique the apparatus in the program is designed to perform preliminary measurements on the H + O2 + M reaction at temperatures from 300 to 835 K.

  14. Microfluidic Approaches for Isolation, Detection, and Characterization of Extracellular Vesicles: Current Status and Future Directions

    PubMed Central

    Gholizadeh, Shima; Draz, Mohamed; Zarghooni, Maryam; Nezhad, Amir Sanati; Ghavami, Saeid; Shafiee, Hadi; Akbari, Mohsen

    2017-01-01

    Extracellular vesicles (EVs) are cell-derived vesicles present in body fluids that play an essential role in various cellular processes, such as intercellular communication, inflammation, cellular homeostasis, survival, transport, and regeneration. Their isolation and analysis from body fluids have a great clinical potential to provide information on a variety of disease states such as cancer, cardiovascular complication and inflammatory disorders. Despite increasing scientific and clinical interest in this field, at the time of writing there are still no standardized procedures available for the purification, detection, and characterization of EVs. Advances in microfluidics allow for chemical sampling with increasingly high spatial resolution and under precise manipulation down to single molecule level. In this review, our objective is to give a brief overview on the working principle and examples of the isolation and detection methods with the potential to be used for extracellular vesicles. This review will also highlight the integrated on-chip systems for isolation and characterization of EVs. PMID:28088752

  15. Transit timing analysis of the exoplanet TrES-5 b. Possible existence of the exoplanet TrES-5 c

    NASA Astrophysics Data System (ADS)

    Sokov, Eugene N.; Sokova, Iraida A.; Dyachenko, Vladimir V.; Rastegaev, Denis A.; Burdanov, Artem; Rusov, Sergey A.; Benni, Paul; Shadick, Stan; Hentunen, Veli-Pekka; Salisbury, Mark; Esseiva, Nicolas; Garlitz, Joe; Bretton, Marc; Ogmen, Yenal; Karavaev, Yuri; Ayiomamitis, Anthony; Mazurenko, Oleg; Alonso, David Molina; Velichko, Sergey F.

    2018-06-01

    In this work, we present transit timing variations detected for the exoplanet TrES-5b. To obtain the necessary amount of photometric data for this exoplanet, we have organized an international campaign to search for exoplanets based on the Transit Timing Variation method (TTV) and as a result of this we collected 30 new light curves, 15 light curves from the Exoplanet Transit Database (ETD) and 8 light curves from the literature for the timing analysis of the exoplanet TrES-5b. We have detected timing variations with a semi-amplitude of A ≈ 0.0016 days and a period of P ≈ 99 days. We carried out the N-body modeling based on the three-body problem. The detected perturbation of TrES-5b may be caused by a second exoplanet in the TrES-5 system. We have calculated the possible mass and resonance of the object: M ≈ 0.24MJup at a 1:2 Resonance.

  16. Development of a wearable wireless body area network for health monitoring of the elderly and disabled

    NASA Astrophysics Data System (ADS)

    Rushambwa, Munyaradzi C.; Gezimati, Mavis; Jeeva, J. B.

    2017-11-01

    Novel advancements in systems miniaturization, electronics in health care and communication technologies are enabling the integration of both patients and doctors involvement in health care system. A Wearable Wireless Body Area Network (WWBAN) provides continuous, unobtrusive ambulatory, ubiquitous health monitoring, and provide real time patient’s status to the physician without any constraint on their normal daily life activities. In this project we developed a wearable wireless body area network system that continuously monitor the health of the elderly and the disabled and provide them with independent, safe and secure living. The WWBAN system monitors the following parameters; blood oxygen saturation using a pulse oximeter sensor (SpO2), heart rate (HR) pulse sensor, Temperature, hydration, glucose level and fall detection. When the wearable system is put on, the sensor values are processed and analysed. If any of the monitored parameter values falls below or exceeds the normal range, there is trigger of remote alert by which an SMS is send to a doctor or physician via GSM module and network. The developed system offers flexibility and mobility to the user; it is a real time system and has significance in revolutionizing health care system by enabling non-invasive, inexpensive, continuous health monitoring.

  17. Breath Activity Monitoring With Wearable UWB Radars: Measurement and Analysis of the Pulses Reflected by the Human Body.

    PubMed

    Pittella, Erika; Pisa, Stefano; Cavagnaro, Marta

    2016-07-01

    Measurements of ultrawideband (UWB) pulses reflected by the human body are conducted to evidence the differences in the received signal time behaviors due to respiration phases, and to experimentally verify previously obtained numerical results on the body's organs responsible for pulse reflection. Two experimental setups are used. The first one is based on a commercially available impulse radar system integrated on a single chip, while the second one implements an indirect time-domain reflectometry technique using a vector network analyzer controlled by a LabVIEW virtual instrument running on a laptop. When the UWB source is placed close to the human body, a small reflection due to the lung boundaries is present in the received pulse well distanced in time from the reflection due to the air-skin interface; this reflection proved to be linked to the different respiration phases. The changes in the reflected pulse could be used to detect, through wearable radar systems, lung movements associated with the breath activity. The development of a wearable radar system is of great importance because it allows the breath activity sensing without interfering with the subject daily activities.

  18. Four and Five-body non-local correlations in pure and mixed states

    NASA Astrophysics Data System (ADS)

    Sharma, Santosh Shelly; Sharma, Naresh Kumar

    2014-03-01

    In our earlier works, quantifiers of four and three-body correlations based on four qubit invariants had been constructed for pure states. The principal construction tools, local unitary invariance and notion of negativity fonts, make it possible to outline the process of selective construction of meaningful invariants that quanify N and N - 1 qubit correlations. It is found that, in general, starting from degree k invariants relevant to detection and quantifcation of specific type of non-local quantum correlations in (N - 1) (N > 2) qubit system, one can construct degree k coefficients of an N-qubit bilinear form. When k =2 N - 2 (N > 2), one of the invariants of degree 2 N - 1 quantifies N-body non-local correlations The process is recursive. While for few body systems it yields analytical expressions in terms of functions of state coefficients, for larger systems it can be the guiding principle to numerical caculations of invariants. To illustrate the process, an expression for a five qubit correlation quantifier for pure states is constructed. In addition, the extension to specific rank two mixed states through convex-roof extension is investigated. We gratefully acknowledge Financial support from CNPq Brazil and Fundacao Araucaria PR Brazil.

  19. Automated measurement of cattle surface temperature and its correlation with rectal temperature

    PubMed Central

    Ren, Kang; Chen, XiaoLi; Lu, YongQiang; Wang, Dong

    2017-01-01

    The body temperature of cattle varies regularly with both the reproductive cycle and disease status. Establishing an automatic method for monitoring body temperature may facilitate better management of reproduction and disease control in cattle. Here, we developed an Automatic Measurement System for Cattle’s Surface Temperature (AMSCST) to measure the temperature of metatarsus by attaching a special shell designed to fit the anatomy of cattle’s hind leg. Using AMSCST, the surface temperature (ST) on the metatarsus of the hind leg was successively measured during 24 hours a day with an interval of one hour in three tested seasons. Based on ST and rectal temperature (RT) detected by AMSCST and mercury thermometer, respectively, a linear mixed model was established, regarding both the time point and seasonal factors as the fixed effects. Unary linear correlation and Bland-Altman analysis results indicated that the temperatures measured by AMSCST were closely correlated to those measured by mercury thermometer (R2 = 0.998), suggesting that the AMSCST is an accurate and reliable way to detect cattle’s body temperature. Statistical analysis showed that the differences of STs among the three seasons, or among the different time points were significant (P<0.05), and the differences of RTs among the different time points were similarly significant (P<0.05). The prediction accuracy of the mixed model was verified by 10-fold cross validation. The average difference between measured RT and predicted RT was about 0.10 ± 0.10°C with the association coefficient of 0.644, indicating the feasibility of this model in measuring cattle body temperature. Therefore, an automated technology for accurately measuring cattle body temperature was accomplished by inventing an optimal device and establishing the AMSCST system. PMID:28426682

  1. Method for detecting and diagnosing disease caused by pathological protein aggregation

    DOEpatents

    Stevens, Fred J.; Myatt, Elizabeth A.; Solomon, Alan

    2000-01-01

    A method is provided for detecting pathological macromolecules in a patient, comprising obtaining body fluid from the patient, pretreating the body fluid, subjecting the pretreated body fluid to size-exclusion chromatography to create an excluded fluid, and analyzing the excluded fluid to detect macromolecules having a predetermined molecular weight. The method also allows for comparing elution spectra with reference spectra of suspect pathologic proteins.

  2. Thiazole derivative-modified upconversion nanoparticles for Hg2+ detection in living cells

    NASA Astrophysics Data System (ADS)

    Gu, Bin; Zhou, Yi; Zhang, Xiao; Liu, Xiaowang; Zhang, Yuhai; Marks, Robert; Zhang, Hua; Liu, Xiaogang; Zhang, Qichun

    2015-12-01

    Mercury ion (Hg2+) is an extremely toxic ion, which will accumulate in human bodies and cause severe nervous system damage. Therefore, the sensitive and efficient monitoring of Hg2+ in human bodies is of great importance. Upconversion nanoparticle (UCNPs) based nano probes exhibit no autofluorescence, deep penetration depth and chemical stability in biological samples, as well as a large anti-stokes shift. In this study, we have developed thiazole-derivative-functionalized UCNPs, and employed an upconversion emission intensity ratio of 540 nm to 803 nm (I540/I803) as a ratiometric signal to detect Hg2+ in living cells showing excellent photo stability and high selectivity. Our nano probe was characterized using transmission electron microscopy (TEM) and powder X-ray diffraction (PXRD). The low cytotoxicity of our probe was confirmed by an MTT assay and the UCL test in HeLa cells was carried out by confocal microscopy. Our results demonstrated that organic-dye-functionalized UCNPs should be a good strategy for detecting toxic metal ions when studying cellular biosystems.Mercury ion (Hg2+) is an extremely toxic ion, which will accumulate in human bodies and cause severe nervous system damage. Therefore, the sensitive and efficient monitoring of Hg2+ in human bodies is of great importance. Upconversion nanoparticle (UCNPs) based nano probes exhibit no autofluorescence, deep penetration depth and chemical stability in biological samples, as well as a large anti-stokes shift. In this study, we have developed thiazole-derivative-functionalized UCNPs, and employed an upconversion emission intensity ratio of 540 nm to 803 nm (I540/I803) as a ratiometric signal to detect Hg2+ in living cells showing excellent photo stability and high selectivity. Our nano probe was characterized using transmission electron microscopy (TEM) and powder X-ray diffraction (PXRD). The low cytotoxicity of our probe was confirmed by an MTT assay and the UCL test in HeLa cells was carried out by confocal microscopy. Our results demonstrated that organic-dye-functionalized UCNPs should be a good strategy for detecting toxic metal ions when studying cellular biosystems. Electronic supplementary information (ESI) available: NMR, MALDI-TOF MS spectra, etc. See DOI: 10.1039/c5nr05286f

  3. Structured light: theory and practice and practice and practice...

    NASA Astrophysics Data System (ADS)

    Keizer, Richard L.; Jun, Heesung; Dunn, Stanley M.

    1991-04-01

    We have developed a structured light system for noncontact 3-D measurement of human body surface areas and volumes. We illustrate the image processing steps and algorithms used to recover range data from a single camera image, reconstruct a complete surface from one or more sets of range data, and measure areas and volumes. The development of a working system required the solution to a number of practical problems in image processing and grid labeling (the stereo correspondence problem for structured light). In many instances we found that the standard cookbook techniques for image processing failed. This was due in part to the domain (human body), the restrictive assumptions of the models underlying the cookbook techniques, and the inability to consistently predict the outcome of the image processing operations. In this paper, we will discuss some of our successes and failures in two key steps in acquiring range data using structured light: First, the problem of detecting intersections in the structured light grid, and secondly, the problem of establishing correspondence between projected and detected intersections. We will outline the problems and solutions we have arrived at after several years of trial and error. We can now measure range data with an r.m.s. relative error of 0.3% and measure areas on the human body surface within 3% and volumes within 10%. We have found that the solution to building a working vision system requires the right combination of theory and experimental verification.

  4. Waveform model for an eccentric binary black hole based on the effective-one-body-numerical-relativity formalism

    NASA Astrophysics Data System (ADS)

    Cao, Zhoujian; Han, Wen-Biao

    2017-08-01

    Binary black hole systems are among the most important sources for gravitational wave detection. They are also good objects for theoretical research for general relativity. A gravitational waveform template is important to data analysis. An effective-one-body-numerical-relativity (EOBNR) model has played an essential role in the LIGO data analysis. For future space-based gravitational wave detection, many binary systems will admit a somewhat orbit eccentricity. At the same time, the eccentric binary is also an interesting topic for theoretical study in general relativity. In this paper, we construct the first eccentric binary waveform model based on an effective-one-body-numerical-relativity framework. Our basic assumption in the model construction is that the involved eccentricity is small. We have compared our eccentric EOBNR model to the circular one used in the LIGO data analysis. We have also tested our eccentric EOBNR model against another recently proposed eccentric binary waveform model; against numerical relativity simulation results; and against perturbation approximation results for extreme mass ratio binary systems. Compared to numerical relativity simulations with an eccentricity as large as about 0.2, the overlap factor for our eccentric EOBNR model is better than 0.98 for all tested cases, including spinless binary and spinning binary, equal mass binary, and unequal mass binary. Hopefully, our eccentric model can be the starting point to develop a faithful template for future space-based gravitational wave detectors.

  5. Passive acoustic monitoring to detect spawning in large-bodied catostomids

    USGS Publications Warehouse

    Straight, Carrie A.; Freeman, Byron J.; Freeman, Mary C.

    2014-01-01

    Documenting timing, locations, and intensity of spawning can provide valuable information for conservation and management of imperiled fishes. However, deep, turbid or turbulent water, or occurrence of spawning at night, can severely limit direct observations. We have developed and tested the use of passive acoustics to detect distinctive acoustic signatures associated with spawning events of two large-bodied catostomid species (River Redhorse Moxostoma carinatum and Robust Redhorse Moxostoma robustum) in river systems in north Georgia. We deployed a hydrophone with a recording unit at four different locations on four different dates when we could both record and observe spawning activity. Recordings captured 494 spawning events that we acoustically characterized using dominant frequency, 95% frequency, relative power, and duration. We similarly characterized 46 randomly selected ambient river noises. Dominant frequency did not differ between redhorse species and ranged from 172.3 to 14,987.1 Hz. Duration of spawning events ranged from 0.65 to 11.07 s, River Redhorse having longer durations than Robust Redhorse. Observed spawning events had significantly higher dominant and 95% frequencies than ambient river noises. We additionally tested software designed to automate acoustic detection. The automated detection configurations correctly identified 80–82% of known spawning events, and falsely indentified spawns 6–7% of the time when none occurred. These rates were combined over all recordings; rates were more variable among individual recordings. Longer spawning events were more likely to be detected. Combined with sufficient visual observations to ascertain species identities and to estimate detection error rates, passive acoustic recording provides a useful tool to study spawning frequency of large-bodied fishes that displace gravel during egg deposition, including several species of imperiled catostomids.

  6. Colorimetric chemical analysis sampler for the presence of explosives

    DOEpatents

    Nunes, Peter J [Danville, CA; Del Eckels, Joel [Livermore, CA; Reynolds, John G [San Ramon, CA; Pagoria, Philip F [Livermore, CA; Simpson, Randall L [Livermore, CA

    2011-09-27

    A tester for testing for explosives comprising a body, a lateral flow swab unit operably connected to the body, a explosives detecting reagent contained in the body, and a dispenser operatively connected to the body and the lateral flow swab unit. The dispenser selectively allows the explosives detecting reagent to be delivered to the lateral flow swab unit.

  7. Colorimetric chemical analysis sampler for the presence of explosives

    DOEpatents

    Nunes, Peter J.; Eckels, Joel Del; Reynolds, John G.; Pagoria, Philip F.; Simpson, Randall L.

    2014-07-01

    A tester for testing for explosives comprising a body, a lateral flow swab unit operably connected to the body, a explosives detecting reagent contained in the body, and a dispenser operatively connected to the body and the lateral flow swab unit. The dispenser selectively allows the explosives detecting reagent to be delivered to the lateral flow swab unit.

  8. Falling-incident detection and throughput enhancement in a multi-camera video-surveillance system.

    PubMed

    Shieh, Wann-Yun; Huang, Ju-Chin

    2012-09-01

    For most elderly, unpredictable falling incidents may occur at the corner of stairs or a long corridor due to body frailty. If we delay to rescue a falling elder who is likely fainting, more serious consequent injury may occur. Traditional secure or video surveillance systems need caregivers to monitor a centralized screen continuously, or need an elder to wear sensors to detect falling incidents, which explicitly waste much human power or cause inconvenience for elders. In this paper, we propose an automatic falling-detection algorithm and implement this algorithm in a multi-camera video surveillance system. The algorithm uses each camera to fetch the images from the regions required to be monitored. It then uses a falling-pattern recognition algorithm to determine if a falling incident has occurred. If yes, system will send short messages to someone needs to be noticed. The algorithm has been implemented in a DSP-based hardware acceleration board for functionality proof. Simulation results show that the accuracy of falling detection can achieve at least 90% and the throughput of a four-camera surveillance system can be improved by about 2.1 times. Copyright © 2011 IPEM. Published by Elsevier Ltd. All rights reserved.

  9. Development of Vision Based Multiview Gait Recognition System with MMUGait Database

    PubMed Central

    Ng, Hu; Tan, Wooi-Haw; Tong, Hau-Lee

    2014-01-01

    This paper describes the acquisition setup and development of a new gait database, MMUGait. This database consists of 82 subjects walking under normal condition and 19 subjects walking with 11 covariate factors, which were captured under two views. This paper also proposes a multiview model-based gait recognition system with joint detection approach that performs well under different walking trajectories and covariate factors, which include self-occluded or external occluded silhouettes. In the proposed system, the process begins by enhancing the human silhouette to remove the artifacts. Next, the width and height of the body are obtained. Subsequently, the joint angular trajectories are determined once the body joints are automatically detected. Lastly, crotch height and step-size of the walking subject are determined. The extracted features are smoothened by Gaussian filter to eliminate the effect of outliers. The extracted features are normalized with linear scaling, which is followed by feature selection prior to the classification process. The classification experiments carried out on MMUGait database were benchmarked against the SOTON Small DB from University of Southampton. Results showed correct classification rate above 90% for all the databases. The proposed approach is found to outperform other approaches on SOTON Small DB in most cases. PMID:25143972

  10. New method for monitoring nitric oxide in vivo using microdialysis sampling and chemiluminescence reaction

    NASA Astrophysics Data System (ADS)

    Yao, Dachun; Evmiridis, Nick P.; Zhou, Yikai; Xu, Shunqing; Zhou, Huarong

    2001-09-01

    A new method employing a combination of micro dialysis sampling and chemiluminescence reaction was developed to monitor nitric oxide (NO) in vivo. A special probe was designed with an interference-free membrane to achieve a very high selectivity for NO. High sensitivity was achieved by optimizing the working system and improving the NO sampling time. This system was used in vivo to monitor blood and brain tissue in rats and rabbits. We have established that this system is sensitive enough to detect variations in NO production in difference physiological state. The system can detect NO in the linear range of 5nM-1(mu) M, with a detection limit of 1nM, and real NO concentrations in our experimental animals were found to be in the range of 1-5 nM or even less. Finally, the effects of body temperature, NO donors, Viagra, NO activators, NO cofactors, NO interference were investigated carefully in different physiological situations.

  11. Real-Time Detection of Sporadic Meteors in the Intensified TV Imaging Systems.

    PubMed

    Vítek, Stanislav; Nasyrova, Maria

    2017-12-29

    The automatic observation of the night sky through wide-angle video systems with the aim of detecting meteor and fireballs is currently among routine astronomical observations. The observation is usually done in multi-station or network mode, so it is possible to estimate the direction and the speed of the body flight. The high velocity of the meteorite flying through the atmosphere determines the important features of the camera systems, namely the high frame rate. Thanks to high frame rates, such imaging systems produce a large amount of data, of which only a small fragment has scientific potential. This paper focuses on methods for the real-time detection of fast moving objects in the video sequences recorded by intensified TV systems with frame rates of about 60 frames per second. The goal of our effort is to remove all unnecessary data during the daytime and make free hard-drive capacity for the next observation. The processing of data from the MAIA (Meteor Automatic Imager and Analyzer) system is demonstrated in the paper.

  12. Real-Time Detection of Sporadic Meteors in the Intensified TV Imaging Systems

    PubMed Central

    2017-01-01

    The automatic observation of the night sky through wide-angle video systems with the aim of detecting meteor and fireballs is currently among routine astronomical observations. The observation is usually done in multi-station or network mode, so it is possible to estimate the direction and the speed of the body flight. The high velocity of the meteorite flying through the atmosphere determines the important features of the camera systems, namely the high frame rate. Thanks to high frame rates, such imaging systems produce a large amount of data, of which only a small fragment has scientific potential. This paper focuses on methods for the real-time detection of fast moving objects in the video sequences recorded by intensified TV systems with frame rates of about 60 frames per second. The goal of our effort is to remove all unnecessary data during the daytime and make free hard-drive capacity for the next observation. The processing of data from the MAIA (Meteor Automatic Imager and Analyzer) system is demonstrated in the paper. PMID:29286294

  13. Statistical data mining of streaming motion data for fall detection in assistive environments.

    PubMed

    Tasoulis, S K; Doukas, C N; Maglogiannis, I; Plagianakos, V P

    2011-01-01

    The analysis of human motion data is interesting for the purpose of activity recognition or emergency event detection, especially in the case of elderly or disabled people living independently in their homes. Several techniques have been proposed for identifying such distress situations using either motion, audio or video sensors on the monitored subject (wearable sensors) or the surrounding environment. The output of such sensors is data streams that require real time recognition, especially in emergency situations, thus traditional classification approaches may not be applicable for immediate alarm triggering or fall prevention. This paper presents a statistical mining methodology that may be used for the specific problem of real time fall detection. Visual data captured from the user's environment, using overhead cameras along with motion data are collected from accelerometers on the subject's body and are fed to the fall detection system. The paper includes the details of the stream data mining methodology incorporated in the system along with an initial evaluation of the achieved accuracy in detecting falls.

  14. Airborne Human Odorants: Detection, Dispersion and Characterization

    DTIC Science & Technology

    2012-03-01

    begin this research. To allow the quantification of various human odorants we first calibrated the gas chromatography -mass spectrometry system that...odorants we have chosen for study are emitted from the body in axillary sweat which is a complex mixture of water, protein, lipids and other small...will be employed to quantify odorants collected from various headspaces . Experiment 1: a.) Calibration of GC-MS system was performed by injecting

  15. Microbe Detector

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Under NASA contracts, McDonnell Douglas developed a microbial load monitor to detect bacterial contamination. Vitek Systems, Inc., a subsidiary, was created to commercialize the product for analyzing body fluids. With the AutoMicrobic System, infections may be treated more quickly. The process involves injecting the fluid into identification cards and screening the reaction. Antibiotic treatments are also suggested. Time in hospital and human error is reduced. There are also possible industrial and environmental applications.

  16. Wearable Fall Detector using Integrated Sensors and Energy Devices

    PubMed Central

    Jung, Sungmook; Hong, Seungki; Kim, Jaemin; Lee, Sangkyu; Hyeon, Taeghwan; Lee, Minbaek; Kim, Dae-Hyeong

    2015-01-01

    Wearable devices have attracted great attentions as next-generation electronic devices. For the comfortable, portable, and easy-to-use system platform in wearable electronics, a key requirement is to replace conventional bulky and rigid energy devices into thin and deformable ones accompanying the capability of long-term energy supply. Here, we demonstrate a wearable fall detection system composed of a wristband-type deformable triboelectric generator and lithium ion battery in conjunction with integrated sensors, controllers, and wireless units. A stretchable conductive nylon is used as electrodes of the triboelectric generator and the interconnection between battery cells. Ethoxylated polyethylenimine, coated on the surface of the conductive nylon electrode, tunes the work function of a triboelectric generator and maximizes its performance. The electrical energy harvested from the triboelectric generator through human body motions continuously recharges the stretchable battery and prolongs hours of its use. The integrated energy supply system runs the 3-axis accelerometer and related electronics that record human body motions and send the data wirelessly. Upon the unexpected fall occurring, a custom-made software discriminates the fall signal and an emergency alert is immediately sent to an external mobile device. This wearable fall detection system would provide new opportunities in the mobile electronics and wearable healthcare. PMID:26597423

  17. The Medical Complications Associated with Purging

    PubMed Central

    Forney, K. Jean; Buchman-Schmitt, Jennifer M.; Keel, Pamela K.; Frank, Guido K.W.

    2015-01-01

    Objective Purging behaviors, including self-induced vomiting, laxative abuse, and diuretic abuse, are present across many of the eating disorders. Here we review the major medical complications of these behaviors. Method Although we identified over 100 scholarly articles describing medical complications associated with purging, most papers involved case studies or small, uncontrolled samples. Given the limited evidence base, we conducted a qualitative (rather than systematic) review to identify medical complications that have been attributed to purging behaviors. Results Medical conditions affecting the teeth, esophagus, gastrointestinal system, kidneys, skin, cardiovascular system, and musculoskeletal system were identified, with self-induced vomiting causing the most medical complications. Conclusions Purging behavior can be associated with severe medical complications across all body systems. Mental health professionals should refer patients with purging behaviors to medical providers for screening and treatment as needed. The medical work-up for individuals with eating disorders should include a comprehensive metabolic panel, complete blood count, and a full body exam including the teeth to prevent severe complications. Medical providers should screen patients for purging behaviors and associated medical complications, even in the absence of an eating disorder diagnosis, to increase the detection of eating disorders. Recognizing the link between purging and medical complications can aid in identifying potential eating disorders, particularly those that often elude detection such as purging disorder. PMID:26876429

  18. The Search for Extraterrestrial Life

    NASA Astrophysics Data System (ADS)

    Peter, Ulmschneider

    Looking at the nature, origin, and evolution of life on Earth is one way of assessing whether extraterrestrial life exists on Earth-like planets elsewhere (see Chaps. 5 and 6). A more direct approach is to search for favorable conditions and traces of life on other celestial bodies, both in the solar system and beyond. Clearly, there is little chance of encountering nonhuman intelligent beings in the solar system. But there could well be primitive life on Mars, particularly as in the early history of the solar system the conditions on Mars were quite similar to those on Earth. In addition, surprisingly favorable conditions for life once existed on the moons of Jupiter. Yet even if extraterrestrial life is not encountered in forthcoming space missions, it would be of utmost importance to recover fossils of past organisms as such traces would greatly contribute to our basic understanding of the formation of life. In addition to the planned missions to Mars and Europa, there are extensive efforts to search for life outside the solar system. Rapid advances in the detection of extrasolar planets, outlined in Chap. 3, are expected to lead to the discovery of Earth-like planets in the near future. But how can we detect life on these distant bodies?

  19. On the asteroid hazard

    NASA Astrophysics Data System (ADS)

    Eneev, T. M.; Akhmetshin, R. Z.; Efimov, G. B.

    2012-04-01

    The concept of "space patrol" is considered, aimed at discovering and cataloging the majority of celestial bodies that constitute a menace for the Earth [1, 2]. The scheme of "optical barrier" formed by telescopes of the space patrol is analyzed, requirements to the observation system are formulated, and some schemes of sighting the optical barrier region are suggested (for reliable detection of the celestial bodies approaching the Earth and for determination of their orbits). A comparison is made of capabilities of electro-jet engines and traditional chemical engines for arrangement of patrol spacecraft constellation in the Earth's orbit.

  20. Ultrasound detection of simulated intra-ocular foreign bodies by minimally trained personnel.

    PubMed

    Sargsyan, Ashot E; Dulchavsky, Alexandria G; Adams, James; Melton, Shannon; Hamilton, Douglas R; Dulchavsky, Scott A

    2008-01-01

    To test the ability of non-expert ultrasound operators of divergent backgrounds to detect the presence, size, location, and composition of foreign bodies in an ocular model. High school students (N = 10) and NASA astronauts (N = 4) completed a brief ultrasound training session which focused on basic ultrasound principles and the detection of foreign bodies. The operators used portable ultrasound devices to detect foreign objects of varying location, size (0.5-2 mm), and material (glass, plastic, metal) in a gelatinous ocular model. Operator findings were compared to known foreign object parameters and ultrasound experts (N = 2) to determine accuracy across and between groups. Ultrasound had high sensitivity (astronauts 85%, students 87%, and experts 100%) and specificity (astronauts 81%, students 83%, and experts 95%) for the detection of foreign bodies. All user groups were able to accurately detect the presence of foreign bodies in this model (astronauts 84%, students 81%, and experts 97%). Astronaut and student sensitivity results for material (64% vs. 48%), size (60% vs. 46%), and position (77% vs. 64%) were not statistically different. Experts' results for material (85%), size (90%), and position (98%) were higher; however, the small sample size precluded statistical conclusions. Ultrasound can be used by operators with varying training to detect the presence, location, and composition of intraocular foreign bodies with high sensitivity, specificity, and accuracy.

  1. A Marker-less Monitoring System for Movement Analysis of Infants Using Video Images

    NASA Astrophysics Data System (ADS)

    Shima, Keisuke; Osawa, Yuko; Bu, Nan; Tsuji, Tokuo; Tsuji, Toshio; Ishii, Idaku; Matsuda, Hiroshi; Orito, Kensuke; Ikeda, Tomoaki; Noda, Shunichi

    This paper proposes a marker-less motion measurement and analysis system for infants. This system calculates eight types of evaluation indices related to the movement of an infant such as “amount of body motion” and “activity of body” from binary images that are extracted from video images using the background difference and frame difference. Thus, medical doctors can intuitively understand the movements of infants without long-term observations, and this may be helpful in supporting their diagnoses and detecting disabilities and diseases in the early stages. The distinctive feature of this system is that the movements of infants can be measured without using any markers for motion capture and thus it is expected that the natural and inherent tendencies of infants can be analyzed and evaluated. In this paper, the evaluation indices and features of movements between full-term infants (FTIs) and low birth weight infants (LBWIs) are compared using the developed prototype. We found that the amount of body motion and symmetry of upper and lower body movements of LBWIs became lower than those of FTIs. The difference between the movements of FTIs and LBWIs can be evaluated using the proposed system.

  2. Role of Autonomic Reflex Arcs in Cardiovascular Responses to Air Pollution Exposure

    PubMed Central

    Hazari, Mehdi S.; Farraj, Aimen K.

    2016-01-01

    The body responds to environmental stressors by triggering autonomic reflexes in the pulmonary receptors, baroreceptors, and chemoreceptors to maintain homeostasis. Numerous studies have shown that exposure to various gases and airborne particles can alter the functional outcome of these reflexes, particularly with respect to the cardiovascular system. Modulation of autonomic neural input to the heart and vasculature following direct activation of sensory nerves in the respiratory system, elicitation of oxidative stress and inflammation, or through other mechanisms is one of the primary ways that exposure to air pollution affects normal cardiovascular function. Any homeostatic process that utilizes the autonomic nervous system to regulate organ function might be affected. Thus, air pollution and other inhaled environmental irritants have the potential to alter both local airway function and baro-and chemoreflex responses, which modulate autonomic control of blood pressure and detect concentrations of key gases in the body. While each of these reflex pathways causes distinct responses, the systems are heavily integrated and communicate through overlapping regions of the brainstem to cause global effects. This short review summarizes the function of major pulmonary sensory receptors, baroreceptors, and carotid body chemoreceptors and discusses the impacts of air pollution exposure on these systems. PMID:25123706

  3. Diagnostic performance of 18F-FDG PET/CT and whole-body diffusion-weighted imaging with background body suppression (DWIBS) in detection of lymph node and bone metastases from pediatric neuroblastoma.

    PubMed

    Ishiguchi, Hiroaki; Ito, Shinji; Kato, Katsuhiko; Sakurai, Yusuke; Kawai, Hisashi; Fujita, Naotoshi; Abe, Shinji; Narita, Atsushi; Nishio, Nobuhiro; Muramatsu, Hideki; Takahashi, Yoshiyuki; Naganawa, Shinji

    2018-06-01

    Recent many studies have shown that whole body "diffusion-weighted imaging with background body signal suppression" (DWIBS) seems a beneficial tool having higher tumor detection sensitivity without ionizing radiation exposure for pediatric tumors. In this study, we evaluated the diagnostic performance of whole body DWIBS and 18 F-FDG PET/CT for detecting lymph node and bone metastases in pediatric patients with neuroblastoma. Subjects in this retrospective study comprised 13 consecutive pediatric patients with neuroblastoma (7 males, 6 females; mean age, 2.9 ± 2.0 years old) who underwent both 18 F-FDG PET/CT and whole-body DWIBS. All patients were diagnosed as neuroblastoma on the basis of pathological findings. Eight regions of lymph nodes and 17 segments of skeletons in all patients were evaluated. The images of 123 I-MIBG scintigraphy/SPECT-CT, bone scintigraphy/SPECT, and CT were used to confirm the presence of lymph node and bone metastases. Two radiologists trained in nuclear medicine evaluated independently the uptake of lesions in 18 F-FDG PET/CT and the signal-intensity of lesions in whole-body DWIBS visually. Interobserver difference was overcome through discussion to reach a consensus. The sensitivities, specificities, and overall accuracies of 18 F-FDG PET/CT and whole-body DWIBS were compared using McNemer's test. Positive predictive values (PPVs) and negative predictive values (NPVs) of both modalities were compared using Fisher's exact test. The total numbers of lymph node regions and bone segments which were confirmed to have metastasis in the total 13 patients were 19 and 75, respectively. The sensitivity, specificity, overall accuracy, PPV, and NPV of 18 F-FDG PET/CT for detecting lymph node metastasis from pediatric neuroblastoma were 100, 98.7, 98.9, 95.0, and 100%, respectively, and those for detecting bone metastasis were 90.7, 73.1, 80.3, 70.1, and 91.9%, respectively. In contrast, the sensitivity, specificity, overall accuracy, PPV, and NPV of whole-body DWIBS for detecting bone metastasis from pediatric neuroblastoma were 94.7, 24.0, 53.0, 46.4 and 86.7%, respectively, whereas those for detecting lymph node metastasis were 94.7, 85.3, 87.2, 62.1, and 98.5%, respectively. The low specificity, overall accuracy, and PPV of whole-body DWIBS for detecting bone metastasis were due to a high incidence of false-positive findings (82/108, 75.9%). The specificity, overall accuracy, and PPV of whole-body DWIBS for detecting lymph node metastasis were also significantly lower than those of 18 F-FDG PET/CT for detecting lymph node metastasis, although the difference between these 2 modalities was less than that for detecting bone metastasis. The specificity, overall accuracy, and PPV of whole-body DWIBS are significantly lower than those of 18 F-FDG PET/CT because of a high incidence of false-positive findings particularly for detecting bone metastasis, whereas whole-body DWIBS shows a similar level of sensitivities for detecting lymph node and bone metastases to those of 18 F-FDG PET/CT. DWIBS should be carefully used for cancer staging in children because of its high incidence of false-positive findings in skeletons.

  4. Microwave hematoma detector

    DOEpatents

    Haddad, Waleed S.; Trebes, James E.; Matthews, Dennis L.

    2001-01-01

    The Microwave Hematoma Detector is a non-invasive device designed to detect and localize blood pooling and clots near the outer surface of the body. While being geared towards finding sub-dural and epi-dural hematomas, the device can be used to detect blood pooling anywhere near the surface of the body. Modified versions of the device can also detect pneumothorax, organ hemorrhage, atherosclerotic plaque in the carotid arteries, evaluate perfusion (blood flow) at or near the body surface, body tissue damage at or near the surface (especially for burn assessment) and be used in a number of NDE applications. The device is based on low power pulsed microwave technology combined with a specialized antenna, signal processing/recognition algorithms and a disposable cap worn by the patient which will facilitate accurate mapping of the brain and proper function of the instrument. The invention may be used for rapid, non-invasive detection of sub-dural or epi-dural hematoma in human or animal patients, detection of hemorrhage within approximately 5 cm of the outer surface anywhere on a patient's body.

  5. A Spitzer search for transits of radial velocity detected super-Earths

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kammer, J. A.; Knutson, H. A.; Desert, J.-M.

    2014-02-01

    Unlike hot Jupiters or other gas giants, super-Earths are expected to have a wide variety of compositions, ranging from terrestrial bodies like our own to more gaseous planets like Neptune. Observations of transiting systems, which allow us to directly measure planet masses and radii and constrain atmospheric properties, are key to understanding the compositional diversity of the planets in this mass range. Although Kepler has discovered hundreds of transiting super-Earth candidates over the past 4 yr, the majority of these planets orbit stars that are too far away and too faint to allow for detailed atmospheric characterization and reliable massmore » estimates. Ground-based transit surveys focus on much brighter stars, but most lack the sensitivity to detect planets in this size range. One way to get around the difficulty of finding these smaller planets in transit is to start by choosing targets that are already known to host super-Earth sized bodies detected using the radial velocity (RV) technique. Here we present results from a Spitzer program to observe six of the most favorable RV-detected super-Earth systems, including HD 1461, HD 7924, HD 156668, HIP 57274, and GJ 876. We find no evidence for transits in any of their 4.5 μm flux light curves, and place limits on the allowed transit depths and corresponding planet radii that rule out even the most dense and iron-rich compositions for these objects. We also observed HD 97658, but the observation window was based on a possible ground-based transit detection that was later ruled out; thus the window did not include the predicted time for the transit detection recently made by the Microvariability and Oscillations of Stars space telescope.« less

  6. Ultra-sensitive detection of kanamycin for food safety using a reduced graphene oxide-based fluorescent aptasensor

    NASA Astrophysics Data System (ADS)

    Ha, Na-Reum; Jung, In-Pil; La, Im-Joung; Jung, Ho-Sup; Yoon, Moon-Young

    2017-01-01

    Overuse of antibiotics has caused serious problems, such as appearance of super bacteria, whose accumulation in the human body through the food chain is a concern. Kanamycin is a common antibiotic used to treat diverse infections; however, residual kanamycin can cause many side effects in humans. Thus, development of an ultra-sensitive, precise, and simple detection system for residual kanamycin in food products is urgently needed for food safety. In this study, we identified kanamycin-binding aptamers via a new screening method, and truncated variants were analyzed for optimization of the minimal sequence required for target binding. We found various aptamers with high binding affinity from 34.7 to 669 nanomolar Kdapp values with good specificity against kanamycin. Furthermore, we developed a reduced graphene oxide (RGO)-based fluorescent aptasensor for kanamycin detection. In this system, kanamycin was detected at a concentration as low as 1 pM (582.6 fg/mL). In addition, this method could detect kanamycin accurately in kanamycin-spiked blood serum and milk samples. Consequently, this simple, rapid, and sensitive kanamycin detection system with newly structural and functional analysis aptamer exhibits outstanding detection compared to previous methods and provides a new possibility for point of care testing and food safety.

  7. a Novel Method for Automation of 3d Hydro Break Line Generation from LIDAR Data Using Matlab

    NASA Astrophysics Data System (ADS)

    Toscano, G. J.; Gopalam, U.; Devarajan, V.

    2013-08-01

    Water body detection is necessary to generate hydro break lines, which are in turn useful in creating deliverables such as TINs, contours, DEMs from LiDAR data. Hydro flattening follows the detection and delineation of water bodies (lakes, rivers, ponds, reservoirs, streams etc.) with hydro break lines. Manual hydro break line generation is time consuming and expensive. Accuracy and processing time depend on the number of vertices marked for delineation of break lines. Automation with minimal human intervention is desired for this operation. This paper proposes using a novel histogram analysis of LiDAR elevation data and LiDAR intensity data to automatically detect water bodies. Detection of water bodies using elevation information was verified by checking against LiDAR intensity data since the spectral reflectance of water bodies is very small compared with that of land and vegetation in near infra-red wavelength range. Detection of water bodies using LiDAR intensity data was also verified by checking against LiDAR elevation data. False detections were removed using morphological operations and 3D break lines were generated. Finally, a comparison of automatically generated break lines with their semi-automated/manual counterparts was performed to assess the accuracy of the proposed method and the results were discussed.

  8. Constraints on the Detection of the Solar Nebula's Oxidation State Through Asteroid Observations

    NASA Technical Reports Server (NTRS)

    Abell, P. A.; Gaffey, M. J.; Hardersen, P. S.

    2005-01-01

    Introduction: Asteroids represent the only in situ surviving population of planetesimals from the formation of the inner solar system and therefore include materials from the very earliest stages of solar system formation. Hence, these bodies can provide constraints on the processes and conditions that were present during this epoch and can be used to test current models and theories describing the late solar nebula, the early solar system and subsequent planetary accretion. From detailed knowledge of asteroid mineralogic compositions the probable starting materials, thermal histories, and oxidation states of asteroid parent bodies can be inferred. If such data can be obtained from specific mainbelt source regions, then this information can be used to map out the formation conditions of the late solar nebula within the inner solar system and possibly distinguish any trends in oxidation state that may be present.

  9. Comparison of the detectability of high- and low-contrast details on a TFT screen and a CRT screen designed for radiologic diagnosis.

    PubMed

    Kotter, Elmar; Bley, Thorsten A; Saueressig, Ulrich; Fisch, Dagmar; Springer, Oliver; Winterer, Jan Torsten; Schaefer, Oliver; Langer, Mathias

    2003-11-01

    To evaluate the detection rate of fine details of a new thin-film transistor (TFT) grayscale monitor designed for radiologic diagnosis, compared with a type of cathode ray tube (CRT) screen used routinely for diagnostic radiology. Fifteen radiographs of a statistical phantom presenting low- and high-contrast details were obtained and read out with an Agfa ADC compact storage phosphor system. Each radiograph presented 60 high-density (high-contrast) and 60 low-density (low-contrast) test bodies. Approximately half the test bodies contained holes with different diameters. Observers were asked to detect the presence or absence of a hole in the test body on a 5-point confidence range. The total of 1800 test bodies was reviewed by 5 radiologists on the TFT monitor (20.8 inches; 1536 x 2048 pixels; maximum luminance, 650 cd/m2; contrast, 600:1) and the CRT monitor (21 inches; P45 Phosphor; 2048 x 2560 pixels operated at 1728 x 2304 pixels; maximum luminance, 600 cd/m2; contrast, 300:1). The data were analyzed by receiver-operator characteristic analysis. For high-contrast details, the mean area under the curve rated 0.9336 for the TFT monitor and 0.9312 for the CRT monitor. For low-contrast details, the mean area under the curve rated 0.9189 for the TFT monitor and 0.9224 for the CRT monitor. At P

  10. Research reports: 1990 NASA/ASEE Summer Faculty Fellowship Program

    NASA Technical Reports Server (NTRS)

    Anderson, Loren A. (Editor); Beymer, Mark A. (Editor)

    1990-01-01

    A collection of technical reports on research conducted by the participants in this program is presented. The topics covered include: human-computer interface software, multimode fiber optic communication links, electrochemical impedance spectroscopy, rocket-triggered lightning, robotics, a flammability study of thin polymeric film materials, a vortex shedding flowmeter, modeling of flow systems, monomethyl hydrazine vapor detection, a rocket noise filter system using digital filters, computer programs, lower body negative pressure, closed ecological systems, and others. Several reports with respect to space shuttle orbiters are presented.

  11. The Impact Ejecta Environment of Near Earth Asteroids

    NASA Astrophysics Data System (ADS)

    Szalay, Jamey R.; Horányi, Mihály

    2016-10-01

    Impact ejecta production is a ubiquitous process that occurs on all airless bodies throughout the solar system. Unlike the Moon, which retains a large fraction of its ejecta, asteroids primarily shed their ejecta into the interplanetary dust population. These grains carry valuable information about the chemical compositions of their parent bodies that can be measured via in situ dust detection. Here, we use recent Lunar Atmosphere and Dust Environment Explorer/Lunar Dust Experiment measurements of the lunar dust cloud to calculate the dust ejecta distribution for any airless body near 1 au. We expect this dust distribution to be highly asymmetric, due to non-isotropic impacting fluxes. We predict that flybys near these asteroids would collect many times more dust impacts by transiting the apex side of the body compared to its anti-apex side. While these results are valid for bodies at 1 au, they can be used to qualitatively infer the ejecta environment for all solar-orbiting airless bodies.

  12. Towards Whole-Body Fluorescence Imaging in Humans

    PubMed Central

    Piper, Sophie K.; Habermehl, Christina; Schmitz, Christoph H.; Kuebler, Wolfgang M.; Obrig, Hellmuth; Steinbrink, Jens; Mehnert, Jan

    2013-01-01

    Dynamic near-infrared fluorescence (DNIF) whole-body imaging of small animals has become a popular tool in experimental biomedical research. In humans, however, the field of view has been limited to body parts, such as rheumatoid hands, diabetic feet or sentinel lymph nodes. Here we present a new whole-body DNIF-system suitable for adult subjects. We explored whether this system (i) allows dynamic whole-body fluorescence imaging and (ii) can detect modulations in skin perfusion. The non-specific fluorescent probe indocyanine green (ICG) was injected intravenously into two subjects, and fluorescence images were obtained at 5 Hz. The in- and out-flow kinetics of ICG have been shown to correlate with tissue perfusion. To validate the system, skin perfusion was modulated by warming and cooling distinct areas on the chest and the abdomen. Movies of fluorescence images show a bolus passage first in the face, then in the chest, abdomen and finally in the periphery (∼10, 15, 20 and 30 seconds, respectively). When skin perfusion is augmented by warming, bolus arrives about 5 seconds earlier than when the skin is cooled and perfusion decreased. Calculating bolus arrival times and spatial fitting of basis time courses extracted from different regions of interest allowed a mapping of local differences in subcutaneous skin perfusion. This experiment is the first to demonstrate the feasibility of whole-body dynamic fluorescence imaging in humans. Since the whole-body approach demonstrates sensitivity to circumscribed alterations in skinperfusion, it may be used to target autonomous changes in polyneuropathy and to screen for peripheral vascular diseases. PMID:24391820

  13. Model-based inspection of multipackage food products using a twin-beam x-ray system

    NASA Astrophysics Data System (ADS)

    Palmer, Stephen C.; Batchelor, Bruce G.

    1998-10-01

    A twin-orthogonal-fanbeam x-ray system has been built as part of a six-partner project funded by the Commission of the European Union. The images created by this system represent plan and side views of the object to be inspected. Using such a system, it is possible to locate a point-like feature that creates a significant shadow in both beams, in a 3D space. However, the real value of such a system lies in the fact that it is often possible to see a foreign body, such as a small piece of loose glass, within a jar using one beam, when the same contaminant is invisible to the other beam. Such a situation typically arises when the foreign body is obscured by the x-ray shadow of the neck-shoulder region of a jar. The x-ray system built by our colleagues in this consortium is being used to examine, simultaneously, six jars of semi-fluid savory sauce, held together by shrink-wrapping on a cardboard tray. The inspection algorithm consists of fitting multi-part models of the image intensity function to both the plan and side-view images. Once a model has been fitted, it is possible to use image comparison, in order to highlight any foreign bodies. The pre-processed plan and side-view images are analyzed and correlated together, so that in many cases, a foreign body whose view is obscured in one image can be detected in the other.

  14. An innovative nonintrusive driver assistance system for vital signal monitoring.

    PubMed

    Sun, Ye; Yu, Xiong Bill

    2014-11-01

    This paper describes an in-vehicle nonintrusive biopotential measurement system for driver health monitoring and fatigue detection. Previous research has found that the physiological signals including eye features, electrocardiography (ECG), electroencephalography (EEG) and their secondary parameters such as heart rate and HR variability are good indicators of health state as well as driver fatigue. A conventional biopotential measurement system requires the electrodes to be in contact with human body. This not only interferes with the driver operation, but also is not feasible for long-term monitoring purpose. The driver assistance system in this paper can remotely detect the biopotential signals with no physical contact with human skin. With delicate sensor and electronic design, ECG, EEG, and eye blinking can be measured. Experiments were conducted on a high fidelity driving simulator to validate the system performance. The system was found to be able to detect the ECG/EEG signals through cloth or hair with no contact with skin. Eye blinking activities can also be detected at a distance of 10 cm. Digital signal processing algorithms were developed to decimate the signal noise and extract the physiological features. The extracted features from the vital signals were further analyzed to assess the potential criterion for alertness and drowsiness determination.

  15. [Improvement of Phi bodies stain and its clinical significance].

    PubMed

    Gong, Xu-Bo; Lu, Xing-Guo; Yan, Li-Juan; Xiao, Xi-Bin; Wu, Dong; Xu, Gen-Bo; Zhang, Xiao-Hong; Zhao, Xiao-Ying

    2009-02-01

    The aim of this study was to improve the dyeing method of hydroperoxidase (HPO), to analyze the morphologic features of Phi bodies and to evaluate the clinical application of this method. 128 bone marrow or peripheral blood smears from patients with myeloid and lymphoid malignancies were stained by improved HPO staining. The Phi bodies were observed with detection rate of Phi bodies in different leukemias. 69 acute myeloid leukemia (AML) specimens were chosen randomly, the positive rate and the number of Phi bodies between the improved HPO and POX stain based on the same substrate of 3, 3'diaminobenzidine were compared. The results showed that the shape of bundle-like Phi bodies was variable, long or short. while the nubbly Phi bodies often presented oval and smooth. Club-like Phi bodies were found in M(3). The detection rates of bundle-like Phi bodies in AML M(1)-M(5) were 42.9% (6/14), 83.3% (15/18), 92.0% (23/25), 52.3% (11/21), 33.3% (5/15) respectively, and those of nubbly Phi bodies were 28.6% (4/14), 66.7% (12/18), 11.1% (3/25), 33.3% (7/21), 20.0% (3/15) respectively. The detection rate of bundle-like Phi bodies in M(3) was significantly higher than that in (M(1) + M(2)) or (M(4) + M(5)) groups. The detection rate of nubbly Phi bodies in (M(1) + M(2)) group was higher than that in M(3) group. In conclusion, after improvement of staining method, the HPO stain becomes simple, the detection rate of Phi bodies is higher than that by the previous method, the positive granules are more obvious, and the results become stable. This improved method plays an important role in differentiating AML from ALL, subtyping AML, and evaluating the therapeutic results.

  16. Use of the blue cotton screen method with endoscopy to detect occult esophageal foreign bodies

    PubMed Central

    Xia, Yan; Zhang, Fan; Xu, Weiran

    2017-01-01

    More than 20,000 cases of upper gastrointestinal foreign bodies (FBs) have been reported in the last 5 years in China. Early detection and treatment is vital in these patients. Differential diagnosis of esophageal injury and occult esophageal foreign bodies is challenging, particularly in the case of non-radio-opaque foreign bodies. A diagnostic technique with high accuracy and low risk is needed for clinical practice. We describe successful use of the “blue cotton screen method” to detect esophageal foreign bodies in 2 patients. The advantages and disadvantages of various diagnostic modalities in the management of patients with foreign body ingestion are presented. This technique is safer and more effective than traditional methods for foreign body impaction in the esophageal cavity. It could be applied for screening and in the differential diagnosis of esophageal injury and FBs in the esophageal lumen. PMID:29362659

  17. The development of technology for detection of marijuana intoxication by analysis of body fluids

    DOT National Transportation Integrated Search

    1975-09-01

    A method employing high pressure liquid chromatography plus mass spectrometry was developed for the detection of low concentrations of various marijuana metabolites in body fluids. A new marijuana metabolite was found which could be detected in blood...

  18. Nodular melanoma serendipitously detected by airport full body scanners.

    PubMed

    Mayer, Jonathan E; Adams, Brian B

    2015-01-01

    Nodular melanoma is the most dangerous form of melanoma and often evades early detection. We present a frequently traveling businessman whose nodular melanoma was detected by airport full body scanners. For about 20 flights over 2 months, the airport full body scanners singled out an area on his left lower leg for a pat-down. Dermatologic examination discovered a nodular melanoma in this area, and after surgical excision, the man traveled without incident. This case raises the possibility of using full body imaging in the detection of melanomas, especially of the nodular subtype. In its current form, full body scanning would most likely not be sensitive or specific enough to become a recommended screening tool. Nonetheless, for travelers with areas repeatedly singled out by the machines without a known justification, airport scanners could serve as incidental free screening for suspicious nodular lesions that should prompt dermatologist referral. © 2014 S. Karger AG, Basel.

  19. 21 CFR 866.6010 - Tumor-associated antigen immunological test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ..., plasma, urine, or other body fluids. This device is intended as an aid in monitoring patients for disease progress or response to therapy or for the detection of recurrent or residual disease. (b) Classification.... 866.6010 Section 866.6010 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN...

  20. 21 CFR 866.6010 - Tumor-associated antigen immunological test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ..., plasma, urine, or other body fluids. This device is intended as an aid in monitoring patients for disease progress or response to therapy or for the detection of recurrent or residual disease. (b) Classification.... 866.6010 Section 866.6010 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN...

  1. 21 CFR 866.6010 - Tumor-associated antigen immunological test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ..., plasma, urine, or other body fluids. This device is intended as an aid in monitoring patients for disease progress or response to therapy or for the detection of recurrent or residual disease. (b) Classification.... 866.6010 Section 866.6010 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN...

  2. 21 CFR 866.6010 - Tumor-associated antigen immunological test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ..., plasma, urine, or other body fluids. This device is intended as an aid in monitoring patients for disease progress or response to therapy or for the detection of recurrent or residual disease. (b) Classification.... 866.6010 Section 866.6010 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN...

  3. Trial finds biomass harvest of cobia unaffected by stocking density in RAS

    USDA-ARS?s Scientific Manuscript database

    Cobia, Rachycentron canadum, were reared for 119 days from 322 g to market size in production-scale recirculating aquaculture systems at in-tank densities of 10, 20, or 30 kg/m3. No significant differences were detected in growth rate, survival, feed efficiency or body composition. This study is t...

  4. Hyperspectral Imaging and Obstacle Detection for Robotics Navigation

    DTIC Science & Technology

    2005-09-01

    anatomy and diffraction process. 17 3.3 Technical Specifications of the System A. Brimrose AOTF Video Adaptor Specifications: Material TeO2 Active...sampled from glass case on person 2’s belt 530 pixels 20 pick-up white sampled from body panels of pick-up 600 pixels 21 pick-up blue sampled from

  5. The future of stellar occultations by distant solar system bodies: Perspectives from the Gaia astrometry and the deep sky surveys

    NASA Astrophysics Data System (ADS)

    Camargo, J. I. B.; Desmars, J.; Braga-Ribas, F.; Vieira-Martins, R.; Assafin, M.; Sicardy, B.; Bérard, D.; Benedetti-Rossi, G.

    2018-05-01

    Distant objects in the solar system are crucial to better understand the history and evolution of its outskirts. The stellar occultation technique allows the determination of their sizes and shapes with kilometric accuracy, a detailed investigation of their immediate vicinities, as well as the detection of tenuous atmospheres. The prediction of such events is a key point in this study, and yet accurate enough predictions are available to a handful of objects only. In this work, we briefly discuss the dramatic impact that both the astrometry from the Gaia space mission and the deep sky surveys - the Large Synoptic Survey Telescope in particular - will have on the prediction of stellar occultations and how they may influence the future of the study of distant small solar system bodies through this technique.

  6. Biomedical imaging with THz waves

    NASA Astrophysics Data System (ADS)

    Nguyen, Andrew

    2010-03-01

    We discuss biomedical imaging using radio waves operating in the terahertz (THz) range between 300 GHz to 3 THz. Particularly, we present the concept for two THz imaging systems. One system employs single antenna, transmitter and receiver operating over multi-THz-frequency simultaneously for sensing and imaging small areas of the human body or biological samples. Another system consists of multiple antennas, a transmitter, and multiple receivers operating over multi-THz-frequency capable of sensing and imaging simultaneously the whole body or large biological samples. Using THz waves for biomedical imaging promises unique and substantial medical benefits including extremely small medical devices, extraordinarily fine spatial resolution, and excellent contrast between images of diseased and healthy tissues. THz imaging is extremely attractive for detection of cancer in the early stages, sensing and imaging of tissues near the skin, and study of disease and its growth versus time.

  7. Laser ultrasonics for bulk-density distribution measurement on green ceramic tiles

    NASA Astrophysics Data System (ADS)

    Revel, G. M.; Cavuto, A.; Pandarese, G.

    2016-10-01

    In this paper a Laser Ultrasonics (LUT) system is developed and applied to measure bulk density distribution of green ceramic tiles, which are porous materials with low heat conductivity. Bulk density of green ceramic bodies is a fundamental parameter to be kept under control in the industrial production of ceramic tiles. The LUT system proposed is based on a Nd:YAG pulsed laser for excitation and an air-coupled electro-capacitive transducer for detection. The paper reports experimental apparent bulk-density measurements on white ceramic bodies after a calibration procedures. The performances observed are better than those previously achieved by authors using air-coupled ultrasonic probes for both emission and detection, allowing to reduce average uncertainty down to about ±6 kg/m3 (±0.3%), thanks to the increase in excitation efficiency and lateral resolution, while maintaining potential flexibility for on-line application. The laser ultrasonic procedure proposed is available for both on-line and off-line application. In this last case it is possible to obtain bulk density maps with high spatial resolution by a 2D scan without interrupting the production process.

  8. Fault detection and isolation in motion monitoring system.

    PubMed

    Kim, Duk-Jin; Suk, Myoung Hoon; Prabhakaran, B

    2012-01-01

    Pervasive computing becomes very active research field these days. A watch that can trace human movement to record motion boundary as well as to study of finding social life pattern by one's localized visiting area. Pervasive computing also helps patient monitoring. A daily monitoring system helps longitudinal study of patient monitoring such as Alzheimer's and Parkinson's or obesity monitoring. Due to the nature of monitoring sensor (on-body wireless sensor), however, signal noise or faulty sensors errors can be present at any time. Many research works have addressed these problems any with a large amount of sensor deployment. In this paper, we present the faulty sensor detection and isolation using only two on-body sensors. We have been investigating three different types of sensor errors: the SHORT error, the CONSTANT error, and the NOISY SENSOR error (see more details on section V). Our experimental results show that the success rate of isolating faulty signals are an average of over 91.5% on fault type 1, over 92% on fault type 2, and over 99% on fault type 3 with the fault prior of 30% sensor errors.

  9. Specific Skin Lesions of Sarcoidosis Located at Venipuncture Points for Blood Sample Collection.

    PubMed

    Marcoval, Joaquim; Penín, Rosa M; Mañá, Juan

    2018-05-01

    It has been suggested that the predilection of sarcoidosis to affect scars is due to the presence of antigens or foreign bodies that can serve as a stimulus for granuloma formation. Several patients with sarcoidosis-specific skin lesions in venous puncture sites have been reported. However, in these patients the pathogenesis of the cutaneous lesions is not clear because the presence of foreign bodies is not to be expected. Our objective was to describe 3 patients who developed specific lesions of sarcoidosis in areas of venipuncture and to discuss their possible pathogenesis. The database of the Sarcoid Clinic of Bellvitge Hospital (an 800-bed university referral center providing tertiary care to approximately 1 million people in Barcelona, Spain) was reviewed to detect those patients with specific cutaneous lesions of systemic sarcoidosis in areas of venipuncture. Three patients with biopsy-proven specific cutaneous lesions of systemic sarcoidosis in areas of venipuncture for blood collection were detected (3 women, mean age 56 years). In one case, the histopathological image shows the hypothetical path of a needle through the skin. In 2 cases, an amorphous birefringent material was detected under polarized light. This material was consistent with silicone. In patients who are developing sarcoidosis, the smallest amount of oil used as lubricant in the needle for sample blood collection may induce the formation of granulomas. In addition to exploring scars, it is advisable to explore the cubital folds to detect specific cutaneous lesions of sarcoidosis.

  10. Linear Aerospike SR-71 Experiment (LASRE): Aerospace Propulsion Hazard Mitigation Systems

    NASA Technical Reports Server (NTRS)

    Mizukami, Masashi; Corpening, Griffin P.; Ray, Ronald J.; Hass, Neal; Ennix, Kimberly A.; Lazaroff, Scott M.

    1998-01-01

    A major hazard posed by the propulsion system of hypersonic and space vehicles is the possibility of fire or explosion in the vehicle environment. The hazard is mitigated by minimizing or detecting, in the vehicle environment, the three ingredients essential to producing fire: fuel, oxidizer, and an ignition source. The Linear Aerospike SR-71 Experiment (LASRE) consisted of a linear aerospike rocket engine integrated into one-half of an X-33-like lifting body shape, carried on top of an SR-71 aircraft. Gaseous hydrogen and liquid oxygen were used as propellants. Although LASRE is a one-of-a-kind experimental system, it must be rated for piloted flight, so this test presented a unique challenge. To help meet safety requirements, the following propulsion hazard mitigation systems were incorporated into the experiment: pod inert purge, oxygen sensors, a hydrogen leak detection algorithm, hydrogen sensors, fire detection and pod temperature thermocouples, water misting, and control room displays. These systems are described, and their development discussed. Analyses, ground test, and flight test results are presented, as are findings and lessons learned.

  11. Tumbling motion of 1I/`Oumuamua and its implications for the body's distant past

    NASA Astrophysics Data System (ADS)

    Drahus, Michał; Guzik, Piotr; Waniak, Wacław; Handzlik, Barbara; Kurowski, Sebastian; Xu, Siyi

    2018-05-01

    Models of the Solar System's evolution show that almost all the primitive material leftover from the formation of the planets was ejected to the interstellar space as a result of dynamical instabilities1. Accordingly, minor bodies should also be ejected from other planetary systems and should be abundant in the interstellar space2, giving hope for their direct detection and detailed characterization as they penetrate through the Solar System3,4. These expectations materialized on 19 October 2017 ut with the Panoramic Survey Telescope and Rapid Response System's discovery of 1I/`Oumuamua5. Here, we report homogeneous photometric observations of this body from Gemini North, which densely cover a total of 8.06 h over two nights. A combined ultra-deep image of 1I/`Oumuamua shows no signs of cometary activity, confirming the results from other, less sensitive searches6-9. Our data also show an enormous range of rotational brightness variations of 2.6 ± 0.2 mag, larger than ever observed in the population of small Solar System objects, suggesting a very elongated shape of the body. Most significantly, the light curve does not repeat exactly from one rotation cycle to another and its double-peaked periodicity of 7.56 ± 0.01 h from our data is inconsistent with earlier determinations6,7,10-12. These are clear signs of a tumbling motion, a remarkable characteristic of 1I/`Oumuamua's rotation that is consistent with a collision in the distant past. Bearing marks of a violent history, this first-known interstellar visitor tells us that collisional evolution of minor body populations in other planetary systems might be common.

  12. A compact in vivo neutron activation analysis system to quantify manganese in human hand bone

    NASA Astrophysics Data System (ADS)

    Liu, Yingzi

    As an urgent issue of correlating cumulative manganese (Mn) exposure to neurotoxicity, bone has emerged as an attractive biomarker for long-term Mn deposition and storage. A novel Deuterium-Deuterium (DD) neutron generator irradiation system has been simulated and constructed, incorporating moderator, reflector and shielding. This neutron activation analysis (NAA) irradiation assembly presents several desirable features, including high neutron flux, improved detection limit and acceptable neutron & photon dose, which would allow it be ready for clinical measurement. Key steps include simulation modeling and verifying, irradiation system design, detector characterization, and neutron flux and dose assessment. Activation foils were also analyzed to reveal the accurate neutron spectrum in the irradiation cave. The detection limit with this system is 0.428 ppm with 36 mSv equivalent hand dose and 52 microSv whole body effective dose.

  13. Strand-Specific RNA-Seq Analyses of Fruiting Body Development in Coprinopsis cinerea

    DOE PAGES

    Muraguchi, Hajime; Umezawa, Kiwamu; Niikura, Mai; ...

    2015-10-28

    We report that the basidiomycete fungus Coprinopsis cinerea is an important model system for multicellular development. Fruiting bodies of C. cinerea are typical mushrooms, which can be produced synchronously on defined media in the laboratory. To investigate the transcriptome in detail during fruiting body development, high-throughput sequencing (RNA-seq) was performed using cDNA libraries strand-specifically constructed from 13 points (stages/tissues) with two biological replicates. The reads were aligned to 14,245 predicted transcripts, and counted for forward and reverse transcripts. Differentially expressed genes (DEGs) between two adjacent points and between vegetative mycelium and each point were detected by Tag Count Comparison (TCC).more » To validate RNA-seq data, expression levels of selected genes were compared using RPKM values in RNA-seq data and qRT-PCR data, and DEGs detected in microarray data were examined in MA plots of RNA-seq data by TCC. We discuss events deduced from GO analysis of DEGs. In addition, we uncovered both transcription factor candidates and antisense transcripts that are likely to be involved in developmental regulation for fruiting.« less

  14. Strand-Specific RNA-Seq Analyses of Fruiting Body Development in Coprinopsis cinerea

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muraguchi, Hajime; Umezawa, Kiwamu; Niikura, Mai

    We report that the basidiomycete fungus Coprinopsis cinerea is an important model system for multicellular development. Fruiting bodies of C. cinerea are typical mushrooms, which can be produced synchronously on defined media in the laboratory. To investigate the transcriptome in detail during fruiting body development, high-throughput sequencing (RNA-seq) was performed using cDNA libraries strand-specifically constructed from 13 points (stages/tissues) with two biological replicates. The reads were aligned to 14,245 predicted transcripts, and counted for forward and reverse transcripts. Differentially expressed genes (DEGs) between two adjacent points and between vegetative mycelium and each point were detected by Tag Count Comparison (TCC).more » To validate RNA-seq data, expression levels of selected genes were compared using RPKM values in RNA-seq data and qRT-PCR data, and DEGs detected in microarray data were examined in MA plots of RNA-seq data by TCC. We discuss events deduced from GO analysis of DEGs. In addition, we uncovered both transcription factor candidates and antisense transcripts that are likely to be involved in developmental regulation for fruiting.« less

  15. First Earth-based Detection of a Superbolide on Jupiter

    NASA Astrophysics Data System (ADS)

    Hueso, Ricardo; Wesley, A.; Go, C.; Perez-Hoyos, S.; Wong, M. H.; Fletcher, L. N.; Sanchez-Lavega, A.; Boslough, M. B. E.; de Pater, I.; Orton, G. S.; Simon-Miller, A. A.; Djorgovski, S. G.; Edwards, M. L.; Hammel, H. B.; Clarke, J. T.; Noll, K. S.; Yanamandra-Fisher, P. A.

    2010-10-01

    On June 3, 2010 a bolide in Jupiter's atmosphere was observed from the Earth for the first time. The flash was detected by amateur astronomers A. Wesley and C. Go observing in two wavelength ranges. We present an analysis of the light curve of those observations that allow estimating the size of the object to be significantly smaller than the SL9 and the July 2009 Jupiter impact. Observations obtained a few days later by large telescopes including HST, VLT, Keck and Gemini showed no signature of the impact in Jupiter atmosphere confirming the small size of the impact body. A nearly continuous observation campaign based on several small telescopes by amateurs astronomers might allow an empirical determination of the flux of meteoroids in Jupiter with implications for the populations of small bodies in the outer solar system and may allow a better quantification of the threat of impacting bodies to Earth. Acknowledgements: RH, ASL and SPH are supported by the Spanish MICIIN AYA2009-10701 with FEDER and Grupos Gobierno Vasco IT-464-07. LNF is supported by a Glasstone Science Fellowship at the University of Oxford.

  16. Asymmetry identification in rigid rotating bodies—Theory and experiment

    NASA Astrophysics Data System (ADS)

    Bucher, Izhak; Shomer, Ofer

    2013-12-01

    Asymmetry and anisotropy are important parameters in rotating devices that can cause instability; indicate a manufacturing defect or a developing fault. The present paper discusses an identification method capable of detecting minute levels of asymmetry by exploiting the unique dynamics of parametric excitation caused by asymmetry and rotation. The detection relies on rigid body dynamics without resorting to nonlinear vibration analysis, and the natural dynamics of elastically supported systems is exploited in order to increase the sensitivity to asymmetry. It is possible to isolate asymmetry from other rotation-induced phenomena like unbalance. An asymmetry detection machine which was built in the laboratory demonstrates the method alongside theoretical analysis.

  17. Exploring Localization in Nuclear Spin Chains

    NASA Astrophysics Data System (ADS)

    Wei, Ken Xuan; Ramanathan, Chandrasekhar; Cappellaro, Paola

    2018-02-01

    Characterizing out-of-equilibrium many-body dynamics is a complex but crucial task for quantum applications and understanding fundamental phenomena. A central question is the role of localization in quenching thermalization in many-body systems and whether such localization survives in the presence of interactions. Probing this question in real systems necessitates the development of an experimentally measurable metric that can distinguish between different types of localization. While it is known that the localized phase of interacting systems [many-body localization (MBL)] exhibits a long-time logarithmic growth in entanglement entropy that distinguishes it from the noninteracting case of Anderson localization (AL), entanglement entropy is difficult to measure experimentally. Here, we present a novel correlation metric, capable of distinguishing MBL from AL in high-temperature spin systems. We demonstrate the use of this metric to detect localization in a natural solid-state spin system using nuclear magnetic resonance (NMR). We engineer the natural Hamiltonian to controllably introduce disorder and interactions, and observe the emergence of localization. In particular, while our correlation metric saturates for AL, it slowly keeps increasing for MBL, demonstrating analogous features to entanglement entropy, as we show in simulations. Our results show that our NMR techniques, akin to measuring out-of-time correlations, are well suited for studying localization in spin systems.

  18. Aether drift and the isotropy of the universe

    NASA Technical Reports Server (NTRS)

    Muller, R. A.

    1976-01-01

    An experiment is proposed which will detect and map the large-angular-scale anisotropies in the 3 deg K primordial black-body radiation with a sensitivity of .0002 deg K and an angular resolution of about 10 deg . It will detect the motion of the earth with respect to the distant matter of the Universe ("Aether Drift"), and will probe the homogeneity and isotropy of the Universe (the "Cosmological Principle"). The experiment will use two Dicke radiometers, one at 33 GHz to detect the cosmic anisotropy, and one at 54 GHz to detect anisotropies in the residual oxygen above the detectors. An upper hatch for the NASA-AMES Earth Survey Aircraft (U-2) is being modified to accept the dual-radiometer system. A few hours of observation should be sufficient to detect an anisotropy.

  19. Detection of person borne IEDs using multiple cooperative sensors

    NASA Astrophysics Data System (ADS)

    MacIntosh, Scott; Deming, Ross; Hansen, Thorkild; Kishan, Neel; Tang, Ling; Shea, Jing; Lang, Stephen

    2011-06-01

    The use of multiple cooperative sensors for the detection of person borne IEDs is investigated. The purpose of the effort is to evaluate the performance benefits of adding multiple sensor data streams into an aided threat detection algorithm, and a quantitative analysis of which sensor data combinations improve overall detection performance. Testing includes both mannequins and human subjects with simulated suicide bomb devices of various configurations, materials, sizes and metal content. Aided threat recognition algorithms are being developed to test detection performance of individual sensors against combined fused sensors inputs. Sensors investigated include active and passive millimeter wave imaging systems, passive infrared, 3-D profiling sensors and acoustic imaging. The paper describes the experimental set-up and outlines the methodology behind a decision fusion algorithm-based on the concept of a "body model".

  20. Ultrasonic sensor based defect detection and characterisation of ceramics.

    PubMed

    Kesharaju, Manasa; Nagarajah, Romesh; Zhang, Tonzhua; Crouch, Ian

    2014-01-01

    Ceramic tiles, used in body armour systems, are currently inspected visually offline using an X-ray technique that is both time consuming and very expensive. The aim of this research is to develop a methodology to detect, locate and classify various manufacturing defects in Reaction Sintered Silicon Carbide (RSSC) ceramic tiles, using an ultrasonic sensing technique. Defects such as free silicon, un-sintered silicon carbide material and conventional porosity are often difficult to detect using conventional X-radiography. An alternative inspection system was developed to detect defects in ceramic components using an Artificial Neural Network (ANN) based signal processing technique. The inspection methodology proposed focuses on pre-processing of signals, de-noising, wavelet decomposition, feature extraction and post-processing of the signals for classification purposes. This research contributes to developing an on-line inspection system that would be far more cost effective than present methods and, moreover, assist manufacturers in checking the location of high density areas, defects and enable real time quality control, including the implementation of accept/reject criteria. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. The ingestible thermal monitoring system

    NASA Technical Reports Server (NTRS)

    Cutchis, Protagoras N.; Hogrefe, Arthur F.; Lesho, Jeffery C.

    1988-01-01

    A thermal monitoring system for measuring body core temperatures was developed that contains an ingestible pill which is both commandable and rechargeable, and which uses magnetic induction for command and telemetry as well as for recharging. The pill electronics consist of a battery power source, a crystal-controlled oscillator that drives a small air coil, and a command detection circuit. The resulting 262-kHz magnetilc field can be easily detected from a distance of 1 m. The pill oscillator functions at voltages less than 1 V, supplied by a single Ni-Cd battery, which must be recharged after 72 h of continuous transmission. The pill can be recalibrated periodically to compensate for long-term drift.

  2. TU-H-206-04: An Effective Homomorphic Unsharp Mask Filtering Method to Correct Intensity Inhomogeneity in Daily Treatment MR Images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, D; Gach, H; Li, H

    Purpose: The daily treatment MRIs acquired on MR-IGRT systems, like diagnostic MRIs, suffer from intensity inhomogeneity issue, associated with B1 and B0 inhomogeneities. An improved homomorphic unsharp mask (HUM) filtering method, automatic and robust body segmentation, and imaging field-of-view (FOV) detection methods were developed to compute the multiplicative slow-varying correction field and correct the intensity inhomogeneity. The goal is to improve and normalize the voxel intensity so that the images could be processed more accurately by quantitative methods (e.g., segmentation and registration) that require consistent image voxel intensity values. Methods: HUM methods have been widely used for years. A bodymore » mask is required, otherwise the body surface in the corrected image would be incorrectly bright due to the sudden intensity transition at the body surface. In this study, we developed an improved HUM-based correction method that includes three main components: 1) Robust body segmentation on the normalized image gradient map, 2) Robust FOV detection (needed for body segmentation) using region growing and morphologic filters, and 3) An effective implementation of HUM using repeated Gaussian convolution. Results: The proposed method was successfully tested on patient images of common anatomical sites (H/N, lung, abdomen and pelvis). Initial qualitative comparisons showed that this improved HUM method outperformed three recently published algorithms (FCM, LEMS, MICO) in both computation speed (by 50+ times) and robustness (in intermediate to severe inhomogeneity situations). Currently implemented in MATLAB, it takes 20 to 25 seconds to process a 3D MRI volume. Conclusion: Compared to more sophisticated MRI inhomogeneity correction algorithms, the improved HUM method is simple and effective. The inhomogeneity correction, body mask, and FOV detection methods developed in this study would be useful as preprocessing tools for many MRI-related research and clinical applications in radiotherapy. Authors have received research grants from ViewRay and Varian.« less

  3. Exploring Sources of Gravitational Waves From Star Cluster Dynamics

    NASA Astrophysics Data System (ADS)

    Fuhrman, Joshua; Geller, Aaron M.; Rodriguez, Carl L.; Rasio, Frederic A.

    2017-01-01

    The recent detection of ripples in space-time by the Laser Interferometer Gravitational-wave Observatory (LIGO) has ushered in the age of gravitational wave astronomy. Binary black hole systems formed in the center of modest star clusters offer a possible gravitational wave source detectable by the LIGO or Laser Interferometer Space Antennae (LISA) collaborations. We simulate clusters containing 1-40K objects using direct integration from a customized version of NBODY6++GPU. We identify Binary Black Hole (BBH) objects of interest by an inspiral time sufficiently less than the age of the universe such that their coalescence might be detectable. Such objects are tracked through time within our N-body simulations to characterize the role of dynamics in the evolution of the BBH system using member exchanges and large orbital eccentricity changes as indicators of dynamic’s influence. We produce 41 BBH system candidates for detection by LIGO, all of which are dynamically formed. We observe several trends in the production of these potential BBH LIGO sources: a low-N cutoff in initial cluster size between 1-5K objects, high eccentricity oscillations, and the frequent formation of stable triple systems with the BBH as the inner binary.

  4. Automated eye blink detection and correction method for clinical MR eye imaging.

    PubMed

    Wezel, Joep; Garpebring, Anders; Webb, Andrew G; van Osch, Matthias J P; Beenakker, Jan-Willem M

    2017-07-01

    To implement an on-line monitoring system to detect eye blinks during ocular MRI using field probes, and to reacquire corrupted k-space lines by means of an automatic feedback system integrated with the MR scanner. Six healthy subjects were scanned on a 7 Tesla MRI whole-body system using a custom-built receive coil. Subjects were asked to blink multiple times during the MR-scan. The local magnetic field changes were detected with an external fluorine-based field probe which was positioned close to the eye. The eye blink produces a field shift greater than a threshold level, this was communicated in real-time to the MR system which immediately reacquired the motion-corrupted k-space lines. The uncorrected images, using the original motion-corrupted data, showed severe artifacts, whereas the corrected images, using the reacquired data, provided an image quality similar to images acquired without blinks. Field probes can successfully detect eye blinks during MRI scans. By automatically reacquiring the eye blink-corrupted data, high quality MR-images of the eye can be acquired. Magn Reson Med 78:165-171, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  5. Low-power wireless ECG acquisition and classification system for body sensor networks.

    PubMed

    Lee, Shuenn-Yuh; Hong, Jia-Hua; Hsieh, Cheng-Han; Liang, Ming-Chun; Chang Chien, Shih-Yu; Lin, Kuang-Hao

    2015-01-01

    A low-power biosignal acquisition and classification system for body sensor networks is proposed. The proposed system consists of three main parts: 1) a high-pass sigma delta modulator-based biosignal processor (BSP) for signal acquisition and digitization, 2) a low-power, super-regenerative on-off keying transceiver for short-range wireless transmission, and 3) a digital signal processor (DSP) for electrocardiogram (ECG) classification. The BSP and transmitter circuits, which are the body-end circuits, can be operated for over 80 days using two 605 mAH zinc-air batteries as the power supply; the power consumption is 586.5 μW. As for the radio frequency receiver and DSP, which are the receiving-end circuits that can be integrated in smartphones or personal computers, power consumption is less than 1 mW. With a wavelet transform-based digital signal processing circuit and a diagnosis control by cardiologists, the accuracy of beat detection and ECG classification are close to 99.44% and 97.25%, respectively. All chips are fabricated in TSMC 0.18-μm standard CMOS process.

  6. Single-Frequency Ultrasound-Based Respiration Rate Estimation with Smartphones.

    PubMed

    Ge, Linfei; Zhang, Jin; Wei, Jing

    2018-01-01

    Respiration monitoring is helpful in disease prevention and diagnosis. Traditional respiration monitoring requires users to wear devices on their bodies, which is inconvenient for them. In this paper, we aim to design a noncontact respiration rate detection system utilizing off-the-shelf smartphones. We utilize the single-frequency ultrasound as the media to detect the respiration activity. By analyzing the ultrasound signals received by the built-in microphone sensor in a smartphone, our system can derive the respiration rate of the user. The advantage of our method is that the transmitted signal is easy to generate and the signal analysis is simple, which has lower power consumption and thus is suitable for long-term monitoring in daily life. The experimental result shows that our system can achieve accurate respiration rate estimation under various scenarios.

  7. Composition and evolution of the eucrite parent body - Evidence from rare earth elements. [extraterrestrial basaltic melts

    NASA Technical Reports Server (NTRS)

    Consolmagno, G. J.; Drake, M. J.

    1977-01-01

    Quantitative modeling of the evolution of rare earth element (REE) abundances in the eucrites, which are plagioclase-pigeonite basalt achondrites, indicates that the main group of eucrites (e.g., Juvinas) might have been produced by approximately 10% equilibrium partial melting of a single type of source region with initial REE abundances which were chondritic relative and absolute. Since the age of the eucrites is about equal to that of the solar system, extensive chemical differentiation of the eucrite parent body prior to the formation of eucrites seems unlikely. If homogeneous accretion is assumed, the bulk composition of the eucrite parent body can be estimated; two estimates are provided, representing different hypotheses as to the ratio of metal to olivine in the parent body. Since a large number of differentiated olivine meteorites, which would represent material from the interior of the parent body, have not been detected, the eucrite parent body is thought to be intact. It is suggested that the asteroid 4 Vesta is the eucrite parent body.

  8. The extended amygdala and salt appetite

    NASA Technical Reports Server (NTRS)

    Johnson, A. K.; de Olmos, J.; Pastuskovas, C. V.; Zardetto-Smith, A. M.; Vivas, L.

    1999-01-01

    Both chemo- and mechanosensitive receptors are involved in detecting changes in the signals that reflect the status of body fluids and of blood pressure. These receptors are located in the systemic circulatory system and in the sensory circumventricular organs of the brain. Under conditions of body fluid deficit or of marked changes in fluid distribution, multiple inputs derived from these humoral and neural receptors converge on key areas of the brain where the information is integrated. The result of this central processing is the mobilization of homeostatic behaviors (thirst and salt appetite), hormone release, autonomic changes, and cardiovascular adjustments. This review discusses the current understanding of the nature and role of the central and systemic receptors involved in the facilitation and inhibition of thirst and salt appetite and on particular components of the central neural network that receive and process input derived from fluid- and cardiovascular-related sensory systems. Special attention is paid to the structures of the lamina terminalis, the area postrema, the lateral parabrachial nucleus, and their association with the central nucleus of the amygdala and the bed nucleus of the stria terminalis in controlling the behaviors that participate in maintaining body fluid and cardiovascular homeostasis.

  9. LISA Pathfinder Spacecraft Artist Concept

    NASA Image and Video Library

    2015-12-03

    This artist's concept shows ESA's LISA Pathfinder spacecraft, which launched on Dec. 3, 2015, from Kourou, French Guiana, will help pave the way for a mission to detect gravitational waves. LISA Pathfinder, led by the European Space Agency (ESA), is designed to test technologies that could one day detect gravitational waves. Gravitational waves, predicted by Einstein's theory of general relativity, are ripples in spacetime produced by any accelerating body. But the waves are so weak that Earth- or space-based observatories would likely only be able to directly detect such signals coming from massive astronomical systems, such as binary black holes or exploding stars. Detecting gravitational waves would be an important piece in the puzzle of how our universe began. http://photojournal.jpl.nasa.gov/catalog/PIA20196

  10. Serological prevalence of human parvovirus B19 in diseases or disordersrelated to different human body systems.

    PubMed

    Aktaş, Osman; Aydin, Hakan; Uslu, Hakan

    2016-02-17

    Human parvovirus B19 is a pathogen that affects different parts of the body. We planned this study because of the lack of data on B19 seroprevalence based on different body-system diseases. The prevalence of parvovirus B19 antibodies was investigated retrospectively in 1239 patients by review of medical records from 2009-2012, according to their diseases classified under general titles in compliance with the International Classification of Diseases (ICD-10). Parvovirus B19-specific antibodies were detected by quantitative enzyme immunoassays. The positivity rate was 27.8% for only IgG, 8.5% for only IgM, and 2.6% for both IgG and IgM. The highest positivity for IgG alone was found in musculoskeletal system and connective tissue diseases (55.9%), while the highest positivity for IgM was found in neoplasms (16.4%). The highest positivity for IgG was seen in rheumatoid arthritis (72.2%) and pregnancy (52.6%), and the highest positivity for total IgM was found in upper respiratory tract disease (21.0%) and hepatic failure (17.1%). Parvovirus B19 seroprevalence was relatively low in northeastern Anatolia compared to most serological studies conducted in other regions. We think that this study has provided the first wide-ranging information on the seroprevalence of B19 in diseases and disorders of the major human body systems.

  11. Highly sensitive lidar with a thumb-sized sensor-head built using an optical fiber preamplifier

    NASA Astrophysics Data System (ADS)

    Inoue, Daisuke; Ichikawa, Tadashi; Matsubara, Hiroyuki; Mao, Xueon; Maeda, Mitsutoshi; Nagashima, Chie; Kagami, Manabu

    2011-06-01

    We developed a LIDAR system with a sensor head as small as 22 cc, in spite of the inclusion of a scanning mechanism. This LIDAR system not only has a small body, but is also highly sensitive. Our LIDAR system is based on time-of-flight measurements, and it incorporates an optical fiber. The main feature of our system is the utilization of optical amplifiers for both the transmitter and the receiver, and the optical amplifiers enabled us to exceed the detection limit of thermal noise. In conventional LIDAR systems the detection limit is determined by thermal noise, because the avalanche photo-diodes (APD) and trans-impedance amplifiers (TIA) that they use detect the received signals directly. In the case of our LIDAR system, received signal is amplified by an optical fiber amplifier in front of the photo diode and the TIA. Therefore, our LIDAR system can boost the signal level before the weak incoming signal is depleted by thermal noise. There are conditions under which the noise figure for the combination of an optical fiber amplifier and a photo diode is superior to the noise figure for an avalanche photo diode. We optimized the gain of the optical fiber amplifier and TIA in our LIDAR system such that it is capable of detecting a single photon. As a result, the detection limit of our LIDAR system is determined by shot noise. This small and highly sensitive measurement technology shows great potential for use in LIDAR with an optical preamplifier.

  12. Unobstructive Body Area Networks (BAN) for Efficient Movement Monitoring

    PubMed Central

    Felisberto, Filipe; Costa, Nuno; Fdez-Riverola, Florentino; Pereira, António

    2012-01-01

    The technological advances in medical sensors, low-power microelectronics and miniaturization, wireless communications and networks have enabled the appearance of a new generation of wireless sensor networks: the so-called wireless body area networks (WBAN). These networks can be used for continuous monitoring of vital parameters, movement, and the surrounding environment. The data gathered by these networks contributes to improve users' quality of life and allows the creation of a knowledge database by using learning techniques, useful to infer abnormal behaviour. In this paper we present a wireless body area network architecture to recognize human movement, identify human postures and detect harmful activities in order to prevent risk situations. The WBAN was created using tiny, cheap and low-power nodes with inertial and physiological sensors, strategically placed on the human body. Doing so, in an as ubiquitous as possible way, ensures that its impact on the users' daily actions is minimum. The information collected by these sensors is transmitted to a central server capable of analysing and processing their data. The proposed system creates movement profiles based on the data sent by the WBAN's nodes, and is able to detect in real time any abnormal movement and allows for a monitored rehabilitation of the user. PMID:23112726

  13. Testing a New Method for Imaging Crustal Magma Bodies: A Pilot Study at Newberry Volcano, Central OR

    NASA Astrophysics Data System (ADS)

    Beachly, M. W.; Hooft, E. E.; Toomey, D. R.; Waite, G. P.; Durant, D. T.

    2010-12-01

    Magmatic systems are often imaged using delay time seismic tomography, though a known limitation is that wavefront healing limits the ability of transmitted waves to detect small, low-velocity regions such as magma chambers. Crustal magma chambers have been successfully identified using secondary arrivals, including both P and S wave reflections and conversions. Such secondary phases are often recorded by marine seismic experiments owing to the density and quality of airgun data, which improves the identification of coherent arrivals. In 2008 we conducted a pilot study at Newberry volcano to test a new method of detecting secondary arrivals in a terrestrial setting. Our experimental geometry used a line of densely spaced (~300 m), three-component seismometers to record a shot-of-opportunity from the High Lave Plains Experiment. An ideal study would record several shots, however, data from this single event proves the concept. As part of our study, we also reanalyze all existing seismic data from Newberry volcano to obtain a tomographic image of the velocity structure to 6 km depth. Newberry is a lone shield volcano in central Oregon, located 40 km east of the Cascade axis. Newberry eruptions are silicic within the central caldera and mafic on its periphery suggesting a central silicic magma storage system, possibly located at upper crustal depths. The system may still be active with a recent eruption ~1300 years ago, and a central drill hole temperature of 256° C at only 932 m depth. A low-velocity anomaly previously imaged at 3-5 km beneath the caldera indicates either a magma body or a fractured pluton. Our tomographic study combines our 2008 seismic data with profile and array data collected in the 1980s by the USGS. In total, the inversion includes 16 active sources and 322 receivers yielding 1007 P-wave first arrivals. Beneath the caldera ring faults we image a high-velocity ring-like anomaly extending to 2 km depth. This anomaly is inferred to be near-vertical ring-dikes, 200-500 m thick, that resulted from caldera formation 5 mya. Low velocities imaged within the ring are attributed to caldera fill. Below 2.5 km depth a pair of high velocity bodies may be solidified intrusive complexes east and west of the caldera. Our results also indicate a low velocity body between 4-6 km depth although it is poorly resolved by delay time data. Tomographic inversions of synthetic data suggest that the observed travel times are consistent with a low-velocity body up to 35 km3 with up to 40% velocity reduction. Using data from our densely instrumented 2008 seismic profile, we identify a secondary P-wave arrival that originates from beneath the caldera. Preliminary finite-difference waveform modeling produces a similar arrival for a model including a low-velocity body with a 2-km-long melt sill at 3 km depth underlain by a partial-melt region to 5 km depth. The secondary arrival provides additional evidence for an active crustal magmatic system beneath Newberry volcano and demonstrates the potential of novel experimental geometries for detecting and locating terrestrial crustal magma bodies.

  14. Level of tissue differentiation influences the activation of a heat-inducible flower-specific system for genetic containment in poplar (Populus tremula L.).

    PubMed

    Hoenicka, Hans; Lehnhardt, Denise; Nunna, Suneetha; Reinhardt, Richard; Jeltsch, Albert; Briones, Valentina; Fladung, Matthias

    2016-02-01

    Differentiation level but not transgene copy number influenced activation of a gene containment system in poplar. Heat treatments promoted CRE gene body methylation. The flower-specific transgene deletion was confirmed. Gene flow between genetic modified trees and their wild relatives is still motive of concern. Therefore, approaches for gene containment are required. In this study, we designed a novel strategy for achieving an inducible and flower-specific transgene removal from poplar trees but still expressing the transgene in the plant body. Hence, pollen carrying transgenes could be used for breeding purposes under controlled conditions in a first phase, and in the second phase genetic modified poplars developing transgene-free pollen grains could be released. This approach is based on the recombination systems CRE/loxP and FLP/frt. Both gene constructs contained a heat-inducible CRE/loxP-based spacer sequence for in vivo assembling of the flower-specific FLP/frt system. This allowed inducible activation of gene containment. The FLP/frt system was under the regulation of a flower-specific promoter, either CGPDHC or PTD. Our results confirmed complete CRE/loxP-based in vivo assembling of the flower-specific transgene excision system after heat treatment in all cells for up to 30 % of regenerants derived from undifferentiated tissue cultures. Degradation of HSP::CRE/loxP spacer after recombination but also persistence as extrachromosomal DNA circles were detected in sub-lines obtained after heat treatments. Furthermore, heat treatment promoted methylation of the CRE gene body. A lower methylation level was detected at CpG sites in transgenic sub-lines showing complete CRE/loxP recombination and persistence of CRE/loxP spacer, compared to sub-lines with incomplete recombination. However, our results suggest that low methylation might be necessary but not sufficient for recombination. The flower-specific FLP/frt-based transgene deletion was confirmed in 6.3 % of flowers.

  15. Delivery of Exogenous Complex Organic Compounds by Solar System Small Bodies and Space Dusts and Its Relevance to Origins of Life

    NASA Astrophysics Data System (ADS)

    Kobayashi, Kensei; Fushimi, Hidehiko; Motoyama, Takuya; Kaneko, Takeo; Obayashi, Yumiko; Yoshida, Satoshi; Mita, Hajime; Yabuta, Hikaru; Okudaira, Kyoko; Hashimoto, Hirofumi; Yokobori, Shin-Ichi; Yamagishi, Akihiko

    A wide variety of organic compounds including amino acid precursors have been detected in such extraterrestrial bodies as carbonaceous chondrites and comets. It was suggested that these organics were formed in quite cold environments. We irradiated frozen mixtures of possible constituents of ice mantles of interstellar dust particles including water, methanol and ammonia with high-energy heavy ions from HIMAC, National Institute of Radiological Science, Japan. Amino acid precursors with complex structures were detected whose molecular weights are up to a few thousands. Such complex amino acid precursors are much stronger than free amino acids against radiation. Such organics could have been incorporated in solar system small bodies after the formation of the solar system and delivered to the primitive Earth. Possible carriers of such organics are meteorites, comets and interplanetary dust particles (IDPs) that were formed from comets and meteorites. It is suggested that IDPs brought much more organics than meteorites and comets. However, nature of organics in IDPs is little known, since they have been collected only in terrestrial biosphere. We are planning a space experiments named Tanpopo, where IDPs would be collected in aerogel equipped on the Exposure Facility of the International Space Station. In addition, amino acids and their relating compounds would be exposed to space environments to see their possible alteration processes in the interplanetary space. We will report some preliminary results for the preparation of the mission including the capture of amino acid-containing particles at high velocity with ultra-low density aerogel.

  16. Global-to-local incompatibility, monogamy of entanglement, and ground-state dimerization: Theory and observability of quantum frustration in systems with competing interactions

    NASA Astrophysics Data System (ADS)

    Giampaolo, S. M.; Hiesmayr, B. C.; Illuminati, F.

    2015-10-01

    Frustration in quantum many-body systems is quantified by the degree of incompatibility between the local and global orders associated, respectively, with the ground states of the local interaction terms and the global ground state of the total many-body Hamiltonian. This universal measure is bounded from below by the ground-state bipartite block entanglement. For many-body Hamiltonians that are sums of two-body interaction terms, a further inequality relates quantum frustration to the pairwise entanglement between the constituents of the local interaction terms. This additional bound is a consequence of the limits imposed by monogamy on entanglement shareability. We investigate the behavior of local pair frustration in quantum spin models with competing interactions on different length scales and show that valence bond solids associated with exact ground state dimerization correspond to a transition from generic frustration, i.e., geometric, common to classical and quantum systems alike, to genuine quantum frustration, i.e., solely due to the noncommutativity of the different local interaction terms. We discuss how such frustration transitions separating genuinely quantum orders from classical-like ones are detected by observable quantities such as the static structure factor and the interferometric visibility.

  17. An interactive VR system based on full-body tracking and gesture recognition

    NASA Astrophysics Data System (ADS)

    Zeng, Xia; Sang, Xinzhu; Chen, Duo; Wang, Peng; Guo, Nan; Yan, Binbin; Wang, Kuiru

    2016-10-01

    Most current virtual reality (VR) interactions are realized with the hand-held input device which leads to a low degree of presence. There is other solutions using sensors like Leap Motion to recognize the gestures of users in order to interact in a more natural way, but the navigation in these systems is still a problem, because they fail to map the actual walking to virtual walking only with a partial body of the user represented in the synthetic environment. Therefore, we propose a system in which users can walk around in the virtual environment as a humanoid model, selecting menu items and manipulating with the virtual objects using natural hand gestures. With a Kinect depth camera, the system tracks the joints of the user, mapping them to a full virtual body which follows the move of the tracked user. The movements of the feet can be detected to determine whether the user is in walking state, so that the walking of model in the virtual world can be activated and stopped by means of animation control in Unity engine. This method frees the hands of users comparing to traditional navigation way using hand-held device. We use the point cloud data getting from Kinect depth camera to recognize the gestures of users, such as swiping, pressing and manipulating virtual objects. Combining the full body tracking and gestures recognition using Kinect, we achieve our interactive VR system in Unity engine with a high degree of presence.

  18. Amino acid chiral recognition using X-ray diffraction of thin films

    NASA Technical Reports Server (NTRS)

    Dragoi, D.; Kulleck, J.; Kanik, I.; Beegle, L. W.

    2003-01-01

    The astrobiological search for life, both extinct and extant, on other solar system bodies will take place via several planned lander missions to Mars, Europa and Titan. The detection and identification of organic molecules that have been associated with life is a major technical achievement. Terrestrial life utilizes organic molecules, such as amino acids, as its basic building block. Detection of an entometeric excess of L over D forms of amino acids would be a powerful sign that life had existed on Mars at one time.

  19. Detection of magnetically enhanced cancer tumors using SQUID magnetometry: A feasibility study

    NASA Astrophysics Data System (ADS)

    Kenning, G. G.; Rodriguez, R.; Zotev, V. S.; Moslemi, A.; Wilson, S.; Hawel, L.; Byus, C.; Kovach, J. S.

    2005-01-01

    Nanoparticles bound to various biological molecules and pharmacological agents can be administered systemically, to humans without apparent toxicity. This opens an era in the targeting of specific tissues and disease processes for noninvasive imaging and treatment. An important class of particles used predominantly for magnetic resonance imaging is based on iron-oxide ferrites. We performed computer simulations using experimentally determined values for concentrations of superparamagnetic particles achievable in specific tissues of the mouse in vivo and concentrations of particles linked to monoclonal antibodies specific to antigens of two human cancer cell lines in vitro. An instrument to target distance of 12cm, into the body, was selected as relevant to our goal of developing a rapid inexpensive method of scanning the body for occult disease. The simulations demonstrate the potential feasibility of superconducting quantum interference device magnetometry to detect induced magnetic fields in focal concentrations of superparamagnetic particles targeted, in vivo, to sites of disease.

  20. Smart mobile robot system for rubbish collection

    NASA Astrophysics Data System (ADS)

    Ali, Mohammed A. H.; Sien Siang, Tan

    2018-03-01

    This paper records the research and procedures of developing a smart mobility robot with detection system to collect rubbish. The objective of this paper is to design a mobile robot that can detect and recognize medium-size rubbish such as drinking cans. Besides that, the objective is also to design a mobile robot with the ability to estimate the position of rubbish from the robot. In addition, the mobile robot is also able to approach the rubbish based on position of rubbish. This paper explained about the types of image processing, detection and recognition methods and image filters. This project implements RGB subtraction method as the prior system. Other than that, algorithm for distance measurement based on image plane is implemented in this project. This project is limited to use computer webcam as the sensor. Secondly, the robot is only able to approach the nearest rubbish in the same views of camera vision and any rubbish that contain RGB colour components on its body.

  1. A novel wearable smart button system for fall detection

    NASA Astrophysics Data System (ADS)

    Zhuang, Wei; Sun, Xiang; Zhi, Yueyan; Han, Yue; Mao, Hande

    2017-05-01

    Fall has been the second most cause of accidental injury to death in the world. It has been a serious threat to the physical and mental health of the elders. Therefore, developing wearable node system with fall detecting ability has become increasingly pressing at present. A novel smart button for long-term fall detection is proposed in this paper, which is able to accurately monitor the falling behavior, and sending warning message online as well. The smart button is based on the tri-axis acceleration sensor which is used to collect the body motion signals. By using the statistical metrics of acceleration characteristics, a new SVM classification algorithm with high positive accuracy and stability is proposed so as to classify the falls and activities of daily living, and the results can be real-time displayed on Android based mobile phone. The experiments show that our wearable node system can continuously monitor the falling behavior with positive rate 94.8%.

  2. The detection of cancer in living tissue with single-cell precision and the development of a system for targeted drug delivery to cancer

    NASA Astrophysics Data System (ADS)

    Fields, Adam; Pi, Sean; Ramek, Alex; Bernheim, Taylor; Fields, Jessica; Pernodet, Nadine; Rafailovich, Miriam

    2007-03-01

    The development of innovations in the field of cancer diagnostics is imperative to improve the early identification of malignant cells within the human body. Two novel techniques are presented for the detection of cancer cells in living tissue. First, shear modulation force microscopy (SMFM) was employed to measure cell mechanics of normal and cancer cells in separate and mixed tissue cultures. We found that the moduli of normal keratinocytes were twice as high as the moduli of SCC cancerous keratinocytes, and that the cancer cells were unambiguously identifiable from a mixture of both kinds of cells. Second, confocal microscopy and the BIAcore 2000 were used to demonstrate the preferential adhesion of glass micro-beads impregnated with fluorescent dye to the membranes of cancer cells as compared to those of normal cells. In addition to their use as a cancer detection system, these hollow and porous beads present a model system for targeted drug delivery in the treatment of cancer.

  3. DETECTION AND CHARACTERIZATION OF EXTRASOLAR PLANETS THROUGH MEAN-MOTION RESONANCES. I. SIMULATIONS OF HYPOTHETICAL DEBRIS DISKS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tabeshian, Maryam; Wiegert, Paul A., E-mail: mtabeshi@uwo.ca

    2016-02-20

    The gravitational influence of a planet on a nearby disk provides a powerful tool for detecting and studying extrasolar planetary systems. Here we demonstrate that gaps can be opened in dynamically cold debris disks at the mean-motion resonances of an orbiting planet. The gaps are opened away from the orbit of the planet itself, revealing that not all disk gaps need contain a planetary body. These gaps are large and deep enough to be detectable in resolved disk images for a wide range of reasonable disk-planet parameters, though we are not aware of any such gaps detected to date. Themore » gap shape and size are diagnostic of the planet location, eccentricity and mass, and allow one to infer the existence of unseen planets, as well as many important parameters of both seen and unseen planets in these systems. We present expressions to allow the planetary mass and semimajor axis to be calculated from observed gap width and location.« less

  4. Detection of malignancy in body fluids: a comparison of the hematology and cytology laboratories.

    PubMed

    Jerz, Jaclyn L; Donohue, Rachel E; Mody, Rayomond R; Schwartz, Mary R; Mody, Dina R; Zieske, Arthur W

    2014-05-01

    Body fluids submitted to the hematology laboratory for cell counts may also be examined for the presence of malignancy. Previous studies evaluating the hematology laboratory's performance at detecting malignancy in body fluids have reached conflicting conclusions. To investigate the hematology laboratory's ability to detect malignancy in body fluids by comparison with cytology. Retrospective analysis of 414 body fluid samples during an 18-month period, with introduction of new quality assurance measures after the first 210 cases. If no concurrent cytology was ordered, results were compared with recent previous and/or subsequent cytologic, histologic, or flow cytometric diagnoses. Of the initial 210 cases, the hematology laboratory detected 3 of 13 malignancies diagnosed by concurrent cytology (23% sensitivity), with no false-positives (100% specificity). Malignancy was not identified on retrospective review of the hematology slides in the 10 discrepant cases. After the initial study, educational sessions on morphology for the medical technologists and a more thorough hematology-cytology correlation policy were implemented. The subsequent 204 hematology laboratory cases had increased sensitivity for the detection of malignancy (60%; 6 of 10). Definitive features of malignancy were seen in only one discrepant hematology laboratory slide on retrospective review. This case had not been flagged for hematopathologist review. None of the discrepancies before or after implementation of the additional quality assurance measures impacted patient care. Body fluid processing by the hematology laboratory is not optimized for the detection of malignancy. Concurrent cytologic examination is critical for the detection of malignancy, and needs to be considered as cost-saving measures are increasingly implemented.

  5. Pedestrian Detection Based on Adaptive Selection of Visible Light or Far-Infrared Light Camera Image by Fuzzy Inference System and Convolutional Neural Network-Based Verification.

    PubMed

    Kang, Jin Kyu; Hong, Hyung Gil; Park, Kang Ryoung

    2017-07-08

    A number of studies have been conducted to enhance the pedestrian detection accuracy of intelligent surveillance systems. However, detecting pedestrians under outdoor conditions is a challenging problem due to the varying lighting, shadows, and occlusions. In recent times, a growing number of studies have been performed on visible light camera-based pedestrian detection systems using a convolutional neural network (CNN) in order to make the pedestrian detection process more resilient to such conditions. However, visible light cameras still cannot detect pedestrians during nighttime, and are easily affected by shadows and lighting. There are many studies on CNN-based pedestrian detection through the use of far-infrared (FIR) light cameras (i.e., thermal cameras) to address such difficulties. However, when the solar radiation increases and the background temperature reaches the same level as the body temperature, it remains difficult for the FIR light camera to detect pedestrians due to the insignificant difference between the pedestrian and non-pedestrian features within the images. Researchers have been trying to solve this issue by inputting both the visible light and the FIR camera images into the CNN as the input. This, however, takes a longer time to process, and makes the system structure more complex as the CNN needs to process both camera images. This research adaptively selects a more appropriate candidate between two pedestrian images from visible light and FIR cameras based on a fuzzy inference system (FIS), and the selected candidate is verified with a CNN. Three types of databases were tested, taking into account various environmental factors using visible light and FIR cameras. The results showed that the proposed method performs better than the previously reported methods.

  6. Smart sensing surveillance video system

    NASA Astrophysics Data System (ADS)

    Hsu, Charles; Szu, Harold

    2016-05-01

    An intelligent video surveillance system is able to detect and identify abnormal and alarming situations by analyzing object movement. The Smart Sensing Surveillance Video (S3V) System is proposed to minimize video processing and transmission, thus allowing a fixed number of cameras to be connected on the system, and making it suitable for its applications in remote battlefield, tactical, and civilian applications including border surveillance, special force operations, airfield protection, perimeter and building protection, and etc. The S3V System would be more effective if equipped with visual understanding capabilities to detect, analyze, and recognize objects, track motions, and predict intentions. In addition, alarm detection is performed on the basis of parameters of the moving objects and their trajectories, and is performed using semantic reasoning and ontologies. The S3V System capabilities and technologies have great potential for both military and civilian applications, enabling highly effective security support tools for improving surveillance activities in densely crowded environments. It would be directly applicable to solutions for emergency response personnel, law enforcement, and other homeland security missions, as well as in applications requiring the interoperation of sensor networks with handheld or body-worn interface devices.

  7. Integrated Mach-Zehnder interferometer on the end facet of multicore fiber for refractive index sensing application

    NASA Astrophysics Data System (ADS)

    Qi, Yanwen; Zhang, Siyao; Feng, Shengfei; Wang, Xinke; Sun, Wenfeng; Ye, Jiasheng; Han, Peng; Zhang, Yan

    2018-01-01

    A sensitive, real-time seven core optical fiber based Mach-Zehnder interferometer (MZI) sensor for liquid refractive index detection is proposed, fabricated and characterized. A trapezoid body with an inverted wedge shape groove in the center is used to design the MZI. The two ends of the trapezoid body play the roles of micro-prisms, and the middle parts of the trapezoid body and the groove play the roles of reference and sensing arms. A series of performance tests were carried out by immersing the sensor in different kinds of solutions to verify the universal applicability of the sensor. The MZI sensor is as small as only 43 μm × 8 μm, and at the same time with sensitivity of 1616 nm/RIU. Nominally, we realized a completely integrated optical sensing system. And, this system actually could be the building block of more powerful integrated chemical sensing chip for health, security and industry application.

  8. A computer vision-based system for monitoring Vojta therapy.

    PubMed

    Khan, Muhammad Hassan; Helsper, Julien; Farid, Muhammad Shahid; Grzegorzek, Marcin

    2018-05-01

    A neurological illness is t he disorder in human nervous system that can result in various diseases including the motor disabilities. Neurological disorders may affect the motor neurons, which are associated with skeletal muscles and control the body movement. Consequently, they introduce some diseases in the human e.g. cerebral palsy, spinal scoliosis, peripheral paralysis of arms/legs, hip joint dysplasia and various myopathies. Vojta therapy is considered a useful technique to treat the motor disabilities. In Vojta therapy, a specific stimulation is given to the patient's body to perform certain reflexive pattern movements which the patient is unable to perform in a normal manner. The repetition of stimulation ultimately brings forth the previously blocked connections between the spinal cord and the brain. After few therapy sessions, the patient can perform these movements without external stimulation. In this paper, we propose a computer vision-based system to monitor the correct movements of the patient during the therapy treatment using the RGBD data. The proposed framework works in three steps. In the first step, patient's body is automatically detected and segmented and two novel techniques are proposed for this purpose. In the second step, a multi-dimensional feature vector is computed to define various movements of patient's body during the therapy. In the final step, a multi-class support vector machine is used to classify these movements. The experimental evaluation carried out on the large captured dataset shows that the proposed system is highly useful in monitoring the patient's body movements during Vojta therapy. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Reactions of the rat musculoskeletal system to compressive spinal cord injury (SCI) and whole body vibration (WBV) therapy

    PubMed Central

    Schwarz, A.; Pick, C.; Harrach, R.; Stein, G.; Bendella, H.; Ozsoy, O.; Ozsoy, U.; Schoenau, E.; Jaminet, P.; Sarikcioglu, L.; Dunlop, S.; Angelov, D.N.

    2015-01-01

    Traumatic spinal cord injury (SCI) causes a loss of locomotor function with associated compromise of the musculo-skeletal system. Whole body vibration (WBV) is a potential therapy following SCI, but little is known about its effects on the musculo-skeletal system. Here, we examined locomotor recovery and the musculo-skeletal system after thoracic (T7-9) compression SCI in adult rats. Daily WBV was started at 1, 7, 14 and 28 days after injury (WBV1-WBV28 respectively) and continued over a 12-week post-injury period. Intact rats, rats with SCI but no WBV (sham-treated) and a group that received passive flexion and extension (PFE) of their hind limbs served as controls. Compared to sham-treated rats, neither WBV nor PFE improved motor function. Only WBV14 and PFE improved body support. In line with earlier studies we failed to detect signs of soleus muscle atrophy (weight, cross sectional diameter, total amount of fibers, mean fiber diameter) or bone loss in the femur (length, weight, bone mineral density). One possible explanation is that, despite of injury extent, the preservation of some axons in the white matter, in combination with quadripedal locomotion, may provide sufficient trophic and neuronal support for the musculoskeletal system. PMID:26032204

  10. Reactions of the rat musculoskeletal system to compressive spinal cord injury (SCI) and whole body vibration (WBV) therapy.

    PubMed

    Schwarz, A; Pick, C; Harrach, R; Stein, G; Bendella, H; Ozsoy, O; Ozsoy, U; Schoenau, E; Jaminet, P; Sarikcioglu, L; Dunlop, S; Angelov, D N

    2015-06-01

    Traumatic spinal cord injury (SCI) causes a loss of locomotor function with associated compromise of the musculo-skeletal system. Whole body vibration (WBV) is a potential therapy following SCI, but little is known about its effects on the musculo-skeletal system. Here, we examined locomotor recovery and the musculo-skeletal system after thoracic (T7-9) compression SCI in adult rats. Daily WBV was started at 1, 7, 14 and 28 days after injury (WBV1-WBV28 respectively) and continued over a 12-week post-injury period. Intact rats, rats with SCI but no WBV (sham-treated) and a group that received passive flexion and extension (PFE) of their hind limbs served as controls. Compared to sham-treated rats, neither WBV nor PFE improved motor function. Only WBV14 and PFE improved body support. In line with earlier studies we failed to detect signs of soleus muscle atrophy (weight, cross sectional diameter, total amount of fibers, mean fiber diameter) or bone loss in the femur (length, weight, bone mineral density). One possible explanation is that, despite of injury extent, the preservation of some axons in the white matter, in combination with quadripedal locomotion, may provide sufficient trophic and neuronal support for the musculoskeletal system.

  11. Personalized augmented reality for anatomy education.

    PubMed

    Ma, Meng; Fallavollita, Pascal; Seelbach, Ina; Von Der Heide, Anna Maria; Euler, Ekkehard; Waschke, Jens; Navab, Nassir

    2016-05-01

    Anatomy education is a challenging but vital element in forming future medical professionals. In this work, a personalized and interactive augmented reality system is developed to facilitate education. This system behaves as a "magic mirror" which allows personalized in-situ visualization of anatomy on the user's body. Real-time volume visualization of a CT dataset creates the illusion that the user can look inside their body. The system comprises a RGB-D sensor as a real-time tracking device to detect the user moving in front of a display. In addition, the magic mirror system shows text information, medical images, and 3D models of organs that the user can interact with. Through the participation of 7 clinicians and 72 students, two user studies were designed to respectively assess the precision and acceptability of the magic mirror system for education. The results of the first study demonstrated that the average precision of the augmented reality overlay on the user body was 0.96 cm, while the results of the second study indicate 86.1% approval for the educational value of the magic mirror, and 91.7% approval for the augmented reality capability of displaying organs in three dimensions. The usefulness of this unique type of personalized augmented reality technology has been demonstrated in this paper. © 2015 Wiley Periodicals, Inc.

  12. Can different occlusal positions instantaneously impact spine and body posture? : A pilot study using rasterstereography for a three-dimensional evaluation.

    PubMed

    März, Karoline; Adler, Werner; Matta, Ragai-Edward; Wolf, Linda; Wichmann, Manfred; Bergauer, Bastian

    2017-05-01

    Orthodontists influence dental occlusion directly. To suggest any link between dental occlusion and body posture is highly contentious, as evidenced by the literature. Rasterstereography, an optical technique that enables three-dimensional (3D) body measurements to be collected, has not yet been used to impartially examine whether different occlusal positions could instantaneously alter spine and body posture. We therefore set out to use this technique to nonsubjectively evaluate this question under static conditions. Optical body scans were collected for 44 subjects, using the Diers formetric 4D system, for seven different mandible positions. In total, ten spinal and body posture parameters were assessed (trunk inclination, trunk imbalance, pelvic tilt, pelvic torsion, fleche cervicale, fleche lombaire, kyphotic angle, lordotic angle, surface rotation, and lateral deviation) for each mandible position and compared with scans performed with habitual intercuspation (HIC). Significant body posture deviations were found for the fleche cervicale (position of the mandible: right eccentrically), fleche lombaire (positions of the mandible: physiologic rest position, cotton rolls on both sides, bite elevation 1 mm), and the kyphotic angle (positions of the mandible: cotton rolls on both sides, right eccentrically). No other significant differences were detected. Data for the parameters that varied with different dental occlusions generated high standard deviations. Therefore, within the limitations of this pilot study, we could not conclusively associate dental occlusion to an instantaneous impact on the tested parameters. The posture changes that we detected could also have arisen from individual neuromuscular compensation; a possibility that must now be ruled-in, or out, by further research studies with a higher number of subjects.

  13. Pursuing the planet-debris disk connection: Analysis of upper limits from the Anglo-Australian planet search

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wittenmyer, Robert A.; Marshall, Jonathan P., E-mail: rob@phys.unsw.edu.au

    2015-02-01

    Solid material in protoplanetary disks will suffer one of two fates after the epoch of planet formation; either being bound up into planetary bodies, or remaining in smaller planetesimals to be ground into dust. These end states are identified through detection of sub-stellar companions by periodic radial velocity (or transit) variations of the star, and excess emission at mid- and far-infrared wavelengths, respectively. Since the material that goes into producing the observable outcomes of planet formation is the same, we might expect these components to be related both to each other and their host star. Heretofore, our knowledge of planetarymore » systems around other stars has been strongly limited by instrumental sensitivity. In this work, we combine observations at far-infrared wavelengths by IRAS, Spitzer, and Herschel with limits on planetary companions derived from non-detections in the 16 year Anglo-Australian Planet Search to clarify the architectures of these (potential) planetary systems and search for evidence of correlations between their constituent parts. We find no convincing evidence of such correlations, possibly owing to the dynamical history of the disk systems, or the greater distance of the planet-search targets. Our results place robust limits on the presence of Jupiter analogs which, in concert with the debris disk observations, provides insights on the small-body dynamics of these nearby systems.« less

  14. CCS_WHMS: A Congestion Control Scheme for Wearable Health Management System.

    PubMed

    Kafi, Mohamed Amine; Ben Othman, Jalel; Bagaa, Miloud; Badache, Nadjib

    2015-12-01

    Wearable computing is becoming a more and more attracting field in the last years thanks to the miniaturisation of electronic devices. Wearable healthcare monitoring systems (WHMS) as an important client of wearable computing technology has gained a lot. Indeed, the wearable sensors and their surrounding healthcare applications bring a lot of benefits to patients, elderly people and medical staff, so facilitating their daily life quality. But from a research point of view, there is still work to accomplish in order to overcome the gap between hardware and software parts. In this paper, we target the problem of congestion control when all these healthcare sensed data have to reach the destination in a reliable manner that avoids repetitive transmission which wastes precious energy or leads to loss of important information in emergency cases, too. We propose a congestion control scheme CCS_WHMS that ensures efficient and fair data delivery while used in the body wearable system part or in the multi-hop inter bodies wearable ones to get the destination. As the congestion detection paradigm is very important in the control process, we do experimental tests to compare between state of the art congestion detection methods, using MICAz motes, in order to choose the appropriate one for our scheme.

  15. Homeostasis and biological rhythms in the rat during spaceflight

    NASA Technical Reports Server (NTRS)

    Fuller, C. A.

    1985-01-01

    The effects of microgravity on the physiological regulation of homeostatic systems is studied. The temperature and heart rate of rats exposed to seven days of microgravity and a 12:12 light/dark cycle are analyzed. A 24-hour nocturnal rhythmicity is observed in the control and in-flight heart rates and body temperatures. The preflight daytime body temperature was calculated as 37.2 + or - 0.03 C and in-flight as 37.4 + or 0.04 C; nighttime body temperature preflight daytime was determined as 38.0 + or - 0.02 C, and in-flight as 37.8 + or 0.06 C. The 24-hour mean heart rate was depressed from 412 + or - 3.3 bpm preflight to 373 + or - 2.4 bpm in-flight; this change is noted in both dark and light conditions. It is detected that microgravity alters the steady state regulation of heart rate and body temperature.

  16. Anomalous heat transport and condensation in convection of cryogenic helium

    PubMed Central

    Urban, Pavel; Schmoranzer, David; Hanzelka, Pavel; Sreenivasan, Katepalli R.; Skrbek, Ladislav

    2013-01-01

    When a hot body A is thermally connected to a cold body B, the textbook knowledge is that heat flows from A to B. Here, we describe the opposite case in which heat flows from a colder but constantly heated body B to a hotter but constantly cooled body A through a two-phase liquid–vapor system. Specifically, we provide experimental evidence that heat flows through liquid and vapor phases of cryogenic helium from the constantly heated, but cooler, bottom plate of a Rayleigh–Bénard convection cell to its hotter, but constantly cooled, top plate. The bottom plate is heated uniformly, and the top plate is cooled by heat exchange with liquid helium maintained at 4.2 K. Additionally, for certain experimental conditions, a rain of helium droplets is detected by small sensors placed in the cell at about one-half of its height. PMID:23576759

  17. Fiber-based generator for wearable electronics and mobile medication.

    PubMed

    Zhong, Junwen; Zhang, Yan; Zhong, Qize; Hu, Qiyi; Hu, Bin; Wang, Zhong Lin; Zhou, Jun

    2014-06-24

    Smart garments for monitoring physiological and biomechanical signals of the human body are key sensors for personalized healthcare. However, they typically require bulky battery packs or have to be plugged into an electric plug in order to operate. Thus, a smart shirt that can extract energy from human body motions to run body-worn healthcare sensors is particularly desirable. Here, we demonstrated a metal-free fiber-based generator (FBG) via a simple, cost-effective method by using commodity cotton threads, a polytetrafluoroethylene aqueous suspension, and carbon nanotubes as source materials. The FBGs can convert biomechanical motions/vibration energy into electricity utilizing the electrostatic effect with an average output power density of ∼0.1 μW/cm(2) and have been identified as an effective building element for a power shirt to trigger a wireless body temperature sensor system. Furthermore, the FBG was demonstrated as a self-powered active sensor to quantitatively detect human motion.

  18. Study on thin wideband applicator for detecting blood characteristics in human body

    NASA Astrophysics Data System (ADS)

    Bamba, Kazuki; Kuki, Takao; Nikawa, Yoshio

    2016-11-01

    Preventive care as well as early detection method and monitoring technique for diseases are highly attracted attention to increase quality of life. Noninvasive measurement method for blood characteristics in body is expected by patients with kidney dysfunction. Complex permittivity of blood is changed a few present at 6GHz. This change is caused by the change of water and albumin contents in blood. In this study, to detect blood characteristics in human body, experiments with phantom model has been performed using thin wideband applicator for examining microwave transmission up to 6GHz. The thin wideband applicator has advantages for detecting living body information in detail. The thin wideband applicator is designed based on Antipodal Vivaldi Antenna and is not required any balun and is very easy handling. Using developed Antipodal Vivaldi Antenna, transmission coefficient can be obtained as a function of thickness of phantom model with high sensitivity. Using this method, highly sensitive sensor for obtaining characteristics of blood in body can be developed.

  19. Carcass Persistence and Detectability: Reducing the Uncertainty Surrounding Wildlife-Vehicle Collision Surveys

    PubMed Central

    Santos-Reis, Margarida; Picanço de Figueiredo, Almir; Bager, Alex; Aguiar, Ludmilla M. S.

    2016-01-01

    Carcass persistence time and detectability are two main sources of uncertainty on roadkill surveys. In this study, we evaluate the influence of these uncertainties on roadkill surveys and estimates. To estimate carcass persistence time, three observers (including the driver) surveyed 114km by car on a monthly basis for two years, searching for wildlife-vehicle collisions (WVC). Each survey consisted of five consecutive days. To estimate carcass detectability, we randomly selected stretches of 500m to be also surveyed on foot by two other observers (total 292 walked stretches, 146 km walked). We expected that body size of the carcass, road type, presence of scavengers and weather conditions to be the main drivers influencing the carcass persistence times, but their relative importance was unknown. We also expected detectability to be highly dependent on body size. Overall, we recorded low median persistence times (one day) and low detectability (<10%) for all vertebrates. The results indicate that body size and landscape cover (as a surrogate of scavengers’ presence) are the major drivers of carcass persistence. Detectability was lower for animals with body mass less than 100g when compared to carcass with higher body mass. We estimated that our recorded mortality rates underestimated actual values of mortality by 2–10 fold. Although persistence times were similar to previous studies, the detectability rates here described are very different from previous studies. The results suggest that detectability is the main source of bias across WVC studies. Therefore, more than persistence times, studies should carefully account for differing detectability when comparing WVC studies. PMID:27806125

  20. Computational Determination of the Effects of Bacteriophage Bacteriophage Interactions in Human body.

    PubMed

    Mostafa, Marwa Mostafa; Nassef, Mohammad; Badr, Amr

    2017-10-19

    Chronic diseases are becoming more serious and widely spreading and this carries a heavy burden on doctors to deal with such patients. Although many of these diseases can be treated by bacteriophages, the situation is significantly dangerous in patients having concomitant more than one chronic disease, where conflicts between phages used in treating these diseases are very closer to happen. This research paper presents a method to detecting the Bacteriophage-Bacteriophage Interaction. This method is implemented based on Domain-Domain Interactions model and it was used to infer Domain-Domain Interactions between the bacteriophages injected in the human body at the same time. By testing the method over bacteriophages that are used to treat tuberculosis, salmonella and virulent E.coli, many interactions have been inferred and detected between these bacteriophages. Several effects were detected for the resulted interactions such as: playing a role in DNA repair such as non-homologous end joining, playing a role in DNA replication, playing a role in the interaction between the immune system and the tumor cells and playing a role in the stiff man syndrome. We revised all patents relating to bacteriophage bacteriophage interactions and phage therapy. The proposed method is developed to help doctors to realize the effect of simultaneously injecting different bacteriophages into the human body to treat different diseases. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  1. A Thermally Powered ISFET Array for On-Body pH Measurement.

    PubMed

    Douthwaite, Matthew; Koutsos, Ermis; Yates, David C; Mitcheson, Paul D; Georgiou, Pantelis

    2017-12-01

    Recent advances in electronics and electrochemical sensors have led to an emerging class of next generation wearables, detecting analytes in biofluids such as perspiration. Most of these devices utilize ion-selective electrodes (ISEs) as a detection method; however, ion-sensitive field-effect transistors (ISFETs) offer a solution with improved integration and a low power consumption. This work presents a wearable, thermoelectrically powered system composed of an application-specific integrated circuit (ASIC), two commercial power management integrated circuits and a network of commercial thermoelectric generators (TEGs). The ASIC is fabricated in 0.35 m CMOS and contains an ISFET array designed to read pH as a current, a processing module which averages the signal to reduce noise and encodes it into a frequency, and a transmitter. The output frequency has a measured sensitivity of 6 to 8 kHz/pH for a pH range of 7-5. It is shown that the sensing array and processing module has a power consumption 6 W and, therefore, can be entirely powered by body heat using a TEG. Array averaging is shown to reduce noise at these low power levels to 104 V (input referred integrated noise), reducing the minimum detectable limit of the ASIC to 0.008 pH units. The work forms the foundation and proves the feasibility of battery-less, on-body electrochemical for perspiration analysis in sports science and healthcare applications.

  2. Optical coherence tomography used for internal biometrics

    NASA Astrophysics Data System (ADS)

    Chang, Shoude; Sherif, Sherif; Mao, Youxin; Flueraru, Costel

    2007-06-01

    Traditional biometric technologies used for security and person identification essentially deal with fingerprints, hand geometry and face images. However, because all these technologies use external features of human body, they can be easily fooled and tampered with by distorting, modifying or counterfeiting these features. Nowadays, internal biometrics which detects the internal ID features of an object is becoming increasingly important. Being capable of exploring under-skin structure, optical coherence tomography (OCT) system can be used as a powerful tool for internal biometrics. We have applied fiber-optic and full-field OCT systems to detect the multiple-layer 2D images and 3D profile of the fingerprints, which eventually result in a higher discrimination than the traditional 2D recognition methods. More importantly, the OCT based fingerprint recognition has the ability to easily distinguish artificial fingerprint dummies by analyzing the extracted layered surfaces. Experiments show that our OCT systems successfully detected the dummy, which was made of plasticene and was used to bypass the commercially available fingerprint scanning system with a false accept rate (FAR) of 100%.

  3. Handheld Metal Detector for Metallic Foreign Body Ingestion in Pediatric Emergency.

    PubMed

    Hamzah, Hazwani Binte; James, Vigil; Manickam, Suraj; Ganapathy, Sashikumar

    2018-01-04

    Foreign body ingestion is a common problem for which children present to the emergency department. The most common ingested foreign bodies among children are coins. Metal detector is an equipment, which measures a change in inductance of a coil when an electroconductive material is placed near it and produces an audio-visual signal. The present study was conducted to determine the effectiveness and feasibility of HMD in the local Pediatric population. This was a prospective study conducted in the pediatric emergency department among children presenting with history of foreign body ingestion. The outcome measured was presence or absence of metallic foreign body detected on handheld metal detector examination. During the study period, 36 patients with history of foreign body ingestion presented to the emergency department. Among these, 28 were metallic foreign body ingestions. Coins were the most common type of foreign body ingested. Among the metallic foreign bodies ingested, all the coins were accurately identified by the handheld metal detector. Non-coin metallic foreign bodies like metallic screw, needle and stapler pin were not identified by the handheld metal detector. The study demonstrates that handheld metal detector can be safely and reliably used as a screening tool in the process of detecting ingested coins. The plain radiograph still appears to be superior as it accurately localizes sharp metallic objects as well as cell batteries (button batteries) which need to be detected early and removed in order to prevent complications. Handheld metal detector is an effective tool that can be used in the follow up of patients to confirm whether the coin like metallic foreign body has been expelled. Handheld metal detector examination is more sensitive than traditional X-ray examination to detect radiolucent metallic foreign bodies like aluminium.

  4. New ocular movement detector system as a communication tool in ventilator-assisted Werdnig-Hoffmann disease.

    PubMed

    Kubota, M; Sakakihara, Y; Uchiyama, Y; Nara, A; Nagata, T; Nitta, H; Ishimoto, K; Oka, A; Horio, K; Yanagisawa, M

    2000-01-01

    A non-contact communication system was developed for a ventilator-assisted patient with Werdnig-Hoffmann disease who had lost all voluntary movements except for those of the eye. The system detects the extraocular movements and converts them to either a 'yes' signal (produced by one lateral eyeball movement) or a 'no' signal (produced by two successive lateral eyeball movements) using a video camera placed outside the patient's visual field. The patient is thus able to concentrate on performing a task without any intrusion from the detection system. Once the setting conditions of the device have been selected, there is no need for any resetting, as the patient is unable to move his body. In addition to playing television games, the child can use the device to select television channels, compose music, and learn written Japanese and Chinese characters. This seems to broaden the patient's daily world and promote mental development.

  5. Comparison of Methods for Assessing Body Composition Changes during Weight Loss.

    ERIC Educational Resources Information Center

    Weyers, Anna M.; Mazzetti, Scott A.; Love, Dawn M.; Gomez, Ana L.; Kraemer, William J.; Volek, Jeff S.

    2002-01-01

    Investigated whether dual-energy x-ray absorptiometry (DXA) and air displacement plethysmography (ADP) would detect similar changes in body composition after moderate weight loss. Twenty adults had their body composition measured using DXA and ADP before and after an 8-week weight loss program. Overall, both DXA and ADP detected similar changes in…

  6. Evaluation of infrared thermography body temperature and collar-mounted accelerometer and acoustic technology for predicting time of ovulation of cows in a pasture-based system.

    PubMed

    Talukder, S; Thomson, P C; Kerrisk, K L; Clark, C E F; Celi, P

    2015-03-01

    This study was conducted to test the hypothesis that the specificity of infrared thermography (IRT) in detecting cows about to ovulate could be improved using different body parts that are less likely to be contaminated by fecal matter. In addition, the combined activity and rumination data captured by accelerometers were evaluated to provide a more accurate indication of ovulation than the activity and rumination data alone. Thermal images of 30 cows were captured for different body areas (eye, ear, muzzle, and vulva) twice daily after AM and PM milking sessions during the entire experimental period. Milk progesterone data and insemination records were used to determine the date of ovulation. Cows were fitted with SCR heat and rumination long-distance tags (SCR HR LD) for 1 month. Activity- and rumination-based estrus alerts were initially identified using default threshold values set by the manufacturer; however, a range of thresholds was also created and tested for both activity and rumination to determine the potential for higher levels of accuracy of ovulation detection. Visual assessment of mounting indicators resulted in 75% sensitivity (Se), 100% specificity (Sp), and 100% positive predictive value (PPV). Overall, IRT showed poor performance for detecting cows about to ovulate. Vulval temperature resulted in the greatest (80%) Sp but the poorest (21%) Se compared with the IRT temperatures of other body areas. The SCR HR LD tags default threshold value resulted in 78% Se, 57% Sp, and 70% PPV. Lowering the activity threshold from the default value improved the sensitivity but created a large number of false positives, which resulted in a decrease in specificity. Lowering the activity threshold to 20 resulted in a detection performance of 80% Se, 94% Sp, and 67% PPV, whereas the rumination levels achieved 35% Se, 69% Sp, and 14% PPV. The area under the curve for the activity level, rumination level, and the combined measures of activity and rumination levels were 0.82, 0.54, and 0.75, respectively. Alerts generated by SCR HR LD tags based on a lower activity threshold level had high sensitivity and may be able to detect a high proportion of cows in ovulatory periods in pasture-based system; however, the specificities and positive predictive value were lower than the visual assessment of mounting indicators. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Review: Behavioral signs of estrus and the potential of fully automated systems for detection of estrus in dairy cattle.

    PubMed

    Reith, S; Hoy, S

    2018-02-01

    Efficient detection of estrus is a permanent challenge for successful reproductive performance in dairy cattle. In this context, comprehensive knowledge of estrus-related behaviors is fundamental to achieve optimal estrus detection rates. This review was designed to identify the characteristics of behavioral estrus as a necessary basis for developing strategies and technologies to improve the reproductive management on dairy farms. The focus is on secondary symptoms of estrus (mounting, activity, aggressive and agonistic behaviors) which seem more indicative than standing behavior. The consequences of management, housing conditions and cow- and environmental-related factors impacting expression and detection of estrus as well as their relative importance are described in order to increase efficiency and accuracy of estrus detection. As traditional estrus detection via visual observation is time-consuming and ineffective, there has been a considerable advancement of detection aids during the last 10 years. By now, a number of fully automated technologies including pressure sensing systems, activity meters, video cameras, recordings of vocalization as well as measurements of body temperature and milk progesterone concentration are available. These systems differ in many aspects regarding sustainability and efficiency as keys to their adoption for farm use. As being most practical for estrus detection a high priority - according to the current research - is given to the detection based on sensor-supported activity monitoring, especially accelerometer systems. Due to differences in individual intensity and duration of estrus multivariate analysis can support herd managers in determining the onset of estrus. Actually, there is increasing interest in investigating the potential of combining data of activity monitoring and information of several other methods, which may lead to the best results concerning sensitivity and specificity of detection. Future improvements will likely require more multivariate detection by data and systems already existing on farms.

  8. An Optical System for Body Imaging from a Distance Using Near-TeraHertz Frequencies

    NASA Astrophysics Data System (ADS)

    Duncan, W. D.; Schwall, R. E.; Irwin, K. D.; Beall, J. A.; Reintsema, C. D.; Doriese, William; Cho, Hsiao-Mei; Estey, Brian; Chattopadhyay, Goutam; Ade, Peter; Tucker, Carole

    2008-05-01

    We present the outline of the optical design of a TeraHertz (THz) imager for the detection of shrapnel-loaded improvised explosive devices (IED) devices at “stand-off” distances of 14 26 meters. The system will use 4 antenna-coupled TES detector arrays of 16 by 16 pixels cooled in a cryogen-free system with microwave readout to see beneath clothing at non-lethal detonation distances. A spatial resolution of ˜10 mm and close to video frame rates is anticipated.

  9. J2ME and smart phones as platform for a Bluetooth body area network for patient-telemonitoring.

    PubMed

    Morón, M J; Luque, J R; Botella, A A; Cuberos, E J; Casilari, E; Díaz-Estrella, A

    2007-01-01

    A prototype of a system based on a Bluetooth Body Area Network (BAN) for continuous and wireless telemonitoring of patients' biosignals is presented. Smart phones and Java (J2ME) have been selected as platform to build a central node in patients' BAN. A midlet running in the smart phone compiles information about patient's location and health status. The midlet encrypts and retransmits it to the server through 802.11 or GPRS/UMTS. Besides when an alerting condition is detected, the midlet generates a MMS and a SMS to be sent to patients' relatives and to physician, respectively. Additionally, the system provides to physicians the possibility of configuring BAN's parameters remotely, from a PC or even a smart phone.

  10. Phase-locked loop based on nanoelectromechanical resonant-body field effect transistor

    NASA Astrophysics Data System (ADS)

    Bartsch, S. T.; Rusu, A.; Ionescu, A. M.

    2012-10-01

    We demonstrate the room-temperature operation of a silicon nanoelectromechanical resonant-body field effect transistor (RB-FET) embedded into phase-locked loop (PLL). The very-high frequency resonator uses on-chip electrostatic actuation and transistor-based displacement detection. The heterodyne frequency down-conversion based on resistive FET mixing provides a loop feedback signal with high signal-to-noise ratio. We identify key parameters for PLL operation, and analyze the performance of the RB-FET at the system level. Used as resonant mass detector, the experimental frequency stability in the ppm-range translates into sub atto-gram (10-18 g) sensitivity in high vacuum. The feedback and control system are generic and may be extended to other mechanical resonators with transistor properties, such as graphene membranes and carbon nanotubes.

  11. Hyperspectral imaging applied to medical diagnoses and food safety

    NASA Astrophysics Data System (ADS)

    Carrasco, Oscar; Gomez, Richard B.; Chainani, Arun; Roper, William E.

    2003-08-01

    This paper analyzes the feasibility and performance of HSI systems for medical diagnosis as well as for food safety. Illness prevention and early disease detection are key elements for maintaining good health. Health care practitioners worldwide rely on innovative electronic devices to accurately identify disease. Hyperspectral imaging (HSI) is an emerging technique that may provide a less invasive procedure than conventional diagnostic imaging. By analyzing reflected and fluorescent light applied to the human body, a HSI system serves as a diagnostic tool as well as a method for evaluating the effectiveness of applied therapies. The safe supply and production of food is also of paramount importance to public health illness prevention. Although this paper will focus on imaging and spectroscopy in food inspection procedures -- the detection of contaminated food sources -- to ensure food quality, HSI also shows promise in detecting pesticide levels in food production (agriculture.)

  12. Magnetic resonance imaging of living systems by remote detection

    DOEpatents

    Wemmer, David; Pines, Alexander; Bouchard, Louis; Xu, Shoujun; Harel, Elad; Budker, Dmitry; Lowery, Thomas; Ledbetter, Micah

    2013-10-29

    A novel approach to magnetic resonance imaging is disclosed. Blood flowing through a living system is prepolarized, and then encoded. The polarization can be achieved using permanent or superconducting magnets. The polarization may be carried out upstream of the region to be encoded or at the place of encoding. In the case of an MRI of a brain, polarization of flowing blood can be effected by placing a magnet over a section of the body such as the heart upstream of the head. Alternatively, polarization and encoding can be effected at the same location. Detection occurs at a remote location, using a separate detection device such as an optical atomic magnetometer, or an inductive Faraday coil. The detector may be placed on the surface of the skin next to a blood vessel such as a jugular vein carrying blood away from the encoded region.

  13. Duplex detection of the Mycobacterium tuberculosis complex and medically important non-tuberculosis mycobacteria by real-time PCR based on the rnpB gene.

    PubMed

    Abdeldaim, Guma; Svensson, Erik; Blomberg, Jonas; Herrmann, Björn

    2016-11-01

    A duplex real-time PCR based on the rnpB gene was developed for Mycobacterium spp. The assay was specific for the Mycobacterium tuberculosis complex (MTB) and also detected all 19 tested species of non-tuberculous mycobacteria (NTM). The assay was evaluated on 404 clinical samples: 290 respiratory samples and 114 from tissue and other non-respiratory body sites. M. tuberculosis was detected by culture in 40 samples and in 30 samples by the assay. The MTB assay showed a sensitivity similar to Roche Cobas Amplicor MTB-PCR (Roche Molecular Systems, Pleasanton, CA, USA). There were only nine samples with non-tuberculous mycobacteria detected by culture. Six of them were detected by the PCR assay. © 2016 APMIS. Published by John Wiley & Sons Ltd.

  14. Computerized method to compensate for breathing body motion in dynamic chest radiographs

    NASA Astrophysics Data System (ADS)

    Matsuda, H.; Tanaka, R.; Sanada, S.

    2017-03-01

    Dynamic chest radiography combined with computer analysis allows quantitative analyses on pulmonary function and rib motion. The accuracy of kinematic analysis is directly linked to diagnostic accuracy, and thus body motion compensation is a major concern. Our purpose in this study was to develop a computerized method to reduce a breathing body motion in dynamic chest radiographs. Dynamic chest radiographs of 56 patients were obtained using a dynamic flat-panel detector. The images were divided into a 1 cm-square and the squares on body counter were used to detect the body motion. Velocity vector was measured using cross-correlation method on the body counter and the body motion was then determined on the basis of the summation of motion vector. The body motion was then compensated by shifting the images based on the measured vector. By using our method, the body motion was accurately detected by the order of a few pixels in clinical cases, mean 82.5% in right and left directions. In addition, our method detected slight body motion which was not able to be identified by human observations. We confirmed our method effectively worked in kinetic analysis of rib motion. The present method would be useful for the reduction of a breathing body motion in dynamic chest radiography.

  15. DETECTION OF WHOLE BODY OXIDATIVE STRESS IN URINE USING OXYGEN-18 LABELING

    EPA Science Inventory

    DETECTION OF WHOLE BODY OXIDATIVE STRESS IN URINE USING OXYGEN-18 LABELING. R Slade, J L McKee and G E Hatch. PTB, ETD, NHEERL, ORD, USEPA, Research Triangle Park, NC, USA.
    Reliable non-invasive markers for detecting oxidative stress in vivo are currently not available. We pr...

  16. Heat Perception and Aversive Learning in Honey Bees: Putative Involvement of the Thermal/Chemical Sensor AmHsTRPA

    PubMed Central

    Junca, Pierre; Sandoz, Jean-Christophe

    2015-01-01

    The recent development of the olfactory conditioning of the sting extension response (SER) has provided new insights into the mechanisms of aversive learning in honeybees. Until now, very little information has been gained concerning US detection and perception. In the initial version of SER conditioning, bees learned to associate an odor CS with an electric shock US. Recently, we proposed a modified version of SER conditioning, in which thermal stimulation with a heated probe is used as US. This procedure has the advantage of allowing topical US applications virtually everywhere on the honeybee body. In this study, we made use of this possibility and mapped thermal responsiveness on the honeybee body, by measuring workers' SER after applying heat on 41 different structures. We then show that bees can learn the CS-US association even when the heat US is applied on body structures that are not prominent sensory organs, here the vertex (back of the head) and the ventral abdomen. Next, we used a neuropharmalogical approach to evaluate the potential role of a recently described Transient Receptor Potential (TRP) channel, HsTRPA, on peripheral heat detection by bees. First, we applied HsTRPA activators to assess if such activation is sufficient for triggering SER. Second, we injected HsTRPA inhibitors to ask whether interfering with this TRP channel affects SER triggered by heat. These experiments suggest that HsTRPA may be involved in heat detection by bees, and represent a potential peripheral detection system in thermal SER conditioning. PMID:26635613

  17. Detecting paralinguistic events in audio stream using context in features and probabilistic decisions☆

    PubMed Central

    Gupta, Rahul; Audhkhasi, Kartik; Lee, Sungbok; Narayanan, Shrikanth

    2017-01-01

    Non-verbal communication involves encoding, transmission and decoding of non-lexical cues and is realized using vocal (e.g. prosody) or visual (e.g. gaze, body language) channels during conversation. These cues perform the function of maintaining conversational flow, expressing emotions, and marking personality and interpersonal attitude. In particular, non-verbal cues in speech such as paralanguage and non-verbal vocal events (e.g. laughters, sighs, cries) are used to nuance meaning and convey emotions, mood and attitude. For instance, laughters are associated with affective expressions while fillers (e.g. um, ah, um) are used to hold floor during a conversation. In this paper we present an automatic non-verbal vocal events detection system focusing on the detect of laughter and fillers. We extend our system presented during Interspeech 2013 Social Signals Sub-challenge (that was the winning entry in the challenge) for frame-wise event detection and test several schemes for incorporating local context during detection. Specifically, we incorporate context at two separate levels in our system: (i) the raw frame-wise features and, (ii) the output decisions. Furthermore, our system processes the output probabilities based on a few heuristic rules in order to reduce erroneous frame-based predictions. Our overall system achieves an Area Under the Receiver Operating Characteristics curve of 95.3% for detecting laughters and 90.4% for fillers on the test set drawn from the data specifications of the Interspeech 2013 Social Signals Sub-challenge. We perform further analysis to understand the interrelation between the features and obtained results. Specifically, we conduct a feature sensitivity analysis and correlate it with each feature's stand alone performance. The observations suggest that the trained system is more sensitive to a feature carrying higher discriminability with implications towards a better system design. PMID:28713197

  18. Driver Distraction Using Visual-Based Sensors and Algorithms.

    PubMed

    Fernández, Alberto; Usamentiaga, Rubén; Carús, Juan Luis; Casado, Rubén

    2016-10-28

    Driver distraction, defined as the diversion of attention away from activities critical for safe driving toward a competing activity, is increasingly recognized as a significant source of injuries and fatalities on the roadway. Additionally, the trend towards increasing the use of in-vehicle information systems is critical because they induce visual, biomechanical and cognitive distraction and may affect driving performance in qualitatively different ways. Non-intrusive methods are strongly preferred for monitoring distraction, and vision-based systems have appeared to be attractive for both drivers and researchers. Biomechanical, visual and cognitive distractions are the most commonly detected types in video-based algorithms. Many distraction detection systems only use a single visual cue and therefore, they may be easily disturbed when occlusion or illumination changes appear. Moreover, the combination of these visual cues is a key and challenging aspect in the development of robust distraction detection systems. These visual cues can be extracted mainly by using face monitoring systems but they should be completed with more visual cues (e.g., hands or body information) or even, distraction detection from specific actions (e.g., phone usage). Additionally, these algorithms should be included in an embedded device or system inside a car. This is not a trivial task and several requirements must be taken into account: reliability, real-time performance, low cost, small size, low power consumption, flexibility and short time-to-market. The key points for the development and implementation of sensors to carry out the detection of distraction will also be reviewed. This paper shows a review of the role of computer vision technology applied to the development of monitoring systems to detect distraction. Some key points considered as both future work and challenges ahead yet to be solved will also be addressed.

  19. Driver Distraction Using Visual-Based Sensors and Algorithms

    PubMed Central

    Fernández, Alberto; Usamentiaga, Rubén; Carús, Juan Luis; Casado, Rubén

    2016-01-01

    Driver distraction, defined as the diversion of attention away from activities critical for safe driving toward a competing activity, is increasingly recognized as a significant source of injuries and fatalities on the roadway. Additionally, the trend towards increasing the use of in-vehicle information systems is critical because they induce visual, biomechanical and cognitive distraction and may affect driving performance in qualitatively different ways. Non-intrusive methods are strongly preferred for monitoring distraction, and vision-based systems have appeared to be attractive for both drivers and researchers. Biomechanical, visual and cognitive distractions are the most commonly detected types in video-based algorithms. Many distraction detection systems only use a single visual cue and therefore, they may be easily disturbed when occlusion or illumination changes appear. Moreover, the combination of these visual cues is a key and challenging aspect in the development of robust distraction detection systems. These visual cues can be extracted mainly by using face monitoring systems but they should be completed with more visual cues (e.g., hands or body information) or even, distraction detection from specific actions (e.g., phone usage). Additionally, these algorithms should be included in an embedded device or system inside a car. This is not a trivial task and several requirements must be taken into account: reliability, real-time performance, low cost, small size, low power consumption, flexibility and short time-to-market. The key points for the development and implementation of sensors to carry out the detection of distraction will also be reviewed. This paper shows a review of the role of computer vision technology applied to the development of monitoring systems to detect distraction. Some key points considered as both future work and challenges ahead yet to be solved will also be addressed. PMID:27801822

  20. Analysis of copy number variants by three detection algorithms and their association with body size in horses.

    PubMed

    Metzger, Julia; Philipp, Ute; Lopes, Maria Susana; da Camara Machado, Artur; Felicetti, Michela; Silvestrelli, Maurizio; Distl, Ottmar

    2013-07-18

    Copy number variants (CNVs) have been shown to play an important role in genetic diversity of mammals and in the development of many complex phenotypic traits. The aim of this study was to perform a standard comparative evaluation of CNVs in horses using three different CNV detection programs and to identify genomic regions associated with body size in horses. Analysis was performed using the Illumina Equine SNP50 genotyping beadchip for 854 horses. CNVs were detected by three different algorithms, CNVPartition, PennCNV and QuantiSNP. Comparative analysis revealed 50 CNVs that affected 153 different genes mainly involved in sensory perception, signal transduction and cellular components. Genome-wide association analysis for body size showed highly significant deleted regions on ECA1, ECA8 and ECA9. Homologous regions to the detected CNVs on ECA1 and ECA9 have also been shown to be correlated with human height. Comparative analysis of CNV detection algorithms was useful to increase the specificity of CNV detection but had certain limitations dependent on the detection tool. GWAS revealed genome-wide associated CNVs for body size in horses.

  1. Minimal Internal Radiation Exposure in Residents Living South of the Fukushima Daiichi Nuclear Power Plant Disaster.

    PubMed

    Akiyama, Junichi; Kato, Shigeaki; Tsubokura, Masaharu; Mori, Jinichi; Tanimoto, Tetsuya; Abe, Koichiro; Sakai, Shuji; Hayano, Ryugo; Tokiwa, Michio; Shimmura, Hiroaki

    2015-01-01

    Following the Fukushima nuclear power plant disaster, assessment of internal radiation exposure was indispensable to predict radiation-related health threats to residents of neighboring areas. Although many evaluations of internal radiation in residents living north and west of the crippled Fukushima nuclear power plant are available, there is little information on residents living in areas south of the plant, which were similarly affected by radio-contamination from the disaster. To assess the internal radio-contamination in residents living in affected areas to the south of the plant or who were evacuated into Iwaki city, a whole body counter (WBC) screening program of internal radio-contamination was performed on visitors to the Jyoban hospital in Iwaki city, which experienced less contamination than southern areas adjacent to the nuclear plant. The study included 9,206 volunteer subjects, of whom 6,446 were schoolchildren aged 4-15 years. Measurements began one year after the incident and were carried out over the course of two years. Early in the screening period only two schoolchildren showed Cs-137 levels that were over the detection limit (250 Bq/body), although their Cs-134 levels were below the detection limit (220 Bq/body). Among the 2,760 adults tested, 35 (1.3%) had detectable internal radio-contamination, but only for Cs-137 (range: 250 Bq/body to 859 Bq/body), and not Cs-134. Of these 35 subjects, nearly all (34/35) showed elevated Cs-137 levels only during the first year of the screening. With the exception of potassium 40, no other radionuclides were detected during the screening period. The maximum annual effective dose calculated from the detected Cs-137 levels was 0.029 and 0.028 mSv/year for the schoolchildren and adults, respectively, which is far below the 1 mSv/year limit set by the government of Japan. Although the data for radiation exposure during the most critical first year after the incident are unavailable due to a lack of systemic measurements, the present results suggest that internal radio-contamination levels more than one year after the incident were minimal for residents living south of the crippled Fukushima nuclear plant, and that the annual additional effective doses derived from internal Cs contamination were negligible. Thus, internal radio-contamination of residents living in southern radio-contaminated areas appears to be generally well controlled.

  2. Sun sensing guidance system for high altitude aircraft

    NASA Technical Reports Server (NTRS)

    Reed, R. D. (Principal Investigator)

    1982-01-01

    A sun sensing guidance system for high altitude aircraft is described. The system is characterized by a disk shaped body mounted for rotation aboard the aircraft in exposed relation to solar radiation. The system also has a plurality of mutually isolated chambers; each chamber being characterized by an opening having a photosensor disposed therein and arranged in facing relation with the opening for receiving incident solar radiation and responsively providing a voltage output. Photosensors are connected in paired relation through a bridge circuit for providing heading error signals in response to detected imbalances in intensities of solar radiation.

  3. Detection and classification of human body odor using an electronic nose.

    PubMed

    Wongchoosuk, Chatchawal; Lutz, Mario; Kerdcharoen, Teerakiat

    2009-01-01

    An electronic nose (E-nose) has been designed and equipped with software that can detect and classify human armpit body odor. An array of metal oxide sensors was used for detecting volatile organic compounds. The measurement circuit employs a voltage divider resistor to measure the sensitivity of each sensor. This E-nose was controlled by in-house developed software through a portable USB data acquisition card with a principle component analysis (PCA) algorithm implemented for pattern recognition and classification. Because gas sensor sensitivity in the detection of armpit odor samples is affected by humidity, we propose a new method and algorithms combining hardware/software for the correction of the humidity noise. After the humidity correction, the E-nose showed the capability of detecting human body odor and distinguishing the body odors from two persons in a relative manner. The E-nose is still able to recognize people, even after application of deodorant. In conclusion, this is the first report of the application of an E-nose for armpit odor recognition.

  4. Detection and Classification of Human Body Odor Using an Electronic Nose

    PubMed Central

    Wongchoosuk, Chatchawal; Lutz, Mario; Kerdcharoen, Teerakiat

    2009-01-01

    An electronic nose (E-nose) has been designed and equipped with software that can detect and classify human armpit body odor. An array of metal oxide sensors was used for detecting volatile organic compounds. The measurement circuit employs a voltage divider resistor to measure the sensitivity of each sensor. This E-nose was controlled by in-house developed software through a portable USB data acquisition card with a principle component analysis (PCA) algorithm implemented for pattern recognition and classification. Because gas sensor sensitivity in the detection of armpit odor samples is affected by humidity, we propose a new method and algorithms combining hardware/software for the correction of the humidity noise. After the humidity correction, the E-nose showed the capability of detecting human body odor and distinguishing the body odors from two persons in a relative manner. The E-nose is still able to recognize people, even after application of deodorant. In conclusion, this is the first report of the application of an E-nose for armpit odor recognition. PMID:22399995

  5. Reduced Bone Mineral Density in Children With Screening-detected Celiac Disease.

    PubMed

    Björck, Sara; Brundin, Charlotte; Karlsson, Magnus; Agardh, Daniel

    2017-11-01

    The aim of the study was to assess whether bone mass and metabolism are impaired in genetically at-risk children with screening-detected celiac disease. Included were 71 children with screening-detected celiac disease diagnosed at 10.0 ± 0.7 (mean ± standard deviation) years and 142 matched controls and 30 children with screening-detected celiac disease diagnosed at 3.3 ± 0.4 years of age presently on a gluten-free diet for 6.9 ± 1.1 years and 60 matched controls. All participants were assessed for bone mineral density (BMD) of total body and spine by dual x-ray absorptiometry, serum 25(OH) vitamin D3, parathyroid hormone (PTH), interleukin (IL)-1β, IL-2, IL-4, IL-5, IL-6, IL-8, IL-10, IL-12p70, IL-13, IL-15, interferon gamma, and tumor necrosis factor alpha. At diagnosis, screening-detected celiac disease children as compared to controls had a mean -0.03 g/cm reduced BMD of both total body and spine (P = 0.009 and P = 0.005, respectively), a mean -11.4 nmol/L lower level of 25(OH) vitamin D3 (P < 0.001), and a mean +1.0 pmol/L higher PTH level (P < 0.001). Systemic levels of the cytokines IL-1β, IL-6, IL-8, IL-10, IL-12p70, IL-13, and tumor necrosis factor alpha were all increased in screening-detected celiac disease as compared to controls (P < 0.001). No difference in BMD, 25(OH) vitamin D3, PTH, and cytokine levels were detected in children on a gluten-free diet compared with controls. Children with screening-detected celiac disease have reduced BMD, lower levels of vitamin D3, higher levels of PTH, and signs of systemic inflammation compared with controls. These differences were not found in celiac disease children on a gluten-free diet, indicating that children with screening-detected celiac disease benefit from an early diagnosis and treatment.

  6. Emergency admissions due to swallowed foreign bodies in adults

    PubMed Central

    Erbil, Bülent; Karaca, Mehmet Ali; Aslaner, Mehmet Ali; İbrahimov, Zaur; Kunt, Mehmet Mahir; Akpinar, Erhan; Özmen, Mehmet Mahir

    2013-01-01

    AIM: To study a retrospective analysis of patients who presented to the emergency departments (ED) with complaints related to foreign body ingestions. METHODS: Patients older than 16 years of age who presented to the ED between January 1st and December 31st of 2010 with complaints related to swallowed foreign bodies were identified from electronic health records and patient charts. RESULTS: A total of 100 patients presented with a complaint of foreign body ingestion during the study period. Overall, an X-ray was performed on 75 patients, and a fiberoptic evaluation was performed on 45 patients. A foreign body was detected in 46 (46%) patients. The diagnostic yield of the X-ray was 27 (36%) out of 75 patients, while the diagnostic yield of the fiberoptic evaluations was 21 (47%) out of 45 patients. The detected foreign bodies were mostly located in the esophagus (17 out of 46 foreign bodies detected). When the types of ingested foreign bodies were evaluated, 52 (52%) patients reported ingesting food, and 19 (19%) patients reported swallowing pins. An X-ray was performed on 33 patients with accidental food ingestions but yielded a positive result in only two cases. In 12 out of 21 patients with accidental food ingestion who underwent fiberoptic evaluation, the foreign material was detected and removed. CONCLUSION: Plain radiography is helpful in the localization of radiopaque swollen foreign bodies, while fiberoptic methods are useful as both diagnostic and therapeutic tools, regardless of radiopacity. PMID:24151363

  7. Emergency admissions due to swallowed foreign bodies in adults.

    PubMed

    Erbil, Bülent; Karaca, Mehmet Ali; Aslaner, Mehmet Ali; Ibrahimov, Zaur; Kunt, Mehmet Mahir; Akpinar, Erhan; Özmen, Mehmet Mahir

    2013-10-14

    To study a retrospective analysis of patients who presented to the emergency departments (ED) with complaints related to foreign body ingestions. Patients older than 16 years of age who presented to the ED between January 1(st) and December 31(st) of 2010 with complaints related to swallowed foreign bodies were identified from electronic health records and patient charts. A total of 100 patients presented with a complaint of foreign body ingestion during the study period. Overall, an X-ray was performed on 75 patients, and a fiberoptic evaluation was performed on 45 patients. A foreign body was detected in 46 (46%) patients. The diagnostic yield of the X-ray was 27 (36%) out of 75 patients, while the diagnostic yield of the fiberoptic evaluations was 21 (47%) out of 45 patients. The detected foreign bodies were mostly located in the esophagus (17 out of 46 foreign bodies detected). When the types of ingested foreign bodies were evaluated, 52 (52%) patients reported ingesting food, and 19 (19%) patients reported swallowing pins. An X-ray was performed on 33 patients with accidental food ingestions but yielded a positive result in only two cases. In 12 out of 21 patients with accidental food ingestion who underwent fiberoptic evaluation, the foreign material was detected and removed. Plain radiography is helpful in the localization of radiopaque swollen foreign bodies, while fiberoptic methods are useful as both diagnostic and therapeutic tools, regardless of radiopacity.

  8. Detection of foreign body using fast thermoacoustic tomography with a multielement linear transducer array

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nie Liming; Xing Da; Yang Diwu

    2007-04-23

    Current imaging modalities face challenges in clinical applications due to limitations in resolution or contrast. Microwave-induced thermoacoustic imaging may provide a complementary modality for medical imaging, particularly for detecting foreign objects due to their different absorption of electromagnetic radiation at specific frequencies. A thermoacoustic tomography system with a multielement linear transducer array was developed and used to detect foreign objects in tissue. Radiography and thermoacoustic images of objects with different electromagnetic properties, including glass, sand, and iron, were compared. The authors' results demonstrate that thermoacoustic imaging has the potential to become a fast method for surgical localization of occult foreignmore » objects.« less

  9. The Detection Of Planets In The 1:1 Resonance

    NASA Astrophysics Data System (ADS)

    Dvorak, R.; Schneider, J.; Schwarz, R.; Lhotka, C.; Sandor, Z.

    Orbits in the mean motion resonance are of special interest for asteroids in our Solar System. It is due to the fact that in a region 60° before Jupiter and 60° behind the largest planet a large number of asteroids are there. Many analytical and numerical work has been devoted to the stability of these two `clouds` of asteroids, which are named after the warriors of the Trojan war. The Trojans librate about these two stable equilibrium points in the so-called tadpole orbits having two well distinct periods. The 'exchange orbits' in the general three body problem can be described as follows: Two small but massive bodies are moving on nearly circular orbits with almost the same semimajor axes around a much more massive host. Because of the 3rd Keplerian law the one with the inner orbit is faster and approaches the outer body from behind. Before they meet, the inner body is shifted to the orbit of the outer and vice-versa the former outer body moves to an orbit with a smaller semimajor axis: they have changed their orbits and their semimajor axis! In the satellite system of Saturn the two moons Janus and Epimetheus (the orbits of these two moons differ only by 50 km; the respective semimajor axes are 151472 km and 151422 km and have themselves diameters of more than 100 km) have exactly these kinds of orbits. We postulate that this kind of orbits may also exist in extrasolar planetary systems.

  10. Real-time vibration-based structural damage detection using one-dimensional convolutional neural networks

    NASA Astrophysics Data System (ADS)

    Abdeljaber, Osama; Avci, Onur; Kiranyaz, Serkan; Gabbouj, Moncef; Inman, Daniel J.

    2017-02-01

    Structural health monitoring (SHM) and vibration-based structural damage detection have been a continuous interest for civil, mechanical and aerospace engineers over the decades. Early and meticulous damage detection has always been one of the principal objectives of SHM applications. The performance of a classical damage detection system predominantly depends on the choice of the features and the classifier. While the fixed and hand-crafted features may either be a sub-optimal choice for a particular structure or fail to achieve the same level of performance on another structure, they usually require a large computation power which may hinder their usage for real-time structural damage detection. This paper presents a novel, fast and accurate structural damage detection system using 1D Convolutional Neural Networks (CNNs) that has an inherent adaptive design to fuse both feature extraction and classification blocks into a single and compact learning body. The proposed method performs vibration-based damage detection and localization of the damage in real-time. The advantage of this approach is its ability to extract optimal damage-sensitive features automatically from the raw acceleration signals. Large-scale experiments conducted on a grandstand simulator revealed an outstanding performance and verified the computational efficiency of the proposed real-time damage detection method.

  11. Biomedical evidence of influence of geopathic zones on the human body: scientifically traceable effects and ways of harmonization.

    PubMed

    Hacker, Gerhard W; Pawlak, Elisabeth; Pauser, Gernot; Tichy, Gottfried; Jell, Hermann; Posch, Gabriele; Kraibacher, Günther; Aigner, Alfred; Hutter, Jörg

    2005-12-01

    Empiric knowledge of the existence of geopathic zones ('water veins' etc) is probably as old as humankind. It has often been tried to experimentally detect direct influences on the body. However, so far, there have been no publications in accepted biomedical journals. The target of this study was to verify influences of 2 different zones above ground on the human body and to test a device for which pilot studies have indicated a potential harmonizing effect in this context. Using a randomized, non-clinical, double-blinded trial design, 52 persons were tested with a gas discharge visualization (GDV) system whilst staying on 2 zones with or without the Geowave device (Geowave-Research, Salzburg, Austria). The 2 zones investigated had been dowsed by experienced professional dowsers and labeled with black dots in a non-persuasive manner, thereby blindly representing areas of geopathy or more neutral zones. The main analytical parameter was the GDV glow image area (area of glow). Complementary calculated parameters were spatial fractality, corona projections and corona diagrams. In the geopathic zone, the detected areas of glow were statistically significantly smaller than in the more neutral zone. With the Geowave blindly mounted in an adjacent room of the above story, a marked increase of the glow image area was found in both zones. The corona projections showed well-recognizable points of body energy deficits in the geopathic zone, mostly associated with the lymphatic system, the cardiovascular system and the pineal gland, which were -- to a distinctly lesser degree -- also present in the more neutral zone. The device tested yielded compensation or harmonization in both zones in most of the test persons. The significant differences in the physical area of glow parameter, which were also noticed for the complementary parameters analyzed, lead to the conclusion that the 2 different zones within the same room (geopathic vs. more neutral zone) exerted different influences on the human body, which may have caused a geopathic stress phenomenon. As a result, individually different retardation of the immune system and other organs may occur. The device tested in both zones showed harmonizing effects, which may help to compensate some influences of geopathy and possibility also superimposed stressors derived from certain other sources, such as technical electromagnetic fields.

  12. Prognostic potential of body composition indices in detecting risk of musculoskeletal injury in army officer cadet profiles.

    PubMed

    Havenetidis, Konstantinos; Paxinos, Thrasivoulos; Kardaris, Dionysios; Bissas, Athanassios

    2017-05-01

    High values in most of the body composition indices have been related to musculoskeletal injuries, but limited data exists on the accuracy of these diagnoses when detecting musculoskeletal injuries in military populations. The suitability of body fat percentage, body mass index, fat mass index and fat free mass index to identify injury risk was examined in a group of army officer recruits. All body composition diagnoses were measured in 268 male army officer recruits prior to the commencement of basic combat training. Musculoskeletal injury was identified using codes from the International Classification of Diseases. The area under the curve, in the receiver operating characteristic curve, was used to quantify the overall ability to discriminate between those who were injured and those who were not. The statistics indicated that all indices, apart from body mass index, had a significant possibility to detect musculoskeletal injury potential (p < 0.05; 61%-63%). The respective cut-off points used to classify individuals as injured were for body fat percentage >22, for fat mass index >6.5 and for fat free mass index <16.5. Body mass index values can not similarly detect the possibility of occurrence of musculoskeletal injuries in army officer recruits, just as other body composition diagnoses related to fat mass or/and free fat mass. However, the cut off-points related to the overall diagnostic performance of each body composition index should be used with caution and in accordance with the aims of each experimental setting.

  13. Searching for co-orbital planets by combining transit and radial-velocity measurements

    NASA Astrophysics Data System (ADS)

    Robutel, p.; Leleu, A.; Correia, A.; Lillo-Box, J.

    2017-09-01

    Co-orbital planetary systems consist of two planets orbiting with the same period a central star. If co-orbital bodies are common in the solar system and are also a natural output of planetary formation models, so far none have been found in extrasolar systems. This lack may be due to observational biases, since the main detection methods are unable to spot co-orbital companions when they are small or near the Lagrangian equilibrium points. We propose a simple method, based on an idea from Ford & Gaudi (2006), that allows the detection of co-orbital companions, and relies on a single parameter proportional to the mass ratio of the two planets. This method is applied to archival radial velocity data of 46 close-in transiting planets among which a few are strong candidates to harbor a co-orbital companion.

  14. First analysis of eight Algol-type binaries: EI Aur, XY Dra, BP Dra, DD Her, VX Lac, WX Lib, RZ Lyn, and TY Tri

    NASA Astrophysics Data System (ADS)

    Zasche, P.

    2016-01-01

    The available photometry from the online databases were used for the first light curve analysis of eight eclipsing binary systems EI Aur, XY Dra, BP Dra, DD Her, VX Lac, WX Lib, RZ Lyn, and TY Tri. All these stars are of Algol-type, having the detached components and the orbital periods from 0.92 to 6.8 days. For the systems EI Aur and BP Dra the large amount of the third light was detected during the light curve solution. Moreover, 468 new times of minima for these binaries were derived, trying to identify the period variations. For the systems XY Dra and VX Lac the third bodies were detected with the periods 17.7, and 49.3 years, respectively.

  15. Single-Frequency Ultrasound-Based Respiration Rate Estimation with Smartphones

    PubMed Central

    Wei, Jing

    2018-01-01

    Respiration monitoring is helpful in disease prevention and diagnosis. Traditional respiration monitoring requires users to wear devices on their bodies, which is inconvenient for them. In this paper, we aim to design a noncontact respiration rate detection system utilizing off-the-shelf smartphones. We utilize the single-frequency ultrasound as the media to detect the respiration activity. By analyzing the ultrasound signals received by the built-in microphone sensor in a smartphone, our system can derive the respiration rate of the user. The advantage of our method is that the transmitted signal is easy to generate and the signal analysis is simple, which has lower power consumption and thus is suitable for long-term monitoring in daily life. The experimental result shows that our system can achieve accurate respiration rate estimation under various scenarios. PMID:29853985

  16. Accurate Orientation Estimation Using AHRS under Conditions of Magnetic Distortion

    PubMed Central

    Yadav, Nagesh; Bleakley, Chris

    2014-01-01

    Low cost, compact attitude heading reference systems (AHRS) are now being used to track human body movements in indoor environments by estimation of the 3D orientation of body segments. In many of these systems, heading estimation is achieved by monitoring the strength of the Earth's magnetic field. However, the Earth's magnetic field can be locally distorted due to the proximity of ferrous and/or magnetic objects. Herein, we propose a novel method for accurate 3D orientation estimation using an AHRS, comprised of an accelerometer, gyroscope and magnetometer, under conditions of magnetic field distortion. The system performs online detection and compensation for magnetic disturbances, due to, for example, the presence of ferrous objects. The magnetic distortions are detected by exploiting variations in magnetic dip angle, relative to the gravity vector, and in magnetic strength. We investigate and show the advantages of using both magnetic strength and magnetic dip angle for detecting the presence of magnetic distortions. The correction method is based on a particle filter, which performs the correction using an adaptive cost function and by adapting the variance during particle resampling, so as to place more emphasis on the results of dead reckoning of the gyroscope measurements and less on the magnetometer readings. The proposed method was tested in an indoor environment in the presence of various magnetic distortions and under various accelerations (up to 3 g). In the experiments, the proposed algorithm achieves <2° static peak-to-peak error and <5° dynamic peak-to-peak error, significantly outperforming previous methods. PMID:25347584

  17. Obscenity detection using haar-like features and Gentle Adaboost classifier.

    PubMed

    Mustafa, Rashed; Min, Yang; Zhu, Dingju

    2014-01-01

    Large exposure of skin area of an image is considered obscene. This only fact may lead to many false images having skin-like objects and may not detect those images which have partially exposed skin area but have exposed erotogenic human body parts. This paper presents a novel method for detecting nipples from pornographic image contents. Nipple is considered as an erotogenic organ to identify pornographic contents from images. In this research Gentle Adaboost (GAB) haar-cascade classifier and haar-like features used for ensuring detection accuracy. Skin filter prior to detection made the system more robust. The experiment showed that, considering accuracy, haar-cascade classifier performs well, but in order to satisfy detection time, train-cascade classifier is suitable. To validate the results, we used 1198 positive samples containing nipple objects and 1995 negative images. The detection rates for haar-cascade and train-cascade classifiers are 0.9875 and 0.8429, respectively. The detection time for haar-cascade is 0.162 seconds and is 0.127 seconds for train-cascade classifier.

  18. Physical working principles of medical radar.

    PubMed

    Aardal, Øyvind; Paichard, Yoann; Brovoll, Sverre; Berger, Tor; Lande, Tor Sverre; Hamran, Svein-Erik

    2013-04-01

    There has been research interest in using radar for contactless measurements of the human heartbeat for several years. While many systems have been demonstrated, not much attention have been given to the actual physical causes of why this work. The consensus seems to be that the radar senses small body movements correlated with heartbeats, but whether only the movements of the body surface or reflections from internal organs are also monitored have not been answered definitely. There has recently been proposed another theory that blood perfusion in the skin could be the main reason radars are able to detect heartbeats. In this paper, an experimental approach is given to determine the physical causes. The measurement results show that it is the body surface reflections that dominate radar measurements of human heartbeats.

  19. Food Catches the Eye but Not for Everyone: A BMI–Contingent Attentional Bias in Rapid Detection of Nutriments

    PubMed Central

    Nummenmaa, Lauri; Hietanen, Jari K.; Calvo, Manuel G.; Hyönä, Jukka

    2011-01-01

    An organism's survival depends crucially on its ability to detect and acquire nutriment. Attention circuits interact with cognitive and motivational systems to facilitate detection of salient sensory events in the environment. Here we show that the human attentional system is tuned to detect food targets among nonfood items. In two visual search experiments participants searched for discrepant food targets embedded in an array of nonfood distracters or vice versa. Detection times were faster when targets were food rather than nonfood items, and the detection advantage for food items showed a significant negative correlation with Body Mass Index (BMI). Also, eye tracking during searching within arrays of visually homogenous food and nonfood targets demonstrated that the BMI-contingent attentional bias was due to rapid capturing of the eyes by food items in individuals with low BMI. However, BMI was not associated with decision times after the discrepant food item was fixated. The results suggest that visual attention is biased towards foods, and that individual differences in energy consumption - as indexed by BMI - are associated with differential attentional effects related to foods. We speculate that such differences may constitute an important risk factor for gaining weight. PMID:21603657

  20. Automated ultrasonic arterial vibrometry: detection and measurement

    NASA Astrophysics Data System (ADS)

    Plett, Melani I.; Beach, Kirk W.; Paun, Marla

    2000-04-01

    Since the invention of the stethoscope, the detection of vibrations and sounds from the body has been a touchstone of diagnosis. However, the method is limited to vibrations whose associated sounds transmit to the skin, with no means to determine the anatomic and physiological source of the vibrations save the cunning of the examiner. Using ultrasound quadrature phase demodulation methods similar to those of ultrasonic color flow imaging, we have developed a system to detect and measure tissue vibrations with amplitude excursions as small as 30 nanometers. The system uses wavelet analysis for sensitive and specific detection, as well as measurement, of short duration vibrations amidst clutter and time-varying, colored noise. Vibration detection rates in ROC curves from simulated data predict > 99.5% detections with < 1% false alarms for signal to noise ratios >= 0.5. Vibrations from in vivo arterial stenoses and punctures have been studied. The results show that vibration durations vary from 10 - 150 ms, frequencies from 100 - 1000 Hz, and amplitudes from 30 nanometers to several microns. By marking the location of vibration sources on ultrasound images, and using color to indicate amplitude, frequency or acoustic intensity, new diagnostic information is provided to aid disorder diagnosis and management.

  1. Constraining the Size and Depth of a Shallow Crustal Magma Body at Newberry Volcano Using P-Wave Tomography and Finite-Difference Waveform Modeling

    NASA Astrophysics Data System (ADS)

    Beachly, M. W.; Hooft, E. E.; Toomey, D. R.; Waite, G. P.

    2011-12-01

    Imaging magmatic systems improves our understanding of magma ascent and storage in the crust and contributes to hazard assessment. Seismic tomography reveals crustal magma bodies as regions of low velocity; however the ability of delay-time tomography to detect small, low-velocity bodies is limited by wavefront healing. Alternatively, crustal magma chambers have been identified from secondary phases including P and S wave reflections and conversions. We use a combination of P-wave tomography and finite-difference waveform modeling to characterize a shallow crustal magma body at Newberry Volcano, central Oregon. Newberry's eruptions are silicic within the central caldera and mafic on its periphery suggesting a central silicic magma storage system. The system may still be active with a recent eruption ~1300 years ago and a drill hole temperature of 256° C at only 932 m depth. A low-velocity anomaly previously imaged at 3-5 km beneath the caldera indicates either a magma body or a fractured pluton. With the goal of detecting secondary arrivals from a magma chamber beneath Newberry Volcano, we deployed a line of densely-spaced (~300 m), three-component seismometers that recorded a shot of opportunity from the High Lava Plains Experiment in 2008. The data record a secondary P-wave arrival originating from beneath the caldera. In addition we combine travel-time data from our 2008 experiment with data collected in the 1980's by the USGS for a P-wave tomography inversion to image velocity structure to 6 km depth. The inversion includes 16 active sources, 322 receivers and 1007 P-wave first arrivals. The tomography results reveal a high-velocity, ring-like anomaly beneath the caldera ring faults to 2 km depth that surrounds a shallow low-velocity region. Beneath 2.5 km high-velocity anomalies are concentrated east and west of the caldera. A central low-velocity body lies below 3 km depth. Tomographic inversions of synthetic data suggest that the central low-velocity body beneath 3 km depth is not well resolved and that, for example, an unrealistically large low-velocity body with a volume up to 72 km3 at 40% velocity reduction (representing 30±7% partial melt) could be consistent with the observed travel-times. We use the tomographically derived velocity structure to construct 2D finite difference models and include synthetic low-velocity bodies in these models to test various magma chamber geometries and melt contents. Waveform modeling identifies the observed secondary phase as a transmitted P-wave formed by delaying and focusing P-wave energy through the low-velocity region. We will further constrain the size and shape of the low-velocity region by comparing arrival times and amplitudes of observed and synthetic primary and secondary phases. Secondary arrivals provide compelling evidence for an active crustal magmatic system beneath Newberry volcano and demonstrate the ability of waveform modeling to constrain the nature of magma bodies beyond the limits of seismic tomography.

  2. Robust myoelectric signal detection based on stochastic resonance using multiple-surface-electrode array made of carbon nanotube composite paper

    NASA Astrophysics Data System (ADS)

    Shirata, Kento; Inden, Yuki; Kasai, Seiya; Oya, Takahide; Hagiwara, Yosuke; Kaeriyama, Shunichi; Nakamura, Hideyuki

    2016-04-01

    We investigated the robust detection of surface electromyogram (EMG) signals based on the stochastic resonance (SR) phenomenon, in which the response to weak signals is optimized by adding noise, combined with multiple surface electrodes. Flexible carbon nanotube composite paper (CNT-cp) was applied to the surface electrode, which showed good performance that is comparable to that of conventional Ag/AgCl electrodes. The SR-based EMG signal system integrating an 8-Schmitt-trigger network and the multiple-CNT-cp-electrode array successfully detected weak EMG signals even when the subject’s body is in the motion, which was difficult to achieve using the conventional technique. The feasibility of the SR-based EMG detection technique was confirmed by demonstrating its applicability to robot hand control.

  3. Foreign body detection in food materials using compton scattered x-rays

    NASA Astrophysics Data System (ADS)

    McFarlane, Nigel James Bruce

    This thesis investigated the application of X-ray Compton scattering to the problem of foreign body detection in food. The methods used were analytical modelling, simulation and experiment. A criterion was defined for detectability, and a model was developed for predicting the minimum time required for detection. The model was used to predict the smallest detectable cubes of air, glass, plastic and steel. Simulations and experiments were performed on voids and glass in polystyrene phantoms, water, coffee and muesli. Backscatter was used to detect bones in chicken meat. The effects of geometry and multiple scatter on contrast, signal-to-noise, and detection time were simulated. Compton scatter was compared with transmission, and the effect of inhomogeneity was modelled. Spectral shape was investigated as a means of foreign body detection. A signal-to-noise ratio of 7.4 was required for foreign body detection in food. A 0.46 cm cube of glass or a 1.19 cm cube of polystyrene were detectable in a 10 cm cube of water in one second. The minimum time to scan a whole sample varied as the 7th power of the foreign body size, and the 5th power of the sample size. Compton scatter inspection produced higher contrasts than transmission, but required longer measurement times because of the low number of photon counts. Compton scatter inspection of whole samples was very slow compared to production line speeds in the food industry. There was potential for Compton scatter in applications which did not require whole-sample scanning, such as surface inspection. There was also potential in the inspection of inhomogeneous samples. The multiple scatter fraction varied from 25% to 55% for 2 to 10 cm cubes of water, but did not have a large effect on the detection time. The spectral shape gave good contrasts and signal-to-noise ratios in the detection of chicken bones.

  4. A model describing vestibular detection of body sway motion.

    NASA Technical Reports Server (NTRS)

    Nashner, L. M.

    1971-01-01

    An experimental technique was developed which facilitated the formulation of a quantitative model describing vestibular detection of body sway motion in a postural response mode. All cues, except vestibular ones, which gave a subject an indication that he was beginning to sway, were eliminated using a specially designed two-degree-of-freedom platform; body sway was then induced and resulting compensatory responses at the ankle joints measured. Hybrid simulation compared the experimental results with models of the semicircular canals and utricular otolith receptors. Dynamic characteristics of the resulting canal model compared closely with characteristics of models which describe eye movement and subjective responses to body rotational motions. The average threshold level, in the postural response mode, however, was considerably lower. Analysis indicated that the otoliths probably play no role in the initial detection of body sway motion.

  5. Optical Johnson noise thermometry

    DOEpatents

    Shepard, Robert L.; Blalock, Theron V.; Roberts, Michael J.; Maxey, Lonnie C.

    1992-01-01

    Method and device for direct, non-contact temperature measure of a body. A laser beam is reflected from the surface of the body and detected along with the Planck radiation. The detected signal is analyzed using signal correlation technique to generate an output signal proportional to the Johnson noise introduced into the reflected laser beam as a direct measure of the absolute temperature of the body.

  6. Measuring cues for stand-off deception detection based on full-body nonverbal features in body-worn cameras

    NASA Astrophysics Data System (ADS)

    Bouma, Henri; Burghouts, Gertjan; den Hollander, Richard; van der Zee, Sophie; Baan, Jan; ten Hove, Johan-Martijn; van Diepen, Sjaak; van den Haak, Paul; van Rest, Jeroen

    2016-10-01

    Deception detection is valuable in the security domain to distinguish truth from lies. It is desirable in many security applications, such as suspect and witness interviews and airport passenger screening. Interviewers are constantly trying to assess the credibility of a statement, usually based on intuition without objective technical support. However, psychological research has shown that humans can hardly perform better than random guessing. Deception detection is a multi-disciplinary research area with an interest from different fields, such as psychology and computer science. In the last decade, several developments have helped to improve the accuracy of lie detection (e.g., with a concealed information test, increasing the cognitive load, or measurements with motion capture suits) and relevant cues have been discovered (e.g., eye blinking or fiddling with the fingers). With an increasing presence of mobile phones and bodycams in society, a mobile, stand-off, automatic deception detection methodology based on various cues from the whole body would create new application opportunities. In this paper, we study the feasibility of measuring these visual cues automatically on different parts of the body, laying the groundwork for stand-off deception detection in more flexible and mobile deployable sensors, such as body-worn cameras. We give an extensive overview of recent developments in two communities: in the behavioral-science community the developments that improve deception detection with a special attention to the observed relevant non-verbal cues, and in the computer-vision community the recent methods that are able to measure these cues. The cues are extracted from several body parts: the eyes, the mouth, the head and the fullbody pose. We performed an experiment using several state-of-the-art video-content-analysis (VCA) techniques to assess the quality of robustly measuring these visual cues.

  7. Study on the Integrated Geophysic Methods and Application of Advanced Geological Detection for Complicated Tunnel

    NASA Astrophysics Data System (ADS)

    Zhou, L.; Xiao, G.

    2014-12-01

    The engineering geological and hydrological conditions of current tunnels are more and more complicated, as the tunnels are elongated with deeper depth. In constructing these complicated tunnels, geological hazards prone to occur as induced by unfavorable geological bodies, such as fault zones, karst or hydrous structures, etc. The working emphasis and difficulty of the advanced geological exploration for complicated tunnels are mainly focused on the structure and water content of these unfavorable geological bodies. The technical aspects of my paper systematically studied the advanced geological exploration theory and application aspects for complicated tunnels, with discussion on the key technical points and useful conclusions. For the all-aroundness and accuracy of advanced geological exploration results, the objective of my paper is targeted on the comprehensive examination on the structure and hydrous characteristic of the unfavorable geological bodies in complicated tunnels. By the multi-component seismic modeling on a more real model containing the air medium, the wave field response characteristics of unfavorable geological bodies can be analyzed, thus providing theoretical foundation for the observation system layout, signal processing and interpretation of seismic methods. Based on the tomographic imaging theory of seismic and electromagnetic method, 2D integrated seismic and electromagnetic tomographic imaging and visualization software was designed and applied in the advanced drilling hole in the tunnel face, after validation of the forward and inverse modeling results on theoretical models. The transmission wave imaging technology introduced in my paper can be served as a new criterion for detection of unfavorable geological bodies. After careful study on the basic theory, data processing and interpretation, practical applications of TSP and ground penetrating radar (GPR) method, as well as serious examination on their application examples, my paper formulated a suite of comprehensive application system of seismic and electromagnetic methods for the advanced geological exploration of complicated tunnels. This research is funded by National Natural Science Foundation of China (Grant No. 41202223) .

  8. Dynamical mass and multiplicity constraints on co-orbital bodies around stars

    NASA Astrophysics Data System (ADS)

    Veras, Dimitri; Marsh, Thomas R.; Gänsicke, Boris T.

    2016-09-01

    Objects transiting near or within the disruption radius of both main-sequence (e.g. KOI 1843) and white dwarf (WD 1145+017) stars are now known. Upon fragmentation or disintegration, these planets or asteroids may produce co-orbital configurations of nearly equal mass objects. However, as evidenced by the co-orbital objects detected by transit photometry in the WD 1145+017 system, these bodies are largely unconstrained in size, mass, and total number (multiplicity). Motivated by potential future similar discoveries, we perform N-body simulations to demonstrate if and how debris masses and multiplicity may be bounded due to second-to-minute deviations and the resulting accumulated phase shifts in the osculating orbital period amongst multiple co-orbital equal point masses. We establish robust lower and upper mass bounds as a function of orbital period deviation, but find the constraints on multiplicity to be weak. We also quantify the fuzzy instability boundary, and show that mutual collisions occur in less than 5, 10, and 20 per cent of our simulations for masses of 1021, 1022, and 1023 kg. Our results may provide useful initial rough constraints on other stellar systems with multiple co-orbital bodies.

  9. Image-based fall detection and classification of a user with a walking support system

    NASA Astrophysics Data System (ADS)

    Taghvaei, Sajjad; Kosuge, Kazuhiro

    2017-10-01

    The classification of visual human action is important in the development of systems that interact with humans. This study investigates an image-based classification of the human state while using a walking support system to improve the safety and dependability of these systems.We categorize the possible human behavior while utilizing a walker robot into eight states (i.e., sitting, standing, walking, and five falling types), and propose two different methods, namely, normal distribution and hidden Markov models (HMMs), to detect and recognize these states. The visual feature for the state classification is the centroid position of the upper body, which is extracted from the user's depth images. The first method shows that the centroid position follows a normal distribution while walking, which can be adopted to detect any non-walking state. The second method implements HMMs to detect and recognize these states. We then measure and compare the performance of both methods. The classification results are employed to control the motion of a passive-type walker (called "RT Walker") by activating its brakes in non-walking states. Thus, the system can be used for sit/stand support and fall prevention. The experiments are performed with four subjects, including an experienced physiotherapist. Results show that the algorithm can be adapted to the new user's motion pattern within 40 s, with a fall detection rate of 96.25% and state classification rate of 81.0%. The proposed method can be implemented to other abnormality detection/classification applications that employ depth image-sensing devices.

  10. BILLIARDS: Baseline Instrumented Lithology Lander, Inspector and Asteroid Redirection Demonstration System

    NASA Technical Reports Server (NTRS)

    Marcus, Matthew; Sloane, Joshua; Ortiz, Oliver; Barbee, Brent

    2015-01-01

    BILLIARDS Baseline Instrumented Lithology Lander, Inspector, and Asteroid Redirection Demonstration System Proposed demonstration mission for Billiard-Ball concept Select asteroid pair with natural close approach to minimize cost and complexity Primary Objectives Rendezvous with a small (10m), near Earth (alpha) asteroid Maneuver the alpha asteroid to a collision with a 100m (beta) asteroid Produce a detectable deflection or disruption of the beta asteroid Secondary objectives Contribute knowledge of asteroid composition and characteristics Contribute knowledge of small-body formation Opportunity for international collaboration

  11. Method and apparatus for imaging a sample on a device

    DOEpatents

    Trulson, Mark; Stern, David; Fiekowsky, Peter; Rava, Richard; Walton, Ian; Fodor, Stephen P. A.

    1996-01-01

    The present invention provides methods and systems for detecting a labeled marker on a sample located on a support. The imaging system comprises a body for immobilizing the support, an excitation radiation source and excitation optics to generate and direct the excitation radiation at the sample. In response, labeled material on the sample emits radiation which has a wavelength that is different from the excitation wavelength, which radiation is collected by collection optics and imaged onto a detector which generates an image of the sample.

  12. Clearing muddied waters: Capture of environmental DNA from turbid waters.

    PubMed

    Williams, Kelly E; Huyvaert, Kathryn P; Piaggio, Antoinette J

    2017-01-01

    Understanding the differences in efficiencies of various methods to concentrate, extract, and amplify environmental DNA (eDNA) is vital for best performance of eDNA detection. Aquatic systems vary in characteristics such as turbidity, eDNA concentration, and inhibitor load, thus affecting eDNA capture efficiency. Application of eDNA techniques to the detection of terrestrial invasive or endangered species may require sampling at intermittent water sources that are used for drinking and cooling; these water bodies may often be stagnant and turbid. We present our best practices technique for the detection of wild pig eDNA in water samples, a protocol that will have wide applicability to the detection of elusive vertebrate species. We determined the best practice for eDNA capture in a turbid water system was to concentrate DNA from a 15 mL water sample via centrifugation, purify DNA with the DNeasy mericon Food kit, and remove inhibitors with Zymo Inhibitor Removal Technology columns. Further, we compared the sensitivity of conventional PCR to quantitative PCR and found that quantitative PCR was more sensitive in detecting lower concentrations of eDNA. We show significant differences in efficiencies among methods in each step of eDNA capture, emphasizing the importance of optimizing best practices for the system of interest.

  13. Clearing muddied waters: Capture of environmental DNA from turbid waters

    PubMed Central

    Huyvaert, Kathryn P.; Piaggio, Antoinette J.

    2017-01-01

    Understanding the differences in efficiencies of various methods to concentrate, extract, and amplify environmental DNA (eDNA) is vital for best performance of eDNA detection. Aquatic systems vary in characteristics such as turbidity, eDNA concentration, and inhibitor load, thus affecting eDNA capture efficiency. Application of eDNA techniques to the detection of terrestrial invasive or endangered species may require sampling at intermittent water sources that are used for drinking and cooling; these water bodies may often be stagnant and turbid. We present our best practices technique for the detection of wild pig eDNA in water samples, a protocol that will have wide applicability to the detection of elusive vertebrate species. We determined the best practice for eDNA capture in a turbid water system was to concentrate DNA from a 15 mL water sample via centrifugation, purify DNA with the DNeasy mericon Food kit, and remove inhibitors with Zymo Inhibitor Removal Technology columns. Further, we compared the sensitivity of conventional PCR to quantitative PCR and found that quantitative PCR was more sensitive in detecting lower concentrations of eDNA. We show significant differences in efficiencies among methods in each step of eDNA capture, emphasizing the importance of optimizing best practices for the system of interest. PMID:28686659

  14. Water-quality assessment of the Rio Grande Valley, Colorado, New Mexico and Texas; organic compounds and trace elements in bed sediment and fish tissue, 1992-93

    USGS Publications Warehouse

    Carter, L.F.; Anderholm, S.K.

    1997-01-01

    The occurrence and distribution of contaminants in aquatic systems are major components of the National Water-Quality Assessment (NAWQA) Program. Bed-sediment samples were collected at 18 sites in the Rio Grande Valley study unit between September 1992 and March 1993 to characterize the geographic distribution of organic compounds, including chlorinated insecticides, polychlorinated biphenyls (PCB's), and other chlorinated hydrocarbons, and also trace elements. Two-millimeter-size- fraction sediment was analyzed for organic compounds and less than 63-micron-size-fraction sediment was analyzed for trace elements. Concentrations of p,p'-DDE were detected in 33 percent of the bed-sediment samples. With the exception of DDT-related compounds, no other organochlorine insecticides or polychlorinated biphenyls were detected in samples of bed sediment. Whole-body fish samples were collected at 11 of the bed- sediment sites and analyzed for organic compounds. Organic compounds were reported more frequently in samples of fish, and more types of organic compounds were found in whole-body fish samples than in bed-sediment samples. Concentrations of p,p'-DDE were detected in 91 percent of whole-body fish samples. Polychlorinated biphenyls, cis-chlordane, trans-chlordane, trans- nonachlor, and hexachlorobenzene were other organic compounds detected in whole-body samples of fish from at least one site. Because of the extent of mineralized areas in the Rio Grande Basin arsenic, cadmium, copper, lead, mercury, selenium, and zinc concentrations in bed-sediment samples could represent natural conditions at most sites. However, a combination of natural conditions and human activities appears to be associated with elevated trace-element concentrations in the bed-sediment sample from the site Rio Grande near Creede, Colorado, because this sample exceeded the background trace-element concentrations calculated for this study. Fish-liver samples were collected at 12 of the bed-sediment sites and analyzed for trace elements. Certain trace elements were detected at higher concentrations in fish-liver samples than in bed-sediment samples from the same site. Both bed-sediment and fish-tissue samples are necessary for a complete environmental assessment of the occurrence and distribution of trace elements.

  15. The Use of the BASC-2 for the Identification of Female Adolescents at Risk for Developing an Eating Disorder

    ERIC Educational Resources Information Center

    Stachowitz, Annie L.; Choi, Hee-Sook; Schweinle, Amy

    2014-01-01

    Eating disorders, disordered eating, and body dissatisfaction prevalence rates are on the rise among adolescent females. The present study examined the potential use of a commonly used social--emotional instrument, the Behavior Assessment System for Children-Second Edition (BASC-2), for detecting the presence of possible eating disorders in…

  16. Spectroscopic detection of health hazardous contaminants in lipstick using Laser Induced Breakdown Spectroscopy.

    PubMed

    Gondal, M A; Seddigi, Z S; Nasr, M M; Gondal, B

    2010-03-15

    Laser Induced Breakdown Spectroscopy (LIBS) technique was applied to determine the concentrations of different toxic elements like lead, chromium, cadmium and zinc in four different lipstick brands sold at local markets in Saudi Arabia. These samples contain toxic elements like lead, cadmium and chromium which are carcinogen dermatitis, allergic and eczematous. Their extraction from human body takes over 40 years and accumulation in the body cause problems like disruption of nervous systems and kidney damage. They could trigger to systemic lupus erythematosus (SLE). In order to test the validity of our LIBS results, standard technique like (ICP-AES) was also applied. To the best of our knowledge, this is the first study where LIBS technique was applied for the measurement of toxic substances in lipsticks. The maximum concentration detected in four lipstick brands was much higher than the permissible safe limits for human use and could lead to serious health problems. It is worth mentioning that the lipstick is not a solid rather is in fluid state which is not trivial to analyze using LIBS technique. For this purpose, special treatment of the lipstick samples was necessary to analyze with our LIBS method. (c) 2009 Elsevier B.V. All rights reserved.

  17. Clearance detector and method for motion and distance

    DOEpatents

    Xavier, Patrick G [Albuquerque, NM

    2011-08-09

    A method for correct and efficient detection of clearances between three-dimensional bodies in computer-based simulations, where one or both of the volumes is subject to translation and/or rotations. The method conservatively determines of the size of such clearances and whether there is a collision between the bodies. Given two bodies, each of which is undergoing separate motions, the method utilizes bounding-volume hierarchy representations for the two bodies and, mappings and inverse mappings for the motions of the two bodies. The method uses the representations, mappings and direction vectors to determine the directionally furthest locations of points on the convex hulls of the volumes virtually swept by the bodies and hence the clearance between the bodies, without having to calculate the convex hulls of the bodies. The method includes clearance detection for bodies comprising convex geometrical primitives and more specific techniques for bodies comprising convex polyhedra.

  18. A celestial gamma-ray foreground due to the albedo of small solar system bodies and a remote probe of the interstellar cosmic ray spectrum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moskalenko, Igor V.; Porter, Troy A.; Digel, Seth W.

    2007-12-17

    We calculate the {gamma}-ray albedo flux from cosmic-ray (CR) interactions with the solid rock and ice in Main Belt asteroids and Kuiper Belt objects (KBOs) using the Moon as a template. We show that the {gamma}-ray albedo for the Main Belt and Kuiper Belt strongly depends on the small-body mass spectrum of each system and may be detectable by the forthcoming Gamma Ray Large Area Space Telescope (GLAST). The orbits of the Main Belt asteroids and KBOs are distributed near the ecliptic, which passes through the Galactic center and high Galactic latitudes. If detected, the {gamma}-ray emission by the Mainmore » Belt and Kuiper Belt has to be taken into account when analyzing weak {gamma}-ray sources close to the ecliptic, especially near the Galactic center and for signals at high Galactic latitudes, such as the extragalactic {gamma}-ray emission. Additionally, it can be used to probe the spectrum of CR nuclei at close-to-interstellar conditions, and the mass spectrum of small bodies in the Main Belt and Kuiper Belt. The asteroid albedo spectrum also exhibits a 511 keV line due to secondary positrons annihilating in the rock. This may be an important and previously unrecognized celestial foreground for the INTErnational Gamma-Ray Astrophysics Laboratory (INTEGRAL) observations of the Galactic 511 keV line emission including the direction of the Galactic center.« less

  19. Localized sources of water vapour on the dwarf planet (1) Ceres.

    PubMed

    Küppers, Michael; O'Rourke, Laurence; Bockelée-Morvan, Dominique; Zakharov, Vladimir; Lee, Seungwon; von Allmen, Paul; Carry, Benoît; Teyssier, David; Marston, Anthony; Müller, Thomas; Crovisier, Jacques; Barucci, M Antonietta; Moreno, Raphael

    2014-01-23

    The 'snowline' conventionally divides Solar System objects into dry bodies, ranging out to the main asteroid belt, and icy bodies beyond the belt. Models suggest that some of the icy bodies may have migrated into the asteroid belt. Recent observations indicate the presence of water ice on the surface of some asteroids, with sublimation a potential reason for the dust activity observed on others. Hydrated minerals have been found on the surface of the largest object in the asteroid belt, the dwarf planet (1) Ceres, which is thought to be differentiated into a silicate core with an icy mantle. The presence of water vapour around Ceres was suggested by a marginal detection of the photodissociation product of water, hydroxyl (ref. 12), but could not be confirmed by later, more sensitive observations. Here we report the detection of water vapour around Ceres, with at least 10(26) molecules being produced per second, originating from localized sources that seem to be linked to mid-latitude regions on the surface. The water evaporation could be due to comet-like sublimation or to cryo-volcanism, in which volcanoes erupt volatiles such as water instead of molten rocks.

  20. Simultaneous determination of cucurbitacin B, E, I and E-glucoside in plant material and body fluids by HPLC-MS.

    PubMed

    Bajcsik, Nicole; Pfab, Rudolf; Pietsch, Jörg

    2017-05-01

    A selective and sensitive analytical method for the simultaneous determination of cucurbitacin B, E, I and E-glucoside in plant material and body fluids by HPLC-MS was developed. After liquid-liquid extraction with dichlormethane, separation was achieved on a Phenomenex Luna Pentafluorophenyl Column (150mm×2mm, 5μm) using acetonitrile-water (90:10, v/v) as mobile phase system. Detection was performed using a 3200 Q Trap mass spectrometer (AB Sciex). For analysis Q1 Scans with negative ionisation were chosen. The method was validated for serum as the matrix of choice. Limits of detection are in the picogram range, limits of quantification are between 0.05 and 0.42ng/mL, recoveries are above 50%. The assay was linear in the calibration range from 1.0 to 50ng/mL for cucurbitacin E and from 0.10 to 50ng/mL for the cucurbitacins B, I and E-glucoside. The applicability of the method was demonstrated by the determination of cucurbitacins in zucchini plant material and body fluids from intoxication cases. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Photoacoustic detection of induced melanoma in vitro using a mouse model

    NASA Astrophysics Data System (ADS)

    Gupta, Sagar; Bhattacharya, Kiran; Newton, Jessica R.; Quinn, Thomas P.; Viator, John A.

    2012-03-01

    Metastasis is a life threatening complex physiological phenomenon that involves the movement of cancer cells from one organ to another by means of blood and lymph. An understanding about metastasis is extremely important to device diagnostic systems to detect and monitor its spread within the body. For the first time we report rapid photoacoustic detection of the induced metastatic melanoma in mice in vitro using photoacoustic flowmetry. A new photoacoustic flow system is developed, that employs photoacoustic excitation coupled with an ultrasound transducer capable of determining the presence of individual, induced mouse melanoma cells (B16/F10) within the circulating system in vitro. Tumor was induced in mice by injecting mouse melanoma cells through tail vein into the C57BL/6 mice. A luciferase based in vivo bioluminescence imaging is performed to confirm the tumor load and multiple metastases in the tumor-induced mice. 1ml of blood obtained through cardiac puncture of the induced metastasized mice was treated to lyse the red blood cells (RBC) and enriched, leaving the induced melanoma in the peripheral blood mononuclear suspension (PBMC). A photoacoustic flowsystem coupled with an ultrasound transducer is used to detect the individual circulating metastatic melanoma cells from the enriched cell suspension.

  2. Wearable system-on-a-chip radiometer for remote temperature sensing and its application to the safeguard of emergency operators.

    PubMed

    Fonte, A; Alimenti, F; Zito, D; Neri, B; De Rossi, D; Lanatà, A; Tognetti, A

    2007-01-01

    The remote sensing and the detection of events that may represent a danger for human beings have become more and more important thanks to the latest advances of the technology. A microwave radiometer is a sensor capable to detect a fire or an abnormal increase of the internal temperature of the human body (hyperthermia), or an onset of a cancer, or even meteorological phenomena (forest fires, pollution release, ice formation on road pavement). In this paper, the overview of a wearable low-cost low-power system-on-a-chip (SoaC) 13 GHz passive microwave radiometer in CMOS 90 nm technology is presented. In particular, we focused on its application to the fire detection for civil safeguard. In detail, this sensor has been thought to be inserted into the fireman jacket in order to help the fireman in the detection of a hidden fire behind a door or a wall. The simulation results obtained by Ptolemy system simulation have confirmed the feasibility of such a SoaC microwave radiometer in a low-cost standard silicon technology for temperature remote sensing and, in particular, for its application to the safeguard of emergency operators.

  3. Helmet-mounted acoustic array for hostile fire detection and localization in an urban environment

    NASA Astrophysics Data System (ADS)

    Scanlon, Michael V.

    2008-04-01

    The detection and localization of hostile weapons firing has been demonstrated successfully with acoustic sensor arrays on unattended ground sensors (UGS), ground-vehicles, and unmanned aerial vehicles (UAVs). Some of the more mature systems have demonstrated significant capabilities and provide direct support to ongoing counter-sniper operations. The Army Research Laboratory (ARL) is conducting research and development for a helmet-mounted system to acoustically detect and localize small arms firing, or other events such as RPG, mortars, and explosions, as well as other non-transient signatures. Since today's soldier is quickly being asked to take on more and more reconnaissance, surveillance, & target acquisition (RSTA) functions, sensor augmentation enables him to become a mobile and networked sensor node on the complex and dynamic battlefield. Having a body-worn threat detection and localization capability for events that pose an immediate danger to the soldiers around him can significantly enhance their survivability and lethality, as well as enable him to provide and use situational awareness clues on the networked battlefield. This paper addresses some of the difficulties encountered by an acoustic system in an urban environment. Complex reverberation, multipath, diffraction, and signature masking by building structures makes this a very harsh environment for robust detection and classification of shockwaves and muzzle blasts. Multifunctional acoustic detection arrays can provide persistent surveillance and enhanced situational awareness for every soldier.

  4. Thermographic techniques and adapted algorithms for automatic detection of foreign bodies in food

    NASA Astrophysics Data System (ADS)

    Meinlschmidt, Peter; Maergner, Volker

    2003-04-01

    At the moment foreign substances in food are detected mainly by using mechanical and optical methods as well as ultrasonic technique and than they are removed from the further process. These techniques detect a large portion of the foreign substances due to their different mass (mechanical sieving), their different colour (optical method) and their different surface density (ultrasonic detection). Despite the numerous different methods a considerable portion of the foreign substances remain undetected. In order to recognise materials still undetected, a complementary detection method would be desirable removing the foreign substances not registered by the a.m. methods from the production process. In a project with 13 partner from the food industry, the Fraunhofer - Institut für Holzforschung (WKI) and the Technische Unsiversität are trying to adapt thermography for the detection of foreign bodies in the food industry. After the initial tests turned out to be very promising for the differentiation of food stuffs and foreign substances, more and detailed investigation were carried out to develop suitable algorithms for automatic detection of foreign bodies. In order to achieve -besides the mere visual detection of foreign substances- also an automatic detection under production conditions, numerous experiences in image processing and pattern recognition are exploited. Results for the detection of foreign bodies will be presented at the conference showing the different advantages and disadvantages of using grey - level, statistical and morphological image processing techniques.

  5. Heterogeneous detection probabilities for imperiled Missouri River fishes: implications for large-river monitoring programs

    USGS Publications Warehouse

    Schloesser, J.T.; Paukert, Craig P.; Doyle, W.J.; Hill, Tracy D.; Steffensen, K.D.; Travnichek, Vincent H.

    2012-01-01

    Occupancy modeling was used to determine (1) if detection probabilities (p) for 7 regionally imperiled Missouri River fishes (Scaphirhynchus albus, Scaphirhynchus platorynchus, Cycleptus elongatus, Sander canadensis, Macrhybopsis aestivalis, Macrhybopsis gelida, and Macrhybopsis meeki) differed among gear types (i.e. stationary gill nets, drifted trammel nets, and otter trawls), and (2) how detection probabilities were affected by habitat (i.e. pool, bar, and open water), longitudinal position (five 189 to 367 rkm long segments), sampling year (2003 to 2006), and season (July 1 to October 30 and October 31 to June 30). Adult, large-bodied fishes were best detected with gill nets (p: 0.02–0.74), but most juvenile large-bodied and all small-bodied species were best detected with otter trawls (p: 0.02–0.58). Trammel nets may be a redundant sampling gear for imperiled fishes in the lower Missouri River because most species had greater detection probabilities with gill nets or otter trawls. Detection probabilities varied with river segment for S. platorynchus, C. elongatus, and all small-bodied fishes, suggesting that changes in habitat influenced gear efficiency or abundance changes among river segments. Detection probabilities varied by habitat for adult S. albus and S. canadensis, year for juvenile S. albus, C. elongatus, and S. canadensis, and season for adult S. albus. Concentrating sampling effort on gears with the greatest detection probabilities may increase species detections to better monitor a population's response to environmental change and the effects of management actions on large-river fishes.

  6. Analysis of several methods and inertial sensors locations to assess gait parameters in able-bodied subjects.

    PubMed

    Ben Mansour, Khaireddine; Rezzoug, Nasser; Gorce, Philippe

    2015-10-01

    The purpose of this paper was to determine which types of inertial sensors and which advocated locations should be used for reliable and accurate gait event detection and temporal parameter assessment in normal adults. In addition, we aimed to remove the ambiguity found in the literature of the definition of the initial contact (IC) from the lumbar accelerometer. Acceleration and angular velocity data was gathered from the lumbar region and the distal edge of each shank. This data was evaluated in comparison to an instrumented treadmill and an optoelectronic system during five treadmill speed sessions. The lumbar accelerometer showed that the peak of the anteroposterior component was the most accurate for IC detection. Similarly, the valley that followed the peak of the vertical component was the most precise for terminal contact (TC) detection. Results based on ANOVA and Tukey tests showed that the set of inertial methods was suitable for temporal gait assessment and gait event detection in able-bodied subjects. For gait event detection, an exception was found with the shank accelerometer. The tool was suitable for temporal parameters assessment, despite the high root mean square error on the detection of IC (RMSEIC) and TC (RMSETC). The shank gyroscope was found to be as accurate as the kinematic method since the statistical tests revealed no significant difference between the two techniques for the RMSE off all gait events and temporal parameters. The lumbar and shank accelerometers were the most accurate alternative to the shank gyroscope for gait event detection and temporal parameters assessment, respectively. Copyright © 2015. Published by Elsevier B.V.

  7. Prevalence and Relative Risk of Cronobacter spp., Salmonella spp., and Listeria monocytogenes Associated with the Body Surfaces and Guts of Individual Filth Flies

    PubMed Central

    Pearson, Rachel E. Goeriz; Miller, Amy K.; Ziobro, George C.

    2012-01-01

    Although flies are important vectors of food-borne pathogens, there is little information to accurately assess the food-related health risk of the presence of individual flies, especially in urban areas. This study quantifies the prevalence and the relative risk of food-borne pathogens associated with the body surfaces and guts of individual wild flies. One hundred flies were collected from the dumpsters of 10 randomly selected urban restaurants. Flies were identified using taxonomic keys before being individually dissected. Cronobacter spp., Salmonella spp., and Listeria monocytogenes were detected using the PCR-based BAX system Q7. Positive samples were confirmed by culture on specific media and through PCR amplification and sequencing or ribotyping. Among collected flies were the housefly, Musca domestica (47%), the blowflies, Lucilia cuprina (33%) and Lucilia sericata (14%), and others (6%). Cronobacter species were detected in 14% of flies, including C. sakazakii, C. turicensis, and C. universalis, leading to the proposal of flies as a natural reservoir of this food-borne pathogen. Six percent of flies carried Salmonella enterica, including the serovars Poona, Hadar, Schwarzengrund, Senftenberg, and Brackenridge. L. monocytogenes was detected in 3% of flies. Overall, the prevalence of food-borne pathogens was three times greater in the guts than on the body surfaces of the flies. The relative risk of flies carrying any of the three pathogens was associated with the type of pathogen, the body part of the fly, and the ambient temperature. These data enhance the ability to predict the microbiological risk associated with the presence of individual flies in food and food facilities. PMID:22941079

  8. Autonomous planetary rover at Carnegie Mellon

    NASA Technical Reports Server (NTRS)

    Whittaker, William; Kanade, Takeo; Mitchell, Tom

    1990-01-01

    This report describes progress in research on an autonomous robot for planetary exploration. In 1989, the year covered by this report, a six-legged walking robot, the Ambler, was configured, designed, and constructed. This configuration was used to overcome shortcomings exhibited by existing wheeled and walking robot mechanisms. The fundamental advantage of the Ambler is that the actuators for body support are independent of those for propulsion; a subset of the planar joints propel the body, and the vertical actuators support and level the body over terrain. Models of the Ambler's dynamics were developed and the leveling control was studied. An integrated system capable of walking with a single leg over rugged terrain was implemented and tested. A prototype of an Ambler leg is suspended below a carriage that slides along rails. To walk, the system uses a laser scanner to find a clear, flat foothold, positions the leg above the foothold, contacts the terrain with the foot, and applies force enough to advance the carriage along the rails. Walking both forward and backward, the system has traversed hundreds of meters of rugged terrain including obstacles too tall to step over, trenches too deep to step in, closely spaced rocks, and sand hills. In addition, preliminary experiments were conducted with concurrent planning and execution, and a leg recovery planner that generates time and power efficient 3D trajectories using 2D search was developed. A Hero robot was used to demonstrate mobile manipulation. Indoor tasks include collecting cups from the lab floor, retrieving printer output, and recharging when its battery gets low. The robot monitors its environment, and handles exceptional conditions in a robust fashion, using vision to track the appearance and disappearance of cups, onboard sonars to detect imminent collisions, and monitors to detect the battery level.

  9. Comparative study of crystallization process in metallic melts using ab initio molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Debela, Tekalign T.; Wang, X. D.; Cao, Q. P.; Zhang, D. X.; Jiang, J. Z.

    2017-05-01

    The crystallization process of liquid metals is studied using ab initio molecular dynamics simulations. The evolution of short-range order during quenching in Pb and Zn liquids is compared with body-centered cubic (bcc) Nb and V, and hexagonal closed-packed (hcp) Mg. We found that the fraction and type of the short-range order depends on the system under consideration, in which the icosahedral symmetry seems to dominate in the body-centered cubic metals. Although the local atomic structures in stable liquids are similar, liquid hcp-like Zn, bcc-like Nb and V can be deeply supercooled far below its melting point before crystallization while the supercooled temperature range in liquid Pb is limited. Further investigations into the nucleation process reveal the process of polymorph selection. In the body-centered cubic systems, the polymorph selection occurs in the supercooled state before the nucleation is initiated, while in the closed-packed systems it starts at the time of onset of crystallization. Atoms with bcc-like lattices in all studied supercooled liquids are always detected before the polymorph selection. It is also found that the bond orientational ordering is strongly correlated with the crystallization process in supercooled Zn and Pb liquids.

  10. Physiological Responses to Thermal Stress and Exercise

    NASA Astrophysics Data System (ADS)

    Iyota, Hiroyuki; Ohya, Akira; Yamagata, Junko; Suzuki, Takashi; Miyagawa, Toshiaki; Kawabata, Takashi

    The simple and noninvasive measuring methods of bioinstrumentation in humans is required for optimization of air conditioning and management of thermal environments, taking into consideration the individual specificity of the human body as well as the stress conditions affecting each. Changes in human blood circulation were induced with environmental factors such as heat, cold, exercise, mental stress, and so on. In this study, the physiological responses of human body to heat stress and exercise were investigated in the initial phase of the developmental research. We measured the body core and skin temperatures, skin blood flow, and pulse wave as the indices of the adaptation of the cardiovascular system. A laser Doppler skin blood flowmetry using an optical-sensor with a small portable data logger was employed for the measurement. These results reveal the heat-stress and exercise-induced circulatory responses, which are under the control of the sympathetic nerve system. Furthermore, it was suggested that the activity of the sympathetic nervous system could be evaluated from the signals of the pulse wave included in the signals derived from skin blood flow by means of heart rate variability assessments and detecting peak heights of velocity-plethysmogram.

  11. First Earth-Based Detection of a Superbolide on Jupiter

    NASA Technical Reports Server (NTRS)

    Hueso, R.; Wesley, A.; Go, C.; Perez-Hoyos, S.; Wong, M. H.; Fletcher, L. N.; Sanchez-Lavega, A.; Boslough, M. B.; DePater, I.; Orton, G. S.; hide

    2010-01-01

    Cosmic collisions can planets cause detectable optical flashes that range from terrestrial shooting stars to bright fireballs. On 2010 June 3 a bolide in Jupiter's atmosphere was simultaneously observed from the Earth by two amateur astronomers observing Jupiter in red and blue wavelengths, The bolide appeared as a flash of 2 s duration in video recording data of the planet. The analysis of the light carve of the observations results in an estimated energy of the impact of (0.9-4,0) x 10(exp 15) J which corresponds to a colliding body of 8-13 m diameter assuming a mean density of 2 g/cu cm. Images acquired a few days later by the Hubble Space Telescope and other large ground-based facilities did not show any signature of aerosol debris, temperature, or chemical composition anomaly, confirming that the body was small and destroyed in Jupiter's upper atmosphere. Several collisions of this size may happen on Jupiter on a yearly basis. A systematic study of the impact rate and size of these bolides can enable an empirical determination. of the flux of meteoroids in Jupiter with implications for the populations of small bodies in the outer solar system and may allow a better quantification of the threat of impacting bodies to Earth. The serendipitous recording of this optical flash opens a new window in the observation of Jupiter with small telescopes.

  12. Association reactions at low pressure. 5: The CH3(+)/HCN system. A final word?

    NASA Technical Reports Server (NTRS)

    Anicich, Vincent G.; Sen, Atish D.; Huntress, Wesley, Jr.; McEwan, Murray J.

    1995-01-01

    The reaction of the methyl cation with hydrogen cyanide is revisited. We have confidence that we have resolved a long standing apparent contradiction of experimental results. A literature history is presented along with one new experiment and a re-examination of an old experiment. In this present work it is shown that all of the previous studies had made consistent observations. Yet, each of the previous studies failed to observe all of the information present. The methyl cation does react with HCN by radiative association, a fact which had been in doubt. The product ions formed in the two-body and three-body processes react differently with HCN. The collisionally stabilized association product formed by a three-body mechanism, does not react with HCN and is readily detected in the experiments. The radiatively stabilized association product, formed by a slow two-body reaction, is not detected because it reacts with HCN by a fast proton transfer reaction forming the protonated HCN ion. Previous studies either 'lost' this product in the extremely large protonated HCN signal that is always present when HCN is used, or discounted it for various reasons. We have been able to show by ion cyclotron resonance (ICR) techniques (both FT-ICR and tandem ICR-dempster-ICR) that the radiative association product does react with the HCN to form the protonated HCN ion.

  13. Combined use of backscattered and transmitted images in x-ray personnel screening systems

    NASA Astrophysics Data System (ADS)

    Tracey, B.; Schiefele, Markus; Alvino, Christopher; Miller, Eric; Al-Kofani, Omar

    2012-06-01

    Current aviation security relies heavily on personnel screening using X-ray backscatter systems or other advanced imaging technologies. Passenger privacy concerns and screening times can be reduced through the use of low-dose twosided X-ray backscatter (Bx) systems, which also have the ability to collect transmission (Tx) X-ray. Bx images reveal objects placed on the body, such as contraband and security threats, as well as anatomical features at or close to the surface, such as lungs cavities and bones. While the quality of the transmission images is lower than medical imagery due to the low X-ray dose, Tx images can be of significant value in interpreting features in the Bx images, such as lung cavities, which can cause false alarms in automated threat detection (ATD) algorithms. Here we demonstrate an ATD processing chain fusing both Tx and BX images. The approach employs automatically extracted fiducial points on the body and localized active contour methods to segments lungs in acquired Tx and Bx images. Additionally, we derive metrics from the Tx image can be related to the probability of observing internal body structure in the Bx image. The combined use of Tx and Bx data can enable improved overall system performance.

  14. Temporal and spatial distribution characteristics in the natural plague foci of Chinese Mongolian gerbils based on spatial autocorrelation.

    PubMed

    Du, Hai-Wen; Wang, Yong; Zhuang, Da-Fang; Jiang, Xiao-San

    2017-08-07

    The nest flea index of Meriones unguiculatus is a critical indicator for the prevention and control of plague, which can be used not only to detect the spatial and temporal distributions of Meriones unguiculatus, but also to reveal its cluster rule. This research detected the temporal and spatial distribution characteristics of the plague natural foci of Mongolian gerbils by body flea index from 2005 to 2014, in order to predict plague outbreaks. Global spatial autocorrelation was used to describe the entire spatial distribution pattern of the body flea index in the natural plague foci of typical Chinese Mongolian gerbils. Cluster and outlier analysis and hot spot analysis were also used to detect the intensity of clusters based on geographic information system methods. The quantity of M. unguiculatus nest fleas in the sentinel surveillance sites from 2005 to 2014 and host density data of the study area from 2005 to 2010 used in this study were provided by Chinese Center for Disease Control and Prevention. The epidemic focus regions of the Mongolian gerbils remain the same as the hot spot regions relating to the body flea index. High clustering areas possess a similar pattern as the distribution pattern of the body flea index indicating that the transmission risk of plague is relatively high. In terms of time series, the area of the epidemic focus gradually increased from 2005 to 2007, declined rapidly in 2008 and 2009, and then decreased slowly and began trending towards stability from 2009 to 2014. For the spatial change, the epidemic focus regions began moving northward from the southwest epidemic focus of the Mongolian gerbils from 2005 to 2007, and then moved from north to south in 2007 and 2008. The body flea index of Chinese gerbil foci reveals significant spatial and temporal aggregation characteristics through the employing of spatial autocorrelation. The diversity of temporary and spatial distribution is mainly affected by seasonal variation, the human activity and natural factors.

  15. Smart aircraft fastener evaluation (SAFE) system: a condition-based corrosion detection system for aging aircraft

    NASA Astrophysics Data System (ADS)

    Schoess, Jeffrey N.; Seifert, Greg; Paul, Clare A.

    1996-05-01

    The smart aircraft fastener evaluation (SAFE) system is an advanced structural health monitoring effort to detect and characterize corrosion in hidden and inaccessible locations of aircraft structures. Hidden corrosion is the number one logistics problem for the U.S. Air Force, with an estimated maintenance cost of $700M per year in 1990 dollars. The SAFE system incorporates a solid-state electrochemical microsensor and smart sensor electronics in the body of a Hi-Lok aircraft fastener to process and autonomously report corrosion status to aircraft maintenance personnel. The long-term payoff for using SAFE technology will be in predictive maintenance for aging aircraft and rotorcraft systems, fugitive emissions applications such as control valves, chemical pipeline vessels, and industrial boilers. Predictive maintenance capability, service, and repair will replace the current practice of scheduled maintenance to substantially reduce operational costs. A summary of the SAFE concept, laboratory test results, and future field test plans is presented.

  16. Quantifying the performance of in vivo portal dosimetry in detecting four types of treatment parameter variations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bojechko, C.; Ford, E. C., E-mail: eford@uw.edu

    Purpose: To quantify the ability of electronic portal imaging device (EPID) dosimetry used during treatment (in vivo) in detecting variations that can occur in the course of patient treatment. Methods: Images of transmitted radiation from in vivo EPID measurements were converted to a 2D planar dose at isocenter and compared to the treatment planning dose using a prototype software system. Using the treatment planning system (TPS), four different types of variability were modeled: overall dose scaling, shifting the positions of the multileaf collimator (MLC) leaves, shifting of the patient position, and changes in the patient body contour. The gamma passmore » rate was calculated for the modified and unmodified plans and used to construct a receiver operator characteristic (ROC) curve to assess the detectability of the different parameter variations. The detectability is given by the area under the ROC curve (AUC). The TPS was also used to calculate the impact of the variations on the target dose–volume histogram. Results: Nine intensity modulation radiation therapy plans were measured for four different anatomical sites consisting of 70 separate fields. Results show that in vivo EPID dosimetry was most sensitive to variations in the machine output, AUC = 0.70 − 0.94, changes in patient body habitus, AUC = 0.67 − 0.88, and systematic shifts in the MLC bank positions, AUC = 0.59 − 0.82. These deviations are expected to have a relatively small clinical impact [planning target volume (PTV) D{sub 99} change <7%]. Larger variations have even higher detectability. Displacements in the patient’s position and random variations in MLC leaf positions were not readily detectable, AUC < 0.64. The D{sub 99} of the PTV changed by up to 57% for the patient position shifts considered here. Conclusions: In vivo EPID dosimetry is able to detect relatively small variations in overall dose, systematic shifts of the MLC’s, and changes in the patient habitus. Shifts in the patient’s position which can introduce large changes in the target dose coverage were not readily detected.« less

  17. EDIM-TKTL1/Apo10 Blood Test: An Innate Immune System Based Liquid Biopsy for the Early Detection, Characterization and Targeted Treatment of Cancer.

    PubMed

    Coy, Johannes F

    2017-04-20

    Epitope detection in monocytes (EDIM) represents a liquid biopsy exploiting the innate immune system. Activated monocytes (macrophages) phagocytose unwanted cells/cell fragments from the whole body including solid tissues. As they return to the blood, macrophages can be used for a non-invasive detection of biomarkers, thereby providing high sensitivity and specificity, because the intracellular presence of biomarkers is due to an innate immune response. Flow cytometry analysis of blood enables the detection of macrophages and phagocytosed intracellular biomarkers. In order to establish a pan-cancer test, biomarkers for two fundamental biophysical mechanisms have been exploited. The DNaseX/Apo10 protein epitope is a characteristic of tumor cells with abnormal apoptosis and proliferation. Transketolase-like 1 (TKTL1) is a marker for an anaerobic glucose metabolism (Warburg effect), which is concomitant with invasive growth/metastasis and resistant to radical and apoptosis inducing therapies. The detection of Apo10 and TKTL1 in blood macrophages allowed a sensitive (95.8%) and specific (97.3%) detection of prostate, breast and oral squamous cell carcinomas. Since TKTL1 represents a drugable target, the EDIM based detection of TKTL1 enables a targeted cancer therapy using the vitamin derivatives oxythiamine or benfo-oxythiamine.

  18. [Research on Detection Method with Wearable Respiration Device Based on the Theory of Bio-impedance].

    PubMed

    Liu, Guangda; Wang, Xianzhong; Cai, Jing; Wang, Wei; Zha, Yutong

    2016-12-01

    Considering the importance of the human respiratory signal detection and based on the Cole-Cole bio-impedance model,we developed a wearable device for detecting human respiratory signal.The device can be used to analyze the impedance characteristics of human body at different frequencies based on the bio-impedance theory.The device is also based on the method of proportion measurement to design a high signal to noise ratio(SNR)circuit to get human respiratory signal.In order to obtain the waveform of the respiratory signal and the value of the respiration rate,we used the techniques of discrete Fourier transform(DFT)and dynamic difference threshold peak detection.Experiments showed that this system was valid,and we could see that it could accurately detect the waveform of respiration and the detection accuracy rate of respiratory wave peak point detection results was over 98%.So it can meet the needs of the actual breath test.

  19. Anosmia in dementia is associated with Lewy bodies rather than Alzheimer's pathology

    PubMed Central

    McShane, R; Nagy, Z; Esiri, M; King, E; Joachim, C; Sullivan, N; Smith, A

    2001-01-01

    OBJECTIVES—To assess olfactory function of patients with dementia. Odour detection ability is impaired in clinical Parkinson's disease. Evidence of impaired detection in patients with clinically diagnosed Alzheimer's disease is inconsistent. No studies of olfaction have been neuropathologically validated.
METHODS—The olfactory function of 92 patients with dementia and 94 controls was assessed using a simple bedside test as part of the Oxford Project To Investigate Memory and Ageing (OPTIMA). Neuropathological assessment was made of cortical Lewy bodies and substantia nigra (SN) cell counts and of Alzheimer's disease in all 92 patients, 22 of whom had SN Lewy bodies and 43 of whom had only Alzheimer's disease.
RESULTS—Patients with Lewy bodies were more likely to be anosmic than those with Alzheimer's disease or controls. Patients with Alzheimer's disease were not more likely to be anosmic than controls. Nor was anosmia associated with degree of neurofibrillary tangles, as assessed by Braak stage. Among subjects with Lewy bodies, overall cortical Lewy body scores and Lewy body density in the cingulate were higher in those who were anosmic. Consensus clinical criteria for dementia with Lewy bodies had a sensitivity of 64% and specificity of 89%. In the absence of definite Alzheimer's disease, the criteria had sensitivity of 100%. In patients with definite Alzheimer's disease, anosmia was slightly more sensitive (55%) than the consensus criteria (33%). However, the addition of anosmia to the consensus criteria did not improve their overall performance.
CONCLUSION—Dementia with Lewy bodies is associated with impaired odour detection. Misdiagnosis may have accounted for some previous reports of impaired odour detection in Alzheimer's disease. Simple but more sensitive tests of anosmia are required if they are to be clinically useful in identifying patients with dementia with Lewy bodies.

 PMID:11385006

  20. Face, Body, and Center of Gravity Mediate Person Detection in Natural Scenes

    ERIC Educational Resources Information Center

    Bindemann, Markus; Scheepers, Christoph; Ferguson, Heather J.; Burton, A. Mike

    2010-01-01

    Person detection is an important prerequisite of social interaction, but is not well understood. Following suggestions that people in the visual field can capture a viewer's attention, this study examines the role of the face and the body for person detection in natural scenes. We observed that viewers tend first to look at the center of a scene,…

  1. In the carotid body, galanin is a signal for neurogenesis in young, and for neurodegeneration in the old and in drug-addicted subjects

    PubMed Central

    Mazzatenta, Andrea; Marconi, Guya D.; Zara, Susi; Cataldi, Amelia; Porzionato, Andrea; Di Giulio, Camillo

    2014-01-01

    The carotid body is a highly specialized chemoreceptive structure for the detection of and reaction to hypoxia, through induction of an increase in hypoxia inducible factor. As tissue hypoxia increases with aging and can have dramatic effects in respiratory depression induced by drug addiction, we investigated the carotid body in young and old healthy subjects in comparison with drug-addicted subjects, including the expression of the neurotransmitter galanin. Galanin expression was recently reported for neuronal-like cells of the human carotid body, and it is implicated in several functions in neurons. In particular, this includes the regulation of differentiation of neural stem cells, and participation in the development and plasticity of the nervous system. Using immunohistochemistry detection, we demonstrate that galanin expression in the human carotid body in healthy older subjects and drug-addicted subjects is significantly reduced in comparison with healthy young subjects. This demonstrates not only the effects of normal aging and senescence, but also in the drug-addicted subjects, this appears to be due to a disorganization of the chemo-sensory region. With both aging and drug addiction, this results in a physiological reduction in neuronal-like cells, coupled with interlobular and intralobular increases in connective tissue fibers. Consequently, in both aging and drug addiction, this reduction of neuronal-like cells and the regeneration suggest that the carotid body is losing its sensory capabilities, with the transmission of chemoreceptive signals dramatically and vitally reduced. The level of galanin expression would thus provide a signal for neurogenesis in young subjects, and for neurodegeneration in older and drug-addicted subjects. PMID:25400591

  2. Analyzing Body Movements within the Laban Effort Framework Using a Single Accelerometer

    PubMed Central

    Kikhia, Basel; Gomez, Miguel; Jiménez, Lara Lorna; Hallberg, Josef; Karvonen, Niklas; Synnes, Kåre

    2014-01-01

    This article presents a study on analyzing body movements by using a single accelerometer sensor. The investigated categories of body movements belong to the Laban Effort Framework: Strong—Light, Free—Bound and Sudden—Sustained. All body movements were represented by a set of activities used for data collection. The calculated accuracy of detecting the body movements was based on collecting data from a single wireless tri-axial accelerometer sensor. Ten healthy subjects collected data from three body locations (chest, wrist and thigh) simultaneously in order to analyze the locations comparatively. The data was then processed and analyzed using Machine Learning techniques. The wrist placement was found to be the best single location to record data for detecting Strong—Light body movements using the Random Forest classifier. The wrist placement was also the best location for classifying Bound—Free body movements using the SVM classifier. However, the data collected from the chest placement yielded the best results for detecting Sudden—Sustained body movements using the Random Forest classifier. The study shows that the choice of the accelerometer placement should depend on the targeted type of movement. In addition, the choice of the classifier when processing data should also depend on the chosen location and the target movement. PMID:24662408

  3. Lupus erythematosus (LE) cells in ascites: initial diagnosis of systemic lupus erythematosus by cytological examination: a case report.

    PubMed

    Chou, Kun-Ta; Lee, Yu-Chin; Chen, Chun-Wei; Shih, Jen-Fu; Tung, Su-Mei; Yang, Ya-Ting; Perng, Reury-Perng

    2007-11-01

    Systemic lupus erythematosus (SLE) is an autoimmune disease, involving multiple organs. Diverse manifestations may obscure the diagnosis and confuse our thinking process, especially when few clues are present at the beginning. Serositis is one of the various presentations, and the presence of lupus erythematosus (LE) cell in body fluid may be a hint for the final diagnosis of SLE. Herein, we present a young female patient diagnosed of SLE with initial presentation of lupus peritonitis. Finding of LE cell in ascites prompted us for immunologic survey. Diagnosis of SLE was confirmed with high titer of anti-nuclear antibody and antibody to double-stranded DNA. Cytologic examination of body fluid is mainly useful in detecting malignant cells, but high specificity of this marker aids in early diagnosis of SLE.

  4. A new venous infusion path monitoring system utilizing electrostatic induced potential.

    PubMed

    Ogawa, Hidekuni; Yonezawa, Yoshiharu; Maki, Hiromichi; Caldwell, W Morton

    2008-01-01

    A new venous infusion pathway monitoring system has been developed for hospital and home use. The system consists of linear and digital integrated circuits and a low-power 8-bit single chip microcomputer which constantly monitors the infusion pathway intactness. A 330 kHz AC voltage, which is induced on the patient's body by electrostatic coupling from a 330 kHz pulse oscillator, can be recorded by main and reference electrodes wrapped around the infusion polyvinyl chloride tube. If the injection needle or infusion tube becomes detached, then the system detects changes in the induced AC voltages and alerts the nursing station, via the nurse call system or PHS (personal handy phone system).

  5. Enhanced Gender Recognition System Using an Improved Histogram of Oriented Gradient (HOG) Feature from Quality Assessment of Visible Light and Thermal Images of the Human Body.

    PubMed

    Nguyen, Dat Tien; Park, Kang Ryoung

    2016-07-21

    With higher demand from users, surveillance systems are currently being designed to provide more information about the observed scene, such as the appearance of objects, types of objects, and other information extracted from detected objects. Although the recognition of gender of an observed human can be easily performed using human perception, it remains a difficult task when using computer vision system images. In this paper, we propose a new human gender recognition method that can be applied to surveillance systems based on quality assessment of human areas in visible light and thermal camera images. Our research is novel in the following two ways: First, we utilize the combination of visible light and thermal images of the human body for a recognition task based on quality assessment. We propose a quality measurement method to assess the quality of image regions so as to remove the effects of background regions in the recognition system. Second, by combining the features extracted using the histogram of oriented gradient (HOG) method and the measured qualities of image regions, we form a new image features, called the weighted HOG (wHOG), which is used for efficient gender recognition. Experimental results show that our method produces more accurate estimation results than the state-of-the-art recognition method that uses human body images.

  6. Enhanced Gender Recognition System Using an Improved Histogram of Oriented Gradient (HOG) Feature from Quality Assessment of Visible Light and Thermal Images of the Human Body

    PubMed Central

    Nguyen, Dat Tien; Park, Kang Ryoung

    2016-01-01

    With higher demand from users, surveillance systems are currently being designed to provide more information about the observed scene, such as the appearance of objects, types of objects, and other information extracted from detected objects. Although the recognition of gender of an observed human can be easily performed using human perception, it remains a difficult task when using computer vision system images. In this paper, we propose a new human gender recognition method that can be applied to surveillance systems based on quality assessment of human areas in visible light and thermal camera images. Our research is novel in the following two ways: First, we utilize the combination of visible light and thermal images of the human body for a recognition task based on quality assessment. We propose a quality measurement method to assess the quality of image regions so as to remove the effects of background regions in the recognition system. Second, by combining the features extracted using the histogram of oriented gradient (HOG) method and the measured qualities of image regions, we form a new image features, called the weighted HOG (wHOG), which is used for efficient gender recognition. Experimental results show that our method produces more accurate estimation results than the state-of-the-art recognition method that uses human body images. PMID:27455264

  7. Intelligent monitoring system of bedridden elderly

    NASA Astrophysics Data System (ADS)

    Dong, Rue Shao; Tanaka, Motohiro; Ushijima, Miki; Ishimatsu, Takakazu

    2005-12-01

    In this paper we propose a system to detect physical behavior of the elderly under bedridden status. This system is used to prevent those elderly from falling down and being wounded. Basic idea of our approach is to measure the body movements of the elderly using the acceleration sensor. Based on the data measured, dangerous actions of the elderly are extracted and warning signals to the caseworkers are generated via wireless signals. A feature of the system is that the senor part is compactly assembled as a wearable unit. Another feature of the system is that the system adopts a simplified wireless network system. Due to the network capability the system can monitor physical movements of multi-patients. Applicability of the system is now being examined at hospitals.

  8. Non-verbal communication through sensor fusion

    NASA Astrophysics Data System (ADS)

    Tairych, Andreas; Xu, Daniel; O'Brien, Benjamin M.; Anderson, Iain A.

    2016-04-01

    When we communicate face to face, we subconsciously engage our whole body to convey our message. In telecommunication, e.g. during phone calls, this powerful information channel cannot be used. Capturing nonverbal information from body motion and transmitting it to the receiver parallel to speech would make these conversations feel much more natural. This requires a sensing device that is capable of capturing different types of movements, such as the flexion and extension of joints, and the rotation of limbs. In a first embodiment, we developed a sensing glove that is used to control a computer game. Capacitive dielectric elastomer (DE) sensors measure finger positions, and an inertial measurement unit (IMU) detects hand roll. These two sensor technologies complement each other, with the IMU allowing the player to move an avatar through a three-dimensional maze, and the DE sensors detecting finger flexion to fire weapons or open doors. After demonstrating the potential of sensor fusion in human-computer interaction, we take this concept to the next level and apply it in nonverbal communication between humans. The current fingerspelling glove prototype uses capacitive DE sensors to detect finger gestures performed by the sending person. These gestures are mapped to corresponding messages and transmitted wirelessly to another person. A concept for integrating an IMU into this system is presented. The fusion of the DE sensor and the IMU combines the strengths of both sensor types, and therefore enables very comprehensive body motion sensing, which makes a large repertoire of gestures available to nonverbal communication over distances.

  9. An implantable blood pressure and flow transmitter.

    NASA Technical Reports Server (NTRS)

    Rader, R. D.; Meehan, J. P.; Henriksen, J. K. C.

    1973-01-01

    A miniature totally implantable FM/FM telemetry system has been developed to simultaneously measure blood pressure and blood flow, thus providing an appreciation of the hemodynamics of the circulation to the entire body or to a particular organ. Developed for work with animal subjects, the telemetry system's transmission time is controlled by an RF signal that permits an operating life of several months. Pressure is detected by a miniature intravascular transducer and flow is detected by an extravascular interferometric ultrasonic technique. Both pressure and flow are calibrated prior to implanting. The pressure calibration can be checked after the implanting by cannulation; flow calibration can be verified only at the end of the experiment by determining the voltage output from the implanted sensing system as a function of several measured flow rates. The utility of this device has been established by its use in investigating canine renal circulation during exercise, emotional encounters, administration of drugs, and application of accelerative forces.

  10. Design of Meter-Scale Antenna and Signal Detection System for Underground Magnetic Resonance Sounding in Mines.

    PubMed

    Yi, Xiaofeng; Zhang, Jian; Fan, Tiehu; Tian, Baofeng; Jiang, Chuandong

    2018-03-13

    Magnetic resonance sounding (MRS) is a novel geophysical method to detect groundwater directly. By applying this method to underground projects in mines and tunnels, warning information can be provided on water bodies that are hidden in front prior to excavation and thus reduce the risk of casualties and accidents. However, unlike its application to ground surfaces, the application of MRS to underground environments is constrained by the narrow space, quite weak MRS signal, and complex electromagnetic interferences with high intensities in mines. Focusing on the special requirements of underground MRS (UMRS) detection, this study proposes the use of an antenna with different turn numbers, which employs a separated transmitter and receiver. We designed a stationary coil with stable performance parameters and with a side length of 2 m, a matching circuit based on a Q-switch and a multi-stage broad/narrowband mixed filter that can cancel out most electromagnetic noise. In addition, noises in the pass-band are further eliminated by adopting statistical criteria and harmonic modeling and stacking, all of which together allow weak UMRS signals to be reliably detected. Finally, we conducted a field case study of the UMRS measurement in the Wujiagou Mine in Shanxi Province, China, with known water bodies. Our results show that the method proposed in this study can be used to obtain UMRS signals in narrow mine environments, and the inverted hydrological information generally agrees with the actual situation. Thus, we conclude that the UMRS method proposed in this study can be used for predicting hazardous water bodies at a distance of 7-9 m in front of the wall for underground mining projects.

  11. Design of Meter-Scale Antenna and Signal Detection System for Underground Magnetic Resonance Sounding in Mines

    PubMed Central

    Yi, Xiaofeng; Fan, Tiehu; Tian, Baofeng

    2018-01-01

    Magnetic resonance sounding (MRS) is a novel geophysical method to detect groundwater directly. By applying this method to underground projects in mines and tunnels, warning information can be provided on water bodies that are hidden in front prior to excavation and thus reduce the risk of casualties and accidents. However, unlike its application to ground surfaces, the application of MRS to underground environments is constrained by the narrow space, quite weak MRS signal, and complex electromagnetic interferences with high intensities in mines. Focusing on the special requirements of underground MRS (UMRS) detection, this study proposes the use of an antenna with different turn numbers, which employs a separated transmitter and receiver. We designed a stationary coil with stable performance parameters and with a side length of 2 m, a matching circuit based on a Q-switch and a multi-stage broad/narrowband mixed filter that can cancel out most electromagnetic noise. In addition, noises in the pass-band are further eliminated by adopting statistical criteria and harmonic modeling and stacking, all of which together allow weak UMRS signals to be reliably detected. Finally, we conducted a field case study of the UMRS measurement in the Wujiagou Mine in Shanxi Province, China, with known water bodies. Our results show that the method proposed in this study can be used to obtain UMRS signals in narrow mine environments, and the inverted hydrological information generally agrees with the actual situation. Thus, we conclude that the UMRS method proposed in this study can be used for predicting hazardous water bodies at a distance of 7–9 m in front of the wall for underground mining projects. PMID:29534007

  12. Spectroscopy from Space

    NASA Astrophysics Data System (ADS)

    Clark, R. N.; Swayze, G. A.; Carlson, R.; Grundy, W.; Noll, K.

    2014-01-01

    This chapter reviews detection of materials on solid and liquid (lakes and ocean) surfaces in the solar system using ultraviolet to infrared spectroscopy from space, or near space (high altitude aircraft on the Earth), or in the case of remote objects, earth-based and earth-orbiting telescopes. Point spectrometers and imaging spectrometers have been probing the surfaces of our solar system for decades. Spacecraft carrying imaging spectrometers are currently in orbit around Mercury, Venus, Earth, Mars, and Saturn, and systems have recently visited Jupiter, comets, asteroids, and one spectrometer-carrying spacecraft is on its way to Pluto. Together these systems are providing a wealth of data that will enable a better understanding of the composition of condensed matter bodies in the solar system. Minerals, ices, liquids, and other materials have been detected and mapped on the Earth and all planets and/or their satellites where the surface can be observed from space, with the exception of Venus whose thick atmosphere limits surface observation. Basaltic minerals (e.g., pyroxene and olivine) have been detected with spectroscopy on the Earth, Moon, Mars and some asteroids. The greatest mineralogic diversity seen from space is observed on the Earth and Mars. The Earth, with oceans, active tectonic and hydrologic cycles, and biological processes, displays the greatest material diversity including the detection of amorphous and crystalline inorganic materials, organic compounds, water and water ice. Water ice is a very common mineral throughout the Solar System and has been unambiguously detected or inferred in every planet and/or their moon(s) where good spectroscopic data has been obtained. In addition to water ice, other molecular solids have been observed in the solar system using spectroscopic methods. Solid carbon dioxide is found on all systems beyond the Earth except Pluto, although CO2 sometimes appears to be trapped in other solids rather than as an ice on some objects. The largest deposits of carbon dioxide ice are found on Mars. Sulfur dioxide ice is found in the Jupiter system. Nitrogen and methane ices are common beyond the Uranian system. Saturn's moon Titan probably has the most complex active extra-terrestrial surface chemistry involving organic compounds. Some of the observed or inferred compounds include ices of benzene (C6H6), cyanoacetylene (HC3N), toluene (C7H8), cyanogen (C2N2), acetonitrile (CH3CN), water (H2O), carbon dioxide (CO2), and ammonia (NH3). Confirming compounds on Titan is hampered by its thick smoggy atmosphere, where in relative terms the atmospheric interferences that hamper surface characterization lie between that of Venus and Earth. In this chapter we exclude discussion of the planets Jupiter, Saturn, Uranus, and Neptune because their thick atmospheres preclude observing the surface, even if surfaces exist. However, we do discuss spectroscopic observations on a number of the extra-terrestrial satellite bodies. Ammonia was predicted on many icy moons but is notably absent among the definitively detected ices with possible exceptions on Charon and possible trace amounts on some of the Saturnian satellites. Comets, storehouses of many compounds that could exist as ices in their nuclei, have only had small amounts of water ice definitively detected on their surfaces from spectroscopy. Only two asteroids have had a direct detection of surface water ice, although its presence can be inferred in others.

  13. Pulmonary-impedance power spectral analysis: A facile means of detecting radiation-induced gastrointestinal distress and performance decrement in man

    NASA Technical Reports Server (NTRS)

    Rick, R. C.; Lushbaugh, C. C.; Mcdow, E.; Frome, E.

    1972-01-01

    Changes in respiratory variance revealed by power spectral analysis of the pulmonary impedance pneumogram can be used to detect and measure stresses directly or indirectly affecting human respiratory function. When gastrointestinal distress occurred during a series of 5 total-body exposures of 30 R at a rate of 1.5 R/min, it was accompanied by typical shifts in pulmonary impedance power spectra. These changes did not occur after protracted exposure of 250 R (30 R daily) at 1.5 R/hr that failed to cause radiation sickness. This system for quantitating respiratory effort can also be used to detect alterations in one's ability to perform under controlled exercise conditions.

  14. Development of CMTD (Curved Multi-Tubed Device) -system III and its application to the needle-insertion for liver.

    PubMed

    Furusho, Junji; Kobayashi, Hiroshi; Kikuchi, Takehito; Yamamoto, Tatsuro; Tanaka, Hidekazu; Terayama, Motokazu; Monden, Morito

    2008-01-01

    The purpose of this study is to realize the mechanically-controllable needle-insertion system using the CMTD (Curved Multi-Tube Device) which was developed by Furusho Laboratory. A CMTD, was developed for minimally-invasive surgery and needle insertion. And we use ultrasonograph as a sensing device to detect the position of bible duct or tumor and the orientation and position of the needle which is inserted into liver. This system makes safe minimally-invasive surgery possible, because all complex mechanisms are arranged outside of the body.

  15. [Phenotypes of dendritic cells in central lymph of healthy rabbits and during correction of experimental atherosclerosis].

    PubMed

    Kuznetsov, A V

    1992-09-01

    Dendritic cells of central lymph of rabbits have been identified according to the form of the cell body, characteristics of formation and branchiness of its processes in health, in atherosclerosis, its correction with radon, polyphenol preparations made of Sanguisorba officinalis and in combination of the latter. Two main types of dendritic cells have been distinguished. Type I is characterized by a rounded body with clear outlines, protrusions and one compact process. Such cells are often found in lymph of intact animals. Type II has a cell body of various forms with two and more compact or branching processes. This type is mainly detected in atherosclerosis and its correction. The prevalence of the above phenotypes of dendritic cells is attributed to the response of the immune system to atherosclerosis and its correction.

  16. The design of infrared information collection circuit based on embedded technology

    NASA Astrophysics Data System (ADS)

    Liu, Haoting; Zhang, Yicong

    2013-07-01

    S3C2410 processor is a 16/32 bit RISC embedded processor which based on ARM920T core and AMNA bus, and mainly for handheld devices, and high cost, low-power applications. This design introduces a design plan of the PIR sensor system, circuit and its assembling, debugging. The Application Circuit of the passive PIR alarm uses the invisibility of the infrared radiation well into the alarm system, and in order to achieve the anti-theft alarm and security purposes. When the body goes into the range of PIR sensor detection, sensors will detect heat sources and then the sensor will output a weak signal. The Signal should be amplified, compared and delayed; finally light emitting diodes emit light, playing the role of a police alarm.

  17. A wireless monitoring system for Hydrocephalus shunts.

    PubMed

    Narayanaswamy, A; Nourani, M; Tamil, L; Bianco, S

    2015-08-01

    Patients with Hydrocephalus are usually treated by diverting the excess Cerebrospinal Fluid (CSF) to other parts of the body using shunts. More than 40 percentage of shunts implanted fail within the first two years. Obstruction in the shunts is one of the major causes of failure (45 percent) and the detection of obstruction reduces the complexity of the revision surgery. This paper describes a proposed wireless monitoring system for clog detection and flow measurement in shunts. A prototype was built using multiple pressure sensors along the shunt catheters for sensing the location of clog and flow rate. Regular monitoring of flow rates can be used to adjust the valve in the shunt to prevent over drainage or under drainage of CSF. The accuracy of the flow measurement is more than 90 percent.

  18. Photoacoustic imaging to detect rat brain activation after cocaine hydrochloride injection

    NASA Astrophysics Data System (ADS)

    Jo, Janggun; Yang, Xinmai

    2011-03-01

    Photoacoustic imaging (PAI) was employed to detect small animal brain activation after the administration of cocaine hydrochloride. Sprague Dawley rats were injected with different concentrations (2.5, 3.0, and 5.0 mg per kg body) of cocaine hydrochloride in saline solution through tail veins. The brain functional response to the injection was monitored by photoacoustic tomography (PAT) system with horizontal scanning of cerebral cortex of rat brain. Photoacoustic microscopy (PAM) was also used for coronal view images. The modified PAT system used multiple ultrasonic detectors to reduce the scanning time and maintain a good signal-to-noise ratio (SNR). The measured photoacoustic signal changes confirmed that cocaine hydrochloride injection excited high blood volume in brain. This result shows PAI can be used to monitor drug abuse-induced brain activation.

  19. Pheromone-sensing neurons regulate peripheral lipid metabolism in Caenorhabditis elegans

    PubMed Central

    Stieglitz, Jon; Locke, Tiffany T.; Zhang, Ying K.; Schroeder, Frank C.; Srinivasan, Supriya

    2017-01-01

    It is now established that the central nervous system plays an important role in regulating whole body metabolism and energy balance. However, the extent to which sensory systems relay environmental information to modulate metabolic events in peripheral tissues has remained poorly understood. In addition, it has been challenging to map the molecular mechanisms underlying discrete sensory modalities with respect to their role in lipid metabolism. In previous work our lab has identified instructive roles for serotonin signaling as a surrogate for food availability, as well as oxygen sensing, in the control of whole body metabolism. In this study, we now identify a role for a pair of pheromone-sensing neurons in regulating fat metabolism in C. elegans, which has emerged as a tractable and highly informative model to study the neurobiology of metabolism. A genetic screen revealed that GPA-3, a member of the Gα family of G proteins, regulates body fat content in the intestine, the major metabolic organ for C. elegans. Genetic and reconstitution studies revealed that the potent body fat phenotype of gpa-3 null mutants is controlled from a pair of neurons called ADL(L/R). We show that cAMP functions as the second messenger in the ADL neurons, and regulates body fat stores via the neurotransmitter acetylcholine, from downstream neurons. We find that the pheromone ascr#3, which is detected by the ADL neurons, regulates body fat stores in a GPA-3-dependent manner. We define here a third sensory modality, pheromone sensing, as a major regulator of body fat metabolism. The pheromone ascr#3 is an indicator of population density, thus we hypothesize that pheromone sensing provides a salient 'denominator' to evaluate the amount of food available within a population and to accordingly adjust metabolic rate and body fat levels. PMID:28545126

  20. Pheromone-sensing neurons regulate peripheral lipid metabolism in Caenorhabditis elegans.

    PubMed

    Hussey, Rosalind; Stieglitz, Jon; Mesgarzadeh, Jaleh; Locke, Tiffany T; Zhang, Ying K; Schroeder, Frank C; Srinivasan, Supriya

    2017-05-01

    It is now established that the central nervous system plays an important role in regulating whole body metabolism and energy balance. However, the extent to which sensory systems relay environmental information to modulate metabolic events in peripheral tissues has remained poorly understood. In addition, it has been challenging to map the molecular mechanisms underlying discrete sensory modalities with respect to their role in lipid metabolism. In previous work our lab has identified instructive roles for serotonin signaling as a surrogate for food availability, as well as oxygen sensing, in the control of whole body metabolism. In this study, we now identify a role for a pair of pheromone-sensing neurons in regulating fat metabolism in C. elegans, which has emerged as a tractable and highly informative model to study the neurobiology of metabolism. A genetic screen revealed that GPA-3, a member of the Gα family of G proteins, regulates body fat content in the intestine, the major metabolic organ for C. elegans. Genetic and reconstitution studies revealed that the potent body fat phenotype of gpa-3 null mutants is controlled from a pair of neurons called ADL(L/R). We show that cAMP functions as the second messenger in the ADL neurons, and regulates body fat stores via the neurotransmitter acetylcholine, from downstream neurons. We find that the pheromone ascr#3, which is detected by the ADL neurons, regulates body fat stores in a GPA-3-dependent manner. We define here a third sensory modality, pheromone sensing, as a major regulator of body fat metabolism. The pheromone ascr#3 is an indicator of population density, thus we hypothesize that pheromone sensing provides a salient 'denominator' to evaluate the amount of food available within a population and to accordingly adjust metabolic rate and body fat levels.

  1. Online Phase Detection Using Wearable Sensors for Walking with a Robotic Prosthesis

    PubMed Central

    Goršič, Maja; Kamnik, Roman; Ambrožič, Luka; Vitiello, Nicola; Lefeber, Dirk; Pasquini, Guido; Munih, Marko

    2014-01-01

    This paper presents a gait phase detection algorithm for providing feedback in walking with a robotic prosthesis. The algorithm utilizes the output signals of a wearable wireless sensory system incorporating sensorized shoe insoles and inertial measurement units attached to body segments. The principle of detecting transitions between gait phases is based on heuristic threshold rules, dividing a steady-state walking stride into four phases. For the evaluation of the algorithm, experiments with three amputees, walking with the robotic prosthesis and wearable sensors, were performed. Results show a high rate of successful detection for all four phases (the average success rate across all subjects >90%). A comparison of the proposed method to an off-line trained algorithm using hidden Markov models reveals a similar performance achieved without the need for learning dataset acquisition and previous model training. PMID:24521944

  2. Neurogenic Effects of Low-Dose Whole-Body HZE (Fe) Ion and Gamma Irradiation.

    PubMed

    Sweet, Tara B; Hurley, Sean D; Wu, Michael D; Olschowka, John A; Williams, Jacqueline P; O'Banion, M Kerry

    2016-12-01

    Understanding the dose-toxicity profile of radiation is critical when evaluating potential health risks associated with natural and man-made sources in our environment. The purpose of this study was to evaluate the effects of low-dose whole-body high-energy charged (HZE) iron (Fe) ions and low-energy gamma exposure on proliferation and differentiation of adult-born neurons within the dentate gyrus of the hippocampus, cells deemed to play a critical role in memory regulation. To determine the dose-response characteristics of the brain to whole-body Fe-ion vs. gamma-radiation exposure, C57BL/6J mice were irradiated with 1 GeV/n Fe ions or a static 137 Cs source (0.662 MeV) at doses ranging from 0 to 300 cGy. The neurogenesis was analyzed at 48 h and one month postirradiation. These experiments revealed that whole-body exposure to either Fe ions or gamma radiation leads to: 1. An acute decrease in cell division within the dentate gyrus of the hippocampus, detected at doses as low as 30 and 100 cGy for Fe ions and gamma radiation, respectively; and 2. A reduction in newly differentiated neurons (DCX immunoreactivity) at one month postirradiation, with significant decreases detected at doses as low as 100 cGy for both Fe ions and gamma rays. The data presented here contribute to our understanding of brain responses to whole-body Fe ions and gamma rays and may help inform health-risk evaluations related to systemic exposure during a medical or radiologic/nuclear event or as a result of prolonged space travel.

  3. Real-Time Configuration of Networked Embedded Systems

    DTIC Science & Technology

    2005-05-01

    and inside buildings. Such information is also useful to civilians, as it can be used for personal navigation by campers and hikers, firemen and...traveled, and use direction of movement and distance traveled to generate trajectory points, which are then appropriately displayed. There were...the waist belt is used to detect acceleration of body movement . From the filtered signal, we can approximate the step length by [1] (reference

  4. Review of ESA Experimental Research Activities for Electric Propulsion

    DTIC Science & Technology

    2011-01-01

    detect gravitational waves, distortions of space-time occurring when a massive body is accelerated or disturbed. To achieve that goal the relative...thrusters of Electric Propulsion systems accelerate the propellant ions to velocities of tens of kilometers per second making it a propulsion option that is...expanded through nozzle Ion electrostatically accelerated . Plasma accelerated via interaction of current and magnetic field. Concept Resistojets

  5. Mapping above- and below-ground carbon pools in boreal forests: The case for airborne lidar

    Treesearch

    Terje Kristensen; Erik Naesset; Mikael Ohlson; Paul V. Bolstad; Randall Kolka

    2015-01-01

    A large and growing body of evidence has demonstrated that airborne scanning light detection and ranging (lidar) systems can be an effective tool in measuring and monitoring above-ground forest tree biomass. However, the potential of lidar as an all-round tool for assisting in assessment of carbon (C) stocks in soil and non-tree vegetation components of the forest...

  6. A Statistical Approach to Illustrate the Challenge of Astrobiology for Public Outreach.

    PubMed

    Foucher, Frédéric; Hickman-Lewis, Keyron; Westall, Frances; Brack, André

    2017-10-26

    In this study, we attempt to illustrate the competition that constitutes the main challenge of astrobiology, namely the competition between the probability of extraterrestrial life and its detectability. To illustrate this fact, we propose a simple statistical approach based on our knowledge of the Universe and the Milky Way, the Solar System, and the evolution of life on Earth permitting us to obtain the order of magnitude of the distance between Earth and bodies inhabited by more or less evolved past or present life forms, and the consequences of this probability for the detection of associated biosignatures. We thus show that the probability of the existence of evolved extraterrestrial forms of life increases with distance from the Earth while, at the same time, the number of detectable biosignatures decreases due to technical and physical limitations. This approach allows us to easily explain to the general public why it is very improbable to detect a signal of extraterrestrial intelligence while it is justified to launch space probes dedicated to the search for microbial life in the Solar System.

  7. Hazardous Gas Leak Analysis in the Space Shuttle

    NASA Technical Reports Server (NTRS)

    Barile, Ronald G.

    1991-01-01

    Helium tests of the main propulsion system in the Space Shuttle and on hydrogen leaks are examined. The hazardous gas detection system (HGDS) in the mobile launch pad uses mass spectrometers (MS) to monitor the shuttle environment for leaks. The mass spectrometers are fed by long tubes to sample gas from the payload bay, mid-body, aft engine compartment, and external tank. The purpose is to improve the HGDS, especially in its potential for locating cryogen leaks. Pre-existing leak data was analyzed for transient information to determine if the leak location could be pinpointed from test data. A rapid response leak detection experiment was designed, built, and tested. Large eddies and vortices were visually seen with Schlieren imaging, and they were detected in the time plots of the various instruments. The response time of the MS was found in the range of 0.05 to 0.1 sec. Pulsed concentration waves were clearly detected at 25 cycles per sec by spectral analysis of MS data. One conclusion is that the backup HGDS sampling frequency should be increased above the present rate of 1 sample per second.

  8. Apparatus and method for transient thermal infrared spectrometry of flowable enclosed materials

    DOEpatents

    McClelland, John F.; Jones, Roger W.

    1993-03-02

    A method and apparatus for enabling analysis of a flowable material enclosed in a transport system having an infrared transparent wall portion. A temperature differential is transiently generated between a thin surface layer portion of the material and a lower or deeper portion of the material sufficient to alter the thermal infrared emission spectrum of the material from the black-body thermal infrared emission spectrum of the material, and the altered thermal infrared emission spectrum is detected through the infrared transparent portion of the transport system while the altered thermal infrared emission spectrum is sufficiently free of self-absorption by the material of emitted infrared radiation. The detection is effected prior to the temperature differential propagating into the lower or deeper portion of the material to an extent such that the altered thermal infrared emission spectrum is no longer sufficiently free of self-absorption by the material of emitted infrared radiation. By such detection, the detected altered thermal infrared emission spectrum is indicative of characteristics relating to molecular composition of the material.

  9. A Statistical Approach to Illustrate the Challenge of Astrobiology for Public Outreach

    PubMed Central

    Westall, Frances; Brack, André

    2017-01-01

    In this study, we attempt to illustrate the competition that constitutes the main challenge of astrobiology, namely the competition between the probability of extraterrestrial life and its detectability. To illustrate this fact, we propose a simple statistical approach based on our knowledge of the Universe and the Milky Way, the Solar System, and the evolution of life on Earth permitting us to obtain the order of magnitude of the distance between Earth and bodies inhabited by more or less evolved past or present life forms, and the consequences of this probability for the detection of associated biosignatures. We thus show that the probability of the existence of evolved extraterrestrial forms of life increases with distance from the Earth while, at the same time, the number of detectable biosignatures decreases due to technical and physical limitations. This approach allows us to easily explain to the general public why it is very improbable to detect a signal of extraterrestrial intelligence while it is justified to launch space probes dedicated to the search for microbial life in the Solar System. PMID:29072614

  10. Comparison of lesion detection and quantitation of tracer uptake between PET from a simultaneously acquiring whole-body PET/MR hybrid scanner and PET from PET/CT.

    PubMed

    Wiesmüller, Marco; Quick, Harald H; Navalpakkam, Bharath; Lell, Michael M; Uder, Michael; Ritt, Philipp; Schmidt, Daniela; Beck, Michael; Kuwert, Torsten; von Gall, Carl C

    2013-01-01

    PET/MR hybrid scanners have recently been introduced, but not yet validated. The aim of this study was to compare the PET components of a PET/CT hybrid system and of a simultaneous whole-body PET/MR hybrid system with regard to reproducibility of lesion detection and quantitation of tracer uptake. A total of 46 patients underwent a whole-body PET/CT scan 1 h after injection and an average of 88 min later a second scan using a hybrid PET/MR system. The radioactive tracers used were (18)F-deoxyglucose (FDG), (18)F-ethylcholine (FEC) and (68)Ga-DOTATATE (Ga-DOTATATE). The PET images from PET/CT (PET(CT)) and from PET/MR (PET(MR)) were analysed for tracer-positive lesions. Regional tracer uptake in these foci was quantified using volumes of interest, and maximal and average standardized uptake values (SUV(max) and SUV(avg), respectively) were calculated. Of the 46 patients, 43 were eligible for comparison and statistical analysis. All lesions except one identified by PET(CT) were identified by PET(MR) (99.2 %). In 38 patients (88.4 %), the same number of foci were identified by PET(CT) and by PET(MR). In four patients, more lesions were identified by PET(MR) than by PET(CT), in one patient PET(CT) revealed an additional focus compared to PET(MR). The mean SUV(max) and SUV(avg) of all lesions determined by PET(MR) were by 21 % and 11 % lower, respectively, than the values determined by PET(CT) (p < 0.05), and a strong correlation between these variables was identified (Spearman rho 0.835; p < 0.01). PET/MR showed equivalent performance in terms of qualitative lesion detection to PET/CT. The differences demonstrated in quantitation of tracer uptake between PET(CT) and PET(MR) were minor, but statistically significant. Nevertheless, a more detailed study of the quantitative accuracy of PET(MR) and the factors governing it is needed to ultimately assess its accuracy in measuring tissue tracer concentrations.

  11. Active terahertz wave imaging system for detecting hidden objects

    NASA Astrophysics Data System (ADS)

    Gan, Yuner; Liu, Ming; Zhao, Yuejin

    2016-11-01

    Terahertz wave can penetrate the common dielectric materials such as clothing, cardboard boxes, plastics and so on. Besides, the low photon energy and non-ionizing characteristic of the terahertz wave are especially suitable for the safety inspection of the human body. Terahertz imaging technology has a tremendous potential in the field of security inspection such as stations, airports and other public places. Terahertz wave imaging systems are divided into two categories: active terahertz imaging systems and passive terahertz imaging systems. So far, most terahertz imaging systems work at point to point mechanical scan pattern with the method of passive imaging. The imaging results of passive imaging tend to have low contrast and the image is not clear enough. This paper designs and implements an active terahertz wave imaging system combining terahertz wave transmitting and receiving with a Cassegrain antenna. The terahertz wave at the frequency of 94GHz is created by impact ionization avalanche transit time (IMPATT) diode, focused on the feed element for Cassegrain antenna by high density polyethylene (HDPE) lens, and transmitted to the human body by Cassegrain antenna. The reflected terahertz wave goes the same way it was emitted back to the feed element for Cassegrain antenna, focused on the horn antenna of detector by another high density polyethylene lens. The scanning method is the use of two-dimensional planar mirror, one responsible for horizontal scanning, and another responsible for vertical scanning. Our system can achieve a clear human body image, has better sensitivity and resolution than passive imaging system, and costs much lower than other active imaging system in the meantime.

  12. Systemic effects of ionizing radiation at the proteome and metabolome levels in the blood of cancer patients treated with radiotherapy: the influence of inflammation and radiation toxicity.

    PubMed

    Jelonek, Karol; Pietrowska, Monika; Widlak, Piotr

    2017-07-01

    Blood is the most common replacement tissue used to study systemic responses of organisms to different types of pathological conditions and environmental insults. Local irradiation during cancer radiotherapy induces whole body responses that can be observed at the blood proteome and metabolome levels. Hence, comparative blood proteomics and metabolomics are emerging approaches used in the discovery of radiation biomarkers. These techniques enable the simultaneous measurement of hundreds of molecules and the identification of sets of components that can discriminate different physiological states of the human body. Radiation-induced changes are affected by the dose and volume of irradiated tissues; hence, the molecular composition of blood is a hypothetical source of biomarkers for dose assessment and the prediction and monitoring of systemic responses to radiation. This review aims to provide a comprehensive overview on the available evidence regarding molecular responses to ionizing radiation detected at the level of the human blood proteome and metabolome. It focuses on patients exposed to radiation during cancer radiotherapy and emphasizes effects related to radiation-induced toxicity and inflammation. Systemic responses to radiation detected at the blood proteome and metabolome levels are primarily related to the intensity of radiation-induced toxicity, including inflammatory responses. Thus, several inflammation-associated molecules can be used to monitor or even predict radiation-induced toxicity. However, these abundant molecular features have a rather limited applicability as universal biomarkers for dose assessment, reflecting the individual predisposition of the immune system and tissue-specific mechanisms involved in radiation-induced damage.

  13. Pre-impact fall detection system using dynamic threshold and 3D bounding box

    NASA Astrophysics Data System (ADS)

    Otanasap, Nuth; Boonbrahm, Poonpong

    2017-02-01

    Fall prevention and detection system have to subjugate many challenges in order to develop an efficient those system. Some of the difficult problems are obtrusion, occlusion and overlay in vision based system. Other associated issues are privacy, cost, noise, computation complexity and definition of threshold values. Estimating human motion using vision based usually involves with partial overlay, caused either by direction of view point between objects or body parts and camera, and these issues have to be taken into consideration. This paper proposes the use of dynamic threshold based and bounding box posture analysis method with multiple Kinect cameras setting for human posture analysis and fall detection. The proposed work only uses two Kinect cameras for acquiring distributed values and differentiating activities between normal and falls. If the peak value of head velocity is greater than the dynamic threshold value, bounding box posture analysis will be used to confirm fall occurrence. Furthermore, information captured by multiple Kinect placed in right angle will address the skeleton overlay problem due to single Kinect. This work contributes on the fusion of multiple Kinect based skeletons, based on dynamic threshold and bounding box posture analysis which is the only research work reported so far.

  14. Ultrasonography in Detection of Vaginal Foreign Bodies in Girls: A Retrospective Study.

    PubMed

    Yang, Xiuzhen; Sun, Liying; Ye, Jingjing; Li, Xiaoying; Tao, Ran

    2017-12-01

    In this study we investigated the sonographic features of vaginal foreign bodies in girls and the diagnostic role of combined transperineal and transabdominal ultrasonography in the detection of vaginal foreign bodies in this population. DESIGN, SETTING, PARTICIPANTS, INTERVENTIONS, AND MAIN OUTCOME MEASURES: A retrospective review of the records of 249 girls seen in the outpatient pediatric and adolescent gynecology clinic of our hospital and referred to our department for sonographic evaluation of suspected vaginal foreign bodies between 2013 and 2016 was performed. All patients were transperineally and transabdominally scanned using an ultrasound machine with 3-MHz and 7.5-MHz transducers. The sonographic features of the detected foreign bodies were recorded and reported. All patients also underwent pelvic radiography. The presence of foreign bodies was confirmed using vaginoscopy. Two hundred forty-nine patients were included in this study, and vaginal foreign bodies were detected in 181 patients. Vaginal foreign bodies often present in girls aged from 2 to 12 years old. The most common vaginal foreign bodies were toilet paper, beads, small parts of toys, cap of water color brush, and crayons. The overall sensitivity, specificity, positive and negative predictive values of transperineal/transabdominal sonography in the diagnosis of vaginal foreign bodies were 81%, 53%, 82%, and 51%, respectively. The sensitivity, specificity, and positive and negative predictive values of transabdominal sonography were 33%, 49%, 63%, and 21%, respectively. The sensitivity, specificity, and positive and negative predictive values of transperineal sonography were 64%, 49%, 77%, and 33%, respectively. Abnormal findings were detected using x-ray in only 43 of the 181 cases (23.7%). The sensitivity, specificity, and positive and negative predictive values of x-ray were 24%, 91%, 88%, and 31%, respectively. The size of the foreign bodies ranged from 2 mm to 35 mm. For foreign bodies larger than 5 mm, the rate of sonographic accuracy reached 100%. For foreign bodies smaller than 5 mm, 32 false positive results, and 34 false negative results were identified. One hundred thirty-nine of 181 foreign bodies were less than 2 cm from the vaginal orifice (77%). All foreign bodies were hyperechoic compared with adjacent tissues. Some vaginal foreign bodies had characteristic echo patterns. With the exception of 1 patient with a detained AAA battery that caused vaginal ulceration, the other patients had a full recovery. Vaginal foreign bodies were hyperechoic compared with adjacent tissues and often had characteristic echo patterns. The use of combined transperineal and transabdominal ultrasonography might be helpful in diagnosing foreign bodies, especially when the size of the foreign body is larger than 5 mm. Therefore, ultrasonography might be preferred for the initial evaluation of suspected vaginal foreign bodies, because it is a noninvasive, radiation-free, and inexpensive technique. Copyright © 2017 North American Society for Pediatric and Adolescent Gynecology. Published by Elsevier Inc. All rights reserved.

  15. The 2014 KCG Meteor Outburst: Clues to a Parent Body

    NASA Technical Reports Server (NTRS)

    Moorhead, Althea V.; Brown, Peter G.; Spurny, Pavel; Cooke, William J.

    2015-01-01

    The Kappa Cygnid (KCG) meteor shower exhibited unusually high activity in 2014, producing ten times the typical number of meteors. The shower was detected in both radar and optical systems and meteoroids associated with the outburst spanned at least five decades in mass. In total, the Canadian Meteor Orbit Radar, European Network, and NASA All Sky and Southern Ontario Meteor Network produced thousands of KCG meteor trajectories. Using these data, we have undertaken a new and improved characterization of the dynamics of this little-studied, variable meteor shower. The Cygnids have a di use radiant and a significant spread in orbital characteristics, with multiple resonances appearing to play a role in the shower dynamics. We conducted a new search for parent bodies and found that several known asteroids are orbitally similar to the KCGs. N-body simulations show that the two best parent body candidates readily transfer meteoroids to the Earth in recent centuries, but neither produces an exact match to the KCG radiant, velocity, and solar longitude. We nevertheless identify asteroid 2001 MG1 as a promising parent body candidate.

  16. Advancing Lidar Sensors Technologies for Next Generation Landing Missions

    NASA Technical Reports Server (NTRS)

    Amzajerdian, Farzin; Hines, Glenn D.; Roback, Vincent E.; Petway, Larry B.; Barnes, Bruce W.; Brewster, Paul F.; Pierrottet, Diego F.; Bulyshev, Alexander

    2015-01-01

    Missions to solar systems bodies must meet increasingly ambitious objectives requiring highly reliable "precision landing", and "hazard avoidance" capabilities. Robotic missions to the Moon and Mars demand landing at pre-designated sites of high scientific value near hazardous terrain features, such as escarpments, craters, slopes, and rocks. Missions aimed at paving the path for colonization of the Moon and human landing on Mars need to execute onboard hazard detection and precision maneuvering to ensure safe landing near previously deployed assets. Asteroid missions require precision rendezvous, identification of the landing or sampling site location, and navigation to the highly dynamic object that may be tumbling at a fast rate. To meet these needs, NASA Langley Research Center (LaRC) has developed a set of advanced lidar sensors under the Autonomous Landing and Hazard Avoidance Technology (ALHAT) project. These lidar sensors can provide precision measurement of vehicle relative proximity, velocity, and orientation, and high resolution elevation maps of the surface during the descent to the targeted body. Recent flights onboard Morpheus free-flyer vehicle have demonstrated the viability of ALHAT lidar sensors for future landing missions to solar system bodies.

  17. Our cometary environment

    NASA Astrophysics Data System (ADS)

    Napier, W. M.; Clube, S. V. M.

    1997-03-01

    The encounter of a small armada of spacecraft with Halley's Comet in 1986, the disintegration and multiple impact of Comet Shoemaker - Levy 9 on Jupiter in 1994, and the application of new technologies to the detection of distant solar system bodies, have led to great revisions in the understanding of comets. Further, rapid improvements in computing power and numerical techniques have permitted the dynamical evolution of comets and asteroids to be followed far into the future and past, and the relationships between families of small interplanetary bodies to be explored. The small body environment is now generally recognized as strongly interacting with the terrestrial one, and may be hazardous on timescales of human as well as geological interest. We review our current understanding of the cometary environment, with particular regard to the hazard it presents. It appears that many comets are handed down from the Oort - Öpik cloud, which is dynamically sensitive to the galactic environment, through the planetary system into Earth-crossing orbits. Thus, the terrestrial environment is subject to stresses which vary cyclically on a number of timescales from planetary to galactic.

  18. Temporal association of Ca(2+)-dependent protein kinase with oil bodies during seed development in Santalum album L.: its biochemical characterization and significance.

    PubMed

    Anil, Veena S; Harmon, Alice C; Rao, K Sankara

    2003-04-01

    Calcium-dependent protein kinase (CDPK) is expressed in sandalwood (Santalum album L.) seeds under developmental regulation, and it is localized with spherical storage organelles in the endosperm [Anil et al. (2000) Plant Physiol. 122: 1035]. This study identifies these storage organelles as oil bodies. A 55 kDa protein associated with isolated oil bodies, showed Ca(2+)-dependent autophosphorylation and also cross-reacted with anti-soybean CDPK. The CDPK activity detected in the oil body-protein fraction was calmodulin-independent and sensitive to W7 (N-(6-aminohexyl)-5-chloro-1-naphthalene sulfonamide) inhibition. Differences in Michaelis Menton kinetics, rate of histone phosphorylation and sensitivity to W7 inhibition between a soluble CDPK from embryos and the oil body-associated CDPK of endosperm suggest that these are tissue-specific isozymes. The association of CDPK with oil bodies of endosperm was found to show a temporal pattern during seed development. CDPK protein and activity, and the in vivo phosphorylation of Ser and Thr residues were detected strongly in the oil bodies of endosperm from maturing seed. Since oil body formation occurs during seed maturation, the observations indicate that CDPK and Ca(2+) may have a regulatory role during oil accumulation/oil body biogenesis. The detection of CDPK-protein and activity in oil bodies of groundnut, sesame, cotton, sunflower, soybean and safflower suggests the ubiquity of the association of CDPKs with oil bodies.

  19. Fusion of radar and optical data for mapping and monitoring of water bodies

    NASA Astrophysics Data System (ADS)

    Jenerowicz, Agnieszka; Siok, Katarzyn

    2017-10-01

    Remote sensing techniques owe their great popularity to the possibility to obtain of rapid, accurate and information over large areas with optimal time, spatial and spectral resolutions. The main areas of interest for remote sensing research had always been concerned with environmental studies, especially water bodies monitoring. Many methods that are using visible and near- an infrared band of the electromagnetic spectrum had been already developed to detect surface water reservoirs. Moreover, the usage of an image obtained in visible and infrared spectrum allows quality monitoring of water bodies. Nevertheless, retrieval of water boundaries and mapping surface water reservoirs with optical sensors is still quite demanding. Therefore, the microwave data could be the perfect complement to data obtained with passive optical sensors to detect and monitor aquatic environment especially surface water bodies. This research presents the methodology to detect water bodies with open- source satellite imagery acquired with both optical and microwave sensors. The SAR Sentinel- 1 and multispectral Sentinel- 2 imagery were used to detect and monitor chosen reservoirs in Poland. In the research Level, 1 Sentinel- 2 data and Level 1 SAR images were used. SAR data were mainly used for mapping water bodies. Next, the results of water boundaries extraction with Sentinel-1 data were compared to results obtained after application of modified spectral indices for Sentinel- 2 data. The multispectral optical data can be used in the future for the evaluation of the quality of the reservoirs. Preliminary results obtained in the research had shown, that the fusion of data obtained with optical and microwave sensors allow for the complex detection of water bodies and could be used in the future quality monitoring of water reservoirs.

  20. Rapid detection of the neonicotinoid insecticide imidacloprid using a quenchbody assay.

    PubMed

    Zhao, Shitao; Dong, Jinhua; Jeong, Hee-Jin; Okumura, Koichi; Ueda, Hiroshi

    2018-04-28

    Contamination of the land and water by neonicotinoid insecticide residues is currently a severe environmental problem. However, the traditional methods for pesticide residue analysis are time consuming and laborious. To tackle this problem, here we describe a novel quenchbody (Q-body) immunoassay reagent that allows the rapid and sensitive detection of imidacloprid, one of the most frequently used neonicotinoid pesticides, in aqueous solution. A Q-body comprises an antibody Fab fragment that is site-specifically labeled with a fluorescent dye. The Fab fragment quenches the dye with its internal tryptophan residues via photoinduced electron transfer. The subsequent addition of imidacloprid stabilizes the antibody structure and displaces the quenched dye to the outside of the protein, resulting in increased fluorescence. The constructed Q-body assay exhibited a high dynamic range and a low limit of detection (10 ng mL -1 ), and the entire assay procedure could be completed in a few minutes. The assay showed a low cross-reactivity with possible interfering analogous compounds, indicating that it has a good selectivity. Hence, the developed Q-body assay has excellent potential as a universal technology for monitoring neonicotinoid residues in environmental and food samples. Graphical abstract A novel quenchbody (Q-body) immunoassay reagent that allows the rapid and sensitive detection of imidacloprid, one of the most frequently used neonicotinoid pesticides, in aqueous solution was developed. The addition of imidacloprid stabilizes the Q-body structure and displaces the quenched dye to the outside of the protein, resulting in increased fluorescence. The constructed Q-body assay exhibited a high dynamic range and a low limit of detection (10 ng mL -1 ), and completed in a few minutes.

Top