Science.gov

Sample records for body fluid volumes

  1. Regulation of body fluid volume and electrolyte concentrations in spaceflight

    NASA Technical Reports Server (NTRS)

    Smith, S. M.; Krauhs, J. M.; Leach, C. S.

    1997-01-01

    Despite a number of difficulties in performing experiments during weightlessness, a great deal of information has been obtained concerning the effects of spaceflight on the regulation of body fluid and electrolytes. Many paradoxes and questions remain, however. Although body mass, extracellular fluid volume, and plasma volume are reduced during spaceflight and remain so at landing, the changes in total body water are comparatively small. Serum or plasma sodium and osmolality have generally been unchanged or reduced during the spaceflight, and fluid intake is substantially reduced, especially during the first of flight. The diuresis that was predicted to be caused by weightlessness, has only rarely been observed as an increased urine volume. What has been well established by now, is the occurrence of a relative diuresis, where fluid intake decreases more than urine volume does. Urinary excretion of electrolytes has been variable during spaceflight, but retention of fluid and electrolytes at landing has been consistently observed. The glomerular filtration rate was significantly elevated during the SLS missions, and water and electrolyte loading tests have indicated that renal function is altered during readaptation to Earth's gravity. Endocrine control of fluid volumes and electrolyte concentrations may be altered during weightlessness, but levels of hormones in body fluids do not conform to predictions based on early hypotheses. Antidiuretic hormone is not suppressed, though its level is highly variable and its secretion may be affected by space motion sickness and environmental factors. Plasma renin activity and aldosterone are generally elevated at landing, consistent with sodium retention, but inflight levels have been variable. Salt intake may be an important factor influencing the levels of these hormones. The circadian rhythm of cortisol has undoubtedly contributed to its variability, and little is known yet about the influence of spaceflight on circadian

  2. Regulation of body fluid volume and electrolyte concentrations in spaceflight

    NASA Technical Reports Server (NTRS)

    Smith, S. M.; Krauhs, J. M.; Leach, C. S.

    1997-01-01

    Despite a number of difficulties in performing experiments during weightlessness, a great deal of information has been obtained concerning the effects of spaceflight on the regulation of body fluid and electrolytes. Many paradoxes and questions remain, however. Although body mass, extracellular fluid volume, and plasma volume are reduced during spaceflight and remain so at landing, the changes in total body water are comparatively small. Serum or plasma sodium and osmolality have generally been unchanged or reduced during the spaceflight, and fluid intake is substantially reduced, especially during the first of flight. The diuresis that was predicted to be caused by weightlessness, has only rarely been observed as an increased urine volume. What has been well established by now, is the occurrence of a relative diuresis, where fluid intake decreases more than urine volume does. Urinary excretion of electrolytes has been variable during spaceflight, but retention of fluid and electrolytes at landing has been consistently observed. The glomerular filtration rate was significantly elevated during the SLS missions, and water and electrolyte loading tests have indicated that renal function is altered during readaptation to Earth's gravity. Endocrine control of fluid volumes and electrolyte concentrations may be altered during weightlessness, but levels of hormones in body fluids do not conform to predictions based on early hypotheses. Antidiuretic hormone is not suppressed, though its level is highly variable and its secretion may be affected by space motion sickness and environmental factors. Plasma renin activity and aldosterone are generally elevated at landing, consistent with sodium retention, but inflight levels have been variable. Salt intake may be an important factor influencing the levels of these hormones. The circadian rhythm of cortisol has undoubtedly contributed to its variability, and little is known yet about the influence of spaceflight on circadian

  3. Predicting total body water and extracellular fluid volumes from bioelectrical measurements of the human body.

    PubMed

    Johnson, H L; Virk, S P; Mayclin, P; Barbieri, T

    1992-10-01

    Two biological impedance analyzers, a 50 kHz (RJL) and 20-100 kHz (BMA) instrument, and a total body electrical conductivity (TOBEC) instrument were used to estimate total body water (TBW), extracellular (ECF) and intracellular (ICF) fluid volumes by repeated measurements of 16 normal men (19-38 years old) to assess which, if any, would provide the best estimates. At 3-week intervals, TBW was determined by deuterium dilution, ECF by bromide dilution, ICF by difference (TBW-ECF) and lean body mass by density. Prediction equations were obtained by regression; predicted values for the body fluid volumes were calculated and the results were statistically evaluated. Both the TOBEC and the BMA provided rapid and reliable estimates for body fluid volumes with standard errors of the estimates of about 0.5-1.1 L for ECF, 1.0-1.8 L for TBW, and 1.0-1.3 L for ICF. Part of the error was attributable to standard tracer-dilution methods.

  4. Segment-specific resistivity improves body fluid volume estimates from bioimpedance spectroscopy in hemodialysis patients.

    PubMed

    Zhu, F; Kuhlmann, M K; Kaysen, G A; Sarkar, S; Kaitwatcharachai, C; Khilnani, R; Stevens, L; Leonard, E F; Wang, J; Heymsfield, S; Levin, N W

    2006-02-01

    Discrepancies in body fluid estimates between segmental bioimpedance spectroscopy (SBIS) and gold-standard methods may be due to the use of a uniform value of tissue resistivity to compute extracellular fluid volume (ECV) and intracellular fluid volume (ICV). Discrepancies may also arise from the exclusion of fluid volumes of hands, feet, neck, and head from measurements due to electrode positions. The aim of this study was to define the specific resistivity of various body segments and to use those values for computation of ECV and ICV along with a correction for unmeasured fluid volumes. Twenty-nine maintenance hemodialysis patients (16 men) underwent body composition analysis including whole body MRI, whole body potassium (40K) content, deuterium, and sodium bromide dilution, and segmental and wrist-to-ankle bioimpedance spectroscopy, all performed on the same day before a hemodialysis. Segment-specific resistivity was determined from segmental fat-free mass (FFM; by MRI), hydration status of FFM (by deuterium and sodium bromide), tissue resistance (by SBIS), and segment length. Segmental FFM was higher and extracellular hydration of FFM was lower in men compared with women. Segment-specific resistivity values for arm, trunk, and leg all differed from the uniform resistivity used in traditional SBIS algorithms. Estimates for whole body ECV, ICV, and total body water from SBIS using segmental instead of uniform resistivity values and after adjustment for unmeasured fluid volumes of the body did not differ significantly from gold-standard measures. The uniform tissue resistivity values used in traditional SBIS algorithms result in underestimation of ECV, ICV, and total body water. Use of segmental resistivity values combined with adjustment for body volumes that are neglected by traditional SBIS technique significantly improves estimations of body fluid volume in hemodialysis patients.

  5. Bioimpedance spectroscopy for the estimation of body fluid volumes in mice.

    PubMed

    Chapman, M E; Hu, L; Plato, C F; Kohan, D E

    2010-07-01

    Conventional indicator dilution techniques for measuring body fluid volume are laborious, expensive, and highly invasive. Bioimpedance spectroscopy (BIS) may be a useful alternative due to being rapid, minimally invasive, and allowing repeated measurements. BIS has not been reported in mice; hence we examined how well BIS estimates body fluid volume in mice. Using C57/Bl6 mice, the BIS system demonstrated <5% intermouse variation in total body water (TBW) and extracellular (ECFV) and intracellular fluid volume (ICFV) between animals of similar body weight. TBW, ECFV, and ICFV differed between heavier male and lighter female mice; however, the ratio of TBW, ECFV, and ICFV to body weight did not differ between mice and corresponded closely to values in the literature. Furthermore, repeat measurements over 1 wk demonstrated <5% intramouse variation. Default resistance coefficients used by the BIS system, defined for rats, produced body composition values for TBW that exceeded body weight in mice. Therefore, body composition was measured in mice using a range of resistance coefficients. Resistance values at 10% of those defined for rats provided TBW, ECFV, and ICFV ratios to body weight that were similar to those obtained by conventional isotope dilution. Further evaluation of the sensitivity of the BIS system was determined by its ability to detect volume changes after saline infusion; saline provided the predicted changes in compartmental fluid volumes. In summary, BIS is a noninvasive and accurate method for the estimation of body composition in mice. The ability to perform serial measurements will be a useful tool for future studies.

  6. The Measurement of Human Body-Fluid Volumes: Resting Fluid Volumes Before and After Heat Acclimation

    DTIC Science & Technology

    2001-01-01

    urine formation. As a direct result of Na÷ reabsorption, water is also retained. 2 Antidiuretic hormone is produced by the pituitary gland and stored in...secretion’. It is also likely that antidiuretic hormone2 is released in response to a progressive dehydration and increased extracellular osmolarity...the posterior pituitary. Its release is triggered by a water deficit, which is detected by a hypertonicity of the extracellular fluid. Antidiuretic

  7. Changes in total body water and extracellular fluid volume in infants receiving total parenteral nutrition.

    PubMed

    Coran, A G; Drongowski, R A; Wesley, J R

    1984-12-01

    The nature of weight gain seen in infants receiving total parenteral nutrition continues to be controversial. The debate centers around whether or not the weight gain represents an increase in body mass or water retention. The following study was carried out to answer this question. Eighteen infants receiving peripheral or central intravenous nutrition following major surgery were studied for periods ranging from 1 to 17 weeks. The following studies were carried out after receiving informed consent from the parents and in accordance with the standards established by the Human Use Committee. Total body water was measured using the nonradioactive isotope, deuterium oxide; extracellular fluid volume was assayed using the nonradioactive isotope, sodium bromide. Both body fluid compartments were calculated using the Fick principle of dye dilution. Following double vacuum distillation, serum deuterium oxide was assayed using the falling drop technique. Serum bromide was measured by a technique developed in our laboratory that involves the complexing of bromide with gold chloride and the measurement of this chemical complex colorimetrically. Weight gain was observed in all patients. Total body water percent body weight was 82% +/- 15% prior to the initiation of intravenous nutrition; it decreased within the first week to 71% +/- 12% and then stabilized for the remainder of the study period at 75% +/- 7%. The extracellular fluid volume percent body weight was 56% +/- 15% prior to the start of intravenous nutrition; it fell to 47% +/- 10% during the first week of parenteral nutrition, and then stabilized at 40% +/- 9%.(ABSTRACT TRUNCATED AT 250 WORDS)

  8. Comparison of two bioimpedance spectroscopy techniques in the assessment of body fluid volumes.

    PubMed

    Neves, E B; Pino, A V; Souza, M N

    2009-01-01

    The present study aimed to compare the estimates of body liquid volumes performed by two bioimpedance spectrometry techniques. One based on a step response technique (BIS-PEB) and second one based on multifrequency Xitron Hydra 4200 equipment (Xitron Technologies, San Diego, CA, USA). The convenience sample was initially composed of 422 students from a military parachuting course of the Brazilian Army. From such sample 42 male students were randomly selected to be evaluated during three weeks. The anthropometrical characteristics of the sample can be summarized as: 25.18 +/- 4.10 years old; weight equals of 76.77 +/- 7.84 kg; height equals to 174.96 +/- 5.67 cm; body mass index (BMI) equal to 25.05 +/- 2.11 kg m(-2). Bland-Altman graphics were used to compare the two methods in what concerns to estimate of extracellular fluid (ECF), intracellular fluid (ICF), and total body water (TBW). One can observe that the estimates of the two techniques present a good correlation, especially in the case of ECF (r = 0.975). The present study indicates that BIS-PEB technique associated with De Lorenzo equation can supply noninvasive estimates of body fluid volumes comparable to Xitron Hydra 4200 equipment.

  9. Age-related changes in body fluid volumes in young spontaneously hypertensive rats

    SciTech Connect

    Von Dreele, M.M. )

    1988-11-01

    The authors have measured total body water (TBW, by dessiccation), extracellular fluid volume (ECF, Na{sub 2}{sup 35}SO{sub 4} space), and plasma volume (PV, radioiodinated serum albumin space) in 5-sec-butyl-5-ethyl-2-thiobarbituric acid and sodium salt (Inactin)-anesthetized spontaneously hypertensive (SHR) and Wistar-Kyoto (WKY) rats aged 12-60 days. Interstitial fluid volume (ISF) was calculated as ECF minus PV. Changes in TBW, ECF, and ISF were largely a function of age in both strains, which is typical of developing mammals. Further analysis revealed that although these volumes were significantly larger in SHR before 25 days of age, after 30 days no difference existed between the strains. Before 25 days of age, when SHR's TBW was expanded, no weight difference was seen between the strains. However, once TBW was normalized (after 30 days), WKY was significantly heavier than SHR. The ISF volume was preferentially enlarged in SHR, although PV was also periodically greater. ISF normalized at the time when blood pressure becomes significantly higher in SHR, when plasma aldosterone falls to WKY values in SHR and when renal function is approaching adult levels. Thus the return of ECF (ISF) to normal values may be a result of decreased aldosterone-dependent volume retention or to diuresis induced by increasing blood pressure in an animal whose renal function is close to maturity.

  10. Body Fluids Monitor

    NASA Technical Reports Server (NTRS)

    Siconolfi, Steven F. (Inventor)

    2000-01-01

    Method and apparatus are described for determining volumes of body fluids in a subject using bioelectrical response spectroscopy. The human body is represented using an electrical circuit. Intra-cellular water is represented by a resistor in series with a capacitor; extra-cellular water is represented by a resistor in series with two parallel inductors. The parallel inductors represent the resistance due to vascular fluids. An alternating, low amperage, multifrequency signal is applied to determine a subject's impedance and resistance. From these data, statistical regression is used to determine a 1% impedance where the subject's impedance changes by no more than 1% over a 25 kHz interval. Circuit component, of the human body circuit are determined based on the 1% impedance. Equations for calculating total body water, extra-cellular water, total blood volume, and plasma volume are developed based on the circuit components.

  11. Evaluation of bioimpedance spectroscopy for the measurement of body fluid compartment volumes in rats.

    PubMed

    Hu, Lufei; Maslanik, Tom; Zerebeckyj, Mykolai; Plato, Craig F

    2012-03-01

    Bioimpedance spectroscopy (BIS) has been used in human and large animal research to assess body fluid compartment volumes (BFC) such as total body water (TBW), extracellular fluid volume (ECFV), and intracellular fluid volume (ICFV). To date, the application of BIS for determination of BFC in small research animals has been limited. We sought to evaluate the sensitivity and consistency of BIS for the determination of BFC in male SD rats. Thus, in separate series of experiments, we a) compared BFC values determined using BIS to BFC values obtained using radioisotope indicator dilution methods; b) examined day-to-day intra- and inter-rat BFC variability in small (267.8±5.4 g) and large (372.6±5.6 g) rats (n=8/group) as compared to empirical normative mammalian values; c) evaluated the sensitivity of BIS to detect time-dependent responses to repeated administration of a potent diuretic; and d) compared empirically generated BFC data to predicted osmotically-induced ECFV and ICFV shifts in response to i.v. administration of hypotonic (0.3%), isotonic (0.9%) or hypertonic (3.0%) saline (n=6/concentration). BFC values generated using radioisotope dilution agreed with those generated using BIS. BIS reliably detected differences between small and large rats (p<0.001), and was associated with low (<3.5%) day-to-day, intra-animal coefficient of variation (%=Standard Deviation/mean). BIS detected small reductions (~10%) in ECFV induced by as few as 2 days of the loop diuretic, furosemide, relative to vehicle treatment (70.8±1.5 ml vs. 84.0±1.5 ml; respectively, p<0.05). BIS rapidly detected shifts between ECFV and ICFV in response to osmotic saline challenge, and these responses were similar to physiologically predicted responses. The current studies support using BIS as a means of sensitively and reliably performing repeated measurements of BFC in rats of a) differing sizes, b) in response to therapeutic agents known to influence renal sodium handling and c) in response

  12. Associations of proteinuria, fluid volume imbalance, and body mass index with circadian ambulatory blood pressure in chronic kidney disease patients.

    PubMed

    Ohashi, Yasushi; Otani, Takatoshi; Tai, Reibin; Okada, Takayuki; Tanaka, Kentarou; Tanaka, Yoshihide; Sakai, Ken; Aikawa, Atsushi

    2012-01-01

    Obesity and hypervolemic status are the main causes of hypertension in patients with chronic kidney disease (CKD). However, it is difficult to differentiate between them. We aimed to assess the associations of body mass index (BMI) and total body water (TBW) with ambulatory blood pressure (ABP). Body composition by bioelectrical impedance analysis (BIA) and 24-h ABP were measured in 40 patients with CKD. TBW was assessed using corrected TBWBIA adjusted for body surface area (cTBWBIA) and the TBWBIA/TBWWatson ratio obtained using an anthropometric formula (Watson). Elevated ABP (average 24-h BP ≥ 135/85 mmHg) was noted in 23 patients, who were more likely to have a higher cTBWBIA and TBWBIA/TBWWatson ratio than patients without elevated BP. Patients with nocturnal non-dipping (<10% drop in BP during sleep) were more likely to have a higher TBWBIA/TBWWatson ratio. Proteinuria and the TBWBIA/TBWWatson ratio were significant independent factors for 24-h ABP. BMI had a positive correlation with the cTBWBIA, TBWBIA/TBWWatson ratio and furosemide use. Hypertension is dependent on proteinuria and fluid volume imbalance. The TBWBIA/TBWWatson ratio can serve as an indicator of fluid volume-dependent hypertension. BMI is affected by TBW, in which case BMI can become less involved with 24-h ABP. Copyright © 2012 S. Karger AG, Basel.

  13. Effect of a central redistribution of fluid volume on response to lower-body negative pressure

    NASA Technical Reports Server (NTRS)

    Tomaselli, Clare M.; Frey, Mary A. B.; Kenney, Richard A.; Hoffler, G. Wyckliffe

    1990-01-01

    Cardiovascular responses to lower-body negative pressure (LBNP) were studied following 1 hour of 6-deg head-down tilt to determine whether a redistribution of blood volume toward the central circulation modifies the subsequent response to orthostatic stress. Responses of 12 men, ages 30-39 years, were evaluated by electrocardiography, impedance cardiography, sphygmomanometry, and measurement of calf circumference. During the LBNP that followed head-down tilt, as compared with control LBNP (no preceding head-down tilt) subjects, had smaller stroke volume and cardiac output, greater total peripheral resistance, and less calf enlargement. These differences reflect differences in the variables immediately preceding LBNP. Magnitudes of the responses from pre-LBNP to each pressure stage of the LBNP procedure did not differ between protocols. Mean and diastolic arterial pressures were slightly elevated after LBNP-control, but they fell slightly during LBNP post-tilt.

  14. Body fluid volumes measurements by impedance: A review of bioimpedance spectroscopy (BIS) and bioimpedance analysis (BIA) methods.

    PubMed

    Jaffrin, Michel Y; Morel, Hélène

    2008-12-01

    This paper reviews various bioimpedance methods permitting to measure non-invasively, extracellular, intracellular and total body water (TBW) and compares BIA methods based on empirical equations of the wrist-ankle resistance or impedance at 50 kHz, height and weight with BIS methods which rely on an electrical model of tissues and resistances measured at zero and infinite frequencies. In order to compare these methods, impedance measurements were made with a multifrequency Xitron 4200 impedance meter on 57 healthy subjects which had undergone simultaneously a Dual X-ray absorptiometry examination (DXA), in order to estimate their TBW from their fat-free-mass. Extracellular (ECW) and TBW volumes were calculated for these subjects using the original BIS method and modifications of Matthie[Matthie JR. Second generation mixture theory equation for estimating intracellular water using bioimpedance spectroscopy. J Appl Physiol 2005;99:780-1], Jaffrin et al. [Jaffrin MY, Fenech M, Moreno MV, Kieffer R. Total body water measurement by a modification of the bioimpédance spectroscopy method. Med Bio Eng Comput 2006;44:873-82], Moissl et al. [Moissl UM, Wabel P, Chamney PW, Bosaeus I, Levin NW, et al. Body fluid volume determination via body composition spectroscopy in health and disease. Physiol Meas 2006;27:921-33] and their TBW resistivities were compared and discussed. ECW volumes were calculated by BIA methods of Sergi et al. [Sergi G, Bussolotto M, Perini P, Calliari I, et al. Accuracy of bioelectrical bioimpedance analysis for the assessment of extracellular space in healthy subjects and in fluid retention states. Ann Nutr Metab 1994;38(3):158-65] and Hannan et al. [Hannan WJ, Cowen SJ, Fearon KC, Plester CE, Falconer JS, Richardson RA. Evaluation of multi-frequency bio-impedance analysis for the assessment of extracellular and total body water in surgical patients. Clin Sci 1994;86:479-85] and TBW volumes by BIA methods of Kushner and Schoeller [Kushner RF

  15. Body fluid volume and nutritional status in hemodialysis: vector bioelectric impedance analysis.

    PubMed

    Espinosa Cuevas, M A; Navarrete Rodriguez, G; Villeda Martinez, M E; Atilano Carsi, X; Miranda Alatriste, P; Tostado Gutiérrez, T; Correa-Rotter, R

    2010-04-01

    Protein-energy malnutrition and hypervolemia are major causes of morbidity and mortality in patients on chronic hemodialysis (CHD). The methods used to evaluate nutritional status and volume status remain controversial. Vector bioelectric impedance analysis (vector- BIA) has recently been developed to assess both nutritional status and tissue hydration. The purpose of the study was to assess the nutritional status and volume status of patients on CHD with conventional nutritional assessment methods and with vector-BIA and then to compare the resulting findings. 76 Mexican patients on CHD were studied. Nutritional status and body composition were assessed with anthropometry, biochemical variables, and the modified Bilbrey nutritional index (mBNI), the results were compared with both conventional BIA and vector-BIA. The BNI was used to determine the number of patients with normal nutritional status (n = 27, 35.5%), and mild (n = 31, 40.8%), moderate (n = 10, 13.2%) and severe malnutrition (n = 8, 10.5%). Patients displayed shorter vectors with smaller phase angles or with an overhydration vectorial pattern before the initiation of their hemodialysis session. There was general improvement to normal hydration status post-dialysis (p < 0.05); however, 28% remained overhydrated as assessed by vector-BIA. The vector-BIA results showed that worse malnutrition status was associated with greater volume overload (p < 0.05). Diabetes mellitus (DM) was associated with shorter vectors with smaller phase angles (a vectorial pattern of overhydration and cachexia) (p < 0.05). Patients with lower serum creatinine presented with shorter vectors and smaller phase angles (vectorial patterns of malnutrition and/or overhydration) (p < 0.05). In women, lower serum albumin (< 3.4 g/dl) correlated with greater overhydration and malnutrition (p < 0.05). In this population, the vector-BIA showed that 28% of the population remained overhydrated after their hemodialysis session. Diabetics and

  16. Stereometric body volume measurement

    NASA Technical Reports Server (NTRS)

    Herron, R. E.

    1975-01-01

    The following studies are reported: (1) effects of extended space flight on body form of Skylab astronauts using biostereometrics; (2) comparison of body volume determinations using hydrostatic weighing and biostereometrics; and (3) training of technicians in biostereometric principles and procedures.

  17. Brain Natriuretic Peptide and Body Fluid Composition in Patients with Chronic Kidney Disease: A Cross-Sectional Study to Evaluate the Relationship between Volume Overload and Malnutrition.

    PubMed

    Ohashi, Yasushi; Saito, Akinobu; Yamazaki, Keisuke; Tai, Reibin; Matsukiyo, Tatsuru; Aikawa, Atsushi; Sakai, Ken

    2016-08-01

    Fluid volume overload occurs in chronic kidney disease (CKD), leading to the compensatory release of natriuretic peptides. However, the elevated cardiac peptides may also be associated with malnutrition as well as volume overload. Body fluid composition was measured in 147 patients with CKD between 2009 and 2015, and its relationship to brain natriuretic peptide (BNP) levels was examined. Body fluid composition was separated into three components: (a) a water-free mass consisting of muscle, fat, and minerals; (b) intracellular water (ICW) content, and (c) extracellular water (ECW) content. Excess fluid mass was calculated using Chamney's formula. The measured BNP levels in the tertile groups were 10.9 ± 5.4, 36.3 ± 12.5, and 393 ± 542 pg/ml, respectively. Patients in a higher log-transformed BNP level tertile were more likely to be older, to have a higher frequency of cardiac comorbidities, pulse pressure, C-reactive protein levels, and proteinuria, and to have lower serum sodium, kidney function, and serum albumin (p < 0.05). In body fluid composition, decreased body mass was significantly associated with the ECW-to-ICW ratio in relation to the downward ICW slope (r = -0.235, p = 0.004) and was strongly correlated with excess fluid mass (r = -0.701, p < 0.001). The ECW-to-ICW ratio and excess fluid mass was independently associated with the BNP levels. Fluid volume imbalance between intra- and extracellular water regulated by decreased cell mass was independently associated with BNP levels, which may explain the reserve capacity for fluid accumulation in patients with CKD.

  18. Smart fast blood counting of trace volumes of body fluids from various mammalian species using a compact custom-built microscope cytometer (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Smith, Zachary J.; Gao, Tingjuan; Lin, Tzu-Yin; Carrade-Holt, Danielle; Lane, Stephen M.; Matthews, Dennis L.; Dwyre, Denis M.; Wachsmann-Hogiu, Sebastian

    2016-03-01

    Cell counting in human body fluids such as blood, urine, and CSF is a critical step in the diagnostic process for many diseases. Current automated methods for cell counting are based on flow cytometry systems. However, these automated methods are bulky, costly, require significant user expertise, and are not well suited to counting cells in fluids other than blood. Therefore, their use is limited to large central laboratories that process enough volume of blood to recoup the significant capital investment these instruments require. We present in this talk a combination of a (1) low-cost microscope system, (2) simple sample preparation method, and (3) fully automated analysis designed for providing cell counts in blood and body fluids. We show results on both humans and companion and farm animals, showing that accurate red cell, white cell, and platelet counts, as well as hemoglobin concentration, can be accurately obtained in blood, as well as a 3-part white cell differential in human samples. We can also accurately count red and white cells in body fluids with a limit of detection ~3 orders of magnitude smaller than current automated instruments. This method uses less than 1 microliter of blood, and less than 5 microliters of body fluids to make its measurements, making it highly compatible with finger-stick style collections, as well as appropriate for small animals such as laboratory mice where larger volume blood collections are dangerous to the animal's health.

  19. Diffuse volume transport in fluids

    NASA Astrophysics Data System (ADS)

    Brenner, Howard

    2010-10-01

    The diffuse flux of volume j in a single-component liquid or gas, the subject of this paper, is a purely molecular quantity defined as the difference between the flux of volume n and the convective flux of volume nvˆ carried by the flowing mass, with n the mass flux, vˆ=1/ρ the specific volume, and ρ the mass density. Elementary statistical-mechanical arguments are used to derive the linear constitutive equation j=DS∇lnρ, valid in near-equilibrium fluids from which body forces are absent. Here, DS is the fluid’s self-diffusion coefficient. The present derivation is based on Einstein’s mesoscopic Brownian motion arguments, albeit applied here to volume- rather than particle-transport phenomena. In contrast to these mesoscale arguments, all prior derivations were based upon macroscale linear irreversible thermodynamic (LIT) arguments. DS replaces the thermometric diffusivity α as the phenomenological coefficient appearing in earlier, ad hoc, derivations. The prior scheme based on α, which had been shown to accord with Burnett’s well-known gas-kinetic constitutive data for the heat flux and viscous stress, carries over intact to now show comparable accord of DS with these same data, since for gases the dimensionless Lewis number Le=α/DS is essentially unity. On the other hand for most liquids, where Le≫1, use of DS in place of α is shown to agree much better with existing experimental data for liquids. For the case of binary mixtures it is shown for the special case of isothermal, isobaric, force-free, Fick’s law-type molecular diffusion processes that j=D∇lnρ, where D is the binary diffusion coefficient. In contrast with the preceding use in the single-component case of both mesoscopic and LIT models to obtain a constitutive equation for j, the corresponding mixture result is derived here without use of any physical model whatsoever. Rather, the derivation effectively requires little more than the respective definitions of the diffuse volume

  20. Fluid simulation with articulated bodies.

    PubMed

    Kwatra, Nipun; Wojtan, Chris; Carlson, Mark; Essa, Irfan; Mucha, Peter J; Turk, Greg

    2010-01-01

    We present an algorithm for creating realistic animations of characters that are swimming through fluids. Our approach combines dynamic simulation with data-driven kinematic motions (motion capture data) to produce realistic animation in a fluid. The interaction of the articulated body with the fluid is performed by incorporating joint constraints with rigid animation and by extending a solid/fluid coupling method to handle articulated chains. Our solver takes as input the current state of the simulation and calculates the angular and linear accelerations of the connected bodies needed to match a particular motion sequence for the articulated body. These accelerations are used to estimate the forces and torques that are then applied to each joint. Based on this approach, we demonstrate simulated swimming results for a variety of different strokes, including crawl, backstroke, breaststroke, and butterfly. The ability to have articulated bodies interact with fluids also allows us to generate simulations of simple water creatures that are driven by simple controllers.

  1. Body fluid identification in forensics.

    PubMed

    An, Ja Hyun; Shin, Kyoung-Jin; Yang, Woo Ick; Lee, Hwan Young

    2012-10-01

    Determination of the type and origin of the body fluids found at a crime scene can give important insights into crime scene reconstruction by supporting a link between sample donors and actual criminal acts. For more than a century, numerous types of body fluid identification methods have been developed, such as chemical tests, immunological tests, protein catalytic activity tests, spectroscopic methods and microscopy. However, these conventional body fluid identification methods are mostly presumptive, and are carried out for only one body fluid at a time. Therefore, the use of a molecular genetics-based approach using RNA profiling or DNA methylation detection has been recently proposed to supplant conventional body fluid identification methods. Several RNA markers and tDMRs (tissue-specific differentially methylated regions) which are specific to forensically relevant body fluids have been identified, and their specificities and sensitivities have been tested using various samples. In this review, we provide an overview of the present knowledge and the most recent developments in forensic body fluid identification and discuss its possible practical application to forensic casework.

  2. BODY VOLUME OF ADULT MEN

    DTIC Science & Technology

    The ideal weight given on the USAF standard weight table was found to have a correlation coefficient of only .672 with calculated percent body fat....volume from height and weight revealed the chart to be biased for adult men. Body volume was found to correlate well with body weight ( correlation ... coefficient of .996). Body volume of men in liters, V, may be estimated from body weight in kilograms, W, by using the formula: V = -4.7573 + 1.0153 W

  3. Transcapillary fluid responses to lower body negative pressure

    NASA Technical Reports Server (NTRS)

    Aratow, Michael; Fortney, Suzanne M.; Watenpaugh, Donald E.; Crenshaw, Albert G.; Hargens, Alan R.

    1993-01-01

    The effect of lower body negative pressure (LBNP) on transcapillary fluid balance, with and without saline ingestion, was investigated in normally hydrated human subjects by measuring leg interstitial fluid pressure, leg circumference, plasma volume, and net whole body transcapillary fluid transport during and after supine LBNP in human subjects. The results indicate that prolonged LBNP, especially with saline ingestion, promotes fluid filtration into lower body tissues.

  4. Transcapillary fluid responses to lower body negative pressure

    NASA Technical Reports Server (NTRS)

    Aratow, Michael; Fortney, Suzanne M.; Watenpaugh, Donald E.; Crenshaw, Albert G.; Hargens, Alan R.

    1993-01-01

    The effect of lower body negative pressure (LBNP) on transcapillary fluid balance, with and without saline ingestion, was investigated in normally hydrated human subjects by measuring leg interstitial fluid pressure, leg circumference, plasma volume, and net whole body transcapillary fluid transport during and after supine LBNP in human subjects. The results indicate that prolonged LBNP, especially with saline ingestion, promotes fluid filtration into lower body tissues.

  5. Body Fluid Regulation and Hemopoiesis in Space Flight

    NASA Technical Reports Server (NTRS)

    1997-01-01

    In this session, Session JA2, the discussion focuses on the following topics: Bodymass and Fluid Distribution During Longterm Spaceflight with and without Countermeasures; Plasma Volume, Extracellular Fluid Volume, and Regulatory Hormones During Long-Term Space Flight; Effect of Microgravity and its Ground-Based Models on Fluid Volumes and Hemocirculatory Volumes; Seventeen Weeks of Horizontal Bed Rest, Lower Body Negative Pressure Testing, and the Associated Plasma Volume Response; Evaporative Waterloss in Space Theoretical and Experimental Studies; Erythropoietin Under Real and Simulated Micro-G Conditions in Humans; and Vertebral Bone Marrow Changes Following Space Flight.

  6. Fluid volumes changes induced by spaceflight

    NASA Technical Reports Server (NTRS)

    Johnson, P. C.

    1979-01-01

    The blood volume (BV), plasma volume (PV), and extracellular fluid volume changes produced in crewmembers during spaceflights of 11-84 days were compared to changes after 14 or 28 days of bedrest. Spaceflight and bedrest produce approximately equal BV changes but the recorded PV change after spaceflight was less. However, the diurnal change in PV may explain the smaller decreases recorded after spaceflight. The cardiovascular deconditioning caused by spaceflight and bedrest was compared using the mean heart rate response to lower body negative pressure (LBNP) testing at -50 mmHg pressure. These tests show approximately equal LBNP produced heart rate changes after bedrest and spaceflight. A countermeasure which includes 4 hr of LBNP treatment at -30 mmHg and the ingestion of one l. of saline was studied and found capable of returning the heart rate response and the PV of bedrested subjects to control (prebedrest) levels suggesting that it would be useful to the crewmembers after a spaceflight.

  7. Fluid imbalance

    MedlinePlus

    ... up in the body. This is called fluid overload (volume overload). This can lead to edema (excess fluid in ... Water imbalance; Fluid imbalance - dehydration; Fluid buildup; Fluid overload; Volume overload; Loss of fluids; Edema - fluid imbalance; ...

  8. Estimation of extracellular fluid volume in children.

    PubMed

    Peters, A Michael

    2012-07-01

    Many equations have been developed to estimate various body fluid volumes from height and weight, but few have been developed for children. The aim of this study was to compare four height/weight formulae for estimating extracellular fluid volume (eECV) in children against measured extracellular fluid volume (mECV). The mECV was obtained from plasma Cr-51-EDTA clearance data used for routine measurement of glomerular filtration rate (GFR) in two groups of children (n=182 and 69, respectively). eECV obtained using the formulae of Abraham et al. (Clin J Am Assoc Nephrol 6:741-747, 2011) and Friis-Hansen (Pediatrics 28:169-181, 1961) were compared with mECV in both patient groups. The formulae of Bird et al. (J Nucl Med 44:1037-1043, 2003) and of Peters (Nucl Med Commun 32:375-380, 2011) were originally based on groups 1 and 2, respectively, so the eECV from them was compared with the mECV in groups 2 and 1, respectively. The eECV from the Friis-Hansen formula underestimated the mECV in larger children. Biases (mean differences between eECV and mECV) from the Bird (0.146 l) and Peters (0.029 l) formulae were not significantly different from zero, but those from the Abraham formula was higher than zero (0.694 and 0.588 l in groups 1 and 2; p<0.001). Precisions (standard deviations of the biases) of these three formulae were similar, ranging from 0.731 l (Peters) to 0.878 l (Abraham, group 2; p>0.1). The formulae of Bird, Peters and Abraham have similar precisions. The higher bias of the Abraham formula is probably due to the higher values of mECV on which their formula was based. The Friis-Hansen formula no longer has a place.

  9. Sys-BodyFluid: a systematical database for human body fluid proteome research.

    PubMed

    Li, Su-Jun; Peng, Mao; Li, Hong; Liu, Bo-Shu; Wang, Chuan; Wu, Jia-Rui; Li, Yi-Xue; Zeng, Rong

    2009-01-01

    Recently, body fluids have widely become an important target for proteomic research and proteomic study has produced more and more body fluid related protein data. A database is needed to collect and analyze these proteome data. Thus, we developed this web-based body fluid proteome database Sys-BodyFluid. It contains eleven kinds of body fluid proteomes, including plasma/serum, urine, cerebrospinal fluid, saliva, bronchoalveolar lavage fluid, synovial fluid, nipple aspirate fluid, tear fluid, seminal fluid, human milk and amniotic fluid. Over 10,000 proteins are presented in the Sys-BodyFluid. Sys-BodyFluid provides the detailed protein annotations, including protein description, Gene Ontology, domain information, protein sequence and involved pathways. These proteome data can be retrieved by using protein name, protein accession number and sequence similarity. In addition, users can query between these different body fluids to get the different proteins identification information. Sys-BodyFluid database can facilitate the body fluid proteomics and disease proteomics research as a reference database. It is available at http://www.biosino.org/bodyfluid/.

  10. Hypothalamic integration of body fluid regulation.

    PubMed Central

    Denton, D A; McKinley, M J; Weisinger, R S

    1996-01-01

    The progression of animal life from the paleozoic ocean to rivers and diverse econiches on the planet's surface, as well as the subsequent reinvasion of the ocean, involved many different stresses on ionic pattern, osmotic pressure, and volume of the extracellular fluid bathing body cells. The relatively constant ionic pattern of vertebrates reflects a genetic "set" of many regulatory mechanisms--particularly renal regulation. Renal regulation of ionic pattern when loss of fluid from the body is disproportionate relative to the extracellular fluid composition (e.g., gastric juice with vomiting and pancreatic secretion with diarrhea) makes manifest that a mechanism to produce a biologically relatively inactive extracellular anion HCO3- exists, whereas no comparable mechanism to produce a biologically inactive cation has evolved. Life in the ocean, which has three times the sodium concentration of extracellular fluid, involves quite different osmoregulatory stress to that in freshwater. Terrestrial life involves risk of desiccation and, in large areas of the planet, salt deficiency. Mechanisms integrated in the hypothalamus (the evolutionary ancient midbrain) control water retention and facilitate excretion of sodium, and also control the secretion of renin by the kidney. Over and above the multifactorial processes of excretion, hypothalamic sensors reacting to sodium concentration, as well as circumventricular organs sensors reacting to osmotic pressure and angiotensin II, subserve genesis of sodium hunger and thirst. These behaviors spectacularly augment the adaptive capacities of animals. Instinct (genotypic memory) and learning (phenotypic memory) are melded to give specific behavior apt to the metabolic status of the animal. The sensations, compelling emotions, and intentions generated by these vegetative systems focus the issue of the phylogenetic emergence of consciousness and whether primal awareness initially came from the interoreceptors and vegetative

  11. Derivation of extracellular fluid volume fraction and equivalent dielectric constant of the cell membrane from dielectric properties of the human body. Part 2: A preliminary study for tracking the progression of surgical tissue injury.

    PubMed

    Tatara, T; Tsuzaki, K

    2000-07-01

    A study is conducted to determine whether the extracellular fluid (ECF) volume fraction and equivalent dielectric constant of the cell membrane epsilon m, derived from the dielectric properties of the human body can track the progression of surgical tissue injury. Frequency-dependent dielectric constants and electrical conductivities of body segments are obtained at surgical (trunk) and non-surgical sites (arm and leg) from five patients who have undergone oesophageal resections, before and at the end of surgery and on the day after the operation. The ECF volume fraction and the equivalent epsilon m of body segments are estimated by fitting the dielectric data for body segments to the cell suspension model incorporating fat tissue, and their time-course changes are compared between body segments. By the day after the operation, the estimated ECF volume fraction has increased in all body segments compared with that before surgery, by 0.13 in the arm, 0.16 in the trunk and 0.14 in the leg (p < 0.05), indicating postoperative fluid accumulation in the extracellular space. In contrast, the estimated equivalent epsilon m shows a different time course between body segments on the day after the operation, characterised by a higher change ratio of epsilon m of the trunk (1.34 +/- 0.66, p < 0.05), from that of the arm (0.66 +/- 0.34) and leg (0.61 +/- 0.11). The results suggest that the equivalent epsilon m of a body segment at a surgical site can track pathophysiological cell changes following surgical tissue injury.

  12. Regulation of endolymphatic fluid volume.

    PubMed

    Salt, A N

    2001-10-01

    Direct measurements of the dispersal of markers in endolymph have failed to support previously established hypotheses of endolymph homeostasis, specifically longitudinal flow, radial flow, and dynamic flow theories. Rather, they suggest that in the normal state endolymph is maintained without a significant involvement of volume flow at all. Ions appear to be transported into and out of the endolymphatic space in a similar manner to that for a single cell, with each ion transport process contributing to the electrolyte pool. In abnormal volume states, however, longitudinal volume flow of endolymph may contribute to homeostasis. Procedures that enlarge the endolymphatic space result in endolymph flow toward the base of the cochlea, contributing to the removal of electrolytes and volume. Similarly, procedures that decrease cochlear endolymph volume induce apically directed flow in the cochlea, contributing to the addition of electrolytes and volume to the endolymphatic space. The endolymphatic sac responds to endolymph volume disturbance, showing op posite responses to volume increases and decreases. Although evidence is still limited, the endolymphatic sac appears to act as a "bidirectional overflow" system. While volume disturbances originating from out-of-balance transport processes anywhere in the labyrinth may be corrected by the sac, dysfunction of the sac itself is likely to have a substantial effect on endolymph status.

  13. Fluid and sodium loss in whole-body-irradiated rats

    SciTech Connect

    Geraci, J.P.; Jackson, K.L.; Mariano, M.S.

    1987-09-01

    Whole-body and organ fluid compartment sizes and plasma sodium concentrations were measured in conventional, GI decontaminated, bile duct ligated, and choledochostomized rats at different times after various doses of gamma radiation. In addition, sodium excretion was measured in rats receiving lethal intestinal radiation injury. After doses which were sublethal for 3-5 day intestinal death, transient decreases occurred in all the fluid compartments measured (i.e., total body water, extracellular fluid space, plasma volume). No recovery of these fluid compartments was observed in rats destined to die from intestinal radiation injury. The magnitude of the decreases in fluid compartment sizes was dose dependent and correlated temporally with the breakdown and recovery of the intestinal mucosa but was independent of the presence or absence of enteric bacteria or bile acids. Associated with the loss of fluid was an excess excretion of 0.83 meq of sodium between 48 and 84 h postirradiation. This represents approximately 60% of the sodium lost from the extracellular fluid space in these animals during this time. The remaining extracellular sodium loss was due to redistribution of sodium to other spaces. It is concluded that radiation-induced breakdown of the intestinal mucosa results in lethal losses of fluid and sodium as evidenced by significant decreases in total body water, extracellular fluid space, plasma volume, and plasma sodium concentration, with hemoconcentration. These changes are sufficient to reduce tissue perfusion leading to irreversible hypovolemic shock and death.

  14. Vibrational Spectroscopy in Body Fluids Analysis.

    PubMed

    Bunaciu, Andrei A; Fleschin, Şerban; Hoang, Vu Dang; Aboul-Enein, Hassan Y

    2017-01-02

    Vibrational spectroscopy offers a unique opportunity to investigate the composition of unknown substances on a molecular basis. The spectroscopy of molecular vibrations using mid-infrared or Raman techniques has been applied to samples of body fluids. This review presents some applications related to body fluids published in the period 2005-2015.

  15. Transcriptomic analysis of degraded forensic body fluids.

    PubMed

    Lin, Meng-Han; Jones, Daniel F; Fleming, Rachel

    2015-07-01

    Massively parallel sequencing (MPS) has facilitated a significant increase in transcriptomic studies in all biological disciplines. However, the analysis of degraded RNA remains a genuine challenge in practice. In forensic science the biological samples encountered are often extensively degraded and of low abundance. RNA from these compromised samples is used for body fluid identification through the detection of body fluid-specific transcripts. Here we demonstrate the sequencing of four forensically relevant body fluids: oral mucosa/saliva (buccal), circulatory blood, menstrual blood and vaginal fluid. RNA was extracted from fresh, two and six week aged samples. Despite the extensive degradation of most body fluids, significant high quality sequencing output (>80% sequence above Q30) was generated. An average of over 80% of reads from all but one sample aligned successfully to the reference human genome. Furthermore, FPKMs (fragments per kilobase of exon per million fragments mapped) generated indicate the accurate detection of known body fluid markers in respective body fluids. Assessment of global gene expression levels over degradation time enabled the characterisation of differential RNA degradation in different body fluids. This study demonstrates the practical application of MPS technology for the accurate analysis of degraded RNA from minimal samples.

  16. Guiding principles of fluid and volume therapy.

    PubMed

    Aditianingsih, Dita; George, Yohanes W H

    2014-09-01

    Fluid therapy is a core concept in the management of perioperative and critically ill patients for maintenance of intravascular volume and organ perfusion. Recent evidence regarding the vascular barrier and its role in terms of vascular leakage has led to a new concept for fluid administration. The choice of fluid used should be based on the fluid composition and the underlying pathophysiology of the patient. Avoidance of both hypo- and hypervolaemia is essential when treating circulatory failure. In daily practice, the assessment of individual thresholds in order to optimize cardiac preload and avoid hypovolaemia or deleterious fluid overload remains a challenge. Liberal versus restrictive fluid management has been challenged by recent evidence, and the ideal approach appears to be goal-directed fluid therapy. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Suction blister fluid as potential body fluid for biomarker proteins.

    PubMed

    Kool, Jeroen; Reubsaet, Léon; Wesseldijk, Feikje; Maravilha, Raquel T; Pinkse, Martijn W; D'Santos, Clive S; van Hilten, Jacobus J; Zijlstra, Freek J; Heck, Albert J R

    2007-10-01

    Early diagnosis is important for effective disease management. Measurement of biomarkers present at the local level of the skin could be advantageous in facilitating the diagnostic process. The analysis of the proteome of suction blister fluid, representative for the interstitial fluid of the skin, is therefore a desirable first step in the search for potential biomarkers involved in biological pathways of particular diseases. Here, we describe a global analysis of the suction blister fluid proteome as potential body fluid for biomarker proteins. The suction blister fluid proteome was compared with a serum proteome analyzed using identical protocols. By using stringent criteria allowing less than 1% false positive identifications, we were able to detect, using identical experimental conditions and amount of starting material, 401 proteins in suction blister fluid and 240 proteins in serum. As a major result of our analysis we construct a prejudiced list of 34 proteins, relatively highly and uniquely detected in suction blister fluid as compared to serum, with established and putative characteristics as biomarkers. We conclude that suction blister fluid might potentially serve as a good alternative biomarker body fluid for diseases that involve the skin.

  18. Bioimpedance Measurement of Segmental Fluid Volumes and Hemodynamics

    NASA Technical Reports Server (NTRS)

    Montgomery, Leslie D.; Wu, Yi-Chang; Ku, Yu-Tsuan E.; Gerth, Wayne A.; DeVincenzi, D. (Technical Monitor)

    2000-01-01

    Bioimpedance has become a useful tool to measure changes in body fluid compartment volumes. An Electrical Impedance Spectroscopic (EIS) system is described that extends the capabilities of conventional fixed frequency impedance plethysmographic (IPG) methods to allow examination of the redistribution of fluids between the intracellular and extracellular compartments of body segments. The combination of EIS and IPG techniques was evaluated in the human calf, thigh, and torso segments of eight healthy men during 90 minutes of six degree head-down tilt (HDT). After 90 minutes HDT the calf and thigh segments significantly (P < 0.05) lost conductive volume (eight and four percent, respectively) while the torso significantly (P < 0.05) gained volume (approximately three percent). Hemodynamic responses calculated from pulsatile IPG data also showed a segmental pattern consistent with vascular fluid loss from the lower extremities and vascular engorgement in the torso. Lumped-parameter equivalent circuit analyses of EIS data for the calf and thigh indicated that the overall volume decreases in these segments arose from reduced extracellular volume that was not completely balanced by increased intracellular volume. The combined use of IPG and EIS techniques enables noninvasive tracking of multi-segment volumetric and hemodynamic responses to environmental and physiological stresses.

  19. Body Fluid Dynamics: Back to the Future

    PubMed Central

    Bhave, Gautam; Neilson, Eric G.

    2014-01-01

    Pioneering investigations conducted over a half century ago on tonicity, transcapillary fluid exchange, and the distribution of water and solute serve as a foundation for understanding the physiology of body fluid spaces. With passage of time, however, some of these concepts have lost their connectivity to more contemporary information. Here we examine the physical forces determining the compartmentalization of body fluid and its movement across capillary and cell membrane barriers, drawing particular attention to the interstitium operating as a dynamic interface for water and solute distribution rather than as a static reservoir. Newer work now supports an evolving model of body fluid dynamics that integrates exchangeable Na+ stores and transcapillary dynamics with advances in interstitial matrix biology. PMID:22034644

  20. Body fluid dynamics: back to the future.

    PubMed

    Bhave, Gautam; Neilson, Eric G

    2011-12-01

    Pioneering investigations conducted over a half century ago on tonicity, transcapillary fluid exchange, and the distribution of water and solute serve as a foundation for understanding the physiology of body fluid spaces. With passage of time, however, some of these concepts have lost their connectivity to more contemporary information. Here we examine the physical forces determining the compartmentalization of body fluid and its movement across capillary and cell membrane barriers, drawing particular attention to the interstitium operating as a dynamic interface for water and solute distribution rather than as a static reservoir. Newer work now supports an evolving model of body fluid dynamics that integrates exchangeable Na(+) stores and transcapillary dynamics with advances in interstitial matrix biology.

  1. Can body volume be determined by PET?

    PubMed

    Hentschel, Michael; Paul, Dominik; Korsten-Reck, Ulrike; Mix, Michael; Müller, Frank; Merk, Stefan; Moser, Ernst; Brink, Ingo

    2005-05-01

    To avoid dependence on body weight, the standardised uptake value (SUV) in positron emission tomography (PET) can instead be normalised to the lean body mass (LBM), which can be determined from body volume and mass. This study was designed to answer the following questions: Firstly, can the total body volume in principle be determined using PET? Secondly, is the precision of this measurement comparable to that achieved using an established standard method. Ten patients were examined during oncological whole-body PET examinations. The whole-body volume of the patients was determined from the transmission scan in PET. Air displacement plethysmography with BOD POD was used for comparison as the standard method of volume determination. In all patients, the whole-body volumes could be determined using PET and the standard method. Bland and Altman [23] analysis for agreement between the volumes determined by the two methods (presentation of differences vs means) revealed a very small difference of -0.14 l. With a mean patient volume of 71.81+/-15.93 l, the relative systematic error is only <0.1%. On this basis, equality of the volume values determined by the two methods can be assumed. PET can be used as a supplementary method for experimental determination of whole-body volume and total body fat in tumour patients. The fat content can be used to calculate the LBM and to determine body weight-independent SUVs (SUV(LBM)).

  2. Edemagenic gain and interstitial fluid volume regulation.

    PubMed

    Dongaonkar, R M; Quick, C M; Stewart, R H; Drake, R E; Cox, C S; Laine, G A

    2008-02-01

    Under physiological conditions, interstitial fluid volume is tightly regulated by balancing microvascular filtration and lymphatic return to the central venous circulation. Even though microvascular filtration and lymphatic return are governed by conservation of mass, their interaction can result in exceedingly complex behavior. Without making simplifying assumptions, investigators must solve the fluid balance equations numerically, which limits the generality of the results. We thus made critical simplifying assumptions to develop a simple solution to the standard fluid balance equations that is expressed as an algebraic formula. Using a classical approach to describe systems with negative feedback, we formulated our solution as a "gain" relating the change in interstitial fluid volume to a change in effective microvascular driving pressure. The resulting "edemagenic gain" is a function of microvascular filtration coefficient (K(f)), effective lymphatic resistance (R(L)), and interstitial compliance (C). This formulation suggests two types of gain: "multivariate" dependent on C, R(L), and K(f), and "compliance-dominated" approximately equal to C. The latter forms a basis of a novel method to estimate C without measuring interstitial fluid pressure. Data from ovine experiments illustrate how edemagenic gain is altered with pulmonary edema induced by venous hypertension, histamine, and endotoxin. Reformulation of the classical equations governing fluid balance in terms of edemagenic gain thus yields new insight into the factors affecting an organ's susceptibility to edema.

  3. Neural Control Mechanisms and Body Fluid Homeostasis

    NASA Technical Reports Server (NTRS)

    Johnson, Alan Kim

    1998-01-01

    The goal of the proposed research was to study the nature of afferent signals to the brain that reflect the status of body fluid balance and to investigate the central neural mechanisms that process this information for the activation of response systems which restore body fluid homeostasis. That is, in the face of loss of fluids from intracellular or extracellular fluid compartments, animals seek and ingest water and ionic solutions (particularly Na(+) solutions) to restore the intracellular and extracellular spaces. Over recent years, our laboratory has generated a substantial body of information indicating that: (1) a fall in systemic arterial pressure facilitates the ingestion of rehydrating solutions and (2) that the actions of brain amine systems (e.g., norepinephrine; serotonin) are critical for precise correction of fluid losses. Because both acute and chronic dehydration are associated with physiological stresses, such as exercise and sustained exposure to microgravity, the present research will aid in achieving a better understanding of how vital information is handled by the nervous system for maintenance of the body's fluid matrix which is critical for health and well-being.

  4. Cumulative changes in weight but not fluid volume balances reflect fluid accumulation in ICU patients.

    PubMed

    Köster, M; Dennhardt, S; Jüttner, F; Hopf, H-B

    2017-02-01

    The cumulative fluid balance of critically ill patients seems to be an outcome-relevant variable. However, there are no validated data for their reliability calculated for longer (> 5 days) periods of time. All ICU patients ≥ 18 years, with an ICU stay ≥ 5 days and a body weight ≤ 195 kg were evaluated from 1 January 2013 to 31 December 2013. Daily standardized weighing was performed using bed-integrated scales simultaneously with the daily 24-h fluid balance. Simultaneously, a fluid balance without and with insensible perspiration (10 ml/kg/day) was calculated for each 24 h. Primary endpoint: difference between cumulative fluid balance and body weight changes at the day of transfer to the normal ward or the day of death in the ICU, respectively, in each patient. All data are presented as medians with interquartile ranges (IQR) with 25 and 75 percentiles (IQR/25/75) unless otherwise noted. One hundred and six critically ill patients were evaluated; 82 survivors and 24 nonsurvivors. Cumulative 24-h fluid balances rose continuously while body weight decreased over time. Correction of cumulative fluid balances for insensible perspiration (10 ml/kg/day) also did not match with body weight changes. Only survivors had a significant loss in body weight -1.8 (27.5/-6.1/1.0) kg. Assuming that changes in body weight reflect changes in whole body water content cumulative daily fluid volume balances without or with correction for insensible water loss are not useful for estimating cumulative fluid balance of ICU patients. Survivors but not nonsurvivors had a significant loss of weight over time. © 2016 The Acta Anaesthesiologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  5. Quantification of interstitial fluid on whole body CT: comparison with whole body autopsy.

    PubMed

    Lo Gullo, Roberto; Mishra, Shelly; Lira, Diego A; Padole, Atul; Otrakji, Alexi; Khawaja, Ranish Deedar Ali; Pourjabbar, Sarvenaz; Singh, Sarabjeet; Shepard, Jo-Anne O; Digumarthy, Subba R; Kalra, Mannudeep K; Stone, James R

    2015-12-01

    Interstitial fluid accumulation can occur in pleural, pericardial, and peritoneal spaces, and subcutaneous tissue planes. The purpose of the study was to assess if whole body CT examination in a postmortem setting could help determine the presence and severity of third space fluid accumulation in the body. Our study included 41 human cadavers (mean age 61 years, 25 males and 16 females) who had whole-body postmortem CT prior to autopsy. All bodies were maintained in the morgue in the time interval between death and autopsy. Two radiologists reviewed the whole-body CT examinations independently to grade third space fluid in the pleura, pericardium, peritoneum, and subcutaneous space using a 5-point grading system. Qualitative CT grading for third space fluid was correlated with the amount of fluid found on autopsy and the quantitative CT fluid volume, estimated using a dedicated software program (Volume, Syngo Explorer, Siemens Healthcare). Moderate and severe peripheral edema was seen in 16/41 and 7/41 cadavers respectively. It is not possible to quantify anasarca at autopsy. Correlation between imaging data for third space fluid and the quantity of fluid found during autopsy was 0.83 for pleural effusion, 0.4 for pericardial effusion and 0.9 for ascites. The degree of anasarca was significantly correlated with the severity of ascites (p < 0.0001) but not with pleural or pericardial effusion. There was strong correlation between volumetric estimation and qualitative grading for anasarca (p < 0.0001) and pleural effusion (p < 0.0001). Postmortem CT can help in accurate detection and quantification of third space fluid accumulation. The quantity of ascitic fluid on postmortem CT can predict the extent of anasarca.

  6. Physiologic mechanisms of circulatory and body fluid losses in weightlessness identified by mathematical modeling

    NASA Technical Reports Server (NTRS)

    Simanonok, K. E.; Srinivasan, R. S.; Charles, J. B.

    1993-01-01

    Central volume expansion due to fluid shifts in weightlessness is believed to activate adaptive reflexes which ultimately result in a reduction of the total circulating blood volume. However, the flight data suggests that a central volume overdistention does not persist, in which case some other factor or factors must be responsible for body fluid losses. We used a computer simulation to test the hypothesis that factors other than central volume overdistention are involved in the loss of blood volume and other body fluid volumes observed in weightlessness and in weightless simulations. Additionally, the simulation was used to identify these factors. The results predict that atrial volumes and pressures return to their prebedrest baseline values within the first day of exposure to head down tilt (HDT) as the blood volume is reduced by an elevated urine formation. They indicate that the mechanisms for large and prolonged body fluid losses in weightlessness is red cell hemoconcentration that elevates blood viscosity and peripheral resistance, thereby lowering capillary pressure. This causes a prolonged alteration of the balance of Starling forces, depressing the extracellular fluid volume until the hematocrit is returned to normal through a reduction of the red cell mass, which also allows some restoration of the plasma volume. We conclude that the red cell mass becomes the physiologic driver for a large 'undershoot' of the body fluid volumes after the normalization of atrial volumes and pressures.

  7. Cardiovascular and fluid volume control in humans in space.

    PubMed

    Norsk, Peter

    2005-08-01

    The human cardiovascular system and regulation of fluid volume are heavily influenced by gravity. When decreasing the effects of gravity in humans such as by anti-orthostatic posture changes or immersion into water, venous return is increased by some 25%. This leads to central blood volume expansion, which is accompanied by an increase in renal excretion rates of water and sodium. The mechanisms for the changes in renal excretory rates include a complex interaction of cardiovascular reflexes, neuroendocrine variables, and physical factors. Weightlessness is unique to obtain more information on this complex interaction, because it is the only way to completely abolish the effects of gravity over longer periods. Results from space have been unexpected, because astronauts exhibit a fluid and sodium retaining state with activation of the sympathetic nervous system, which subjects during simulations by head-down bed rest do not. Therefore, the concept as to how weightlessness affects the cardiovascular system and modulates regulation of body fluids should be revised and new simulation models developed. Knowledge as to how gravity and weightlessness modulate integrated fluid volume control is of importance for understanding pathophysiology of heart failure, where gravity plays a strong role in fluid and sodium retention.

  8. Passenger fluid volumes measured before and after a prolonged commercial jet flight.

    NASA Technical Reports Server (NTRS)

    Johnson, P. C.; Carpentier, W. R.; Driscoll, T. B.; Lapinta, C. K.; Rummel, J. A.; Sawin, C. F.

    1972-01-01

    Interstitial and intracellular fluid volumes were calculated from measured plasma volume, extracellular volume and total body water of six subjects before and after a 24-hour commercial overseas flight. No change occurred in these spaces or in peripheral hematocrit or total serum protein concentration. The subjective feeling of dehydration and the actual swelling of the lower extremities characteristically found among passengers at the end of a long trip of this type seems to represent a shift in body fluids to the dependent portions of the body rather than water retention or a decrease in the intravascular water volume.

  9. Passenger fluid volumes measured before and after a prolonged commercial jet flight.

    NASA Technical Reports Server (NTRS)

    Johnson, P. C.; Carpentier, W. R.; Driscoll, T. B.; Lapinta, C. K.; Rummel, J. A.; Sawin, C. F.

    1972-01-01

    Interstitial and intracellular fluid volumes were calculated from measured plasma volume, extracellular volume and total body water of six subjects before and after a 24-hour commercial overseas flight. No change occurred in these spaces or in peripheral hematocrit or total serum protein concentration. The subjective feeling of dehydration and the actual swelling of the lower extremities characteristically found among passengers at the end of a long trip of this type seems to represent a shift in body fluids to the dependent portions of the body rather than water retention or a decrease in the intravascular water volume.

  10. Wakes of Maneuvering Bodies in Stratified Fluids

    NASA Astrophysics Data System (ADS)

    Voropayev, S. I.; Fernando, H. J.

    2007-05-01

    We present the results of experimental/theoretical studies on large momentum eddies generated in late wakes of unsteady moving self-propelled bodies in stratified fluids. The experiments were conducted with scaled submarine model at high Reynolds numbers (50,000), corresponding to the fully turbulent flow regime. Dye visualization and PIV were used for flow diagnostics. When a self-propelled body makes a maneuver, e.g. accelerates, it imparts net momentum on the surrounding fluid. We show that in a stratified fluid this leads to impulsive momentum wakes with large, long-lived coherent vortices in the late flows, which may be used as a signature for identification of submarine wakes in oceanic thermocline. First, we consider dynamics and properties of such wakes in a linearly stratified fluid and present a model that permits to predict the main flow characteristics. Second, we consider wakes in a two layer stratified fluid (analog of the upper ocean) and show that such wakes may penetrate to the water surface; we present a model for this phenomenon and propose criteria for the penetration of wake signatures to the water surface in terms of main governing parameters (signature contrast versus confinement number). Finally, we consider the evolution of such momentum wake eddies in the field of decaying background turbulence, which mimics the oceanic thermocline, and show that for the flow configuration studied the contrast number remains sufficiently large and detectable wake imprints survive for a long period of time. Some pertinent estimates for submarines cruising in the upper ocean are also given. For more details see [1-3]. This study was supported by grant from the Office of Naval Research. 1. Voropayev S.I., Fernando H.J.S., Smirnov S.A. & Morrison R.J. 2006. On surface signatures generated by submersed momentum sources. Phys. Fluids, under revision. 2. Voropayev S.I., Fernando H.J.S. & Morrison R.J. 2006. Dipolar eddies in a stratified turbulent flow. J. Fluid

  11. Prey handling using whole-body fluid dynamics in batoids.

    PubMed

    Wilga, Cheryl D; Maia, Anabela; Nauwelaerts, Sandra; Lauder, George V

    2012-02-01

    Fluid flow generated by body movements is a foraging tactic that has been exploited by many benthic species. In this study, the kinematics and hydrodynamics of prey handling behavior in little skates, Leucoraja erinacea, and round stingrays, Urobatis halleri, are compared using kinematics and particle image velocimetry. Both species use the body to form a tent to constrain the prey with the pectoral fin edges pressed against the substrate. Stingrays then elevate the head, which increases the volume between the body and the substrate to generate suction, while maintaining pectoral fin contact with the substrate. Meanwhile, the tip of the rostrum is curled upwards to create an opening where fluid is drawn under the body, functionally analogous to suction-feeding fishes. Skates also rotate the rostrum upwards although with the open rostral sides and the smaller fin area weaker fluid flow is generated. However, skates also use a rostral strike behavior in which the rostrum is rapidly rotated downwards pushing fluid towards the substrate to potentially stun or uncover prey. Thus, both species use the anterior portion of the body to direct fluid flow to handle prey albeit in different ways, which may be explained by differences in morphology. Rostral stiffness and pectoral fin insertion onto the rostrum differ between skates and rays and this corresponds to behavioral differences in prey handling resulting in distinct fluid flow patterns. The flexible muscular rostrum and greater fin area of stingrays allow more extensive use of suction to handle prey while the stiff cartilaginous rostrum of skates lacking extensive fin insertion is used as a paddle to strike prey as well as to clear away sand cover. Copyright © 2011 Elsevier GmbH. All rights reserved.

  12. Body fluid identification by integrated analysis of DNA methylation and body fluid-specific microbial DNA.

    PubMed

    Choi, Ajin; Shin, Kyoung-Jin; Yang, Woo Ick; Lee, Hwan Young

    2014-01-01

    Identification of body fluids found at crime scenes provides important information that can support a link between sample donors and actual criminal acts. Previous studies have reported that DNA methylation analysis at several tissue-specific differentially methylated regions (tDMRs) enables successful identification of semen, and the detection of certain bacterial DNA can allow for identification of saliva and vaginal fluid. In the present study, a method for detecting bacterial DNA was integrated into a previously reported multiplex methylation-sensitive restriction enzyme-polymerase chain reaction. The developed multiplex PCR was modified by the addition of a new semen-specific marker and by including amplicons for the 16S ribosomal RNA gene of saliva- and vaginal fluid-specific bacteria to improve the efficacy to detect a specific type of body fluid. Using the developed multiplex system, semen was distinguishable by unmethylation at the USP49, DACT1, and PFN3 tDMRs and by hypermethylation at L81528, and saliva could be identified by detection of saliva-specific bacteria, Veillonella atypica and/or Streptococcus salivarius. Additionally, vaginal fluid and menstrual blood were differentiated from other body fluids by hypomethylation at the PFN3 tDMR and the presence of vaginal fluid-specific bacteria, Lactobacillus crispatus and/or Lactobacillus gasseri. Because the developed multiplex system uses the same biological source of DNA for individual identification profiling and simultaneously analyses various types of body fluid in one PCR reaction, this method will facilitate more efficient body fluid identification in forensic casework.

  13. Understanding the heterogeneity in volume overload and fluid distribution in decompensated heart failure is key to optimal volume management: role for blood volume quantitation.

    PubMed

    Miller, Wayne L; Mullan, Brian P

    2014-06-01

    This study sought to quantitate total blood volume (TBV) in patients hospitalized for decompensated chronic heart failure (DCHF) and to determine the extent of volume overload, and the magnitude and distribution of blood volume and body water changes following diuretic therapy. The accurate assessment and management of volume overload in patients with DCHF remains problematic. TBV was measured by a radiolabeled-albumin dilution technique with intravascular volume, pre-to-post-diuretic therapy, evaluated at hospital admission and at discharge. Change in body weight in relation to quantitated TBV was used to determine interstitial volume contribution to total fluid loss. Twenty-six patients were prospectively evaluated. Two patients had normal TBV at admission. Twenty-four patients were hypervolemic with TBV (7.4 ± 1.6 liters) increased by +39 ± 22% (range, +9.5% to +107%) above the expected normal volume. With diuresis, TBV decreased marginally (+30 ± 16%). Body weight declined by 6.9 ± 5.2 kg, and fluid intake/fluid output was a net negative 8.4 ± 5.2 liters. Interstitial compartment fluid loss was calculated at 6.2 ± 4.0 liters, accounting for 85 ± 15% of the total fluid reduction. TBV analysis demonstrated a wide range in the extent of intravascular overload. Dismissal measurements revealed marginally reduced intravascular volume post-diuretic therapy despite large reductions in body weight. Mobilization of interstitial fluid to the intravascular compartment with diuresis accounted for this disparity. Intravascular volume, however, remained increased at dismissal. The extent, composition, and distribution of volume overload are highly variable in DCHF, and this variability needs to be taken into account in the approach to individualized therapy. TBV quantitation, particularly serial measurements, can facilitate informed volume management with respect to a goal of treating to euvolemia. Copyright © 2014 American College of Cardiology Foundation. Published

  14. System and Method for Wirelessly Determining Fluid Volume

    NASA Technical Reports Server (NTRS)

    Woodard, Stanley E. (Inventor); Taylor, Bryant D. (Inventor)

    2009-01-01

    A system and method are provided for determining the volume of a fluid in container. Sensors are positioned at distinct locations in a container of a fluid. Each sensor is sensitive to an interface defined by the top surface of the fluid. Interfaces associated with at least three of the sensors are determined and used to find the volume of the fluid in the container in a geometric process.

  15. Computer simulation of preflight blood volume reduction as a countermeasure to fluid shifts in space flight

    NASA Technical Reports Server (NTRS)

    Simanonok, K. E.; Srinivasan, R.; Charles, J. B.

    1992-01-01

    Fluid shifts in weightlessness may cause a central volume expansion, activating reflexes to reduce the blood volume. Computer simulation was used to test the hypothesis that preadaptation of the blood volume prior to exposure to weightlessness could counteract the central volume expansion due to fluid shifts and thereby attenuate the circulatory and renal responses resulting in large losses of fluid from body water compartments. The Guyton Model of Fluid, Electrolyte, and Circulatory Regulation was modified to simulate the six degree head down tilt that is frequently use as an experimental analog of weightlessness in bedrest studies. Simulation results show that preadaptation of the blood volume by a procedure resembling a blood donation immediately before head down bedrest is beneficial in damping the physiologic responses to fluid shifts and reducing body fluid losses. After ten hours of head down tilt, blood volume after preadaptation is higher than control for 20 to 30 days of bedrest. Preadaptation also produces potentially beneficial higher extracellular volume and total body water for 20 to 30 days of bedrest.

  16. A new model for the determination of fluid status and body composition from bioimpedance measurements.

    PubMed

    Kraemer, M

    2006-09-01

    In patients with end stage renal failure, control of the fluid status of the body is lost and fluid accumulates continuously. By dialysis therapy, excess fluid can be removed, but there are no reliable methods to establish the amount of excess fluid to be removed. Severe and even lethal complications may be the consequence of longer term deviations from a normal fluid status in dialysis patients, but also in other patient groups. Therefore, a large medical need exists for a precise and pragmatic method to determine fluid status. Bioimpedance measurement, today mainly used for nutrition status assessment, is regarded as an interesting candidate method for fluid status determination. This paper presents a four-compartment model of the human body, developed to derive information on fluid status from extra- and intracellular volumes measured by bioimpedance spectroscopy. The model allows us to determine weights of each of four compartments (overhydration, fat, muscle and remaining 'basic' components) by analyzing extra- and intracellular water volumes in different tissues of the body. Thereby fluid status (overhydration volume, normohydrated weight of the patient) as well as nutrition and fitness status (lean body, fat and muscle mass) can be determined quantitatively from a single measurement. A preliminary evaluation of the performance of a system consisting of a bioimpedance spectrum analyzer and the four-compartment model is also provided.

  17. Unified method for serial study of body fluid compartments

    NASA Technical Reports Server (NTRS)

    Spears, C. P.; Hyatt, K. H.; Vogel, J. M.; Langfitt, S. B.

    1974-01-01

    Methods for the simultaneous determination of equilibrium space of I-125/RISA(radio-iodinated serum albumin) (plasma volume), Cr-51 red cell mass, Br-82 space (extracellular fluid volume), and tritiated water space (total body water) are described. Determinations were made on two occasions separated by a 1 week interval in 43 healthy young men who were on a strict metabolic diet. Hourly samples were taken for 6 hours after injection of the radionuclides. Correlation of these values to the inscribed exponential disappearance curve was high. In 15 subjects, earlier and more-frequent sampling led to no improvement in the accuracy of estimation of the I-125/RISA space. Use of this method gave results in 12 subjects for Br-82 space and in 11 subjects for tritiated water space which were not significantly different from those obtained by correction for urine loss.

  18. Unified method for serial study of body fluid compartments

    NASA Technical Reports Server (NTRS)

    Spears, C. P.; Hyatt, K. H.; Vogel, J. M.; Langfitt, S. B.

    1974-01-01

    Methods for the simultaneous determination of equilibrium space of I-125/RISA(radio-iodinated serum albumin) (plasma volume), Cr-51 red cell mass, Br-82 space (extracellular fluid volume), and tritiated water space (total body water) are described. Determinations were made on two occasions separated by a 1 week interval in 43 healthy young men who were on a strict metabolic diet. Hourly samples were taken for 6 hours after injection of the radionuclides. Correlation of these values to the inscribed exponential disappearance curve was high. In 15 subjects, earlier and more-frequent sampling led to no improvement in the accuracy of estimation of the I-125/RISA space. Use of this method gave results in 12 subjects for Br-82 space and in 11 subjects for tritiated water space which were not significantly different from those obtained by correction for urine loss.

  19. Neuroproteomic profiling of human body fluids.

    PubMed

    Häggmark, Anna; Schwenk, Jochen M; Nilsson, Peter

    2016-04-01

    Analysis of protein expression and abundance provides a possibility to extend the current knowledge on disease-associated processes and pathways. The human brain is a complex organ and dysfunction or damage can give rise to a variety of neurological diseases. Although many proteins potentially reflecting disease progress are originating from brain, the scarce availability of human tissue material has lead to utilization of body fluids such as cerebrospinal fluid and blood in disease-related research. Within the most common neurological disorders, much effort has been spent on studying the role of a few hallmark proteins in disease pathogenesis but despite extensive investigation, the signatures they provide seem insufficient to fully understand and predict disease progress. In order to expand the view the field of neuroproteomics has lately emerged alongside developing technologies, such as affinity proteomics and mass spectrometry, for multiplexed and high-throughput protein profiling. Here, we provide an overview of how such technologies have been applied to study neurological disease and we also discuss some important considerations concerning discovery of disease-associated profiles.

  20. Metabolic profiling of body fluids and multivariate data analysis.

    PubMed

    Trezzi, Jean-Pierre; Jäger, Christian; Galozzi, Sara; Barkovits, Katalin; Marcus, Katrin; Mollenhauer, Brit; Hiller, Karsten

    2017-01-01

    Metabolome analyses of body fluids are challenging due pre-analytical variations, such as pre-processing delay and temperature, and constant dynamical changes of biochemical processes within the samples. Therefore, proper sample handling starting from the time of collection up to the analysis is crucial to obtain high quality samples and reproducible results. A metabolomics analysis is divided into 4 main steps: 1) Sample collection, 2) Metabolite extraction, 3) Data acquisition and 4) Data analysis. Here, we describe a protocol for gas chromatography coupled to mass spectrometry (GC-MS) based metabolic analysis for biological matrices, especially body fluids. This protocol can be applied on blood serum/plasma, saliva and cerebrospinal fluid (CSF) samples of humans and other vertebrates. It covers sample collection, sample pre-processing, metabolite extraction, GC-MS measurement and guidelines for the subsequent data analysis. Advantages of this protocol include: •Robust and reproducible metabolomics results, taking into account pre-analytical variations that may occur during the sampling process•Small sample volume required•Rapid and cost-effective processing of biological samples•Logistic regression based determination of biomarker signatures for in-depth data analysis.

  1. Noninvasive oxygen partial pressure measurement of human body fluids in vivo using magnetic resonance imaging.

    PubMed

    Zaharchuk, Greg; Busse, Reed F; Rosenthal, Guy; Manley, Geoffery T; Glenn, Orit A; Dillon, William P

    2006-08-01

    The oxygen partial pressure (pO2) of human body fluids reflects the oxygenation status of surrounding tissues. All existing fluid pO2 measurements are invasive, requiring either microelectrode/optode placement or fluid removal. The purpose of this study is to develop a noninvasive magnetic resonance imaging method to measure the pO2 of human body fluids. We developed an imaging paradigm that exploits the paramagnetism of molecular oxygen to create quantitative images of fluid oxygenation. A single-shot fast spin echo pulse sequence was modified to minimize artifacts from motion, fluid flow, and partial volume. Longitudinal relaxation rate (R1 = 1/T1) was measured with a time-efficient nonequilibrium saturation recovery method and correlated with pO2 measured in phantoms. pO2 images of human and fetal cerebrospinal fluid, bladder urine, and vitreous humor are presented and quantitative oxygenation levels are compared with prior literature estimates, where available. Significant pO2 increases are shown in cerebrospinal fluid and vitreous following 100% oxygen inhalation. Potential errors due to temperature, fluid flow, and partial volume are discussed. Noninvasive measurements of human body fluid pO2 in vivo are presented, which yield reasonable values based on prior literature estimates. This rapid imaging-based measurement of fluid oxygenation may provide insight into normal physiology as well as changes due to disease or during treatment.

  2. Development of a prototype fluid volume measurement system. [for urine volume measurement on space missions

    NASA Technical Reports Server (NTRS)

    Poppendiek, H. F.; Sabin, C. M.; Meckel, P. T.

    1974-01-01

    The research is reported in applying the axial fluid temperature differential flowmeter to a urine volume measurement system for space missions. The fluid volume measurement system is described along with the prototype equipment package. Flowmeter calibration, electronic signal processing, and typical void volume measurements are also described.

  3. Molecular Graphics of Convex Body Fluids.

    PubMed

    Gabriel, Adrian T; Meyer, Timm; Germano, Guido

    2008-03-01

    Coarse-grained modeling of molecular fluids is often based on nonspherical convex rigid bodies like ellipsoids or spherocylinders representing rodlike or platelike molecules or groups of atoms, with site-site interaction potentials depending both on the distance among the particles and the relative orientation. In this category of potentials, the Gay-Berne family has been studied most extensively. However, conventional molecular graphics programs are not designed to visualize such objects. Usually the basic units are atoms displayed as spheres or as vertices in a graph. Atomic aggregates can be highlighted through an increasing amount of stylized representations, e.g., Richardson ribbon diagrams for the secondary structure of proteins, Connolly molecular surfaces, density maps, etc., but ellipsoids and spherocylinders are generally missing, especially as elementary simulation units. We fill this gap providing and discussing a customized OpenGL-based program for the interactive, rendered representation of large ensembles of convex bodies, useful especially in liquid crystal research. We pay particular attention to the performance issues for typical system sizes in this field. The code is distributed as open source.

  4. The relationship between nocturnal polyuria and the distribution of body fluid: assessment by bioelectric impedance analysis.

    PubMed

    Torimoto, Kazumasa; Hirayama, Akihide; Samma, Shoji; Yoshida, Katsunori; Fujimoto, Kiyohide; Hirao, Yoshihiko

    2009-01-01

    Increased nocturnal urinary volume is closely associated with nocturia. We investigated the relationship between nocturnal polyuria and the variation of body fluid distribution during the daytime using bioelectric impedance analysis. A total of 34 men older than 60 years were enrolled in this study. A frequency volume chart was recorded. Nocturnal polyuria was defined as a nocturnal urine volume per 24-hour production of greater than 0.35 (the nocturnal polyuria index). Bioelectric impedance analysis was performed 4 times daily at 8 and 11 a.m., and 5 and 9 p.m. using an InBody S20 body composition analyzer (BioSpace, Seoul, Korea). A significant difference was found in mean +/- SEM 24-hour urine production per fat-free mass between the groups with and without nocturnal polyuria (17.8 +/- 1.4 vs 7.7 +/- 0.9 ml/kg). The increase in fluid in the legs compared with the volume at 8 a.m. was significantly larger at 5 p.m., while there was no difference in the arms or trunk. Nocturnal urine volume significantly correlated with the difference in fluid volume in the legs (r = 0.527, p = 0.0019) and extracellular fluid volume (r = 0.3844, p = 0.0248) between the volumes at 8 a.m. and 9 p.m. Overproduction of urine per fat-free mass leads to nocturnal polyuria. Extracellular fluid accumulates as edema in the legs during the day in patients with nocturnal polyuria. The volume of accumulated extracellular fluid correlates with nocturnal urine volume. We suggest that leg edema is the source of nocturnal urine volume and decreasing edema may cure nocturnal polyuria.

  5. Stroke volume variation as a guide for fluid resuscitation in patients undergoing large-volume liposuction.

    PubMed

    Jain, Anil Kumar; Khan, Asma M

    2012-09-01

    : The potential for fluid overload in large-volume liposuction is a source of serious concern. Fluid management in these patients is controversial and governed by various formulas that have been advanced by many authors. Basically, it is the ratio of what goes into the patient and what comes out. Central venous pressure has been used to monitor fluid therapy. Dynamic parameters, such as stroke volume and pulse pressure variation, are better predictors of volume responsiveness and are superior to static indicators, such as central venous pressure and pulmonary capillary wedge pressure. Stroke volume variation was used in this study to guide fluid resuscitation and compared with one guided by an intraoperative fluid ratio of 1.2 (i.e., Rohrich formula). : Stroke volume variation was used as a guide for intraoperative fluid administration in 15 patients subjected to large-volume liposuction. In another 15 patients, fluid resuscitation was guided by an intraoperative fluid ratio of 1.2. The amounts of intravenous fluid administered in the groups were compared. : The mean amount of fluid infused was 561 ± 181 ml in the stroke volume variation group and 2383 ± 1208 ml in the intraoperative fluid ratio group. The intraoperative fluid ratio when calculated for the stroke volume variation group was 0.936 ± 0.084. All patients maintained hemodynamic parameters (heart rate and systolic, diastolic, and mean blood pressure). Renal and metabolic indices remained within normal limits. : Stroke volume variation-guided fluid application could result in an appropriate amount of intravenous fluid use in patients undergoing large-volume liposuction. : Therapeutic, II.

  6. Mammillary body volume abnormalities in anorexia nervosa.

    PubMed

    Khalsa, Sahib S; Kumar, Rajesh; Patel, Vandan; Strober, Michael; Feusner, Jamie D

    2016-10-01

    Several case reports of Wernicke's Encephalopathy in anorexia nervosa (AN) caused by thiamine deficiency have described mammillary body (MB) injury, but systematic studies are lacking. Here we evaluated whether underweight and weight-restored individuals with AN demonstrate evidence of abnormal MB morphology, via retrospective examination of a previously collected data set. Using standard-resolution T1-weighted magnetic resonance imaging at 3 Tesla, we measured MB volume and fornix area in a cross-sectional study of 12 underweight AN, 20 weight-restored AN, and 30 age- and sex-matched healthy comparisons. Because of the small size of these structures, a manual tracing approach was necessary to obtain accurate measurements. A blinded expert rater manually traced MB and fornix structures in each participant. We observed significantly smaller MB volumes in the underweight AN group. However, the weight-restored AN group exhibited significantly larger MB volumes. The right fornix was smaller in the weight-restored AN group only. These findings suggest the possibility that MB volume and fornix area could represent potential biomarkers of acute weight loss and restoration, respectively. Verification of this finding through prospective studies evaluating MB morphology, cognition, and thiamine levels longitudinally across individual illness trajectories might be warranted. © 2016 Wiley Periodicals, Inc. (Int J Eat Disord 2016; 49:920-929). © 2016 Wiley Periodicals, Inc.

  7. Standard biobanking conditions prevent evaporation of body fluid samples.

    PubMed

    Willemse, Eline A J; Koel-Simmelink, Marleen J A; Durieux-Lu, Sisi; van der Flier, Wiesje M; Teunissen, Charlotte E

    2015-03-10

    Pre-analytical variation in biobanking procedures, e.g., long-term storage, could confound biomarker outcomes. We investigated evaporation in various body fluids at different storage temperatures and storage durations. Biobank sample tubes (Sarstedt 72.694.007) filled with water in different volumes (50, 100, 250, 500, 750, 1000, 1250, 1500μl) were stored at different temperatures (-80°C, -20°C, 4°C, room temperature (RT)) for 4.5years and weighed at regular intervals. Next, saliva, serum, plasma, and CSF were stored in different volumes (50, 250, 500, 1000μl) at different temperatures (-80°C, -20°C, 4°C, RT) for 2years. An extra set of CSF was stored in tubes with safe-lock cap (Eppendorf 0030 120.086) instead of a screw cap with o-ring. No evaporation of water stored in biobanking tubes at -80°C or -20°C occurred over 4.5years. Storage of saliva, serum, plasma, and CSF at -80°C or -20°C, monitored over 2years, protected these samples from evaporation too. At 4°C, evaporation was minor, approximately 1.5% (50μl) or 0% (1ml) yearly, where at RT it ranged from 38% (50μl) to 2% (1ml). Differences were observed neither between different body fluids, nor between tube caps. Our data provide support for long-term biobanking conform current biobanking guidelines, encouraging retrospective use of clinical cohorts. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. A collaborative exercise on DNA methylation based body fluid typing.

    PubMed

    Jung, Sang-Eun; Cho, Sohee; Antunes, Joana; Gomes, Iva; Uchimoto, Mari L; Oh, Yu Na; Di Giacomo, Lisa; Schneider, Peter M; Park, Min Sun; van der Meer, Dieudonne; Williams, Graham; McCord, Bruce; Ahn, Hee-Jung; Choi, Dong Ho; Lee, Yang Han; Lee, Soong Deok; Lee, Hwan Young

    2016-10-01

    A collaborative exercise on DNA methylation based body fluid identification was conducted by seven laboratories. For this project, a multiplex methylation SNaPshot reaction composed of seven CpG markers was used for the identification of four body fluids, including blood, saliva, semen, and vaginal fluid. A total of 30 specimens were prepared and distributed to participating laboratories after thorough testing. The required experiments included four increasingly complex tasks: (1) CE of a purified single-base extension reaction product, (2) multiplex PCR and multiplex single-base extension reaction of bisulfite-modified DNA, (3) bisulfite conversion of genomic DNA, and (4) extraction of genomic DNA from body fluid samples. In tasks 2, 3 and 4, one or more mixtures were analyzed, and specimens containing both known and unknown body fluid sources were used. Six of the laboratories generated consistent body fluid typing results for specimens of bisulfite-converted DNA and genomic DNA. One laboratory failed to set up appropriate conditions for capillary analysis of reference single-base extension products. In general, variation in the values obtained for DNA methylation analysis between laboratories increased with the complexity of the required experiments. However, all laboratories concurred on the interpretation of the DNA methylation profiles produced. Although the establishment of interpretational guidelines on DNA methylation based body fluid identification has yet to be performed, this study supports the addition of DNA methylation profiling to forensic body fluid typing. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Volume transport and generalized hydrodynamic equations for monatomic fluids.

    PubMed

    Eu, Byung Chan

    2008-10-07

    In this paper, the effects of volume transport on the generalized hydrodynamic equations for a pure simple fluid are examined from the standpoint of statistical mechanics and, in particular, kinetic theory of fluids. First, we derive the generalized hydrodynamic equations, namely, the constitutive equations for the stress tensor and heat flux for a single-component monatomic fluid, from the generalized Boltzmann equation in the presence of volume transport. Then their linear steady-state solutions are derived and examined with regard to the effects of volume transport on them. The generalized hydrodynamic equations and linear constitutive relations obtained for nonconserved variables make it possible to assess Brenner's proposition [Physica A 349, 11 (2005); Physica A 349, 60 (2005)] for volume transport and attendant mass and volume velocities as well as the effects of volume transport on the Newtonian law of viscosity, compression/dilatation (bulk viscosity) phenomena, and Fourier's law of heat conduction. On the basis of study made, it is concluded that the notion of volume transport is sufficiently significant to retain in irreversible thermodynamics of fluids and fluid mechanics.

  10. Determination of gas volume trapped in a closed fluid system

    NASA Technical Reports Server (NTRS)

    Hunter, W. F.; Jolley, J. E.

    1971-01-01

    Technique involves extracting known volume of fluid and measuring system before and after extraction, volume of entrapped gas is then computed. Formula derived from ideal gas laws is basis of this method. Technique is applicable to thermodynamic cycles and hydraulic systems.

  11. Synovial fluid replication in knee wear testing: an investigation of the fluid volume.

    PubMed

    Reinders, Jörn; Sonntag, Robert; Kretzer, Jan Philippe

    2015-01-01

    Wear testing cannot replicate the variations in wear rates and wear mechanisms seen in vivo, which may be related to differences between in vivo and in vitro conditions. A considerable difference exists between the in vivo synovial fluid volume (few milliliter) and the in vitro substituted bovine serum volume (several hundred milliliter). The aim of this study was to analyze the effects of a reduced fluid volume on the wear behavior in a knee wear simulator study. Four wear tests with decreasing fluid volumes (250, 150, 75, and 45 ml) were carried out. Using a large fluid volume of 250 ml for wear testing resulted in a wear rate of 9.7±1.2 mm3/10(6)  cycles. Decreasing the fluid volume consecutively reduced the wear rate to down to 8.8±1.4 mm3/10(6) for 150 ml (p=1.00), 5.6±1.2 mm3/10(6) for 75 ml (p=0.01), and 1.0±0.2 mm3/10(6) cycles for 45 ml fluid volume (p≤0.01). Additionally, higher serum degradation and larger wear particles were observed with smaller fluid volumes used for testing. This study demonstrates the high relevance of the protein-based lubricant on the wear behavior and the technical limitation to replicate the synovial fluid in simulator tests. Wear testing should be carried out using larger fluid volumes (e.g., 250 ml) to generate physiological relevant wear masses. © 2014 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  12. Cerebrospinal fluid volume measurements in hydrocephalic rats.

    PubMed

    Basati, Sukhraaj; Desai, Bhargav; Alaraj, Ali; Charbel, Fady; Linninger, Andreas

    2012-10-01

    Object Experimental data about the evolution of intracranial volume and pressure in cases of hydrocephalus are limited due to the lack of available monitoring techniques. In this study, the authors validate intracranial CSF volume measurements within the lateral ventricle, while simultaneously using impedance sensors and pressure transducers in hydrocephalic animals. Methods A volume sensor was fabricated and connected to a catheter that was used as a shunt to withdraw CSF. In vitro bench-top calibration experiments were created to provide data for the animal experiments and to validate the sensors. To validate the measurement technique in a physiological system, hydrocephalus was induced in weanling rats by kaolin injection into the cisterna magna. At 28 days after induction, the sensor was implanted into the lateral ventricles. After sealing the skull using dental cement, an acute CSF drainage/infusion protocol consisting of 4 sequential phases was performed with a pump. Implant location was confirmed via radiography using intraventricular iohexol contrast administration. Results Controlled CSF shunting in vivo with hydrocephalic rats resulted in precise and accurate sensor measurements (r = 0.98). Shunting resulted in a 17.3% maximum measurement error between measured volume and actual volume as assessed by a Bland-Altman plot. A secondary outcome confirmed that both ventricular volume and intracranial pressure decreased during CSF shunting and increased during infusion. Ventricular enlargement consistent with successful hydrocephalus induction was confirmed using imaging, as well as postmortem. These results indicate that volume monitoring is feasible for clinical cases of hydrocephalus. Conclusions This work marks a departure from traditional shunting systems currently used to treat hydrocephalus. The overall clinical application is to provide alternative monitoring and treatment options for patients. Future work includes development and testing of a chronic

  13. Noninvasive estimation of fluid shifts between body compartments by measurement of bioelectric characteristics

    NASA Technical Reports Server (NTRS)

    Bishop, Phillip A.

    1989-01-01

    Previous research has established that bioelectrical characteristics of the human body reflect fluid status to some extent. It has been previously assumed that changes in electrical resistance (R) and reactance (X) are associated with changes in total body water (TBW). The purpose of the present pilot investigation was to assess the correspondence between body R and X and changes in estimated TBW and plasma volume during a period of bedrest (simulated weightlessness). R and X were measured pre-, during, and post- a 13 day bedrest status. Although a clear relationship was not elucidated, evidence was found suggesting that R and X reflect plasma volume rather than TBW. Indirect evidence provided by previous studies which investigated other aspects of the electrical/fluid relationship, also suggests the independence of TBW and electrical properties. With further research, a bioelectrical technique for noninvasively tracking fluid changes consequent to space flight may be developed.

  14. Shape-Changing Bodies in Fluid: Ratcheting, Plummeting, and Bursting

    NASA Astrophysics Data System (ADS)

    Shelley, Michael; Spagnolie, Saverio

    2008-11-01

    We explore the dynamics of a shape-changing body in two-dimensions, and we examine a fluid-ratchet mechanism for locomotion in an oscillating fluid. Our study relates to the experimental work of Childress et al. (Phys. Fluids 2006) on a passive flexible body in an oscillating flow. We find that a shape-changing body can transport with a non-zero mean velocity, even in a direction opposing gravity. The body's transport can be understood in terms of vortex-body rearrangements whereby initially drag-type vortex dipoles are swept past the body to become thrust-type. We also consider the velocity burst experienced by a shape-changing body during an expansion in an initially seeded direction of motion. This phenomenon may contribute to the burst velocities of various aquatic organisms during evasive maneuvers, or predatory lunges.

  15. Characterization and differentiation of body fluids, putrefaction fluid, and blood using Hounsfield unit in postmortem CT.

    PubMed

    Zech, Wolf-Dieter; Jackowski, Christian; Buetikofer, Yanik; Kara, Levent

    2014-09-01

    The purpose of the present study was to evaluate the ranges of Hounsfield unit (HU) found in body fluids, putrefaction fluids, and blood on postmortem CT and how these ranges are affected by postmortem interval, temperatures, and CT beam energy. Body fluids, putrefaction fluids, and blood from a total of 53 corpses were analyzed to determine the ranges of HU values from postmortem CT images that were taken prior to autopsy. The fluids measured in CT images were obtained at autopsy and examined in terms of macroscopic and microscopic appearances. Body fluids and blood were also collected in plastic bottles, which were subjected to CT scans at different beam energies (80-130 kV) and at various fluid temperatures (4 to 40 °C). At a postmortem interval of 1 to 4 days, the ranges of HU values of the serous fluids (13-38 HU) and the nonsedimented blood (40-88 HU) did not overlap. In the sedimented blood, the upper serum layer exhibited HU value ranges that overlapped with those of the serous fluids. The putrefaction fluids exhibited a range of HU values between 80 and -130 HU. Elevated HU values were observed in fluids with accretive cell impurities. HU values decreased slightly with increasing temperature and CT beam energy. We concluded that serous fluids and blood in fresh corpses can be characterized and differentiated from each other based on HU value ranges. In contrast, body fluids in decomposed corpses cannot be differentiated by their HU value ranges. Different beam energies and corpse temperatures had only minor influences on HU value ranges and therefore should not be obstacles to the differentiation and characterization of body fluids and blood.

  16. Inactivation of human interferon by body fluids

    NASA Technical Reports Server (NTRS)

    Cesario, T. C.; Mandell, A.; Tilles, J. G.

    1973-01-01

    Description of the effects of human feces, bile, saliva, serum, and cerebrospinal fluid on interferon activity. It is shown that crude interferon is inactivated by at least 50% more than with the control medium used, when incubated for 4 hr in vitro in the presence of serum, saliva, or cerebrospinal liquid, and by close to 100% when incubated with stool extract or bile.

  17. Changes in body fluid compartments on re-induction to high altitude and effect of diuretics

    NASA Astrophysics Data System (ADS)

    Singh, M. V.; Rawal, S. B.; Tyagi, A. K.; Bhagat, Maj J. K.; Parshad, R.; Divekar, H. M.

    1988-03-01

    Studies were carried out in 29 healthy young adults in the Indian Army stationed in the plains and posted at an elevation of 3500 m for more than 6 months. After exposure to a low elevation in Delhi (260 m) for 3 weeks they were reinduced to a height of 3500 m. The subjects were divided into three groups, each of which was treated with either placebo or acetazolamide or spironolactone. The drug treatment was started immediately after their landing at high altitude and continued for 2 days only. Total body water, extracellular fluid, intracellular fluid, plasma volume, blood pH, PaO2, PaCO2 and blood viscosity were determined on exposure at Delhi and on re-induction to high altitude. Plasma volume was increased after the descent from high altitude and remained high for up to 21 day's study. This increased plasma volume may have some significance in the pathogenesis of pulmonary oedema. Total body water and intracellular fluid content were increased at 260 m elevation, while extracellular fluid decreased. On re-induction there was a decrease in total body water with no change in the extracellular fluid content.

  18. Body fluid distribution in elderly subjects with congestive heart failure.

    PubMed

    Sergi, Giuseppe; Lupoli, Lucia; Volpato, Stefania; Bertani, Roberta; Coin, Alessandra; Perissinotto, Egle; Calliari, Irene; Inelmen, Emine Meral; Busetto, Luca; Enzi, Giuliano

    2004-01-01

    The aims of this study were to investigate body fluid changes in elderly patients suffering from congestive heart failure (CHF) and to identify the fluid measurement that best characterizes fluid overload states in CHF patients by comparison with normal hydration in the elderly. In a case-controlled experimental design, 72 elderly subjects (65-98 yr), 38 healthy and 34 with CHF, were studied. Total body water (TBW) and extracellular water (ECW) were determined by dilution methods; fat-free mass (FFM) and fat mass (FM) were determined by dual-energy X-ray absorptiometry (DEXA). In healthy subjects, the FFM hydration expressed as TBW% FFM (males 72.0 +/- 4.3 vs females 72.4 +/- 5.0%) and ECW% TBW (males 47.3 +/- 3.4 vs females 47.8 +/- 5.1) were similar in both genders. ECW in liters for FFM and for TBW (ECW% TBW), corrected for body weight, was greater in the group with CHF than in the control group, in both sexes. Among the relative fluid measures, only ECW% TBW [odds ratio (OR) 1.5] independently predicted fluid retention. Having an ECW% TBW greater than 50% corresponded to an OR of about 10. In conclusion, elderly patients suffering from CHF have a characteristic increase in body fluid levels, mainly affecting the extracellular compartment, and ECW% TBW is a useful indicator of fluid retention.

  19. Heat illness during working and preventive considerations from body fluid homeostasis.

    PubMed

    Kamijo, Yoshi-ichiro; Nose, Hiroshi

    2006-07-01

    The purposes of this review are to show pathophysiological mechanisms for heat illness during working in a hot environment and accordingly provide some preventive considerations from a viewpoint of body fluid homeostasis. The incidence of the heat illness is closely associated with body temperature regulation, which is much affected by body fluid state in humans. Heat generated by contracting muscles during working increases body temperature, which, in a feedback manner, drives heat-dissipation mechanisms of skin blood flow and sweating to prevent a rise in body temperature. However, the impairment of heat-dissipation mechanisms caused by hard work in hot, humid, and dehydrated conditions accelerates the increase in body temperature, and, if not properly treated, leads to heat illness. First, we overviewed thermoregulation during working (exercising) in a hot environment, describe the effects of dehydration on skin blood flow and sweating, and then explained how they contributes to the progression toward heat illness. Second, we described the advantageous effects of blood volume expansion after heat acclimatization on temperature regulation during exercise as well as those of restitution from dehydration by supplementation of carbohydrate-electrolyte solution. Finally, we described that the deteriorated thermoregulation in the elderly is closely associated with the impaired body fluid regulation and that blood volume expansion by exercise training with protein supplementation improves thermoregulation.

  20. Space Shuttle inflight and postflight fluid shifts measured by leg volume changes

    NASA Technical Reports Server (NTRS)

    Moore, Thomas P.; Thornton, William E.

    1987-01-01

    This is a study of the inflight and postflight leg volume changes associated with spaceflight on Space Shuttle missions. The results show an inflight volume loss of 2 l from the lower extremities, 1 l from each leg, representing an 11.6 percent volume change. The vast majority of this change appears to be a shift in body fluids, both intravascular and extravascular. The fluid shift occurs mostly on Mission Day One and is essentially complete by 6 to 10 hr. The regional origin of shift and leg volume changes shows a far greater absolute volume (708 ml vs. 318 ml) and percentage (69 percent vs. 31 percent) of the total change coming from the higher as compared to the lower leg. Postflight, the return of fluid to the lower extremities occurs rapidly with the majority of volume return complete within 1.5 hr postlanding. At 1 week postflight, there is a residual leg volume decrement of 283 ml or 3.2 percent that is probably due to tissue loss secondary to atrophic deconditioning and weight loss.

  1. Capacitance Probe for Fluid Flow and Volume Measurements

    NASA Technical Reports Server (NTRS)

    Arndt, G. Dickey (Inventor); Nguyen, Thanh X. (Inventor); Carl, James R. (Inventor)

    1997-01-01

    Method and apparatus for making measurements on fluids are disclosed, including the use of a capacitive probe for measuring the flow volume of a material within a flow stream. The capacitance probe has at least two elongate electrodes and, in a specific embodiment of the invention, has three parallel elongate electrodes with the center electrode being an extension of the center conductor of a co-axial cable. A conductance probe is also provided to provide more accurate flow volume data in response to conductivity of the material within the flow stream. A preferred embodiment of the present invention provides for a gas flow stream through a micro-gravity environment that allows for monitoring a flow volume of a fluid sample, such as a urine sample, that is entrained within the gas flow stream.

  2. Capacitance probe for fluid flow and volume measurements

    NASA Technical Reports Server (NTRS)

    Arndt, G. Dickey (Inventor); Nguyen, Thanh X. (Inventor); Carl, James R. (Inventor)

    1995-01-01

    Method and apparatus for making measurements on fluids are disclosed, including the use of a capacitive probe for measuring the flow volume of a material within a flow stream. The capacitance probe has at least two elongate electrodes and, in a specific embodiment of the invention, has three parallel elongate electrodes with the center electrode being an extension of the center conductor of a co-axial cable. A conductance probe is also provided to provide more accurate flow volume data in response to conductivity of the material within the flow stream. A preferred embodiment of the present invention provides for a gas flow stream through a microgravity environment that allows for monitoring a flow volume of a fluid sample, such as a urine sample, that is entrained within the gas flow stream.

  3. Modeling surface tension using a ghost fluid technique within a volume of fluid formulation

    SciTech Connect

    Francois, M. M.; Kothe, D. B.; Cummins, S. J.

    2004-01-01

    Ghost fluid methods (GFM) are a viable approach for imposing sharp boundary conditions on interfaces that are arbitrarily embedded within the computational mesh. All GFM to date are formulated with an interface distance function that resides within a level-set (LS) framework. Recently we proposed a technique for reconstructing distance functions from volume fractions. This technique enables the exploitation of GFM within a volume of fluid formulation for modeling an interfacial phenomenon like surface tension. Combining GFM with a volume of fluid (VOF) formulation is attractive because of the VOF method's superior mass conservation and because of the ability of GFM to maintain sharp jump conditions. The continuum surface tension force (CSF) method, however, has the propensity to produce smooth jump. In the following, the combined VOF-GFM and more classical VOF-CSF formulations are compared and contrasted. Static and dynamic numerical results are used to illustrate our findings and support our claims.

  4. Gamble and Darrow: pathfinders in body fluid physiology and fluid therapy for children, 1914-1964.

    PubMed

    Holliday, M A

    2000-12-01

    The development of body fluid physiology and fluid therapy in pediatrics has special importance in the history of medicine because this development introduced physiology into clinical practice. James Gamble and Dan Darrow were leaders in this enterprise. Gamble was part of the group John Howland attracted to Johns Hopkins to establish the first organized program for clinical investigators in pediatrics. This group initiated fluid therapy as effective treatment for diarrheal dehydration and, led by Gamble, developed the discipline of body fluid physiology. Gamble was the first to describe the nature of extracellular fluid (ECF) to clinicians, using the new terminology for characterizing electrolytes in solution. In doing so, he became the teacher of body fluid physiology to a generation of medical students. Inexplicably, in his later years he failed to adopt yet newer terminology defining cations, anions, and acid-base status. This failure compromised his legacy. Dan Darrow extended our understanding of how body fluids react to hyper- and hyponatremia and to potassium deficiency. He was the first to add potassium to parenteral fluid therapy. In doing so, he broadened clinicians' understanding of body fluids but changed the emphasis of fluid therapy from rapid ECF restoration to replacement of estimated deficits. Unfortunately, this change in concept, taught by his successors as deficit therapy, slowed the adoption of oral rehydration therapy for treating diarrheal dehydration. The lapses noted for each of these men, now seen in hindsight, pale in comparison to their contributions. Pediatrics, medicine, and surgery are all indebted to the research of each, which emphasized the value of basic physiology in clinical practice.

  5. Lunar Fluid Core and Solid-Body Tides

    NASA Technical Reports Server (NTRS)

    Williams, J. G.; Boggs, D. H.; Ratcliff, J. T.

    2005-01-01

    Variations in rotation and orientation of the Moon are sensitive to solid-body tidal dissipation, dissipation due to relative motion at the fluid-core/solid-mantle boundary, and tidal Love number k2 [1,2]. There is weaker sensitivity to flattening of the core-mantle boundary (CMB) [2-5] and fluid core moment of inertia [1]. Accurate Lunar Laser Ranging (LLR) measurements of the distance from observatories on the Earth to four retroreflector arrays on the Moon are sensitive to lunar rotation and orientation variations and tidal displacements. Past solutions using the LLR data have given results for dissipation due to solid-body tides and fluid core [1] plus Love number [1-5]. Detection of CMB flattening has been improving [3,5] and now seems significant. This strengthens the case for a fluid lunar core.

  6. Measurement of net whole-body transcapillary fluid transport and effective vascular compliance in humans

    NASA Technical Reports Server (NTRS)

    Watenpaugh, D. E.; Gaffney, F. A.; Schneider, S. M. (Principal Investigator)

    1998-01-01

    BACKGROUND: Net whole-body transcapillary fluid transport (TFT) between the circulation and the interstitial (extravascular) space may be calculated as: IV - deltaPV - UV - IL, where IV=infused or ingested volume (when applicable), deltaPV = change in plasma volume, UV=urine volume, and IL=insensible loss. RESULTS: Infusion of 30 mL/kg isotonic saline over 25 minutes increased supine TFT from a basal capillary reabsorption of -106+/-24 mL/h (mean+/-SE) to a net filtration of 1,229+/-124 mL/h. One hour after infusion, reabsorption of -236+/-102 mL/h was seen, and control reabsorption levels returned by 3 hours. Four hours of 30 mm Hg lower body negative pressure (LBNP) elicited no net TFT, probably because of upper body reabsorptive compensation for lower body capillary filtration. When ingestion of 1 L of isotonic saline accompanied LBNP, filtration of 145+/-10 mL/h occurred. Reabsorption of extravascular fluid into the circulation always followed LBNP. CONCLUSION: Application of this technique could aid understanding of physiologic conditions, experimental interventions, disease states, and therapies that cause or are influenced by fluid shifts between intravascular and interstitial compartments.

  7. Measurement of net whole-body transcapillary fluid transport and effective vascular compliance in humans

    NASA Technical Reports Server (NTRS)

    Watenpaugh, D. E.; Gaffney, F. A.; Schneider, S. M. (Principal Investigator)

    1998-01-01

    BACKGROUND: Net whole-body transcapillary fluid transport (TFT) between the circulation and the interstitial (extravascular) space may be calculated as: IV - deltaPV - UV - IL, where IV=infused or ingested volume (when applicable), deltaPV = change in plasma volume, UV=urine volume, and IL=insensible loss. RESULTS: Infusion of 30 mL/kg isotonic saline over 25 minutes increased supine TFT from a basal capillary reabsorption of -106+/-24 mL/h (mean+/-SE) to a net filtration of 1,229+/-124 mL/h. One hour after infusion, reabsorption of -236+/-102 mL/h was seen, and control reabsorption levels returned by 3 hours. Four hours of 30 mm Hg lower body negative pressure (LBNP) elicited no net TFT, probably because of upper body reabsorptive compensation for lower body capillary filtration. When ingestion of 1 L of isotonic saline accompanied LBNP, filtration of 145+/-10 mL/h occurred. Reabsorption of extravascular fluid into the circulation always followed LBNP. CONCLUSION: Application of this technique could aid understanding of physiologic conditions, experimental interventions, disease states, and therapies that cause or are influenced by fluid shifts between intravascular and interstitial compartments.

  8. Filling in the gaps with non-standard body fluids.

    PubMed

    Lo, Sheng-Ying; Saifee, Nabiha H; Mason, Brook O; Greene, Dina N

    2016-08-01

    Body fluid specimens other than serum, plasma or urine are generally not validated by manufacturers, but analysis of these non-standard fluids can be important for clinical diagnosis and management. Laboratories, therefore, rely on the published literature to better understand the validation and implementation of such tests. This study utilized a data-driven approach to determine the clinical reportable range for 11 analytes, evaluated a total bilirubin assay, and assessed interferences from hemolysis, icterus, and lipemia in non-standard fluids. Historical measurements in non-standard body fluids run on a Beckman Coulter DxC800 were used to optimize population-specific clinical reportable ranges for albumin, amylase, creatinine, glucose, lactate dehydrogenase, lipase, total bilirubin, total cholesterol, total protein, triglyceride and urea nitrogen run on the Beckman Coulter AU680. For these 11 analytes, interference studies were performed by spiking hemolysate, bilirubin, or Intralipid® into abnormal serous fluids. Precision, accuracy, linearity, and stability of total bilirubin in non-standard fluids was evaluated on the Beckman Coulter AU680 analyzer. The historical non-standard fluid results indicated that in order to report a numeric result, 4 assays required no dilution, 5 assays required onboard dilutions and 2 assays required both onboard and manual dilutions. The AU680 total bilirubin assay is suitable for clinical testing of non-standard fluids. Interference studies revealed that of the 11 total AU680 analyte measurements on non-standard fluids, lipemia affected 1, icterus affected 3, and hemolysis affected 5. Chemistry analytes measured on the AU680 demonstrate acceptable analytical performance for non-standard fluids. Common endogenous interference from lipemia, icterus, and hemolysis (LIH) are observed and flagging rules based on LIH indices were developed to help improve the clinical interpretation of results.

  9. Calcium apatite crystals in synovial fluid rice bodies.

    PubMed

    Li-Yu, J; Clayburne, G M; Sieck, M S; Walker, S E; Athreya, B H; DeHoratius, R J; Schumacher, H R

    2002-05-01

    Rice bodies can occur in the joints in many rheumatic conditions, but they are most common in rheumatoid arthritis. They are generally believed to occur rarely in patients with osteoarthritis, but one study reported rice bodies with apatite crystals. To report on a series of joint fluids with rice bodies containing apatite clumps and examine their clinical pictures. All synovial fluid analysis reports for 10 years were reviewed for rice bodies and eight patients were reported on. A series of patients with a variety of diseases with synovial fluid rice bodies found to contain calcific material is described. All were examined by compensated polarised light and alizarin red stain, and four were examined by electron microscopy. The eight patients all had alizarin red S chunks embedded throughout the rice body. Transmission electron microscopy disclosed the presence of a matrix of collagen, fibrin, and amorphous materials containing typical apatite crystals. Clinical diagnoses, radiographic findings, and leucocyte counts varied, but six of the eight patients had had previous repeated corticosteroid injections into the joints. Aggregates of apatites may be more common than previously recognised in rice bodies as they are not routinely sought. Whether they are a result of joint damage or depot steroid injections and whether that might contribute to further joint injury now needs to be investigated.

  10. Calcium apatite crystals in synovial fluid rice bodies

    PubMed Central

    Li-Yu, J; Clayburne, G; Sieck, M; Walker, S; Athreya, B; DeHoratius, R; Schumacher, H

    2002-01-01

    Background: Rice bodies can occur in the joints in many rheumatic conditions, but they are most common in rheumatoid arthritis. They are generally believed to occur rarely in patients with osteoarthritis, but one study reported rice bodies with apatite crystals. Objective: To report on a series of joint fluids with rice bodies containing apatite clumps and examine their clinical pictures. Methods: All synovial fluid analysis reports for 10 years were reviewed for rice bodies and eight patients were reported on. A series of patients with a variety of diseases with synovial fluid rice bodies found to contain calcific material is described. All were examined by compensated polarised light and alizarin red stain, and four were examined by electron microscopy. Results: The eight patients all had alizarin red S chunks embedded throughout the rice body. Transmission electron microscopy disclosed the presence of a matrix of collagen, fibrin, and amorphous materials containing typical apatite crystals. Clinical diagnoses, radiographic findings, and leucocyte counts varied, but six of the eight patients had had previous repeated corticosteroid injections into the joints. Conclusion: Aggregates of apatites may be more common than previously recognised in rice bodies as they are not routinely sought. Whether they are a result of joint damage or depot steroid injections and whether that might contribute to further joint injury now needs to be investigated. PMID:11959760

  11. Disruption of the endothelin A receptor in the nephron causes mild fluid volume expansion.

    PubMed

    Stuart, Deborah; Rees, Sara; Woodward, Stephanie K; Koesters, Robert; Strait, Kevin A; Kohan, Donald E

    2012-12-05

    Endothelin, via endothelin A receptors (ETA), exerts multiple pathologic effects that contribute to disease pathogenesis throughout the body. ETA antagonists ameliorate many experimental diseases and have been extensively utilized in clinical trials. The utility of ETA blockers has been greatly limited, however, by fluid retention, sometimes leading to heart failure or death. To begin to examine this issue, the effect of genetic disruption of ETA in the nephron on blood pressure and salt handling was determined. Mice were generated with doxycycline-inducible nephron-specific ETA deletion using Pax8-rtTA and LC-1 transgenes on the background of homozygous loxP-flanked ETA alleles. Arterial pressure, Na metabolism and measures of body fluid volume status (hematocrit and impedance plethysmography) were assessed. Absence of nephron ETA did not alter arterial pressure whether mice were ingesting a normal or high Na diet. Nephron ETA disruption did not detectably affect 24 hr Na excretion or urine volume regardless of Na intake. However, mice with nephron ETA knockout that were fed a high Na diet had mild fluid retention as evidenced by an increase in body weight and a fall in hematocrit. Genetic deletion of nephron ETA causes very modest fluid retention that does not alter arterial pressure. Nephron ETA, under normal conditions, likely do not play a major role in regulation of Na excretion or systemic hemodynamics.

  12. A comprehensive Guyton model analysis of physiologic responses to preadapting the blood volume as a countermeasure to fluid shifts

    NASA Technical Reports Server (NTRS)

    Simanonok, K. E.; Srinivasan, R. S.; Myrick, E. E.; Blomkalns, A. L.; Charles, J. B.

    1994-01-01

    The Guyton model of fluid, electrolyte, and circulatory regulation is an extensive mathematical model capable of simulating a variety of experimental conditions. It has been modified for use at NASA to simulate head-down tilt, a frequently used analog of weightlessness. Weightlessness causes a headward shift of body fluids that is believed to expand central blood volume, triggering a series of physiologic responses resulting in large losses of body fluids. We used the modified Guyton model to test the hypothesis that preadaptation of the blood volume before weightless exposure could counteract the central volume expansion caused by fluid shifts, and thereby attenuate the circulatory and renal responses that result in body fluid losses. Simulation results show that circulatory preadaptation, by a procedure resembling blood donation immediately before head-down bedrest, is effective in damping the physiologic responses to fluid shifts and reducing body fluid losses. After 10 hours of head-down tilt, preadaptation also produces higher blood volume, extracellular volume, and total body water for 20 to 30 days of bedrest, compared with non-preadapted control. These results indicate that circulatory preadaptation before current Space Shuttle missions may be beneficial for the maintenance of reentry and postflight orthostatic tolerance in astronauts. This paper presents a comprehensive examination of the simulation results pertaining to changes in relevant physiologic variables produced by blood volume reduction before a prolonged head-down tilt. The objectives were to study and develop the countermeasure theoretically, to aid in planning experimental studies of the countermeasure, and to identify potentially disadvantageous physiologic responses that may be caused by the countermeasure.

  13. A comprehensive Guyton model analysis of physiologic responses to preadapting the blood volume as a countermeasure to fluid shifts

    NASA Technical Reports Server (NTRS)

    Simanonok, K. E.; Srinivasan, R. S.; Myrick, E. E.; Blomkalns, A. L.; Charles, J. B.

    1994-01-01

    The Guyton model of fluid, electrolyte, and circulatory regulation is an extensive mathematical model capable of simulating a variety of experimental conditions. It has been modified for use at NASA to simulate head-down tilt, a frequently used analog of weightlessness. Weightlessness causes a headward shift of body fluids that is believed to expand central blood volume, triggering a series of physiologic responses resulting in large losses of body fluids. We used the modified Guyton model to test the hypothesis that preadaptation of the blood volume before weightless exposure could counteract the central volume expansion caused by fluid shifts, and thereby attenuate the circulatory and renal responses that result in body fluid losses. Simulation results show that circulatory preadaptation, by a procedure resembling blood donation immediately before head-down bedrest, is effective in damping the physiologic responses to fluid shifts and reducing body fluid losses. After 10 hours of head-down tilt, preadaptation also produces higher blood volume, extracellular volume, and total body water for 20 to 30 days of bedrest, compared with non-preadapted control. These results indicate that circulatory preadaptation before current Space Shuttle missions may be beneficial for the maintenance of reentry and postflight orthostatic tolerance in astronauts. This paper presents a comprehensive examination of the simulation results pertaining to changes in relevant physiologic variables produced by blood volume reduction before a prolonged head-down tilt. The objectives were to study and develop the countermeasure theoretically, to aid in planning experimental studies of the countermeasure, and to identify potentially disadvantageous physiologic responses that may be caused by the countermeasure.

  14. Does prehospital fluid administration impact core body temperature and coagulation functions in combat casualties?

    PubMed

    Farkash, Uri; Lynn, Mauricio; Scope, Alon; Maor, Ron; Turchin, Nickolai; Sverdlik, Borris; Eldad, Arieh

    2002-03-01

    Administration of large amounts of fluids to trauma patients, in the absence of surgical control, may increase bleeding, cause hypothermia and coagulopathy which may worsen the bleeding and increase morbidity and mortality. The purpose of our study is to examine the impact of prehospital fluid administration to military combat casualties on core body temperature and coagulation functions. Prospective data were collected on all cases of moderately (9 < or = ISS < or = 14) and severely (ISS > or = 16) injured victims wounded in South Lebanon, treated by Israeli military physicians and evacuated to hospitals in Israel, over a two-year period. Data regarding prehospital phase of injury (timetables, amount of fluids) and upon hospital arrival (initial core body temperature, prothrombin time [PT], partial thromboplastin time [PTT]) were examined for monotonic relation using Spearman's non-parametric test. Fifty-three moderately injured and 31 severely injured patients were included in the study. The average evacuation time for the moderately injured group was 109.3 +/- 44.8 min, and for the severely injured 100.3 +/- 38.4 min (P value=NS). The mean volume of fluids administered was 2.39 +/- 1.52 and 2.49 +/- 1.47 l, respectively (P=NS). No statistical correlation was found between core body temperature, PT or PTT, measured upon hospital arrival, and prehospital fluid treatment. In addition, no correlation was found between core body temperature on hospital arrival and prehospital time, or between prehospital fluid volumes and prehospital time. The mean core body temperature of the moderately injured patients was 36.8 degrees C, and that of severely injured was 35.8 degrees C (P=0.026). With proper control of blood loss and avoidance of excessive fluid administration, moderately and severely injured combat casualties in 'low intensity conflict' in South Lebanon can be resuscitated with fluid volumes that do not result in a coagulation deficit or hypothermia. The core body

  15. Increased digitalis-like activity in human cerebrospinal fluid after expansion of the extracellular fluid volume

    SciTech Connect

    Halperin, J.A.; Martin, A.M.; Malave, S.

    1985-08-12

    The present study was designed to determine whether acute expansion of the extracellular fluid volume influenced the digitalis-like activity of human cerebrospinal fluid (CSF), previously described. Human CSF samples, drawn before and 30 minutes after the intravenous infusion of 1 liter of either saline or glucose solutions, were assayed for digitalis-like activity by inhibition of either the /sup 86/Rb/sup +/ uptake into human erythrocytes or by the activity of a purified Na/sup +/-K/sup +/ ATPase. The CSF inhibitory activity on both systems significantly increased after the infusion of sodium solutions but did not change after the infusion of glucose. These results indicate that the digitalis-like factor of human CSF might be involved in the regulation of the extracellular fluid volume and electrolyte content and thereby in some of the physiological responses to sodium loading. 31 references, 2 figures, 1 table.

  16. Body fluid prediction from microbial patterns for forensic application.

    PubMed

    Hanssen, Eirik Nataas; Avershina, Ekaterina; Rudi, Knut; Gill, Peter; Snipen, Lars

    2017-09-01

    The association of a DNA profile with a certain body fluid can be of essential importance in the evaluation of biological evidence. Several alternative methods for body fluid prediction have been proposed to improve the currently used presumptive tests. Most of them measure gene expression. Here we present a novel approach based on microbial taxonomic profiles obtained by standard 16S rRNA gene sequencing. We used saliva deposited on skin as a forensically relevant study model, but the same principle can be applied for predicting other bacteria rich body fluids. For classification we used standard pattern recognition based on principal component analysis in combination with linear discriminant analysis. A cross-validation of the experimental data shows that the new method is able to successfully classify samples from saliva deposited on skin and samples from pure skin in 94% of the cases. We found that there is a person-effect influencing the result, especially from skin, indicating that a reference sample of pure skin microbiota from the same person could improve accuracy. In addition the pattern recognition methods could be further optimized. Although there is room for improvement, this study shows the potential of microbial profiles as a new forensic tool for body fluid prediction. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Body Fluid Degradomics and Characterization of Basic N-Terminome.

    PubMed

    Sabino, F; Hermes, O; Auf dem Keller, U

    2017-01-01

    Rapid improvements in instrumentation and data analysis make mass spectrometry-based proteomics the method of choice for global characterization of proteomes and discovery of protein-based biomarkers. On the contrary to tissue biopsies, body fluids-e.g., blood, wound fluid, urine, and saliva-are noninvasive and easy to collect and process. However, they are very complex and present high dynamic ranges of protein concentrations, rendering direct shotgun proteomics analysis as inefficient for identification of low-abundance proteins in these specimens. Sample prefractionation, immunoaffinity depletion of highly abundant proteins, and enrichment of posttranslational modifications (PTM) are common strategies for proteome simplification of body fluids. Combinatorial peptide ligand libraries (CPLL) relatively deplete high-abundance proteins by binding equimolar amounts of protein species in the sample and provide an elegant species-independent alternative to immunoaffinity-based approaches. By cleaving target proteins, proteases catalyze an irreversible PTM, whereby uncontrolled proteolysis is associated with many diseases. Thus, proteolytic events represent powerful indicators for disease progression and their specific identification in body fluids holds great promises for establishment of novel biomarkers. Quantitative N-terminal enrichment strategies, such as terminal amine isotopic labeling of substrates (TAILS) detect protease-generated neo-N-termini with high specificity and increase coverage of low-abundance proteins by inherent proteome simplification. In this chapter, we describe a protocol that combines the CPLL technology with iTRAQ-based TAILS to systematically characterize the basic N-terminome of body fluid proteomes and its alterations in disease conditions that we have successfully applied to explore the wound fluid degradome at multiple time points after skin injury.

  18. Obstructive Sleep Apnea Severity and Overnight Body Fluid Shift before and after Hemodialysis.

    PubMed

    Ogna, Adam; Forni Ogna, Valentina; Mihalache, Alexandra; Pruijm, Menno; Halabi, Georges; Phan, Olivier; Cornette, Françoise; Bassi, Isabelle; Haba Rubio, José; Burnier, Michel; Heinzer, Raphaël

    2015-06-05

    Obstructive sleep apnea is associated with significantly increased cardiovascular morbidity and mortality. Fluid overload may promote obstructive sleep apnea in patients with ESRD through an overnight fluid shift from the legs to the neck soft tissues. Body fluid shift and severity of obstructive sleep apnea before and after hemodialysis were compared in patients with ESRD. Seventeen patients with hemodialysis and moderate to severe obstructive sleep apnea were included. Polysomnographies were performed the night before and after hemodialysis to assess obstructive sleep apnea, and bioimpedance was used to measure fluid overload and leg fluid volume. The mean overnight rostral fluid shift was 1.27±0.41 L prehemodialysis; it correlated positively with fluid overload volume (r=0.39; P=0.02) and was significantly lower posthemodialysis (0.78±0.38 L; P<0.001). There was no significant difference in the mean obstructive apnea-hypopnea index before and after hemodialysis (46.8±22.0 versus 42.1±18.6 per hour; P=0.21), but obstructive apnea-hypopnea index was significantly lower posthemodialysis (-10.1±10.8 per hour) in the group of 12 patients, with a concomitant reduction of fluid overload compared with participants without change in fluid overload (obstructive apnea-hypopnea index +8.2±16.1 per hour; P<0.01). A lower fluid overload after hemodialysis was significantly correlated (r=0.49; P=0.04) with a lower obstructive apnea-hypopnea index. Fluid overload-assessed by bioimpedance-was the best predictor of the change in obstructive apnea-hypopnea index observed after hemodialysis (standardized r=-0.68; P=0.01) in multivariate regression analysis. Fluid overload influences overnight rostral fluid shift and obstructive sleep apnea severity in patients with ESRD undergoing intermittent hemodialysis. Although no benefit of hemodialysis on obstructive sleep apnea severity was observed in the whole group, the change in obstructive apnea-hypopnea index was significantly

  19. Obstructive Sleep Apnea Severity and Overnight Body Fluid Shift before and after Hemodialysis

    PubMed Central

    Forni Ogna, Valentina; Mihalache, Alexandra; Pruijm, Menno; Halabi, Georges; Phan, Olivier; Cornette, Françoise; Bassi, Isabelle; Haba Rubio, José; Burnier, Michel; Heinzer, Raphaël

    2015-01-01

    Background and objectives Obstructive sleep apnea is associated with significantly increased cardiovascular morbidity and mortality. Fluid overload may promote obstructive sleep apnea in patients with ESRD through an overnight fluid shift from the legs to the neck soft tissues. Body fluid shift and severity of obstructive sleep apnea before and after hemodialysis were compared in patients with ESRD. Design, setting, participants, & measurements Seventeen patients with hemodialysis and moderate to severe obstructive sleep apnea were included. Polysomnographies were performed the night before and after hemodialysis to assess obstructive sleep apnea, and bioimpedance was used to measure fluid overload and leg fluid volume. Results The mean overnight rostral fluid shift was 1.27±0.41 L prehemodialysis; it correlated positively with fluid overload volume (r=0.39; P=0.02) and was significantly lower posthemodialysis (0.78±0.38 L; P<0.001). There was no significant difference in the mean obstructive apnea-hypopnea index before and after hemodialysis (46.8±22.0 versus 42.1±18.6 per hour; P=0.21), but obstructive apnea-hypopnea index was significantly lower posthemodialysis (−10.1±10.8 per hour) in the group of 12 patients, with a concomitant reduction of fluid overload compared with participants without change in fluid overload (obstructive apnea-hypopnea index +8.2±16.1 per hour; P<0.01). A lower fluid overload after hemodialysis was significantly correlated (r=0.49; P=0.04) with a lower obstructive apnea-hypopnea index. Fluid overload—assessed by bioimpedance—was the best predictor of the change in obstructive apnea-hypopnea index observed after hemodialysis (standardized r=−0.68; P=0.01) in multivariate regression analysis. Conclusions Fluid overload influences overnight rostral fluid shift and obstructive sleep apnea severity in patients with ESRD undergoing intermittent hemodialysis. Although no benefit of hemodialysis on obstructive sleep apnea severity

  20. Enabling fluorescent biosensors for the forensic identification of body fluids.

    PubMed

    Frascione, Nunzianda; Gooch, James; Daniel, Barbara

    2013-11-12

    The search for body fluids often forms a crucial element of many forensic investigations. Confirming fluid presence at a scene can not only support or refute the circumstantial claims of a victim, suspect or witness, but may additionally provide a valuable source of DNA for further identification purposes. However, current biological fluid testing techniques are impaired by a number of well-characterised limitations; they often give false positives, cannot be used simultaneously, are sample destructive and lack the ability to visually locate fluid depositions. These disadvantages can negatively affect the outcome of a case through missed or misinterpreted evidence. Biosensors are devices able to transduce a biological recognition event into a measurable signal, resulting in real-time analyte detection. The use of innovative optical sensing technology may enable the highly specific and non-destructive detection of biological fluid depositions through interaction with several fluid-endogenous biomarkers. Despite considerable impact in a variety of analytical disciplines, biosensor application within forensic analyses may be considered extremely limited. This article aims to explore a number of prospective biosensing mechanisms and to outline the challenges associated with their adaptation towards detection of fluid-specific analytes.

  1. Continuous monitoring of plasma, interstitial, and intracellular fluid volumes in dialyzed patients by bioimpedance and hematocrit measurements.

    PubMed

    Jaffrin, Michel Y; Fenech, Marianne; de Fremont, Jean-François; Tolani, Michel

    2002-01-01

    Bioimpedance spectroscopy (BIS) permits evaluation of extra- and intracellular fluid volumes in patients. We wished to examine whether this technique, used in combination with hematocrit measurement, can reliably monitor fluid transfers during dialysis. Ankle to wrist BIS measurements were collected during 21 dialysis runs while hematocrit was continuously monitored in the blood line by an optical device. Extracellular (ECW) and intracellular (ICW) water volumes were calculated using Hanai's electrical model of suspensions. Plasma volume variations were calculated from hematocrit, and changes in interstitial volume were calculated as the difference between ECW and plasma volume changes. Because accuracy of ICW was too low, changes in ICW were calculated as the difference between ultrafiltered volume and ECW changes. Total body water (TBW) volumes calculated pre- and postdialysis were, respectively, 3.25+/-3.2 and 1.95+/-2.5 liters lower on average than TBW given by Watson et al.'s correlation. Average decreases in fluid compartments expressed as percentage of ultrafiltered volume were as follows: plasma, 18%; interstitial, 28%, and ICW, 54%. When the ultrafiltered volume was increased in a patient in successive runs, the relative contributions of ICW and interstitial fluid were augmented so as to reduce the relative drop in plasma volume.

  2. Swimming and pumping of rigid helical bodies in viscous fluids

    NASA Astrophysics Data System (ADS)

    Li, Lei; Spagnolie, Saverio E.

    2014-04-01

    Rotating helical bodies of arbitrary cross-sectional profile and infinite length are explored as they swim through or transport a viscous fluid. The Stokes equations are studied in a helical coordinate system, and closed form analytical expressions for the force-free swimming speed and torque are derived in the asymptotic regime of nearly cylindrical bodies. High-order accurate expressions for the velocity field and swimming speed are derived for helical bodies of finite pitch angle through a double series expansion. The analytical predictions match well with the results of full numerical simulations, and accurately predict the optimal pitch angle for a given cross-sectional profile. This work may improve the modeling and design of helical structures used in microfluidic manipulation, synthetic microswimmer engineering, and the transport and mixing of viscous fluids.

  3. Vanadium in foods and in human body fluids and tissues.

    PubMed

    Byrne, A R; Kosta, L

    1978-07-01

    Using neutron activation analysis, vanadium was analysed in a range of foods, human body fluids and tissues. On the basis of these results and those of other workers, it was concluded that daily dietary intake amounts to some tens of micrograms. Analysis of body fluids (including milk, blood and excreta) and organs and tissues provided an estimate for the total body pool of vanadium in man of about 100 microgram. Vanadium was not detectable in blood and urine at the level of 0.3 ng/g, while low levels were found in muscle, fat, bone, teeth and other tissues. The relationship between dietary intake to pulmonary absorption is discussed in relation to the occurrence of vanadium in man-made air particulates. The very low levels found in milks and eggs suggest minimal vanadium requirements in growth. The findings are discussed in the light of previous results and also in relation to the possible essentiality of vanadium.

  4. Whole body acid-base and fluid-electrolyte balance: a mathematical model.

    PubMed

    Wolf, Matthew B

    2013-10-15

    A cellular compartment was added to our previous mathematical model of steady-state acid-base and fluid-electrolyte chemistry to gain further understanding and aid diagnosis of complex disorders involving cellular involvement in critically ill patients. An important hypothesis to be validated was that the thermodynamic, standard free-energy of cellular H(+) and Na(+) pumps remained constant under all conditions. In addition, a hydrostatic-osmotic pressure balance was assumed to describe fluid exchange between plasma and interstitial fluid, including incorporation of compliance curves of vascular and interstitial spaces. The description of the cellular compartment was validated by close comparison of measured and model-predicted cellular pH and electrolyte changes in vitro and in vivo. The new description of plasma-interstitial fluid exchange was validated using measured changes in fluid volumes after isoosmotic and hyperosmotic fluid infusions of NaCl and NaHCO3. The validated model was used to explain the role of cells in the mechanism of saline or dilutional acidosis and acid-base effects of acidic or basic fluid infusions and the acid-base disorder due to potassium depletion. A module was created that would allow users, who do not possess the software, to determine, for free, the results of fluid infusions and urinary losses of water and solutes to the whole body.

  5. Evaluation of a rotary laser body scanner for body volume and fat assessment.

    PubMed

    Pepper, M Reese; Freeland-Graves, Jeanne H; Yu, Wurong; Stanforth, Philip R; Xu, Bugao

    2010-07-08

    This paper reports the evaluation tests on the reliability and validity of a 3-dimensional (3D) laser body scanner for estimation of body volume and % fat. Repeated measures of body imaging were performed for reproducibility analysis. Validity of the instrument was assessed by comparison of measures of body volume by imaging to hydrodensitometry, and body fat was compared to hydrodensitometry and dual energy X-ray absorptiometry. Reproducibility analysis showed little difference between within-subjects measurements of volume (ICC ≥ 0.99, p < 0.01). Body volume estimations by laser body scanner and hydrodensitometry were strongly related (r = 0.99, p < 0.01), and agreement was high (ICC = 0.99, p < 0.01). Measurements of % body fat also agreed strongly with each other between methods (ICC = 0.86, p < 0.01), and mean % fat estimates by body imaging did not differ from criterion methods (p > 0.05). These findings indicate that the 3D laser body scanner is a reliable and valid technique for the estimation of body volume. Furthermore, body imaging is an accurate measure of body fat, as compared to dual energy X-ray absorptiometry. This new instrument is promising as a quick, simple to use, and inexpensive method of body composition analysis.

  6. Evaluation of a rotary laser body scanner for body volume and fat assessment

    PubMed Central

    Pepper, M. Reese; Freeland-Graves, Jeanne H.; Yu, Wurong; Stanforth, Philip R.; Xu, Bugao

    2011-01-01

    This paper reports the evaluation tests on the reliability and validity of a 3-dimensional (3D) laser body scanner for estimation of body volume and % fat. Repeated measures of body imaging were performed for reproducibility analysis. Validity of the instrument was assessed by comparison of measures of body volume by imaging to hydrodensitometry, and body fat was compared to hydrodensitometry and dual energy X-ray absorptiometry. Reproducibility analysis showed little difference between within-subjects measurements of volume (ICC ≥ 0.99, p < 0.01). Body volume estimations by laser body scanner and hydrodensitometry were strongly related (r = 0.99, p < 0.01), and agreement was high (ICC = 0.99, p < 0.01). Measurements of % body fat also agreed strongly with each other between methods (ICC = 0.86, p < 0.01), and mean % fat estimates by body imaging did not differ from criterion methods (p > 0.05). These findings indicate that the 3D laser body scanner is a reliable and valid technique for the estimation of body volume. Furthermore, body imaging is an accurate measure of body fat, as compared to dual energy X-ray absorptiometry. This new instrument is promising as a quick, simple to use, and inexpensive method of body composition analysis. PMID:21552454

  7. Balance point characterization of interstitial fluid volume regulation.

    PubMed

    Dongaonkar, R M; Laine, G A; Stewart, R H; Quick, C M

    2009-07-01

    The individual processes involved in interstitial fluid volume and protein regulation (microvascular filtration, lymphatic return, and interstitial storage) are relatively simple, yet their interaction is exceedingly complex. There is a notable lack of a first-order, algebraic formula that relates interstitial fluid pressure and protein to critical parameters commonly used to characterize the movement of interstitial fluid and protein. Therefore, the purpose of the present study is to develop a simple, transparent, and general algebraic approach that predicts interstitial fluid pressure (P(i)) and protein concentrations (C(i)) that takes into consideration all three processes. Eight standard equations characterizing fluid and protein flux were solved simultaneously to yield algebraic equations for P(i) and C(i) as functions of parameters characterizing microvascular, interstitial, and lymphatic function. Equilibrium values of P(i) and C(i) arise as balance points from the graphical intersection of transmicrovascular and lymph flows (analogous to Guyton's classical cardiac output-venous return curves). This approach goes beyond describing interstitial fluid balance in terms of conservation of mass by introducing the concept of inflow and outflow resistances. Algebraic solutions demonstrate that P(i) and C(i) result from a ratio of the microvascular filtration coefficient (1/inflow resistance) and effective lymphatic resistance (outflow resistance), and P(i) is unaffected by interstitial compliance. These simple algebraic solutions predict P(i) and C(i) that are consistent with reported measurements. The present work therefore presents a simple, transparent, and general balance point characterization of interstitial fluid balance resulting from the interaction of microvascular, interstitial, and lymphatic function.

  8. Three-body interactions in complex fluids: Virial coefficients from simulation finite-size effects

    SciTech Connect

    Ashton, Douglas J.; Wilding, Nigel B.

    2014-06-28

    A simulation technique is described for quantifying the contribution of three-body interactions to the thermodynamical properties of coarse-grained representations of complex fluids. The method is based on a new approach for determining virial coefficients from the measured volume-dependent asymptote of a certain structural function. By comparing the third virial coefficient B{sub 3} for a complex fluid with that of an approximate coarse-grained model described by a pair potential, three body effects can be quantified. The strategy is applicable to both Molecular Dynamics and Monte Carlo simulation. Its utility is illustrated via measurements of three-body effects in models of star polymers and in highly size-asymmetrical colloid-polymer mixtures.

  9. Medical imaging feasibility in body fluids using Markov chains

    NASA Astrophysics Data System (ADS)

    Kavehrad, M.; Armstrong, A. D.

    2017-02-01

    A relatively wide field-of-view and high resolution imaging is necessary for navigating the scope within the body, inspecting tissue, diagnosing disease, and guiding surgical interventions. As the large number of modes available in the multimode fibers (MMF) provides higher resolution, MMFs could replace the millimeters-thick bundles of fibers and lenses currently used in endoscopes. However, attributes of body fluids and obscurants such as blood, impose perennial limitations on resolution and reliability of optical imaging inside human body. To design and evaluate optimum imaging techniques that operate under realistic body fluids conditions, a good understanding of the channel (medium) behavior is necessary. In most prior works, Monte-Carlo Ray Tracing (MCRT) algorithm has been used to analyze the channel behavior. This task is quite numerically intensive. The focus of this paper is on investigating the possibility of simplifying this task by a direct extraction of state transition matrices associated with standard Markov modeling from the MCRT computer simulations programs. We show that by tracing a photon's trajectory in the body fluids via a Markov chain model, the angular distribution can be calculated by simple matrix multiplications. We also demonstrate that the new approach produces result that are close to those obtained by MCRT and other known methods. Furthermore, considering the fact that angular, spatial, and temporal distributions of energy are inter-related, mixing time of Monte- Carlo Markov Chain (MCMC) for different types of liquid concentrations is calculated based on Eigen-analysis of the state transition matrix and possibility of imaging in scattering media are investigated. To this end, we have started to characterize the body fluids that reduce the resolution of imaging [1].

  10. Effect of the Volume of Fluid Ingested on Urine Concentrating Ability During Prolonged Heavy Exercise in a Hot Environment

    PubMed Central

    Otani, Hidenori; Kaya, Mitsuharu; Tsujita, Junzo

    2013-01-01

    This study examined the effect of the volume of fluid ingested on urine concentrating ability during prolonged heavy exercise in a hot environment at low levels of dehydration. Seven healthy males performed 105 min of intermittent cycle exercise at 70% maximum oxygen uptake (32°C, 60% relative humidity) while receiving no fluid ingestion (NF), voluntary fluid ingestion (VF), partial fluid ingestion equivalent to one-half of body mass loss (PF), and full fluid ingestion equivalent to body mass loss (FF). Fluid (5°C, 3.4% carbohydrate, 10.5 mmol·L-1 sodium) was ingested just before commencing exercise and at 15, 33, 51, 69, and 87 min of exercise, and the total amount of fluid ingested in PF and FF was divided into six equal volumes. During exercise, body mass loss was 2.2 ± 0.2, 1.1 ± 0.5, 1.1 ± 0.2, and 0.1 ± 0.2% in NF, VF, PF, and FF, respectively, whereas total sweat loss was about 2% of body mass in each trial. Subjects in VF ingested 719 ± 240 ml of fluid during exercise; the volume of fluid ingested was 1.1 ± 0.4% of body mass. Creatinine clearance was significantly higher and free water clearance was significantly lower in FF than in NF during exercise. Urine flow rate during exercise decreased significantly in NF. There were significant decreases in creatinine and osmolar clearance and was a significant increase in free water clearance during exercise in NF and VF. Creatinine clearance decreased significantly and free water clearance increased significantly during exercise in PF. There was no statistical change in urinary indices of renal function during exercise in FF. The findings suggest that full fluid ingestion equivalent to body mass loss has attenuated the decline in urine concentrating ability during prolonged heavy exercise in a hot environment at low levels of dehydration. Key points During prolonged heavy exercise in a hot environment at low levels of dehydration, fluid ingestion equivalent to body mass loss results in no changes in

  11. Amniotic fluid lamellar body count as a novel biochemical marker for timing elective caesarean delivery.

    PubMed

    Kart, C; Guven, S; Guvendag Guven, E S; Armangil, D; Mentese, A

    2015-01-01

    The aim of this study is to evaluate the performance of amniotic fluid lamellar body count (LBC) on the timing of elective caesarean delivery (CS) at ≥ 39 weeks. After allocating the study group (group I, transient tachypnoea of newborn (TTN), n = 14), an age-matched control group (group II, no TTN, n = 79) was selected for amniotic fluid LBC analysis. The median amniotic fluid LBC levels in group I were significantly lower than in the control group. Furthermore, the median values of mean lamellar body volume, median lamellar body distribution width and lamellar bodycrit in group I were also significantly lower than in group II. The best amniotic fluid LBC value to predict TTN was 40.15 × 10(3)/μl, with 82.3% sensitivity and 64.3% specificity. The favourable sensitivity and specificity values to predict the TTN for amniotic fluid LBC may suggest using it as an elective caesarean delivery-time scheduling marker.

  12. Detection of tumor cells in body cavity fluids by flow cytometric and immunocytochemical analysis.

    PubMed

    Krishan, Awtar; Ganjei-Azar, Parvin; Jorda, Merce; Hamelik, Ronald M; Reis, Isildinha M; Nadji, Mehrdad

    2006-08-01

    Measurement of electronic volume versus DNA content of nuclei can be used to discriminate between normal and malignant cells. Epithelial membrane antigen immunocytochemistry (EMA-ICC), a helpful ancillary test in body cavity fluids, is not universally accurate for detecting malignancy in effusions. The current study was undertaken to determine if multiparametric flow cytometry (based on simultaneous analysis of light scatter, nuclear volume, DNA, and nuclear protein content) in combination with (EMA-ICC) could be used for the detection of malignant cells in peritoneal and pleural fluids. We studied 130 body cavity fluids (68 peritoneal and 62 pleural fluids) by conventional cytology and multiparametric laser flow cytometry. EMA-ICC was performed using EMA antibodies and L-SAB detection system (DakoCytomation, Carpinteria, CA). EMA-ICC had significantly higher sensitivity than conventional cytology (79% versus 59%, P = 0.016) and ploidy (79% versus 38%, P = 0.001). Cytology had significantly higher specificity than ploidy (97% versus 82%, P = 0.012). The differences in specificity between EMA-ICC and ploidy (87% versus 82%, P= 0.607) or EMA-ICC and cytology (87% versus 97%, P = 0.109) were not statistically significant. However, assuming serial testing, sensitivity increased significantly for the combinations of cytology and EMA-ICC (79.4%, P = 0.016) and cytology and ploidy (73.5%, P = 0.004) as compared to cytology alone (58.8%). Also, the combination of cytology and ploidy had a higher sensitivity than ploidy alone (73% versus 38%, P < 0.0001). However, the sensitivity associated with the three tests used in serial (85.3%) was not significantly different from the sensitivities corresponding to the combination of cytology and EMA-ICC (79%) or cytology and ploidy (73%). Multiparametric flow cytometry utilizing high resolution DNA, nuclear volume, protein measurement, and ICC, in combination with cytomorphology, may be a valuable tool for rapid identification of

  13. Small Moving Rigid Body into a Viscous Incompressible Fluid

    NASA Astrophysics Data System (ADS)

    Lacave, Christophe; Takahashi, Takéo

    2017-03-01

    We consider a single disk moving under the influence of a two dimensional viscous fluid and we study the asymptotic as the size of the solid tends to zero. If the density of the solid is independent of ɛ, the energy equality is not sufficient to obtain a uniform estimate for the solid velocity. This will be achieved thanks to the optimal L p - L q decay estimates of the semigroup associated to the fluid-rigid body system and to a fixed point argument. Next, we will deduce the convergence to the solution of the Navier-Stokes equations in R2.

  14. Body fluid regulation in micro-gravity differs from that on Earth: an overview.

    PubMed

    Drummer, C; Gerzer, R; Baisch, F; Heer, M

    2000-01-01

    Similar to the response to central hypervolemic conditions on Earth, the shift of blood volume from the legs to the upper part of the body in astronauts entering micro-gravity should, in accordance with the Henry-Gauer mechanism, mediate diuresis and natriuresis. However, fluid balance and kidney function experiments during various space missions resulted in the surprising observation that the responses qualitatively differ from those observed during simulations of hypervolemia on Earth. There is some evidence that the attenuated responses of the kidney while entering weightlessness, and also later during space flight, may be caused by augmented fluid distribution to extravascular compartments compared to conditions on Earth. A functional decoupling of the kidney may also contribute to the observation that renal responses during exposure to micro-gravity are consistently weaker than those during simulation experiments before space flight. Deficits in body mass after landing have always been interpreted as an indication of absolute fluid loss early during space missions. However, recent data suggest that body mass changes during space flight are rather the consequences of hypocaloric nutrition and can be overcome by improved nutrition schemes. Finally, sodium-retaining humoral systems are activated during space flight and may contribute to a new steady-state of metabolic balances with a pronounced increase in body sodium compared to respective conditions on Earth. A revision of the classical "micro-gravity fluid shift" scheme is required.

  15. Production and delivery of a fluid mixture to an annular volume of a wellbore

    DOEpatents

    Hermes, Robert E [Los Alamos, NM; Bland, Ronald Gene [Houston, TX; Foley, Ron Lee [Magnolia, TX; Bloys, James B [Katy, TX; Gonzalez, Manuel E [Kingwood, NM; Daniel, John M [Germantown, TN; Robinson, Ian M [Guisborough, GB; Carpenter, Robert B [Tomball, TX

    2012-01-24

    The methods described herein generally relate to preparing and delivering a fluid mixture to a confined volume, specifically an annular volume located between two concentrically oriented casing strings within a hydrocarbon fluid producing well. The fluid mixtures disclosed herein are useful in controlling pressure in localized volumes. The fluid mixtures comprise at least one polymerizable monomer and at least one inhibitor. The processes and methods disclosed herein allow the fluid mixture to be stored, shipped and/or injected into localized volumes, for example, an annular volume defined by concentric well casing strings.

  16. Falling bodies through sharply stratified fluids: theory and experiments

    NASA Astrophysics Data System (ADS)

    McLaughlin, Richard; Camassa, Roberto; Falcon, Claudia; Harenberg, Steve; Mertens, Keith; Reis, Johnny; Schlieper, William; Watson, Bailey; White, Brian; UNC RTG Fluids Group Team

    2011-11-01

    The motion of bodies and fluids moving through a stratified background fluid arises naturally in the context of carbon (marine snow) settling in the ocean, as well as less naturally in the context of the DWH Gulf oil spill. The details of the settling rates may affect the ocean contribution to the earth's carbon cycle. We look at phenomena associated with many falling spheres in stratified fluids, as well as behavior of multiphase buoyant plumes penetrating strong stratification. We present careful measurements critical heights for fully miscible jets and companion analytical prediction. In turn, we examine cases involving clouds of sinking particulate and rising buoyant oil emulsions and associated plume trapping behaviors. NSF DMS RTG 0943851, NSF DMS 1009750, NSF CMG ARC-1025523, NSF RAPID CBET-1045653.

  17. Changes in body fluid compartments during a 28-day bed rest

    NASA Technical Reports Server (NTRS)

    Fortney, Suzanne M.; Hyatt, Kenneth H.; Davis, John E.; Vogel, John M.

    1991-01-01

    Serial isotope measurements were used to obtain measurements of the body fluid responses of 10 22-29-year-old men during 28 d of simulated microgravity (bed rest). The subjects were maintained on a controlled metabolic diet for 7 d before the study, during 14 d of ambulatory control, 28 d of horizontal bed rest, and 14 d of ambulant recovery. Fluid compartments were measured on control days 1 and 9, bed rest days 2, 14, and 28, and recovery days 7 and 14. By day 2 of bed rest, plasma volume and extracellular volume (ECV) decreased significantly by an average 209 and 533 ml, respectively. Red cell volume and total body water (TBW) decreased more slowly, with average losses of 128 and 1316 ml, respectively, after 28 d of bed rest. Early in the bed rest, TBW loss was mostly from the ECV. Thereafter, the TBW deficit was derived from the intracellular compartment, which decreased an average of 838 ml after 28 d. These results suggest losses from all fluid compartments during bed rest, with no evidence of restoration of ECV after 1-2 weeks.

  18. The colloid osmotic pressures of invertebrate body fluids.

    PubMed

    Mangum, C P; Johansen, K

    1975-12-01

    Colloid osmotic pressures of the body fluids of twenty invertebrate species were measured directly. The results, which are generally lower than predicted values for the same species, pertain to several physiological questions: (1) they do not quantitatively explain the frequently observed hyperosmoticity of body fluids in species believed to be osmoconformers, indicating that the condition cannot be merely a consequence of a Gibbs-Donnan equilibrium; (2) the excess of hydrostatic over colloid osmotic pressure is very small. This result supports the hypothesis that the oxygen transport function of bloods with extracellular haemocyanins and haem proteins is limited by their colligative properties; (3) the pressure relationships and the absence of colloid osmotic activity in urine indicates that filtration contributes to urine formation in several species.

  19. Dielectric properties of porcine glands, gonads and body fluids.

    PubMed

    Peyman, A; Gabriel, C

    2012-10-07

    Dielectric properties of porcine glandular tissues and gonads (in vivo) and body fluids (in vitro) have been obtained in the frequency range of 50 MHz to 20 GHz. The experimental data were fitted to a two term Cole-Cole expression. The data presented complement the available dielectric properties of tissues in the literature and can be used in numerical simulations of the exposure of people to electromagnetic fields.

  20. Changes during eating in oxygen consumption, cardiac function and body fluids of sheep

    PubMed Central

    Christopherson, R. J.; Webster, A. J. F.

    1972-01-01

    1. A study was made of the changes taking place in O2 consumption, cardiac function and the volume and composition of the body fluids of sheep while they consumed a meal of hay. 2. During eating Pa, CO2 and Pv, CO2 both increased, pH decreased and free plasma [HCO3-] increased. Venous haematocrit increased sharply at the beginning of the meal, and declined slowly after feed was removed. 3. Arterial PO2 did not change significantly during eating. However Pv, O2 fell slightly but significantly. The O2 saturation of venous blood fell due to the decline in pH. Estimated CO2 in arterial blood increased as a consequence of increased haemoglobin content. The net effect was to increase arteriovenous difference in O2 content from 4·4 ml./100 ml. before eating to 6·0 ml./100 ml. at the end of the meal. 4. O2 consumption increased about 60% during eating and fell rapidly thereafter. Heart rate followed a similar pattern. Cardiac output however increased only about 17%, from 6 to 7 l./min. Consequently stroke volume declined throughout the meal from 76 to 52 ml./beat. 5. Plasma volume, estimated from measurements of T-1824, declined sharply by about 300 ml. at the beginning of the meal and recovered slowly after feed was removed. Blood volume declined less because of a rise in circulating erythrocytes. 6. Extracellular fluid volume was estimated from measurements of thiocyanate and thiosulphate spaces. Thiocyanate space measurements were abandoned after thiocyanate was found to be concentrated in saliva. Considerable random variation occurred in measurements of changes in extracellular fluid from thiosulphate disappearance but the results did reveal a significant fall of 1000-1500 ml. in extracellular fluid volume during eating. 7. The significance of these interrelated changes is discussed in relation to the maintenance of homoeostasis during eating in the sheep. PMID:5020986

  1. Application of Control Volume Analysis to Cerebrospinal Fluid Dynamics

    NASA Astrophysics Data System (ADS)

    Wei, Timothy; Cohen, Benjamin; Anor, Tomer; Madsen, Joseph

    2011-11-01

    Hydrocephalus is among the most common birth defects and may not be prevented nor cured. Afflicted individuals face serious issues, which at present are too complicated and not well enough understood to treat via systematic therapies. This talk outlines the framework and application of a control volume methodology to clinical Phase Contrast MRI data. Specifically, integral control volume analysis utilizes a fundamental, fluid dynamics methodology to quantify intracranial dynamics within a precise, direct, and physically meaningful framework. A chronically shunted, hydrocephalic patient in need of a revision procedure was used as an in vivo case study. Magnetic resonance velocity measurements within the patient's aqueduct were obtained in four biomedical state and were analyzed using the methods presented in this dissertation. Pressure force estimates were obtained, showing distinct differences in amplitude, phase, and waveform shape for different intracranial states within the same individual. Thoughts on the physiological and diagnostic research and development implications/opportunities will be presented.

  2. Fluid and salt supplementation effect on body hydration and electrolyte homeostasis during bed rest and ambulation

    NASA Astrophysics Data System (ADS)

    Zorbas, Yan G.; Kakurin, Vassily J.; Kuznetsov, Nikolai A.; Yarullin, Vladimir L.

    2002-06-01

    Bed rest (BR) induces significant urinary and blood electrolyte changes, but little is known about the effect of fluid and salt supplements (FSS) on catabolism, hydration and electrolytes. The aim was to measure the effect of FSS on catabolism, body hydration and electrolytes during BR. Studies were done during 7 days of a pre-bed rest period and during 30 days of a rigorous bed rest period. Thirty male athletes aged, 24.6±7.6 years were chosen as subjects. They were divided into three groups: unsupplemented ambulatory control subjects (UACS), unsupplemented bed rested subjects (UBRS) and supplemented bed rested subjects (SBRS). The UBRS and SBRS groups were kept under a rigorous bed rest regime for 30 days. The SBRS daily took 30 ml water per kg body weight and 0.1 sodium chloride per kg body weight. Plasma sodium (Na), potassium (K), calcium (Ca) and magnesium (Mg) levels, urinary Na, K, Ca and Mg excretion, plasma osmolality, plasma protein level, whole blood hemoglobin (Hb) and hematocrit (Hct) level increased significantly ( p≤0.05), while plasma volume (PV), body weight, body fat, peak oxygen uptake, food and fluid intake decreased significantly ( p≤0.05) in the UBRS group when compared with the SBRS and UACS groups. In contrast, plasma and urinary electrolytes, osmolality, protein level, whole blood Hct and Hb level decreased significantly ( p≤0.05), while PV, fluid intake, body weight and peak oxygen uptake increased significantly ( p≤0.05) in the SBRS group when compared with the UBRS group. The measured parameters did not change significantly in the UACS group when compared with their baseline control values. The data indicate that FSS stabilizes electrolytes and body hydration during BR, while BR alone induces significant changes in electrolytes and body hydration. We conclude that FSS may be used to prevent catabolism and normalize body hydration status and electrolyte values during BR.

  3. Hippocampal volume predicts fluid intelligence in musically trained people.

    PubMed

    Oechslin, Mathias S; Descloux, Céline; Croquelois, Alexandre; Chanal, Julien; Van De Ville, Dimitri; Lazeyras, François; James, Clara E

    2013-07-01

    Recently, age-related hippocampal (HP) volume loss could be associated with a decrease in general fluid intelligence (gF). In the present study we investigated whether and how extensive musical training modulates human HP volume and gF performance. Previously, some studies demonstrated positive effects of musical training on higher cognitive functions such as learning and memory, associated with neural adaptations beyond the auditory domain. In order to detect possible associations between musical training and gF, we bilaterally segmented the HP formation and assessed the individual gF performance of people with different levels of musical expertise. Multiple regression analyses revealed that HP volume predicts gF in musicians but not in nonmusicians; in particular, bilaterally enhanced HP volume is associated with increased gF exclusively in musically trained people (amateurs and experts). This result suggests that musical training facilitates the recruitment of cognitive resources, which are essential for gF and linked to HP functioning. Musical training, even at a moderate level of intensity, can thus be considered as a potential strategy to decelerate age-related effects of cognitive decline. Copyright © 2013 Wiley Periodicals, Inc.

  4. A refractometry-based glucose analysis of body fluids.

    PubMed

    Zirk, Kai; Poetzschke, Harald

    2007-05-01

    In principle, refractometry appears to be a suitable method for the measurement of glucose concentrations in body fluids (such as blood and the intercellular fluid), even though the refractive index of the measured samples, as an additive property, is not specific. But, if certain conditions are fulfilled, the glucose content can be calculated using the refractive index in combination with values from a further measurement. This study describes the determination of the glucose content using refractometry in human blood serum derivates, which were selected - due to their ready availability - to be used as a model for interstitial fluid. Refractometry of body fluids requires the elimination of disturbing components from the measurement sample. First of all, a homogenous fluid (i.e. consisting of one phase) is required, so that all cells and components in suspension need to be separated out. Furthermore, certain dissolved macromolecular components which are known to disturb the measurement process must also be removed. In human serum samples which had been ultrafiltrated with a range of ultrafilters of different pore sizes, a comparative evaluation showed that only ultrafiltration through a filter with a separation limit of between 3 and 30kDa resulted in maximal reduction of the refractive index (compared to native serum), whereas ultrafilters with greater separation limits did not. The total content of osmotically active solutes (the tonicity) also exerts a clear influence. However, exemplary measurements in blood plasma fluid from one volunteer showed that the electrical conductivity is (without an additive component) directly proportional to the osmolality: physiological changes in the state of body hydration (hyperhydration and dehydration) do not lead to any considerable changes in the relation between ionised and uncharged solute particles, but instead result in a sufficiently clear dilution or concentration of the blood fluid's low molecular components. This

  5. Determination of asbestos bodies in bronchoalveolar lavage fluids in Thailand.

    PubMed

    Incharoen, Pimpin; Boonsarngsuk, Viboon; Sanitthangkul, Katawut; Laohavich, Chariya; Sirikulchayanonta, Vorachai; Bovornkitti, Somchai

    2014-05-01

    Asbestos bodies (AB), ferroprotein-coated asbestos fiber may be present in bronchoalveolar lavage fluid (BALF) of asbestos exposed persons. The present study was conducted to evaluate the prevalence and number of asbestos bodies in the BALF of tenable asbestos exposed workers compare to general population in Thailand. Thirty workers of cement pipe and roof tile factories using chrysotile asbestos and 30 unexposed patients that underwent diagnostic bronchoscopy were included in this study. Determination of asbestos bodies was made by membrane filtration method as described in earlier reports. The findings were positive in six workers and in one control subject (0.1-3.6 vs. 0.2 AB/ml of BALF, p = 0.449). AB was identified in workers more often than in pulmonary disease patient. Two of workers had more than 1 AB/ml of BALF.

  6. Hypothermia caused by slow and limited-volume fluid resuscitation decreases organ damage by hemorrhagic shock.

    PubMed

    Subeq, Yi-Maun; Hsu, Bang-Gee; Lin, Nien-Tsung; Yang, Fwu-Lin; Chao, Yann-Fen C; Peng, Tai-Chu; Kuo, Chia-Hua; Lee, Ru-Ping

    2012-10-01

    Hypothermia frequently occurs during fluid resuscitation of trauma victims, especially in patients with a major blood loss. Recent studies have suggested that mild hypothermia may ameliorate hemorrhagic shock (HS) induced splanchnic damage. The aim of the present study is to compare the status of body temperature and splanchnic injury under different resuscitation speeds for HS in conscious rats. Experimental study in an animal model of HS. Twenty-four male Wistar-Kyoto rats were used in the study. To mimic HS, 40% of the total blood volume was withdrawn. Fluid resuscitation was given 30 min after blood withdrawal. The rats were randomly divided into three groups; the control group, the 10-min rapid group, and the 12-h slow group. Levels of blood biochemical parameters, including aspartate transferase (GOT), and alanine transferase (GPT), were measured. Levels of serum tumor necrosis factor α (TNF-α) and interleukin 6 (IL-6) were measured and levels of bronchoalveolar lavage fluid (BALF) TNF-α and nitric oxide (NO) were measured by ELISA. The lung, liver and small intestine were examined for pathological changes 48 h after HS. Initially slow rate resuscitation with limited-volume significantly decreased body temperature, serum GOT, GPT, TNF-α, and IL-6 levels, levels of TNF-α, and NO in BALF. Moreover, the slow group had lower injury scores in the lung, liver and small intestine than the rapid group after HS. This finding suggests that mild hypothermia induced by a slow fluid resuscitation rate with limited-volume ameliorates HS-induced splanchnic damage in conscious rats. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Fluid and salt supplementation effect on body hydration and electrolyte homeostasis during bed rest and ambulation.

    PubMed

    Zorbas, Yan G; Kakurin, Vassily J; Kuznetsov, Nikolai A; Yarullin, Vladimir L

    2002-06-01

    Bed rest (BR) induces significant urinary and blood electrolyte changes, but little is known about the effect of fluid and salt supplements (FSS) on catabolism, hydration and electrolytes. The aim was to measure the effect of FSS on catabolism, body hydration and electrolytes during BR. Studies were done during 7 days of a pre-bed rest period and during 30 days of a rigorous bed rest period. Thirty male athletes aged, 24.6 +/- 7.6 years were chosen as subjects. They were divided into three groups: unsupplemented ambulatory control subjects (UACS), unsupplemented bed rested subjects (UBRS) and supplemented bed rested subjects (SBRS). The UBRS and SBRS groups were kept under a rigorous bed rest regime for 30 days. The SBRS daily took 30 ml water per kg body weight and 0.1 sodium chloride per kg bodyweight. Plasma sodium (Na), potassium (K), calcium (Ca) and magnesium (Mg) levels, urinary Na, K, Ca and Mg excretion, plasma osmolality, plasma protein level, whole blood hemoglobin (Hb) and hematocrit (Hct) level increased significantly (p < or = 0.05), while plasma volume (PV), body weight, body fat, peak oxygen uptake, food and fluid intake decreased significantly (p < or = 0.05) in the UBRS group when compared with the SBRS and UACS groups. In contrast, plasma and urinary electrolytes, osmolality, protein level, whole blood Hct and Hb level decreased significantly (p < or = 0.05), while PV, fluid intake, body weight and peak oxygen uptake increased significantly (p < or = 0.05) in the SBRS group when compared with the UBRS group. The measured parameters did not change significantly in the UACS group when compared with their baseline control values. The data indicate that FSS stabilizes electrolytes and body hydration during BR, while BR alone induces significant changes in electrolytes and body hydration. We conclude that FSS may be used to prevent catabolism and normalize body hydration status and electrolyte values during BR. c2002 Published by Elsevier Science Ltd.

  8. Effects of oral contraceptives on body fluid regulation.

    PubMed

    Stachenfeld, N S; Silva, C; Keefe, D L; Kokoszka, C A; Nadel, E R

    1999-09-01

    To test the hypothesis that estrogen reduces the operating point for osmoregulation of arginine vasopressin (AVP), thirst, and body water balance, we studied nine women (25 +/- 1 yr) during 150 min of dehydrating exercise followed by 180 min of ad libitum rehydration. Subjects were tested six different times, during the early-follicular (twice) and midluteal (twice) menstrual phases and after 4 wk of combined [estradiol-norethindrone (progestin), OC E + P] and 4 wk of norethindrone (progestin only, OC P) oral contraceptive administration, in a randomized crossover design. Basal plasma osmolality (P(osm)) was lower in the luteal phase (281 +/- 1 mosmol/kgH(2)O, combined means, P < 0.05), OC E + P (281 +/- 1 mosmol/kgH(2)O, P < 0.05), and OC P (282 +/- 1 mosmol/kgH(2)O, P < 0. 05) than in the follicular phase (286 +/- 1 mosmol/kgH(2)O, combined means). High plasma estradiol concentration lowered the P(osm) threshold for AVP release during the luteal phase and during OC E + P [x-intercepts, 282 +/- 2, 278 +/- 2, 276 +/- 2, and 280 +/- 2 mosmol/kgH(2)O, for follicular, luteal (combined means), OC E + P, and OC P, respectively; P < 0.05, luteal phase and OC E + P vs. follicular phase] during exercise dehydration, and 17beta-estradiol administration lowered the P(osm) threshold for thirst stimulation [x-intercepts, 280 +/- 2, 279 +/- 2, 276 +/- 2, and 280 +/- 2 mosmol/kgH(2)O for follicular, luteal, OC E + P, and OC P, respectively; P < 0.05, OC E + P vs. follicular phase], without affecting body fluid balance. When plasma 17beta-estradiol concentration was high, P(osm) was low throughout rest, exercise, and rehydration, but plasma arginine vasopressin concentration, thirst, and body fluid retention were unchanged, indicating a lowering of the osmotic operating point for body fluid regulation.

  9. Fluid mechanics experiments in oscillatory flow. Volume 1

    SciTech Connect

    Seume, J.; Friedman, G.; Simon, T.W.

    1992-03-01

    Results of a fluid mechanics measurement program is oscillating flow within a circular duct are present. The program began with a survey of transition behavior over a range of oscillation frequency and magnitude and continued with a detailed study at a single operating point. Such measurements were made in support of Stirling engine development. Values of three dimensionless parameters, Re{sub max}, Re{sub W}, and A{sub R}, embody the velocity amplitude, frequency of oscillation and mean fluid displacement of the cycle, respectively. Measurements were first made over a range of these parameters which included operating points of all Stirling engines. Next, a case was studied with values of these parameters that are representative of the heat exchanger tubes in the heater section of NASA`s Stirling cycle Space Power Research Engine (SPRE). Measurements were taken of the axial and radical components of ensemble-averaged velocity and rms-velocity fluctuation and the dominant Reynolds shear stress, at various radial positions for each of four axial stations. In each run, transition from laminar to turbulent flow, and in reverse, were identified and sufficient data was gathered to propose the transition mechanism. Models of laminar and turbulent boundary layers were used to process the data into wall coordinates and to evaluate skin friction coefficients. Such data aids in validating computational models and is useful in comparing oscillatory flow characteristics to those of fully-developed steady flow. Data were taken with a contoured entry to each end of the test section and with flush square inlets so that the effects of test section inlet geometry on transition and turbulence are documented. The following is presented in two-volumes. Volume I contains the text of the report including figures and supporting appendices. Volume II contains data reduction program listings and tabulated data (including its graphical presentation).

  10. Forensic body fluid identification: the Raman spectroscopic signature of saliva.

    PubMed

    Virkler, Kelly; Lednev, Igor K

    2010-03-01

    The potential use of Raman spectroscopy for nondestructive, confirmatory identification of body fluids at the crime scene has been reported recently (Virkler and Lednev, Forensic Sci.,Int., 2008, 181, e1-e5). However, those experiments were performed using only one sample of each body fluid and did not investigate the potential for spectral variations among different donors of the same fluid. This paper reports on the role of heterogeneity within a single human saliva sample as well as among samples from multiple donors. Near-infrared (NIR) Raman spectroscopy was used to measure spectra of pure dried human saliva samples from multiple donors in a controlled laboratory environment. Principal component analysis of spectra obtained from multiple spots on dry samples showed that dry saliva is heterogeneous and its Raman spectra could be presented as a linear combination of a fluorescent background and three spectral components. The major chemical components known to be present in saliva were used to tentatively identify the principal spectral components. The issue of potential spectral variations that could arise between different donors of saliva was also addressed. The relative contribution of each of the three components varies with donor, so no single spectrum could effectively represent an experimental Raman spectrum of dry saliva in a quantitative way. The combination of these three spectral components could be considered to be a spectroscopic signature for saliva. This proof of concept approach shows the potential for Raman spectroscopy to identify an unknown substance to be saliva during forensic analysis.

  11. Size heterogeneity of epidermal growth factor in human body fluids

    SciTech Connect

    Pesonen, K.; Viinikka, L.; Koskimies, A.; Banks, A.R.; Nicolson, M.; Perheentupa, J.

    1987-06-29

    The authors measured the concentration of immunoreactive (IR) hEGF in various body fluids by radioimmunoassay (RIA) and evaluated its size heterogeneity by size exclusion high performance liquid chromatography combined with RIA or with time-resolved immunofluorometric assay (TR-IFMA). Mean concentration was 80 ng/ml in urine, 65 ng/ml in milk, 50 ng/ml in seminal plasma, 25 ng/ml in armpit sweat, 1 ng/ml in breast sweat, 0.3 ng/ml in third-trimester amniotic fluid, 3 ng/ml in saliva, 1.5 ng/ml in tears and 0.3 ng/ml in gastric juice. All the fluids except armpit sweat and gastric juice contained two to five molecular sizes of IR-hEGF. As well as the 6200-dalton (6.2kDa) hEGF the authors found at least four other different molecular sizes with approximate weights of greater than or equal to300, 150, 70 and 20 kDa. The authentic 6.2kDa form made up >90% of the total IR-hEGF in all except the amniotic fluid where its proportion was 71%, and the seminal plasma where the proportion could not be determined. 18 references, 1 figure, 1 table.

  12. 21 CFR 880.6740 - Vacuum-powered body fluid suction apparatus.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Vacuum-powered body fluid suction apparatus. 880... Personal Use Miscellaneous Devices § 880.6740 Vacuum-powered body fluid suction apparatus. (a) Identification. A vacuum-powered body fluid suction apparatus is a device used to aspirate, remove, or...

  13. 21 CFR 880.6740 - Vacuum-powered body fluid suction apparatus.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Vacuum-powered body fluid suction apparatus. 880... Personal Use Miscellaneous Devices § 880.6740 Vacuum-powered body fluid suction apparatus. (a) Identification. A vacuum-powered body fluid suction apparatus is a device used to aspirate, remove, or...

  14. 21 CFR 880.6740 - Vacuum-powered body fluid suction apparatus.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Vacuum-powered body fluid suction apparatus. 880... Personal Use Miscellaneous Devices § 880.6740 Vacuum-powered body fluid suction apparatus. (a) Identification. A vacuum-powered body fluid suction apparatus is a device used to aspirate, remove, or...

  15. 21 CFR 880.6740 - Vacuum-powered body fluid suction apparatus.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Vacuum-powered body fluid suction apparatus. 880... Personal Use Miscellaneous Devices § 880.6740 Vacuum-powered body fluid suction apparatus. (a) Identification. A vacuum-powered body fluid suction apparatus is a device used to aspirate, remove, or...

  16. 21 CFR 880.6740 - Vacuum-powered body fluid suction apparatus.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Vacuum-powered body fluid suction apparatus. 880... Personal Use Miscellaneous Devices § 880.6740 Vacuum-powered body fluid suction apparatus. (a) Identification. A vacuum-powered body fluid suction apparatus is a device used to aspirate, remove, or...

  17. Many-fluid Onsager density functional theories for orientational ordering in mixtures of anisotropic hard-body fluids.

    PubMed

    Malijevský, Alexandr; Jackson, George; Varga, Szabolcs

    2008-10-14

    The extension of Onsager's second-virial theory [L. Onsager, Ann. N.Y. Acad. Sci. 51, 627 (1949)] for the orientational ordering of hard rods to mixtures of nonspherical hard bodies with finite length-to-breadth ratios is examined using the decoupling approximations of Parsons [Phys. Rev. A 19, 1225 (1979)] and Lee [J. Chem. Phys. 86, 6567 (1987); 89, 7036 (1988)]. Invariably the extension of the Parsons-Lee (PL) theory to mixtures has in the past involved a van der Waals one-fluid treatment in which the properties of the mixture are approximated by those of a reference one-component hard-sphere fluid with an effective diameter which depends on the composition of the mixture and the molecular parameters of the various components; commonly this is achieved by equating the molecular volumes of the effective hard sphere and of the components in the mixture and is referred to as the PL theory of mixtures. It is well known that a one-fluid treatment is not the most appropriate for the description of the thermodynamic properties of isotropic fluids, and inadequacies are often rectified with a many-fluid (MF) theory. Here, we examine MF theories which are developed from the virial theorem and the virial expansion of the Helmholtz free energy of anisotropic fluid mixtures. The use of the decoupling approximation of the pair distribution function at the level of a multicomponent hard-sphere reference system leads to our MF Parsons (MFP) theory of anisotropic mixtures. Alternatively the mapping of the virial coefficients of the hard-body mixtures onto those of equivalent hard-sphere systems leads to our MF Lee (MFL) theory. The description of the isotropic-nematic phase behavior of binary mixtures of hard Gaussian overlap particles is used to assess the adequacy of the four different theories, namely, the original second-virial theory of Onsager, the usual PL one-fluid theory, and the MF theories based on the Lee (MFL) and Parsons (MFP) approaches. A comparison with the

  18. Theoretical treatment of fluid flow for accelerating bodies

    NASA Astrophysics Data System (ADS)

    Gledhill, Irvy M. A.; Roohani, Hamed; Forsberg, Karl; Eliasson, Peter; Skews, Beric W.; Nordström, Jan

    2016-10-01

    Most computational fluid dynamics simulations are, at present, performed in a body-fixed frame, for aeronautical purposes. With the advent of sharp manoeuvre, which may lead to transient effects originating in the acceleration of the centre of mass, there is a need to have a consistent formulation of the Navier-Stokes equations in an arbitrarily moving frame. These expressions should be in a form that allows terms to be transformed between non-inertial and inertial frames and includes gravity, viscous terms, and linear and angular acceleration. Since no effects of body acceleration appear in the inertial frame Navier-Stokes equations themselves, but only in their boundary conditions, it is useful to investigate acceleration source terms in the non-inertial frame. In this paper, a derivation of the energy equation is provided in addition to the continuity and momentum equations previously published. Relevant dimensionless constants are derived which can be used to obtain an indication of the relative significance of acceleration effects. The necessity for using computational fluid dynamics to capture nonlinear effects remains, and various implementation schemes for accelerating bodies are discussed. This theoretical treatment is intended to provide a foundation for interpretation of aerodynamic effects observed in manoeuvre, particularly for accelerating missiles.

  19. Geometry-induced Casimir suspension of oblate bodies in fluids.

    PubMed

    Rodriguez, Alejandro W; Reid, M T Homer; Intravaia, Francesco; Woolf, Alexander; Dalvit, Diego A R; Capasso, Federico; Johnson, Steven G

    2013-11-01

    We predict that a low-permittivity oblate body (disk-shaped object) above a thin metal substrate (plate with a hole) immersed in a fluid of intermediate permittivity will experience a metastable equilibrium (restoring force) near the center of the hole. Stability is the result of a geometry-induced transition in the sign of the force, from repulsive to attractive, that occurs as the disk approaches the hole--in planar or nearly planar geometries, the same material combination yields a repulsive force at all separations, in accordance with the Dzyaloshinskiĭ-Lifshitz-Pitaevskiĭ condition of fluid-induced repulsion between planar bodies. We explore the stability of the system with respect to rotations and lateral translations of the disks and demonstrate interesting transitions (bifurcations) in the rotational stability of the disks as a function of their size. Finally, we consider the reciprocal situation in which the disk-plate materials are interchanged and find that in this case the system also exhibits metastability. The forces in the system are sufficiently large to be observed in experiments and should enable measurements based on the diffusion dynamics of the suspended bodies.

  20. Accuracy of Prehospital Intravenous Fluid Volume Measurement by Emergency Medical Services.

    PubMed

    Coppler, Patrick J; Padmanabhan, Rajagopala; Martin-Gill, Christian; Callaway, Clifton W; Yealy, Donald M; Seymour, Christopher W

    2016-01-01

    Prehospital treatment protocols call for intravenous (IV) fluid for patients with shock, yet the measurement accuracy of administered fluid volume is unknown. The purpose of the current study was to assess the accuracy of documented and self-reported fluid volumes administered to medical patients by paramedics during prehospital care. We conducted a pilot, observational study nested within a parent cohort study of prehospital biomarkers in a single EMS agency transporting patients to a tertiary care hospital in Pittsburgh, Pennsylvania over 8 months. Among eligible nontrauma, noncardiac arrest patients, we studied the self-reported IV fluid volume on ED arrival by paramedics, documented fluid volume in the EMS record, and compared those to the mass-derived fluid volume. We quantified the absolute error between methods, and determined EMS transport times or initial prehospital systolic blood pressure had any effect on error. We enrolled 50 patients who received prehospital IV fluid and had mass-derived fluid volume measured at ED arrival. Of these, 21 (42%) patients had IV fluid volume subsequently documented in EMS records. The median mass-derived fluid volume was 393 mL [IQR: 264-618 mL]. Mass-derived volume was similar for subjects who did (386 mL, IQR: 271-642 mL) or did not (399 mL, IQR: 253-602) have documented fluid administration (p > 0.05). The median self-reported fluid volume was 250 mL [IQR: 150-500 mL] and did not differ by documentation (p > 0.05). The median absolute error comparing self-reported to mass-derived fluid volume was 109 mL [IQR: 41-205 mL], and less than 250 mL in more than 80% of subjects. The median absolute error comparing documented fluid to mass-derived fluid volume was 142 mL [IQR: 64-265 mL], and was less than 250 mL in 71% of subjects. No difference in absolute error for either self-reported or document fluid volumes were modified by transport time or prehospital systolic blood pressure. Prehospital IV fluid administration is

  1. Fluid-loading solutions and plasma volume: Astro-ade and salt tablets with water

    NASA Technical Reports Server (NTRS)

    Fortney, Suzanne M.; Seinmann, Laura; Young, Joan A.; Hoskin, Cherylynn N.; Barrows, Linda H.

    1994-01-01

    Fluid loading with salt and water is a countermeasure used after space flight to restore body fluids. However, gastrointestinal side effects have been frequently reported in persons taking similar quantities of salt and water in ground-based studies. The effectiveness of the Shuttle fluid-loading countermeasure (8 gms salt, 0.97 liters of water) was compared to Astro-ade (an isotonic electrolyte solution), to maintain plasma volume (PV) during 4.5 hrs of resting fluid restriction. Three groups of healthy men (n=6) were studied: a Control Group (no drinking), an Astro-ade Group, and a Salt Tablet Group. Changes in PV after drinking were calculated from hematocrit and hemoglobin values. Both the Salt Tablet and Astro-ade Groups maintained PV at 2-3 hours after ingestion compared to the Control Group, which had a 6 percent decline. Side effects (thirst, stomach cramping, and diarrhea) were noted in at least one subject in both the Astro-ade and Salt Tablet Groups. Nausea and vomiting were reported in one subject in the Salt Tablet Group. It was concluded that Astro-ade may be offered as an alternate fluid-loading countermeasure but further work is needed to develop a solution that is more palatable and has fewer side effects.

  2. Many-Body Effects on the Thermodynamics of Fluids, Mixtures, and Nanoconfined Fluids.

    PubMed

    Desgranges, Caroline; Delhommelle, Jerome

    2015-11-10

    Using expanded Wang-Landau simulations, we show that taking into account the many-body interactions results in sharp changes in the grand-canonical partition functions of single-component systems, binary mixtures, and nanoconfined fluids. The many-body contribution, modeled with a 3-body Axilrod-Teller-Muto term, results in shifts toward higher chemical potentials of the phase transitions from low-density phases to high-density phases and accounts for deviations of more than, e.g., 20% of the value of the partition function for a single-component liquid. Using the statistical mechanics formalism, we analyze how this contribution has a strong impact on some properties (e.g., pressure, coexisting densities, and enthalpy) and a moderate impact on others (e.g., Gibbs or Helmholtz free energies). We also characterize the effect of the 3-body terms on adsorption isotherms and adsorption thermodynamic properties, thereby providing a full picture of the effect of the 3-body contribution on the thermodynamics of nanoconfined fluids.

  3. Cardiovascular and Body Fluid Adjustments During Bed Rest and Space Flight

    NASA Technical Reports Server (NTRS)

    Greenleaf, John E.; Tomko, David L. (Technical Monitor)

    1995-01-01

    Although a few scientific bed rest (BR) studies were conducted soon after World War II, advent of the space program provided impetus for utilizing prolonged (days-months) BR, which employed the horizontal or 6 degree head-down tilt (HDT) body positions, to simulate responses of healthy people to microgravity. Shorter (hours) HDT protocols were used to study initial mechanisms of the acclimation-deconditioning (reduction of physical fitness) syndromes. Of the major physiological factors modified during BR, reduced force on bones, ligaments, and muscles, and greatly reduced hydrostatic pressure within the cardiovascular system, the latter: which involves shifts of blood from the lower extremities into the upper body, increase in central venous pressure, and diuresis, appears to be the initial stimulus for acclimation. Increase in central venous pressure occurs in subjects during weightless parabolic flight, but not in astronauts early during orbital flight. But significant reduction in total body water (hypohydration) and plasma volume (hypovolemia) occurs in subjects during both BR and microgravity. Response of interstitial fluid volume is not as clear, It has been reported to increase during BR, and it may have increased in Skylab II and IV astronauts. Reduction of total body water, and greater proportional reduction of extracellular volume, indicates increased cellular volume which may contribute to inflight cephalic edema. Cerebral pressure abates after a few days of HDT, but not during flight. accompanied by normal (eugravity) blood constituent concentrations suggesting some degree of acclimation had occurred. But during reentry, with moderately increased +Gz (head-to-foot) acceleration and gravitational force, the microgravity "euhydration" becomes functional progressive dehydration contributing to the general reentry syndrome (GRS) which, upon landing the Shuttle, can and often results in gastrointestinal distress, disorientation, vertigo, fatigue, and

  4. Cardiovascular and Body Fluid Adjustments During Bed Rest and Space Flight

    NASA Technical Reports Server (NTRS)

    Greenleaf, John E.; Tomko, David L. (Technical Monitor)

    1995-01-01

    Although a few scientific bed rest (BR) studies were conducted soon after World War II, advent of the space program provided impetus for utilizing prolonged (days-months) BR, which employed the horizontal or 6 degree head-down tilt (HDT) body positions, to simulate responses of healthy people to microgravity. Shorter (hours) HDT protocols were used to study initial mechanisms of the acclimation-deconditioning (reduction of physical fitness) syndromes. Of the major physiological factors modified during BR, reduced force on bones, ligaments, and muscles, and greatly reduced hydrostatic pressure within the cardiovascular system, the latter: which involves shifts of blood from the lower extremities into the upper body, increase in central venous pressure, and diuresis, appears to be the initial stimulus for acclimation. Increase in central venous pressure occurs in subjects during weightless parabolic flight, but not in astronauts early during orbital flight. But significant reduction in total body water (hypohydration) and plasma volume (hypovolemia) occurs in subjects during both BR and microgravity. Response of interstitial fluid volume is not as clear, It has been reported to increase during BR, and it may have increased in Skylab II and IV astronauts. Reduction of total body water, and greater proportional reduction of extracellular volume, indicates increased cellular volume which may contribute to inflight cephalic edema. Cerebral pressure abates after a few days of HDT, but not during flight. accompanied by normal (eugravity) blood constituent concentrations suggesting some degree of acclimation had occurred. But during reentry, with moderately increased +Gz (head-to-foot) acceleration and gravitational force, the microgravity "euhydration" becomes functional progressive dehydration contributing to the general reentry syndrome (GRS) which, upon landing the Shuttle, can and often results in gastrointestinal distress, disorientation, vertigo, fatigue, and

  5. A Lumped-Parameter Subject-Specific Model of Blood Volume Response to Fluid Infusion

    PubMed Central

    Bighamian, Ramin; Reisner, Andrew T.; Hahn, Jin-Oh

    2016-01-01

    This paper presents a lumped-parameter model that can reproduce blood volume response to fluid infusion. The model represents the fluid shift between the intravascular and interstitial compartments as the output of a hypothetical feedback controller that regulates the ratio between the volume changes in the intravascular and interstitial fluid at a target value (called “target volume ratio”). The model is characterized by only three parameters: the target volume ratio, feedback gain (specifying the speed of fluid shift), and initial blood volume. This model can obviate the need to incorporate complex mechanisms involved in the fluid shift in reproducing blood volume response to fluid infusion. The ability of the model to reproduce real-world blood volume response to fluid infusion was evaluated by fitting it to a series of data reported in the literature. The model reproduced the data accurately with average error and root-mean-squared error (RMSE) of 0.6 and 9.5% across crystalloid and colloid fluids when normalized by the underlying responses. Further, the parameters derived for the model showed physiologically plausible behaviors. It was concluded that this simple model may accurately reproduce a variety of blood volume responses to fluid infusion throughout different physiological states by fitting three parameters to a given dataset. This offers a tool that can quantify the fluid shift in a dataset given the measured fractional blood volumes. PMID:27642283

  6. Body fluid osmolality and tonicity in preterm infants.

    PubMed

    Semama, D S; Bouziane, M; Allaert, F A; Gouyon, J B

    2001-11-01

    In adult patients, a recent physiological approach for the osmoregulatory system based on body fluid tonicity (the so-called effective osmolality) seems to provide better information on water movements than does the classical body fluid osmolality. To evaluate whether plasma or urinary tonicities could give a better assessment of osmoregulation than plasma and urine osmolalities in sick preterm infants cared for in a NICU. A prospective study was conducted in 30 preterm infants (BW=1284+/-377 g; GA=28.8+/-1.7 weeks). Fifteen consecutive 8-h urine collections were performed for each infant from the 8th h of life (450 periods). A plasma sample was obtained at the end of each urine collection. Sodium, potassium, creatinine, osmolality and tonicity were measured or calculated in urine and blood samples as often as possible. Hypernatremia (PNa=146-149 mmol/l) was observed in seven infants (23.3%) and in 5.9% of the periods. Fifty-three percent of the infants and 20.4% of the periods presented with plasma hyperosmolality (>300 mosmol/kg H2O). The relationship between Posm and PNa was significant, but the clinical relevance was weak (r(2)=0.411; P<0.001). Plasma osmolality (Posm) positively correlated with urine osmolality (Uosm), but did not correlate significantly with CH2O/100 ml GFR. Plasma tonicity (2x(PNa+PK)) positively correlated with both urine tonicity (2x(UNa+UK)) and effective water clearance (EWC/100 ml GFR). On an individual basis, the linear relationship between urine and plasma osmolalities was significantly weaker than the relationship between urine and plasma tonicities. This study suggests that the calculation of plasma and urine tonicities allows a better assessment of water movements in body fluid compartments than plasma and urine osmolalities.

  7. Distribution of fluids in the body of the centrifuged rat

    NASA Technical Reports Server (NTRS)

    Pitts, G. C.

    1983-01-01

    The effects of exposure to an elevated g-level throughout the period of rapid growth is investigated in a comparison of a group of female Sprague-Dawley rats centrifuged as adults with other groups centrifuged for prolonged intervals starting shortly after weaning. The fluid-solid composition of total body, heart, liver, gut, skin, and muscle for both study groups is compared with that of a control group. None of the changes as a result of centrifugation were truly persistent. The only increases in mass associated with centrifugation and the only responses to centrifugation per se were observed in the skin values.

  8. Mast Cell Hyperplasia and Eosinophilia Induced by Ascaris Body Fluid

    PubMed Central

    Archer, G. T.; Binet, J.-L.

    1971-01-01

    Daily i.p. injections of dilute Ascaris body fluid into rats induced peritoneal eosinophilia and the formation of pin-point follicles in the omentum. The follicles comprised plasma cells, macrophages and fibroblasts together with large numbers of eosinophils and mast cells. Electron microscopy of eosinophils in the follicles revealed loss of cytoplasmic granules and numerous vesicular and tubular structures in the cytoplasm. The mast cells showed clear areas round the granules, suggesting dissolution of granule components. ImagesFigs. 4-6Figs. 7-8Figs. 13-14Figs. 9-10Figs. 1-3Figs. 11-12 PMID:5135540

  9. Volume-energy parameters for heat transfer to supercritical fluids

    NASA Technical Reports Server (NTRS)

    Kumakawa, A.; Niino, M.; Hendricks, R. C.; Giarratano, P. J.; Arp, V. D.

    1986-01-01

    Reduced Nusselt numbers of supercritical fluids from different sources were grouped by several volume-energy parameters. A modified bulk expansion parameter was introduced based on a comparative analysis of data scatter. Heat transfer experiments on liquefied methane were conducted under near-critical conditions in order to confirm the usefulness of the parameters. It was experimentally revealed that heat transfer characteristics of near-critical methane are similar to those of hydrogen. It was shown that the modified bulk expansion parameter and the Gibbs-energy parameter grouped the heat transfer data of hydrogen, oxygen and methane including the present data on near-critical methane. It was also indicated that the effects of surface roughness on heat transfer were very important in grouping the data of high Reynolds numbers.

  10. Instantaneous stroke volume in man during lower body negative pressure /LBNP/

    NASA Technical Reports Server (NTRS)

    Loeppky, J. A.; Richards, K. L.; Greene, E. R.; Eldridge, M. W.; Hoekenga, D. E.; Venters, M. D.; Luft, U. C.

    1982-01-01

    Results of an examination of the instantaneous time course of the stroke volume (SV) and cardiac output (Q) in response to the onset and release of -50 torr lower body negative pressure (LBNP) are reported. Six male subjects were sealed into a LBNP box up to the iliac crest while being monitored by echocardiograph for centerlamina blood velocity, fluid displacement, stroke volume, heart rate, and leg volume. Particular use was made of pulsed ultrasonic Doppler velocity meters for measuring the blood velocities and flow dynamics. Measurements were made of the subjects continuously beginning from 20 sec prior to and one min after LBNP onset and release. A linear fall in the SV was observed with LBNP at 49% of the baseline value after 33 sec. A 62% drop, the lowest, was detected after 8 min of LBNP. The leg volume was inversely related to Q for the duration of the experiment.

  11. Instantaneous stroke volume in man during lower body negative pressure /LBNP/

    NASA Technical Reports Server (NTRS)

    Loeppky, J. A.; Richards, K. L.; Greene, E. R.; Eldridge, M. W.; Hoekenga, D. E.; Venters, M. D.; Luft, U. C.

    1982-01-01

    Results of an examination of the instantaneous time course of the stroke volume (SV) and cardiac output (Q) in response to the onset and release of -50 torr lower body negative pressure (LBNP) are reported. Six male subjects were sealed into a LBNP box up to the iliac crest while being monitored by echocardiograph for centerlamina blood velocity, fluid displacement, stroke volume, heart rate, and leg volume. Particular use was made of pulsed ultrasonic Doppler velocity meters for measuring the blood velocities and flow dynamics. Measurements were made of the subjects continuously beginning from 20 sec prior to and one min after LBNP onset and release. A linear fall in the SV was observed with LBNP at 49% of the baseline value after 33 sec. A 62% drop, the lowest, was detected after 8 min of LBNP. The leg volume was inversely related to Q for the duration of the experiment.

  12. Alterations in body fluid content can be detected by bioelectrical impedance analysis.

    PubMed

    Scheltinga, M R; Jacobs, D O; Kimbrough, T D; Wilmore, D W

    1991-05-01

    The electrical resistance across the whole body and its segments to the conduction of a weak alternating current was determined in human subjects under three different conditions: (1) during bed rest, (2) during infusion of 1 liter of saline, and (3) during donation of 1 unit of blood. During bed rest, extracellular and total body water were measured by dilution of bromide and heavy water, respectively. Electrical resistance obtained from electrodes placed on proximal portions of extremities ("proximal resistance") accounted for less than 50% of that determined by electrodes positioned on routinely used portions of a hand and foot ("whole body resistance"). Following saline infusion, resistance determined from the whole body and all its segments fell (P less than 0.001); the magnitude of the drop in both proximal and whole body resistance was inversely related to the volume of total body water (TBW) (r = -0.82, P less than 0.002, and r = -0.73, P less than 0.01, respectively). In contrast, blood donation was associated with significantly increased resistance at both measurement sites. TBW predicted from anthropometrics was inversely related to both proximal (r = -0.90, P less than 0.001) and whole body resistance (r = -0.75, P less than 0.001). Bioelectrical impedance analysis is a simple technique which may be useful in monitoring minimal alterations in TBW. Furthermore, altered fluid status may be predicted more accurately by changes in proximal resistance compared to changes in traditionally used whole body resistance.

  13. Fluid mechanics experiments in oscillatory flow. Volume 1: Report

    NASA Technical Reports Server (NTRS)

    Seume, J.; Friedman, G.; Simon, T. W.

    1992-01-01

    Results of a fluid mechanics measurement program in oscillating flow within a circular duct are presented. The program began with a survey of transition behavior over a range of oscillation frequency and magnitude and continued with a detailed study at a single operating point. Such measurements were made in support of Stirling engine development. Values of three dimensionless parameters, Re(sub max), Re(sub w), and A(sub R), embody the velocity amplitude, frequency of oscillation and mean fluid displacement of the cycle, respectively. Measurements were first made over a range of these parameters which included operating points of all Stirling engines. Next, a case was studied with values of these parameters that are representative of the heat exchanger tubes in the heater section of NASA's Stirling cycle Space Power Research Engine (SPRE). Measurements were taken of the axial and radial components of ensemble-averaged velocity and rms-velocity fluctuation and the dominant Reynolds shear stress, at various radial positions for each of four axial stations. In each run, transition from laminar to turbulent flow, and its reverse, were identified and sufficient data was gathered to propose the transition mechanism. Models of laminar and turbulent boundary layers were used to process the data into wall coordinates and to evaluate skin friction coefficients. Such data aids in validating computational models and is useful in comparing oscillatory flow characteristics to those of fully-developed steady flow. Data were taken with a contoured entry to each end of the test section and with flush square inlets so that the effects of test section inlet geometry on transition and turbulence are documented. Volume 1 contains the text of the report including figures and supporting appendices. Volume 2 contains data reduction program listings and tabulated data (including its graphical presentation).

  14. Fluid mechanics experiments in oscillatory flow. Volume 2: Tabulated data

    NASA Technical Reports Server (NTRS)

    Seume, J.; Friedman, G.; Simon, T. W.

    1992-01-01

    Results of a fluid mechanics measurement program in oscillating flow within a circular duct are presented. The program began with a survey of transition behavior over a range of oscillation frequency and magnitude and continued with a detailed study at a single operating point. Such measurements were made in support of Stirling engine development. Values of three dimensionless parameters, Re sub max, Re sub w, and A sub R, embody the velocity amplitude, frequency of oscillation, and mean fluid displacement of the cycle, respectively. Measurements were first made over a range of these parameters that are representative of the heat exchanger tubes in the heater section of NASA's Stirling cycle Space Power Research Engine (SPRE). Measurements were taken of the axial and radial components of ensemble-averaged velocity and rms velocity fluctuation and the dominant Reynolds shear stress, at various radial positions for each of four axial stations. In each run, transition from laminar to turbulent flow, and its reverse, were identified and sufficient data was gathered to propose the transition mechanism. Volume 2 contains data reduction program listings and tabulated data (including its graphics).

  15. A finite volume method for fluctuating hydrodynamics of simple fluids

    NASA Astrophysics Data System (ADS)

    Narayanan, Kiran; Samtaney, Ravi; Moran, Brian

    2015-11-01

    Fluctuating hydrodynamics accounts for stochastic effects that arise at mesoscopic and macroscopic scales. We present a finite volume method for numerical solutions of the fluctuating compressible Navier Stokes equations. Case studies for simple fluids are demonstrated via the use of two different equations of state (EOS) : a perfect gas EOS, and a Lennard-Jones EOS for liquid argon developed by Johnson et al. (Mol. Phys. 1993). We extend the fourth order conservative finite volume scheme originally developed by McCorquodale and Colella (Comm. in App. Math. & Comput. Sci. 2011), to evaluate the deterministic and stochastic fluxes. The expressions for the cell-centered discretizations of the stochastic shear stress and stochastic heat flux are adopted from Espanol, P (Physica A. 1998), where the discretizations were shown to satisfy the fluctuation-dissipation theorem. A third order Runge-Kutta scheme with weights proposed by Delong et al. (Phy. Rev. E. 2013) is used for the numerical time integration. Accuracy of the proposed scheme will be demonstrated. Comparisons of the numerical solution against theory for a perfect gas as well as liquid argon will be presented. Regularizations of the stochastic fluxes in the limit of zero mesh sizes will be discussed. Supported by KAUST Baseline Research Funds.

  16. The "chloride theory", a unifying hypothesis for renal handling and body fluid distribution in heart failure pathophysiology.

    PubMed

    Kataoka, Hajime

    2017-07-01

    Body fluid volume regulation is a complex process involving the interaction of various afferent (sensory) and neurohumoral efferent (effector) mechanisms. Historically, most studies focused on the body fluid dynamics in heart failure (HF) status through control of the balance of sodium, potassium, and water in the body, and maintaining arterial circulatory integrity is central to a unifying hypothesis of body fluid regulation in HF pathophysiology. The pathophysiologic background of the biochemical determinants of vascular volume in HF status, however, has not been known. I recently demonstrated that changes in vascular and red blood cell volumes are independently associated with the serum chloride concentration, but not the serum sodium concentration, during worsening HF and its recovery. Based on these observations and the established central role of chloride in the renin-angiotensin-aldosterone system, I propose a unifying hypothesis of the "chloride theory" for HF pathophysiology, which states that changes in the serum chloride concentration are the primary determinant of changes in plasma volume and the renin-angiotensin-aldosterone system under worsening HF and therapeutic resolution of worsening HF. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Two-body density matrix of a normal Fermi fluid

    NASA Astrophysics Data System (ADS)

    Ristig, M. L.; Clark, J. W.

    1990-05-01

    The microscopic study of the two-body density matrix ρ2(r1,r2,r'1,r'2) initiated for uniform Bose fluids in an earlier paper is continued for the Fermi case. We present formal results on the structure of the generalized momentum distribution n(p,q)=Σk⁁<Ψ\\|a†k⁁+qa†p⁁-qap⁁ak⁁\\|Ψ>, and its Fourier inverse ρ2(r1,r2,r'1,r2)≡ρ2(r1,r2,r'1), based on a variational ground-state wave function of Jastrow-Slater form. The structural relations are inferred from the cluster expansions of these objects, from the asymptotic condition relating ρ2(r1,r2,r'1) to the particle density and the one-body density matrix ρ1(r1,r'1), and from formal diagrammatic connections with the Bose problem. The two-body density-matrix elements ρ2(r1,r2,r'1) are thereby expressed in closed form in terms of certain sums of irreducible cluster diagrams. Some of these diagram sums are familiar from the analogous theory of the one-body density matrix; all can be evaluated quantitatively by solving a set of Fermi-hypernetted-chain (FHNC) equations. Upon invoking the sequential relation between ρ2(r1,r2,r'1) and ρ1(r1,r'1), the corresponding result for the generalized momentum distribution n(p,q) effects a resolution into contributions from various scattering processes occurring in the many-body medium, specified by form factors that are susceptible to FHNC evaluation. This decomposition is comparable to that derived earlier for the Bose-fluid ground state but is complicated by contributions from exchange scattering and by a dynamically dressed Pauli kinematic correction. Silver has proposed a simple expression for the generalized momentum distribution n(p,q), a function which plays an essential role in his theory of final-state effects in deep-inelastic neutron scattering from the helium liquids. Based on the present microscopic treatment, the quality of Silver's estimate is assessed for the case of normal liquid He3, by evaluating the necessary distribution

  18. Large capacity in man for effective plasma volume control in hypovolaemia via fluid transfer from tissue to blood.

    PubMed

    Lundvall, J; Länne, T

    1989-12-01

    Compensatory absorption of extravascular fluid from skeletal muscle and skin into the circulation in response to experimental hypovolaemia was studied by plethysmographic technique in the upper arm of man. Lower body negative pressure (LBNP) of 90 cmH2O, applied for 10 min, served to produce rapid and prominent hypovolaemic stress as indicated by prompt decrease in central blood volume (external recording of [99Tcm]erythrocyte activity) followed by marked tachycardia. The arm concomitantly showed an initial mobilization of regional blood, an increased vascular resistance, and a continuous net transcapillary fluid absorption, i.e. similar responses as reported in animals upon haemorrhage. The absorption of extravascular fluid, validated by simultaneous analyses of changes in tissue volume and in regional blood volume [99Tcm]erythrocyte activity), was rapid and averaged 0.13 ml min-1 100 ml-1 soft tissue during the 10 min of LBNP exposure. In some subjects with symptoms and signs of pronounced circulatory stress fluid was transferred twice as fast. Separate experiments indicated that the rapid fluid flux was causally linked to the existence in the studied tissue of a large transcapillary hydraulic conductance. It is concluded that man possesses a surprisingly great capacity for compensatory circulatory refill via fluid transfer from tissue to blood. The data in fact suggest that in true states of hypovolaemia as much as 500 ml might be gained into the circulation in only 10 min.

  19. Bioimpedance Identifies Body Fluid Loss after Exercise in the Heat: A Pilot Study with Body Cooling

    PubMed Central

    Gatterer, Hannes; Schenk, Kai; Laninschegg, Lisa; Schlemmer, Philipp; Lukaski, Henry; Burtscher, Martin

    2014-01-01

    Purpose Assessment of post-exercise changes in hydration with bioimpedance (BI) is complicated by physiological adaptations that affect resistance (R) and reactance (Xc) values. This study investigated exercise-induced changes in R and Xc, independently and in bioelectrical impedance vector analysis, when factors such as increased skin temperature and blood flow and surface electrolyte accumulation are eliminated with a cold shower. Methods Healthy males (n = 14, 24.1±1.7 yr; height (H): 182.4±5.6 cm, body mass: 72.3±6.3 kg) exercised for 1 hr at a self-rated intensity (15 BORG) in an environmental chamber (33°C and 50% relative humidity), then had a cold shower (15 min). Before the run BI, body mass, hematocrit and Posm were measured. After the shower body mass was measured; BI measurements were performed continuously every 20 minutes until R reached a stable level, then hematocrit and Posm were measured again. Results Compared to pre-trial measurements body mass decreased after the run and Posm, Hct, R/H and Xc/H increased (p<0.05) with a corresponding lengthening of the impedance vector along the major axis of the tolerance ellipse (p<0.001). Changes in Posm were negatively related to changes in body mass (r = −0.564, p = 0.036) and changes in Xc/H (r = −0.577, p = 0.041). Conclusions Present findings showed that after a bout of exercise-induced dehydration followed by cold shower the impedance vector lengthened that indicates fluid loss. Additionally, BI values might be useful to evaluate fluid shifts between compartments as lower intracellular fluid loss (changed Xc/R) indicated greater Posm increase. PMID:25279660

  20. Bioimpedance identifies body fluid loss after exercise in the heat: a pilot study with body cooling.

    PubMed

    Gatterer, Hannes; Schenk, Kai; Laninschegg, Lisa; Schlemmer, Philipp; Lukaski, Henry; Burtscher, Martin

    2014-01-01

    Assessment of post-exercise changes in hydration with bioimpedance (BI) is complicated by physiological adaptations that affect resistance (R) and reactance (Xc) values. This study investigated exercise-induced changes in R and Xc, independently and in bioelectrical impedance vector analysis, when factors such as increased skin temperature and blood flow and surface electrolyte accumulation are eliminated with a cold shower. Healthy males (n = 14, 24.1±1.7 yr; height (H): 182.4±5.6 cm, body mass: 72.3±6.3 kg) exercised for 1 hr at a self-rated intensity (15 BORG) in an environmental chamber (33°C and 50% relative humidity), then had a cold shower (15 min). Before the run BI, body mass, hematocrit and Posm were measured. After the shower body mass was measured; BI measurements were performed continuously every 20 minutes until R reached a stable level, then hematocrit and Posm were measured again. Compared to pre-trial measurements body mass decreased after the run and Posm, Hct, R/H and Xc/H increased (p<0.05) with a corresponding lengthening of the impedance vector along the major axis of the tolerance ellipse (p<0.001). Changes in Posm were negatively related to changes in body mass (r = -0.564, p = 0.036) and changes in Xc/H (r = -0.577, p = 0.041). Present findings showed that after a bout of exercise-induced dehydration followed by cold shower the impedance vector lengthened that indicates fluid loss. Additionally, BI values might be useful to evaluate fluid shifts between compartments as lower intracellular fluid loss (changed Xc/R) indicated greater Posm increase.

  1. Role for Lower Extremity Interstitial Fluid Volume Changes in the Development of Orthostasis after Simulated Microgravity

    NASA Technical Reports Server (NTRS)

    Platts, Steven H.; Summers, Richard L.; Martin, David S.; Meck, Janice V.; Coleman, Thomas G.

    2007-01-01

    vein diameter and stroke volume upon tilting in contrast to the observations made before bed rest (54 vs 23% respectively). Compliance in the calf increased by an average of 36% by day 27 of bedrest. A systems analysis using a computer model of cardiovascular physiology suggests that microgravity induced interstitial volume depletion results in an accentuation of venous blood volume sequestration and is the initiating event in reentry orthostasis. This hypothesis was tested in volunteer subjects using a ground-based spaceflight analog model that simulated the body fluid redistribution induced by microgravity exposure. Measurements of changes in the interstitial spaces and observed responses of the anterior tibial vein with tilt, together with the increase in calf compliance, were consistent with our proposed mechanism for the initiation of postflight orthostasis often seen in astronauts.

  2. A fast algorithm for body extraction in CT volumes

    NASA Astrophysics Data System (ADS)

    Guétat, Grégoire; Stoeckel, Jonathan; Wolf, Matthias; Krishnan, Arun

    2006-03-01

    The Computed Tomography (CT) modality shows not only the body of the patient in the volumes it generates, but also the clothing, the cushion and the table. This might be a problem especially for two applications. The first is 3D visualization, where the table has high density parts that might hide regions of interest. The second is registration of acquisitions obtained at different time points; indeed, the table and cushions might be visible in one data set only, and their positions and shapes may vary, making the registration less accurate. An automatic approach for extracting the body would solve those problems. It should be robust, reliable, and fast. We therefore propose a multi-scale method based on deformable models. The idea is to move a surface across the image that attaches to the boundaries of the body. We iteratively compute forces which take into account local information around the surface. Those make it move through the table but ensure that it stops when coming close to the body. Our model has elastic properties; moreover, we take into account the fact that some regions in the volume convey more information than others by giving them more weight. This is done by using normalized convolution when regularizing the surface. The algorithm*, tested on a database of over a hundred volumes of whole body, chest or lower abdomen, has proven to be very efficient, even for volumes with up to 900 slices, providing accurate results in an average time of 6 seconds. It is also robust against noise and variations of scale and table's shape.

  3. Assessment of body volume using three-dimensional photonic scanning.

    PubMed

    Wells, J C; Douros, I; Fuller, N J; Elia, M; Dekker, L

    2000-05-01

    Measurement of body volume (BV) can be used to estimate body composition using two- or multicomponent models. The traditional approach, underwater weighing (UWW), is awkward and unsuitable for many subjects. A newer alternative, whole body air displacement plethysmography (ADP), is less demanding but still unsuitable for young children, who may not remain still during the measurement. We have, therefore, considered whether a novel approach, three-dimensional photonic scanning, is a viable alternative. Duplicate measurements of body volume were obtained in 22 adults (11 of each sex; mean [SD] BMI, 21.8 [2.5] kg/m2) by UWW, ADP, and a Hamamatsu Bodyline Scanner (HBS) (Hamamatsu, Japan). Subjects wore a tight-fitting swimming costume for all three measurements, which were performed within one day of each other. Scans lasted 10 seconds, with the subject standing in a predefined position. The body surface skin was reconstructed using a B-spline-fitting model. In UWW, lung volume (LV) was measured simultaneously with underwater weight. In ADP and HBS, LV was predicted from weight and height. Results were compared using correlation and Bland and Altman analysis. Correlation analysis indicated that the scanner successfully ranked subjects in terms of BV. However, Bland and Altman analysis demonstrated that, relative to both UWW and ADP, HBS measured BV without bias but with limits of agreement between individuals of > 2 liters, equivalent to approximately 20% fat. Scan precision was 0.57 liter, or 4.1% fat. Although HBS cannot yet measure BV with sufficient accuracy to predict fatness, much of the error is probably due to difficulties in standardizing LV during the scan. Simultaneous measurement of LV with volume by HBS is expected to improve limits of agreement substantially. Occlusion is also an important source of error. The method offers many advantages over alternative techniques, because the measurement is brief, noninvasive, and suitable for repeat measurements.

  4. Casimir microsphere diclusters and three-body effects in fluids

    SciTech Connect

    Varela, Jaime; McCauley, Alexander P.; Rodriguez, Alejandro W.; Johnson, Steven G.

    2011-04-15

    Our previous paper [Phys. Rev. Lett. 104, 060401 (2010)] predicted that Casimir forces induced by the material-dispersion properties of certain dielectrics can give rise to stable configurations of objects. This phenomenon was illustrated via a dicluster configuration of nontouching objects consisting of two spheres immersed in a fluid and suspended against gravity above a plate. Here, we examine these predictions from the perspective of a practical experiment and consider the influence of nonadditive, three-body, and nonzero-temperature effects on the stability of the two spheres. We conclude that the presence of Brownian motion reduces the set of experimentally realizable silicon-teflon spherical diclusters to those consisting of layered microspheres, such as the hollow core (spherical shells) considered here.

  5. Trace elements in human body fluids and tissues.

    PubMed

    Versieck, J

    1985-01-01

    Published figures for trace element concentrations in body fluids and tissues of apparently healthy subjects are widely divergent. For a considerable time, the apparent disparities were readily ascribed to biological sources of variation such as age, sex, dietary habits, physiological conditions, environmental exposure, geographical circumstances, or similar influences. Growing evidence, however, suggests that this interpretation may be seriously questioned in numerous instances. First, values obtained in reference materials leave no doubt that some previous studies must have been subject to gross analytical inaccuracies. Second, it has now been thoroughly documented that inadequate sample collection and manipulation may drastically distort the intrinsic trace element content of biological matrices. This review scrutinizes data reported by a number of investigators. In an effort to settle the currently flourishing confusion, critically selected reference values are set forth for trace element levels in human blood plasma or serum, packed blood cells, urine, lung, liver, kidney, and skeletal muscle tissue.

  6. Optimization of Unsteady Fluid-Body Interactions via Machine Learning

    NASA Astrophysics Data System (ADS)

    Roberts, John; Moret, Lionel; Zhang, Jun; Tedrake, Russ

    2008-11-01

    Optimization of the interactions between a moving body and its surrounding fluid can be extremely complicated; even optimization on simple models can be tremendously computationally expensive. In this work we demonstrate that using a state-of-art machine learning algorithm we are able to efficiently optimize a flapping strokeform for energy efficiency entirely on a laboratory experimental system (i.e., without the use of any simulation). The learning is performed in real-time on a vertically heaving wing that is free to rotate about its center in the horizontal plane as a model of forward flapping flight (Re˜30,000). The learning algorithm must contend with the stochasticity and long-term correlations inherent in its being run online and on an experimental system. Despite these difficulties, we demonstrate its success at learning using several wing forms, where it is able to optimize a strokeform in approximately 1,000 flaps (less than twenty minutes).

  7. Forensic miRNA: potential biomarker for body fluids?

    PubMed

    Silva, Sarah S; Lopes, Cátia; Teixeira, A L; Carneiro de Sousa, M J; Medeiros, R

    2015-01-01

    In forensic investigation, body fluids represent an important support to professionals when detected, collected and correctly identified. Through many years, various approaches were used, namely serology-based methodologies however, their lack of sensitivity and specificity became difficult to set aside. In order to sidetrack the problem, miRNA profiling surged with a real potential to be used to identify evidences like urine, blood, menstrual blood, saliva, semen and vaginal secretions. MiRNAs are small RNA structures with 20-25 nt whose proprieties makes them less prone to degradation processes when compared to mRNA which is extremely important once, in a crime scene, biological evidences might be exposed to several unfavorable environmental factors. Recently, published studies were able to identify some specific miRNAs, however their results were not always reproducible by others which can possibly be the reflection of different workflow strategies for their profiling studies. Given the current blast of interest in miRNAs, it is important to acknowledge potential limitations of miRNA profiling, yet, the lack of such studies are evident. This review pretends to gather all the information to date and assessed a multitude of factors that have a potential aptitude to discrediting miRNA profiling, such as: methodological approaches, environmental factors, physiological conditions, gender, pathologies and samples storage. It can be asserted that much has yet to be made, but we pretend to highlight a potential answer for the ultimate question: Can miRNA profiling be used as the forensic biomarker for body fluids identification?

  8. Persistence of Zika Virus in Body Fluids - Preliminary Report.

    PubMed

    Paz-Bailey, Gabriela; Rosenberg, Eli S; Doyle, Kate; Munoz-Jordan, Jorge; Santiago, Gilberto A; Klein, Liore; Perez-Padilla, Janice; Medina, Freddy A; Waterman, Stephen H; Gubern, Carlos Garcia; Alvarado, Luisa I; Sharp, Tyler M

    2017-02-14

    Background To estimate the frequency and duration of detectable Zika virus (ZIKV) RNA in human body fluids, we prospectively assessed a cohort of newly infected participants in Puerto Rico. Methods We evaluated samples obtained from 150 participants (including 55 men) in whom ZIKV RNA was detected on reverse-transcriptase-polymerase-chain-reaction (RT-PCR) assay in urine or blood in an enhanced arboviral clinical surveillance site. We collected serum, urine, saliva, semen, and vaginal secretions weekly for the first month and then at 2, 4, and 6 months. All specimens were tested by means of RT-PCR, and serum was tested with the use of anti-ZIKV IgM enzyme-linked immunosorbent assay. Among the participants with ZIKV RNA in any specimen at week 4, biweekly collection continued until all specimens tested negative. We used parametric Weibull regression models to estimate the time until the loss of ZIKV RNA detection in each body fluid and reported the findings in medians and 95th percentiles. Results The medians and 95th percentiles for the time until the loss of ZIKV RNA detection were 14 days (95% confidence interval [CI], 11 to 17) and 54 days (95% CI, 43 to 64), respectively, in serum; 8 days (95% CI, 6 to 10) and 39 days (95% CI, 31 to 47) in urine; and 34 days (95% CI, 28 to 41) and 81 days (95% CI, 64 to 98) in semen. Few participants had detectable ZIKV RNA in saliva or vaginal secretions. Conclusions The prolonged time until ZIKV RNA clearance in serum in this study may have implications for the diagnosis and prevention of ZIKV infection. Current sexual-prevention guidelines recommend that men use condoms or abstain from sex for 6 months after ZIKV exposure; in 95% of the men in this study, ZIKV RNA was cleared from semen after about 3 months. (Funded by the Centers for Disease Control and Prevention.).

  9. Fluid Volume Overload and Congestion in Heart Failure: Time to Reconsider Pathophysiology and How Volume Is Assessed.

    PubMed

    Miller, Wayne L

    2016-08-01

    Volume regulation, assessment, and management remain basic issues in patients with heart failure. The discussion presented here is directed at opening a reassessment of the pathophysiology of congestion in congestive heart failure and the methods by which we determine volume overload status. Peer-reviewed historical and contemporary literatures are reviewed. Volume overload and fluid congestion remain primary issues for patients with chronic heart failure. The pathophysiology is complex, and the simple concept of intravascular fluid accumulation is not adequate. The dynamics of interstitial and intravascular fluid compartment interactions and fluid redistribution from venous splanchnic beds to central pulmonary circulation need to be taken into account in strategies of volume management. Clinical bedside evaluations and right heart hemodynamic assessments can alert clinicians of changes in volume status, but only the quantitative measurement of total blood volume can help identify the heterogeneity in plasma volume and red blood cell mass that are features of volume overload in patients with chronic heart failure and help guide individualized, appropriate therapy-not all volume overload is the same. © 2016 American Heart Association, Inc.

  10. Long-term blood pressure and metabolic effects of vasopressin with servo-controlled fluid volume.

    PubMed

    Cowley, A W; Merrill, D C; Quillen, E W; Skelton, M M

    1984-09-01

    Studies were performed in normal mongrel dogs (n = 8) to assess whether changes observed with chronic administration of vasopressin (AVP) were a result of direct actions of AVP or the consequence of changes in body fluid volume. AVP was infused continuously for 2 wk (0.36 ng X kg-1 X min-1 iv), while total body weight and body water (TBW) were maintained constant (+/- 50 g) using a servo-controlled system. A metabolic cage was mounted on sensitive force transducers for continuous monitoring of TBW. The summed voltage output of these transducers was used to servo control an intravenous infusion pump that adjusted the rate of water intake required for maintenance of a constant TBW. AVP infused under these conditions chronically increased plasma AVP levels from 2 to 22 pg/ml but resulted in no change of average 24-h mean arterial pressure, plasma sodium, or osmolality. Urine excretion decreased from 800 to 200 ml/day, whereas urine osmolality increased from 430 to 1,200 mosmol/kg and remained at these levels throughout the 2-wk AVP infusion. A net loss of 20 meq sodium occurred during the 1st day of AVP infusion but thereafter was unchanged. Plasma sodium and osmolality were unchanged from control during AVP infusions. We conclude that AVP-induced changes of arterial pressure, plasma sodium concentration and osmolality, renal escape, suppression of renin activity, and most of the observed natriuresis are events normally dependent on volume expansion.

  11. Effect of fluid and salt supplementation on body hydration of athletes during prolonged hypokinesia

    NASA Astrophysics Data System (ADS)

    Zorbas, Yan G.; Petrov, Kirill L.; Yarullin, Vladimir L.; Kakurin, Vassily J.; Popov, Vladimir K.; Deogeneov, Viktor A.

    Body hydration decreases significantly during hypokinesia (HK) (diminished movement), but little is known about the effect of fluid and salt supplements (FSS) on body hydration during HK. The aim of this study was to measure the effect of FSS on body hydration during HK. Studies were done during 30 days pre HK period and 364 days HK period. Thirty male athletes aged 24.5±6.6 yr were chosen as subjects. They were equally divided into three groups: unsupplemented ambulatory control subjects (UACS), unsupplemented hypokinetic subjects (UHKS) and supplemented hypokinetic subjects (SHKS). Hypokinetic subjects were limited to an average walking distance of 0.7 km day -1. The SHKS group took daily 30 ml of water/kg body weight and 0.1 g of sodium chloride (NaCl)/kg body weight. Control subjects experienced no changes in their professional training and routine daily activities. Plasma volume (PV), urinary and plasma sodium (Na) and potassium (K), plasma osmolality, plasma protein, whole blood hemoglobin (Hb) and hematocrit (Hct), plasma renin activity (PRA) plasma aldosterone (PA) levels, physical characteristics, food and fluid intakes were measured. Plasma osmolality, plasma protein, urinary and plasma Na and K, whole blood Hct and Hb, PRA and PA levels decreased significantly ( p⩽0.01), while PV and body weight increased significantly ( p⩽0.01) in the SHKS group when compared with the UHKS group and did not change when compared with the UACS group. Plasma osmolality, plasma protein, urinary and plasma Na and K, PRA and PA, whole blood Hb and Hct levels increased significantly ( p⩽0.01), while PV body weight, food and fluid intakes decreased significantly ( p⩽0.01) in UHKS group when compared with the SHKS and UACS groups. The measured parameters did not change in the UACS group when compared with their baseline control values. It was shown that during HK body hydration decreased significantly, while during HK and FSS body hydration increased significantly. It

  12. Influence of lung volume, fluid and capillary recruitment during positional changes and exercise on thoracic impedance in heart failure.

    PubMed

    Kim, Chul-Ho; Fuglestad, Matthew A; Richert, Maile L Ceridon; Shen, Win K; Johnson, Bruce D

    2014-10-01

    It is unclear how dynamic changes in pulmonary-capillary blood volume (Vc), alveolar lung volume (derived from end-inspiratory lung volume, EILV) and interstitial fluid (ratio of alveolar capillary membrane conductance and pulmonary capillary blood volume, Dm/Vc) influence lung impedance (Z(T)). The purpose of this study was to investigate if positional change and exercise result in increased EILV, Vc and/or lung interstitial fluid, and if Z(T) tracks these variables. 12 heart failure (HF) patients underwent measurements (Z(T), EILV, Vc/Dm) at rest in the upright and supine positions, during exercise and into recovery. Inspiratory capacity was obtained to provide consistent measures of EILV while assessing Z(T). Z(T) increased with lung volume during slow vital capacity maneuvers (p<0.05). Positional change (upright→supine) resulted in an increased Z(T) (p<0.01), while Vc increased and EILV and Dm/Vc decreased (p<0.05). Moreover, during exercise Vc and EILV increased and Dm/Vc decreased (p<0.05), whereas, Z(T) did not change significantly (p>0.05). Impedance appears sensitive to changes in lung volume and body position which appear to generally overwhelm small acute changes in lung fluid when assed dynamically at rest or during exercise. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. MEASUREMENT OF AIRWAY RESISTANCE WITH A VOLUME DISPLACEMENT BODY PLETHYSMOGRAPH,

    DTIC Science & Technology

    Airway resistance was measured with a volume displacement body plethysmograph in 40 normal subjects breathing at their spontaneous breathing rate...values of airway resistance obtained (1.26= 0.39 cm. H2O per liter per second) agree with those published by DuBois et al. and by other authors using...measurements of lung-tissue viscous resistance and inertance of the gas in the airways . (Author)

  14. Computational Fluid Dynamics Demonstration of Rigid Bodies in Motion

    NASA Technical Reports Server (NTRS)

    Camarena, Ernesto; Vu, Bruce T.

    2011-01-01

    The Design Analysis Branch (NE-Ml) at the Kennedy Space Center has not had the ability to accurately couple Rigid Body Dynamics (RBD) and Computational Fluid Dynamics (CFD). OVERFLOW-D is a flow solver that has been developed by NASA to have the capability to analyze and simulate dynamic motions with up to six Degrees of Freedom (6-DOF). Two simulations were prepared over the course of the internship to demonstrate 6DOF motion of rigid bodies under aerodynamic loading. The geometries in the simulations were based on a conceptual Space Launch System (SLS). The first simulation that was prepared and computed was the motion of a Solid Rocket Booster (SRB) as it separates from its core stage. To reduce computational time during the development of the simulation, only half of the physical domain with respect to the symmetry plane was simulated. Then a full solution was prepared and computed. The second simulation was a model of the SLS as it departs from a launch pad under a 20 knot crosswind. This simulation was reduced to Two Dimensions (2D) to reduce both preparation and computation time. By allowing 2-DOF for translations and 1-DOF for rotation, the simulation predicted unrealistic rotation. The simulation was then constrained to only allow translations.

  15. Spinning fluids reactor

    DOEpatents

    Miller, Jan D; Hupka, Jan; Aranowski, Robert

    2012-11-20

    A spinning fluids reactor, includes a reactor body (24) having a circular cross-section and a fluid contactor screen (26) within the reactor body (24). The fluid contactor screen (26) having a plurality of apertures and a circular cross-section concentric with the reactor body (24) for a length thus forming an inner volume (28) bound by the fluid contactor screen (26) and an outer volume (30) bound by the reactor body (24) and the fluid contactor screen (26). A primary inlet (20) can be operatively connected to the reactor body (24) and can be configured to produce flow-through first spinning flow of a first fluid within the inner volume (28). A secondary inlet (22) can similarly be operatively connected to the reactor body (24) and can be configured to produce a second flow of a second fluid within the outer volume (30) which is optionally spinning.

  16. Effects of regional hemoconcentration during LBNP on plasma volume determinations. [Lower Body Negative Pressure

    NASA Technical Reports Server (NTRS)

    Loeppky, J. A.; Kobayashi, Y.; Venters, M. D.; Luft, U. C.

    1979-01-01

    Blood samples were obtained from forearm vein or artery with indwelling cannula (1) before, (2) during the last min, and (3) about 2 min after lower body negative pressure (LBNP) in 16 experiments to determine whether plasma volume (PV) estimates were affected by regional hemoconcentration in the lower body. Total hemoglobin (THb) was estimated with the CO method prior to LBNP. Hemoglobin (Hb) and hematocrit (Hct) values from (2) gave only a 3% (87 ml) loss in PV due to LBNP, assuming no change in THb. However, Hb and Hct values from (3) showed an 11% loss in PV (313 ml). This 72% underestimation of PV loss with (2) must have resulted from the sequestration of blood and subsequent hemoconcentration in the lower body during LBNP. The effects of LBNP on PV should be estimated 1-3 min after exposure, after mixing but before extravascular fluid returns to the circulation.

  17. Microbial morphologies in cold fluid-generated geologic bodies

    NASA Astrophysics Data System (ADS)

    Barbieri, R.; Cavalazzi, B.

    Chemosynthetic-generated (non-hydrothermal) geological bodies abound on Earth since at least the Paleozoic and mostly derive from hydrocarbon gases such as methane, which is the main component of gas hydrates. Because of the abundance of hydrocarbons in the Solar System, it is likely that methane degassing, perhaps stored as hydrate, can occur in other planetary bodies apart from Earth. Similarly to what is described on Earth, where present and past chemoautotrophically-based communities belong to peculiar "island" ecosystems associated with methane or sulfide-rich fluids source, other planetary bodies (especially Mars) may have harbored extinct biota in such environments. This assumption is based on the independence of modern chemosynthetic biota from Earth-like ambient conditions, such as free oxygen and light, as well as the presence of microbial communities that are only sustained by the products of cold seepage. In cold seep-derived carbonate bodies from Morocco and Italy we have described microbial structures from different geologic age and environmental settings. Three-dimensional stromatolite structures, mineralized into iron oxides (hematite), are extensively recovered in recrystallized authigenic carbonates of Silurian age (Morocco), and are attributed to Beggiatoa-like colonies similar to those that abound in present-day areas with active hydrocarbon seepage. Well-preserved microbial structures in form of mucilage and three-dimensional webs have also been isolated from upper Tertiary, methane-derived carbonates (Italy). These structures are contained in cement phases that form irregular calcite layers partially filling voids and pre-existing gas conduits. They are interpreted as derived from anaerobic bacterial oxidation of methane, and a further evidence of anaerobic conditions is the abundance of pyrite of a probable bacterial sulfate-reduction derivation. Microbial morphologies of different nature can therefore be preserved and detected in mineral

  18. Does temporary socket removal affect residual limb fluid volume of trans-tibial amputees?

    PubMed Central

    Sanders, JE; Hartley, TL; Phillips, RH; Ciol, MA; Hafner, BJ; Allyn, KJ; Harrison, DS

    2015-01-01

    Background Lower-limb prosthesis users typically experience residual limb volume losses over the course of the day that can detrimentally affect socket fit. Objectives To determine if temporarily doffing the prosthesis encouraged residual limb fluid volume recovery and if the recovered fluid was maintained. Study Design Experimental design. Methods Residual limb fluid volume was monitored on sixteen participants in three test sessions each. Participants conducted six cycles of resting/standing/walking. Between the third and fourth cycles, participants sat for 30 minutes with the prosthesis and liner: donned (ON), the prosthesis doffed but the liner donned (LINER), or the prosthesis and liner doffed (OFF). Results Percentage fluid volume gain and retention were greatest for the OFF condition followed by the LINER condition. Participants experienced fluid volume losses for the ON condition. Conclusion Doffing the prosthesis and/or liner during rest improved residual limb fluid volume retention compared with leaving the prosthesis and liner donned. Clinical Relevance Practitioners should advise patients who undergo high daily limb volume losses to consider temporarily doffing their prosthesis. Fluid volume retention during subsequent activity will be highest if both the prosthesis and liner are doffed. PMID:25710944

  19. Regulation of intramembranous absorption and amniotic fluid volume by constituents in fetal sheep urine

    PubMed Central

    Jonker, Sonnet S.; Louey, Samantha; Cheung, Cecilia Y.; Brace, Robert A.

    2013-01-01

    Our objective was to test the hypothesis that fetal urine contains a substance(s) that regulates amniotic fluid volume by altering the rate of intramembranous absorption of amniotic fluid. In late gestation ovine fetuses, amniotic fluid volumes, urine, and lung liquid production rates, swallowed volumes and intramembranous volume and solute absorption rates were measured over 2-day periods under control conditions and when urine was removed and continuously replaced at an equal rate with exogenous fluid. Intramembranous volume absorption rate decreased by 40% when urine was replaced with lactated Ringer solution or lactated Ringer solution diluted 50% with water. Amniotic fluid volume doubled under both conditions. Analysis of the intramembranous sodium and chloride fluxes suggests that the active but not passive component of intramembranous volume absorption was altered by urine replacement, whereas both active and passive components of solute fluxes were altered. We conclude that fetal urine contains an unidentified substance(s) that stimulates active intramembranous transport of amniotic fluid across the amnion into the underlying fetal vasculature and thereby functions as a regulator of amniotic fluid volume. PMID:23824958

  20. Computational Fluid Dynamics of Whole-Body Aircraft

    NASA Astrophysics Data System (ADS)

    Agarwal, Ramesh

    1999-01-01

    The current state of the art in computational aerodynamics for whole-body aircraft flowfield simulations is described. Recent advances in geometry modeling, surface and volume grid generation, and flow simulation algorithms have led to accurate flowfield predictions for increasingly complex and realistic configurations. As a result, computational aerodynamics has emerged as a crucial enabling technology for the design and development of flight vehicles. Examples illustrating the current capability for the prediction of transport and fighter aircraft flowfields are presented. Unfortunately, accurate modeling of turbulence remains a major difficulty in the analysis of viscosity-dominated flows. In the future, inverse design methods, multidisciplinary design optimization methods, artificial intelligence technology, and massively parallel computer technology will be incorporated into computational aerodynamics, opening up greater opportunities for improved product design at substantially reduced costs.

  1. Pharmacokinetics and body fluid and endometrial concentrations of trimethoprim-sulfamethoxazole in mares.

    PubMed

    Brown, M P; Gronwall, R; Castro, L

    1988-06-01

    Six healthy adult mares were each given a single IV injection of trimethoprim (TMP)-sulfamethoxazole (SMZ) at a dosage of 2.5 mg of TMP/kg of body weight and 12.5 mg of SMZ/kg. Serum concentrations of each drug were measured serially over a 24-hour period. For TMP, the mean overall elimination rate constant (K) was 0.43/hr and the elimination half-life (t1/2) was 1.9 hours. The apparent volume of distribution (at steady state) was 1.62 L/kg and TMP clearance was 886 ml/hr/kg. For SMZ, K was 0.22/hr and t1/2 was 3.53 hours. The apparent volume of distribution at steady state was 0.33 L/kg and SMZ clearance was 78.2 ml/hr/kg. Each mare was then given 5 consecutive oral doses of TMP-SMZ at a rate of 2.5 mg of TMP/kg and 12.5 mg of SMZ/kg at 12-hour intervals. Trimethoprim and SMZ concentrations were measured in serum, synovial fluid, peritoneal fluid, CSF, urine, and endometrium. Although both mean TMP and SMZ serum concentrations were higher after the 5th dose than after the 1st dose, only the mean TMP concentration was significantly (P less than 0.05) different. After the 5th oral dose, concentrations of TMP and SMZ attained in body fluids (except CSF) and endometrial tissue were equal to or exceeded reported minimum inhibitory concentrations for Corynebacterium pseudotuberculosis, Staphylococcus sp, Streptococcus zooepidemicus, and several obligate anaerobes. Absorption of both drugs was variable after oral administration.

  2. Initial fluid resuscitation following adjusted body weight dosing is associated with improved mortality in obese patients with suspected septic shock.

    PubMed

    Taylor, Stephanie Parks; Karvetski, Colleen H; Templin, Megan A; Heffner, Alan C; Taylor, Brice T

    2017-08-15

    The optimal initial fluid resuscitation strategy for obese patients with septic shock is unknown. We evaluated fluid resuscitation strategies across BMI groups. Retrospective analysis of 4157 patients in a multicenter activation pathway for treatment of septic shock between 2014 and 2016. 1293 (31.3%) patients were obese (BMI≥30). Overall, higher BMI was associated with lower mortality, however this survival advantage was eliminated in adjusted analyses. Patients with higher BMI received significantly less fluid per kilogram at 3h than did patients with lower BMI (p≤0.001). In obese patients, fluid given at 3h mimicked a dosing strategy based on actual body weight (ABW) in 780 (72.2%), adjusted body weight (AdjBW) in 95 (8.8%), and ideal body weight (IBW) in 205 (19.0%). After adjusting for condition- and treatment-related variables, dosing based on AdjBW was associated with improved mortality compared to ABW (OR 0.45; 95% CI [0.19, 1.07]) and IBW (OR 0.29; 95% CI [0.11,0.74]). Using AdjBW to calculate initial fluid resuscitation volume for obese patients with suspected shock may improve outcomes compared to other weight-based dosing strategies. The optimal fluid dosing strategy for obese patients should be a focus of future prospective research. Copyright © 2017. Published by Elsevier Inc.

  3. Body fluid retention and body weight change in anorexia nervosa patients during refeeding.

    PubMed

    Rigaud, Daniel; Boulier, Alain; Tallonneau, Isabelle; Brindisi, Marie Claude; Rozen, Raymond

    2010-12-01

    Body weight gain is an important goal in anorexia nervosa (AN) patients, but inflation in body fluids could artificially increase body weight during refeeding. 42 malnourished adult AN patients were refed using a normal-sodium diet, then 176 other malnourished adult AN patients received a refeeding low-sodium diet (BMI of the 218 patients: 13.4 ± 1.9 kg/m(2)). Sodium balance, body composition by a 2-electrode impedance method (BIA, for assessment of total and extracellular water, fat-free mass, FFM), resting energy expenditure and energy intake were calculated. In the patients on normal-sodium diet, body weight, and total and extracellular water gains were higher than those of the low-sodium diet patients (P<0.01). Edema occurred more often in the former group (21% vs 6%; P<0.05). In almost all patients, BMI reached a plateau around 15-16 kg/m(2), then increased again. During this plateau, an increase in intracellular water and in "active FFM" was observed with BIA, together with a similar decrease in extracellular water. In AN patients, who are always afraid of gaining too much weight, in regard to their food intake, it will be useful to give a low-sodium diet until a 15-16 kg/m(2) BMI. This should be integrated into the cognitive behavioral therapy. Copyright © 2010 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  4. Dehydration, hemodynamics and fluid volume optimization after induction of general anesthesia

    PubMed Central

    Li, Yuhong; He, Rui; Ying, Xiaojiang; Hahn, Robert G

    2014-01-01

    OBJECTIVES: Fluid volume optimization guided by stroke volume measurements reduces complications of colorectal and high-risk surgeries. We studied whether dehydration or a strong hemodynamic response to general anesthesia increases the probability of fluid responsiveness before surgery begins. METHODS: Cardiac output, stroke volume, central venous pressure and arterial pressures were measured in 111 patients before general anesthesia (baseline), after induction and stepwise after three bolus infusions of 3 ml/kg of 6% hydroxyethyl starch 130/0.4 (n = 86) or Ringer's lactate (n = 25). A subgroup of 30 patients who received starch were preloaded with 500 ml of Ringer's lactate. Blood volume changes were estimated from the hemoglobin concentration and dehydration was estimated from evidence of renal water conservation in urine samples. RESULTS: Induction of anesthesia decreased the stroke volume to 62% of baseline (mean); administration of fluids restored this value to 84% (starch) and 68% (Ringer's). The optimized stroke volume index was clustered around 35-40 ml/m2/beat. Additional fluid boluses increased the stroke volume by ≥10% (a sign of fluid responsiveness) in patients with dehydration, as suggested by a low cardiac index and central venous pressure at baseline and by high urinary osmolality, creatinine concentration and specific gravity. Preloading and the hemodynamic response to induction did not correlate with fluid responsiveness. The blood volume expanded 2.3 (starch) and 1.8 (Ringer's) times over the infused volume. CONCLUSIONS: Fluid volume optimization did not induce a hyperkinetic state but ameliorated the decrease in stroke volume caused by anesthesia. Dehydration, but not the hemodynamic response to the induction, was correlated with fluid responsiveness. PMID:25627992

  5. Preliminary investigation of residual-limb fluid volume changes within one day

    PubMed Central

    Sanders, Joan E.; Allyn, Katheryn J.; Harrison, Daniel S.; Myers, Timothy R.; Ciol, Marcia A.; Tsai, Elaine C.

    2014-01-01

    The purpose of this research was to investigate rates of residual limb fluid volume change within a day on people with transtibial limb loss. Rates of fluid volume change during 30-minute test sessions of sitting, standing, and walking activities were measured twice a day on twelve regular prosthesis users, once in the morning and once in the afternoon, using bioimpedance analysis. Between test sessions all subjects consumed food and drink, and subject activity ranged from low to high. The rate of fluid volume change within sessions ranged from −8.5%/h to +5.9%/h with a median of −2.3%/h. The rate of fluid volume change between sessions ranged from −2.6%/h to 1.2%/h with a median of −1.0%/h. The between-session rate of fluid volume change was highly correlated with afternoon within-session rates of change (r=0.9) but not well-correlated with morning within-session rates of change (r=0.8). Subjects with peripheral arterial complications showed greater fluid volume loss rates during test sessions than between sessions. Rate of fluid volume change may be affected by sitting, standing, and walking activities; presence of peripheral arterial complications; being a female; time since amputation; and maintaining the socket without doffing for extended periods. PMID:23516051

  6. Current Applications of Chromatographic Methods in the Study of Human Body Fluids for Diagnosing Disorders.

    PubMed

    Jóźwik, Jagoda; Kałużna-Czaplińska, Joanna

    2016-01-01

    Currently, analysis of various human body fluids is one of the most essential and promising approaches to enable the discovery of biomarkers or pathophysiological mechanisms for disorders and diseases. Analysis of these fluids is challenging due to their complex composition and unique characteristics. Development of new analytical methods in this field has made it possible to analyze body fluids with higher selectivity, sensitivity, and precision. The composition and concentration of analytes in body fluids are most often determined by chromatography-based techniques. There is no doubt that proper use of knowledge that comes from a better understanding of the role of body fluids requires the cooperation of scientists of diverse specializations, including analytical chemists, biologists, and physicians. This article summarizes current knowledge about the application of different chromatographic methods in analyses of a wide range of compounds in human body fluids in order to diagnose certain diseases and disorders.

  7. Validation of the body fluid module on the new Sysmex XN-1000 for counting blood cells in cerebrospinal fluid and other body fluids.

    PubMed

    Fleming, Chérina; Brouwer, Rob; Lindemans, Jan; de Jonge, Robert

    2012-10-01

    We evaluated the body fluid (BF) module on the new Sysmex XN-1000 for counting blood cells. One hundred and eighty-seven BF samples [73 cerebrospinal fluid (CSF), 48 continuous ambulatory peritoneal dialysis (CAPD), 46 ascites, and 20 pleural fluid] were used for method comparison between the XN-1000 and manual microscopy (Fuchs-Rosenthal chamber and stained cytospin slides) for counting red blood cells (RBCs) and white blood cells (WBCs) (differential). Good agreement was found for counting WBCs (y=1.06x+0.09, n=67, R2=0.96) and mononuclear cells (MNs) (y=1.04x-0.01, n=40, R2=0.93) in CSF. However, the XN-1000 systematically counted more polymorphonuclear cells (PMNs) (y=1.48x+0.18, n=40, R2=0.99) compared to manual microscopy. Excellent correlation for RBCs >1×109/L (y=0.99x+116.56, n=26, R2=0.99) in CSF was found. For other fluids (CAPD, ascites and pleural fluid) excellent agreement was found for counting WBCs (y=1.06x+0.26, n=109, R2=0.98), MNs (y=1.06x-0.41, n=93, R2=0.96), PMNs (y=1.06x+0.81, n=93, R2=0.98) and RBCs (y=1.04x+110.04, n=43, R2=0.98). By using BF XN-check, the lower limit of quantitation (LLoQ) for WBC was defined at 5×106/L. Linearity was excellent for both the WBCs (R2=0.99) and RBCs (R2=0.99) and carry-over never exceeded 0.05%. The BF module on the XN-1000 is a suitable tool for fast and accurate quantification of WBC (differential) and RBC counts in CSF and other BFs in a diagnostic setting.

  8. Corrosion and tribocorrosion of hafnium in simulated body fluids.

    PubMed

    Rituerto Sin, J; Neville, A; Emami, N

    2014-08-01

    Hafnium is a passive metal with good biocompatibility and osteogenesis, however, little is known about its resistance to wear and corrosion in biological environments. The corrosion and tribocorrosion behavior of hafnium and commercially pure (CP) titanium in simulated body fluids were investigated using electrochemical techniques. Cyclic polarization scans and open circuit potential measurements were performed in 0.9% NaCl solution and 25% bovine calf serum solution to assess the effect of organic species on the corrosion behavior of the metal. A pin-on-plate configuration tribometer and a three electrode electrochemical cell were integrated to investigate the tribocorrosion performance of the studied materials. The results showed that hafnium has good corrosion resistance. The corrosion density currents measured in its passive state were lower than those measured in the case of CP titanium; however, it showed a higher tendency to suffer from localized corrosion, which was more acute when imperfections were present on the surface. The electrochemical breakdown of the oxide layer was retarded in the presence of proteins. Tribocorrosion tests showed that hafnium has the ability to quickly repassivate after the oxide layer was damaged; however, it showed higher volumetric loss than CP titanium in equivalent wear-corrosion conditions. © 2013 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 102B: 1157-1164, 2014.

  9. Biomarkers of Traumatic Brain Injury: Temporal Changes in Body Fluids

    PubMed Central

    Mårten, Kvist

    2016-01-01

    Abstract Traumatic brain injuries (TBIs) are caused by a hit to the head or a sudden acceleration/deceleration movement of the head. Mild TBIs (mTBIs) and concussions are difficult to diagnose. Imaging techniques often fail to find alterations in the brain, and computed tomography exposes the patient to radiation. Brain-specific biomolecules that are released upon cellular damage serve as another means of diagnosing TBI and assessing the severity of injury. These biomarkers can be detected from samples of body fluids using laboratory tests. Dozens of TBI biomarkers have been studied, and research related to them is increasing. We reviewed the recent literature and selected 12 biomarkers relevant to rapid and accurate diagnostics of TBI for further evaluation. The objective was especially to get a view of the temporal profiles of the biomarkers’ rise and decline after a TBI event. Most biomarkers are rapidly elevated after injury, and they serve as diagnostics tools for some days. Some biomarkers are elevated for months after injury, although the literature on long-term biomarkers is scarce. Clinical utilization of TBI biomarkers is still at a very early phase despite years of active research. PMID:28032118

  10. Does Evidence Drive Fluid Volume Restriction in Chronic Heart Failure?

    PubMed

    Miller, Robin K; Thornton, Nathaniel

    2017-06-01

    Chronic heart failure is a chronic condition that is associated with increased health care expenditures and high rates of morbidity and mortality. Mainstay in heart failure management has been the prescription of a fluid restriction. The purpose of this article is to review the available evidence for fluid restriction in chronic heart failure patients. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Preferential effects of low volume versus high volume replacement with crystalloid fluid in a hemorrhagic shock model in pigs.

    PubMed

    Ponschab, Martin; Schöchl, Herbert; Keibl, Claudia; Fischer, Henrik; Redl, Heinz; Schlimp, Christoph J

    2015-10-06

    Fluid resuscitation is a core stone of hemorrhagic shock therapy, and crystalloid fluids seem to be associated with lower mortality compared to colloids. However, as redistribution starts within minutes, it has been suggested to replace blood loss with a minimum of a three-fold amount of crystalloids. The hypothesis was that in comparison to high volume (HV), a lower crystalloid volume (LV) achieves a favorable coagulation profile and exerts sufficient haemodynamics in the acute phase of resuscitation. In 24 anaesthetized pigs, controlled arterial blood loss of 50 % of the estimated blood volume was either (n = 12) replaced with a LV (one-fold) or a HV (three-fold) volume of a balanced, acetated crystalloid solution at room temperature. Hemodynamic parameters, dilution effects and coagulation profile by standard coagulation tests and thromboelastometry at baseline and after resuscitation were determined in both groups. LV resuscitation increased MAP significantly less compared to the HV, 61 ± 7 vs. 82 ± 14 mmHg (p < 0.001) respectively, with no difference between lactate and base excess between groups. Haematocrit after fluid replacement was 0.20 vs. 0.16 (LV vs. HV, p < 0.001), suggesting a grade of blood dilution of 32 vs. 42 % (p < 0.001) compared to baseline values. Compared to LV, HV resulted in decreased core temperature (37.5 ± 0.2 vs. 36.0 ± 0.6 °C, p < 0.001), lower platelet count (318 ± 77 vs. 231 ± 53 K/μL, p < 0.01) and lower plasma fibrinogen levels (205 ± 19 vs. 168 ± 24 mg/dL, p < 0.001). Thromboelastometric measurements showed a significant impairment on viscoelastic clot properties following HV group. While prothrombin time index decreased significantly more in the HV group, activated partial thromboplastin time did not differ between both groups. HV did not result in hyperchloraemic acidosis. Coagulation parameters represented by plasma fibrinogen and ROTEM parameters were also less impaired with LV. With regrad to hematocrit, 60 % of LV

  12. Forensic Body Fluid Identification by Analysis of Multiple RNA Markers Using NanoString Technology

    PubMed Central

    Park, Jong-Lyul; Park, Seong-Min; Kim, Jeong-Hwan; Lee, Han-Chul; Lee, Seung-Hwan; Woo, Kwang-Man; Kim, Seon-Young

    2013-01-01

    RNA analysis has become a reliable method of body fluid identification for forensic use. Previously, we developed a combination of four multiplex quantitative PCR (qRT-PCR) probes to discriminate four different body fluids (blood, semen, saliva, and vaginal secretion). While those makers successfully identified most body fluid samples, there were some cases of false positive and negative identification. To improve the accuracy of the identification further, we tried to use multiple markers per body fluid and adopted the NanoString nCounter system instead of a multiplex qRT-PCR system. After measuring tens of RNA markers, we evaluated the accuracy of each marker for body fluid identification. For body fluids, such as blood and semen, each body fluid-specific marker was accurate enough for perfect identification. However, for saliva and vaginal secretion, no single marker was perfect. Thus, we designed a logistic regression model with multiple markers for saliva and vaginal secretion and achieved almost perfect identification. In conclusion, the NanoString nCounter is an efficient platform for measuring multiple RNA markers per body fluid and will be useful for forensic RNA analysis. PMID:24465241

  13. Forensic Body Fluid Identification by Analysis of Multiple RNA Markers Using NanoString Technology.

    PubMed

    Park, Jong-Lyul; Park, Seong-Min; Kim, Jeong-Hwan; Lee, Han-Chul; Lee, Seung-Hwan; Woo, Kwang-Man; Kim, Seon-Young

    2013-12-01

    RNA analysis has become a reliable method of body fluid identification for forensic use. Previously, we developed a combination of four multiplex quantitative PCR (qRT-PCR) probes to discriminate four different body fluids (blood, semen, saliva, and vaginal secretion). While those makers successfully identified most body fluid samples, there were some cases of false positive and negative identification. To improve the accuracy of the identification further, we tried to use multiple markers per body fluid and adopted the NanoString nCounter system instead of a multiplex qRT-PCR system. After measuring tens of RNA markers, we evaluated the accuracy of each marker for body fluid identification. For body fluids, such as blood and semen, each body fluid-specific marker was accurate enough for perfect identification. However, for saliva and vaginal secretion, no single marker was perfect. Thus, we designed a logistic regression model with multiple markers for saliva and vaginal secretion and achieved almost perfect identification. In conclusion, the NanoString nCounter is an efficient platform for measuring multiple RNA markers per body fluid and will be useful for forensic RNA analysis.

  14. Evaluation of Human Body Fluids for the Diagnosis of Fungal Infections

    PubMed Central

    2013-01-01

    Invasive fungal infections are a major cause of morbidity and mortality in immunocompromised patients. Because the etiologic agents of these infections are abundant in nature, their isolation from biopsy material or sterile body fluids is needed to document infection. This review evaluates and discusses different human body fluids used to diagnose fungal infections. PMID:23984401

  15. New management strategy for fluid resuscitation: Quantifying volume in the first 48 hours after burn injury

    PubMed Central

    Mitchell, Katrina B; Khalil, Elie; Brennan, Ann; Shao, Huibo; Rabbitts, Angela; Leahy, Nicole E; Yurt, Roger W; Gallagher, James J

    2014-01-01

    Objective This study evaluated a 24-hour resuscitation protocol; established a formula to quantify resuscitation volume for the second 24 hours; described the relationship between the first and second 24 hours; and, identified which patients required high volumes. Methods A protocol for >15% TBSA burn-injured patients was implemented in 2009. Initial fluid was based on Parkland's calculation, and adjusted to meet a goal urine output. Protocol compliance was defined as appropriate fluid titration to maintain urine output. Resuscitation ratio in the second 24 hours was tabulated as total fluid /(evaporative loss+maintenance fluid+estimated colloid). Data were prospectively collected from 2009-2011. Wilcox rank test compared differences between groups. Regression analyses analyzed volume administered. P< 0.05 was statistically significant. Results 40 patients with ≥ 15% TBSA burn injury met criteria for inclusion. Mean age, burn size, and resuscitation volumes in the first and second 24 hours were as follows (mean ± SD): 47± 20.7 years, 29.9 ± 14.6% TBSA, 7.4 ±3.7 cc/kg/% TBSA, and a ratio of 1.9 times expected volume (SD=1.3), respectively. Protocol compliance was 34%. Intubation, older age, and increased narcotic administration correlated with higher resuscitation volumes. A higher resuscitation volume in the first 24 hours significantly correlated with a higher resuscitation volume in the second 24 hours (p<0.001). Conclusions There is a significant relationship between fluid administration in the first and second 24 hours of resuscitation; intubation, older age, and narcotics correlate with higher volumes. A formula for observed/expected volumes in the second 24 hours is total fluid/(evaporative loss+maintenance fluid+estimated colloid). PMID:23292589

  16. New management strategy for fluid resuscitation: quantifying volume in the first 48 hours after burn injury.

    PubMed

    Mitchell, Katrina B; Khalil, Elie; Brennan, Ann; Shao, Huibo; Rabbitts, Angela; Leahy, Nicole E; Yurt, Roger W; Gallagher, James J

    2013-01-01

    This study evaluated a 24-hour resuscitation protocol, established a formula to quantify resuscitation volume for the second 24 hours, described the relationship between the first and second 24 hours, and identified which patients required high volumes. A protocol for patients with burn >15% TBSA was implemented in 2009. Initial fluid was based on the Parkland calculation and adjusted to meet a goal urine output. Protocol compliance was defined as appropriate fluid titration to maintain urine output. Resuscitation ratio in the second 24 hours was tabulated as total fluid /(evaporative loss + maintenance fluid + estimated colloid). Data were collected prospectively from 2009 to 2011. A Wilcoxon rank test compared differences between groups. Regression analyses analyzed volume administered. P < .05 was statistically significant. Forty patients with burn >15% TBSA met criteria for inclusion. Mean age, burn size, and resuscitation volumes in the first and second 24 hours (mean + SD) were 47+ 20.7 years, 29.9 + 14.6% TBSA, 7.4 + 3.7 ml/kg/% TBSA, and a ratio of 1.9 times expected volume (SD, 1.3), respectively. Protocol compliance was 34%. Intubation, older age, and increased narcotic administration correlated with higher resuscitation volumes. A higher resuscitation volume in the first 24 hours significantly correlated with a higher resuscitation volume in the second 24 hours (P < .001). In conclusion, there is a significant relationship between fluid administration in the first and second 24 hours of resuscitation; intubation, older age, and narcotics correlate with higher volumes. A formula for observed/expected volumes in the second 24 hours is total fluid/(evaporative loss + maintenance fluid +estimated colloid).

  17. Investigating the Dynamics of Supine Fluid Redistribution Within Multiple Body Segments Between Men and Women.

    PubMed

    Yadollahi, Azadeh; Singh, B; Bradley, T Douglas

    2015-09-01

    While supine, fluid moves from the legs and accumulates in the chest and neck. However, patterns of rostral fluid shift are not clear. Furthermore, real-time measurement of neck fluid volume has not been investigated. The objective of this study was to investigate the dynamics of rostral fluid shift in men and women. We developed a bioelectrical impedance system to measure leg, abdominal, thoracic and neck fluid volumes (LFV, AFV, TFV, NFV) continuously. Forty healthy non-obese adults (20 men) lay supine for 90 min while fluid volumes were measured. After 90 min, a similar volume of fluid shifted out of the legs in both sexes (p = 0.079), but men accumulated more fluid in their thorax (63 ± 6 vs. 44 ± 11 ml, p = 0.016) and neck (17 ± 2 vs. 14 ± 1 ml, p = 0.029) than women. In both sexes, the increase in NFV caused a significant increase in neck circumference, which was greater in men (p = 0.009). Furthermore, 80% of rostral fluid shift would occur in the first 2 h of lying supine. These results suggest that greater fluid shift into the thorax and neck may contribute to the higher prevalence of sleep apnea in men than in women.

  18. HOW DOES ADDING AND REMOVING LIQUID FROM SOCKET BLADDERS AFFECT RESIDUAL LIMB FLUID VOLUME?

    PubMed Central

    Sanders, JE; Cagle, JC; Harrison, DS; Myers, TR; Allyn, KJ

    2015-01-01

    Adding and removing liquid from socket bladders is a means for people with limb loss to accommodate residual limb volume change. Nineteen people with trans-tibial amputation using their regular prosthetic socket fitted with fluid bladders on the inside socket surface underwent cycles of bladder liquid addition and removal. In each cycle, subjects sat, stood, and walked for 90s with bladder liquid added and then sat, stood, and walking for 90s again with the bladder liquid removed. The amount of bladder liquid added was increased in each cycle. Bioimpedance analysis was implemented to measure residual limb fluid volume. Results showed that the preferred bladder liquid volume was 16.8 mL (s.d.8.4), corresponding to 1.7% (s.d.0.8%) of the average socket volume between the bioimpedance voltage-sensing electrodes. Limb fluid volume driven out of the residual limb when bladder liquid was added was typically not recovered upon subsequent bladder liquid removal. Fifteen of nineteen subjects experienced a gradual limb fluid volume loss over the test session. Care should be taken when implementing adjustable socket technologies in people with limb amputation. Reducing socket volume may accentuate limb fluid volume loss. PMID:24203546

  19. New constitutive equation for the volume viscosity in fluids

    NASA Technical Reports Server (NTRS)

    Zuckerwar, Allan J.; Ash, Robert L.

    1994-01-01

    The traditional volume viscosity, Stokes' hypothesis, and acoustical relaxation are reviewed. The lossy Navier-Stokes Equation is applied to periodic (acoustic) flow, and it is shown that the traditional volume viscosity leads to a result which contradicts that describing acoustical relaxation. It is demonstrated that the addition of a second volume viscosity term to the constitutive equation, to account for pressure relaxation, resolves the conflict, and leads to a direct correspondence between the volume viscosity parameters and the acoustical relaxation parameters. The representation of volume viscosity is formulated for the case of multiple relaxations, as occur in air. Finally, an application of the new constitutive equation to a simple convective compressible flow, namely a linearly accelerating flow, demonstrates the impact of volume viscosity upon the flow and the physical conditions for which it is important.

  20. Relative value of pressures and volumes in assessing fluid responsiveness after valvular and coronary artery surgery.

    PubMed

    Breukers, Rose-Marieke B G E; Trof, Ronald J; de Wilde, Rob B P; van den Berg, Paul C M; Twisk, Jos W R; Jansen, Jos R C; Groeneveld, Johan

    2009-01-01

    Cardiac function may differ after valvular (VS) and coronary artery (CAS) surgery and this may affect assessment of fluid responsiveness. The aim of the study was to compare VS and CAS in the value of cardiac filling pressures and volumes herein. There were eight consecutive patients after VS and eight after CAS, with femoral and pulmonary artery catheters in place. In each patient, five sequential fluid loading steps of 250 ml of colloid each were done. We measured central venous pressure (CVP), pulmonary artery occlusion pressure (PAOP) and, by transpulmonary thermodilution, cardiac index (CI) and global end-diastolic (GEDVI) and intrathoracic blood volume (ITBVI) indices. Fluid responsiveness was defined by a CI increase >5% or >10% per step. Global ejection fraction was lower and PAOP was higher after VS than CAS. In responding steps after VS (n=9-14) PAOP and volumes increased, while CVP and volumes increased in responding steps (n=12-19) after CAS. Baseline PAOP was lower in responding steps after VS only. Hence, baseline PAOP as well as changes in PAOP and volumes were of predictive value after VS and changes in CVP and volumes after CAS, in receiver operating characteristic curves. After VS, PAOP and volume changes equally correlated to CI changes. After CAS, only changes in CVP and volumes correlated to those in CI. While volumes are equally useful in monitoring fluid responsiveness, the predictive and monitoring value of PAOP is greater after VS than after CAS. In contrast, the CVP is of similar value as volume measurements in monitoring fluid responsiveness after CAS. The different value of pressures rather than of volumes between surgery types is likely caused by systolic left ventricular dysfunction in VS. The study suggests an effect of systolic cardiac function on optimal parameters of fluid responsiveness and superiority of the pulmonary artery catheter over transpulmonary dilution, for haemodynamic monitoring of VS patients.

  1. Detection of pathogenic organisms in food, water, and body fluids

    NASA Astrophysics Data System (ADS)

    Wallace, William H.; Henley, Michael V.; Sayler, Gary S.

    2002-06-01

    The construction of specific bioluminescent bacteriophage for detection of pathogenic organism can be developed to overcome interferences in complex matrices such as food, water and body fluids. Detection and identification of bacteria often require several days and frequently weeks by standard methods of isolation, growth and biochemical test. Immunoassay detection often requires the expression of the bacterial toxin, which can lead to non-detection of cells that may express the toxin under conditions different from testing protocols. Immunoassays require production of a specific antibody to the agent for detection and interference by contaminants frequently affects results. PCR based detection may be inhibited by substances in complex matrices. Modified methods of the PCR technique, such as magnetic capture-hybridization PCR (MCH-PCR), appear to improve the technique by removing the DNA products away from the inhibitors. However, the techniques required for PCR-based detection are slow and the procedures require skilled personnel working with labile reagents. Our approach is based on transferring bioluminescence (lux) genes into a selected bacteriophage. Bacteriophages are bacterial viruses that are widespread in nature and often are genus and species specific. This specificity eliminates or reduces false positives in a bacteriophage assay. The phage recognizes a specific receptor molecule on the surface of a susceptible bacterium, attaches and then injects the viral nucleic acid into the cell. The injected viral genome is expressed and then replicated, generating numerous exact copies of the viral genetic material including the lux genes, often resulting in an increase in bioluminescence by several hundred fold.

  2. Geothermal fracture stimulation technology. Volume III. Geothermal fracture fluids

    SciTech Connect

    Not Available

    1981-01-01

    A detailed study of all available and experimental frac fluid systems is presented. They have been examined and tested for physical properties that are important in the stimulation of hot water geothermal wells. These fluids consist of water-based systems containing high molecular weight polymers in the uncrosslinked and crosslinked state. The results of fluid testing for many systems are summarized specifically at geothermal conditions or until breakdown occurs. Some of the standard tests are ambient viscosity, static aging, high temperature viscosity, fluid-loss testing, and falling ball viscosity at elevated temperatures and pressures. Results of these tests show that unalterable breakdown of the polymer solutions begins above 300/sup 0/F. This continues at higher temperatures with time even if stabilizers or other high temperature additives are included.

  3. Electric impedance for evaluation of body fluid balance in cardiac surgical patients.

    PubMed

    Perko, M J; Jarnvig, I L; Højgaard-Rasmussen, N; Eliasen, K; Arendrup, H

    2001-02-01

    To evaluate whether electric impedance can be used to monitor body fluid balance and fluid distribution in cardiac surgical patients. Prospective clinical study. Heart Center, Rigshospital, Copenhagen. Sixteen consecutive patients scheduled for cardiac surgery. Body weight, fluid balance, central hemodynamics, and total and segmental body impedance were examined perioperatively. During semisupine rest before surgery, changes in impedance indicated relocation of fluid from the legs to the thorax, mostly in the extracellular space. After surgery, weight and fluid balance increased by 3.87 +/- 0.35 kg and 1.86 +/- 0.16 L (mean +/- SE, p < 0.01) and remained elevated through the next 2 days. Impedance decreased by 30% over the thorax, by 24% over the abdomen, by 2% over the leg, and by 4% over the entire body. Changes in total and thoracoabdominal impedances had the highest correlation to the fluid balance (r = -0.86 and r = -0.87). After correction of impedance values by the constant from the regression model, the mean difference in estimation of fluid changes obtained by electric impedance and by fluid balance was 0 +/- 0.1 L at the range of changes of 4.6 L. Alterations in electric impedance closely follow changes in fluid balance during the perioperative period. This method can be used in clinical practice to control postoperative body fluid balance in cardiac surgical patients.

  4. Reconstruction of body cavity volume in terrestrial tetrapods.

    PubMed

    Clauss, Marcus; Nurutdinova, Irina; Meloro, Carlo; Gunga, Hanns-Christian; Jiang, Duofang; Koller, Johannes; Herkner, Bernd; Sander, P Martin; Hellwich, Olaf

    2017-02-01

    Although it is generally assumed that herbivores have more voluminous body cavities due to larger digestive tracts required for the digestion of plant fiber, this concept has not been addressed quantitatively. We estimated the volume of the torso in 126 terrestrial tetrapods (synapsids including basal synapsids and mammals, and diapsids including birds, non-avian dinosaurs and reptiles) classified as either herbivore or carnivore in digital models of mounted skeletons, using the convex hull method. The difference in relative torso volume between diet types was significant in mammals, where relative torso volumes of herbivores were about twice as large as that of carnivores, supporting the general hypothesis. However, this effect was not evident in diapsids. This may either reflect the difficulty to reliably reconstruct mounted skeletons in non-avian dinosaurs, or a fundamental difference in the bauplan of different groups of tetrapods, for example due to differences in respiratory anatomy. Evidently, the condition in mammals should not be automatically assumed in other, including more basal, tetrapod lineages. In both synapsids and diapsids, large animals showed a high degree of divergence with respect to the proportion of their convex hull directly supported by bone, with animals like elephants or Triceratops having a low proportion, and animals such as rhinoceros having a high proportion of bony support. The relevance of this difference remains to be further investigated. © 2016 Anatomical Society.

  5. Extracellular fluid and total body water changes in neonates undergoing extracorporeal membrane oxygenation.

    PubMed

    Anderson, H L; Coran, A G; Drongowski, R A; Ha, H J; Bartlett, R H

    1992-08-01

    After being placed on extracorporeal life support (ECLS), newborn patients typically weight 5% to 30% more than their birthweight. Recovery and eventual decannulation from ECLS is associated with a return to baseline weight or birthweight values after a pronounced diuresis. It has been assumed that the increases in weight in these patients are due to increases in extracellular fluid (ECF) and total body water (TBW). This study was undertaken to prove or disprove this hypothesis. ECF space was measured using the compound sodium bromide and TBW was determined with the use of deuterium oxide (nonradioactive heavy water). Fluid compartment measurements were made prior to the institution of ECLS, immediately after placement on bypass, approximately every other day while on bypass, and a final measurement was made once the patient was off bypass. Sodium bromide concentration was analyzed by high-pressure liquid chromatography, and deuterium oxide concentration was measured by the falling drop method. Eight newborns with respiratory failure were placed on either venoarterial (4 patients) or venovenous (4 patients) ECLS for an average of 106 hours (range, 71 to 219 hours). Pre-ECLS TBW was high in the neonates (87% of total body weight v the normal of 75% to 80%). Mean values for each fluid compartment were corrected for the additional volume of the bypass circuit when the patient was on bypass. ECF increased immediately after the institution of ECLS; however, both ECF and TBW decreased during the bypass run, and post-ECLS levels of ECF and TBW were similar to those found prior to ECLS.(ABSTRACT TRUNCATED AT 250 WORDS)

  6. The consequences of sudden fluid shifts on body composition in critically ill patients.

    PubMed

    Ismael, Sophie; Savalle, Magali; Trivin, Claire; Gillaizeau, Florence; D'Auzac, Christian; Faisy, Christophe

    2014-03-25

    Estimation of body composition as fat-free mass (FFM) is subjected to many variations caused by injury and stress conditions in the intensive care unit (ICU). Body cell mass (BCM), the metabolically active part of FFM, is reported to be more specifically correlated to changes in nutritional status. Bedside estimation of BCM could help to provide more valuable markers of nutritional status and may promote understanding of metabolic consequences of energy deficit in the ICU patients. We aimed to quantify BCM, water compartments and FFM by methods usable at the bedside for evaluating the impact of sudden and massive fluid shifts on body composition in ICU patients. We conducted a prospective experimental study over an 6 month-period in a 18-bed ICU. Body composition of 31 consecutive hemodynamically stable patients requiring acute renal replacement therapy for fluid overload (ultrafiltration ≥5% body weight) was investigated before and after the hemodialysis session. Intra-(ICW) and extracellular (ECW) water volumes were calculated from the raw values of the low- and high-frequency resistances measured by multi-frequency bioelectrical impedance. BCM was assessed by a calculated method recently developed for ICU patients. FFM was derived from BCM and ECW. Intradialytic weight loss was 3.8 ± 0.8 kg. Percentage changes of ECW (-7.99 ± 4.60%) and of ICW (-7.63 ± 5.11%) were similar, resulting ECW/ICW ratio constant (1.26 ± 0.20). The fall of FFM (-2.24 ± 1.56 kg, -4.43 ± 2.65%) was less pronounced than the decrease of ECW (P < 0.001) or ICW (P < 0.001). Intradialytic variation of BCM was clinically negligible (-0.38 ± 0.93 kg, -1.56 ± 3.94%) and was significantly less than FFM (P < 0.001). BCM estimation is less driven by sudden massive fluid shifts than FMM. Assessment of BCM should be preferred to FFM when severe hydration disturbances are present in ICU patients.

  7. Total and regional body volumes derived from dual-energy X-ray absorptiometry output.

    PubMed

    Wilson, Joseph P; Fan, Bo; Shepherd, John A

    2013-01-01

    Total body volume is an important health metric used to measure body density, shape, and multicompartmental body composition but is currently only available through underwater weighing or air displacement plethysmography (ADP). The objective of this investigation was to derive an accurate body volume from dual-energy X-ray absorptiometry (DXA)-reported measures for advanced body composition models. Volunteers received a whole body DXA scan and an ADP measure at baseline (N = 25) and 6 mo (N = 22). Baseline measures were used to calibrate body volume from the reported DXA masses of fat, lean, and bone mineral content. A second population (N = 385) from the National Health and Nutrition Examination Survey was used to estimate the test-retest precision of regional (arms, legs, head, and trunk) and total body volumes. Overall, we found that DXA-volume was highly correlated to ADP-volume (R² = 0.99). The 6-mo change in total DXA-volume was highly correlated to change in ADP-volume (R² = 0.98). The root mean square percent coefficient of variation precision of DXA-volume measures ranged from 1.1% (total) to 3.2% (head). We conclude that the DXA-volume method can measure body volume accurately and precisely, can be used in body composition models, could be an independent health indicator, and is useful as a prospective or retrospective biomarker of body composition.

  8. A new model of reaction-driven cracking: fluid volume consumption and tensile failure during serpentinization

    NASA Astrophysics Data System (ADS)

    Eichenbaum-Pikser, J. M.; Spiegelman, M. W.; Kelemen, P. B.; Wilson, C. R.

    2013-12-01

    Reactive fluid flow plays an important role in a wide range of geodynamic processes, such as melt migration, formation of hydrous minerals on fault surfaces, and chemical weathering. These processes are governed by the complex coupling between fluid transport, reaction, and solid deformation. Reaction-driven cracking is a potentially critical feedback mechanism, by which volume change associated with chemical reaction drives fracture in the surrounding rock. It has been proposed to play a role in both serpentinization and carbonation of peridotite, motivating consideration of its application to mineral carbon sequestration. Previous studies of reactive cracking have focused on the increase in solid volume, and as such, have considered failure in compression. However, if the consumption of fluid is considered in the overall volume budget, the reaction can be net volume reducing, potentially leading to failure in tension. To explore these problems, we have formulated and solved a 2-D model of coupled porous flow, reaction kinetics, and elastic deformation using the finite element model assembler TerraFERMA (Wilson et al, G3 2013 submitted). The model is applied to the serpentinization of peridotite, which can be reasonably approximated as the transfer of a single reactive component (H2O) between fluid and solid phases, making it a simple test case to explore the process. The behavior of the system is controlled by the competition between the rate of volume consumption by the reaction, and the rate of volume replacement by fluid transport, as characterized by a nondimensional parameter χ, which depends on permeability, reaction rate, and the bulk modulus of the solid. Large values of χ correspond to fast fluid transport relative to reaction rate, resulting in a low stress, volume replacing regime. At smaller values of χ, fluid transport cannot keep up with the reaction, resulting in pore fluid under-pressure and tensile solid stresses. For the range of χ relevant

  9. Volume and density changes of biological fluids with temperature

    NASA Technical Reports Server (NTRS)

    Hinghofer-Szalkay, H.

    1985-01-01

    The thermal expansion of human blood, plasma, ultrafiltrate, and erythrocycte concentration at temperatures in the range of 4-48 C is studied. The mechanical oscillator technique which has an accuracy of 1 x 10 to the -5 th g/ml is utilized to measure fluid density. The relationship between thermal expansion, density, and temperature is analyzed. The study reveals that: (1) thermal expansion increases with increasing temperature; (2) the magnitude of the increase declines with increasing temperature; (3) thermal expansion increases with density at temperatures below 40 C; and (4) the thermal expansion of intracellular fluid is greater than that of extracellular fluid in the temperature range of 4-10 C, but it is equal at temperatures greater than or equal to 40 C.

  10. On the concentration structure of high-concentration constant-volume fluid mud gravity currents

    NASA Astrophysics Data System (ADS)

    Jacobson, M. R.; Testik, F. Y.

    2013-01-01

    An exhaustive laboratory experimental campaign was undertaken in order to elucidate the concentration structure of two-dimensional constant-volume non-Newtonian fluid mud gravity currents. Two sets of experiments were conducted in a lock-exchange tank. The first set of experiments involved measuring the vertical concentration profiles using a siphoning technique; the second set involved auxiliary visual observations. The first set of experiments consisted of 32 experimental runs for four different experimental conditions, with an array of siphoned samples being withdrawn throughout the head and body of the gravity current. From these samples, vertical concentration profiles occurring in constant-volume fluid mud gravity currents were classified and the underlying physical processes that led to the occurrence of observed profiles were discussed. Furthermore, the functional form of the vertical concentration profiles within the head of relatively low-initial-concentration gravity currents was proposed. The relatively high-initial-concentration gravity currents revealed the presence of a lutocline in the current head and body, the presence of which was observed for constant-flux release gravity currents. To our knowledge, this is the first measurement of a lutocline in constant-volume gravity currents. Abrupt transitions, a phenomenon in which the bulk of the suspended sediment in the propagating gravity current drops out, were observed through the concentration profiles and through 15 auxiliary visual experimental runs. It was found that abrupt transitions were caused by the presence of a lutocline. The entrainment of ambient water resulting in the dilution of the gravity current at different concentration contours has been quantified. In a previous work by the authors of this study, it was shown that the initial reduced gravity is directly proportional to the growth rate of the visual area of the two-dimensional current. The analysis of our experimental observations

  11. Fluid-Structure Interactions with Flexible and Rigid Bodies

    NASA Astrophysics Data System (ADS)

    Daily, David Jesse

    Fluid structure interactions occur to some extent in nearly every type of fluid flow. Understanding how structures interact with fluids and visa-versa is of vital importance in many engineering applications. The purpose of this research is to explore how fluids interact with flexible and rigid structures. A computational model was used to model the fluid structure interactions of vibrating synthetic vocal folds. The model simulated the coupling of the fluid and solid domains using a fluid-structure interface boundary condition. The fluid domain used a slightly compressible flow solver to allow for the possibility of acoustic coupling with the subglottal geometry and vibration of the vocal fold model. As the subglottis lengthened, the frequency of vibration decreased until a new acoustic mode could form in the subglottis. Synthetic aperture particle image velocimetry (SAPIV) is a three-dimensional particle tracking technique. SAPIV was used to image the jet of air that emerges from vibrating human vocal folds (glottal jet) during phonation. The three-dimensional reconstruction of the glottal jet found faint evidence of flow characteristics seen in previous research, such as axis-switching, but did not have sufficient resolution to detect small features. SAPIV was further applied to reconstruct the smaller flow characteristics of the glottal jet of vibrating synthetic vocal folds. Two- and four-layer synthetic vocal fold models were used to determine how the glottal jet from the synthetic models compared to the glottal jet from excised human vocal folds. The two- and four-layer models clearly exhibited axis-switching which has been seen in other 3D analyses of the glottal jet. Cavitation in a quiescent fluid can break a rigid structure such as a glass bottle. A new cavitation number was derived to include acceleration and pressure head at cavitation onset. A cavitation stick was used to validate the cavitation number by filling it with different depths and hitting

  12. Dual-energy X-ray absorptiometry–based body volume measurement for 4-compartment body composition123

    PubMed Central

    Wilson, Joseph P; Mulligan, Kathleen; Fan, Bo; Sherman, Jennifer L; Murphy, Elizabeth J; Tai, Viva W; Powers, Cassidy L; Marquez, Lorena; Ruiz-Barros, Viviana

    2012-01-01

    Background: Total body volume (TBV), with the exclusion of internal air voids, is necessary to quantify body composition in Lohman's 4-compartment (4C) model. Objective: This investigation sought to derive a novel, TBV measure with the use of only dual-energy X-ray absorptiometry (DXA) attenuation values for use in Lohman's 4C body composition model. Design: Pixel-specific masses and volumes were calculated from low- and high-energy attenuation values with the use of first principle conversions of mass attenuation coefficients. Pixel masses and volumes were summed to derive body mass and total body volume. As proof of concept, 11 participants were recruited to have 4C measures taken: DXA, air-displacement plethysmography (ADP), and total body water (TBW). TBV measures with the use of only DXA (DXA-volume) and ADP-volume measures were compared for each participant. To see how body composition estimates were affected by these 2 methods, we used Lohman's 4C model to quantify percentage fat measures for each participant and compared them with conventional DXA measures. Results: DXA-volume and ADP-volume measures were highly correlated (R2 = 0.99) and showed no statistically significant bias. Percentage fat by DXA volume was highly correlated with ADP-volume percentage fat measures and DXA software-reported percentage fat measures (R2 = 0.96 and R2 = 0.98, respectively) but were slightly biased. Conclusions: A novel method to calculate TBV with the use of a clinical DXA system was developed, compared against ADP as proof of principle, and used in Lohman's 4C body composition model. The DXA-volume approach eliminates many of the inherent inaccuracies associated with displacement measures for volume and, if validated in larger groups of participants, would simplify the acquisition of 4C body composition to a single DXA scan and TBW measure. PMID:22134952

  13. The detection and discrimination of human body fluids using ATR FT-IR spectroscopy.

    PubMed

    Orphanou, Charlotte-Maria; Walton-Williams, Laura; Mountain, Harry; Cassella, John

    2015-07-01

    Blood, saliva, semen and vaginal secretions are the main human body fluids encountered at crime scenes. Currently presumptive tests are routinely utilised to indicate the presence of body fluids, although these are often subject to false positives and limited to particular body fluids. Over the last decade more sensitive and specific body fluid identification methods have been explored, such as mRNA analysis and proteomics, although these are not yet appropriate for routine application. This research investigated the application of ATR FT-IR spectroscopy for the detection and discrimination of human blood, saliva, semen and vaginal secretions. The results demonstrated that ATR FT-IR spectroscopy can detect and distinguish between these body fluids based on the unique spectral pattern, combination of peaks and peak frequencies corresponding to the macromolecule groups common within biological material. Comparisons with known abundant proteins relevant to each body fluid were also analysed to enable specific peaks to be attributed to the relevant protein components, which further reinforced the discrimination and identification of each body fluid. Overall, this preliminary research has demonstrated the potential for ATR FT-IR spectroscopy to be utilised in the routine confirmatory screening of biological evidence due to its quick and robust application within forensic science. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  14. Fluid volume displacement at the oval and round windows with air and bone conduction stimulation

    NASA Astrophysics Data System (ADS)

    Stenfelt, Stefan; Hato, Naohito; Goode, Richard L.

    2004-02-01

    The fluids in the cochlea are normally considered incompressible, and the fluid volume displacement of the oval window (OW) and the round window (RW) should be equal and of opposite phase. However, other channels, such as the cochlear and vestibular aqueducts, may affect the fluid flow. To test if the OW and RW fluid flows are equal and of opposite phase, the volume displacement was assessed by multiple point measurement at the windows with a laser Doppler vibrometer. This was done during air conduction (AC) stimulation in seven fresh human temporal bones, and with bone conduction (BC) stimulation in eight temporal bones and one human cadaver head. With AC stimulation, the average volume displacement of the two windows is within 3 dB, and the phase difference is close to 180° for the frequency range 0.1 to 10 kHz. With BC stimulation, the average volume displacement difference between the two windows is greater: below 2 kHz, the volume displacement at the RW is 5 to 15 dB greater than at the OW and above 2 kHz more fluid is displaced at the OW. With BC stimulation, lesions at the OW caused only minor changes of the fluid flow at the RW.

  15. Endocrine, electrolyte, and fluid volume changes associated with Apollo missions

    NASA Technical Reports Server (NTRS)

    Leach, C. S.; Alexander, W. C.; Johnson, P. C.

    1975-01-01

    The endocrine and metabolic results obtained before and after the Apollo missions and the results of the limited in-flight sampling are summarized and discussed. The studies were designed to evaluate the biochemical changes in the returning Apollo crewmembers, and the areas studied included balance of fluids and electrolytes, regulation of calcium metabolism, adaptation to the environment, and regulation of metabolic processes.

  16. Endocrine, electrolyte, and fluid volume changes associated with Apollo missions

    NASA Technical Reports Server (NTRS)

    Leach, C. S.; Alexander, W. C.; Johnson, P. C.

    1975-01-01

    The endocrine and metabolic results obtained before and after the Apollo missions and the results of the limited in-flight sampling are summarized and discussed. The studies were designed to evaluate the biochemical changes in the returning Apollo crewmembers, and the areas studied included balance of fluids and electrolytes, regulation of calcium metabolism, adaptation to the environment, and regulation of metabolic processes.

  17. Body Composition Changes Resulting from Fluid Ingestion and Dehydration

    ERIC Educational Resources Information Center

    Girandola, Robert N.

    1977-01-01

    It is recommended that when obtaining measures of body density by hydrostatic weighing, the subjects normal level of hydration be ascertained, since variance in body fat calculation from the hyperhydrated to the hydrated state can amount to twenty percent (two percent in actual body fat). (MB)

  18. Body Composition Changes Resulting from Fluid Ingestion and Dehydration

    ERIC Educational Resources Information Center

    Girandola, Robert N.

    1977-01-01

    It is recommended that when obtaining measures of body density by hydrostatic weighing, the subjects normal level of hydration be ascertained, since variance in body fat calculation from the hyperhydrated to the hydrated state can amount to twenty percent (two percent in actual body fat). (MB)

  19. Inactivation of human immunodeficiency virus (HIV) by ionizing radiation in body fluids and serological evidence

    SciTech Connect

    Bigbee, P.D.; Sarin, P.S.; Humphreys, J.C.; Eubanks, W.G.; Sun, D.; Hocken, D.G.; Thornton, A.; Adams, D.E.; Simic, M.G. )

    1989-11-01

    A method to use ionizing radiation to inactivate HIV (Human Immunodeficiency Virus) in human body fluids was studied in an effort to reduce the risk of accidental infection to forensic science laboratory workers. Experiments conducted indicate that an X-ray absorbed dose of 25 krad was required to completely inactivate HIV. This does not alter forensically important constituents such as enzymes and proteins in body fluids. This method of inactivation of HIV cannot be used on body fluids which will be subjected to deoxyribonucleic acid (DNA) typing.

  20. Effects of large volume, ice-cold intravenous fluid infusion on respiratory function in cardiac arrest survivors.

    PubMed

    Jacobshagen, Claudius; Pax, Anja; Unsöld, Bernhard W; Seidler, Tim; Schmidt-Schweda, Stephan; Hasenfuss, Gerd; Maier, Lars S

    2009-11-01

    International guidelines for cardiopulmonary resuscitation recommend mild hypothermia (32-34 degrees C) for 12-24h in comatose survivors of cardiac arrest. To induce therapeutic hypothermia a variety of external and intravascular cooling devices are available. A cheap and effective method for inducing hypothermia is the infusion of large volume, ice-cold intravenous fluid. There are concerns regarding the effects of rapid infusion of large volumes of fluid on respiratory function in cardiac arrest survivors. We have retrospectively studied the effects of high volume cold fluid infusion on respiratory function in 52 resuscitated cardiac arrest patients. The target temperature of 32-34 degrees C was achieved after 4.1+/-0.5h (cooling rate 0.48 degrees C/h). During this period 3427+/-210 mL ice-cold fluid was infused. Despite significantly reduced LV-function (EF 35.8+/-2.2%) the respiratory status of these patients did not deteriorate significantly. On intensive care unit admission the mean PaO(2) was 231.4+/-20.6 mmHg at a F(i)O(2) of 0.82+/-0.03 (PaO(2)/F(i)O(2)=290.0+/-24.1) and a PEEP level of 7.14+/-0.31 mbar. Until reaching the target temperature of body temperature of 33 degrees C, the F(i)O(2) could be further reduced with unchanged PEEP. The infusion of large volume, ice-cold fluid is an effective and inexpensive method for inducing therapeutic hypothermia. Resuscitation from cardiac arrest is associated with a deterioration in respiratory function. The infusion of large volumes of cold fluid does not cause a statistically significant further deterioration in respiratory function. A larger, randomized and prospective study is required to assess the efficacy and safety of ice-cold fluid infusion for

  1. Effects of irrigation fluid temperature on core body temperature during transurethral resection of the prostate.

    PubMed

    Jaffe, J S; McCullough, T C; Harkaway, R C; Ginsberg, P C

    2001-06-01

    To determine the effect irrigation fluid temperature has on core body temperature changes in patients undergoing transurethral resection of the prostate (TURP). Fifty-six male patients (mean age 71.2 +/- 8.2 years) scheduled for TURP were enrolled in the study. Patients were randomized to one of two groups. Group 1 consisted of 27 patients who received room temperature irrigation fluid (70 degrees F) throughout TURP; group 2 consisted of 29 patients whose procedure was performed with warmed irrigation fluid (91.5 degrees F). The irrigation fluid used for both groups was glycine. The baseline temperature, final temperature, total time in the operating room, and amount of irrigation fluid used during the procedure were recorded for each patient. No significant difference in the average time spent in the operating room or in the total irrigation fluid used between the two groups was observed. Of the 27 patients who received room temperature irrigation fluid, 15 (55.6%) had a decrease in body temperature. A decrease in temperature was observed in 21 (72.4%) of the 29 patients who received warm irrigation fluid. Groups 1 and 2 had 12 (44.4%) of 27 and 8 (27.6%) of 29 patients, respectively, who demonstrated an elevation in their core body temperature. The results of our study suggest that irrigation fluid temperature is not a factor responsible for altering the core body temperature in patients undergoing TURP.

  2. Modelling of fluid-structure interaction with multiphase viscous flows using an immersed-body method

    NASA Astrophysics Data System (ADS)

    Yang, P.; Xiang, J.; Fang, F.; Pavlidis, D.; Latham, J.-P.; Pain, C. C.

    2016-09-01

    An immersed-body method is developed here to model fluid-structure interaction for multiphase viscous flows. It does this by coupling a finite element multiphase fluid model and a combined finite-discrete element solid model. A coupling term containing the fluid stresses is introduced within a thin shell mesh surrounding the solid surface. The thin shell mesh acts as a numerical delta function in order to help apply the solid-fluid boundary conditions. When used with an advanced interface capturing method, the immersed-body method has the capability to solve problems with fluid-solid interfaces in the presence of multiphase fluid-fluid interfaces. Importantly, the solid-fluid coupling terms are treated implicitly to enable larger time steps to be used. This two-way coupling method has been validated by three numerical test cases: a free falling cylinder in a fluid at rest, elastic membrane and a collapsing column of water moving an initially stationary solid square. A fourth simulation example is of a water-air interface with a floating solid square being moved around by complex hydrodynamic flows including wave breaking. The results show that the immersed-body method is an effective approach for two-way solid-fluid coupling in multiphase viscous flows.

  3. Seals/Secondary Fluid Flows Workshop 1997; Volume I

    NASA Technical Reports Server (NTRS)

    Hendricks, Robert C. (Editor)

    2006-01-01

    The 1997 Conference provided discussions and data on (a) program overviews, (b) developments in seals and secondary air management systems, (c) interactive seals flows with secondary air or fluid flows and powerstream flows, (d) views of engine externals and limitations, (e) high speed engine research sealing needs and demands, and (f) a short course on engine design development margins. Sealing concepts discussed include, mechanical rim and cavity seals, leaf, finger, air/oil, rope, floating-brush, floating-T-buffer, and brush seals. Engine externals include all components of engine fluid systems, sensors and their support structures that lie within or project through the nacelle. The clean features of the nacelle belie the minefield of challenges and opportunities that lie within. Seals; Secondary air flows; Rotordynamics; Gas turbine; Aircraft; CFD; Testing; Turbomachinery

  4. Three-dimensional method for determination of amniotic fluid volume in intrauterine pockets.

    PubMed

    Grover, J; Mentakis, E A; Ross, M G

    1997-12-01

    Although current ultrasound techniques provide a linear (amniotic fluid index; AFI) or two-dimensional area index of amniotic fluid (AF), these indices have limited correlation with actual AF volume. We sought to quantify the three-dimensional volume of ultrasound-identified AF pockets, as assessed by the AFI and two-dimensional area methods. The BVI 2500 (Bladder Volume Instrument 2500; Diagnostic Ultrasound Corp., Redmond, WA) has been used to quantify the volume of residual urine in the bladder. INSTRUMENT AND METHOD: The BVI 2500 (Diagnostic Ultrasound Corp.) ultrasound uses a rotating 2-MHz transducer, computer-defined fluid interface, and computer integration of 12 cross-sectional images to calculate three-dimensional fluid volume. After providing written informed consent, 14 term pregnant patients (36-42 weeks) were evaluated using the BVI 2500 and an Ultramark 8 sector scan (Advanced Technology Laboratory, Bothell, WA). The largest vertical fluid pocket in each quadrant of the abdomen was identified with the sector scan, and vertical and horizontal measurements for AFI and two-dimensional area were recorded. Simultaneous AF volume measurements of each pocket were performed three times with the bladder volume instrument, and maximum values were used. Three-dimensional volume, two-dimensional area, and AFI values were compared by correlation analysis, with P < or = .05 considered statistically significant. Among all patients, the average (+/- standard deviation) AFI was 7.6 +/- 4.1 (range 1.5-16.4) cm, and the average two-dimensional area was 30.9 +/- 21.1 (range 4.3-81.3) cm2. This corresponded to an average three-dimensional volume of 215 +/- 134 (range 23-497) cm3. Three-dimensional volume correlated highly with both AFI (r = 0.9; P < .001) and two-dimensional area (r = 0.86; P < .001). One AFI centimeter was equivalent to a volume of 30 cm3. There are highly significant linear correlations of three-dimensional amniotic fluid volumes with AFI and two

  5. Complexity of blood volume control system and its implications in perioperative fluid management.

    PubMed

    Iijima, Takehiko

    2009-01-01

    The use of fluid therapy attempts to optimize blood circulation by manipulating the circulating blood volume (BV). BV may be a key intermediate parameter between fluid therapy and the blood circulation, and it has been assumed that BV can be controlled by fluid therapy. In order to construct a fluid therapy protocol, firstly, we have to confirm whether BV can actually be controlled by fluid therapy. Volume kinetics studies and dilution techniques for BV measurements have enabled the actual effects of fluid management on BV to be analyzed in the presence of various pathological conditions. Various studies have shown that the effect of fluid, especially crystalloid, on BV varies considerably among individuals, and even BV values measured at a single time point vary from 40 ml kg(-1) to 110 ml kg(-1). It has become apparent that such wide variations in interindividual BV preclude the establishment of universal optimal fluid management protocols. Thus, secondly, it should be clarified how BV is controlled, and whether or not we can control it. Perioperative BV reportedly changes in a manner that is independent of the in-out fluid balance, but is related to hormonal factors. Because inflammation and some hormones control vascular permeability and the renal adjustment of solutes and fluids, such factors may readjust the BV even after interventional fluid therapy. Perioperative BV may be predominantly controlled by an internal regulatory system, regardless of whether "restrictive" or "liberal" fluid management strategies are employed. Recognizing this physiological control of BV may help us to develop individualized fluid management strategies.

  6. Mechanisms underlying rhythmic locomotion: body-fluid interaction in undulatory swimming.

    PubMed

    Chen, J; Friesen, W O; Iwasaki, T

    2011-02-15

    Swimming of fish and other animals results from interactions of rhythmic body movements with the surrounding fluid. This paper develops a model for the body-fluid interaction in undulatory swimming of leeches, where the body is represented by a chain of rigid links and the hydrodynamic force model is based on resistive and reactive force theories. The drag and added-mass coefficients for the fluid force model were determined from experimental data of kinematic variables during intact swimming, measured through video recording and image processing. Parameter optimizations to minimize errors in simulated model behaviors revealed that the resistive force is dominant, and a simple static function of relative velocity captures the essence of hydrodynamic forces acting on the body. The model thus developed, together with the experimental kinematic data, allows us to investigate temporal and spatial (along the body) distributions of muscle actuation, body curvature, hydrodynamic thrust and drag, muscle power supply and energy dissipation into the fluid. We have found that: (1) thrust is generated continuously along the body with increasing magnitude toward the tail, (2) drag is nearly constant along the body, (3) muscle actuation waves travel two or three times faster than the body curvature waves and (4) energy for swimming is supplied primarily by the mid-body muscles, transmitted through the body in the form of elastic energy, and dissipated into the water near the tail.

  7. Mechanisms of proximal tubule sodium transport regulation that link extracellular fluid volume and blood pressure

    PubMed Central

    2010-01-01

    One-hundred years ago, Starling articulated the interdependence of renal control of circulating blood volume and effective cardiac performance. During the past 25 years, the molecular mechanisms responsible for the interdependence of blood pressure (BP), extracellular fluid volume (ECFV), the renin-angiotensin system (RAS), and sympathetic nervous system (SNS) have begun to be revealed. These variables all converge on regulation of renal proximal tubule (PT) sodium transport. The PT reabsorbs two-thirds of the filtered Na+ and volume at baseline. This fraction is decreased when BP or perfusion pressure is increased, during a high-salt diet (elevated ECFV), and during inhibition of the production of ANG II; conversely, this fraction is increased by ANG II, SNS activation, and a low-salt diet. These variables all regulate the distribution of the Na+/H+ exchanger isoform 3 (NHE3) and the Na+-phosphate cotransporter (NaPi2), along the apical microvilli of the PT. Natriuretic stimuli provoke the dynamic redistribution of these transporters along with associated regulators, molecular motors, and cytoskeleton-associated proteins to the base of the microvilli. The lipid raft-associated NHE3 remains at the base, and the nonraft-associated NaPi2 is endocytosed, culminating in decreased Na+ transport and increased PT flow rate. Antinatriuretic stimuli return the same transporters and regulators to the body of the microvilli associated with an increase in transport activity and decrease in PT flow rate. In summary, ECFV and BP homeostasis are, at least in part, maintained by continuous and acute redistribution of transporter complexes up and down the PT microvilli, which affect regulation of PT sodium reabsorption in response to fluctuations in ECFV, BP, SNS, and RAS. PMID:20106993

  8. Thermoregulation During Extended Exercise in the Heat: Comparisons of Fluid Volume and Temperature.

    PubMed

    Hailes, Walter S; Cuddy, John S; Cochrane, Kyle; Ruby, Brent C

    2016-09-01

    This study aimed to determine the physiological and thermoregulatory responses of individuals exercising in the heat (US military red flag conditions, wet-bulb globe temperature 31.5-32.2ºC) while consuming varied volumes of ambient temperature water and ice slurry. Participants (N = 12) walked on a treadmill for 3 hours at approximately 40% peak aerobic capacity in a hot environment while consuming ambient temperature (35.5°C) water (W), ice slurry (0°C, two-thirds shaved ice and one-third water) at a ratio of 2 g·kg(-1) body mass every 10 minutes (FS), and reduced volume ice slurry as described at a rate of 1 g·kg(-1) body mass every 10 minutes (HS). Trials were completed at least 14 days apart, in a randomized, repeated measures design. Percent body weight loss was higher during the HS trial (1.8 ± 0.01%) compared with FS (0.5 ± 0.01%; P < .001) and W (0.6 ± 0.01%; P < .001). Mean rectal temperature at 3 hours was lower during FS (37.8 ± 0.7°C) compared with HS (38.1 ± 0.8°C) and W (38.2 ± 0.8°C) (P = .04 vs HS, and P = .005 vs W, main effect for trial). No differences were found in rectal temperature between HS and W. Heart rate was lower at the end of the third hour during FS (141 ± 10 beats/min) compared with HS (157 ± 19 beats/min) and W (154 ± 18 beats/min) (P = .001 and P = .007, respectively, time × trial interaction). There were no differences in heart rate between HS and W. The temperature of consumed fluids may be as important as the volume for the management of thermoregulation and other physiological responses for extended work in hot environments. Copyright © 2016 Wilderness Medical Society. Published by Elsevier Inc. All rights reserved.

  9. Measurement of lung fluid volumes and albumin exclusion in sheep

    SciTech Connect

    Pou, N.A.; Roselli, R.J.; Parker, R.E.; Clanton, J.A.; Harris, T.R. )

    1989-10-01

    A radioactive tracer technique was used to determine interstitial diethylenetriaminepentaacetic acid (DTPA) and albumin distribution volume in sheep lungs. {sup 125}I- and/or {sup 131}I-labeled albumin were injected intravenously and allowed to equilibrate for 24 h. {sup 99m}Tc-labeled DTPA and {sup 51}Cr-labeled erythrocytes were injected and allowed to equilibrate (2 h and 15 min, respectively) before a lethal dose of thiamylal sodium. Two biopsies (1-3 g) were taken from each lung and the remaining tissue was homogenized for wet-to-dry lung weight and volume calculations. Estimates of distribution volumes from whole lung homogenized samples were statistically smaller than biopsy samples for extravascular water, interstitial {sup 99m}Tc-DTPA, and interstitial albumin. The mean fraction of the interstitium (Fe), which excludes albumin, was 0.68 +/- 0.04 for whole lung samples compared with 0.62 +/- 0.03 for biopsy samples. Hematocrit may explain the consistent difference. To make the Fe for biopsy samples match that for homogenized samples, a mean hematocrit, which was 82% of large vessel hematocrit, was required. Excluded volume fraction for exogenous sheep albumin was compared with that of exogenous human albumin in two sheep, and no difference was found at 24 h.

  10. Increased salt consumption induces body water conservation and decreases fluid intake.

    PubMed

    Rakova, Natalia; Kitada, Kento; Lerchl, Kathrin; Dahlmann, Anke; Birukov, Anna; Daub, Steffen; Kopp, Christoph; Pedchenko, Tetyana; Zhang, Yahua; Beck, Luis; Johannes, Bernd; Marton, Adriana; Müller, Dominik N; Rauh, Manfred; Luft, Friedrich C; Titze, Jens

    2017-05-01

    The idea that increasing salt intake increases drinking and urine volume is widely accepted. We tested the hypothesis that an increase in salt intake of 6 g/d would change fluid balance in men living under ultra-long-term controlled conditions. Over the course of 2 separate space flight simulation studies of 105 and 205 days' duration, we exposed 10 healthy men to 3 salt intake levels (12, 9, or 6 g/d). All other nutrients were maintained constant. We studied the effect of salt-driven changes in mineralocorticoid and glucocorticoid urinary excretion on day-to-day osmolyte and water balance. A 6-g/d increase in salt intake increased urine osmolyte excretion, but reduced free-water clearance, indicating endogenous free water accrual by urine concentration. The resulting endogenous water surplus reduced fluid intake at the 12-g/d salt intake level. Across all 3 levels of salt intake, half-weekly and weekly rhythmical mineralocorticoid release promoted free water reabsorption via the renal concentration mechanism. Mineralocorticoid-coupled increases in free water reabsorption were counterbalanced by rhythmical glucocorticoid release, with excretion of endogenous osmolyte and water surplus by relative urine dilution. A 6-g/d increase in salt intake decreased the level of rhythmical mineralocorticoid release and elevated rhythmical glucocorticoid release. The projected effect of salt-driven hormone rhythm modulation corresponded well with the measured decrease in water intake and an increase in urine volume with surplus osmolyte excretion. Humans regulate osmolyte and water balance by rhythmical mineralocorticoid and glucocorticoid release, endogenous accrual of surplus body water, and precise surplus excretion. Federal Ministry for Economics and Technology/DLR; the Interdisciplinary Centre for Clinical Research; the NIH; the American Heart Association (AHA); the Renal Research Institute; and the TOYOBO Biotechnology Foundation. Food products were donated by APETITO

  11. Increased salt consumption induces body water conservation and decreases fluid intake

    PubMed Central

    Rakova, Natalia; Kitada, Kento; Lerchl, Kathrin; Dahlmann, Anke; Birukov, Anna; Daub, Steffen; Kopp, Christoph; Pedchenko, Tetyana; Zhang, Yahua; Beck, Luis; Marton, Adriana; Müller, Dominik N.; Rauh, Manfred; Luft, Friedrich C.

    2017-01-01

    BACKGROUND. The idea that increasing salt intake increases drinking and urine volume is widely accepted. We tested the hypothesis that an increase in salt intake of 6 g/d would change fluid balance in men living under ultra-long-term controlled conditions. METHODS. Over the course of 2 separate space flight simulation studies of 105 and 205 days’ duration, we exposed 10 healthy men to 3 salt intake levels (12, 9, or 6 g/d). All other nutrients were maintained constant. We studied the effect of salt-driven changes in mineralocorticoid and glucocorticoid urinary excretion on day-to-day osmolyte and water balance. RESULTS. A 6-g/d increase in salt intake increased urine osmolyte excretion, but reduced free-water clearance, indicating endogenous free water accrual by urine concentration. The resulting endogenous water surplus reduced fluid intake at the 12-g/d salt intake level. Across all 3 levels of salt intake, half-weekly and weekly rhythmical mineralocorticoid release promoted free water reabsorption via the renal concentration mechanism. Mineralocorticoid-coupled increases in free water reabsorption were counterbalanced by rhythmical glucocorticoid release, with excretion of endogenous osmolyte and water surplus by relative urine dilution. A 6-g/d increase in salt intake decreased the level of rhythmical mineralocorticoid release and elevated rhythmical glucocorticoid release. The projected effect of salt-driven hormone rhythm modulation corresponded well with the measured decrease in water intake and an increase in urine volume with surplus osmolyte excretion. CONCLUSION. Humans regulate osmolyte and water balance by rhythmical mineralocorticoid and glucocorticoid release, endogenous accrual of surplus body water, and precise surplus excretion. FUNDING. Federal Ministry for Economics and Technology/DLR; the Interdisciplinary Centre for Clinical Research; the NIH; the American Heart Association (AHA); the Renal Research Institute; and the TOYOBO Biotechnology

  12. Assessment of body composition using dry mass index and ratio of total body water to estimated volume based on bioelectrical impedance analysis in chronic kidney disease patients.

    PubMed

    Ohashi, Yasushi; Otani, Takatoshi; Tai, Reibin; Tanaka, Yoshihide; Sakai, Ken; Aikawa, Atsushi

    2013-01-01

    Body mass index (BMI) is commonly used for assessment of nutritional status. However, changes in BMI in chronic kidney disease (CKD) patients are affected not only by muscle and fat but also by fluid volume. The ratio of extracellular water (ECW(BIA)) to total body water (TBW(BIA)) in multifrequency bioelectrical impedance analysis is commonly used for assessing abnormal fluid status. This study reexamines ECW(BIA)/TBW(BIA) and evaluates the reliability of TBW(BIA)/TBW(watson) and dry mass index (DMI) in the assessment of fluid and nutritional status. TBW(BIA), intracellular water (ICW(BIA)), and ECW(BIA) were measured in 45 randomly selected CKD patients. Participants were surveyed for age, gender, BMI, blood pressure, serum albumin, estimated glomerular filtration rate, and proteinuria. DMI was calculated by the formula ([weight--TBW(BIA)]/height(2)) and TBW(BIA)/TBW(watson) using an anthropometric formula (Watson). Fluid and nutritional status were assessed using ECW(BIA)/TBW(BIA), TBW(BIA)/TBW(watson), and DMI. TBW(BIA)/TBW(watson) positively correlated with weight, BMI, and diastolic blood pressure and negatively correlated with age and serum albumin level. In contrast, ECW(BIA)/TBW(BIA) correlated with ICW deficit, aging, and body weight loss. On the basis of DMI and TBW(BIA)/TBW(watson), participants were categorized as follows: 1 obese patient with hypovolemia and 2 with euvolemia; 17 overweight patients with hypovolemia (n = 6), euvolemia (n = 8), or hypervolemia (n = 3); 24 patients of optimal weight with hypovolemia (n = 10), euvolemia (n = 9), or hypervolemia (n = 5); and 1 underweight patient with euvolemia. A combination of DMI, BMI, and TBW(BIA)/TBW(watson) makes it possible to include assessment of fluid volume to the physique index. In addition, ECW(BIA)/TBW(BIA) is not a reliable marker of edematous state in CKD patients. Copyright © 2013 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.

  13. General-relativistic rotation laws in rotating fluid bodies

    NASA Astrophysics Data System (ADS)

    Mach, Patryk; Malec, Edward

    2015-06-01

    We formulate new general-relativistic extensions of Newtonian rotation laws for self-gravitating stationary fluids. They have been used to rederive, in the first post-Newtonian approximation, the well-known geometric dragging of frames. We derive two other general-relativistic weak-field effects within rotating tori: the recently discovered dynamic antidragging and a new effect that measures the deviation from the Keplerian motion and/or the contribution of the fluids self-gravity. One can use the rotation laws to study the uniqueness and the convergence of the post-Newtonian approximations as well as the existence of the post-Newtonian limits.

  14. The relationships between breast volume, breast dense volume and volumetric breast density with body mass index, body fat mass and ethnicity

    NASA Astrophysics Data System (ADS)

    Zakariyah, N.; Pathy, N. B.; Taib, N. A. M.; Rahmat, K.; Judy, C. W.; Fadzil, F.; Lau, S.; Ng, K. H.

    2016-03-01

    It has been shown that breast density and obesity are related to breast cancer risk. The aim of this study is to investigate the relationships of breast volume, breast dense volume and volumetric breast density (VBD) with body mass index (BMI) and body fat mass (BFM) for the three ethnic groups (Chinese, Malay and Indian) in Malaysia. We collected raw digital mammograms from 2450 women acquired on three digital mammography systems. The mammograms were analysed using Volpara software to obtain breast volume, breast dense volume and VBD. Body weight, BMI and BFM of the women were measured using a body composition analyser. Multivariable logistic regression was used to determine the independent predictors of increased overall breast volume, breast dense volume and VBD. Indians have highest breast volume and breast dense volume followed by Malays and Chinese. While Chinese are highest in VBD, followed by Malay and Indian. Multivariable analysis showed that increasing BMI and BFM were independent predictors of increased overall breast volume and dense volume. Moreover, BMI and BFM were independently and inversely related to VBD.

  15. Clinical relevance of sonographically estimated amniotic fluid volume: polyhydramnios.

    PubMed

    Sandlin, Adam T; Chauhan, Suneet P; Magann, Everett F

    2013-05-01

    Polyhydramnios is an excessive amount of amniotic fluid within the amniotic cavity. The etiology of polyhydramnios may be idiopathic, the consequence of fetal structural anomalies, or the consequence of various fetal and maternal conditions. The clinical importance of polyhydramnios is found in its association with adverse pregnancy outcomes and the risk of perinatal mortality. The antenatal management of polyhydramnios can be challenging as there are no formalized guidelines on the topic. The purpose of this review is to provide a literature-based overview on the subject of polyhydramnios in singleton pregnancies, demonstrate its clinical implications, and describe a practical approach to its management.

  16. "Basal" palmar skin potentials and body fluid potassium.

    PubMed

    Christie, M J

    1976-01-01

    When palmar eccrine sweat glands are inactive the potential difference between palmar skin and a prepared forearm site is a function of the ratio of external (electrode electrolyte) and internal (tissue fluid) potassium concentrations. Evidence indicates that this "basal" palmar skin potential changes systematically with changes in ECF K+, and may be used to monitor such shifts, as, for example, in stress.

  17. Bioassay of body fluids, experiment M073. [biochemical changes caused by space flight conditions

    NASA Technical Reports Server (NTRS)

    Leach, C. S.; Rambaut, P. C.

    1973-01-01

    Body fluids were assayed in this experiment to demonstrate changes which might have occurred during the 56-day chamber study in fluid and electrolyte balance, in regulation of calcium metabolism, in overall physiological and emotional adaptation to the environment, and in regulation of metabolic processes.

  18. Identification of body fluid-specific DNA methylation markers for use in forensic science.

    PubMed

    Park, Jong-Lyul; Kwon, Oh-Hyung; Kim, Jong Hwan; Yoo, Hyang-Sook; Lee, Han-Chul; Woo, Kwang-Man; Kim, Seon-Young; Lee, Seung-Hwan; Kim, Yong Sung

    2014-11-01

    DNA methylation, which occurs at the 5'-position of the cytosine in CpG dinucleotides, has great potential for forensic identification of body fluids, because tissue-specific patterns of DNA methylation have been demonstrated, and DNA is less prone to degradation than proteins or RNA. Previous studies have reported several body fluid-specific DNA methylation markers, but DNA methylation differences are sometimes low in saliva and vaginal secretions. Moreover, specific DNA methylation markers in four types of body fluids (blood, saliva, semen, and vaginal secretions) have not been investigated with genome-wide profiling. Here, we investigated novel DNA methylation markers for identification of body fluids for use in forensic science using the Illumina HumanMethylation 450K bead array, which contains over 450,000 CpG sites. Using methylome data from 16 samples of blood, saliva, semen, and vaginal secretions, we first selected 2986 hypermethylated or hypomethylated regions that were specific for each type of body fluid. We then selected eight CpG sites as novel, forensically relevant DNA methylation markers: cg06379435 and cg08792630 for blood, cg26107890 and cg20691722 for saliva, cg23521140 and cg17610929 for semen, and cg01774894 and cg14991487 for vaginal secretions. These eight selected markers were evaluated in 80 body fluid samples using pyrosequencing, and all showed high sensitivity and specificity for identification of the target body fluid. We suggest that these eight DNA methylation markers may be good candidates for developing an effective molecular assay for identification of body fluids in forensic science.

  19. Equations of state of hard-body fluids: a new proposal

    NASA Astrophysics Data System (ADS)

    Solana, J. R.

    2015-05-01

    A new and accurate equation of state for hard-body fluids is proposed. For linear molecules, the equation only requires the second virial coefficient, which is known exactly for convex as well as for many non-convex hard-body fluids, to provide very good agreement with simulations even for quite elongated molecules. For non-linear molecules, some of the higher order virial coefficients might be needed, for which reasonable approximations would probably be sufficient to obtain satisfactory results.

  20. A simple model of fluid flow and electrolyte balance in the body

    NASA Technical Reports Server (NTRS)

    White, R. J.; Neal, L.

    1973-01-01

    The model is basically a three-compartment model, the three compartments being the plasma, interstitial fluid and cellular fluid. Sodium, potassium, chloride and urea are the only major solutes considered explicitly. The control of body water and electrolyte distribution is affected via drinking and hormone levels. Basically, the model follows the effect of various oral input water loads on solute and water distribution throughout the body.

  1. DNP System Output Volume Reduction Using Inert Fluids

    PubMed Central

    Peterson, Eric T; Gordon, Jeremy W; Erickson, Matthew G; Fain, Sean B; Rowland, Ian J

    2011-01-01

    Purpose To present a method for significantly increasing the concentration of a hyperpolarized compound produced by a commercial DNP polarizer, enabling the polarization process to be more suitable for pre-clinical applications. Materials and Methods Using a HyperSense® DNP polarizer, we have investigated the combined use of perfluorocarbon and water to warm and dissolve the hyperpolarized material from the polarization temperature of 1.4 K to produce material at temperatures suitable for injection. Results By replacing 75% of the water in the dissolution volume with a chemically and biologically inert liquid that is immiscible with water, the injection volume can be reduced fourfold Rapid separation of the water and perfluorocarbon mixture enables the aqueous layer containing polarized material to be easily and rapidly collected. Conclusion The approach provides a significantly increased concentration of compound in a volume for injection that is more appropriate for small animal studies. This is demonstrated for 13C labeled pyruvic acid and 13C labeled succinate, but may be applied to the majority of nuclei and compounds hyperpolarized by the DNP method. PMID:21448970

  2. Genome-wide methylation profiling and a multiplex construction for the identification of body fluids using epigenetic markers.

    PubMed

    Lee, Hwan Young; An, Ja Hyun; Jung, Sang-Eun; Oh, Yu Na; Lee, Eun Young; Choi, Ajin; Yang, Woo Ick; Shin, Kyoung-Jin

    2015-07-01

    The identification of body fluids found at crime scenes can contribute to solving crimes by providing important insights into crime scene reconstruction. In the present study, body fluid-specific epigenetic marker candidates were identified from genome-wide DNA methylation profiling of 42 body fluid samples including blood, saliva, semen, vaginal fluid and menstrual blood using the Illumina Infinium HumanMethylation450 BeadChip array. A total of 64 CpG sites were selected as body fluid-specific marker candidates by having more than 20% discrepancy in DNA methylation status between a certain type of body fluid and other types of body fluids and to have methylation or unmethylation pattern only in a particular type of body fluid. From further locus-specific methylation analysis in additional samples, 1 to 3 CpG sites were selected for each body fluid. Then, a multiplex methylation SNaPshot reaction was constructed to analyze methylation status of 8 body fluid-specific CpG sites. The developed multiplex reaction positively identifies blood, saliva, semen and the body fluid which originates from female reproductive organ in one reaction, and produces successful DNA methylation profiles in aged or mixed samples. Although it remains to be investigated whether this approach is more sensitive, more practical than RNA- or peptide-based assays and whether it can be successfully applied to forensic casework, the results of the present study will be useful for the forensic investigators dealing with body fluid samples.

  3. Messenger RNA profiling for forensic body fluid identification: research and applications.

    PubMed

    Wang, Zheng; Zhang, Su-hua; Di, Zhou; Zhao, Shu-min; Li, Cheng-tao

    2013-10-01

    Identifying the origin of body fluids left at a crime scene can give a significant insight into crime scene reconstruction by supporting a link between sample donors and actual criminal acts. However, the conventional body fluid identification methods are prone to various limitations, such as time consumption, intensive labor, nonparallel manner, varying degrees of sensitivity and limited specificity. Recently, the analysis of cell-specific messenger RNA expression (mRNA profiling) has been proposed to supplant conventional methods for body fluid identification. Since 2011, the collaborative exercises have been organized by the European DNA Profiling Group (EDNAP) in order to evaluate the robustness and reproducibility of mRNA profiling for body fluid identification. The major advantages of mRNA profiling, compared to the conventional methods, include higher sensitivity, greater specificity, the ability of detecting several body fluids in one multiplex reaction, and compatibility with current DNA extraction and analysis procedure. In the current review, we provided an overview of the present knowledge and detection methodologies of mRNA profiling for forensic body fluid identification and discussed its possible practical application to forensic casework.

  4. Quantitative body fluid proteomics in medicine - A focus on minimal invasiveness.

    PubMed

    Csősz, Éva; Kalló, Gergő; Márkus, Bernadett; Deák, Eszter; Csutak, Adrienne; Tőzsér, József

    2017-02-05

    Identification of new biomarkers specific for various pathological conditions is an important field in medical sciences. Body fluids have emerging potential in biomarker studies especially those which are continuously available and can be collected by non-invasive means. Changes in the protein composition of body fluids such as tears, saliva, sweat, etc. may provide information on both local and systemic conditions of medical relevance. In this review, our aim is to discuss the quantitative proteomics techniques used in biomarker studies, and to present advances in quantitative body fluid proteomics of non-invasively collectable body fluids with relevance to biomarker identification. The advantages and limitations of the widely used quantitative proteomics techniques are also presented. Based on the reviewed literature, we suggest an ideal pipeline for body fluid analyses aiming at biomarkers discoveries: starting from identification of biomarker candidates by shotgun quantitative proteomics or protein arrays, through verification of potential biomarkers by targeted mass spectrometry, to the antibody-based validation of biomarkers. The importance of body fluids as a rich source of biomarkers is discussed.

  5. Examination of the usefulness of non-invasive stroke volume variation monitoring for adjusting fluid supplementation during laparoscopic adrenalectomy in patients with pheochromocytoma.

    PubMed

    Isosu, Tsuyoshi; Obara, Shinju; Ohashi, Satoshi; Hosono, Atsuyuki; Nakano, Yuko; Imaizumi, Tsuyoshi; Mogami, Midori; Iida, Hiroshi; Murakawa, Masahiro

    2012-01-01

    The measurement of stroke volume variation (SVV) using the FloTrac™ system (Edwards Lifescience, USA) is useful to estimate cardiac preload. We evaluated the benefits of SVV monitoring for adjusting fluid supplementation during laparoscopic adrenalectomy under anesthesia in patients with pheochromocytoma. Among 10 patients who underwent laparoscopic adrenalectomy for pheochromocytoma in our institution from June 2004 to December 2009, SVV was not monitored in 5 patients (group I) and in the other 5 patients (group II), SVV monitoring was performed. Subject age, height and body weight, total volume of fluid supplemented, blood loss, urine output and net fluid in-out balance during the procedure were retrospectively assessed. In those with SVV monitoring, infusion volume was adjusted for SVV less than 13%. There were significant differences in the patient age and body weight between the two groups (group I: 64.2 years old and 55.1 kg; group II: 43.6 years old and 71.7 kg). Both total infusion volume and urine output were significantly higher in group I compared with group II (5,610 vs. 2,400 ml and 1,125 vs. 750 ml, respectively). Total blood loss was similar between the two groups. Values of the net fluid balance divided by the body weight and total anesthesia period (hr) were significantly lower in group II compared with group I (I; +13.2 in group I and +6.2 in group II, ml/kg/hr). These data suggest that SVV monitoring is helpful to estimate the optimal volume for fluid supplementation and could prevent excessive fluid infusion during surgical procedures.

  6. Body weight changes and voluntary fluid intakes during training and competition sessions in team sports.

    PubMed

    Broad, E M; Burke, L M; Cox, G R; Heeley, P; Riley, M

    1996-09-01

    Fluid losses (measured by body weight changes) and voluntary fluid intakes were measured in elite basketball, netball, and soccer teams during typical summer and winter exercise sessions to determine fluid requirements and the degree of fluid replacement. Each subject was weighed in minimal clothing before and immediately after training, weights, and competition sessions; fluid intake, duration of exercise, temperature and humidity, and opportunity to drink were recorded. Sweat rates were greatest during competition sessions and significantly lower during weights sessions for all sports. Seasonal variation in dehydration (%DH) was not as great as may have been expected, particularly in sports played indoors. Factors influencing fluid replacement during exercise included provision of an individual water bottle, proximity to water bottles during sessions, encouragement to drink, rules of the game, duration and number of breaks or substitutions, and awareness of personal sweat rates. Guidelines for optimizing fluid intakes in these three sports are provided.

  7. Interactions between internal forces, body stiffness, and fluid environment in a neuromechanical model of lamprey swimming

    PubMed Central

    Tytell, Eric D.; Hsu, Chia-Yu; Williams, Thelma L.; Cohen, Avis H.; Fauci, Lisa J.

    2010-01-01

    Animal movements result from a complex balance of many different forces. Muscles produce force to move the body; the body has inertial, elastic, and damping properties that may aid or oppose the muscle force; and the environment produces reaction forces back on the body. The actual motion is an emergent property of these interactions. To examine the roles of body stiffness, muscle activation, and fluid environment for swimming animals, a computational model of a lamprey was developed. The model uses an immersed boundary framework that fully couples the Navier–Stokes equations of fluid dynamics with an actuated, elastic body model. This is the first model at a Reynolds number appropriate for a swimming fish that captures the complete fluid-structure interaction, in which the body deforms according to both internal muscular forces and external fluid forces. Results indicate that identical muscle activation patterns can produce different kinematics depending on body stiffness, and the optimal value of stiffness for maximum acceleration is different from that for maximum steady swimming speed. Additionally, negative muscle work, observed in many fishes, emerges at higher tail beat frequencies without sensory input and may contribute to energy efficiency. Swimming fishes that can tune their body stiffness by appropriately timed muscle contractions may therefore be able to optimize the passive dynamics of their bodies to maximize peak acceleration or swimming speed. PMID:21037110

  8. Interactions between internal forces, body stiffness, and fluid environment in a neuromechanical model of lamprey swimming.

    PubMed

    Tytell, Eric D; Hsu, Chia-Yu; Williams, Thelma L; Cohen, Avis H; Fauci, Lisa J

    2010-11-16

    Animal movements result from a complex balance of many different forces. Muscles produce force to move the body; the body has inertial, elastic, and damping properties that may aid or oppose the muscle force; and the environment produces reaction forces back on the body. The actual motion is an emergent property of these interactions. To examine the roles of body stiffness, muscle activation, and fluid environment for swimming animals, a computational model of a lamprey was developed. The model uses an immersed boundary framework that fully couples the Navier-Stokes equations of fluid dynamics with an actuated, elastic body model. This is the first model at a Reynolds number appropriate for a swimming fish that captures the complete fluid-structure interaction, in which the body deforms according to both internal muscular forces and external fluid forces. Results indicate that identical muscle activation patterns can produce different kinematics depending on body stiffness, and the optimal value of stiffness for maximum acceleration is different from that for maximum steady swimming speed. Additionally, negative muscle work, observed in many fishes, emerges at higher tail beat frequencies without sensory input and may contribute to energy efficiency. Swimming fishes that can tune their body stiffness by appropriately timed muscle contractions may therefore be able to optimize the passive dynamics of their bodies to maximize peak acceleration or swimming speed.

  9. Self-propulsion of a body with rigid surface and variable coefficient of lift in a perfect fluid

    NASA Astrophysics Data System (ADS)

    Ramodanov, Sergey M.; Tenenev, Valentin A.; Treschev, Dmitry V.

    2012-11-01

    We study the system of a 2D rigid body moving in an unbounded volume of incompressible, vortex-free perfect fluid which is at rest at infinity. The body is equipped with a gyrostat and a so-called Flettner rotor. Due to the latter the body is subject to a lifting force (Magnus effect). The rotational velocities of the gyrostat and the rotor are assumed to be known functions of time (control inputs). The equations of motion are presented in the form of the Kirchhoff equations. The integrals of motion are given in the case of piecewise continuous control. Using these integrals we obtain a (reduced) system of first-order differential equations on the configuration space. Then an optimal control problem for several types of the inputs is solved using genetic algorithms.

  10. A noninvasive method to study regulation of extracellular fluid volume in rats using nuclear magnetic resonance

    EPA Pesticide Factsheets

    NMR fluid measurements of commonly used rat strains when subjected to SQ normotonic or hypertonic salines, as well as physiologic comparisons to sedentary and exercised subjects.This dataset is associated with the following publication:Gordon , C., P. Phillips , and A. Johnstone. A Noninvasive Method to Study Regulation of Extracellular Fluid Volume in Rats Using Nuclear Magnetic Resonance. American Journal of Physiology- Renal Physiology. American Physiological Society, Bethesda, MD, USA, 310(5): 426-31, (2016).

  11. The volume and pH of residual pharyngeal fluid aspirated from the TaperGuard Evac™ Endotracheal Tube following elective surgery: a prospective pilot study.

    PubMed

    Schumann, R; Gandhi, P; Switkowski, K; Grant, M A B; Bonney, I

    2013-03-01

    Oropharyngeal suctioning prior to extubation aims to minimize postextubation tracheal soiling from remaining fluid. We investigated the amount and nature of any fluid remaining after such suctioning and contributing factors. ASA I - III patients undergoing elective surgery under general anesthesia with endotracheal intubation participated in this prospective observational pilot study. Following oropharyngeal suctioning immediately prior to extubation, a dedicated port of the endotracheal tube (TaperGuard Evac™ Endotracheal Tube) was aspirated. The amount and pH of residual fluid was recorded. Data collection included age, sex, body mass index, comorbidities, ASA status, procedure type and duration. The Chi-Square, Wilcoxon Rank-Sum, t-tests, and univariate regression analysis were used as appropriate. Ninety-eight patients completed the study. The mean aspirated volume in 38 (38.8%) patients was 0.9 ± 1.3 mL and sixty patients (61.2%) had no aspirate. A body mass index of ≥ 30 kg/m2 was associated with the presence of fluid (P=0.03), and a higher volume (P=0.03). The fluid pH was 7 ± 0.81 (mean ± SD). A duration of surgery ≥ 120 minutes predicted a lower pH. The prevalence and amount of residual fluid after oropharyngeal suctioning was low and likely clinically insignificant. A higher body mass index was associated with a higher incidence and volume of residual fluid. Longer procedure duration determined a slightly lower pH, with a mildly acidic pH range. The possibility of a lower fluid pH after prolonged surgery contributing to postoperative sore throat via mucosal irritation warrants investigation.

  12. Trajectory encounter volume as a diagnostic of mixing potential in fluid flows

    NASA Astrophysics Data System (ADS)

    Rypina, Irina I.; Pratt, Lawrence J.

    2017-05-01

    Fluid parcels can exchange water properties when coming into contact with each other, leading to mixing. The trajectory encounter mass and a related simplified quantity, the encounter volume, are introduced as a measure of the mixing potential of a flow. The encounter volume quantifies the volume of fluid that passes close to a reference trajectory over a finite time interval. Regions characterized by a low encounter volume, such as the cores of coherent eddies, have a low mixing potential, whereas turbulent or chaotic regions characterized by a large encounter volume have a high mixing potential. The encounter volume diagnostic is used to characterize the mixing potential in three flows of increasing complexity: the Duffing oscillator, the Bickley jet and the altimetry-based velocity in the Gulf Stream extension region. An additional example is presented in which the encounter volume is combined with the u∗ approach of Pratt et al. (2016) to characterize the mixing potential for a specific tracer distribution in the Bickley jet flow. Analytical relationships are derived that connect the encounter volume to the shear and strain rates for linear shear and linear strain flows, respectively. It is shown that in both flows the encounter volume is proportional to time.

  13. Potential forensic application of DNA methylation profiling to body fluid identification.

    PubMed

    Lee, Hwan Young; Park, Myung Jin; Choi, Ajin; An, Ja Hyun; Yang, Woo Ick; Shin, Kyoung-Jin

    2012-01-01

    DNA analysis of various body fluid stains at crime scenes facilitates the identification of individuals but does not currently determine the type and origin of the biological material. Recent advances in whole genome epigenetic analysis indicate that chromosome pieces called tDMRs (tissue-specific differentially methylated regions) show different DNA methylation profiles according to the type of cell or tissue. We examined the potential of tissue-specific differential DNA methylation for body fluid identification. Five tDMRs for the genes DACT1, USP49, HOXA4, PFN3, and PRMT2 were selected, and DNA methylation profiles for these tDMRs were produced by bisulfite sequencing using pooled DNA from blood, saliva, semen, menstrual blood, and vaginal fluid. The tDMRs for DACT1 and USP49 showed semen-specific hypomethylation, and the tDMRs for HOXA4, PFN3, and PRMT2 displayed varying degrees of methylation according to the type of body fluid. Preliminary tests using methylation-specific PCR for the DACT1 and USP49 tDMRs showed that these two markers could be used successfully to identify semen samples including sperm cells. Body fluid-specific differential DNA methylation may be a promising indicator for body fluid identification. Because DNA methylation profiling uses the same biological source of DNA for individual identification profiling, the determination of more body fluid-specific tDMRs and the development of convenient tDMR analysis methods will facilitate the broad implementation of body fluid identification in forensic casework.

  14. Effects of 10 days 6 degrees head-down tilt on the responses to fluid loading and lower body negative pressure

    NASA Technical Reports Server (NTRS)

    Baisch, F.; Heer, M.; Beck, L.; Blomqvist, C. G.; Kropp, J.; Schulz, H.; Hillebrecht, A.; Meyer, M.

    1991-01-01

    In an international collaborative project six normal male subjects were studied before, during and after 10 days 6 degrees HDT. Fluid intake was controlled at 40 ml/(kgbw day). Urine volume and body weight were determined daily. Fluid loading and LBNP were performed in all three phases of the study. Body weight diminished by 2.6% because of fluid loss. Blood volume diminished by 13%. The responses to fluid loading were similar in the three phases of the study. Sixty minutes after end of infusion only 5.5% of the infused saline remained in the intravascular compartment. Excess interstitial fluid was eliminated in the next 24 hs but a negative balance was recorded also in the following day. The compliance of the lower limbs expressed as the rate of limb volume change/unit LBNP change was increased at the end of the HDT phase and during the post HDT phase. The set point of intravascular volume was defended, as shown by the response to FL. HDT increased the compliance of the lower limbs.

  15. Effects of 10 days 6 degrees head-down tilt on the responses to fluid loading and lower body negative pressure

    NASA Technical Reports Server (NTRS)

    Baisch, F.; Heer, M.; Beck, L.; Blomqvist, C. G.; Kropp, J.; Schulz, H.; Hillebrecht, A.; Meyer, M.

    1991-01-01

    In an international collaborative project six normal male subjects were studied before, during and after 10 days 6 degrees HDT. Fluid intake was controlled at 40 ml/(kgbw day). Urine volume and body weight were determined daily. Fluid loading and LBNP were performed in all three phases of the study. Body weight diminished by 2.6% because of fluid loss. Blood volume diminished by 13%. The responses to fluid loading were similar in the three phases of the study. Sixty minutes after end of infusion only 5.5% of the infused saline remained in the intravascular compartment. Excess interstitial fluid was eliminated in the next 24 hs but a negative balance was recorded also in the following day. The compliance of the lower limbs expressed as the rate of limb volume change/unit LBNP change was increased at the end of the HDT phase and during the post HDT phase. The set point of intravascular volume was defended, as shown by the response to FL. HDT increased the compliance of the lower limbs.

  16. Fluid Redistribution and Heart Rate in Humans During Whole-Body Tilting, G(z) Centrifugation, and Lower Body Negative Pressure

    NASA Technical Reports Server (NTRS)

    Watenpaugh, D. E.; Breit, G. A.; Ballard, R. E.; Murthy, G.; Hargens, A. R.

    1994-01-01

    Gravity creates blood pressure gradients which redistribute body fluids towards the feet. Positive G(z) centrifugation and lower body negative pressure (LBNP) have been proposed to simulate these and other effects of gravity during long-term existence in microgravity. We hypothesized that the magnitude of upper-to-lower body fluid redistribution would increase according to the following order: short-arm centrifugation (SAC), long-arm centrifugation (LAC), head-up tilt (HUT), and LBNP. To test this hypothesis, we employed strain gauge plethysmography of the neck, thigh and calf during HUT and supine SAC and LAC up to lG(z) at the feet, and during supine LBNP to 100 mm Hg. Supine 100 mm Hg LBNP generates footward force and produces transmural blood pressures in the foot approximately equal to 1 G(z) (90 deg) HUT. Heart rate was measured via cardiotachometry. Control measurements were made while supine. SAC and LAC elicited similar increases in thigh volume at 1 G(z) (2.3 +/- 0.4 and 2.1 +/- 0.1%, respectively; mean +/- se, n greater than or equal to 7). At 100 mm Hg LBNP, thigh volume increased (3.4 +/- 0.3%) significantly more than during l G(z) centrifugation (p less than 0.05). Surprisingly, due to a paradoxical 0.6% reduction of thigh volume between 0.8 and 1.0 G(z) HUT, thigh volume was increased only 0.6 +/- 0.3% at 1 G(z) HUT. The calf demonstrated similar, although less definitive, responses to the various gravitational stimuli. Neck volume tended to decrease less during HUT than during the other stimuli. Heart rate increased similarly during HUT (18 +/- 2 beats/min) and LAC (12 +/- 2 beats/min), and exhibited still greater elevation during LBNP (29 +/- 4 beats/min), yet did not increase during SAC. These results suggest upright posture activates mechanisms that counteract footward fluid redistribution which are not activated during supine applications of simulated gravity. LAC more closely approximated effects of normal gravity (HUT) than LBNP. Therefore

  17. Fluid Redistribution and Heart Rate in Humans During Whole-Body Tilting, G(z) Centrifugation, and Lower Body Negative Pressure

    NASA Technical Reports Server (NTRS)

    Watenpaugh, D. E.; Breit, G. A.; Ballard, R. E.; Murthy, G.; Hargens, A. R.

    1994-01-01

    Gravity creates blood pressure gradients which redistribute body fluids towards the feet. Positive G(z) centrifugation and lower body negative pressure (LBNP) have been proposed to simulate these and other effects of gravity during long-term existence in microgravity. We hypothesized that the magnitude of upper-to-lower body fluid redistribution would increase according to the following order: short-arm centrifugation (SAC), long-arm centrifugation (LAC), head-up tilt (HUT), and LBNP. To test this hypothesis, we employed strain gauge plethysmography of the neck, thigh and calf during HUT and supine SAC and LAC up to lG(z) at the feet, and during supine LBNP to 100 mm Hg. Supine 100 mm Hg LBNP generates footward force and produces transmural blood pressures in the foot approximately equal to 1 G(z) (90 deg) HUT. Heart rate was measured via cardiotachometry. Control measurements were made while supine. SAC and LAC elicited similar increases in thigh volume at 1 G(z) (2.3 +/- 0.4 and 2.1 +/- 0.1%, respectively; mean +/- se, n greater than or equal to 7). At 100 mm Hg LBNP, thigh volume increased (3.4 +/- 0.3%) significantly more than during l G(z) centrifugation (p less than 0.05). Surprisingly, due to a paradoxical 0.6% reduction of thigh volume between 0.8 and 1.0 G(z) HUT, thigh volume was increased only 0.6 +/- 0.3% at 1 G(z) HUT. The calf demonstrated similar, although less definitive, responses to the various gravitational stimuli. Neck volume tended to decrease less during HUT than during the other stimuli. Heart rate increased similarly during HUT (18 +/- 2 beats/min) and LAC (12 +/- 2 beats/min), and exhibited still greater elevation during LBNP (29 +/- 4 beats/min), yet did not increase during SAC. These results suggest upright posture activates mechanisms that counteract footward fluid redistribution which are not activated during supine applications of simulated gravity. LAC more closely approximated effects of normal gravity (HUT) than LBNP. Therefore

  18. Recognizing and differentiating uncommon body fluids: Considerations and tools for a proper practical approach.

    PubMed

    Janssens, Pim M W

    2017-08-01

    Clinical laboratories are regularly requested to inspect uncommon body fluids obtained from patients because clinicians are uncertain as to the origin of the collected material. They may need this information for the actual diagnosis, to confirm a supposition, or for guiding treatment and invasive operations like draining and puncturing. Often there is also a need to know more precisely what is going on in the cavity that gave rise to the fluid, for instance a local infection or metastasis, or whether the cavity is connected to organs or fluid compartments nearby etcetera. The results of the laboratory investigations often have () direct consequences. As the investigation of uncommon body fluids is distinct from routine laboratory analyses it requires special attention. This paper presents an overview of the characteristics of uncommon human body fluids, constituents useful as markers for recognizing and differentiating fluids and considerations that have to be taken into account when interpreting the results of analyses. In addition a number of practical recommendations for approaching the task of identifying uncommon body fluids are given. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Simulations of dipolar fluids using effective many-body isotropic interactions

    NASA Astrophysics Data System (ADS)

    Sindt, Julien O.; Camp, Philip J.

    2015-07-01

    The partition function of a system with pairwise-additive anisotropic dipole-dipole interactions is equal to that of a hypothetical system with many-body isotropic interactions [G. Stell, Phys. Rev. Lett. 32, 286 (1974)]. The effective many-body interactions contain n-body contributions of all orders. Each contribution is known as an expansion in terms of the particle-particle distances r, and the coefficients are temperature dependent. The leading-order two-body term is the familiar -r-6 attraction, and the leading-order three-body term is equivalent to the Axilrod-Teller interaction. In this work, a fluid of particles with the leading-order two-body and three-body interactions is compared to an equivalent dipolar soft-sphere fluid. Molecular simulations are used to determine the conditions under which the effective many-body interactions reproduce the fluid-phase structures of the dipolar system. The effective many-body interaction works well at moderately high temperatures but fails at low temperatures where particle chaining is expected to occur. It is shown that an adjustment of the coefficients of the two-body and three-body terms leads to a good description of the structure of the dipolar fluid even in the chaining regime, due primarily to the ground-state linear configuration of the three-body Axilrod-Teller interaction. The vapor-liquid phase diagrams of systems with different Axilrod-Teller contributions are determined. As the strength of the three-body interaction is increased, the critical temperature and density both decrease and disappear completely above a threshold strength, where chaining eventually suppresses the condensation transition.

  20. Squeeze flow behavior of shear thickening fluid under constant volume

    NASA Astrophysics Data System (ADS)

    Gong, Xinglong; Chen, Qian; Liu, Mei; Cao, Saisai; Xuan, Shouhu; Jiang, Wanquan

    2017-06-01

    Squeeze flow behavior of shear thickening fluid (STF) consisting of SiO2 particles and ethylene glycol (EG) was investigated. STF was squeezed out radially between the parallel plate accessory of rheometer. Due to formation of particle chains and alignment of clusters, an obvious increase in normal stress was found in the squeeze procedure. When the sample (71 wt% SiO2) thickness was squeezed from 1 mm to 0.2 mm, normal stress rapidly increased from 0 Pa to 38.48 kPa. In comparison to the peak stress under shear mode (6.38 kPa), the squeeze stress of STF was larger. Moreover, it was found that normal stress was significantly enhanced at large squeeze velocity, large mass fraction and appropriate wall roughness. Meanwhile, shear viscosity under moving boundary was studied by applying a constant shear on STF during the squeeze test. Together with the shear effects, squeeze could change the inner particle distributions and affected the rheological property of STF. The related results were helpful for further understanding the shear thickening mechanism and developing new STF-based applications.

  1. Detection and identification of body fluid stains using antibody-nanoparticle conjugates.

    PubMed

    Frascione, Nunzianda; Thorogate, Richard; Daniel, Barbara; Jickells, Sue

    2012-01-21

    Body fluids are considered one of the most important evidence types in forensic casework. The presence and location of blood, semen and saliva can provide crucial information to investigators. Current practice relies on an accurate visual examination followed by the use of presumptive tests to determine the identity of the body fluid type. Further laboratory based tests are required to unequivocally confirm the identity of a stain. Body fluid stains can be difficult to detect with the naked eye, particularly on dark backgrounds and hence vital evidence may be overlooked. Current methods are fluid-type specific, with a separate, and different, test required for each body fluid. The laborious nature of such analysis and the impossibility of being carried out at the crime scene, leads to a delay in the investigation process that could prove detrimental to the solving of the case. Hence, there is a need for sensitive, specific and direct methods which can simultaneously detect, differentiate, and locate human fluids on items of forensic evidence. Here, we describe the preparation of functionalized iron oxide nanoparticles conjugated to antibodies specific to blood and saliva components and their use in detecting small traces against non-contrasting substrates including glass, ceramic tile, paper and black fabric. The advantage of our technique is that it can simultaneously detect blood and saliva and can spatially locate and differentiate these body fluid types. Most importantly, our technology, which exploits the superparamagnetic properties of iron oxide nanoparticles, works in situ with no need to remove the body fluid stains for testing and with no washing steps and does not interfere with downstream DNA profiling. Thus, our technology represents a novel and effective alternative to existing methods.

  2. [State of the art in fluid and volume therapy : A user-friendly staged concept].

    PubMed

    Rehm, M; Hulde, N; Kammerer, T; Meidert, A S; Hofmann-Kiefer, K

    2017-03-01

    Adequate fluid therapy is highly important for the perioperative outcome of our patients. Both, hypovolemia and hypervolemia can lead to an increase in perioperative complications and can impair the outcome. Therefore, perioperative infusion therapy should be target-oriented. The main target is to maintain the patient's preoperative normovolemia by using a sophisticated, rational infusion strategy.Perioperative fluid losses should be discriminated from volume losses (surgical blood loss or interstitial volume losses containing protein). Fluid losses as urine or perspiratio insensibilis (0.5-1.0 ml/kg/h) should be replaced by balanced crystalloids in a ratio of 1:1. Volume therapy step 1: Blood loss up to a maximum value of 20% of the patient's blood volume should be replaced by balanced crystalloids in a ratio of 4(-5):1. Volume therapy step 2: Higher blood losses should be treated by using iso-oncotic, preferential balanced colloids in a ratio of 1:1. For this purpose hydroxyethyl starch can also be used perioperatively if there is no respective contraindication, such as sepsis, burn injuries, critically ill patients, renal impairment or renal replacement therapy, and severe coagulopathy. Volume therapy step 3: If there is an indication for red cell concentrates or coagulation factors, a differentiated application of blood and blood products should be performed.

  3. Effects of exercise on fluid exchange and body composition in man during 14-day bed rest

    NASA Technical Reports Server (NTRS)

    Greenleaf, J. E.; Bernauer, E. M.; Juhos, L. T.; Young, H. L.; Morse, J. T.; Staley, R. W.

    1977-01-01

    A description is presented of an investigation in which body composition, fluid intake, and fluid and electrolyte losses were measured in seven normal, healthy men during three 2-wk bed-rest periods, separated by two 3-wk recovery periods. During bed rest the subjects remained in the horizontal position continuously. During the dietary control periods, body mass decreased significantly with all three regimens, including no exercise, isometric exercise, and isotonic excercise. During bed rest, body mass was essentially unchanged with no exercise, but decreased significantly with isotonic and isometric exercise. With one exception, there were no statistically significant changes in body density, lean body mass, or body fat content by the end of each of the three bed-rest periods.

  4. Effects of exercise on fluid exchange and body composition in man during 14-day bed rest

    NASA Technical Reports Server (NTRS)

    Greenleaf, J. E.; Bernauer, E. M.; Juhos, L. T.; Young, H. L.; Morse, J. T.; Staley, R. W.

    1977-01-01

    A description is presented of an investigation in which body composition, fluid intake, and fluid and electrolyte losses were measured in seven normal, healthy men during three 2-wk bed-rest periods, separated by two 3-wk recovery periods. During bed rest the subjects remained in the horizontal position continuously. During the dietary control periods, body mass decreased significantly with all three regimens, including no exercise, isometric exercise, and isotonic excercise. During bed rest, body mass was essentially unchanged with no exercise, but decreased significantly with isotonic and isometric exercise. With one exception, there were no statistically significant changes in body density, lean body mass, or body fat content by the end of each of the three bed-rest periods.

  5. Validity and reliability of total body volume and relative body fat mass from a 3-dimensional photonic body surface scanner

    PubMed Central

    Mähler, Anja; Boschmann, Michael; Jeran, Stephanie

    2017-01-01

    Objective Three-dimensional photonic body surface scanners (3DPS) feature a tool to estimate total body volume (BV) from 3D images of the human body, from which the relative body fat mass (%BF) can be calculated. However, information on validity and reliability of these measurements for application in epidemiological studies is limited. Methods Validity was assessed among 32 participants (men, 50%) aged 20–58 years. BV and %BF were assessed using a 3DPS (VitusSmart XXL) and air displacement plethysmography (ADP) with a BOD POD® device using equations by Siri and Brozek. Three scans were obtained per participant (standard, relaxed, exhaled scan). Validity was evaluated based on the agreement of 3DPS with ADP using Bland Altman plots, correlation analysis and Wilcoxon signed ranks test for paired samples. Reliability was investigated in a separate sample of 18 participants (men, 67%) aged 25–66 years using intraclass correlation coefficients (ICC) based on two repeated 3DPS measurements four weeks apart. Results Mean BV and %BF were higher using 3DPS compared to ADP, (3DPS-ADP BV difference 1.1 ± 0.9 L, p<0.01; %BF difference 7.0 ± 5.6, p<0.01), yet the disagreement was not associated with gender, age or body mass index (BMI). Reliability was excellent for 3DPS BV (ICC, 0.998) and good for 3DPS %BF (ICC, 0.982). Results were similar for the standard scan and the relaxed scan but somewhat weaker for the exhaled scan. Conclusions Although BV and %BF are higher than ADP measurements, our data indicate good validity and reliability for an application of 3DPS in epidemiological studies. PMID:28672039

  6. Validity and reliability of total body volume and relative body fat mass from a 3-dimensional photonic body surface scanner.

    PubMed

    Adler, Carolin; Steinbrecher, Astrid; Jaeschke, Lina; Mähler, Anja; Boschmann, Michael; Jeran, Stephanie; Pischon, Tobias

    2017-01-01

    Three-dimensional photonic body surface scanners (3DPS) feature a tool to estimate total body volume (BV) from 3D images of the human body, from which the relative body fat mass (%BF) can be calculated. However, information on validity and reliability of these measurements for application in epidemiological studies is limited. Validity was assessed among 32 participants (men, 50%) aged 20-58 years. BV and %BF were assessed using a 3DPS (VitusSmart XXL) and air displacement plethysmography (ADP) with a BOD POD® device using equations by Siri and Brozek. Three scans were obtained per participant (standard, relaxed, exhaled scan). Validity was evaluated based on the agreement of 3DPS with ADP using Bland Altman plots, correlation analysis and Wilcoxon signed ranks test for paired samples. Reliability was investigated in a separate sample of 18 participants (men, 67%) aged 25-66 years using intraclass correlation coefficients (ICC) based on two repeated 3DPS measurements four weeks apart. Mean BV and %BF were higher using 3DPS compared to ADP, (3DPS-ADP BV difference 1.1 ± 0.9 L, p<0.01; %BF difference 7.0 ± 5.6, p<0.01), yet the disagreement was not associated with gender, age or body mass index (BMI). Reliability was excellent for 3DPS BV (ICC, 0.998) and good for 3DPS %BF (ICC, 0.982). Results were similar for the standard scan and the relaxed scan but somewhat weaker for the exhaled scan. Although BV and %BF are higher than ADP measurements, our data indicate good validity and reliability for an application of 3DPS in epidemiological studies.

  7. SSME LOX post flow analysis/fluid structure interaction. Volume 2: Fluid structure interaction

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The progress made in resolving the computational issues associated with modeling high temperature and pressure viscous flows in advanced propulsion systems is documented. An overview of adaptive computational methods for various classes of fluid-structure interaction problems is presented. The key features associated with several approaches are outlined and the advantages/disadvantages of each are summarized. A mathematical formulation is presented for general fluid-structure interaction problems with a moving domain. The two adaptive approaches are discussed used in solving the benchmark problems. The first scheme is a user interactive scheme which is quite versatile and easy to implement but requires an excessive amount of monitoring by the operator and is computationally inefficient. The second method is a new, local remeshing method for handling a general class of fluid-structure interaction problems. This method couples many of the attractive features of other approaches into a computationally efficient and versatile method. The results obtained for two test cases are presented. Results from both the user interactive and local remeshing procedure are described. The current status of the project and future goals to be completed are summarized.

  8. How do sock ply changes affect residual limb fluid volume in people with trans-tibial amputation?

    PubMed Central

    Sanders, JE; Harrison, DS; Allyn, KJ; Myers, TR; Ciol, MA; Tsai, EC

    2015-01-01

    The purpose of this research was to investigate the influence of sock addition and sock removal on residual limb fluid volume in people using prosthetic limbs. We used bioimpedance analysis to measure residual limb extracellular fluid volume on 28 transtibial amputee subjects during 30-minute test sessions. Upon addition of a 1-ply polyester sock, residual limb fluid volume changes ranged from −4.0% to 0.8% (mean −0.9% (s.d.=1.3%)) of the initial limb fluid volume. Changes for sock removal ranged from −1.2% to 2.8% (mean 0.5% (s.d.=0.8%)). Subjects who reduced in fluid volume with both addition and removal of a sock and subjects with high positive ratios between the fluid volume loss upon sock addition and the gain upon sock removal (high Add/Remove(AR) ratios) tended to have arterial disease, were obese and smokers. Subjects with low positive AR ratios, subjects who increased in fluid volume both with sock addition and removal, and a single subject who increased in fluid volume with sock addition and decreased with sock removal tended to be non-smokers and either healthy individuals without complications or individuals without arterial problems. Results are relevant towards anticipating limb volume changes during prosthetic fitting and towards the design of adjustable-socket technologies. PMID:22773526

  9. Extracellular fluid and plasma volumes during water immersion in nephrectomized dogs

    SciTech Connect

    Miki, K.; Hajduczok, G.; Hong, S.K.; Krasney, J.A.

    1987-05-01

    Extracellular fluid volume (ECF, (/sup 125/I)iothalamate space), blood volume (BV), /sup 51/Cr-labeled erythrocyte space), and hematocrit were measured continuously to study the kinetics of fluid movements between intracellular, interstitial, and plasma compartments during water immersion (WI) at 38/sup 0/C in seven splenetomized and acutely nephrectomized dogs. ECF and plasma volume (PV) increased linearly during WI above the control level by 120 min of WI. The authors estimate that 83% of the fluid entering the intravascular compartment is derived from the intracellular space at 120 min of WI. The results of this study indicate that WI leads to a sustained fluid movement of intracellular fluid toward the intravascular compartment. The increase in interstitial hydrostatic pressure (wick method) by 28.5 mmHg from the control level at 5 min of WI in response to the external water pressure exceeds the increase in mean capillary pressure by 10-11 mmHg relative to the control level. They postulate that this negative hydrostatic pressure gradient across the capillary wall leads to an increase in PV during WI.

  10. Water Metabolism and Fluid Compartment Volumes in Humans at Altitude. A Compendium of Research (1914 - 1996)

    NASA Technical Reports Server (NTRS)

    Chou, J. L.; Stad, N. J.; Gay, E.; West, G. I.; Barnes, P. R.; Greenleaf, J. E.

    1997-01-01

    This compendium includes abstracts and synopses of clinical observations and of more basic studies involving physiological mechanisms concerning interaction of water metabolism and fluid compartment volumes in humans during altitude exposure. If the author's abstract or summary was appropriate, it was included. In other cases a more detailed synopsis of the paper was prepared under the subheadings Purpose, Methods, Results, and Conclusions. Author and subject indices are provided, plus an additional selected bibliography of related work of those papers received after the volume was being prepared for publication. This volume includes material published from 1914 through 1995.

  11. A penalty immersed boundary method for a rigid body in fluid

    NASA Astrophysics Data System (ADS)

    Kim, Yongsam; Peskin, Charles S.

    2016-03-01

    We extend the penalty immersed boundary (pIB) method to the interaction between a rigid body and a surrounding fluid. The pIB method is based on the idea of splitting an immersed boundary, which here is a rigid body, notionally into two Lagrangian components: one is a massive component carrying all mass of the rigid body and the other is massless. These two components are connected by a system of stiff springs with 0 rest length. The massless component interacts with the surrounding fluid: it moves at the local fluid velocity and exerts force locally on the fluid. The massive component has no direct interaction with the surrounding fluid and behaves as though in a vacuum, following the dynamics of a rigid body, in which the acting forces and torques are generated from the system of stiff springs that connects the two Lagrangian components. We verify the pIB method by computing the drag coefficients of a cylinder and ball descending though a fluid under the influence of gravity and also by studying the interaction of two such descending cylinders and likewise the interaction of two such descending balls. The computational results are quite comparable to those in the literature. As a further example of an application, we include a freely falling maple seed with autorotation.

  12. The Use of Postural Vital Signs in the Assessment of Fluid Volume Status.

    ERIC Educational Resources Information Center

    Wandel, Jane Corrigan

    1990-01-01

    Blood pressure and pulse are measured in supine and upright positions, and certain differences between the values are said to indicate fluid volume disturbance. Most discussions of this "orthostatic test" do not explain how it should be done, and they differ from what has been observed in a practice setting. (MLW)

  13. The Use of Postural Vital Signs in the Assessment of Fluid Volume Status.

    ERIC Educational Resources Information Center

    Wandel, Jane Corrigan

    1990-01-01

    Blood pressure and pulse are measured in supine and upright positions, and certain differences between the values are said to indicate fluid volume disturbance. Most discussions of this "orthostatic test" do not explain how it should be done, and they differ from what has been observed in a practice setting. (MLW)

  14. Validity of Pulse Pressure Variation (PPV) Compared with Stroke Volume Variation (SVV) in Predicting Fluid Responsiveness

    PubMed Central

    Rathore, Abhishek; Singh, Shalendra; Lamsal, Ritesh; Taank, Priya; Paul, Debashish

    2017-01-01

    Objective Static monitors for assessing the fluid status during major surgeries and in critically ill patients have been gradually replaced by more accurate dynamic monitors in modern-day anaesthesia practice. Pulse pressure variation (PPV) and systolic pressure variation (SPV) are the two commonly used dynamic indices for assessing fluid responsiveness. Methods In this prospective observational study, 50 patients undergoing major surgeries were monitored for PPV and SPV: after the induction of anaesthesia and after the administration of 500 mL of isotonic crystalloid bolus. Following the fluid bolus, patients with a cardiac output increase of more than 15% were classified as responders and those with an increase of less than 15% were classified as non-responders. Results There were no significant differences in the heart rate (HR), mean arterial pressure (MAP), PPV, SVV, central venous pressure (CVP) and cardiac index (CI) between responders and non-responders. Before fluid bolus, the stroke volume was significantly lower in responders (p=0.030). After fluid bolus, MAP was significantly higher in responders but there were no significant changes in HR, CVP, CI, PPV and SVV. In both responders and non-responders, PPV strongly correlated with SVV before and after fluid bolus. Conclusion Both PPV and SVV are useful to predict cardiac response to fluid loading. In both responders and non-responders, PPV has a greater association with fluid responsiveness than SVV. PMID:28868168

  15. Flutter Instability of a Fluid-Conveying Fluid-Immersed Pipe Affixed to a Rigid Body

    DTIC Science & Technology

    2011-01-01

    have also been studied. The cantilever (Bourrieres, 1939; Gregory and Paı̈doussis, 1966) and pinned–pinned (Ashley and Haviland , 1950) conditions form...acknowledged. References Ashley, H., Haviland , G., 1950. Bending vibrations of a pipeline containing fluid. Journal of Applied Mechanics 17, 229–232. Bhat, R.B

  16. A Review of Electrical Impedance Spectrometry Methods for Parametric Estimation of Physiologic Fluid Volumes

    NASA Technical Reports Server (NTRS)

    Dewberry, B.

    2000-01-01

    Electrical impedance spectrometry involves measurement of the complex resistance of a load at multiple frequencies. With this information in the form of impedance magnitude and phase, or resistance and reactance, basic structure or function of the load can be estimated. The "load" targeted for measurement and estimation in this study consisted of the water-bearing tissues of the human calf. It was proposed and verified that by measuring the electrical impedance of the human calf and fitting this data to a model of fluid compartments, the lumped-model volume of intracellular and extracellular spaces could be estimated, By performing this estimation over time, the volume dynamics during application of stimuli which affect the direction of gravity can be viewed. The resulting data can form a basis for further modeling and verification of cardiovascular and compartmental modeling of fluid reactions to microgravity as well as countermeasures to the headward shift of fluid during head-down tilt or spaceflight.

  17. Out of hours management of occupational exposures to blood and body fluids in healthcare staff.

    PubMed

    Patel, D; Gawthrop, M; Snashall, D; Madan, I

    2002-06-01

    To assess and compare the out of hours and in hours management of occupational blood and body fluid exposures in a London teaching hospital. The occupational health and accident and emergency records of individuals presenting with occupational body fluid exposures over a six month period at a London teaching hospital were analysed retrospectively. Main outcome measures were the completeness of records, and the appropriate management of body fluid exposures using the Department of Health guidelines as the gold standard. A total of 177 body fluid exposures were reported; 109 (61.58%) were initially assessed in the occupational health department, and 68 (38.42%) in the accident and emergency department. Of those originally assessed in the accident and emergency department, only 21 (30.88%) attended the occupational health department for follow up. Occupational health staff were more consistent in assessing and managing exposures, and in a higher proportion of cases gave more appropriate advice on post-exposure prophylaxis (PEP) against hepatitis B and HIV. Of the 11 individuals prescribed HIV PEP (all by accident and emergency staff), only three subsequently attended occupational health for follow up. In all three cases therapy was discontinued, as the source was HIV negative or the exposure low risk. Out of hours management of occupational body fluid exposures, particularly the prescribing of HIV PEP, was inconsistent with in hours practice. This may also be the case in other large inner city hospitals offering a similar service.

  18. Early bacterial genome detection in body fluids from patients with severe sepsis: a pilot study.

    PubMed

    Dugard, Anthony; Chainier, Delphine; Barraud, Olivier; Garnier, Fabien; Ploy, Marie-Cécile; Vignon, Philippe; François, Bruno

    2012-08-01

    The purpose of this study is to evaluate the feasibility and interest of real-time polymerase chain reaction (RT-PCR) testing for bacterial genomes in body fluids other than blood in patients with acute severe sepsis. Twenty-six consecutive patients admitted for severe sepsis or septic shock were prospectively studied. Body fluids were sampled as clinically indicated and tested using standard microbiological methods and modified RT-PCR methods (universal PCR and specific PCRs). Results of standard microbiological tests were compared with those of PCR tests. Direct RT-PCR testing was successfully performed on all nonblood body fluids. Of 29 body fluids collected, 23 were positive for at least 1 microorganism with conventional tests. Of 18 microbiological tests positive for a single microorganism, 15 fully agreed with RT-PCR assays, and the remaining 3 samples were infected with bacteria not screened by PCR testing. Among the 5 polymicrobial results obtained with conventional tests, RT-PCR agreed in 4 patients. The RT-PCR tests allowed additional clinically relevant bacterial identification in 3 of 6 samples with negative microbiological culture. Our results indicate that direct PCR testing may improve the detection of bacteria in body fluids other than blood in patients with acute severe sepsis. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. Effect of time duration of digestion/decontamination technique on yield of mycobacteria and contamination rates from sterile body fluids (pleural and ascitic fluid) and pus specimens.

    PubMed

    Shafiq, Samreen; Saleem, Faryal; Jabeen, Kauser; Farooqi, Joveria; Alam, Warda; Hanif, Sadia; Ali, Shazia; Shakoor, Sadia; Hasan, Rumina

    2016-12-01

    Duration of digestion/decontamination has a considerable impact on yield of mycobacteria especially from sterile body fluids and pus specimens. Additionally, duration of digestion/decontamination affects the contamination rates. This study evaluates the effect of digestion/decontamination protocol for 15 and 20min versus inoculation of media directly from the sample on contamination rates as well as the yield of mycobacteria from pus and sterile fluids other than cerebrospinal fluids. Pleural fluid (n=60), pus (n=48) and ascitic fluid (n=12) specimens were cultured for mycobacteria and evaluated for contamination and mycobacterial yield using three different processing methodologies: without digestion/decontamination with 5% NaOH-NALC (D/D), D/D for 15min and D/D for 20min. All samples >3mL in volume were spun at 3000 RCF for 15min, whereas those less than 3mL were used as is. They were simultaneously processed using the three different methods as mentioned above, and inoculated on LJ media and MGIT. Smear was made from samples treated for 20min and stained with fluorescent stain. Kinyoun staining was done on smears with dubious findings. Mycobacterial culture yield and contamination rates were recorded at 6weeks as recommended by the Global Laboratory Initiative (GLI) laboratory manual 2014. Pleural fluid and pus contamination rates were substantially lowered by increasing decontamination time from 15 to 20min, but it did not have any effect for ascitic fluid (Table 1). The 5-min difference in the decontamination procedure improved mycobacterial culture yield for pus samples by 10%, but there was no substantial effect on pleural and ascitic fluids. Prolonged decontamination did not compromise the culture yield in any of the mentioned specimens. In areas where specimen delay is common and sterility of collection procedure cannot be ensured, digestion/decontamination with NaOH-NALC for up to 20min can reduce contamination rates without considerably compromising

  20. Determination of the column hold-up volume in supercritical fluid chromatography using nitrous-oxide.

    PubMed

    Vajda, Péter; Guiochon, Georges

    2013-09-27

    This study introduces a new tracer that is useful for the determination of the hold-up time or volume of packed columns, particularly of those used in supercritical fluid chromatography. The thermodynamic void volume of three columns packed with different adsorbents were determined using the weight difference method. These void volumes were used as the reference point in the further discussion. The hold-up volumes of these columns were determined under dynamic conditions, using nitrous oxide dissolved in methanol as the hold-up time marker. Changes in the hold-up volumes of these columns were monitored during changes of the volumetric flow rate of pure supercritical carbon dioxide and of dilute mixtures of organic modifier and supercritical carbon dioxide. The results suggest significant methanol enrichment on the adsorbent surface.

  1. An experimental study on the excitation of large volume airguns in a small volume body of water

    NASA Astrophysics Data System (ADS)

    Wang, Baoshan; Yang, Wei; Yuan, Songyong; Guo, Shijun; Ge, Hongkui; Xu, Ping; Chen, Yong

    2010-12-01

    A large volume airgun array is effective in generating seismic waves, which is extensively used in large volume bodies of water such as oceans, lakes and reservoirs. So far, the application of large volume airguns is subject to the distribution of large volume bodies of water. This paper reports an attempt to utilize large volume airguns in a small body of water as a seismic source for seismotectonic studies. We carried out a field experiment in Mapaoquan pond, Fangshan district, Beijing, during the period 25-30 May 2009. Bolt LL1500 airguns, each with volumes of 2000 in3, the largest commercial airguns available today, were used in this experiment. We tested the excitation of the airgun array with one or two guns. The airgun array was placed 7-11 m below the water's surface. The near- and far-field seismic motions induced by the airgun source were recorded by a 100 km long seismic profile composed of 16 portable seismometers and a 100 m long strong motion seismograph profile, respectively. The following conclusions can be drawn from this experiment. First, it is feasible to excite large volume airguns in a small volume body of water. Second, seismic signals from a single shot of one airgun can be recognized at the offset up to 15 km. Taking advantage of high source repeatability, we stacked records from 128 shots to enhance the signal-to-noise ratio, and direct P-waves can be easily identified at the offset ~50 km in stacked records. Third, no detectable damage to fish or near-field constructions was caused by the airgun shots. Those results suggest that large volume airguns excited in small bodies of water can be used as a routinely operated seismic source for mid-scale (tens of kilometres) subsurface explorations and monitoring under various running conditions.

  2. Apparatus and method for collection and concentration of respirable particles into a small fluid volume

    DOEpatents

    Simon, Jonathan N.; Brown, Steve B.

    2002-01-01

    An apparatus and method for the collection of respirable particles and concentration of such particles into a small fluid volume. The apparatus captures and concentrates small (1-10 .mu.m) respirable particles into a sub-millileter volume of fluid. The method involves a two step operation, collection and concentration: wherein collection of particles is by a wetted surface having small vertical slits that act as capillary channels; and concentration is carried out by transfer of the collected particles to a small volume (sub-milliliter) container by centrifugal force whereby the particles are forced through the vertical slits and contact a non-wetted wall surface, and are deflected to the bottom where they are contained for analysis, such as a portable flow cytometer or a portable PCR DNA analysis system.

  3. High-Volume Airborne Fluids Handling Technologies to Fight Wildfires

    NASA Technical Reports Server (NTRS)

    Dickerson, Mark; Cox, Timothy; Hale, Cliff; Hatton, Rick

    2010-01-01

    specific wildfire situation. The system was manufactured by Jordan Air of Central Point, OR, and was installed by Victorville Aerospace in Victorville, CA. It can deliver 12,000 gallons (45.4 kL) of retardant in as little as eight seconds. The aircraft can deliver a partial load of retardant and make multiple drops on the same flight, or the entire load can be rapidly delivered in one pass if required for maximum coverage. The Evergreen 747 uses internal tankage and a pressurized delivery system to enable volume and coverage levels that also meet USFS requirements, but enables computer control of flow for desired precision. This system was designed and built by Adaptive Aerospace of Tehachapi, CA and can deliver about 20,000 gallons (75.7 kL) of retardant in approximately ten seconds. The 747 can also make multiple independent drops, or deliver the entire load at once. NASA found that both of these VLAT aircraft are compatible with the wildfire suppression mission when used to supplement other aerial retardant delivery platforms. The major recommendations for deployment that resulted from this study relate to terrain clearance, the type of terrain in the drop area, availability of qualified lead planes to guide the VLAT approach to the drop area, and low-altitude maneuvering limitations. NASA s analysis suggests that with the appropriate flight procedures, these aircraft will provide a powerful set of tools to fight wildfires.

  4. Effect of fluid loading with normal saline and 6% hydroxyethyl starch on stroke volume variability and left ventricular volume

    PubMed Central

    Kanda, Hirotsugu; Hirasaki, Yuji; Iida, Takafumi; Kanao, Megumi; Toyama, Yuki; Kunisawa, Takayuki; Iwasaki, Hiroshi

    2015-01-01

    Purpose The aim of this clinical trial was to investigate changes in stroke volume variability (SVV) and left ventricular end-diastolic volume (LVEDV) after a fluid bolus of crystalloid or colloid using real-time three-dimensional transesophageal echocardiography (3D-TEE) and the Vigileo-FloTrac™ system. Materials and methods After obtaining Institutional Review Board approval, and informed consent from the research participants, 22 patients undergoing scheduled peripheral vascular bypass surgery were enrolled in the study. The patients were randomly assigned to receive 500 mL of hydroxyethyl starch (HES; HES group, n=11) or normal saline (Saline group, n=11) for fluid replacement therapy. SVV was measured using the Vigileo-FloTrac system. LVEDV, stroke volume, and cardiac output were measured by 3D-TEE. The measurements were performed over 30 minutes before and after the fluid bolus in both groups. Results SVV significantly decreased after fluid bolus in both groups (HES group, 14.7%±2.6% to 6.9%±2.7%, P<0.001; Saline group, 14.3%±3.9% to 8.8%±3.1%, P<0.001). LVEDV significantly increased after fluid loading in the HES group (87.1±24.0 mL to 99.9±27.2 mL, P<0.001), whereas no significant change was detected in the Saline group (88.8±17.3 mL to 91.4±17.6 mL, P>0.05). Stroke volume significantly increased after infusion in the HES group (50.6±12.5 mL to 61.6±19.1 mL, P<0.01) but not in the Saline group (51.6±13.4 mL to 54.1±12.8 mL, P>0.05). Cardiac output measured by 3D-TEE significantly increased in the HES group (3.5±1.1 L/min to 3.9±1.3 L/min, P<0.05), whereas no significant change was seen in the Saline group (3.4±1.1 L/min to 3.3±1.0 L/min, P>0.05). Conclusion Administration of colloid and crystalloid induced similar responses in SVV. A higher plasma-expanding effect of HES compared to normal saline was demonstrated by the significant increase in LVEDV. PMID:26491368

  5. A model for data analysis of microRNA expression in forensic body fluid identification.

    PubMed

    Wang, Zheng; Luo, Haibo; Pan, Xiongfei; Liao, Miao; Hou, Yiping

    2012-05-01

    MicroRNAs (miRNAs, 18-25 bases in length) are small, non-coding RNAs that regulate gene expression at the post-transcriptional level. MiRNA expression patterns, including presence and relative abundance of particular miRNA species, provide cell- and tissue-specific information that can be used for body fluid identification. Recently, two published studies reported that a number of body fluid-specific miRNAs had been identified. However, the results were inconsistent when different technology platforms and statistical methods were applied. To further study the role of miRNAs in identification of body fluids, this study sets out to develop an accurate and reliable model for data analysis of miRNA expression. To that end, the relative expression levels of three miRNAs were studied using the mirVana™ miRNA Isolation Kit, high-specificity stem-loop reverse transcription (RT) and high-sensitivity hydrolysis probes (TaqMan) quantitative real-time polymerase chain reaction (qPCR) in forensically relevant biological fluids, including venous blood, vaginal secretions, menstrual blood, semen and saliva. Accurate quantification of miRNAs requires not only a highly sensitive and specific detection platform for experiment operation, but also a reproducible methodology with an adequate model for data analysis. In our study, the efficiency-calibrated model that incorporated the impact of the quantification cycle (Cq) values and PCR efficiencies of target and reference genes was developed to calculate the relative expression ratio of miRNAs in forensically relevant body fluids. Our results showed that venous blood was distinguished from other body fluids according to the relative expression ratio of miR16 using as little as 50pg of total RNA, while the expression level of miR658 was unstable and that of miR205 was nonspecific among different body fluids. Collectively, the findings may constitute a basis for future miRNA-based research on body fluid identification and show mi

  6. Effects of rehydration fluid temperature and composition on body weight retention upon voluntary drinking following exercise-induced dehydration.

    PubMed

    Park, Sung Geon; Bae, Yoon Jung; Lee, Yong Soo; Kim, Byeong Jo

    2012-04-01

    The purpose of this study was to determine the effects of beverage temperature and composition on weight retention and fluid balance upon voluntary drinking following exercise induced-dehydration. Eight men who were not acclimated to heat participated in four randomly ordered testing sessions. In each session, the subjects ran on a treadmill in a chamber maintained at 37℃ without being supplied fluids until 2% body weight reduction was reached. After termination of exercise, they recovered for 90 min under ambient air conditions and received one of the following four test beverages: 10℃ water (10W), 10℃ sports drink (10S), 26℃ water (26W), and 26℃ sports drink (26S). They consumed the beverages ad libitum. The volume of beverage consumed and body weight were measured at 30, 60, and 90 min post-recovery. Blood samples were taken before and immediately after exercise as well as at the end of recovery in order to measure plasma parameters and electrolyte concentrations. We found that mean body weight decreased by 1.8-2.0% following exercise. No differences in mean arterial pressure, plasma volume, plasma osmolality, and blood electrolytes were observed among the conditions. Total beverage volumes consumed were 1,164 ± 388, 1,505 ± 614, 948 ± 297, and 1,239 ± 401 ml for 10W, 10S, 26W, and 26S respectively (P > 0.05). Weight retention at the end of recovery from dehydration was highest in 10S (1.3 ± 0.7 kg) compared to 10W (0.4 ± 0.5 kg), 26W (0.4 ± 0.4 kg), and (0.6 ± 0.4 kg) (P < 0.005). Based on these results, carbohydrate/electrolyte-containing beverages at cool temperature were the most favorable for consumption and weight retention compared to plain water and moderate temperature beverages.

  7. Effect of Lower Body Positive Pressure on Fluid Turnover in Human Legs

    NASA Astrophysics Data System (ADS)

    Matsuo, Satoshi; Onishi, Hiroshi; Kawai, Yasuaki

    We have developed a device for walking rehabilitation which has a treadmill in a lower body positive pressure (LBPP) chamber to unload the lower extremities. In this review, we summarize the present knowledge of effects of gravity, LBPP, and walking on leg fluid turnover in standing human. Prolonged standing caused swelling in the legs due to an effect of hydrostatic pressure. Circumferences of leg gradually increased during standing still and reached a plateau level after 30-40 minutes. Exposure to LBPP significantly improved the swelling in the thigh, suggesting that the LBPP possibly reduces fluid filtration by decreasing transmural pressure gradient in the capillaries and/or increases lymphatic outflow from the tissue. Walking also decreased the leg swelling by muscle pump activity, and this effect was further enhanced by applying LBPP. These results suggest that applying LBPP can change the body fluid turnover, resulting in a decrease in the tissue fluid of the legs in standing and walking human.

  8. Influence of body weight and body conformation on the pressure-volume curve during capnoperitoneum in dogs.

    PubMed

    Dorn, Melissa J; Bockstahler, Barbara A; Dupré, Gilles P

    2017-05-01

    OBJECTIVE To evaluate the pressure-volume relationship during capnoperitoneum in dogs and effects of body weight and body conformation. ANIMALS 86 dogs scheduled for routine laparoscopy. PROCEDURES Dogs were allocated into 3 groups on the basis of body weight. Body measurements, body condition score, and body conformation indices were calculated. Carbon dioxide was insufflated into the abdomen with a syringe, and pressure was measured at the laparoscopic cannula. Volume and pressure data were processed, and the yield point, defined by use of a cutoff volume (COV) and cutoff pressure (COP), was calculated. RESULTS 20 dogs were excluded because of recording errors, air leakage attributable to surgical flaws, or trocar defects. For the remaining 66 dogs, the pressure-volume curve was linear-like until the yield point was reached, and then it became visibly exponential. Mean ± SD COP was 5.99 ± 0.805 mm Hg. No correlation was detected between yield point, body variables, or body weight. Mean COV was 1,196.2 ± 697.9 mL (65.15 ± 20.83 mL of CO2/kg), and COV was correlated significantly with body weight and one of the body condition indices but not with other variables. CONCLUSION AND CLINICAL RELEVANCE In this study, there was a similar COP for all dogs of all sizes. In addition, results suggested that increasing the abdominal pressure after the yield point was reached did not contribute to a substantial increase in working space in the abdomen. No correlation was found between yield point, body variables, and body weight.

  9. The body mass index (BMI) is significantly correlated with levels of cytokines and chemokines in cerebrospinal fluid.

    PubMed

    Larsson, Anders; Carlsson, Lena; Lind, Anne-Li; Gordh, Torsten; Bodolea, Constantin; Kamali-Moghaddam, Masood; Thulin, Måns

    2015-12-01

    Cytokines and chemokines regulate many functions in the body including the brain. The interactions between adipose tissue and the central nervous system (CNS) are important for the regulation of energy balance. CNS function is also influenced by age. The aim of the present study was to investigate the effects of body mass index (BMI) and age on cytokine and chemokine levels in cerebrospinal fluid. Cerebrospinal fluid samples (n=89) were collected from patients undergoing routine surgical procedures. The samples were analyzed using the multiplex proximity extension assay (PEA) in which 92 different cytokines are measured simultaneously using minute sample volume. We found no significant correlations between age and cytokine levels for any of the studied markers. In contrast, at a false discovery rate of 10%, 19 markers were significantly associated with BMI (in decreasing significance: FGF-5, ADA, Beta-NGF, CD40, IL-10RB, CCL19, TGF-alpha, SIRT2, TWEAK, SCF, CSF-1, 4E-BP1, DNER, LIF-R, STAMPB, CXCL10, CXCL6, VEGF-A and CX3CL1). This study reveals a clear effect of BMI on cytokine and chemokine levels in cerebrospinal fluid. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Three-Dimensional Vortex-Body Interaction in a Viscous Fluid

    DTIC Science & Technology

    2007-11-02

    vortex (figure 13) exhibit bubble- or spiral -type forms that appear similar to flow visualization images of vortex breakdowns observed in other... Vortex - Jet," J. Fluid Mech., Vol. 369, 1998, 301-331. ,7. Lundgren , T.S. and Ashurst, W.T., "Area-Varying Waves on Curved Vortex Tubes with Application...Ii Three-Dimensional Vortex -Body Interaction In a Viscous Fluid FINAL PROGRESS REPORT JEFFREY S. MARSHALL July 30, 1999 U.S. ARMY RESEARCH OFFICE

  11. Amniotic fluid LPCAT1 mRNA correlates with the lamellar body count.

    PubMed

    Welch, Robert A; Shaw, Michael K; Welch, Kathryn C

    2016-07-01

    Lysophosphatidylcholine acyltransferase 1 (LPCAT1) is required in the biosynthesis of pulmonary surfactant. This short communication describes our assessment of LPCAT1 mRNA levels in human amniotic fluid. We found a direct correlation between LPCAT1 mRNA copies and the amniotic fluid lamellar body count (LBC). This finding corroborates an association between LPCAT1 and surfactant phospholipid biosynthesis in humans. It may provide a model for future research in perinatal medicine.

  12. Biological control of apatite growth in simulated body fluid and human blood serum.

    PubMed

    Juhasz, Judith A; Best, Serena M; Auffret, Antony D; Bonfield, William

    2008-04-01

    The surface transformation reactions of bioactive ceramics were studied in vitro in standard K9-SBF solution and in human blood serum (HBS)-containing simulated body fluid (SBF). The calcium phosphate ceramics used for this study were stoichiometric hydroxyapatite (HA), beta-tricalcium phosphate (beta-TCP) and brushite. Immersion of each calcium phosphate tested in this study, in simulated body fluid, led to immediate surface precipitation of apatite. The use of HBS resulted in a delay in the onset of precipitation and a significant inhibition of the dissolution reaction normally observed for brushite in solution. However, apatite formation still occurred. The use of HBS and SBF in this investigation, which has shown the ability to induce similar crystal growth as that observed in vivo, suggests that there is scope for the use of serum proteins in simulated body fluid in order to create a protein-rich surface coating on biomedical substrates.

  13. The interaction between a solid body and viscous fluid by marker-and-cell method

    NASA Technical Reports Server (NTRS)

    Cheng, R. Y. K.

    1976-01-01

    A computational method for solving nonlinear problems relating to impact and penetration of a rigid body into a fluid type medium is presented. The numerical techniques, based on the Marker-and-Cell method, gives the pressure and velocity of the flow field. An important feature in this method is that the force and displacement of the rigid body interacting with the fluid during the impact and sinking phases are evaluated from the boundary stresses imposed by the fluid on the rigid body. A sample problem of low velocity penetration of a rigid block into still water is solved by this method. The computed time histories of the acceleration, pressure, and displacement of the block show food agreement with experimental measurements. A sample problem of high velocity impact of a rigid block into soft clay is also presented.

  14. Solution Preserves Nucleic Acids in Body-Fluid Specimens

    NASA Technical Reports Server (NTRS)

    Pierson, Duane L.; Stowe, Raymond P.

    2004-01-01

    A solution has been formulated to preserve deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) in specimens of blood, saliva, and other bodily fluids. Specimens of this type are collected for diagnostic molecular pathology, which is becoming the method of choice for diagnosis of many diseases. The solution makes it possible to store such specimens at room temperature, without risk of decomposition, for subsequent analysis in a laboratory that could be remote from the sampling location. Thus, the solution could be a means to bring the benefits of diagnostic molecular pathology to geographic regions where refrigeration equipment and diagnostic laboratories are not available. The table lists the ingredients of the solution. The functions of the ingredients are the following: EDTA chelates divalent cations that are necessary cofactors for nuclease activity. In so doing, it functionally removes these cations and thereby retards the action of nucleases. EDTA also stabilizes the DNA helix. Tris serves as a buffering agent, which is needed because minor contaminants in an unbuffered solution can exert pronounced effects on pH and thereby cause spontaneous degradation of DNA. SDS is an ionic detergent that inhibits ribonuclease activity. SDS has been used in some lysis buffers and as a storage buffer for RNA after purification. The use of the solution is straightforward. For example, a sample of saliva is collected by placing a cotton roll around in the subject's mouth until it becomes saturated, then the cotton is placed in a collection tube. Next, 1.5 mL of the solution are injected directly into the cotton and the tube is capped for storage at room temperature. The effectiveness of the solution has been demonstrated in tests on specimens of saliva containing herpes simplex virus. In the tests, the viral DNA, as amplified by polymerase chain reaction, was detected even after storage for 120 days.

  15. Reduced defense of central blood volume during acute lower body negative pressure-induced hypovolemic circulatory stress in aging women.

    PubMed

    Lindenberger, Marcus; Länne, Toste

    2012-06-01

    Elderly humans are more vulnerable to trauma and hemorrhage than young and elderly men and respond with decreased defense of central blood volume during acute experimental hypovolemia induced by lower body negative pressure (LBNP). However, these defense mechanisms have not been evaluated in elderly women. The aim of this study was to determine the effectiveness of compensatory responses to defend central blood volume during experimental hypovolemia in elderly and young women. Cardiovascular responses in 34 women, 12 elderly (66 ± 1 years) and 22 young women (23 ± 0.4 years), were studied during experimental hypovolemia induced by LBNP of 11 to 44 mmHg. Air plethysmography was used to assess the capacitance response (redistribution of peripheral venous blood to the central circulation) as well as net capillary fluid transfer from tissue to blood in the arm. Lower body negative pressure seemed to create comparable hypovolemia measured as total calf volume increase in elderly and young women. Heart rate increased less in elderly women (LBNP of 44 mmHg: 20 ± 2 vs. 37 ± 4%; P < 0.01) but with similar (%) increase in forearm vascular resistance. Mobilization of capacitance blood from the peripheral circulation was both slower and decreased by ∼60% in elderly women (P < 0.001), and net capillary fluid absorption from surrounding tissues was reduced by ∼40% (P < 0.01, LBNP of 44 mmHg). Elderly women responded with less increase in heart rate but with equal forearm vascular resistance (%) response during LBNP. Furthermore, the compensatory capacitance response was both slower and substantially decreased, and net capillary fluid absorption considerably reduced, collectively indicating less efficiency to defend central blood volume in elderly than in young women.

  16. Methylation Markers for the Identification of Body Fluids and Tissues from Forensic Trace Evidence.

    PubMed

    Forat, Sophia; Huettel, Bruno; Reinhardt, Richard; Fimmers, Rolf; Haidl, Gerhard; Denschlag, Dominik; Olek, Klaus

    2016-01-01

    The identification of body fluids is an essential tool for clarifying the course of events at a criminal site. The analytical problem is the fact that the biological material has been very often exposed to detrimental exogenous influences. Thereby, the molecular substrates used for the identification of the traces may become degraded. So far, most protocols utilize cell specific proteins or RNAs. Instead of measuring these more sensitive compounds this paper describes the application of the differential DNA-methylation. As a result of two genome wide screenings with the Illumina HumanMethylation BeadChips 27 and 450k we identified 150 candidate loci revealing differential methylation with regard to the body fluids venous blood, menstrual blood, vaginal fluid, saliva and sperm. Among them we selected 9 loci as the most promising markers. For the final determination of the methylation degree we applied the SNuPE-method. Because the degree of methylation might be modified by various endogenous and exogenous factors, we tested each marker with approximately 100 samples of each target fluid in a validation study. The stability of the detection procedure is proved in various simulated forensic surroundings according to standardized conditions. We studied the potential influence of 12 relatively common tumors on the methylation of the 9 markers. For this purpose the target fluids of 34 patients have been analysed. Only the cervix carcinoma might have an remarkable effect because impairing the signal of both vaginal markers. Using the Illumina MiSeq device we tested the potential influence of cis acting sequence variants on the methylation degree of the 9 markers in the specific body fluid DNA of 50 individuals. For 4 marker loci we observed such an influence either by sole SNPs or haplotypes. The identification of each target fluid is possible in arbitrary mixtures with the remaining four body fluids. The sensitivity of the individual body fluid tests is in the same range

  17. Methylation Markers for the Identification of Body Fluids and Tissues from Forensic Trace Evidence

    PubMed Central

    Forat, Sophia; Huettel, Bruno; Reinhardt, Richard; Fimmers, Rolf; Haidl, Gerhard; Denschlag, Dominik; Olek, Klaus

    2016-01-01

    The identification of body fluids is an essential tool for clarifying the course of events at a criminal site. The analytical problem is the fact that the biological material has been very often exposed to detrimental exogenous influences. Thereby, the molecular substrates used for the identification of the traces may become degraded. So far, most protocols utilize cell specific proteins or RNAs. Instead of measuring these more sensitive compounds this paper describes the application of the differential DNA-methylation. As a result of two genome wide screenings with the Illumina HumanMethylation BeadChips 27 and 450k we identified 150 candidate loci revealing differential methylation with regard to the body fluids venous blood, menstrual blood, vaginal fluid, saliva and sperm. Among them we selected 9 loci as the most promising markers. For the final determination of the methylation degree we applied the SNuPE-method. Because the degree of methylation might be modified by various endogenous and exogenous factors, we tested each marker with approximately 100 samples of each target fluid in a validation study. The stability of the detection procedure is proved in various simulated forensic surroundings according to standardized conditions. We studied the potential influence of 12 relatively common tumors on the methylation of the 9 markers. For this purpose the target fluids of 34 patients have been analysed. Only the cervix carcinoma might have an remarkable effect because impairing the signal of both vaginal markers. Using the Illumina MiSeq device we tested the potential influence of cis acting sequence variants on the methylation degree of the 9 markers in the specific body fluid DNA of 50 individuals. For 4 marker loci we observed such an influence either by sole SNPs or haplotypes. The identification of each target fluid is possible in arbitrary mixtures with the remaining four body fluids. The sensitivity of the individual body fluid tests is in the same range

  18. Longitudinal relationships between fluid status, inflammation, urine volume and plasma metabolites of icodextrin in patients randomized to glucose or icodextrin for the long exchange.

    PubMed

    Davies, Simon J; Garcia Lopez, Elvia; Woodrow, Graham; Donovan, Kieron; Plum, Jorg; Williams, Paul; Johansson, Ann Catherine; Bosselmann, Hans-Peter; Heimburger, Olof; Simonsen, Ole; Davenport, Andrew; Lindholm, Bengt; Tranaeus, Anders; Divino Filho, Jose C

    2008-09-01

    Randomized trials have shown that icodextrin reduces the volume of extra-cellular fluid (ECFv) with variable effects on residual renal function. To explore this fluid shift and its possible mechanisms in more detail, prospectively collected data from one such trial, including measures of inflammation (C-reactive protein, tumour necrosis factor-alpha, albumin and low and high molecular weight hyaluronan) ANP (atrial naturetic peptide), an indirect marker of intra-vascular volume, plasma concentrations of icodextrin metabolites and alpha-amylase activity were analysed. 50 patients were randomized to either 2.27% glucose or icodextrin (n = 28) for a long exchange following a month run in. Blood samples were obtained at -1, 0, 3 and 6 months, coincident with measurements of urine volume and fluid status. In both randomized groups, a significant correlation between the fall in ECFv and the decline in urine volume was observed (P = 0.001), although the relative drop in urine volume for patients randomized to icodextrin tended to be less. At baseline, ANP was higher in patients with proportionately more ECFv for a given body water or height. Icodextrin patients had non-significantly higher ANP levels at baseline, whereas by 3 (P = 0.026) and 6 months (P = 0.016) these differed between groups due to divergence. There was a correlation between increasing ANP and reduced ECF at 3 months, r = -0.46, P = 0.007, in patients randomized to icodextrin, but not glucose. There were no relationships between fluid status and any inflammatory markers at any point of the study, with the exception of albumin at baseline, r = -0.39, P = 0.007. Amylase activities at -1 month and baseline were highly correlated, r = 0.89, P < 0.0001. Within patients, concentrations of icodextrin metabolites were highly correlated; the only predictor of between-patient variability on multivariate analysis was body weight. There was no relationship between plasma concentrations of icodextrin metabolites and

  19. A protocol to improve genotyping of problematic microsatellite loci of Trypanosoma brucei gambiense from body fluids.

    PubMed

    Kaboré, Jacques; De Meeûs, Thierry; Macleod, Annette; Ilboudo, Hamidou; Capewell, Paul; Camara, Mamadou; Gaston Belem, Adrien Marie; Bucheton, Bruno; Jamonneau, Vincent

    2013-12-01

    Microsatellite genotyping of Trypanosoma brucei gambiense, the causative agent of human African trypanosomiasis or sleeping sickness, and population genetics tools, are useful for inferring population parameters such as population size and dispersal. Amplifying parasite DNA directly from body fluids (i.e., blood, lymph or cerebrospinal fluid) allows avoiding costly and tedious isolation phases. It is however associated to increased frequencies of amplification failures (allelic dropouts and/or null alleles) at some loci. In this paper, we present a study focused on three T. brucei gambiense microsatellite loci suspected to present amplification problems when amplified from body fluids sampled in Guinean sleeping sickness foci. We checked for the real nature of blank and apparent homozygous genotypes of parasite DNA directly amplified from body fluids and tested the effect of three different DNA quantities of trypanosomes. Our results show that some initially blank and homozygous genotypes happen to be actual heterozygous genotypes. In Guinea, lymph from the cervical nymph nodes, known to contain the highest concentrations of parasites, appeared to provide the best amplification results. Simply repeating the PCR may be enough to retrieve the correct genotype, but we also show that increasing initial DNA content provides better results while undertaking first amplification. We finally propose an optimal protocol for amplifying trypanosome's DNA directly from body fluids that should be adapted to local characteristics and/or constraints. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Cerebral blood flow velocity and cranial fluid volume decrease during +Gz acceleration

    NASA Technical Reports Server (NTRS)

    Kawai, Y.; Puma, S. C.; Hargens, A. R.; Murthy, G.; Warkander, D.; Lundgren, C. E.

    1997-01-01

    Cerebral blood flow (CBF) velocity and cranial fluid volume, which is defined as the total volume of intra- and extracranial fluid, were measured using transcranial Doppler ultrasonography and rheoencephalography, respectively, in humans during graded increase of +Gz acceleration (onset rate: 0.1 G/s) without straining maneuvers. Gz acceleration was terminated when subjects' vision decreased to an angle of less than or equal to 60 degrees, which was defined as the physiological end point. In five subjects, mean CBF velocity decreased 48% from a baseline value of 59.4 +/- 11.2 cm/s to 31.0 +/- 5.6 cm/s (p<0.01) with initial loss of peripheral vision at 5.7 +/- 0.9 Gz. On the other hand, systolic CBF velocity did not change significantly during increasing +Gz acceleration. Cranial impedance, which is proportional to loss of cranial fluid volume, increased by 2.0 +/- 0.8% above the baseline value at the physiological end point (p<0.05). Both the decrease of CBF velocity and the increase of cranial impedance correlated significantly with Gz. These results suggest that +Gz acceleration without straining maneuvers decreases CBF velocity to half normal and probably causes a caudal fluid shift from both intra- and extracranial tissues.

  1. Cerebral blood flow velocity and cranial fluid volume decrease during +Gz acceleration

    NASA Technical Reports Server (NTRS)

    Kawai, Y.; Puma, S. C.; Hargens, A. R.; Murthy, G.; Warkander, D.; Lundgren, C. E.

    1997-01-01

    Cerebral blood flow (CBF) velocity and cranial fluid volume, which is defined as the total volume of intra- and extracranial fluid, were measured using transcranial Doppler ultrasonography and rheoencephalography, respectively, in humans during graded increase of +Gz acceleration (onset rate: 0.1 G/s) without straining maneuvers. Gz acceleration was terminated when subjects' vision decreased to an angle of less than or equal to 60 degrees, which was defined as the physiological end point. In five subjects, mean CBF velocity decreased 48% from a baseline value of 59.4 +/- 11.2 cm/s to 31.0 +/- 5.6 cm/s (p<0.01) with initial loss of peripheral vision at 5.7 +/- 0.9 Gz. On the other hand, systolic CBF velocity did not change significantly during increasing +Gz acceleration. Cranial impedance, which is proportional to loss of cranial fluid volume, increased by 2.0 +/- 0.8% above the baseline value at the physiological end point (p<0.05). Both the decrease of CBF velocity and the increase of cranial impedance correlated significantly with Gz. These results suggest that +Gz acceleration without straining maneuvers decreases CBF velocity to half normal and probably causes a caudal fluid shift from both intra- and extracranial tissues.

  2. The devil is in the details: body fluid testing regulation and the erosion of nursing practice.

    PubMed

    Neil-Urban, S

    1998-01-01

    Nurses have long performed tests on simple body fluids (e.g., chem strip, urine Dip Stix, guaiac of stool, urine specific gravity). As a result of the interpretation of JCAHO regulations by hospital administrators, nurses no longer have access to the supplies necessary to perform these tests. This article discusses the background surrounding the issues of body fluid regulation and how the current JCAHO laboratory regulations erode the scope of nursing practice. The author makes specific suggestions for nurses to retain their practice in this area.

  3. Effect of lower-body positive pressure on postural fluid shifts in men

    NASA Technical Reports Server (NTRS)

    Hinghofer-Szalkay, H.; Kravik, S. E.; Greenleaf, J. E.

    1988-01-01

    The effect of the lower-body positive pressure (LBPP) on the orthostatic fluid and protein shifts were investigated in five men during combined tilt-table/antigravity suit inflation and deflation experiments. Changes in the mass densities of venous blood and plasma were measured and the values were used to calculate the densities of erythrocytes, whole-body blood, and shifted fluid. It was found that the application of 60 mm Hg LBPP during 60-deg head-up tilt prevented about half of the postural hemoconcentration occurring during passive head-up tilt.

  4. Discriminant analysis of Raman spectra for body fluid identification for forensic purposes.

    PubMed

    Sikirzhytski, Vitali; Virkler, Kelly; Lednev, Igor K

    2010-01-01

    Detection and identification of blood, semen and saliva stains, the most common body fluids encountered at a crime scene, are very important aspects of forensic science today. This study targets the development of a nondestructive, confirmatory method for body fluid identification based on Raman spectroscopy coupled with advanced statistical analysis. Dry traces of blood, semen and saliva obtained from multiple donors were probed using a confocal Raman microscope with a 785-nm excitation wavelength under controlled laboratory conditions. Results demonstrated the capability of Raman spectroscopy to identify an unknown substance to be semen, blood or saliva with high confidence.

  5. Methylated DNA/RNA in Body Fluids as Biomarkers for Lung Cancer.

    PubMed

    Lu, Yan; Li, Shulin/Sl; Zhu, Shiguo/Sg; Gong, Yabin/Yb; Shi, Jun/J; Xu, Ling/L

    2017-01-01

    DNA/RNA methylation plays an important role in lung cancer initiation and progression. Liquid biopsy makes use of cells, nucleotides and proteins released from tumor cells into body fluids to help with cancer diagnosis and prognosis. Methylation of circulating tumor DNA (ctDNA) has gained increasing attention as biomarkers for lung cancer. Here we briefly introduce the biological basis and detection method of ctDNA methylation, and review various applications of methylated DNA in body fluids in lung cancer screening, diagnosis, prognosis, monitoring and treatment prediction. We also discuss the emerging role of RNA methylation as biomarkers for cancer.

  6. A Noninvasive Method to Study Regulation of Extracellular Fluid Volume in Rats Using Nuclear Magnetic Resonance

    EPA Science Inventory

    Time-domain nuclear magnetic resonance (TD-NMR)-based measurement of body composition of rodents is an effective method to quickly and repeatedly measure proportions of fat, lean, and fluid without anesthesia. TD-NMR provides a measure of free water in a living animal, termed % f...

  7. A Noninvasive Method to Study Regulation of Extracellular Fluid Volume in Rats Using Nuclear Magnetic Resonance

    EPA Science Inventory

    Time-domain nuclear magnetic resonance (TD-NMR)-based measurement of body composition of rodents is an effective method to quickly and repeatedly measure proportions of fat, lean, and fluid without anesthesia. TD-NMR provides a measure of free water in a living animal, termed % f...

  8. The mechanism for large-volume fluid pumping via reversible snap-through of dielectric elastomer

    NASA Astrophysics Data System (ADS)

    Li, Zhe; Wang, Yingxi; Foo, Choon Chiang; Godaba, Hareesh; Zhu, Jian; Yap, Choon Hwai

    2017-08-01

    Giant deformation of dielectric elastomers (DEs) via electromechanical instability (or the "snap-through" phenomenon) is a promising mechanism for large-volume fluid pumping. Snap-through of a DE membrane coupled with compressible air has been previously investigated. However, the physics behind reversible snap-through of a DE diaphragm coupled with incompressible fluid for the purpose of fluid pumping has not been well investigated, and the conditions required for reversible snap-through in a hydraulic system are unknown. In this study, we have proposed a concept for large-volume fluid pumping by harnessing reversible snap-through of the dielectric elastomer. The occurrence of snap-through was theoretically modeled and experimentally verified. Both the theoretical and experimental pressure-volume curves of the DE membrane under different actuation voltages were used to design the work loop of the pump, and the theoretical work loop agreed with the experimental work loop. Furthermore, the feasibility of reversible snap-through was experimentally verified, and specific conditions were found necessary for this to occur, such as a minimum actuation voltage, an optimal range of hydraulic pressure exerted on the DE membrane and a suitable actuation frequency. Under optimal working conditions, we demonstrated a pumping volume of up to 110 ml per cycle, which was significantly larger than that without snap-through. Furthermore, we have achieved fluid pumping from a region of low pressure to another region of high pressure. Findings of this study would be useful for real world applications such as the blood pump.

  9. The minimum volume of pleural fluid required to diagnose malignant pleural effusion: A retrospective study

    PubMed Central

    Wu, Huimin; Khosla, Rahul; Rohatgi, Prashant K; Chauhan, Suman S; Paal, Edina; Chen, Wen

    2017-01-01

    Background: Pleural fluid cytology is a quick and accurate method to diagnose malignant pleural effusions. The optimal volume of fluid for cytological analysis has not yet been identified, and clinical recommendation based on some published clinical experiences has been to send large volumes of fluid for cytological analysis. A quality improvement initiative at our institution was conducted to determine the volume of fluid sufficient for a diagnosis of malignant pleural effusion. Materials and Methods: The study was approved by the Institutional Review Board. All pleural fluid specimens that were divided into three volumes (25 mL, 50 mL, and 150 mL) and sent for cytological examination were reviewed. Results: A total of 74 samples from 60 individual patients were evaluable. Thirty-six patients (60%) had a previous diagnosis of malignancy. Of the 74 specimens, 26 (35.1%) were positive for malignancy. The detection rate for malignant pleural effusion by cytology for 25 mL, 50 mL, and 150 mL were 88.5%, 96.2%, and 100.0%, respectively (P = 0.16). Two specimens that were negative in the 25 mL samples turned out to be positive in the 50 mL and 150 mL samples. One specimen was negative in the 25 mL and 50 mL samples but positive in the 150 mL sample. Conclusions: Our study did not show any statistically significant difference in the detection of malignant effusion in the 25 mL, 50 mL, and 150 mL group. PMID:28144058

  10. Fluid balance, carbohydrate ingestion, and body temperature during men's stage-race cycling in temperate environmental conditions.

    PubMed

    Ross, Megan L; Stephens, Brian; Abbiss, Chris R; Martin, David T; Laursen, Paul B; Burke, Louise M

    2014-05-01

    To observe voluntary fluid and carbohydrate intakes and thermoregulatory characteristics of road cyclists during 2 multiday, multiple-stage races in temperate conditions. Ten internationally competitive male cyclists competed in 2 stage races (2009 Tour of Gippsland, T1, n = 5; 2010 Tour of Geelong, T2, n = 5) in temperate conditions (13.2-15.8°C; 54-80% relative humidity). Body mass (BM) was recorded immediately before and after each stage. Peak gastrointestinal temperature (TGI peak) was recorded throughout each stage. Cyclists recalled the types and volumes of fluid and food consumed throughout each stage. Although fluid intake varied according to the race format, there were strong correlations between fluid intake and distance across all formats of racing, in both tours (r = .82, r = .92). Within a stage, the relationship between finishing time and fluid intake was trivial. Mean BM change over a stage was 1.3%, with losses >2% BM occurring on 5 out of 43 measured occasions and the fastest competitors incurring lower BM changes. Most subjects consumed carbohydrate at rates that met the new guidelines (30-60 g/h for 2-3 h, ~90 g/h for >3 h), based on event duration. There were consistent observations of TGI peak >39°C during stages of T1 (67%) and T2 (73%) despite temperate environmental conditions. This study captured novel effects of high-intensity stage racing in temperate environmental conditions. In these conditions, cyclists were generally able to find opportunities to consume fluid and carbohydrate to meet current guidelines. We consistently observed high TGI peak, which merits further investigation.

  11. Effect of fluid resuscitation with balanced solutions on platelets: In vitro simulation of 20% volume substitution.

    PubMed

    Krzych, Łukasz J; Czempik, Piotr F

    2017-05-12

    Fluid resuscitation in massive bleeding may cause coagulation disorders by dilution of platelets and clotting factors or by the definite influence on theirfunction. The aim of this study was to investigate the effects of balanced crystalloid and colloid solutions on platelets (PLT) in vitro using complex assessment of coagulation. The study group was comprised of 32 American Society of Anesthesiologists physical status class I male volunteers, aged 21-35 (29 ± 4) years, weighting 59-103 (81.2 ± 9.8) kg. Whole blood samples were diluted at a 4:1 ratio with the following fluids: balanced crystalloid (Plasmalyte®), 6% hydroxyethyl starch 130/0.4 (Volulyte®) and succinylated gelatin (Geloplasma®). Coagulation was assessed using standard morphology, rotational thromboelastometry and aggregometry. Dilution with all fluids caused statistically significant drop in the number of platelets (p < 0.01) but the effect did not differ between solutions (p > 0.05 for all). Other platelet parameters, such as platelet distribution width, mean platelet volume and platelet-large cell ratio were not affected by the solutions. Haemodilution had no effect on platelet function (p = 0.1). Decreased platelet component of clot strength was found for all three fluids (p < 0.05), although the effect for colloids was more pronounced. The effect of balanced crystalloids and colloids on platelet aggregation was insignificant, even after 20% volume substitution with the resuscitation fluids.

  12. Effect of the Body Number and Fluid Resistance on Stability of the Multi-Connected Moving Body

    NASA Astrophysics Data System (ADS)

    Fujita, Katsuhisa; Shintani, Atsuhiko; Toyama, Shingo

    Unstable vibration of multi-connected bodies supported by damper and spring systems moving in a narrow flow passage are reported. These vibration phenomena have been often observed in high-speed trains running through tunnels, cleaning robots going through pipings, medical machines in human blood vessels and core internals in nuclear reactor vessels. The equations of motion of multi-connected bodies are derived by Lagrangian method. The fluid forces acting on the multi-connected rigid bodies are obtained analytically on the basis of the Navier-Stokes equations applied to a narrow flow passage. The equations of coupled motion of the multi-connected bodies and fluid are derived. Using coupled equation, a stability analysis is performed. The critical velocities at the onset of the unstable behavior are estimated by plotting root locus. The flutter type instability and the divergence type instability are observed when the flow velocity increases. The variation of the coupled mode shape corresponding to the increment of the flow velocity is shown, and the relation between the coupled mode shape and unstable phenomena is discussed. Furthermore, the effect of the number of bodies and the pressure loss at the connecting points on the coupled mode and pressure distribution is investigated. The mechanism of occurrence of unstable phenomena is studied.

  13. Influence of fluid and volume state on PaO2 oscillations in mechanically ventilated pigs.

    PubMed

    Bodenstein, Marc; Bierschock, Stephan; Boehme, Stefan; Wang, Hemei; Vogt, Andreas; Kwiecien, Robert; David, Matthias; Markstaller, Klaus

    2013-03-01

    Varying pulmonary shunt fractions during the respiratory cycle cause oxygen oscillations during mechanical ventilation. In artificially damaged lungs, cyclical recruitment of atelectasis is responsible for varying shunt according to published evidence. We introduce a complimentary hypothesis that cyclically varying shunt in healthy lungs is caused by cyclical redistribution of pulmonary perfusion. Administration of crystalloid or colloid infusions would decrease oxygen oscillations if our hypothesis was right. Therefore, n=14 mechanically ventilated healthy pigs were investigated in 2 groups: crystalloid (fluid) versus no-fluid administration. Additional volume interventions (colloid infusion, blood withdrawal) were carried out in each pig. Intra-aortal PaO2 oscillations were recorded using fluorescence quenching technique. Phase shift of oxygen oscillations during altered inspiratory to expiratory (I:E) ventilation ratio and electrical impedance tomography (EIT) served as control methods to exclude that recruitment of atelectasis is responsible for oxygen oscillations. In hypovolemia relevant oxygen oscillations could be recorded. Fluid and volume state changed PaO2 oscillations according to our hypothesis. Fluid administration led to a mean decline of 105.3 mmHg of the PaO2 oscillations amplitude (P<0.001). The difference of the amplitudes between colloid administration and blood withdrawal was 62.4 mmHg in pigs not having received fluids (P=0.0059). Fluid and volume state also changed the oscillation phase during altered I:E ratio. EIT excluded changes of regional ventilation (i.e., recruitment of atelectasis) to be responsible for these oscillations. In healthy pigs, cyclical redistribution of pulmonary perfusion can explain the size of respiratory-dependent PaO2 oscillations.

  14. The effect of intraocular gas and fluid volumes on intraocular pressure.

    PubMed

    Simone, J N; Whitacre, M M

    1990-02-01

    Large increases in the intraocular pressure (IOP) of postoperative gas-containing eyes may require the removal of gas or fluid to reduce the IOP to the normal range. Application of the ideal gas law to Friedenwald's equation provides a mathematical model of the relationship between IOP, intraocular gas and fluid volumes, and the coefficient of scleral rigidity. This mathematic model shows that removal of a given volume of gas or fluid produces an identical decrease in IOP and that the more gas an eye contains, the greater the volume reduction necessary to reduce the pressure. Application of the model shows that the effective coefficient of scleral rigidity is low (mean K, 0.0021) in eyes with elevated IOP that have undergone vitrectomy and retinal cryopexy and very low (mean K, 0.0013) in eyes with elevated IOP that have undergone placement of a scleral buckle and band. By using the appropriate mean coefficient of rigidity, the volume of material to be aspirated to produce a given decrease in IOP can be predicted with clinically useful accuracy.

  15. Flapping, ratcheting, bursting, and tumbling: A selection of problems in fluid-body interaction dynamics

    NASA Astrophysics Data System (ADS)

    Spagnolie, Saverio E.

    The dynamics of bodies immersed in fluids is a subject of great practical and biological interest. Fluid-body interaction systems are ubiquitous, ranging from large scale applications like swimming and flying, to more recent work on micro-scale biofluiddynamics. We consider a selection of fluid-body interactions, employing numerical methods in order to deduce their salient features. This work is separated into two parts, each focusing on problems in one of two fluid regimes: the intermediate Reynolds number regime, where inertia and viscous dissipation are both important, and the low Reynolds number regime, where viscous dissipation dominates inertial effects. First, in order to understand the role of flexibility in flapping flight, we analyze a heaving wing system with passive pitching. We reproduce qualitatively the results of recent experiments: we find flapping frequencies corresponding to very efficient locomotion, a regime of under-performance compared to a rigid wing, and a bi-stable regime where the flapping wing can move horizontally in either direction. We find that a particular phase relationship corresponds to this direction reversal, and we consider the importance of various dimensionless parameters. Subsequently, we examine a fluid-ratchet mechanism that is exhibited by a shape-changing body in an oscillating fluid. We find that such a body can maintain its altitude, or even ascend, against a gravitational force. Other related phenomena are also considered. In the second section, we begin by studying a special sedimentation phenomenon in a highly viscous fluid. We find that a periodic sedimentation orbit may be experienced by two identical settling bodies. We consider numerically the stability of these orbits, and we show that free-surface effects are likely responsible for body collisions observed in a related experiment. In addition, we find that a similar orbit for three bodies is unstable, and uncover other, new types of periodic sedimentation

  16. A comparison of sodium, chloride, thiocyanate, and sucrose spaces as estimates of extracellular fluid volume.

    PubMed

    Caster, W O; Simon, A B

    1980-01-01

    Sodium, chloride, thiocyanate, and sucrose spaces were measured in whole body and different tissues of rat. For each analytical method, when all tissue spaces were added the sum was in good agreement with corresponding total body fluid space obtained by dilution methods. There was surprisingly good agreement among the three ionic space measures in the total body, when one considers that there were discrepancies as large as 2- to 8-fold within certain of the different tissues. Some differences could be explained by the facts that sodium is a constituent of bond mineral and that there are marked differences between these four measures when observed in the water of the gastrointestinal contents.

  17. Many-body dissipative particle dynamics modeling of fluid flow in fine-grained nanoporous shales

    NASA Astrophysics Data System (ADS)

    Xia, Yidong; Goral, Jan; Huang, Hai; Miskovic, Ilija; Meakin, Paul; Deo, Milind

    2017-05-01

    A many-body dissipative particle dynamics model, namely, MDPD, is applied for simulation of pore-scale, multi-component, multi-phase fluid flows in fine-grained, nanoporous shales. Since this model is able to simultaneously capture the discrete features of fluid molecules in nanometer size pores and continuum fluid dynamics in larger pores, and is relatively easy to parameterize, it has been recognized as being particularly suitable for simulating complex fluid flow in multi-length-scale nanopore networks of shales. A remarkable feature of this work is the integration of a high-resolution FIB-SEM (focused ion beam scanning electron microscopy) digital imaging technique to the MDPD model for providing 3D voxel data that contain the invaluable geometrical and compositional information of shale samples. This is the first time that FIB-SEM is seamlessly linked to a Lagrangian model like MDPD for fluid flow simulation, which offers a robust approach to bridging gaps between the molecular- and continuum-scales, since the relevant spatial and temporal scales are too big for molecular dynamics, and too small for computational fluid dynamics with known constitutive models. Simulations ranging from a number of benchmark problems to a forced two-fluid flow in a Woodford shale sample are presented. Results indicate that this model can be used to deliver reasonable simulations for multi-component, multi-phase fluid flows in arbitrarily complex pore networks in shales.

  18. Body mass changes and voluntary fluid intakes of elite level water polo players and swimmers.

    PubMed

    Cox, G R; Broad, E M; Riley, M D; Burke, L M

    2002-09-01

    Calculated sweat rates (measured by body mass changes) and voluntary fluid intakes were monitored in elite level water polo players and swimmers during normal exercise sessions to determine fluid requirements to maintain fluid balance, and the degree of fluid replacement of these athletes. Data were collected from training and competition sessions for male water polo players (n = 23) and training sessions only for swimmers (n = 20 females; n = 21 males). The calculated average sweat rate and fluid intake rate during training sessions for male water polo players was 287 ml/h and 142 ml/h, respectively, with a rate of 786 ml/h and 380 ml/h during matches. During training sessions for male swimmers, the calculated average sweat rate and fluid intake rate per kilometre was 138 ml/km and 155 ml/km, respectively; and for female swimmers, 107 ml/km and 95 ml/km. There was a wide individual variation in fluid intake and sweat loss of both water polo players and swimmers. Dehydration experienced by athletes in this study was less than typically reported for "land-based" athletes. Errors inherent in the technique used in this study are acknowledged and may be significant in the calculation of reported sweat losses and levels of fluid balance in aquatic athletes.

  19. Investigation of sliced body volume (SBV) as respiratory surrogate.

    PubMed

    Cai, Jing; Chang, Zheng; O'Daniel, Jennifer; Yoo, Sua; Ge, Hong; Kelsey, Christopher; Yin, Fang-Fang

    2013-01-07

    The purpose of this study was to evaluate the sliced body volume (SBV) as a respiratory surrogate by comparing with the real-time position management (RPM) in phantom and patient cases. Using the SBV surrogate, breathing signals were extracted from unsorted 4D CT images of a motion phantom and 31 cancer patients (17 lung cancers, 14 abdominal cancers) and were compared to those clinically acquired using the RPM system. Correlation coefficient (R), phase difference (D), and absolute phase difference (D(A)) between the SBV-derived breathing signal and the RPM signal were calculated. 4D CT reconstructed based on the SBV surrogate (4D CT(SBV)) were compared to those clinically generated based on RPM (4D CT(RPM)). Image quality of the 4D CT were scored (S(SBV) and S(RPM), respectively) from 1 to 5 (1 is the best) by experienced evaluators. The comparisons were performed for all patients, and for the lung cancer patients and the abdominal cancer patients separately. RPM box position (P), breathing period (T), amplitude (A), period variability (V(T)), amplitude variability (V(A)), and space-dependent phase shift (F) were determined and correlated to S(SBV). The phantom study showed excellent match between the SBV-derived breathing signal and the RPM signal (R = 0.99, D= -3.0%, D(A) = 4.5%). In the patient study, the mean (± standard deviation (SD)) R, D, D(A), T, V(T), A, V(A), and F were 0.92 (± 0.05), -3.3% (± 7.5%), 11.4% (± 4.6%), 3.6 (± 0.8) s, 0.19 (± 0.10), 6.6 (± 2.8) mm, 0.20 (± 0.08), and 0.40 (± 0.18) s, respectively. Significant differences in R and D(A) (p = 0.04 and 0.001, respectively) were found between the lung cancer patients and the abdominal cancer patients. 4D CT(RPM) slightly outperformed 4D CT(SBV): the mean (± SD) S(RPM) and S(SBV) were 2.6 (± 0.6) and 2.9 (± 0.8), respectively, for all patients, 2.5 (± 0.6) and 3.1 (± 0.8), respectively, for the lung cancer patients, and 2.6 (± 0.7) and 2.8 (± 0.9), respectively, for the abdominal

  20. General Relativistic Elastic Body, Fluid,quasi-rigid Body, Quasi-liquid and Others in Multiple Coordinate Systems

    NASA Astrophysics Data System (ADS)

    Xu, Chongming

    2009-05-01

    The approximation method in multiple coordinate systems at first post Newtonian (1 PN) level has been established by Darmour, Soffel and Xu (Phys. Rev. D(PRD) 43, 3273 (1991);D 45, 1017(1992);D 47, 3124 (1993);D 49, 618 (1994)). Normally, to discuss an astronomical object (e.g. a star in binary systems or the earth in solar system) we need multiple coordinate systems, especially for precise astrometry 1 PN (some time even 2 PN) approximate method is required. As we know up to now the ideas on elastic body, fluid, rigid body and liquid in the framework of Newtonian physics are still very useful for understanding and calculating some practical problems. Although the general relativistic theories of elastic body, general relativistic hydrodynamics and post-Newtonian quasi-rigid body have been discussed by many authors (including our papers (PRD63, 043002(2001); D63, 064001(2001); D68, 064009(2003); D69, 024003(2004); D71,024030 (2005))), but there is no completing discussion on all of these ideas in a unified point view. The applications of these ideas in the general relativity are important in the research fields of astrometry and geophysics, especially in case precise measurements reach so higher level (millimicro arc sec). The extended relativistic versions of these ideas should be revised the Newtonian results. In this paper, we shall give a complete discussion on all of these ideas in 1 PN approximation. We shall clarify the ideas on perfect elastic material, quasi-rigid body, quasi-liquid and so on with some precise mathematical forms. For fluid we show the hydrodynamic equations of a non-perfect fluid in multiple coordinates systems (both local and global).

  1. Effect of irrigation fluid temperature on core body temperature and inflammatory response during arthroscopic shoulder surgery.

    PubMed

    Pan, Xiaoyun; Ye, Luyou; Liu, Zhongtang; Wen, Hong; Hu, Yuezheng; Xu, Xinxian

    2015-08-01

    This study was designed to evaluate the influence of irrigation fluid on the patients' physiological response to arthroscopic shoulder surgery. Patients who were scheduled for arthroscopic shoulder surgery were prospectively included in this study. They were randomly assigned to receive warm arthroscopic irrigation fluid (Group W, n = 33) or room temperature irrigation fluid (Group RT, n = 33) intraoperatively. Core body temperature was measured at regular intervals. The proinflammatory cytokines TNF-α, IL-1, IL-6, and IL-10 were measured in drainage fluid and serum. The changes of core body temperatures in Group RT were similar with those in Group W within 15 min after induction of anesthesia, but the decreases in Group RT were significantly greater after then. The lowest temperature was 35.1 ± 0.4 °C in Group RT and 35.9 ± 0.3 °C in Group W, the difference was statistically different (P < 0.05). Hypothermia occurred in 31 out of 33 subjects in Group RT (31/33; 94 %), but was significantly lower in Group W (9/24; 27 %; P < 0.05). Serum TNF-α changes were undetectable postoperatively. No statistical significant differences in serum IL-1 and serum IL-10 levels were observed between groups. Serum IL-6 levels were significantly lower in Group W (P < 0.05). The levels of the above cytokines in drainage fluid were all significantly lower in Group W after surgery (P < 0.05). Hypothermia occurs more often in arthroscopic shoulder surgery by using room temperature irrigation fluid compared with warm irrigation fluid. And local inflammatory response is significantly reduced by using warm irrigation fluid. It seems that warm irrigation fluid is more recommendable for arthroscopic shoulder surgery.

  2. Response of local vascular volumes to lower body negative pressure stress

    NASA Technical Reports Server (NTRS)

    Wolthuis, R. A.; Leblanc, A.; Carpentier, W. A.; Bergman, S. A., Jr.

    1975-01-01

    The present study involved an intravenous injection of radioactive iodinated serum albumin, equilibration of this isotope within the vascular space, and the continuous measurement of isotope activity over selected anatomical areas before, during and following multiple human LBNP tests. Both rate and magnitude of vascular pooling were distinctly different within each of five selected lower body anatomical areas. In the upper body, all areas except the abdomen showed depletions from their resting vascular volumes during LBNP. The presence of uniquely different pooling patterns in the lower body, the apparent stability of abdominal vascular volumes, and a possible decrease in cerebral blood volume during LBNP represent the major findings of this study.

  3. Response of local vascular volumes to lower body negative pressure stress

    NASA Technical Reports Server (NTRS)

    Wolthuis, R. A.; Leblanc, A.; Carpentier, W. A.; Bergman, S. A., Jr.

    1975-01-01

    The present study involved an intravenous injection of radioactive iodinated serum albumin, equilibration of this isotope within the vascular space, and the continuous measurement of isotope activity over selected anatomical areas before, during and following multiple human LBNP tests. Both rate and magnitude of vascular pooling were distinctly different within each of five selected lower body anatomical areas. In the upper body, all areas except the abdomen showed depletions from their resting vascular volumes during LBNP. The presence of uniquely different pooling patterns in the lower body, the apparent stability of abdominal vascular volumes, and a possible decrease in cerebral blood volume during LBNP represent the major findings of this study.

  4. Whole body and tissue blood volumes of two strains of rainbow trout (Oncorhynchus mykiss)

    USGS Publications Warehouse

    Gingerich, W.H.; Pityer, R.A.; Rach, J.J.

    1990-01-01

    1. Estimates of apparent packed cell, plasma and total blood volumes for the whole body and for 13 selected tissues were compared between Kamloops and Wytheville strains of rainbow trout (Oncorhynchus mykiss) by the simultaneous injection of two vascular tracers, radiolabeled trout erythrocytes (51Cr-RBC) and radioiodated bovine serum albumin (125I-BSA).2. Whole body total blood volume, plasma volume and packed cell volume were slightly, but not significantly greater in the Wytheville trout, whereas, the apparent plasma volumes and total blood volumes in 4 of 13 tissues were significantly greater in the Kamloops strain.3. Differences were most pronounced in highly perfused organs, such as the liver and kidney and in organs of digestion such as the stomach and intestines.4. Differences in blood volumes between the two strains may be related to the greater permeability of the vascular membranes in the Kamloops strain fish.

  5. Endocrine and fluid metabolism in males and females of different ages after bedrest, acceleration and lower body negative pressure

    NASA Technical Reports Server (NTRS)

    Leach, C. S.; Vernikos-Danellis, J.; Krauhs, J. M.; Sandler, H.

    1985-01-01

    Space shuttle flight simulations were conducted to determine the effects of weightlessness, lower body negative pressure (LBNP), and acceleration of fluid and electrolyte excretion and the hormones that control it. Measurements were made on male and female subjects of different ages before and after bedrest. After admission to a controlled environment, groups of 6 to 14 subjects in the age ranges 25 to 35, 35 to 45, 45 to 55 to 65 years were exposed to +3 G sub z for 15 minutes (G1) and to LBNP (LBNP1) on different days. On 3 days during this prebedrest period, no tests were conducted. Six days of bedrest followed, and the G sub z (G2) and LBNP (LBNP2) tests were run again. Hormones, electrolytes, and other parameters were measured in 24-hour urine pools throughout the experiment. During bedrest, cortisol and aldosterone excretion increased. Urine volume decreased, and specific gravity and osmolality increased. Urinary electrolytes were statistically unchanged from levels during the non-stress control period. During G2, cortisol increased significantly over its control and bedrest levels. Urine volume, sodium, and chloride were significantly lower; specific gravity and osmolality were higher during the control period or bedrest. The retention of fluids and electrolytes after +G sub z may at least partially explain decreased urine volume and increased osmolality observed during bedrest in this study. There were some who indicated that space flight would not affect the fluid and electrolyte metabolism of females or older males any more severely than it has affected that of male astronauts.

  6. Influence of low dissolved oxygen concentration in body fluid on corrosion fatigue behaviors of implant metals.

    PubMed

    Morita, M; Sasada, T; Nomura, I; Wei, Y Q; Tsukamoto, Y

    1992-01-01

    In their previous study, the authors carried out a fatigue test for AISI 316, 316L stainless steels and COP1 alloy in a living animal body and observed a remarkable deterioration in the fatigue durability of these metals. In that study, it was concluded that the reason the corrosion resistance of the metals was reduced in the living body was that the low concentration of dissolved oxygen gas in the body fluid (the partial pressure pO2; 28-78 mmHg) was insufficient to form the chromium oxide passivation film on the metal surface, and the base metal (iron) was released into the environmental fluid in ionic form. In this paper, with the concentration of dissolved oxygen gas in a physiological normal saline solution being set equivalent to that of living body fluid, fatigue tests on AISI 316 were made to simulate the stress corrosion behavior of the metal in the living body. As a result, remarkable deterioration of fatigue strength was observed in the low O2 concentrated normal saline solution, which was the same as that in the living animal body.

  7. Technology for Space Station Evolution. Volume 3: EVA/Manned Systems/Fluid Management System

    NASA Technical Reports Server (NTRS)

    1990-01-01

    NASA's Office of Aeronautics and Space Technology (OAST) conducted a workshop on technology for space station evolution 16-19 Jan. 1990 in Dallas, Texas. The purpose of this workshop was to collect and clarify Space Station Freedom technology requirements for evolution and to describe technologies that can potentially fill those requirements. These proceedings are organized into an Executive Summary and Overview and five volumes containing the Technology Discipline Presentations. Volume 3 consists of the technology discipline sections for Extravehicular Activity/Manned Systems and the Fluid Management System. For each technology discipline, there is a Level 3 subsystem description, along with the papers.

  8. Evaluation of Cell Counting in Body Fluids: Comparison of Two Automated Hematology Analyzers with Manual Microscopy.

    PubMed

    Genc, Sema; Dervisoglu, Elmire; Omer, Dilara; Kucukates, Emine; Omer, Beyhan; Ademoglu, Evin

    2016-12-01

    Manual microscopic analysis (MMA) of body fluids has been widely replaced by automated systems. The aim of this study was to assess the performances of the Sysmex XN-1000 (XN-1000) and UniCel DxH800 (DxH800) for body fluid analysis and compare their results with MMA and with each other. Red blood cell (RBC), WBC and WBC-differential counts of 142 body fluid samples (7 cerebrospinal, 28 pleural, 107 ascitic fluids) were performed using DxH800, XN-1000, and MMA. The within-run and between-days CVs% were lower than 10% for both systems except MONO of DxH800. Both analyzers demonstrated good linearity and minimal carry-over. The comparison of the XN-1000 and DxH800 with manual counting and each other revealed good correlation (r > 0.90 for both). Automated systems introduce standardized and accurate performances to analyze biologic fluids. They are also beneficial for reducing turn-around time and laboratory costs.

  9. Mindray BC-6800 body fluid mode, performance of nucleated cells, and differential count in ascitic and pleural fluids.

    PubMed

    Buoro, S; Mecca, T; Azzarà, G; Seghezzi, M; Candiago, E; Gianatti, A; Crippa, A; La Gioia, A

    2016-02-01

    An accurate and rapid analysis of cells in body fluids (BFs) is important for diagnosis and follow-up in many pathological conditions. We evaluated the analytical performance of the module BF Mindray BC-6800 (BC-6800-BF) for cytometric analysis of ascitic and pleural fluids. A total of 99 ascitic and 45 pleural samples were collected and assessed with BC-6800-BF and optical microscopy. This study also includes the evaluation of limit blank (LoB), limit detection (LoD), limit quantitation, (LoQ), carryover, linearity, and diagnostic concordance between the two methods. For TC-BF, LoB was 1 × 10(6) cells/L, LoD was 3 × 10(6) cells/L, and LoQ was 4 × 10(6) cells/L. Linearity was excellent (r(2) = 0.99) and carryover was negligible. TC-BF performed with the two methods showed Pearson's correlation of 0.99 (P < 0.0001), Passing-Bablok regression y = 1.04x - 1.17, and bias 33.7 cells. In ascitic fluids, polymorphonuclear cells (PMN) showed an area under curve (AUC) of 0.98 (P < 0.0001). In pleural fluids, mononuclear cells (MN) and PMN % displayed an AUC of 0.79 (P < 0.0001) and 0.93 (P < 0.0001), respectively. BC-6800-BF in ascitic and pleural fluids offers rapid and accurate cell and differential counts in clinically relevant concentration ranges. The use of BC-6800-BF may allow to replace routine optical counting, except for samples displaying abnormal cell counts or abnormal DIFF scattergram. © 2015 John Wiley & Sons Ltd.

  10. Fluid Vessel Quantity using Non-Invasive PZT Technology Flight Volume Measurements Under Zero G Analysis

    NASA Technical Reports Server (NTRS)

    Garofalo, Anthony A.

    2013-01-01

    The purpose of the project is to perform analysis of data using the Systems Engineering Educational Discovery (SEED) program data from 2011 and 2012 Fluid Vessel Quantity using Non-Invasive PZT Technology flight volume measurements under Zero G conditions (parabolic Plane flight data). Also experimental planning and lab work for future sub-orbital experiments to use the NASA PZT technology for fluid volume measurement. Along with conducting data analysis of flight data, I also did a variety of other tasks. I provided the lab with detailed technical drawings, experimented with 3d printers, made changes to the liquid nitrogen skid schematics, and learned how to weld. I also programmed microcontrollers to interact with various sensors and helped with other things going on around the lab.

  11. Fluid Vessel Quantity Using Non-invasive PZT Technology Flight Volume Measurements Under Zero G Analysis

    NASA Technical Reports Server (NTRS)

    Garofalo, Anthony A

    2013-01-01

    The purpose of the project is to perform analysis of data using the Systems Engineering Educational Discovery (SEED) program data from 2011 and 2012 Fluid Vessel Quantity using Non-Invasive PZT Technology flight volume measurements under Zero G conditions (parabolic Plane flight data). Also experimental planning and lab work for future sub-orbital experiments to use the NASA PZT technology for fluid volume measurement. Along with conducting data analysis of flight data, I also did a variety of other tasks. I provided the lab with detailed technical drawings, experimented with 3d printers, made changes to the liquid nitrogen skid schematics, and learned how to weld. I also programmed microcontrollers to interact with various sensors and helped with other things going on around the lab.

  12. Precision metering of microliter volumes of biological fluids in micro-gravity

    NASA Technical Reports Server (NTRS)

    Columbus, Richard L.; Palmer, Harvey J.; Mckinley, B. A.; Norfleet, William T.; Kizzee, Victor D.

    1991-01-01

    Concepts were demonstrated and investigated for transferring accurately known and reproducible microliter volumes of biological fluids from sample container onto dry chemistry slides in microgravity environment. Specific liquid transfer tip designs were compared. Information was obtained for design of a liquid sample handling system to enable clinical chemical analysis in microgravity. Disposable pipet tips and pipet devices that were designed to transfer microliter volumes of biological fluid from a (test tube) sample container in 1-G environment were used during microgravity periods of parabolic trajectories of the KC-135 aircraft. The transfer process was recorded using charge coupled device camera and video cassette equipment. Metering behavior of water, a synthetic aqueous protein solution, and anticoagulated human blood was compared. Transfer of these liquids to 2 substrate materials representative of rapidly wettable and slowly wettable dry chemistry slide surface was compared.

  13. Analysis of acoustic scattering from fluid bodies using a multipoint source model.

    PubMed

    Boag, A; Leviatan, Y

    1989-01-01

    A moment-method solution is presented for the problem of acoustic scattering from homogeneous fluid bodies. It uses fictitious isotropic point sources to simulate both the field scattered by the body and the field inside the body and, in turn, point-matches the continuity conditions for the normal component of the velocity and for the pressure across the surface of the body. The procedure is simple to execute and is general in that bodies of arbitrary smooth shape can be handled effectively. Perfectly rigid bodies are treated as reduced cases of the general procedure. Results are given and compared with available analytic solutions, which demonstrate the very good performance of the procedure.

  14. ICSH guidelines for the verification and performance of automated cell counters for body fluids.

    PubMed

    Bourner, G; De la Salle, B; George, T; Tabe, Y; Baum, H; Culp, N; Keng, T B

    2014-12-01

    One of the many challenges facing laboratories is the verification of their automated Complete Blood Count cell counters for the enumeration of body fluids. These analyzers offer improved accuracy, precision, and efficiency in performing the enumeration of cells compared with manual methods. A patterns of practice survey was distributed to laboratories that participate in proficiency testing in Ontario, Canada, the United States, the United Kingdom, and Japan to determine the number of laboratories that are testing body fluids on automated analyzers and the performance specifications that were performed. Based on the results of this questionnaire, an International Working Group for the Verification and Performance of Automated Cell Counters for Body Fluids was formed by the International Council for Standardization in Hematology (ICSH) to prepare a set of guidelines to help laboratories plan and execute the verification of their automated cell counters to provide accurate and reliable results for automated body fluid counts. These guidelines were discussed at the ICSH General Assemblies and reviewed by an international panel of experts to achieve further consensus.

  15. Proteomics and protein analyses of ovine and caprine body fluids: current studies and future promises.

    PubMed

    Mavromati, Jani; Cash, Phillip; Restelli, Laura; Soler, Laura

    2014-02-01

    Our knowledge of the physiology and health of small ruminants, specifically sheep and goats, is frequently obtained by extrapolating information from other species, for example the cow. However, there are important genetic, physiological and anatomical differences between small and large ruminants that cannot be ignored. This review considers the advances that have been made in the investigation of sheep and goat physiology through the use of proteomic technologies. Proteomics is widely used to analyze clinically relevant body fluids for a number of animals to define productive traits and health status biomarkers as well as to monitor therapeutic interventions for infectious and metabolic diseases. Although the proteomes of body fluids have been described in detail for some animal species, there are few equivalent studies for sheep and goats. Nevertheless, the data now available for the proteomes of a range of body fluids in small ruminants have helped define new diagnostic and prognostic markers for these species. Moreover, these data are beneficial in studies where these small ruminants serve as models for human disease. However, despite the progress achieved to date, comprehensive data on the specific proteomes for many tissues and body fluids for sheep and goats remain scarce. The aim of this review is to describe the current status of small ruminant proteomic research and to demonstrate the potential benefits, as well as highlight the difficulties, of working with these animals.

  16. Direct Electrothermal Atomic Absorption Determination of Trace Elements in Body Fluids (Review)

    NASA Astrophysics Data System (ADS)

    Zacharia, A. N.; Arabadji, M. V.; Chebotarev, A. N.

    2017-03-01

    This review is focused on the state and development of tendencies of electrothermal atomic absorption spectroscopy over the last 25 years (from 1990 to 2016) in the direct determination of Cu, Zn, Pb, Cd, Mn, Se, As, Cr, Co, Ni, Al, and Hg in body fluids such as blood, urine, saliva, and breast milk.

  17. Guidelines for uniform reporting of body fluid biomarker studies in neurologic disorders.

    PubMed

    Gnanapavan, Sharmilee; Hegen, Harald; Khalil, Michael; Hemmer, Bernhard; Franciotta, Diego; Hughes, Steve; Hintzen, Rogier; Jeromin, Andreas; Havrdova, Eva; Tumani, Hayrettin; Bertolotto, Antonio; Comabella, Manuel; Frederiksen, Jette; Álvarez-Cermeño, José C; Villar, Luisa; Galimberti, Daniela; Myhr, Kjell-Morten; Dujmovic, Irena; Fazekas, Franz; Ionete, Carolina; Menge, Til; Kuhle, Jens; Keir, Geoffrey; Deisenhammer, Florian; Teunissen, Charlotte; Giovannoni, Gavin

    2014-09-23

    The aim of these guidelines is to make the process of reporting body fluid biomarker studies in neurologic disorders more uniform and transparent, in line with existing standards for reporting research in other biomedical areas. Although biomarkers have been around for decades, there are concerns over the high attrition rate of promising candidate biomarkers at later phases of development. BioMS-eu consortium, a collaborative network working toward improving the quality of biomarker research in neurologic disorders, discussed the merits of standardizing the reporting of body fluid biomarker research. A checklist of items integrating the results of other published guidances, literature, conferences, regulatory opinion, and personal expertise was created to ultimately form a structured summary guidance incorporating the key features. The summary guidance is comprised of a 10-point uniform reporting format ranging from introduction, materials and methods, through to results and discussion. Each item is discussed in detail in the guidance report. To enhance the future development of body fluid biomarkers, it will be important to standardize the reporting of studies. This guideline by the BioMS-eu consortium is aimed at setting a standard for the reporting of future body fluid biomarker research studies in neurologic disorders. We anticipate that following these guidelines will help to accelerate the selection of biomarkers for clinical development. © 2014 American Academy of Neurology.

  18. Comparative study of the biodegradability of porous silicon films in simulated body fluid.

    PubMed

    Peckham, J; Andrews, G T

    2015-01-01

    The biodegradability of oxidized microporous, mesoporous and macroporous silicon films in a simulated body fluid with ion concentrations similar to those found in human blood plasma were studied using gravimetry. Film dissolution rates were determined by periodically weighing the samples after removal from the fluid. The dissolution rates for microporous silicon were found to be higher than those for mesoporous silicon of comparable porosity. The dissolution rate of macroporous silicon was much lower than that for either microporous or mesoporous silicon. This is attributed to the fact that its specific surface area is much lower than that of microporous and mesoporous silicon. Using an equation adapted from [Surf. Sci. Lett. 306 (1994), L550-L554], the dissolution rate of porous silicon in simulated body fluid can be estimated if the film thickness and specific surface area are known.

  19. Optimizing the multimodal approach to pancreatic cyst fluid diagnosis: developing a volume-based triage protocol.

    PubMed

    Chai, Siaw Ming; Herba, Karl; Kumarasinghe, M Priyanthi; de Boer, W Bastiaan; Amanuel, Benhur; Grieu-Iacopetta, Fabienne; Lim, Ee Mun; Segarajasingam, Dev; Yusoff, Ian; Choo, Chris; Frost, Felicity

    2013-02-01

    The objective of this study was to develop a triage algorithm to optimize diagnostic yield from cytology, carcinoembryonic antigen (CEA), and v-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog (KRAS) testing on different components of a single pancreatic cyst fluid specimen. The authors also sought to determine whether cell block supernatant was suitable for CEA and KRAS testing. Fifty-four pancreatic cysts were triaged according to a volume-dependent protocol to generate fluid (neat and supernatant) and cell block specimens for cytology, comparative CEA, and KRAS testing. Follow-up histology, diagnostic cytology, or a combined clinicopathologic interpretation was recorded as the final diagnosis. There were 26 mucinous cystic lesions and 28 nonmucinous cystic lesions with volumes ranging from 0.3 mL to 55 mL. Testing different components of the specimens (cell block, neat, and/or supernatant) enabled all laboratory investigations to be performed on 50 of 54 cyst fluids (92.6%). Interpretive concordance was observed in 17 of 17 cases (100%) and in 35 of 40 cases (87.5%) that had multiple components tested for CEA and KRAS mutations, respectively. An elevated CEA level (>192 ng/mL) was the most sensitive test for the detection of a mucinous cystic lesion (62.5%) versus KRAS mutation (56%) and "positive" cytology (61.5%). KRAS mutations were identified in 2 of 25 mucinous cystic lesions (8%) in which cytology and CEA levels were not contributory. A volume-based protocol using different components of the specimen was able to optimize diagnostic yield in pancreatic cyst fluids. KRAS mutation testing increased diagnostic yield when combined with cytology and CEA analysis. The current results demonstrated that supernatant is comparable to neat fluid and cell block material for CEA and KRAS testing. Copyright © 2012 American Cancer Society.

  20. Effect of different swim caps on the assessment of body volume and percentage body fat by air displacement plethysmography.

    PubMed

    Peeters, Maarten W; Claessens, Albrecht L

    2011-01-01

    Isothermal air trapped in scalp hair generates an underestimation of body volume when it is measured by air displacement plethysmography. The aim of this study was to examine the effect of wearing different types of swim caps on the measurement of body volume and percentage body fat by air displacement plethysmography. It was hypothesized that wearing a silicone swim cap would more thoroughly compress scalp hair compared with a lycra swim cap, yielding higher estimates of body volume and percent body fat. Thirty female participants aged 25.7 ± 6.4 years were measured in random order when wearing no swim cap, a lycra swim cap or a silicone swim cap. For the no-cap versus lycra cap condition, the mean bias for body volume was -0.579 ± 0.380 litre (limits of agreement: -1.340 to 0.181 litre) and for percent fat -4.9 ± 3.1% fat (limits of agreement: -11.2 to 1.3% fat) (P < 0.05). For the silicone versus lycra condition, the mean bias for body volume was 0.137 ± 0.099 litre (limits of agreement: -0.062 to 0.335 litre) and for percent fat 1.2 ± 0.9% fat (limits of agreement: -0.5 to 2.9% fat) (P < 0.05). In conclusion, attention should be paid to optimal compression of isothermal air trapped in scalp hair when using air displacement plethysmography. The present results suggest that this compression may be more thorough when wearing a silicone swim cap.

  1. Measurement of average density and relative volumes in a dispersed two-phase fluid

    SciTech Connect

    Sreepada, S.R.; Rippel, R.R.

    1990-12-19

    An apparatus and a method are disclosed for measuring the average density and relative volumes in an essentially transparent, dispersed two-phase fluid. A laser beam with a diameter no greater than 1% of the diameter of the bubbles, droplets, or particles of the dispersed phase is directed onto a diffraction grating. A single-order component of the diffracted beam is directed through the two-phase fluid and its refraction is measured. Preferably, the refracted beam exiting the fluid is incident upon a optical filter with linearly varying optical density and the intensity of the filtered beam is measured. The invention can be combined with other laser-based measurement systems, e.g., laser doppler anemometry.

  2. Measurement of average density and relative volumes in a dispersed two-phase fluid

    DOEpatents

    Sreepada, Sastry R.; Rippel, Robert R.

    1992-01-01

    An apparatus and a method are disclosed for measuring the average density and relative volumes in an essentially transparent, dispersed two-phase fluid. A laser beam with a diameter no greater than 1% of the diameter of the bubbles, droplets, or particles of the dispersed phase is directed onto a diffraction grating. A single-order component of the diffracted beam is directed through the two-phase fluid and its refraction is measured. Preferably, the refracted beam exiting the fluid is incident upon a optical filter with linearly varing optical density and the intensity of the filtered beam is measured. The invention can be combined with other laser-based measurement systems, e.g., laser doppler anemometry.

  3. Squeeze behavior of magnetorheological fluids under constant volume and uniform magnetic field

    NASA Astrophysics Data System (ADS)

    Guo, Chaoyang; Gong, Xinglong; Xuan, Shouhu; Yan, Qifan; Ruan, Xiaohui

    2013-04-01

    In this work the experimental investigation of magnetorheological fluids in squeeze mode has been carried out under constant volume with a self-developed device. The magnetorheological fluids were forced to move in all directions in a horizontal plane as the two flat surfaces came together. A pair of Helmholtz coils was used to generate a uniform magnetic field in the compression gap. The normal forces within the gap were systematically studied for different magnetic field, squeeze velocity, particle concentration, viscosity of carrier fluid and initial gap distance. Two regions of behavior were obtained from the normal force versus gap distance curve: elastic deformation and plastic flow. A power law fitting was appropriate for the relation between the normal force and the gap in the plastic flow. The index of the power law was smaller than that predicted by the continuum theory, possibly due to the squeeze strengthening effect and the sealing effect.

  4. Effects of elevated vacuum on in-socket residual limb fluid volume: Case study results using bioimpedance analysis

    PubMed Central

    Sanders, JE; Harrison, DS; Myers, TR; Allyn, KJ

    2015-01-01

    Bioimpedance analysis was used to measure residual limb fluid volume on seven trans-tibial amputee subjects using elevated vacuum sockets and non-elevated vacuum sockets. Fluid volume changes were assessed during sessions with the subjects sitting, standing, and walking. In general, fluid volume losses during 3 or 5 min walks and losses over the course of the 30-min test session were less for elevated vacuum than for suction. A number of variables including the time of day data were collected, soft tissue consistency, socket-to-limb size differences and shape differences, and subject health may have affected the results and had an equivalent or greater impact on limb fluid volume compared with elevated vacuum. Researchers should well consider these variables in study design of future investigations on the effects of elevated vacuum on residual limb volume. PMID:22234667

  5. Diagnostic accuracy of the defining characteristics of the excessive fluid volume diagnosis in hemodialysis patients1

    PubMed Central

    Fernandes, Maria Isabel da Conceição Dias; Bispo, Miclécia de Melo; Leite, Érida Maria Diniz; Lopes, Marcos Venícios de Oliveira; da Silva, Viviane Martins; Lira, Ana Luisa Brandão de Carvalho

    2015-01-01

    Objective: to evaluate the accuracy of the defining characteristics of the excess fluid volume nursing diagnosis of NANDA International, in patients undergoing hemodialysis. Method: this was a study of diagnostic accuracy, with a cross-sectional design, performed in two stages. The first, involving 100 patients from a dialysis clinic and a university hospital in northeastern Brazil, investigated the presence and absence of the defining characteristics of excess fluid volume. In the second step, these characteristics were evaluated by diagnostic nurses, who judged the presence or absence of the diagnosis. To analyze the measures of accuracy, sensitivity, specificity, and positive and negative predictive values were calculated. Approval was given by the Research Ethics Committee under authorization No. 148.428. Results: the most sensitive indicator was edema and most specific were pulmonary congestion, adventitious breath sounds and restlessness. Conclusion: the more accurate defining characteristics, considered valid for the diagnostic inference of excess fluid volume in patients undergoing hemodialysis were edema, pulmonary congestion, adventitious breath sounds and restlessness. Thus, in the presence of these, the nurse may safely assume the presence of the diagnosis studied. PMID:26625996

  6. Stroke volume variation as a predictor of fluid responsiveness in patients undergoing one-lung ventilation.

    PubMed

    Suehiro, Koichi; Okutani, Ryu

    2010-10-01

    To investigate the ability of stroke volume variation (SVV) calculated by the Vigileo-FloTrac system (Edwards Lifescience, Irvine, CA) to predict fluid responsiveness in patients undergoing one-lung ventilation (OLV). Prospective, observational study. Clinical hospital. Thirty patients scheduled for a pulmonary lobectomy requiring OLV for at least 1 hour under combined epidural/general anesthesia. After starting OLV, hydroxyethyl starch, 500 mL, was administered for 30 minutes. Hemodynamic variables including heart rate, mean arterial pressure, cardiac index, stroke volume index (SVI), and SVV were measured before and after volume loading. SVV before volume loading was significantly correlated with the absolute changes in SVV (ΔSVV) and percentage changes in stroke volume index (ΔSVI) after volume loading (ΔSVV: p < 0.05, r = -0.893; ΔSVI: p < 0.05, r = 0.866). Of the 30 patients, 15 (50%) were responders to intravascular volume expansion (an increase in SVI ≥ 25%), and 15 (50%) were nonresponders (an increase in SVI <25%). The area under the ROC curve was 0.900 for SVV (95% confidence interval, 0.809-0.991), whereas the optimal threshold value of SVV to discriminate between responders and nonresponders was 10.5% (sensitivity: 82.4%, specificity: 92.3%). The authors found that SVV measured by the Vigileo-FloTrac system was able to predict fluid responsiveness in patients undergoing surgery with OLV with acceptable levels of sensitivity and specificity. Copyright © 2010 Elsevier Inc. All rights reserved.

  7. A study analysis of cable-body systems totally immersed in a fluid stream

    NASA Technical Reports Server (NTRS)

    Delaurier, J. D.

    1972-01-01

    A general stability analysis of a cable-body system immersed in a fluid stream is presented. The analytical portion of this analysis treats the system as being essentially a cable problem, with the body dynamics giving the end conditions. The mathematical form of the analysis consists of partial differential wave equations, with the end and auxiliary conditions being determined from the body equations of motion. The equations uncouple to give a lateral problem and a longitudinal problem as in first order airplane dynamics. A series of tests on a tethered wind tunnel model provide a comparison of the theory with experiment.

  8. Handling and storage of human body fluids for analysis of extracellular vesicles.

    PubMed

    Yuana, Yuana; Böing, Anita N; Grootemaat, Anita E; van der Pol, Edwin; Hau, Chi M; Cizmar, Petr; Buhr, Egbert; Sturk, Auguste; Nieuwland, Rienk

    2015-01-01

    Because procedures of handling and storage of body fluids affect numbers and composition of extracellular vesicles (EVs), standardization is important to ensure reliable and comparable measurements of EVs in a clinical environment. We aimed to develop standard protocols for handling and storage of human body fluids for EV analysis. Conditions such as centrifugation, single freeze-thaw cycle, effect of time delay between blood collection and plasma preparation and storage were investigated. Plasma is the most commonly studied body fluid in EV research. We mainly focused on EVs originating from platelets and erythrocytes and investigated the behaviour of these 2 types of EVs independently as well as in plasma samples of healthy subjects. EVs in urine and saliva were also studied for comparison. All samples were analysed simultaneously before and after freeze-thawing by resistive pulse sensing, nanoparticle tracking analysis, conventional flow cytometry (FCM) and transmission (scanning) electron microscopy. Our main finding is that the effect of centrifugation markedly depends on the cellular origin of EVs. Whereas erythrocyte EVs remain present as single EVs after centrifugation, platelet EVs form aggregates, which affect their measured concentration in plasma. Single erythrocyte and platelet EVs are present mainly in the range of 100-200 nm, far below the lower limit of what can be measured by conventional FCM. Furthermore, the effects of single freeze-thaw cycle, time delay between blood collection and plasma preparation up to 1 hour and storage up to 1 year are insignificant (p>0.05) on the measured concentration and diameter of EVs from erythrocyte and platelet concentrates and EVs in plasma, urine and saliva. In conclusion, in standard protocols for EV studies, centrifugation to isolate EVs from collected body fluids should be avoided. Freezing and storage of collected body fluids, albeit their insignificant effects, should be performed identically for

  9. Detection of malignancy in body fluids: a comparison of the hematology and cytology laboratories.

    PubMed

    Jerz, Jaclyn L; Donohue, Rachel E; Mody, Rayomond R; Schwartz, Mary R; Mody, Dina R; Zieske, Arthur W

    2014-05-01

    Body fluids submitted to the hematology laboratory for cell counts may also be examined for the presence of malignancy. Previous studies evaluating the hematology laboratory's performance at detecting malignancy in body fluids have reached conflicting conclusions. To investigate the hematology laboratory's ability to detect malignancy in body fluids by comparison with cytology. Retrospective analysis of 414 body fluid samples during an 18-month period, with introduction of new quality assurance measures after the first 210 cases. If no concurrent cytology was ordered, results were compared with recent previous and/or subsequent cytologic, histologic, or flow cytometric diagnoses. Of the initial 210 cases, the hematology laboratory detected 3 of 13 malignancies diagnosed by concurrent cytology (23% sensitivity), with no false-positives (100% specificity). Malignancy was not identified on retrospective review of the hematology slides in the 10 discrepant cases. After the initial study, educational sessions on morphology for the medical technologists and a more thorough hematology-cytology correlation policy were implemented. The subsequent 204 hematology laboratory cases had increased sensitivity for the detection of malignancy (60%; 6 of 10). Definitive features of malignancy were seen in only one discrepant hematology laboratory slide on retrospective review. This case had not been flagged for hematopathologist review. None of the discrepancies before or after implementation of the additional quality assurance measures impacted patient care. Body fluid processing by the hematology laboratory is not optimized for the detection of malignancy. Concurrent cytologic examination is critical for the detection of malignancy, and needs to be considered as cost-saving measures are increasingly implemented.

  10. Uranium(VI) Binding Forms in Selected Human Body Fluids: Thermodynamic Calculations versus Spectroscopic Measurements.

    PubMed

    Osman, Alfatih A A; Geipel, Gerhard; Barkleit, Astrid; Bernhard, Gert

    2015-02-16

    Human exposure to uranium increasingly becomes a subject of interest in many scientific disciplines such as environmental medicine, toxicology, and radiation protection. Knowledge about uranium chemical binding forms(speciation) in human body fluids can be of great importance to understand not only its biokinetics but also its relevance in risk assessment and in designing decorporation therapy in the case of accidental overexposure. In this study, thermodynamic calculations of uranium speciation in relevant simulated and original body fluids were compared with spectroscopic data after ex-situ uranium addition. For the first time, experimental data on U(VI) speciation in body fluids (saliva, sweat, urine) was obtained by means of cryogenic time-resolved laser-induced fluorescence spectroscopy (cryo-TRLFS) at 153 K. By using the time dependency of fluorescence decay and the band positions of the emission spectra, various uranyl complexes were demonstrated in the studied samples. The variations of the body fluids in terms of chemical composition, pH, and ionic strength resulted in different binding forms of U(VI). The speciation of U(VI) in saliva and in urine was affected by the presence of bioorganic ligands, whereas in sweat, the distribution depends mainly on inorganic ligands. We also elucidated the role of biological buffers, i.e., phosphate (H(2)PO(4−)/HPO(4)(2−)) on U(VI) distribution, and the system Ca(2+)/UO(2)(2+)/PO(4)(3−) was discussed in detail in both saliva and urine. The theoretical speciation calculations of the main U(VI) species in the investigated body fluids were significantly consistent with the spectroscopic data. Laser fluorescence spectroscopy showed success and reliability for direct determination of U(VI) in such biological matrices with the possibility for further improvement.

  11. Interception efficiency in flow of power-law fluids past confined porous bodies

    NASA Astrophysics Data System (ADS)

    Shahsavari, Setareh; McKinley, Gareth

    2014-11-01

    Understanding the flow of power-law fluids through porous media is important for a wide range of filtration and sedimentation processes. In this study, the mobility of power-law fluids through porous media is investigated numerically and we use parametric studies to systematically understand the individual roles of geometrical characteristics, rheological properties as well as flow conditions. In addition, an analytical solution is presented that can be used as a modified Darcy law for generalized Newtonian fluids. Building on this modified Darcy law, the incompressible laminar flow of power-law and Carreau fluids past a confined porous body is modeled numerically. From the simulations we calculate the flow interception efficiency, which provides a measure of the fraction of streamlines that intercept a porous collector. Finally, the interception efficiency of power-law fluids are compared with the case of a Newtonian fluid. The focus of this work is principally for flow of inelastic fluids in fibrous media; however, the methodology can also be extended to other porous media.

  12. Relationship between body size, fill volume, and mass transfer area coefficient in peritoneal dialysis.

    PubMed

    Keshaviah, P; Emerson, P F; Vonesh, E F; Brandes, J C

    1994-04-01

    A peritoneal dialysate fill volume of 2 L has become the standard of clinical practice, but the relationships between body size, fill volume, and mass transfer area coefficient (KoA) have not been well established. These relationships were studied in 10 stable peritoneal dialysis patients who underwent six peritoneal equilibration studies (2 h each) at fill volumes of 0.5, 1, 1.5, 2, 2.5, and 3 L. The concentration-time profiles for urea, creatinine, and glucose were measured at each fill volume, and residual volumes were calculated from the preceding dwell period. A modified Henderson equation was used to calculate the KoA for the three solutes as a function of fill volume. By normalizing the KoA for each solute to the value at 2 L, the data for all three solutes collapsed onto the same trend line when plotting the normalized KoA versus dialysate volume. Between 0.5- and 2-L fill volumes, the average normalized KoA increases in an almost linear fashion, its value almost doubling over this range. Between 2- and 3-L fill volumes, there is less than a 10% change in the normalized KoA. However, fill volumes for peak urea KoA were found to increase with increasing body surface area (R = 0.76), being around 2.5 L for an average-sized patient and increasing to between 3 and 3.5 L for body surface areas > 2 m2. To maximize solute transport, these relationships between body size, volume, and KoA should be considered when choosing fill volumes for continuous ambulatory peritoneal dialysis and automated peritoneal dialysis and when deciding reserve and tidal volumes for tidal peritoneal dialysis.

  13. Effects of Intense Physical Activity with Free Water Replacement on Bioimpedance Parameters and Body Fluid Estimates

    NASA Astrophysics Data System (ADS)

    Neves, E. B.; Ulbricht, L.; Krueger, E.; Romaneli, E. F. R.; Souza, M. N.

    2012-12-01

    Authors have emphasized the need for previous care in order to perform reliable bioimpedance acquisition. Despite of this need some authors have reported that intense physical training has little effect on Bioimpedance Analysis (BIA), while other ones have observed significant effects on bioimpedance parameters in the same condition, leading to body composition estimates considered incompatible with human physiology. The aim of this work was to quantify the changes in bioimpedance parameters, as well as in body fluids estimates by BIA, after four hours of intense physical activity with free water replacement in young males. Xitron Hydra 4200 equipment was used to acquire bioimpedance data before and immediately after the physical training. After data acquisition body fluids were estimates from bioimpedance parameters. Height and weight of all subjects were also acquired to the nearest 0.1 cm and 0.1 kg, respectively. Results point that among the bioimpedance parameter, extracellular resistance presented the most coherent behavior, leading to reliable estimates of the extracellular fluid and part of the total body water. Results also show decreases in height and weight of the participants, which were associated to the decrease in body hydration and in intervertebral discs.

  14. [Differentiation of human amniotic fluid stem cells into cardiomyocytes through embryonic body formation].

    PubMed

    Wang, Han; Chen, Shuai; Cheng, Xiang; Dou, Zhongying; Wang, Huayan

    2008-09-01

    To isolate human amniotic fluid stem cells (hASCs) and induce hASCs into cardiomyocytes after forming the embryonic bodies. We cultivated hASCs isolated from the amniotic fluid continually for over 42 passages. The biological characteristics of hASCs were detected by immunocytochemistry, RT-PCR and flow cytometer, hASCs at 10-15th passage were suspension cultured to form embryonic bodies that were induced to cardiomyocytes. Fibroblastoid-type hASCs were obtained. Immunocytochemistry, RT-PCR and flow cytometry analysis demonstrated that hASCs were positive for some specific makers of the embryonic stem cell. hASCs could form embryonic bodies that were alkaline-phosphatase positive and expressed fgf5, zeta-globin and alpha-fetoprotein. The embryonic bodies could differentiate into cardiomyocytes showing alpha-actin positive and Tbx5, Nkx2.5, GATA4 and alpha-MHC positive. We conclued that hASCs obtained from human amniotic fluid could differentiate into cardiomyocytes through the formation of embryonic bodies.

  15. Identification and analysis of circulating exosomal microRNA in human body fluids.

    PubMed

    Lässer, Cecilia

    2013-01-01

    Exosomes are 40-100 nm sized vesicles released from cells when multivesicular bodies fuse with the plasma membrane. These vesicles take part in cell-to-cell communication by binding and signalling through membrane receptors on cells or by transferring proteins, RNA, and lipids into the cells. Exosomal RNA in body fluids, such as plasma and urine, has been associated with malignancies, making the exosomal RNA a potential biomarker for early detection of these diseases. This has increased the interest in the field of extracellular RNA and in particular, the interest in exosomal RNA.In this chapter, a well-established exosome isolation method is described, as well as how to characterize the isolated vesicles by electron microscopy. Furthermore, two types of RNA isolation methods are described with a focus on isolating RNA from body fluids, which can be more viscous than cell culture media.

  16. Assessment of body fluid balance and voluntary drinking in ultimate players during a match.

    PubMed

    Martarelli, D; Uguccioni, F; Stauffacher, S; Spataro, A; Cocchioni, M; Pompei, P

    2009-09-01

    Ultimate is a sport played by hundreds of thousands of people in more than 42 countries; however, it is still mainly known as a recreational more than a team sport, and further studies are needed to define its physical load. Particularly, since no studies relating Ultimate to hydration have been performed, we aimed to determine body fluid balance, voluntary water intake and the most reliable method for assessing the hydration status of players after a typical 80-minute Ultimate match. bioimpedance, urine specific gravity and body mass changes to asses the hydration level of the players were measured. It was observed that not all of the methods are adequate to determine dehydration in Ultimate players, and that measurement of body mass changes represents a reliable and accurate technique. These findings demonstrate that ultimate as an intense sport that can induce significant fluid loss, which is not always replaced by individual drinking.

  17. Locomotion of Helical Bodies in Viscoelastic Fluids: Enhanced Swimming at Large Helical Amplitudes

    NASA Astrophysics Data System (ADS)

    Spagnolie, Saverio E.; Liu, Bin; Powers, Thomas R.

    2013-08-01

    The motion of a rotating helical body in a viscoelastic fluid is considered. In the case of force-free swimming, the introduction of viscoelasticity can either enhance or retard the swimming speed and locomotive efficiency, depending on the body geometry, fluid properties, and the body rotation rate. Numerical solutions of the Oldroyd-B equations show how previous theoretical predictions break down with increasing helical radius or with decreasing filament thickness. Helices of large pitch angle show an increase in swimming speed to a local maximum at a Deborah number of order unity. The numerical results show how the small-amplitude theoretical calculations connect smoothly to the large-amplitude experimental measurements.

  18. Flow and Force Equations for a Body Revolving in a Fluid

    NASA Technical Reports Server (NTRS)

    Zahm, A. F.

    1979-01-01

    A general method for finding the steady flow velocity relative to a body in plane curvilinear motion, whence the pressure is found by Bernoulli's energy principle is described. Integration of the pressure supplies basic formulas for the zonal forces and moments on the revolving body. The application of the steady flow method for calculating the velocity and pressure at all points of the flow inside and outside an ellipsoid and some of its limiting forms is presented and graphs those quantities for the latter forms. In some useful cases experimental pressures are plotted for comparison with theoretical. The pressure, and thence the zonal force and moment, on hulls in plane curvilinear flight are calculated. General equations for the resultant fluid forces and moments on trisymmetrical bodies moving through a perfect fluid are derived. Formulas for potential coefficients and inertia coefficients for an ellipsoid and its limiting forms are presented.

  19. Locomotion and Control of a Self-Propelled Shape-Changing Body in a Fluid

    NASA Astrophysics Data System (ADS)

    Chambrion, Thomas; Munnier, Alexandre

    2011-06-01

    In this paper we study the locomotion of a shape-changing body swimming in a two-dimensional perfect fluid of infinite extent. The shape changes are prescribed as functions of time satisfying constraints ensuring that they result from the work of internal forces only: conditions necessary for the locomotion to be termed self-propelled. The net rigid motion of the body results from the exchange of momentum between these shape changes and the surrounding fluid. The aim of this paper is three-fold. First, it describes a rigorous framework for the study of animal locomotion in fluid. Our model differs from previous ones mostly in that the number of degrees of freedom related to the shape changes is infinite. The Euler-Lagrange equation is obtained by applying the least action principle to the system body fluid. The formalism of Analytic Mechanics provides a simple way to handle the strong coupling between the internal dynamics of the body causing the shape changes and the dynamics of the fluid. The Euler-Lagrange equation takes the form of a coupled system of ordinary differential equations (ODEs) and partial differential equations (PDEs). The existence and uniqueness of solutions for this system are rigorously proved. Second, we are interested in making clear the connection between shape changes and internal forces. Although classical, it can be quite surprising to select the shape changes to play the role of control because the internal forces they are due to seem to be a more natural and realistic choice. We prove that, when the number of degrees of freedom relating to the shape changes is finite, both choices are actually equivalent in the sense that there is a one-to-one relation between shape changes and internal forces. Third, we show how the control problem, consisting in associating with each shape change the resulting trajectory of the swimming body, can be analysed within the framework of geometric control theory. This allows us to take advantage of the

  20. Feasibility and impact of the measurement of extracellular fluid volume simultaneous with GFR by 125I-iothalamate.

    PubMed

    Visser, Folkert W; Muntinga, Jaap H J; Dierckx, Rudi A; Navis, Gerjan

    2008-09-01

    The feasibility, validity, and possible applications of the assessment of extracellular fluid volume (ECFV) simultaneous with glomerular filtration rate (GFR) were assessed in a series of validation studies using the constant infusion method of (125)I-iothalamate (IOT). In 48 subjects with a broad range of GFR, distribution volume (V(d)) of IOT corresponded well with V(d) bromide (16.71 +/- 3.0 and 16.73 +/- 3.2 l, respectively, not significant), with a strong correlation (r = 0.933, P < 0.01) and without systematic deviations. Reproducibility assessment in 25 healthy male subjects showed coefficients of variation of 8.6% of duplicate measurement of V(d) IOT during strictly standardized (50 mmol Na(+)/d) sodium intake. An increase in dietary sodium intake (200 mmol Na(+)/d) induced a corresponding rise in V(d) IOT of 1.11 +/- 1.5 l (P < 0.01). In 158 healthy prospective kidney donors, the impact of indexing of GFR to ECFV was analyzed. Age, gender, height, and body surface area (BSA) were determinants of GFR. Whereas GFR, GFR/BSA, and GFR/height were gender-dependent, GFR/ECFV was gender-independent and not related to height or BSA. This supports the potential of normalizing GFR by ECFV. Thus, ECFV can be simultaneously assessed with GFR by the constant infusion method using IOT. After appropriate validation, also other GFR tracers could be used for such a simultaneous estimation, providing a valuable resource of data on ECFV in renal studies and, moreover, allowing GFR to be indexed to the body fluid compartment it clears: the ECFV.

  1. Brain ventricular volume and cerebrospinal fluid biomarkers of Alzheimer’s disease

    PubMed Central

    Ott, Brian R.; Cohen, Ronald A.; Gongvatana, Assawin; Okonkwo, Ozioma C.; Johanson, Conrad E.; Stopa, Edward G.; Donahue, John E.; Silverberg, Gerald D.

    2010-01-01

    The frequent co-occurrence of Alzheimer disease (AD) pathology in patients with normal pressure hydrocephalus suggests a possible link between ventricular dilation and AD. If enlarging ventricles serve as a marker of faulty cerebrospinal fluid (CSF) clearance mechanisms, then a relationship may be demonstrable between increasing ventricular volume and decreasing levels of amyloid beta peptide (Aβ) in CSF in preclinical and early AD. CSF biomarker data (Aβ, tau, and phosphorylated tau) as well as direct measurements of whole brain and ventricular volumes were obtained from the Alzheimer's Disease Neuroimaging Initiative dataset. The ratio of ventricular volume to whole brain volume was derived as a secondary independent measure. Baseline data were used for the group analyses of 288 subjects classified as being either normal (n=87), having the syndrome of mild cognitive impairment (n=136), or mild AD (n=65). Linear regression models were derived for each biomarker as the dependent variable, using the MRI volume measures and age as independent variables. For controls, ventricular volume was negatively associated with CSF Aβ in APOE ε4 positive subjects. A different pattern was seen in AD subjects, in whom ventricular volume was negatively associated with tau, but not Aβ in ε4 positive subjects. Increased ventricular volume may be associated with decreased levels of CSF Aβ in preclinical AD. The basis for the apparent effect of APOE ε4 genotype on the relationship of ventricular volume to Aβ and tau levels is unknown, but could involve altered CSF-blood-brain barrier function during the course of disease. PMID:20182051

  2. [Efficacies of fluid resuscitation volume after combined burn-blast injury shock].

    PubMed

    Zhang, Donghai; Chai, Jiake; Hu, Quan; Li, Bailing; Zhang, Xulong; Ma, Li; Yu, Yonghui; Liu, Lingying

    2015-05-19

    To explore the efficacies of resuscitation fluid volume after combined burn-blast injury versus a simple burn. A total of 24 beagle dogs were randomly assigned into 3 groups of normal volume (N), decreased volume (D) and increased volume (I). Fluid volume for group N was calculated with the Parkland formula while groups D and I decreased or increased by 20% respectively. Urinary output (UOP), hemoglobin concentration (HB), cardiac output (CO), intrathoracic blood volume (ITBV), extravascular lung water index (ELWI), oxygen delivery (DO(2)) and oxygen consumption (VO(2)) were determined before and 4, 8, 24, 48 h after injury to evaluate the sufficiency of resuscitation in each group and examine the superiority. UOP were [(0.41 ± 0.13), (0.77 ± 0.17), (0.30 ± 0.13)] ml · kg(-1) · h(-1) at 4 h post-injury in groups N, I and D respectively. Group I was significantly higher than groups N and D (P < 0.001).It were [(0.59 ± 0.05), (0.88 ± 0.05), (0.53 ± 0.06)] ml · kg(-1) · h(-1) at 24 h post-injury in groups N, I and D respectively. Group I was significantly higher than groups N and D (P < 0.001). CO in group I was remarkably higher than those in groups N and D at 4 h and 8 h post-injury [(1.57 ± 0.19) vs (1.25 ± 0.17), (1.05 ± 0.17) L/min; (1.87 ± 0.20) vs (1.57 ± 0.24), (1.20 ± 0.19) L/min respectively] (P < 0.05); ITBV also significantly increased in group I than two other groups at 4 h and 8 h post-injury [(169 ± 16) vs (140 ± 12), (121 ± 12) ml; (161 ± 14) vs (135 ± 22), (112 ± 12) ml] (P < 0.05). VO2 in group I was significantly higher than that in group N at 24 h post-injury [(129 ± 10) vs (106 ± 12) ml · min(-1) · m(-2)] (P < 0.05). No differences were detected among 3 group in ELWI (P > 0.05). Larger fluid volume may compensate circulatory volume loss sooner, alleviate declining cardiac output better, maintain adequate organ perfusion, promote tissue oxygenation and improve anti-hypervolemia and anti-hypoxia.

  3. A moving control volume approach to computing hydrodynamic forces and torques on immersed bodies

    NASA Astrophysics Data System (ADS)

    Nangia, Nishant; Johansen, Hans; Patankar, Neelesh A.; Bhalla, Amneet Pal Singh

    2017-10-01

    We present a moving control volume (CV) approach to computing hydrodynamic forces and torques on complex geometries. The method requires surface and volumetric integrals over a simple and regular Cartesian box that moves with an arbitrary velocity to enclose the body at all times. The moving box is aligned with Cartesian grid faces, which makes the integral evaluation straightforward in an immersed boundary (IB) framework. Discontinuous and noisy derivatives of velocity and pressure at the fluid-structure interface are avoided and far-field (smooth) velocity and pressure information is used. We re-visit the approach to compute hydrodynamic forces and torques through force/torque balance equations in a Lagrangian frame that some of us took in a prior work (Bhalla et al., 2013 [13]). We prove the equivalence of the two approaches for IB methods, thanks to the use of Peskin's delta functions. Both approaches are able to suppress spurious force oscillations and are in excellent agreement, as expected theoretically. Test cases ranging from Stokes to high Reynolds number regimes are considered. We discuss regridding issues for the moving CV method in an adaptive mesh refinement (AMR) context. The proposed moving CV method is not limited to a specific IB method and can also be used, for example, with embedded boundary methods.

  4. Accumulation of deuterium oxide in body fluids after ingestion of D/sub 2/O-labeled beverages

    SciTech Connect

    Davis, J.M.; Lamb, D.R.; Burgess, W.A.; Bartoli, W.P.

    1987-11-01

    A simple low-cost procedure was developed to compare the temporal profiles of deuterium oxide (D/sub 2/O) accumulation in body fluids after ingestion of D/sub 2/O-labeled solutions. D/sub 2/O concentration was measured in plasma and saliva samples taken at various intervals after ingestion of 20 ml of D/sub 2/O mixed with five solutions differing in carbohydrate and electrolyte concentrations. An infrared spectrometer was used to measure D/sub 2/O in purified samples obtained after a 48-h incubation period during which the water (D/sub 2/O and H/sub 2/O) in the sample was equilibrated with an equal volume of distilled water in a sealed diffusion dish. The procedure yields 100% recoveries of 60-500 ppm D/sub 2/O with an average precision of 5%. When compared with values for distilled water, D/sub 2/O accumulation in serial samples of plasma and saliva was slower for ingested solutions containing 40 and 15% glucose and faster for hypotonic saline and a 6% carbohydrate-electrolyte solution. These differences appear to reflect known differences in gastric emptying and intestinal absorption of these beverages. Therefore, this technique may provide a useful index of the rate of water uptake from ingested beverages into the body fluids.

  5. A Biodegradation Study of SBA-15 Microparticles in Simulated Body Fluid and in Vivo.

    PubMed

    Choi, Youngjin; Lee, Jung Eun; Lee, Jung Heon; Jeong, Ji Hoon; Kim, Jaeyun

    2015-06-16

    Mesoporous silica has received considerable attention as a drug delivery vehicle because of its large surface area and large pore volume for loading drugs and large biomolecules. Recently, mesoporous silica microparticles have shown potential as a three-dimensional vaccine platform for modulating dendritic cells via spontaneous assembly of microparticles in a specific region after subcutaneous injection. For further in vivo applications, the biodegradation behavior of mesoporous silica microparticles must be studied and known. Until now, most biodegradation studies have focused on mesoporous silica nanoparticles (MSNs); here, we report the biodegradation of hexagonally ordered mesoporous silica, SBA-15, with micrometer-sized lengths (∼32 μm with a high aspect ratio). The degradation of SBA-15 microparticles was investigated in simulated body fluid (SBF) and in mice by analyzing the structural change over time. SBA-15 microparticles were found to degrade in SBF and in vivo. The erosion of SBA-15 under biological conditions led to a loss of the hysteresis loop in the nitrogen adsorption/desorption isotherm and fingerprint peaks in small-angle X-ray scattering, specifically indicating a degradation of ordered mesoporous structure. Via comparison to previous results of degradation of MSNs in SBF, SBA-15 microparticles degraded faster than MCM-41 nanoparticles presumably because SBA-15 microparticles have a pore size (∼8 nm) and a pore volume larger than those of MCM-41 mesoporous silica. The surface functional groups, the residual amounts of organic templates, and the hydrothermal treatment during the synthesis could affect the rate of degradation of SBA-15. In in vivo testing, previous studies focused on the evaluation of toxicity of mesoporous silica particles in various organs. In contrast, we studied the change in the physical properties of SBA-15 microparticles depending on the duration after subcutaneous injection. The pristine SBA-15 microparticles injected

  6. Monoamine Neurotransmitter Metabolite Concentration as a Marker of Cerebrospinal Fluid Volume Changes.

    PubMed

    Maraković, Jurica; Vukić, Miroslav; Radoš, Milan; Chudy, Darko; Klarica, Marijan; Orešković, Darko

    2016-01-01

    In our previous papers we demonstrated that changes in blood and cerebrospinal fluid (CSF) osmolarity have a strong influence on CSF pressure and volume, which is in accordance with a new proposed hypothesis of CSF physiology. Thus, acute changes in CSF volume should be reflected in the CSF concentration of different central nervous system (CNS) metabolites. In anesthetized cats (n = 4) we measured the outflow volume of CSF by cisternal free drainage at a negative CSF pressure (-10 cmH2O) before and after the intraperitoneal (i.p.) application of a hypo-osmolar substance (distilled water). In samples of CSF collected at different time intervals (30 min) we measured the concentration of homovanillic acid (HVA). In spite of fact that constant CSF outflow volume was obtained after a 30-min period in our model, the concentration of HVA gradually increased over time and became stable after 90 min. After the i.p. application of distilled water the outflow CSF volume increased significantly, whereas the concentration of HVA significantly decreased over 30 min. The results observed suggest that alterations in serum osmolarity change the CSF volume and concentrations of neurotransmitter metabolites because of the osmotic arrival of water from CNS blood capillaries in all CSF compartments.

  7. Correlation among body height, intelligence, and brain gray matter volume in healthy children.

    PubMed

    Taki, Yasuyuki; Hashizume, Hiroshi; Sassa, Yuko; Takeuchi, Hikaru; Asano, Michiko; Asano, Kohei; Kotozaki, Yuka; Nouchi, Rui; Wu, Kai; Fukuda, Hiroshi; Kawashima, Ryuta

    2012-01-16

    A significant positive correlation between height and intelligence has been demonstrated in children. Additionally, intelligence has been associated with the volume of gray matter in the brains of children. Based on these correlations, we analyzed the correlation among height, full-scale intelligence quotient (IQ) and gray matter volume applying voxel-based morphometry using data from the brain magnetic resonance images of 160 healthy children aged 5-18 years of age. As a result, body height was significantly positively correlated with brain gray matter volume. Additionally, the regional gray matter volume of several regions such as the bilateral prefrontal cortices, temporoparietal region, and cerebellum was significantly positively correlated with body height and that the gray matter volume of several of these regions was also significantly positively correlated with full-scale intelligence quotient (IQ) scores after adjusting for age, sex, and socioeconomic status. Our results demonstrate that gray and white matter volume may mediate the correlation between body height and intelligence in healthy children. Additionally, the correlations among gray and white matter volume, height, and intelligence may be at least partially explained by the effect of insulin-like growth factor-1 and growth hormones. Given the importance of the effect of environmental factors, especially nutrition, on height, IQ, and gray matter volume, the present results stress the importance of nutrition during childhood for the healthy maturation of body and brain. Copyright © 2011 Elsevier Inc. All rights reserved.

  8. Changes in foot volume, body composition, and hydration status in male and female 24-hour ultra-mountain bikers

    PubMed Central

    2014-01-01

    Background The effects of running and cycling on changes in hydration status and body composition during a 24-hour race have been described previously, but data for 24-hour ultra-mountain bikers are missing. The present study investigated changes in foot volume, body composition, and hydration status in male and female 24-hour ultra-mountain bikers. Methods We compared in 49 (37 men and 12 women) 24-hour ultra-mountain bikers (ultra-MTBers) changes (Δ) in body mass (BM). Fat mass (FM), percent body fat (%BF) and skeletal muscle mass (SM) were estimated using anthropometric methods. Changes in total body water (TBW), extracellular fluid (ECF) and intracellular fluid (ICF) were determined using bioelectrical impedance and changes in foot volume using plethysmography. Haematocrit, plasma [Na+], plasma urea, plasma osmolality, urine urea, urine specific gravity and urine osmolality were measured in a subgroup of 25 ultra-MTBers (16 men and 9 women). Results In male 24-hour ultra-MTBers, BM (P < 0.001), FM (P < 0.001), %BF (P < 0.001) and ECF (P < 0.05) decreased whereas SM and TBW did not change (P > 0.05). A significant correlation was found between post-race BM and post-race FM (r = 0.63, P < 0.001). In female ultra-MTBers, BM (P < 0.05), %BF (P < 0.05) and FM (P < 0.001) decreased, whereas SM, ECF and TBW remained stable (P > 0.05). Absolute ranking in the race was related to Δ%BM (P < 0.001) and Δ%FM in men (P < 0.001) and to Δ%BM (P < 0.05) in women. In male ultra-MTBers, increased post-race plasma urea (P < 0.001) was negatively related to absolute ranking in the race, Δ%BM, post-race FM and Δ%ECF (P < 0.05). Foot volume remained stable in both sexes (P > 0.05). Conclusions Male and female 24-hour ultra-MTBers experienced a significant loss in BM and FM, whereas SM remained stable. Body weight changes and increases in plasma urea do not reflect a change in body hydration status. No oedema

  9. Changes in foot volume, body composition, and hydration status in male and female 24-hour ultra-mountain bikers.

    PubMed

    Chlíbková, Daniela; Knechtle, Beat; Rosemann, Thomas; Žákovská, Alena; Tomášková, Ivana; Shortall, Marcus; Tomášková, Iva

    2014-03-24

    The effects of running and cycling on changes in hydration status and body composition during a 24-hour race have been described previously, but data for 24-hour ultra-mountain bikers are missing. The present study investigated changes in foot volume, body composition, and hydration status in male and female 24-hour ultra-mountain bikers. We compared in 49 (37 men and 12 women) 24-hour ultra-mountain bikers (ultra-MTBers) changes (Δ) in body mass (BM). Fat mass (FM), percent body fat (%BF) and skeletal muscle mass (SM) were estimated using anthropometric methods. Changes in total body water (TBW), extracellular fluid (ECF) and intracellular fluid (ICF) were determined using bioelectrical impedance and changes in foot volume using plethysmography. Haematocrit, plasma [Na+], plasma urea, plasma osmolality, urine urea, urine specific gravity and urine osmolality were measured in a subgroup of 25 ultra-MTBers (16 men and 9 women). In male 24-hour ultra-MTBers, BM (P < 0.001), FM (P < 0.001), %BF (P < 0.001) and ECF (P < 0.05) decreased whereas SM and TBW did not change (P > 0.05). A significant correlation was found between post-race BM and post-race FM (r = 0.63, P < 0.001). In female ultra-MTBers, BM (P < 0.05), %BF (P < 0.05) and FM (P < 0.001) decreased, whereas SM, ECF and TBW remained stable (P > 0.05). Absolute ranking in the race was related to Δ%BM (P < 0.001) and Δ%FM in men (P < 0.001) and to Δ%BM (P < 0.05) in women. In male ultra-MTBers, increased post-race plasma urea (P < 0.001) was negatively related to absolute ranking in the race, Δ%BM, post-race FM and Δ%ECF (P < 0.05). Foot volume remained stable in both sexes (P > 0.05). Male and female 24-hour ultra-MTBers experienced a significant loss in BM and FM, whereas SM remained stable. Body weight changes and increases in plasma urea do not reflect a change in body hydration status. No oedema of the lower limbs occurred.

  10. Strongly coupled dynamics of fluids and rigid-body systems with the immersed boundary projection method

    NASA Astrophysics Data System (ADS)

    Wang, Chengjie; Eldredge, Jeff D.

    2015-08-01

    A strong coupling algorithm is presented for simulating the dynamic interactions between incompressible viscous flows and rigid-body systems in both two- and three-dimensional problems. In this work, the Navier-Stokes equations for incompressible flow are solved on a uniform Cartesian grid by the vorticity-based immersed boundary projection method of Colonius and Taira. Dynamical equations for arbitrary rigid-body systems are also developed. The proposed coupling method attempts to unify the treatment of constraints in the fluid and structure-the incompressibility of the fluid, the linkages in the rigid-body system, and the conditions at the interface-through the use of Lagrange multipliers. The resulting partitioned system of equations is solved with a simple relaxation scheme, based on an identification of virtual inertia from the fluid. The scheme achieves convergence in only 2 to 5 iterations per time step for a wide variety of mass ratios. The formulation requires that only a subset of the discrete fluid equations be solved in each iteration. Several two- and three-dimensional numerical tests are conducted to validate and demonstrate the method, including a falling cylinder, flapping of flexible wings, self-excited oscillations of a system of many linked plates in a free stream, and passive pivoting of a finite aspect ratio plate under the influence of gravity in a free stream. The results from the current method are compared with previous experimental and numerical results and good agreement is achieved.

  11. Sensitivity and specificity of cytodiagnosis of body fluids in a laboratory of urgencies.

    PubMed

    Rocher, A E; Guerra, F; Rofrano, J; Angeleri, A; Canessa, O E; Mendeluk, G R; Palaoro, L A

    2011-10-01

    The main purpose for studying cytological body fluids is confirmation of a benign or malignant effusion. Our cytology laboratory analyzes body fluids and results are requested urgently. The samples are stained by the Giemsa and Papanicolaou methods to give a preliminary report, then they are examined by other complementary techniques. Three hundred thirty samples of pleural and peritoneal fluids were studied to compare the sensitivity of Papanicolaou and Giemsa stains. AgNOR assay, immunocytochemistry and assessment of ploidy were used to improve the sensitivity of the cytodiagnosis. Two hundred one samples were positive, 84 negative and 45 inconclusive using the Papanicolaou stain, while 135 samples were positive, 72 negative and 123 inconclusive using Giemsa stain. The sensitivity was 79%, 53% and 83% for Papanicolaou, Giemsa, and both techniques together, respectively. Using complementary techniques, the sensitivity reached 95% for AgNOR, 87% for tumor markers (panel), and 92% for Ploidy. There were no false positive in our series; therefore specificity was 100%. The use of both Papanicolaou and Giemsa in conjunction increased the sensitivity of the cytodiagnosis in body fluids. The complementary methods, especially AgNOR assay and assessment of ploidy, diminished the number of inconclusive cases.

  12. Nasal Drug Absorption from Powder Formulations: Effect of Fluid Volume Changes on the Mucosal Surface.

    PubMed

    Tanaka, Akiko; Furubayashi, Tomoyuki; Enomura, Yuki; Hori, Tomoki; Shimomura, Rina; Maeda, Chiaki; Kimura, Shunsuke; Inoue, Daisuke; Kusamori, Kosuke; Katsumi, Hidemasa; Sakane, Toshiyasu; Yamamoto, Akira

    2017-01-01

    The effect of changes in the mucosal fluid volume on the nasal drug absorption of powder formulations was evaluated using warfarin (WF), piroxicam (PXC), and norfloxacin (NFX) as model drugs. Lactose and sodium chloride (NaCl), which are water soluble and small-sized chemicals that increase osmotic pressure after dissolution, were used as excipients to change the mucosal fluid volume. The in vitro study using a Madin-Darby canine kidney (MDCK) cell monolayer indicated that lactose and NaCl, sprayed over the surface of air interface monolayers, increased the fluid volume on the monolayer surface and enhanced the transepithelial transport of the model drugs. The in vivo animal study indicated that the nasal absorption of PXC is enhanced by lactose and NaCl after nasal administration of the powder formulations. This is likely due to the enhanced dissolution of PXC on fluid-rich nasal mucosa and an increase in the effective surface area for drug permeation, which lead to better nasal absorption. However, both excipients failed to increase the nasal absorption of WF and NFX. To clarify the mechanism of the drug-dependent effect of lactose and NaCl, the nasal residence of the formulation was examined using FD70 as a non-absorbable marker. The nasal clearance of FD70 was enhanced by lactose and NaCl, leading to a decrease in the nasal drug absorption. Lactose and NaCl caused no damage to the nasal tissue. These results indicate that the addition of water-soluble excipients such as lactose to powder formulations can enhance the nasal absorption of highly permeable but poorly soluble drugs.

  13. Measurement of fluid viscosity at microliter volumes using quartz impedance analysis.

    PubMed

    Saluja, Atul; Kalonia, Devendra S

    2004-08-05

    The purpose of this work was to measure viscosity of fluids at low microliter volumes by means of quartz crystal impedance analysis. To achieve this, a novel setup was designed that allowed for measurement of viscosity at volumes of 8 to 10 microL. The technique was based on the principle of electromechanical coupling of piezoelectric quartz crystals. The arrangement was simple with measurement times ranging from 2 to 3 minutes. The crystal setup assembly did not impose any unwanted initial stress on the unloaded quartz crystal. Quartz crystals of 5- and 10-MHz fundamental frequency were calibrated with glycerol-water mixtures of known density and viscosity prior to viscosity measurements. True frequency shifts, for the purpose of this work, were determined followed by viscosity measurement of aqueous solutions of sucrose, urea, PEG-400, glucose, and ethylene glycol at 25 degrees C +/- 0.5 degrees C. The measured viscosities were found to be reproducible and consistent with the values reported in the literature. Minor inconsistencies in the measured resistance and frequency shifts did not affect the results significantly, and were found to be experimental in origin rather than due to electrode surface roughness. Besides, as expected for a viscoelastic fluid, PEG 8000 solutions, the calculated viscosities were found to be less than the reported values due to frequency dependence of storage and loss modulus components of complex viscosity. From the results, it can be concluded that the present setup can provide accurate assessment of viscosity of Newtonian fluids and also shows potential for analyzing non-Newtonian fluids at low microliter volumes.

  14. Trapped modes around freely floating bodies in a two-layer fluid channel

    PubMed Central

    Cal, Filipe S.; Dias, Gonçalo A. S.; Videman, Juha H.

    2014-01-01

    Unlike the trapping of time-harmonic water waves by fixed obstacles, the oscillation of freely floating structures gives rise to a complex nonlinear spectral problem. Still, through a convenient elimination scheme the system simplifies to a linear spectral problem for a self-adjoint operator in a Hilbert space. Under symmetry assumptions on the geometry of the fluid domain, we present conditions guaranteeing the existence of trapped modes in a two-layer fluid channel. Numerous examples of floating bodies supporting trapped modes are given. PMID:25294970

  15. Exposure measurement of aflatoxins and aflatoxin metabolites in human body fluids. A short review.

    PubMed

    Leong, Yin-Hui; Latiff, Aishah A; Ahmad, Nurul Izzah; Rosma, Ahmad

    2012-05-01

    Aflatoxins are highly toxic secondary fungal metabolites mainly produced by Aspergillus flavus and A. parasiticus. Human exposure to aflatoxins may result directly from ingestion of contaminated foods, or indirectly from consumption of foods from animals previously exposed to aflatoxins in feeds. This paper focuses on exposure measurement of aflatoxins and aflatoxin metabolites in various human body fluids. Research on different metabolites present in blood, urine, breast milk, and other human fluids or tissues including their detection techniques is reviewed. The association between dietary intake of aflatoxins and biomarker measurement is also highlighted. Finally, aspects related to the differences between aflatoxin determination in food versus the biomarker approach are discussed.

  16. Trapped modes around freely floating bodies in a two-layer fluid channel.

    PubMed

    Cal, Filipe S; Dias, Gonçalo A S; Videman, Juha H

    2014-10-08

    Unlike the trapping of time-harmonic water waves by fixed obstacles, the oscillation of freely floating structures gives rise to a complex nonlinear spectral problem. Still, through a convenient elimination scheme the system simplifies to a linear spectral problem for a self-adjoint operator in a Hilbert space. Under symmetry assumptions on the geometry of the fluid domain, we present conditions guaranteeing the existence of trapped modes in a two-layer fluid channel. Numerous examples of floating bodies supporting trapped modes are given.

  17. Articulated Total Body Model Enhancements. Volume 1. Modifications

    DTIC Science & Technology

    1988-01-01

    DRIFT CORRECTION 21 3.1 Technical Discussion 21 3.2 Correction of Drift 24 3.3 Changes to Program 25 4.0 EDGE EFFECT OPTION 27 4.1 New Subroutines 27...other aerodynamic force improvements. Corrections to prevent angular drift in the joints are described in Section Three. The edge effect option in...changed subroutines are in Volume 3 of this report. New or changed lines are labeled with JDRIFT starting in column 73. 26 4.0 EDGE EFFECT OPTION In the

  18. Correlation of cervicovaginal fluid volume with serum estradiol levels and total follicular volume during human gonadotropin stimulation.

    PubMed

    Pratt, D E; Vignovic, E; Holt, J A; Schumacher, G F

    1992-02-01

    During the normal menstrual cycle the volume of cervicovaginal fluid (CVF), as determined by the patient at home using a simple volumetric aspirating pipette, increases significantly over several days prior to the luteinizing hormone (LH) surge and decreases characteristically shortly after ovulation. The present study was undertaken to test the hypothesis that self-determined measurements of CVF volume would correlate positively with serum estradiol (E2) levels and with total follicular volume (TFV) in cycles stimulated with exogenous gonadotropins. Consequently, 20 infertility patients, undergoing human menopausal gonadotropin (hMG)-stimulated cycles, were asked to measure daily CVF. Routine serum E2 determinations and vaginal follicular ultrasound studies were performed up to and including the day of human chorionic gonadotropin (hCG) administration (designated day 0). The mean daily CVF volume (+/- SD) increased from 0.1 +/- 0.01 ml on day -6 to 0.7 +/- 0.40 ml on day -1 and then decreased to 0.6 +/- 0.40 ml on day 0. On day 0, 7 of 20 cycles (35%) demonstrated a decrease in CVF, which ranged from 0.1 to 1.0 ml (mean, 0.42 ml). The mean daily CVF correlated positively (correlation coefficient = r) with the mean daily serum E2 (r = 0.89) and with the mean daily TFV (r = 0.88). The mean daily correlation of TFV for E2 was r = 0.98. The correlation between CVF and E2 of individuals ranged from r = 0.38 to r = 0.99 and the correlation between CVF and TFV ranged from r = 0.12 to r = 1.0, while the individual correlations of E2 to TFV ranged from r = 0.60 to r = 0.99.(ABSTRACT TRUNCATED AT 250 WORDS)

  19. Radiation and scattering from bodies of translation, volume 1

    NASA Astrophysics Data System (ADS)

    Medgyesi-Mitschang, L. N.

    1980-04-01

    An analytical formulation, based on the method of moments (MM) is described for solving electromagnetic problems associated with finite-length cylinders of arbitrary cross section, denoted in this report as bodies of translation (BOT). This class of bodies can be used to model structures with noncircular cross sections such as wings, fins, and aircraft fuselages. The theoretical development parallels in part the MM formulation developed earlier by Mautz and Harrington for bodies of revolution (BOR). Like the latter approach, a modal expansion is used to describe the unknown surface currents on the BOT. The present analysis has been developed to treat the far-field radiation and scattering from a BOT excited by active antennas or illuminated by a plane wave of arbitrary polarization and angle of incidence. In addition, the electric and magnetic near-field components are determined in the vicinity of active and passive apertures (slots). Using the Schelkunoff equivalence theorem, the aperture-coupled fields within a BOT are also obtained. The formulation has been implemented by a computer algorithm and validated using accepted data in the literature.

  20. Renal distal tubular handling of sodium in central fluid volume homoeostasis in preascitic cirrhosis

    PubMed Central

    Sansoe, G; Ferrari, A; Baraldi, E; Castellana, C; De Santis, M C; Manenti, F

    1999-01-01

    BACKGROUND/AIMS—Patients with preascitic liver cirrhosis have an increased central plasma volume, and, for any given plasma aldosterone concentration, they excrete less sodium than healthy controls. A detailed study of the distribution of sodium reabsorption along the segments of the renal tubule, especially the distal one, is still lacking in preascitic cirrhosis.
METHODS—Twelve patients with Child-Pugh class A cirrhosis and nine control subjects (both groups on a normosodic diet) were submitted to the following investigations: (a) plasma levels of active renin and aldosterone; (b) four hour renal clearance of lithium (an index of fluid delivery to the loop of Henle), creatinine, sodium, and potassium; (c) dopaminergic activity, as measured by incremental aldosterone response to intravenous metoclopramide.
RESULTS—Metoclopramide induced higher incremental aldosterone responses, indicating increased dopaminergic activity in patients than controls, which is evidence of an increased central plasma volume (+30 min: 160.2 (68.8) v 83.6 (35.2) pg/ml, p<0.01; +60 min: 140.5 (80.3) v 36.8 (36.1) pg/ml, p<0.01). Patients had increased distal fractional sodium reabsorption compared with controls (26.9 (6.7)% v 12.5 (3.4)% of the filtered sodium load, p<0.05). In the patient group there was an inverse correlation between: (a) absolute distal sodium reabsorption and active renin (r −0.59, p<0.05); (b) fractional distal sodium reabsorption and sodium excretion (r −0.66, p<0.03).
CONCLUSIONS—These data suggest that in preascitic cirrhosis the distal fractional tubular reabsorption of sodium is increased and critical in regulating both central fluid volume and sodium excretion.


Keywords: kidney; sodium handling; lithium clearance; liver cirrhosis; dopamine; central fluid volume PMID:10517915

  1. A comparison of hydration effect on body fluid and temperature regulation between Malaysian and Japanese males exercising at mild dehydration in humid heat.

    PubMed

    Wakabayashi, Hitoshi; Wijayanto, Titis; Lee, Joo-Young; Hashiguchi, Nobuko; Saat, Mohamed; Tochihara, Yutaka

    2014-02-04

    This study investigated the effect of hydration differences on body fluid and temperature regulation between tropical and temperate indigenes exercising in the heat. Ten Japanese and ten Malaysian males with matched physical characteristics (height, body weight, and peak oxygen consumption) participated in this study. Participants performed exercise for 60 min at 55% peak oxygen uptake followed by a 30-min recovery at 32°C and 70% relative air humidity with hydration (4 times each, 3 mL per kg body weight, 37°C) or without hydration. Rectal temperature, skin temperature, heart rate, skin blood flow, and blood pressure were measured continuously. The percentage of body weight loss and total sweat loss were calculated from body weight measurements. The percentage change in plasma volume was estimated from hemoglobin concentration and hematocrit. Malaysian participants had a significantly lower rectal temperature, a smaller reduction in plasma volume, and a lower heart rate in the hydrated condition than in the non-hydrated condition at the end of exercise (P <0.05), whereas Japanese participants showed no difference between the two hydration conditions. Hydration induced a greater total sweat loss in both groups (P <0.05), and the percentage of body weight loss in hydrated Malaysians was significantly less than in hydrated Japanese (P <0.05). A significant interaction between groups and hydration conditions was observed for the percentage of mean cutaneous vascular conductance during exercise relative to baseline (P <0.05). The smaller reduction in plasma volume and percentage body weight loss in hydrated Malaysians indicated an advantage in body fluid regulation. This may enable Malaysians to reserve more blood for circulation and heat dissipation and thereby maintain lower rectal temperatures in a hydrated condition.

  2. A comparison of hydration effect on body fluid and temperature regulation between Malaysian and Japanese males exercising at mild dehydration in humid heat

    PubMed Central

    2014-01-01

    Background This study investigated the effect of hydration differences on body fluid and temperature regulation between tropical and temperate indigenes exercising in the heat. Methods Ten Japanese and ten Malaysian males with matched physical characteristics (height, body weight, and peak oxygen consumption) participated in this study. Participants performed exercise for 60 min at 55% peak oxygen uptake followed by a 30-min recovery at 32°C and 70% relative air humidity with hydration (4 times each, 3 mL per kg body weight, 37°C) or without hydration. Rectal temperature, skin temperature, heart rate, skin blood flow, and blood pressure were measured continuously. The percentage of body weight loss and total sweat loss were calculated from body weight measurements. The percentage change in plasma volume was estimated from hemoglobin concentration and hematocrit. Results Malaysian participants had a significantly lower rectal temperature, a smaller reduction in plasma volume, and a lower heart rate in the hydrated condition than in the non-hydrated condition at the end of exercise (P <0.05), whereas Japanese participants showed no difference between the two hydration conditions. Hydration induced a greater total sweat loss in both groups (P <0.05), and the percentage of body weight loss in hydrated Malaysians was significantly less than in hydrated Japanese (P <0.05). A significant interaction between groups and hydration conditions was observed for the percentage of mean cutaneous vascular conductance during exercise relative to baseline (P <0.05). Conclusions The smaller reduction in plasma volume and percentage body weight loss in hydrated Malaysians indicated an advantage in body fluid regulation. This may enable Malaysians to reserve more blood for circulation and heat dissipation and thereby maintain lower rectal temperatures in a hydrated condition. PMID:24490869

  3. Fluid electrolyte excretion during different hypokinetic body positions of trained subjects

    NASA Astrophysics Data System (ADS)

    Zorbas, Yan G.; Naexu, Konstantin A.; Federenko, Youri F.

    The aim of this study was to evaluate the effect of different body positions on renal excretion of fluid and electrolytes after exposure to 364 days of decreased number of steps per day (hypokinesia, HK). The studies were performed on 18 endurance trained male volunteers aged 19-24 years who had an average of VO 2max 67 ml/kg body/min. All volunteers were divided into three equal groups: the 1st group subjected to 12 h orthostatic position (OP) and 12 h clinostatic position (CP)/day, the 2nd group exposed to 8 h orthostatic position and 14 h clinostatic position/day, and the 3rd group submitted to 10 h orthostatic position and 16 h clinostatic position/day for 364 days. For the simulation of the hypokinetic effect all volunteers were kept under an average of 3000 steps/day for 364 days. Diuresis and the concentrations of sodium, potassium, chloride, calcium and magnesium as well as excretion of creatine were determined in 24-h urine samples. By the end of the hypokinetic period all volunteers, regardless of their body position during HK, manifested a significant increase in renal excretion of fluid and electrolytes as compared to prehypokinetic period values. It was concluded that prolonged restriction of motor activity induced a significant increase in renal excretion of fluid and electrolytes in endurance trained subjects regardless to their body position and duration thereof per day.

  4. Effect of Treatment on Body Fluid in Patients with Unilateral Aldosterone Producing Adenoma: Adrenalectomy versus Spironolactone

    PubMed Central

    Wu, Che-Hsiung; Yang, Ya-Wen; Hung, Szu-Chun; Tsai, Yao-Chou; Hu, Ya-Hui; Lin, Yen-Hung; Chu, Tzong-Shinn; Wu, Kwan-Dun; Wu, Vin-Cent

    2015-01-01

    Aldosterone affects fluid retention in the body by affecting how much salt and water that the kidney retains or excretes. There is limited information about the effect of prolonged aldosterone excess and treatment on body fluid in primary aldosteronism (PA) patients. In this study, body composition changes of 41 PA patients with unilateral aldosterone producing adenoma (APA) were assessed by a bio-impedance spectroscopy device. Patients with APA receiving adrenalectomy, as compared with those treated with spironolactone, had significantly lower relative overhydration (OH) and urine albumin excretion, and significantly higher urine sodium excretion four weeks after treatment. These differences dissipated 12 weeks after the initial treatment. Independent factors to predict decreased relative OH four weeks after treatment were male patients and patients who experienced adrenalectomy. Patients who underwent adrenaelctomy had significantly decreased TNF-α and increased serum potassium level when compared to patients treated with spironolactone 4 and 12 weeks after treatment. In this pilot study, we found that adrenalectomy leads to an earlier increase in renal sodium excretion and decreases in body fluid content, TNF-α, and urine albumin excretion. Adrenalectomy yields a therapeutic effect more rapidly, which has been shown to ameliorate overhydration in PA patients. PMID:26477337

  5. Physiological and behavioral effects of tilt-induced body fluid shifts

    NASA Technical Reports Server (NTRS)

    Parker, D. E.; Tjernstrom, O.; Ivarsson, A.; Gulledge, W. L.; Poston, R. L.

    1983-01-01

    This paper addresses the 'fluid shift theory' of space motion sickness. The primary purpose of the research was the development of procedures to assess individual differences in response to rostral body fluid shifts on earth. Experiment I examined inner ear fluid pressure changes during head-down tilt in intact human beings. Tilt produced reliable changes. Differences among subjects and between ears within the same subject were observed. Experiment II examined auditory threshold changes during tilt. Tilt elicited increased auditory thresholds, suggesting that sensory depression may result from increased inner ear fluid pressure. Additional observations on rotation magnitude estimation during head-down tilt, which indicate that rostral fluid shifts may depress semicircular canal activity, are briefly described. The results of this research suggest that the inner ear pressure and auditory threshold shift procedures could be used to assess individual differences among astronauts prior to space flight. Results from the terrestrial observations could be related to reported incidence/severity of motion sickness in space and used to evaluate the fluid shift theory of space motion sickness.

  6. Tensorial density functional theory for non-spherical hard-body fluids.

    PubMed

    Hansen-Goos, Hendrik; Mecke, Klaus

    2010-09-15

    In a recent publication (Hansen-Goos and Mecke 2009 Phys. Rev. Lett. 102 018302) we constructed a free energy functional for the inhomogeneous hard-body fluid, which reduces to Rosenfeld's fundamental measure theory (Rosenfeld 1989 Phys. Rev. Lett. 63 980) when applied to hard spheres. The new functional is able to yield the isotropic-nematic transition for the hard-spherocylinder fluid in contrast to Rosenfeld's fundamental measure theory for non-spherical particles (Rosenfeld 1994 Phys. Rev. E 50 R3318). The description of inhomogeneous isotropic fluids is also improved when compared with data from Monte Carlo simulations for hard spherocylinders in contact with a planar hard wall. However, the new functional for the inhomogeneous fluid in general does not comply with the exact second order virial expansion. We introduced the ζ correction in order to minimize the deviation from Onsager's exact result in the isotropic bulk fluid. In this article we give a detailed account of the construction of the new functional. An extension of the ζ correction makes the latter better suited for non-isotropic particle distributions. The extended ζ correction is shown to improve the description of the isotropic-nematic bulk phase diagram while it has little effect on the results for the isotropic but inhomogeneous hard-spherocylinder fluid. We argue that the gain from using higher order tensorial weighted densities in the theory is likely to be inferior to the associated increase in complexity.

  7. Surveillance of occupational blood and body fluid exposures among French healthcare workers in 2004.

    PubMed

    Venier, A G; Vincent, A; L'heriteau, F; Floret, N; Senechal, H; Abiteboul, D; Reyreaud, E; Coignard, B; Parneix, P

    2007-10-01

    To estimate the incidence rate of reported occupational blood and body fluid exposures among French healthcare workers (HCWs). Prospective national follow-up of HCWs from January 1 to December 31, 2004. University hospitals, hospitals, clinics, local medical centers, and specialized psychiatric centers were included in the study on a voluntary basis. At participating medical centers, every reported blood and body fluid exposure was documented by the occupational practitioner in charge of the exposed HCW by use of an anonymous, standardized questionnaire. A total of 375 medical centers (15% of French medical centers, accounting for 29% of hospital beds) reported 13,041 blood and body fluid exposures; of these, 9,396 (72.0%) were needlestick injuries. Blood and body fluid exposures were avoidable in 39.1% of cases (5,091 of 13,020), and 52.2% of percutaneous injuries (4,986 of 9,552) were avoidable (5.9% due to needle recapping). Of 10,656 percutaneous injuries, 22.6% occurred during an injection, 17.9% during blood sampling, and 16.6% during surgery. Of 2,065 splashes, 22.6% occurred during nursing activities, 19.1% during surgery, 14.1% during placement or removal of an intravenous line, and 12.0% during manipulation of a tracheotomy tube. The incidence rates of exposures were 8.9 per 100 hospital beds (95% confidence interval [CI], 8.7-9.0 exposures), 2.2 per 100 full-time-equivalent physicians (95% CI, 2.4-2.6 exposures), and 7.0 per 100 full-time-equivalent nurses (95% CI, 6.8-7.2 exposures). Human immunodeficiency virus serological status was unknown for 2,789 (21.4%) of 13,041 patients who were the source of the blood and body fluid exposures. National surveillance networks for blood and body fluid exposures help to better document their characteristics and risk factors and can enhance prevention at participating medical centers.

  8. Effects of regional limb perfusion volume on concentrations of amikacin sulfate in synovial and interstitial fluid samples from anesthetized horses.

    PubMed

    Godfrey, Jennifer L; Hardy, Joanne; Cohen, Noah D

    2016-06-01

    OBJECTIVE To evaluate the effect of volume of IV regional limb perfusion (IVRLP) on amikacin concentrations in synovial and interstitial fluid of horses. ANIMALS 8 healthy adult horses. PROCEDURES Each forelimb was randomly assigned to receive IVRLP with 4 mL of amikacin sulfate solution (250 mg/mL) plus 56 mL (total volume, 60 mL) or 6 mL (total volume, 10 mL) of lactated Ringer solution. Horses were anesthetized, and baseline synovial and interstitial fluid samples were collected. A tourniquet was placed, and the assigned treatment was administered via the lateral palmar digital vein. Venous blood pressure in the distal portion of the limb was recorded. Additional synovial fluid samples were collected 30 minutes (just before tourniquet removal) and 24 hours after IVRLP began; additional interstitial fluid samples were collected 6 and 24 hours after IVRLP began. RESULTS 30 minutes after IVRLP began, mean amikacin concentration in synovial fluid was significantly greater for the large-volume (459 μg/mL) versus small-volume (70 μg/mL) treatment. Six hours after IVRLP, mean concentration in interstitial fluid was greater for the large-volume (723 μg/mL) versus small-volume (21 μg/mL) treatment. Peak venous blood pressure after large-volume IVRLP was significantly higher than after small-volume IVRLP, with no difference between treatments in time required for pressure to return to baseline. CONCLUSIONS AND CLINICAL RELEVANCE Study findings suggested that large-volume IVRLP would deliver more amikacin to metacarpophalangeal joints of horses than would small-volume IVRLP, without a clinically relevant effect on local venous blood pressure, potentially increasing treatment efficacy.

  9. Determination of sodium and potassium in nanoliter volumes of biological fluids by furnace atomic absorption spectrometry

    SciTech Connect

    Nash, L.A.; Peterson, L.N.; Nadler, S.P.; Levine, D.Z.

    1988-11-01

    Renal tubular fluid samples are nanoliter (10/sup -9/ L) volumes containing sodium and potassium concentrations that are within the range of determination by furnace atomic absorption. Modification of nanoliter handling techniques and the use of microboats with the IL 951/655 provided a method for rapid precise analyses (relative standard deviation of 5%). Determinations of sodium and potassium were precise; however, inaccuracies occurred with anion substitution of sodium salts. NaHCO/sub 3/ solutions gave consistently higher peak height absorbance and area absorbance compared with those of NaCl: the peak area absorbance correlated linearly with the concentration of bicarbonate. Pretreatment of the microboat with boric acid eliminated this phenomenon and the associated inaccuracy. Comparison of determination of sodium in nanoliter samples by graphite furnace atomic absorption with macroanalysis by flame emission gave relative errors of less than 2.0%. Addition of sodium and potassium to tubular fluid samples yielded mean recoveries of 102.6% and 99.7%, respectively. The authors conclude that graphite furnace can be an accurate method for measurement of sodium and potassium in nanoliter volumes of biological fluids.

  10. A Performance Comparison Between a Level Set Method and an Unsplit Volume of Fluid Method

    NASA Astrophysics Data System (ADS)

    Desjardins, Olivier; Chiodi, Robert; Owkes, Mark

    2016-11-01

    The simulation of high density ratio liquid-gas flows presents many numerical difficulties due to the necessity to track the interface and the discontinuities in physical properties associated with the interface. Two main categories of methods used to track the interface are level set methods and volume of fluid (VOF) methods. In particular, conservative level set methods track and transport the interface using a scalar field, with the interface profile represented by a hyperbolic tangent function of a finite thickness. Volume of fluid methods, on the other hand, store the percentage of each fluid in the computational cells. Both methods offer distinct advantages, however, the strengths and weaknesses of each method relative to each other have yet to be thoroughly investigated. This work compares the accuracy and computational efficiency for an accurate conservative level set method and an unsplit VOF method using canonical test cases, such as Zalesak's disk, the deformation of a circle, and the deformation of a sphere. The mass conservation and ability to correctly predict instability for a more complex case of an air-blast atomization of a planar liquid layer will also be presented.

  11. Regulation of amniotic fluid volume: mathematical model based on intramembranous transport mechanisms.

    PubMed

    Brace, Robert A; Anderson, Debra F; Cheung, Cecilia Y

    2014-11-15

    Experimentation in late-gestation fetal sheep has suggested that regulation of amniotic fluid (AF) volume occurs primarily by modulating the rate of intramembranous transport of water and solutes across the amnion into underlying fetal blood vessels. In order to gain insight into intramembranous transport mechanisms, we developed a computer model that allows simulation of experimentally measured changes in AF volume and composition over time. The model included fetal urine excretion and lung liquid secretion as inflows into the amniotic compartment plus fetal swallowing and intramembranous absorption as outflows. By using experimental flows and solute concentrations for urine, lung liquid, and swallowed fluid in combination with the passive and active transport mechanisms of the intramembranous pathway, we simulated AF responses to basal conditions, intra-amniotic fluid infusions, fetal intravascular infusions, urine replacement, and tracheoesophageal occlusion. The experimental data are consistent with four intramembranous transport mechanisms acting in concert: 1) an active unidirectional bulk transport of AF with all dissolved solutes out of AF into fetal blood presumably by vesicles; 2) passive bidirectional diffusion of solutes, such as sodium and chloride, between fetal blood and AF; 3) passive bidirectional water movement between AF and fetal blood; and 4) unidirectional transport of lactate into the AF. Further, only unidirectional bulk transport is dynamically regulated. The simulations also identified areas for future study: 1) identifying intramembranous stimulators and inhibitors, 2) determining the semipermeability characteristics of the intramembranous pathway, and 3) characterizing the vesicles that are the primary mediators of intramembranous transport. Copyright © 2014 the American Physiological Society.

  12. A SUB-GRID VOLUME-OF-FLUIDS (VOF) MODEL FOR MIXING IN RESOLVED SCALE AND IN UNRESOLVED SCALE COMPUTATIONS

    SciTech Connect

    VOLD, ERIK L.; SCANNAPIECO, TONY J.

    2007-10-16

    A sub-grid mix model based on a volume-of-fluids (VOF) representation is described for computational simulations of the transient mixing between reactive fluids, in which the atomically mixed components enter into the reactivity. The multi-fluid model allows each fluid species to have independent values for density, energy, pressure and temperature, as well as independent velocities and volume fractions. Fluid volume fractions are further divided into mix components to represent their 'mixedness' for more accurate prediction of reactivity. Time dependent conversion from unmixed volume fractions (denoted cf) to atomically mixed (af) fluids by diffusive processes is represented in resolved scale simulations with the volume fractions (cf, af mix). In unresolved scale simulations, the transition to atomically mixed materials begins with a conversion from unmixed material to a sub-grid volume fraction (pf). This fraction represents the unresolved small scales in the fluids, heterogeneously mixed by turbulent or multi-phase mixing processes, and this fraction then proceeds in a second step to the atomically mixed fraction by diffusion (cf, pf, af mix). Species velocities are evaluated with a species drift flux, {rho}{sub i}u{sub di} = {rho}{sub i}(u{sub i}-u), used to describe the fluid mixing sources in several closure options. A simple example of mixing fluids during 'interfacial deceleration mixing with a small amount of diffusion illustrates the generation of atomically mixed fluids in two cases, for resolved scale simulations and for unresolved scale simulations. Application to reactive mixing, including Inertial Confinement Fusion (ICF), is planned for future work.

  13. Quantification of the cerebrospinal fluid from a new whole body MRI sequence

    NASA Astrophysics Data System (ADS)

    Lebret, Alain; Petit, Eric; Durning, Bruno; Hodel, Jérôme; Rahmouni, Alain; Decq, Philippe

    2012-03-01

    Our work aims to develop a biomechanical model of hydrocephalus both intended to perform clinical research and to assist the neurosurgeon in diagnosis decisions. Recently, we have defined a new MR imaging sequence based on SPACE (Sampling Perfection with Application optimized Contrast using different flip-angle Evolution). On these images, the cerebrospinal fluid (CSF) appears as a homogeneous hypersignal. Therefore such images are suitable for segmentation and for volume assessment of the CSF. In this paper we present a fully automatic 3D segmentation of such SPACE MRI sequences. We choose a topological approach considering that CSF can be modeled as a simply connected object (i.e. a filled sphere). First an initial object which must be strictly included in the CSF and homotopic to a filled sphere, is determined by using a moment-preserving thresholding. Then a priority function based on an Euclidean distance map is computed in order to control the thickening process that adds "simple points" to the initial thresholded object. A point is called simple if its addition or its suppression does not result in change of topology neither for the object, nor for the background. The method is validated by measuring fluid volume of brain phantoms and by comparing our volume assessments on clinical data to those derived from a segmentation controlled by expert physicians. Then we show that a distinction between pathological cases and healthy adult people can be achieved by a linear discriminant analysis on volumes of the ventricular and intracranial subarachnoid spaces.

  14. Response of atrial natriuretic factor to acute extracellular fluid volume in patients with pheochromocytoma.

    PubMed

    Paniagua, R; Rodríguez, E; Amato, D; Sánchez, G; Ron, O; Rodríguez, F; Herrera-Acosta, J

    2000-01-01

    Patients with pheochromocytoma have been reported to show high plasmatic atrial natriuretic factor (ANF) levels. Its source may not be the atrium because blood volume, the most important physiological stimulus for ANF release, is usually reduced in these patients. To evaluate ANF secretion functional integrity, we studied three patients with pheochromocytoma before and after surgical removal of the tumor. Extracellular fluid (ECF) volume, plasmatic ANF levels, and plasmatic renin activity (PRA) were measured. ANF was measured before and after an acute saline load of 1.5L in 90 min. Before surgery, ECF volume was normal or reduced, and PRA was normal but decreased after the saline load. By contrast, ANF was elevated and did not change after the saline load. After surgery ANF decreased, ECF volume rose, and the saline load induced a significant increase of plasma ANF and reduction of PRA. ANF was present in significant amounts in tumoral tissue homogenates. These data suggest that the tumor was the source of ANF in these patients with pheochromocytoma because high levels of ANF, despite reduced or normal ECF volume, as well as unresponsiveness to acute saline infusion, were found before surgery with subsequent normalization after tumor removal.

  15. Volume-Of-Fluid Simulation for Predicting Two-Phase Cooling in a Microchannel

    NASA Astrophysics Data System (ADS)

    Gorle, Catherine; Parida, Pritish; Houshmand, Farzad; Asheghi, Mehdi; Goodson, Kenneth

    2014-11-01

    Two-phase flow in microfluidic geometries has applications of increasing interest for next generation electronic and optoelectronic systems, telecommunications devices, and vehicle electronics. While there has been progress on comprehensive simulation of two-phase flows in compact geometries, validation of the results in different flow regimes should be considered to determine the predictive capabilities. In the present study we use the volume-of-fluid method to model the flow through a single micro channel with cross section 100 × 100 μm and length 10 mm. The channel inlet mass flux and the heat flux at the lower wall result in a subcooled boiling regime in the first 2.5 mm of the channel and a saturated flow regime further downstream. A conservation equation for the vapor volume fraction, and a single set of momentum and energy equations with volume-averaged fluid properties are solved. A reduced-physics phase change model represents the evaporation of the liquid and the corresponding heat loss, and the surface tension is accounted for by a source term in the momentum equation. The phase change model used requires the definition of a time relaxation parameter, which can significantly affect the solution since it determines the rate of evaporation. The results are compared to experimental data available from literature, focusing on the capability of the reduced-physics phase change model to predict the correct flow pattern, temperature profile and pressure drop.

  16. Octupolar approximation for the excluded volume of axially symmetric convex bodies

    NASA Astrophysics Data System (ADS)

    Piastra, Marco; Virga, Epifanio G.

    2013-09-01

    We propose a simply computable formula for the excluded volume of convex, axially symmetric bodies, based on the classical Brunn-Minkoski theory for convex bodies, which is briefly outlined in an Appendix written in a modern mathematical language. This formula is applied to cones and spherocones, which are regularized cones; a shape-reconstruction algorithm is able to generate the region in space inaccessible to them and to compute their excluded volume, which is found to be in good agreement with our approximate analytical formula. Finally, for spherocones with an appropriately tuned amplitude, we predict the occurrence of a relative deep minimum of the excluded volume in a configuration lying between the parallel alignment (where the excluded volume is maximum) and the antiparallel alignment (where the excluded volume is minimum).

  17. High salt intake reprioritizes osmolyte and energy metabolism for body fluid conservation

    PubMed Central

    Kitada, Kento; Daub, Steffen; Zhang, Yahua; Klein, Janet D.; Nakano, Daisuke; Pedchenko, Tetyana; Lantier, Louise; LaRocque, Lauren M.; Marton, Adriana; Neubert, Patrick; Schröder, Agnes; Rakova, Natalia; Jantsch, Jonathan; Dikalova, Anna E.; Dikalov, Sergey I.; Harrison, David G.; Müller, Dominik N.; Nishiyama, Akira; Rauh, Manfred; Harris, Raymond C.; Luft, Friedrich C.; Wasserman, David H.; Sands, Jeff M.

    2017-01-01

    Natriuretic regulation of extracellular fluid volume homeostasis includes suppression of the renin-angiotensin-aldosterone system, pressure natriuresis, and reduced renal nerve activity, actions that concomitantly increase urinary Na+ excretion and lead to increased urine volume. The resulting natriuresis-driven diuretic water loss is assumed to control the extracellular volume. Here, we have demonstrated that urine concentration, and therefore regulation of water conservation, is an important control system for urine formation and extracellular volume homeostasis in mice and humans across various levels of salt intake. We observed that the renal concentration mechanism couples natriuresis with correspondent renal water reabsorption, limits natriuretic osmotic diuresis, and results in concurrent extracellular volume conservation and concentration of salt excreted into urine. This water-conserving mechanism of dietary salt excretion relies on urea transporter–driven urea recycling by the kidneys and on urea production by liver and skeletal muscle. The energy-intense nature of hepatic and extrahepatic urea osmolyte production for renal water conservation requires reprioritization of energy and substrate metabolism in liver and skeletal muscle, resulting in hepatic ketogenesis and glucocorticoid-driven muscle catabolism, which are prevented by increasing food intake. This natriuretic-ureotelic, water-conserving principle relies on metabolism-driven extracellular volume control and is regulated by concerted liver, muscle, and renal actions. PMID:28414295

  18. What do measurements of molecular biomarkers in different body fluids really tell us?

    PubMed

    Poole, A Robin

    2011-04-27

    Molecular or biochemical biomarkers of joint metabolism offer promise in helping us understand joint pathology, its detection and treatment. But they have often been studied alone and in only one body fluid. Although the synovial joint is usually the focus of most arthritis pathology, it is often difficult, for a variety of reasons, to obtain synovial fluid that should best reflect changes in biomarkers related to pathology. It is therefore very important to see whether analyses of more readily obtainable sera and urine also reflect changes in synovial fluid. Catterall and colleagues, in a paper in Arthritis Research & Therapy that examines very early biomarker changes following joint injury, provide us with some insights into these important questions. As the study was very small and examined very early changes following joint injury, prior to onset of any recognisable pathology, we look forward to future larger biomarker studies of this kind in patients with clinically defined arthritic changes to which we can relate biomarker data.

  19. Application of the sodium dilution principle to calculate extracellular fluid volume changes in horses during dehydration and rehydration.

    PubMed

    Fielding, C Langdon; Magdesian, K Gary; Carlson, Gary P; Rhodes, Diane M; Ruby, Rebecca E

    2008-11-01

    To apply the principle of sodium dilution to calculate the changes in the extracellular fluid (ECF) volume (ECFV) and intracellular fluid volume (ICFV) that occur during dehydration and rehydration in horses. 8 healthy horses of various breeds. Horses were dehydrated over 4 hours by withholding water and administering furosemide. Saline (0.9% NaCl) solution was administered IV during the next 2 hours (20 mL/kg/h; total 40 mL/kg). Horses were monitored for an additional hour following IV fluid administration. Initial ECFV was determined by use of multifrequency bioelectrical impedance analysis, and serum sodium concentration was used to calculate total ECF sodium content. Sodium and fluid volume losses were monitored and calculated throughout the study and used to estimate changes in ECFV and ICFV during fluid balance alterations. Changes during dehydration and rehydration primarily occurred in the ECFV. The sodium dilution principle estimated an overexpansion of the ECFV beyond the volume of fluid administered, indicating a small contraction of the ICFV in response to fluid administration. Serum and urinary electrolyte changes were recorded and were consistent with those of previous reports. The sodium dilution principle provided a simple method that can be used to estimate the changes in ECFV and ICFV that occur during fluid administration. Results suggested an overexpansion of the ECFV in response to IV saline solution administration. The sodium dilution principle requires further validation in healthy and clinically ill horses, which could provide clinical applications similar to those in other species.

  20. Cryogenic Fluid Management Technology Workshop. Volume 2: Roundtable Discussion of Technology Requirements

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The Cryogenic Fluid Management Technology Workshop was held April 28 to 30, 1987, at the NASA Lewis Research Center in Cleveland, Ohio. The major objective of the workshop was to identify future NASA needs for technology concerning the management of subcritical cryogenic fluids in the low-gravity space environment. In addition, workshop participants were asked to identify those technologies which will require in-space experimentation and thus are candidates for inclusion in the flight experiment being defined at Lewis. The principal application for advanced fluid management technology is the Space-Based Orbit Transfer Vehicle (SBOTV) and its servicing facility, the On-Orbit Cryogenic Fuel Depot (OOCFD). Other potential applications include the replenishment of cryogenic coolants (with the exception of superfluid helium), reactants, and propellants on board a variety of spacecraft including the space station and space-based weapon systems. The last day was devoted to a roundtable discussion of cryogenic fluid management technology requirements by 30 representatives from NASA, industry, and academia. This volume contains a transcript of the discussion of the eight major technology categories.

  1. Choices in fluid type and volume during resuscitation: impact on patient outcomes

    PubMed Central

    2014-01-01

    We summarize the emerging new literature regarding the pathophysiological principles underlying the beneficial and deleterious effects of fluid administration during resuscitation, as well as current recommendations and recent clinical evidence regarding specific colloids and crystalloids. This systematic review allows us to conclude that there is no clear benefit associated with the use of colloids compared to crystalloids and no evidence to support the unique benefit of albumin as a resuscitation fluid. Hydroxyethyl starch use has been associated with increased acute kidney injury (AKI) and use of renal replacement therapy. Other synthetic colloids (dextran and gelatins) though not well studied do not appear superior to crystalloids. Normal saline (NS) use is associated with hyperchloremic metabolic acidosis and increased risk of AKI. This risk is decreased when balanced salt solutions are used. Balanced crystalloid solutions have shown no harmful effects, and there is evidence for benefit over NS. Finally, fluid resuscitation should be applied in a goal-directed manner and targeted to physiologic needs of individual patients. The evidence supports use of fluids in volume-responsive patients whose end-organ perfusion parameters have not been met. PMID:25625012

  2. Cryogenic Fluid Management Technology Workshop. Volume 2: Roundtable Discussion of Technology Requirements

    NASA Astrophysics Data System (ADS)

    1988-03-01

    The Cryogenic Fluid Management Technology Workshop was held April 28 to 30, 1987, at the NASA Lewis Research Center in Cleveland, Ohio. The major objective of the workshop was to identify future NASA needs for technology concerning the management of subcritical cryogenic fluids in the low-gravity space environment. In addition, workshop participants were asked to identify those technologies which will require in-space experimentation and thus are candidates for inclusion in the flight experiment being defined at Lewis. The principal application for advanced fluid management technology is the Space-Based Orbit Transfer Vehicle (SBOTV) and its servicing facility, the On-Orbit Cryogenic Fuel Depot (OOCFD). Other potential applications include the replenishment of cryogenic coolants (with the exception of superfluid helium), reactants, and propellants on board a variety of spacecraft including the space station and space-based weapon systems. The last day was devoted to a roundtable discussion of cryogenic fluid management technology requirements by 30 representatives from NASA, industry, and academia. This volume contains a transcript of the discussion of the eight major technology categories.

  3. Detection of occupational and environmental exposures by bacterial mutagenesis assays of human body fluids.

    PubMed

    Everson, R B

    1986-08-01

    Assays of human body fluids provide a means to document human exposure to mutagens in the environment. In contrast to measurements of ambient levels, these assays demonstrate absorption of mutagens and provide estimates of minimal systemic doses. For most studies reviewed here, specimens of urine were concentrated by adsorption to columns of XAD-2 resin or by liquid partition extraction prior to the mutagenesis assays. The resulting extracts most commonly were analyzed for mutagenicity using the Salmonella/mammalian microsomal plate assay. Less frequently used assays included bacterial fluctuation tests instead of the plate assay and assays for the induction of sister chromatid exchanges in cultured mammalian cells. In addition to reviewing literature reports where body fluids were tested, the advantages, disadvantages, and potential role of this approach will be briefly discussed and compared with other approaches to the identification of mutagenic hazards in the workplace.

  4. Detection of occupational and environmental exposures by bacterial mutagenesis assays of human body fluids

    SciTech Connect

    Everson, R.B.

    1986-08-01

    Assays of human body fluids provide a means to document human exposure to mutagens in the environment. In contrast to measurements of ambient levels, these assays demonstrate absorption of mutagens and provide estimates of minimal systemic doses. For most studies reviewed here, specimens of urine were concentrated by adsorption to columns of XAD-2 resin or by liquid partition extraction prior to the mutagenesis assays. The resulting extracts most commonly were analyzed for mutagenicity using the Salmonella/mammalian microsomal plate assay. Less frequently used assays included bacterial fluctuation tests instead of the plate assay and assays for the induction of sister chromatid exchanges in cultured mammalian cells. In addition to reviewing literature reports where body fluids were tested, the advantages, disadvantages, and potential role of this approach will be briefly discussed and compared with other approaches to the identification of mutagenic hazards in the workplace.

  5. Exosome levels in human body fluids: A tumor marker by themselves?

    PubMed

    Cappello, Francesco; Logozzi, Mariantonia; Campanella, Claudia; Bavisotto, Celeste Caruso; Marcilla, Antonio; Properzi, Francesca; Fais, Stefano

    2017-01-01

    Despite considerable research efforts, the finding of reliable tumor biomarkers remains challenging and unresolved. In recent years a novel diagnostic biomedical tool with high potential has been identified in extracellular nanovesicles or exosomes. They are released by the majority of the cells and contain detailed molecular information on the cell of origin including tumor hallmarks. Exosomes can be isolated from easy accessible body fluids, and most importantly, they can provide several biomarkers, with different levels of specificity. Recent clinical evidence shows that the levels of exosomes released into body fluids may themselves represent a predictive/diagnostic of tumors, discriminating cancer patients from healthy subjects. The aim of this review is to highlight these latest challenging findings to provide novel and groundbreaking ideas for successful tumor early diagnosis and follow-up. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Reprint of "EXOSOME LEVELS IN HUMAN BODY FLUIDS: A TUMOR MARKER BY THEMSELVES?"

    PubMed

    Cappello, Francesco; Logozzi, Mariantonia; Campanella, Claudia; Bavisotto, Celeste Caruso; Marcilla, Antonio; Properzi, Francesca; Fais, Stefano

    2017-02-15

    Despite considerable research efforts, the finding of reliable tumor biomarkers remains challenging and unresolved. In recent years a novel diagnostic biomedical tool with high potential has been identified in extracellular nanovesicles or exosomes. They are released by the majority of the cells and contain detailed molecular information on the cell of origin including tumor hallmarks. Exosomes can be isolated from easy accessible body fluids, and most importantly, they can at once provide with several biomarkers, with different levels of specificity. Recent clinical evidence shows that the levels of exosomes released into body fluids may by themselves represent a predictive/diagnostic of tumors, discriminating cancer patients from healthy subjects. The aim of this review is to highlight these latest challenging findings to provide novel and groundbreaking ideas for successful tumor early diagnosis and follow-up. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. DNA methylation-based age prediction from various tissues and body fluids.

    PubMed

    Jung, Sang Eun; Shin, Kyoung-Jin; Lee, Hwan Young

    2017-09-26

    Aging is a natural and gradual process in human life. It is influenced by heredity, environment, lifestyle, and disease. DNA methylation varies with age, and the ability to predict the age of donor using DNA from evidence materials at a crime scene is of considerable value in forensic investigations. Recently, many studies have reported age prediction models based on DNA methylation from various tissues and body fluids. Those models seem to be very promising because of their high prediction accuracies. In this review, the changes of age-associated DNA methylation and the age prediction models for various tissues and body fluids were examined, and then the applicability of the DNA methylation-based age prediction method to the forensic investigations was discussed. This will improve the understandings about DNA methylation markers and their potential to be used as biomarkers in the forensic field, as well as the clinical field.

  8. [Preparation of hydroxyapatite coating in concentrated simulated body fluid by accelerated biomimetic synthesis].

    PubMed

    Li, Yadong; Liu, Jingxiao; Shi, Fei; Tang, Nailing; Yu, Ling

    2007-12-01

    In the present work, NiTi alloy substrates were activated by three different pretreatment processes. 5 X SBF1 and 5 X SBF2 concentrated simulated body fluids were prepared with citric acid buffer reagent, and then calcium phosphate coatings were formed quickly on NiTi alloy surface by accelerated biomimetic synthesis after pretreatment. The microstructure, composition and surface morphology of calcium phosphate coatings were studied. The results indicate that calcium phosphate coatings possess porous and net structure, which are composed of precipitated spherical particles with diameter less than 3 microm. The analysis of XRD shows that the main component of calcium phosphate coatings is hydroxyapatite, whereas the concentrated 5 x SBF simulated body fluid, which is in the absence of Mg2+ and HCO3- crystal growth inhibitors, apparently accelerates the growth rate of hydroxyapatite coatings.

  9. [Postmortem distribution of tetrodotoxin in tissues and body fluids of guinea pigs].

    PubMed

    Liu, Wei; Da, Qing; Shen, Min

    2012-06-01

    To investigate the postmortem distribution of tetrodotoxin in tissues and body fluids of guinea pig, and to provide method and evidence for forensic identification and clinical diagnosis and treatment. Guinea pigs were intragastric administrated with 100, 50, 15 microg/kg tetrodotoxin, respectively. The poisoning symptoms were observed. The samples of heart, liver, spleen, lung, kidney, brain, stomach, intestines, bile, heart blood and urine were collected. The concentrations of tetrodotoxin in tissues and body fluids were measured with liquid chromatography-tandem mass spectrometry (LC-MS/MS). After administrated with tetrodotoxin, all guinea pigs came out poisoning signs including tachypnea, weary and dead finally. Tetrodotoxin concentrations in lung, stomach, intestines and urine were higher, followed by blood, heart and brain. The concentration in bile was the lowest. Postmortem distribution of tetrodotoxin in guinea pig is uneven. The concentration in the lung, stomach, intestines, urine and heart blood are higher, those tissues could be used for diagnosis of tetrodotoxin poisoning.

  10. Role of passive body dynamics in micro-organism swimming in complex fluids

    NASA Astrophysics Data System (ADS)

    Thomases, Becca; Guy, Robert

    2016-11-01

    We investigate the role of passive body dynamics in the kinematics of swimming micro-organisms in complex fluids. Asymptotic analysis and linear theory are used to predict shape changes that result as body elasticity and fluid elasticity are varied. The analysis is compared with a computational model of a finite length swimmer in a Stokes-Oldroyd-B fluid. Simulations and theory agree quantitatively for small amplitude motions with low fluid elasticity (Deborah number). This may not be surprising as the theory is expected hold in these two regimes. What is more remarkable is that the predicted shape changes match the computational shape changes quantitatively for large amplitudes, even for large Deborah numbers. Shape changes only tell part of the story. Swimming speed depends on other effects as well. We see that shape changes can predict swimming speed well when either the amplitude is small (including large Deborah number) or when the Deborah number is small (including large amplitudes). It is only in the large De AND large amplitude regime where the theory breaks down and swimming speed can no longer be inferred from shape changes alone.

  11. In Vitro Studies Evaluating Leaching of Mercury from Mine Waste Calcine Using Simulated Human Body Fluids

    PubMed Central

    2010-01-01

    In vitro bioaccessibility (IVBA) studies were carried out on samples of mercury (Hg) mine-waste calcine (roasted Hg ore) by leaching with simulated human body fluids. The objective was to estimate potential human exposure to Hg due to inhalation of airborne calcine particulates and hand-to-mouth ingestion of Hg-bearing calcines. Mine waste calcines collected from Hg mines at Almadén, Spain, and Terlingua, Texas, contain Hg sulfide, elemental Hg, and soluble Hg compounds, which constitute primary ore or compounds formed during Hg retorting. Elevated leachate Hg concentrations were found during calcine leaching using a simulated gastric fluid (as much as 6200 μg of Hg leached/g sample). Elevated Hg concentrations were also found in calcine leachates using a simulated lung fluid (as much as 9200 μg of Hg leached/g), serum-based fluid (as much as 1600 μg of Hg leached/g), and water of pH 5 (as much as 880 μg of Hg leached/g). The leaching capacity of Hg is controlled by calcine mineralogy; thus, calcines containing soluble Hg compounds contain higher leachate Hg concentrations. Results indicate that ingestion or inhalation of Hg mine-waste calcine may lead to increased Hg concentrations in the human body, especially through the ingestion pathway. PMID:20491469

  12. In vitro studies evaluating leaching of mercury from mine waste calcine using simulated human body fluids.

    PubMed

    Gray, John E; Plumlee, Geoffrey S; Morman, Suzette A; Higueras, Pablo L; Crock, James G; Lowers, Heather A; Witten, Mark L

    2010-06-15

    In vitro bioaccessibility (IVBA) studies were carried out on samples of mercury (Hg) mine-waste calcine (roasted Hg ore) by leaching with simulated human body fluids. The objective was to estimate potential human exposure to Hg due to inhalation of airborne calcine particulates and hand-to-mouth ingestion of Hg-bearing calcines. Mine waste calcines collected from Hg mines at Almaden, Spain, and Terlingua, Texas, contain Hg sulfide, elemental Hg, and soluble Hg compounds, which constitute primary ore or compounds formed during Hg retorting. Elevated leachate Hg concentrations were found during calcine leaching using a simulated gastric fluid (as much as 6200 microg of Hg leached/g sample). Elevated Hg concentrations were also found in calcine leachates using a simulated lung fluid (as much as 9200 microg of Hg leached/g), serum-based fluid (as much as 1600 microg of Hg leached/g), and water of pH 5 (as much as 880 microg of Hg leached/g). The leaching capacity of Hg is controlled by calcine mineralogy; thus, calcines containing soluble Hg compounds contain higher leachate Hg concentrations. Results indicate that ingestion or inhalation of Hg mine-waste calcine may lead to increased Hg concentrations in the human body, especially through the ingestion pathway.

  13. High-resolution NMR spectroscopy of human body fluids and tissues in relation to prostate cancer.

    PubMed

    Kumar, Virendra; Dwivedi, Durgesh K; Jagannathan, Naranamangalam R

    2014-01-01

    High-resolution NMR spectroscopic studies of prostate tissue extracts, prostatic fluid, seminal fluid, serum and urine can be used for the detection of prostate cancer, based on the differences in their metabolic profiles. Useful diagnostic information is obtained by the detection or quantification of as many metabolites as possible and comparison with normal samples. Only a few studies have shown the potential of high-resolution in vitro NMR of prostate tissues. A survey of the literature has revealed that studies on body fluids, such as urine and serum, in relation to prostate cancer are rare. In addition, the potential of NMR of nuclei other than (1)H, such as (13)C and (31)P, has not been exploited fully. The metabolomic analysis of metabolites, detected by high-resolution NMR, may help to identify metabolites which could serve as useful biomarkers for prostate cancer detection. Such NMR-derived biomarkers would not only help in prostate cancer detection and in understanding the in vivo MRS metabolic profile, but also to investigate the biochemical and metabolic changes associated with cancer. Here, we review the published research work on body fluids in relation to prostate and prostate tissue extracts, and highlight the potential of such studies for future work. Copyright © 2013 John Wiley & Sons, Ltd.

  14. In vitro studies evaluating leaching of mercury from mine waste calcine using simulated human body fluids

    USGS Publications Warehouse

    Gray, John E.; Plumlee, Geoffrey S.; Morman, Suzette A.; Higueras, Pablo L.; Crock, James G.; Lowers, Heather A.; Witten, Mark L.

    2010-01-01

    In vitro bioaccessibility (IVBA) studies were carried out on samples of mercury (Hg) mine-waste calcine (roasted Hg ore) by leaching with simulated human body fluids. The objective was to estimate potential human exposure to Hg due to inhalation of airborne calcine particulates and hand-to-mouth ingestion of Hg-bearing calcines. Mine waste calcines collected from Hg mines at Almadén, Spain, and Terlingua, Texas, contain Hg sulfide, elemental Hg, and soluble Hg compounds, which constitute primary ore or compounds formed during Hg retorting. Elevated leachate Hg concentrations were found during calcine leaching using a simulated gastric fluid (as much as 6200 μg of Hg leached/g sample). Elevated Hg concentrations were also found in calcine leachates using a simulated lung fluid (as much as 9200 μg of Hg leached/g), serum-based fluid (as much as 1600 μg of Hg leached/g), and water of pH 5 (as much as 880 μg of Hg leached/g). The leaching capacity of Hg is controlled by calcine mineralogy; thus, calcines containing soluble Hg compounds contain higher leachate Hg concentrations. Results indicate that ingestion or inhalation of Hg mine-waste calcine may lead to increased Hg concentrations in the human body, especially through the ingestion pathway.

  15. Blood or body fluid exposures and HIV postexposure prophylaxis utilization among first responders.

    PubMed

    Merchant, Roland C; Nettleton, Jacob E; Mayer, Kenneth H; Becker, Bruce M

    2009-01-01

    To estimate the incidence of first-responder visits to emergency departments (EDs) for blood or body fluid exposures, elucidate any temporal patterns of these visits, and quantify human immunodeficiency virus (HIV) postexposure prophylaxis (PEP) utilization for these exposures. This was a retrospective study of first responders presenting to Rhode Island EDs for blood or body fluid exposures from 1995 to 2001. Incidence rates for exposures with 95% confidence intervals (CIs) were estimated. Temporal trends for visits were modeled. Factors associated with HIV PEP utilization were identified using logistic regression. Odds ratios (ORs) with 95% CIs were estimated. The average incidence rate of ED visits for blood or body fluid exposures was 23.29 (20.07-26.52) ED visits per 100,000 ambulance runs. The incidence rose between 1995 and 1999 and then decreased. First-responder ED visits were lowest in October and highest in April and were lowest at 7 am and highest at 7 pm. First responders presenting with a percutaneous or blood-to-mucous membrane exposure had a 4.13 (1.82-8.89) greater odds and those exposed to a known HIV-infected source had a 9.03 (1.59-51.26) greater odds of being offered HIV PEP. First responders presenting to a teaching hospital had a 2.21 (1.02-4.77) greater odds of being offered prophylaxis and a 4.20 (1.08-16.32) greater odds of accepting prophylaxis when it was offered. First responders face a risk of blood or body fluid exposure that varies over the course of the day and the year. HIV PEP is more likely to be used if the exposures are percutaneous, or blood-to-mucous membrane, or if the source is known to be HIV-infected. Standardization of protocols across EDs for administering HIV prophylaxis appears to be needed.

  16. Self-propulsion of flapping bodies in viscous fluids: Recent advances and perspectives

    NASA Astrophysics Data System (ADS)

    Wang, Shizhao; He, Guowei; Zhang, Xing

    2016-12-01

    Flapping-powered propulsion is used by many animals to locomote through air or water. Here we review recent experimental and numerical studies on self-propelled mechanical systems powered by a flapping motion. These studies improve our understanding of the mutual interaction between actively flapping bodies and surrounding fluids. The results obtained in these works provide not only new insights into biolocomotion but also useful information for the biomimetic design of artificial flyers and swimmers.

  17. Multiplex mRNA profiling for the identification of body fluids.

    PubMed

    Juusola, Jane; Ballantyne, Jack

    2005-08-11

    We report the development of a multiplex reverse transcription-polymerase chain reaction (RT-PCR) method for the definitive identification of the body fluids that are commonly encountered in forensic casework analysis, namely blood, saliva, semen, and vaginal secretions. Using selected genes that we have identified as being expressed in a tissue-specific manner we have developed a multiplex RT-PCR assay which is composed of eight body fluid-specific genes and that is optimized for the detection of blood, saliva, semen, and vaginal secretions as single or mixed stains. The genes include beta-spectrin (SPTB) and porphobilinogen deaminase (PBGD) for blood, statherin (STATH) and histatin 3 (HTN3) for saliva, protamine 1 (PRM1) and protamine 2 (PRM2) for semen, and human beta-defensin 1 (HBD-1) and mucin 4 (MUC4) for vaginal secretions. The known or presumed functions of these genes suggest an extremely restricted pattern of gene expression, which is a basic requirement for incorporation into a tissue-specific assay. The methodology is based upon gene expression profiling analysis in which the body fluid-specific genes are identified by detecting the presence of appropriate mRNA species using capillary electrophoresis/laser induced fluorescence. An mRNA-based approach, such as the multiplex RT-PCR method described in the present work, allows for the facile identification of the tissue components present in a body fluid stain and could supplant the battery of serological and biochemical tests currently employed in the forensic serology laboratory.

  18. Associations of Hospital and Patient Characteristics with Fluid Resuscitation Volumes in Patients with Severe Sepsis: Post Hoc Analyses of Data from a Multicentre Randomised Clinical Trial.

    PubMed

    Hjortrup, Peter Buhl; Haase, Nicolai; Wetterslev, Jørn; Perner, Anders

    2016-01-01

    Fluid resuscitation is a key intervention in patients with sepsis and circulatory impairment. The recommendations for continued fluid therapy in sepsis are vague, which may result in differences in clinical practice. We aimed to evaluate associations between hospital and patient characteristics and fluid resuscitation volumes in ICU patients with severe sepsis. We explored the 6S trial database of ICU patients with severe sepsis needing fluid resuscitation randomised to hydroxyethyl starch 130/0.42 vs. Ringer's acetate. Our primary outcome measure was fluid resuscitation volume and secondary outcome total fluid input administered from 24 hours before randomisation until the end of day 3 post-randomisation. We performed multivariate analyses with hospital and patient baseline characteristics as covariates to assess associations with fluid volumes given. We included 654 patients who were in the ICU for 3 days and had fluid volumes available. Individual trial sites administered significantly different volumes of fluid resuscitation and total fluid input after adjusting for baseline variables (P<0.001). Increased lactate, higher cardiovascular and renal SOFA subscores, lower respiratory SOFA subscore and surgery were all independently associated with increased fluid resuscitation volumes. Hospital characteristics adjusted for patient baseline values were associated with differences in fluid resuscitation volumes given in the first 3 days of severe sepsis. The data indicate variations in clinical practice not explained by patient characteristics emphasizing the need for RCTs assessing fluid resuscitation volumes fluid in patients with sepsis.

  19. Excess intraoperative fluid volume administration is associated with pancreatic fistula after pancreaticoduodenectomy: A retrospective multicenter study.

    PubMed

    Han, In Woong; Kim, Hongbeom; Heo, JinSeok; Oh, Min Gu; Choi, Yoo Shin; Lee, Seung Eun; Lim, Chang-Sup

    2017-06-01

    Recent studies on perioperative fluid administration in patients undergoing pancreaticoduodenectomy (PD) have suggested that increased fluid loads are associated with worse perioperative outcomes. The purpose of this study was to investigate the relationship between intraoperative fluid (IOF) administration and postoperative pancreatic fistula (POPF), and to determine additional risk factors affecting pancreatic fistula in patients undergoing PD.From 2005 to 2014, a total of 182 patients with various periampullary diseases after PD were reviewed retrospectively at Dongguk University Ilsan Hospital, Chung-Ang University Hospital, and Dongnam Institute of Radiological and Medical Sciences. Patients were assigned to high or low IOF groups based on more or less fluid administration for supplementation of estimated blood loss and maintenance volume (12.5 mL/kg/h) than planned, respectively. The associations between IOF administration, pancreatic fistula development, and perioperative outcomes were evaluated.A total of 98 patients were assigned to the high-IOF group, and 84 to the low-IOF group. Risk factors for pancreatic fistula after univariate analysis were assignment to the high-IOF group, higher preoperative serum hemoglobin level, ampullary or bile duct cancer, pylorus preserving PD, small pancreatic duct, duct-to-mucosa pancreatojejunostomy, use of a stent, and mesh application to pancreatojejunal anastomosis. Among these, assignment to the high-IOF group (hazard ratio [HR] = 5.501, 95% CI 1.624-18.632, P = .006) and a small (<4 mm) pancreatic duct (HR = 4.129, 95% CI 1.569-14.658, P = .035) were identified as independent risk factors for the development of pancreatic fistula after multivariate analysis. However, long-term survival rate did not differ according to IOF group or duct size.Excessive IOF volume administration is associated with an increased incidence of pancreatic fistula after pancreaticoduodenectomy.

  20. Impact of color blindness on recognition of blood in body fluids.

    PubMed

    Reiss, M J; Labowitz, D A; Forman, S; Wormser, G P

    2001-02-12

    Color blindness is a common hereditary X-linked disorder. To investigate whether color blindness affects the ability to detect the presence of blood in body fluids. Ten color-blind subjects and 20 sex- and age-matched control subjects were shown 94 photographs of stool, urine, or sputum. Frank blood was present in 57 (61%) of the photographs. Surveys were done to determine if board-certified internists had ever considered whether color blindness would affect detection of blood and whether an inquiry on color blindness was included in their standard medical interview. Color-blind subjects were significantly less able to identify correctly whether pictures of body fluids showed blood compared with non-color-blind controls (P =.001); the lowest rate of correct identifications occurred with pictures of stool (median of 26 [70%] of 37 for color-blind subjects vs 36.5 [99%] of 37 for controls; P<.001). The more severely color-blind subjects were significantly less accurate than those with less severe color deficiency (P =.009). Only 2 (10%) of the 21 physicians had ever considered the possibility that color blindness might affect the ability of patients to detect blood, and none routinely asked their patients about color blindness. Color blindness impairs recognition of blood in body fluids. Color-blind individuals and their health care providers need to be made aware of this limitation.

  1. Distribution of microRNA biomarker candidates in solid tissues and body fluids.

    PubMed

    Fehlmann, Tobias; Ludwig, Nicole; Backes, Christina; Meese, Eckart; Keller, Andreas

    2016-11-01

    Small non-coding RNAs, especially microRNAs, are discussed as promising biomarkers for a substantial number of human pathologies. A broad understanding in which solid tissues, cell types or body fluids a microRNA is expressed helps also to understand and to improve the suitability of miRNAs as non- or minimally-invasive disease markers. We recently reported the Human miRNA Tissue Atlas ( http://www.ccb.uni-saarland.de/tissueatlas ) containing 105 miRNA profiles of 31 organs from 2 corpses. We subsequently added miRNA profiles measured by others and us using the same array technology as for the first version of the Human miRNA Tissue Atlas. The latter profiles stem from 163 solid organs including lung, prostate and gastric tissue, from 253 whole blood samples and 66 fractioned blood cell isolates, from body fluids including 72 serum samples, 278 plasma samples, 29 urine samples, and 16 saliva samples and from different collection and storage conditions. While most miRNAs are ubiquitous abundant in solid tissues and whole blood, we also identified miRNAs that are rather specific for tissues. Our web-based repository now hosting 982 full miRNomes all of which are measured by the same microarray technology. The knowledge of these variant abundances of miRNAs in solid tissues, in whole blood and in other body fluids is essential to judge the value of miRNAs as biomarker.

  2. "Low Testosterone Levels in Body Fluids Are Associated With Chronic Periodontitis".

    PubMed

    Kellesarian, Sergio Varela; Malmstrom, Hans; Abduljabbar, Tariq; Vohra, Fahim; Kellesarian, Tammy Varela; Javed, Fawad; Romanos, Georgios E

    2017-03-01

    There is a debate over the association between low testosterone levels in body fluids and the occurrence of chronic periodontitis (CP). The aim of the present systematic review was to assess whether low testosterone levels in body fluids reflect CP. In order to identify studies relevant to the focus question: "Is there a relationship between low testosterone levels in body fluids and CP?" an electronic search without time or language restrictions was conducted up to June 2016 in indexed databases using different keywords: periodontitis, chronic periodontitis, periodontal diseases, testosterone, and gonadal steroid hormones. A total of eight studies were included in the present systematic review. The number of study participants ranged from 24 to 1,838 male individuals with ages ranging from 15 to 95 years. Seven studies measured testosterone levels in serum, two studies in saliva, and one study in gingiva. Four studies reported a negative association between serum testosterone levels and CP. Two studies reported a positive association between decreased testosterone levels in serum and CP. Increased levels of salivary testosterone among patients with CP were reported in one study; whereas one study reported no significant difference in the concentration of salivary testosterone between patients with and without CP. One study identified significant increase in the metabolism of testosterone in the gingiva of patients with CP. Within the limits of the evidence available, the relationship between low testosterone levels and CP remains debatable and further longitudinal studies and control trials are needed.

  3. Strongly Coupled Fluid-Body Dynamics in the Immersed Boundary Projection Method

    NASA Astrophysics Data System (ADS)

    Wang, Chengjie; Eldredge, Jeff D.

    2014-11-01

    A computational algorithm is developed to simulate dynamically coupled interaction between fluid and rigid bodies. The basic computational framework is built upon a multi-domain immersed boundary method library, whirl, developed in previous work. In this library, the Navier-Stokes equations for incompressible flow are solved on a uniform Cartesian grid by the vorticity-based immersed boundary projection method of Colonius and Taira. A solver for the dynamics of rigid-body systems is also included. The fluid and rigid-body solvers are strongly coupled with an iterative approach based on the block Gauss-Seidel method. Interfacial force, with its intimate connection with the Lagrange multipliers used in the fluid solver, is used as the primary iteration variable. Relaxation, developed from a stability analysis of the iterative scheme, is used to achieve convergence in only 2-4 iterations per time step. Several two- and three-dimensional numerical tests are conducted to validate and demonstrate the method, including flapping of flexible wings, self-excited oscillations of a system of linked plates and three-dimensional propulsion of flexible fluked tail. This work has been supported by AFOSR, under Award FA9550-11-1-0098.

  4. Total volume and composition of fluid intake and mortality in older women: a cohort study

    PubMed Central

    Lim, Wai H; Wong, Germaine; Lewis, Joshua R; Lok, Charmaine E; Polkinghorne, Kevan R; Hodgson, Jonathan; Lim, Ee M; Prince, Richard L

    2017-01-01

    Objectives The health benefits of ‘drinking at least 8 glasses of water a day” in healthy individuals are largely unproven. We aimed to examine the relationship between total fluid and the sources of fluid consumption, risk of rapid renal decline, cardiovascular disease (CVD) mortality and all-cause mortality in elderly women. Design, setting and participants We conducted a longitudinal analysis of a population-based cohort study of 1055 women aged ≥70 years residing in Australia. Main outcome measures The associations between total daily fluid intake (defined as total volume of beverage excluding alcohol and milk) and the types of fluid (water, black tea, coffee, milk and other fluids) measured as cups per day and rapid renal decline, CVD and all-cause mortality were assessed using adjusted logistic and Cox regression analyses. Results Over a follow-up period of 10 years, 70 (6.6%) experienced rapid renal decline and 362 (34.4%) died, of which 142 (13.5%) deaths were attributed to CVD. The median (IQR) intake of total fluid was 10.4 (8.5–12.5) cups per day, with water (median (IQR) 4 (2–6) cups per day) and black tea (median (IQR) 3 (1–4) cups per day) being the most frequent type of fluid consumed. Every cup per day higher intake of black tea was associated with adjusted HRs of 0.90 (95% CI 0.81 to 0.99) and 0.92 (95% CI 0.86 to 0.98) for CVD mortality and all-cause mortality, respectively. There were no associations between black tea intake and rapid renal decline, or between the quantity or type of other fluids, including water intake, and any clinical outcomes. Conclusions Habitual higher intake of black tea may potentially improve long-term health outcomes, independent of treating traditional CVD risk factors, but validation of our study findings is essential. PMID:28341683

  5. Total volume and composition of fluid intake and mortality in older women: a cohort study.

    PubMed

    Lim, Wai H; Wong, Germaine; Lewis, Joshua R; Lok, Charmaine E; Polkinghorne, Kevan R; Hodgson, Jonathan; Lim, Ee M; Prince, Richard L

    2017-03-24

    The health benefits of 'drinking at least 8 glasses of water a day" in healthy individuals are largely unproven. We aimed to examine the relationship between total fluid and the sources of fluid consumption, risk of rapid renal decline, cardiovascular disease (CVD) mortality and all-cause mortality in elderly women. We conducted a longitudinal analysis of a population-based cohort study of 1055 women aged ≥70 years residing in Australia. The associations between total daily fluid intake (defined as total volume of beverage excluding alcohol and milk) and the types of fluid (water, black tea, coffee, milk and other fluids) measured as cups per day and rapid renal decline, CVD and all-cause mortality were assessed using adjusted logistic and Cox regression analyses. Over a follow-up period of 10 years, 70 (6.6%) experienced rapid renal decline and 362 (34.4%) died, of which 142 (13.5%) deaths were attributed to CVD. The median (IQR) intake of total fluid was 10.4 (8.5-12.5) cups per day, with water (median (IQR) 4 (2-6) cups per day) and black tea (median (IQR) 3 (1-4) cups per day) being the most frequent type of fluid consumed. Every cup per day higher intake of black tea was associated with adjusted HRs of 0.90 (95% CI 0.81 to 0.99) and 0.92 (95% CI 0.86 to 0.98) for CVD mortality and all-cause mortality, respectively. There were no associations between black tea intake and rapid renal decline, or between the quantity or type of other fluids, including water intake, and any clinical outcomes. Habitual higher intake of black tea may potentially improve long-term health outcomes, independent of treating traditional CVD risk factors, but validation of our study findings is essential. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  6. Laboratory testing of extravascular body fluids in Croatia: a survey of the Working group for extravascular body fluids of the Croatian Society of Medical Biochemistry and Laboratory Medicine.

    PubMed

    Kopcinovic, Lara Milevoj; Vogrinc, Zeljka; Kocijan, Irena; Culej, Jelena; Aralica, Merica; Jokic, Anja; Antoncic, Dragana; Bozovic, Marija

    2016-10-15

    We hypothesized that extravascular body fluid (EBF) analysis in Croatia is not harmonized and aimed to investigate preanalytical, analytical and postanalytical procedures used in EBF analysis in order to identify key aspects that should be addressed in future harmonization attempts. An anonymous online survey created to explore laboratory testing of EBF was sent to secondary, tertiary and private health care Medical Biochemistry Laboratories (MBLs) in Croatia. Statements were designed to address preanalytical, analytical and postanalytical procedures of cerebrospinal, pleural, peritoneal (ascites), pericardial, seminal, synovial, amniotic fluid and sweat. Participants were asked to declare the strength of agreement with proposed statements using a Likert scale. Mean scores for corresponding separate statements divided according to health care setting were calculated and compared. The survey response rate was 0.64 (58 / 90). None of the participating private MBLs declared to analyse EBF. We report a mean score of 3.45 obtained for all statements evaluated. Deviations from desirable procedures were demonstrated in all EBF testing phases. Minor differences in procedures used for EBF analysis comparing secondary and tertiary health care MBLs were found. The lowest scores were obtained for statements regarding quality control procedures in EBF analysis, participation in proficiency testing programmes and provision of interpretative comments on EBF's test reports. Although good laboratory EBF practice is present in Croatia, procedures for EBF analysis should be further harmonized to improve the quality of EBF testing and patient safety.

  7. Laboratory testing of extravascular body fluids in Croatia: a survey of the Working group for extravascular body fluids of the Croatian Society of Medical Biochemistry and Laboratory Medicine

    PubMed Central

    Kopcinovic, Lara Milevoj; Vogrinc, Zeljka; Kocijan, Irena; Culej, Jelena; Aralica, Merica; Jokic, Anja; Antoncic, Dragana; Bozovic, Marija

    2016-01-01

    Introduction We hypothesized that extravascular body fluid (EBF) analysis in Croatia is not harmonized and aimed to investigate preanalytical, analytical and postanalytical procedures used in EBF analysis in order to identify key aspects that should be addressed in future harmonization attempts. Materials and methods An anonymous online survey created to explore laboratory testing of EBF was sent to secondary, tertiary and private health care Medical Biochemistry Laboratories (MBLs) in Croatia. Statements were designed to address preanalytical, analytical and postanalytical procedures of cerebrospinal, pleural, peritoneal (ascites), pericardial, seminal, synovial, amniotic fluid and sweat. Participants were asked to declare the strength of agreement with proposed statements using a Likert scale. Mean scores for corresponding separate statements divided according to health care setting were calculated and compared. Results The survey response rate was 0.64 (58 / 90). None of the participating private MBLs declared to analyse EBF. We report a mean score of 3.45 obtained for all statements evaluated. Deviations from desirable procedures were demonstrated in all EBF testing phases. Minor differences in procedures used for EBF analysis comparing secondary and tertiary health care MBLs were found. The lowest scores were obtained for statements regarding quality control procedures in EBF analysis, participation in proficiency testing programmes and provision of interpretative comments on EBF’s test reports. Conclusions Although good laboratory EBF practice is present in Croatia, procedures for EBF analysis should be further harmonized to improve the quality of EBF testing and patient safety. PMID:27812307

  8. Fluid dynamics alter Caenorhabditis elegans body length via TGF-β/DBL-1 neuromuscular signaling

    PubMed Central

    Harada, Shunsuke; Hashizume, Toko; Nemoto, Kanako; Shao, Zhenhua; Higashitani, Nahoko; Etheridge, Timothy; Szewczyk, Nathaniel J; Fukui, Keiji; Higashibata, Akira; Higashitani, Atsushi

    2016-01-01

    Skeletal muscle wasting is a major obstacle for long-term space exploration. Similar to astronauts, the nematode Caenorhabditis elegans displays negative muscular and physical effects when in microgravity in space. It remains unclear what signaling molecules and behavior(s) cause these negative alterations. Here we studied key signaling molecules involved in alterations of C. elegans physique in response to fluid dynamics in ground-based experiments. Placing worms in space on a 1G accelerator increased a myosin heavy chain, myo-3, and a transforming growth factor-β (TGF-β), dbl-1, gene expression. These changes also occurred when the fluid dynamic parameters viscosity/drag resistance or depth of liquid culture were increased on the ground. In addition, body length increased in wild type and body wall cuticle collagen mutants, rol-6 and dpy-5, grown in liquid culture. In contrast, body length did not increase in TGF-β, dbl-1, or downstream signaling pathway, sma-4/Smad, mutants. Similarly, a D1-like dopamine receptor, DOP-4, and a mechanosensory channel, UNC-8, were required for increased dbl-1 expression and altered physique in liquid culture. As C. elegans contraction rates are much higher when swimming in liquid than when crawling on an agar surface, we also examined the relationship between body length enhancement and rate of contraction. Mutants with significantly reduced contraction rates were typically smaller. However, in dop-4, dbl-1, and sma-4 mutants, contraction rates still increased in liquid. These results suggest that neuromuscular signaling via TGF-β/DBL-1 acts to alter body physique in response to environmental conditions including fluid dynamics. PMID:28725724

  9. Acute volume expansion preserves orthostatic tolerance during whole-body heat stress in humans

    PubMed Central

    Keller, David M; Low, David A; Wingo, Jonathan E; Brothers, R Matthew; Hastings, Jeff; Davis, Scott L; Crandall, Craig G

    2009-01-01

    Whole-body heat stress reduces orthostatic tolerance via a yet to be identified mechanism(s). The reduction in central blood volume that accompanies heat stress may contribute to this phenomenon. The purpose of this study was to test the hypothesis that acute volume expansion prior to the application of an orthostatic challenge attenuates heat stress-induced reductions in orthostatic tolerance. In seven normotensive subjects (age, 40 ± 10 years: mean ±s.d.), orthostatic tolerance was assessed using graded lower-body negative pressure (LBNP) until the onset of symptoms associated with ensuing syncope. Orthostatic tolerance (expressed in cumulative stress index units, CSI) was determined on each of 3 days, with each day having a unique experimental condition: normothermia, whole-body heating, and whole-body heating + acute volume expansion. For the whole-body heating + acute volume expansion experimental day, dextran 40 was rapidly infused prior to LBNP sufficient to return central venous pressure to pre-heat stress values. Whole-body heat stress alone reduced orthostatic tolerance by ∼80% compared to normothermia (938 ± 152 versus 182 ± 57 CSI; mean ±s.e.m., P < 0.001). Acute volume expansion during whole-body heating completely ameliorated the heat stress-induced reduction in orthostatic tolerance (1110 ± 69 CSI, P < 0.001). Although heat stress results in many cardiovascular and neural responses that directionally challenge blood pressure regulation, reduced central blood volume appears to be an underlying mechanism responsible for impaired orthostatic tolerance in the heat-stressed human. PMID:19139044

  10. A 3D, fully Eulerian, VOF-based solver to study the interaction between two fluids and moving rigid bodies using the fictitious domain method

    NASA Astrophysics Data System (ADS)

    Pathak, Ashish; Raessi, Mehdi

    2016-04-01

    We present a three-dimensional (3D) and fully Eulerian approach to capturing the interaction between two fluids and moving rigid structures by using the fictitious domain and volume-of-fluid (VOF) methods. The solid bodies can have arbitrarily complex geometry and can pierce the fluid-fluid interface, forming contact lines. The three-phase interfaces are resolved and reconstructed by using a VOF-based methodology. Then, a consistent scheme is employed for transporting mass and momentum, allowing for simulations of three-phase flows of large density ratios. The Eulerian approach significantly simplifies numerical resolution of the kinematics of rigid bodies of complex geometry and with six degrees of freedom. The fluid-structure interaction (FSI) is computed using the fictitious domain method. The methodology was developed in a message passing interface (MPI) parallel framework accelerated with graphics processing units (GPUs). The computationally intensive solution of the pressure Poisson equation is ported to GPUs, while the remaining calculations are performed on CPUs. The performance and accuracy of the methodology are assessed using an array of test cases, focusing individually on the flow solver and the FSI in surface-piercing configurations. Finally, an application of the proposed methodology in simulations of the ocean wave energy converters is presented.

  11. The role of perioperative chewing gum on gastric fluid volume and gastric pH: a meta-analysis.

    PubMed

    Ouanes, Jean-Pierre P; Bicket, Mark C; Togioka, Brandon; Tomas, Vicente Garcia; Wu, Christopher L; Murphy, Jamie D

    2015-03-01

    To determine if preoperative gum chewing affects gastric pH and gastric fluid volume. Systematic review and meta-analysis. Data sources included Cochrane, PubMed, and EMBASE databases from inception to June 2012 and reference lists of known relevant articles without language restriction. Randomized controlled trials in which a treatment group that chewed gum was compared to a control group that fasted were included. Relevant data, including main outcomes of gastric fluid volume and gastric pH, were extracted. Four studies involving 287 patients were included. The presence of chewing gum was associated with small but statically significant increases in gastric fluid volume (mean difference = 0.21 mL/kg; 95% confidence interval, 0.02-0.39; P = .03) but not in gastric pH (mean difference = 0.11 mL/kg; 95% confidence interval, -0.14 to 0.36; P = .38). Gastric fluid volume and gastric pH remained unchanged in subgroup analysis by either sugar or sugarless gum type. Chewing gum in the perioperative period causes small but statically significant increases in gastric fluid volume and no change in gastric pH. The increase in gastric fluid most likely is of no clinical significance in terms of aspiration risk for the patient. Elective surgery should not necessarily be canceled or delayed in healthy patients who accidentally chew gum preoperatively. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Systems and methods for the detection of low-level harmful substances in a large volume of fluid

    DOEpatents

    Carpenter, Michael V.; Roybal, Lyle G.; Lindquist, Alan; Gallardo, Vincente

    2016-03-15

    A method and device for the detection of low-level harmful substances in a large volume of fluid comprising using a concentrator system to produce a retentate and analyzing the retentate for the presence of at least one harmful substance. The concentrator system performs a method comprising pumping at least 10 liters of fluid from a sample source through a filter. While pumping, the concentrator system diverts retentate from the filter into a container. The concentrator system also recirculates at least part of the retentate in the container again through the filter. The concentrator system controls the speed of the pump with a control system thereby maintaining a fluid pressure less than 25 psi during the pumping of the fluid; monitors the quantity of retentate within the container with a control system, and maintains a reduced volume level of retentate and a target volume of retentate.

  13. Flow and Force Equations for a Body Revolving in a Fluid

    NASA Technical Reports Server (NTRS)

    Zahm, A F

    1930-01-01

    Part I gives a general method for finding the steady-flow velocity relative to a body in plane curvilinear motion, whence the pressure is found by Bernoulli's energy principle. Integration of the pressure supplies basic formulas for the zonal forces and moments on the revolving body. Part II, applying this steady-flow method, finds the velocity and pressure at all points of the flow inside and outside an ellipsoid and some of its limiting forms, and graphs those quantities for the latter forms. Part III finds the pressure, and thence the zonal force and moment, on hulls in plane curvilinear flight. Part IV derives general equations for the resultant fluid forces and moments on trisymmetrical bodies moving through a perfect fluid, and in some cases compares the moment values with those found for bodies moving in air. Part V furnishes ready formulas for potential coefficients and inertia coefficients for an ellipsoid and its limiting forms. Thence are derived tables giving numerical values of those coefficients for a comprehensive range of shapes.

  14. The unrecognized effects of the volume and composition of the resuscitation fluid used during the administration of blood products

    PubMed Central

    Valeri, C. Robert; Veech, Richard L.

    2013-01-01

    Background Recent publications have reported the severe adverse events associated with blood products but have not considered the effect of the volume and composition of the resuscitative fluids infused with the blood products. Methods Injury leads to cellular reaction characterized by insulin resistance during which glucose cannot enter muscle and fat cells. In all cells, mitochondrial pyruvate dehydrogenase activity is decreased during insulin deficiency leaving cells deficient in substrates needed to power the Krebs cycle and make ATP. Results d-β-Hydroxybutyrate, a normal ketone body metabolite, enters cells on the monocarboxylate transport mimicking the action of insulin and bypassing the enzymatic block at PDH. Metabolism of ketone bodies increases efficiency of mitochondrial energy production and cellular ATP level. Conclusion Infusion of 250 ml of 600 mM Na d-β-hydroxybutyrate solution, with the same osmotic strength as the hypertonic NaCl solution currently being used, would correct insulin resistance, provide energy substrates for cells to produce ATP, correct the tendency of injured tissue to swell due to decreased energy of ionic gradients and correct acidosis observed in hemorrhage. PMID:22364841

  15. Electroanalytical and surface plasmon resonance sensors for detection of breast cancer and Alzheimer's disease biomarkers in cells and body fluids.

    PubMed

    Yang, Minghui; Yi, Xinyao; Wang, Jianxiu; Zhou, Feimeng

    2014-04-21

    Cancer and neurological disorders are two leading causes of human death. Their early diagnoses will either greatly improve the survival rate or facilitate effective treatments or modalities. Detection of biomarkers in body fluids and some tissues (e.g., blood, urine and cerebrospinal fluids) is relatively non-invasive and provides useful chemical and biological information that is complementary to tomographic imaging (e.g., magnetic resonance imaging, positron emission tomography and X-ray computed tomography). Recent years have witnessed the contributions from and potential applications of bioanalytical methods for early detection of major diseases. In this review, we survey some recent developments of electroanalytical (as a representative label-based technique) and surface plasmon resonance (SPR) (as a representative label-free technique) biosensors for detection of biomarkers relevant to etiologies of breast cancer and Alzheimer's disease (AD). While breast cancer is representative of cancers of complexity (multiple biomarkers, false positives from tomographic scans, and a need for more effective early diagnostic methods), AD is the most prevalent neurological disorder that is also linked to multiple biomarkers. Both electroanalytical and SPR-based sensors have attractive features of sensitivity, portability, obviation of large sample volumes, and capability of multiplexed detection. Various sensing protocols developed in the past five years are reviewed, demonstrating the feasibility of both techniques for diagnostic purposes. Problems inherent in these two techniques that must be overcome before being clinically viable are also discussed.

  16. Cardiovascular regulatory response to lower body negative pressure following blood volume loss

    NASA Technical Reports Server (NTRS)

    Shimizu, M.; Ghista, D. N.; Sandler, H.

    1979-01-01

    An attempt is made to explain the cardiovascular regulatory responses to lower body negative pressure (LBNP) stress, both in the absence of and following blood or plasma volume loss, the latter being factors regularly observed with short- or long-term recumbency or weightlessness and associated with resulting cardiovascular deconditioning. Analytical expressions are derived for the responses of mean venous pressure and blood volume pooled in the lower body due to LBNP. An analysis is presented for determining the HR change due to LBNP stress following blood volume loss. It is concluded that the reduced orthostatic tolerance following long-term space flight or recumbency can be mainly attributed to blood volume loss, and that the associated cardiovascular responses characterizing this orthostatic intolerance is elicited by the associated central venous pressure response.

  17. Cardiovascular regulatory response to lower body negative pressure following blood volume loss

    NASA Technical Reports Server (NTRS)

    Shimizu, M.; Ghista, D. N.; Sandler, H.

    1979-01-01

    An attempt is made to explain the cardiovascular regulatory responses to lower body negative pressure (LBNP) stress, both in the absence of and following blood or plasma volume loss, the latter being factors regularly observed with short- or long-term recumbency or weightlessness and associated with resulting cardiovascular deconditioning. Analytical expressions are derived for the responses of mean venous pressure and blood volume pooled in the lower body due to LBNP. An analysis is presented for determining the HR change due to LBNP stress following blood volume loss. It is concluded that the reduced orthostatic tolerance following long-term space flight or recumbency can be mainly attributed to blood volume loss, and that the associated cardiovascular responses characterizing this orthostatic intolerance is elicited by the associated central venous pressure response.

  18. Effect of Rehydration Fluid Osmolality on Plasma Volume and Vasopressin in Resting Dehydrated Men

    NASA Technical Reports Server (NTRS)

    Geelen, Ghislaine; Greenleaf, J. E.; Keil, L. C.; Wade, Charles E. (Technical Monitor)

    1994-01-01

    Elevated plasma vasopressin concentration [PVP], which may act as a dipsogen, decreases promptly following the ingestion of fluids in many mammals including humans. The purpose for this study was to determine whether fluids of varied electrolyte and carbohydrate composition and osmolality (Osm] would modify post-drinking decreases in [PVP] which could be attributed to interaction with plasma volume (PV)- or fluid-electrolyte interactive hormones. Five men (23-41 yr, 78.0 +/- SD 8.2 kg), water deprived for 24 h, drank six fluids (12 ml/kg, at 16.5C in 4.0-6.2 min): water (30 m0sm/kg), NaCl (70 mOsm/kg), NaCl + NaCitrate (270 mOsm/kg), NaCl + 9.7% glucose (650 mOsm/kg), and two commercial drinks containing various ionic and carbohydrate contents (380 and 390 mOsm/kg). Blood (20 ml/sample) was drawn at -5 min before and at +3, +9, +15, +30, and +70 min after drinking. Heart rate, blood pressures, and plasma renin activity, {Na+], [K+], [Osm], aldosterone, atrial natriuretic peptide, and epinephrine concentrations were unchanged after drinking. Post-drinking [PVP] decreased from 1.7 - 3.7 pg/ml within 3 min with all fluids independently of their composition, [Osm], or delta PV; with maximal depression to 0.1-0.7 pg/ml (p<0.05) by 15 min. The continued [PVP] depression with all fluids from 15 to 70 min was accompanied by unchanged plasma (Osm] but 1.8-7.6% increases (p<0.05) in PV with 3) fluids (2 commercial and NaCitrate) and no change with the others. Percent changes in mean [PVP] and plasma norepinephrine concentrations [PNE] at 15 min correlated -0.70 (P<0.10) suggesting that about half the variability in [PVP I I depression was associated with [PNE]. Thus, part of the mechanism for post-drinking [PVP] depression may involve a drinking stimulated norepinephrine (neural) factor.

  19. GANDALF: Graphical Astrophysics code for N-body Dynamics And Lagrangian Fluids

    NASA Astrophysics Data System (ADS)

    Hubber, David; Rosotti, Giovanni

    2016-02-01

    GANDALF, a successor to SEREN (ascl:1102.010), is a hybrid self-gravitating fluid dynamics and collisional N-body code primarily designed for investigating star formation and planet formation problems. GANDALF uses various implementations of Smoothed Particle Hydrodynamics (SPH) to perform hydrodynamical simulations of gas clouds undergoing gravitational collapse to form new stars (or other objects), and can perform simulations of pure N-body dynamics using high accuracy N-body integrators, model the intermediate phase of cluster evolution, and provide visualizations via its python interface as well as interactive simulations. Although based on many of the SEREN routines, GANDALF has been largely re-written from scratch in C++ using more optimal algorithms and data structures.

  20. Effects of high-volume, rapid-fluid therapy on cardiovascular function and hematological values during isoflurane-induced hypotension in healthy dogs.

    PubMed

    Valverde, Alexander; Gianotti, Giacomo; Rioja-Garcia, Eva; Hathway, Amanda

    2012-04-01

    The objective of this study was to determine the effects of the administration of a high volume of isotonic crystalloid at a rapid rate on cardiovascular function in normovolemic, isoflurane-anesthetized dogs during induced hypotension.Using a prospective study, 6 adult dogs were induced to general anesthesia and cardiovascular and hematological values were measured while the dogs were maintained at 3 hemodynamic states: first during light anesthesia with 1.3% end-tidal isoflurane (ETI); then during a hypotensive state induced by deep anesthesia with 3% ETI for 45 min while administered 1 mL/kg body weight (BW) per minute of isotonic fluids; and then decreased to 1.6% ETI while receiving 1 mL/kg BW per minute of fluids for 15 min. End-tidal isoflurane (ETI) at 3.0 ± 0.2% decreased arterial blood pressure (ABP), cardiac index (CI), and stroke volume index (SVI), and increased stroke volume variation (SVV) and central venous pressure (CVP). Fluid administration during 3% ETI decreased only SVV and systemic vascular resistance index (SVRI), while CVP increased progressively. Decreasing ETI to 1.6 ± 0.1% returned ABP and SVI to baseline (ETI 1.3 ± 0.1%), while CI and heart rate increased and SVV decreased. There was significant progressive clinical hemodilution of hemoglobin (Hb), packed cell volume (PCV), total protein (TP), colloid osmotic pressure (COP), arterial oxygen content (CaO(2)), and central-venous oxygen content (CcvO(2)).High-volume, rapid-rate administration of an isotonic crystalloid was ineffective in counteracting isoflurane-induced hypotension in normovolemic dogs at a deep plane of anesthesia. Cardiovascular function improved only when anesthetic depth was reduced. Excessive hemodilution and its adverse consequences should be considered when a high volume of crystalloid is administered at a rapid rate.

  1. Effects of high-volume, rapid-fluid therapy on cardiovascular function and hematological values during isoflurane-induced hypotension in healthy dogs

    PubMed Central

    Valverde, Alexander; Gianotti, Giacomo; Rioja-Garcia, Eva; Hathway, Amanda

    2012-01-01

    The objective of this study was to determine the effects of the administration of a high volume of isotonic crystalloid at a rapid rate on cardiovascular function in normovolemic, isoflurane-anesthetized dogs during induced hypotension. Using a prospective study, 6 adult dogs were induced to general anesthesia and cardiovascular and hematological values were measured while the dogs were maintained at 3 hemodynamic states: first during light anesthesia with 1.3% end-tidal isoflurane (ETI); then during a hypotensive state induced by deep anesthesia with 3% ETI for 45 min while administered 1 mL/kg body weight (BW) per minute of isotonic fluids; and then decreased to 1.6% ETI while receiving 1 mL/kg BW per minute of fluids for 15 min. End-tidal isoflurane (ETI) at 3.0 ± 0.2% decreased arterial blood pressure (ABP), cardiac index (CI), and stroke volume index (SVI), and increased stroke volume variation (SVV) and central venous pressure (CVP). Fluid administration during 3% ETI decreased only SVV and systemic vascular resistance index (SVRI), while CVP increased progressively. Decreasing ETI to 1.6 ± 0.1% returned ABP and SVI to baseline (ETI 1.3 ± 0.1%), while CI and heart rate increased and SVV decreased. There was significant progressive clinical hemodilution of hemoglobin (Hb), packed cell volume (PCV), total protein (TP), colloid osmotic pressure (COP), arterial oxygen content (CaO2), and central-venous oxygen content (CcvO2). High-volume, rapid-rate administration of an isotonic crystalloid was ineffective in counteracting isoflurane-induced hypotension in normovolemic dogs at a deep plane of anesthesia. Cardiovascular function improved only when anesthetic depth was reduced. Excessive hemodilution and its adverse consequences should be considered when a high volume of crystalloid is administered at a rapid rate. PMID:23024452

  2. An efficient implicit unstructured finite volume solver for generalised Newtonian fluids

    NASA Astrophysics Data System (ADS)

    Jalali, Alireza; Sharbatdar, Mahkame; Ollivier-Gooch, Carl

    2016-03-01

    An implicit finite volume solver is developed for the steady-state solution of generalised Newtonian fluids on unstructured meshes in 2D. The pseudo-compressibility technique is employed to couple the continuity and momentum equations by transforming the governing equations into a hyperbolic system. A second-order accurate spatial discretisation is provided by performing a least-squares gradient reconstruction within each control volume of unstructured meshes. A central flux function is used for the convective terms and a solution jump term is added to the averaged component for the viscous terms. Global implicit time-stepping using successive evolution-relaxation is utilised to accelerate the convergence to steady-state solutions. The performance of our flow solver is examined for power-law and Carreau-Yasuda non-Newtonian fluids in different geometries. The effects of model parameters and Reynolds number are studied on the convergence rate and flow features. Our results verify second-order accuracy of the discretisation and also fast and efficient convergence to the steady-state solution for a wide range of flow variables.

  3. Applicability of nursing outcomes in patients with heart failure and fluid volume excessive.

    PubMed

    Linhares, Joelza Celesilvia Chisté; Orlandin, Letícia; Aliti, Graziella Badin; Rabelo-Silva, Eneida Rejane

    2016-06-01

    The purpose of this study was to test the clinical applicability of the Nursing Outcomes Classification in patients with decompensated heart failure and the nursing diagnosis of fluid volume excess. This is a longitudinal study conducted in two stages at a university hospital, in 2013. During the first stage the consensus of experts was used to select the nursing outcomes and the indicators related to diagnosing fluid volume excess. The longitudinal study was conducted in the second stage to clinically evaluate the patients using the instrument containing the results and indicators produced in the consensus. A total of 17 patients were assessed. The nursing outcomes were measured during the clinical evaluation by analysing their indicators. The scores increased in six of the results, in comparison with the average results of the first and last assessment. The Nursing Outcomes Classification during medical practice revealed a clinical improvement among the patient who were admitted following decompensated heart failure. The Nursing Outcomes Classification managed to detect changes in the clinical status of patients.

  4. Evaluating curvature for the volume of fluid method via interface reconstruction

    NASA Astrophysics Data System (ADS)

    Evrard, Fabien; Denner, Fabian; van Wachem, Berend

    2016-11-01

    The volume of fluid method (VOF) is widely adopted for the simulation of interfacial flows. A critical step in VOF modelling is to evaluate the local mean curvature of the fluid interface for the computation of surface tension. Most existing curvature evaluation techniques exhibit errors due to the discrete nature of the field they are dealing with, and potentially to the smoothing of this field that the method might require. This leads to the production of inaccurate or unphysical results. We present a curvature evaluation method which aims at greatly reducing these errors. The interface is reconstructed from the volume fraction field and the curvature is evaluated by fitting local quadric patches onto the resulting triangulation. The patch that best fits the triangulated interface can be found by solving a local minimisation problem. Combined with a partition of unity strategy with compactly supported radial basis functions, the method provides a semi-global implicit expression for the interface from which curvature can be exactly derived. The local mean curvature is then integrated back on the Eulerian mesh. We show a detailed analysis of the associated errors and comparisons with existing methods. The method can be extended to unstructured meshes. Financial support from Petrobras is gratefully acknowledged.

  5. Effects of hypoproteinemia on renal hemodynamics, arterial pressure, and fluid volume

    SciTech Connect

    Manning, R.D. Jr.

    1987-01-01

    The effects of long-term hypoproteinemia on renal hemodynamics, arterial pressure, and fluid volume were studied in eight conscious dogs over a 34-day period. Plasma protein concentration (PPC) was decreased by daily plasmapheresis, and the effects of decreasing and increasing sodium intake were measured. By the 12th day of plasmapheresis PPC had decreased to 2.5 g/dl from a control value of 7.2 g/dl, mean arterial pressure had decreased to 78% of control, glomerular filtration rate (GFR) was 75.2% of control, and urinary sodium excretion was decreased. By day 18 of plasmapheresis, estimated renal plasma flow (ERPF) was decreased to 60% of control due to the decreased arterial pressure and an increase in renal vascular resistance. GFR and ERPF were determined from the total clearance of (/sup 125/I)iothalamate and (/sup 131/I)iodohippurate. Also, plasma renin activity and plasma aldosterone concentration were both increased, and the relationship between mean arterial pressure and urinary sodium excretion was distinctly shifted to the left along the arterial pressure axis. In contradistinction to acute experiments, chronic hypoproteinemia results in decreases in GFR, ERPF, and urinary sodium excretion and has marked effects on both fluid volume and arterial pressure regulation.

  6. A Volume-of-Fluid based simulation method for wave impact problems

    NASA Astrophysics Data System (ADS)

    Kleefsman, K. M. T.; Fekken, G.; Veldman, A. E. P.; Iwanowski, B.; Buchner, B.

    2005-06-01

    In this paper, some aspects of water impact and green water loading are considered by numerically investigating a dambreak problem and water entry problems. The numerical method is based on the Navier-Stokes equations that describe the flow of an incompressible viscous fluid. The equations are discretised on a fixed Cartesian grid using the finite volume method. Even though very small cut cells can appear when moving an object through the fixed grid, the method is stable. The free surface is displaced using the Volume-of-Fluid method together with a local height function, resulting in a strictly mass conserving method. The choice of boundary conditions at the free surface appears to be crucial for the accuracy and robustness of the method. For validation, results of a dambreak simulation are shown that can be compared with measurements. A box has been placed in the flow, as a model for a container on the deck of an offshore floater on which forces are calculated. The water entry problem has been investigated by dropping wedges with different dead-rise angles, a cylinder and a cone into calm water with a prescribed velocity. The resulting free surface dynamics, with the sideways jets, has been compared with photographs of experiments. Also a comparison of slamming coefficients with theory and experimental results has been made. Finally, a drop test with a free falling wedge has been simulated.

  7. Special issue: Terrestrial fluids, earthquakes and volcanoes: The Hiroshi Wakita volume I

    USGS Publications Warehouse

    Perez, Nemesio M.; King, Chi-Yu; Gurrieri, Sergio; McGee, Kenneth A.

    2006-01-01

    Terrestrial Fluids, Earthquakes and Volcanoes: The Hiroshi Wakita Volume I is a special publication to honor Professor Hiroshi Wakita for his scientific contributions. This volume consists of 17 original papers dealing with various aspects of the role of terrestrial fluids in earthquake and volcanic processes, which reflect Prof. Wakita’s wide scope of research interests.Professor Wakita co-founded the Laboratory for Earthquake Chemistry in 1978 and served as its director from 1988 until his retirement from the university in 1997. He has made the laboratory a leading world center for studying earthquakes and volcanic activities by means of geochemical and hydrological methods. Together with his research team and a number of foreign guest researchers that he attracted, he has made many significant contributions in the above-mentioned scientific fields of interest. This achievement is a testimony to not only his scientific talent, but also his enthusiasm, his open mindedness, and his drive in obtaining both human and financial support.

  8. Association of Fluid Status and Body Composition with Physical Function in Patients with Chronic Kidney Disease

    PubMed Central

    Hsiao, Shih-Ming; Tsai, Yi-Chun; Chen, Hui-Mei; Lin, Ming-Yen; Chiu, Yi-Wen; Chen, Tzu-Hui; Wang, Shu-Li; Hsiao, Pei-Ni; Kung, Lan-Fang; Hwang, Shang-Jyh; Huang, Mei-Feng; Yeh, Yi-Chun; Chen, Cheng-Sheng; Kuo, Mei-Chuan

    2016-01-01

    Background Impairment of physical function and abnormal body composition are the major presentations in patients with chronic kidney disease (CKD). The aim of this study is to investigate the relationship between body composition and physical function in CKD patients. Methods This cross-sectional study enrolled 172 of CKD stages 1–5 from February 2013 to September 2013. Handgrip strength (upper extremity muscle endurance), 30-second chair-stand test (lower extremity muscle endurance) and 2-minute step test (cardiorespiratory endurance) were used as indices of physical function. Body composition, including fluid status (extracellular water/total body water, ECW/TBW), lean tissue index (LTI), and fat tissue index (FTI), was measured using a bioimpedance spectroscopy method. Results All patients with high ECW/TBW had lower handgrip strength and 30-second chair-stand than those with low ECW/TBW (P<0.001 and P = 0.002). CKD patients with high FTI had lower handgrip strength and 30-second chair-stand than those with low FTI (P<0.001 and P = 0.002). These patients with low LTI had lower handgrip strength than those with high LTI (P = 0.04). In multivariate analysis, high ECW/TBW was positively associated with decreased handgrip strength (β = -41.17, P = 0.03) in CKD patients. High FTI was significantly correlated with decreased times of 30-second chair-stand (β = -0.13, P = 0.01). There was no significant relationship between body composition and 2-minute step test. Conclusions Our results show a significant association of impaired upper and lower extremity muscle endurance with high fluid status and fat tissue. Evaluation of body composition may assist in indentifying physical dysfunction earlier in CKD patients. PMID:27798648

  9. Early crystalloid fluid volume management in acute pancreatitis: association with mortality and organ failure.

    PubMed

    Kuwabara, Kazuaki; Matsuda, Shinya; Fushimi, Kiyohide; Ishikawa, Koichi B; Horiguchi, Hiromasa; Fujimori, Kenji

    2011-01-01

    Guidelines recommend aggressive fluid resuscitation in patients with acute pancreatitis (AP) to minimize organ failure. This study aimed to determine whether early crystalloid fluid management is associated with mortality and/or critical care. 9,489 AP patients aged ≥18 years were categorized into four study groups: ventilation, hemodialysis, a combination of ventilation and hemodialysis, and neither ventilation nor hemodialysis. We analyzed demographics, mortality, comorbidities, complications, AP severity, surgery of the biliary/pancreatic system, and fluid volume (FV) during the initial 48 h (FV48) and during hospitalization (FVH), and calculated the FV ratio (FVR) as FV48/FVH. The impact of FV48 and FVR on mortality and the care process was assessed according to AP severity. 1.1% of AP patients received ventilation, 1.7% received hemodialysis and 1.0% received both treatments. FV48 and FVR were higher in patients requiring ventilation compared with those not requiring ventilation. A high FV48 increased mortality and a high FVR decreased mortality in patients with severe AP. A high FV48 required ventilation in patien