A Bayesian Framework for Human Body Pose Tracking from Depth Image Sequences
Zhu, Youding; Fujimura, Kikuo
2010-01-01
This paper addresses the problem of accurate and robust tracking of 3D human body pose from depth image sequences. Recovering the large number of degrees of freedom in human body movements from a depth image sequence is challenging due to the need to resolve the depth ambiguity caused by self-occlusions and the difficulty to recover from tracking failure. Human body poses could be estimated through model fitting using dense correspondences between depth data and an articulated human model (local optimization method). Although it usually achieves a high accuracy due to dense correspondences, it may fail to recover from tracking failure. Alternately, human pose may be reconstructed by detecting and tracking human body anatomical landmarks (key-points) based on low-level depth image analysis. While this method (key-point based method) is robust and recovers from tracking failure, its pose estimation accuracy depends solely on image-based localization accuracy of key-points. To address these limitations, we present a flexible Bayesian framework for integrating pose estimation results obtained by methods based on key-points and local optimization. Experimental results are shown and performance comparison is presented to demonstrate the effectiveness of the proposed approach. PMID:22399933
Body Parts Dependent Joint Regressors for Human Pose Estimation in Still Images.
Dantone, Matthias; Gall, Juergen; Leistner, Christian; Van Gool, Luc
2014-11-01
In this work, we address the problem of estimating 2d human pose from still images. Articulated body pose estimation is challenging due to the large variation in body poses and appearances of the different body parts. Recent methods that rely on the pictorial structure framework have shown to be very successful in solving this task. They model the body part appearances using discriminatively trained, independent part templates and the spatial relations of the body parts using a tree model. Within such a framework, we address the problem of obtaining better part templates which are able to handle a very high variation in appearance. To this end, we introduce parts dependent body joint regressors which are random forests that operate over two layers. While the first layer acts as an independent body part classifier, the second layer takes the estimated class distributions of the first one into account and is thereby able to predict joint locations by modeling the interdependence and co-occurrence of the parts. This helps to overcome typical ambiguities of tree structures, such as self-similarities of legs and arms. In addition, we introduce a novel data set termed FashionPose that contains over 7,000 images with a challenging variation of body part appearances due to a large variation of dressing styles. In the experiments, we demonstrate that the proposed parts dependent joint regressors outperform independent classifiers or regressors. The method also performs better or similar to the state-of-the-art in terms of accuracy, while running with a couple of frames per second.
Robust automatic measurement of 3D scanned models for the human body fat estimation.
Giachetti, Andrea; Lovato, Christian; Piscitelli, Francesco; Milanese, Chiara; Zancanaro, Carlo
2015-03-01
In this paper, we present an automatic tool for estimating geometrical parameters from 3-D human scans independent on pose and robustly against the topological noise. It is based on an automatic segmentation of body parts exploiting curve skeleton processing and ad hoc heuristics able to remove problems due to different acquisition poses and body types. The software is able to locate body trunk and limbs, detect their directions, and compute parameters like volumes, areas, girths, and lengths. Experimental results demonstrate that measurements provided by our system on 3-D body scans of normal and overweight subjects acquired in different poses are highly correlated with the body fat estimates obtained on the same subjects with dual-energy X-rays absorptiometry (DXA) scanning. In particular, maximal lengths and girths, not requiring precise localization of anatomical landmarks, demonstrate a good correlation (up to 96%) with the body fat and trunk fat. Regression models based on our automatic measurements can be used to predict body fat values reasonably well.
Attribute And-Or Grammar for Joint Parsing of Human Pose, Parts and Attributes.
Park, Seyoung; Nie, Xiaohan; Zhu, Song-Chun
2017-07-25
This paper presents an attribute and-or grammar (A-AOG) model for jointly inferring human body pose and human attributes in a parse graph with attributes augmented to nodes in the hierarchical representation. In contrast to other popular methods in the current literature that train separate classifiers for poses and individual attributes, our method explicitly represents the decomposition and articulation of body parts, and account for the correlations between poses and attributes. The A-AOG model is an amalgamation of three traditional grammar formulations: (i)Phrase structure grammar representing the hierarchical decomposition of the human body from whole to parts; (ii)Dependency grammar modeling the geometric articulation by a kinematic graph of the body pose; and (iii)Attribute grammar accounting for the compatibility relations between different parts in the hierarchy so that their appearances follow a consistent style. The parse graph outputs human detection, pose estimation, and attribute prediction simultaneously, which are intuitive and interpretable. We conduct experiments on two tasks on two datasets, and experimental results demonstrate the advantage of joint modeling in comparison with computing poses and attributes independently. Furthermore, our model obtains better performance over existing methods for both pose estimation and attribute prediction tasks.
Human Pose Estimation from Monocular Images: A Comprehensive Survey
Gong, Wenjuan; Zhang, Xuena; Gonzàlez, Jordi; Sobral, Andrews; Bouwmans, Thierry; Tu, Changhe; Zahzah, El-hadi
2016-01-01
Human pose estimation refers to the estimation of the location of body parts and how they are connected in an image. Human pose estimation from monocular images has wide applications (e.g., image indexing). Several surveys on human pose estimation can be found in the literature, but they focus on a certain category; for example, model-based approaches or human motion analysis, etc. As far as we know, an overall review of this problem domain has yet to be provided. Furthermore, recent advancements based on deep learning have brought novel algorithms for this problem. In this paper, a comprehensive survey of human pose estimation from monocular images is carried out including milestone works and recent advancements. Based on one standard pipeline for the solution of computer vision problems, this survey splits the problem into several modules: feature extraction and description, human body models, and modeling methods. Problem modeling methods are approached based on two means of categorization in this survey. One way to categorize includes top-down and bottom-up methods, and another way includes generative and discriminative methods. Considering the fact that one direct application of human pose estimation is to provide initialization for automatic video surveillance, there are additional sections for motion-related methods in all modules: motion features, motion models, and motion-based methods. Finally, the paper also collects 26 publicly available data sets for validation and provides error measurement methods that are frequently used. PMID:27898003
Adaptation of an articulated fetal skeleton model to three-dimensional fetal image data
NASA Astrophysics Data System (ADS)
Klinder, Tobias; Wendland, Hannes; Wachter-Stehle, Irina; Roundhill, David; Lorenz, Cristian
2015-03-01
The automatic interpretation of three-dimensional fetal images poses specific challenges compared to other three-dimensional diagnostic data, especially since the orientation of the fetus in the uterus and the position of the extremities is highly variable. In this paper, we present a comprehensive articulated model of the fetal skeleton and the adaptation of the articulation for pose estimation in three-dimensional fetal images. The model is composed out of rigid bodies where the articulations are represented as rigid body transformations. Given a set of target landmarks, the model constellation can be estimated by optimization of the pose parameters. Experiments are carried out on 3D fetal MRI data yielding an average error per case of 12.03+/-3.36 mm between target and estimated landmark positions.
Estimation of Full-Body Poses Using Only Five Inertial Sensors: An Eager or Lazy Learning Approach?
Wouda, Frank J.; Giuberti, Matteo; Bellusci, Giovanni; Veltink, Peter H.
2016-01-01
Human movement analysis has become easier with the wide availability of motion capture systems. Inertial sensing has made it possible to capture human motion without external infrastructure, therefore allowing measurements in any environment. As high-quality motion capture data is available in large quantities, this creates possibilities to further simplify hardware setups, by use of data-driven methods to decrease the number of body-worn sensors. In this work, we contribute to this field by analyzing the capabilities of using either artificial neural networks (eager learning) or nearest neighbor search (lazy learning) for such a problem. Sparse orientation features, resulting from sensor fusion of only five inertial measurement units with magnetometers, are mapped to full-body poses. Both eager and lazy learning algorithms are shown to be capable of constructing this mapping. The full-body output poses are visually plausible with an average joint position error of approximately 7 cm, and average joint angle error of 7∘. Additionally, the effects of magnetic disturbances typical in orientation tracking on the estimation of full-body poses was also investigated, where nearest neighbor search showed better performance for such disturbances. PMID:27983676
Estimation of Full-Body Poses Using Only Five Inertial Sensors: An Eager or Lazy Learning Approach?
Wouda, Frank J; Giuberti, Matteo; Bellusci, Giovanni; Veltink, Peter H
2016-12-15
Human movement analysis has become easier with the wide availability of motion capture systems. Inertial sensing has made it possible to capture human motion without external infrastructure, therefore allowing measurements in any environment. As high-quality motion capture data is available in large quantities, this creates possibilities to further simplify hardware setups, by use of data-driven methods to decrease the number of body-worn sensors. In this work, we contribute to this field by analyzing the capabilities of using either artificial neural networks (eager learning) or nearest neighbor search (lazy learning) for such a problem. Sparse orientation features, resulting from sensor fusion of only five inertial measurement units with magnetometers, are mapped to full-body poses. Both eager and lazy learning algorithms are shown to be capable of constructing this mapping. The full-body output poses are visually plausible with an average joint position error of approximately 7 cm, and average joint angle error of 7 ∘ . Additionally, the effects of magnetic disturbances typical in orientation tracking on the estimation of full-body poses was also investigated, where nearest neighbor search showed better performance for such disturbances.
Real-time upper-body human pose estimation from depth data using Kalman filter for simulator
NASA Astrophysics Data System (ADS)
Lee, D.; Chi, S.; Park, C.; Yoon, H.; Kim, J.; Park, C. H.
2014-08-01
Recently, many studies show that an indoor horse riding exercise has a positive effect on promoting health and diet. However, if a rider has an incorrect posture, it will be the cause of back pain. In spite of this problem, there is only few research on analyzing rider's posture. Therefore, the purpose of this study is to estimate a rider pose from a depth image using the Asus's Xtion sensor in real time. In the experiments, we show the performance of our pose estimation algorithm in order to comparing the results between our joint estimation algorithm and ground truth data.
NASA Astrophysics Data System (ADS)
Zhu, Aichun; Wang, Tian; Snoussi, Hichem
2018-03-01
This paper addresses the problems of the graphical-based human pose estimation in still images, including the diversity of appearances and confounding background clutter. We present a new architecture for estimating human pose using a Convolutional Neural Network (CNN). Firstly, a Relative Mixture Deformable Model (RMDM) is defined by each pair of connected parts to compute the relative spatial information in the graphical model. Secondly, a Local Multi-Resolution Convolutional Neural Network (LMR-CNN) is proposed to train and learn the multi-scale representation of each body parts by combining different levels of part context. Thirdly, a LMR-CNN based hierarchical model is defined to explore the context information of limb parts. Finally, the experimental results demonstrate the effectiveness of the proposed deep learning approach for human pose estimation.
An evaluation of 3D head pose estimation using the Microsoft Kinect v2.
Darby, John; Sánchez, María B; Butler, Penelope B; Loram, Ian D
2016-07-01
The Kinect v2 sensor supports real-time non-invasive 3D head pose estimation. Because the sensor is small, widely available and relatively cheap it has great potential as a tool for groups interested in measuring head posture. In this paper we compare the Kinect's head pose estimates with a marker-based record of ground truth in order to establish its accuracy. During movement of the head and neck alone (with static torso), we find average errors in absolute yaw, pitch and roll angles of 2.0±1.2°, 7.3±3.2° and 2.6±0.7°, and in rotations relative to the rest pose of 1.4±0.5°, 2.1±0.4° and 2.0±0.8°. Larger head rotations where it becomes difficult to see facial features can cause estimation to fail (10.2±6.1% of all poses in our static torso range of motion tests) but we found no significant changes in performance with the participant standing further away from Kinect - additionally enabling full-body pose estimation - or without performing face shape calibration, something which is not always possible for younger or disabled participants. Where facial features remain visible, the sensor has applications in the non-invasive assessment of postural control, e.g. during a programme of physical therapy. In particular, a multi-Kinect setup covering the full range of head (and body) movement would appear to be a promising way forward. Copyright © 2016 Elsevier B.V. All rights reserved.
An improved silhouette for human pose estimation
NASA Astrophysics Data System (ADS)
Hawes, Anthony H.; Iftekharuddin, Khan M.
2017-08-01
We propose a novel method for analyzing images that exploits the natural lines of a human poses to find areas where self-occlusion could be present. Errors caused by self-occlusion cause several modern human pose estimation methods to mis-identify body parts, which reduces the performance of most action recognition algorithms. Our method is motivated by the observation that, in several cases, occlusion can be reasoned using only boundary lines of limbs. An intelligent edge detection algorithm based on the above principle could be used to augment the silhouette with information useful for pose estimation algorithms and push forward progress on occlusion handling for human action recognition. The algorithm described is applicable to computer vision scenarios involving 2D images and (appropriated flattened) 3D images.
Dynamic Human Body Modeling Using a Single RGB Camera.
Zhu, Haiyu; Yu, Yao; Zhou, Yu; Du, Sidan
2016-03-18
In this paper, we present a novel automatic pipeline to build personalized parametric models of dynamic people using a single RGB camera. Compared to previous approaches that use monocular RGB images, our system can model a 3D human body automatically and incrementally, taking advantage of human motion. Based on coarse 2D and 3D poses estimated from image sequences, we first perform a kinematic classification of human body parts to refine the poses and obtain reconstructed body parts. Next, a personalized parametric human model is generated by driving a general template to fit the body parts and calculating the non-rigid deformation. Experimental results show that our shape estimation method achieves comparable accuracy with reconstructed models using depth cameras, yet requires neither user interaction nor any dedicated devices, leading to the feasibility of using this method on widely available smart phones.
Dynamic Human Body Modeling Using a Single RGB Camera
Zhu, Haiyu; Yu, Yao; Zhou, Yu; Du, Sidan
2016-01-01
In this paper, we present a novel automatic pipeline to build personalized parametric models of dynamic people using a single RGB camera. Compared to previous approaches that use monocular RGB images, our system can model a 3D human body automatically and incrementally, taking advantage of human motion. Based on coarse 2D and 3D poses estimated from image sequences, we first perform a kinematic classification of human body parts to refine the poses and obtain reconstructed body parts. Next, a personalized parametric human model is generated by driving a general template to fit the body parts and calculating the non-rigid deformation. Experimental results show that our shape estimation method achieves comparable accuracy with reconstructed models using depth cameras, yet requires neither user interaction nor any dedicated devices, leading to the feasibility of using this method on widely available smart phones. PMID:26999159
A Single Camera Motion Capture System for Human-Computer Interaction
NASA Astrophysics Data System (ADS)
Okada, Ryuzo; Stenger, Björn
This paper presents a method for markerless human motion capture using a single camera. It uses tree-based filtering to efficiently propagate a probability distribution over poses of a 3D body model. The pose vectors and associated shapes are arranged in a tree, which is constructed by hierarchical pairwise clustering, in order to efficiently evaluate the likelihood in each frame. Anew likelihood function based on silhouette matching is proposed that improves the pose estimation of thinner body parts, i. e. the limbs. The dynamic model takes self-occlusion into account by increasing the variance of occluded body-parts, thus allowing for recovery when the body part reappears. We present two applications of our method that work in real-time on a Cell Broadband Engine™: a computer game and a virtual clothing application.
Accurate estimation of human body orientation from RGB-D sensors.
Liu, Wu; Zhang, Yongdong; Tang, Sheng; Tang, Jinhui; Hong, Richang; Li, Jintao
2013-10-01
Accurate estimation of human body orientation can significantly enhance the analysis of human behavior, which is a fundamental task in the field of computer vision. However, existing orientation estimation methods cannot handle the various body poses and appearances. In this paper, we propose an innovative RGB-D-based orientation estimation method to address these challenges. By utilizing the RGB-D information, which can be real time acquired by RGB-D sensors, our method is robust to cluttered environment, illumination change and partial occlusions. Specifically, efficient static and motion cue extraction methods are proposed based on the RGB-D superpixels to reduce the noise of depth data. Since it is hard to discriminate all the 360 (°) orientation using static cues or motion cues independently, we propose to utilize a dynamic Bayesian network system (DBNS) to effectively employ the complementary nature of both static and motion cues. In order to verify our proposed method, we build a RGB-D-based human body orientation dataset that covers a wide diversity of poses and appearances. Our intensive experimental evaluations on this dataset demonstrate the effectiveness and efficiency of the proposed method.
Realtime Reconstruction of an Animating Human Body from a Single Depth Camera.
Chen, Yin; Cheng, Zhi-Quan; Lai, Chao; Martin, Ralph R; Dang, Gang
2016-08-01
We present a method for realtime reconstruction of an animating human body,which produces a sequence of deforming meshes representing a given performance captured by a single commodity depth camera. We achieve realtime single-view mesh completion by enhancing the parameterized SCAPE model.Our method, which we call Realtime SCAPE, performs full-body reconstruction without the use of markers.In Realtime SCAPE, estimations of body shape parameters and pose parameters, needed for reconstruction, are decoupled. Intrinsic body shape is first precomputed for a given subject, by determining shape parameters with the aid of a body shape database. Subsequently, per-frame pose parameter estimation is performed by means of linear blending skinning (LBS); the problem is decomposed into separately finding skinning weights and transformations. The skinning weights are also determined offline from the body shape database,reducing online reconstruction to simply finding the transformations in LBS. Doing so is formulated as a linear variational problem;carefully designed constraints are used to impose temporal coherence and alleviate artifacts. Experiments demonstrate that our method can produce full-body mesh sequences with high fidelity.
Real-time 3D human pose recognition from reconstructed volume via voxel classifiers
NASA Astrophysics Data System (ADS)
Yoo, ByungIn; Choi, Changkyu; Han, Jae-Joon; Lee, Changkyo; Kim, Wonjun; Suh, Sungjoo; Park, Dusik; Kim, Junmo
2014-03-01
This paper presents a human pose recognition method which simultaneously reconstructs a human volume based on ensemble of voxel classifiers from a single depth image in real-time. The human pose recognition is a difficult task since a single depth camera can capture only visible surfaces of a human body. In order to recognize invisible (self-occluded) surfaces of a human body, the proposed algorithm employs voxel classifiers trained with multi-layered synthetic voxels. Specifically, ray-casting onto a volumetric human model generates a synthetic voxel, where voxel consists of a 3D position and ID corresponding to the body part. The synthesized volumetric data which contain both visible and invisible body voxels are utilized to train the voxel classifiers. As a result, the voxel classifiers not only identify the visible voxels but also reconstruct the 3D positions and the IDs of the invisible voxels. The experimental results show improved performance on estimating the human poses due to the capability of inferring the invisible human body voxels. It is expected that the proposed algorithm can be applied to many fields such as telepresence, gaming, virtual fitting, wellness business, and real 3D contents control on real 3D displays.
Solav, Dana; Camomilla, Valentina; Cereatti, Andrea; Barré, Arnaud; Aminian, Kamiar; Wolf, Alon
2017-09-06
The aim of this study was to analyze the accuracy of bone pose estimation based on sub-clusters of three skin-markers characterized by triangular Cosserat point elements (TCPEs) and to evaluate the capability of four instantaneous physical parameters, which can be measured non-invasively in vivo, to identify the most accurate TCPEs. Moreover, TCPE pose estimations were compared with the estimations of two least squares minimization methods applied to the cluster of all markers, using rigid body (RBLS) and homogeneous deformation (HDLS) assumptions. Analysis was performed on previously collected in vivo treadmill gait data composed of simultaneous measurements of the gold-standard bone pose by bi-plane fluoroscopy tracking the subjects' knee prosthesis and a stereophotogrammetric system tracking skin-markers affected by soft tissue artifact. Femur orientation and position errors estimated from skin-marker clusters were computed for 18 subjects using clusters of up to 35 markers. Results based on gold-standard data revealed that instantaneous subsets of TCPEs exist which estimate the femur pose with reasonable accuracy (median root mean square error during stance/swing: 1.4/2.8deg for orientation, 1.5/4.2mm for position). A non-invasive and instantaneous criteria to select accurate TCPEs for pose estimation (4.8/7.3deg, 5.8/12.3mm), was compared with RBLS (4.3/6.6deg, 6.9/16.6mm) and HDLS (4.6/7.6deg, 6.7/12.5mm). Accounting for homogeneous deformation, using HDLS or selected TCPEs, yielded more accurate position estimations than RBLS method, which, conversely, yielded more accurate orientation estimations. Further investigation is required to devise effective criteria for cluster selection that could represent a significant improvement in bone pose estimation accuracy. Copyright © 2017 Elsevier Ltd. All rights reserved.
Rhythmic Extended Kalman Filter for Gait Rehabilitation Motion Estimation and Segmentation.
Joukov, Vladimir; Bonnet, Vincent; Karg, Michelle; Venture, Gentiane; Kulic, Dana
2018-02-01
This paper proposes a method to enable the use of non-intrusive, small, wearable, and wireless sensors to estimate the pose of the lower body during gait and other periodic motions and to extract objective performance measures useful for physiotherapy. The Rhythmic Extended Kalman Filter (Rhythmic-EKF) algorithm is developed to estimate the pose, learn an individualized model of periodic movement over time, and use the learned model to improve pose estimation. The proposed approach learns a canonical dynamical system model of the movement during online observation, which is used to accurately model the acceleration during pose estimation. The canonical dynamical system models the motion as a periodic signal. The estimated phase and frequency of the motion also allow the proposed approach to segment the motion into repetitions and extract useful features, such as gait symmetry, step length, and mean joint movement and variance. The algorithm is shown to outperform the extended Kalman filter in simulation, on healthy participant data, and stroke patient data. For the healthy participant marching dataset, the Rhythmic-EKF improves joint acceleration and velocity estimates over regular EKF by 40% and 37%, respectively, estimates joint angles with 2.4° root mean squared error, and segments the motion into repetitions with 96% accuracy.
Drory, Ami; Li, Hongdong; Hartley, Richard
2017-04-11
We present a supervised machine learning approach for markerless estimation of human full-body kinematics for a cyclist from an unconstrained colour image. This approach is motivated by the limitations of existing marker-based approaches restricted by infrastructure, environmental conditions, and obtrusive markers. By using a discriminatively learned mixture-of-parts model, we construct a probabilistic tree representation to model the configuration and appearance of human body joints. During the learning stage, a Structured Support Vector Machine (SSVM) learns body parts appearance and spatial relations. In the testing stage, the learned models are employed to recover body pose via searching in a test image over a pyramid structure. We focus on the movement modality of cycling to demonstrate the efficacy of our approach. In natura estimation of cycling kinematics using images is challenging because of human interaction with a bicycle causing frequent occlusions. We make no assumptions in relation to the kinematic constraints of the model, nor the appearance of the scene. Our technique finds multiple quality hypotheses for the pose. We evaluate the precision of our method on two new datasets using loss functions. Our method achieves a score of 91.1 and 69.3 on mean Probability of Correct Keypoint (PCK) measure and 88.7 and 66.1 on the Average Precision of Keypoints (APK) measure for the frontal and sagittal datasets respectively. We conclude that our method opens new vistas to robust user-interaction free estimation of full body kinematics, a prerequisite to motion analysis. Copyright © 2017 Elsevier Ltd. All rights reserved.
Pose estimation and tracking of non-cooperative rocket bodies using Time-of-Flight cameras
NASA Astrophysics Data System (ADS)
Gómez Martínez, Harvey; Giorgi, Gabriele; Eissfeller, Bernd
2017-10-01
This paper presents a methodology for estimating the position and orientation of a rocket body in orbit - the target - undergoing a roto-translational motion, with respect to a chaser spacecraft, whose task is to match the target dynamics for a safe rendezvous. During the rendezvous maneuver the chaser employs a Time-of-Flight camera that acquires a point cloud of 3D coordinates mapping the sensed target surface. Once the system identifies the target, it initializes the chaser-to-target relative position and orientation. After initialization, a tracking procedure enables the system to sense the evolution of the target's pose between frames. The proposed algorithm is evaluated using simulated point clouds, generated with a CAD model of the Cosmos-3M upper stage and the PMD CamCube 3.0 camera specifications.
A Layered Approach for Robust Spatial Virtual Human Pose Reconstruction Using a Still Image
Guo, Chengyu; Ruan, Songsong; Liang, Xiaohui; Zhao, Qinping
2016-01-01
Pedestrian detection and human pose estimation are instructive for reconstructing a three-dimensional scenario and for robot navigation, particularly when large amounts of vision data are captured using various data-recording techniques. Using an unrestricted capture scheme, which produces occlusions or breezing, the information describing each part of a human body and the relationship between each part or even different pedestrians must be present in a still image. Using this framework, a multi-layered, spatial, virtual, human pose reconstruction framework is presented in this study to recover any deficient information in planar images. In this framework, a hierarchical parts-based deep model is used to detect body parts by using the available restricted information in a still image and is then combined with spatial Markov random fields to re-estimate the accurate joint positions in the deep network. Then, the planar estimation results are mapped onto a virtual three-dimensional space using multiple constraints to recover any deficient spatial information. The proposed approach can be viewed as a general pre-processing method to guide the generation of continuous, three-dimensional motion data. The experiment results of this study are used to describe the effectiveness and usability of the proposed approach. PMID:26907289
Hand Pose Estimation by Fusion of Inertial and Magnetic Sensing Aided by a Permanent Magnet.
Kortier, Henk G; Antonsson, Jacob; Schepers, H Martin; Gustafsson, Fredrik; Veltink, Peter H
2015-09-01
Tracking human body motions using inertial sensors has become a well-accepted method in ambulatory applications since the subject is not confined to a lab-bounded volume. However, a major drawback is the inability to estimate relative body positions over time because inertial sensor information only allows position tracking through strapdown integration, but does not provide any information about relative positions. In addition, strapdown integration inherently results in drift of the estimated position over time. We propose a novel method in which a permanent magnet combined with 3-D magnetometers and 3-D inertial sensors are used to estimate the global trunk orientation and relative pose of the hand with respect to the trunk. An Extended Kalman Filter is presented to fuse estimates obtained from inertial sensors with magnetic updates such that the position and orientation between the human hand and trunk as well as the global trunk orientation can be estimated robustly. This has been demonstrated in multiple experiments in which various hand tasks were performed. The most complex task in which simultaneous movements of both trunk and hand were performed resulted in an average rms position difference with an optical reference system of 19.7±2.2 mm whereas the relative trunk-hand and global trunk orientation error was 2.3±0.9 and 8.6±8.7 deg respectively.
3-D rigid body tracking using vision and depth sensors.
Gedik, O Serdar; Alatan, A Aydn
2013-10-01
In robotics and augmented reality applications, model-based 3-D tracking of rigid objects is generally required. With the help of accurate pose estimates, it is required to increase reliability and decrease jitter in total. Among many solutions of pose estimation in the literature, pure vision-based 3-D trackers require either manual initializations or offline training stages. On the other hand, trackers relying on pure depth sensors are not suitable for AR applications. An automated 3-D tracking algorithm, which is based on fusion of vision and depth sensors via extended Kalman filter, is proposed in this paper. A novel measurement-tracking scheme, which is based on estimation of optical flow using intensity and shape index map data of 3-D point cloud, increases 2-D, as well as 3-D, tracking performance significantly. The proposed method requires neither manual initialization of pose nor offline training, while enabling highly accurate 3-D tracking. The accuracy of the proposed method is tested against a number of conventional techniques, and a superior performance is clearly observed in terms of both objectively via error metrics and subjectively for the rendered scenes.
Hybrid Orientation Based Human Limbs Motion Tracking Method
Glonek, Grzegorz; Wojciechowski, Adam
2017-01-01
One of the key technologies that lays behind the human–machine interaction and human motion diagnosis is the limbs motion tracking. To make the limbs tracking efficient, it must be able to estimate a precise and unambiguous position of each tracked human joint and resulting body part pose. In recent years, body pose estimation became very popular and broadly available for home users because of easy access to cheap tracking devices. Their robustness can be improved by different tracking modes data fusion. The paper defines the novel approach—orientation based data fusion—instead of dominating in literature position based approach, for two classes of tracking devices: depth sensors (i.e., Microsoft Kinect) and inertial measurement units (IMU). The detailed analysis of their working characteristics allowed to elaborate a new method that let fuse more precisely limbs orientation data from both devices and compensates their imprecisions. The paper presents the series of performed experiments that verified the method’s accuracy. This novel approach allowed to outperform the precision of position-based joints tracking, the methods dominating in the literature, of up to 18%. PMID:29232832
Viewpoint and pose in body-form adaptation.
Sekunova, Alla; Black, Michael; Parkinson, Laura; Barton, Jason J S
2013-01-01
Faces and bodies are complex structures, perception of which can play important roles in person identification and inference of emotional state. Face representations have been explored using behavioural adaptation: in particular, studies have shown that face aftereffects show relatively broad tuning for viewpoint, consistent with origin in a high-level structural descriptor far removed from the retinal image. Our goals were to determine first, if body aftereffects also showed a degree of viewpoint invariance, and second if they also showed pose invariance, given that changes in pose create even more dramatic changes in the 2-D retinal image. We used a 3-D model of the human body to generate headless body images, whose parameters could be varied to generate different body forms, viewpoints, and poses. In the first experiment, subjects adapted to varying viewpoints of either slim or heavy bodies in a neutral stance, followed by test stimuli that were all front-facing. In the second experiment, we used the same front-facing bodies in neutral stance as test stimuli, but compared adaptation from bodies in the same neutral stance to adaptation with the same bodies in different poses. We found that body aftereffects were obtained over substantial viewpoint changes, with no significant decline in aftereffect magnitude with increasing viewpoint difference between adapting and test images. Aftereffects also showed transfer across one change in pose but not across another. We conclude that body representations may have more viewpoint invariance than faces, and demonstrate at least some transfer across pose, consistent with a high-level structural description.
NASA Astrophysics Data System (ADS)
Sun, Liang; Zheng, Zewei
2017-04-01
An adaptive relative pose control strategy is proposed for a pursue spacecraft in proximity operations on a tumbling target. Relative position vector between two spacecraft is required to direct towards the docking port of the target while the attitude of them must be synchronized. With considering the thrust misalignment of pursuer, an integrated controller for relative translational and relative rotational dynamics is developed by using norm-wise adaptive estimations. Parametric uncertainties, unknown coupled dynamics, and bounded external disturbances are compensated online by adaptive update laws. It is proved via Lyapunov stability theory that the tracking errors of relative pose converge to zero asymptotically. Numerical simulations including six degrees-of-freedom rigid body dynamics are performed to demonstrate the effectiveness of the proposed controller.
The lighter side of advertising: investigating posing and lighting biases.
Thomas, Nicole A; Burkitt, Jennifer A; Patrick, Regan E; Elias, Lorin J
2008-11-01
People tend to display the left cheek when posing for a portrait; however, this effect does not appear to generalise to advertising. The amount of body visible in the image and the sex of the poser might also contribute to the posing bias. Portraits also exhibit lateral lighting biases, with most images being lit from the left. This effect might also be present in advertisements. A total of 2801 full-page advertisements were sampled and coded for posing direction, lighting direction, sex of model, and amount of body showing. Images of females showed an overall leftward posing bias, but the biases in males depended on the amount of body visible. Males demonstrated rightward posing biases for head-only images. Overall, images tended to be lit from the top left corner. The two factors of posing and lighting biases appear to influence one another. Leftward-lit images had more leftward poses than rightward, while the opposite occurred for rightward-lit images. Collectively, these results demonstrate that the posing biases in advertisements are dependent on the amount of body showing in the image, and that biases in lighting direction interact with these posing biases.
van der Kruk, E; Schwab, A L; van der Helm, F C T; Veeger, H E J
2018-03-01
In gait studies body pose reconstruction (BPR) techniques have been widely explored, but no previous protocols have been developed for speed skating, while the peculiarities of the skating posture and technique do not automatically allow for the transfer of the results of those explorations to kinematic skating data. The aim of this paper is to determine the best procedure for body pose reconstruction and inverse dynamics of speed skating, and to what extend this choice influences the estimation of joint power. The results show that an eight body segment model together with a global optimization method with revolute joint in the knee and in the lumbosacral joint, while keeping the other joints spherical, would be the most realistic model to use for the inverse kinematics in speed skating. To determine joint power, this method should be combined with a least-square error method for the inverse dynamics. Reporting on the BPR technique and the inverse dynamic method is crucial to enable comparison between studies. Our data showed an underestimation of up to 74% in mean joint power when no optimization procedure was applied for BPR and an underestimation of up to 31% in mean joint power when a bottom-up inverse dynamics method was chosen instead of a least square error approach. Although these results are aimed at speed skating, reporting on the BPR procedure and the inverse dynamics method, together with setting a golden standard should be common practice in all human movement research to allow comparison between studies. Copyright © 2018 Elsevier Ltd. All rights reserved.
Image-based aircraft pose estimation: a comparison of simulations and real-world data
NASA Astrophysics Data System (ADS)
Breuers, Marcel G. J.; de Reus, Nico
2001-10-01
The problem of estimating aircraft pose information from mono-ocular image data is considered using a Fourier descriptor based algorithm. The dependence of pose estimation accuracy on image resolution and aspect angle is investigated through simulations using sets of synthetic aircraft images. Further evaluation shows that god pose estimation accuracy can be obtained in real world image sequences.
NASA Astrophysics Data System (ADS)
Fu, Deqian; Gao, Lisheng; Jhang, Seong Tae
2012-04-01
The mobile computing device has many limitations, such as relative small user interface and slow computing speed. Usually, augmented reality requires face pose estimation can be used as a HCI and entertainment tool. As far as the realtime implementation of head pose estimation on relatively resource limited mobile platforms is concerned, it is required to face different constraints while leaving enough face pose estimation accuracy. The proposed face pose estimation method met this objective. Experimental results running on a testing Android mobile device delivered satisfactory performing results in the real-time and accurately.
Viewpoint Invariant Gesture Recognition and 3D Hand Pose Estimation Using RGB-D
ERIC Educational Resources Information Center
Doliotis, Paul
2013-01-01
The broad application domain of the work presented in this thesis is pattern classification with a focus on gesture recognition and 3D hand pose estimation. One of the main contributions of the proposed thesis is a novel method for 3D hand pose estimation using RGB-D. Hand pose estimation is formulated as a database retrieval problem. The proposed…
Miller, Karl; Turró, R; Greve, J W; Bakker, C M; Buchwald, J N; Espinós, J C
2017-02-01
Pose SM is an endolumenal weight-loss intervention in which suture anchors are placed endoscopically in the gastric fundus/distal gastric body. Observational studies of pose have shown safe, effective weight loss. Twelve-month results of a randomized controlled trial comparing weight loss and satiety after pose vs. conventional medical therapy are reported. Subjects with classes I-II obesity were randomized in a 3:1 ratio to pose or diet/exercise guidance only (control). Pose subjects received gastric fundus and distal body suture-anchor plications with diet/exercise counseling. Total body (%TBWL) and excess weight loss (%EWL) were assessed at 6 and 12 months. Analysis of covariance (ANCOVA) was used to analyze 12-month %TBWL. Satiety changes were assessed at 6 and 12 months. From November 2013 to July 2014, 44 subjects were randomized (34, 77.3 % female; mean age, 38.3 ± 10.7 years; body mass index, 36.5 ± 3.4 kg/m 2 ) to pose (n = 34) or control (n = 10) groups in three centers. Mean pose procedure time was 51.8 ± 14.5 min; pose subjects received a mean 8.8 ± 1.3 fundal and 4.2 ± 0.7 distal body plications. Twelve-month TBWL: pose, 13.0 % (EWL, 45.0 %), n = 30 vs. control group, 5.3 % (18.1 %), n = 9; significant mean difference, 7.7 % (95 % CI 2.2, 13.2; p < 0.01). Pose subjects showed significant reductions in satiety parameters (p < 0.001); controls experienced reduced caloric intake and satiety volume (p < 0.05). No serious device- or procedure-related adverse events occurred. In a randomized controlled trial at 12 months, pose-treated subjects had significantly greater weight loss than those treated with diet/exercise guidance alone. At 6 and 12 months, pose subjects showed significant reduction in satiety parameters. clinicaltrials.gov identifier # NCT01843231.
Comparative assessment of techniques for initial pose estimation using monocular vision
NASA Astrophysics Data System (ADS)
Sharma, Sumant; D`Amico, Simone
2016-06-01
This work addresses the comparative assessment of initial pose estimation techniques for monocular navigation to enable formation-flying and on-orbit servicing missions. Monocular navigation relies on finding an initial pose, i.e., a coarse estimate of the attitude and position of the space resident object with respect to the camera, based on a minimum number of features from a three dimensional computer model and a single two dimensional image. The initial pose is estimated without the use of fiducial markers, without any range measurements or any apriori relative motion information. Prior work has been done to compare different pose estimators for terrestrial applications, but there is a lack of functional and performance characterization of such algorithms in the context of missions involving rendezvous operations in the space environment. Use of state-of-the-art pose estimation algorithms designed for terrestrial applications is challenging in space due to factors such as limited on-board processing power, low carrier to noise ratio, and high image contrasts. This paper focuses on performance characterization of three initial pose estimation algorithms in the context of such missions and suggests improvements.
Point Cloud Based Relative Pose Estimation of a Satellite in Close Range
Liu, Lujiang; Zhao, Gaopeng; Bo, Yuming
2016-01-01
Determination of the relative pose of satellites is essential in space rendezvous operations and on-orbit servicing missions. The key problems are the adoption of suitable sensor on board of a chaser and efficient techniques for pose estimation. This paper aims to estimate the pose of a target satellite in close range on the basis of its known model by using point cloud data generated by a flash LIDAR sensor. A novel model based pose estimation method is proposed; it includes a fast and reliable pose initial acquisition method based on global optimal searching by processing the dense point cloud data directly, and a pose tracking method based on Iterative Closest Point algorithm. Also, a simulation system is presented in this paper in order to evaluate the performance of the sensor and generate simulated sensor point cloud data. It also provides truth pose of the test target so that the pose estimation error can be quantified. To investigate the effectiveness of the proposed approach and achievable pose accuracy, numerical simulation experiments are performed; results demonstrate algorithm capability of operating with point cloud directly and large pose variations. Also, a field testing experiment is conducted and results show that the proposed method is effective. PMID:27271633
Estimating satellite pose and motion parameters using a novelty filter and neural net tracker
NASA Technical Reports Server (NTRS)
Lee, Andrew J.; Casasent, David; Vermeulen, Pieter; Barnard, Etienne
1989-01-01
A system for determining the position, orientation and motion of a satellite with respect to a robotic spacecraft using video data is advanced. This system utilizes two levels of pose and motion estimation: an initial system which provides coarse estimates of pose and motion, and a second system which uses the coarse estimates and further processing to provide finer pose and motion estimates. The present paper emphasizes the initial coarse pose and motion estimation sybsystem. This subsystem utilizes novelty detection and filtering for locating novel parts and a neural net tracker to track these parts over time. Results of using this system on a sequence of images of a spin stabilized satellite are presented.
Point cloud modeling using the homogeneous transformation for non-cooperative pose estimation
NASA Astrophysics Data System (ADS)
Lim, Tae W.
2015-06-01
A modeling process to simulate point cloud range data that a lidar (light detection and ranging) sensor produces is presented in this paper in order to support the development of non-cooperative pose (relative attitude and position) estimation approaches which will help improve proximity operation capabilities between two adjacent vehicles. The algorithms in the modeling process were based on the homogeneous transformation, which has been employed extensively in robotics and computer graphics, as well as in recently developed pose estimation algorithms. Using a flash lidar in a laboratory testing environment, point cloud data of a test article was simulated and compared against the measured point cloud data. The simulated and measured data sets match closely, validating the modeling process. The modeling capability enables close examination of the characteristics of point cloud images of an object as it undergoes various translational and rotational motions. Relevant characteristics that will be crucial in non-cooperative pose estimation were identified such as shift, shadowing, perspective projection, jagged edges, and differential point cloud density. These characteristics will have to be considered in developing effective non-cooperative pose estimation algorithms. The modeling capability will allow extensive non-cooperative pose estimation performance simulations prior to field testing, saving development cost and providing performance metrics of the pose estimation concepts and algorithms under evaluation. The modeling process also provides "truth" pose of the test objects with respect to the sensor frame so that the pose estimation error can be quantified.
Incorporating structure from motion uncertainty into image-based pose estimation
NASA Astrophysics Data System (ADS)
Ludington, Ben T.; Brown, Andrew P.; Sheffler, Michael J.; Taylor, Clark N.; Berardi, Stephen
2015-05-01
A method for generating and utilizing structure from motion (SfM) uncertainty estimates within image-based pose estimation is presented. The method is applied to a class of problems in which SfM algorithms are utilized to form a geo-registered reference model of a particular ground area using imagery gathered during flight by a small unmanned aircraft. The model is then used to form camera pose estimates in near real-time from imagery gathered later. The resulting pose estimates can be utilized by any of the other onboard systems (e.g. as a replacement for GPS data) or downstream exploitation systems, e.g., image-based object trackers. However, many of the consumers of pose estimates require an assessment of the pose accuracy. The method for generating the accuracy assessment is presented. First, the uncertainty in the reference model is estimated. Bundle Adjustment (BA) is utilized for model generation. While the high-level approach for generating a covariance matrix of the BA parameters is straightforward, typical computing hardware is not able to support the required operations due to the scale of the optimization problem within BA. Therefore, a series of sparse matrix operations is utilized to form an exact covariance matrix for only the parameters that are needed at a particular moment. Once the uncertainty in the model has been determined, it is used to augment Perspective-n-Point pose estimation algorithms to improve the pose accuracy and to estimate the resulting pose uncertainty. The implementation of the described method is presented along with results including results gathered from flight test data.
Ectotherm thermal stress and specialization across altitude and latitude.
Buckley, Lauren B; Miller, Ethan F; Kingsolver, Joel G
2013-10-01
Gradients of air temperature, radiation, and other climatic factors change systematically but differently with altitude and latitude. We explore how these factors combine to produce altitudinal and latitudinal patterns of body temperature, thermal stress, and seasonal overlap that differ markedly from patterns based solely on air temperature. We use biophysical models to estimate body temperature as a function of an organism's phenotype and environmental conditions (air and surface temperatures and radiation). Using grasshoppers as a case study, we compare mean body temperatures and the incidence of thermal extremes along altitudinal gradients both under past and current climates. Organisms at high elevation can experience frequent thermal stress despite generally cooler air temperatures due to high levels of solar radiation. Incidences of thermal stress have increased more rapidly than have increases in mean conditions due to recent climate change. Increases in air temperature have coincided with shifts in cloudiness and solar radiation, which can exacerbate shifts in body temperature. We compare altitudinal thermal gradients and their seasonality between tropical and temperate mountains to ask whether mountain passes pose a greater physiological barrier in the tropics (Janzen's hypothesis). We find that considering body temperature rather than air temperature generally increases the amount of overlap in thermal conditions along gradients in elevation and thus decreases the physiological barrier posed by tropical mountains. Our analysis highlights the limitations of predicting thermal stress based solely on air temperatures, and the importance of considering how phenotypes influence body temperatures.
A robust vision-based sensor fusion approach for real-time pose estimation.
Assa, Akbar; Janabi-Sharifi, Farrokh
2014-02-01
Object pose estimation is of great importance to many applications, such as augmented reality, localization and mapping, motion capture, and visual servoing. Although many approaches based on a monocular camera have been proposed, only a few works have concentrated on applying multicamera sensor fusion techniques to pose estimation. Higher accuracy and enhanced robustness toward sensor defects or failures are some of the advantages of these schemes. This paper presents a new Kalman-based sensor fusion approach for pose estimation that offers higher accuracy and precision, and is robust to camera motion and image occlusion, compared to its predecessors. Extensive experiments are conducted to validate the superiority of this fusion method over currently employed vision-based pose estimation algorithms.
A Deformable Atlas of the Laboratory Mouse
Wang, Hongkai; Stout, David B.; Chatziioannou, Arion F.
2015-01-01
Purpose This paper presents a deformable mouse atlas of the laboratory mouse anatomy. This atlas is fully articulated and can be positioned into arbitrary body poses. The atlas can also adapt body weight by changing body length and fat amount. Procedures A training set of 103 micro-CT images was used to construct the atlas. A cage-based deformation method was applied to realize the articulated pose change. The weight-related body deformation was learned from the training set using a linear regression method. A conditional Gaussian model and thin-plate spline mapping were used to deform the internal organs following the changes of pose and weight. Results The atlas was deformed into different body poses and weights, and the deformation results were more realistic compared to the results achieved with other mouse atlases. The organ weights of this atlas matched well with the measurements of real mouse organ weights. This atlas can also be converted into voxelized images with labeled organs, pseudo CT images and tetrahedral mesh for phantom studies. Conclusions With the unique ability of articulated pose and weight changes, the deformable laboratory mouse atlas can become a valuable tool for preclinical image analysis. PMID:25049072
A pose estimation method for unmanned ground vehicles in GPS denied environments
NASA Astrophysics Data System (ADS)
Tamjidi, Amirhossein; Ye, Cang
2012-06-01
This paper presents a pose estimation method based on the 1-Point RANSAC EKF (Extended Kalman Filter) framework. The method fuses the depth data from a LIDAR and the visual data from a monocular camera to estimate the pose of a Unmanned Ground Vehicle (UGV) in a GPS denied environment. Its estimation framework continuy updates the vehicle's 6D pose state and temporary estimates of the extracted visual features' 3D positions. In contrast to the conventional EKF-SLAM (Simultaneous Localization And Mapping) frameworks, the proposed method discards feature estimates from the extended state vector once they are no longer observed for several steps. As a result, the extended state vector always maintains a reasonable size that is suitable for online calculation. The fusion of laser and visual data is performed both in the feature initialization part of the EKF-SLAM process and in the motion prediction stage. A RANSAC pose calculation procedure is devised to produce pose estimate for the motion model. The proposed method has been successfully tested on the Ford campus's LIDAR-Vision dataset. The results are compared with the ground truth data of the dataset and the estimation error is ~1.9% of the path length.
The rarity of "unusual" [corrected] dispositions of victim bodies: staging and posing.
Keppel, Robert D; Weis, Joseph G
2004-11-01
The act of leaving a victim's body in an unusual position is a conscious criminal action by an offender to thwart an investigation, shock the finder and investigators of the crime scene, or give perverted pleasure to the killer. The unusual position concepts of posing and staging a murder victim have been documented thoroughly and have been accepted by the courts as a definable phenomenon. One staging case and one posing case are outlined and reveal characteristics of those homicides. From the Washington State Attorney General's Homicide Investigation and Tracking System's database on murder covering the years 1981-2000 (a total of 5,224 cases), the relative frequency of unusual body dispositions is revealed as a very rare occurrence. Only 1.3% of victims are left in an unusual position, with 0.3% being posed and 0.1% being staged. The characteristics of these types of murders also set them apart: compared to all other murders, in staged murders the victims and killers are, on average, older. All victims and offenders in the staged murders are white, with victims being disproportionately white in murders with any kind of unusual body disposition. Likewise, females stand out as victims when the body is posed, staged, or left in other unusual positions. Whereas posed bodies are more likely to include sexual assault, often in serial murders, there is no evidence of either in the staged cases. Lastly, when a body is left in an unusual position, binding is more likely, as well as the use of more "hands on" means of killing the victim, such as stabbing or cutting weapons, bludgeons, ligatures, or hands and feet.
Head pose estimation in computer vision: a survey.
Murphy-Chutorian, Erik; Trivedi, Mohan Manubhai
2009-04-01
The capacity to estimate the head pose of another person is a common human ability that presents a unique challenge for computer vision systems. Compared to face detection and recognition, which have been the primary foci of face-related vision research, identity-invariant head pose estimation has fewer rigorously evaluated systems or generic solutions. In this paper, we discuss the inherent difficulties in head pose estimation and present an organized survey describing the evolution of the field. Our discussion focuses on the advantages and disadvantages of each approach and spans 90 of the most innovative and characteristic papers that have been published on this topic. We compare these systems by focusing on their ability to estimate coarse and fine head pose, highlighting approaches that are well suited for unconstrained environments.
Scan-based volume animation driven by locally adaptive articulated registrations.
Rhee, Taehyun; Lewis, J P; Neumann, Ulrich; Nayak, Krishna S
2011-03-01
This paper describes a complete system to create anatomically accurate example-based volume deformation and animation of articulated body regions, starting from multiple in vivo volume scans of a specific individual. In order to solve the correspondence problem across volume scans, a template volume is registered to each sample. The wide range of pose variations is first approximated by volume blend deformation (VBD), providing proper initialization of the articulated subject in different poses. A novel registration method is presented to efficiently reduce the computation cost while avoiding strong local minima inherent in complex articulated body volume registration. The algorithm highly constrains the degrees of freedom and search space involved in the nonlinear optimization, using hierarchical volume structures and locally constrained deformation based on the biharmonic clamped spline. Our registration step establishes a correspondence across scans, allowing a data-driven deformation approach in the volume domain. The results provide an occlusion-free person-specific 3D human body model, asymptotically accurate inner tissue deformations, and realistic volume animation of articulated movements driven by standard joint control estimated from the actual skeleton. Our approach also addresses the practical issues arising in using scans from living subjects. The robustness of our algorithms is tested by their applications on the hand, probably the most complex articulated region in the body, and the knee, a frequent subject area for medical imaging due to injuries. © 2011 IEEE
Optimal accelerometer placement on a robot arm for pose estimation
NASA Astrophysics Data System (ADS)
Wijayasinghe, Indika B.; Sanford, Joseph D.; Abubakar, Shamsudeen; Saadatzi, Mohammad Nasser; Das, Sumit K.; Popa, Dan O.
2017-05-01
The performance of robots to carry out tasks depends in part on the sensor information they can utilize. Usually, robots are fitted with angle joint encoders that are used to estimate the position and orientation (or the pose) of its end-effector. However, there are numerous situations, such as in legged locomotion, mobile manipulation, or prosthetics, where such joint sensors may not be present at every, or any joint. In this paper we study the use of inertial sensors, in particular accelerometers, placed on the robot that can be used to estimate the robot pose. Studying accelerometer placement on a robot involves many parameters that affect the performance of the intended positioning task. Parameters such as the number of accelerometers, their size, geometric placement and Signal-to-Noise Ratio (SNR) are included in our study of their effects for robot pose estimation. Due to the ubiquitous availability of inexpensive accelerometers, we investigated pose estimation gains resulting from using increasingly large numbers of sensors. Monte-Carlo simulations are performed with a two-link robot arm to obtain the expected value of an estimation error metric for different accelerometer configurations, which are then compared for optimization. Results show that, with a fixed SNR model, the pose estimation error decreases with increasing number of accelerometers, whereas for a SNR model that scales inversely to the accelerometer footprint, the pose estimation error increases with the number of accelerometers. It is also shown that the optimal placement of the accelerometers depends on the method used for pose estimation. The findings suggest that an integration-based method favors placement of accelerometers at the extremities of the robot links, whereas a kinematic-constraints-based method favors a more uniformly distributed placement along the robot links.
Space Vehicle Pose Estimation via Optical Correlation and Nonlinear Estimation
NASA Technical Reports Server (NTRS)
Rakoczy, John M.; Herren, Kenneth A.
2008-01-01
A technique for 6-degree-of-freedom (6DOF) pose estimation of space vehicles is being developed. This technique draws upon recent developments in implementing optical correlation measurements in a nonlinear estimator, which relates the optical correlation measurements to the pose states (orientation and position). For the optical correlator, the use of both conjugate filters and binary, phase-only filters in the design of synthetic discriminant function (SDF) filters is explored. A static neural network is trained a priori and used as the nonlinear estimator. New commercial animation and image rendering software is exploited to design the SDF filters and to generate a large filter set with which to train the neural network. The technique is applied to pose estimation for rendezvous and docking of free-flying spacecraft and to terrestrial surface mobility systems for NASA's Vision for Space Exploration. Quantitative pose estimation performance will be reported. Advantages and disadvantages of the implementation of this technique are discussed.
Space Vehicle Pose Estimation via Optical Correlation and Nonlinear Estimation
NASA Technical Reports Server (NTRS)
Rakoczy, John; Herren, Kenneth
2007-01-01
A technique for 6-degree-of-freedom (6DOF) pose estimation of space vehicles is being developed. This technique draws upon recent developments in implementing optical correlation measurements in a nonlinear estimator, which relates the optical correlation measurements to the pose states (orientation and position). For the optical correlator, the use of both conjugate filters and binary, phase-only filters in the design of synthetic discriminant function (SDF) filters is explored. A static neural network is trained a priori and used as the nonlinear estimator. New commercial animation and image rendering software is exploited to design the SDF filters and to generate a large filter set with which to train the neural network. The technique is applied to pose estimation for rendezvous and docking of free-flying spacecraft and to terrestrial surface mobility systems for NASA's Vision for Space Exploration. Quantitative pose estimation performance will be reported. Advantages and disadvantages of the implementation of this technique are discussed.
Yoga Poses Increase Subjective Energy and State Self-Esteem in Comparison to ‘Power Poses’
Golec de Zavala, Agnieszka; Lantos, Dorottya; Bowden, Deborah
2017-01-01
Research on beneficial consequences of yoga focuses on the effects of yogic breathing and meditation. Less is known about the psychological effects of performing yoga postures. The present study investigated the effects of yoga poses on subjective sense of energy and self-esteem. The effects of yoga postures were compared to the effects of ‘power poses,’ which arguably increase the sense of power and self-confidence due to their association with interpersonal dominance (Carney et al., 2010). The study tested the novel prediction that yoga poses, which are not associated with interpersonal dominance but increase bodily energy, would increase the subjective feeling of energy and therefore increase self-esteem compared to ‘high power’ and ‘low power’ poses. A two factorial, between participants design was employed. Participants performed either two standing yoga poses with open front of the body (n = 19), two standing yoga poses with covered front of the body (n = 22), two expansive, high power poses (n = 21), or two constrictive, low power poses (n = 20) for 1-min each. The results showed that yoga poses in comparison to ‘power poses’ increased self-esteem. This effect was mediated by an increased subjective sense of energy and was observed when baseline trait self-esteem was controlled for. These results suggest that the effects of performing open, expansive body postures may be driven by processes other than the poses’ association with interpersonal power and dominance. This study demonstrates that positive effects of yoga practice can occur after performing yoga poses for only 2 min. PMID:28553249
Head Pose Estimation on Eyeglasses Using Line Detection and Classification Approach
NASA Astrophysics Data System (ADS)
Setthawong, Pisal; Vannija, Vajirasak
This paper proposes a unique approach for head pose estimation of subjects with eyeglasses by using a combination of line detection and classification approaches. Head pose estimation is considered as an important non-verbal form of communication and could also be used in the area of Human-Computer Interface. A major improvement of the proposed approach is that it allows estimation of head poses at a high yaw/pitch angle when compared with existing geometric approaches, does not require expensive data preparation and training, and is generally fast when compared with other approaches.
Liu, Tao; Guo, Yin; Yang, Shourui; Yin, Shibin; Zhu, Jigui
2017-01-01
Industrial robots are expected to undertake ever more advanced tasks in the modern manufacturing industry, such as intelligent grasping, in which robots should be capable of recognizing the position and orientation of a part before grasping it. In this paper, a monocular-based 6-degree of freedom (DOF) pose estimation technology to enable robots to grasp large-size parts at informal poses is proposed. A camera was mounted on the robot end-flange and oriented to measure several featured points on the part before the robot moved to grasp it. In order to estimate the part pose, a nonlinear optimization model based on the camera object space collinearity error in different poses is established, and the initial iteration value is estimated with the differential transformation. Measuring poses of the camera are optimized based on uncertainty analysis. Also, the principle of the robotic intelligent grasping system was developed, with which the robot could adjust its pose to grasp the part. In experimental tests, the part poses estimated with the method described in this paper were compared with those produced by a laser tracker, and results show the RMS angle and position error are about 0.0228° and 0.4603 mm. Robotic intelligent grasping tests were also successfully performed in the experiments. PMID:28216555
Liu, Tao; Guo, Yin; Yang, Shourui; Yin, Shibin; Zhu, Jigui
2017-02-14
Industrial robots are expected to undertake ever more advanced tasks in the modern manufacturing industry, such as intelligent grasping, in which robots should be capable of recognizing the position and orientation of a part before grasping it. In this paper, a monocular-based 6-degree of freedom (DOF) pose estimation technology to enable robots to grasp large-size parts at informal poses is proposed. A camera was mounted on the robot end-flange and oriented to measure several featured points on the part before the robot moved to grasp it. In order to estimate the part pose, a nonlinear optimization model based on the camera object space collinearity error in different poses is established, and the initial iteration value is estimated with the differential transformation. Measuring poses of the camera are optimized based on uncertainty analysis. Also, the principle of the robotic intelligent grasping system was developed, with which the robot could adjust its pose to grasp the part. In experimental tests, the part poses estimated with the method described in this paper were compared with those produced by a laser tracker, and results show the RMS angle and position error are about 0.0228° and 0.4603 mm. Robotic intelligent grasping tests were also successfully performed in the experiments.
Fast human pose estimation using 3D Zernike descriptors
NASA Astrophysics Data System (ADS)
Berjón, Daniel; Morán, Francisco
2012-03-01
Markerless video-based human pose estimation algorithms face a high-dimensional problem that is frequently broken down into several lower-dimensional ones by estimating the pose of each limb separately. However, in order to do so they need to reliably locate the torso, for which they typically rely on time coherence and tracking algorithms. Their losing track usually results in catastrophic failure of the process, requiring human intervention and thus precluding their usage in real-time applications. We propose a very fast rough pose estimation scheme based on global shape descriptors built on 3D Zernike moments. Using an articulated model that we configure in many poses, a large database of descriptor/pose pairs can be computed off-line. Thus, the only steps that must be done on-line are the extraction of the descriptors for each input volume and a search against the database to get the most likely poses. While the result of such process is not a fine pose estimation, it can be useful to help more sophisticated algorithms to regain track or make more educated guesses when creating new particles in particle-filter-based tracking schemes. We have achieved a performance of about ten fps on a single computer using a database of about one million entries.
Head Pose Estimation Using Multilinear Subspace Analysis for Robot Human Awareness
NASA Technical Reports Server (NTRS)
Ivanov, Tonislav; Matthies, Larry; Vasilescu, M. Alex O.
2009-01-01
Mobile robots, operating in unconstrained indoor and outdoor environments, would benefit in many ways from perception of the human awareness around them. Knowledge of people's head pose and gaze directions would enable the robot to deduce which people are aware of the its presence, and to predict future motions of the people for better path planning. To make such inferences, requires estimating head pose on facial images that are combination of multiple varying factors, such as identity, appearance, head pose, and illumination. By applying multilinear algebra, the algebra of higher-order tensors, we can separate these factors and estimate head pose regardless of subject's identity or image conditions. Furthermore, we can automatically handle uncertainty in the size of the face and its location. We demonstrate a pipeline of on-the-move detection of pedestrians with a robot stereo vision system, segmentation of the head, and head pose estimation in cluttered urban street scenes.
Neuromorphic Event-Based 3D Pose Estimation
Reverter Valeiras, David; Orchard, Garrick; Ieng, Sio-Hoi; Benosman, Ryad B.
2016-01-01
Pose estimation is a fundamental step in many artificial vision tasks. It consists of estimating the 3D pose of an object with respect to a camera from the object's 2D projection. Current state of the art implementations operate on images. These implementations are computationally expensive, especially for real-time applications. Scenes with fast dynamics exceeding 30–60 Hz can rarely be processed in real-time using conventional hardware. This paper presents a new method for event-based 3D object pose estimation, making full use of the high temporal resolution (1 μs) of asynchronous visual events output from a single neuromorphic camera. Given an initial estimate of the pose, each incoming event is used to update the pose by combining both 3D and 2D criteria. We show that the asynchronous high temporal resolution of the neuromorphic camera allows us to solve the problem in an incremental manner, achieving real-time performance at an update rate of several hundreds kHz on a conventional laptop. We show that the high temporal resolution of neuromorphic cameras is a key feature for performing accurate pose estimation. Experiments are provided showing the performance of the algorithm on real data, including fast moving objects, occlusions, and cases where the neuromorphic camera and the object are both in motion. PMID:26834547
Manifolds for pose tracking from monocular video
NASA Astrophysics Data System (ADS)
Basu, Saurav; Poulin, Joshua; Acton, Scott T.
2015-03-01
We formulate a simple human-pose tracking theory from monocular video based on the fundamental relationship between changes in pose and image motion vectors. We investigate the natural embedding of the low-dimensional body pose space into a high-dimensional space of body configurations that behaves locally in a linear manner. The embedded manifold facilitates the decomposition of the image motion vectors into basis motion vector fields of the tangent space to the manifold. This approach benefits from the style invariance of image motion flow vectors, and experiments to validate the fundamental theory show reasonable accuracy (within 4.9 deg of the ground truth).
NASA Astrophysics Data System (ADS)
Outerbridge, Gregory John, II
Pose estimation techniques have been developed on both optical and digital correlator platforms to aid in the autonomous rendezvous and docking of spacecraft. This research has focused on the optical architecture, which utilizes high-speed bipolar-phase grayscale-amplitude spatial light modulators as the image and correlation filter devices. The optical approach has the primary advantage of optical parallel processing: an extremely fast and efficient way of performing complex correlation calculations. However, the constraints imposed on optically implementable filters makes optical correlator based posed estimation technically incompatible with the popular weighted composite filter designs successfully used on the digital platform. This research employs a much simpler "bank of filters" approach to optical pose estimation that exploits the inherent efficiency of optical correlation devices. A novel logarithmically mapped optically implementable matched filter combined with a pose search algorithm resulted in sub-degree standard deviations in angular pose estimation error. These filters were extremely simple to generate, requiring no complicated training sets and resulted in excellent performance even in the presence of significant background noise. Common edge detection and scaling of the input image was the only image pre-processing necessary for accurate pose detection at all alignment distances of interest.
Pose estimation of industrial objects towards robot operation
NASA Astrophysics Data System (ADS)
Niu, Jie; Zhou, Fuqiang; Tan, Haishu; Cao, Yu
2017-10-01
With the advantages of wide range, non-contact and high flexibility, the visual estimation technology of target pose has been widely applied in modern industry, robot guidance and other engineering practices. However, due to the influence of complicated industrial environment, outside interference factors, lack of object characteristics, restrictions of camera and other limitations, the visual estimation technology of target pose is still faced with many challenges. Focusing on the above problems, a pose estimation method of the industrial objects is developed based on 3D models of targets. By matching the extracted shape characteristics of objects with the priori 3D model database of targets, the method realizes the recognition of target. Thus a pose estimation of objects can be determined based on the monocular vision measuring model. The experimental results show that this method can be implemented to estimate the position of rigid objects based on poor images information, and provides guiding basis for the operation of the industrial robot.
Constructing a Database from Multiple 2D Images for Camera Pose Estimation and Robot Localization
NASA Technical Reports Server (NTRS)
Wolf, Michael; Ansar, Adnan I.; Brennan, Shane; Clouse, Daniel S.; Padgett, Curtis W.
2012-01-01
The LMDB (Landmark Database) Builder software identifies persistent image features (landmarks) in a scene viewed multiple times and precisely estimates the landmarks 3D world positions. The software receives as input multiple 2D images of approximately the same scene, along with an initial guess of the camera poses for each image, and a table of features matched pair-wise in each frame. LMDB Builder aggregates landmarks across an arbitrarily large collection of frames with matched features. Range data from stereo vision processing can also be passed to improve the initial guess of the 3D point estimates. The LMDB Builder aggregates feature lists across all frames, manages the process to promote selected features to landmarks, and iteratively calculates the 3D landmark positions using the current camera pose estimations (via an optimal ray projection method), and then improves the camera pose estimates using the 3D landmark positions. Finally, it extracts image patches for each landmark from auto-selected key frames and constructs the landmark database. The landmark database can then be used to estimate future camera poses (and therefore localize a robotic vehicle that may be carrying the cameras) by matching current imagery to landmark database image patches and using the known 3D landmark positions to estimate the current pose.
Robust head pose estimation via supervised manifold learning.
Wang, Chao; Song, Xubo
2014-05-01
Head poses can be automatically estimated using manifold learning algorithms, with the assumption that with the pose being the only variable, the face images should lie in a smooth and low-dimensional manifold. However, this estimation approach is challenging due to other appearance variations related to identity, head location in image, background clutter, facial expression, and illumination. To address the problem, we propose to incorporate supervised information (pose angles of training samples) into the process of manifold learning. The process has three stages: neighborhood construction, graph weight computation and projection learning. For the first two stages, we redefine inter-point distance for neighborhood construction as well as graph weight by constraining them with the pose angle information. For Stage 3, we present a supervised neighborhood-based linear feature transformation algorithm to keep the data points with similar pose angles close together but the data points with dissimilar pose angles far apart. The experimental results show that our method has higher estimation accuracy than the other state-of-art algorithms and is robust to identity and illumination variations. Copyright © 2014 Elsevier Ltd. All rights reserved.
On Inertial Body Tracking in the Presence of Model Calibration Errors
Miezal, Markus; Taetz, Bertram; Bleser, Gabriele
2016-01-01
In inertial body tracking, the human body is commonly represented as a biomechanical model consisting of rigid segments with known lengths and connecting joints. The model state is then estimated via sensor fusion methods based on data from attached inertial measurement units (IMUs). This requires the relative poses of the IMUs w.r.t. the segments—the IMU-to-segment calibrations, subsequently called I2S calibrations—to be known. Since calibration methods based on static poses, movements and manual measurements are still the most widely used, potentially large human-induced calibration errors have to be expected. This work compares three newly developed/adapted extended Kalman filter (EKF) and optimization-based sensor fusion methods with an existing EKF-based method w.r.t. their segment orientation estimation accuracy in the presence of model calibration errors with and without using magnetometer information. While the existing EKF-based method uses a segment-centered kinematic chain biomechanical model and a constant angular acceleration motion model, the newly developed/adapted methods are all based on a free segments model, where each segment is represented with six degrees of freedom in the global frame. Moreover, these methods differ in the assumed motion model (constant angular acceleration, constant angular velocity, inertial data as control input), the state representation (segment-centered, IMU-centered) and the estimation method (EKF, sliding window optimization). In addition to the free segments representation, the optimization-based method also represents each IMU with six degrees of freedom in the global frame. In the evaluation on simulated and real data from a three segment model (an arm), the optimization-based method showed the smallest mean errors, standard deviations and maximum errors throughout all tests. It also showed the lowest dependency on magnetometer information and motion agility. Moreover, it was insensitive w.r.t. I2S position and segment length errors in the tested ranges. Errors in the I2S orientations were, however, linearly propagated into the estimated segment orientations. In the absence of magnetic disturbances, severe model calibration errors and fast motion changes, the newly developed IMU centered EKF-based method yielded comparable results with lower computational complexity. PMID:27455266
Exemplar-based human action pose correction.
Shen, Wei; Deng, Ke; Bai, Xiang; Leyvand, Tommer; Guo, Baining; Tu, Zhuowen
2014-07-01
The launch of Xbox Kinect has built a very successful computer vision product and made a big impact on the gaming industry. This sheds lights onto a wide variety of potential applications related to action recognition. The accurate estimation of human poses from the depth image is universally a critical step. However, existing pose estimation systems exhibit failures when facing severe occlusion. In this paper, we propose an exemplar-based method to learn to correct the initially estimated poses. We learn an inhomogeneous systematic bias by leveraging the exemplar information within a specific human action domain. Furthermore, as an extension, we learn a conditional model by incorporation of pose tags to further increase the accuracy of pose correction. In the experiments, significant improvements on both joint-based skeleton correction and tag prediction are observed over the contemporary approaches, including what is delivered by the current Kinect system. Our experiments for the facial landmark correction also illustrate that our algorithm can improve the accuracy of other detection/estimation systems.
Exploring point-cloud features from partial body views for gender classification
NASA Astrophysics Data System (ADS)
Fouts, Aaron; McCoppin, Ryan; Rizki, Mateen; Tamburino, Louis; Mendoza-Schrock, Olga
2012-06-01
In this paper we extend a previous exploration of histogram features extracted from 3D point cloud images of human subjects for gender discrimination. Feature extraction used a collection of concentric cylinders to define volumes for counting 3D points. The histogram features are characterized by a rotational axis and a selected set of volumes derived from the concentric cylinders. The point cloud images are drawn from the CAESAR anthropometric database provided by the Air Force Research Laboratory (AFRL) Human Effectiveness Directorate and SAE International. This database contains approximately 4400 high resolution LIDAR whole body scans of carefully posed human subjects. Success from our previous investigation was based on extracting features from full body coverage which required integration of multiple camera images. With the full body coverage, the central vertical body axis and orientation are readily obtainable; however, this is not the case with a one camera view providing less than one half body coverage. Assuming that the subjects are upright, we need to determine or estimate the position of the vertical axis and the orientation of the body about this axis relative to the camera. In past experiments the vertical axis was located through the center of mass of torso points projected on the ground plane and the body orientation derived using principle component analysis. In a natural extension of our previous work to partial body views, the absence of rotational invariance about the cylindrical axis greatly increases the difficulty for gender classification. Even the problem of estimating the axis is no longer simple. We describe some simple feasibility experiments that use partial image histograms. Here, the cylindrical axis is assumed to be known. We also discuss experiments with full body images that explore the sensitivity of classification accuracy relative to displacements of the cylindrical axis. Our initial results provide the basis for further investigation of more complex partial body viewing problems and new methods for estimating the two position coordinates for the axis location and the unknown body orientation angle.
Bianucci, R; Soldini, M; Di Vella, G; Verzé, L; Day, J
2015-01-01
Gunther von Hagens' development of plastination as a method for preserving human remains has enabled his public display of skinless, dissected bodies in a series of popular international exhibitions entitled Body Worlds. These spectacular displays claim to be educative, democratizing the study of anatomy and liberating it from the traditional confines of professional medical study. However, Body Worlds has raised various ethical objections to its commercial purpose, sourcing of some bodies and arrangement of bodies in poses or dissections that some viewers find offensive. Here we consider a different, often overlooked ethical conundrum raised by these exhibitions: the likelihood that the viewing of plastinates posed in 'frozen motion' is ill‑suited to the psychological development of young children (5-10 years old) whose understanding of death is still in formation. Often young children mistake corpses for models, even for living beings if they are posed in arrested motion. The educative value of Body Worlds for younger viewers is questionable and the display may even interfere with their understanding of death. If the exhibition of human remains can be justified where their authenticity can be made known to viewers and the remains invested by them with sympathetic emotional meaning, it may be pointless if not unethical to show quasi‑lifelike posed plastinates to young children in lieu of replica models.
Nonlinear features for classification and pose estimation of machined parts from single views
NASA Astrophysics Data System (ADS)
Talukder, Ashit; Casasent, David P.
1998-10-01
A new nonlinear feature extraction method is presented for classification and pose estimation of objects from single views. The feature extraction method is called the maximum representation and discrimination feature (MRDF) method. The nonlinear MRDF transformations to use are obtained in closed form, and offer significant advantages compared to nonlinear neural network implementations. The features extracted are useful for both object discrimination (classification) and object representation (pose estimation). We consider MRDFs on image data, provide a new 2-stage nonlinear MRDF solution, and show it specializes to well-known linear and nonlinear image processing transforms under certain conditions. We show the use of MRDF in estimating the class and pose of images of rendered solid CAD models of machine parts from single views using a feature-space trajectory neural network classifier. We show new results with better classification and pose estimation accuracy than are achieved by standard principal component analysis and Fukunaga-Koontz feature extraction methods.
Automatic C-arm pose estimation via 2D/3D hybrid registration of a radiographic fiducial
NASA Astrophysics Data System (ADS)
Moult, E.; Burdette, E. C.; Song, D. Y.; Abolmaesumi, P.; Fichtinger, G.; Fallavollita, P.
2011-03-01
Motivation: In prostate brachytherapy, real-time dosimetry would be ideal to allow for rapid evaluation of the implant quality intra-operatively. However, such a mechanism requires an imaging system that is both real-time and which provides, via multiple C-arm fluoroscopy images, clear information describing the three-dimensional position of the seeds deposited within the prostate. Thus, accurate tracking of the C-arm poses proves to be of critical importance to the process. Methodology: We compute the pose of the C-arm relative to a stationary radiographic fiducial of known geometry by employing a hybrid registration framework. Firstly, by means of an ellipse segmentation algorithm and a 2D/3D feature based registration, we exploit known FTRAC geometry to recover an initial estimate of the C-arm pose. Using this estimate, we then initialize the intensity-based registration which serves to recover a refined and accurate estimation of the C-arm pose. Results: Ground-truth pose was established for each C-arm image through a published and clinically tested segmentation-based method. Using 169 clinical C-arm images and a +/-10° and +/-10 mm random perturbation of the ground-truth pose, the average rotation and translation errors were 0.68° (std = 0.06°) and 0.64 mm (std = 0.24 mm). Conclusion: Fully automated C-arm pose estimation using a 2D/3D hybrid registration scheme was found to be clinically robust based on human patient data.
Chen, Chin-Sheng; Chen, Po-Chun; Hsu, Chih-Ming
2016-01-01
This paper presents a novel 3D feature descriptor for object recognition and to identify poses when there are six-degrees-of-freedom for mobile manipulation and grasping applications. Firstly, a Microsoft Kinect sensor is used to capture 3D point cloud data. A viewpoint feature histogram (VFH) descriptor for the 3D point cloud data then encodes the geometry and viewpoint, so an object can be simultaneously recognized and registered in a stable pose and the information is stored in a database. The VFH is robust to a large degree of surface noise and missing depth information so it is reliable for stereo data. However, the pose estimation for an object fails when the object is placed symmetrically to the viewpoint. To overcome this problem, this study proposes a modified viewpoint feature histogram (MVFH) descriptor that consists of two parts: a surface shape component that comprises an extended fast point feature histogram and an extended viewpoint direction component. The MVFH descriptor characterizes an object’s pose and enhances the system’s ability to identify objects with mirrored poses. Finally, the refined pose is further estimated using an iterative closest point when the object has been recognized and the pose roughly estimated by the MVFH descriptor and it has been registered on a database. The estimation results demonstrate that the MVFH feature descriptor allows more accurate pose estimation. The experiments also show that the proposed method can be applied in vision-guided robotic grasping systems. PMID:27886080
Solav, Dana; Rubin, M B; Cereatti, Andrea; Camomilla, Valentina; Wolf, Alon
2016-04-01
Accurate estimation of the position and orientation (pose) of a bone from a cluster of skin markers is limited mostly by the relative motion between the bone and the markers, which is known as the soft tissue artifact (STA). This work presents a method, based on continuum mechanics, to describe the kinematics of a cluster affected by STA. The cluster is characterized by triangular cosserat point elements (TCPEs) defined by all combinations of three markers. The effects of the STA on the TCPEs are quantified using three parameters describing the strain in each TCPE and the relative rotation and translation between TCPEs. The method was evaluated using previously collected ex vivo kinematic data. Femur pose was estimated from 12 skin markers on the thigh, while its reference pose was measured using bone pins. Analysis revealed that instantaneous subsets of TCPEs exist which estimate bone position and orientation more accurately than the Procrustes Superimposition applied to the cluster of all markers. It has been shown that some of these parameters correlate well with femur pose errors, which suggests that they can be used to select, at each instant, subsets of TCPEs leading an improved estimation of the underlying bone pose.
Coupled multiview autoencoders with locality sensitivity for three-dimensional human pose estimation
NASA Astrophysics Data System (ADS)
Yu, Jialin; Sun, Jifeng; Luo, Shasha; Duan, Bichao
2017-09-01
Estimating three-dimensional (3D) human poses from a single camera is usually implemented by searching pose candidates with image descriptors. Existing methods usually suppose that the mapping from feature space to pose space is linear, but in fact, their mapping relationship is highly nonlinear, which heavily degrades the performance of 3D pose estimation. We propose a method to recover 3D pose from a silhouette image. It is based on the multiview feature embedding (MFE) and the locality-sensitive autoencoders (LSAEs). On the one hand, we first depict the manifold regularized sparse low-rank approximation for MFE and then the input image is characterized by a fused feature descriptor. On the other hand, both the fused feature and its corresponding 3D pose are separately encoded by LSAEs. A two-layer back-propagation neural network is trained by parameter fine-tuning and then used to map the encoded 2D features to encoded 3D poses. Our LSAE ensures a good preservation of the local topology of data points. Experimental results demonstrate the effectiveness of our proposed method.
Empirical mode decomposition-based facial pose estimation inside video sequences
NASA Astrophysics Data System (ADS)
Qing, Chunmei; Jiang, Jianmin; Yang, Zhijing
2010-03-01
We describe a new pose-estimation algorithm via integration of the strength in both empirical mode decomposition (EMD) and mutual information. While mutual information is exploited to measure the similarity between facial images to estimate poses, EMD is exploited to decompose input facial images into a number of intrinsic mode function (IMF) components, which redistribute the effect of noise, expression changes, and illumination variations as such that, when the input facial image is described by the selected IMF components, all the negative effects can be minimized. Extensive experiments were carried out in comparisons to existing representative techniques, and the results show that the proposed algorithm achieves better pose-estimation performances with robustness to noise corruption, illumination variation, and facial expressions.
Recovering the 3d Pose and Shape of Vehicles from Stereo Images
NASA Astrophysics Data System (ADS)
Coenen, M.; Rottensteiner, F.; Heipke, C.
2018-05-01
The precise reconstruction and pose estimation of vehicles plays an important role, e.g. for autonomous driving. We tackle this problem on the basis of street level stereo images obtained from a moving vehicle. Starting from initial vehicle detections, we use a deformable vehicle shape prior learned from CAD vehicle data to fully reconstruct the vehicles in 3D and to recover their 3D pose and shape. To fit a deformable vehicle model to each detection by inferring the optimal parameters for pose and shape, we define an energy function leveraging reconstructed 3D data, image information, the vehicle model and derived scene knowledge. To minimise the energy function, we apply a robust model fitting procedure based on iterative Monte Carlo model particle sampling. We evaluate our approach using the object detection and orientation estimation benchmark of the KITTI dataset (Geiger et al., 2012). Our approach can deal with very coarse pose initialisations and we achieve encouraging results with up to 82 % correct pose estimations. Moreover, we are able to deliver very precise orientation estimation results with an average absolute error smaller than 4°.
Learning toward practical head pose estimation
NASA Astrophysics Data System (ADS)
Sang, Gaoli; He, Feixiang; Zhu, Rong; Xuan, Shibin
2017-08-01
Head pose is useful information for many face-related tasks, such as face recognition, behavior analysis, human-computer interfaces, etc. Existing head pose estimation methods usually assume that the face images have been well aligned or that sufficient and precise training data are available. In practical applications, however, these assumptions are very likely to be invalid. This paper first investigates the impact of the failure of these assumptions, i.e., misalignment of face images, uncertainty and undersampling of training data, on head pose estimation accuracy of state-of-the-art methods. A learning-based approach is then designed to enhance the robustness of head pose estimation to these factors. To cope with misalignment, instead of using hand-crafted features, it seeks suitable features by learning from a set of training data with a deep convolutional neural network (DCNN), such that the training data can be best classified into the correct head pose categories. To handle uncertainty and undersampling, it employs multivariate labeling distributions (MLDs) with dense sampling intervals to represent the head pose attributes of face images. The correlation between the features and the dense MLD representations of face images is approximated by a maximum entropy model, whose parameters are optimized on the given training data. To estimate the head pose of a face image, its MLD representation is first computed according to the model based on the features extracted from the image by the trained DCNN, and its head pose is then assumed to be the one corresponding to the peak in its MLD. Evaluation experiments on the Pointing'04, FacePix, Multi-PIE, and CASIA-PEAL databases prove the effectiveness and efficiency of the proposed method.
NASA Astrophysics Data System (ADS)
Hahn, Markus; Barrois, Björn; Krüger, Lars; Wöhler, Christian; Sagerer, Gerhard; Kummert, Franz
2010-09-01
This study introduces an approach to model-based 3D pose estimation and instantaneous motion analysis of the human hand-forearm limb in the application context of safe human-robot interaction. 3D pose estimation is performed using two approaches: The Multiocular Contracting Curve Density (MOCCD) algorithm is a top-down technique based on pixel statistics around a contour model projected into the images from several cameras. The Iterative Closest Point (ICP) algorithm is a bottom-up approach which uses a motion-attributed 3D point cloud to estimate the object pose. Due to their orthogonal properties, a fusion of these algorithms is shown to be favorable. The fusion is performed by a weighted combination of the extracted pose parameters in an iterative manner. The analysis of object motion is based on the pose estimation result and the motion-attributed 3D points belonging to the hand-forearm limb using an extended constraint-line approach which does not rely on any temporal filtering. A further refinement is obtained using the Shape Flow algorithm, a temporal extension of the MOCCD approach, which estimates the temporal pose derivative based on the current and the two preceding images, corresponding to temporal filtering with a short response time of two or at most three frames. Combining the results of the two motion estimation stages provides information about the instantaneous motion properties of the object. Experimental investigations are performed on real-world image sequences displaying several test persons performing different working actions typically occurring in an industrial production scenario. In all example scenes, the background is cluttered, and the test persons wear various kinds of clothes. For evaluation, independently obtained ground truth data are used. [Figure not available: see fulltext.
Relative Pose Estimation Using Image Feature Triplets
NASA Astrophysics Data System (ADS)
Chuang, T. Y.; Rottensteiner, F.; Heipke, C.
2015-03-01
A fully automated reconstruction of the trajectory of image sequences using point correspondences is turning into a routine practice. However, there are cases in which point features are hardly detectable, cannot be localized in a stable distribution, and consequently lead to an insufficient pose estimation. This paper presents a triplet-wise scheme for calibrated relative pose estimation from image point and line triplets, and investigates the effectiveness of the feature integration upon the relative pose estimation. To this end, we employ an existing point matching technique and propose a method for line triplet matching in which the relative poses are resolved during the matching procedure. The line matching method aims at establishing hypotheses about potential minimal line matches that can be used for determining the parameters of relative orientation (pose estimation) of two images with respect to the reference one; then, quantifying the agreement using the estimated orientation parameters. Rather than randomly choosing the line candidates in the matching process, we generate an associated lookup table to guide the selection of potential line matches. In addition, we integrate the homologous point and line triplets into a common adjustment procedure. In order to be able to also work with image sequences the adjustment is formulated in an incremental manner. The proposed scheme is evaluated with both synthetic and real datasets, demonstrating its satisfactory performance and revealing the effectiveness of image feature integration.
Infrared needle mapping to assist biopsy procedures and training.
Shar, Bruce; Leis, John; Coucher, John
2018-04-01
A computed tomography (CT) biopsy is a radiological procedure which involves using a needle to withdraw tissue or a fluid specimen from a lesion of interest inside a patient's body. The needle is progressively advanced into the patient's body, guided by the most recent CT scan. CT guided biopsies invariably expose patients to high dosages of radiation, due to the number of scans required whilst the needle is advanced. This study details the design of a novel method to aid biopsy procedures using infrared cameras. Two cameras are used to image the biopsy needle area, from which the proposed algorithm computes an estimate of the needle endpoint, which is projected onto the CT image space. This estimated position may be used to guide the needle between scans, and results in a reduction in the number of CT scans that need to be performed during the biopsy procedure. The authors formulate a 2D augmentation system which compensates for camera pose, and show that multiple low-cost infrared imaging devices provide a promising approach.
Efficient visual grasping alignment for cylinders
NASA Technical Reports Server (NTRS)
Nicewarner, Keith E.; Kelley, Robert B.
1992-01-01
Monocular information from a gripper-mounted camera is used to servo the robot gripper to grasp a cylinder. The fundamental concept for rapid pose estimation is to reduce the amount of information that needs to be processed during each vision update interval. The grasping procedure is divided into four phases: learn, recognition, alignment, and approach. In the learn phase, a cylinder is placed in the gripper and the pose estimate is stored and later used as the servo target. This is performed once as a calibration step. The recognition phase verifies the presence of a cylinder in the camera field of view. An initial pose estimate is computed and uncluttered scan regions are selected. The radius of the cylinder is estimated by moving the robot a fixed distance toward the cylinder and observing the change in the image. The alignment phase processes only the scan regions obtained previously. Rapid pose estimates are used to align the robot with the cylinder at a fixed distance from it. The relative motion of the cylinder is used to generate an extrapolated pose-based trajectory for the robot controller. The approach phase guides the robot gripper to a grasping position. The cylinder can be grasped with a minimal reaction force and torque when only rough global pose information is initially available.
Efficient visual grasping alignment for cylinders
NASA Technical Reports Server (NTRS)
Nicewarner, Keith E.; Kelley, Robert B.
1991-01-01
Monocular information from a gripper-mounted camera is used to servo the robot gripper to grasp a cylinder. The fundamental concept for rapid pose estimation is to reduce the amount of information that needs to be processed during each vision update interval. The grasping procedure is divided into four phases: learn, recognition, alignment, and approach. In the learn phase, a cylinder is placed in the gripper and the pose estimate is stored and later used as the servo target. This is performed once as a calibration step. The recognition phase verifies the presence of a cylinder in the camera field of view. An initial pose estimate is computed and uncluttered scan regions are selected. The radius of the cylinder is estimated by moving the robot a fixed distance toward the cylinder and observing the change in the image. The alignment phase processes only the scan regions obtained previously. Rapid pose estimates are used to align the robot with the cylinder at a fixed distance from it. The relative motion of the cylinder is used to generate an extrapolated pose-based trajectory for the robot controller. The approach phase guides the robot gripper to a grasping position. The cylinder can be grasped with a minimal reaction force and torque when only rough global pose information is initially available.
Classification and pose estimation of objects using nonlinear features
NASA Astrophysics Data System (ADS)
Talukder, Ashit; Casasent, David P.
1998-03-01
A new nonlinear feature extraction method called the maximum representation and discrimination feature (MRDF) method is presented for extraction of features from input image data. It implements transformations similar to the Sigma-Pi neural network. However, the weights of the MRDF are obtained in closed form, and offer advantages compared to nonlinear neural network implementations. The features extracted are useful for both object discrimination (classification) and object representation (pose estimation). We show its use in estimating the class and pose of images of real objects and rendered solid CAD models of machine parts from single views using a feature-space trajectory (FST) neural network classifier. We show more accurate classification and pose estimation results than are achieved by standard principal component analysis (PCA) and Fukunaga-Koontz (FK) feature extraction methods.
Robust Head-Pose Estimation Based on Partially-Latent Mixture of Linear Regressions.
Drouard, Vincent; Horaud, Radu; Deleforge, Antoine; Ba, Sileye; Evangelidis, Georgios
2017-03-01
Head-pose estimation has many applications, such as social event analysis, human-robot and human-computer interaction, driving assistance, and so forth. Head-pose estimation is challenging, because it must cope with changing illumination conditions, variabilities in face orientation and in appearance, partial occlusions of facial landmarks, as well as bounding-box-to-face alignment errors. We propose to use a mixture of linear regressions with partially-latent output. This regression method learns to map high-dimensional feature vectors (extracted from bounding boxes of faces) onto the joint space of head-pose angles and bounding-box shifts, such that they are robustly predicted in the presence of unobservable phenomena. We describe in detail the mapping method that combines the merits of unsupervised manifold learning techniques and of mixtures of regressions. We validate our method with three publicly available data sets and we thoroughly benchmark four variants of the proposed algorithm with several state-of-the-art head-pose estimation methods.
Vision-guided gripping of a cylinder
NASA Technical Reports Server (NTRS)
Nicewarner, Keith E.; Kelley, Robert B.
1991-01-01
The motivation for vision-guided servoing is taken from tasks in automated or telerobotic space assembly and construction. Vision-guided servoing requires the ability to perform rapid pose estimates and provide predictive feature tracking. Monocular information from a gripper-mounted camera is used to servo the gripper to grasp a cylinder. The procedure is divided into recognition and servo phases. The recognition stage verifies the presence of a cylinder in the camera field of view. Then an initial pose estimate is computed and uncluttered scan regions are selected. The servo phase processes only the selected scan regions of the image. Given the knowledge, from the recognition phase, that there is a cylinder in the image and knowing the radius of the cylinder, 4 of the 6 pose parameters can be estimated with minimal computation. The relative motion of the cylinder is obtained by using the current pose and prior pose estimates. The motion information is then used to generate a predictive feature-based trajectory for the path of the gripper.
3D ocular ultrasound using gaze tracking on the contralateral eye: a feasibility study.
Afsham, Narges; Najafi, Mohammad; Abolmaesumi, Purang; Rohling, Robert
2011-01-01
A gaze-deviated examination of the eye with a 2D ultrasound transducer is a common and informative ophthalmic test; however, the complex task of the pose estimation of the ultrasound images relative to the eye affects 3D interpretation. To tackle this challenge, a novel system for 3D image reconstruction based on gaze tracking of the contralateral eye has been proposed. The gaze fixates on several target points and, for each fixation, the pose of the examined eye is inferred from the gaze tracking. A single camera system has been developed for pose estimation combined with subject-specific parameter identification. The ultrasound images are then transformed to the coordinate system of the examined eye to create a 3D volume. Accuracy of the proposed gaze tracking system and the pose estimation of the eye have been validated in a set of experiments. Overall system error, including pose estimation and calibration, are 3.12 mm and 4.68 degrees.
Human body motion tracking based on quantum-inspired immune cloning algorithm
NASA Astrophysics Data System (ADS)
Han, Hong; Yue, Lichuan; Jiao, Licheng; Wu, Xing
2009-10-01
In a static monocular camera system, to gain a perfect 3D human body posture is a great challenge for Computer Vision technology now. This paper presented human postures recognition from video sequences using the Quantum-Inspired Immune Cloning Algorithm (QICA). The algorithm included three parts. Firstly, prior knowledge of human beings was used, the key joint points of human could be detected automatically from the human contours and skeletons which could be thinning from the contours; And due to the complexity of human movement, a forecasting mechanism of occlusion joint points was addressed to get optimum 2D key joint points of human body; And then pose estimation recovered by optimizing between the 2D projection of 3D human key joint points and 2D detection key joint points using QICA, which recovered the movement of human body perfectly, because this algorithm could acquire not only the global optimal solution, but the local optimal solution.
Stereovision-based pose and inertia estimation of unknown and uncooperative space objects
NASA Astrophysics Data System (ADS)
Pesce, Vincenzo; Lavagna, Michèle; Bevilacqua, Riccardo
2017-01-01
Autonomous close proximity operations are an arduous and attractive problem in space mission design. In particular, the estimation of pose, motion and inertia properties of an uncooperative object is a challenging task because of the lack of available a priori information. This paper develops a novel method to estimate the relative position, velocity, angular velocity, attitude and the ratios of the components of the inertia matrix of an uncooperative space object using only stereo-vision measurements. The classical Extended Kalman Filter (EKF) and an Iterated Extended Kalman Filter (IEKF) are used and compared for the estimation procedure. In addition, in order to compute the inertia properties, the ratios of the inertia components are added to the state and a pseudo-measurement equation is considered in the observation model. The relative simplicity of the proposed algorithm could be suitable for an online implementation for real applications. The developed algorithm is validated by numerical simulations in MATLAB using different initial conditions and uncertainty levels. The goal of the simulations is to verify the accuracy and robustness of the proposed estimation algorithm. The obtained results show satisfactory convergence of estimation errors for all the considered quantities. The obtained results, in several simulations, shows some improvements with respect to similar works, which deal with the same problem, present in literature. In addition, a video processing procedure is presented to reconstruct the geometrical properties of a body using cameras. This inertia reconstruction algorithm has been experimentally validated at the ADAMUS (ADvanced Autonomous MUltiple Spacecraft) Lab at the University of Florida. In the future, this different method could be integrated to the inertia ratios estimator to have a complete tool for mass properties recognition.
ERIC Educational Resources Information Center
Parker, Alison E.; Mathis, Erin T.; Kupersmidt, Janis B.
2013-01-01
Research Findings: The study examined children's recognition of emotion from faces and body poses, as well as gender differences in these recognition abilities. Preschool-aged children ("N" = 55) and their parents and teachers participated in the study. Preschool-aged children completed a web-based measure of emotion recognition skills…
ERIC Educational Resources Information Center
Munoz, Luna C.
2009-01-01
Results from a study that involves letting boys aged 8-16 years label emotional faces and static body poses show that callous-unemotional traits are related to poor accuracy in the tests. The results imply that a general "fear-blindness" is associated to a lack of empathy and to violence and antisocial behavior.
NASA Astrophysics Data System (ADS)
Chen, Shanjun; Duan, Haibin; Deng, Yimin; Li, Cong; Zhao, Guozhi; Xu, Yan
2017-12-01
Autonomous aerial refueling is a significant technology that can significantly extend the endurance of unmanned aerial vehicles. A reliable method that can accurately estimate the position and attitude of the probe relative to the drogue is the key to such a capability. A drogue pose estimation method based on infrared vision sensor is introduced with the general goal of yielding an accurate and reliable drogue state estimate. First, by employing direct least squares ellipse fitting and convex hull in OpenCV, a feature point matching and interference point elimination method is proposed. In addition, considering the conditions that some infrared LEDs are damaged or occluded, a missing point estimation method based on perspective transformation and affine transformation is designed. Finally, an accurate and robust pose estimation algorithm improved by the runner-root algorithm is proposed. The feasibility of the designed visual measurement system is demonstrated by flight test, and the results indicate that our proposed method enables precise and reliable pose estimation of the probe relative to the drogue, even in some poor conditions.
An eye model for uncalibrated eye gaze estimation under variable head pose
NASA Astrophysics Data System (ADS)
Hnatow, Justin; Savakis, Andreas
2007-04-01
Gaze estimation is an important component of computer vision systems that monitor human activity for surveillance, human-computer interaction, and various other applications including iris recognition. Gaze estimation methods are particularly valuable when they are non-intrusive, do not require calibration, and generalize well across users. This paper presents a novel eye model that is employed for efficiently performing uncalibrated eye gaze estimation. The proposed eye model was constructed from a geometric simplification of the eye and anthropometric data about eye feature sizes in order to circumvent the requirement of calibration procedures for each individual user. The positions of the two eye corners and the midpupil, the distance between the two eye corners, and the radius of the eye sphere are required for gaze angle calculation. The locations of the eye corners and midpupil are estimated via processing following eye detection, and the remaining parameters are obtained from anthropometric data. This eye model is easily extended to estimating eye gaze under variable head pose. The eye model was tested on still images of subjects at frontal pose (0 °) and side pose (34 °). An upper bound of the model's performance was obtained by manually selecting the eye feature locations. The resulting average absolute error was 2.98 ° for frontal pose and 2.87 ° for side pose. The error was consistent across subjects, which indicates that good generalization was obtained. This level of performance compares well with other gaze estimation systems that utilize a calibration procedure to measure eye features.
Testing and evaluation of a wearable augmented reality system for natural outdoor environments
NASA Astrophysics Data System (ADS)
Roberts, David; Menozzi, Alberico; Cook, James; Sherrill, Todd; Snarski, Stephen; Russler, Pat; Clipp, Brian; Karl, Robert; Wenger, Eric; Bennett, Matthew; Mauger, Jennifer; Church, William; Towles, Herman; MacCabe, Stephen; Webb, Jeffrey; Lupo, Jasper; Frahm, Jan-Michael; Dunn, Enrique; Leslie, Christopher; Welch, Greg
2013-05-01
This paper describes performance evaluation of a wearable augmented reality system for natural outdoor environments. Applied Research Associates (ARA), as prime integrator on the DARPA ULTRA-Vis (Urban Leader Tactical, Response, Awareness, and Visualization) program, is developing a soldier-worn system to provide intuitive `heads-up' visualization of tactically-relevant geo-registered icons. Our system combines a novel pose estimation capability, a helmet-mounted see-through display, and a wearable processing unit to accurately overlay geo-registered iconography (e.g., navigation waypoints, sensor points of interest, blue forces, aircraft) on the soldier's view of reality. We achieve accurate pose estimation through fusion of inertial, magnetic, GPS, terrain data, and computer-vision inputs. We leverage a helmet-mounted camera and custom computer vision algorithms to provide terrain-based measurements of absolute orientation (i.e., orientation of the helmet with respect to the earth). These orientation measurements, which leverage mountainous terrain horizon geometry and mission planning landmarks, enable our system to operate robustly in the presence of external and body-worn magnetic disturbances. Current field testing activities across a variety of mountainous environments indicate that we can achieve high icon geo-registration accuracy (<10mrad) using these vision-based methods.
Face pose tracking using the four-point algorithm
NASA Astrophysics Data System (ADS)
Fung, Ho Yin; Wong, Kin Hong; Yu, Ying Kin; Tsui, Kwan Pang; Kam, Ho Chuen
2017-06-01
In this paper, we have developed an algorithm to track the pose of a human face robustly and efficiently. Face pose estimation is very useful in many applications such as building virtual reality systems and creating an alternative input method for the disabled. Firstly, we have modified a face detection toolbox called DLib for the detection of a face in front of a camera. The detected face features are passed to a pose estimation method, known as the four-point algorithm, for pose computation. The theory applied and the technical problems encountered during system development are discussed in the paper. It is demonstrated that the system is able to track the pose of a face in real time using a consumer grade laptop computer.
Dual Quaternions as Constraints in 4D-DPM Models for Pose Estimation.
Martinez-Berti, Enrique; Sánchez-Salmerón, Antonio-José; Ricolfe-Viala, Carlos
2017-08-19
The goal of this research work is to improve the accuracy of human pose estimation using the Deformation Part Model (DPM) without increasing computational complexity. First, the proposed method seeks to improve pose estimation accuracy by adding the depth channel to DPM, which was formerly defined based only on red-green-blue (RGB) channels, in order to obtain a four-dimensional DPM (4D-DPM). In addition, computational complexity can be controlled by reducing the number of joints by taking it into account in a reduced 4D-DPM. Finally, complete solutions are obtained by solving the omitted joints by using inverse kinematics models. In this context, the main goal of this paper is to analyze the effect on pose estimation timing cost when using dual quaternions to solve the inverse kinematics.
Wavelet-promoted sparsity for non-invasive reconstruction of electrical activity of the heart.
Cluitmans, Matthijs; Karel, Joël; Bonizzi, Pietro; Volders, Paul; Westra, Ronald; Peeters, Ralf
2018-05-12
We investigated a novel sparsity-based regularization method in the wavelet domain of the inverse problem of electrocardiography that aims at preserving the spatiotemporal characteristics of heart-surface potentials. In three normal, anesthetized dogs, electrodes were implanted around the epicardium and body-surface electrodes were attached to the torso. Potential recordings were obtained simultaneously on the body surface and on the epicardium. A CT scan was used to digitize a homogeneous geometry which consisted of the body-surface electrodes and the epicardial surface. A novel multitask elastic-net-based method was introduced to regularize the ill-posed inverse problem. The method simultaneously pursues a sparse wavelet representation in time-frequency and exploits correlations in space. Performance was assessed in terms of quality of reconstructed epicardial potentials, estimated activation and recovery time, and estimated locations of pacing, and compared with performance of Tikhonov zeroth-order regularization. Results in the wavelet domain obtained higher sparsity than those in the time domain. Epicardial potentials were non-invasively reconstructed with higher accuracy than with Tikhonov zeroth-order regularization (p < 0.05), and recovery times were improved (p < 0.05). No significant improvement was found in terms of activation times and localization of origin of pacing. Next to improved estimation of recovery isochrones, which is important when assessing substrate for cardiac arrhythmias, this novel technique opens potentially powerful opportunities for clinical application, by allowing to choose wavelet bases that are optimized for specific clinical questions. Graphical Abstract The inverse problem of electrocardiography is to reconstruct heart-surface potentials from recorded bodysurface electrocardiograms (ECGs) and a torso-heart geometry. However, it is ill-posed and solving it requires additional constraints for regularization. We introduce a regularization method that simultaneously pursues a sparse wavelet representation in time-frequency and exploits correlations in space. Our approach reconstructs epicardial (heart-surface) potentials with higher accuracy than common methods. It also improves the reconstruction of recovery isochrones, which is important when assessing substrate for cardiac arrhythmias. This novel technique opens potentially powerful opportunities for clinical application, by allowing to choose wavelet bases that are optimized for specific clinical questions.
NASA Astrophysics Data System (ADS)
Lock, Jacobus C.; Smit, Willie J.; Treurnicht, Johann
2016-05-01
The Solar Thermal Energy Research Group (STERG) is investigating ways to make heliostats cheaper to reduce the total cost of a concentrating solar power (CSP) plant. One avenue of research is to use unmanned aerial vehicles (UAVs) to automate and assist with the heliostat calibration process. To do this, the pose estimation error of each UAV must be determined and integrated into a calibration procedure. A computer vision (CV) system is used to measure the pose of a quadcopter UAV. However, this CV system contains considerable measurement errors. Since this is a high-dimensional problem, a sophisticated prediction model must be used to estimate the measurement error of the CV system for any given pose measurement vector. This paper attempts to train and validate such a model with the aim of using it to determine the pose error of a quadcopter in a CSP plant setting.
Leong, Yin-Hui; Gan, Chee-Yuen; Majid, Mohamed Isa Abdul
2014-07-01
A total of 127 and 177 seafood samples from Malaysia were analyzed for polychlorinated dibenzo-p-dioxins/dibenzofurans (PCDD/Fs) and dioxin-like polychlorinated biphenyls (dl-PCBs), respectively. The World Health Organization-toxic-equivalency quotients (WHO-TEQ) of PCDD/Fs varied from 0.13 to 1.03 pg TEQ g(-1), whereas dl-PCBs ranged from 0.33 to 1.32 pg TEQ g(-1). Based on food-consumption data from the global environment monitoring system-food contamination monitoring and assessment programme, calculated dietary exposures to PCDD/Fs and dl-PCBs from seafood for the general population in Malaysia were 0.042 and 0.098 pg TEQ kg(-1) body weight day(-1), respectively. These estimations were quite different from the values calculated using the Malaysian food-consumption statistics (average of 0.313 and 0.676 pg TEQ kg(-1) body weight day(-1) for PCDD/Fs and PCBs, respectively). However, both of the dietary exposure estimations were lower than the tolerable daily intake recommended by WHO. Thus, it is suggested that seafood from Malaysia does not pose a notable risk to the health of the average consumer.
NASA Technical Reports Server (NTRS)
Galante, Joseph M.; Van Eepoel, John; D'Souza, Chris; Patrick, Bryan
2016-01-01
The Raven ISS Hosted Payload will feature several pose measurement sensors on a pan/tilt gimbal which will be used to autonomously track resupply vehicles as they approach and depart the International Space Station. This paper discusses the derivation of a Relative Navigation Filter (RNF) to fuse measurements from the different pose measurement sensors to produce relative position and attitude estimates. The RNF relies on relative translation and orientation kinematics and careful pose sensor modeling to eliminate dependence on orbital position information and associated orbital dynamics models. The filter state is augmented with sensor biases to provide a mechanism for the filter to estimate and mitigate the offset between the measurements from different pose sensors
NASA Technical Reports Server (NTRS)
Galante, Joseph M.; Van Eepoel, John; D' Souza, Chris; Patrick, Bryan
2016-01-01
The Raven ISS Hosted Payload will feature several pose measurement sensors on a pan/tilt gimbal which will be used to autonomously track resupply vehicles as they approach and depart the International Space Station. This paper discusses the derivation of a Relative Navigation Filter (RNF) to fuse measurements from the different pose measurement sensors to produce relative position and attitude estimates. The RNF relies on relative translation and orientation kinematics and careful pose sensor modeling to eliminate dependence on orbital position information and associated orbital dynamics models. The filter state is augmented with sensor biases to provide a mechanism for the filter to estimate and mitigate the offset between the measurements from different pose sensors.
Human body segmentation via data-driven graph cut.
Li, Shifeng; Lu, Huchuan; Shao, Xingqing
2014-11-01
Human body segmentation is a challenging and important problem in computer vision. Existing methods usually entail a time-consuming training phase for prior knowledge learning with complex shape matching for body segmentation. In this paper, we propose a data-driven method that integrates top-down body pose information and bottom-up low-level visual cues for segmenting humans in static images within the graph cut framework. The key idea of our approach is first to exploit human kinematics to search for body part candidates via dynamic programming for high-level evidence. Then, by using the body parts classifiers, obtaining bottom-up cues of human body distribution for low-level evidence. All the evidence collected from top-down and bottom-up procedures are integrated in a graph cut framework for human body segmentation. Qualitative and quantitative experiment results demonstrate the merits of the proposed method in segmenting human bodies with arbitrary poses from cluttered backgrounds.
Parker, Alison E.; Mathis, Erin T.; Kupersmidt, Janis B.
2016-01-01
The study examined children’s recognition of emotion from faces and body poses, as well as gender differences in these recognition abilities. Preschool-aged children (N = 55) and their parents and teachers participated in the study. Preschool-aged children completed a web-based measure of emotion recognition skills, which included five tasks (three with faces and two with bodies). Parents and teachers reported on children’s aggressive behaviors and social skills. Children’s emotion accuracy on two of the three facial tasks and one of the body tasks was related to teacher reports of social skills. Some of these relations were moderated by child gender. In particular, the relationships between emotion recognition accuracy and reports of children’s behavior were stronger for boys than girls. Identifying preschool-aged children’s strengths and weaknesses in identification of emotion from faces and body poses may be helpful in guiding interventions with children who have problems with social and behavioral functioning that may be due, in part, to emotional knowledge deficits. Further developmental implications of these findings are discussed. PMID:27057129
Estimation of Antenna Pose in the Earth Frame Using Camera and IMU Data from Mobile Phones
Wang, Zhen; Jin, Bingwen; Geng, Weidong
2017-01-01
The poses of base station antennas play an important role in cellular network optimization. Existing methods of pose estimation are based on physical measurements performed either by tower climbers or using additional sensors attached to antennas. In this paper, we present a novel non-contact method of antenna pose measurement based on multi-view images of the antenna and inertial measurement unit (IMU) data captured by a mobile phone. Given a known 3D model of the antenna, we first estimate the antenna pose relative to the phone camera from the multi-view images and then employ the corresponding IMU data to transform the pose from the camera coordinate frame into the Earth coordinate frame. To enhance the resulting accuracy, we improve existing camera-IMU calibration models by introducing additional degrees of freedom between the IMU sensors and defining a new error metric based on both the downtilt and azimuth angles, instead of a unified rotational error metric, to refine the calibration. In comparison with existing camera-IMU calibration methods, our method achieves an improvement in azimuth accuracy of approximately 1.0 degree on average while maintaining the same level of downtilt accuracy. For the pose estimation in the camera coordinate frame, we propose an automatic method of initializing the optimization solver and generating bounding constraints on the resulting pose to achieve better accuracy. With this initialization, state-of-the-art visual pose estimation methods yield satisfactory results in more than 75% of cases when plugged into our pipeline, and our solution, which takes advantage of the constraints, achieves even lower estimation errors on the downtilt and azimuth angles, both on average (0.13 and 0.3 degrees lower, respectively) and in the worst case (0.15 and 7.3 degrees lower, respectively), according to an evaluation conducted on a dataset consisting of 65 groups of data. We show that both of our enhancements contribute to the performance improvement offered by the proposed estimation pipeline, which achieves downtilt and azimuth accuracies of respectively 0.47 and 5.6 degrees on average and 1.38 and 12.0 degrees in the worst case, thereby satisfying the accuracy requirements for network optimization in the telecommunication industry. PMID:28397765
A Parametric Model of Shoulder Articulation for Virtual Assessment of Space Suit Fit
NASA Technical Reports Server (NTRS)
Kim, K. Han; Young, Karen S.; Bernal, Yaritza; Boppana, Abhishektha; Vu, Linh Q.; Benson, Elizabeth A.; Jarvis, Sarah; Rajulu, Sudhakar L.
2016-01-01
Suboptimal suit fit is a known risk factor for crewmember shoulder injury. Suit fit assessment is however prohibitively time consuming and cannot be generalized across wide variations of body shapes and poses. In this work, we have developed a new design tool based on the statistical analysis of body shape scans. This tool is aimed at predicting the skin deformation and shape variations for any body size and shoulder pose for a target population. This new process, when incorporated with CAD software, will enable virtual suit fit assessments, predictively quantifying the contact volume, and clearance between the suit and body surface at reduced time and cost.
An anti-disturbing real time pose estimation method and system
NASA Astrophysics Data System (ADS)
Zhou, Jian; Zhang, Xiao-hu
2011-08-01
Pose estimation relating two-dimensional (2D) images to three-dimensional (3D) rigid object need some known features to track. In practice, there are many algorithms which perform this task in high accuracy, but all of these algorithms suffer from features lost. This paper investigated the pose estimation when numbers of known features or even all of them were invisible. Firstly, known features were tracked to calculate pose in the current and the next image. Secondly, some unknown but good features to track were automatically detected in the current and the next image. Thirdly, those unknown features which were on the rigid and could match each other in the two images were retained. Because of the motion characteristic of the rigid object, the 3D information of those unknown features on the rigid could be solved by the rigid object's pose at the two moment and their 2D information in the two images except only two case: the first one was that both camera and object have no relative motion and camera parameter such as focus length, principle point, and etc. have no change at the two moment; the second one was that there was no shared scene or no matched feature in the two image. Finally, because those unknown features at the first time were known now, pose estimation could go on in the followed images in spite of the missing of known features in the beginning by repeating the process mentioned above. The robustness of pose estimation by different features detection algorithms such as Kanade-Lucas-Tomasi (KLT) feature, Scale Invariant Feature Transform (SIFT) and Speed Up Robust Feature (SURF) were compared and the compact of the different relative motion between camera and the rigid object were discussed in this paper. Graphic Processing Unit (GPU) parallel computing was also used to extract and to match hundreds of features for real time pose estimation which was hard to work on Central Processing Unit (CPU). Compared with other pose estimation methods, this new method can estimate pose between camera and object when part even all known features are lost, and has a quick response time benefit from GPU parallel computing. The method present here can be used widely in vision-guide techniques to strengthen its intelligence and generalization, which can also play an important role in autonomous navigation and positioning, robots fields at unknown environment. The results of simulation and experiments demonstrate that proposed method could suppress noise effectively, extracted features robustly, and achieve the real time need. Theory analysis and experiment shows the method is reasonable and efficient.
Pose estimation for augmented reality applications using genetic algorithm.
Yu, Ying Kin; Wong, Kin Hong; Chang, Michael Ming Yuen
2005-12-01
This paper describes a genetic algorithm that tackles the pose-estimation problem in computer vision. Our genetic algorithm can find the rotation and translation of an object accurately when the three-dimensional structure of the object is given. In our implementation, each chromosome encodes both the pose and the indexes to the selected point features of the object. Instead of only searching for the pose as in the existing work, our algorithm, at the same time, searches for a set containing the most reliable feature points in the process. This mismatch filtering strategy successfully makes the algorithm more robust under the presence of point mismatches and outliers in the images. Our algorithm has been tested with both synthetic and real data with good results. The accuracy of the recovered pose is compared to the existing algorithms. Our approach outperformed the Lowe's method and the other two genetic algorithms under the presence of point mismatches and outliers. In addition, it has been used to estimate the pose of a real object. It is shown that the proposed method is applicable to augmented reality applications.
Modeling Flight Attendants’ Exposures to Pesticide in Disinsected Aircraft Cabins
Zhang, Yong; Isukapalli, Sastry; Georgopoulos, Panos; Weisel, Clifford
2014-01-01
Aircraft cabin disinsection is required by some countries to kill insects that may pose risks to public health and native ecological systems. A probabilistic model has been developed by considering the microenvironmental dynamics of the pesticide in conjunction with the activity patterns of flight attendants, to assess their exposures and risks to pesticide in disinsected aircraft cabins under three scenarios of pesticide application. Main processes considered in the model are microenvironmental transport and deposition, volatilization, and transfer of pesticide when passengers and flight attendants come in contact with the cabin surfaces. The simulated pesticide airborne mass concentration and surface mass loadings captured measured ranges reported in the literature. The medians (means±standard devitions) of daily total exposures intakes were 0.24 (3.8±10.0), 1.4 (4.2±5.7) and 0.15 (2.1±3.2) μg/(day kg BW) for scenarios of Residual Application, Preflight and Top-of-Descent spraying, respectively. Exposure estimates were sensitive to parameters corresponding to pesticide deposition, body surface area and weight, surface-to-body transfer efficiencies, and efficiency of adherence to skin. Preflight spray posed 2.0 and 3.1 times higher pesticide exposure risk levels for flight attendants in disinsected aircraft cabins than Top-of-Descent spray and Residual Application, respectively. PMID:24251734
Read, Tyson J. G.; Segre, Paolo S.; Middleton, Kevin M.; Altshuler, Douglas L.
2016-01-01
Turning in flight requires reorientation of force, which birds, bats and insects accomplish either by shifting body position and total force in concert or by using left–right asymmetries in wingbeat kinematics. Although both mechanisms have been observed in multiple species, it is currently unknown how each is used to control changes in trajectory. We addressed this problem by measuring body and wingbeat kinematics as hummingbirds tracked a revolving feeder, and estimating aerodynamic forces using a quasi-steady model. During arcing turns, hummingbirds symmetrically banked the stroke plane of both wings, and the body, into turns, supporting a body-dependent mechanism. However, several wingbeat asymmetries were present during turning, including a higher and flatter outer wingtip path and a lower more deviated inner wingtip path. A quasi-steady analysis of arcing turns performed with different trajectories revealed that changes in radius were associated with asymmetrical kinematics and forces, and changes in velocity were associated with symmetrical kinematics and forces. Collectively, our results indicate that both body-dependent and -independent force orientation mechanisms are available to hummingbirds, and that these kinematic strategies are used to meet the separate aerodynamic challenges posed by changes in velocity and turning radius. PMID:27030042
A deep learning approach for pose estimation from volumetric OCT data.
Gessert, Nils; Schlüter, Matthias; Schlaefer, Alexander
2018-05-01
Tracking the pose of instruments is a central problem in image-guided surgery. For microscopic scenarios, optical coherence tomography (OCT) is increasingly used as an imaging modality. OCT is suitable for accurate pose estimation due to its micrometer range resolution and volumetric field of view. However, OCT image processing is challenging due to speckle noise and reflection artifacts in addition to the images' 3D nature. We address pose estimation from OCT volume data with a new deep learning-based tracking framework. For this purpose, we design a new 3D convolutional neural network (CNN) architecture to directly predict the 6D pose of a small marker geometry from OCT volumes. We use a hexapod robot to automatically acquire labeled data points which we use to train 3D CNN architectures for multi-output regression. We use this setup to provide an in-depth analysis on deep learning-based pose estimation from volumes. Specifically, we demonstrate that exploiting volume information for pose estimation yields higher accuracy than relying on 2D representations with depth information. Supporting this observation, we provide quantitative and qualitative results that 3D CNNs effectively exploit the depth structure of marker objects. Regarding the deep learning aspect, we present efficient design principles for 3D CNNs, making use of insights from the 2D deep learning community. In particular, we present Inception3D as a new architecture which performs best for our application. We show that our deep learning approach reaches errors at our ground-truth label's resolution. We achieve a mean average error of 14.89 ± 9.3 µm and 0.096 ± 0.072° for position and orientation learning, respectively. Copyright © 2018 Elsevier B.V. All rights reserved.
1980-02-01
to estimate f -..ell, -noderately ,-ell, or- poorly. 1 ’The sansitivity *of a rec-ilarized estimate of f to the noise is made explicit. After giving the...AD-A 7 .SA92 925 WISCONSIN UN! V-MADISON DEFT OF STATISTICS F /S 11,’ 1 ILL POSED PRORLEMS: NUMERICAL ANn STATISTICAL METHODS FOR MILOL-ETC(U FEB 80 a...estimate f given z. We first define the 1 intrinsic rank of the problem where jK(tit) f (t)dt is known exactly. This 0 definition is used to provide insight
NASA Astrophysics Data System (ADS)
Chen, Hai-Wen; McGurr, Mike
2016-05-01
We have developed a new way for detection and tracking of human full-body and body-parts with color (intensity) patch morphological segmentation and adaptive thresholding for security surveillance cameras. An adaptive threshold scheme has been developed for dealing with body size changes, illumination condition changes, and cross camera parameter changes. Tests with the PETS 2009 and 2014 datasets show that we can obtain high probability of detection and low probability of false alarm for full-body. Test results indicate that our human full-body detection method can considerably outperform the current state-of-the-art methods in both detection performance and computational complexity. Furthermore, in this paper, we have developed several methods using color features for detection and tracking of human body-parts (arms, legs, torso, and head, etc.). For example, we have developed a human skin color sub-patch segmentation algorithm by first conducting a RGB to YIQ transformation and then applying a Subtractive I/Q image Fusion with morphological operations. With this method, we can reliably detect and track human skin color related body-parts such as face, neck, arms, and legs. Reliable body-parts (e.g. head) detection allows us to continuously track the individual person even in the case that multiple closely spaced persons are merged. Accordingly, we have developed a new algorithm to split a merged detection blob back to individual detections based on the detected head positions. Detected body-parts also allow us to extract important local constellation features of the body-parts positions and angles related to the full-body. These features are useful for human walking gait pattern recognition and human pose (e.g. standing or falling down) estimation for potential abnormal behavior and accidental event detection, as evidenced with our experimental tests. Furthermore, based on the reliable head (face) tacking, we have applied a super-resolution algorithm to enhance the face resolution for improved human face recognition performance.
Infrared thermal imaging of the inner canthus of the eye as an estimator of body core temperature.
Teunissen, L P J; Daanen, H A M
2011-01-01
Several studies suggest that the temperature of the inner canthus of the eye (T(ca)), determined with infrared thermal imaging, is an appropriate method for core temperature estimation in mass screening of fever. However, these studies used the error prone tympanic temperature as a reference. Therefore, we compared T(ca) to oesophageal temperature (T(es)) as gold standard in 10 subjects during four conditions: rest, exercise, recovery and passive heating. T(ca) and T(es) differed significantly during all conditions (mean ΔT(es) - T(ca) 1.80 ± 0.89°C) and their relationship was inconsistent between conditions. Also within the rest condition alone, intersubject variability was too large for a reliable estimation of core temperature. This poses doubts on the use of T(ca) as a technique for core temperature estimation, although generalization of these results to fever detection should be verified experimentally using febrile patients.
Optical Enhancement of Exoskeleton-Based Estimation of Glenohumeral Angles
Cortés, Camilo; Unzueta, Luis; de los Reyes-Guzmán, Ana; Ruiz, Oscar E.; Flórez, Julián
2016-01-01
In Robot-Assisted Rehabilitation (RAR) the accurate estimation of the patient limb joint angles is critical for assessing therapy efficacy. In RAR, the use of classic motion capture systems (MOCAPs) (e.g., optical and electromagnetic) to estimate the Glenohumeral (GH) joint angles is hindered by the exoskeleton body, which causes occlusions and magnetic disturbances. Moreover, the exoskeleton posture does not accurately reflect limb posture, as their kinematic models differ. To address the said limitations in posture estimation, we propose installing the cameras of an optical marker-based MOCAP in the rehabilitation exoskeleton. Then, the GH joint angles are estimated by combining the estimated marker poses and exoskeleton Forward Kinematics. Such hybrid system prevents problems related to marker occlusions, reduced camera detection volume, and imprecise joint angle estimation due to the kinematic mismatch of the patient and exoskeleton models. This paper presents the formulation, simulation, and accuracy quantification of the proposed method with simulated human movements. In addition, a sensitivity analysis of the method accuracy to marker position estimation errors, due to system calibration errors and marker drifts, has been carried out. The results show that, even with significant errors in the marker position estimation, method accuracy is adequate for RAR. PMID:27403044
Estimating aquatic hazards posed by prescription pharmaceutical residues from municipal wastewater
Risks posed by pharmaceuticals in the environment are hard to estimate due to limited monitoring capacity and difficulty interpreting monitoring results. In order to partially address these issues, we suggest a method for prioritizing pharmaceuticals for monitoring, and a framewo...
NASA Astrophysics Data System (ADS)
Westfeld, Patrick; Maas, Hans-Gerd; Bringmann, Oliver; Gröllich, Daniel; Schmauder, Martin
2013-11-01
The paper shows techniques for the determination of structured motion parameters from range camera image sequences. The core contribution of the work presented here is the development of an integrated least squares 3D tracking approach based on amplitude and range image sequences to calculate dense 3D motion vector fields. Geometric primitives of a human body model are fitted to time series of range camera point clouds using these vector fields as additional information. Body poses and motion information for individual body parts are derived from the model fit. On the basis of these pose and motion parameters, critical body postures are detected. The primary aim of the study is to automate ergonomic studies for risk assessments regulated by law, identifying harmful movements and awkward body postures in a workplace.
Whole-arm tactile sensing for beneficial and acceptable contact during robotic assistance.
Grice, Phillip M; Killpack, Marc D; Jain, Advait; Vaish, Sarvagya; Hawke, Jeffrey; Kemp, Charles C
2013-06-01
Many assistive tasks involve manipulation near the care-receiver's body, including self-care tasks such as dressing, feeding, and personal hygiene. A robot can provide assistance with these tasks by moving its end effector to poses near the care-receiver's body. However, perceiving and maneuvering around the care-receiver's body can be challenging due to a variety of issues, including convoluted geometry, compliant materials, body motion, hidden surfaces, and the object upon which the body is resting (e.g., a wheelchair or bed). Using geometric simulations, we first show that an assistive robot can achieve a much larger percentage of end-effector poses near the care-receiver's body if its arm is allowed to make contact. Second, we present a novel system with a custom controller and whole-arm tactile sensor array that enables a Willow Garage PR2 to regulate contact forces across its entire arm while moving its end effector to a commanded pose. We then describe tests with two people with motor impairments, one of whom used the system to grasp and pull a blanket over himself and to grab a cloth and wipe his face, all while in bed at his home. Finally, we describe a study with eight able-bodied users in which they used the system to place objects near their bodies. On average, users perceived the system to be safe and comfortable, even though substantial contact occurred between the robot's arm and the user's body.
A Nonrigid Kernel-Based Framework for 2D-3D Pose Estimation and 2D Image Segmentation
Sandhu, Romeil; Dambreville, Samuel; Yezzi, Anthony; Tannenbaum, Allen
2013-01-01
In this work, we present a nonrigid approach to jointly solving the tasks of 2D-3D pose estimation and 2D image segmentation. In general, most frameworks that couple both pose estimation and segmentation assume that one has exact knowledge of the 3D object. However, under nonideal conditions, this assumption may be violated if only a general class to which a given shape belongs is given (e.g., cars, boats, or planes). Thus, we propose to solve the 2D-3D pose estimation and 2D image segmentation via nonlinear manifold learning of 3D embedded shapes for a general class of objects or deformations for which one may not be able to associate a skeleton model. Thus, the novelty of our method is threefold: First, we present and derive a gradient flow for the task of nonrigid pose estimation and segmentation. Second, due to the possible nonlinear structures of one’s training set, we evolve the preimage obtained through kernel PCA for the task of shape analysis. Third, we show that the derivation for shape weights is general. This allows us to use various kernels, as well as other statistical learning methodologies, with only minimal changes needing to be made to the overall shape evolution scheme. In contrast with other techniques, we approach the nonrigid problem, which is an infinite-dimensional task, with a finite-dimensional optimization scheme. More importantly, we do not explicitly need to know the interaction between various shapes such as that needed for skeleton models as this is done implicitly through shape learning. We provide experimental results on several challenging pose estimation and segmentation scenarios. PMID:20733218
Gorman Ng, Melanie; Milon, Antoine; Vernez, David; Lavoué, Jérôme
2016-04-01
Occupational hygiene practitioners typically assess the risk posed by occupational exposure by comparing exposure measurements to regulatory occupational exposure limits (OELs). In most jurisdictions, OELs are only available for exposure by the inhalation pathway. Skin notations are used to indicate substances for which dermal exposure may lead to health effects. However, these notations are either present or absent and provide no indication of acceptable levels of exposure. Furthermore, the methodology and framework for assigning skin notation differ widely across jurisdictions resulting in inconsistencies in the substances that carry notations. The UPERCUT tool was developed in response to these limitations. It helps occupational health stakeholders to assess the hazard associated with dermal exposure to chemicals. UPERCUT integrates dermal quantitative structure-activity relationships (QSARs) and toxicological data to provide users with a skin hazard index called the dermal hazard ratio (DHR) for the substance and scenario of interest. The DHR is the ratio between the estimated 'received' dose and the 'acceptable' dose. The 'received' dose is estimated using physico-chemical data and information on the exposure scenario provided by the user (body parts exposure and exposure duration), and the 'acceptable' dose is estimated using inhalation OELs and toxicological data. The uncertainty surrounding the DHR is estimated with Monte Carlo simulation. Additional information on the selected substances includes intrinsic skin permeation potential of the substance and the existence of skin notations. UPERCUT is the only available tool that estimates the absorbed dose and compares this to an acceptable dose. In the absence of dermal OELs it provides a systematic and simple approach for screening dermal exposure scenarios for 1686 substances. © The Author 2015. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.
Localized Dictionaries Based Orientation Field Estimation for Latent Fingerprints.
Xiao Yang; Jianjiang Feng; Jie Zhou
2014-05-01
Dictionary based orientation field estimation approach has shown promising performance for latent fingerprints. In this paper, we seek to exploit stronger prior knowledge of fingerprints in order to further improve the performance. Realizing that ridge orientations at different locations of fingerprints have different characteristics, we propose a localized dictionaries-based orientation field estimation algorithm, in which noisy orientation patch at a location output by a local estimation approach is replaced by real orientation patch in the local dictionary at the same location. The precondition of applying localized dictionaries is that the pose of the latent fingerprint needs to be estimated. We propose a Hough transform-based fingerprint pose estimation algorithm, in which the predictions about fingerprint pose made by all orientation patches in the latent fingerprint are accumulated. Experimental results on challenging latent fingerprint datasets show the proposed method outperforms previous ones markedly.
Automatic creation of three-dimensional avatars
NASA Astrophysics Data System (ADS)
Villa-Uriol, Maria-Cruz; Sainz, Miguel; Kuester, Falko; Bagherzadeh, Nader
2003-01-01
Highly accurate avatars of humans promise a new level of realism in engineering and entertainment applications, including areas such as computer animated movies, computer game development interactive virtual environments and tele-presence. In order to provide high-quality avatars, new techniques for the automatic acquisition and creation are required. A framework for the capture and construction of arbitrary avatars from image data is presented in this paper. Avatars are automatically reconstructed from multiple static images of a human subject by utilizing image information to reshape a synthetic three-dimensional articulated reference model. A pipeline is presented that combines a set of hardware-accelerated stages into one seamless system. Primary stages in this pipeline include pose estimation, skeleton fitting, body part segmentation, geometry construction and coloring, leading to avatars that can be animated and included into interactive environments. The presented system removes traditional constraints in the initial pose of the captured subject by using silhouette-based modification techniques in combination with a reference model. Results can be obtained in near-real time with very limited user intervention.
A Parametric Model of Shoulder Articulation for Virtual Assessment of Space Suit Fit
NASA Technical Reports Server (NTRS)
Kim, K. Han; Young, Karen S.; Bernal, Yaritza; Boppana, Abhishektha; Vu, Linh Q.; Benson, Elizabeth A.; Jarvis, Sarah; Rajulu, Sudhakar L.
2016-01-01
Shoulder injury is one of the most severe risks that have the potential to impair crewmembers' performance and health in long duration space flight. Overall, 64% of crewmembers experience shoulder pain after extra-vehicular training in a space suit, and 14% of symptomatic crewmembers require surgical repair (Williams & Johnson, 2003). Suboptimal suit fit, in particular at the shoulder region, has been identified as one of the predominant risk factors. However, traditional suit fit assessments and laser scans represent only a single person's data, and thus may not be generalized across wide variations of body shapes and poses. The aim of this work is to develop a software tool based on a statistical analysis of a large dataset of crewmember body shapes. This tool can accurately predict the skin deformation and shape variations for any body size and shoulder pose for a target population, from which the geometry can be exported and evaluated against suit models in commercial CAD software. A preliminary software tool was developed by statistically analyzing 150 body shapes matched with body dimension ranges specified in the Human-Systems Integration Requirements of NASA ("baseline model"). Further, the baseline model was incorporated with shoulder joint articulation ("articulation model"), using additional subjects scanned in a variety of shoulder poses across a pre-specified range of motion. Scan data was cleaned and aligned using body landmarks. The skin deformation patterns were dimensionally reduced and the co-variation with shoulder angles was analyzed. A software tool is currently in development and will be presented in the final proceeding. This tool would allow suit engineers to parametrically generate body shapes in strategically targeted anthropometry dimensions and shoulder poses. This would also enable virtual fit assessments, with which the contact volume and clearance between the suit and body surface can be predictively quantified at reduced time and cost.
Curve Set Feature-Based Robust and Fast Pose Estimation Algorithm
Hashimoto, Koichi
2017-01-01
Bin picking refers to picking the randomly-piled objects from a bin for industrial production purposes, and robotic bin picking is always used in automated assembly lines. In order to achieve a higher productivity, a fast and robust pose estimation algorithm is necessary to recognize and localize the randomly-piled parts. This paper proposes a pose estimation algorithm for bin picking tasks using point cloud data. A novel descriptor Curve Set Feature (CSF) is proposed to describe a point by the surface fluctuation around this point and is also capable of evaluating poses. The Rotation Match Feature (RMF) is proposed to match CSF efficiently. The matching process combines the idea of the matching in 2D space of origin Point Pair Feature (PPF) algorithm with nearest neighbor search. A voxel-based pose verification method is introduced to evaluate the poses and proved to be more than 30-times faster than the kd-tree-based verification method. Our algorithm is evaluated against a large number of synthetic and real scenes and proven to be robust to noise, able to detect metal parts, more accurately and more than 10-times faster than PPF and Oriented, Unique and Repeatable (OUR)-Clustered Viewpoint Feature Histogram (CVFH). PMID:28771216
Orientation estimation of anatomical structures in medical images for object recognition
NASA Astrophysics Data System (ADS)
Bağci, Ulaş; Udupa, Jayaram K.; Chen, Xinjian
2011-03-01
Recognition of anatomical structures is an important step in model based medical image segmentation. It provides pose estimation of objects and information about "where" roughly the objects are in the image and distinguishing them from other object-like entities. In,1 we presented a general method of model-based multi-object recognition to assist in segmentation (delineation) tasks. It exploits the pose relationship that can be encoded, via the concept of ball scale (b-scale), between the binary training objects and their associated grey images. The goal was to place the model, in a single shot, close to the right pose (position, orientation, and scale) in a given image so that the model boundaries fall in the close vicinity of object boundaries in the image. Unlike position and scale parameters, we observe that orientation parameters require more attention when estimating the pose of the model as even small differences in orientation parameters can lead to inappropriate recognition. Motivated from the non-Euclidean nature of the pose information, we propose in this paper the use of non-Euclidean metrics to estimate orientation of the anatomical structures for more accurate recognition and segmentation. We statistically analyze and evaluate the following metrics for orientation estimation: Euclidean, Log-Euclidean, Root-Euclidean, Procrustes Size-and-Shape, and mean Hermitian metrics. The results show that mean Hermitian and Cholesky decomposition metrics provide more accurate orientation estimates than other Euclidean and non-Euclidean metrics.
A Framework for Analyzing the Whole Body Surface Area from a Single View
Doretto, Gianfranco; Adjeroh, Donald
2017-01-01
We present a virtual reality (VR) framework for the analysis of whole human body surface area. Usual methods for determining the whole body surface area (WBSA) are based on well known formulae, characterized by large errors when the subject is obese, or belongs to certain subgroups. For these situations, we believe that a computer vision approach can overcome these problems and provide a better estimate of this important body indicator. Unfortunately, using machine learning techniques to design a computer vision system able to provide a new body indicator that goes beyond the use of only body weight and height, entails a long and expensive data acquisition process. A more viable solution is to use a dataset composed of virtual subjects. Generating a virtual dataset allowed us to build a population with different characteristics (obese, underweight, age, gender). However, synthetic data might differ from a real scenario, typical of the physician’s clinic. For this reason we develop a new virtual environment to facilitate the analysis of human subjects in 3D. This framework can simulate the acquisition process of a real camera, making it easy to analyze and to create training data for machine learning algorithms. With this virtual environment, we can easily simulate the real setup of a clinic, where a subject is standing in front of a camera, or may assume a different pose with respect to the camera. We use this newly designated environment to analyze the whole body surface area (WBSA). In particular, we show that we can obtain accurate WBSA estimations with just one view, virtually enabling the possibility to use inexpensive depth sensors (e.g., the Kinect) for large scale quantification of the WBSA from a single view 3D map. PMID:28045895
Building machine learning force fields for nanoclusters
NASA Astrophysics Data System (ADS)
Zeni, Claudio; Rossi, Kevin; Glielmo, Aldo; Fekete, Ádám; Gaston, Nicola; Baletto, Francesca; De Vita, Alessandro
2018-06-01
We assess Gaussian process (GP) regression as a technique to model interatomic forces in metal nanoclusters by analyzing the performance of 2-body, 3-body, and many-body kernel functions on a set of 19-atom Ni cluster structures. We find that 2-body GP kernels fail to provide faithful force estimates, despite succeeding in bulk Ni systems. However, both 3- and many-body kernels predict forces within an ˜0.1 eV/Å average error even for small training datasets and achieve high accuracy even on out-of-sample, high temperature structures. While training and testing on the same structure always provide satisfactory accuracy, cross-testing on dissimilar structures leads to higher prediction errors, posing an extrapolation problem. This can be cured using heterogeneous training on databases that contain more than one structure, which results in a good trade-off between versatility and overall accuracy. Starting from a 3-body kernel trained this way, we build an efficient non-parametric 3-body force field that allows accurate prediction of structural properties at finite temperatures, following a newly developed scheme [A. Glielmo et al., Phys. Rev. B 95, 214302 (2017)]. We use this to assess the thermal stability of Ni19 nanoclusters at a fractional cost of full ab initio calculations.
Human Exposure Pathways of Heavy Metals in a Lead-Zinc Mining Area, Jiangsu Province, China
Qu, Chang-Sheng; Ma, Zong-Wei; Yang, Jin; Liu, Yang; Bi, Jun; Huang, Lei
2012-01-01
Heavy metal pollution is becoming a serious issue in developing countries such as China, and the public is increasingly aware of its adverse health impacts in recent years. We assessed the potential health risks in a lead-zinc mining area and attempted to identify the key exposure pathways. We evaluated the spatial distributions of personal exposure using indigenous exposure factors and field monitoring results of water, soil, food, and indoor and outdoor air samples. The risks posed by 10 metals and the contribution of inhalation, ingestion and dermal contact pathways to these risks were estimated. Human hair samples were also analyzed to indicate the exposure level in the human body. Our results show that heavy metal pollution may pose high potential health risks to local residents, especially in the village closest to the mine (V1), mainly due to Pb, Cd and Hg. Correspondingly, the residents in V1 had higher Pb (8.14 mg/kg) levels in hair than those in the other two villages. Most of the estimated risks came from soil, the intake of self-produced vegetables and indoor air inhalation. This study highlights the importance of site-specific multipathway health risk assessments in studying heavy-metal exposures in China. PMID:23152752
Correcting for deformation in skin-based marker systems.
Alexander, E J; Andriacchi, T P
2001-03-01
A new technique is described that reduces error due to skin movement artifact in the opto-electronic measurement of in vivo skeletal motion. This work builds on a previously described point cluster technique marker set and estimation algorithm by extending the transformation equations to the general deformation case using a set of activity-dependent deformation models. Skin deformation during activities of daily living are modeled as consisting of a functional form defined over the observation interval (the deformation model) plus additive noise (modeling error). The method is described as an interval deformation technique. The method was tested using simulation trials with systematic and random components of deformation error introduced into marker position vectors. The technique was found to substantially outperform methods that require rigid-body assumptions. The method was tested in vivo on a patient fitted with an external fixation device (Ilizarov). Simultaneous measurements from markers placed on the Ilizarov device (fixed to bone) were compared to measurements derived from skin-based markers. The interval deformation technique reduced the errors in limb segment pose estimate by 33 and 25% compared to the classic rigid-body technique for position and orientation, respectively. This newly developed method has demonstrated that by accounting for the changing shape of the limb segment, a substantial improvement in the estimates of in vivo skeletal movement can be achieved.
Vision based object pose estimation for mobile robots
NASA Technical Reports Server (NTRS)
Wu, Annie; Bidlack, Clint; Katkere, Arun; Feague, Roy; Weymouth, Terry
1994-01-01
Mobile robot navigation using visual sensors requires that a robot be able to detect landmarks and obtain pose information from a camera image. This paper presents a vision system for finding man-made markers of known size and calculating the pose of these markers. The algorithm detects and identifies the markers using a weighted pattern matching template. Geometric constraints are then used to calculate the position of the markers relative to the robot. The selection of geometric constraints comes from the typical pose of most man-made signs, such as the sign standing vertical and the dimensions of known size. This system has been tested successfully on a wide range of real images. Marker detection is reliable, even in cluttered environments, and under certain marker orientations, estimation of the orientation has proven accurate to within 2 degrees, and distance estimation to within 0.3 meters.
fMRI-adaptation studies of viewpoint tuning in the extrastriate and fusiform body areas.
Taylor, John C; Wiggett, Alison J; Downing, Paul E
2010-03-01
People are easily able to perceive the human body across different viewpoints, but the neural mechanisms underpinning this ability are currently unclear. In three experiments, we used functional MRI (fMRI) adaptation to study the view-invariance of representations in two cortical regions that have previously been shown to be sensitive to visual depictions of the human body--the extrastriate and fusiform body areas (EBA and FBA). The BOLD response to sequentially presented pairs of bodies was treated as an index of view invariance. Specifically, we compared trials in which the bodies in each image held identical poses (seen from different views) to trials containing different poses. EBA and FBA adapted to identical views of the same pose, and both showed a progressive rebound from adaptation as a function of the angular difference between views, up to approximately 30 degrees. However, these adaptation effects were eliminated when the body stimuli were followed by a pattern mask. Delaying the mask onset increased the response (but not the adaptation effect) in EBA, leaving FBA unaffected. We interpret these masking effects as evidence that view-dependent fMRI adaptation is driven by later waves of neuronal responses in the regions of interest. Finally, in a whole brain analysis, we identified an anterior region of the left inferior temporal sulcus (l-aITS) that responded linearly to stimulus rotation, but showed no selectivity for bodies. Our results show that body-selective cortical areas exhibit a similar degree of view-invariance as other object selective areas--such as the lateral occipitotemporal area (LO) and posterior fusiform gyrus (pFs).
A combined vision-inertial fusion approach for 6-DoF object pose estimation
NASA Astrophysics Data System (ADS)
Li, Juan; Bernardos, Ana M.; Tarrío, Paula; Casar, José R.
2015-02-01
The estimation of the 3D position and orientation of moving objects (`pose' estimation) is a critical process for many applications in robotics, computer vision or mobile services. Although major research efforts have been carried out to design accurate, fast and robust indoor pose estimation systems, it remains as an open challenge to provide a low-cost, easy to deploy and reliable solution. Addressing this issue, this paper describes a hybrid approach for 6 degrees of freedom (6-DoF) pose estimation that fuses acceleration data and stereo vision to overcome the respective weaknesses of single technology approaches. The system relies on COTS technologies (standard webcams, accelerometers) and printable colored markers. It uses a set of infrastructure cameras, located to have the object to be tracked visible most of the operation time; the target object has to include an embedded accelerometer and be tagged with a fiducial marker. This simple marker has been designed for easy detection and segmentation and it may be adapted to different service scenarios (in shape and colors). Experimental results show that the proposed system provides high accuracy, while satisfactorily dealing with the real-time constraints.
Zhe Cao; Shaojie Su; Hao Tang; Yixin Zhou; Zhihua Wang; Hong Chen
2017-07-01
With the aging of population, the number of Total Hip Replacement Surgeries (THR) increased year by year. In THR, inaccurate position of the implanted prosthesis may lead to the failure of the operation. In order to reduce the failure rate and acquire the real-time pose of Anterior Pelvic Plane (APP), we propose a measurement system in this paper. The measurement system includes two parts: Initial Pose Measurement Instrument (IPMI) and Real-time Pose Measurement Instrument (RPMI). IPMI is used to acquire the initial pose of the APP, and RPMI is used to estimate the real-time pose of the APP. Both are composed of an Inertial Measurement Unit (IMU) and magnetometer sensors. To estimate the attitude of the measurement system, the Extended Kalman Filter (EKF) is adopted in this paper. The real-time pose of the APP could be acquired together with the algorithm designed in the paper. The experiment results show that the Root Mean Square Error (RMSE) is within 1.6 degrees, which meets the requirement of THR operations.
Estimating the gaze of a virtuality human.
Roberts, David J; Rae, John; Duckworth, Tobias W; Moore, Carl M; Aspin, Rob
2013-04-01
The aim of our experiment is to determine if eye-gaze can be estimated from a virtuality human: to within the accuracies that underpin social interaction; and reliably across gaze poses and camera arrangements likely in every day settings. The scene is set by explaining why Immersive Virtuality Telepresence has the potential to meet the grand challenge of faithfully communicating both the appearance and the focus of attention of a remote human participant within a shared 3D computer-supported context. Within the experiment n=22 participants rotated static 3D virtuality humans, reconstructed from surround images, until they felt most looked at. The dependent variable was absolute angular error, which was compared to that underpinning social gaze behaviour in the natural world. Independent variables were 1) relative orientations of eye, head and body of captured subject; and 2) subset of cameras used to texture the form. Analysis looked for statistical and practical significance and qualitative corroborating evidence. The analysed results tell us much about the importance and detail of the relationship between gaze pose, method of video based reconstruction, and camera arrangement. They tell us that virtuality can reproduce gaze to an accuracy useful in social interaction, but with the adopted method of Video Based Reconstruction, this is highly dependent on combination of gaze pose and camera arrangement. This suggests changes in the VBR approach in order to allow more flexible camera arrangements. The work is of interest to those wanting to support expressive meetings that are both socially and spatially situated, and particular those using or building Immersive Virtuality Telepresence to accomplish this. It is also of relevance to the use of virtuality humans in applications ranging from the study of human interactions to gaming and the crossing of the stage line in films and TV.
Xia, Dan; Gao, Li-Rong; Zheng, Ming-Hui; Li, Jing-Guang; Zhang, Lei; Wu, Yong-Ning; Qiao, Lin; Tian, Qi-Chang; Huang, Hui-Ting; Liu, Wen-Bin; Su, Gui-Jin; Liu, Guo-Rui
2017-06-01
Chlorinated paraffins (CPs) are complex mixtures of synthetic chemicals found widely in environmental matrices. Short-chain CPs (SCCPs) are candidate persistent organic pollutants under the Stockholm Convention. There should be great concern about human exposure to SCCPs. Data on CP concentrations in human breast milk is scarce. This is the first study in which background SCCP and medium-chain CP (MCCP) body burdens in the general rural population of China have been estimated and health risks posed to nursing infants by CPs in breast milk assessed. The concentrations of 48 SCCP and MCCP formula congeners were determined in 24 pooled human milk samples produced from 1412 individual samples from eight provinces in 2007 and 16 provinces in 2011. The samples were analyzed by comprehensive two-dimensional gas chromatography electron capture negative ionization high-resolution time-of-flight mass spectrometry. The median SCCP and MCCP concentrations were 303 and 35.7ngg -1 lipid weight, respectively, for the 2007 samples and 360 and 45.4ngg -1 lipid weight, respectively, for the 2011 samples. The C 10 and C 14 homologs were the dominant CP carbon-chain-length groups, contributing 51% and 82% of the total SCCP and MCCP concentrations, respectively. There are probably multiple CP sources to the general Chinese population and numerous exposure pathways. The median estimated daily SCCP and MCCP intakes for nursing infants were 1310 and 152ngkg -1 d -1 , respectively, in 2007 and 1520 and 212ngkg -1 d -1 , respectively, in 2011. SCCPs do not currently pose significant risks to infants in China. However, it is necessary to continuously monitor CP concentrations and health risks because CP concentrations in Chinese human breast milk are increasing. Copyright © 2017 Elsevier Ltd. All rights reserved.
Pose Self-Calibration of Stereo Vision Systems for Autonomous Vehicle Applications.
Musleh, Basam; Martín, David; Armingol, José María; de la Escalera, Arturo
2016-09-14
Nowadays, intelligent systems applied to vehicles have grown very rapidly; their goal is not only the improvement of safety, but also making autonomous driving possible. Many of these intelligent systems are based on making use of computer vision in order to know the environment and act accordingly. It is of great importance to be able to estimate the pose of the vision system because the measurement matching between the perception system (pixels) and the vehicle environment (meters) depends on the relative position between the perception system and the environment. A new method of camera pose estimation for stereo systems is presented in this paper, whose main contribution regarding the state of the art on the subject is the estimation of the pitch angle without being affected by the roll angle. The validation of the self-calibration method is accomplished by comparing it with relevant methods of camera pose estimation, where a synthetic sequence is used in order to measure the continuous error with a ground truth. This validation is enriched by the experimental results of the method in real traffic environments.
Pose Self-Calibration of Stereo Vision Systems for Autonomous Vehicle Applications
Musleh, Basam; Martín, David; Armingol, José María; de la Escalera, Arturo
2016-01-01
Nowadays, intelligent systems applied to vehicles have grown very rapidly; their goal is not only the improvement of safety, but also making autonomous driving possible. Many of these intelligent systems are based on making use of computer vision in order to know the environment and act accordingly. It is of great importance to be able to estimate the pose of the vision system because the measurement matching between the perception system (pixels) and the vehicle environment (meters) depends on the relative position between the perception system and the environment. A new method of camera pose estimation for stereo systems is presented in this paper, whose main contribution regarding the state of the art on the subject is the estimation of the pitch angle without being affected by the roll angle. The validation of the self-calibration method is accomplished by comparing it with relevant methods of camera pose estimation, where a synthetic sequence is used in order to measure the continuous error with a ground truth. This validation is enriched by the experimental results of the method in real traffic environments. PMID:27649178
Discriminating Projections for Estimating Face Age in Wild Images
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tokola, Ryan A; Bolme, David S; Ricanek, Karl
2014-01-01
We introduce a novel approach to estimating the age of a human from a single uncontrolled image. Current face age estimation algorithms work well in highly controlled images, and some are robust to changes in illumination, but it is usually assumed that images are close to frontal. This bias is clearly seen in the datasets that are commonly used to evaluate age estimation, which either entirely or mostly consist of frontal images. Using pose-specific projections, our algorithm maps image features into a pose-insensitive latent space that is discriminative with respect to age. Age estimation is then performed using a multi-classmore » SVM. We show that our approach outperforms other published results on the Images of Groups dataset, which is the only age-related dataset with a non-trivial number of off-axis face images, and that we are competitive with recent age estimation algorithms on the mostly-frontal FG-NET dataset. We also experimentally demonstrate that our feature projections introduce insensitivity to pose.« less
Estimating Physical Activity Energy Expenditure with the Kinect Sensor in an Exergaming Environment
Nathan, David; Huynh, Du Q.; Rubenson, Jonas; Rosenberg, Michael
2015-01-01
Active video games that require physical exertion during game play have been shown to confer health benefits. Typically, energy expended during game play is measured using devices attached to players, such as accelerometers, or portable gas analyzers. Since 2010, active video gaming technology incorporates marker-less motion capture devices to simulate human movement into game play. Using the Kinect Sensor and Microsoft SDK this research aimed to estimate the mechanical work performed by the human body and estimate subsequent metabolic energy using predictive algorithmic models. Nineteen University students participated in a repeated measures experiment performing four fundamental movements (arm swings, standing jumps, body-weight squats, and jumping jacks). Metabolic energy was captured using a Cortex Metamax 3B automated gas analysis system with mechanical movement captured by the combined motion data from two Kinect cameras. Estimations of the body segment properties, such as segment mass, length, centre of mass position, and radius of gyration, were calculated from the Zatsiorsky-Seluyanov's equations of de Leva, with adjustment made for posture cost. GPML toolbox implementation of the Gaussian Process Regression, a locally weighted k-Nearest Neighbour Regression, and a linear regression technique were evaluated for their performance on predicting the metabolic cost from new feature vectors. The experimental results show that Gaussian Process Regression outperformed the other two techniques by a small margin. This study demonstrated that physical activity energy expenditure during exercise, using the Kinect camera as a motion capture system, can be estimated from segmental mechanical work. Estimates for high-energy activities, such as standing jumps and jumping jacks, can be made accurately, but for low-energy activities, such as squatting, the posture of static poses should be considered as a contributing factor. When translated into the active video gaming environment, the results could be incorporated into game play to more accurately control the energy expenditure requirements. PMID:26000460
Shitzer, Avraham
2006-03-01
The wind-chill index (WCI), developed in Antarctica in the 1940s and recently updated by the weather services in the USA and Canada, expresses the enhancement of heat loss in cold climates from exposed body parts, e.g., face, due to wind. The index provides a simple and practical means for assessing the thermal effects of wind on humans outdoors. It is also used for indicating weather conditions that may pose adverse risks of freezing at subfreezing environmental temperatures. Values of the WCI depend on a number of parameters, i.e, temperatures, physical properties of the air, wind speed, etc., and on insolation and evaporation. This paper focuses on the effects of various empirical correlations used in the literature for calculating the convective heat transfer coefficients between humans and their environment. Insolation and evaporation are not included in the presentation. Large differences in calculated values among these correlations are demonstrated and quantified. Steady-state wind-chill-equivalent temperatures (WCETs) are estimated by a simple, one-dimensional heat-conducting hollow-cylindrical model using these empirical correlations. Partial comparison of these values with the published "new" WCETs is presented. The variability of the estimated WCETs, due to different correlations employed to calculate them, is clearly demonstrated. The results of this study clearly suggest the need for establishing a "gold standard" for estimating convective heat exchange between exposed body elements and the cold and windy environment. This should be done prior to the introduction and adoption of further modifications to WCETs and indices. Correlations to estimate the convective heat transfer coefficients between exposed body parts of humans in windy and cold environments influence the WCETs and need to be standardized.
NASA Astrophysics Data System (ADS)
Shitzer, Avraham
2006-03-01
The wind-chill index (WCI), developed in Antarctica in the 1940s and recently updated by the weather services in the USA and Canada, expresses the enhancement of heat loss in cold climates from exposed body parts, e.g., face, due to wind. The index provides a simple and practical means for assessing the thermal effects of wind on humans outdoors. It is also used for indicating weather conditions that may pose adverse risks of freezing at subfreezing environmental temperatures. Values of the WCI depend on a number of parameters, i.e, temperatures, physical properties of the air, wind speed, etc., and on insolation and evaporation. This paper focuses on the effects of various empirical correlations used in the literature for calculating the convective heat transfer coefficients between humans and their environment. Insolation and evaporation are not included in the presentation. Large differences in calculated values among these correlations are demonstrated and quantified. Steady-state wind-chill-equivalent temperatures (WCETs) are estimated by a simple, one-dimensional heat-conducting hollow-cylindrical model using these empirical correlations. Partial comparison of these values with the published “new” WCETs is presented. The variability of the estimated WCETs, due to different correlations employed to calculate them, is clearly demonstrated. The results of this study clearly suggest the need for establishing a “gold standard” for estimating convective heat exchange between exposed body elements and the cold and windy environment. This should be done prior to the introduction and adoption of further modifications to WCETs and indices. Correlations to estimate the convective heat transfer coefficients between exposed body parts of humans in windy and cold environments influence the WCETs and need to be standardized.
Lippi, Vittorio; Mergner, Thomas
2017-01-01
The high complexity of the human posture and movement control system represents challenges for diagnosis, therapy, and rehabilitation of neurological patients. We envisage that engineering-inspired, model-based approaches will help to deal with the high complexity of the human posture control system. Since the methods of system identification and parameter estimation are limited to systems with only a few DoF, our laboratory proposes a heuristic approach that step-by-step increases complexity when creating a hypothetical human-derived control systems in humanoid robots. This system is then compared with the human control in the same test bed, a posture control laboratory. The human-derived control builds upon the identified disturbance estimation and compensation (DEC) mechanism, whose main principle is to support execution of commanded poses or movements by compensating for external or self-produced disturbances such as gravity effects. In previous robotic implementation, up to 3 interconnected DEC control modules were used in modular control architectures separately for the sagittal plane or the frontal body plane and successfully passed balancing and movement tests. In this study we hypothesized that conflict-free movement coordination between the robot's sagittal and frontal body planes emerges simply from the physical embodiment, not necessarily requiring a full body control. Experiments were performed in the 14 DoF robot Lucy Posturob (i) demonstrating that the mechanical coupling from the robot's body suffices to coordinate the controls in the two planes when the robot produces movements and balancing responses in the intermediate plane, (ii) providing quantitative characterization of the interaction dynamics between body planes including frequency response functions (FRFs), as they are used in human postural control analysis, and (iii) witnessing postural and control stability when all DoFs are challenged together with the emergence of inter-segmental coordination in squatting movements. These findings represent an important step toward controlling in the robot in future more complex sensorimotor functions such as walking.
Lippi, Vittorio; Mergner, Thomas
2017-01-01
The high complexity of the human posture and movement control system represents challenges for diagnosis, therapy, and rehabilitation of neurological patients. We envisage that engineering-inspired, model-based approaches will help to deal with the high complexity of the human posture control system. Since the methods of system identification and parameter estimation are limited to systems with only a few DoF, our laboratory proposes a heuristic approach that step-by-step increases complexity when creating a hypothetical human-derived control systems in humanoid robots. This system is then compared with the human control in the same test bed, a posture control laboratory. The human-derived control builds upon the identified disturbance estimation and compensation (DEC) mechanism, whose main principle is to support execution of commanded poses or movements by compensating for external or self-produced disturbances such as gravity effects. In previous robotic implementation, up to 3 interconnected DEC control modules were used in modular control architectures separately for the sagittal plane or the frontal body plane and successfully passed balancing and movement tests. In this study we hypothesized that conflict-free movement coordination between the robot's sagittal and frontal body planes emerges simply from the physical embodiment, not necessarily requiring a full body control. Experiments were performed in the 14 DoF robot Lucy Posturob (i) demonstrating that the mechanical coupling from the robot's body suffices to coordinate the controls in the two planes when the robot produces movements and balancing responses in the intermediate plane, (ii) providing quantitative characterization of the interaction dynamics between body planes including frequency response functions (FRFs), as they are used in human postural control analysis, and (iii) witnessing postural and control stability when all DoFs are challenged together with the emergence of inter-segmental coordination in squatting movements. These findings represent an important step toward controlling in the robot in future more complex sensorimotor functions such as walking. PMID:28951719
Mondloch, Catherine J
2012-02-01
The current research investigated the influence of body posture on adults' and children's perception of facial displays of emotion. In each of two experiments, participants categorized facial expressions that were presented on a body posture that was congruent (e.g., a sad face on a body posing sadness) or incongruent (e.g., a sad face on a body posing fear). Adults and 8-year-olds made more errors and had longer reaction times on incongruent trials than on congruent trials when judging sad versus fearful facial expressions, an effect that was larger in 8-year-olds. The congruency effect was reduced when faces and bodies were misaligned, providing some evidence for holistic processing. Neither adults nor 8-year-olds were affected by congruency when judging sad versus happy expressions. Evidence that congruency effects vary with age and with similarity of emotional expressions is consistent with dimensional theories and "emotional seed" models of emotion perception. 2011 Elsevier Inc. All rights reserved.
Neurotoxicity of lead, methylmercury, and PCBs in relation to the Great Lakes.
Rice, D C
1995-01-01
There is ample evidence identifying lead, methylmercury, and polychlorinated biphenyls (PCBs) as neurotoxic agents. A large body of data on the neurotoxicity of lead, based on both epidemiologic studies in children and animal models of developmental exposure, reveals that body burdens of lead typical of people in industrialized environments produce behavioral impairment. Methylmercury was identified as a neurotoxicant in both adults and the developing organism based on episodes of human poisoning: these effects have been replicated and extended in animals. High-dose PCB exposure was recognized as a developmental toxicant as a result of several episodes of contamination of cooking oil. The threshold for PCB neurotoxicity in humans is less clear, although research in animals suggests that relatively low-level exposure produces behavioral impairment and other toxic effects. Tissue levels in fish below which human health would not be adversely affected were estimated for methylmercury and PCBs based on calculated reference doses (RfDs) and estimated fish intake. Present levels in fish tissue in the Great Lakes exceed these levels for both neurotoxicants. Great Lakes fish and water do not pose a particular hazard for increased lead intake. However, the fact that the present human body burden is in a range at which functional deficits are probable suggests that efforts should be made to eliminate point sources of lead contamination in the Great Lakes basin. PMID:8635443
A model-based 3D template matching technique for pose acquisition of an uncooperative space object.
Opromolla, Roberto; Fasano, Giancarmine; Rufino, Giancarlo; Grassi, Michele
2015-03-16
This paper presents a customized three-dimensional template matching technique for autonomous pose determination of uncooperative targets. This topic is relevant to advanced space applications, like active debris removal and on-orbit servicing. The proposed technique is model-based and produces estimates of the target pose without any prior pose information, by processing three-dimensional point clouds provided by a LIDAR. These estimates are then used to initialize a pose tracking algorithm. Peculiar features of the proposed approach are the use of a reduced number of templates and the idea of building the database of templates on-line, thus significantly reducing the amount of on-board stored data with respect to traditional techniques. An algorithm variant is also introduced aimed at further accelerating the pose acquisition time and reducing the computational cost. Technique performance is investigated within a realistic numerical simulation environment comprising a target model, LIDAR operation and various target-chaser relative dynamics scenarios, relevant to close-proximity flight operations. Specifically, the capability of the proposed techniques to provide a pose solution suitable to initialize the tracking algorithm is demonstrated, as well as their robustness against highly variable pose conditions determined by the relative dynamics. Finally, a criterion for autonomous failure detection of the presented techniques is presented.
HAYANO, Ryugo S.; TSUBOKURA, Masaharu; MIYAZAKI, Makoto; SATOU, Hideo; SATO, Katsumi; MASAKI, Shin; SAKUMA, Yu
2013-01-01
The Fukushima Dai-ichi NPP accident contaminated the soil of densely-populated regions in Fukushima Prefecture with radioactive cesium, which poses significant risks of internal and external exposure to the residents. If we apply the knowledge of post-Chernobyl accident studies, internal exposures in excess of a few mSv/y would be expected to be frequent in Fukushima. Extensive whole-body-counter surveys (n = 32,811) carried out at the Hirata Central Hospital between October, 2011 and November, 2012, however show that the internal exposure levels of residents are much lower than estimated. In particular, the first sampling-bias-free assessment of the internal exposure of children in the town of Miharu, Fukushima, shows that the 137Cs body burdens of all children (n = 1,383, ages 6–15, covering 95% of children enrolled in town-operated schools) were below the detection limit of 300 Bq/body in the fall of 2012. These results are not conclusive for the prefecture as a whole, but are consistent with results obtained from other municipalities in the prefecture, and with prefectural data. PMID:23574806
Neuro-fuzzy model for estimating race and gender from geometric distances of human face across pose
NASA Astrophysics Data System (ADS)
Nanaa, K.; Rahman, M. N. A.; Rizon, M.; Mohamad, F. S.; Mamat, M.
2018-03-01
Classifying human face based on race and gender is a vital process in face recognition. It contributes to an index database and eases 3D synthesis of the human face. Identifying race and gender based on intrinsic factor is problematic, which is more fitting to utilizing nonlinear model for estimating process. In this paper, we aim to estimate race and gender in varied head pose. For this purpose, we collect dataset from PICS and CAS-PEAL databases, detect the landmarks and rotate them to the frontal pose. After geometric distances are calculated, all of distance values will be normalized. Implementation is carried out by using Neural Network Model and Fuzzy Logic Model. These models are combined by using Adaptive Neuro-Fuzzy Model. The experimental results showed that the optimization of address fuzzy membership. Model gives a better assessment rate and found that estimating race contributing to a more accurate gender assessment.
NASA Astrophysics Data System (ADS)
Dong, Gangqi; Zhu, Z. H.
2016-04-01
This paper proposed a new incremental inverse kinematics based vision servo approach for robotic manipulators to capture a non-cooperative target autonomously. The target's pose and motion are estimated by a vision system using integrated photogrammetry and EKF algorithm. Based on the estimated pose and motion of the target, the instantaneous desired position of the end-effector is predicted by inverse kinematics and the robotic manipulator is moved incrementally from its current configuration subject to the joint speed limits. This approach effectively eliminates the multiple solutions in the inverse kinematics and increases the robustness of the control algorithm. The proposed approach is validated by a hardware-in-the-loop simulation, where the pose and motion of the non-cooperative target is estimated by a real vision system. The simulation results demonstrate the effectiveness and robustness of the proposed estimation approach for the target and the incremental control strategy for the robotic manipulator.
Richard, Vincent; Cappozzo, Aurelio; Dumas, Raphaël
2017-09-06
Estimating joint kinematics from skin-marker trajectories recorded using stereophotogrammetry is complicated by soft tissue artefact (STA), an inexorable source of error. One solution is to use a bone pose estimator based on multi-body kinematics optimisation (MKO) embedding joint constraints to compensate for STA. However, there is some debate over the effectiveness of this method. The present study aimed to quantitatively assess the degree of agreement between reference (i.e., artefact-free) knee joint kinematics and the same kinematics estimated using MKO embedding six different knee joint models. The following motor tasks were assessed: level walking, hopping, cutting, running, sit-to-stand, and step-up. Reference knee kinematics was taken from pin-marker or biplane fluoroscopic data acquired concurrently with skin-marker data, made available by the respective authors. For each motor task, Bland-Altman analysis revealed that the performance of MKO varied according to the joint model used, with a wide discrepancy in results across degrees of freedom (DoFs), models and motor tasks (with a bias between -10.2° and 13.2° and between -10.2mm and 7.2mm, and with a confidence interval up to ±14.8° and ±11.1mm, for rotation and displacement, respectively). It can be concluded that, while MKO might occasionally improve kinematics estimation, as implemented to date it does not represent a reliable solution to the STA issue. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Liu, Yonghuai; Rodrigues, Marcos A.
2000-03-01
This paper describes research on the application of machine vision techniques to a real time automatic inspection task of air filter components in a manufacturing line. A novel calibration algorithm is proposed based on a special camera setup where defective items would show a large calibration error. The algorithm makes full use of rigid constraints derived from the analysis of geometrical properties of reflected correspondence vectors which have been synthesized into a single coordinate frame and provides a closed form solution to the estimation of all parameters. For a comparative study of performance, we also developed another algorithm based on this special camera setup using epipolar geometry. A number of experiments using synthetic data have shown that the proposed algorithm is generally more accurate and robust than the epipolar geometry based algorithm and that the geometric properties of reflected correspondence vectors provide effective constraints to the calibration of rigid body transformations.
NASA Astrophysics Data System (ADS)
Casasent, David P.; Shenoy, Rajesh
1997-10-01
Classification and pose estimation of distorted input objects are considered. The feature space trajectory representation of distorted views of an object is used with a new eigenfeature space. For a distorted input object, the closest trajectory denotes the class of the input and the closest line segment on it denotes its pose. If an input point is too far from a trajectory, it is rejected as clutter. New methods for selecting Fukunaga-Koontz discriminant vectors, the number of dominant eigenvectors per class and for determining training, and test set compatibility are presented.
Hand pose estimation in depth image using CNN and random forest
NASA Astrophysics Data System (ADS)
Chen, Xi; Cao, Zhiguo; Xiao, Yang; Fang, Zhiwen
2018-03-01
Thanks to the availability of low cost depth cameras, like Microsoft Kinect, 3D hand pose estimation attracted special research attention in these years. Due to the large variations in hand`s viewpoint and the high dimension of hand motion, 3D hand pose estimation is still challenging. In this paper we propose a two-stage framework which joint with CNN and Random Forest to boost the performance of hand pose estimation. First, we use a standard Convolutional Neural Network (CNN) to regress the hand joints` locations. Second, using a Random Forest to refine the joints from the first stage. In the second stage, we propose a pyramid feature which merges the information flow of the CNN. Specifically, we get the rough joints` location from first stage, then rotate the convolutional feature maps (and image). After this, for each joint, we map its location to each feature map (and image) firstly, then crop features at each feature map (and image) around its location, put extracted features to Random Forest to refine at last. Experimentally, we evaluate our proposed method on ICVL dataset and get the mean error about 11mm, our method is also real-time on a desktop.
Mukherjee, Joyeeta Mitra; Hutton, Brian F; Johnson, Karen L; Pretorius, P Hendrik; King, Michael A
2014-01-01
Motion estimation methods in single photon emission computed tomography (SPECT) can be classified into methods which depend on just the emission data (data-driven), or those that use some other source of information such as an external surrogate. The surrogate-based methods estimate the motion exhibited externally which may not correlate exactly with the movement of organs inside the body. The accuracy of data-driven strategies on the other hand is affected by the type and timing of motion occurrence during acquisition, the source distribution, and various degrading factors such as attenuation, scatter, and system spatial resolution. The goal of this paper is to investigate the performance of two data-driven motion estimation schemes based on the rigid-body registration of projections of motion-transformed source distributions to the acquired projection data for cardiac SPECT studies. Comparison is also made of six intensity based registration metrics to an external surrogate-based method. In the data-driven schemes, a partially reconstructed heart is used as the initial source distribution. The partially-reconstructed heart has inaccuracies due to limited angle artifacts resulting from using only a part of the SPECT projections acquired while the patient maintained the same pose. The performance of different cost functions in quantifying consistency with the SPECT projection data in the data-driven schemes was compared for clinically realistic patient motion occurring as discrete pose changes, one or two times during acquisition. The six intensity-based metrics studied were mean-squared difference (MSD), mutual information (MI), normalized mutual information (NMI), pattern intensity (PI), normalized cross-correlation (NCC) and entropy of the difference (EDI). Quantitative and qualitative analysis of the performance is reported using Monte-Carlo simulations of a realistic heart phantom including degradation factors such as attenuation, scatter and system spatial resolution. Further the visual appearance of motion-corrected images using data-driven motion estimates was compared to that obtained using the external motion-tracking system in patient studies. Pattern intensity and normalized mutual information cost functions were observed to have the best performance in terms of lowest average position error and stability with degradation of image quality of the partial reconstruction in simulations. In all patients, the visual quality of PI-based estimation was either significantly better or comparable to NMI-based estimation. Best visual quality was obtained with PI-based estimation in 1 of the 5 patient studies, and with external-surrogate based correction in 3 out of 5 patients. In the remaining patient study there was little motion and all methods yielded similar visual image quality. PMID:24107647
Vision Based SLAM in Dynamic Scenes
2012-12-20
the correct relative poses between cameras at frame F. For this purpose, we detect and match SURF features between cameras in dilierent groups, and...all cameras in s uch a challenging case. For a compa rison, we disabled the ’ inte r-camera pose estimation’ and applied the ’ intra-camera pose esti
Estimation of dioxin and furan elimination rates with a pharmacokinetic model.
Van der Molen, G W; Kooijman, B A; Wittsiepe, J; Schrey, P; Flesch-Janys, D; Slob, W
2000-01-01
Quantitative description of the pharmacokinetics of dioxins and furans in humans can be of great help for the assessment of health risks posed by these compounds. To that the elimination rates of sixteen 2,3,7,8-chlorinated dibenzodioxins and dibenzofurans are estimated from both a longitudinal and a cross-sectional data set using the model of Van der Molen et al. [Van der Molen G.W., Kooijman S.A.L.M., and Slob W. A generic toxicokinetic model for persistent lipophilic compounds in humans: an application to TCDD. Fundam Appl Toxicol 1996: 31: 83-94]. In this model the elimination rate is given by the (constant) specific elimination rate multiplied with the ratio between the lipid weight of the liver and total body lipid weight. Body composition, body weight and intake are assumed to depend on age. The elimination rate is, therefore, not constant. For 49-year-old males, the elimination rate estimates range between 0.03 per year for 1,2,3,6,7,8-hexaCDF to 1.0 per year for octaCDF. The elimination rates of the most toxic congeners, 2,3,7,8-tetraCDD, 1,2,3,7,8-pentaCDD, and 2,3,4,7,8-pentaCDF, were estimated at 0.09, 0.06, and 0.07, respectively, based on the cross-sectional data, and 0.11, 0.09, and 0.09 based on the longitudinal data. The elimination rates of dioxins decrease with age between 0.0011 per year for 1,2,3,6,7,8-hexaCDD and 0.0035 per year for 1,2,3,4,6,7,8-heptaCDD. For furans the average decrease is 0.0033 per year. The elimination rates were estimated both from a longitudinal and a cross-sectional data set, and agreed quite well with each other, after taking account of historical changes in average intake levels.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hatt, Charles R.; Tomkowiak, Michael T.; Dunkerley, David A. P.
2015-12-15
Purpose: Image registration between standard x-ray fluoroscopy and transesophageal echocardiography (TEE) has recently been proposed. Scanning-beam digital x-ray (SBDX) is an inverse geometry fluoroscopy system designed for cardiac procedures. This study presents a method for 3D registration of SBDX and TEE images based on the tomosynthesis and 3D tracking capabilities of SBDX. Methods: The registration algorithm utilizes the stack of tomosynthetic planes produced by the SBDX system to estimate the physical 3D coordinates of salient key-points on the TEE probe. The key-points are used to arrive at an initial estimate of the probe pose, which is then refined using amore » 2D/3D registration method adapted for inverse geometry fluoroscopy. A phantom study was conducted to evaluate probe pose estimation accuracy relative to the ground truth, as defined by a set of coregistered fiducial markers. This experiment was conducted with varying probe poses and levels of signal difference-to-noise ratio (SDNR). Additional phantom and in vivo studies were performed to evaluate the correspondence of catheter tip positions in TEE and x-ray images following registration of the two modalities. Results: Target registration error (TRE) was used to characterize both pose estimation and registration accuracy. In the study of pose estimation accuracy, successful pose estimates (3D TRE < 5.0 mm) were obtained in 97% of cases when the SDNR was 5.9 or higher in seven out of eight poses. Under these conditions, 3D TRE was 2.32 ± 1.88 mm, and 2D (projection) TRE was 1.61 ± 1.36 mm. Probe localization error along the source-detector axis was 0.87 ± 1.31 mm. For the in vivo experiments, mean 3D TRE ranged from 2.6 to 4.6 mm and mean 2D TRE ranged from 1.1 to 1.6 mm. Anatomy extracted from the echo images appeared well aligned when projected onto the SBDX images. Conclusions: Full 6 DOF image registration between SBDX and TEE is feasible and accurate to within 5 mm. Future studies will focus on real-time implementation and application-specific analysis.« less
A multi-camera system for real-time pose estimation
NASA Astrophysics Data System (ADS)
Savakis, Andreas; Erhard, Matthew; Schimmel, James; Hnatow, Justin
2007-04-01
This paper presents a multi-camera system that performs face detection and pose estimation in real-time and may be used for intelligent computing within a visual sensor network for surveillance or human-computer interaction. The system consists of a Scene View Camera (SVC), which operates at a fixed zoom level, and an Object View Camera (OVC), which continuously adjusts its zoom level to match objects of interest. The SVC is set to survey the whole filed of view. Once a region has been identified by the SVC as a potential object of interest, e.g. a face, the OVC zooms in to locate specific features. In this system, face candidate regions are selected based on skin color and face detection is accomplished using a Support Vector Machine classifier. The locations of the eyes and mouth are detected inside the face region using neural network feature detectors. Pose estimation is performed based on a geometrical model, where the head is modeled as a spherical object that rotates upon the vertical axis. The triangle formed by the mouth and eyes defines a vertical plane that intersects the head sphere. By projecting the eyes-mouth triangle onto a two dimensional viewing plane, equations were obtained that describe the change in its angles as the yaw pose angle increases. These equations are then combined and used for efficient pose estimation. The system achieves real-time performance for live video input. Testing results assessing system performance are presented for both still images and video.
An Improved Method of Pose Estimation for Lighthouse Base Station Extension.
Yang, Yi; Weng, Dongdong; Li, Dong; Xun, Hang
2017-10-22
In 2015, HTC and Valve launched a virtual reality headset empowered with Lighthouse, the cutting-edge space positioning technology. Although Lighthouse is superior in terms of accuracy, latency and refresh rate, its algorithms do not support base station expansion, and is flawed concerning occlusion in moving targets, that is, it is unable to calculate their poses with a small set of sensors, resulting in the loss of optical tracking data. In view of these problems, this paper proposes an improved pose estimation algorithm for cases where occlusion is involved. Our algorithm calculates the pose of a given object with a unified dataset comprising of inputs from sensors recognized by all base stations, as long as three or more sensors detect a signal in total, no matter from which base station. To verify our algorithm, HTC official base stations and autonomous developed receivers are used for prototyping. The experiment result shows that our pose calculation algorithm can achieve precise positioning when a few sensors detect the signal.
An Improved Method of Pose Estimation for Lighthouse Base Station Extension
Yang, Yi; Weng, Dongdong; Li, Dong; Xun, Hang
2017-01-01
In 2015, HTC and Valve launched a virtual reality headset empowered with Lighthouse, the cutting-edge space positioning technology. Although Lighthouse is superior in terms of accuracy, latency and refresh rate, its algorithms do not support base station expansion, and is flawed concerning occlusion in moving targets, that is, it is unable to calculate their poses with a small set of sensors, resulting in the loss of optical tracking data. In view of these problems, this paper proposes an improved pose estimation algorithm for cases where occlusion is involved. Our algorithm calculates the pose of a given object with a unified dataset comprising of inputs from sensors recognized by all base stations, as long as three or more sensors detect a signal in total, no matter from which base station. To verify our algorithm, HTC official base stations and autonomous developed receivers are used for prototyping. The experiment result shows that our pose calculation algorithm can achieve precise positioning when a few sensors detect the signal. PMID:29065509
To Strike a Pose: No Stereotype Backlash for Power Posing Women
Rennung, Miriam; Blum, Johannes; Göritz, Anja S.
2016-01-01
Power posing, the adoption of open and powerful postures, has effects that parallel those of actual social power. This study explored the social evaluation of adopting powerful vs. powerless body postures in men and women regarding perceived warmth, competence, and the likelihood of eliciting admiration, envy, pity, and contempt. Previous findings suggest that the display of power by women may have side effects due to gender stereotyping, namely reduced warmth ratings and negative emotional reactions. An experiment (N = 2,473) asked participants to rate pictures of men and women who adopted high-power or low-power body postures. High-power posers were rated higher on competence, admiration, envy, and contempt compared to low-power posers, whereas the opposite was true for pity. There was no impact of power posing on perceived warmth. Contrary to expectations, the poser’s gender did not moderate any of the effects. These findings suggest that non-verbal displays of power do influence fundamental dimensions of social perception and their accompanying emotional reactions but result in comparably positive and negative evaluations for both genders. PMID:27729887
Structure-From-Motion in 3D Space Using 2D Lidars
Choi, Dong-Geol; Bok, Yunsu; Kim, Jun-Sik; Shim, Inwook; Kweon, In So
2017-01-01
This paper presents a novel structure-from-motion methodology using 2D lidars (Light Detection And Ranging). In 3D space, 2D lidars do not provide sufficient information for pose estimation. For this reason, additional sensors have been used along with the lidar measurement. In this paper, we use a sensor system that consists of only 2D lidars, without any additional sensors. We propose a new method of estimating both the 6D pose of the system and the surrounding 3D structures. We compute the pose of the system using line segments of scan data and their corresponding planes. After discarding the outliers, both the pose and the 3D structures are refined via nonlinear optimization. Experiments with both synthetic and real data show the accuracy and robustness of the proposed method. PMID:28165372
First stereo video dataset with ground truth for remote car pose estimation using satellite markers
NASA Astrophysics Data System (ADS)
Gil, Gustavo; Savino, Giovanni; Pierini, Marco
2018-04-01
Leading causes of PTW (Powered Two-Wheeler) crashes and near misses in urban areas are on the part of a failure or delayed prediction of the changing trajectories of other vehicles. Regrettably, misperception from both car drivers and motorcycle riders results in fatal or serious consequences for riders. Intelligent vehicles could provide early warning about possible collisions, helping to avoid the crash. There is evidence that stereo cameras can be used for estimating the heading angle of other vehicles, which is key to anticipate their imminent location, but there is limited heading ground truth data available in the public domain. Consequently, we employed a marker-based technique for creating ground truth of car pose and create a dataset∗ for computer vision benchmarking purposes. This dataset of a moving vehicle collected from a static mounted stereo camera is a simplification of a complex and dynamic reality, which serves as a test bed for car pose estimation algorithms. The dataset contains the accurate pose of the moving obstacle, and realistic imagery including texture-less and non-lambertian surfaces (e.g. reflectance and transparency).
Driver head pose tracking with thermal camera
NASA Astrophysics Data System (ADS)
Bole, S.; Fournier, C.; Lavergne, C.; Druart, G.; Lépine, T.
2016-09-01
Head pose can be seen as a coarse estimation of gaze direction. In automotive industry, knowledge about gaze direction could optimize Human-Machine Interface (HMI) and Advanced Driver Assistance Systems (ADAS). Pose estimation systems are often based on camera when applications have to be contactless. In this paper, we explore uncooled thermal imagery (8-14μm) for its intrinsic night vision capabilities and for its invariance versus lighting variations. Two methods are implemented and compared, both are aided by a 3D model of the head. The 3D model, mapped with thermal texture, allows to synthesize a base of 2D projected models, differently oriented and labeled in yaw and pitch. The first method is based on keypoints. Keypoints of models are matched with those of the query image. These sets of matchings, aided with the 3D shape of the model, allow to estimate 3D pose. The second method is a global appearance approach. Among all 2D models of the base, algorithm searches the one which is the closest to the query image thanks to a weighted least squares difference.
Multi-object segmentation using coupled nonparametric shape and relative pose priors
NASA Astrophysics Data System (ADS)
Uzunbas, Mustafa Gökhan; Soldea, Octavian; Çetin, Müjdat; Ünal, Gözde; Erçil, Aytül; Unay, Devrim; Ekin, Ahmet; Firat, Zeynep
2009-02-01
We present a new method for multi-object segmentation in a maximum a posteriori estimation framework. Our method is motivated by the observation that neighboring or coupling objects in images generate configurations and co-dependencies which could potentially aid in segmentation if properly exploited. Our approach employs coupled shape and inter-shape pose priors that are computed using training images in a nonparametric multi-variate kernel density estimation framework. The coupled shape prior is obtained by estimating the joint shape distribution of multiple objects and the inter-shape pose priors are modeled via standard moments. Based on such statistical models, we formulate an optimization problem for segmentation, which we solve by an algorithm based on active contours. Our technique provides significant improvements in the segmentation of weakly contrasted objects in a number of applications. In particular for medical image analysis, we use our method to extract brain Basal Ganglia structures, which are members of a complex multi-object system posing a challenging segmentation problem. We also apply our technique to the problem of handwritten character segmentation. Finally, we use our method to segment cars in urban scenes.
Towards Unmanned Systems for Dismounted Operations in the Canadian Forces
2011-01-01
LIDAR , and RADAR) and lower power/mass, passive imaging techniques such as structure from motion and simultaneous localisation and mapping ( SLAM ...sensors and learning algorithms. 5.1.2 Simultaneous localisation and mapping SLAM algorithms concurrently estimate a robot pose and a map of unique...locations and vehicle pose are part of the SLAM state vector and are estimated in each update step. AISS developed a monocular camera-based SLAM
A Neural-Dynamic Architecture for Concurrent Estimation of Object Pose and Identity
Lomp, Oliver; Faubel, Christian; Schöner, Gregor
2017-01-01
Handling objects or interacting with a human user about objects on a shared tabletop requires that objects be identified after learning from a small number of views and that object pose be estimated. We present a neurally inspired architecture that learns object instances by storing features extracted from a single view of each object. Input features are color and edge histograms from a localized area that is updated during processing. The system finds the best-matching view for the object in a novel input image while concurrently estimating the object’s pose, aligning the learned view with current input. The system is based on neural dynamics, computationally operating in real time, and can handle dynamic scenes directly off live video input. In a scenario with 30 everyday objects, the system achieves recognition rates of 87.2% from a single training view for each object, while also estimating pose quite precisely. We further demonstrate that the system can track moving objects, and that it can segment the visual array, selecting and recognizing one object while suppressing input from another known object in the immediate vicinity. Evaluation on the COIL-100 dataset, in which objects are depicted from different viewing angles, revealed recognition rates of 91.1% on the first 30 objects, each learned from four training views. PMID:28503145
A Simulation Environment for Benchmarking Sensor Fusion-Based Pose Estimators.
Ligorio, Gabriele; Sabatini, Angelo Maria
2015-12-19
In-depth analysis and performance evaluation of sensor fusion-based estimators may be critical when performed using real-world sensor data. For this reason, simulation is widely recognized as one of the most powerful tools for algorithm benchmarking. In this paper, we present a simulation framework suitable for assessing the performance of sensor fusion-based pose estimators. The systems used for implementing the framework were magnetic/inertial measurement units (MIMUs) and a camera, although the addition of further sensing modalities is straightforward. Typical nuisance factors were also included for each sensor. The proposed simulation environment was validated using real-life sensor data employed for motion tracking. The higher mismatch between real and simulated sensors was about 5% of the measured quantity (for the camera simulation), whereas a lower correlation was found for an axis of the gyroscope (0.90). In addition, a real benchmarking example of an extended Kalman filter for pose estimation from MIMU and camera data is presented.
Temporal subtraction of chest radiographs compensating pose differences
NASA Astrophysics Data System (ADS)
von Berg, Jens; Dworzak, Jalda; Klinder, Tobias; Manke, Dirk; Kreth, Adrian; Lamecker, Hans; Zachow, Stefan; Lorenz, Cristian
2011-03-01
Temporal subtraction techniques using 2D image registration improve the detectability of interval changes from chest radiographs. Although such methods are well known for some time they are not widely used in radiologic practice. The reason is the occurrence of strong pose differences between two acquisitions with a time interval of months to years in between. Such strong perspective differences occur in a reasonable number of cases. They cannot be compensated by available image registration methods and thus mask interval changes to be undetectable. In this paper a method is proposed to estimate a 3D pose difference by the adaptation of a 3D rib cage model to both projections. The difference between both is then compensated for, thus producing a subtraction image with virtually no change in pose. The method generally assumes that no 3D image data is available from the patient. The accuracy of pose estimation is validated with chest phantom images acquired under controlled geometric conditions. A subtle interval change simulated by a piece of plastic foam attached to the phantom becomes visible in subtraction images generated with this technique even at strong angular pose differences like an anterior-posterior inclination of 13 degrees.
Low is large: spatial location and pitch interact in voice-based body size estimation.
Pisanski, Katarzyna; Isenstein, Sari G E; Montano, Kelyn J; O'Connor, Jillian J M; Feinberg, David R
2017-05-01
The binding of incongruent cues poses a challenge for multimodal perception. Indeed, although taller objects emit sounds from higher elevations, low-pitched sounds are perceptually mapped both to large size and to low elevation. In the present study, we examined how these incongruent vertical spatial cues (up is more) and pitch cues (low is large) to size interact, and whether similar biases influence size perception along the horizontal axis. In Experiment 1, we measured listeners' voice-based judgments of human body size using pitch-manipulated voices projected from a high versus a low, and a right versus a left, spatial location. Listeners associated low spatial locations with largeness for lowered-pitch but not for raised-pitch voices, demonstrating that pitch overrode vertical-elevation cues. Listeners associated rightward spatial locations with largeness, regardless of voice pitch. In Experiment 2, listeners performed the task while sitting or standing, allowing us to examine self-referential cues to elevation in size estimation. Listeners associated vertically low and rightward spatial cues with largeness more for lowered- than for raised-pitch voices. These correspondences were robust to sex (of both the voice and the listener) and head elevation (standing or sitting); however, horizontal correspondences were amplified when participants stood. Moreover, when participants were standing, their judgments of how much larger men's voices sounded than women's increased when the voices were projected from the low speaker. Our results provide novel evidence for a multidimensional spatial mapping of pitch that is generalizable to human voices and that affects performance in an indirect, ecologically relevant spatial task (body size estimation). These findings suggest that crossmodal pitch correspondences evoke both low-level and higher-level cognitive processes.
Pose estimation of teeth through crown-shape matching
NASA Astrophysics Data System (ADS)
Mok, Vevin; Ong, Sim Heng; Foong, Kelvin W. C.; Kondo, Toshiaki
2002-05-01
This paper presents a technique for determining a tooth's pose given a dental plaster cast and a set of generic tooth models. The ultimate goal of pose estimation is to obtain information about the sizes and positions of the roots, which lie hidden within the gums, without the use of X-rays, CT or MRI. In our approach, the tooth of interest is first extracted from the 3D dental cast image through segmentation. 2D views are then generated from the extracted tooth and are matched against a target view generated from the generic model with known pose. Additional views are generated in the vicinity of the best view and the entire process is repeated until convergence. Upon convergence, the generic tooth is superimposed onto the dental cast to show the position of the root. The results of applying the technique to canines demonstrate the excellent potential of the algorithm for generic tooth fitting.
Sabatini, Angelo Maria; Ligorio, Gabriele; Mannini, Andrea
2015-11-23
In biomechanical studies Optical Motion Capture Systems (OMCS) are considered the gold standard for determining the orientation and the position (pose) of an object in a global reference frame. However, the use of OMCS can be difficult, which has prompted research on alternative sensing technologies, such as body-worn inertial sensors. We developed a drift-free method to estimate the three-dimensional (3D) displacement of a body part during cyclical motions using body-worn inertial sensors. We performed the Fourier analysis of the stride-by-stride estimates of the linear acceleration, which were obtained by transposing the specific forces measured by the tri-axial accelerometer into the global frame using a quaternion-based orientation estimation algorithm and detecting when each stride began using a gait-segmentation algorithm. The time integration was performed analytically using the Fourier series coefficients; the inverse Fourier series was then taken for reconstructing the displacement over each single stride. The displacement traces were concatenated and spline-interpolated to obtain the entire trace. The method was applied to estimate the motion of the lower trunk of healthy subjects that walked on a treadmill and it was validated using OMCS reference 3D displacement data; different approaches were tested for transposing the measured specific force into the global frame, segmenting the gait and performing time integration (numerically and analytically). The width of the limits of agreements were computed between each tested method and the OMCS reference method for each anatomical direction: Medio-Lateral (ML), VerTical (VT) and Antero-Posterior (AP); using the proposed method, it was observed that the vertical component of displacement (VT) was within ±4 mm (±1.96 standard deviation) of OMCS data and each component of horizontal displacement (ML and AP) was within ±9 mm of OMCS data. Fourier harmonic analysis was applied to model stride-by-stride linear accelerations during walking and to perform their analytical integration. Our results showed that analytical integration based on Fourier series coefficients was a useful approach to accurately estimate 3D displacement from noisy acceleration data.
Human pose tracking from monocular video by traversing an image motion mapped body pose manifold
NASA Astrophysics Data System (ADS)
Basu, Saurav; Poulin, Joshua; Acton, Scott T.
2010-01-01
Tracking human pose from monocular video sequences is a challenging problem due to the large number of independent parameters affecting image appearance and nonlinear relationships between generating parameters and the resultant images. Unlike the current practice of fitting interpolation functions to point correspondences between underlying pose parameters and image appearance, we exploit the relationship between pose parameters and image motion flow vectors in a physically meaningful way. Change in image appearance due to pose change is realized as navigating a low dimensional submanifold of the infinite dimensional Lie group of diffeomorphisms of the two dimensional sphere S2. For small changes in pose, image motion flow vectors lie on the tangent space of the submanifold. Any observed image motion flow vector field is decomposed into the basis motion vector flow fields on the tangent space and combination weights are used to update corresponding pose changes in the different dimensions of the pose parameter space. Image motion flow vectors are largely invariant to style changes in experiments with synthetic and real data where the subjects exhibit variation in appearance and clothing. The experiments demonstrate the robustness of our method (within +/-4° of ground truth) to style variance.
The relative pose estimation of aircraft based on contour model
NASA Astrophysics Data System (ADS)
Fu, Tai; Sun, Xiangyi
2017-02-01
This paper proposes a relative pose estimation approach based on object contour model. The first step is to obtain a two-dimensional (2D) projection of three-dimensional (3D)-model-based target, which will be divided into 40 forms by clustering and LDA analysis. Then we proceed by extracting the target contour in each image and computing their Pseudo-Zernike Moments (PZM), thus a model library is constructed in an offline mode. Next, we spot a projection contour that resembles the target silhouette most in the present image from the model library with reference of PZM; then similarity transformation parameters are generated as the shape context is applied to match the silhouette sampling location, from which the identification parameters of target can be further derived. Identification parameters are converted to relative pose parameters, in the premise that these values are the initial result calculated via iterative refinement algorithm, as the relative pose parameter is in the neighborhood of actual ones. At last, Distance Image Iterative Least Squares (DI-ILS) is employed to acquire the ultimate relative pose parameters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parkhurst, James M.; Price, Gareth J., E-mail: gareth.price@christie.nhs.uk; Faculty of Medical and Human Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Manchester
2013-12-01
Purpose: We present the results of a clinical feasibility study, performed in 10 healthy volunteers undergoing a simulated treatment over 3 sessions, to investigate the use of a wide-field visual feedback technique intended to help patients control their pose while reducing motion during radiation therapy treatment. Methods and Materials: An optical surface sensor is used to capture wide-area measurements of a subject's body surface with visualizations of these data displayed back to them in real time. In this study we hypothesize that this active feedback mechanism will enable patients to control their motion and help them maintain their setup posemore » and position. A capability hierarchy of 3 different level-of-detail abstractions of the measured surface data is systematically compared. Results: Use of the device enabled volunteers to increase their conformance to a reference surface, as measured by decreased variability across their body surfaces. The use of visual feedback also enabled volunteers to reduce their respiratory motion amplitude to 1.7 ± 0.6 mm compared with 2.7 ± 1.4 mm without visual feedback. Conclusions: The use of live feedback of their optically measured body surfaces enabled a set of volunteers to better manage their pose and motion when compared with free breathing. The method is suitable to be taken forward to patient studies.« less
ERIC Educational Resources Information Center
Downton, Ann; Sullivan, Peter
2017-01-01
While the general planning advice offered to mathematics teachers seems to be to start with simple examples and build complexity progressively, the research reported in this article is a contribution to the body of literature that argues the reverse. That is, posing of appropriately complex tasks may actually prompt the use of more sophisticated…
Ann Hutchinson (as subject), Dr. Joan Vernikos (R), Dee O'Hara (L), J. Evans and E. Lowe pose for
NASA Technical Reports Server (NTRS)
1993-01-01
Ann Hutchinson (as subject), Dr. Joan Vernikos (R), Dee O'Hara (L), J. Evans and E. Lowe pose for pictures in the NASA Magazine aritcle 'How it Feels to be a Human Test Subject' as they prepare for a bed rest study to simulate the efects of microgravity on the human body.
ERIC Educational Resources Information Center
Mondloch, Catherine J.
2012-01-01
The current research investigated the influence of body posture on adults' and children's perception of facial displays of emotion. In each of two experiments, participants categorized facial expressions that were presented on a body posture that was congruent (e.g., a sad face on a body posing sadness) or incongruent (e.g., a sad face on a body…
Camera pose estimation for augmented reality in a small indoor dynamic scene
NASA Astrophysics Data System (ADS)
Frikha, Rawia; Ejbali, Ridha; Zaied, Mourad
2017-09-01
Camera pose estimation remains a challenging task for augmented reality (AR) applications. Simultaneous localization and mapping (SLAM)-based methods are able to estimate the six degrees of freedom camera motion while constructing a map of an unknown environment. However, these methods do not provide any reference for where to insert virtual objects since they do not have any information about scene structure and may fail in cases of occlusion of three-dimensional (3-D) map points or dynamic objects. This paper presents a real-time monocular piece wise planar SLAM method using the planar scene assumption. Using planar structures in the mapping process allows rendering virtual objects in a meaningful way on the one hand and improving the precision of the camera pose and the quality of 3-D reconstruction of the environment by adding constraints on 3-D points and poses in the optimization process on the other hand. We proposed to benefit from the 3-D planes rigidity motion in the tracking process to enhance the system robustness in the case of dynamic scenes. Experimental results show that using a constrained planar scene improves our system accuracy and robustness compared with the classical SLAM systems.
A robotic orbital emulator with lidar-based SLAM and AMCL for multiple entity pose estimation
NASA Astrophysics Data System (ADS)
Shen, Dan; Xiang, Xingyu; Jia, Bin; Wang, Zhonghai; Chen, Genshe; Blasch, Erik; Pham, Khanh
2018-05-01
This paper revises and evaluates an orbital emulator (OE) for space situational awareness (SSA). The OE can produce 3D satellite movements using capabilities generated from omni-wheeled robot and robotic arm motions. The 3D motion of satellite is partitioned into the movements in the equatorial plane and the up-down motions in the vertical plane. The 3D actions are emulated by omni-wheeled robot models while the up-down motions are performed by a stepped-motorcontrolled- ball along a rod (robotic arm), which is attached to the robot. Lidar only measurements are used to estimate the pose information of the multiple robots. SLAM (simultaneous localization and mapping) is running on one robot to generate the map and compute the pose for the robot. Based on the SLAM map maintained by the robot, the other robots run the adaptive Monte Carlo localization (AMCL) method to estimate their poses. The controller is designed to guide the robot to follow a given orbit. The controllability is analyzed by using a feedback linearization method. Experiments are conducted to show the convergence of AMCL and the orbit tracking performance.
Increase in pediatric magnet-related foreign bodies requiring emergency care.
Silverman, Jonathan A; Brown, Julie C; Willis, Margaret M; Ebel, Beth E
2013-12-01
We describe magnetic foreign body injuries among children and obtain national estimates of magnetic foreign body injury incidence over time. We searched the National Electronic Injury Surveillance System for cases of magnetic foreign bodies in children younger than 21 years in the United States, from 2002 to 2011. Cases were analyzed by location: alimentary or respiratory tract, nasal cavity, ear canal, or genital area. We identified 893 cases of magnetic foreign bodies, corresponding to 22,581 magnetic foreign body cases during a 10-year period (95% confidence interval [CI] 17,694 to 27,469). Most magnetic foreign bodies were ingested (74%) or intranasal (21%). Mean age was 5.2 years for ingested magnetic foreign bodies and 10.1 years for nasal magnetic foreign bodies (difference 4.9; 95% CI 4.1 to 5.6), suggesting different circumstances of injury. The incidence of pediatric magnet ingestions increased from 2002 to 2003 from 0.57 cases per 100,000 children per year (95% CI 0.22 to 0.92) to a peak in 2010 to 2011 of 3.06 cases per 100,000 children per year (95% CI 2.16 to 3.96). Most ingested magnetic foreign bodies (73%) and multiple magnet ingestions (91%) occurred in 2007 or later. Patients were admitted in 15.7% of multiple magnet ingestions versus 2.3% of single magnet ingestions (difference 13.4%; 95% CI 2.8% to 24.0%). Magnet-related injuries are an increasing public health problem for young children, as well for older children who may use magnets for play or to imitate piercings. Education and improved magnet safety standards may decrease the risk small magnets pose to children. Copyright © 2013 American College of Emergency Physicians. Published by Mosby, Inc. All rights reserved.
Maximal likelihood correspondence estimation for face recognition across pose.
Li, Shaoxin; Liu, Xin; Chai, Xiujuan; Zhang, Haihong; Lao, Shihong; Shan, Shiguang
2014-10-01
Due to the misalignment of image features, the performance of many conventional face recognition methods degrades considerably in across pose scenario. To address this problem, many image matching-based methods are proposed to estimate semantic correspondence between faces in different poses. In this paper, we aim to solve two critical problems in previous image matching-based correspondence learning methods: 1) fail to fully exploit face specific structure information in correspondence estimation and 2) fail to learn personalized correspondence for each probe image. To this end, we first build a model, termed as morphable displacement field (MDF), to encode face specific structure information of semantic correspondence from a set of real samples of correspondences calculated from 3D face models. Then, we propose a maximal likelihood correspondence estimation (MLCE) method to learn personalized correspondence based on maximal likelihood frontal face assumption. After obtaining the semantic correspondence encoded in the learned displacement, we can synthesize virtual frontal images of the profile faces for subsequent recognition. Using linear discriminant analysis method with pixel-intensity features, state-of-the-art performance is achieved on three multipose benchmarks, i.e., CMU-PIE, FERET, and MultiPIE databases. Owe to the rational MDF regularization and the usage of novel maximal likelihood objective, the proposed MLCE method can reliably learn correspondence between faces in different poses even in complex wild environment, i.e., labeled face in the wild database.
Chapter 6: Ecotoxicology, Environmental Risk Assessment & Potential Impact on Human Health
This chapter examines potential risks posed by pharmaceuticals present in the aquatic environment to humans and aquatic life. We begin by describing the mechanisms by which pharmaceuticals enter the vertebrate body, produce effects and leave the body. Then we describe theoretical...
Using velocity dispersion to estimate halo mass: Is the Local Group in tension with ΛCDM?
NASA Astrophysics Data System (ADS)
Elahi, Pascal J.; Power, Chris; Lagos, Claudia del P.; Poulton, Rhys; Robotham, Aaron S. G.
2018-06-01
Satellite galaxies are commonly used as tracers to measure the line-of-sight (LOS)velocity dispersion (σLOS) of the dark matter halo associated with their central galaxy, and thereby to estimate the halo's mass. Recent observational dispersion estimates of the Local Group, including the Milky Way and M31, suggest σ ˜50 km s-1, which is surprisingly low when compared to the theoretical expectation of σ ˜100 km s-1 for systems of their mass. Does this pose a problem for Lambda cold dark matter (ΛCDM)? We explore this tension using the SURFS suite of N-body simulations, containing over 10000 (sub)haloes with well tracked orbits. We test how well a central galaxy's host halo velocity dispersion can be recovered by sampling σLOS of subhaloes and surrounding haloes. Our results demonstrate that σLOS is biased mass proxy. We define an optimal window in vLOS and projected distance (Dp) - 0.5 ≲ Dp/Rvir ≲ 1.0 and vLOS ≲ 0.5Vesc, where Rvir is the virial radius and Vesc is the escape velocity - such that the scatter in LOS to halo dispersion is minimized - σLOS = (0.5 ± 0.1)σv, H. We argue that this window should be used to measure LOS dispersions as a proxy for mass, as it minimises scatter in the σLOS-Mvir relation. This bias also naturally explains the results from McConnachie (2012), who used similar cuts when estimating σLOS, LG, producing a bias of σLG = (0.44 ± 0.14)σv, H. We conclude that the Local Group's velocity dispersion does not pose a problem for ΛCDM and has a mass of log M_{LG, vir}/M_{⊙}=12.0^{+0.8}_{-2.0}.
NASA Astrophysics Data System (ADS)
Opromolla, Roberto; Fasano, Giancarmine; Rufino, Giancarlo; Grassi, Michele
2017-08-01
The capability of an active spacecraft to accurately estimate its relative position and attitude (pose) with respect to an active/inactive, artificial/natural space object (target) orbiting in close-proximity is required to carry out various activities like formation flying, on-orbit servicing, active debris removal, and space exploration. According to the specific mission scenario, the pose determination task involves both theoretical and technological challenges related to the search for the most suitable algorithmic solution and sensor architecture, respectively. As regards the latter aspect, electro-optical sensors represent the best option as their use is compatible with mass and power limitation of micro and small satellites, and their measurements can be processed to estimate all the pose parameters. Overall, the degree of complexity of the challenges related to pose determination largely varies depending on the nature of the targets, which may be actively/passively cooperative, uncooperative but known, or uncooperative and unknown space objects. In this respect, while cooperative pose determination has been successfully demonstrated in orbit, the uncooperative case is still under study by universities, research centers, space agencies and private companies. However, in both the cases, the demand for space applications involving relative navigation maneuvers, also in close-proximity, for which pose determination capabilities are mandatory, is significantly increasing. In this framework, a review of state-of-the-art techniques and algorithms developed in the last decades for cooperative and uncooperative pose determination by processing data provided by electro-optical sensors is herein presented. Specifically, their main advantages and drawbacks in terms of achieved performance, computational complexity, and sensitivity to variability of pose and target geometry, are highlighted.
Mínguez, Pablo; Genolla, José; Celeiro, José; Fombellida, José Cruz
2013-01-01
People treated for hyperthyroidism are normally outpatients who pose a potential radiological risk to some members of the public. In this study, measurements of the uptake in 30 patients were used to estimate the values of the activity of ¹³¹I in the whole body of patients, AWB, by using a model of two compartments. Restriction periods to be followed by patients for different values of the administered activity of ¹³¹I were calculated. To perform calculations, the following were used: the curve obtained for AWB; the value of the dose rate at one metre from patients after the administration of the treatment; and the estimated time that carers, comforters and members of the public will spend at certain distances from patients. Results show that protection from radiation for carers, comforters and members of the public related to patients treated for hyperthyroidism can become a cumbersome matter as patients may have to follow very long restriction periods.
NASA Astrophysics Data System (ADS)
Kilgus, T.; Franz, A. M.; Seitel, A.; Marz, K.; Bartha, L.; Fangerau, M.; Mersmann, S.; Groch, A.; Meinzer, H.-P.; Maier-Hein, L.
2012-02-01
Visualization of anatomical data for disease diagnosis, surgical planning, or orientation during interventional therapy is an integral part of modern health care. However, as anatomical information is typically shown on monitors provided by a radiological work station, the physician has to mentally transfer internal structures shown on the screen to the patient. To address this issue, we recently presented a new approach to on-patient visualization of 3D medical images, which combines the concept of augmented reality (AR) with an intuitive interaction scheme. Our method requires mounting a range imaging device, such as a Time-of-Flight (ToF) camera, to a portable display (e.g. a tablet PC). During the visualization process, the pose of the camera and thus the viewing direction of the user is continuously determined with a surface matching algorithm. By moving the device along the body of the patient, the physician is given the impression of looking directly into the human body. In this paper, we present and evaluate a new method for camera pose estimation based on an anisotropic trimmed variant of the well-known iterative closest point (ICP) algorithm. According to in-silico and in-vivo experiments performed with computed tomography (CT) and ToF data of human faces, knees and abdomens, our new method is better suited for surface registration with ToF data than the established trimmed variant of the ICP, reducing the target registration error (TRE) by more than 60%. The TRE obtained (approx. 4-5 mm) is promising for AR visualization, but clinical applications require maximization of robustness and run-time.
Solving Navigational Uncertainty Using Grid Cells on Robots
Milford, Michael J.; Wiles, Janet; Wyeth, Gordon F.
2010-01-01
To successfully navigate their habitats, many mammals use a combination of two mechanisms, path integration and calibration using landmarks, which together enable them to estimate their location and orientation, or pose. In large natural environments, both these mechanisms are characterized by uncertainty: the path integration process is subject to the accumulation of error, while landmark calibration is limited by perceptual ambiguity. It remains unclear how animals form coherent spatial representations in the presence of such uncertainty. Navigation research using robots has determined that uncertainty can be effectively addressed by maintaining multiple probabilistic estimates of a robot's pose. Here we show how conjunctive grid cells in dorsocaudal medial entorhinal cortex (dMEC) may maintain multiple estimates of pose using a brain-based robot navigation system known as RatSLAM. Based both on rodent spatially-responsive cells and functional engineering principles, the cells at the core of the RatSLAM computational model have similar characteristics to rodent grid cells, which we demonstrate by replicating the seminal Moser experiments. We apply the RatSLAM model to a new experimental paradigm designed to examine the responses of a robot or animal in the presence of perceptual ambiguity. Our computational approach enables us to observe short-term population coding of multiple location hypotheses, a phenomenon which would not be easily observable in rodent recordings. We present behavioral and neural evidence demonstrating that the conjunctive grid cells maintain and propagate multiple estimates of pose, enabling the correct pose estimate to be resolved over time even without uniquely identifying cues. While recent research has focused on the grid-like firing characteristics, accuracy and representational capacity of grid cells, our results identify a possible critical and unique role for conjunctive grid cells in filtering sensory uncertainty. We anticipate our study to be a starting point for animal experiments that test navigation in perceptually ambiguous environments. PMID:21085643
Online gesture spotting from visual hull data.
Peng, Bo; Qian, Gang
2011-06-01
This paper presents a robust framework for online full-body gesture spotting from visual hull data. Using view-invariant pose features as observations, hidden Markov models (HMMs) are trained for gesture spotting from continuous movement data streams. Two major contributions of this paper are 1) view-invariant pose feature extraction from visual hulls, and 2) a systematic approach to automatically detecting and modeling specific nongesture movement patterns and using their HMMs for outlier rejection in gesture spotting. The experimental results have shown the view-invariance property of the proposed pose features for both training poses and new poses unseen in training, as well as the efficacy of using specific nongesture models for outlier rejection. Using the IXMAS gesture data set, the proposed framework has been extensively tested and the gesture spotting results are superior to those reported on the same data set obtained using existing state-of-the-art gesture spotting methods.
[Overview of an anthropology of the vaccine: a look at the ethics of a humanitarian practice].
Laplante, Julie; Bruneau, Julie
2003-01-01
Two interrelated universal practices, humanitarian medicine and immunization, pose certain ethical problems. To shed light on the matter, we present some historical reference points indispensable to an understanding of contemporary vaccination programs, focusing especially on certain anthropological issues posed by this practice as far as representations of the body and of health within populations. Two examples of humanitarian vaccination practices, one used among an autochthonous population and the other among young people on the street, serve to illustrate some thoughts on management of the body and on the resistance displayed by these groups. We then propose paths to follow in re-examining the ethics of vaccination.
Oudshoorn, Nelly
2018-01-01
Technologies inside bodies pose new challenges in a technological culture. For people with pacemakers and defibrillators, activities such as passing security controls at airports, using electromagnetic machines, electrical domestic appliances and electronic devices, and even intimate contacts with their loved ones can turn into events where the proper functioning of their device may be at risk. Anticipation of potentially harmful events and situations thus becomes an important part of the choreography of everyday life. Technologies inside bodies not only pose a challenge for patients living with these devices but also to theorising body-technology relations. Whereas researchers usually address the merging of bodies and technologies, implants ask us to do the opposite as well. How are we to understand human-technology relations in which technologies should not entangle with bodies because they serve other purposes? Based on a study of the daily life practices of people with pacemakers and defibrillators in the Netherlands and the US, I argue that disentanglement work, i.e. work involved to prevent entanglements with objects and people that may inflict harm upon implanted devices, is key to understanding how hybrid bodies can survive in today's densely populated technological landscape. © 2017 Foundation for the Sociology of Health & Illness.
Marker detection evaluation by phantom and cadaver experiments for C-arm pose estimation pattern
NASA Astrophysics Data System (ADS)
Steger, Teena; Hoßbach, Martin; Wesarg, Stefan
2013-03-01
C-arm fluoroscopy is used for guidance during several clinical exams, e.g. in bronchoscopy to locate the bronchoscope inside the airways. Unfortunately, these images provide only 2D information. However, if the C-arm pose is known, it can be used to overlay the intrainterventional fluoroscopy images with 3D visualizations of airways, acquired from preinterventional CT images. Thus, the physician's view is enhanced and localization of the instrument at the correct position inside the bronchial tree is facilitated. We present a novel method for C-arm pose estimation introducing a marker-based pattern, which is placed on the patient table. The steel markers form a pattern, allowing to deduce the C-arm pose by use of the projective invariant cross-ratio. Simulations show that the C-arm pose estimation is reliable and accurate for translations inside an imaging area of 30 cm x 50 cm and rotations up to 30°. Mean error values are 0.33 mm in 3D space and 0.48 px in the 2D imaging plane. First tests on C-arm images resulted in similarly compelling accuracy values and high reliability in an imaging area of 30 cm x 42.5 cm. Even in the presence of interfering structures, tested both with anatomy phantoms and a turkey cadaver, high success rates over 90% and fully satisfying execution times below 4 sec for 1024 px × 1024 px images could be achieved.
NASA Technical Reports Server (NTRS)
Lee, Mun Wai
2015-01-01
Crew exercise is important during long-duration space flight not only for maintaining health and fitness but also for preventing adverse health problems, such as losses in muscle strength and bone density. Monitoring crew exercise via motion capture and kinematic analysis aids understanding of the effects of microgravity on exercise and helps ensure that exercise prescriptions are effective. Intelligent Automation, Inc., has developed ESPRIT to monitor exercise activities, detect body markers, extract image features, and recover three-dimensional (3D) kinematic body poses. The system relies on prior knowledge and modeling of the human body and on advanced statistical inference techniques to achieve robust and accurate motion capture. In Phase I, the company demonstrated motion capture of several exercises, including walking, curling, and dead lifting. Phase II efforts focused on enhancing algorithms and delivering an ESPRIT prototype for testing and demonstration.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paone, Jeffrey R; Bolme, David S; Ferrell, Regina Kay
Keeping a driver focused on the road is one of the most critical steps in insuring the safe operation of a vehicle. The Strategic Highway Research Program 2 (SHRP2) has over 3,100 recorded videos of volunteer drivers during a period of 2 years. This extensive naturalistic driving study (NDS) contains over one million hours of video and associated data that could aid safety researchers in understanding where the driver s attention is focused. Manual analysis of this data is infeasible, therefore efforts are underway to develop automated feature extraction algorithms to process and characterize the data. The real-world nature, volume,more » and acquisition conditions are unmatched in the transportation community, but there are also challenges because the data has relatively low resolution, high compression rates, and differing illumination conditions. A smaller dataset, the head pose validation study, is available which used the same recording equipment as SHRP2 but is more easily accessible with less privacy constraints. In this work we report initial head pose accuracy using commercial and open source face pose estimation algorithms on the head pose validation data set.« less
Model of Emotional Expressions in Movements
ERIC Educational Resources Information Center
Rozaliev, Vladimir L.; Orlova, Yulia A.
2013-01-01
This paper presents a new approach to automated identification of human emotions based on analysis of body movements, a recognition of gestures and poses. Methodology, models and automated system for emotion identification are considered. To characterize the person emotions in the model, body movements are described with linguistic variables and a…
Object recognition and localization from 3D point clouds by maximum-likelihood estimation
NASA Astrophysics Data System (ADS)
Dantanarayana, Harshana G.; Huntley, Jonathan M.
2017-08-01
We present an algorithm based on maximum-likelihood analysis for the automated recognition of objects, and estimation of their pose, from 3D point clouds. Surfaces segmented from depth images are used as the features, unlike `interest point'-based algorithms which normally discard such data. Compared to the 6D Hough transform, it has negligible memory requirements, and is computationally efficient compared to iterative closest point algorithms. The same method is applicable to both the initial recognition/pose estimation problem as well as subsequent pose refinement through appropriate choice of the dispersion of the probability density functions. This single unified approach therefore avoids the usual requirement for different algorithms for these two tasks. In addition to the theoretical description, a simple 2 degrees of freedom (d.f.) example is given, followed by a full 6 d.f. analysis of 3D point cloud data from a cluttered scene acquired by a projected fringe-based scanner, which demonstrated an RMS alignment error as low as 0.3 mm.
Robust feature tracking for endoscopic pose estimation and structure recovery
NASA Astrophysics Data System (ADS)
Speidel, S.; Krappe, S.; Röhl, S.; Bodenstedt, S.; Müller-Stich, B.; Dillmann, R.
2013-03-01
Minimally invasive surgery is a highly complex medical discipline with several difficulties for the surgeon. To alleviate these difficulties, augmented reality can be used for intraoperative assistance. For visualization, the endoscope pose must be known which can be acquired with a SLAM (Simultaneous Localization and Mapping) approach using the endoscopic images. In this paper we focus on feature tracking for SLAM in minimally invasive surgery. Robust feature tracking and minimization of false correspondences is crucial for localizing the endoscope. As sensory input we use a stereo endoscope and evaluate different feature types in a developed SLAM framework. The accuracy of the endoscope pose estimation is validated with synthetic and ex vivo data. Furthermore we test the approach with in vivo image sequences from da Vinci interventions.
Model-based Estimation for Pose, Velocity of Projectile from Stereo Linear Array Image
NASA Astrophysics Data System (ADS)
Zhao, Zhuxin; Wen, Gongjian; Zhang, Xing; Li, Deren
2012-01-01
The pose (position and attitude) and velocity of in-flight projectiles have major influence on the performance and accuracy. A cost-effective method for measuring the gun-boosted projectiles is proposed. The method adopts only one linear array image collected by the stereo vision system combining a digital line-scan camera and a mirror near the muzzle. From the projectile's stereo image, the motion parameters (pose and velocity) are acquired by using a model-based optimization algorithm. The algorithm achieves optimal estimation of the parameters by matching the stereo projection of the projectile and that of the same size 3D model. The speed and the AOA (angle of attack) could also be determined subsequently. Experiments are made to test the proposed method.
Cereatti, Andrea; Bonci, Tecla; Akbarshahi, Massoud; Aminian, Kamiar; Barré, Arnaud; Begon, Mickael; Benoit, Daniel L; Charbonnier, Caecilia; Dal Maso, Fabien; Fantozzi, Silvia; Lin, Cheng-Chung; Lu, Tung-Wu; Pandy, Marcus G; Stagni, Rita; van den Bogert, Antonie J; Camomilla, Valentina
2017-09-06
Soft tissue artefact (STA) represents one of the main obstacles for obtaining accurate and reliable skeletal kinematics from motion capture. Many studies have addressed this issue, yet there is no consensus on the best available bone pose estimator and the expected errors associated with relevant results. Furthermore, results obtained by different authors are difficult to compare due to the high variability and specificity of the phenomenon and the different metrics used to represent these data. Therefore, the aim of this study was twofold: firstly, to propose standards for description of STA; and secondly, to provide illustrative STA data samples for body segments in the upper and lower extremities and for a range of motor tasks specifically, level walking, stair ascent, sit-to-stand, hip- and knee-joint functional movements, cutting motion, running, hopping, arm elevation and functional upper-limb movements. The STA dataset includes motion of the skin markers measured in vivo and ex vivo using stereophotogrammetry as well as motion of the underlying bones measured using invasive or bio-imaging techniques (i.e., X-ray fluoroscopy or MRI). The data are accompanied by a detailed description of the methods used for their acquisition, with information given about their quality as well as characterization of the STA using the proposed standards. The availability of open-access and standard-format STA data will be useful for the evaluation and development of bone pose estimators thus contributing to the advancement of three-dimensional human movement analysis and its translation into the clinical practice and other applications. Copyright © 2017 Elsevier Ltd. All rights reserved.
Quantitative image reconstruction for total-body PET imaging using the 2-meter long EXPLORER scanner
NASA Astrophysics Data System (ADS)
Zhang, Xuezhu; Zhou, Jian; Cherry, Simon R.; Badawi, Ramsey D.; Qi, Jinyi
2017-03-01
The EXPLORER project aims to build a 2 meter long total-body PET scanner, which will provide extremely high sensitivity for imaging the entire human body. It will possess a range of capabilities currently unavailable to state-of-the-art clinical PET scanners with a limited axial field-of-view. The huge number of lines-of-response (LORs) of the EXPLORER poses a challenge to the data handling and image reconstruction. The objective of this study is to develop a quantitative image reconstruction method for the EXPLORER and compare its performance with current whole-body scanners. Fully 3D image reconstruction was performed using time-of-flight list-mode data with parallel computation. To recover the resolution loss caused by the parallax error between crystal pairs at a large axial ring difference or transaxial radial offset, we applied an image domain resolution model estimated from point source data. To evaluate the image quality, we conducted computer simulations using the SimSET Monte-Carlo toolkit and XCAT 2.0 anthropomorphic phantom to mimic a 20 min whole-body PET scan with an injection of 25 MBq 18F-FDG. We compare the performance of the EXPLORER with a current clinical scanner that has an axial FOV of 22 cm. The comparison results demonstrated superior image quality from the EXPLORER with a 6.9-fold reduction in noise standard deviation comparing with multi-bed imaging using the clinical scanner.
Quantitative Image Reconstruction for Total-Body PET Imaging Using the 2-meter Long EXPLORER Scanner
Zhang, Xuezhu; Zhou, Jian; Cherry, Simon R.; Badawi, Ramsey D.
2017-01-01
The EXPLORER project aims to build a 2-meter long total-body PET scanner, which will provide extremely high sensitivity for imaging the entire human body. It will possess a range of capabilities currently unavailable to state-of-the-art clinical PET scanners with a limited axial field-of-view. The huge number of lines-of-response (LORs) of the EXPLORER poses a challenge to the data handling and image reconstruction. The objective of this study is to develop a quantitative image reconstruction method for the EXPLORER and compare its performance with current whole-body scanners. Fully 3D image reconstruction was performed using time-of-flight list-mode data with parallel computation. To recover the resolution loss caused by the parallax error between crystal pairs at a large axial ring difference or transaxial radial offset, we applied an image domain resolution model estimated from point source data. To evaluate the image quality, we conducted computer simulations using the SimSET Monte-Carlo toolkit and XCAT 2.0 anthropomorphic phantom to mimic a 20-minute whole-body PET scan with an injection of 25 MBq 18F-FDG. We compare the performance of the EXPLORER with a current clinical scanner that has an axial FOV of 22 cm. The comparison results demonstrated superior image quality from the EXPLORER with a 6.9-fold reduction in noise standard deviation comparing with multi-bed imaging using the clinical scanner. PMID:28240215
Correlation Techniques as Applied to Pose Estimation in Space Station Docking
NASA Technical Reports Server (NTRS)
Rollins, J. Michael; Juday, Richard D.; Monroe, Stanley E., Jr.
2002-01-01
The telerobotic assembly of space-station components has become the method of choice for the International Space Station (ISS) because it offers a safe alternative to the more hazardous option of space walks. The disadvantage of telerobotic assembly is that it does not provide for direct arbitrary views of mating interfaces for the teleoperator. Unless cameras are present very close to the interface positions, such views must be generated graphically, based on calculated pose relationships derived from images. To assist in this photogrammetric pose estimation, circular targets, or spots, of high contrast have been affixed on each connecting module at carefully surveyed positions. The appearance of a subset of spots essentially must form a constellation of specific relative positions in the incoming digital image stream in order for the docking to proceed. Spot positions are expressed in terms of their apparent centroids in an image. The precision of centroid estimation is required to be as fine as 1I20th pixel, in some cases. This paper presents an approach to spot centroid estimation using cross correlation between spot images and synthetic spot models of precise centration. Techniques for obtaining sub-pixel accuracy and for shadow, obscuration and lighting irregularity compensation are discussed.
NASA Astrophysics Data System (ADS)
Parshin, D. A.
2017-09-01
We study the processes of additive formation of spherically shaped rigid bodies due to the uniform accretion of additional matter to their surface in an arbitrary centrally symmetric force field. A special case of such a field can be the gravitational or electrostatic force field. We consider the elastic deformation of the formed body. The body is assumed to be isotropic with elasticmoduli arbitrarily varying along the radial coordinate.We assume that arbitrary initial circular stresses can arise in the additional material added to the body in the process of its formation. In the framework of linear mechanics of growing bodies, the mathematical model of the processes under study is constructed in the quasistatic approximation. The boundary value problems describing the development of stress-strain state of the object under study before the beginning of the process and during the entire process of its formation are posed. The closed analytic solutions of the posed problems are constructed by quadratures for some general types of material inhomogeneity. Important typical characteristics of the mechanical behavior of spherical bodies additively formed in the central force field are revealed. These characteristics substantially distinguish such bodies from the already completely composed bodies similar in dimensions and properties which are placed in the force field and are described by problems of mechanics of deformable solids in the classical statement disregarding the mechanical aspects of additive processes.
Neglected foreign body aspiration mimicking bronchial carcinoma.
Afghani, Reza; Khandashpour Ghomi, Mahmoud; Khandoozi, Seyed Reza; Yari, Behrouz
2016-07-01
Foreign body aspiration can occur in any age group, but it is more commonly seen in children. In adults, there is usually a predisposing condition that poses a risk of aspiration. If aspiration occurs, prompt diagnosis and extraction of the foreign body is needed to prevent early and late complications. We report a rare case of neglected foreign body aspiration in a 45-year-old schizophrenic opium addicted patient, which resulted in an occlusive lesion in the bronchus, mimicking bronchial carcinoma. © The Author(s) 2016.
76 FR 67348 - Olympic Coast National Marine Sanctuary Regulations Revisions
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-01
... blackwater, is defined as human body wastes and the wastes from toilets and other receptacles intended to... ships; clarify the language referring to consideration of the objectives of the governing bodies of... have the potential to negatively impact water quality, as well as pose health risks to humans who use...
Human3.6M: Large Scale Datasets and Predictive Methods for 3D Human Sensing in Natural Environments.
Ionescu, Catalin; Papava, Dragos; Olaru, Vlad; Sminchisescu, Cristian
2014-07-01
We introduce a new dataset, Human3.6M, of 3.6 Million accurate 3D Human poses, acquired by recording the performance of 5 female and 6 male subjects, under 4 different viewpoints, for training realistic human sensing systems and for evaluating the next generation of human pose estimation models and algorithms. Besides increasing the size of the datasets in the current state-of-the-art by several orders of magnitude, we also aim to complement such datasets with a diverse set of motions and poses encountered as part of typical human activities (taking photos, talking on the phone, posing, greeting, eating, etc.), with additional synchronized image, human motion capture, and time of flight (depth) data, and with accurate 3D body scans of all the subject actors involved. We also provide controlled mixed reality evaluation scenarios where 3D human models are animated using motion capture and inserted using correct 3D geometry, in complex real environments, viewed with moving cameras, and under occlusion. Finally, we provide a set of large-scale statistical models and detailed evaluation baselines for the dataset illustrating its diversity and the scope for improvement by future work in the research community. Our experiments show that our best large-scale model can leverage our full training set to obtain a 20% improvement in performance compared to a training set of the scale of the largest existing public dataset for this problem. Yet the potential for improvement by leveraging higher capacity, more complex models with our large dataset, is substantially vaster and should stimulate future research. The dataset together with code for the associated large-scale learning models, features, visualization tools, as well as the evaluation server, is available online at http://vision.imar.ro/human3.6m.
Multispectral embedding-based deep neural network for three-dimensional human pose recovery
NASA Astrophysics Data System (ADS)
Yu, Jialin; Sun, Jifeng
2018-01-01
Monocular image-based three-dimensional (3-D) human pose recovery aims to retrieve 3-D poses using the corresponding two-dimensional image features. Therefore, the pose recovery performance highly depends on the image representations. We propose a multispectral embedding-based deep neural network (MSEDNN) to automatically obtain the most discriminative features from multiple deep convolutional neural networks and then embed their penultimate fully connected layers into a low-dimensional manifold. This compact manifold can explore not only the optimum output from multiple deep networks but also the complementary properties of them. Furthermore, the distribution of each hierarchy discriminative manifold is sufficiently smooth so that the training process of our MSEDNN can be effectively implemented only using few labeled data. Our proposed network contains a body joint detector and a human pose regressor that are jointly trained. Extensive experiments conducted on four databases show that our proposed MSEDNN can achieve the best recovery performance compared with the state-of-the-art methods.
Optical fringe-reflection deflectometry with bundle adjustment
NASA Astrophysics Data System (ADS)
Xiao, Yong-Liang; Li, Sikun; Zhang, Qican; Zhong, Jianxin; Su, Xianyu; You, Zhisheng
2018-06-01
Liquid crystal display (LCD) screens are located outside of a camera's field of view in fringe-reflection deflectometry. Therefore, fringes that are displayed on LCD screens are obtained through specular reflection by a fixed camera. Thus, the pose calibration between the camera and LCD screen is one of the main challenges in fringe-reflection deflectometry. A markerless planar mirror is used to reflect the LCD screen more than three times, and the fringes are mapped into the fixed camera. The geometrical calibration can be accomplished by estimating the pose between the camera and the virtual image of fringes. Considering the relation between their pose, the incidence and reflection rays can be unified in the camera frame, and a forward triangulation intersection can be operated in the camera frame to measure three-dimensional (3D) coordinates of the specular surface. In the final optimization, constraint-bundle adjustment is operated to refine simultaneously the camera intrinsic parameters, including distortion coefficients, estimated geometrical pose between the LCD screen and camera, and 3D coordinates of the specular surface, with the help of the absolute phase collinear constraint. Simulation and experiment results demonstrate that the pose calibration with planar mirror reflection is simple and feasible, and the constraint-bundle adjustment can enhance the 3D coordinate measurement accuracy in fringe-reflection deflectometry.
Fukunishi, Yoshifumi
2010-01-01
For fragment-based drug development, both hit (active) compound prediction and docking-pose (protein-ligand complex structure) prediction of the hit compound are important, since chemical modification (fragment linking, fragment evolution) subsequent to the hit discovery must be performed based on the protein-ligand complex structure. However, the naïve protein-compound docking calculation shows poor accuracy in terms of docking-pose prediction. Thus, post-processing of the protein-compound docking is necessary. Recently, several methods for the post-processing of protein-compound docking have been proposed. In FBDD, the compounds are smaller than those for conventional drug screening. This makes it difficult to perform the protein-compound docking calculation. A method to avoid this problem has been reported. Protein-ligand binding free energy estimation is useful to reduce the procedures involved in the chemical modification of the hit fragment. Several prediction methods have been proposed for high-accuracy estimation of protein-ligand binding free energy. This paper summarizes the various computational methods proposed for docking-pose prediction and their usefulness in FBDD.
Object recognition and pose estimation of planar objects from range data
NASA Technical Reports Server (NTRS)
Pendleton, Thomas W.; Chien, Chiun Hong; Littlefield, Mark L.; Magee, Michael
1994-01-01
The Extravehicular Activity Helper/Retriever (EVAHR) is a robotic device currently under development at the NASA Johnson Space Center that is designed to fetch objects or to assist in retrieving an astronaut who may have become inadvertently de-tethered. The EVAHR will be required to exhibit a high degree of intelligent autonomous operation and will base much of its reasoning upon information obtained from one or more three-dimensional sensors that it will carry and control. At the highest level of visual cognition and reasoning, the EVAHR will be required to detect objects, recognize them, and estimate their spatial orientation and location. The recognition phase and estimation of spatial pose will depend on the ability of the vision system to reliably extract geometric features of the objects such as whether the surface topologies observed are planar or curved and the spatial relationships between the component surfaces. In order to achieve these tasks, three-dimensional sensing of the operational environment and objects in the environment will therefore be essential. One of the sensors being considered to provide image data for object recognition and pose estimation is a phase-shift laser scanner. The characteristics of the data provided by this scanner have been studied and algorithms have been developed for segmenting range images into planar surfaces, extracting basic features such as surface area, and recognizing the object based on the characteristics of extracted features. Also, an approach has been developed for estimating the spatial orientation and location of the recognized object based on orientations of extracted planes and their intersection points. This paper presents some of the algorithms that have been developed for the purpose of recognizing and estimating the pose of objects as viewed by the laser scanner, and characterizes the desirability and utility of these algorithms within the context of the scanner itself, considering data quality and noise.
Motion compensation using origin ensembles in awake small animal positron emission tomography
NASA Astrophysics Data System (ADS)
Gillam, John E.; Angelis, Georgios I.; Kyme, Andre Z.; Meikle, Steven R.
2017-02-01
In emission tomographic imaging, the stochastic origin ensembles algorithm provides unique information regarding the detected counts given the measured data. Precision in both voxel and region-wise parameters may be determined for a single data set based on the posterior distribution of the count density allowing uncertainty estimates to be allocated to quantitative measures. Uncertainty estimates are of particular importance in awake animal neurological and behavioral studies for which head motion, unique for each acquired data set, perturbs the measured data. Motion compensation can be conducted when rigid head pose is measured during the scan. However, errors in pose measurements used for compensation can degrade the data and hence quantitative outcomes. In this investigation motion compensation and detector resolution models were incorporated into the basic origin ensembles algorithm and an efficient approach to computation was developed. The approach was validated against maximum liklihood—expectation maximisation and tested using simulated data. The resultant algorithm was then used to analyse quantitative uncertainty in regional activity estimates arising from changes in pose measurement precision. Finally, the posterior covariance acquired from a single data set was used to describe correlations between regions of interest providing information about pose measurement precision that may be useful in system analysis and design. The investigation demonstrates the use of origin ensembles as a powerful framework for evaluating statistical uncertainty of voxel and regional estimates. While in this investigation rigid motion was considered in the context of awake animal PET, the extension to arbitrary motion may provide clinical utility where respiratory or cardiac motion perturb the measured data.
NASA Astrophysics Data System (ADS)
Neulist, Joerg; Armbruster, Walter
2005-05-01
Model-based object recognition in range imagery typically involves matching the image data to the expected model data for each feasible model and pose hypothesis. Since the matching procedure is computationally expensive, the key to efficient object recognition is the reduction of the set of feasible hypotheses. This is particularly important for military vehicles, which may consist of several large moving parts such as the hull, turret, and gun of a tank, and hence require an eight or higher dimensional pose space to be searched. The presented paper outlines techniques for reducing the set of feasible hypotheses based on an estimation of target dimensions and orientation. Furthermore, the presence of a turret and a main gun and their orientations are determined. The vehicle parts dimensions as well as their error estimates restrict the number of model hypotheses whereas the position and orientation estimates and their error bounds reduce the number of pose hypotheses needing to be verified. The techniques are applied to several hundred laser radar images of eight different military vehicles with various part classifications and orientations. On-target resolution in azimuth, elevation and range is about 30 cm. The range images contain up to 20% dropouts due to atmospheric absorption. Additionally some target retro-reflectors produce outliers due to signal crosstalk. The presented algorithms are extremely robust with respect to these and other error sources. The hypothesis space for hull orientation is reduced to about 5 degrees as is the error for turret rotation and gun elevation, provided the main gun is visible.
Tracking the visual focus of attention for a varying number of wandering people.
Smith, Kevin; Ba, Sileye O; Odobez, Jean-Marc; Gatica-Perez, Daniel
2008-07-01
We define and address the problem of finding the visual focus of attention for a varying number of wandering people (VFOA-W), determining where the people's movement is unconstrained. VFOA-W estimation is a new and important problem with mplications for behavior understanding and cognitive science, as well as real-world applications. One such application, which we present in this article, monitors the attention passers-by pay to an outdoor advertisement. Our approach to the VFOA-W problem proposes a multi-person tracking solution based on a dynamic Bayesian network that simultaneously infers the (variable) number of people in a scene, their body locations, their head locations, and their head pose. For efficient inference in the resulting large variable-dimensional state-space we propose a Reversible Jump Markov Chain Monte Carlo (RJMCMC) sampling scheme, as well as a novel global observation model which determines the number of people in the scene and localizes them. We propose a Gaussian Mixture Model (GMM) and Hidden Markov Model (HMM)-based VFOA-W model which use head pose and location information to determine people's focus state. Our models are evaluated for tracking performance and ability to recognize people looking at an outdoor advertisement, with results indicating good performance on sequences where a moderate number of people pass in front of an advertisement.
Trajectory-based visual localization in underwater surveying missions.
Burguera, Antoni; Bonin-Font, Francisco; Oliver, Gabriel
2015-01-14
We present a new vision-based localization system applied to an autonomous underwater vehicle (AUV) with limited sensing and computation capabilities. The traditional EKF-SLAM approaches are usually expensive in terms of execution time; the approach presented in this paper strengthens this method by adopting a trajectory-based schema that reduces the computational requirements. The pose of the vehicle is estimated using an extended Kalman filter (EKF), which predicts the vehicle motion by means of a visual odometer and corrects these predictions using the data associations (loop closures) between the current frame and the previous ones. One of the most important steps in this procedure is the image registration method, as it reinforces the data association and, thus, makes it possible to close loops reliably. Since the use of standard EKFs entail linearization errors that can distort the vehicle pose estimations, the approach has also been tested using an iterated Kalman filter (IEKF). Experiments have been conducted using a real underwater vehicle in controlled scenarios and in shallow sea waters, showing an excellent performance with very small errors, both in the vehicle pose and in the overall trajectory estimates.
Reflections on the No-Uterus Rule: Pregnancy, Academia, and Feminist Pedagogy
ERIC Educational Resources Information Center
Shope, Janet Hinson
2005-01-01
This essay relays the author's own pregnancy story to illustrate how academia traditionally reinforces the mind/body dualism by adhering to the no-uterus rule: a gender blind, antibody approach that treats persons as if they do not occupy a body in time and space. Her experience reveals the problems disembodied approaches to knowledge pose for…
Tick, David; Satici, Aykut C; Shen, Jinglin; Gans, Nicholas
2013-08-01
This paper presents a novel navigation and control system for autonomous mobile robots that includes path planning, localization, and control. A unique vision-based pose and velocity estimation scheme utilizing both the continuous and discrete forms of the Euclidean homography matrix is fused with inertial and optical encoder measurements to estimate the pose, orientation, and velocity of the robot and ensure accurate localization and control signals. A depth estimation system is integrated in order to overcome the loss of scale inherent in vision-based estimation. A path following control system is introduced that is capable of guiding the robot along a designated curve. Stability analysis is provided for the control system and experimental results are presented that prove the combined localization and control system performs with high accuracy.
A study on facial expressions recognition
NASA Astrophysics Data System (ADS)
Xu, Jingjing
2017-09-01
In terms of communication, postures and facial expressions of such feelings like happiness, anger and sadness play important roles in conveying information. With the development of the technology, recently a number of algorithms dealing with face alignment, face landmark detection, classification, facial landmark localization and pose estimation have been put forward. However, there are a lot of challenges and problems need to be fixed. In this paper, a few technologies have been concluded and analyzed, and they all relate to handling facial expressions recognition and poses like pose-indexed based multi-view method for face alignment, robust facial landmark detection under significant head pose and occlusion, partitioning the input domain for classification, robust statistics face formalization.
... specialize in areas such as DNA analysis or firearm examination, performing tests on weapons and substances like ... often are exposed to human body fluids and firearms. However, these working conditions pose little risk, if ...
The Effect of the Ill-posed Problem on Quantitative Error Assessment in Digital Image Correlation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lehoucq, R. B.; Reu, P. L.; Turner, D. Z.
Here, this work explores the effect of the ill-posed problem on uncertainty quantification for motion estimation using digital image correlation (DIC) (Sutton et al. 2009). We develop a correction factor for standard uncertainty estimates based on the cosine of the angle between the true motion and the image gradients, in an integral sense over a subregion of the image. This correction factor accounts for variability in the DIC solution previously unaccounted for when considering only image noise, interpolation bias, contrast, and the software settings such as subset size and spacing.
The Effect of the Ill-posed Problem on Quantitative Error Assessment in Digital Image Correlation
Lehoucq, R. B.; Reu, P. L.; Turner, D. Z.
2017-11-27
Here, this work explores the effect of the ill-posed problem on uncertainty quantification for motion estimation using digital image correlation (DIC) (Sutton et al. 2009). We develop a correction factor for standard uncertainty estimates based on the cosine of the angle between the true motion and the image gradients, in an integral sense over a subregion of the image. This correction factor accounts for variability in the DIC solution previously unaccounted for when considering only image noise, interpolation bias, contrast, and the software settings such as subset size and spacing.
NASA Astrophysics Data System (ADS)
Burman, Erik; Hansbo, Peter; Larson, Mats G.
2018-03-01
Tikhonov regularization is one of the most commonly used methods for the regularization of ill-posed problems. In the setting of finite element solutions of elliptic partial differential control problems, Tikhonov regularization amounts to adding suitably weighted least squares terms of the control variable, or derivatives thereof, to the Lagrangian determining the optimality system. In this note we show that the stabilization methods for discretely ill-posed problems developed in the setting of convection-dominated convection-diffusion problems, can be highly suitable for stabilizing optimal control problems, and that Tikhonov regularization will lead to less accurate discrete solutions. We consider some inverse problems for Poisson’s equation as an illustration and derive new error estimates both for the reconstruction of the solution from the measured data and reconstruction of the source term from the measured data. These estimates include both the effect of the discretization error and error in the measurements.
Re-entry survivability and risk
NASA Astrophysics Data System (ADS)
Fudge, Michael L.
1998-11-01
This paper is the culmination of the research effort which was reported on last year while still in-progress. As previously reported, statistical methods for expressing the impact risk posed to space systems in general [and the International Space Station (ISS) in particular] by other resident space objects have been examined. One of the findings of this investigation is that there are legitimate physical modeling reasons for the common statistical expression of the collision risk. A combination of statistical methods and physical modeling is also used to express the impact risk posed by reentering space systems to objects of interest (e.g., people and property) on Earth. One of the largest uncertainties in the expressing of this risk is the estimation of survivable material which survives reentry to impact Earth's surface. This point was demonstrated in dramatic fashion in January 1997 by the impact of an intact expendable launch vehicle (ELV) upper stage near a private residence in the continental United States. Since approximately half of the missions supporting ISS will utilize ELVs, it is appropriate to examine the methods used to estimate the amount and physical characteristics of ELV debris surviving reentry to impact Earth's surface. This report details reentry survivability estimation methodology, including the specific methodology used by ITT Systems' (formerly Kaman Sciences) 'SURVIVE' model. The major change to the model in the last twelve months has been the increase in the fidelity with which upper- atmospheric aerodynamics has been modeled. This has resulted in an adjustment in the factor relating the amount of kinetic energy loss to the amount of heating entering and reentering body, and also validated and removed the necessity for certain empirically-based adjustments made to the theoretical heating expressions. Comparisons between empirical results (observations of objects which have been recovered on Earth after surviving reentry) and SURVIVE estimates are presented for selected generic upper stage or spacecraft components, a Soyuz launch vehicle second stage, and for a Delta II launch vehicle second stage and its significant components. Significant similarity is demonstrated between the type and dispersion pattern of the recovered debris from the January 1997 Delta II 2nd stage event and the simulation of that reentry and breakup.
ERIC Educational Resources Information Center
Grant, Bevan C.; Kluge, Mary Ann
2007-01-01
Aging is a complex and multidimensional phenomenon subject to a continual redefining of the physical, social, psychological, and cultural self. The collective of these subtleties poses a number of challenges for policy makers, program and community leaders, health professionals, and researchers when trying to enhance quality of life for older…
Condition bias of hunter-shot ring-necked ducks exposed to lead
McCracken, K.G.; Afton, A.D.; Peters, M.S.
2000-01-01
We evaluated the condition bias hypothesis for ring-necked ducks (Aythya collaris) exposed to lead by testing the null hypothesis that ducks shot by hunters do not differ in physiological condition from those collected randomly from the same location. After adjusting for structural body size and log(e) concentration of blood lead, we found that overall body condition differed significantly between collection types and age classes, and marginally between sexes. Ingesta-free body mass of ring-necked ducks sampled randomly averaged 8.8% greater than those shot over decoys, and 99% of this difference was accounted for by lipid reserves. Ingesta, ash, and protein did not differ between collection types; however, after-hatching-year (AHY) birds had 5.1% more ash and 4.8% more protein than did hatching-year (HY) birds. The only sex difference was that males had 4.1% more protein than did females. Ingesta-free body mass, lipids, and protein were negatively related to concentration of blood lead. Collection type-by-concentration of blood lead and age-by-sex-by-concentration of blood lead interactions were not significant. To the extent that lead pellets persist as a cause of disease or mortality, waterfowl biologists should account for lead exposure as a possible source of condition bias when estimating population parameters and modeling survival of ring-necked ducks and other waterfowl species prone to ingest lead. These findings further underscore the problem that ingested lead shotgun pellets pose for waterfowl.
Vision System for Coarsely Estimating Motion Parameters for Unknown Fast Moving Objects in Space
Chen, Min; Hashimoto, Koichi
2017-01-01
Motivated by biological interests in analyzing navigation behaviors of flying animals, we attempt to build a system measuring their motion states. To do this, in this paper, we build a vision system to detect unknown fast moving objects within a given space, calculating their motion parameters represented by positions and poses. We proposed a novel method to detect reliable interest points from images of moving objects, which can be hardly detected by general purpose interest point detectors. 3D points reconstructed using these interest points are then grouped and maintained for detected objects, according to a careful schedule, considering appearance and perspective changes. In the estimation step, a method is introduced to adapt the robust estimation procedure used for dense point set to the case for sparse set, reducing the potential risk of greatly biased estimation. Experiments are conducted against real scenes, showing the capability of the system of detecting multiple unknown moving objects and estimating their positions and poses. PMID:29206189
NASA Astrophysics Data System (ADS)
Pickard, William F.
2004-10-01
The classical PERT inverse statistics problem requires estimation of the mean, \\skew1\\bar{m} , and standard deviation, s, of a unimodal distribution given estimates of its mode, m, and of the smallest, a, and largest, b, values likely to be encountered. After placing the problem in historical perspective and showing that it is ill-posed because it is underdetermined, this paper offers an approach to resolve the ill-posedness: (a) by interpreting a and b modes of order statistic distributions; (b) by requiring also an estimate of the number of samples, N, considered in estimating the set {m, a, b}; and (c) by maximizing a suitable likelihood, having made the traditional assumption that the underlying distribution is beta. Exact formulae relating the four parameters of the beta distribution to {m, a, b, N} and the assumed likelihood function are then used to compute the four underlying parameters of the beta distribution; and from them, \\skew1\\bar{m} and s are computed using exact formulae.
Loukas, Constantinos; Lahanas, Vasileios; Georgiou, Evangelos
2013-12-01
Despite the popular use of virtual and physical reality simulators in laparoscopic training, the educational potential of augmented reality (AR) has not received much attention. A major challenge is the robust tracking and three-dimensional (3D) pose estimation of the endoscopic instrument, which are essential for achieving interaction with the virtual world and for realistic rendering when the virtual scene is occluded by the instrument. In this paper we propose a method that addresses these issues, based solely on visual information obtained from the endoscopic camera. Two different tracking algorithms are combined for estimating the 3D pose of the surgical instrument with respect to the camera. The first tracker creates an adaptive model of a colour strip attached to the distal part of the tool (close to the tip). The second algorithm tracks the endoscopic shaft, using a combined Hough-Kalman approach. The 3D pose is estimated with perspective geometry, using appropriate measurements extracted by the two trackers. The method has been validated on several complex image sequences for its tracking efficiency, pose estimation accuracy and applicability in AR-based training. Using a standard endoscopic camera, the absolute average error of the tip position was 2.5 mm for working distances commonly found in laparoscopic training. The average error of the instrument's angle with respect to the camera plane was approximately 2°. The results are also supplemented by video segments of laparoscopic training tasks performed in a physical and an AR environment. The experiments yielded promising results regarding the potential of applying AR technologies for laparoscopic skills training, based on a computer vision framework. The issue of occlusion handling was adequately addressed. The estimated trajectory of the instruments may also be used for surgical gesture interpretation and assessment. Copyright © 2013 John Wiley & Sons, Ltd.
Three-dimensional face pose detection and tracking using monocular videos: tool and application.
Dornaika, Fadi; Raducanu, Bogdan
2009-08-01
Recently, we have proposed a real-time tracker that simultaneously tracks the 3-D head pose and facial actions in monocular video sequences that can be provided by low quality cameras. This paper has two main contributions. First, we propose an automatic 3-D face pose initialization scheme for the real-time tracker by adopting a 2-D face detector and an eigenface system. Second, we use the proposed methods-the initialization and tracking-for enhancing the human-machine interaction functionality of an AIBO robot. More precisely, we show how the orientation of the robot's camera (or any active vision system) can be controlled through the estimation of the user's head pose. Applications based on head-pose imitation such as telepresence, virtual reality, and video games can directly exploit the proposed techniques. Experiments on real videos confirm the robustness and usefulness of the proposed methods.
Using Biomechanical Optimization To Interpret Dancers’ Pose Selection For A Partnered Spin
2009-05-06
optimized performance of a straight arm backward longswing on the still rings in mens artistic gymnastics . Because gymnasts lose points for excessive swing at...an actual performance and used that as the basis for their search. Yeadon determined that with timing within 15ms, gymnasts can minimize their excess...are moving in an optimal way. 2.5 Body Modeling 2.5.1 Building the Body In his study involving gymnasts on the rings, Yeadon developed a body model com
Second Iteration of Photogrammetric Pipeline to Enhance the Accuracy of Image Pose Estimation
NASA Astrophysics Data System (ADS)
Nguyen, T. G.; Pierrot-Deseilligny, M.; Muller, J.-M.; Thom, C.
2017-05-01
In classical photogrammetric processing pipeline, the automatic tie point extraction plays a key role in the quality of achieved results. The image tie points are crucial to pose estimation and have a significant influence on the precision of calculated orientation parameters. Therefore, both relative and absolute orientations of the 3D model can be affected. By improving the precision of image tie point measurement, one can enhance the quality of image orientation. The quality of image tie points is under the influence of several factors such as the multiplicity, the measurement precision and the distribution in 2D images as well as in 3D scenes. In complex acquisition scenarios such as indoor applications and oblique aerial images, tie point extraction is limited while only image information can be exploited. Hence, we propose here a method which improves the precision of pose estimation in complex scenarios by adding a second iteration to the classical processing pipeline. The result of a first iteration is used as a priori information to guide the extraction of new tie points with better quality. Evaluated with multiple case studies, the proposed method shows its validity and its high potiential for precision improvement.
NASA Technical Reports Server (NTRS)
Quek, Kok How Francis
1990-01-01
A method of computing reliable Gaussian and mean curvature sign-map descriptors from the polynomial approximation of surfaces was demonstrated. Such descriptors which are invariant under perspective variation are suitable for hypothesis generation. A means for determining the pose of constructed geometric forms whose algebraic surface descriptors are nonlinear in terms of their orienting parameters was developed. This was done by means of linear functions which are capable of approximating nonlinear forms and determining their parameters. It was shown that biquadratic surfaces are suitable companion linear forms for cylindrical approximation and parameter estimation. The estimates provided the initial parametric approximations necessary for a nonlinear regression stage to fine tune the estimates by fitting the actual nonlinear form to the data. A hypothesis-based split-merge algorithm for extraction and pose determination of cylinders and planes which merge smoothly into other surfaces was developed. It was shown that all split-merge algorithms are hypothesis-based. A finite-state algorithm for the extraction of the boundaries of run-length regions was developed. The computation takes advantage of the run list topology and boundary direction constraints implicit in the run-length encoding.
Estimating ecological integrity in the interior Columbia River basin.
Thomas M. Quigley; Richard W. Haynes; Wendel J. Hann
2001-01-01
The adoption of ecosystem-based management strategies focuses attention on the need for broad scale estimates of ecological conditions; this poses two challenges for the science community: estimating broad scale ecosystem conditions from highly disparate data, often observed at different spatial scales, and interpreting these conditions relative to goals such as...
NASA Astrophysics Data System (ADS)
Dave, Jaydev K.
Ultrasound contrast agents (UCAs) are encapsulated microbubbles that provide a source for acoustic impedance mismatch with the blood, due to difference in compressibility between the gas contained within these microbubbles and the blood. When insonified by an ultrasound beam, these UCAs act as nonlinear scatterers and enhance the echoes of the incident pulse, resulting in scattering of the incident ultrasound beam and emission of fundamental (f0), subharmonic (f0/2), harmonic (n*f0; n ∈ N) and ultraharmonic (((2n-1)/2)*f0; n ∈ N & n > 1) components in the echo response. A promising approach to monitor in vivo pressures revolves around the fact that the ultrasound transmit and receive parameters can be selected to induce an ambient pressure amplitude dependent subharmonic signal. This subharmonic signal may be used to estimate ambient pressure amplitude; such technique of estimating ambient pressure amplitude is referred to as subharmonic aided pressure estimation or SHAPE. This project develops and evaluates the feasibility of SHAPE to noninvasively monitor cardiac and hepatic pressures (using commercially available ultrasound scanners and UCAs) because invasive catheter based pressure measurements are used currently for these applications. Invasive catheter based pressure measurements pose risk of introducing infection while the catheter is guided towards the region of interest in the body through a percutaneous incision, pose risk of death due to structural or mechanical failure of the catheter (which has also triggered product recalls by the USA Food and Drug Administration) and may potentially modulate the pressures that are being measured. Also, catheterization procedures require fluoroscopic guidance to advance the catheter to the site of pressure measurements and such catheterization procedures are not performed in all clinical centers. Thus, a noninvasive technique to obtain ambient pressure values without the catheterization process is clinically helpful. While an intravenous injection is required to inject the UCAs into the body, this procedure is considered noninvasive as per the definition provided by the Center for Medicare and Medicaid Services; invasive procedures include surgical procedures as well as catheterization procedures while minor procedures such as drawing blood (which requires a similar approach as injecting UCAs) are considered noninvasive. In vitro results showed that the standard error between catheter pressures and SHAPE results is below 10 mmHg with a correlation coefficient value of above 0.9—this experimental error of 10 mmHg is less than the errors associated with other techniques utilizing UCAs for ambient pressure estimation. In vivo results proved the feasibility of SHAPE to noninvasively estimate clinically relevant left and right ventricular (LV and RV) pressures. The maximum error in estimating the LV and RV systolic and diastolic pressures was 3.5 mmHg. Thus, the SHAPE technique may be useful for systolic and diastolic pressure estimation given that the standard recommendations require the errors for these pressure measurements to be within 5 mmHg. The ability of SHAPE to identify induced portal hypertension (PH) was also proved. The changes in the SHAPE data correlated significantly (p < 0.05) with the changes in the portal vein (PV) pressures and the absolute amplitudes of the subharmonic signal also correlated with absolute PV pressures. The SHAPE technique provides the ability to noninvasively obtain in vivo pressures. This technique is applicable not only for critically ill patients, but also for screening symptomatic patients and potentially for other clinical pressure monitoring applications, as well.
Deflection and fragmentation of near-earth asteroids
NASA Technical Reports Server (NTRS)
Ahrens, Thomas J.; Harris, Alan W.
1992-01-01
The collision with earth of near-earth asteroids or comet nuclei poses a potential threat to mankind. Objects about 100 m in diameter could be diverted from an earth-crossing trajectory by the impact of a rocket-launched mass, but for larger bodies nuclear explosions seem to be the only practical means of deflection. Fragmentation of the body by nuclear charges is less efficient or secure.
Boundary conditions estimation on a road network using compressed sensing.
DOT National Transportation Integrated Search
2016-02-01
This report presents a new boundary condition estimation framework for transportation networks in which : the state is modeled by a first order scalar conservation law. Using an equivalent formulation based on a : Hamilton-Jacobi equation, we pose th...
The New Radiobiology: Returning to Our Roots
Ulsh, Brant A.
2012-01-01
In 2005, two expert advisory bodies examined the evidence on the effects of low doses of ionizing radiation. The U.S. National Research Council concluded that current scientific evidence is consistent with the linear no-threshold dose-response relationship (NRCNA 2005) while the French National Academies of Science and Medicine concluded the opposite (Aurengo et al. 2005). These contradictory conclusions may stem in part from an emphasis on epidemiological data (a “top down” approach) versus an emphasis on biological mechanisms (a “bottom up” approach). In this paper, the strengths and limitations of the top down and bottom up approaches are discussed, and proposals for strengthening and reconciling them are suggested. The past seven years since these two reports were published have yielded increasing evidence of nonlinear responses of biological systems to low radiation doses delivered at low dose-rates. This growing body of evidence is casting ever more doubt on the extrapolation of risks observed at high doses and dose-rates to estimate risks associated with typical environmental and occupational exposures. This paper compares current evidence on low dose, low dose-rate effects against objective criteria of causation. Finally, some questions for a post-LNT world are posed. PMID:23304107
Evaluating Cumulative OP Pesticide Body Burden of Children: A National Case Study
Payne-Sturges, Devon; Cohen, Jonathan; Castorina, Rosemary; Axelrad, Daniel A.; Woodruff, Tracey J.
2009-01-01
Biomonitoring is a valuable tool for identifying exposures to chemicals that pose potential harm to human health. However, to date there has been little published on ways to evaluate the relative public health significance of biomonitoring data for different chemicals, and even less on cumulative assessment of multiple chemicals. The objectives of our study are to develop a methodology for a health risk interpretation of biomonitoring data, and to apply it using NHANES 1999–2002 body burden data for organophosphorus (OP) pesticides. OP pesticides present a particularly challenging case given the non-specificity of many metabolites monitored through NHANES. We back-calculate OP pesticide exposures from urinary metabolite data, and compare cumulative dose estimates with available toxicity information for a common mechanism of action (brain cholinesterase inhibition) using data from U.S. EPA. Our results suggest that approximately 40% of children in the United States may have had insufficient margins of exposure (MOEs) for neurological impacts from cumulative exposures to OP pesticides (MOE less than 1,000). Limitations include uncertainty related to assumptions about likely precursor pesticide compounds of the urinary metabolites, sources of exposure, and intra-individual and temporal variability. PMID:19921915
Enhancement Strategies for Frame-To Uas Stereo Visual Odometry
NASA Astrophysics Data System (ADS)
Kersten, J.; Rodehorst, V.
2016-06-01
Autonomous navigation of indoor unmanned aircraft systems (UAS) requires accurate pose estimations usually obtained from indirect measurements. Navigation based on inertial measurement units (IMU) is known to be affected by high drift rates. The incorporation of cameras provides complementary information due to the different underlying measurement principle. The scale ambiguity problem for monocular cameras is avoided when a light-weight stereo camera setup is used. However, also frame-to-frame stereo visual odometry (VO) approaches are known to accumulate pose estimation errors over time. Several valuable real-time capable techniques for outlier detection and drift reduction in frame-to-frame VO, for example robust relative orientation estimation using random sample consensus (RANSAC) and bundle adjustment, are available. This study addresses the problem of choosing appropriate VO components. We propose a frame-to-frame stereo VO method based on carefully selected components and parameters. This method is evaluated regarding the impact and value of different outlier detection and drift-reduction strategies, for example keyframe selection and sparse bundle adjustment (SBA), using reference benchmark data as well as own real stereo data. The experimental results demonstrate that our VO method is able to estimate quite accurate trajectories. Feature bucketing and keyframe selection are simple but effective strategies which further improve the VO results. Furthermore, introducing the stereo baseline constraint in pose graph optimization (PGO) leads to significant improvements.
Conflict resolution maneuvers during near miss encounters with cockpit traffic displays
NASA Technical Reports Server (NTRS)
Palmer, E.
1983-01-01
The benefits and liabilities associated with pilots' use of a cockpit traffic display to assess the threat posed by air traffic and to make small maneuvers to avoid situations which would result in collision avoidance advisories are experimentally studied. The crew's task was to fly a simulated wide-body aircraft along a straight course at constant altitude while intruder aircraft appeared on a variety of converging trajectories. The main experimental variables were the amount and quality of the information displayed on the intruder aircraft's estimated future position. Pilots were to maintain a horizontal separation of at least 1.5 nautical miles or a vertical separation of 500 ft, so that collision avoidance advisories would not be triggered. The results show that pilots could usually maneuver to provide the specified separation but often made course deviations greater than 1.5 nm or 500 ft.
Human-Robot Control Strategies for the NASA/DARPA Robonaut
NASA Technical Reports Server (NTRS)
Diftler, M. A.; Culbert, Chris J.; Ambrose, Robert O.; Huber, E.; Bluethmann, W. J.
2003-01-01
The Robotic Systems Technology Branch at the NASA Johnson Space Center (JSC) is currently developing robot systems to reduce the Extra-Vehicular Activity (EVA) and planetary exploration burden on astronauts. One such system, Robonaut, is capable of interfacing with external Space Station systems that currently have only human interfaces. Robonaut is human scale, anthropomorphic, and designed to approach the dexterity of a space-suited astronaut. Robonaut can perform numerous human rated tasks, including actuating tether hooks, manipulating flexible materials, soldering wires, grasping handrails to move along space station mockups, and mating connectors. More recently, developments in autonomous control and perception for Robonaut have enabled dexterous, real-time man-machine interaction. Robonaut is now capable of acting as a practical autonomous assistant to the human, providing and accepting tools by reacting to body language. A versatile, vision-based algorithm for matching range silhouettes is used for monitoring human activity as well as estimating tool pose.
Recovering an elastic obstacle containing embedded objects by the acoustic far-field measurements
NASA Astrophysics Data System (ADS)
Qu, Fenglong; Yang, Jiaqing; Zhang, Bo
2018-01-01
Consider the inverse scattering problem of time-harmonic acoustic waves by a 3D bounded elastic obstacle which may contain embedded impenetrable obstacles inside. We propose a novel and simple technique to show that the elastic obstacle can be uniquely recovered by the acoustic far-field pattern at a fixed frequency, disregarding its contents. Our method is based on constructing a well-posed modified interior transmission problem on a small domain and makes use of an a priori estimate for both the acoustic and elastic wave fields in the usual H 1-norm. In the case when there is no obstacle embedded inside the elastic body, our method gives a much simpler proof for the uniqueness result obtained previously in the literature (Natroshvili et al 2000 Rend. Mat. Serie VII 20 57-92 Monk and Selgas 2009 Inverse Problems Imaging 3 173-98).
Celebrity chefs put their left cheek forward: Cover image orientation in celebrity cookbooks.
Lindell, Annukka K
2017-09-01
Portrait pose orientations influence perception: the left cheek is more emotionally expressive; females' right cheeks appear more attractive. Posing biases are established in paintings, photographs, and advertisements, however, book covers have not previously been examined. This paper assesses cover image orientation in a book genre that frequently features a cover portrait: the celebrity cookbook. If marketers intuitively choose to enhance chefs' emotional expressivity, left cheek poses should predominate; if attractiveness is more important, right cheek poses will be more frequent for females, with a left or no cheek bias for males. Celebrity cookbook covers (N = 493) were sourced online; identity, portrait orientation, photo type, and sex were coded. For celebrity cookbooks, left cheek covers (39.6%) were more frequent than right cheek (31.6%) or midline covers (28.8%); sex did not predict pose orientation. An interaction between photo type and sex bordered on significance: photo type did not influence females' pose orientation; for males, the left cheek bias present for head and torso images was absent for full body and head only photos. Overall, the left cheek bias for celebrity cookbook covers implies that marketers intuitively select images that make the chefs appear happier and/or more emotionally expressive, enhancing engagement with the audience.
Single leg balancing in ballet: effects of shoe conditions and poses.
Lobo da Costa, Paula H; Azevedo Nora, Fernanda G S; Vieira, Marcus Fraga; Bosch, Kerstin; Rosenbaum, Dieter
2013-03-01
The purpose of this study was to describe the effects of lower limb positioning and shoe conditions on stability levels of selected single leg ballet poses performed in demi-pointe position. Fourteen female non-professional ballet dancers (mean age of 18.4±2.8 years and mean body mass index of 21.5±2.8kg/m(2)) who had practiced ballet for at least seven years, without any musculoskeletal impairment volunteered to participate in this study. A capacitive pressure platform allowed for the assessment of center of pressure variables related to the execution of three single leg ballet poses in demi pointé position: attitude devant, attitude derriére, and attitude a la second. Peak pressures, contact areas, COP oscillation areas, anterior-posterior and medio-lateral COP oscillations and velocities were compared between two shoe conditions (barefoot versus slippers) and among the different poses. Barefoot performances produced more stable poses with significantly higher plantar contact areas, smaller COP oscillation areas and smaller anterior-posterior COP oscillations. COP oscillation areas, anterior-posterior COP oscillations and medio-lateral COP velocities indicated that attitude a la second is the least challenging and attitude derriére the most challenging pose. Copyright © 2012 Elsevier B.V. All rights reserved.
Effects of oceanic salinity on body condition in sea snakes.
Brischoux, François; Rolland, Virginie; Bonnet, Xavier; Caillaud, Matthieu; Shine, Richard
2012-08-01
Since the transition from terrestrial to marine environments poses strong osmoregulatory and energetic challenges, temporal and spatial fluctuations in oceanic salinity might influence salt and water balance (and hence, body condition) in marine tetrapods. We assessed the effects of salinity on three species of sea snakes studied by mark-recapture in coral-reef habitats in the Neo-Caledonian Lagoon. These three species include one fully aquatic hydrophiine (Emydocephalus annulatus), one primarily aquatic laticaudine (Laticauda laticaudata), and one frequently terrestrial laticaudine (Laticauda saintgironsi). We explored how oceanic salinity affected the snakes' body condition across various temporal and spatial scales relevant to each species' ecology, using linear mixed models and multimodel inference. Mean annual salinity exerted a consistent and negative effect on the body condition of all three snake species. The most terrestrial taxon (L. saintgironsi) was sensitive to salinity over a short temporal scale, corresponding to the duration of a typical marine foraging trip for this species. In contrast, links between oceanic salinity and body condition in the fully aquatic E. annulatus and the highly aquatic L. laticaudata were strongest at a long-term (annual) scale. The sophisticated salt-excreting systems of sea snakes allow them to exploit marine environments, but do not completely overcome the osmoregulatory challenges posed by oceanic conditions. Future studies could usefully explore such effects in other secondarily marine taxa such as seabirds, turtles, and marine mammals.
Pose-Invariant Face Recognition via RGB-D Images.
Sang, Gaoli; Li, Jing; Zhao, Qijun
2016-01-01
Three-dimensional (3D) face models can intrinsically handle large pose face recognition problem. In this paper, we propose a novel pose-invariant face recognition method via RGB-D images. By employing depth, our method is able to handle self-occlusion and deformation, both of which are challenging problems in two-dimensional (2D) face recognition. Texture images in the gallery can be rendered to the same view as the probe via depth. Meanwhile, depth is also used for similarity measure via frontalization and symmetric filling. Finally, both texture and depth contribute to the final identity estimation. Experiments on Bosphorus, CurtinFaces, Eurecom, and Kiwi databases demonstrate that the additional depth information has improved the performance of face recognition with large pose variations and under even more challenging conditions.
Computational approaches to motor learning by imitation.
Schaal, Stefan; Ijspeert, Auke; Billard, Aude
2003-01-01
Movement imitation requires a complex set of mechanisms that map an observed movement of a teacher onto one's own movement apparatus. Relevant problems include movement recognition, pose estimation, pose tracking, body correspondence, coordinate transformation from external to egocentric space, matching of observed against previously learned movement, resolution of redundant degrees-of-freedom that are unconstrained by the observation, suitable movement representations for imitation, modularization of motor control, etc. All of these topics by themselves are active research problems in computational and neurobiological sciences, such that their combination into a complete imitation system remains a daunting undertaking-indeed, one could argue that we need to understand the complete perception-action loop. As a strategy to untangle the complexity of imitation, this paper will examine imitation purely from a computational point of view, i.e. we will review statistical and mathematical approaches that have been suggested for tackling parts of the imitation problem, and discuss their merits, disadvantages and underlying principles. Given the focus on action recognition of other contributions in this special issue, this paper will primarily emphasize the motor side of imitation, assuming that a perceptual system has already identified important features of a demonstrated movement and created their corresponding spatial information. Based on the formalization of motor control in terms of control policies and their associated performance criteria, useful taxonomies of imitation learning can be generated that clarify different approaches and future research directions. PMID:12689379
Cornelissen, Katri K; Cornelissen, Piers L; Hancock, Peter J B; Tovée, Martin J
2016-05-01
A core feature of anorexia nervosa (AN) is an over-estimation of body size. Women with AN have a different pattern of eye-movements when judging bodies, but it is unclear whether this is specific to their diagnosis or whether it is found in anyone over-estimating body size. To address this question, we compared the eye movement patterns from three participant groups while they carried out a body size estimation task: (i) 20 women with recovering/recovered anorexia (rAN) who had concerns about body shape and weight and who over-estimated body size, (ii) 20 healthy controls who had normative levels of concern about body shape and who estimated body size accurately (iii) 20 healthy controls who had normative levels of concern about body shape but who did over-estimate body size. Comparisons between the three groups showed that: (i) accurate body size estimators tended to look more in the waist region, and this was independent of clinical diagnosis; (ii) there is a pattern of looking at images of bodies, particularly viewing the upper parts of the torso and face, which is specific to participants with rAN but which is independent of accuracy in body size estimation. Since the over-estimating controls did not share the same body image concerns that women with rAN report, their over-estimation cannot be explained by attitudinal concerns about body shape and weight. These results suggest that a distributed fixation pattern is associated with over-estimation of body size and should be addressed in treatment programs. © 2016 Wiley Periodicals, Inc. (Int J Eat Disord 2016; 49:507-518). © 2016 The Authors. International Journal of Eating Disorders published by Wiley Periodicals, Inc.
Aquatic concentrations of chemical analytes compared to ecotoxicity estimates
We describe screening level estimates of potential aquatic toxicity posed by 227 chemical analytes that were measured in 25 ambient water samples collected as part of a joint USGS/USEPA drinking water plant study. Measured concentrations were compared to biological effect concent...
Evaluation of Fuel Oxygenate Degradation in the Vadose Zone
2005-03-01
Goltz (Member) date AFIT/GES/ENV/05M-05 Abstract Groundwater contamination by petroleum products poses a potential human health...this experiment. The column porosity was estimated from work conducted by a contractor, Jason Lach. An estimate of the column soil porosity
Sparse Unorganized Point Cloud Based Relative Pose Estimation for Uncooperative Space Target.
Yin, Fang; Chou, Wusheng; Wu, Yun; Yang, Guang; Xu, Song
2018-03-28
This paper proposes an autonomous algorithm to determine the relative pose between the chaser spacecraft and the uncooperative space target, which is essential in advanced space applications, e.g., on-orbit serving missions. The proposed method, named Congruent Tetrahedron Align (CTA) algorithm, uses the very sparse unorganized 3D point cloud acquired by a LIDAR sensor, and does not require any prior pose information. The core of the method is to determine the relative pose by looking for the congruent tetrahedron in scanning point cloud and model point cloud on the basis of its known model. The two-level index hash table is built for speeding up the search speed. In addition, the Iterative Closest Point (ICP) algorithm is used for pose tracking after CTA. In order to evaluate the method in arbitrary initial attitude, a simulated system is presented. Specifically, the performance of the proposed method to provide the initial pose needed for the tracking algorithm is demonstrated, as well as their robustness against noise. Finally, a field experiment is conducted and the results demonstrated the effectiveness of the proposed method.
Sparse Unorganized Point Cloud Based Relative Pose Estimation for Uncooperative Space Target
Chou, Wusheng; Wu, Yun; Yang, Guang; Xu, Song
2018-01-01
This paper proposes an autonomous algorithm to determine the relative pose between the chaser spacecraft and the uncooperative space target, which is essential in advanced space applications, e.g., on-orbit serving missions. The proposed method, named Congruent Tetrahedron Align (CTA) algorithm, uses the very sparse unorganized 3D point cloud acquired by a LIDAR sensor, and does not require any prior pose information. The core of the method is to determine the relative pose by looking for the congruent tetrahedron in scanning point cloud and model point cloud on the basis of its known model. The two-level index hash table is built for speeding up the search speed. In addition, the Iterative Closest Point (ICP) algorithm is used for pose tracking after CTA. In order to evaluate the method in arbitrary initial attitude, a simulated system is presented. Specifically, the performance of the proposed method to provide the initial pose needed for the tracking algorithm is demonstrated, as well as their robustness against noise. Finally, a field experiment is conducted and the results demonstrated the effectiveness of the proposed method. PMID:29597323
Model-Based Reinforcement of Kinect Depth Data for Human Motion Capture Applications
Calderita, Luis Vicente; Bandera, Juan Pedro; Bustos, Pablo; Skiadopoulos, Andreas
2013-01-01
Motion capture systems have recently experienced a strong evolution. New cheap depth sensors and open source frameworks, such as OpenNI, allow for perceiving human motion on-line without using invasive systems. However, these proposals do not evaluate the validity of the obtained poses. This paper addresses this issue using a model-based pose generator to complement the OpenNI human tracker. The proposed system enforces kinematics constraints, eliminates odd poses and filters sensor noise, while learning the real dimensions of the performer's body. The system is composed by a PrimeSense sensor, an OpenNI tracker and a kinematics-based filter and has been extensively tested. Experiments show that the proposed system improves pure OpenNI results at a very low computational cost. PMID:23845933
... cardiac defibrillators and pacemakers You should tell the technologist if you have medical or electronic devices in your body. These objects may interfere with the exam or potentially pose a risk, depending on their nature and the strength of the MRI ...
Risks of exposure to ionizing and millimeter-wave radiation from airport whole-body scanners.
Moulder, John E
2012-06-01
Considerable public concern has been expressed around the world about the radiation risks posed by the backscatter (ionizing radiation) and millimeter-wave (nonionizing radiation) whole-body scanners that have been deployed at many airports. The backscatter and millimeter-wave scanners currently deployed in the U.S. almost certainly pose negligible radiation risks if used as intended, but their safety is difficult-to-impossible to prove using publicly accessible data. The scanners are widely disliked and often feared, which is a problem made worse by what appears to be a veil of secrecy that covers their specifications and dosimetry. Therefore, for these and future similar technologies to gain wide acceptance, more openness is needed, as is independent review and regulation. Publicly accessible, and preferably peer-reviewed evidence is needed that the deployed units (not just the prototypes) meet widely-accepted safety standards. It is also critical that risk-perception issues be handled more competently.
An Inertial and Optical Sensor Fusion Approach for Six Degree-of-Freedom Pose Estimation
He, Changyu; Kazanzides, Peter; Sen, Hasan Tutkun; Kim, Sungmin; Liu, Yue
2015-01-01
Optical tracking provides relatively high accuracy over a large workspace but requires line-of-sight between the camera and the markers, which may be difficult to maintain in actual applications. In contrast, inertial sensing does not require line-of-sight but is subject to drift, which may cause large cumulative errors, especially during the measurement of position. To handle cases where some or all of the markers are occluded, this paper proposes an inertial and optical sensor fusion approach in which the bias of the inertial sensors is estimated when the optical tracker provides full six degree-of-freedom (6-DOF) pose information. As long as the position of at least one marker can be tracked by the optical system, the 3-DOF position can be combined with the orientation estimated from the inertial measurements to recover the full 6-DOF pose information. When all the markers are occluded, the position tracking relies on the inertial sensors that are bias-corrected by the optical tracking system. Experiments are performed with an augmented reality head-mounted display (ARHMD) that integrates an optical tracking system (OTS) and inertial measurement unit (IMU). Experimental results show that under partial occlusion conditions, the root mean square errors (RMSE) of orientation and position are 0.04° and 0.134 mm, and under total occlusion conditions for 1 s, the orientation and position RMSE are 0.022° and 0.22 mm, respectively. Thus, the proposed sensor fusion approach can provide reliable 6-DOF pose under long-term partial occlusion and short-term total occlusion conditions. PMID:26184191
Art critic: Multisignal vision and speech interaction system in a gaming context.
Reale, Michael J; Liu, Peng; Yin, Lijun; Canavan, Shaun
2013-12-01
True immersion of a player within a game can only occur when the world simulated looks and behaves as close to reality as possible. This implies that the game must correctly read and understand, among other things, the player's focus, attitude toward the objects/persons in focus, gestures, and speech. In this paper, we proposed a novel system that integrates eye gaze estimation, head pose estimation, facial expression recognition, speech recognition, and text-to-speech components for use in real-time games. Both the eye gaze and head pose components utilize underlying 3-D models, and our novel head pose estimation algorithm uniquely combines scene flow with a generic head model. The facial expression recognition module uses the local binary patterns with three orthogonal planes approach on the 2-D shape index domain rather than the pixel domain, resulting in improved classification. Our system has also been extended to use a pan-tilt-zoom camera driven by the Kinect, allowing us to track a moving player. A test game, Art Critic, is also presented, which not only demonstrates the utility of our system but also provides a template for player/non-player character (NPC) interaction in a gaming context. The player alters his/her view of the 3-D world using head pose, looks at paintings/NPCs using eye gaze, and makes an evaluation based on the player's expression and speech. The NPC artist will respond with facial expression and synthetic speech based on its personality. Both qualitative and quantitative evaluations of the system are performed to illustrate the system's effectiveness.
An Inertial and Optical Sensor Fusion Approach for Six Degree-of-Freedom Pose Estimation.
He, Changyu; Kazanzides, Peter; Sen, Hasan Tutkun; Kim, Sungmin; Liu, Yue
2015-07-08
Optical tracking provides relatively high accuracy over a large workspace but requires line-of-sight between the camera and the markers, which may be difficult to maintain in actual applications. In contrast, inertial sensing does not require line-of-sight but is subject to drift, which may cause large cumulative errors, especially during the measurement of position. To handle cases where some or all of the markers are occluded, this paper proposes an inertial and optical sensor fusion approach in which the bias of the inertial sensors is estimated when the optical tracker provides full six degree-of-freedom (6-DOF) pose information. As long as the position of at least one marker can be tracked by the optical system, the 3-DOF position can be combined with the orientation estimated from the inertial measurements to recover the full 6-DOF pose information. When all the markers are occluded, the position tracking relies on the inertial sensors that are bias-corrected by the optical tracking system. Experiments are performed with an augmented reality head-mounted display (ARHMD) that integrates an optical tracking system (OTS) and inertial measurement unit (IMU). Experimental results show that under partial occlusion conditions, the root mean square errors (RMSE) of orientation and position are 0.04° and 0.134 mm, and under total occlusion conditions for 1 s, the orientation and position RMSE are 0.022° and 0.22 mm, respectively. Thus, the proposed sensor fusion approach can provide reliable 6-DOF pose under long-term partial occlusion and short-term total occlusion conditions.
Hardware in the Loop Performance Assessment of LIDAR-Based Spacecraft Pose Determination
Fasano, Giancarmine; Grassi, Michele
2017-01-01
In this paper an original, easy to reproduce, semi-analytic calibration approach is developed for hardware-in-the-loop performance assessment of pose determination algorithms processing point cloud data, collected by imaging a non-cooperative target with LIDARs. The laboratory setup includes a scanning LIDAR, a monocular camera, a scaled-replica of a satellite-like target, and a set of calibration tools. The point clouds are processed by uncooperative model-based algorithms to estimate the target relative position and attitude with respect to the LIDAR. Target images, acquired by a monocular camera operated simultaneously with the LIDAR, are processed applying standard solutions to the Perspective-n-Points problem to get high-accuracy pose estimates which can be used as a benchmark to evaluate the accuracy attained by the LIDAR-based techniques. To this aim, a precise knowledge of the extrinsic relative calibration between the camera and the LIDAR is essential, and it is obtained by implementing an original calibration approach which does not need ad-hoc homologous targets (e.g., retro-reflectors) easily recognizable by the two sensors. The pose determination techniques investigated by this work are of interest to space applications involving close-proximity maneuvers between non-cooperative platforms, e.g., on-orbit servicing and active debris removal. PMID:28946651
Hardware in the Loop Performance Assessment of LIDAR-Based Spacecraft Pose Determination.
Opromolla, Roberto; Fasano, Giancarmine; Rufino, Giancarlo; Grassi, Michele
2017-09-24
In this paper an original, easy to reproduce, semi-analytic calibration approach is developed for hardware-in-the-loop performance assessment of pose determination algorithms processing point cloud data, collected by imaging a non-cooperative target with LIDARs. The laboratory setup includes a scanning LIDAR, a monocular camera, a scaled-replica of a satellite-like target, and a set of calibration tools. The point clouds are processed by uncooperative model-based algorithms to estimate the target relative position and attitude with respect to the LIDAR. Target images, acquired by a monocular camera operated simultaneously with the LIDAR, are processed applying standard solutions to the Perspective- n -Points problem to get high-accuracy pose estimates which can be used as a benchmark to evaluate the accuracy attained by the LIDAR-based techniques. To this aim, a precise knowledge of the extrinsic relative calibration between the camera and the LIDAR is essential, and it is obtained by implementing an original calibration approach which does not need ad-hoc homologous targets (e.g., retro-reflectors) easily recognizable by the two sensors. The pose determination techniques investigated by this work are of interest to space applications involving close-proximity maneuvers between non-cooperative platforms, e.g., on-orbit servicing and active debris removal.
Ungers, L J; Moskowitz, P D; Owens, T W; Harmon, A D; Briggs, T M
1982-02-01
Determining occupational health and safety risks posed by emerging technologies is difficult because of limited statistics. Nevertheless, estimates of such risks must be constructed to permit comparison of various technologies to identify the most attractive processes. One way to estimate risks is to use statistics on related industries. Based on process labor requirements and associated occupational health data, risks to workers and to society posed by an emerging technology can be calculated. Using data from the California semiconductor industry, this study applies a five-step occupational risk assessment procedure to four processes for the fabrication of photovoltaic cells. The validity of the occupational risk assessment method is discussed.
Landmark based localization in urban environment
NASA Astrophysics Data System (ADS)
Qu, Xiaozhi; Soheilian, Bahman; Paparoditis, Nicolas
2018-06-01
A landmark based localization with uncertainty analysis based on cameras and geo-referenced landmarks is presented in this paper. The system is developed to adapt different camera configurations for six degree-of-freedom pose estimation. Local bundle adjustment is applied for optimization and the geo-referenced landmarks are integrated to reduce the drift. In particular, the uncertainty analysis is taken into account. On the one hand, we estimate the uncertainties of poses to predict the precision of localization. On the other hand, uncertainty propagation is considered for matching, tracking and landmark registering. The proposed method is evaluated on both KITTI benchmark and the data acquired by a mobile mapping system. In our experiments, decimeter level accuracy can be reached.
New Data from EPA's Exposure Forecasting (ExpoCast) Project (ISES meeting)
The health risks posed by the chemicals in our environment depends on both chemical hazard and exposure. However, relatively few chemicals have estimates of exposure intake, limiting risk estimations for thousands of chemicals. The U.S. EPA Exposure Forecasting (ExpoCast) projec...
Improving the work position of worker based on manual material handling in rice mill industry
NASA Astrophysics Data System (ADS)
Astuti, Rahmaniyah Dwi; Susmartini, Susy; Kinanthi, Ade Putri
2017-11-01
In traditional industries still using manual material handling to weight lifting. Worker at the rice mill, especially in rice filtering activity has wrong ergonomic posture to enforce the body bends and carried loads too heavy cause of injury for lower back and waist. The work attitude is unnatural posture. This study aimed to determine the severity of the workload, the level of risk posed to the rice taking activities and suggested as an improvement to it. Identify the operator complaints used Nordic Body Map method. Rapid Entire Body Assessment (REBA) method is used to provide an assessment of the working posture of the operator. Assessment of the working posture on rice filtering process shows that REBA score is 12 with an explanation very high level of risk and action level is 4 which means the action needs to be repaired immediately. Biomechanics calculation shows result 6713.21 N, the result of the calculation of the biomechanics of worker in the rice filtering activities indicates that the activities would pose a risk or injury. Therefore, improvement in rice filtering activity by designing a tool for lowering the risk level worker. The design tools are illustrated with 2D modeling resulted in the level of risk that is working REBA score became 3 which shows a low risk level. Biomechanics calculation after designed of tools show the result is 6282.86 N. The results means the activities carried out are still in safe condition and does not pose a risk or injury.
Association between inaccurate estimation of body size and obesity in schoolchildren.
Costa, Larissa da Cunha Feio; Silva, Diego Augusto Santos; Almeida, Sebastião de Sousa; de Vasconcelos, Francisco de Assis Guedes
2015-01-01
To investigate the prevalence of inaccurate estimation of own body size among Brazilian schoolchildren of both sexes aged 7-10 years, and to test whether overweight/obesity; excess body fat and central obesity are associated with inaccuracy. Accuracy of body size estimation was assessed using the Figure Rating Scale for Brazilian Children. Multinomial logistic regression was used to analyze associations. The overall prevalence of inaccurate body size estimation was 76%, with 34% of the children underestimating their body size and 42% overestimating their body size. Obesity measured by body mass index was associated with underestimation of body size in both sexes, while central obesity was only associated with overestimation of body size among girls. The results of this study suggest there is a high prevalence of inaccurate body size estimation and that inaccurate estimation is associated with obesity. Accurate estimation of own body size is important among obese schoolchildren because it may be the first step towards adopting healthy lifestyle behaviors.
Comparison of different methods for gender estimation from face image of various poses
NASA Astrophysics Data System (ADS)
Ishii, Yohei; Hongo, Hitoshi; Niwa, Yoshinori; Yamamoto, Kazuhiko
2003-04-01
Recently, gender estimation from face images has been studied for frontal facial images. However, it is difficult to obtain such facial images constantly in the case of application systems for security, surveillance and marketing research. In order to build such systems, a method is required to estimate gender from the image of various facial poses. In this paper, three different classifiers are compared in appearance-based gender estimation, which use four directional features (FDF). The classifiers are linear discriminant analysis (LDA), Support Vector Machines (SVMs) and Sparse Network of Winnows (SNoW). Face images used for experiments were obtained from 35 viewpoints. The direction of viewpoints varied +/-45 degrees horizontally, +/-30 degrees vertically at 15 degree intervals respectively. Although LDA showed the best performance for frontal facial images, SVM with Gaussian kernel was found the best performance (86.0%) for the facial images of 35 viewpoints. It is considered that SVM with Gaussian kernel is robust to changes in viewpoint when estimating gender from these results. Furthermore, the estimation rate was quite close to the average estimation rate at 35 viewpoints respectively. It is supposed that the methods are reasonable to estimate gender within the range of experimented viewpoints by learning face images from multiple directions by one class.
Combining facial dynamics with appearance for age estimation.
Dibeklioglu, Hamdi; Alnajar, Fares; Ali Salah, Albert; Gevers, Theo
2015-06-01
Estimating the age of a human from the captured images of his/her face is a challenging problem. In general, the existing approaches to this problem use appearance features only. In this paper, we show that in addition to appearance information, facial dynamics can be leveraged in age estimation. We propose a method to extract and use dynamic features for age estimation, using a person's smile. Our approach is tested on a large, gender-balanced database with 400 subjects, with an age range between 8 and 76. In addition, we introduce a new database on posed disgust expressions with 324 subjects in the same age range, and evaluate the reliability of the proposed approach when used with another expression. State-of-the-art appearance-based age estimation methods from the literature are implemented as baseline. We demonstrate that for each of these methods, the addition of the proposed dynamic features results in statistically significant improvement. We further propose a novel hierarchical age estimation architecture based on adaptive age grouping. We test our approach extensively, including an exploration of spontaneous versus posed smile dynamics, and gender-specific age estimation. We show that using spontaneity information reduces the mean absolute error by up to 21%, advancing the state of the art for facial age estimation.
Evolutionary Initial Poses of Reduced D.O.F’s Quadruped Robot
NASA Astrophysics Data System (ADS)
Iida, Ken-Ichi; Nakata, Yoshitaka; Hira, Toshio; Kamano, Takuya; Suzuki, Takayuki
In this paper, an application of genetic algorithm for generation of evolutionary initial poses of a quadrupedal robot which reduced degrees of freedom is described. To reduce degree of freedom, each leg of the robot has a slider-crank mechanism and is driven by an actuator. Furthermore we introduced the forward movement mode and the rotating mode because the omnidirection movement should be made possible. To generate the suitable initial pose, the initial angle of four legs are coded under gray code and tuned by an estimation function in each mode with the genetic algorithm. As a result of generation, the cooperation of the legs is realized to move toward the omnidirection. The experimental results demonstrate that the proposed scheme is effective for generation of the suitable initial poses and the robot can walk smoothly with the generated patterns.
NASA Astrophysics Data System (ADS)
Liu, Wen P.; Armand, Mehran; Otake, Yoshito; Taylor, Russell H.
2011-03-01
Percutaneous femoroplasty [1], or femoral bone augmentation, is a prospective alternative treatment for reducing the risk of fracture in patients with severe osteoporosis. We are developing a surgical robotics system that will assist orthopaedic surgeons in planning and performing a patient-specific, augmentation of the femur with bone cement. This collaborative project, sponsored by the National Institutes of Health (NIH), has been the topic of previous publications [2],[3] from our group. This paper presents modifications to the pose recovery of a fluoroscope tracking (FTRAC) fiducial during our process of 2D/3D registration of X-ray intraoperative images to preoperative CT data. We show improved automata of the initial pose estimation as well as lower projection errors with the advent of a multiimage pose optimization step.
Exercise activates compensatory thermoregulatory reaction in rats: a modeling study
Yoo, Yeonjoo; LaPradd, Michelle; Kline, Hannah; Zaretskaia, Maria V.; Behrouzvaziri, Abolhassan; Rusyniak, Daniel E.; Molkov, Yaroslav I.
2015-01-01
The importance of exercise is increasingly emphasized for maintaining health. However, exercise itself can pose threats to health such as the development of exertional heat shock in warm environments. Therefore, it is important to understand how the thermoregulation system adjusts during exercise and how alterations of this can contribute to heat stroke. To explore this we measured the core body temperature of rats (Tc) running for 15 min on a treadmill at various speeds in two ambient temperatures (Ta = 25°C and 32°C). We assimilated the experimental data into a mathematical model that describes temperature changes in two compartments of the body, representing the muscles and the core. In our model the core body generates heat to maintain normal body temperature, and dissipates it into the environment. The muscles produce additional heat during exercise. According to the estimation of model parameters, at Ta = 25°C, the heat generation in the core was progressively reduced with the increase of the treadmill speed to compensate for a progressive increase in heat production by the muscles. This compensation was ineffective at Ta = 32°C, which resulted in an increased rate of heat accumulation with increasing speed, as opposed to the Ta = 25°C case. Interestingly, placing an animal on a treadmill increased heat production in the muscles even when the treadmill speed was zero. Quantitatively, this “ready-to-run” phenomenon accounted for over half of the heat generation in the muscles observed at maximal treadmill speed. We speculate that this anticipatory response utilizes stress-related circuitry. PMID:26472864
AN INFORMATIC APPROACH TO ESTIMATING ECOLOGICAL RISKS POSED BY PHARMACEUTICAL USE
A new method for estimating risks of human prescription pharmaceuticals based on information found in regulatory filings as well as scientific and trade literature is described in a presentation at the Pharmaceuticals in the Environment Workshop in Las Vegas, NV, August 23-25, 20...
Dwight D. Baker; Maurice Fried; John A. Parrotta
1995-01-01
Estimation of symbiotic N2 fixation associated with large perennial plant species, especially trees, poses special problems because the process must be followed over a potentially long period of time to integrate the total amount of fixation. Estimations using isotope dilution methodology have begun to be used for trees in field studies. Because...
Computer vision research with new imaging technology
NASA Astrophysics Data System (ADS)
Hou, Guangqi; Liu, Fei; Sun, Zhenan
2015-12-01
Light field imaging is capable of capturing dense multi-view 2D images in one snapshot, which record both intensity values and directions of rays simultaneously. As an emerging 3D device, the light field camera has been widely used in digital refocusing, depth estimation, stereoscopic display, etc. Traditional multi-view stereo (MVS) methods only perform well on strongly texture surfaces, but the depth map contains numerous holes and large ambiguities on textureless or low-textured regions. In this paper, we exploit the light field imaging technology on 3D face modeling in computer vision. Based on a 3D morphable model, we estimate the pose parameters from facial feature points. Then the depth map is estimated through the epipolar plane images (EPIs) method. At last, the high quality 3D face model is exactly recovered via the fusing strategy. We evaluate the effectiveness and robustness on face images captured by a light field camera with different poses.
3D kinematics of mobile-bearing total knee arthroplasty using X-ray fluoroscopy.
Yamazaki, Takaharu; Futai, Kazuma; Tomita, Tetsuya; Sato, Yoshinobu; Yoshikawa, Hideki; Tamura, Shinichi; Sugamoto, Kazuomi
2015-04-01
Total knee arthroplasty (TKA) 3D kinematic analysis requires 2D/3D image registration of X-ray fluoroscopic images and a computer-aided design (CAD) model of the knee implant. However, these techniques cannot provide information on the radiolucent polyethylene insert, since the insert silhouette does not appear clearly in X-ray images. Therefore, it is difficult to obtain the 3D kinematics of the polyethylene insert, particularly the mobile-bearing insert. A technique for 3D kinematic analysis of a mobile-bearing insert used in TKA was developed using X-ray fluoroscopy. The method was tested and a clinical application was evaluated. Tantalum beads and a CAD model of the mobile-bearing TKA insert are used for 3D pose estimation of the mobile-bearing insert used in TKA using X-ray fluoroscopy. The insert model was created using four identical tantalum beads precisely located at known positions in a polyethylene insert using a specially designed insertion device. Finally, the 3D pose of the insert model was estimated using a feature-based 2D/3D registration technique, using the silhouette of beads in fluoroscopic images and the corresponding CAD insert model. In vitro testing for the repeatability of the positioning of the tantalum beads and computer simulations for 3D pose estimation of the mobile-bearing insert were performed. The pose estimation accuracy achieved was sufficient for analyzing mobile-bearing TKA kinematics (RMS error: within 1.0 mm and 1.0°, except for medial-lateral translation). In a clinical application, nine patients with mobile-bearing TKA were investigated and analyzed with respect to a deep knee bending motion. A 3D kinematic analysis technique was developed that enables accurate quantitative evaluation of mobile-bearing TKA kinematics. This method may be useful for improving implant design and optimizing TKA surgical techniques.
Robot acting on moving bodies (RAMBO): Preliminary results
NASA Technical Reports Server (NTRS)
Davis, Larry S.; Dementhon, Daniel; Bestul, Thor; Ziavras, Sotirios; Srinivasan, H. V.; Siddalingaiah, Madju; Harwood, David
1989-01-01
A robot system called RAMBO is being developed. It is equipped with a camera, which, given a sequence of simple tasks, can perform these tasks on a moving object. RAMBO is given a complete geometric model of the object. A low level vision module extracts and groups characteristic features in images of the object. The positions of the object are determined in a sequence of images, and a motion estimate of the object is obtained. This motion estimate is used to plan trajectories of the robot tool to relative locations nearby the object sufficient for achieving the tasks. More specifically, low level vision uses parallel algorithms for image enchancement by symmetric nearest neighbor filtering, edge detection by local gradient operators, and corner extraction by sector filtering. The object pose estimation is a Hough transform method accumulating position hypotheses obtained by matching triples of image features (corners) to triples of model features. To maximize computing speed, the estimate of the position in space of a triple of features is obtained by decomposing its perspective view into a product of rotations and a scaled orthographic projection. This allows the use of 2-D lookup tables at each stage of the decomposition. The position hypotheses for each possible match of model feature triples and image feature triples are calculated in parallel. Trajectory planning combines heuristic and dynamic programming techniques. Then trajectories are created using parametric cubic splines between initial and goal trajectories. All the parallel algorithms run on a Connection Machine CM-2 with 16K processors.
NASA Astrophysics Data System (ADS)
Li, Zhenhai; Nie, Chenwei; Yang, Guijun; Xu, Xingang; Jin, Xiuliang; Gu, Xiaohe
2014-10-01
Leaf area index (LAI) and LCC, as the two most important crop growth variables, are major considerations in management decisions, agricultural planning and policy making. Estimation of canopy biophysical variables from remote sensing data was investigated using a radiative transfer model. However, the ill-posed problem is unavoidable for the unique solution of the inverse problem and the uncertainty of measurements and model assumptions. This study focused on the use of agronomy mechanism knowledge to restrict and remove the ill-posed inversion results. For this purpose, the inversion results obtained using the PROSAIL model alone (NAMK) and linked with agronomic mechanism knowledge (AMK) were compared. The results showed that AMK did not significantly improve the accuracy of LAI inversion. LAI was estimated with high accuracy, and there was no significant improvement after considering AMK. The validation results of the determination coefficient (R2) and the corresponding root mean square error (RMSE) between measured LAI and estimated LAI were 0.635 and 1.022 for NAMK, and 0.637 and 0.999 for AMK, respectively. LCC estimation was significantly improved with agronomy mechanism knowledge; the R2 and RMSE values were 0.377 and 14.495 μg cm-2 for NAMK, and 0.503 and 10.661 μg cm-2 for AMK, respectively. Results of the comparison demonstrated the need for agronomy mechanism knowledge in radiative transfer model inversion.
Automatic pose correction for image-guided nonhuman primate brain surgery planning
NASA Astrophysics Data System (ADS)
Ghafurian, Soheil; Chen, Antong; Hines, Catherine; Dogdas, Belma; Bone, Ashleigh; Lodge, Kenneth; O'Malley, Stacey; Winkelmann, Christopher T.; Bagchi, Ansuman; Lubbers, Laura S.; Uslaner, Jason M.; Johnson, Colena; Renger, John; Zariwala, Hatim A.
2016-03-01
Intracranial delivery of recombinant DNA and neurochemical analysis in nonhuman primate (NHP) requires precise targeting of various brain structures via imaging derived coordinates in stereotactic surgeries. To attain targeting precision, the surgical planning needs to be done on preoperative three dimensional (3D) CT and/or MR images, in which the animals head is fixed in a pose identical to the pose during the stereotactic surgery. The matching of the image to the pose in the stereotactic frame can be done manually by detecting key anatomical landmarks on the 3D MR and CT images such as ear canal and ear bar zero position. This is not only time intensive but also prone to error due to the varying initial poses in the images which affects both the landmark detection and rotation estimation. We have introduced a fast, reproducible, and semi-automatic method to detect the stereotactic coordinate system in the image and correct the pose. The method begins with a rigid registration of the subject images to an atlas and proceeds to detect the anatomical landmarks through a sequence of optimization, deformable and multimodal registration algorithms. The results showed similar precision (maximum difference of 1.71 in average in-plane rotation) to a manual pose correction.
Multi-Task Convolutional Neural Network for Pose-Invariant Face Recognition
NASA Astrophysics Data System (ADS)
Yin, Xi; Liu, Xiaoming
2018-02-01
This paper explores multi-task learning (MTL) for face recognition. We answer the questions of how and why MTL can improve the face recognition performance. First, we propose a multi-task Convolutional Neural Network (CNN) for face recognition where identity classification is the main task and pose, illumination, and expression estimations are the side tasks. Second, we develop a dynamic-weighting scheme to automatically assign the loss weight to each side task, which is a crucial problem in MTL. Third, we propose a pose-directed multi-task CNN by grouping different poses to learn pose-specific identity features, simultaneously across all poses. Last but not least, we propose an energy-based weight analysis method to explore how CNN-based MTL works. We observe that the side tasks serve as regularizations to disentangle the variations from the learnt identity features. Extensive experiments on the entire Multi-PIE dataset demonstrate the effectiveness of the proposed approach. To the best of our knowledge, this is the first work using all data in Multi-PIE for face recognition. Our approach is also applicable to in-the-wild datasets for pose-invariant face recognition and achieves comparable or better performance than state of the art on LFW, CFP, and IJB-A datasets.
Dynamics of Space Vehicles and Space Research
1989-09-08
dynamics is used for study of longitudinal vibrations of RN, in which participates housing, power - supply system and engine installation. In American...scientific research of G. S. Narimanov. Research of the dynamics of solid bodies with the liquid filling, simulating RN and KA with ZhRD in the powered ...solid body. Page 9. Specifically, then he posed the problem about the review of the conceptual basis of research of rocket dynamics in the powered
Hall, Amy L; Davies, Hugh W; Demers, Paul A; Nicol, Anne-Marie; Peters, Cheryl E
2013-11-01
Although veterinary workers may encounter various occupational health hazards, a national characterization of exposures is lacking in Canada. This study used secondary data sources to identify veterinary exposure prevalence for ionizing radiation and antineoplastic agents, as part of a national surveillance project. For ionizing radiation, data from the Radiation Protection Bureau of Health Canada were used to identify veterinarians and veterinary technicians monitored in 2006. This was combined with Census statistics to estimate a prevalence range and dose levels. For antineoplastic agents, exposure prevalence was estimated using statistics on employment by practice type and antineoplastic agent usage rates, obtained from veterinary licensing bodies and peer-reviewed literature. In 2006, 7,013 (37% of all) Canadian veterinary workers were monitored for ionizing radiation exposure. An estimated 3.3% to 8.2% of all veterinarians and 2.4% to 7.2% of veterinary technicians were exposed to an annual ionizing radiation dose above 0.1 mSv, representing a total of between 536 and 1,450 workers. All monitored doses were below regulatory limits. For antineoplastic agents, exposure was predicted in up to 5,300 (23%) of all veterinary workers, with an estimated prevalence range of 22% to 24% of veterinarians and 20% to 21% of veterinary technicians. This is the first national-level assessment of exposure to ionizing radiation and antineoplastic agents in Canadian veterinary settings. These hazards may pose considerable health risks. Exposures appeared to be low, however our estimates should be validated with comprehensive exposure monitoring and examination of determinants across practice areas, occupations, and tasks.
Gold, Michael R; Kanal, Emanuel; Schwitter, Juerg; Sommer, Torsten; Yoon, Hyun; Ellingson, Michael; Landborg, Lynn; Bratten, Tara
2015-03-01
Many patients with an implantable cardioverter-defibrillator (ICD) have indications for magnetic resonance imaging (MRI). However, MRI is generally contraindicated in ICD patients because of potential risks from hazardous interactions between the MRI and ICD system. The purpose of this study was to use preclinical computer modeling, animal studies, and bench and scanner testing to demonstrate the safety of an ICD system developed for 1.5-T whole-body MRI. MRI hazards were assessed and mitigated using multiple approaches: design decisions to increase safety and reliability, modeling and simulation to quantify clinical MRI exposure levels, animal studies to quantify the physiologic effects of MRI exposure, and bench testing to evaluate safety margin. Modeling estimated the incidence of a chronic change in pacing capture threshold >0.5 V and 1.0 V to be less than 1 in 160,000 and less than 1 in 1,000,000 cases, respectively. Modeling also estimated the incidence of unintended cardiac stimulation to occur in less than 1 in 1,000,000 cases. Animal studies demonstrated no delay in ventricular fibrillation detection and no reduction in ventricular fibrillation amplitude at clinical MRI exposure levels, even with multiple exposures. Bench and scanner testing demonstrated performance and safety against all other MRI-induced hazards. A preclinical strategy that includes comprehensive computer modeling, animal studies, and bench and scanner testing predicts that an ICD system developed for the magnetic resonance environment is safe and poses very low risks when exposed to 1.5-T normal operating mode whole-body MRI. Copyright © 2015 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.
Erdsack, Nicola; McCully Phillips, Sophy R; Rommel, Sentiel A; Pabst, D Ann; McLellan, William A; Reynolds, John E
2018-03-19
Florida manatees (Trichechus manatus latirostris) possess an unusual suite of adaptations to accommodate both a fully aquatic lifestyle and an herbivorous diet, including a low metabolic rate and a very limited thermoneutral zone. Their relatively high lower critical temperature of around 20 °C suggests strong sensitivity to cold, thereby limiting their distribution to tropical and subtropical waters. "Cold stress syndrome" affects and kills Florida manatees every year during intense or prolonged cold weather, posing one of the major threats to manatees. However, knowledge regarding manatee thermoregulation is sparse, but essential for effective conservation and management of this threatened species. We measured heat flux in two captive Florida manatees at multiple times of the year, at 41 sites distributed across the entire body surface of each manatee. Heat flux differed significantly between individuals, and among body sites and times of the year. The pectoral flippers and axillae were identified as areas with highest heat exchange. Despite exposure to constant water temperature throughout the year, the manatees in this study had significantly lower heat flux in winter than in summer. We used the measured heat flux values to calculate total heat dissipation in individual manatees. The values estimated this way correspond well with the low metabolic rates estimated in previous studies, confirming the reliability of our novel approach. Our method provides simple and useful options for enhancing manatee welfare by monitoring the animals' thermal state during potentially stressful activities such as during medical treatment, capture restraints and transportation.
NASA Astrophysics Data System (ADS)
Baumhauer, M.; Simpfendörfer, T.; Schwarz, R.; Seitel, M.; Müller-Stich, B. P.; Gutt, C. N.; Rassweiler, J.; Meinzer, H.-P.; Wolf, I.
2007-03-01
We introduce a novel navigation system to support minimally invasive prostate surgery. The system utilizes transrectal ultrasonography (TRUS) and needle-shaped navigation aids to visualize hidden structures via Augmented Reality. During the intervention, the navigation aids are segmented once from a 3D TRUS dataset and subsequently tracked by the endoscope camera. Camera Pose Estimation methods directly determine position and orientation of the camera in relation to the navigation aids. Accordingly, our system does not require any external tracking device for registration of endoscope camera and ultrasonography probe. In addition to a preoperative planning step in which the navigation targets are defined, the procedure consists of two main steps which are carried out during the intervention: First, the preoperatively prepared planning data is registered with an intraoperatively acquired 3D TRUS dataset and the segmented navigation aids. Second, the navigation aids are continuously tracked by the endoscope camera. The camera's pose can thereby be derived and relevant medical structures can be superimposed on the video image. This paper focuses on the latter step. We have implemented several promising real-time algorithms and incorporated them into the Open Source Toolkit MITK (www.mitk.org). Furthermore, we have evaluated them for minimally invasive surgery (MIS) navigation scenarios. For this purpose, a virtual evaluation environment has been developed, which allows for the simulation of navigation targets and navigation aids, including their measurement errors. Besides evaluating the accuracy of the computed pose, we have analyzed the impact of an inaccurate pose and the resulting displacement of navigation targets in Augmented Reality.
CONTAMINANT CONCENTRATIONS IN WHOLE-BODY FISH AND SHELLFISH FROM U.S. ESTUARIES
Persistent bioaccumulative and toxic (PBT) pollutants are chemical contaminants that pose risks to ecosystems and human health. For these reasons, available tissue contaminant data from the US EPA Environmental Monitoring and Assessment Program's National Coastal Assessment were...
Calvarial tuberculosis presenting as cystic lesion: An unusual presentation in two patients.
Khare, Pratima; Gupta, Renu; Chand, Priyanka; Agarwal, Swapnil
2015-01-01
Tuberculosis is a common disease in developing countries such as India, posing a major public health problem. With human immunodeficiency virus (HIV) infection being a global endemic, there has been a resurgence of tuberculosis even in developed countries. Tuberculosis may affect almost any part of the body. However, tuberculosis of the calvarium is very rare. Presentation of tuberculosis as a soft tissue swelling on the scalp poses a diagnostic problem. These two cases are being reported here to convey the utility of fine-needle aspiration cytology (FNAC) in providing the confirmatory diagnosis obviating the need for invasive surgical procedure.
NASA Astrophysics Data System (ADS)
Holmgren, J.; Tulldahl, H. M.; Nordlöf, J.; Nyström, M.; Olofsson, K.; Rydell, J.; Willén, E.
2017-10-01
A system was developed for automatic estimations of tree positions and stem diameters. The sensor trajectory was first estimated using a positioning system that consists of a low precision inertial measurement unit supported by image matching with data from a stereo-camera. The initial estimation of the sensor trajectory was then calibrated by adjustments of the sensor pose using the laser scanner data. Special features suitable for forest environments were used to solve the correspondence and matching problems. Tree stem diameters were estimated for stem sections using laser data from individual scanner rotations and were then used for calibration of the sensor pose. A segmentation algorithm was used to associate stem sections to individual tree stems. The stem diameter estimates of all stem sections associated to the same tree stem were then combined for estimation of stem diameter at breast height (DBH). The system was validated on four 20 m radius circular plots and manual measured trees were automatically linked to trees detected in laser data. The DBH could be estimated with a RMSE of 19 mm (6 %) and a bias of 8 mm (3 %). The calibrated sensor trajectory and the combined use of circle fits from individual scanner rotations made it possible to obtain reliable DBH estimates also with a low precision positioning system.
Body size estimation of self and others in females varying in BMI.
Thaler, Anne; Geuss, Michael N; Mölbert, Simone C; Giel, Katrin E; Streuber, Stephan; Romero, Javier; Black, Michael J; Mohler, Betty J
2018-01-01
Previous literature suggests that a disturbed ability to accurately identify own body size may contribute to overweight. Here, we investigated the influence of personal body size, indexed by body mass index (BMI), on body size estimation in a non-clinical population of females varying in BMI. We attempted to disentangle general biases in body size estimates and attitudinal influences by manipulating whether participants believed the body stimuli (personalized avatars with realistic weight variations) represented their own body or that of another person. Our results show that the accuracy of own body size estimation is predicted by personal BMI, such that participants with lower BMI underestimated their body size and participants with higher BMI overestimated their body size. Further, participants with higher BMI were less likely to notice the same percentage of weight gain than participants with lower BMI. Importantly, these results were only apparent when participants were judging a virtual body that was their own identity (Experiment 1), but not when they estimated the size of a body with another identity and the same underlying body shape (Experiment 2a). The different influences of BMI on accuracy of body size estimation and sensitivity to weight change for self and other identity suggests that effects of BMI on visual body size estimation are self-specific and not generalizable to other bodies.
Body size estimation of self and others in females varying in BMI
Geuss, Michael N.; Mölbert, Simone C.; Giel, Katrin E.; Streuber, Stephan; Romero, Javier; Black, Michael J.; Mohler, Betty J.
2018-01-01
Previous literature suggests that a disturbed ability to accurately identify own body size may contribute to overweight. Here, we investigated the influence of personal body size, indexed by body mass index (BMI), on body size estimation in a non-clinical population of females varying in BMI. We attempted to disentangle general biases in body size estimates and attitudinal influences by manipulating whether participants believed the body stimuli (personalized avatars with realistic weight variations) represented their own body or that of another person. Our results show that the accuracy of own body size estimation is predicted by personal BMI, such that participants with lower BMI underestimated their body size and participants with higher BMI overestimated their body size. Further, participants with higher BMI were less likely to notice the same percentage of weight gain than participants with lower BMI. Importantly, these results were only apparent when participants were judging a virtual body that was their own identity (Experiment 1), but not when they estimated the size of a body with another identity and the same underlying body shape (Experiment 2a). The different influences of BMI on accuracy of body size estimation and sensitivity to weight change for self and other identity suggests that effects of BMI on visual body size estimation are self-specific and not generalizable to other bodies. PMID:29425218
Effect of body composition methodology on heritability estimation of body fatness
USDA-ARS?s Scientific Manuscript database
Heritability estimates of human body fatness vary widely and the contribution of body composition methodology to this variability is unknown. The effect of body composition methodology on estimations of genetic and environmental contributions to body fatness variation was examined in 78 adult male ...
Model-based recognition of 3D articulated target using ladar range data.
Lv, Dan; Sun, Jian-Feng; Li, Qi; Wang, Qi
2015-06-10
Ladar is suitable for 3D target recognition because ladar range images can provide rich 3D geometric surface information of targets. In this paper, we propose a part-based 3D model matching technique to recognize articulated ground military vehicles in ladar range images. The key of this approach is to solve the decomposition and pose estimation of articulated parts of targets. The articulated components were decomposed into isolate parts based on 3D geometric properties of targets, such as surface point normals, data histogram distribution, and data distance relationships. The corresponding poses of these separate parts were estimated through the linear characteristics of barrels. According to these pose parameters, all parts of the target were roughly aligned to 3D point cloud models in a library and fine matching was finally performed to accomplish 3D articulated target recognition. The recognition performance was evaluated with 1728 ladar range images of eight different articulated military vehicles with various part types and orientations. Experimental results demonstrated that the proposed approach achieved a high recognition rate.
Widespread pesticide applications throughout agricultural landscapes pose a risk to post-metamorphic amphibians leaving or moving between breeding ponds in terrestrial habitats. Recent studies indicate that the inactive ingredients in pesticide formulations may be equally or more...
Vinkers, Charlotte D W; Evers, Catharine; Adriaanse, Marieke A; de Ridder, Denise T D
2012-08-01
Low body esteem poses a risk for the development of eating disorder symptomatology. Appearance-motivated exercise, as opposed to health-motivated exercise, has been associated with both low body esteem and eating disorder symptomatology. The aim of this study was to investigate the mediating role of appearance-motivated exercise in the link between body esteem and eating disorder symptomatology. Female fitness club members (N=81) reported their body esteem, eating disorder symptomatology and exercise motives. Appearance-motivated exercise partially mediated the link between low body esteem and eating disorder symptomatology. In contrast, health-motivated exercise was unrelated to both body esteem and eating disorder symptomatology. Results indicate that the motives underlying exercise in response to low body esteem have differential consequences for the potential development of eating disorders, signifying the clinical relevance of considering motives behind exercise. Copyright © 2012 Elsevier Ltd. All rights reserved.
Effect of Body Composition Methodology on Heritability Estimation of Body Fatness
Elder, Sonya J.; Roberts, Susan B.; McCrory, Megan A.; Das, Sai Krupa; Fuss, Paul J.; Pittas, Anastassios G.; Greenberg, Andrew S.; Heymsfield, Steven B.; Dawson-Hughes, Bess; Bouchard, Thomas J.; Saltzman, Edward; Neale, Michael C.
2014-01-01
Heritability estimates of human body fatness vary widely and the contribution of body composition methodology to this variability is unknown. The effect of body composition methodology on estimations of genetic and environmental contributions to body fatness variation was examined in 78 adult male and female monozygotic twin pairs reared apart or together. Body composition was assessed by six methods – body mass index (BMI), dual energy x-ray absorptiometry (DXA), underwater weighing (UWW), total body water (TBW), bioelectric impedance (BIA), and skinfold thickness. Body fatness was expressed as percent body fat, fat mass, and fat mass/height2 to assess the effect of body fatness expression on heritability estimates. Model-fitting multivariate analyses were used to assess the genetic and environmental components of variance. Mean BMI was 24.5 kg/m2 (range of 17.8–43.4 kg/m2). There was a significant effect of body composition methodology (p<0.001) on heritability estimates, with UWW giving the highest estimate (69%) and BIA giving the lowest estimate (47%) for fat mass/height2. Expression of body fatness as percent body fat resulted in significantly higher heritability estimates (on average 10.3% higher) compared to expression as fat mass/height2 (p=0.015). DXA and TBW methods expressing body fatness as fat mass/height2 gave the least biased heritability assessments, based on the small contribution of specific genetic factors to their genetic variance. A model combining DXA and TBW methods resulted in a relatively low FM/ht2 heritability estimate of 60%, and significant contributions of common and unique environmental factors (22% and 18%, respectively). The body fatness heritability estimate of 60% indicates a smaller contribution of genetic variance to total variance than many previous studies using less powerful research designs have indicated. The results also highlight the importance of environmental factors and possibly genotype by environmental interactions in the etiology of weight gain and the obesity epidemic. PMID:25067962
2014-04-24
tim at io n Er ro r ( cm ) 0 2 4 6 8 10 Color Statistics Angelova...Color_Statistics_Error) / Average_Slip_Error Position Estimation Error: Global Pose Po si tio n Es tim at io n Er ro r ( cm ) 0 2 4 6 8 10 12 Color...get some kind of clearance for releasing pose and odometry data) collected at the following sites – Taylor, Gascola, Somerset, Fort Bliss and
Satellite markers: a simple method for ground truth car pose on stereo video
NASA Astrophysics Data System (ADS)
Gil, Gustavo; Savino, Giovanni; Piantini, Simone; Pierini, Marco
2018-04-01
Artificial prediction of future location of other cars in the context of advanced safety systems is a must. The remote estimation of car pose and particularly its heading angle is key to predict its future location. Stereo vision systems allow to get the 3D information of a scene. Ground truth in this specific context is associated with referential information about the depth, shape and orientation of the objects present in the traffic scene. Creating 3D ground truth is a measurement and data fusion task associated with the combination of different kinds of sensors. The novelty of this paper is the method to generate ground truth car pose only from video data. When the method is applied to stereo video, it also provides the extrinsic camera parameters for each camera at frame level which are key to quantify the performance of a stereo vision system when it is moving because the system is subjected to undesired vibrations and/or leaning. We developed a video post-processing technique which employs a common camera calibration tool for the 3D ground truth generation. In our case study, we focus in accurate car heading angle estimation of a moving car under realistic imagery. As outcomes, our satellite marker method provides accurate car pose at frame level, and the instantaneous spatial orientation for each camera at frame level.
Estimation of body mass index from the metrics of the first metatarsal
NASA Astrophysics Data System (ADS)
Dunn, Tyler E.
Estimation of the biological profile from as many skeletal elements as possible is a necessity in both forensic and bioarchaeological contexts; this includes non-standard aspects of the biological profile, such as body mass index (BMI). BMI is a measure that allows for understanding of the composition of an individual and is traditionally divided into four groups: underweight, normal weight, overweight, and obese. BMI estimation incorporates both estimation of stature and body mass. The estimation of stature from skeletal elements is commonly included into the standard biological profile but the estimation of body mass needs to be further statistically validated to be consistently included. The bones of the foot, specifically the first metatarsal, may have the ability to estimate BMI given an allometric relationship to stature and the mechanical relationship to body mass. There are two commonly used methods for stature estimation, the anatomical method and the regression method. The anatomical method takes into account all of the skeletal elements that contribute to stature while the regression method relies on the allometric relationship between a skeletal element and living stature. A correlation between the metrics of the first metatarsal and living stature has been observed, and proposed as a method for valid stature estimation from the boney foot (Byers et al., 1989). Body mass estimation from skeletal elements relies on two theoretical frameworks: the morphometric and the mechanical approaches. The morphometric approach relies on the size relationship of the individual to body mass; the basic relationship between volume, density, and weight allows for body mass estimation. The body is thought of as a cylinder, and in order to understand the volume of this cylinder the diameter is needed. A commonly used proxy for this in the human body is skeletal bi-iliac breadth from rearticulated pelvic girdle. The mechanical method of body mass estimation relies on the ideas of biomechanical bone remodeling; the elements of the skeleton that are under higher forces, including weight, will remodel to minimize stress. A commonly used metric for the mechanical method of body mass estimation is the diameter of the head of the femur. The foot experiences nearly the entire weight force of the individual at any point in the gait cycle and is subject to the biomechanical remodeling that this force would induce. Therefore, the application of the mechanical framework for body mass estimation could stand true for the elements of the foot. The morphometric and mechanical approaches have been validated against one another on a large, geographically disparate population (Auerbach and Ruff, 2004), but have yet to be validated on a sample of known body mass. DeGroote and Humphrey (2011) test the ability of the first metatarsal to estimate femoral head diameter, body mass, and femoral length. The estimated femoral head diameter from the first metatarsal is used to estimate body mass via the morphometric approach and the femoral length is used to estimate living stature. The authors find that body mass and stature estimation methods from more commonly used skeletal elements compared well with the methods developed from the first metatarsal. This study examines 388 `White' individuals from the William M. Bass donated skeletal collection to test the reliability of the body mass estimates from femoral head diameter and bi-iliac breadth, stature from maximum femoral length, and body mass and stature from the metrics of the first metatarsal. This sample included individuals from all four of the BMI classes. This study finds that all of the skeletal indicators compare well with one another; there is no statistical difference in the stature estimates from the first metatarsal and the maximum length of the femur, and there is no statistical between all three of the body mass estimation methods. When compared to the forensic estimates of stature neither of the tested methods had statistical difference. Conversely, when the body mass estimates are compared to forensic body mass there was a statistical difference and when further investigated the most difference in the body mass estimates was in the extremes of body mass (the underweight and obese categories). These findings indicate that the estimation of stature from both the maximum femoral length and the metrics of the metatarsal are accurate methods. Furthermore, the estimation of body mass is accurate when the individual is in the middle range of the BMI spectrum while these methods for outlying individuals are inaccurate. These findings have implications for the application of stature and body mass estimation in the fields of bioarchaeology, forensic anthropology, and paleoanthropology.
Multilayer Joint Gait-Pose Manifolds for Human Gait Motion Modeling.
Ding, Meng; Fan, Guolian
2015-11-01
We present new multilayer joint gait-pose manifolds (multilayer JGPMs) for complex human gait motion modeling, where three latent variables are defined jointly in a low-dimensional manifold to represent a variety of body configurations. Specifically, the pose variable (along the pose manifold) denotes a specific stage in a walking cycle; the gait variable (along the gait manifold) represents different walking styles; and the linear scale variable characterizes the maximum stride in a walking cycle. We discuss two kinds of topological priors for coupling the pose and gait manifolds, i.e., cylindrical and toroidal, to examine their effectiveness and suitability for motion modeling. We resort to a topologically-constrained Gaussian process (GP) latent variable model to learn the multilayer JGPMs where two new techniques are introduced to facilitate model learning under limited training data. First is training data diversification that creates a set of simulated motion data with different strides. Second is the topology-aware local learning to speed up model learning by taking advantage of the local topological structure. The experimental results on the Carnegie Mellon University motion capture data demonstrate the advantages of our proposed multilayer models over several existing GP-based motion models in terms of the overall performance of human gait motion modeling.
Engaging with local stakeholders: some lessons from Fukushima for recovery.
Hayano, R S
2015-06-01
The Fukushima Daiichi nuclear power plant accident contaminated the soil of densely populated regions in Fukushima prefecture with radioactive caesium, which poses significant risks of internal and external exposure to the residents. Applying the knowledge of post-Chernobyl accident studies, internal exposures in excess of a few mSv per year would be expected to be common in Fukushima. However, extensive whole-body-counter surveys have shown that the internal exposure levels of residents are much lower than estimated; in 2012-2013, the Cs-137 detection percentages (the detection limit being ∼300 Bq body(-1)) were approximately 1% for adults and practically 0% for children. These results are consistent with those of many other measurements/studies conducted to date in Fukushima. As a consequence, risks from external exposure assume greater importance for the majority of residents in Fukushima due to the lower contribution from internal exposure. In both cases, average doses remain low, although some residents are exposed to higher-than-average risks; it is these members of the population who need to be identified and followed-up. Consequently, it is essential to re-establish communication at all levels in society. © The International Society for Prosthetics and Orthotics Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.
NASA Astrophysics Data System (ADS)
Park, Byeolteo; Myung, Hyun
2014-12-01
With the development of unconventional gas, the technology of directional drilling has become more advanced. Underground localization is the key technique of directional drilling for real-time path following and system control. However, there are problems such as vibration, disconnection with external infrastructure, and magnetic field distortion. Conventional methods cannot solve these problems in real time or in various environments. In this paper, a novel underground localization algorithm using a re-measurement of the sequence of the magnetic field and pose graph SLAM (simultaneous localization and mapping) is introduced. The proposed algorithm exploits the property of the drilling system that the body passes through the previous pass. By comparing the recorded measurement from one magnetic sensor and the current re-measurement from another magnetic sensor, the proposed algorithm predicts the pose of the drilling system. The performance of the algorithm is validated through simulations and experiments.
A chance constraint estimation approach to optimizing resource management under uncertainty
Michael Bevers
2007-01-01
Chance-constrained optimization is an important method for managing risk arising from random variations in natural resource systems, but the probabilistic formulations often pose mathematical programming problems that cannot be solved with exact methods. A heuristic estimation method for these problems is presented that combines a formulation for order statistic...
Abstract: Cylindrospermopsin is now recognized as a potent cyanobacterial toxin found in water bodies worldwide. The ever-increasing and global occurrence of massive and prolonged blooms of cylindrospermopsin-producing cyanobacteria in freshwater poses a potential threat to both ...
UTILIZATION OF LANDSCAPE INDICATORS TO MODEL WATER QUALITY
Many water-bodies within the United States are contaminated by, non-point source (NFS) pollution, which is defined as those materials posing a threat to water quality arising from a number of individual sources and diffused through hydrologic processes. One such NPS pollu...
FE Yurchikhin poses for a photo with SonoCard
2010-06-25
ISS024-E-006664 (25 June 2010) --- With most of his body tucked away in a sleeping bag, Russian cosmonaut Fyodor Yurchikhin, Expedition 24 flight engineer, is pictured in his crew quarters compartment in the Zvezda Service Module of the International Space Station.
Yu, Yingxin; Wang, Xinxin; Yang, Dan; Lei, Bingli; Zhang, Xiaolan; Zhang, Xinyu
2014-07-01
The present study estimated the human daily intake and uptake of organochlorine pesticides (OCPs), polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), polycyclic aromatic hydrocarbons (PAHs), and toxic trace elements [mercury (Hg), chromium (Cr), cadmium (Cd), and arsenic (As)] due to consumption of fish from Taihu Lake, China, and the associated potential health risks posed by these contaminants. The health risks posed by the contaminants were assessed using a risk quotient of the fish consumption rate to the maximum allowable fish consumption rate considering the contaminants for carcinogenic and non-carcinogenic effect endpoints. The results showed that fish consumption would not pose non-cancer risks. However, some species would cause a cancer risk. Relative risks of the contaminants were calculated to investigate the contaminant which posed the highest risk to humans. As a result, in view of the contaminants for carcinogenic effects, As was the contaminant which posed the highest risk to humans. However, when non-carcinogenic effects of the contaminants were considered, Hg posed the highest risk. The risk caused by PBDEs was negligible. The results demonstrated that traditional contaminants, such as As, Hg, DDTs (dichlorodiphenyltrichloroethane and its metabolites), and PCBs, require more attention in Taihu Lake than the other target contaminants. Copyright © 2014 Elsevier Ltd. All rights reserved.
Samba: a real-time motion capture system using wireless camera sensor networks.
Oh, Hyeongseok; Cha, Geonho; Oh, Songhwai
2014-03-20
There is a growing interest in 3D content following the recent developments in 3D movies, 3D TVs and 3D smartphones. However, 3D content creation is still dominated by professionals, due to the high cost of 3D motion capture instruments. The availability of a low-cost motion capture system will promote 3D content generation by general users and accelerate the growth of the 3D market. In this paper, we describe the design and implementation of a real-time motion capture system based on a portable low-cost wireless camera sensor network. The proposed system performs motion capture based on the data-driven 3D human pose reconstruction method to reduce the computation time and to improve the 3D reconstruction accuracy. The system can reconstruct accurate 3D full-body poses at 16 frames per second using only eight markers on the subject's body. The performance of the motion capture system is evaluated extensively in experiments.
Samba: A Real-Time Motion Capture System Using Wireless Camera Sensor Networks
Oh, Hyeongseok; Cha, Geonho; Oh, Songhwai
2014-01-01
There is a growing interest in 3D content following the recent developments in 3D movies, 3D TVs and 3D smartphones. However, 3D content creation is still dominated by professionals, due to the high cost of 3D motion capture instruments. The availability of a low-cost motion capture system will promote 3D content generation by general users and accelerate the growth of the 3D market. In this paper, we describe the design and implementation of a real-time motion capture system based on a portable low-cost wireless camera sensor network. The proposed system performs motion capture based on the data-driven 3D human pose reconstruction method to reduce the computation time and to improve the 3D reconstruction accuracy. The system can reconstruct accurate 3D full-body poses at 16 frames per second using only eight markers on the subject's body. The performance of the motion capture system is evaluated extensively in experiments. PMID:24658618
Accuracy assessment of fluoroscopy-transesophageal echocardiography registration
NASA Astrophysics Data System (ADS)
Lang, Pencilla; Seslija, Petar; Bainbridge, Daniel; Guiraudon, Gerard M.; Jones, Doug L.; Chu, Michael W.; Holdsworth, David W.; Peters, Terry M.
2011-03-01
This study assesses the accuracy of a new transesophageal (TEE) ultrasound (US) fluoroscopy registration technique designed to guide percutaneous aortic valve replacement. In this minimally invasive procedure, a valve is inserted into the aortic annulus via a catheter. Navigation and positioning of the valve is guided primarily by intra-operative fluoroscopy. Poor anatomical visualization of the aortic root region can result in incorrect positioning, leading to heart valve embolization, obstruction of the coronary ostia and acute kidney injury. The use of TEE US images to augment intra-operative fluoroscopy provides significant improvements to image-guidance. Registration is achieved using an image-based TEE probe tracking technique and US calibration. TEE probe tracking is accomplished using a single-perspective pose estimation algorithm. Pose estimation from a single image allows registration to be achieved using only images collected in standard OR workflow. Accuracy of this registration technique is assessed using three models: a point target phantom, a cadaveric porcine heart with implanted fiducials, and in-vivo porcine images. Results demonstrate that registration can be achieved with an RMS error of less than 1.5mm, which is within the clinical accuracy requirements of 5mm. US-fluoroscopy registration based on single-perspective pose estimation demonstrates promise as a method for providing guidance to percutaneous aortic valve replacement procedures. Future work will focus on real-time implementation and a visualization system that can be used in the operating room.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoegele, W.; Loeschel, R.; Dobler, B.
2011-02-15
Purpose: In this work, a novel stochastic framework for patient positioning based on linac-mounted CB projections is introduced. Based on this formulation, the most probable shifts and rotations of the patient are estimated, incorporating interfractional deformations of patient anatomy and other uncertainties associated with patient setup. Methods: The target position is assumed to be defined by and is stochastically determined from positions of various features such as anatomical landmarks or markers in CB projections, i.e., radiographs acquired with a CB-CT system. The patient positioning problem of finding the target location from CB projections is posed as an inverse problem withmore » prior knowledge and is solved using a Bayesian maximum a posteriori (MAP) approach. The prior knowledge is three-fold and includes the accuracy of an initial patient setup (such as in-room laser and skin marks), the plasticity of the body (relative shifts between target and features), and the feature detection error in CB projections (which may vary depending on specific detection algorithm and feature type). For this purpose, MAP estimators are derived and a procedure of using them in clinical practice is outlined. Furthermore, a rule of thumb is theoretically derived, relating basic parameters of the prior knowledge (initial setup accuracy, plasticity of the body, and number of features) and the parameters of CB data acquisition (number of projections and accuracy of feature detection) to the expected estimation accuracy. Results: MAP estimation can be applied to arbitrary features and detection algorithms. However, to experimentally demonstrate its applicability and to perform the validation of the algorithm, a water-equivalent, deformable phantom with features represented by six 1 mm chrome balls were utilized. These features were detected in the cone beam projections (XVI, Elekta Synergy) by a local threshold method for demonstration purposes only. The accuracy of estimation (strongly varying for different plasticity parameters of the body) agreed with the rule of thumb formula. Moreover, based on this rule of thumb formula, about 20 projections for 6 detectable features seem to be sufficient for a target estimation accuracy of 0.2 cm, even for relatively large feature detection errors with standard deviation of 0.5 cm and spatial displacements of the features with standard deviation of 0.5 cm. Conclusions: The authors have introduced a general MAP-based patient setup algorithm accounting for different sources of uncertainties, which are utilized as the prior knowledge in a transparent way. This new framework can be further utilized for different clinical sites, as well as theoretical developments in the field of patient positioning for radiotherapy.« less
Scapular kinematics during manual wheelchair propulsion in able-bodied participants.
Bekker, Michel J; Vegter, Riemer J K; van der Scheer, Jan W; Hartog, Johanneke; de Groot, Sonja; de Vries, Wiebe; Arnet, Ursina; van der Woude, Lucas H V; Veeger, Dirkjan H E J
2018-05-01
Altered scapular kinematics have been associated with shoulder pain and functional limitations. To understand kinematics in persons with spinal cord injury during manual handrim wheelchair propulsion, a description of normal scapular behaviour in able-bodied persons during this specific task is a prerequisite for accurate interpretation. The primary aim of this study is to describe scapular kinematics in able-bodied persons during manual wheelchair propulsion. Sixteen able-bodied, novice wheelchair users without shoulder complaints participated in the study. Kinematic and kinetic data were collected during a standardized pose in the anatomic posture, frontal-plane arm elevation and low-intensity steady-state handrim wheelchair propulsion and upper-body Euler angles were calculated. Scapulothoracic joint orientations in a static position were 36.7° (SD 5.4°), 6.4° (SD 9.1°) and 9.1° (SD 5.7°) for respectively protraction, lateral rotation and anterior tilt. At 80° of arm elevation in the frontal plane, the respective values of 33.4° (SD 8.0°), 23.9° (SD 5.4°) and 4.1° (SD 11.3°) were found. During the push phase of manual wheelchair propulsion, the mean scapular rotations were respectively 32.7° (SD 7.1°), 7.1° (SD 9.2°) and 9.8° (SD 8.3°). The orientation of the scapula in a static pose, during arm elevation and in manual wheelchair propulsion in able-bodied participants showed similar patterns to a previous study in persons with para- and tetraplegia. These values provide a reference for the investigation of the scapular movement pattern in wheelchair-dependent persons and its relation to shoulder complex abnormalities. Copyright © 2018. Published by Elsevier Ltd.
Multi-Cone Model for Estimating GPS Ionospheric Delays
NASA Technical Reports Server (NTRS)
Sparks, Lawrence; Komjathy, Attila; Mannucci, Anthony
2009-01-01
The multi-cone model is a computational model for estimating ionospheric delays of Global Positioning System (GPS) signals. It is a direct descendant of the conical-domain model. A primary motivation for the development of this model is the need to find alternatives for modeling slant delays at low latitudes, where ionospheric behavior poses an acute challenge for GPS signal-delay estimates based upon the thin-shell model of the ionosphere.
Pose determination of a blade implant in three dimensions from a single two-dimensional radiograph.
Toti, Paolo; Barone, Antonio; Marconcini, Simone; Menchini-Fabris, Giovanni Battista; Martuscelli, Ranieri; Covani, Ugo
2018-05-01
The aim of the study was to introduce a mathematical method to estimate the correct pose of a blade by evaluating the radiographic features obtained from a single two-dimensional image. Blade-form implant bed preparation was performed using the piezosurgery device, and placement was attained with the use of magnetic mallet. The pose determination of the blade was described by means of three consecutive rotations defined by three angles of orientation (triplet φ, θ and ψ). Retrospective analysis on periapical radiographs was performed. This method was used to compare implant (axial length along the marker, i.e. the implant structure) vs angular correction factor (a trigonometric function of the triplet). The accuracy of the method was tested by generating two-dimensional radiographic simulations of the blades, which were then compared with the images of the implants as appearing on the real radiographs. Two patients had to be excluded from further evaluation because the values of the estimated pose angles showed a too-wide range to be effective for a good standardization of serial radiographs: intrapatient range from baseline to 1-year survey was > of a threshold determined by the clinicians (30°). The linear dependence between implant (CF°) and angular correction factor (CF^) was estimated by a robust linear regression, yielding the following coefficients: slope, 0.908; intercept, -0.092; and coefficient of determination, 0.924. The absolute error in accuracy was -0.29 ± 4.35, 0.23 ± 3.81 and 0.64 ± 1.18°, respectively, for the angles φ, θ and ψ. The present theoretical and experimental study established the possibility of determining, a posteriori, a unique triplet of angles (φ, θ and ψ) which described the pose of a blade upon a single two-dimensional radiograph, and of suggesting a method to detect cases in which the standardized geometric projection failed. The angular correction of the bone level yielded results very close to those obtained with an internal marker related to the implant length.
Taking the Missing Propensity Into Account When Estimating Competence Scores
Pohl, Steffi; Carstensen, Claus H.
2014-01-01
When competence tests are administered, subjects frequently omit items. These missing responses pose a threat to correctly estimating the proficiency level. Newer model-based approaches aim to take nonignorable missing data processes into account by incorporating a latent missing propensity into the measurement model. Two assumptions are typically made when using these models: (1) The missing propensity is unidimensional and (2) the missing propensity and the ability are bivariate normally distributed. These assumptions may, however, be violated in real data sets and could, thus, pose a threat to the validity of this approach. The present study focuses on modeling competencies in various domains, using data from a school sample (N = 15,396) and an adult sample (N = 7,256) from the National Educational Panel Study. Our interest was to investigate whether violations of unidimensionality and the normal distribution assumption severely affect the performance of the model-based approach in terms of differences in ability estimates. We propose a model with a competence dimension, a unidimensional missing propensity and a distributional assumption more flexible than a multivariate normal. Using this model for ability estimation results in different ability estimates compared with a model ignoring missing responses. Implications for ability estimation in large-scale assessments are discussed. PMID:29795844
Potiaumpai, Melanie; Martins, Maria Carolina Massoni; Wong, Claudia; Desai, Trusha; Rodriguez, Roberto; Mooney, Kiersten; Signorile, Joseph F
2017-02-01
To compare the difference in muscle activation between high-speed yoga and standard-speed yoga and to compare muscle activation of the transitions between poses and the held phases of a yoga pose. Randomized sequence crossover trial SETTING: A laboratory of neuromuscular research and active aging Interventions: Eight minutes of continuous Sun Salutation B was performed, at a high speed versus a standard-speed, separately. Electromyography was used to quantify normalized muscle activation patterns of eight upper and lower body muscles (pectoralis major, medial deltoids, lateral head of the triceps, middle fibers of the trapezius, vastus medialis, medial gastrocnemius, thoracic extensor spinae, and external obliques) during the high-speed and standard-speed yoga protocols. Difference in normalized muscle activation between high-speed yoga and standard-speed yoga. Normalized muscle activity signals were significantly higher in all eight muscles during the transition phases of poses compared to the held phases (p<0.01). There was no significant interaction between speed×phase; however, greater normalized muscle activity was seen for highspeed yoga across the entire session. Our results show that transitions from one held phase of a pose to another produces higher normalized muscle activity than the held phases of the poses and that overall activity is greater during highspeed yoga than standard-speed yoga. Therefore, the transition speed and associated number of poses should be considered when targeting specific improvements in performance. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Evgenievna Terentieva, Irina; Vladimirovich Glagolev, Mikhail; Dmitrievna Lapshina, Elena; Faritovich Sabrekov, Alexandr; Maksyutov, Shamil
2016-08-01
High-latitude wetlands are important for understanding climate change risks because these environments sink carbon dioxide and emit methane. However, fine-scale heterogeneity of wetland landscapes poses a serious challenge when generating regional-scale estimates of greenhouse gas fluxes from point observations. In order to reduce uncertainties at the regional scale, we mapped wetlands and water bodies in the taiga zone of The West Siberia Lowland (WSL) on a scene-by-scene basis using a supervised classification of Landsat imagery. Training data consist of high-resolution images and extensive field data collected at 28 test areas. The classification scheme aims at supporting methane inventory applications and includes seven wetland ecosystem types comprising nine wetland complexes distinguishable at the Landsat resolution. To merge typologies, mean relative areas of wetland ecosystems within each wetland complex type were estimated using high-resolution images. Accuracy assessment based on 1082 validation polygons of 10 × 10 pixel size indicated an overall map accuracy of 79 %. The total area of the WSL wetlands and water bodies was estimated to be 52.4 Mha or 4-12 % of the global wetland area. Ridge-hollow complexes prevail in WSL's taiga zone accounting for 33 % of the total wetland area, followed by pine bogs or "ryams" (23 %), ridge-hollow-lake complexes (16 %), open fens (8 %), palsa complexes (7 %), open bogs (5 %), patterned fens (4 %), and swamps (4 %). Various oligotrophic environments are dominant among wetland ecosystems, while poor fens cover only 14 % of the area. Because of the significant change in the wetland ecosystem coverage in comparison to previous studies, a considerable reevaluation of the total CH4 emissions from the entire region is expected. A new Landsat-based map of WSL's taiga wetlands provides a benchmark for validation of coarse-resolution global land cover products and wetland data sets in high latitudes.
Kasabova, Boryana E; Holliday, Trenton W
2015-04-01
A new model for estimating human body surface area and body volume/mass from standard skeletal metrics is presented. This model is then tested against both 1) "independently estimated" body surface areas and "independently estimated" body volume/mass (both derived from anthropometric data) and 2) the cylindrical model of Ruff. The model is found to be more accurate in estimating both body surface area and body volume/mass than the cylindrical model, but it is more accurate in estimating body surface area than it is for estimating body volume/mass (as reflected by the standard error of the estimate when "independently estimated" surface area or volume/mass is regressed on estimates derived from the present model). Two practical applications of the model are tested. In the first test, the relative contribution of the limbs versus the trunk to the body's volume and surface area is compared between "heat-adapted" and "cold-adapted" populations. As expected, the "cold-adapted" group has significantly more of its body surface area and volume in its trunk than does the "heat-adapted" group. In the second test, we evaluate the effect of variation in bi-iliac breadth, elongated or foreshortened limbs, and differences in crural index on the body's surface area to volume ratio (SA:V). Results indicate that the effects of bi-iliac breadth on SA:V are substantial, while those of limb lengths and (especially) the crural index are minor, which suggests that factors other than surface area relative to volume are driving morphological variation and ecogeographical patterning in limb prorportions. © 2014 Wiley Periodicals, Inc.
Dense-HOG-based drift-reduced 3D face tracking for infant pain monitoring
NASA Astrophysics Data System (ADS)
Saeijs, Ronald W. J. J.; Tjon A Ten, Walther E.; de With, Peter H. N.
2017-03-01
This paper presents a new algorithm for 3D face tracking intended for clinical infant pain monitoring. The algorithm uses a cylinder head model and 3D head pose recovery by alignment of dynamically extracted templates based on dense-HOG features. The algorithm includes extensions for drift reduction, using re-registration in combination with multi-pose state estimation by means of a square-root unscented Kalman filter. The paper reports experimental results on videos of moving infants in hospital who are relaxed or in pain. Results show good tracking behavior for poses up to 50 degrees from upright-frontal. In terms of eye location error relative to inter-ocular distance, the mean tracking error is below 9%.
History matching by spline approximation and regularization in single-phase areal reservoirs
NASA Technical Reports Server (NTRS)
Lee, T. Y.; Kravaris, C.; Seinfeld, J.
1986-01-01
An automatic history matching algorithm is developed based on bi-cubic spline approximations of permeability and porosity distributions and on the theory of regularization to estimate permeability or porosity in a single-phase, two-dimensional real reservoir from well pressure data. The regularization feature of the algorithm is used to convert the ill-posed history matching problem into a well-posed problem. The algorithm employs the conjugate gradient method as its core minimization method. A number of numerical experiments are carried out to evaluate the performance of the algorithm. Comparisons with conventional (non-regularized) automatic history matching algorithms indicate the superiority of the new algorithm with respect to the parameter estimates obtained. A quasioptimal regularization parameter is determined without requiring a priori information on the statistical properties of the observations.
1983-08-04
IS CURRERTLY OFF; TRANSMITSTHE COM TO TURHE AN N; WAITS FO Procedures are valuable because they provide hCGMDTOTR PROPTION AN POCSSI OELAS...legal and Other Celestial Bodies ,!/ was a regime which has been created by brilliant accomplishment of the world international treaties. These legal...difficulty posed by some controversial provisions in the Agreement Governing the Activities of States on the Moon and Other Celestial Bodies and the
USDA-ARS?s Scientific Manuscript database
Foodborne parasites pose a risk to human health in virtually all regions of the world. In addition to the direct effect that these parasites have on human health, zoonotic parasites found in food animals often serve as trade barriers for countries where these parasites occur. A considerable body o...
The challenges Concentrated Animal Feeding Operations (CAFOs) directly pose to sustainability include their impact on human health, receiving water bodies, groundwater, and air quality. These challenges result from the large quantities of macronutrients (carbon, nitrogen, and pho...
UTILIZATION OF LANDSCAPE INDICATORS TO MODEL WATERSHED IMPAIRMENT
Many water-bodies within the United States are contaminated by non-point source (NPS) pollution, which is defined as those materials posing a threat to water quality arising from a number of individual sources and diffused through hydrologic 13romses. One such NPS
pol...
Mosberger, Rafael; Andreasson, Henrik; Lilienthal, Achim J
2014-09-26
This article presents a novel approach for vision-based detection and tracking of humans wearing high-visibility clothing with retro-reflective markers. Addressing industrial applications where heavy vehicles operate in the vicinity of humans, we deploy a customized stereo camera setup with active illumination that allows for efficient detection of the reflective patterns created by the worker's safety garments. After segmenting reflective objects from the image background, the interest regions are described with local image feature descriptors and classified in order to discriminate safety garments from other reflective objects in the scene. In a final step, the trajectories of the detected humans are estimated in 3D space relative to the camera. We evaluate our tracking system in two industrial real-world work environments on several challenging video sequences. The experimental results indicate accurate tracking performance and good robustness towards partial occlusions, body pose variation, and a wide range of different illumination conditions.
Mosberger, Rafael; Andreasson, Henrik; Lilienthal, Achim J.
2014-01-01
This article presents a novel approach for vision-based detection and tracking of humans wearing high-visibility clothing with retro-reflective markers. Addressing industrial applications where heavy vehicles operate in the vicinity of humans, we deploy a customized stereo camera setup with active illumination that allows for efficient detection of the reflective patterns created by the worker's safety garments. After segmenting reflective objects from the image background, the interest regions are described with local image feature descriptors and classified in order to discriminate safety garments from other reflective objects in the scene. In a final step, the trajectories of the detected humans are estimated in 3D space relative to the camera. We evaluate our tracking system in two industrial real-world work environments on several challenging video sequences. The experimental results indicate accurate tracking performance and good robustness towards partial occlusions, body pose variation, and a wide range of different illumination conditions. PMID:25264956
Pediatric Firework-Related Injuries Presenting to United States Emergency Departments, 1990-2014.
Billock, Rachael M; Chounthirath, Thiphalak; Smith, Gary A
2017-06-01
This study characterizes the epidemiology of nonfatal pediatric firework-related injuries in the United States among children and adolescents by analyzing data from the National Electronic Injury Surveillance System from 1990 through 2014. During this 25-year period, an estimated 136 991 (95% CI = 113 574-160 408) children <20 years old were treated in US emergency departments for firework-related injuries. The annual injury rate decreased significantly by 30.4% during this period. Most of those injured were male (75.7%), mean patient age was 10.6 years, and 7.6% required hospital admission. The hands (30.0%) were the most commonly injured body region, followed by head and neck (22.2%), and eyes (21.5%). Sixty percent of injuries were burns. Injuries were most commonly associated with firecrackers (26.2%), aerial devices (16.3%), and sparklers (14.3%). Consumer fireworks pose a serious injury risk to pediatric users and bystanders, and families should be encouraged to attend public firework displays rather than use consumer fireworks.
NASA Technical Reports Server (NTRS)
Ansar, Adnan; Cheng, Yang
2005-01-01
A pinpoint landing capability will be a critical component for many planned NASA missions to Mars and beyond. Implicit in the requirement is the ability to accurately localize the spacecraft with respect to the terrain during descent. In this paper, we present evidence that a vision-based solution using craters as landmarks is both practical and will meet the requirements of next generation missions. Our emphasis in this paper is on the feasibility of such a system in terms of (a) localization accuracy and (b) applicability to Martian terrain. We show that accuracy of well under 100 meters can be expected under suitable conditions. We also present a sensitivity analysis that makes an explicit connection between input data and robustness of our pose estimate. In addition, we present an analysis of the susceptibility of our technique to inherently ambiguous configurations of craters. We show that probability of failure due to such ambiguity is becoming increasingly small.
Peterson, James T.; Scheerer, Paul D.; Clements, Shaun
2015-01-01
Desert springs are sensitive aquatic ecosystems that pose unique challenges to natural resource managers and researchers. Among the most important of these is the need to accurately quantify population parameters for resident fish, particularly when the species are of special conservation concern. We evaluated the efficiency of baited minnow traps for estimating the abundance of two at-risk species, Foskett Speckled Dace Rhinichthys osculus ssp. and Borax Lake Chub Gila boraxobius, in desert spring systems in southeastern Oregon. We evaluated alternative sample designs using simulation and found that capture–recapture designs with four capture occasions would maximize the accuracy of estimates and minimize fish handling. We implemented the design and estimated capture and recapture probabilities using the Huggins closed-capture estimator. Trap capture probabilities averaged 23% and 26% for Foskett Speckled Dace and Borax Lake Chub, respectively, but differed substantially among sample locations, through time, and nonlinearly with fish body size. Recapture probabilities for Foskett Speckled Dace were, on average, 1.6 times greater than (first) capture probabilities, suggesting “trap-happy” behavior. Comparison of population estimates from the Huggins model with the commonly used Lincoln–Petersen estimator indicated that the latter underestimated Foskett Speckled Dace and Borax Lake Chub population size by 48% and by 20%, respectively. These biases were due to variability in capture and recapture probabilities. Simulation of fish monitoring that included the range of capture and recapture probabilities observed indicated that variability in capture and recapture probabilities in time negatively affected the ability to detect annual decreases by up to 20% in fish population size. Failure to account for variability in capture and recapture probabilities can lead to poor quality data and study inferences. Therefore, we recommend that fishery researchers and managers employ sample designs and estimators that can account for this variability.
Robot Acting on Moving Bodies (RAMBO): Interaction with tumbling objects
NASA Technical Reports Server (NTRS)
Davis, Larry S.; Dementhon, Daniel; Bestul, Thor; Ziavras, Sotirios; Srinivasan, H. V.; Siddalingaiah, Madhu; Harwood, David
1989-01-01
Interaction with tumbling objects will become more common as human activities in space expand. Attempting to interact with a large complex object translating and rotating in space, a human operator using only his visual and mental capacities may not be able to estimate the object motion, plan actions or control those actions. A robot system (RAMBO) equipped with a camera, which, given a sequence of simple tasks, can perform these tasks on a tumbling object, is being developed. RAMBO is given a complete geometric model of the object. A low level vision module extracts and groups characteristic features in images of the object. The positions of the object are determined in a sequence of images, and a motion estimate of the object is obtained. This motion estimate is used to plan trajectories of the robot tool to relative locations rearby the object sufficient for achieving the tasks. More specifically, low level vision uses parallel algorithms for image enhancement by symmetric nearest neighbor filtering, edge detection by local gradient operators, and corner extraction by sector filtering. The object pose estimation is a Hough transform method accumulating position hypotheses obtained by matching triples of image features (corners) to triples of model features. To maximize computing speed, the estimate of the position in space of a triple of features is obtained by decomposing its perspective view into a product of rotations and a scaled orthographic projection. This allows use of 2-D lookup tables at each stage of the decomposition. The position hypotheses for each possible match of model feature triples and image feature triples are calculated in parallel. Trajectory planning combines heuristic and dynamic programming techniques. Then trajectories are created using dynamic interpolations between initial and goal trajectories. All the parallel algorithms run on a Connection Machine CM-2 with 16K processors.
ERIC Educational Resources Information Center
Köhler, Carmen; Pohl, Steffi; Carstensen, Claus H.
2015-01-01
When competence tests are administered, subjects frequently omit items. These missing responses pose a threat to correctly estimating the proficiency level. Newer model-based approaches aim to take nonignorable missing data processes into account by incorporating a latent missing propensity into the measurement model. Two assumptions are typically…
Machine Vision for Relative Spacecraft Navigation During Approach to Docking
NASA Technical Reports Server (NTRS)
Chien, Chiun-Hong; Baker, Kenneth
2011-01-01
This paper describes a machine vision system for relative spacecraft navigation during the terminal phase of approach to docking that: 1) matches high contrast image features of the target vehicle, as seen by a camera that is bore-sighted to the docking adapter on the chase vehicle, to the corresponding features in a 3d model of the docking adapter on the target vehicle and 2) is robust to on-orbit lighting. An implementation is provided for the case of the Space Shuttle Orbiter docking to the International Space Station (ISS) with quantitative test results using a full scale, medium fidelity mock-up of the ISS docking adapter mounted on a 6-DOF motion platform at the NASA Marshall Spaceflight Center Flight Robotics Laboratory and qualitative test results using recorded video from the Orbiter Docking System Camera (ODSC) during multiple orbiter to ISS docking missions. The Natural Feature Image Registration (NFIR) system consists of two modules: 1) Tracking which tracks the target object from image to image and estimates the position and orientation (pose) of the docking camera relative to the target object and 2) Acquisition which recognizes the target object if it is in the docking camera Field-of-View and provides an approximate pose that is used to initialize tracking. Detected image edges are matched to the 3d model edges whose predicted location, based on the pose estimate and its first time derivative from the previous frame, is closest to the detected edge1 . Mismatches are eliminated using a rigid motion constraint. The remaining 2d image to 3d model matches are used to make a least squares estimate of the change in relative pose from the previous image to the current image. The changes in position and in attitude are used as data for two Kalman filters whose outputs are smoothed estimate of position and velocity plus attitude and attitude rate that are then used to predict the location of the 3d model features in the next image.
Al-Hamdani, Yasmine S; Rossi, Mariana; Alfè, Dario; Tsatsoulis, Theodoros; Ramberger, Benjamin; Brandenburg, Jan Gerit; Zen, Andrea; Kresse, Georg; Grüneis, Andreas; Tkatchenko, Alexandre; Michaelides, Angelos
2017-07-28
Molecular adsorption on surfaces plays an important part in catalysis, corrosion, desalination, and various other processes that are relevant to industry and in nature. As a complement to experiments, accurate adsorption energies can be obtained using various sophisticated electronic structure methods that can now be applied to periodic systems. The adsorption energy of water on boron nitride substrates, going from zero to 2-dimensional periodicity, is particularly interesting as it calls for an accurate treatment of polarizable electrostatics and dispersion interactions, as well as posing a practical challenge to experiments and electronic structure methods. Here, we present reference adsorption energies, static polarizabilities, and dynamic polarizabilities, for water on BN substrates of varying size and dimension. Adsorption energies are computed with coupled cluster theory, fixed-node quantum Monte Carlo (FNQMC), the random phase approximation, and second order Møller-Plesset theory. These wavefunction based correlated methods are found to agree in molecular as well as periodic systems. The best estimate of the water/h-BN adsorption energy is -107±7 meV from FNQMC. In addition, the water adsorption energy on the BN substrates could be expected to grow monotonically with the size of the substrate due to increased dispersion interactions, but interestingly, this is not the case here. This peculiar finding is explained using the static polarizabilities and molecular dispersion coefficients of the systems, as computed from time-dependent density functional theory (DFT). Dynamic as well as static polarizabilities are found to be highly anisotropic in these systems. In addition, the many-body dispersion method in DFT emerges as a particularly useful estimation of finite size effects for other expensive, many-body wavefunction based methods.
Constraining the Bulk Density of 10m-Class Near-Earth Asteroid 2012 LA
NASA Astrophysics Data System (ADS)
Mommert, Michael; Hora, Joseph; Farnocchia, Davide; Trilling, David; Chesley, Steve; Harris, Alan; Mueller, Migo; Smith, Howard
2016-08-01
The physical properties of near-Earth asteroids (NEAs) provide important hints on their origin, as well as their past physical and orbital evolution. Recent observations seem to indicate that small asteroids are different than expected: instead of being monolithic bodies, some of them instead resemble loose conglomerates of smaller rocks, so called 'rubble piles'. This is surprising, since self-gravitation is practically absent in these bodies. Hence, bulk density measurements of small asteroids, from which their internal structure can be estimated, provide unique constraints on asteroid physical models, as well as models for asteroid evolution. We propose Spitzer Space Telescope observations of 10 m-sized NEA 2012 LA, which will allow us to constrain the diameter, albedo, bulk density, macroporosity, and mass of this object. We require 30 hrs of Spitzer time to detect our target with a minimum SNR of 3 in CH2. In order to interpret our observational results, we will use the same analysis technique that we used in our successful observations and analyses of tiny asteroids 2011 MD and 2009 BD. Our science goal, which is the derivation of the target's bulk density and its internal structure, can only be met with Spitzer. Our observations will produce only the third comprehensive physical characterization of an asteroid in the 10m size range (all of which have been carried out by our team, using Spitzer). Knowledge of the physical properties of small NEAs, some of which pose an impact threat to the Earth, is of importance for understanding their evolution and estimating the potential of destruction in case of an impact, as well as for potential manned missions to NEAs for either research or potential commercial uses.
Understanding how pesticide exposure to non-target species influences toxicity is necessary to accurately assess the ecological risks these compounds pose. To assess the potential metabolic activation of broad use pesticides in amphibians, in vitro and in vivo metabolic rate cons...
1993-05-05
Ann Hutchinson (as subject), Dr. Joan Vernikos (R), Dee O'Hara (L), J. Evans and E. Lowe pose for pictures in the NASA Magazine aritcle 'How it Feels to be a Human Test Subject' as they prepare for a bed rest study to simulate the efects of microgravity on the human body.
Triaging Chemical Exposure Data Needs and Tools for Advancing Next-Generation Risk Assessment
The timely assessment of the risks posed to public health by tens of thousands of existing and emerging commercial chemicals is a critical challenge facing the U.S. Environmental Protection Agency and regulatory bodies worldwide. The pace of conducting risk assessments is limited...
COMPARISON OF OZONE INDICATORS MONITORED AT CASTNET AND RURALLY - DESIGNATED SLAMS SITES
Many water-bodies within the United States are contaminated by non-point source (NPS) pollution, which is defined as those materials posing a threat to water quality arising from a number of individual sources and diffused through hydrologic 13romses. One such NPS pollutant is fe...
Elizabeth, Ashbaugh
2013-08-01
Intranasal tumors of dogs and cats pose a diagnostic and therapeutic challenge for the small animal practitioner. A simplified flushing technique to biopsy and debulk nasal tumors, that often results in immediate clinical relief for the patient is described. This technique can also be utilized to remove nasal foreign bodies. © 2013 Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Yonan, Jesay; Bardick, Angela D.; Willment, Jo-Anne H.
2011-01-01
Cellular telephones and social networking sites pose new challenges to the maintenance of therapeutic boundaries. One such difficulty is the possible development of dual relationships between clients and counselling professionals as a result of communicating by these means. Most regulatory bodies advise professional counsellors and psychologists…
A Probabilistic Feature Map-Based Localization System Using a Monocular Camera.
Kim, Hyungjin; Lee, Donghwa; Oh, Taekjun; Choi, Hyun-Taek; Myung, Hyun
2015-08-31
Image-based localization is one of the most widely researched localization techniques in the robotics and computer vision communities. As enormous image data sets are provided through the Internet, many studies on estimating a location with a pre-built image-based 3D map have been conducted. Most research groups use numerous image data sets that contain sufficient features. In contrast, this paper focuses on image-based localization in the case of insufficient images and features. A more accurate localization method is proposed based on a probabilistic map using 3D-to-2D matching correspondences between a map and a query image. The probabilistic feature map is generated in advance by probabilistic modeling of the sensor system as well as the uncertainties of camera poses. Using the conventional PnP algorithm, an initial camera pose is estimated on the probabilistic feature map. The proposed algorithm is optimized from the initial pose by minimizing Mahalanobis distance errors between features from the query image and the map to improve accuracy. To verify that the localization accuracy is improved, the proposed algorithm is compared with the conventional algorithm in a simulation and realenvironments.
A Probabilistic Feature Map-Based Localization System Using a Monocular Camera
Kim, Hyungjin; Lee, Donghwa; Oh, Taekjun; Choi, Hyun-Taek; Myung, Hyun
2015-01-01
Image-based localization is one of the most widely researched localization techniques in the robotics and computer vision communities. As enormous image data sets are provided through the Internet, many studies on estimating a location with a pre-built image-based 3D map have been conducted. Most research groups use numerous image data sets that contain sufficient features. In contrast, this paper focuses on image-based localization in the case of insufficient images and features. A more accurate localization method is proposed based on a probabilistic map using 3D-to-2D matching correspondences between a map and a query image. The probabilistic feature map is generated in advance by probabilistic modeling of the sensor system as well as the uncertainties of camera poses. Using the conventional PnP algorithm, an initial camera pose is estimated on the probabilistic feature map. The proposed algorithm is optimized from the initial pose by minimizing Mahalanobis distance errors between features from the query image and the map to improve accuracy. To verify that the localization accuracy is improved, the proposed algorithm is compared with the conventional algorithm in a simulation and realenvironments. PMID:26404284
Prostate Brachytherapy Seed Reconstruction with Gaussian Blurring and Optimal Coverage Cost
Lee, Junghoon; Liu, Xiaofeng; Jain, Ameet K.; Song, Danny Y.; Burdette, E. Clif; Prince, Jerry L.; Fichtinger, Gabor
2009-01-01
Intraoperative dosimetry in prostate brachytherapy requires localization of the implanted radioactive seeds. A tomosynthesis-based seed reconstruction method is proposed. A three-dimensional volume is reconstructed from Gaussian-blurred projection images and candidate seed locations are computed from the reconstructed volume. A false positive seed removal process, formulated as an optimal coverage problem, iteratively removes “ghost” seeds that are created by tomosynthesis reconstruction. In an effort to minimize pose errors that are common in conventional C-arms, initial pose parameter estimates are iteratively corrected by using the detected candidate seeds as fiducials, which automatically “focuses” the collected images and improves successive reconstructed volumes. Simulation results imply that the implanted seed locations can be estimated with a detection rate of ≥ 97.9% and ≥ 99.3% from three and four images, respectively, when the C-arm is calibrated and the pose of the C-arm is known. The algorithm was also validated on phantom data sets successfully localizing the implanted seeds from four or five images. In a Phase-1 clinical trial, we were able to localize the implanted seeds from five intraoperative fluoroscopy images with 98.8% (STD=1.6) overall detection rate. PMID:19605321
Camera-pose estimation via projective Newton optimization on the manifold.
Sarkis, Michel; Diepold, Klaus
2012-04-01
Determining the pose of a moving camera is an important task in computer vision. In this paper, we derive a projective Newton algorithm on the manifold to refine the pose estimate of a camera. The main idea is to benefit from the fact that the 3-D rigid motion is described by the special Euclidean group, which is a Riemannian manifold. The latter is equipped with a tangent space defined by the corresponding Lie algebra. This enables us to compute the optimization direction, i.e., the gradient and the Hessian, at each iteration of the projective Newton scheme on the tangent space of the manifold. Then, the motion is updated by projecting back the variables on the manifold itself. We also derive another version of the algorithm that employs homeomorphic parameterization to the special Euclidean group. We test the algorithm on several simulated and real image data sets. Compared with the standard Newton minimization scheme, we are now able to obtain the full numerical formula of the Hessian with a 60% decrease in computational complexity. Compared with Levenberg-Marquardt, the results obtained are more accurate while having a rather similar complexity.
Skeletal Correlates for Body Mass Estimation in Modern and Fossil Flying Birds
Field, Daniel J.; Lynner, Colton; Brown, Christian; Darroch, Simon A. F.
2013-01-01
Scaling relationships between skeletal dimensions and body mass in extant birds are often used to estimate body mass in fossil crown-group birds, as well as in stem-group avialans. However, useful statistical measurements for constraining the precision and accuracy of fossil mass estimates are rarely provided, which prevents the quantification of robust upper and lower bound body mass estimates for fossils. Here, we generate thirteen body mass correlations and associated measures of statistical robustness using a sample of 863 extant flying birds. By providing robust body mass regressions with upper- and lower-bound prediction intervals for individual skeletal elements, we address the longstanding problem of body mass estimation for highly fragmentary fossil birds. We demonstrate that the most precise proxy for estimating body mass in the overall dataset, measured both as coefficient determination of ordinary least squares regression and percent prediction error, is the maximum diameter of the coracoid’s humeral articulation facet (the glenoid). We further demonstrate that this result is consistent among the majority of investigated avian orders (10 out of 18). As a result, we suggest that, in the majority of cases, this proxy may provide the most accurate estimates of body mass for volant fossil birds. Additionally, by presenting statistical measurements of body mass prediction error for thirteen different body mass regressions, this study provides a much-needed quantitative framework for the accurate estimation of body mass and associated ecological correlates in fossil birds. The application of these regressions will enhance the precision and robustness of many mass-based inferences in future paleornithological studies. PMID:24312392
Estimation of Circadian Body Temperature Rhythm Based on Heart Rate in Healthy, Ambulatory Subjects.
Sim, Soo Young; Joo, Kwang Min; Kim, Han Byul; Jang, Seungjin; Kim, Beomoh; Hong, Seungbum; Kim, Sungwan; Park, Kwang Suk
2017-03-01
Core body temperature is a reliable marker for circadian rhythm. As characteristics of the circadian body temperature rhythm change during diverse health problems, such as sleep disorder and depression, body temperature monitoring is often used in clinical diagnosis and treatment. However, the use of current thermometers in circadian rhythm monitoring is impractical in daily life. As heart rate is a physiological signal relevant to thermoregulation, we investigated the feasibility of heart rate monitoring in estimating circadian body temperature rhythm. Various heart rate parameters and core body temperature were simultaneously acquired in 21 healthy, ambulatory subjects during their routine life. The performance of regression analysis and the extended Kalman filter on daily body temperature and circadian indicator (mesor, amplitude, and acrophase) estimation were evaluated. For daily body temperature estimation, mean R-R interval (RRI), mean heart rate (MHR), or normalized MHR provided a mean root mean square error of approximately 0.40 °C in both techniques. The mesor estimation regression analysis showed better performance than the extended Kalman filter. However, the extended Kalman filter, combined with RRI or MHR, provided better accuracy in terms of amplitude and acrophase estimation. We suggest that this noninvasive and convenient method for estimating the circadian body temperature rhythm could reduce discomfort during body temperature monitoring in daily life. This, in turn, could facilitate more clinical studies based on circadian body temperature rhythm.
NASA Astrophysics Data System (ADS)
Yamazaki, Takaharu; Futai, Kazuma; Tomita, Tetsuya; Sato, Yoshinobu; Yoshikawa, Hideki; Tamura, Shinichi; Sugamoto, Kazuomi
2011-03-01
To achieve 3D kinematic analysis of total knee arthroplasty (TKA), 2D/3D registration techniques, which use X-ray fluoroscopic images and computer-aided design (CAD) model of the knee implant, have attracted attention in recent years. These techniques could provide information regarding the movement of radiopaque femoral and tibial components but could not provide information of radiolucent polyethylene insert, because the insert silhouette on X-ray image did not appear clearly. Therefore, it was difficult to obtain 3D kinemaitcs of polyethylene insert, particularly mobile-bearing insert that move on the tibial component. This study presents a technique and the accuracy for 3D kinematic analysis of mobile-bearing insert in TKA using X-ray fluoroscopy, and finally performs clinical applications. For a 3D pose estimation technique of the mobile-bearing insert in TKA using X-ray fluoroscopy, tantalum beads and CAD model with its beads are utilized, and the 3D pose of the insert model is estimated using a feature-based 2D/3D registration technique. In order to validate the accuracy of the present technique, experiments including computer simulation test were performed. The results showed the pose estimation accuracy was sufficient for analyzing mobile-bearing TKA kinematics (the RMS error: about 1.0 mm, 1.0 degree). In the clinical applications, seven patients with mobile-bearing TKA in deep knee bending motion were studied and analyzed. Consequently, present technique enables us to better understand mobile-bearing TKA kinematics, and this type of evaluation was thought to be helpful for improving implant design and optimizing TKA surgical techniques.
Virtual rigid body: a new optical tracking paradigm in image-guided interventions
NASA Astrophysics Data System (ADS)
Cheng, Alexis; Lee, David S.; Deshmukh, Nishikant; Boctor, Emad M.
2015-03-01
Tracking technology is often necessary for image-guided surgical interventions. Optical tracking is one the options, but it suffers from line of sight and workspace limitations. Optical tracking is accomplished by attaching a rigid body marker, having a pattern for pose detection, onto a tool or device. A larger rigid body results in more accurate tracking, but at the same time large size limits its usage in a crowded surgical workspace. This work presents a prototype of a novel optical tracking method using a virtual rigid body (VRB). We define the VRB as a 3D rigid body marker in the form of pattern on a surface generated from a light source. Its pose can be recovered by observing the projected pattern with a stereo-camera system. The rigid body's size is no longer physically limited as we can manufacture small size light sources. Conventional optical tracking also requires line of sight to the rigid body. VRB overcomes these limitations by detecting a pattern projected onto the surface. We can project the pattern onto a region of interest, allowing the pattern to always be in the view of the optical tracker. This helps to decrease the occurrence of occlusions. This manuscript describes the method and results compared with conventional optical tracking in an experiment setup using known motions. The experiments are done using an optical tracker and a linear-stage, resulting in targeting errors of 0.38mm+/-0.28mm with our method compared to 0.23mm+/-0.22mm with conventional optical markers. Another experiment that replaced the linear stage with a robot arm resulted in rotational errors of 0.50+/-0.31° and 2.68+/-2.20° and the translation errors of 0.18+/-0.10 mm and 0.03+/-0.02 mm respectively.
Flight Results from the HST SM4 Relative Navigation Sensor System
NASA Technical Reports Server (NTRS)
Naasz, Bo; Eepoel, John Van; Queen, Steve; Southward, C. Michael; Hannah, Joel
2010-01-01
On May 11, 2009, Space Shuttle Atlantis roared off of Launch Pad 39A enroute to the Hubble Space Telescope (HST) to undertake its final servicing of HST, Servicing Mission 4. Onboard Atlantis was a small payload called the Relative Navigation Sensor experiment, which included three cameras of varying focal ranges, avionics to record images and estimate, in real time, the relative position and attitude (aka "pose") of the telescope during rendezvous and deploy. The avionics package, known as SpaceCube and developed at the Goddard Space Flight Center, performed image processing using field programmable gate arrays to accelerate this process, and in addition executed two different pose algorithms in parallel, the Goddard Natural Feature Image Recognition and the ULTOR Passive Pose and Position Engine (P3E) algorithms
USDA-ARS?s Scientific Manuscript database
Technical Summary Objectives: Determine the effect of body mass index (BMI) on the accuracy of body density (Db) estimated with skinfold thickness (SFT) measurements compared to air displacement plethysmography (ADP) in adults. Subjects/Methods: We estimated Db with SFT and ADP in 131 healthy men an...
NASA Astrophysics Data System (ADS)
Angel, Erin
Advances in Computed Tomography (CT) technology have led to an increase in the modality's diagnostic capabilities and therefore its utilization, which has in turn led to an increase in radiation exposure to the patient population. As a result, CT imaging currently constitutes approximately half of the collective exposure to ionizing radiation from medical procedures. In order to understand the radiation risk, it is necessary to estimate the radiation doses absorbed by patients undergoing CT imaging. The most widely accepted risk models are based on radiosensitive organ dose as opposed to whole body dose. In this research, radiosensitive organ dose was estimated using Monte Carlo based simulations incorporating detailed multidetector CT (MDCT) scanner models, specific scan protocols, and using patient models based on accurate patient anatomy and representing a range of patient sizes. Organ dose estimates were estimated for clinical MDCT exam protocols which pose a specific concern for radiosensitive organs or regions. These dose estimates include estimation of fetal dose for pregnant patients undergoing abdomen pelvis CT exams or undergoing exams to diagnose pulmonary embolism and venous thromboembolism. Breast and lung dose were estimated for patients undergoing coronary CTA imaging, conventional fixed tube current chest CT, and conventional tube current modulated (TCM) chest CT exams. The correlation of organ dose with patient size was quantified for pregnant patients undergoing abdomen/pelvis exams and for all breast and lung dose estimates presented. Novel dose reduction techniques were developed that incorporate organ location and are specifically designed to reduce close to radiosensitive organs during CT acquisition. A generalizable model was created for simulating conventional and novel attenuation-based TCM algorithms which can be used in simulations estimating organ dose for any patient model. The generalizable model is a significant contribution of this work as it lays the foundation for the future of simulating TCM using Monte Carlo methods. As a result of this research organ dose can be estimated for individual patients undergoing specific conventional MDCT exams. This research also brings understanding to conventional and novel close reduction techniques in CT and their effect on organ dose.
Modeling autism: a systems biology approach
2012-01-01
Autism is the fastest growing developmental disorder in the world today. The prevalence of autism in the US has risen from 1 in 2500 in 1970 to 1 in 88 children today. People with autism present with repetitive movements and with social and communication impairments. These impairments can range from mild to profound. The estimated total lifetime societal cost of caring for one individual with autism is $3.2 million US dollars. With the rapid growth in this disorder and the great expense of caring for those with autism, it is imperative for both individuals and society that techniques be developed to model and understand autism. There is increasing evidence that those individuals diagnosed with autism present with highly diverse set of abnormalities affecting multiple systems of the body. To this date, little to no work has been done using a whole body systems biology approach to model the characteristics of this disorder. Identification and modelling of these systems might lead to new and improved treatment protocols, better diagnosis and treatment of the affected systems, which might lead to improved quality of life by themselves, and, in addition, might also help the core symptoms of autism due to the potential interconnections between the brain and nervous system with all these other systems being modeled. This paper first reviews research which shows that autism impacts many systems in the body, including the metabolic, mitochondrial, immunological, gastrointestinal and the neurological. These systems interact in complex and highly interdependent ways. Many of these disturbances have effects in most of the systems of the body. In particular, clinical evidence exists for increased oxidative stress, inflammation, and immune and mitochondrial dysfunction which can affect almost every cell in the body. Three promising research areas are discussed, hierarchical, subgroup analysis and modeling over time. This paper reviews some of the systems disturbed in autism and suggests several systems biology research areas. Autism poses a rich test bed for systems biology modeling techniques. PMID:23043674
A Geology-Based Estimate of Connate Water Salinity Distribution
2014-09-01
poses serious environmental concerns if connate water is mobilized into shallow aquifers or surface water systems. Estimating the distribution of...groundwater flow and salinity transport near the Herbert Hoover Dike (HHD) surrounding Lake Okeechobee in Florida . The simulations were conducted using the...on the geologic configuration at equilibrium, and the horizontal salinity distribution is strongly linked to aquifer connectivity because
A Virtual Reality Full Body Illusion Improves Body Image Disturbance in Anorexia Nervosa.
Keizer, Anouk; van Elburg, Annemarie; Helms, Rossa; Dijkerman, H Chris
2016-01-01
Patients with anorexia nervosa (AN) have a persistent distorted experience of the size of their body. Previously we found that the Rubber Hand Illusion improves hand size estimation in this group. Here we investigated whether a Full Body Illusion (FBI) affects body size estimation of body parts more emotionally salient than the hand. In the FBI, analogue to the RHI, participants experience ownership over an entire virtual body in VR after synchronous visuo-tactile stimulation of the actual and virtual body. We asked participants to estimate their body size (shoulders, abdomen, hips) before the FBI was induced, directly after induction and at ~2 hour 45 minutes follow-up. The results showed that AN patients (N = 30) decrease the overestimation of their shoulders, abdomen and hips directly after the FBI was induced. This effect was strongest for estimates of circumference, and also observed in the asynchronous control condition of the illusion. Moreover, at follow-up, the improvements in body size estimation could still be observed in the AN group. Notably, the HC group (N = 29) also showed changes in body size estimation after the FBI, but the effect showed a different pattern than that of the AN group. The results lead us to conclude that the disturbed experience of body size in AN is flexible and can be changed, even for highly emotional body parts. As such this study offers novel starting points from which new interventions for body image disturbance in AN can be developed.
Postprocessing of docked protein-ligand complexes using implicit solvation models.
Lindström, Anton; Edvinsson, Lotta; Johansson, Andreas; Andersson, C David; Andersson, Ida E; Raubacher, Florian; Linusson, Anna
2011-02-28
Molecular docking plays an important role in drug discovery as a tool for the structure-based design of small organic ligands for macromolecules. Possible applications of docking are identification of the bioactive conformation of a protein-ligand complex and the ranking of different ligands with respect to their strength of binding to a particular target. We have investigated the effect of implicit water on the postprocessing of binding poses generated by molecular docking using MM-PB/GB-SA (molecular mechanics Poisson-Boltzmann and generalized Born surface area) methodology. The investigation was divided into three parts: geometry optimization, pose selection, and estimation of the relative binding energies of docked protein-ligand complexes. Appropriate geometry optimization afforded more accurate binding poses for 20% of the complexes investigated. The time required for this step was greatly reduced by minimizing the energy of the binding site using GB solvation models rather than minimizing the entire complex using the PB model. By optimizing the geometries of docking poses using the GB(HCT+SA) model then calculating their free energies of binding using the PB implicit solvent model, binding poses similar to those observed in crystal structures were obtained. Rescoring of these poses according to their calculated binding energies resulted in improved correlations with experimental binding data. These correlations could be further improved by applying the postprocessing to several of the most highly ranked poses rather than focusing exclusively on the top-scored pose. The postprocessing protocol was successfully applied to the analysis of a set of Factor Xa inhibitors and a set of glycopeptide ligands for the class II major histocompatibility complex (MHC) A(q) protein. These results indicate that the protocol for the postprocessing of docked protein-ligand complexes developed in this paper may be generally useful for structure-based design in drug discovery.
Real-Time Biologically Inspired Action Recognition from Key Poses Using a Neuromorphic Architecture.
Layher, Georg; Brosch, Tobias; Neumann, Heiko
2017-01-01
Intelligent agents, such as robots, have to serve a multitude of autonomous functions. Examples are, e.g., collision avoidance, navigation and route planning, active sensing of its environment, or the interaction and non-verbal communication with people in the extended reach space. Here, we focus on the recognition of the action of a human agent based on a biologically inspired visual architecture of analyzing articulated movements. The proposed processing architecture builds upon coarsely segregated streams of sensory processing along different pathways which separately process form and motion information (Layher et al., 2014). Action recognition is performed in an event-based scheme by identifying representations of characteristic pose configurations (key poses) in an image sequence. In line with perceptual studies, key poses are selected unsupervised utilizing a feature-driven criterion which combines extrema in the motion energy with the horizontal and the vertical extendedness of a body shape. Per class representations of key pose frames are learned using a deep convolutional neural network consisting of 15 convolutional layers. The network is trained using the energy-efficient deep neuromorphic networks ( Eedn ) framework (Esser et al., 2016), which realizes the mapping of the trained synaptic weights onto the IBM Neurosynaptic System platform (Merolla et al., 2014). After the mapping, the trained network achieves real-time capabilities for processing input streams and classify input images at about 1,000 frames per second while the computational stages only consume about 70 mW of energy (without spike transduction). Particularly regarding mobile robotic systems, a low energy profile might be crucial in a variety of application scenarios. Cross-validation results are reported for two different datasets and compared to state-of-the-art action recognition approaches. The results demonstrate, that (I) the presented approach is on par with other key pose based methods described in the literature, which select key pose frames by optimizing classification accuracy, (II) compared to the training on the full set of frames, representations trained on key pose frames result in a higher confidence in class assignments, and (III) key pose representations show promising generalization capabilities in a cross-dataset evaluation.
Real-Time Biologically Inspired Action Recognition from Key Poses Using a Neuromorphic Architecture
Layher, Georg; Brosch, Tobias; Neumann, Heiko
2017-01-01
Intelligent agents, such as robots, have to serve a multitude of autonomous functions. Examples are, e.g., collision avoidance, navigation and route planning, active sensing of its environment, or the interaction and non-verbal communication with people in the extended reach space. Here, we focus on the recognition of the action of a human agent based on a biologically inspired visual architecture of analyzing articulated movements. The proposed processing architecture builds upon coarsely segregated streams of sensory processing along different pathways which separately process form and motion information (Layher et al., 2014). Action recognition is performed in an event-based scheme by identifying representations of characteristic pose configurations (key poses) in an image sequence. In line with perceptual studies, key poses are selected unsupervised utilizing a feature-driven criterion which combines extrema in the motion energy with the horizontal and the vertical extendedness of a body shape. Per class representations of key pose frames are learned using a deep convolutional neural network consisting of 15 convolutional layers. The network is trained using the energy-efficient deep neuromorphic networks (Eedn) framework (Esser et al., 2016), which realizes the mapping of the trained synaptic weights onto the IBM Neurosynaptic System platform (Merolla et al., 2014). After the mapping, the trained network achieves real-time capabilities for processing input streams and classify input images at about 1,000 frames per second while the computational stages only consume about 70 mW of energy (without spike transduction). Particularly regarding mobile robotic systems, a low energy profile might be crucial in a variety of application scenarios. Cross-validation results are reported for two different datasets and compared to state-of-the-art action recognition approaches. The results demonstrate, that (I) the presented approach is on par with other key pose based methods described in the literature, which select key pose frames by optimizing classification accuracy, (II) compared to the training on the full set of frames, representations trained on key pose frames result in a higher confidence in class assignments, and (III) key pose representations show promising generalization capabilities in a cross-dataset evaluation. PMID:28381998
Meditation and mindfulness in clinical practice.
Simkin, Deborah R; Black, Nancy B
2014-07-01
This article describes the various forms of meditation and provides an overview of research using these techniques for children, adolescents, and their families. The most researched techniques in children and adolescents are mindfulness-based stress reduction, mindfulness-based cognitive therapy, yoga meditation, transcendental meditation, mind-body techniques (meditation, relaxation), and body-mind techniques (yoga poses, tai chi movements). Current data are suggestive of a possible value of meditation and mindfulness techniques for treating symptomatic anxiety, depression, and pain in youth. Clinicians must be properly trained before using these techniques. Copyright © 2014 Elsevier Inc. All rights reserved.
Estimating the burden of foodborne diseases in Japan
Kumagai, Yuko; Gilmour, Stuart; Ota, Erika; Momose, Yoshika; Onishi, Toshiro; Bilano, Ver Luanni Feliciano; Kasuga, Fumiko; Sekizaki, Tsutomu
2015-01-01
Abstract Objective To assess the burden posed by foodborne diseases in Japan using methods developed by the World Health Organization’s Foodborne Disease Burden Epidemiology Reference Group (FERG). Methods Expert consultation and statistics on food poisoning during 2011 were used to identify three common causes of foodborne disease in Japan: Campylobacter and Salmonella species and enterohaemorrhagic Escherichia coli (EHEC). We conducted systematic reviews of English and Japanese literature on the complications caused by these pathogens, by searching Embase, the Japan medical society abstract database and Medline. We estimated the annual incidence of acute gastroenteritis from reported surveillance data, based on estimated probabilities that an affected person would visit a physician and have gastroenteritis confirmed. We then calculated disability-adjusted life-years (DALYs) lost in 2011, using the incidence estimates along with disability weights derived from published studies. Findings In 2011, foodborne disease caused by Campylobacter species, Salmonella species and EHEC led to an estimated loss of 6099, 3145 and 463 DALYs in Japan, respectively. These estimated burdens are based on the pyramid reconstruction method; are largely due to morbidity rather than mortality; and are much higher than those indicated by routine surveillance data. Conclusion Routine surveillance data may indicate foodborne disease burdens that are much lower than the true values. Most of the burden posed by foodborne disease in Japan comes from secondary complications. The tools developed by FERG appear useful in estimating disease burdens and setting priorities in the field of food safety. PMID:26478611
Drug Use and Attitudes among College Students in Benin City, Nigeria.
ERIC Educational Resources Information Center
Pela, Ona A.
1989-01-01
Examined pattern of drug use among Nigerian college students, their attitudes toward drug use, and their perception of drug harmfulness to the body and to society. Results from 400 undergraduate students revealed that most frequently used social drugs were caffeine and alcohol. Respondents considered heroin and cocaine to pose greatest dangers to…
The Preparation and Practice of Disabled Health Care Practitioners: Exploring the Issues
ERIC Educational Resources Information Center
Hargreaves, Janet; Dearnley, Christine; Walker, Stuart; Walker, Lizzie
2014-01-01
Regulatory bodies governing health professions and professional education set clear expectations regarding fitness to practise. Within the UK, the Equality Act, 2010, poses a challenge to regulators, educators and employers to ensure that people are not excluded on the basis of disability and to facilitate inclusion. This research took a mixed…
Gang Activity on Campus: A Crisis Response Case Study
ERIC Educational Resources Information Center
Shaw, Mahauganee; Meaney, Sarah
2015-01-01
This case study challenges readers to consider a contemporary issue for campus threat assessment and emergency preparedness: gang presence on college campuses. A body of research examining the presence of gangs and gang activity on college campuses has developed, revealing that gangs pose a viable threat for institutions of higher education. The…
To Teach (Literature?) Report Series 5.4.
ERIC Educational Resources Information Center
Petrosky, Anthony
Teaching models, derived from theory and research, are static, and lack responsibility. Models substitute an abstracted notion for teachers. Literature can be viewed as a field of play, where meaning opens, rather than as a body of knowledge. The teacher's challenge consists of posing questions that allow students to formulate their takes on a…
Corticosterone and Dispersal in Western Screech-Owls (Otus kennicottii)
James R. Belthoff; Alfred M., Jr. Dufty
1997-01-01
Belthoff and Dufty (in press) posed a model for dispersal in screech-owls and similar nonmigratory birds. The model is based on interactions among hormonal changes, body condition, and locomotor activity patterns. It predicts that corticosterone increases in blood plasma prior to dispersal under endogenous and exogenous influences, and this increase mediates the...
Predictors of Changes in Weight Esteem among Mainland Chinese Adolescents: A Longitudinal Analysis
ERIC Educational Resources Information Center
Chen, Hong; Jackson, Todd
2009-01-01
Weight and body image concerns are prevalent among adolescents across cultures and pose significant threats to well-being, yet there is a paucity of longitudinal research on samples living in non-Western and developing countries. This prospective study assessed the extent to which select sociocultural, psychological, and biological risk factors…
Overcoming Impossible Bodies: Using Media Literacy to Challenge Popular Culture.
ERIC Educational Resources Information Center
Graydon, Shari
1997-01-01
Media education can be taught by analyzing the ways popular media represent the sexes. Discusses stereotyped gender images in popular culture and outlines classroom activities investigating modeling poses, images of ideal and successful males and females, gender sensitive language, sex role portrayal, and violence for a media literacy unit using…
Efficient Model Posing and Morphing Software
2014-04-01
disclosure of contents or reconstruction of this document. Air Force Research Laboratory 711th Human Performance Wing Human ...Command, Air Force Research Laboratory 711th Human Performance Wing, Human Effectiveness Directorate, Bioeffects Division, Radio Frequency...13. SUPPLEMENTARY NOTES 14. ABSTRACT The absorption of electromagnetic energy within human tissue depends upon anatomical posture and body
An Architecture for Online Affordance-based Perception and Whole-body Planning
2014-03-16
polyhedron defined relative to the pose of the prior step. This reachable polyhedron was computed offline by min. width nominal width max. width forward...parameters min width, max width, etc. into which the next position of the left foot must be contained. In practice, this polyhedron is represented in four
Epidemic typhus imported from Algeria.
Niang, M; Brouqui, P; Raoult, D
1999-01-01
We report epidemic typhus in a French patient returning from Algeria. The diagnosis was confirmed by serologic testing and the isolation of Rickettsia prowazekii in blood. Initially the patient was thought to have typhoid fever. Because body lice are prevalent in industrialized regions, the introduction of typhus to pediculosis-endemic areas poses a serious public health risk.
ERIC Educational Resources Information Center
Smit, Renee
2012-01-01
The increased diversity in the student body resulting from massification poses particular challenges to higher education. This article engages the uncritical use of the "disadvantage" discourse and its effect on pedagogy. It explores some of the challenges of coping with student diversity, with particular reference to the South African…
Report of the Terrestrial Bodies Science Working Group. Volume 7: The Galilean satellites
NASA Technical Reports Server (NTRS)
Fanale, F. P.; Beckman, J. C.; Chapman, C. R.; Coroniti, F. V.; Johnson, T. V.; Malin, M. C.
1977-01-01
The formational and evolutionary history of natural satellites, their mineralogical composition and other phenomena of scientific interest are discussed. Key scientific questions about IO, Ganymede, Callisto, and Europa are posed and the measurements and instruments required for a Galilean satellite lander in the 1980's are described.
Gesture-controlled interfaces for self-service machines and other applications
NASA Technical Reports Server (NTRS)
Cohen, Charles J. (Inventor); Jacobus, Charles J. (Inventor); Paul, George (Inventor); Beach, Glenn (Inventor); Foulk, Gene (Inventor); Obermark, Jay (Inventor); Cavell, Brook (Inventor)
2004-01-01
A gesture recognition interface for use in controlling self-service machines and other devices is disclosed. A gesture is defined as motions and kinematic poses generated by humans, animals, or machines. Specific body features are tracked, and static and motion gestures are interpreted. Motion gestures are defined as a family of parametrically delimited oscillatory motions, modeled as a linear-in-parameters dynamic system with added geometric constraints to allow for real-time recognition using a small amount of memory and processing time. A linear least squares method is preferably used to determine the parameters which represent each gesture. Feature position measure is used in conjunction with a bank of predictor bins seeded with the gesture parameters, and the system determines which bin best fits the observed motion. Recognizing static pose gestures is preferably performed by localizing the body/object from the rest of the image, describing that object, and identifying that description. The disclosure details methods for gesture recognition, as well as the overall architecture for using gesture recognition to control of devices, including self-service machines.
Predictive equations for the estimation of body size in seals and sea lions (Carnivora: Pinnipedia)
Churchill, Morgan; Clementz, Mark T; Kohno, Naoki
2014-01-01
Body size plays an important role in pinniped ecology and life history. However, body size data is often absent for historical, archaeological, and fossil specimens. To estimate the body size of pinnipeds (seals, sea lions, and walruses) for today and the past, we used 14 commonly preserved cranial measurements to develop sets of single variable and multivariate predictive equations for pinniped body mass and total length. Principal components analysis (PCA) was used to test whether separate family specific regressions were more appropriate than single predictive equations for Pinnipedia. The influence of phylogeny was tested with phylogenetic independent contrasts (PIC). The accuracy of these regressions was then assessed using a combination of coefficient of determination, percent prediction error, and standard error of estimation. Three different methods of multivariate analysis were examined: bidirectional stepwise model selection using Akaike information criteria; all-subsets model selection using Bayesian information criteria (BIC); and partial least squares regression. The PCA showed clear discrimination between Otariidae (fur seals and sea lions) and Phocidae (earless seals) for the 14 measurements, indicating the need for family-specific regression equations. The PIC analysis found that phylogeny had a minor influence on relationship between morphological variables and body size. The regressions for total length were more accurate than those for body mass, and equations specific to Otariidae were more accurate than those for Phocidae. Of the three multivariate methods, the all-subsets approach required the fewest number of variables to estimate body size accurately. We then used the single variable predictive equations and the all-subsets approach to estimate the body size of two recently extinct pinniped taxa, the Caribbean monk seal (Monachus tropicalis) and the Japanese sea lion (Zalophus japonicus). Body size estimates using single variable regressions generally under or over-estimated body size; however, the all-subset regression produced body size estimates that were close to historically recorded body length for these two species. This indicates that the all-subset regression equations developed in this study can estimate body size accurately. PMID:24916814
Ehrenfeld, Stephan; Herbort, Oliver; Butz, Martin V.
2013-01-01
This paper addresses the question of how the brain maintains a probabilistic body state estimate over time from a modeling perspective. The neural Modular Modality Frame (nMMF) model simulates such a body state estimation process by continuously integrating redundant, multimodal body state information sources. The body state estimate itself is distributed over separate, but bidirectionally interacting modules. nMMF compares the incoming sensory and present body state information across the interacting modules and fuses the information sources accordingly. At the same time, nMMF enforces body state estimation consistency across the modules. nMMF is able to detect conflicting sensory information and to consequently decrease the influence of implausible sensor sources on the fly. In contrast to the previously published Modular Modality Frame (MMF) model, nMMF offers a biologically plausible neural implementation based on distributed, probabilistic population codes. Besides its neural plausibility, the neural encoding has the advantage of enabling (a) additional probabilistic information flow across the separate body state estimation modules and (b) the representation of arbitrary probability distributions of a body state. The results show that the neural estimates can detect and decrease the impact of false sensory information, can propagate conflicting information across modules, and can improve overall estimation accuracy due to additional module interactions. Even bodily illusions, such as the rubber hand illusion, can be simulated with nMMF. We conclude with an outlook on the potential of modeling human data and of invoking goal-directed behavioral control. PMID:24191151
A Virtual Reality Full Body Illusion Improves Body Image Disturbance in Anorexia Nervosa
Keizer, Anouk; van Elburg, Annemarie; Helms, Rossa; Dijkerman, H. Chris
2016-01-01
Background Patients with anorexia nervosa (AN) have a persistent distorted experience of the size of their body. Previously we found that the Rubber Hand Illusion improves hand size estimation in this group. Here we investigated whether a Full Body Illusion (FBI) affects body size estimation of body parts more emotionally salient than the hand. In the FBI, analogue to the RHI, participants experience ownership over an entire virtual body in VR after synchronous visuo-tactile stimulation of the actual and virtual body. Methods and Results We asked participants to estimate their body size (shoulders, abdomen, hips) before the FBI was induced, directly after induction and at ~2 hour 45 minutes follow-up. The results showed that AN patients (N = 30) decrease the overestimation of their shoulders, abdomen and hips directly after the FBI was induced. This effect was strongest for estimates of circumference, and also observed in the asynchronous control condition of the illusion. Moreover, at follow-up, the improvements in body size estimation could still be observed in the AN group. Notably, the HC group (N = 29) also showed changes in body size estimation after the FBI, but the effect showed a different pattern than that of the AN group. Conclusion The results lead us to conclude that the disturbed experience of body size in AN is flexible and can be changed, even for highly emotional body parts. As such this study offers novel starting points from which new interventions for body image disturbance in AN can be developed. PMID:27711234
Thorup, V M; Edwards, D; Friggens, N C
2012-04-01
Precise energy balance estimates for individual cows are of great importance to monitor health, reproduction, and feed management. Energy balance is usually calculated as energy input minus output (EB(inout)), requiring measurements of feed intake and energy output sources (milk, maintenance, activity, growth, and pregnancy). Except for milk yield, direct measurements of the other sources are difficult to obtain in practice, and estimates contain considerable error sources, limiting on-farm use. Alternatively, energy balance can be estimated from body reserve changes (EB(body)) using body weight (BW) and body condition score (BCS). Automated weighing systems exist and new technology performing semi-automated body condition scoring has emerged, so frequent automated BW and BCS measurements are feasible. We present a method to derive individual EB(body) estimates from frequently measured BW and BCS and evaluate the performance of the estimated EB(body) against the traditional EB(inout) method. From 76 Danish Holstein and Jersey cows, parity 1 or 2+, on a glycerol-rich or a whole grain-rich total mixed ration, BW was measured automatically at each milking. The BW was corrected for the weight of milk produced and for gutfill. Changes in BW and BCS were used to calculate changes in body protein, body lipid, and EB(body) during the first 150 d in milk. The EB(body) was compared with the traditional EB(inout) by isolating the term within EB(inout) associated with most uncertainty; that is, feed energy content (FEC); FEC=(EB(body)+EMilk+EMaintenance+Eactivity)/dry matter intake, where the energy requirements are for milk produced (EMilk), maintenance (EMaintenance), and activity (EActivity). Estimated FEC agreed well with FEC values derived from tables (the mean estimate was 0.21 MJ of effective energy/kg of dry matter or 2.2% higher than the mean table value). Further, the FEC profile did not suggest systematic bias in EB(body) with stage of lactation. The EB(body) estimated from daily BW, adjusted for milk and meal-related gutfill and combined with frequent BCS, can provide a successful tool. This offers a pragmatic solution to on-farm calculation of energy balance with the perspective of improved precision under commercial conditions. Copyright © 2012 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Assessment of body perception among Swedish adolescents and young adults.
Bergström, E; Stenlund, H; Svedjehäll, B
2000-01-01
To assess body perception in adolescents and young adults without anorexia nervosa. Using a visual size estimation technique, perceived body size was estimated in four groups of Swedish adolescents and young adults without anorexia nervosa (86 males and 95 females). Perceived body size was estimated at nine different body sites comparing these estimations to real body size. The results show that 95% of males and 96% of females overestimated their body size (mean overestimation: males +22%, females +33%). The overestimations were greatest in females. The greatest overestimations were made of the waist (males +31%, females +46%), buttocks (males +22%, females +42%), and thighs (males +27%, females +41%). The results indicate that overestimation of body size may be a general phenomenon in adolescents and young adults in a country such as Sweden, implying a similar, but less pronounced distortion of body image as in individuals with anorexia nervosa.
Molnár, Péter K; Klanjscek, Tin; Derocher, Andrew E; Obbard, Martyn E; Lewis, Mark A
2009-08-01
Many species experience large fluctuations in food availability and depend on energy from fat and protein stores for survival, reproduction and growth. Body condition and, more specifically, energy stores thus constitute key variables in the life history of many species. Several indices exist to quantify body condition but none can provide the amount of stored energy. To estimate energy stores in mammals, we propose a body composition model that differentiates between structure and storage of an animal. We develop and parameterize the model specifically for polar bears (Ursus maritimus Phipps) but all concepts are general and the model could be easily adapted to other mammals. The model provides predictive equations to estimate structural mass, storage mass and storage energy from an appropriately chosen measure of body length and total body mass. The model also provides a means to estimate basal metabolic rates from body length and consecutive measurements of total body mass. Model estimates of body composition, structural mass, storage mass and energy density of 970 polar bears from Hudson Bay were consistent with the life history and physiology of polar bears. Metabolic rate estimates of fasting adult males derived from the body composition model corresponded closely to theoretically expected and experimentally measured metabolic rates. Our method is simple, non-invasive and provides considerably more information on the energetic status of individuals than currently available methods.
Three-Dimensional Dose Calculation for Total Body Irradiation
NASA Astrophysics Data System (ADS)
Ito, Akira
Bone Marrow Transplant (BMT) therapy has been a big success in the treatment of leukemia and other haematopoietic diseases 1 . Prior to BMT, total body irradiation (TBI) is given to the patient for the purpose of (1) killing leukemia cells in bone marrow, as well as in the whole body, and (2) producing immuno-suppressive status in the patient so that the donor's marrow cells will be transplanted without rejection. TBI employs a very large field photon beam to irradiate the whole body of the patient. A uniform dose distribution over the entire body is the treatment goal. To prevent the occurrence of a serious side effect (interstitial pneumonia), the lung dose should not exceed a certain level. This novel technique poses various new radiological physics problems. The accurate assessment of dose and dose distribution in the patient is essential. Physical and dosimetric problems associated with TBI are reviewed elsewhere 2,3 .
Misperception of body weight and associated factors.
Boo, Sunjoo
2014-12-01
The prevalence of obesity is increasing. In Korea, this is especially true of men in general, and women of low socioeconomic status. Misperception of body weight poses a barrier to the prevention of obesity. In this study, the misperception of body weight in relation to actual body weight and associated factors in Korean adults was evaluated. Data from 7162 adults who participated in the 2009 Korean National Health and Nutrition Examination Survey were analyzed. Misperception of body weight was substantial in Koreans, with 48.9% underestimating and 6.8% overestimating their weight status. More men than women underestimated their weight status. Weight perception in women was affected more by sociodemographic characteristics. Women's underestimation was positively associated with older age, marital status, and lower socioeconomic status. This suggests that increasing public awareness of healthy weight will be helpful to counteract the current obesity epidemic in Korea. © 2014 Wiley Publishing Asia Pty Ltd.
Biological role of bacterial inclusion bodies: a model for amyloid aggregation.
García-Fruitós, Elena; Sabate, Raimon; de Groot, Natalia S; Villaverde, Antonio; Ventura, Salvador
2011-07-01
Inclusion bodies are insoluble protein aggregates usually found in recombinant bacteria when they are forced to produce heterologous protein species. These particles are formed by polypeptides that cross-interact through sterospecific contacts and that are steadily deposited in either the cell's cytoplasm or the periplasm. An important fraction of eukaryotic proteins form inclusion bodies in bacteria, which has posed major problems in the development of the biotechnology industry. Over the last decade, the fine dissection of the quality control system in bacteria and the recognition of the amyloid-like architecture of inclusion bodies have provided dramatic insights on the dynamic biology of these aggregates. We discuss here the relevant aspects, in the interface between cell physiology and structural biology, which make inclusion bodies unique models for the study of protein aggregation, amyloid formation and prion biology in a physiologically relevant background. © 2011 The Authors Journal compilation © 2011 FEBS.
Mass Determination of Small Bodies in the Solar System
NASA Astrophysics Data System (ADS)
Paetzold, M.
2017-12-01
The masses and gravity fields of the planetary bodies were determined by radio tracking of spacecraft flying by or orbiting that body at a suffiently close distance. Small bodies (asteroids, cometary nuclei...) of the solar system pose certain challenges in order to reveal their masses and gravity fields. Those challenges mostly concerns spacecraft safety and/or optimal instrment operations. In order to resolve an acceptable Doppler shift with regard to the frequency noise, a spacecraft shall flyby at close distances, at slow speed and at an optimal flyby geometry for a given body mass. This cannot always be achieved. The flybys of Mars Express at Phobos, the flyby of Rosetta at asteroid Lutetia, its orbiting about the nucleus of 67P/Churyumov-Gerasimenko shall be reviewed. The prospects and challenges of future flybys like New Horizons at 2016MU69 and Lucy at the Trojan asteroids shall be presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kelbe, David; Oak Ridge National Lab.; van Aardt, Jan
Terrestrial laser scanning has demonstrated increasing potential for rapid comprehensive measurement of forest structure, especially when multiple scans are spatially registered in order to reduce the limitations of occlusion. Although marker-based registration techniques (based on retro-reflective spherical targets) are commonly used in practice, a blind marker-free approach is preferable, insofar as it supports rapid operational data acquisition. To support these efforts, we extend the pairwise registration approach of our earlier work, and develop a graph-theoretical framework to perform blind marker-free global registration of multiple point cloud data sets. Pairwise pose estimates are weighted based on their estimated error, in ordermore » to overcome pose conflict while exploiting redundant information and improving precision. The proposed approach was tested for eight diverse New England forest sites, with 25 scans collected at each site. Quantitative assessment was provided via a novel embedded confidence metric, with a mean estimated root-mean-square error of 7.2 cm and 89% of scans connected to the reference node. Lastly, this paper assesses the validity of the embedded multiview registration confidence metric and evaluates the performance of the proposed registration algorithm.« less
Modeling and Calculator Tools for State and Local Transportation Resources
Air quality models, calculators, guidance and strategies are offered for estimating and projecting vehicle air pollution, including ozone or smog-forming pollutants, particulate matter and other emissions that pose public health and air quality concerns.
Prioritizing pharmaceuticals in municipal wastewater
Oral presentation at SETAC North America 32nd annual meeting, describing our prioritization of active pharmaceutical ingredients (APIs), based on estimates of risks posed by API residues originating from municipal wastewater. Goals of this project include prioritization of APIs f...
Fuzzy Set Methods for Object Recognition in Space Applications
NASA Technical Reports Server (NTRS)
Keller, James M. (Editor)
1992-01-01
Progress on the following four tasks is described: (1) fuzzy set based decision methodologies; (2) membership calculation; (3) clustering methods (including derivation of pose estimation parameters), and (4) acquisition of images and testing of algorithms.
Perry, Jonathan M G; Cooke, Siobhán B; Runestad Connour, Jacqueline A; Burgess, M Loring; Ruff, Christopher B
2018-02-01
Body mass is an important component of any paleobiological reconstruction. Reliable skeletal dimensions for making estimates are desirable but extant primate reference samples with known body masses are rare. We estimated body mass in a sample of extinct platyrrhines and Fayum anthropoids based on four measurements of the articular surfaces of the humerus and femur. Estimates were based on a large extant reference sample of wild-collected individuals with associated body masses, including previously published and new data from extant platyrrhines, cercopithecoids, and hominoids. In general, scaling of joint dimensions is positively allometric relative to expectations of geometric isometry, but negatively allometric relative to expectations of maintaining equivalent joint surface areas. Body mass prediction equations based on articular breadths are reasonably precise, with %SEEs of 17-25%. The breadth of the distal femoral articulation yields the most reliable estimates of body mass because it scales similarly in all major anthropoid taxa. Other joints scale differently in different taxa; therefore, locomotor style and phylogenetic affinity must be considered when calculating body mass estimates from the proximal femur, proximal humerus, and distal humerus. The body mass prediction equations were applied to 36 Old World and New World fossil anthropoid specimens representing 11 taxa, plus two Haitian specimens of uncertain taxonomic affinity. Among the extinct platyrrhines studied, only Cebupithecia is similar to large, extant platyrrhines in having large humeral (especially distal) joints. Our body mass estimates differ from each other and from published estimates based on teeth in ways that reflect known differences in relative sizes of the joints and teeth. We prefer body mass estimators that are biomechanically linked to weight-bearing, and especially those that are relatively insensitive to differences in locomotor style and phylogenetic history. Whenever possible, extant reference samples should be chosen to match target fossils in joint proportionality. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Liu, Zexi; Cohen, Fernand
2017-11-01
We describe an approach for synthesizing a three-dimensional (3-D) face structure from an image or images of a human face taken at a priori unknown poses using gender and ethnicity specific 3-D generic models. The synthesis process starts with a generic model, which is personalized as images of the person become available using preselected landmark points that are tessellated to form a high-resolution triangular mesh. From a single image, two of the three coordinates of the model are reconstructed in accordance with the given image of the person, while the third coordinate is sampled from the generic model, and the appearance is made in accordance with the image. With multiple images, all coordinates and appearance are reconstructed in accordance with the observed images. This method allows for accurate pose estimation as well as face identification in 3-D rendering of a difficult two-dimensional (2-D) face recognition problem into a much simpler 3-D surface matching problem. The estimation of the unknown pose is achieved using the Levenberg-Marquardt optimization process. Encouraging experimental results are obtained in a controlled environment with high-resolution images under a good illumination condition, as well as for images taken in an uncontrolled environment under arbitrary illumination with low-resolution cameras.
Dense 3D Face Alignment from 2D Video for Real-Time Use
Jeni, László A.; Cohn, Jeffrey F.; Kanade, Takeo
2018-01-01
To enable real-time, person-independent 3D registration from 2D video, we developed a 3D cascade regression approach in which facial landmarks remain invariant across pose over a range of approximately 60 degrees. From a single 2D image of a person’s face, a dense 3D shape is registered in real time for each frame. The algorithm utilizes a fast cascade regression framework trained on high-resolution 3D face-scans of posed and spontaneous emotion expression. The algorithm first estimates the location of a dense set of landmarks and their visibility, then reconstructs face shapes by fitting a part-based 3D model. Because no assumptions are required about illumination or surface properties, the method can be applied to a wide range of imaging conditions that include 2D video and uncalibrated multi-view video. The method has been validated in a battery of experiments that evaluate its precision of 3D reconstruction, extension to multi-view reconstruction, temporal integration for videos and 3D head-pose estimation. Experimental findings strongly support the validity of real-time, 3D registration and reconstruction from 2D video. The software is available online at http://zface.org. PMID:29731533
Handheld pose tracking using vision-inertial sensors with occlusion handling
NASA Astrophysics Data System (ADS)
Li, Juan; Slembrouck, Maarten; Deboeverie, Francis; Bernardos, Ana M.; Besada, Juan A.; Veelaert, Peter; Aghajan, Hamid; Casar, José R.; Philips, Wilfried
2016-07-01
Tracking of a handheld device's three-dimensional (3-D) position and orientation is fundamental to various application domains, including augmented reality (AR), virtual reality, and interaction in smart spaces. Existing systems still offer limited performance in terms of accuracy, robustness, computational cost, and ease of deployment. We present a low-cost, accurate, and robust system for handheld pose tracking using fused vision and inertial data. The integration of measurements from embedded accelerometers reduces the number of unknown parameters in the six-degree-of-freedom pose calculation. The proposed system requires two light-emitting diode (LED) markers to be attached to the device, which are tracked by external cameras through a robust algorithm against illumination changes. Three data fusion methods have been proposed, including the triangulation-based stereo-vision system, constraint-based stereo-vision system with occlusion handling, and triangulation-based multivision system. Real-time demonstrations of the proposed system applied to AR and 3-D gaming are also included. The accuracy assessment of the proposed system is carried out by comparing with the data generated by the state-of-the-art commercial motion tracking system OptiTrack. Experimental results show that the proposed system has achieved high accuracy of few centimeters in position estimation and few degrees in orientation estimation.
Pomeroy, Emma; Macintosh, Alison; Wells, Jonathan C K; Cole, Tim J; Stock, Jay T
2018-05-01
Estimating body mass from skeletal dimensions is widely practiced, but methods for estimating its components (lean and fat mass) are poorly developed. The ability to estimate these characteristics would offer new insights into the evolution of body composition and its variation relative to past and present health. This study investigates the potential of long bone cross-sectional properties as predictors of body, lean, and fat mass. Humerus, femur and tibia midshaft cross-sectional properties were measured by peripheral quantitative computed tomography in sample of young adult women (n = 105) characterized by a range of activity levels. Body composition was estimated from bioimpedance analysis. Lean mass correlated most strongly with both upper and lower limb bone properties (r values up to 0.74), while fat mass showed weak correlations (r ≤ 0.29). Estimation equations generated from tibial midshaft properties indicated that lean mass could be estimated relatively reliably, with some improvement using logged data and including bone length in the models (minimum standard error of estimate = 8.9%). Body mass prediction was less reliable and fat mass only poorly predicted (standard errors of estimate ≥11.9% and >33%, respectively). Lean mass can be predicted more reliably than body mass from limb bone cross-sectional properties. The results highlight the potential for studying evolutionary trends in lean mass from skeletal remains, and have implications for understanding the relationship between bone morphology and body mass or composition. © 2018 The Authors. American Journal of Physical Anthropology Published by Wiley Periodicals, Inc.
PharmDock: a pharmacophore-based docking program
2014-01-01
Background Protein-based pharmacophore models are enriched with the information of potential interactions between ligands and the protein target. We have shown in a previous study that protein-based pharmacophore models can be applied for ligand pose prediction and pose ranking. In this publication, we present a new pharmacophore-based docking program PharmDock that combines pose sampling and ranking based on optimized protein-based pharmacophore models with local optimization using an empirical scoring function. Results Tests of PharmDock on ligand pose prediction, binding affinity estimation, compound ranking and virtual screening yielded comparable or better performance to existing and widely used docking programs. The docking program comes with an easy-to-use GUI within PyMOL. Two features have been incorporated in the program suite that allow for user-defined guidance of the docking process based on previous experimental data. Docking with those features demonstrated superior performance compared to unbiased docking. Conclusion A protein pharmacophore-based docking program, PharmDock, has been made available with a PyMOL plugin. PharmDock and the PyMOL plugin are freely available from http://people.pharmacy.purdue.edu/~mlill/software/pharmdock. PMID:24739488
Body composition in elderly people: effect of criterion estimates on predictive equations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baumgartner, R.N.; Heymsfield, S.B.; Lichtman, S.
1991-06-01
The purposes of this study were to determine whether there are significant differences between two- and four-compartment model estimates of body composition, whether these differences are associated with aqueous and mineral fractions of the fat-free mass (FFM); and whether the differences are retained in equations for predicting body composition from anthropometry and bioelectric resistance. Body composition was estimated in 98 men and women aged 65-94 y by using a four-compartment model based on hydrodensitometry, {sup 3}H{sub 2}O dilution, and dual-photon absorptiometry. These estimates were significantly different from those obtained by using Siri's two-compartment model. The differences were associated significantly (Pmore » less than 0.0001) with variation in the aqueous fraction of FFM. Equations for predicting body composition from anthropometry and resistance, when calibrated against two-compartment model estimates, retained these systematic errors. Equations predicting body composition in elderly people should be calibrated against estimates from multicompartment models that consider variability in FFM composition.« less
Marginal space learning for efficient detection of 2D/3D anatomical structures in medical images.
Zheng, Yefeng; Georgescu, Bogdan; Comaniciu, Dorin
2009-01-01
Recently, marginal space learning (MSL) was proposed as a generic approach for automatic detection of 3D anatomical structures in many medical imaging modalities [1]. To accurately localize a 3D object, we need to estimate nine pose parameters (three for position, three for orientation, and three for anisotropic scaling). Instead of exhaustively searching the original nine-dimensional pose parameter space, only low-dimensional marginal spaces are searched in MSL to improve the detection speed. In this paper, we apply MSL to 2D object detection and perform a thorough comparison between MSL and the alternative full space learning (FSL) approach. Experiments on left ventricle detection in 2D MRI images show MSL outperforms FSL in both speed and accuracy. In addition, we propose two novel techniques, constrained MSL and nonrigid MSL, to further improve the efficiency and accuracy. In many real applications, a strong correlation may exist among pose parameters in the same marginal spaces. For example, a large object may have large scaling values along all directions. Constrained MSL exploits this correlation for further speed-up. The original MSL only estimates the rigid transformation of an object in the image, therefore cannot accurately localize a nonrigid object under a large deformation. The proposed nonrigid MSL directly estimates the nonrigid deformation parameters to improve the localization accuracy. The comparison experiments on liver detection in 226 abdominal CT volumes demonstrate the effectiveness of the proposed methods. Our system takes less than a second to accurately detect the liver in a volume.
A robust motion estimation system for minimal invasive laparoscopy
NASA Astrophysics Data System (ADS)
Marcinczak, Jan Marek; von Öhsen, Udo; Grigat, Rolf-Rainer
2012-02-01
Laparoscopy is a reliable imaging method to examine the liver. However, due to the limited field of view, a lot of experience is required from the surgeon to interpret the observed anatomy. Reconstruction of organ surfaces provide valuable additional information to the surgeon for a reliable diagnosis. Without an additional external tracking system the structure can be recovered from feature correspondences between different frames. In laparoscopic images blurred frames, specular reflections and inhomogeneous illumination make feature tracking a challenging task. We propose an ego-motion estimation system for minimal invasive laparoscopy that can cope with specular reflection, inhomogeneous illumination and blurred frames. To obtain robust feature correspondence, the approach combines SIFT and specular reflection segmentation with a multi-frame tracking scheme. The calibrated five-point algorithm is used with the MSAC robust estimator to compute the motion of the endoscope from multi-frame correspondence. The algorithm is evaluated using endoscopic videos of a phantom. The small incisions and the rigid endoscope limit the motion in minimal invasive laparoscopy. These limitations are considered in our evaluation and are used to analyze the accuracy of pose estimation that can be achieved by our approach. The endoscope is moved by a robotic system and the ground truth motion is recorded. The evaluation on typical endoscopic motion gives precise results and demonstrates the practicability of the proposed pose estimation system.
Detection and 3d Modelling of Vehicles from Terrestrial Stereo Image Pairs
NASA Astrophysics Data System (ADS)
Coenen, M.; Rottensteiner, F.; Heipke, C.
2017-05-01
The detection and pose estimation of vehicles plays an important role for automated and autonomous moving objects e.g. in autonomous driving environments. We tackle that problem on the basis of street level stereo images, obtained from a moving vehicle. Processing every stereo pair individually, our approach is divided into two subsequent steps: the vehicle detection and the modelling step. For the detection, we make use of the 3D stereo information and incorporate geometric assumptions on vehicle inherent properties in a firstly applied generic 3D object detection. By combining our generic detection approach with a state of the art vehicle detector, we are able to achieve satisfying detection results with values for completeness and correctness up to more than 86%. By fitting an object specific vehicle model into the vehicle detections, we are able to reconstruct the vehicles in 3D and to derive pose estimations as well as shape parameters for each vehicle. To deal with the intra-class variability of vehicles, we make use of a deformable 3D active shape model learned from 3D CAD vehicle data in our model fitting approach. While we achieve encouraging values up to 67.2% for correct position estimations, we are facing larger problems concerning the orientation estimation. The evaluation is done by using the object detection and orientation estimation benchmark of the KITTI dataset (Geiger et al., 2012).
Quantitative body DW-MRI biomarkers uncertainty estimation using unscented wild-bootstrap.
Freiman, M; Voss, S D; Mulkern, R V; Perez-Rossello, J M; Warfield, S K
2011-01-01
We present a new method for the uncertainty estimation of diffusion parameters for quantitative body DW-MRI assessment. Diffusion parameters uncertainty estimation from DW-MRI is necessary for clinical applications that use these parameters to assess pathology. However, uncertainty estimation using traditional techniques requires repeated acquisitions, which is undesirable in routine clinical use. Model-based bootstrap techniques, for example, assume an underlying linear model for residuals rescaling and cannot be utilized directly for body diffusion parameters uncertainty estimation due to the non-linearity of the body diffusion model. To offset this limitation, our method uses the Unscented transform to compute the residuals rescaling parameters from the non-linear body diffusion model, and then applies the wild-bootstrap method to infer the body diffusion parameters uncertainty. Validation through phantom and human subject experiments shows that our method identify the regions with higher uncertainty in body DWI-MRI model parameters correctly with realtive error of -36% in the uncertainty values.
Risks to aquatic organisms posed by human pharmaceutical use
In order to help prioritize future research efforts within the US, risks associated with exposure to human prescription pharmaceutical residues in wastewater were estimated from marketing and pharmacological data. Masses of 371 active pharmaceutical ingredients (APIs) dispensed ...
ERIC Educational Resources Information Center
Schiebinger, Londa
This book features a history of women in science and an assessment of the role of gender in shaping scientific knowledge which poses the questions: (1) Do women do science differently? and (2) How about feminists--male or female? It is argued that science is both a profession and a body of knowledge, and how women have fared and performed in both…
Manipulating early lactation energy and protein balances using canola meal as a protein source
USDA-ARS?s Scientific Manuscript database
Negative energy and protein balances during the immediate postpartum period in a dairy cow pose opportunities to improve the cow’s health and production. The inability of the cow to consume an adequate supply of nutrients mobilizes its body reserves to serve as energy and protein required for milk p...
USDA-ARS?s Scientific Manuscript database
Given the magnitude of the threat to the quality of receiving water bodies posed by microbial pollutants in urban stormwater runoff, and the untested potential for their removal in bioretention systems, studies were performed to evaluate the removal efficiency of bacteria from simulated urban stormw...
The Role of Social Foundations in Preparing Teachers for Culturally Relevant Practice
ERIC Educational Resources Information Center
Ryan, Ann Marie
2006-01-01
Addressing the issue of teachers' low expectations of students of color and those in poverty poses significant challenges to teacher education. The growing body of research focused on this issue documents ways teachers can make a real difference in the educational lives of children. Ladson-Billings' (1992; 1994; 1995) and others demonstrate that…
Smoking Behavior, Attitudes of Second-Hand Smoke, and No-Smoking Policies on a University Campus
ERIC Educational Resources Information Center
Polacek, Georgia N. L. Johnston; Atkins, Janet L.
2008-01-01
Smoking, when condoned as socially acceptable, overtly establishes such behavior as normal and risk-free. Scientific evidence verifies that cigarette smoking pervasively damages the body, causes early death, costs billions of dollars annually in medical care for smokers, and poses serious health risks to nonsmokers exposed to secondhand smoke. Yet…
The Young Astrophysicist: A Very Inexpensive Activity to Discuss Spectroscopy
ERIC Educational Resources Information Center
Brockington, Guilherme; Testoni, Leonardo André; Pietrocola, Maurício
2015-01-01
The continuing fascination of young people with celestial bodies leads them to pose challenging questions to their science teachers, such as how was the universe born? How were the stars formed? In this paper we present an extremely inexpensive but highly engaging activity to teach the basics of spectroscopy. Guided by the question "how do…
USDA-ARS?s Scientific Manuscript database
A high ambient temperature poses a serious threat to cattle. Above a certain threshold, an animal’s body temperature (Tb) appears to be driven by the hot cyclic air temperature (Ta) and hysteresis occurs. Elliptical hysteresis describes the output of a process in response to a simple harmonic input,...
Comparison of methods to assess change in children’s body composition123
Elberg, Jane; McDuffie, Jennifer R; Sebring, Nancy G; Salaita, Christine; Keil, Margaret; Robotham, Delphine; Reynolds, James C; Yanovski, Jack A
2008-01-01
Background Little is known about how simpler and more available methods to measure change in body fatness compare with criterion methods such as dual-energy X-ray absorptiometry (DXA) in children. Objective Our objective was to determine the ability of air-displacement plethysmography (ADP) and formulas based on triceps skinfold thickness (TSF) and bioelectrical impedance analysis (BIA) to estimate changes in body fat over time in children. Design Eighty-six nonoverweight and overweight boys (n = 34) and girls (n = 52) with an average age of 11.0 ± 2.4 y underwent ADP, TSF measurement, BIA, and DXA to estimate body fatness at baseline and 1 ± 0.3 y later. Recent equations were used to estimate percentage body fat by TSF measurement (Dezenberg equation) and by BIA (Suprasongsin and Lewy equations). Percentage body fat estimates by ADP, TSF measurement, and BIA were compared with those by DXA. Results All methods were highly correlated with DXA (P < 0.001). No mean bias for estimates of percentage body fat change was found for ADP (Siri equation) compared with DXA for all subjects examined together, and agreement between body fat estimation by ADP and DXA did not vary with race or sex. Magnitude bias was present for ADP relative to DXA (P < 0.01). Estimates of change in percentage body fat were systematically overestimated by BIA equations (1.37 ± 6.98%; P < 0.001). TSF accounted for only 13% of the variance in percentage body fat change. Conclusion Compared with DXA, there appears to be no noninvasive and simple method to measure changes in children’s percentage body fat accurately and precisely, but ADP performed better than did TSF or BIA. ADP could prove useful for measuring changes in adiposity in children. PMID:15213029
Removal of a foreign body from the skull base using a customized computer-designed guide bar.
Wei, Ran; Xiang-Zhen, Liu; Bing, Guo; Da-Long, Shu; Ze-Ming, Tan
2010-06-01
Foreign bodies located at the base of the skull pose a surgical challenge. Here, a customized computer-designed surgical guide bar was designed to facilitate removal of a skull base foreign body. Within 24h of the patient's presentation, a guide bar and mounting platform were designed to remove a foreign body located adjacent to the transverse process of the atlas and pressing against the internal carotid artery. The foreign body was successfully located and removed using the custom designed guide bar and computer operative planning. Ten months postoperatively the patient was free of complaints and lacked any complications such as restricted opening of the mouth or false aneurysm. The inferior alveolar nerve damage noted immediately postoperatively (a consequence of mandibular osteotomy) was slightly reduced at follow-up, but labial numbness persisted. The navigation tools described herein were successfully employed to aid foreign body removal from the skull base. Copyright (c) 2009 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.
An estimate for the thermal photon rate from lattice QCD
NASA Astrophysics Data System (ADS)
Brandt, Bastian B.; Francis, Anthony; Harris, Tim; Meyer, Harvey B.; Steinberg, Aman
2018-03-01
We estimate the production rate of photons by the quark-gluon plasma in lattice QCD. We propose a new correlation function which provides better control over the systematic uncertainty in estimating the photon production rate at photon momenta in the range πT/2 to 2πT. The relevant Euclidean vector current correlation functions are computed with Nf = 2 Wilson clover fermions in the chirally-symmetric phase. In order to estimate the photon rate, an ill-posed problem for the vector-channel spectral function must be regularized. We use both a direct model for the spectral function and a modelindependent estimate from the Backus-Gilbert method to give an estimate for the photon rate.
Backward semi-linear parabolic equations with time-dependent coefficients and local Lipschitz source
NASA Astrophysics Data System (ADS)
Nho Hào, Dinh; Van Duc, Nguyen; Van Thang, Nguyen
2018-05-01
Let H be a Hilbert space with the inner product and the norm , a positive self-adjoint unbounded time-dependent operator on H and . We establish stability estimates of Hölder type and propose a regularization method with error estimates of Hölder type for the ill-posed backward semi-linear parabolic equation with the source function f satisfying a local Lipschitz condition.
Pose and Wind Estimation for Autonomous Parafoils
2014-09-01
Communications GT Georgia Institute of Technology IDVD Inverse Dynamics in the Virtual Domain IMU inertial measurement unit INRIA Institut National de Recherche en...sensor. The method used is a nonlinear estimator that combines the visual sensor measurements with those of an inertial measurement unit ( IMU ) on... isolated on the left side of the equation. On the other hand, when the measurement equation of (3.27) is implemented, the probabil- 58 ity
Reentry survivability modeling
NASA Astrophysics Data System (ADS)
Fudge, Michael L.; Maher, Robert L.
1997-10-01
Statistical methods for expressing the impact risk posed to space systems in general [and the International Space Station (ISS) in particular] by other resident space objects have been examined. One of the findings of this investigation is that there are legitimate physical modeling reasons for the common statistical expression of the collision risk. A combination of statistical methods and physical modeling is also used to express the impact risk posed by re-entering space systems to objects of interest (e.g., people and property) on Earth. One of the largest uncertainties in the expressing of this risk is the estimation of survivable material which survives reentry to impact Earth's surface. This point was recently demonstrated in dramatic fashion by the impact of an intact expendable launch vehicle (ELV) upper stage near a private residence in the continental United States. Since approximately half of the missions supporting ISS will utilize ELVs, it is appropriate to examine the methods used to estimate the amount and physical characteristics of ELV debris surviving reentry to impact Earth's surface. This paper examines reentry survivability estimation methodology, including the specific methodology used by Caiman Sciences' 'Survive' model. Comparison between empirical results (observations of objects which have been recovered on Earth after surviving reentry) and Survive estimates are presented for selected upper stage or spacecraft components and a Delta launch vehicle second stage.
Solving the quantum many-body problem with artificial neural networks
NASA Astrophysics Data System (ADS)
Carleo, Giuseppe; Troyer, Matthias
2017-02-01
The challenge posed by the many-body problem in quantum physics originates from the difficulty of describing the nontrivial correlations encoded in the exponential complexity of the many-body wave function. Here we demonstrate that systematic machine learning of the wave function can reduce this complexity to a tractable computational form for some notable cases of physical interest. We introduce a variational representation of quantum states based on artificial neural networks with a variable number of hidden neurons. A reinforcement-learning scheme we demonstrate is capable of both finding the ground state and describing the unitary time evolution of complex interacting quantum systems. Our approach achieves high accuracy in describing prototypical interacting spins models in one and two dimensions.
Lima, Luiz Rodrigo Augustemak de; Martins, Priscila Custódio; Junior, Carlos Alencar Souza Alves; Castro, João Antônio Chula de; Silva, Diego Augusto Santos; Petroski, Edio Luiz
The aim of this study was to assess the validity of traditional anthropometric equations and to develop predictive equations of total body and trunk fat for children and adolescents living with HIV based on anthropometric measurements. Forty-eight children and adolescents of both sexes (24 boys) aged 7-17 years, living in Santa Catarina, Brazil, participated in the study. Dual-energy X-ray absorptiometry was used as the reference method to evaluate total body and trunk fat. Height, body weight, circumferences and triceps, subscapular, abdominal and calf skinfolds were measured. The traditional equations of Lohman and Slaughter were used to estimate body fat. Multiple regression models were fitted to predict total body fat (Model 1) and trunk fat (Model 2) using a backward selection procedure. Model 1 had an R 2 =0.85 and a standard error of the estimate of 1.43. Model 2 had an R 2 =0.80 and standard error of the estimate=0.49. The traditional equations of Lohman and Slaughter showed poor performance in estimating body fat in children and adolescents living with HIV. The prediction models using anthropometry provided reliable estimates and can be used by clinicians and healthcare professionals to monitor total body and trunk fat in children and adolescents living with HIV. Copyright © 2017 Sociedade Brasileira de Infectologia. Published by Elsevier Editora Ltda. All rights reserved.
Owning an overweight or underweight body: distinguishing the physical, experienced and virtual body.
Piryankova, Ivelina V; Wong, Hong Yu; Linkenauger, Sally A; Stinson, Catherine; Longo, Matthew R; Bülthoff, Heinrich H; Mohler, Betty J
2014-01-01
Our bodies are the most intimately familiar objects we encounter in our perceptual environment. Virtual reality provides a unique method to allow us to experience having a very different body from our own, thereby providing a valuable method to explore the plasticity of body representation. In this paper, we show that women can experience ownership over a whole virtual body that is considerably smaller or larger than their physical body. In order to gain a better understanding of the mechanisms underlying body ownership, we use an embodiment questionnaire, and introduce two new behavioral response measures: an affordance estimation task (indirect measure of body size) and a body size estimation task (direct measure of body size). Interestingly, after viewing the virtual body from first person perspective, both the affordance and the body size estimation tasks indicate a change in the perception of the size of the participant's experienced body. The change is biased by the size of the virtual body (overweight or underweight). Another novel aspect of our study is that we distinguish between the physical, experienced and virtual bodies, by asking participants to provide affordance and body size estimations for each of the three bodies separately. This methodological point is important for virtual reality experiments investigating body ownership of a virtual body, because it offers a better understanding of which cues (e.g. visual, proprioceptive, memory, or a combination thereof) influence body perception, and whether the impact of these cues can vary between different setups.
Owning an Overweight or Underweight Body: Distinguishing the Physical, Experienced and Virtual Body
Piryankova, Ivelina V.; Wong, Hong Yu; Linkenauger, Sally A.; Stinson, Catherine; Longo, Matthew R.; Bülthoff, Heinrich H.; Mohler, Betty J.
2014-01-01
Our bodies are the most intimately familiar objects we encounter in our perceptual environment. Virtual reality provides a unique method to allow us to experience having a very different body from our own, thereby providing a valuable method to explore the plasticity of body representation. In this paper, we show that women can experience ownership over a whole virtual body that is considerably smaller or larger than their physical body. In order to gain a better understanding of the mechanisms underlying body ownership, we use an embodiment questionnaire, and introduce two new behavioral response measures: an affordance estimation task (indirect measure of body size) and a body size estimation task (direct measure of body size). Interestingly, after viewing the virtual body from first person perspective, both the affordance and the body size estimation tasks indicate a change in the perception of the size of the participant's experienced body. The change is biased by the size of the virtual body (overweight or underweight). Another novel aspect of our study is that we distinguish between the physical, experienced and virtual bodies, by asking participants to provide affordance and body size estimations for each of the three bodies separately. This methodological point is important for virtual reality experiments investigating body ownership of a virtual body, because it offers a better understanding of which cues (e.g. visual, proprioceptive, memory, or a combination thereof) influence body perception, and whether the impact of these cues can vary between different setups. PMID:25083784
Ballante, Flavio; Marshall, Garland R
2016-01-25
Molecular docking is a widely used technique in drug design to predict the binding pose of a candidate compound in a defined therapeutic target. Numerous docking protocols are available, each characterized by different search methods and scoring functions, thus providing variable predictive capability on a same ligand-protein system. To validate a docking protocol, it is necessary to determine a priori the ability to reproduce the experimental binding pose (i.e., by determining the docking accuracy (DA)) in order to select the most appropriate docking procedure and thus estimate the rate of success in docking novel compounds. As common docking programs use generally different root-mean-square deviation (RMSD) formulas, scoring functions, and format results, it is both difficult and time-consuming to consistently determine and compare their predictive capabilities in order to identify the best protocol to use for the target of interest and to extrapolate the binding poses (i.e., best-docked (BD), best-cluster (BC), and best-fit (BF) poses) when applying a given docking program over thousands/millions of molecules during virtual screening. To reduce this difficulty, two new procedures called Clusterizer and DockAccessor have been developed and implemented for use with some common and "free-for-academics" programs such as AutoDock4, AutoDock4(Zn), AutoDock Vina, DOCK, MpSDockZn, PLANTS, and Surflex-Dock to automatically extrapolate BD, BC, and BF poses as well as to perform consistent cluster and DA analyses. Clusterizer and DockAccessor (code available over the Internet) represent two novel tools to collect computationally determined poses and detect the most predictive docking approach. Herein an application to human lysine deacetylase (hKDAC) inhibitors is illustrated.
Free-viewpoint video of human actors using multiple handheld Kinects.
Ye, Genzhi; Liu, Yebin; Deng, Yue; Hasler, Nils; Ji, Xiangyang; Dai, Qionghai; Theobalt, Christian
2013-10-01
We present an algorithm for creating free-viewpoint video of interacting humans using three handheld Kinect cameras. Our method reconstructs deforming surface geometry and temporal varying texture of humans through estimation of human poses and camera poses for every time step of the RGBZ video. Skeletal configurations and camera poses are found by solving a joint energy minimization problem, which optimizes the alignment of RGBZ data from all cameras, as well as the alignment of human shape templates to the Kinect data. The energy function is based on a combination of geometric correspondence finding, implicit scene segmentation, and correspondence finding using image features. Finally, texture recovery is achieved through jointly optimization on spatio-temporal RGB data using matrix completion. As opposed to previous methods, our algorithm succeeds on free-viewpoint video of human actors under general uncontrolled indoor scenes with potentially dynamic background, and it succeeds even if the cameras are moving.
Assimilating data into open ocean tidal models
NASA Astrophysics Data System (ADS)
Kivman, Gennady A.
The problem of deriving tidal fields from observations by reason of incompleteness and imperfectness of every data set practically available has an infinitely large number of allowable solutions fitting the data within measurement errors and hence can be treated as ill-posed. Therefore, interpolating the data always relies on some a priori assumptions concerning the tides, which provide a rule of sampling or, in other words, a regularization of the ill-posed problem. Data assimilation procedures used in large scale tide modeling are viewed in a common mathematical framework as such regularizations. It is shown that they all (basis functions expansion, parameter estimation, nudging, objective analysis, general inversion, and extended general inversion), including those (objective analysis and general inversion) originally formulated in stochastic terms, may be considered as utilizations of one of the three general methods suggested by the theory of ill-posed problems. The problem of grid refinement critical for inverse methods and nudging is discussed.
A study on body weight perception and weight control behaviours among adolescents in Hong Kong.
Cheung, Patrick C H; Ip, Patricia L S; Lam, S T; Bibby, Helen
2007-02-01
To examine the relationships between body weight perceptions, estimated body mass index, gender, and weight control behaviours. Cross-sectional survey. Three secondary schools in Hong Kong. A total of 1132 secondary school forms 1 and 3 students. The strength of agreement between perceived weight and estimated body mass index, and the association between perceived weight, estimated body mass index, and weight control behaviours. A total of 14% of students were estimated to be overweight or obese. The agreement between actual (estimated) body mass index and perceived weight was poor in females and fair in males (Kappa 0.137 and 0.225, respectively). In females, there was no evidence of a relationship between body mass index and weight control behaviours. However, there was a relationship between perceived weight and weight control behaviours such that females who perceived themselves as overweight were more likely to exercise, restrict caloric intake, self medicate with diet pills, purge, or use laxatives. In males, there was evidence of a relationship between perceived weight, body mass index, and weight control behaviours. Males who perceived themselves as overweight or were overweight, were more likely to exercise or restrict caloric intake. Body weight perceptions are not in agreement with actual weight in adolescents. This discrepancy is more marked in females who use a variety of weight control behaviours. These behaviours are motivated by perceived weight rather than actual (estimated) body mass index. Overweight adolescents should be encouraged to adopt appropriate weight control behaviours for their health needs.
Many-Body Subradiant Excitations in Metamaterial Arrays: Experiment and Theory.
Jenkins, Stewart D; Ruostekoski, Janne; Papasimakis, Nikitas; Savo, Salvatore; Zheludev, Nikolay I
2017-08-04
Subradiant excitations, originally predicted by Dicke, have posed a long-standing challenge in physics owing to their weak radiative coupling to environment. Here we engineer massive coherently driven classical subradiance in planar metamaterial arrays as a spatially extended eigenmode comprising over 1000 metamolecules. By comparing the near- and far-field response in large-scale numerical simulations with those in experimental observations we identify strong evidence for classically correlated multimetamolecule subradiant states that dominate the total excitation energy. We show that similar spatially extended many-body subradiance can also exist in plasmonic metamaterial arrays at optical frequencies.
Heavy metals hazards from Nigerian spices.
Asomugha, Rose Ngozi; Udowelle, Nnaemeka Arinze; Offor, Samuel James; Njoku, Chinonso Judith; Ofoma, Ifeoma Victoria; Chukwuogor, Chiaku Chinwe; Orisakwe, Orish Ebere
Natural spices are commonly used by the people in Nigeria. They may be easily contaminated with heavy metals when they are dried and then pose a health risk for the consumers. The aim of this study was to determine the levels of heavy metals in some commonly consumed natural spices namely Prosopis Africana, Xylopia aethiopica, Piper gineense, Monodora myristica, Monodora tenuifolia and Capsicum frutescens sold in the local markets of Awka, Anambra state, South East Nigeria to estimate the potential health risk. The range of heavy metal concentration was in the order: Zn (14.09 - 161.04) > Fe (28.15 - 134.59) > Pb (2.61 - 8.97) > Cr (0.001 - 3.81) > Co (0.28 - 3.07) > Ni (0.34 - 2.89). Pb, Fe and Zn exceeded the maximum allowable concentrations for spices. The Target Hazard Quotient (THQ) of the spices varied from 0.06-0.5. Estimated daily intakes (EDI) were all below the tolerable daily intake (TDI). The lead levels in Prosopis africana, Xylopia aethiopica, Piper gineense, Monodora myristica and Capsicum frutescens which are 8-30 times higher than the WHO/FAO permissible limit of 0.3 mg/kg. Lead contamination of spices sold in Awka (south east Nigeria) may add to the body burden of lead. A good quality control for herbal food is important in order to protect consumers from contamination. food products, spices, potential toxic metals, risk assessment, public health.
Human body mass estimation: a comparison of "morphometric" and "mechanical" methods.
Auerbach, Benjamin M; Ruff, Christopher B
2004-12-01
In the past, body mass was reconstructed from hominin skeletal remains using both "mechanical" methods which rely on the support of body mass by weight-bearing skeletal elements, and "morphometric" methods which reconstruct body mass through direct assessment of body size and shape. A previous comparison of two such techniques, using femoral head breadth (mechanical) and stature and bi-iliac breadth (morphometric), indicated a good general correspondence between them (Ruff et al. [1997] Nature 387:173-176). However, the two techniques were never systematically compared across a large group of modern humans of diverse body form. This study incorporates skeletal measures taken from 1,173 Holocene adult individuals, representing diverse geographic origins, body sizes, and body shapes. Femoral head breadth, bi-iliac breadth (after pelvic rearticulation), and long bone lengths were measured on each individual. Statures were estimated from long bone lengths using appropriate reference samples. Body masses were calculated using three available femoral head breadth (FH) formulae and the stature/bi-iliac breadth (STBIB) formula, and compared. All methods yielded similar results. Correlations between FH estimates and STBIB estimates are 0.74-0.81. Slight differences in results between the three FH estimates can be attributed to sampling differences in the original reference samples, and in particular, the body-size ranges included in those samples. There is no evidence for systematic differences in results due to differences in body proportions. Since the STBIB method was validated on other samples, and the FH methods produced similar estimates, this argues that either may be applied to skeletal remains with some confidence. 2004 Wiley-Liss, Inc.
Complete identification and eventual prevention of urban/suburban water quality problems pose significant monitoring challenges. Uncontrolled growth of impervious surfaces (roads, buildings and parking) causes detrimental hydrologic changes, stream channel erosion, habitat degra...
20171015 - Predicting Exposure Pathways with Machine Learning (ISES)
Prioritizing the risk posed to human health from the thousands of chemicals in the environment requires tools that can estimate exposure rates from limited information. High throughput models exist to make predictions of exposure via specific, important pathways such as residenti...
Improving estimation of phytoplankton isotopic values from bulk POM samples in rivers
Background/Questions/MethodsResponses of phytoplankton to excessive nutrients in rivers cause many ecological problems, including harmful algal blooms, hypoxia and even food web collapse, posing serious risks to fish and human health. Successful remediation requires identificati...
Complete identification and eventual prevention of urban water quality problems pose significant monitoring, "smart growth" and water quality management challenges. Uncontrolled increase of impervious surface area (roads, buildings, and parking lots) causes detrimental hydrologi...
Exposure-Based Prioritization of Chemicals for Risk Assessment
Manufactured chemicals are used extensively to produce a wide variety of consumer goods and are required by important industrial sectors. Presently, information is insufficient to estimate risks posed to human health and the environment from the over ten thousand chemical substan...
Advances in marker-assisted breeding of sugarcane
USDA-ARS?s Scientific Manuscript database
Despite the challenges posed by sugarcane, geneticists and breeders have actively sought to use DNA marker technology to enhance breeding efforts. Markers have been used to explore taxonomy, estimate genetic diversity, and to develop unique molecular fingerprints. Numerous studies have been undertak...
Kim, Sang-Jo; Lee, Hyun-Kyung; Badejo, Abimbola C; Lee, Won-Chan; Moon, Hyo-Bang
2016-01-15
Limited information is available on mercury (Hg) levels in various shark species consumed in Korea. The methyl-Hg (Me-Hg) and total Hg concentrations in all shark species ranged from 0.08 to 4.5 (mean: 1.2) mg/kg wet weight and from 0.1 to 7.0 (mean: 1.4) mg/kg wet weight, respectively. Inter-species differences in Hg accumulation were found among the species; however, Hg accumulation was homogenous between dorsal and pectoral fins within species. The highest Hg levels were found in aggressive carnivore shark species. Trophic position was important in determining Hg accumulation for aggressive carnivore sharks. Approximately 80% of shark species exceeded the safety limits for Me-Hg established by domestic and international authorities. The mean estimated daily intake of Me-Hg (1.3 μg/kg body weight/day) for Korean populations consuming various sharks was higher than the guidelines proposed by international regulatory authorities, suggesting that excessive shark fin consumption may pose potential health risks for Koreans. Copyright © 2015 Elsevier Ltd. All rights reserved.
Study of experiment on leaching of bisphenol A from infant books to artificial saliva.
Sajiki, Junko; Yanagibori, Ryoko; Kobayashi, Yaeko
2010-05-01
To assess the risk of bisphenol A (BPA) exposure when infants suck or chew infant books, the concentration of BPA leaching from infant books published by Japanese makers to artificial saliva was measured. The concentration of BPA leaching from 10 infant books to 15 ml artificial saliva or water was measured at 37 degrees C for 20 hrs. BPA concentration was measured by high-performance liquid chromatography-electrochemical detection (HPLC-ECD) with solid-phase extraction. BPA was leached from all books when pieces of them were dipped both into saliva and water for 20 hrs. The highest concentration of BPA leaching from one out of 10 books was 43.4 ng/ml (for 2 hrs) in saliva, which was estimated to be approximately 0.052 mg/kg body weight/day for infants aged 6-10 months. As BPA has endocrine-disrupting effects and poses higher risks in infants than in adults, it is desired to reduce BPA use in the printing of infant books from the viewpoint of child health.
Investigation of natural effective gamma dose rates case study: Ardebil Province in Iran
2012-01-01
Gamma rays pose enough energy to induce chemical changes that may be biologically important for the normal functioning of body cells. The external exposure of human beings to natural environmental gamma radiation normally exceeds that from all man-made sources combined. In this research natural background gamma dose rates and corresponding annual effective doses were determined for selected cities of Ardebil province. Outdoor gamma dose rates were measured using an Ion Chamber Survey Meter in 105 locations in selected districts. Average absorbed doses for Ardebil, Sar-Ein, Germy, Neer, Shourabil Recreational Lake, and Kosar were determined as 265, 219, 344, 233, 352, and 358 nSv/h, respectively. Although dose rates recorded for Germi and Kosar are comparable with some areas with high natural radiation background, however, the dose rates in other districts are well below the levels reported for such locations. Average annual effective dose due to indoor and outdoor gamma radiation for Ardebil province was estimated as 1.73 (1.35–2.39) mSv, which is on average 2 times higher than the world population weighted average. PMID:23369115
U.S. EPA health assessment for diesel engine exhaust: a review.
Ris, Charles
2007-01-01
In 2002 the U.S. Environmental Protection Agency (EPA) released a Health assessment Document for Diesel Engine Exhaust. The objective of this assessment was to examine the possible health hazards associated with exposure to diesel engine exhaust (DE). The assessment concludes that long-term inhalation exposure is likely to pose a lung cancer hazard to humans as inferred from epidemiologic and certain animal studies. Estimation of cancer potency from available epidemiology studies was not attempted because of the absence of a confident cancer dose-response and animal studies were not judged appropriate for cancer potency estimation. A noncancer chronic human health hazard is inferred from rodent studies which show dose-dependent inflammation and histopathology in the rat lung. For these noncancer effects a safe exposure concentration for humans was estimated. Short-term exposures were noted to cause irritation and inflammatory symptoms of a transient nature, these being highly variable across an exposed population. The assessment also indicates that there is emerging evidence for the exacerbation of existing allergies and asthma symptoms; however, as of 2002 the data were inadequate for quantitative dose-response analysis. The assessment conclusions are based on studies that used exposures from engines built prior to the mid 1990s. More recent engines without high-efficiency particle traps would be expected to have exhaust emissions with similar characteristics. With additional cancer epidemiology studies expected in 2007-2008, and a growing body of evidence for allergenicity and cardiovascular effects, future health assessments will have an expanded health effects data base to evaluate.
Wangerin, Kristen A; Baratto, Lucia; Khalighi, Mohammad Mehdi; Hope, Thomas A; Gulaka, Praveen K; Deller, Timothy W; Iagaru, Andrei H
2018-06-06
Gallium-68-labeled radiopharmaceuticals pose a challenge for scatter estimation because their targeted nature can produce high contrast in these regions of the kidneys and bladder. Even small errors in the scatter estimate can result in washout artifacts. Administration of diuretics can reduce these artifacts, but they may result in adverse events. Here, we investigated the ability of algorithmic modifications to mitigate washout artifacts and eliminate the need for diuretics or other interventions. The model-based scatter algorithm was modified to account for PET/MRI scanner geometry and challenges of non-FDG tracers. Fifty-three clinical 68 Ga-RM2 and 68 Ga-PSMA-11 whole-body images were reconstructed using the baseline scatter algorithm. For comparison, reconstruction was also processed with modified sampling in the single-scatter estimation and with an offset in the scatter tail-scaling process. None of the patients received furosemide to attempt to decrease the accumulation of radiopharmaceuticals in the bladder. The images were scored independently by three blinded reviewers using the 5-point Likert scale. The scatter algorithm improvements significantly decreased or completely eliminated the washout artifacts. When comparing the baseline and most improved algorithm, the image quality increased and image artifacts were reduced for both 68 Ga-RM2 and for 68 Ga-PSMA-11 in the kidneys and bladder regions. Image reconstruction with the improved scatter correction algorithm mitigated washout artifacts and recovered diagnostic image quality in 68 Ga PET, indicating that the use of diuretics may be avoided.
Bray, Maria; Pomeroy, Jeremy; Knowler, William C; Bersamin, Andrea; Hopkins, Scarlett; Brage, Søren; Stanhope, Kimber; Havel, Peter J; Boyer, Bert B
2013-09-01
To (1) evaluate the relationships between several indices of obesity with obesity-related risk factors; (2) compare the accuracy of body composition estimates derived from anthropometry and bioimpedance analysis (BIA) to estimates of body composition assessed by doubly-labeled water (DLW); and (3) establish equations for estimating fat mass (FM), fat-free mass (FFM), and percent body fat (PBF) in Yup'ik people. Participants included 1,056 adult Yup'ik people from 11 communities in Southwestern Alaska. In a sub-study of 30 participants, we developed population-specific linear regression models for estimating FM, FFM, and PBF from anthropometrics, age, sex, and BIA against criterion measures derived from total body water assessed with DLW. These models were then used with the population cohort and we analyzed the relationships between obesity indices and several health-related and disease status variables: (1) fasting plasma lipids, (2) glucose, (3) HbA1c, (4) adiponectin, (5) blood pressure, (6) diabetes (DM), and (7) cerebrocoronary vascular disease (CCVD) which includes stroke and heart disease. The best model for estimating FM in the sub-study used only three variables-sex, waist circumference (WC), and hip circumference and had multiple R(2) = 0.9730. FFM and PBF were calculated from FM and body weight. WC and other anthropometrics were more highly correlated with a number of obesity-related risk factors than were direct estimates of body composition. Body composition in Yup'ik people can be accurately estimated from simple anthropometrics. Copyright © 2012 The Obesity Society.
Bray, Maria; Pomeroy, Jeremy; Knowler, William C.; Bersamin, Andrea; Hopkins, Scarlett; Brage, Søren; Stanhope, Kimber; Havel, Peter J.; Boyer, Bert B.
2012-01-01
We aimed to: 1) evaluate the relationships between several indices of obesity with obesity-related risk factors; 2) compare the accuracy of body composition estimates derived from anthropometry and bioimpedance analysis (BIA) to estimates of body composition assessed by doubly-labeled water (DLW); and 3) establish equations for estimating fat mass (FM), fat-free mass (FFM), and percent body fat (PBF) in Yup’ik Eskimo people. Participants included 1056 adult Yup’ik People from 11 communities in Southwestern Alaska. In a substudy of 30 participants, we developed population-specific linear regression models for estimating FM, FFM, and PBF from anthropometrics, age, sex, and BIA against criterion measures derived from total body water assessed with DLW. These models were then used with the population cohort and we analyzed the relationships between obesity indices and several health-related and disease status variables: 1. fasting plasma lipids, 2. glucose, 3. HbA1c, 4. adiponectin, 5. blood pressure, 6) diabetes (DM), and 7) cerebrocoronary vascular disease (CCVD) which includes stroke and heart disease. The best model for estimating FM in the substudy used only three variables – sex, waist circumference (WC), and hip circumference and had multiple R2=0.9730. FFM and PBF were calculated from FM and body weight. WC and other anthropometrics were more highly correlated with a number of obesity-related risk factors than were direct estimates of body composition. We conclude that body composition in Yup’ik People can be accurately estimated from simple anthropometrics. PMID:23666898
Zemski, Adam J; Broad, Elizabeth M; Slater, Gary J
2018-01-01
Body composition in elite rugby union athletes is routinely assessed using surface anthropometry, which can be utilized to provide estimates of absolute body composition using regression equations. This study aims to assess the ability of available skinfold equations to estimate body composition in elite rugby union athletes who have unique physique traits and divergent ethnicity. The development of sport-specific and ethnicity-sensitive equations was also pursued. Forty-three male international Australian rugby union athletes of Caucasian and Polynesian descent underwent surface anthropometry and dual-energy X-ray absorptiometry (DXA) assessment. Body fat percent (BF%) was estimated using five previously developed equations and compared to DXA measures. Novel sport and ethnicity-sensitive prediction equations were developed using forward selection multiple regression analysis. Existing skinfold equations provided unsatisfactory estimates of BF% in elite rugby union athletes, with all equations demonstrating a 95% prediction interval in excess of 5%. The equations tended to underestimate BF% at low levels of adiposity, whilst overestimating BF% at higher levels of adiposity, regardless of ethnicity. The novel equations created explained a similar amount of variance to those previously developed (Caucasians 75%, Polynesians 90%). The use of skinfold equations, including the created equations, cannot be supported to estimate absolute body composition. Until a population-specific equation is established that can be validated to precisely estimate body composition, it is advocated to use a proven method, such as DXA, when absolute measures of lean and fat mass are desired, and raw anthropometry data routinely to derive an estimate of body composition change.
The perceptual homunculus: the perception of the relative proportions of the human body.
Linkenauger, Sally A; Wong, Hong Yu; Geuss, Michael; Stefanucci, Jeanine K; McCulloch, Kathleen C; Bülthoff, Heinrich H; Mohler, Betty J; Proffitt, Dennis R
2015-02-01
Given that observing one's body is ubiquitous in experience, it is natural to assume that people accurately perceive the relative sizes of their body parts. This assumption is mistaken. In a series of studies, we show that there are dramatic systematic distortions in the perception of bodily proportions, as assessed by visual estimation tasks, where participants were asked to compare the lengths of two body parts. These distortions are not evident when participants estimate the extent of a body part relative to a noncorporeal object or when asked to estimate noncorporal objects that are the same length as their body parts. Our results reveal a radical asymmetry in the perception of corporeal and noncorporeal relative size estimates. Our findings also suggest that people visually perceive the relative size of their body parts as a function of each part's relative tactile sensitivity and physical size.
Meise, Kristine; Mueller, Birte; Zein, Beate; Trillmich, Fritz
2014-01-01
Morphological features correlate with many life history traits and are therefore of high interest to behavioral and evolutionary biologists. Photogrammetry provides a useful tool to collect morphological data from species for which measurements are otherwise difficult to obtain. This method reduces disturbance and avoids capture stress. Using the Galapagos sea lion (Zalophus wollebaeki) as a model system, we tested the applicability of single-camera photogrammetry in combination with laser distance measurement to estimate morphological traits which may vary with an animal's body position. We assessed whether linear morphological traits estimated by photogrammetry can be used to estimate body length and mass. We show that accurate estimates of body length (males: ±2.0%, females: ±2.6%) and reliable estimates of body mass are possible (males: ±6.8%, females: 14.5%). Furthermore, we developed correction factors that allow the use of animal photos that diverge somewhat from a flat-out position. The product of estimated body length and girth produced sufficiently reliable estimates of mass to categorize individuals into 10 kg-classes of body mass. Data of individuals repeatedly photographed within one season suggested relatively low measurement errors (body length: 2.9%, body mass: 8.1%). In order to develop accurate sex- and age-specific correction factors, a sufficient number of individuals from both sexes and from all desired age classes have to be captured for baseline measurements. Given proper validation, this method provides an excellent opportunity to collect morphological data for large numbers of individuals with minimal disturbance.
Meise, Kristine; Mueller, Birte; Zein, Beate; Trillmich, Fritz
2014-01-01
Morphological features correlate with many life history traits and are therefore of high interest to behavioral and evolutionary biologists. Photogrammetry provides a useful tool to collect morphological data from species for which measurements are otherwise difficult to obtain. This method reduces disturbance and avoids capture stress. Using the Galapagos sea lion (Zalophus wollebaeki) as a model system, we tested the applicability of single-camera photogrammetry in combination with laser distance measurement to estimate morphological traits which may vary with an animal’s body position. We assessed whether linear morphological traits estimated by photogrammetry can be used to estimate body length and mass. We show that accurate estimates of body length (males: ±2.0%, females: ±2.6%) and reliable estimates of body mass are possible (males: ±6.8%, females: 14.5%). Furthermore, we developed correction factors that allow the use of animal photos that diverge somewhat from a flat-out position. The product of estimated body length and girth produced sufficiently reliable estimates of mass to categorize individuals into 10 kg-classes of body mass. Data of individuals repeatedly photographed within one season suggested relatively low measurement errors (body length: 2.9%, body mass: 8.1%). In order to develop accurate sex- and age-specific correction factors, a sufficient number of individuals from both sexes and from all desired age classes have to be captured for baseline measurements. Given proper validation, this method provides an excellent opportunity to collect morphological data for large numbers of individuals with minimal disturbance. PMID:24987983
Body mass estimates of hominin fossils and the evolution of human body size.
Grabowski, Mark; Hatala, Kevin G; Jungers, William L; Richmond, Brian G
2015-08-01
Body size directly influences an animal's place in the natural world, including its energy requirements, home range size, relative brain size, locomotion, diet, life history, and behavior. Thus, an understanding of the biology of extinct organisms, including species in our own lineage, requires accurate estimates of body size. Since the last major review of hominin body size based on postcranial morphology over 20 years ago, new fossils have been discovered, species attributions have been clarified, and methods improved. Here, we present the most comprehensive and thoroughly vetted set of individual fossil hominin body mass predictions to date, and estimation equations based on a large (n = 220) sample of modern humans of known body masses. We also present species averages based exclusively on fossils with reliable taxonomic attributions, estimates of species averages by sex, and a metric for levels of sexual dimorphism. Finally, we identify individual traits that appear to be the most reliable for mass estimation for each fossil species, for use when only one measurement is available for a fossil. Our results show that many early hominins were generally smaller-bodied than previously thought, an outcome likely due to larger estimates in previous studies resulting from the use of large-bodied modern human reference samples. Current evidence indicates that modern human-like large size first appeared by at least 3-3.5 Ma in some Australopithecus afarensis individuals. Our results challenge an evolutionary model arguing that body size increased from Australopithecus to early Homo. Instead, we show that there is no reliable evidence that the body size of non-erectus early Homo differed from that of australopiths, and confirm that Homo erectus evolved larger average body size than earlier hominins. Copyright © 2015 Elsevier Ltd. All rights reserved.
Mutch, David M; Pers, Tune H; Temanni, M Ramzi; Pelloux, Veronique; Marquez-Quiñones, Adriana; Holst, Claus; Martinez, J Alfredo; Babalis, Dimitris; van Baak, Marleen A; Handjieva-Darlenska, Teodora; Walker, Celia G; Astrup, Arne; Saris, Wim H M; Langin, Dominique; Viguerie, Nathalie; Zucker, Jean-Daniel; Clément, Karine
2011-12-01
Weight loss has been shown to reduce risk factors associated with cardiovascular disease and diabetes; however, successful maintenance of weight loss continues to pose a challenge. The present study was designed to assess whether changes in subcutaneous adipose tissue (scAT) gene expression during a low-calorie diet (LCD) could be used to differentiate and predict subjects who experience successful short-term weight maintenance from subjects who experience weight regain. Forty white women followed a dietary protocol consisting of an 8-wk LCD phase followed by a 6-mo weight-maintenance phase. Participants were classified as weight maintainers (WMs; 0-10% weight regain) and weight regainers (WRs; 50-100% weight regain) by considering changes in body weight during the 2 phases. Anthropometric measurements, bioclinical variables, and scAT gene expression were studied in all individuals before and after the LCD. Energy intake was estimated by using 3-d dietary records. No differences in body weight and fasting insulin were observed between WMs and WRs at baseline or after the LCD period. The LCD resulted in significant decreases in body weight and in several plasma variables in both groups. WMs experienced a significant reduction in insulin secretion in response to an oral-glucose-tolerance test after the LCD; in contrast, no changes in insulin secretion were observed in WRs after the LCD. An ANOVA of scAT gene expression showed that genes regulating fatty acid metabolism, citric acid cycle, oxidative phosphorylation, and apoptosis were regulated differently by the LCD in WM and WR subjects. This study suggests that LCD-induced changes in insulin secretion and scAT gene expression may have the potential to predict successful short-term weight maintenance. This trial was registered at clinicaltrials.gov as NCT00390637.
Junno, Juho-Antti; Niskanen, Markku; Maijanen, Heli; Holt, Brigitte; Sladek, Vladimir; Niinimäki, Sirpa; Berner, Margit
2018-02-01
The stature/bi-iliac breadth method provides reasonably precise, skeletal frame size (SFS) based body mass (BM) estimations across adults as a whole. In this study, we examine the potential effects of age changes in anthropometric dimensions on the estimation accuracy of SFS-based body mass estimation. We use anthropometric data from the literature and our own skeletal data from two osteological collections to study effects of age on stature, bi-iliac breadth, body mass, and body composition, as they are major components behind body size and body size estimations. We focus on males, as relevant longitudinal data are based on male study samples. As a general rule, lean body mass (LBM) increases through adolescence and early adulthood until people are aged in their 30s or 40s, and starts to decline in the late 40s or early 50s. Fat mass (FM) tends to increase until the mid-50s and declines thereafter, but in more mobile traditional societies it may decline throughout adult life. Because BM is the sum of LBM and FM, it exhibits a curvilinear age-related pattern in all societies. Skeletal frame size is based on stature and bi-iliac breadth, and both of those dimensions are affected by age. Skeletal frame size based body mass estimation tends to increase throughout adult life in both skeletal and anthropometric samples because an age-related increase in bi-iliac breadth more than compensates for an age-related stature decline commencing in the 30s or 40s. Combined with the above-mentioned curvilinear BM change, this results in curvilinear estimation bias. However, for simulations involving low to moderate percent body fat, the stature/bi-iliac method works well in predicting body mass in younger and middle-aged adults. Such conditions are likely to have applied to most human paleontological and archaeological samples. Copyright © 2017 Elsevier Ltd. All rights reserved.
2D/3D Visual Tracker for Rover Mast
NASA Technical Reports Server (NTRS)
Bajracharya, Max; Madison, Richard W.; Nesnas, Issa A.; Bandari, Esfandiar; Kunz, Clayton; Deans, Matt; Bualat, Maria
2006-01-01
A visual-tracker computer program controls an articulated mast on a Mars rover to keep a designated feature (a target) in view while the rover drives toward the target, avoiding obstacles. Several prior visual-tracker programs have been tested on rover platforms; most require very small and well-estimated motion between consecutive image frames a requirement that is not realistic for a rover on rough terrain. The present visual-tracker program is designed to handle large image motions that lead to significant changes in feature geometry and photometry between frames. When a point is selected in one of the images acquired from stereoscopic cameras on the mast, a stereo triangulation algorithm computes a three-dimensional (3D) location for the target. As the rover moves, its body-mounted cameras feed images to a visual-odometry algorithm, which tracks two-dimensional (2D) corner features and computes their old and new 3D locations. The algorithm rejects points, the 3D motions of which are inconsistent with a rigid-world constraint, and then computes the apparent change in the rover pose (i.e., translation and rotation). The mast pan and tilt angles needed to keep the target centered in the field-of-view of the cameras (thereby minimizing the area over which the 2D-tracking algorithm must operate) are computed from the estimated change in the rover pose, the 3D position of the target feature, and a model of kinematics of the mast. If the motion between the consecutive frames is still large (i.e., 3D tracking was unsuccessful), an adaptive view-based matching technique is applied to the new image. This technique uses correlation-based template matching, in which a feature template is scaled by the ratio between the depth in the original template and the depth of pixels in the new image. This is repeated over the entire search window and the best correlation results indicate the appropriate match. The program could be a core for building application programs for systems that require coordination of vision and robotic motion.
May, Stefan
2018-01-01
This paper describes the estimation of the body weight of a person in front of an RGB-D camera. A survey of different methods for body weight estimation based on depth sensors is given. First, an estimation of people standing in front of a camera is presented. Second, an approach based on a stream of depth images is used to obtain the body weight of a person walking towards a sensor. The algorithm first extracts features from a point cloud and forwards them to an artificial neural network (ANN) to obtain an estimation of body weight. Besides the algorithm for the estimation, this paper further presents an open-access dataset based on measurements from a trauma room in a hospital as well as data from visitors of a public event. In total, the dataset contains 439 measurements. The article illustrates the efficiency of the approach with experiments with persons lying down in a hospital, standing persons, and walking persons. Applicable scenarios for the presented algorithm are body weight-related dosing of emergency patients. PMID:29695098
Pfitzner, Christian; May, Stefan; Nüchter, Andreas
2018-04-24
This paper describes the estimation of the body weight of a person in front of an RGB-D camera. A survey of different methods for body weight estimation based on depth sensors is given. First, an estimation of people standing in front of a camera is presented. Second, an approach based on a stream of depth images is used to obtain the body weight of a person walking towards a sensor. The algorithm first extracts features from a point cloud and forwards them to an artificial neural network (ANN) to obtain an estimation of body weight. Besides the algorithm for the estimation, this paper further presents an open-access dataset based on measurements from a trauma room in a hospital as well as data from visitors of a public event. In total, the dataset contains 439 measurements. The article illustrates the efficiency of the approach with experiments with persons lying down in a hospital, standing persons, and walking persons. Applicable scenarios for the presented algorithm are body weight-related dosing of emergency patients.
1987-09-30
igennfy by ""aU numiir,) PIAL GROUP Sue. Go. RCI (Cm, inve o owuera Ineeemerv 4R an~ b-, bloca number) The goal of this research was to study...estimation and control of elastic systems compoited of beams and plates. Specifically, the research con- sidered the problem of lcating the optimal placement...estimation and control of elastic systems com- posed of beams and plates. This general goal has served as a guide for our research over the last several
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keehan, S; Taylor, M; Franich, R
2015-06-15
Purpose: To assess the risk posed by neutron induced activation of components in medical linear accelerators (linacs) following the delivery of high monitor unit 18 MV photon beams such as used in TBI. Methods: Gamma spectroscopy was used to identify radioisotopes produced in components of a Varian 21EX and an Elekta Synergy following delivery of photon beams. Dose and risk estimates for TBI were assessed using dose deliveries from an actual patient treatment. A 1 litre spherical ion chamber (PTW, Germany) has been used to measure the dose at the beam exit window and at the total body irradiation (TBI)more » treatment couch following large and small field beams with long beam-on times. Measurements were also made outside of the closed jaws to quantify the benefit of the attenuation provided by the jaws. Results: The radioisotopes produced in the linac head have been identified as {sup 187}W, {sup 56}Mn, {sup 24}Na and {sup 28}Al, which have half-lives from between 2.3 min to 24 hours. The dose at the beam exit window following an 18 MV 2197 MU TBI beam delivery was 12.6 µSv in ten minutes. The dose rate at the TBI treatment couch 4.8 m away is a factor of ten lower. For a typical TBI delivered in six fractions each consisting of four beams and an annual patient load of 24, the annual dose estimate for a staff member at the treatment couch for ten minutes is 750 µSv. This can be further reduced by a factor of about twelve if the jaws are closed before entering the room, resulting in a dose estimate of 65 µSv. Conclusion: The dose resulting from the activation products for a representative TBI workload at our clinic of 24 patients per year is 750 µSv, which can be further reduced to 65 µSv by closing the jaws.« less
Protein recovery from inclusion bodies of Escherichia coli using mild solubilization process.
Singh, Anupam; Upadhyay, Vaibhav; Upadhyay, Arun Kumar; Singh, Surinder Mohan; Panda, Amulya Kumar
2015-03-25
Formation of inclusion bodies in bacterial hosts poses a major challenge for large scale recovery of bioactive proteins. The process of obtaining bioactive protein from inclusion bodies is labor intensive and the yields of recombinant protein are often low. Here we review the developments in the field that are targeted at improving the yield, as well as quality of the recombinant protein by optimizing the individual steps of the process, especially solubilization of the inclusion bodies and refolding of the solubilized protein. Mild solubilization methods have been discussed which are based on the understanding of the fact that protein molecules in inclusion body aggregates have native-like structure. These methods solubilize the inclusion body aggregates while preserving the native-like protein structure. Subsequent protein refolding and purification results in high recovery of bioactive protein. Other parameters which influence the overall recovery of bioactive protein from inclusion bodies have also been discussed. A schematic model describing the utility of mild solubilization methods for high throughput recovery of bioactive protein has also been presented.
Global geometry of non-planar 3-body motions
NASA Astrophysics Data System (ADS)
Salehani, Mahdi Khajeh
2011-12-01
The aim of this paper is to study the global geometry of non-planar 3-body motions in the realms of equivariant Differential Geometry and Geometric Mechanics. This work was intended as an attempt at bringing together these two areas, in which geometric methods play the major role, in the study of the 3-body problem. It is shown that the Euler equations of a three-body system with non-planar motion introduce non-holonomic constraints into the Lagrangian formulation of mechanics. Applying the method of undetermined Lagrange multipliers to study the dynamics of three-body motions reduced to the level of moduli space {bar{M}} subject to the non-holonomic constraints yields the generalized Euler-Lagrange equations of non-planar three-body motions in {bar{M}} . As an application of the derived dynamical equations in the level of {bar{M}} , we completely settle the question posed by A. Wintner in his book [The analytical foundations of Celestial Mechanics, Sections 394-396, 435 and 436. Princeton University Press (1941)] on classifying the constant inclination solutions of the three-body problem.
Mental rotation and the motor system: embodiment head over heels.
Krüger, Markus; Amorim, Michel-Ange; Ebersbach, Mirjam
2014-01-01
We examined whether body parts attached to abstract stimuli automatically force embodiment in a mental rotation task. In Experiment 1, standard cube combinations reflecting a human pose were added with (1) body parts on anatomically possible locations, (2) body parts on anatomically impossible locations, (3) colored end cubes, and (4) simple end cubes. Participants (N=30) had to decide whether two simultaneously presented stimuli, rotated in the picture plane, were identical or not. They were fastest and made less errors in the possible-body condition, but were slowest and least accurate in the impossible-body condition. A second experiment (N=32) replicated the results and ruled out that the poor performance in the impossible-body condition was due to the specific stimulus material. The findings of both experiments suggest that body parts automatically trigger embodiment, even when it is counterproductive and dramatically impairs performance, as in the impossible-body condition. It can furthermore be concluded that body parts cannot be used flexibly for spatial orientation in mental rotation tasks, compared to colored end cubes. Thus, embodiment appears to be a strong and inflexible mechanism that may, under certain conditions, even impede performance. Copyright © 2013 Elsevier B.V. All rights reserved.
Holistic processing of human body postures: evidence from the composite effect.
Willems, Sam; Vrancken, Leia; Germeys, Filip; Verfaillie, Karl
2014-01-01
The perception of socially relevant stimuli (e.g., faces and bodies) has received considerable attention in the vision science community. It is now widely accepted that human faces are processed holistically and not only analytically. One observation that has been taken as evidence for holistic face processing is the face composite effect: two identical top halves of a face tend to be perceived as being different when combined with different bottom halves. This supports the hypothesis that face processing proceeds holistically. Indeed, the interference effect disappears when the two face parts are misaligned (blocking holistic perception). In the present study, we investigated whether there is also a composite effect for the perception of body postures: are two identical body halves perceived as being in different poses when the irrelevant body halves differ from each other? Both a horizontal (i.e., top-bottom body halves; Experiment 1) and a vertical composite effect (i.e., left-right body halves; Experiment 2) were examined by means of a delayed matching-to-sample task. Results of both experiments indicate the existence of a body posture composite effect. This provides evidence for the hypothesis that body postures, as faces, are processed holistically.
Holistic processing of human body postures: evidence from the composite effect
Willems, Sam; Vrancken, Leia; Germeys, Filip; Verfaillie, Karl
2014-01-01
The perception of socially relevant stimuli (e.g., faces and bodies) has received considerable attention in the vision science community. It is now widely accepted that human faces are processed holistically and not only analytically. One observation that has been taken as evidence for holistic face processing is the face composite effect: two identical top halves of a face tend to be perceived as being different when combined with different bottom halves. This supports the hypothesis that face processing proceeds holistically. Indeed, the interference effect disappears when the two face parts are misaligned (blocking holistic perception). In the present study, we investigated whether there is also a composite effect for the perception of body postures: are two identical body halves perceived as being in different poses when the irrelevant body halves differ from each other? Both a horizontal (i.e., top-bottom body halves; Experiment 1) and a vertical composite effect (i.e., left-right body halves; Experiment 2) were examined by means of a delayed matching-to-sample task. Results of both experiments indicate the existence of a body posture composite effect. This provides evidence for the hypothesis that body postures, as faces, are processed holistically. PMID:24999337
Body mass and stature estimation based on the first metatarsal in humans.
De Groote, Isabelle; Humphrey, Louise T
2011-04-01
Archaeological assemblages often lack the complete long bones needed to estimate stature and body mass. The most accurate estimates of body mass and stature are produced using femoral head diameter and femur length. Foot bones including the first metatarsal preserve relatively well in a range of archaeological contexts. In this article we present regression equations using the first metatarsal to estimate femoral head diameter, femoral length, and body mass in a diverse human sample. The skeletal sample comprised 87 individuals (Andamanese, Australasians, Africans, Native Americans, and British). Results show that all first metatarsal measurements correlate moderately to highly (r = 0.62-0.91) with femoral head diameter and length. The proximal articular dorsoplantar diameter is the best single measurement to predict both femoral dimensions. Percent standard errors of the estimate are below 5%. Equations using two metatarsal measurements show a small increase in accuracy. Direct estimations of body mass (calculated from measured femoral head diameter using previously published equations) have an error of just over 7%. No direct stature estimation equations were derived due to the varied linear body proportions represented in the sample. The equations were tested on a sample of 35 individuals from Christ Church Spitalfields. Percentage differences in estimated and measured femoral head diameter and length were less than 1%. This study demonstrates that it is feasible to use the first metatarsal in the estimation of body mass and stature. The equations presented here are particularly useful for assemblages where the long bones are either missing or fragmented, and enable estimation of these fundamental population parameters in poorly preserved assemblages. Copyright © 2011 Wiley-Liss, Inc.
Smither, Sophie J.; Eastaugh, Lin; Filone, Claire Marie; Freeburger, Denise; Herzog, Artemas; Lever, M. Stephen; Miller, David M.; Mitzel, Dana; Noah, James W.; Reddick-Elick, Mary S.; Reese, Amy; Schuit, Michael; Wlazlowski, Carly B.; Hevey, Michael
2018-01-01
Ebola virus (EBOV) in body fluids poses risk for virus transmission. However, there are limited experimental data for such matrices on the disinfectant efficacy against EBOV. We evaluated the effectiveness of disinfectants against EBOV in blood on surfaces. Only 5% peracetic acid consistently reduced EBOV titers in dried blood to the assay limit of quantification. PMID:29261093
1998-06-12
public health threats posed by water pollution. (b) More effective control of polluted runoff (including a strategy for achieving a net gain of... Control Strategies for Toxic Pollutants. a. The CWA requires states to identify "impaired" water bodies within their boundaries. For water...standards. Thereafter, states must develop "individual control strategies " (ICSs) to regulate such pollutants and achieve water quality standards
Smither, Sophie J; Eastaugh, Lin; Filone, Claire Marie; Freeburger, Denise; Herzog, Artemas; Lever, M Stephen; Miller, David M; Mitzel, Dana; Noah, James W; Reddick-Elick, Mary S; Reese, Amy; Schuit, Michael; Wlazlowski, Carly B; Hevey, Michael; Wahl-Jensen, Victoria
2018-01-01
Ebola virus (EBOV) in body fluids poses risk for virus transmission. However, there are limited experimental data for such matrices on the disinfectant efficacy against EBOV. We evaluated the effectiveness of disinfectants against EBOV in blood on surfaces. Only 5% peracetic acid consistently reduced EBOV titers in dried blood to the assay limit of quantification.
Feminism and Psychology: Analysis of a Half-Century of Research on Women and Gender
ERIC Educational Resources Information Center
Eagly, Alice H.; Eaton, Asia; Rose, Suzanna M.; Riger, Stephanie; McHugh, Maureen C.
2012-01-01
Starting in the 1960s, feminists argued that the discipline of psychology had neglected the study of women and gender and misrepresented women in its research and theories. Feminists also posed many questions worthy of being addressed by psychological science. This call for research preceded the emergence of a new and influential body of research…
Real-Time Interactive Tree Animation.
Quigley, Ed; Yu, Yue; Huang, Jingwei; Lin, Winnie; Fedkiw, Ronald
2018-05-01
We present a novel method for posing and animating botanical tree models interactively in real time. Unlike other state of the art methods which tend to produce trees that are overly flexible, bending and deforming as if they were underwater plants, our approach allows for arbitrarily high stiffness while still maintaining real-time frame rates without spurious artifacts, even on quite large trees with over ten thousand branches. This is accomplished by using an articulated rigid body model with as-stiff-as-desired rotational springs in conjunction with our newly proposed simulation technique, which is motivated both by position based dynamics and the typical algorithms for articulated rigid bodies. The efficiency of our algorithm allows us to pose and animate trees with millions of branches or alternatively simulate a small forest comprised of many highly detailed trees. Even using only a single CPU core, we can simulate ten thousand branches in real time while still maintaining quite crisp user interactivity. This has allowed us to incorporate our framework into a commodity game engine to run interactively even on a low-budget tablet. We show that our method is amenable to the incorporation of a large variety of desirable effects such as wind, leaves, fictitious forces, collisions, fracture, etc.
14 CFR 1214.805 - Unforeseen customer delay.
Code of Federal Regulations, 2013 CFR
2013-01-01
... problem pose a threat of delay to the Shuttle launch schedule or critical off-line activities, NASA shall... availability of facilities, equipment, and personnel. In requesting NASA to make such special efforts, the customer shall agree to reimburse NASA the estimated additional cost incurred. ...
14 CFR 1214.805 - Unforeseen customer delay.
Code of Federal Regulations, 2011 CFR
2011-01-01
... problem pose a threat of delay to the Shuttle launch schedule or critical off-line activities, NASA shall... availability of facilities, equipment, and personnel. In requesting NASA to make such special efforts, the customer shall agree to reimburse NASA the estimated additional cost incurred. ...
14 CFR 1214.805 - Unforeseen customer delay.
Code of Federal Regulations, 2012 CFR
2012-01-01
... problem pose a threat of delay to the Shuttle launch schedule or critical off-line activities, NASA shall... availability of facilities, equipment, and personnel. In requesting NASA to make such special efforts, the customer shall agree to reimburse NASA the estimated additional cost incurred. ...
Product Deformulation to Inform High-throughput Exposure Predictions (SOT)
The health risks posed by the thousands of chemicals in our environment depends on both chemical hazard and exposure. However, relatively few chemicals have estimates of exposure intake, limiting the understanding of risks. We have previously developed a heuristics-based exposur...
Assessing nanoparticle risk poses prodigious challenges
Risk assessment is used both formally and informally to estimate the likelihood of an adverse event occurring, for example, as a consequence of exposure to a hazardous chemical, drug or other agent. Formal risk assessments in government regulatory agencies have a long history of ...
Comparative assessment of bone pose estimation using Point Cluster Technique and OpenSim.
Lathrop, Rebecca L; Chaudhari, Ajit M W; Siston, Robert A
2011-11-01
Estimating the position of the bones from optical motion capture data is a challenge associated with human movement analysis. Bone pose estimation techniques such as the Point Cluster Technique (PCT) and simulations of movement through software packages such as OpenSim are used to minimize soft tissue artifact and estimate skeletal position; however, using different methods for analysis may produce differing kinematic results which could lead to differences in clinical interpretation such as a misclassification of normal or pathological gait. This study evaluated the differences present in knee joint kinematics as a result of calculating joint angles using various techniques. We calculated knee joint kinematics from experimental gait data using the standard PCT, the least squares approach in OpenSim applied to experimental marker data, and the least squares approach in OpenSim applied to the results of the PCT algorithm. Maximum and resultant RMS differences in knee angles were calculated between all techniques. We observed differences in flexion/extension, varus/valgus, and internal/external rotation angles between all approaches. The largest differences were between the PCT results and all results calculated using OpenSim. The RMS differences averaged nearly 5° for flexion/extension angles with maximum differences exceeding 15°. Average RMS differences were relatively small (< 1.08°) between results calculated within OpenSim, suggesting that the choice of marker weighting is not critical to the results of the least squares inverse kinematics calculations. The largest difference between techniques appeared to be a constant offset between the PCT and all OpenSim results, which may be due to differences in the definition of anatomical reference frames, scaling of musculoskeletal models, and/or placement of virtual markers within OpenSim. Different methods for data analysis can produce largely different kinematic results, which could lead to the misclassification of normal or pathological gait. Improved techniques to allow non-uniform scaling of generic models to more accurately reflect subject-specific bone geometries and anatomical reference frames may reduce differences between bone pose estimation techniques and allow for comparison across gait analysis platforms.
How Big Is It Really? Assessing the Efficacy of Indirect Estimates of Body Size in Asian Elephants.
Chapman, Simon N; Mumby, Hannah S; Crawley, Jennie A H; Mar, Khyne U; Htut, Win; Thura Soe, Aung; Aung, Htoo Htoo; Lummaa, Virpi
2016-01-01
Information on an organism's body size is pivotal in understanding its life history and fitness, as well as helping inform conservation measures. However, for many species, particularly large-bodied wild animals, taking accurate body size measurements can be a challenge. Various means to estimate body size have been employed, from more direct methods such as using photogrammetry to obtain height or length measurements, to indirect prediction of weight using other body morphometrics or even the size of dung boli. It is often unclear how accurate these measures are because they cannot be compared to objective measures. Here, we investigate how well existing estimation equations predict the actual body weight of Asian elephants Elephas maximus, using body measurements (height, chest girth, length, foot circumference and neck circumference) taken directly from a large population of semi-captive animals in Myanmar (n = 404). We then define new and better fitting formulas to predict body weight in Myanmar elephants from these readily available measures. We also investigate whether the important parameters height and chest girth can be estimated from photographs (n = 151). Our results show considerable variation in the ability of existing estimation equations to predict weight, and that the equations proposed in this paper predict weight better in almost all circumstances. We also find that measurements from standardised photographs reflect body height and chest girth after applying minor adjustments. Our results have implications for size estimation of large wild animals in the field, as well as for management in captive settings.
How Big Is It Really? Assessing the Efficacy of Indirect Estimates of Body Size in Asian Elephants
Chapman, Simon N.; Mumby, Hannah S.; Crawley, Jennie A. H.; Mar, Khyne U.; Htut, Win; Thura Soe, Aung; Aung, Htoo Htoo; Lummaa, Virpi
2016-01-01
Information on an organism’s body size is pivotal in understanding its life history and fitness, as well as helping inform conservation measures. However, for many species, particularly large-bodied wild animals, taking accurate body size measurements can be a challenge. Various means to estimate body size have been employed, from more direct methods such as using photogrammetry to obtain height or length measurements, to indirect prediction of weight using other body morphometrics or even the size of dung boli. It is often unclear how accurate these measures are because they cannot be compared to objective measures. Here, we investigate how well existing estimation equations predict the actual body weight of Asian elephants Elephas maximus, using body measurements (height, chest girth, length, foot circumference and neck circumference) taken directly from a large population of semi-captive animals in Myanmar (n = 404). We then define new and better fitting formulas to predict body weight in Myanmar elephants from these readily available measures. We also investigate whether the important parameters height and chest girth can be estimated from photographs (n = 151). Our results show considerable variation in the ability of existing estimation equations to predict weight, and that the equations proposed in this paper predict weight better in almost all circumstances. We also find that measurements from standardised photographs reflect body height and chest girth after applying minor adjustments. Our results have implications for size estimation of large wild animals in the field, as well as for management in captive settings. PMID:26938085
A Geology Sampling System for Small Bodies
NASA Technical Reports Server (NTRS)
Hood, A. D.; Naids, A. J.; Graff, T.; Abell, P.
2015-01-01
Human exploration of Small Bodies is being investigated as a precursor to a Mars surface mission. Asteroids, comets, dwarf planets, and the moons of Mars all fall into this Small Bodies category and some are being discussed as potential mission tar-gets. Obtaining geological samples for return to Earth will be a major objective for any mission to a Small Body. Currently the knowledge base for geology sampling in microgravity is in its infancy. Furthermore, humans interacting with non-engineered surfaces in a microgravity environment poses unique challenges. In preparation for such missions, a team at the National Aeronautics and Space Administration (NASA) John-son Space Center (JSC) has been working to gain experience on how to safely obtain numerous sample types in such an environment. This abstract briefly summarizes the type of samples the science community is interested in, discusses an integrated geology sampling solution, and highlights some of the unique challenges associated with this type of exploration.
Segmenting human from photo images based on a coarse-to-fine scheme.
Lu, Huchuan; Fang, Guoliang; Shao, Xinqing; Li, Xuelong
2012-06-01
Human segmentation in photo images is a challenging and important problem that finds numerous applications ranging from album making and photo classification to image retrieval. Previous works on human segmentation usually demand a time-consuming training phase for complex shape-matching processes. In this paper, we propose a straightforward framework to automatically recover human bodies from color photos. Employing a coarse-to-fine strategy, we first detect a coarse torso (CT) using the multicue CT detection algorithm and then extract the accurate region of the upper body. Then, an iterative multiple oblique histogram algorithm is presented to accurately recover the lower body based on human kinematics. The performance of our algorithm is evaluated on our own data set (contains 197 images with human body region ground truth data), VOC 2006, and the 2010 data set. Experimental results demonstrate the merits of the proposed method in segmenting a person with various poses.
Fast 5DOF needle tracking in iOCT.
Weiss, Jakob; Rieke, Nicola; Nasseri, Mohammad Ali; Maier, Mathias; Eslami, Abouzar; Navab, Nassir
2018-06-01
Intraoperative optical coherence tomography (iOCT) is an increasingly available imaging technique for ophthalmic microsurgery that provides high-resolution cross-sectional information of the surgical scene. We propose to build on its desirable qualities and present a method for tracking the orientation and location of a surgical needle. Thereby, we enable the direct analysis of instrument-tissue interaction directly in OCT space without complex multimodal calibration that would be required with traditional instrument tracking methods. The intersection of the needle with the iOCT scan is detected by a peculiar multistep ellipse fitting that takes advantage of the directionality of the modality. The geometric modeling allows us to use the ellipse parameters and provide them into a latency-aware estimator to infer the 5DOF pose during needle movement. Experiments on phantom data and ex vivo porcine eyes indicate that the algorithm retains angular precision especially during lateral needle movement and provides a more robust and consistent estimation than baseline methods. Using solely cross-sectional iOCT information, we are able to successfully and robustly estimate a 5DOF pose of the instrument in less than 5.4 ms on a CPU.
Dawson, D.K.; Ralph, C. John; Scott, J. Michael
1981-01-01
Work in rugged terrain poses some unique problems that should be considered before research is initiated. Besides the obvious physical difficulties of crossing uneven terrain, topography can influence the bird species? composition of a forest and the observer's ability to detect birds and estimate distances. Census results can also be affected by the slower rate of travel on rugged terrain. Density figures may be higher than results obtained from censuses in similar habitat on level terrain because of the greater likelihood of double-recording of individuals and of recording species that sing infrequently. In selecting a census technique, the researcher should weigh the efficiency and applicability of a technique for the objectives of his study in light of the added difficulties posed by rugged terrain. The variable circular-plot method is probably the most effective technique for estimating bird numbers. Bird counts and distance estimates are facilitated because the observer is stationary, and calculations of species? densities take into account differences in effective area covered amongst stations due to variability in terrain or vegetation structure. Institution of precautions that minimize the risk of injury to field personnel can often enhance the observer?s ability to detect birds.
Kelbe, David; Oak Ridge National Lab.; van Aardt, Jan; ...
2016-10-18
Terrestrial laser scanning has demonstrated increasing potential for rapid comprehensive measurement of forest structure, especially when multiple scans are spatially registered in order to reduce the limitations of occlusion. Although marker-based registration techniques (based on retro-reflective spherical targets) are commonly used in practice, a blind marker-free approach is preferable, insofar as it supports rapid operational data acquisition. To support these efforts, we extend the pairwise registration approach of our earlier work, and develop a graph-theoretical framework to perform blind marker-free global registration of multiple point cloud data sets. Pairwise pose estimates are weighted based on their estimated error, in ordermore » to overcome pose conflict while exploiting redundant information and improving precision. The proposed approach was tested for eight diverse New England forest sites, with 25 scans collected at each site. Quantitative assessment was provided via a novel embedded confidence metric, with a mean estimated root-mean-square error of 7.2 cm and 89% of scans connected to the reference node. Lastly, this paper assesses the validity of the embedded multiview registration confidence metric and evaluates the performance of the proposed registration algorithm.« less
Shero, Michelle R; Pearson, Linnea E; Costa, Daniel P; Burns, Jennifer M
2014-01-01
Mass and body composition are indices of overall animal health and energetic balance and are often used as indicators of resource availability in the environment. This study used morphometric models and isotopic dilution techniques, two commonly used methods in the marine mammal field, to assess body composition of Weddell seals (Leptonychotes weddellii, N = 111). Findings indicated that traditional morphometric models that use a series of circular, truncated cones to calculate marine mammal blubber volume and mass overestimated the animal's measured body mass by 26.9±1.5% SE. However, we developed a new morphometric model that uses elliptical truncated cones, and estimates mass with only -2.8±1.7% error (N = 10). Because this elliptical truncated cone model can estimate body mass without the need for additional correction factors, it has the potential to be a broadly applicable method in marine mammal species. While using elliptical truncated cones yielded significantly smaller blubber mass estimates than circular cones (10.2±0.8% difference; or 3.5±0.3% total body mass), both truncated cone models significantly underestimated total body lipid content as compared to isotopic dilution results, suggesting that animals have substantial internal lipid stores (N = 76). Multiple linear regressions were used to determine the minimum number of morphometric measurements needed to reliably estimate animal mass and body composition so that future animal handling times could be reduced. Reduced models estimated body mass and lipid mass with reasonable accuracy using fewer than five morphometric measurements (root-mean-square-error: 4.91% for body mass, 10.90% for lipid mass, and 10.43% for % lipid). This indicates that when test datasets are available to create calibration coefficients, regression models also offer a way to improve body mass and condition estimates in situations where animal handling times must be short and efficient.
NASA Astrophysics Data System (ADS)
Altug, Erdinc
Our work proposes a vision-based stabilization and output tracking control method for a model helicopter. This is a part of our effort to produce a rotorcraft based autonomous Unmanned Aerial Vehicle (UAV). Due to the desired maneuvering ability, a four-rotor helicopter has been chosen as the testbed. On previous research on flying vehicles, vision is usually used as a secondary sensor. Unlike previous research, our goal is to use visual feedback as the main sensor, which is not only responsible for detecting where the ground objects are but also for helicopter localization. A novel two-camera method has been introduced for estimating the full six degrees of freedom (DOF) pose of the helicopter. This two-camera system consists of a pan-tilt ground camera and an onboard camera. The pose estimation algorithm is compared through simulation to other methods, such as four-point, and stereo method and is shown to be less sensitive to feature detection errors. Helicopters are highly unstable flying vehicles; although this is good for agility, it makes the control harder. To build an autonomous helicopter, two methods of control are studied---one using a series of mode-based, feedback linearizing controllers and the other using a back-stepping control law. Various simulations with 2D and 3D models demonstrate the implementation of these controllers. We also show global convergence of the 3D quadrotor controller even with large calibration errors or presence of large errors on the image plane. Finally, we present initial flight experiments where the proposed pose estimation algorithm and non-linear control techniques have been implemented on a remote-controlled helicopter. The helicopter was restricted with a tether to vertical, yaw motions and limited x and y translations.
Young, Mariel; Johannesdottir, Fjola; Poole, Ken; Shaw, Colin; Stock, J T
2018-02-01
Femoral head diameter is commonly used to estimate body mass from the skeleton. The three most frequently employed methods, designed by Ruff, Grine, and McHenry, were developed using different populations to address different research questions. They were not specifically designed for application to female remains, and their accuracy for this purpose has rarely been assessed or compared in living populations. This study analyzes the accuracy of these methods using a sample of modern British women through the use of pelvic CT scans (n = 97) and corresponding information about the individuals' known height and weight. Results showed that all methods provided reasonably accurate body mass estimates (average percent prediction errors under 20%) for the normal weight and overweight subsamples, but were inaccurate for the obese and underweight subsamples (average percent prediction errors over 20%). When women of all body mass categories were combined, the methods provided reasonable estimates (average percent prediction errors between 16 and 18%). The results demonstrate that different methods provide more accurate results within specific body mass index (BMI) ranges. The McHenry Equation provided the most accurate estimation for women of small body size, while the original Ruff Equation is most likely to be accurate if the individual was obese or severely obese. The refined Ruff Equation was the most accurate predictor of body mass on average for the entire sample, indicating that it should be utilized when there is no knowledge of the individual's body size or if the individual is assumed to be of a normal body size. The study also revealed a correlation between pubis length and body mass, and an equation for body mass estimation using pubis length was accurate in a dummy sample, suggesting that pubis length can also be used to acquire reliable body mass estimates. This has implications for how we interpret body mass in fossil hominins and has particular relevance to the interpretation of the long pubic ramus that is characteristic of Neandertals. Copyright © 2017 Elsevier Ltd. All rights reserved.
Aero-disaster in Port Harcourt, Nigeria: a case study.
Seleye-Fubara, D; Etebu, E N; Amakiri, Cnt
2011-01-01
Aero-disaster in Nigeria is posing a serious problem to government, the public and relatives of victims, as many lives are lost in a single event. A case study based on an incident at an international airport in Nigeria on December 10, 2005. Detailed autopsy was performed on 97 fully identified bodies out of the 106 victims. Variables considered include ages, sex, pattern of injuries and death as well as problems associated with identification of bodies. A total of 97 (91.5%) out of the 106 deaths recorded were autopsied. Nine (8.5%) bodies were beyond identification, and hence autopsy could not be properly done on them. Fifty-nine (60.8%) were males and 38 (39.2%) were females, giving a ratio of 1.4:1. Sixty-one (62.9%) were children and adolescents below the age of 20 years. Severe burns 27 (27.8%), multiple injuries with burns 21 (21.6%), inhalation of fumes 20 (20.6%), multiple injuries only 16 (16.5%), severe head injury alone 11 (11.3%) and ruptured viscous 2 (2.1%) were the causes of death at autopsy in that order of frequency. Aero-disaster, though rare in Port Harcourt, is posing a serious problem in Nigeria in recent times. Various agencies should be established to adequately control mass disasters in Nigeria. Adequate maintenance of aircraft and strict observation and enforcement of aviation laws may drastically reduce the frequency of accidents and subsequent deaths.
Barradas-Bautista, Didier; Moal, Iain H; Fernández-Recio, Juan
2017-07-01
Protein-protein interactions play fundamental roles in biological processes including signaling, metabolism, and trafficking. While the structure of a protein complex reveals crucial details about the interaction, it is often difficult to acquire this information experimentally. As the number of interactions discovered increases faster than they can be characterized, protein-protein docking calculations may be able to reduce this disparity by providing models of the interacting proteins. Rigid-body docking is a widely used docking approach, and is often capable of generating a pool of models within which a near-native structure can be found. These models need to be scored in order to select the acceptable ones from the set of poses. Recently, more than 100 scoring functions from the CCharPPI server were evaluated for this task using decoy structures generated with SwarmDock. Here, we extend this analysis to identify the predictive success rates of the scoring functions on decoys from three rigid-body docking programs, ZDOCK, FTDock, and SDOCK, allowing us to assess the transferability of the functions. We also apply set-theoretic measure to test whether the scoring functions are capable of identifying near-native poses within different subsets of the benchmark. This information can provide guides for the use of the most efficient scoring function for each docking method, as well as instruct future scoring functions development efforts. Proteins 2017; 85:1287-1297. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Wilkinson, Thomas J; Richler-Potts, Danielle; Nixon, Daniel G D; Neale, Jill; Smith, Alice C
2018-05-24
Chronic kidney disease (CKD) patients and renal transplant recipients (RTRs) are characterized by aberrant body composition such as muscle wasting and obesity. It is still unknown which is the most accurate method to estimate body composition in CKD. We investigated the validity of the Hume equation and bioelectrical impedance analysis (BIA) as an estimate of body composition against dual-energy X-ray absorptiometry (DXA) in a cohort of nondialysis dependent (NDD)-CKD and RTRs. This was a cross-sectional study with agreement analysis of different assessments of body composition conducted in 61 patients (35 RTRs and 26 NDD-CKD) in a secondary care hospital setting in the UK. Body composition (lean mass [LM], fat mass [FM], and body fat% [BF%]) was assessed using multifrequency BIA and DXA, and estimated using the Hume formula. Method agreement was assessed by intraclass correlation coefficient (ICC), regression, and plotted by Bland and Altman analysis. Both BIA and the Hume formula were able to accurately estimate body composition against DXA. In both groups, the BIA overestimated LM (1.7-2.1 kg, ICC .980-.984) and underestimated FM (1.3-2.1 kg, ICC .967-.972) and BF% (3.1-3.8%, ICC .927-.954). The Hume formula also overestimated LM (3.5-3.6 kg, ICC .950-.960) and underestimated BF% (1.9-2.1%, ICC .808-.859). Hume-derived FM was almost identical to DXA in both groups (-0.3 to 0.1 kg, ICC .947-.960). Our results demonstrate, in RTR and NDD-CKD patients, that the Hume formula, whose estimation of body composition is based only upon height, body mass, age, and sex, may reliably predict the same parameters obtained by DXA. In addition, BIA also provided similar estimates versus DXA. Thus, the Hume formula and BIA could provide simple and inexpensive means to estimate body composition in renal disease. Copyright © 2018 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.
Precise Image-Based Motion Estimation for Autonomous Small Body Exploration
NASA Technical Reports Server (NTRS)
Johnson, Andrew E.; Matthies, Larry H.
1998-01-01
Space science and solar system exploration are driving NASA to develop an array of small body missions ranging in scope from near body flybys to complete sample return. This paper presents an algorithm for onboard motion estimation that will enable the precision guidance necessary for autonomous small body landing. Our techniques are based on automatic feature tracking between a pair of descent camera images followed by two frame motion estimation and scale recovery using laser altimetry data. The output of our algorithm is an estimate of rigid motion (attitude and position) and motion covariance between frames. This motion estimate can be passed directly to the spacecraft guidance and control system to enable rapid execution of safe and precise trajectories.
Age and Embodied Masculinities: Mid-Life Gay and Heterosexual Men Talk about their Bodies
Lodge, Amy C.; Umberson, Debra
2013-01-01
This article integrates critical gerontology and masculinities theories to examine how midlife gay and heterosexual men experience their bodies in relation to cultural discourses of aging. Analyses of in-depth interviews with 15 gay and 15 heterosexual men ages 40–60 reveal that while both groups of men describe their bodies as deteriorating or declining in terms of functionality and are often distressed by these changes, midlife gay men also articulate a concern with a perceived decline in bodily appearance. Both gay and heterosexual midlife men frame their bodies as fundamentally different from women’s, possibly in an attempt to protect a masculine identity in response to the threat that aging bodies pose to that identity. We argue that midlife men’s embodied experiences are shaped by a discourse of midlife decline as well as inequalities between gay and heterosexual men. We also discuss the implications of embodiment for midlife men’s well-being. PMID:23849420
Three-dimensional deformable-model-based localization and recognition of road vehicles.
Zhang, Zhaoxiang; Tan, Tieniu; Huang, Kaiqi; Wang, Yunhong
2012-01-01
We address the problem of model-based object recognition. Our aim is to localize and recognize road vehicles from monocular images or videos in calibrated traffic scenes. A 3-D deformable vehicle model with 12 shape parameters is set up as prior information, and its pose is determined by three parameters, which are its position on the ground plane and its orientation about the vertical axis under ground-plane constraints. An efficient local gradient-based method is proposed to evaluate the fitness between the projection of the vehicle model and image data, which is combined into a novel evolutionary computing framework to estimate the 12 shape parameters and three pose parameters by iterative evolution. The recovery of pose parameters achieves vehicle localization, whereas the shape parameters are used for vehicle recognition. Numerous experiments are conducted in this paper to demonstrate the performance of our approach. It is shown that the local gradient-based method can evaluate accurately and efficiently the fitness between the projection of the vehicle model and the image data. The evolutionary computing framework is effective for vehicles of different types and poses is robust to all kinds of occlusion.
Cheng, M-F; Chen, Y-Y; Jang, T-R; Lin, W-L; Chen, J; Hsieh, K-C
2016-12-01
Standing-posture 8-electrode bioelectrical impedance analysis is a fast and practical method for evaluating body composition in clinical settings, which can be used to estimate percentage body fat (BF%) and skeletal muscle mass in a subject's total body and body segments. In this study, dual-energy X-ray absorptiometry (DXA) was used as a reference method for validating the standing 8-electrode bioelectrical impedance analysis device BC-418 (BIA 8 , Tanita Corp., Tokyo, Japan). Forty-eight Taiwanese male wrestlers aged from 17.9 to 22.3 years volunteered to participate in this study. The lean soft tissue (LST) and BF% in the total body and body segments were measured in each subject by the BIA 8 and DXA. The correlation coefficients between total body, arm, leg segments impedance index (BI, ht 2 /Z) and lean soft tissue mass measured from DXA were r = 0.902, 0.453, 0.885, respectively (p < 0.01). In addition, the total body and segmental LST estimated by the BIA 8 were highly correlated with the DXA data (r = 0.936, 0.466, 0.886, p < 0.01). The estimation of total body and segmental BF% measured by BIA 8 and DXA also showed a significant correlation (r > 0.820, p < 0.01). The estimated LST and BF% from BIA 8 in the total body and body segments were highly correlated with the DXA results, which indicated that the standing-posture 8-electrode bioelectrical impedance analysis may be used to derive reference measures of LST and BF% in Taiwanese male wrestlers.
Cheng, M-F; Chen, Y-Y; Jang, T-R; Lin, W-L; Chen, J
2015-01-01
Standing-posture 8-electrode bioelectrical impedance analysis is a fast and practical method for evaluating body composition in clinical settings, which can be used to estimate percentage body fat (BF%) and skeletal muscle mass in a subject’s total body and body segments. In this study, dual-energy X-ray absorptiometry (DXA) was used as a reference method for validating the standing 8-electrode bioelectrical impedance analysis device BC-418 (BIA8, Tanita Corp., Tokyo, Japan). Forty-eight Taiwanese male wrestlers aged from 17.9 to 22.3 years volunteered to participate in this study. The lean soft tissue (LST) and BF% in the total body and body segments were measured in each subject by the BIA8 and DXA. The correlation coefficients between total body, arm, leg segments impedance index (BI, ht2/Z) and lean soft tissue mass measured from DXA were r = 0.902, 0.453, 0.885, respectively (p < 0.01). In addition, the total body and segmental LST estimated by the BIA8 were highly correlated with the DXA data (r = 0.936, 0.466, 0.886, p < 0.01). The estimation of total body and segmental BF% measured by BIA8 and DXA also showed a significant correlation (r > 0.820, p < 0.01). The estimated LST and BF% from BIA8 in the total body and body segments were highly correlated with the DXA results, which indicated that the standing-posture 8-electrode bioelectrical impedance analysis may be used to derive reference measures of LST and BF% in Taiwanese male wrestlers. PMID:28090145
The Estimation of a Rigid Body Motion in the Presence of Noise.
1987-07-31
Rigid Body Motion in the Presence of Noise 12. PERSONAL AUTHOR(S) 1S. AYOFDREPRTy 13b.e ad COVRE C4. 10AOUTE OF FUNPING NUBERSlAE...8217, .,_, .,,.. .\\ ..: ., : ’ *-: ,:,.,,. .’ 4 /. .’.’ ’, ’ ,. 9) 7 TRACT The problem of estimating a rigid body motion from two noisy images of an...SI ... ... Cs . I ,-’ ’".’ 1 -, ED 1, D:;.;i,1q L HARVARD UNIVERSITY DzPAILTMNT OP STATIMCS THE ESTIMATION OF A RIGID BODY MOTION IN THE
14 CFR § 1214.805 - Unforeseen customer delay.
Code of Federal Regulations, 2014 CFR
2014-01-01
... problem pose a threat of delay to the Shuttle launch schedule or critical off-line activities, NASA shall... availability of facilities, equipment, and personnel. In requesting NASA to make such special efforts, the customer shall agree to reimburse NASA the estimated additional cost incurred. ...
76 FR 50904 - Thiamethoxam; Pesticide Tolerances
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-17
... exposure and risk. A separate assessment was done for clothianidin. i. Acute exposure. Quantitative acute... not expected to pose a cancer risk, a quantitative dietary exposure assessment for the purposes of...-dietary sources of post application exposure to obtain an estimate of potential combined exposure. These...
AN INFORMATIC APPROACH TO ESTIMATING ECOLOGICAL RISKS POSED BY PHARMACEUTICAL USE
Pharmaceuticals administered to humans and other animals are often excreted from treated organisms as intact drug or as active metabolites. Some of these active materials have been shown to make their way into the environment. However, the environmental concentrations of the vast...
Using Elicited Choice Probabilities in Hypothetical Elections to Study Decisions to Vote
Delavande, Adeline; Manski, Charles F.
2015-01-01
This paper demonstrates the feasibility and usefulness of survey research asking respondents to report voting probabilities in hypothetical election scenarios. Posing scenarios enriches the data available for studies of voting decisions, as a researcher can pose many more and varied scenarios than the elections that persons actually face. Multiple scenarios were presented to over 4,000 participants in the American Life Panel (ALP). Each described a hypothetical presidential election, giving characteristics measuring candidate preference, closeness of the election, and the time cost of voting. Persons were asked the probability that they would vote in this election and were willing and able to respond. We analyzed the data through direct study of the variation of voting probabilities with election characteristics and through estimation of a random utility model of voting. Voting time and election closeness were notable determinants of decisions to vote, but not candidate preference. Most findings were corroborated through estimation of a model fit to ALP data on respondents' actual voting behavior in the 2012 election. PMID:25705068
Kyme, Andre; Meikle, Steven; Baldock, Clive; Fulton, Roger
2012-08-01
Motion-compensated radiotracer imaging of fully conscious rodents represents an important paradigm shift for preclinical investigations. In such studies, if motion tracking is performed through a transparent enclosure containing the awake animal, light refraction at the interface will introduce errors in stereo pose estimation. We have performed a thorough investigation of how this impacts the accuracy of pose estimates and the resulting motion correction, and developed an efficient method to predict and correct for refraction-based error. The refraction model underlying this study was validated using a state-of-the-art motion tracking system. Refraction-based error was shown to be dependent on tracking marker size, working distance, and interface thickness and tilt. Correcting for refraction error improved the spatial resolution and quantitative accuracy of motion-corrected positron emission tomography images. Since the methods are general, they may also be useful in other contexts where data are corrupted by refraction effects. Crown Copyright © 2012. Published by Elsevier B.V. All rights reserved.
Autonomous proximity operations using machine vision for trajectory control and pose estimation
NASA Technical Reports Server (NTRS)
Cleghorn, Timothy F.; Sternberg, Stanley R.
1991-01-01
A machine vision algorithm was developed which permits guidance control to be maintained during autonomous proximity operations. At present this algorithm exists as a simulation, running upon an 80386 based personal computer, using a ModelMATE CAD package to render the target vehicle. However, the algorithm is sufficiently simple, so that following off-line training on a known target vehicle, it should run in real time with existing vision hardware. The basis of the algorithm is a sequence of single camera images of the target vehicle, upon which radial transforms were performed. Selected points of the resulting radial signatures are fed through a decision tree, to determine whether the signature matches that of the known reference signatures for a particular view of the target. Based upon recognized scenes, the position of the maneuvering vehicle with respect to the target vehicles can be calculated, and adjustments made in the former's trajectory. In addition, the pose and spin rates of the target satellite can be estimated using this method.
Traffic Light Detection Using Conic Section Geometry
NASA Astrophysics Data System (ADS)
Hosseinyalmdary, S.; Yilmaz, A.
2016-06-01
Traffic lights detection and their state recognition is a crucial task that autonomous vehicles must reliably fulfill. Despite scientific endeavors, it still is an open problem due to the variations of traffic lights and their perception in image form. Unlike previous studies, this paper investigates the use of inaccurate and publicly available GIS databases such as OpenStreetMap. In addition, we are the first to exploit conic section geometry to improve the shape cue of the traffic lights in images. Conic section also enables us to estimate the pose of the traffic lights with respect to the camera. Our approach can detect multiple traffic lights in the scene, it also is able to detect the traffic lights in the absence of prior knowledge, and detect the traffics lights as far as 70 meters. The proposed approach has been evaluated for different scenarios and the results show that the use of stereo cameras significantly improves the accuracy of the traffic lights detection and pose estimation.
Microplastics in bivalves cultured for human consumption.
Van Cauwenberghe, Lisbeth; Janssen, Colin R
2014-10-01
Microplastics are present throughout the marine environment and ingestion of these plastic particles (<1 mm) has been demonstrated in a laboratory setting for a wide array of marine organisms. Here, we investigate the presence of microplastics in two species of commercially grown bivalves: Mytilus edulis and Crassostrea gigas. Microplastics were recovered from the soft tissues of both species. At time of human consumption, M. edulis contains on average 0.36 ± 0.07 particles g(-1) (wet weight), while a plastic load of 0.47 ± 0.16 particles g(-1) ww was detected in C. gigas. As a result, the annual dietary exposure for European shellfish consumers can amount to 11,000 microplastics per year. The presence of marine microplastics in seafood could pose a threat to food safety, however, due to the complexity of estimating microplastic toxicity, estimations of the potential risks for human health posed by microplastics in food stuffs is not (yet) possible. Copyright © 2014 Elsevier Ltd. All rights reserved.
Relative cancer risks of chemical contaminants in the great lakes
NASA Astrophysics Data System (ADS)
Bro, Kenneth M.; Sonzogni, William C.; Hanson, Mark E.
1987-08-01
Anyone who drinks water or eats fish from the Great Lakes consumes potentially carcinogenic chemicals. In choosing how to respond to such pollution, it is important to put the risks these contaminants pose in perspective. Based on recent measurements of carcinogens in Great Lakes fish and water, calculations of lifetime risks of cancer indicate that consumers of sport fish face cancer risks from Great Lakes contaminants that are several orders of magnitude higher than the risks posed by drinking Great Lakes water. But drinking urban groundwater and breathing urban air may be as hazardous as frequent consumption of sport fish from the Great Lakes. Making such comparisons is difficult because of variation in types and quality of information available and in the methods for estimating risk. Much uncertainty pervades the risk assessment process in such areas as estimating carcinogenic potency and human exposure to contaminants. If risk assessment is to be made more useful, it is important to quantify this uncertainty.
NASA Astrophysics Data System (ADS)
Fan, Qingbiao; Xu, Caijun; Yi, Lei; Liu, Yang; Wen, Yangmao; Yin, Zhi
2017-10-01
When ill-posed problems are inverted, the regularization process is equivalent to adding constraint equations or prior information from a Bayesian perspective. The veracity of the constraints (or the regularization matrix R) significantly affects the solution, and a smoothness constraint is usually added in seismic slip inversions. In this paper, an adaptive smoothness constraint (ASC) based on the classic Laplacian smoothness constraint (LSC) is proposed. The ASC not only improves the smoothness constraint, but also helps constrain the slip direction. A series of experiments are conducted in which different magnitudes of noise are imposed and different densities of observation are assumed, and the results indicated that the ASC was superior to the LSC. Using the proposed ASC, the Helmert variance component estimation method is highlighted as the best for selecting the regularization parameter compared with other methods, such as generalized cross-validation or the mean squared error criterion method. The ASC may also benefit other ill-posed problems in which a smoothness constraint is required.
Smoothing-Based Relative Navigation and Coded Aperture Imaging
NASA Technical Reports Server (NTRS)
Saenz-Otero, Alvar; Liebe, Carl Christian; Hunter, Roger C.; Baker, Christopher
2017-01-01
This project will develop an efficient smoothing software for incremental estimation of the relative poses and velocities between multiple, small spacecraft in a formation, and a small, long range depth sensor based on coded aperture imaging that is capable of identifying other spacecraft in the formation. The smoothing algorithm will obtain the maximum a posteriori estimate of the relative poses between the spacecraft by using all available sensor information in the spacecraft formation.This algorithm will be portable between different satellite platforms that possess different sensor suites and computational capabilities, and will be adaptable in the case that one or more satellites in the formation become inoperable. It will obtain a solution that will approach an exact solution, as opposed to one with linearization approximation that is typical of filtering algorithms. Thus, the algorithms developed and demonstrated as part of this program will enhance the applicability of small spacecraft to multi-platform operations, such as precisely aligned constellations and fractionated satellite systems.
How should we understand non-equilibrium many-body steady states?
NASA Astrophysics Data System (ADS)
Maghrebi, Mohammad; Gorshkov, Alexey
: Many-body systems with both coherent dynamics and dissipation constitute a rich class of models which are nevertheless much less explored than their dissipationless counterparts. The advent of numerous experimental platforms that simulate such dynamics poses an immediate challenge to systematically understand and classify these models. In particular, nontrivial many-body states emerge as steady states under non-equilibrium dynamics. In this talk, I use a field-theoretic approach based on the Keldysh formalism to study nonequilibrium phases and phase transitions in such models. I show that an effective temperature generically emerges as a result of dissipation, and the universal behavior including the dynamics near the steady state is described by a thermodynamic universality class. In the end, I will also discuss possibilities that go beyond the paradigm of an effective thermodynamic behavior.
NASA Astrophysics Data System (ADS)
Schwadron, Nathan A.; Cooper, John F.; Desai, Mihir; Downs, Cooper; Gorby, Matt; Jordan, Andrew P.; Joyce, Colin J.; Kozarev, Kamen; Linker, Jon A.; Mikíc, Zoran; Riley, Pete; Spence, Harlan E.; Török, Tibor; Townsend, Lawrence W.; Wilson, Jody K.; Zeitlin, Cary
2017-11-01
Particle radiation has significant effects for astronauts, satellites and planetary bodies throughout the Solar System. Acute space radiation hazards pose risks to human and robotic exploration. This radiation also naturally weathers the exposed surface regolith of the Moon, the two moons of Mars, and other airless bodies, and contributes to chemical evolution of planetary atmospheres at Earth, Mars, Venus, Titan, and Pluto. We provide a select review of recent areas of research covering the origin of SEPs from coronal mass ejections low in the corona, propagation of events through the solar system during the anomalously weak solar cycle 24 and important examples of radiation interactions for Earth, other planets and airless bodies such as the Moon.
Nonlinear Quantum Metrology of Many-Body Open Systems
NASA Astrophysics Data System (ADS)
Beau, M.; del Campo, A.
2017-07-01
We introduce general bounds for the parameter estimation error in nonlinear quantum metrology of many-body open systems in the Markovian limit. Given a k -body Hamiltonian and p -body Lindblad operators, the estimation error of a Hamiltonian parameter using a Greenberger-Horne-Zeilinger state as a probe is shown to scale as N-[k -(p /2 )], surpassing the shot-noise limit for 2 k >p +1 . Metrology equivalence between initial product states and maximally entangled states is established for p ≥1 . We further show that one can estimate the system-environment coupling parameter with precision N-(p /2 ), while many-body decoherence enhances the precision to N-k in the noise-amplitude estimation of a fluctuating k -body Hamiltonian. For the long-range Ising model, we show that the precision of this parameter beats the shot-noise limit when the range of interactions is below a threshold value.
Mobile markerless augmented reality and its application in forensic medicine.
Kilgus, Thomas; Heim, Eric; Haase, Sven; Prüfer, Sabine; Müller, Michael; Seitel, Alexander; Fangerau, Markus; Wiebe, Tamara; Iszatt, Justin; Schlemmer, Heinz-Peter; Hornegger, Joachim; Yen, Kathrin; Maier-Hein, Lena
2015-05-01
During autopsy, forensic pathologists today mostly rely on visible indication, tactile perception and experience to determine the cause of death. Although computed tomography (CT) data is often available for the bodies under examination, these data are rarely used due to the lack of radiological workstations in the pathological suite. The data may prevent the forensic pathologist from damaging evidence by allowing him to associate, for example, external wounds to internal injuries. To facilitate this, we propose a new multimodal approach for intuitive visualization of forensic data and evaluate its feasibility. A range camera is mounted on a tablet computer and positioned in a way such that the camera simultaneously captures depth and color information of the body. A server estimates the camera pose based on surface registration of CT and depth data to allow for augmented reality visualization of the internal anatomy directly on the tablet. Additionally, projection of color information onto the CT surface is implemented. We validated the system in a postmortem pilot study using fiducials attached to the skin for quantification of a mean target registration error of [Formula: see text] mm. The system is mobile, markerless, intuitive and real-time capable with sufficient accuracy. It can support the forensic pathologist during autopsy with augmented reality and textured surfaces. Furthermore, the system enables multimodal documentation for presentation in court. Despite its preliminary prototype status, it has high potential due to its low price and simplicity.
Ferreira, M Teresa; Cunha, Eugénia
2013-03-10
Post mortem interval estimation is crucial in forensic sciences for both positive identification and reconstruction of perimortem events. However, reliable dating of skeletonized remains poses a scientific challenge since human remains decomposition involves a set of complex and highly variable processes. Many of the difficulties in determining post mortem interval and/or the permanence of a body in a specific environment relates with the lack of systematic observations and research in human body decomposition modalities in different environments. In March 2006, in order to solve a problem of misidentification, a team of the South Branch of Portuguese National Institute of Legal Medicine carried out the exhumation of 25 identified individuals buried for almost five years in the same cemetery plot. Even though all individuals shared similar post mortem intervals, they presented different stages of decomposition. In order to analyze the post mortem factors associated with the different stages of decomposition displayed by the 25 exhumed individuals, the stages of decomposition were scored. Information regarding age at death and sex of the individuals were gathered and recorded as well as data in the cause of death and grave and coffin characteristics. Although the observed distinct decay stages may be explained by the burial conditions, namely by the micro taphonomic environments, individual endogenous factors also play an important role on differential decomposition as witnessed by the present case. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Thompson, J K; Dolce, J J
1989-05-01
Thirty-two asymptomatic college females were assessed on multiple aspects of body image. Subjects' estimation of the size of three body sites (waist, hips, thighs) was affected by instructional protocol. Emotional ratings, based on how they "felt" about their body, elicited ratings that were larger than actual and ideal size measures. Size ratings based on rational instructions were no different from actual sizes, but were larger than ideal ratings. There were no differences between actual and ideal sizes. The results are discussed with regard to methodological issues involved in body image research. In addition, a working hypothesis that differentiates affective/emotional from cognitive/rational aspects of body size estimation is offered to complement current theories of body image. Implications of the findings for the understanding of body image and its relationship to eating disorders are discussed.
Bell, Kristie L; Boyd, Roslyn N; Walker, Jacqueline L; Stevenson, Richard D; Davies, Peter S W
2013-08-01
Body composition assessment is an essential component of nutritional evaluation in children with cerebral palsy. This study aimed to validate bioelectrical impedance to estimate total body water in young children with cerebral palsy and determine best electrode placement in unilateral impairment. 55 young children with cerebral palsy across all functional ability levels were included. Height/length was measured or estimated from knee height. Total body water was estimated using a Bodystat 1500MDD and three equations, and measured using the gold standard, deuterium dilution technique. Comparisons were made using Bland Altman analysis. For children with bilateral impairment, the Fjeld equation estimated total body water with the least bias (limits of agreement): 0.0 L (-1.4 L to 1.5 L); the Pencharz equation produced the greatest: 2.7 L (0.6 L-4.8 L). For children with unilateral impairment, differences between measured and estimated total body water were lowest on the unimpaired side using the Fjeld equation 0.1 L (-1.5 L to 1.6 L)) and greatest for the Pencharz equation. The ability of bioelectrical impedance to estimate total body water depends on the equation chosen. The Fjeld equation was the most accurate for the group, however, individual results varied by up to 18%. A population specific equation was developed and may enhance the accuracy of estimates. Australian New Zealand Clinical Trials Registry (ANZCTR) number: ACTRN12611000616976. Copyright © 2012 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.
Fish movement and habitat use depends on water body size and shape
Woolnough, D.A.; Downing, J.A.; Newton, T.J.
2009-01-01
Home ranges are central to understanding habitat diversity, effects of fragmentation and conservation. The distance that an organism moves yields information on life history, genetics and interactions with other organisms. Present theory suggests that home range is set by body size of individuals. Here, we analyse estimates of home ranges in lakes and rivers to show that body size of fish and water body size and shape influence home range size. Using 71 studies including 66 fish species on five continents, we show that home range estimates increased with increasing water body size across water body shapes. This contrasts with past studies concluding that body size sets home range. We show that water body size was a consistently significant predictor of home range. In conjunction, body size and water body size can provide improved estimates of home range than just body size alone. As habitat patches are decreasing in size worldwide, our findings have implications for ecology, conservation and genetics of populations in fragmented ecosystems. ?? 2008 Blackwell Munksgaard.
Validity of Three-Dimensional Photonic Scanning Technique for Estimating Percent Body Fat.
Shitara, K; Kanehisa, H; Fukunaga, T; Yanai, T; Kawakami, Y
2013-01-01
Three-dimensional photonic scanning (3DPS) was recently developed to measure dimensions of a human body surface. The purpose of this study was to explore the validity of body volume measured by 3DPS for estimating the percent body fat (%fat). Design, setting, participants, and measurement: The body volumes were determined by 3DPS in 52 women. The body volume was corrected for residual lung volume. The %fat was estimated from body density and compared with the corresponding reference value determined by the dual-energy x-ray absorptiometry (DXA). No significant difference was found for the mean values of %fat obtained by 3DPS (22.2 ± 7.6%) and DXA (23.5 ± 4.9%). The root mean square error of %fat between 3DPS and reference technique was 6.0%. For each body segment, there was a significant positive correlation between 3DPS- and DXA-values, although the corresponding value for the head was slightly larger in 3DPS than in DXA. Residual lung volume was negatively correlated with the estimated error in %fat. The body volume determined with 3DPS is potentially useful for estimating %fat. A possible strategy for enhancing the measurement accuracy of %fat might be to refine the protocol for preparing the subject's hair prior to scanning and to improve the accuracy in the measurement of residual lung volume.
Knips, Guido; Zibner, Stephan K U; Reimann, Hendrik; Schöner, Gregor
2017-01-01
Reaching for objects and grasping them is a fundamental skill for any autonomous robot that interacts with its environment. Although this skill seems trivial to adults, who effortlessly pick up even objects they have never seen before, it is hard for other animals, for human infants, and for most autonomous robots. Any time during movement preparation and execution, human reaching movement are updated if the visual scene changes (with a delay of about 100 ms). The capability for online updating highlights how tightly perception, movement planning, and movement generation are integrated in humans. Here, we report on an effort to reproduce this tight integration in a neural dynamic process model of reaching and grasping that covers the complete path from visual perception to movement generation within a unified modeling framework, Dynamic Field Theory. All requisite processes are realized as time-continuous dynamical systems that model the evolution in time of neural population activation. Population level neural processes bring about the attentional selection of objects, the estimation of object shape and pose, and the mapping of pose parameters to suitable movement parameters. Once a target object has been selected, its pose parameters couple into the neural dynamics of movement generation so that changes of pose are propagated through the architecture to update the performed movement online. Implementing the neural architecture on an anthropomorphic robot arm equipped with a Kinect sensor, we evaluate the model by grasping wooden objects. Their size, shape, and pose are estimated from a neural model of scene perception that is based on feature fields. The sequential organization of a reach and grasp act emerges from a sequence of dynamic instabilities within a neural dynamics of behavioral organization, that effectively switches the neural controllers from one phase of the action to the next. Trajectory formation itself is driven by a dynamical systems version of the potential field approach. We highlight the emergent capacity for online updating by showing that a shift or rotation of the object during the reaching phase leads to the online adaptation of the movement plan and successful completion of the grasp.
Knips, Guido; Zibner, Stephan K. U.; Reimann, Hendrik; Schöner, Gregor
2017-01-01
Reaching for objects and grasping them is a fundamental skill for any autonomous robot that interacts with its environment. Although this skill seems trivial to adults, who effortlessly pick up even objects they have never seen before, it is hard for other animals, for human infants, and for most autonomous robots. Any time during movement preparation and execution, human reaching movement are updated if the visual scene changes (with a delay of about 100 ms). The capability for online updating highlights how tightly perception, movement planning, and movement generation are integrated in humans. Here, we report on an effort to reproduce this tight integration in a neural dynamic process model of reaching and grasping that covers the complete path from visual perception to movement generation within a unified modeling framework, Dynamic Field Theory. All requisite processes are realized as time-continuous dynamical systems that model the evolution in time of neural population activation. Population level neural processes bring about the attentional selection of objects, the estimation of object shape and pose, and the mapping of pose parameters to suitable movement parameters. Once a target object has been selected, its pose parameters couple into the neural dynamics of movement generation so that changes of pose are propagated through the architecture to update the performed movement online. Implementing the neural architecture on an anthropomorphic robot arm equipped with a Kinect sensor, we evaluate the model by grasping wooden objects. Their size, shape, and pose are estimated from a neural model of scene perception that is based on feature fields. The sequential organization of a reach and grasp act emerges from a sequence of dynamic instabilities within a neural dynamics of behavioral organization, that effectively switches the neural controllers from one phase of the action to the next. Trajectory formation itself is driven by a dynamical systems version of the potential field approach. We highlight the emergent capacity for online updating by showing that a shift or rotation of the object during the reaching phase leads to the online adaptation of the movement plan and successful completion of the grasp. PMID:28303100
Estimating body weight and body composition of chickens by using noninvasive measurements.
Latshaw, J D; Bishop, B L
2001-07-01
The major objective of this research was to develop equations to estimate BW and body composition using measurements taken with inexpensive instruments. We used five groups of chickens that were created with different genetic stocks and feeding programs. Four of the five groups were from broiler genetic stock, and one was from sex-linked heavy layers. The goal was to sample six males from each group when the group weight was 1.20, 1.75, and 2.30 kg. Each male was weighed and measured for back length, pelvis width, circumference, breast width, keel length, and abdominal skinfold thickness. A cloth tape measure, calipers, and skinfold calipers were used for measurement. Chickens were scanned for total body electrical conductivity (TOBEC) before being euthanized and frozen. Six females were selected at weights similar to those for males and were measured in the same way. Each whole chicken was ground, and a portion of ground material of each was used to measure water, fat, ash, and energy content. Multiple linear regression was used to estimate BW from body measurements. The best single measurement was pelvis width, with an R2 = 0.67. Inclusion of three body measurements in an equation resulted in R2 = 0.78 and the following equation: BW (g) = -930.0 + 68.5 (breast, cm) + 48.5 (circumference, cm) + 62.8 (pelvis, cm). The best single measurement to estimate body fat was abdominal skinfold thickness, expressed as a natural logarithm. Inclusion of weight and skinfold thickness resulted in R2 = 0.63 for body fat according to the following equation: fat (%) = 24.83 + 6.75 (skinfold, ln cm) - 3.87 (wt, kg). Inclusion of the result of TOBEC and the effect of sex improved the R2 to 0.78 for body fat. Regression analysis was used to develop additional equations, based on fat, to estimate water and energy contents of the body. The body water content (%) = 72.1 - 0.60 (body fat, %), and body energy (kcal/g) = 1.097 + 0.080 (body fat, %). The results of the present study indicated that the composition of a chicken's body could be estimated from the models that were developed.
Vision Assisted Navigation for Miniature Unmanned Aerial Vehicles (MAVs)
2009-11-01
commanded to orbit a target of known location. The error in target geolocation is shown for 200 frames with filtering (dashed line) and without (solid...so the performance of the filter was determined by using the estimated poses to solve a geolocation problem. An MAV flying at an altitude of 70 meters... geolocation as well as significantly reducing the short-term variance in the estimates based on the GPS/IMU alone. Due to the nature of the autopilot
A volumetric technique for fossil body mass estimation applied to Australopithecus afarensis.
Brassey, Charlotte A; O'Mahoney, Thomas G; Chamberlain, Andrew T; Sellers, William I
2018-02-01
Fossil body mass estimation is a well established practice within the field of physical anthropology. Previous studies have relied upon traditional allometric approaches, in which the relationship between one/several skeletal dimensions and body mass in a range of modern taxa is used in a predictive capacity. The lack of relatively complete skeletons has thus far limited the potential application of alternative mass estimation techniques, such as volumetric reconstruction, to fossil hominins. Yet across vertebrate paleontology more broadly, novel volumetric approaches are resulting in predicted values for fossil body mass very different to those estimated by traditional allometry. Here we present a new digital reconstruction of Australopithecus afarensis (A.L. 288-1; 'Lucy') and a convex hull-based volumetric estimate of body mass. The technique relies upon identifying a predictable relationship between the 'shrink-wrapped' volume of the skeleton and known body mass in a range of modern taxa, and subsequent application to an articulated model of the fossil taxa of interest. Our calibration dataset comprises whole body computed tomography (CT) scans of 15 species of modern primate. The resulting predictive model is characterized by a high correlation coefficient (r 2 = 0.988) and a percentage standard error of 20%, and performs well when applied to modern individuals of known body mass. Application of the convex hull technique to A. afarensis results in a relatively low body mass estimate of 20.4 kg (95% prediction interval 13.5-30.9 kg). A sensitivity analysis on the articulation of the chest region highlights the sensitivity of our approach to the reconstruction of the trunk, and the incomplete nature of the preserved ribcage may explain the low values for predicted body mass here. We suggest that the heaviest of previous estimates would require the thorax to be expanded to an unlikely extent, yet this can only be properly tested when more complete fossils are available. Copyright © 2017 Elsevier Ltd. All rights reserved.
Lower limb estimation from sparse landmarks using an articulated shape model.
Zhang, Ju; Fernandez, Justin; Hislop-Jambrich, Jacqui; Besier, Thor F
2016-12-08
Rapid generation of lower limb musculoskeletal models is essential for clinically applicable patient-specific gait modeling. Estimation of muscle and joint contact forces requires accurate representation of bone geometry and pose, as well as their muscle attachment sites, which define muscle moment arms. Motion-capture is a routine part of gait assessment but contains relatively sparse geometric information. Standard methods for creating customized models from motion-capture data scale a reference model without considering natural shape variations. We present an articulated statistical shape model of the left lower limb with embedded anatomical landmarks and muscle attachment regions. This model is used in an automatic workflow, implemented in an easy-to-use software application, that robustly and accurately estimates realistic lower limb bone geometry, pose, and muscle attachment regions from seven commonly used motion-capture landmarks. Estimated bone models were validated on noise-free marker positions to have a lower (p=0.001) surface-to-surface root-mean-squared error of 4.28mm, compared to 5.22mm using standard isotropic scaling. Errors at a variety of anatomical landmarks were also lower (8.6mm versus 10.8mm, p=0.001). We improve upon standard lower limb model scaling methods with shape model-constrained realistic bone geometries, regional muscle attachment sites, and higher accuracy. Copyright © 2016 Elsevier Ltd. All rights reserved.
Tzamaloukas, Antonios H; Murata, Glen H; Piraino, Beth; Raj, Dominic S C; VanderJagt, Dorothy J; Bernardini, Judith; Servilla, Karen S; Sun, Yijuan; Glew, Robert H; Oreopoulos, Dimitrios G
2010-03-01
We identified factors that account for differences between lean body mass computed from creatinine kinetics (LBM(cr)) and from either body water (LBM(V)) or body mass index (LBM(BMI)) in patients on continuous peritoneal dialysis (CPD). We compared the LBM(cr) and LBM(V) or LBM(BMI) in hypothetical subjects and actual CPD patients. We studied 439 CPD patients in Albuquerque, Pittsburgh, and Toronto, with 925 clearance studies. Creatinine production was estimated using formulas derived in CPD patients. Body water (V) was estimated from anthropometric formulas. We calculated LBM(BMI) from a formula that estimates body composition based on body mass index. In hypothetical subjects, LBM values were calculated by varying the determinants of body composition (gender, diabetic status, age, weight, and height) one at a time, while the other determinants were kept constant. In actual CPD patients, multiple linear regression and logistic regression were used to identify factors associated with differences in the estimates of LBM (LBM(cr)