Machida, Yuta; Yamamoto, Takahiko; Koshiji, Kohji
2013-01-01
Human body communication (HBC) is a new communication technology that has presented potential applications in health care and elderly support systems in recent years. In this study, which is focused on a wearable transmitter and receiver for HBC in a body area network (BAN), we performed electromagnetic field analysis and simulation using the finite difference time domain (FDTD) method with various models of the human body. Further we redesigned a number of impedance-matched electrodes to allow transmission without stubs or transformers. The specific absorption rate (SAR) and transmission characteristics S21 of these electrode structures were compared for several models.
Resonance properties of the biological objects in the RF field
NASA Astrophysics Data System (ADS)
Cocherova, E.; Kupec, P.; Stofanik, V.
2011-12-01
Irradiation of people with electromagnetic fields emitted from miscellaneous devices working in the radio-frequency (RF) range may have influence, for example may affect brain processes. The question of health impact of RF electromagnetic fields on population is still not closed. This article is devoted to an investigation of resonance phenomena of RF field absorption in the models of whole human body and body parts (a head) of different size and shape. The values of specific absorption rate (SAR) are evaluated for models of the different shapes: spherical, cylindrical, realistic shape and for different size of the model, that represents the case of new-born, child and adult person. In the RF frequency region, absorption depends nonlinearly on frequency. Under certain conditions (E-polarization), absorption reaches maximum at frequency, that is called "resonance frequency". The whole body absorption and the resonance frequency depends on many further parameters, that are not comprehensively clarified. The simulation results showed the dependence of the whole-body average SAR and resonance frequency on the body dimensions, as well as the influence of the body shape.
Harmful effects of 41 and 202 MHz radiations on some body parts and tissues.
Kumar, Vijay; Vats, R P; Pathak, P P
2008-08-01
Many types of invisible electromagnetic waves are produced in our atmosphere. When these radiations penetrate our body, electric fields are induced inside the body, resulting in the absorption of power, which is different for different body parts and also depends on the frequency of radiations. Higher power absorption may result into health problems. In this communication, effects of electromagnetic waves (EMW) of 41 and 202 MHz frequencies transmitted by the TV tower have been studied on skin, muscles, bone and fat of human. Using international standards for safe exposure limits of specific absorption rate (SAR), we have found the safe distance from TV transmission towers for two frequencies. It is suggested that transmission towers should be located away from the thickly populated areas and people should keep away from the transmission towers, as they radiate electromagnetic radiations that are harmful to some parts/tissues of body.
Liu, W; Collins, C M; Smith, M B
2005-03-01
A numerical model of a female body is developed to study the effects of different body types with different coil drive methods on radio-frequency magnetic ( B 1 ) field distribution, specific energy absorption rate (SAR), and intrinsic signal-to-noise ratio (ISNR) for a body-size birdcage coil at 64 and 128 MHz. The coil is loaded with either a larger, more muscular male body model (subject 1) or a newly developed female body model (subject 2), and driven with two-port (quadrature), four-port, or many (ideal) sources. Loading the coil with subject 1 results in significantly less homogeneous B 1 field, higher SAR, and lower ISNR than those for subject 2 at both frequencies. This dependence of MR performance and safety measures on body type indicates a need for a variety of numerical models representative of a diverse population for future calculations. The different drive methods result in similar B 1 field patterns, SAR, and ISNR in all cases.
NASA Astrophysics Data System (ADS)
Michalak, K. P.; Nawrocka-Bogusz, H.
2011-12-01
The frequency-specific absorption of kHz signals has been postulated for different tissues, trace elements, vitamins, toxins, pathogens, allergens etc. for low-power (μV) signals. An increase in the impedance of the human body is observed only up to the given power of the applied signal. The highest amplification of the given signal being damped by the body makes it possible to determine the intensity of the given process in the body (e.g. amount of the toxin, trace element, intensity of the allergy) being connected with a given frequency spectrum of the signal. The mechanism of frequency-specific absorption can be explained by means of the Quantum Field Theory being applied to the structure of the water. Substantially high coincidence between the frequencies of the rotation of free quasi-excited electrons in coherent domains of water and the frequencies being used in the MORA diagnostics (Med-Tronic GmbH, EN ISO 13485, EN ISO 9001) can be observed. These frequencies are located in the proximity of f = 7kHz · i (i = 1,3,5,7,...). This fact suggests that the coherent domains with the admixtures of the given substances create structure-specific coherent domains that possess frequency-specific absorption spectra. The diagnostic tool called "MORA System diagnosis" was used to investigate 102 patients with different types and stages of cancer. Many signals were observed to be absorbed by many cancer patients, e.g.: 'Cellular defense system', 'Degeneration tendencies', Manganese, Magnesium, Zinc, Selenium, Vitamin E, Glutamine, Glutathione, Cysteine, Candida albicans, Mycosis. The results confirm the role of oxidative stress, immunological system deficiency and mitochondria malfunction in the development of cancer.
Anatomic variability in the deposition of radio frequency electromagnetic energy in mammals as been well documented. ecent study [D'Andrea et al. 1985] reported specific absorption rat (SAR) hotspots in the brain, rectum, and tail of rat carcasses exposed to 360- and to 2,450-MHz...
Qureshi, Muhammad R A; Alfadhl, Yasir; Chen, Xiaodong; Peyman, Azadeh; Maslanyj, Myron; Mann, Simon
2018-04-01
Human body exposure to radiofrequency electromagnetic waves emitted from smart meters was assessed using various exposure configurations. Specific energy absorption rate distributions were determined using three anatomically realistic human models. Each model was assigned with age- and frequency-dependent dielectric properties representing a collection of age groups. Generalized exposure conditions involving standing and sleeping postures were assessed for a home area network operating at 868 and 2,450 MHz. The smart meter antenna was fed with 1 W power input which is an overestimation of what real devices typically emit (15 mW max limit). The highest observed whole body specific energy absorption rate value was 1.87 mW kg -1 , within the child model at a distance of 15 cm from a 2,450 MHz device. The higher values were attributed to differences in dimension and dielectric properties within the model. Specific absorption rate (SAR) values were also estimated based on power density levels derived from electric field strength measurements made at various distances from smart meter devices. All the calculated SAR values were found to be very small in comparison to International Commission on Non-Ionizing Radiation Protection limits for public exposure. Bioelectromagnetics. 39:200-216, 2018. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Hirata, Akimasa; Asano, Takayuki; Fujiwara, Osamu
2007-08-21
This study investigated the relationship between the specific absorption rate and temperature elevation in an anatomically-based model named NORMAN for exposure to radio-frequency far fields in the ICNIRP guidelines (1998 Health Phys. 74 494-522). The finite-difference time-domain method is used for analyzing the electromagnetic absorption and temperature elevation in NORMAN. In order to consider the variability of human thermoregulation, parameters for sweating are derived and incorporated into a conventional sweating formula. First, we investigated the effect of blood temperature variation modeling on body-core temperature. The computational results show that the modeling of blood temperature variation was the dominant factor influencing the body-core temperature. This is because the temperature in the inner tissues is elevated via the circulation of blood whose temperature was elevated due to EM absorption. Even at different frequencies, the body-core temperature elevation at an identical whole-body average specific absorption rate (SAR) was almost the same, suggesting the effectiveness of the whole-body average SAR as a measure in the ICNIRP guidelines. Next, we discussed the effect of sweating on the temperature elevation and thermal time constant of blood. The variability of temperature elevation caused by the sweating rate was found to be 30%. The blood temperature elevation at the basic restriction in the ICNIRP guidelines of 0.4 W kg(-1) is 0.25 degrees C even for a low sweating rate. The thermal time constant of blood temperature elevation was 23 min and 52 min for a man with a lower and a higher sweating rate, respectively, which is longer than the average time of the SAR in the ICNIRP guidelines. Thus, the whole-body average SAR required for blood temperature elevation of 1 degrees C was 4.5 W kg(-1) in the model of a human with the lower sweating coefficients for 60 min exposure. From a comparison of this value with the basic restriction in the ICNIRP guidelines of 0.4 W kg(-1), the safety factor was 11.
Optoacoustic multispectral imaging of radiolucent foreign bodies in tissue.
Page, Leland; Maswadi, Saher; Glickman, Randolph D
2013-01-01
Optoacoustic imaging is an emerging medical technology that uniquely combines the absorption contrast of optical imaging and the penetration depth of ultrasound. While it is not currently employed as a clinical imaging modality, the results of current research strongly support the use of optoacoustic-based methods in medical imaging. One such application is the diagnosis of the presence of soft tissue foreign bodies. Because many radiolucent foreign bodies have sufficient contrast for imaging in the optical domain, laser-induced optoacoustic imaging could be advantageous for the detection of such objects. Common foreign bodies have been scanned over a range of visible and near infrared wavelengths by using an optoacoustic method to obtain the spectroscopic properties of the materials commonly associated with these foreign bodies. The derived optical absorption spectra compared quite closely to the absorption spectra generated when using a conventional spectrophotometer. By using the probe-beam deflection technique, a novel, pressure-wave detection method, we successfully generated optoacoustic spectroscopic plots of a wooden foreign body embedded in a tissue phantom, which closely resembled the spectrum of the same object obtained in isolation. A practical application of such spectra is to assemble a library of spectroscopic data for radiolucent materials, from which specific characteristic wavelengths can be selected for use in optimizing imaging instrumentation and provide a basis for the identification of the material properties of particular foreign bodies.
Absorption band Q model for the Earth
NASA Technical Reports Server (NTRS)
Anderson, D. L.; Given, J. W.
1981-01-01
Attenuation in solids and liquids, as measured by the quality factor Q, is typically frequency dependent. In seismology, however, Q is usually assumed to be independent of frequency. Body wave, surface wave, and normal mode data are used to place constraints on the frequency dependence of Q in the mantle. Specific features of the absorption band model are: low-Q in the seismic band at both the top and the base of the mantle, low-Q for long-period body waves in the outer core, an inner core Q sub s that increases with period, and low Q sub p/Q sub s at short periods in the middle mantle.
Temperature elevation in the fetus from electromagnetic exposure during magnetic resonance imaging
NASA Astrophysics Data System (ADS)
Kikuchi, Satoru; Saito, Kazuyuki; Takahashi, Masaharu; Ito, Koichi
2010-04-01
This study computationally assessed the temperature elevations due to electromagnetic wave energy deposition during magnetic resonance imaging in non-pregnant and pregnant woman models. We used a thermal model with thermoregulatory response of the human body for our calculations. We also considered the effect of blood temperature variation on body core temperature. In a thermal equilibrium state, the temperature elevations in the intrinsic tissues of the woman and fetal tissues were 0.85 and 0.61 °C, respectively, at a whole-body averaged specific absorption rate of 2.0 W kg-1, which is the restriction value of the International Electrotechnical Commission for the normal operating mode. As predicted, these values are below the temperature elevation of 1.5 °C that is expected to be teratogenic. However, these values exceeded the recommended temperature elevation limit of 0.5 °C by the International Commission on Non-Ionizing Radiation Protection. We also assessed the irradiation time required for a temperature elevation of 0.5 °C at the aforementioned specific absorption rate. As a result, the calculated irradiation time was 40 min.
Joseph, W; Vermeeren, G; Verloock, L; Heredia, Mauricio Masache; Martens, Luc
2008-09-01
In this paper, personal electromagnetic field exposure of the general public due to 12 different radiofrequency sources is characterized. Twenty-eight different realistic exposure scenarios based upon time, environment, activity, and location have been defined and a relevant number of measurements were performed with a personal exposure meter. Indoor exposure in office environments can be higher than outdoor exposure: 95th percentiles of field values due to WiFi ranged from 0.36 to 0.58 V m(-1), and for DECT values of 0.33 V m(-1) were measured. The downlink signals of GSM and DCS caused the highest outdoor exposures up to 0.52 V m(-1). The highest total field exposure occurred for mobile scenarios (inside a train or bus) from uplink signals of GSM and DCS (e.g., mobile phones) due to changing environmental conditions, handovers, and higher required transmitted signals from mobile phones due to penetration through windows while moving. A method to relate the exposure to the actual whole-body absorption in the human body is proposed. An application is shown where the actual absorption in a human body model due to a GSM downlink signal is determined. Fiftieth, 95th, and 99 th percentiles of the whole-body specific absorption rate (SAR) due to this GSM signal of 0.58 microW kg(-1), 2.08 microW kg(-1), and 5.01 microW kg(-1) are obtained for a 95th percentile of 0.26 V m(-1). A practical usable function is proposed for the relation between the whole-body SAR and the electric fields. The methodology of this paper enables epidemiological studies to make an analysis in combination with both electric field and actual whole-body SAR values and to compare exposure with basic restrictions.
Intestinal absorption of water-soluble vitamins in health and disease.
Said, Hamid M
2011-08-01
Our knowledge of the mechanisms and regulation of intestinal absorption of water-soluble vitamins under normal physiological conditions, and of the factors/conditions that affect and interfere with theses processes has been significantly expanded in recent years as a result of the availability of a host of valuable molecular/cellular tools. Although structurally and functionally unrelated, the water-soluble vitamins share the feature of being essential for normal cellular functions, growth and development, and that their deficiency leads to a variety of clinical abnormalities that range from anaemia to growth retardation and neurological disorders. Humans cannot synthesize water-soluble vitamins (with the exception of some endogenous synthesis of niacin) and must obtain these micronutrients from exogenous sources. Thus body homoeostasis of these micronutrients depends on their normal absorption in the intestine. Interference with absorption, which occurs in a variety of conditions (e.g. congenital defects in the digestive or absorptive system, intestinal disease/resection, drug interaction and chronic alcohol use), leads to the development of deficiency (and sub-optimal status) and results in clinical abnormalities. It is well established now that intestinal absorption of the water-soluble vitamins ascorbate, biotin, folate, niacin, pantothenic acid, pyridoxine, riboflavin and thiamin is via specific carrier-mediated processes. These processes are regulated by a variety of factors and conditions, and the regulation involves transcriptional and/or post-transcriptional mechanisms. Also well recognized now is the fact that the large intestine possesses specific and efficient uptake systems to absorb a number of water-soluble vitamins that are synthesized by the normal microflora. This source may contribute to total body vitamin nutrition, and especially towards the cellular nutrition and health of the local colonocytes. The present review aims to outline our current understanding of the mechanisms involved in intestinal absorption of water-soluble vitamins, their regulation, the cell biology of the carriers involved and the factors that negatively affect these absorptive events. © The Authors Journal compilation © 2011 Biochemical Society
Intestinal absorption of water-soluble vitamins in health and disease
Said, Hamid M.
2014-01-01
Our knowledge of the mechanisms and regulation of intestinal absorption of water-soluble vitamins under normal physiological conditions, and of the factors/conditions that affect and interfere with theses processes has been significantly expanded in recent years as a result of the availability of a host of valuable molecular/cellular tools. Although structurally and functionally unrelated, the water-soluble vitamins share the feature of being essential for normal cellular functions, growth and development, and that their deficiency leads to a variety of clinical abnormalities that range from anaemia to growth retardation and neurological disorders. Humans cannot synthesize water-soluble vitamins (with the exception of some endogenous synthesis of niacin) and must obtain these micronutrients from exogenous sources. Thus body homoeostasis of these micronutrients depends on their normal absorption in the intestine. Interference with absorption, which occurs in a variety of conditions (e.g. congenital defects in the digestive or absorptive system, intestinal disease/resection, drug interaction and chronic alcohol use), leads to the development of deficiency (and sub-optimal status) and results in clinical abnormalities. It is well established now that intestinal absorption of the water-soluble vitamins ascorbate, biotin, folate, niacin, pantothenic acid, pyridoxine, riboflavin and thiamin is via specific carrier-mediated processes. These processes are regulated by a variety of factors and conditions, and the regulation involves transcriptional and/or post-transcriptional mechanisms. Also well recognized now is the fact that the large intestine possesses specific and efficient uptake systems to absorb a number of water-soluble vitamins that are synthesized by the normal microflora. This source may contribute to total body vitamin nutrition, and especially towards the cellular nutrition and health of the local colonocytes. The present review aims to outline our current understanding of the mechanisms involved in intestinal absorption of water-soluble vitamins, their regulation, the cell biology of the carriers involved and the factors that negatively affect these absorptive events. PMID:21749321
NASA Astrophysics Data System (ADS)
Findlay, R. P.; Dimbylow, P. J.
2008-05-01
If an electromagnetic field is incident normally onto a perfectly conducting ground plane, the field is reflected back into the domain. This produces a standing wave above the ground plane. If a person is present within the domain, absorption of the field in the body may cause problems regarding compliance with electromagnetic guidelines. To investigate this, the whole-body averaged specific energy absorption rate (SAR), localised SAR and ankle currents in the voxel model NORMAN have been calculated for a variety of these exposures under grounded conditions. The results were normalised to the spatially averaged field, a technique used to determine a mean value for comparison with guidelines when the field varies along the height of the body. Additionally, the external field values required to produce basic restrictions for whole-body averaged SAR have been calculated. It was found that in all configurations studied, the ICNIRP reference levels and IEEE MPEs provided a conservative estimate of these restrictions.
The metabolism of structured triacylglycerols.
Mu, Huiling; Porsgaard, Trine
2005-11-01
The triacylglycerol (TAG) structure in addition to the overall fatty acid profile is of importance when considering the nutritional effect of a dietary fat. This review aims at summarizing our current knowledge of the digestion, absorption, uptake, and transport of structured TAGs, with particular emphasis on the following aspects: gastric emptying, specificity of pancreatic lipase, lymphatic transport and clearance of chylomicrons, effects of lipid structure on tissue lipid compositions and the fecal loss of fats. So an overview will be provided for how the structure and fatty acid composition of TAGs affect their absorption and the distribution of the fatty acids in the body following digestion and absorption.
NASA Astrophysics Data System (ADS)
Findlay, R. P.; Dimbylow, P. J.
2006-05-01
Finite-difference time-domain (FDTD) calculations have been performed to investigate the frequency dependence of the specific energy absorption rate (SAR) in a seated voxel model of the human body. The seated model was derived from NORMAN (NORmalized MAN), an anatomically realistic voxel phantom in the standing posture with arms to the side. Exposure conditions included both vertically and horizontally polarized plane wave electric fields between 10 MHz and 3 GHz. The resolution of the voxel model was 4 mm for frequencies up to 360 MHz and 2 mm for calculations in the higher frequency range. The reduction in voxel size permitted the calculation of SAR at these higher frequencies using the FDTD method. SAR values have been calculated for the seated adult phantom and scaled versions representing 10-, 5- and 1-year-old children under isolated and grounded conditions. These scaled models do not exactly reproduce the dimensions and anatomy of children, but represent good geometric information for a seated child. Results show that, when the field is vertically polarized, the sitting position causes a second, smaller resonance condition not seen in resonance curves for the phantom in the standing posture. This occurs at ~130 MHz for the adult model when grounded. Partial-body SAR calculations indicate that the upper and lower regions of the body have their own resonant frequency at ~120 MHz and ~160 MHz, respectively, when the grounded adult model is orientated in the sitting position. These combine to produce this second resonance peak in the whole-body averaged SAR values calculated. Two resonance peaks also occur for the sitting posture when the incident electric field is horizontally polarized. For the adult model, the peaks in the whole-body averaged SAR occur at ~180 and ~600 MHz. These peaks are due to resonance in the arms and feet, respectively. Layer absorption plots and colour images of SAR in individual voxels show the specific regions in which the seated human body absorbs the incident field. External electric field values required to produce the ICNIRP basic restrictions were derived from SAR calculations and compared with ICNIRP reference levels. This comparison shows that the reference levels provide a conservative estimate of the ICNIRP whole-body averaged SAR restriction, with the exception of the region above 1.4 GHz for the scaled 1-year-old model.
Findlay, R P; Dimbylow, P J
2006-05-07
Finite-difference time-domain (FDTD) calculations have been performed to investigate the frequency dependence of the specific energy absorption rate (SAR) in a seated voxel model of the human body. The seated model was derived from NORMAN (NORmalized MAN), an anatomically realistic voxel phantom in the standing posture with arms to the side. Exposure conditions included both vertically and horizontally polarized plane wave electric fields between 10 MHz and 3 GHz. The resolution of the voxel model was 4 mm for frequencies up to 360 MHz and 2 mm for calculations in the higher frequency range. The reduction in voxel size permitted the calculation of SAR at these higher frequencies using the FDTD method. SAR values have been calculated for the seated adult phantom and scaled versions representing 10-, 5- and 1-year-old children under isolated and grounded conditions. These scaled models do not exactly reproduce the dimensions and anatomy of children, but represent good geometric information for a seated child. Results show that, when the field is vertically polarized, the sitting position causes a second, smaller resonance condition not seen in resonance curves for the phantom in the standing posture. This occurs at approximately 130 MHz for the adult model when grounded. Partial-body SAR calculations indicate that the upper and lower regions of the body have their own resonant frequency at approximately 120 MHz and approximately 160 MHz, respectively, when the grounded adult model is orientated in the sitting position. These combine to produce this second resonance peak in the whole-body averaged SAR values calculated. Two resonance peaks also occur for the sitting posture when the incident electric field is horizontally polarized. For the adult model, the peaks in the whole-body averaged SAR occur at approximately 180 and approximately 600 MHz. These peaks are due to resonance in the arms and feet, respectively. Layer absorption plots and colour images of SAR in individual voxels show the specific regions in which the seated human body absorbs the incident field. External electric field values required to produce the ICNIRP basic restrictions were derived from SAR calculations and compared with ICNIRP reference levels. This comparison shows that the reference levels provide a conservative estimate of the ICNIRP whole-body averaged SAR restriction, with the exception of the region above 1.4 GHz for the scaled 1-year-old model.
Fernandez, Marta; Espinosa, Hugo G; Thiel, David V; Arrinda, Amaia
2018-01-01
The interaction of body-worn antennas with the human body causes a significant decrease in antenna efficiency and a shift in resonant frequency. A resonant slot in a small conductive box placed on the body has been shown to reduce these effects. The specific absorption rate is less than international health standards for most wearable antennas due to small transmitter power. This paper reports the linear relationship between power absorbed by biological tissues at different locations on the body and radiation efficiency based on numerical modeling (r = 0.99). While the -10 dB bandwidth of the antenna remained constant and equal to 12.5%, the maximum frequency shift occurred when the antenna was close to the elbow (6.61%) and on the thigh (5.86%). The smallest change was found on the torso (4.21%). Participants with body-mass index (BMI) between 17 and 29 kg/m 2 took part in experimental measurements, where the maximum frequency shift was 2.51%. Measurements showed better agreement with simulations on the upper arm. These experimental results demonstrate that the BMI for each individual had little effect on the performance of the antenna. Bioelectromagnetics. 39:25-34, 2018. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Murbach, Manuel; Neufeld, Esra; Kainz, Wolfgang; Pruessmann, Klaas P; Kuster, Niels
2014-02-01
Radiofrequency energy deposition in magnetic resonance imaging must be limited to prevent excessive heating of the patient. Correlations of radiofrequency absorption with large-scale anatomical features (e.g., height) are investigated in this article. The specific absorption rate (SAR), as the pivotal parameter for quantifying absorbed radiofrequency, increases with the radial dimension of the patient and therefore with the large-scale anatomical properties. The absorbed energy in six human models has been modeled in different Z-positions (head to knees) within a 1.5T bodycoil. For a fixed B1+ incident field, the whole-body SAR can be up to 2.5 times higher (local SAR up to seven times) in obese adult models compared to children. If the exposure is normalized to 4 W/kg whole-body SAR, the local SAR can well-exceed the limits for local transmit coils and shows intersubject variations of up to a factor of three. The correlations between anatomy and induced local SAR are weak for normalized exposure, but strong for a fixed B1+ field, suggesting that anatomical properties could be used for fast SAR predictions. This study demonstrates that a representative virtual human population is indispensable for the investigation of local SAR levels. Copyright © 2013 Wiley Periodicals, Inc.
Code of Federal Regulations, 2010 CFR
2010-01-01
... inaccessible to a child or prevent the absorption of any lead in the human body through normal and reasonably... in the absorption of any lead into the human body, taking into account normal and reasonably... sought, will not result in the absorption of any lead into the human body, nor have any other adverse...
Code of Federal Regulations, 2011 CFR
2011-01-01
... inaccessible to a child or prevent the absorption of any lead in the human body through normal and reasonably... in the absorption of any lead into the human body, taking into account normal and reasonably... sought, will not result in the absorption of any lead into the human body, nor have any other adverse...
NASA Technical Reports Server (NTRS)
Barker, Ed; Abercromby, Kira J.; Abell, Paul
2009-01-01
A key objective of NASA s Orbital Debris program office at Johnson Space Center (JSC) is to characterize the debris environment by way of assessing the physical properties (type, mass, density, and size) of objects in orbit. Knowledge of the geosynchronous orbit (GEO) debris environment in particular can be used to determine the hazard probability at specific GEO altitudes and aid predictions of the future environment. To calculate an optical size from an intensity measurement of an object in the GEO regime, a 0.175 albedo is assumed currently. However, identification of specific material type or types could improve albedo accuracy and yield a more accurate size estimate for the debris piece. Using spectroscopy, it is possible to determine the surface materials of space objects. The study described herein used the NASA Infrared Telescope Facility (IRTF) to record spectral data in the 0.6 to 2.5 micron regime on eight catalogued space objects. For comparison, all of the objects observed were in GEO or near-GEO. The eight objects consisted of two intact spacecraft, three rocket bodies, and three catalogued debris pieces. Two of the debris pieces stemmed from Titan 3C transtage breakup and the third is from COSMOS 2054. The reflectance spectra of the Titan 3C pieces share similar slopes (increasing with wavelength) and lack any strong absorption features. The COSMOS debris spectra is flat and has no absorption features. In contrast, the intact spacecraft show classic absorption features due to solar panels with a strong band gap feature near 1 micron. The two spacecraft are spin-stabilized objects and therefore have solar panels surrounding the outer surface. Two of the three rocket bodies are inertial upper stage (IUS) rocket bodies and have similar looking spectra. The slopes flatten out near 1.5 microns with absorption features in the near-infrared that are similar to that of white paint. The third rocket body has a similar flattening of slope but with fewer features of white paint - indicating that the surface paint on the SL-12 may be different than the IUS. This study shows that the surface materials of debris appear different spectrally than intact rocket bodies and spacecraft and therefore are not believed to be solar panel material or pristine white paint. Further investigation is necessary in order to eliminate materials as possible choices for the debris pieces.
NASA Astrophysics Data System (ADS)
Albercromby, Kira J.; Abell, Paul; Barker, Ed
2009-03-01
A key objective of NASA's Orbital Debris program office at Johnson Space Center (JSC) is to characterize the debris environment by way of assessing the physical properties (type, mass, density, and size) of objects in orbit. Knowledge of the geosynchronous orbit (GEO) debris environment in particular can be used to determine the hazard probability at specific GEO altitudes and aid predictions of the future environment. To calculate an optical size from an intensity measurement of an object in the GEO regime, a 0.175 albedo is assumed currently. However, identification of specific material type or types could improve albedo accuracy and yield a more accurate size estimate for the debris piece. Using spectroscopy, it is possible to determine the surface materials of space objects. The study described herein used the NASA Infrared Telescope Facility (IRTF) to record spectral data in the ~ 0.65 to 2.5 micron regime on eight catalogued space objects. For comparison, all of the objects observed were in GEO or near-GEO. The eight objects consisted of two intact spacecraft, three rocket bodies, and three catalogued debris pieces. Two of the debris pieces stemmed from Titan 3C transtage breakup and the third is from COSMOS 2054. The reflectance spectra of the Titan 3C pieces share similar slopes (increasing with wavelength) and lack any strong absorption features. The COSMOS debris spectrum has a slight slope and has no absorption features. In contrast, the intact spacecraft show classic absorption features due to solar cells with a strong band gap feature near 1 micron. The two spacecraft were spin-stabilized objects and therefore have solar panels surrounding the outer surface. Two of the three rocket bodies are inertial upper stage (IUS) rocket bodies and have similar looking spectra. The slopes flatten out near 1.5 microns with absorption features in the near-infrared that are similar to that of white paint. The third rocket body has a similar flattening of slope but with fewer features of white paint - indicating that the surface paint on the SL-12 may be different than the IUS. This study shows that the surface materials of debris appear different spectrally than intact rocket bodies and spacecraft and therefore are not believed to be solar cell material or pristine white paint. Further investigation is necessary in order to eliminate materials as possible choices for the debris pieces.
Yamano, Noriko; Ikeda, Yasumasa; Sakama, Minoru; Izawa-Ishizawa, Yuki; Kihira, Yoshitaka; Ishizawa, Keisuke; Miyamoto, Licht; Tomita, Shuhei; Tsuchiya, Koichiro; Tamaki, Toshiaki
2015-01-01
Although iron is an essential trace metal, its presence in excess causes oxidative stress in the human body. Recent studies have indicated that iron storage is a risk factor for type 2 diabetes mellitus. Dietary iron restriction or iron chelation ameliorates symptoms of type 2 diabetes in mouse models. However, whether iron content in the body changes with the development of diabetes is unknown. Here, we investigated the dynamics of iron accumulation and changes in iron absorption-related genes in mice that developed obesity and diabetes by consuming a high-fat diet (HFD-fed mice). HFD-fed mice (18-20 wk) were compared with control mice for hematologic features, serum ferritin levels, and iron contents in the gastrocnemius muscle, heart, epididymal fat, testis, liver, duodenum, and spleen. In addition, the spleen was examined histologically. Iron absorption-related gene expression in the liver and duodenum was also examined. Hemoglobin and serum ferritin levels were increased in HFD-fed mice. The HFD-fed mice showed iron accumulation in the spleen, but not in the heart or liver. Increased percentages of the splenic red pulp and macrophages were observed in HFD-fed mice and iron accumulation in the spleen was found mainly in the splenic red pulp. The HFD-fed mice also showed decreased iron content in the duodenum. The mRNA expression of divalent metal transporter-1 (DMT-1), an iron absorption-related gene, was elevated in the duodenum of HFD-fed mice. These results indicate that iron accumulation (specifically accumulation in the spleen) is enhanced by the development of type 2 diabetes induced by HFD.
Characterization of In-Body to On-Body Wireless Radio Frequency Link for Upper Limb Prostheses.
Stango, Antonietta; Yazdandoost, Kamya Yekeh; Negro, Francesco; Farina, Dario
2016-01-01
Wireless implanted devices can be used to interface patients with disabilities with the aim of restoring impaired motor functions. Implanted devices that record and transmit electromyographic (EMG) signals have been applied for the control of active prostheses. This simulation study investigates the propagation losses and the absorption rate of a wireless radio frequency link for in-to-on body communication in the medical implant communication service (MICS) frequency band to control myoelectric upper limb prostheses. The implanted antenna is selected and a suitable external antenna is designed. The characterization of both antennas is done by numerical simulations. A heterogeneous 3D body model and a 3D electromagnetic solver have been used to model the path loss and to characterize the specific absorption rate (SAR). The path loss parameters were extracted and the SAR was characterized, verifying the compliance with the guideline limits. The path loss model has been also used for a preliminary link budget analysis to determine the feasibility of such system compliant with the IEEE 802.15.6 standard. The resulting link margin of 11 dB confirms the feasibility of the system proposed.
Characterization of In-Body to On-Body Wireless Radio Frequency Link for Upper Limb Prostheses
Stango, Antonietta; Yazdandoost, Kamya Yekeh; Negro, Francesco; Farina, Dario
2016-01-01
Wireless implanted devices can be used to interface patients with disabilities with the aim of restoring impaired motor functions. Implanted devices that record and transmit electromyographic (EMG) signals have been applied for the control of active prostheses. This simulation study investigates the propagation losses and the absorption rate of a wireless radio frequency link for in-to-on body communication in the medical implant communication service (MICS) frequency band to control myoelectric upper limb prostheses. The implanted antenna is selected and a suitable external antenna is designed. The characterization of both antennas is done by numerical simulations. A heterogeneous 3D body model and a 3D electromagnetic solver have been used to model the path loss and to characterize the specific absorption rate (SAR). The path loss parameters were extracted and the SAR was characterized, verifying the compliance with the guideline limits. The path loss model has been also used for a preliminary link budget analysis to determine the feasibility of such system compliant with the IEEE 802.15.6 standard. The resulting link margin of 11 dB confirms the feasibility of the system proposed. PMID:27764182
NASA Astrophysics Data System (ADS)
Flintoft, I. D.; Robinson, M. P.; Melia, G. C. R.; Marvin, A. C.; Dawson, J. F.
2014-07-01
The electromagnetic absorption cross-section (ACS) averaged over polarization and angle-of-incidence of 60 ungrounded adult subjects was measured at microwave frequencies of 1-12 GHz in a reverberation chamber. Average ACS is important in non-ionizing dosimetry and exposure studies, and is closely related to the whole-body averaged specific absorption rate (WBSAR). The average ACS was measured with a statistical uncertainty of less than 3% and high frequency resolution for individuals with a range of body shapes and sizes allowing the statistical distribution of WBSAR over a real population with individual internal and external morphologies to be determined. The average ACS of all subjects was found to vary from 0.15 to 0.4 m2 for an individual subject it falls with frequency over 1-6 GHz, and then rises slowly over the 6-12 GHz range in which few other studies have been conducted. Average ACS and WBSAR are then used as a surrogate for worst-case ACS/WBSAR, in order to study their variability across a real population compared to literature results from simulations using numerical phantoms with a limited range of anatomies. Correlations with body morphological parameters such as height, mass and waist circumference have been investigated: the strongest correlation is with body surface area (BSA) at all frequencies above 1 GHz, however direct proportionality to BSA is not established until above 5 GHz. When the average ACS is normalized to the BSA, the resulting absorption efficiency shows a negative correlation with the estimated thickness of subcutaneous body fat. Surrogate models and statistical analysis of the measurement data are presented and compared to similar models from the literature. The overall dispersion of measured average WBSAR of the sample of the UK population studied is consistent with the dispersion of simulated worst-case WBSAR across multiple numerical phantom families. The statistical results obtained allow the calibration of human exposure assessments made with particular phantoms to a population with a range of individual morphologies.
Flintoft, I D; Robinson, M P; Melia, G C R; Marvin, A C; Dawson, J F
2014-07-07
The electromagnetic absorption cross-section (ACS) averaged over polarization and angle-of-incidence of 60 ungrounded adult subjects was measured at microwave frequencies of 1-12 GHz in a reverberation chamber. Average ACS is important in non-ionizing dosimetry and exposure studies, and is closely related to the whole-body averaged specific absorption rate (WBSAR). The average ACS was measured with a statistical uncertainty of less than 3% and high frequency resolution for individuals with a range of body shapes and sizes allowing the statistical distribution of WBSAR over a real population with individual internal and external morphologies to be determined. The average ACS of all subjects was found to vary from 0.15 to 0.4 m(2); for an individual subject it falls with frequency over 1-6 GHz, and then rises slowly over the 6-12 GHz range in which few other studies have been conducted. Average ACS and WBSAR are then used as a surrogate for worst-case ACS/WBSAR, in order to study their variability across a real population compared to literature results from simulations using numerical phantoms with a limited range of anatomies. Correlations with body morphological parameters such as height, mass and waist circumference have been investigated: the strongest correlation is with body surface area (BSA) at all frequencies above 1 GHz, however direct proportionality to BSA is not established until above 5 GHz. When the average ACS is normalized to the BSA, the resulting absorption efficiency shows a negative correlation with the estimated thickness of subcutaneous body fat. Surrogate models and statistical analysis of the measurement data are presented and compared to similar models from the literature. The overall dispersion of measured average WBSAR of the sample of the UK population studied is consistent with the dispersion of simulated worst-case WBSAR across multiple numerical phantom families. The statistical results obtained allow the calibration of human exposure assessments made with particular phantoms to a population with a range of individual morphologies.
Habachi, A El; Conil, E; Hadjem, A; Vazquez, E; Wong, M F; Gati, A; Fleury, G; Wiart, J
2010-04-07
In this paper, we propose identification of the morphological factors that may impact the whole-body averaged specific absorption rate (WBSAR). This study is conducted for the case of exposure to a front plane wave at a 2100 MHz frequency carrier. This study is based on the development of different regression models for estimating the WBSAR as a function of morphological factors. For this purpose, a database of 12 anatomical human models (phantoms) has been considered. Also, 18 supplementary phantoms obtained using the morphing technique were generated to build the required relation. This paper presents three models based on external morphological factors such as the body surface area, the body mass index or the body mass. These models show good results in estimating the WBSAR (<10%) for families obtained by the morphing technique, but these are still less accurate (30%) when applied to different original phantoms. This study stresses the importance of the internal morphological factors such as muscle and fat proportions in characterization of the WBSAR. The regression models are then improved using internal morphological factors with an estimation error of approximately 10% on the WBSAR. Finally, this study is suitable for establishing the statistical distribution of the WBSAR for a given population characterized by its morphology.
NASA Astrophysics Data System (ADS)
El Habachi, A.; Conil, E.; Hadjem, A.; Vazquez, E.; Wong, M. F.; Gati, A.; Fleury, G.; Wiart, J.
2010-04-01
In this paper, we propose identification of the morphological factors that may impact the whole-body averaged specific absorption rate (WBSAR). This study is conducted for the case of exposure to a front plane wave at a 2100 MHz frequency carrier. This study is based on the development of different regression models for estimating the WBSAR as a function of morphological factors. For this purpose, a database of 12 anatomical human models (phantoms) has been considered. Also, 18 supplementary phantoms obtained using the morphing technique were generated to build the required relation. This paper presents three models based on external morphological factors such as the body surface area, the body mass index or the body mass. These models show good results in estimating the WBSAR (<10%) for families obtained by the morphing technique, but these are still less accurate (30%) when applied to different original phantoms. This study stresses the importance of the internal morphological factors such as muscle and fat proportions in characterization of the WBSAR. The regression models are then improved using internal morphological factors with an estimation error of approximately 10% on the WBSAR. Finally, this study is suitable for establishing the statistical distribution of the WBSAR for a given population characterized by its morphology.
Dynamically induced many-body localization
NASA Astrophysics Data System (ADS)
Choi, Soonwon; Abanin, Dmitry A.; Lukin, Mikhail D.
2018-03-01
We show that a quantum phase transition from ergodic to many-body localized (MBL) phases can be induced via periodic pulsed manipulation of spin systems. Such a transition is enabled by the interplay between weak disorder and slow heating rates. Specifically, we demonstrate that the Hamiltonian of a weakly disordered ergodic spin system can be effectively engineered, by using sufficiently fast coherent controls, to yield a stable MBL phase, which in turn completely suppresses the energy absorption from external control field. Our results imply that a broad class of existing many-body systems can be used to probe nonequilibrium phases of matter for a long time, limited only by coupling to external environment.
NASA Astrophysics Data System (ADS)
Conil, E.; Hadjem, A.; Lacroux, F.; Wong, M. F.; Wiart, J.
2008-03-01
This paper deals with the variability of body models used in numerical dosimetry studies. Six adult anthropomorphic voxel models have been collected and used to build 5-, 8- and 12-year-old children using a morphing method respecting anatomical parameters. Finite-difference time-domain calculations of a specific absorption rate (SAR) have been performed for a range of frequencies from 20 MHz to 2.4 GHz for isolated models illuminated by plane waves. A whole-body-averaged SAR is presented as well as the average on specific tissues such as skin, muscles, fat or bones and the average on specific parts of the body such as head, legs, arms or torso. Results point out the variability of adult models. The standard deviation of whole-body-averaged SAR of adult models can reach 40%. All phantoms are exposed to the ICNIRP reference levels. Results show that for adults, compliance with reference levels ensures compliance with basic restrictions, but concerning children models involved in this study, the whole-body-averaged SAR goes over the fundamental safety limits up to 40%. For more information on this article, see medicalphysicsweb.org
NASA Astrophysics Data System (ADS)
Surducan, Aneta; Dabala, Dana; Neamtu, Camelia; Surducan, Vasile; Surducan, Emanoil
2013-11-01
The interaction of the microwave radiation emitted by mobile phones with the user's body is analyzed from the International Commission on Non-Ionizing Radiation Protection (ICNIRP) recommendations perspective as a correlation between the specific absorption ratio (SAR) of the mobile phone and the call duration. The relative position of the cell phone to the user's body, the dielectric properties of the exposed body parts, the SAR value and the call duration are considered in the local body temperature rise due to the microwave heating effect. The recommended local temperature rise limit in the human body is evaluated according to standards. The aim of this study is to disseminate information to young people, especially high school students, about the microwave thermal effects on the human body, to make them aware of the environmental electromagnetic pollution and to offer them a simple method of biological self protection.
Tamilvanan, Shunmugaperumal
2009-10-20
Oil-in-water (o/w) type nanosized emulsions (NE) have been widely investigated as vehicles/carrier for the formulation and delivery of drugs with a broad range of applications. A comprehensive summary is presented on how to formulate the multifunctional o/w NE for active and passive targeting of drugs to otherwise inaccessible internal organs of the human body. The NE is classified into three generations based on its development over the last couple of decades to make ultimately a better colloidal carrier for a target site within the internal and external organs/parts of the body, thus allowing site-specific drug delivery and/or enhanced drug absorption. The third generation NE has tremendous application for drug absorption enhancement and for 'ferrying' compounds across cell membranes in comparison to its first and second generation counterparts. Furthermore, the third generation NE provides an interesting opportunity for use as drug delivery vehicles for numerous therapeutics that can range in size from small molecules to macromolecules.
Energy absorption, lean body mass, and total body fat changes during 5 weeks of continuous bed rest
NASA Technical Reports Server (NTRS)
Krebs, Jean M.; Evans, Harlan; Kuo, Mike C.; Schneider, Victor S.; Leblanc, Adrian D.
1990-01-01
The nature of the body composition changes due to inactivity was examined together with the question of whether these changes are secondary to changes in energy absorption. Volunteers were 15 healthy males who lived on a metabolic research ward under close staff supervision for 11 weeks. Subjects were ambulatory during the first six weeks and remained in continuous bed rest for the last five weeks of the study. Six male volunteers (age 24-61 years) were selected for body composition measurements. Nine different male volunteers (age 21-50 years) were selected for energy absorption measurements. The volunteers were fed weighed conventional foods on a constant 7-d rotation menu. The average daily caloric content was 2,592 kcal. Comparing the five weeks of continuous bed rest with the previous six weeks of ambulation, it was observed that there was no change in energy absorption or total body weight during bed rest, but a significant decrease in lean body mass and a significant increase in total body fat (p less than 0.05).
A black body absorber from vertically aligned single-walled carbon nanotubes
Mizuno, Kohei; Ishii, Juntaro; Kishida, Hideo; Hayamizu, Yuhei; Yasuda, Satoshi; Futaba, Don N.; Yumura, Motoo; Hata, Kenji
2009-01-01
Among all known materials, we found that a forest of vertically aligned single-walled carbon nanotubes behaves most similarly to a black body, a theoretical material that absorbs all incident light. A requirement for an object to behave as a black body is to perfectly absorb light of all wavelengths. This important feature has not been observed for real materials because materials intrinsically have specific absorption bands because of their structure and composition. We found a material that can absorb light almost perfectly across a very wide spectral range (0.2–200 μm). We attribute this black body behavior to stem from the sparseness and imperfect alignment of the vertical single-walled carbon nanotubes. PMID:19339498
NASA Astrophysics Data System (ADS)
Liu, Dan; Li, Congsheng; Kang, Yangyang; Zhou, Zhou; Xie, Yi; Wu, Tongning
2017-09-01
In this study, the plane wave exposure of an infant to radiofrequency electromagnetic fields of 3.5 GHz was numerically analyzed to investigate the unintentional electromagnetic field (EMF) exposure of fifth generation (5G) signals during field test. The dosimetric influence of age-dependent dielectric properties and the influence of an adult body were evaluated using an infant model of 12 month old and an adult female model. The results demonstrated that the whole body-averaged specific absorption rate (WBASAR) was not significantly affected by age-dependent dielectric properties and the influence of the adult body did not enhance WBASAR. Taking the magnitude of the in situ
Behavioral effects of microwaves: relationship of total dose and dose rate
DOE Office of Scientific and Technical Information (OSTI.GOV)
O'Connor, M.E.; Strattan, R.
1988-10-01
The goal of the research was to compare the relationship of whole-body averaged specific absorption rate (SAR) and specific absorption (SA) to determine whether dose rate or dose was the better predictor of biological effects. Sperm-positive Long-Evans female rats were exposed to 2450-MHz CW microwave radiation for 1-3 hours at approximately 10 W/kg. The maternal subjects were then observed for natural delivery of their litters. Sensitivity to thermally induced seizures and huddling were studied in the offspring. Analyses revealed that there were no statistically significant differences between exposed and control offspring on the behavioral indices. The behavior did not appearmore » to be affected by prenatal exposure to microwave radiation at this level. The huddle sizes became smaller as the pups aged both in exposed and control offspring.« less
GROWTH AND DEVELOPMENT OF MICE OFFSPRING AFTER IRRADIATION IN UTERO WITH 2,450-MHZ MICROWAVES
Mice offspring irradiated in utero with 2,450-MHz radio-frequency (RF) radiation at 0 or 28 mW/cm. sq. (whole-body averaged specific absorption rate = 0 or 16.5 W/kg) for 100 minutes daily on days 6 through 17 of gestation were evaluated for maturation and development on days 1, ...
Schmitz, Randy J; Shultz, Sandra J
2010-01-01
Lower extremity injury often occurs during abrupt deceleration when attempting to change the body's direction. Although sex-specific biomechanics have been implicated in the greater risk of acute knee injury in women than in men, it is unknown if sex differences in thigh strength affect sex-specific energy absorption and torsional joint stiffness patterns. To determine sex differences in energy absorption patterns and joint stiffnesses of the lower extremity during a drop jump and to determine if these sex differences were predicted by knee extensor and flexor strength. Cross-sectional study. Laboratory environment. Recreationally active, college-aged students (41 women: age = 22.1 ± 2.9 years, height = 1.63 ± 0.07 m, mass = 59.3 ± 8.0 kg; 40 men: age = 22.4 ± 2.8 years, height = 1.77 ± 0.1 m, mass = 80.9 ± 14.1 kg). Participants performed knee flexor and extensor maximal voluntary isometric contractions followed by double-leg drop-jump landings. Lower extremity joint energetics (J × N(-1) × m(-1)) and torsional joint stiffnesses (Nm × N(-1) × m(-1) × degrees(-1)) were calculated for the hip, knee, and ankle during the initial landing phase. Body weight was measured in newtons and height was measured in meters. Sex comparisons were made and sex-specific regressions determined if thigh muscle strength (Nm/kg) predicted sagittal-plane landing energetics and stiffnesses. Women absorbed 69% more knee energy and had 36% less hip torsional stiffness than men. In women, greater knee extensor strength predicted greater knee energy absorption (R(2) = 0.11, P = .04), and greater knee flexor strength predicted greater hip torsional stiffness (R(2) = 0.12, P = .03). Sex-specific biomechanics during the deceleration phase of a drop jump revealed that women used a strategy to attempt to decrease system stiffness. Additionally, only female strength values were predictive of landing energetics and stiffnesses. These findings collectively demonstrated that the task may have been more difficult for women, resulting in a different movement strategy among those with different levels of thigh strength to safely complete the task. Future researchers should look at other predictive factors of observed sex differences.
Anthocyanin Absorption and Metabolism by Human Intestinal Caco-2 Cells—A Review
Kamiloglu, Senem; Capanoglu, Esra; Grootaert, Charlotte; Van Camp, John
2015-01-01
Anthocyanins from different plant sources have been shown to possess health beneficial effects against a number of chronic diseases. To obtain any influence in a specific tissue or organ, these bioactive compounds must be bioavailable, i.e., effectively absorbed from the gut into the circulation and transferred to the appropriate location within the body while still maintaining their bioactivity. One of the key factors affecting the bioavailability of anthocyanins is their transport through the gut epithelium. The Caco-2 cell line, a human intestinal epithelial cell model derived from a colon carcinoma, has been proven to be a good alternative to animal studies for predicting intestinal absorption of anthocyanins. Studies investigating anthocyanin absorption by Caco-2 cells report very low absorption of these compounds. However, the bioavailability of anthocyanins may be underestimated since the metabolites formed in the course of digestion could be responsible for the health benefits associated with anthocyanins. In this review, we critically discuss recent findings reported on the anthocyanin absorption and metabolism by human intestinal Caco-2 cells. PMID:26370977
Jauchem, J R; Frei, M R
1997-01-01
These experiments were designed to investigate the effects of sub-resonant microwave (MW) exposure (350 MHz, E orientation, average power density 38 mW/cm2, average whole-body specific absorption rate 13.2 W/kg) on selected physiological parameters. The increase in peripheral body temperature during 350 MHz exposure was greater than that in earlier experiments performed at 700 MHz (resonance). Heart rate and mean arterial blood pressure were significantly elevated during a 1 degree C increase in colonic temperature due to 350 MHz exposure; respiratory rate showed no significant change. The results are consistent with other investigators' reports comparing sub-resonance exposures with those at resonance and above.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Surducan, Aneta; Dabala, Dana; Neamtu, Camelia, E-mail: emanoil.surducan@itim-cj.ro
The interaction of the microwave radiation emitted by mobile phones with the user's body is analyzed from the International Commission on Non-Ionizing Radiation Protection (ICNIRP) recommendations perspective as a correlation between the specific absorption ratio (SAR) of the mobile phone and the call duration. The relative position of the cell phone to the user's body, the dielectric properties of the exposed body parts, the SAR value and the call duration are considered in the local body temperature rise due to the microwave heating effect. The recommended local temperature rise limit in the human body is evaluated according to standards. Themore » aim of this study is to disseminate information to young people, especially high school students, about the microwave thermal effects on the human body, to make them aware of the environmental electromagnetic pollution and to offer them a simple method of biological self protection.« less
Energy absorption, lean body mass, and total body fat changes during 5 weeks of continuous bed rest.
Krebs, J M; Schneider, V S; Evans, H; Kuo, M C; LeBlanc, A D
1990-04-01
Inactivity causes profound changes. We determined the nature of the body composition changes due to inactivity, and sought to determine if these changes are secondary to changes in energy absorption. Volunteers were 15 healthy males who lived on a metabolic research ward under close staff supervision for 11 weeks. Subjects were ambulatory during the first 6 weeks and remained in continuous bed rest for the last 5 weeks of the study. Six male volunteers (age 24-61 years, height 175.7 +/- 4.2 cm) were selected for body composition measurements. Nine different male volunteers (age 21-50 years, height 177.7 +/- 5.0 cm) were selected for energy absorption measurements. The volunteers were fed weighed conventional foods on a constant 7-d rotation menu. The average daily caloric content was 2,592 kcal. Comparing the 5 weeks of continuous bed rest with the previous 6 weeks of ambulation we observed: no change in energy absorption or total body weight during bed rest, but a significant decrease in lean body mass and a significant increase in total body fat (p less than 0.05).
On The Dynamics and Design of a Two-body Wave Energy Converter
NASA Astrophysics Data System (ADS)
Liang, Changwei; Zuo, Lei
2016-09-01
A two-body wave energy converter oscillating in heave is studied in this paper. The energy is extracted through the relative motion between the floating and submerged bodies. A linearized model in the frequency domain is adopted to study the dynamics of such a two-body system with consideration of both the viscous damping and the hydrodynamic damping. The closed form solution of the maximum absorption power and corresponding power take-off parameters are obtained. The suboptimal and optimal designs for a two-body system are proposed based on the closed form solution. The physical insight of the optimal design is to have one of the damped natural frequencies of the two body system the same as, or as close as possible to, the excitation frequency. A case study is conducted to investigate the influence of the submerged body on the absorption power of a two-body system subjected to suboptimal and optimal design under regular and irregular wave excitations. It is found that the absorption power of the two-body system can be significantly higher than that of the single body system with the same floating buoy in both regular and irregular waves. In regular waves, it is found that the mass of the submerged body should be designed with an optimal value in order to achieve the maximum absorption power for the given floating buoy. The viscous damping on the submerged body should be as small as possible for a given mass in both regular and irregular waves.
Post-absorptive muscle protein turnover affects resistance training hypertrophy
Reidy, Paul T.; Borack, Michael S.; Markofski, Melissa M.; Dickinson, Jared M.; Fry, Christopher S.; Deer, Rachel R.; Volpi, Elena; Rasmussen, Blake B.
2017-01-01
Purpose Acute bouts of resistance exercise and subsequent training alters protein turnover in skeletal muscle. The mechanisms responsible for the changes in basal post-absorptive protein turnover and its impact on muscle hypertrophy following resistance exercise training are unknown. To determine whether post-absorptive muscle protein turnover following 12 weeks of resistance exercise training (RET) plays a role in muscle hypertrophy. In addition, we were interested in determining potential molecular mechanisms responsible for altering post-training muscle protein turnover. Methods Healthy young men (n=31) participated in supervised whole body progressive RET at 60-80% 1 repetition maximum (1-RM), 3d/wk for 3 months. Pre- and post-training vastus lateralis muscle biopsies and blood samples taken during an infusion of 13C6 and 15N phenylalanine and were used to assess skeletal muscle protein turnover in the post-absorptive state. Lean body mass (LBM), muscle strength (determined by dynamometry), vastus lateralis muscle thickness (MT), myofiber type-specific cross-sectional area (CSA), and mRNA were assessed pre- and post-RET. Results RET increased strength (12-40%), LBM (∼5%), MT (∼15%) and myofiber CSA (∼20%) (p<0.05). Muscle protein synthesis (MPS) increased 24% while muscle protein breakdown (MPB) decreased 21% respectively. These changes in protein turnover resulted in an improved net muscle protein balance in the basal state following RET. Further, the change in basal MPS is positively associated (r=0.555, p=0.003) with the change in muscle thickness. Conclusion Post-absorptive muscle protein turnover is associated with muscle hypertrophy during resistance exercise training. PMID:28280974
United States Air Force Summer Research Program -- 1993. Volume 7. Armstrong Laboratory
1993-12-01
formulation, absorption, plasma binding affinity, biomembrane barriers, and relative extraction by the specific organ of the body concerned with...simultaneously administered or a drug may "interact" with itself. The concomitant administration of phenobarbital and warfarin results in lower plasma ... plasma protein which binds to basic lipophilic drugs including propranolol, meperidine, quinidine, and chlorpromazine. If a variation in the plasma
FDTD analysis of body-core temperature elevation in children and adults for whole-body exposure.
Hirata, Akimasa; Asano, Takayuki; Fujiwara, Osamu
2008-09-21
The temperature elevations in anatomically based human phantoms of an adult and a 3-year-old child were calculated for radio-frequency whole-body exposure. Thermoregulation in children, however, has not yet been clarified. In the present study, we developed a computational thermal model of a child that is reasonable for simulating body-core temperature elevation. Comparison of measured and simulated temperatures revealed thermoregulation in children to be similar to that of adults. Based on this finding, we calculated the body-core temperature elevation in a 3-year-old child and an adult for plane-wave exposure at the basic restriction in the international guidelines. The body-core temperature elevation in the 3-year-old child phantom was 0.03 degrees C at a whole-body-averaged specific absorption rate of 0.08 W kg(-1), which was 35% smaller than in the adult female. This difference is attributed to the child's higher body surface area-to-mass ratio.
Baech, Sussi B; Hansen, Marianne; Bukhave, Klaus; Kristensen, Lars; Jensen, Mikael; Sørensen, Sven S; Purslow, Peter P; Skibsted, Leif H; Sandström, Brittmarie
2003-01-01
The effect of increasing cooking temperatures of meat on nonheme iron absorption from a composite meal was investigated. Cysteine-containing peptides may have a role in the iron absorption enhancing effect of muscle proteins. Heat treatment can change the content of sulfhydryl groups produced from cysteine and thereby affect iron absorption. Twenty-one women (25 +/- 3 y) were served a basic meal without meat and two other meals consisting of the basic meal plus 75 g of pork meat cooked at 70, 95 or 120 degrees C. The meals were extrinsically labeled with (55)Fe or (59)Fe. Iron absorption was determined from measurements of whole-body (59)Fe retention and the activity of (55)Fe and (59)Fe in blood samples. Nonheme iron absorptions were 0.9 (0.5-4.0)% (P = 0.06), 0.7 (0.4-3.9)% (P = 0.1) and 2.0 (1.3-3.1)% (P < 0.001) greater when meat cooked at 70, 95 or 120 degrees C, respectively, was added to the basic meal. Increasing the cooking temperature of meat did not impair nonheme iron absorption compared with cooking at 70 degrees C. Because the cysteine content of meat decreased with increasing cooking temperature, this argues against a specific contribution of sulfhydryl groups from cysteine residues in the promotion of nonheme iron absorption by meat proteins.
Avalanche diode having reduced dark current and method for its manufacture
Davids, Paul; Starbuck, Andrew Lee; Pomerene, Andrew T. S.
2017-08-29
An avalanche diode includes an absorption region in a germanium body epitaxially grown on a silicon body including a multiplication region. Aspect-ratio trapping is used to suppress dislocation growth in the vicinity of the absorption region.
Measurement of total-body cobalt-57 vitamin B12 absorption with a gamma camera.
Cardarelli, J A; Slingerland, D W; Burrows, B A; Miller, A
1985-08-01
Previously described techniques for the measurement of the absorption of [57Co]vitamin B12 by total-body counting have required an iron room equipped with scanning or multiple detectors. The present study uses simplifying modifications which make the technique more available and include the use of static geometry, the measurement of body thickness to correct for attenuation, a simple formula to convert the capsule-in-air count to a 100% absorption count, and finally the use of an adequately shielded gamma camera obviating the need of an iron room.
Between-country comparison of whole-body SAR from personal exposure data in Urban areas.
Joseph, Wout; Frei, Patrizia; Röösli, Martin; Vermeeren, Günter; Bolte, John; Thuróczy, György; Gajšek, Peter; Trček, Tomaž; Mohler, Evelyn; Juhász, Péter; Finta, Viktoria; Martens, Luc
2012-12-01
In five countries (Belgium, Switzerland, Slovenia, Hungary, and the Netherlands), personal radio frequency electromagnetic field measurements were performed in different microenvironments such as homes, public transports, or outdoors using the same exposure meters. From the mean personal field exposure levels (excluding mobile phone exposure), whole-body absorption values in a 1-year-old child and adult male model were calculated using a statistical multipath exposure method and compared for the five countries. All mean absorptions (maximal total absorption of 3.4 µW/kg for the child and 1.8 µW/kg for the adult) were well below the International Commission on Non-Ionizing Radiation Protection (ICNIRP) basic restriction of 0.08 W/kg for the general public. Generally, incident field exposure levels were well correlated with whole-body absorptions (SAR(wb) ), although the type of microenvironment, frequency of the signals, and dimensions of the considered phantom modify the relationship between these exposure measures. Exposure to the television and Digital Audio Broadcasting band caused relatively higher SAR(wb) values (up to 65%) for the 1-year-old child than signals at higher frequencies due to the body size-dependent absorption rates. Frequency Modulation (FM) caused relatively higher absorptions (up to 80%) in the adult male. Copyright © 2012 Wiley Periodicals, Inc.
Absorption of Carotenoids and Mechanisms Involved in Their Health-Related Properties.
Cervantes-Paz, Braulio; Victoria-Campos, Claudia I; Ornelas-Paz, José de Jesús
Carotenoids participate in the normal metabolism and function of the human body. They are involved in the prevention of several diseases, especially those related to the inflammation syndrome. Their main mechanisms of action are associated to their potent antioxidant activity and capacity to regulate the expression of specific genes and proteins. Recent findings suggest that carotenoid metabolites may explain several processes where the participation of their parent carotenoids was unclear. The health benefits of carotenoids strongly depend on their absorption and transformation during gastrointestinal digestion. The estimation of the 'bioaccessibility' of carotenoids through in vitro models have made possible the evaluation of the effect of a large number of factors on key stages of carotenoid digestion and intestinal absorption. The bioaccessibility of these compounds allows us to have a clear idea of their potential bioavailability, a term that implicitly involves the biological activity of these compounds.
NASA Astrophysics Data System (ADS)
Dimbylow, Peter
2005-09-01
Finite-difference time-domain (FDTD) calculations have been performed of the whole-body averaged specific energy absorption rate (SAR) in a female voxel model, NAOMI, under isolated and grounded conditions from 10 MHz to 3 GHz. The 2 mm resolution voxel model, NAOMI, was scaled to a height of 1.63 m and a mass of 60 kg, the dimensions of the ICRP reference adult female. Comparison was made with SAR values from a reference male voxel model, NORMAN. A broad SAR resonance in the NAOMI values was found around 900 MHz and a resulting enhancement, up to 25%, over the values for the male voxel model, NORMAN. This latter result confirmed previously reported higher values in a female model. The effect of differences in anatomy was investigated by comparing values for 10-, 5- and 1-year-old phantoms rescaled to the ICRP reference values of height and mass which are the same for both sexes. The broad resonance in the NAOMI child values around 1 GHz is still a strong feature. A comparison has been made with ICNIRP guidelines. The ICNIRP occupational reference level provides a conservative estimate of the whole-body averaged SAR restriction. The linear scaling of the adult phantom using different factors in longitudinal and transverse directions, in order to match the ICRP stature and weight, does not exactly reproduce the anatomy of children. However, for public exposure the calculations with scaled child models indicate that the ICNIRP reference level may not provide a conservative estimate of the whole-body averaged SAR restriction, above 1.2 GHz for scaled 5- and 1-year-old female models, although any underestimate is by less than 20%.
Dimbylow, Peter
2005-09-07
Finite-difference time-domain (FDTD) calculations have been performed of the whole-body averaged specific energy absorption rate (SAR) in a female voxel model, NAOMI, under isolated and grounded conditions from 10 MHz to 3 GHz. The 2 mm resolution voxel model, NAOMI, was scaled to a height of 1.63 m and a mass of 60 kg, the dimensions of the ICRP reference adult female. Comparison was made with SAR values from a reference male voxel model, NORMAN. A broad SAR resonance in the NAOMI values was found around 900 MHz and a resulting enhancement, up to 25%, over the values for the male voxel model, NORMAN. This latter result confirmed previously reported higher values in a female model. The effect of differences in anatomy was investigated by comparing values for 10-, 5- and 1-year-old phantoms rescaled to the ICRP reference values of height and mass which are the same for both sexes. The broad resonance in the NAOMI child values around 1 GHz is still a strong feature. A comparison has been made with ICNIRP guidelines. The ICNIRP occupational reference level provides a conservative estimate of the whole-body averaged SAR restriction. The linear scaling of the adult phantom using different factors in longitudinal and transverse directions, in order to match the ICRP stature and weight, does not exactly reproduce the anatomy of children. However, for public exposure the calculations with scaled child models indicate that the ICNIRP reference level may not provide a conservative estimate of the whole-body averaged SAR restriction, above 1.2 GHz for scaled 5- and 1-year-old female models, although any underestimate is by less than 20%.
Effective light absorption and its enhancement factor for silicon nanowire-based solar cell.
Duan, Zhiqiang; Li, Meicheng; Mwenya, Trevor; Fu, Pengfei; Li, Yingfeng; Song, Dandan
2016-01-01
Although nanowire (NW) antireflection coating can enhance light trapping capability, which is generally used in crystal silicon (CS) based solar cells, whether it can improve light absorption in the CS body depends on the NW geometrical shape and their geometrical parameters. In order to conveniently compare with the bare silicon, two enhancement factors E(T) and E(A) are defined and introduced to quantitatively evaluate the efficient light trapping capability of NW antireflective layer and the effective light absorption capability of CS body. Five different shapes (cylindrical, truncated conical, convex conical, conical, and concave conical) of silicon NW arrays arranged in a square are studied, and the theoretical results indicate that excellent light trapping does not mean more light can be absorbed in the CS body. The convex conical NW has the best light trapping, but the concave conical NW has the best effective light absorption. Furthermore, if the cross section of silicon NW is changed into a square, both light trapping and effective light absorption are enhanced, and the Eiffel Tower shaped NW arrays have optimal effective light absorption.
Röschmann, P
1987-01-01
This study presents experimental results about the effective depth of penetration and about the radiofrequency (rf) power absorption in humans as a function of frequency. The frequency range investigated covers 10 up to 220 MHz. For the main part, the results were derived from bench measurements of the quality factor Q, and of the resonance frequency shift due to the loading of the coil. Different types of head-, body-, and surface coils were investigated loaded with volunteers or metallic phantoms. For spin-echo imaging at 2 T (85 MHz), the local specific absorption rate (SAR) was found to be approximately equal to 0.05 W/kg using a pi pulse of 1-ms duration and pulse repetition time TR = 1 s. Measurements of the quality factor Q as a function of frequency show that the SAR depends upon the frequency f according to approximately f2.15. The effective depth of rf penetration as derived drops from 17 cm at 85 MHz to 7 cm at 220 MHz. Head imaging with B1 penetrating from practically all sides into the object should be possible up to 220 MHz (5 T) with SAR values staying within the local limit of 2 W/kg as set by the FDA. Whole-body imaging of large subjects as well as surface coil imaging is depth limited above 100-MHz frequency. Perturbation methods are applied in order to separate the total rf power deposition in the patient into dielectric and magnetic contributions. The observed effects due to interactions of rf magnetic fields with biological tissue contradict predictions based on homogeneous tissue models. A refined tissue model with regions of high electrical conductivity, subdivided by quasi-insulating adipose layers, provides a rationale for a better understanding of the underlying processes. At frequencies below 100 MHz, the rf power deposition in patients is apparently more evenly distributed over the exposed body volume than currently assumed.
Permethrin Exposure Dosimetry: Biomarkers and Modifiable Factors
2016-08-01
the effect of body weight/ BMI and total energy expenditure on permethrin absorption and dose, as determined by measurement of urinary biomarkers...body weight/ BMI and total energy expenditure on permethrin absorption and dose, as determined by measurement of urinary biomarkers (3PBA and cis- and
Sawczyn, Tomasz; Dolezych, Bogdan; Klosok, Marcin; Augustyniak, Maria; Stygar, Dominika; Buldak, Rafal J; Kukla, Michal; Michalczyk, Katarzyna; Karcz-Socha, Iwona; Zwirska-Korczala, Krystyna
2012-01-01
This study was undertaken to test the hypothesis that following exposure to insecticides, changes take place in the metabolism of carbohydrates and absorption in the midgut of insects. The Madagascar hissing cockroach (Gromphadorhina portentosa) was chosen for the experiment as a model organism, due to it being easy to breed and its relatively large alimentary tract, which was important when preparing the microperfusion midgut bioassay. In each group of cockroaches treated with imidacloprid and fenitrothion, absorption of glucose, expressed as the area under the curve (AUC), was elevated compared to the control group. Glucose in the hemolymph of the examined insects was present in a vestigial amount, often below the threshold of determination, so the determinable carbohydrate indices were: hemolymph trehalose concentration and fat body glycogen content. The level of trehalose found in the hemolymph of insects when exposed to fenitrothion, and irrespective of the level of concentration mixed into food, were significantly lower when comparing to the control samples. Imidacloprid acted analogically with one exception at the concentration of 10 mg·kg(-1) dry food where trehalose concentration did not differ from the control values. Coupling with fat body glycogen concentration was less visible and appeared only at the concentrations of 5 and 10 mg imidacloprid·kg(-1) dry food. As described in this study changes in the sugar distribution and midgut glucose absorption indicate that insects cover the increased energy needs induced by insecticides; also at the gastrointestinal tract level. The result indicates that the midgut glucose absorption parameters could be considered as a non-specific biomarker of insecticide toxicity.
Booth, Anna; Camacho, Pauline
2013-11-01
To perform a thorough search of the literature on calcium research and specifically address the topic of calcium absorption. PubMed and Ovid were the main engines used for primary literature searches; textbooks, review articles, and book chapters are examples of the other sources used for supplemental information. Regarding calcium absorption, it seems apparent that the absorption efficiency of all calcium salts, regardless of solubility, is fairly equivalent and not significantly less than the absorption efficiency of dietary calcium. However, dietary calcium has been shown to have greater impact in bone building than supplemental calcium. This is likely due to improved absorption with meals and the tendency of people to intake smaller amounts more frequently, which is more ideal for the body's method of absorption. In addition, the cardiovascular risks of excessive calcium intake appear to be more closely related to calcium supplements than dietary calcium; this relationship continues to be controversial in the literature. We conclude that further studies are needed for direct comparison of supplemental and dietary calcium to fully establish if one is superior to the other with regard to improving bone density. We also propose further studies on the cardiovascular risk of long-term increased calcium intake and on physician estimates of patients' daily calcium intake to better pinpoint those patients who require calcium supplementation.
Schmitz, Randy J.; Shultz, Sandra J.
2010-01-01
Abstract Context: Lower extremity injury often occurs during abrupt deceleration when attempting to change the body's direction. Although sex-specific biomechanics have been implicated in the greater risk of acute knee injury in women than in men, it is unknown if sex differences in thigh strength affect sex-specific energy absorption and torsional joint stiffness patterns. Objective: To determine sex differences in energy absorption patterns and joint stiffnesses of the lower extremity during a drop jump and to determine if these sex differences were predicted by knee extensor and flexor strength. Design: Cross-sectional study. Setting: Laboratory environment. Patients or Other Participants: Recreationally active, college-aged students (41 women: age = 22.1 ± 2.9 years, height = 1.63 ± 0.07 m, mass = 59.3 ± 8.0 kg; 40 men: age = 22.4 ± 2.8 years, height = 1.77 ± 0.1 m, mass = 80.9 ± 14.1 kg). Intervention(s): Participants performed knee flexor and extensor maximal voluntary isometric contractions followed by double-leg drop-jump landings. Main Outcome Measure(s): Lower extremity joint energetics (J × N−1 × m−1) and torsional joint stiffnesses (Nm × N−1 × m−1 × degrees−1) were calculated for the hip, knee, and ankle during the initial landing phase. Body weight was measured in newtons and height was measured in meters. Sex comparisons were made and sex-specific regressions determined if thigh muscle strength (Nm/kg) predicted sagittal-plane landing energetics and stiffnesses. Results: Women absorbed 69% more knee energy and had 36% less hip torsional stiffness than men. In women, greater knee extensor strength predicted greater knee energy absorption (R2 = 0.11, P = .04), and greater knee flexor strength predicted greater hip torsional stiffness (R2 = 0.12, P = .03). Conclusions: Sex-specific biomechanics during the deceleration phase of a drop jump revealed that women used a strategy to attempt to decrease system stiffness. Additionally, only female strength values were predictive of landing energetics and stiffnesses. These findings collectively demonstrated that the task may have been more difficult for women, resulting in a different movement strategy among those with different levels of thigh strength to safely complete the task. Future researchers should look at other predictive factors of observed sex differences. PMID:20831388
Leonardi, M G; Casartelli, M; Fiandra, L; Parenti, P; Giordana, B
2001-12-01
Nutrient absorption and its modulation are critical for animal growth. In this paper, we demonstrate that leucine methyl ester (Leu-OMe) can greatly increase the activity of the transport system responsible for the absorption of most essential amino acids in the larval midgut of the silkworm Bombyx mori. We investigated leucine uptake activation by Leu-OMe in brush border membrane vesicles and in the apical membrane of epithelial cells in the midgut incubated in vitro. Moreover, the addition of this strong activator of amino acid absorption to diet significantly affected larval growth. Silkworms fed on artificial diet supplemented with Leu-OMe reached maximum body weight 12-18 h before control larvae, and produced cocoon shells up to 20% heavier than those of controls. The activation of amino acid absorption plays an essential role in larval development so that larval growth and cocoon production similar to controls reared on an artificial diet with 25% of dry mulberry leaf powder were observed in silkworms fed on an artificial diet with only 5% of mulberry powder. Arch. Copyright 2001 Wiley-Liss, Inc.
Tracy, Christopher R; McWhorter, Todd J; Gienger, C M; Starck, J Matthias; Medley, Peter; Manolis, S Charlie; Webb, Grahame J W; Christian, Keith A
2015-12-01
Much of what is known about crocodilian nutrition and growth has come from animals propagated in captivity, but captive animals from the families Crocodilidae and Alligatoridae respond differently to similar diets. Since there are few comparative studies of crocodilian digestive physiology to help explain these differences, we investigated young Alligator mississippiensis and Crocodylus porosus in terms of (1) gross and microscopic morphology of the intestine, (2) activity of the membrane-bound digestive enzymes aminopeptidase-N, maltase, and sucrase, and (3) nutrient absorption by carrier-mediated and paracellular pathways. We also measured gut morphology of animals over a larger range of body sizes. The two species showed different allometry of length and mass of the gut, with A. mississippiensis having a steeper increase in intestinal mass with body size, and C. porosus having a steeper increase in intestinal length with body size. Both species showed similar patterns of magnification of the intestinal surface area, with decreasing magnification from the proximal to distal ends of the intestine. Although A. mississippiensis had significantly greater surface-area magnification overall, a compensating significant difference in gut length between species meant that total surface area of the intestine was not significantly different from that of C. porosus. The species differed in enzyme activities, with A. mississippiensis having significantly greater ability to digest carbohydrates relative to protein than did C. porosus. These differences in enzyme activity may help explain the differences in performance between the crocodilian families when on artificial diets. Both A. mississippiensis and C. porosus showed high absorption of 3-O methyl d-glucose (absorbed via both carrier-mediated and paracellular transport), as expected. Both species also showed surprisingly high levels of l-glucose-uptake (absorbed paracellularly), with fractional absorptions as high as those previously seen only in small birds and bats. Analyses of absorption rates suggested a relatively high proportional contribution of paracellular (i.e., non-mediated) uptake to total uptake of nutrients in both species. Because we measured juveniles, and most paracellular studies to date have been on adults, it is unclear whether high paracellular absorption is generally high within crocodilians or whether these high values are specific to juveniles. © The Author 2015. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.
Toivonen, Tommi; Toivo, Tim; Puranen, Lauri; Jokela, Kari
2009-05-01
In this article, the exposure to radio frequency electromagnetic fields was studied in close proximity (distances of 10, 100, 300, and 600 mm) to six base station antennas. The specific absorption rate (SAR) in 800 mm x 500 mm x 200 mm box phantom as well as unperturbed electric field (E) in air was measured. The results were used to determine whether the measurement of local maximum of unperturbed electric field can be used as a compliance check for local exposure. Also, the conservativeness of this assessment method compared to the ICNIRP basic restriction was studied. Moreover, the assessment of whole-body exposure was discussed and the distance ranges presented in which the ICNIRP limit for local exposure could be exceeded before the limit for whole-body SAR. These results show that the electric field measurement alone can be used for easy compliance check for the local exposure at all distances and for all antenna types studied. However, in some cases when the local peak value of E was compared directly to the ICNIRP reference level for unperturbed E, the exposure was overestimated only very slightly (by factor 1.1) compared to the basic restriction for localized SAR in a human, and hence these results can not be generalized to all antenna types. Moreover, it was shown that the limit for localized exposure could be exceeded before the limit for the whole-body average SAR, if the distance to the antenna was less than 240 mm. Copyright 2009 Wiley-Liss, Inc.
NASA Astrophysics Data System (ADS)
Kawamura, Yoshifumi; Hikage, Takashi; Nojima, Toshio
The aim of this study is to develop a new whole-body averaged specific absorption rate (SAR) estimation method based on the external-cylindrical field scanning technique. This technique is adopted with the goal of simplifying the dosimetry estimation of human phantoms that have different postures or sizes. An experimental scaled model system is constructed. In order to examine the validity of the proposed method for realistic human models, we discuss the pros and cons of measurements and numerical analyses based on the finite-difference time-domain (FDTD) method. We consider the anatomical European human phantoms and plane-wave in the 2GHz mobile phone frequency band. The measured whole-body averaged SAR results obtained by the proposed method are compared with the results of the FDTD analyses.
Photoacoustic tomography of foreign bodies in soft biological tissue.
Cai, Xin; Kim, Chulhong; Pramanik, Manojit; Wang, Lihong V
2011-04-01
In detecting small foreign bodies in soft biological tissue, ultrasound imaging suffers from poor sensitivity (52.6%) and specificity (47.2%). Hence, alternative imaging methods are needed. Photoacoustic (PA) imaging takes advantage of strong optical absorption contrast and high ultrasonic resolution. A PA imaging system is employed to detect foreign bodies in biological tissues. To achieve deep penetration, we use near-infrared light ranging from 750 to 800 nm and a 5-MHz spherically focused ultrasonic transducer. PA images were obtained from various targets including glass, wood, cloth, plastic, and metal embedded more than 1 cm deep in chicken tissue. The locations and sizes of the targets from the PA images agreed well with those of the actual samples. Spectroscopic PA imaging was also performed on the objects. These results suggest that PA imaging can potentially be a useful intraoperative imaging tool to identify foreign bodies.
Guo, Ming-Xiao; Li, You-Sheng; Fan, Lei; Li, Jie-Shou
2011-06-01
The purpose of this systematic review was to assess the efficacy of growth hormone (GH) treatment in patients with short bowel syndrome (SBS). Electronic searches were performed to identify all publications describing randomized controlled trials (RCTs) on the use of GH with or without glutamine for the treatment of patients with SBS. The outcomes of interest were body weight, lean body mass, and intestinal absorption function. Four trials involving 70 patients were included in the review. A meta-analysis of these trials suggested that GH had a positive effect in terms of increased weight (mean difference [MD] = 1.66; 95% CI, 0.69-2.63, P < 0.001), lean body mass (MD = 1.93; 95% CI, 0.97-2.90; P < 0.001), energy absorption (MD = 4.42; 95% CI, 0.26-8.58; P = 0.04), nitrogen absorption (MD = 4.85; 95% CI, 0.20-9.49; P = 0.04), and fat absorption (MD = 5.02; 95% CI, 0.21-9.82; P = 0.04) for patients with SBS. Adverse effects occurred during active treatment in all trials. Only 1 trial included a 12-week follow-up study. The results suggest a possible short-term benefit in terms of body weight, lean body mass, and absorptive capacities; however, no conclusion of long-term efficacy of GH could be obtained. Large-scale, long-term follow-up RCTs are needed to confirm the efficacy and tolerability of GH in the future.
Viscous, radiating hypersonic flow about a blunt body
NASA Technical Reports Server (NTRS)
Passamaneck, R. S.
1974-01-01
The viscous, radiating hypersonic flow past an axisymmetric blunt body is analyzed based on the Navier-Stokes equations, plus a radiative equation of transfer derived from the Milne-Eddington differential approximation. The fluid is assumed to be a perfect gas with constant specific heats, a constant Prandtl number of order unity, a viscosity coefficient varying as a power of the temperature, and an absorption coefficient varying as the first power of the density and as a power of the temperature. The gray gas assumption is invoked, thereby making the absorption coefficient independent of the spectral frequency. Limiting forms of the solutions are studied as the freestream Mach number freestream Reynolds number and the temperature ratio across the shock wave, go to infinity, and as the Bouguer number and the density ratio across the shock wave go to zero. The method of matched asymptotic expansions is used in the analysis, and it is shown that there is a far-field precursor, composed of two regions, in which the fluid mechanics can be neglected for all practical purposes but included for completeness.
Photodetector with enhanced light absorption
Kane, James
1985-01-01
A photodetector including a light transmissive electrically conducting layer having a textured surface with a semiconductor body thereon. This layer traps incident light thereby enhancing the absorption of light by the semiconductor body. A photodetector comprising a textured light transmissive electrically conducting layer of SnO.sub.2 and a body of hydrogenated amorphous silicon has a conversion efficiency about fifty percent greater than that of comparative cells. The invention also includes a method of fabricating the photodetector of the invention.
Zradziński, Patryk
2013-06-01
According to international guidelines, the assessment of biophysical effects of exposure to electromagnetic fields (EMF) generated by hand-operated sources needs the evaluation of induced electric field (E(in)) or specific energy absorption rate (SAR) caused by EMF inside a worker's body and is usually done by the numerical simulations with different protocols applied to these two exposure cases. The crucial element of these simulations is the numerical phantom of the human body. Procedures of E(in) and SAR evaluation due to compliance analysis with exposure limits have been defined in Institute of Electrical and Electronics Engineers standards and International Commission on Non-Ionizing Radiation Protection guidelines, but a detailed specification of human body phantoms has not been described. An analysis of the properties of over 30 human body numerical phantoms was performed which has been used in recently published investigations related to the assessment of EMF exposure by various sources. The differences in applicability of these phantoms in the evaluation of E(in) and SAR while operating industrial devices and SAR while using mobile communication handsets are discussed. The whole human body numerical phantom dimensions, posture, spatial resolution and electric contact with the ground constitute the key parameters in modeling the exposure related to industrial devices, while modeling the exposure from mobile communication handsets, which needs only to represent the exposed part of the human body nearest to the handset, mainly depends on spatial resolution of the phantom. The specification and standardization of these parameters of numerical human body phantoms are key requirements to achieve comparable and reliable results from numerical simulations carried out for compliance analysis against exposure limits or within the exposure assessment in EMF-related epidemiological studies.
Sulphate absorption across biological membranes.
Mitchell, Stephen C; Waring, Rosemary H
2016-01-01
1. Sulphonation is unusual amongst the common Phase II (condensation; synthetic) reactions experienced by xenobiotics, in that the availability of the conjugating agent, sulphate, may become a rate-limiting factor. This sulphate is derived within the body via the oxygenation of sulphur moieties liberated from numerous ingested compounds including the sulphur-containing amino acids. Preformed inorganic sulphate also makes a considerable contribution to this pool. 2. There has been a divergence of opinion as to whether or not inorganic sulphate may be readily absorbed from the gastrointestinal tract and this controversy still continues in some quarters. Even more so, is the vexing question of potential absorption of inorganic sulphate via the lungs and through the skin. 3. This review examines the relevant diverse literature and concludes that sulphate ions may move across biological membranes by means of specific transporters and, although the gastrointestinal tract is by far the major portal of entry, some absorption across the lungs and the skin may take place under appropriate circumstances.
Hirata, Akimasa; Yanase, Kazuya; Laakso, Ilkka; Chan, Kwok Hung; Fujiwara, Osamu; Nagaoka, Tomoaki; Watanabe, Soichi; Conil, Emmanuelle; Wiart, Joe
2012-12-21
According to the international guidelines, the whole-body averaged specific absorption rate (WBA-SAR) is used as a metric of basic restriction for radio-frequency whole-body exposure. It is well known that the WBA-SAR largely depends on the frequency of the incident wave for a given incident power density. The frequency at which the WBA-SAR becomes maximal is called the 'resonance frequency'. Our previous study proposed a scheme for estimating the WBA-SAR at this resonance frequency based on an analogy between the power absorption characteristic of human models in free space and that of a dipole antenna. However, a scheme for estimating the WBA-SAR in a grounded human has not been discussed sufficiently, even though the WBA-SAR in a grounded human is larger than that in an ungrounded human. In this study, with the use of the finite-difference time-domain method, the grounded condition is confirmed to be the worst-case exposure for human body models in a standing posture. Then, WBA-SARs in grounded human models are calculated at their respective resonant frequencies. A formula for estimating the WBA-SAR of a human standing on the ground is proposed based on an analogy with a quarter-wavelength monopole antenna. First, homogenized human body models are shown to provide the conservative WBA-SAR as compared with anatomically based models. Based on the formula proposed here, the WBA-SARs in grounded human models are approximately 10% larger than those in free space. The variability of the WBA-SAR was shown to be ±30% even for humans of the same age, which is caused by the body shape.
Okunade, Akintunde A
2007-07-01
The mass attenuation and energy-absorption coefficients (radiation interaction data), which are widely used in the shielding and dosimetry of X-rays used for medical diagnostic and orthovoltage therapeutic procedures, are strongly dependent on the energy of photons, elements and percentage by weight of elements in body tissues and substitutes. Significant disparities exist in the values of percentage by weight of elements reported in literature for body tissues and substitutes for individuals of different ages, genders and states of health. Often, interested parties are in need of these radiation interaction data for body tissues or substitutes with percentage by weight of elements and intermediate energies that are not tabulated in literature. To provide for the use of more precise values of these radiation interaction data, parameters and computer programs, MUA_T and MUEN_T are presented for the computation of mass attenuation and energy-absorption coefficients for body tissues and substitutes of arbitrary percentage-by-weight elemental composition and photon energy ranging between 1 keV (or k-edge) and 400 keV. Results are presented, which show that the values of mass attenuation and energy-absorption coefficients obtained from computer programs are in good agreement with those reported in literature.
Airborne-biogeochemical survey test-case results
Collins, William E.; Chang, Sheng-Huei; Raines, Gary L.; Canney, Frank C.; Ashley, Roger; Barringer, Anthony R.
1980-01-01
Airborne spectroradiometer surveys over several forest-covered sulfide bodies indicate that mineralization has affected the overlying vegetation; anomalous spectral reflectivity properties can be detected in the vegetation using appropriate remote-sensing interments and data-reduction techniques. Mineralization induces subtle changes in the shape of the chlorophyll a and b absorption spectrum between 550 and 750 nm. The observed spectral variations appear specifically to be on the wings of the broad red chlorophyll bars, centered at about 680 nm.
Direct Electrothermal Atomic Absorption Determination of Trace Elements in Body Fluids (Review)
NASA Astrophysics Data System (ADS)
Zacharia, A. N.; Arabadji, M. V.; Chebotarev, A. N.
2017-03-01
This review is focused on the state and development of tendencies of electrothermal atomic absorption spectroscopy over the last 25 years (from 1990 to 2016) in the direct determination of Cu, Zn, Pb, Cd, Mn, Se, As, Cr, Co, Ni, Al, and Hg in body fluids such as blood, urine, saliva, and breast milk.
Neufeld, Esra; Gosselin, Marie-Christine; Murbach, Manuel; Christ, Andreas; Cabot, Eugenia; Kuster, Niels
2011-08-07
Multi-transmit coils are increasingly being employed in high-field magnetic resonance imaging, along with a growing interest in multi-transmit body coils. However, they can lead to an increase in whole-body and local specific absorption rate (SAR) compared to conventional body coils excited in circular polarization for the same total incident input power. In this study, the maximum increase of SAR for three significantly different human anatomies is investigated for a large 3 T (128 MHz) multi-transmit body coil using numerical simulations and a (generalized) eigenvalue-based approach. The results demonstrate that the increase of SAR strongly depends on the anatomy. For the three models and normalization to the sum of the rung currents squared, the whole-body averaged SAR increases by up to a factor of 1.6 compared to conventional excitation and the peak spatial SAR (averaged over any 10 cm(3) of tissue) by up to 13.4. For some locations the local averaged SAR goes up as much as 800 times (130 when looking only at regions where it is above 1% of the peak spatial SAR). The ratio of the peak spatial SAR to the whole-body SAR increases by a factor of up to 47 and can reach values above 800. Due to the potentially much larger power deposition, additional, preferably patient-specific, considerations are necessary to avoid injuries by such systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Flanagan, P.R.; Cluett, J.; Chamberlain, M.J.
The percentage of /sup 65/Zn taken up (absorbed) from extrinsically labeled turkey meat was calculated from the amounts of /sup 65/Zn and a nonabsorbed /sup 51/Cr marker present in the body or in a single stool specimen after 1-2 d. /sup 51/CrCl/sub 3/ proved to be a suitable marker for unabsorbed /sup 65/Zn and so the early determination of /sup 65/Zn absorption was possible. With stool counting, /sup 65/Zn absorption data from first stool samples after 1-2 d were accurate as judged by correlation with the amount of /sup 65/Zn in the body 7-10 d later (retention); results from subsequentmore » stools gave lower absorption values due to the early excretion of some absorbed /sup 65/Zn. The dual-isotope method gave reproducible results when four successive tests of zinc absorption were carried out in a group of six subjects. The average (mean +/- SD) /sup 65/Zn absorption from turkey meals containing 31 mumol (2 mg) and 46 mumol (3 mg) of zinc was 39 +/- 8% and 29 +/- 6%, respectively, measured by stool counting; /sup 65/Zn absorption and retention correlated well in both studies. A series of different beverages was given in place of water with the turkey meal. Orange juice significantly reduced /sup 65/Zn absorption and milk also showed this tendency, but tea, whiskey, wine or beer had no significant effect on the absorption of /sup 65/Zn from the turkey meal. In groups of subjects the mean ratio of /sup 65/Zn absorption from extrinsically labeled turkey meat on two occasions (1.06) was not significantly different from that of the absorption of extrinsic to intrinsic /sup 65/Zn labels (1.16). The dual-isotope technique with either stool or body counting is suitable for the rapid determination of /sup 65/Zn absorption from extrinsically labeled turkey within 2 d.« less
Method for making a photodetector with enhanced light absorption
Kane, James
1987-05-05
A photodetector including a light transmissive electrically conducting layer having a textured surface with a semiconductor body thereon. This layer traps incident light thereby enhancing the absorption of light by the semiconductor body. A photodetector comprising a textured light transmissive electrically conducting layer of SnO.sub.2 and a body of hydrogenated amorphous silicon has a conversion efficiency about fifty percent greater than that of comparative cells. The invention also includes a method of fabricating the photodetector of the invention.
Crashworthiness Design for Bionic Bumper Structures Inspired by Cattail and Bamboo.
Xu, Tao; Liu, Nian; Yu, Zhenglei; Xu, Tianshuang; Zou, Meng
2017-01-01
Many materials in nature exhibit excellent mechanical properties. In this study, we evaluated the bionic bumper structure models by using nonlinear finite element (FE) simulations for their crashworthiness under full-size impact loading. The structure contained the structural characteristics of cattail and bamboo. The results indicated that the bionic design enhances the specific energy absorption (SEA) of the bumper. The numerical results showed that the bionic cross-beam and bionic box of the bionic bumper have a significant effect on the crashworthiness of the structure. The crush deformation of bionic cross-beam and box bumper model was reduced by 33.33%, and the total weight was reduced by 44.44%. As the energy absorption capacity under lateral impact, the bionic design can be used in the future bumper body.
Crashworthiness Design for Bionic Bumper Structures Inspired by Cattail and Bamboo
Xu, Tao; Liu, Nian
2017-01-01
Many materials in nature exhibit excellent mechanical properties. In this study, we evaluated the bionic bumper structure models by using nonlinear finite element (FE) simulations for their crashworthiness under full-size impact loading. The structure contained the structural characteristics of cattail and bamboo. The results indicated that the bionic design enhances the specific energy absorption (SEA) of the bumper. The numerical results showed that the bionic cross-beam and bionic box of the bionic bumper have a significant effect on the crashworthiness of the structure. The crush deformation of bionic cross-beam and box bumper model was reduced by 33.33%, and the total weight was reduced by 44.44%. As the energy absorption capacity under lateral impact, the bionic design can be used in the future bumper body. PMID:29118571
Sex differences in lower extremity biomechanics during single leg landings.
Schmitz, Randy J; Kulas, Anthony S; Perrin, David H; Riemann, Bryan L; Shultz, Sandra J
2007-07-01
Females have an increased incident rate of anterior cruciate ligament tears compared to males. Biomechanical strategies to decelerate the body in the vertical direction have been implicated as a contributing cause. This study determined if females would exhibit single leg landing strategies characterized by decreased amounts of hip, knee, and ankle flexion resulting in greater vertical ground reaction forces and altered energy absorption patterns when compared to males. Recreationally active males (N=14) and females (N=14), completed five single leg landings from a 0.3m height onto a force platform while three-dimensional kinematics and kinetics were simultaneously collected. Compared to males, females exhibited (1) less total hip and knee flexion displacements (40% and 64% of males, respectively, P<0.05) and less time to peak hip and knee flexion (48% and 78% of males, respectively, P<0.05), (2) 9% greater peak vertical ground reaction forces (P<0.05), (3) less total lower body energy absorption (76% of males, P<0.05), and (4) 11% greater relative energy absorption at the ankle (P<0.05). Females in this study appear to adopt a single leg landing style using less hip and knee flexion, absorbing less total lower body energy with more relative energy at the ankle resulting in a landing style that can be described as stiff. This may potentially cause increased demands on non-contractile components of the lower extremity. Preventative training programs designed to prevent knee injury may benefit from the biomechanical description of sex-specific landing methods demonstrated by females in this study by focusing on the promotion of more reliance on using the contractile components to absorb impact energy during landings.
Bisphenol A promotes cholesterol absorption in Caco-2 cells by up-regulation of NPC1L1 expression.
Feng, Dan; Zou, Jun; Zhang, Shanshan; Li, Xuechun; Li, Peiyang; Lu, Minqi
2017-01-06
Bisphenol A (BPA), an commonly exposed environmental chemicals in humans, has been shown to have a hypercholesterolemic effect with molecular mechanism not clear. Since intestinal cholesterol absorption plays a major role in maintaining total body cholesterol homeostasis, the present study is to investigate whether BPA affects cholesterol absorption in the intestinal Caco-2 cells. The Caco-2 cells were pretreated with BPA at different concentrations for 24 h and then incubated with radioactive micellar cholesterol for 2 h. The absorption of radioactive cholesterol was quantified by liquid scintillation. The expression of Niemann-Pick C1-like 1 (NPC1L1) and sterol regulatory element binding protein-2 (SREBP-2) was analyzed by Western blot and qPCR. We found that confluent Caco-2 cells expressed NPC1L1, and the absorption of cholesterol in the cells was inhibited by ezetimibe, a specific inhibitor of NPC1L1. We then pretreated the cells with 0.1-10 nM BPA for 24 h and found that BPA at 1 and 10 nM doses promoted cholesterol absorption. In addition, we found that the BPA-induced promotion of cholesterol absorption was associated with significant increase in the levels of NPC1L1 protein and NPC1L1 mRNA. Moreover, the stimulatory effects of BPA on cholesterol absorption and NPC1L1 expression could be prevented by blockade of the SREBP-2 pathway. This study provides the first evidence that BPA promotes cholesterol absorption in the intestinal cells and the stimulatory effect of BPA is mediated, at least in part, by SREBP-2-NPC1L1 signaling pathway.
Dual-Band Dual-Mode Button Antenna for On-Body and Off-Body Communications.
Zhang, Xiu Yin; Wong, Hang; Mo, Te; Cao, Yun Fei
2017-08-01
A dual-band dual-mode button antenna for body centric communications is presented. At the lower band, a spiral inverted-F antenna is designed with omnidirectional radiation pattern for on-body communication. At the upper band, the high-order mode of the inverted-F antenna is utilized together with a metal reflector to realize broadside radiation for off-body communication. For demonstration, a prototype is implemented. The measured peak gains on the phantom at the lower and upper bands are -0.6 and 4.3 dBi, respectively. The antenna operating on the phantom has measured efficiencies of 46.3% at the lower band and 69.3% at the upper band. The issue of specific absorption rate (SAR) is studied. The maximum transmitted power under the SAR regulation of 1.6 W/kg is found to be 26.4 dB·m, which is high enough for body centric communications. In addition, the transmission performance between two proposed antennas mounted on the body is investigated by measuring the transmission loss. With an overall miniaturized size, the robust button antenna could be integrated in clothes and be a potential candidate for wireless body area network applications.
Zhou, Zhong-Hua; Yang, Hui-Juan; Chen, Ming; Lou, Cheng-Fu; Zhang, Yao-Zhou; Chen, Ke-Ping; Wang, Yong; Yu, Mei-Lan; Yu, Fang; Li, Jian-Ying; Zhong, Bo-Xiong
2008-12-01
To gain an insight into the effects of different diets on growth and development of the domesticated silkworm at protein level, we employed comparative proteomic approach to investigate the proteomic differences of midgut, hemolymph, fat body and posterior silk gland of the silkworms reared on fresh mulberry leaves and on artificial diet. Seventy-six differentially expressed proteins were identified by MALDI TOF/TOF MS, and among them, 41 proteins were up-regulated, and 35 proteins were downregulated. Database searches, combined with GO analysis and KEGG pathway analysis revealed that some hemolymph proteins such as Nuecin, Gloverin-like proteins, PGRP, P50 and beta/-N-acetylglucosamidase were related to innate immunity of the silkworm, and some proteins identified in silkworm midgut including Myosin 1 light chain, Tropomyosin 1, Profilin, Serpin-2 and GSH-Px were involved in digestion and nutrition absorption. Moreover, two up-regulated enzymes in fat body of larvae reared on artificial diet were identified as V-ATPase subunit B and Arginine kinase which participate in energy metabolism. Furthermore, 6 down-regulated proteins identified in posterior silk gland of silkworm larvae reared on artificial diet including Ribosomal protein SA, EF-2, EF-1gamma, AspAT, ERp57 and PHB were related to silk synthesis. Our results suggested that the different diets could alter the expression of proteins related to immune system, digestion and absorption of nutrient, energy metabolism and silk synthesis poor nutrition and absorption of nutrition in silkworm. The results also confirmed that the poor nutrient absorption, weakened innate immunity, decreased energy metabolism and reduced silk synthesis are the main reasons for low cocoons yield, inferior filament quality, low survival rate of young larvae and insufficient resistance against specific pathogens in the silkworms fed on artificial diet.
Light Emission by Nonequilibrium Bodies: Local Kirchhoff Law
NASA Astrophysics Data System (ADS)
Greffet, Jean-Jacques; Bouchon, Patrick; Brucoli, Giovanni; Marquier, François
2018-04-01
The goal of this paper is to introduce a local form of Kirchhoff law to model light emission by nonequilibrium bodies. While absorption by a finite-size body is usually described using the absorption cross section, we introduce a local absorption rate per unit volume and also a local thermal emission rate per unit volume. Their equality is a local form of Kirchhoff law. We revisit the derivation of this equality and extend it to situations with subsystems in local thermodynamic equilibrium but not in equilibrium between them, such as hot electrons in a metal or electrons with different Fermi levels in the conduction band and in the valence band of a semiconductor. This form of Kirchhoff law can be used to model (i) thermal emission by nonisothermal finite-size bodies, (ii) thermal emission by bodies with carriers at different temperatures, and (iii) spontaneous emission by semiconductors under optical (photoluminescence) or electrical pumping (electroluminescence). Finally, we show that the reciprocity relation connecting light-emitting diodes and photovoltaic cells derived by Rau is a particular case of the local Kirchhoff law.
Code of Federal Regulations, 2013 CFR
2013-01-01
... inaccessible to a child or prevent the absorption of any lead in the human body through normal and reasonably... in the absorption of any lead into the human body, taking into account normal and reasonably..., Maryland 20814, or delivered to the same address. (2) Be written in the English language. (3) Contain the...
Code of Federal Regulations, 2012 CFR
2012-01-01
... inaccessible to a child or prevent the absorption of any lead in the human body through normal and reasonably... in the absorption of any lead into the human body, taking into account normal and reasonably..., Maryland 20814, or delivered to the same address. (2) Be written in the English language. (3) Contain the...
Mishra, Varsha; Puthucheri, Smitha; Singh, Dharmendra
2018-05-07
As a preventive measure against the electromagnetic (EM) wave exposure to human body, EM radiation regulatory authorities such as ICNIRP and FCC defined the value of specific absorption rate (SAR) for the human head during EM wave exposure from mobile phone. SAR quantifies the absorption of EM waves in the human body and it mainly depends on the dielectric properties (ε', σ) of the corresponding tissues. The head part of the human body is more susceptible to EM wave exposure due to the usage of mobile phones. The human head is a complex structure made up of multiple tissues with intermixing of many layers; thus, the accurate measurement of permittivity (ε') and conductivity (σ) of the tissues of the human head is still a challenge. For computing the SAR, researchers are using multilayer model, which has some challenges for defining the boundary for layers. Therefore, in this paper, an attempt has been made to propose a method to compute effective complex permittivity of the human head in the range of 0.3 to 3.0 GHz by applying De-Loor mixing model. Similarly, for defining the thermal effect in the tissue, thermal properties of the human head have also been computed using the De-Loor mixing method. The effective dielectric and thermal properties of equivalent human head model are compared with the IEEE Std. 1528. Graphical abstract ᅟ.
Uncertainty of GHz-band Whole-body Average SARs in Infants based on their Kaup Indices
NASA Astrophysics Data System (ADS)
Miwa, Hironobu; Hirata, Akimasa; Fujiwara, Osamu; Nagaoka, Tomoaki; Watanabe, Soichi
We previously showed that a strong correlation exists between the absorption cross section and the body surface area of a human for 0.3-2GHz far field exposure, and proposed a formula for estimating whole-body-average specific absorption rates (WBA-SARs) in terms of height and weight. In this study, to evaluate variability in the WBA-SARs in infants based on their physique, we derived a new formula including Kaup indices of infants, which are being used to check their growth, and thereby estimated the WBA-SARs in infants with respect to their age from 0 month to three years. As a result, we found that under the same height/weight, the smaller the Kaup indices are, the larger the WBA-SARs become, and that the variability in the WBA-SARs is around 15% at the same age. To validate these findings, using the FDTD method, we simulated the GHz-band WBA-SARs in numerical human models corresponding to infants with age of 0, 1, 3, 6 and 9 months, which were obtained by scaling down the anatomically based Japanese three-year child model developed by NICT (National Institute of Information and Communications Technology). Results show that the FDTD-simulated WBA-SARs are smaller by 20% compared to those estimated for infants having the median height and the Kaup index of 0.5 percentiles, which provide conservative WBA-SARs.
Brown, Tyler N; O'Donovan, Meghan; Hasselquist, Leif; Corner, Brian; Schiffman, Jeffrey M
2014-11-07
This study quantified how body borne load impacts hip and knee biomechanics during anticipated and unanticipated single-leg cutting maneuvers. Fifteen male military personnel performed a series of single-leg cutting maneuvers with three different load configurations (light, ~6 kg, medium, ~20 kg, and heavy, ~40 kg). Subject-based means of the specific lower limb biomechanical variables were submitted to repeated measures ANOVA to test the main and interaction effects of body borne load and movement type. With body borne load, stance time (P<0.001) increased, while larger hip (P=0.027) and knee flexion (P=0.004), and hip adduction (P<0.001) moments, and decreased hip (P=0.002) and knee flexion (P<0.001), and hip adduction (P=0.003) postures were evident. Further, the hip (P<0.001) and ankle (P=0.024) increased energy absorption, while the knee (P=0.020) increased energy generation with body borne load. During the unanticipated maneuvers, the hip (P=0.009) and knee (P=0.032) increased energy generation, and peak hip flexion moment (P=0.002) increased relative to the anticipated movements. With the body borne load, participants adopted biomechanical patterns that decreased their locomotive ability including larger moments and reduced flexion postures of the lower limb. During the single-leg cut, participants used greater energy absorption from the large, proximal muscles of the hip and greater energy generation from the knee with the addition of load. Participant's performance when carrying a range of loads was not compromised by anticipation, as they did not exhibit the hip and knee kinetic and kinematic adaptations previously demonstrated when reacting to an unplanned stimulus. Published by Elsevier Ltd.
Kozlov, Mikhail; Horner, Marc; Kainz, Wolfgang; Angelone, Leonardo M
2017-07-01
The goal of this work is to investigate the effect of coil losses on the electromagnetic field generated in an ASTM phantom by a birdcage coil. The study was based on different numerical implementations of an RF body coil at 64 MHz, using the same 3D EM and RF circuit co-simulation procedure. The coil quality factor was evaluated with respect to losses due to power feed mismatch and to resistive losses of the coil components. The results of the study showed that the magnetic field at the coil iso-center, normalized to the square root of the whole body specific absorption rate, depends on the coil quality factor.
Haderslev, Kent Valentin; Jeppesen, Paller Bekker; Sorensen, Henrik Ancher; Mortensen, Per Brobech; Staun, Michael
2003-07-01
Patients who have undergone resection of the small intestine have lower body weight than do healthy persons. It remains unclear whether it is the body fat mass or the lean tissue mass that is reduced. We compared body-composition values in patients who had undergone small-intestinal resection with reference values obtained in healthy volunteers, and we studied the relation between body-composition estimates and the net intestinal absorption of energy. In a cross-sectional study, we included 20 men and 24 women who had undergone small-intestinal resection and had malabsorption of energy > 2000 kJ/d. Diagnoses were Crohn disease (n = 37) and other conditions (n = 7). Body composition was estimated by dual-energy X-ray absorptiometry, and data were compared with those from a reference group of 173 healthy volunteers. Energy absorption was measured during 48-h balance studies by using bomb calorimetry, and individual values were expressed relative to the basal metabolic rate. Body weight and body mass index in patients were significantly (P < 0.05) lower than the reference values. Fat mass was 6.4 kg (30%) lower (95% CI: -8.8, -3.9 kg), but lean tissue mass was only slightly and insignificantly lower (1.5 kg, or 3.3%; 95% CI: -3.7, 0.60 kg). Weight, body mass index, and body-composition estimates by dual-energy X-ray absorptiometry did not correlate significantly with the net energy absorption relative to the basal metabolic rate, expressed as a percentage. Patients who had undergone small-intestinal resection had significantly lower body weights and body mass indexes than did healthy persons, and they had significant changes in body composition, mainly decreased body fat mass.
Direct observation of ozone formation on SiO2 surfaces in O2 discharges
NASA Astrophysics Data System (ADS)
Marinov, D.; Guaitella, O.; Booth, J. P.; Rousseau, A.
2013-01-01
Ozone production is studied in a pulsed O2 discharge at pressures in the range 1.3-6.7 mbar. Time-resolved absolute concentrations of O3 and O are measured in the post-discharge using UV absorption spectroscopy and two-photon absorption laser-induced fluorescence. In a bare silica discharge tube ozone is formed mainly by three-body gas-phase recombination. When the tube surface is covered by a high specific surface silica catalyst heterogeneous formation becomes the main source of ozone. The efficiency of this surface process increases with O2 pressure and is favoured by the presence of OH groups and adsorbed H2O on the surface. At p = 6.7 mbar ozone production accounts for up to 25% of the atomic oxygen losses on the surface.
FDTD computation of temperature elevation in the elderly for far-field RF exposures.
Nomura, Tomoki; Laakso, Ilkka; Hirata, Akimasa
2014-03-01
Core temperature elevation and perspiration in younger and older adults is investigated for plane-wave exposure at whole-body averaged specific absorption rate of 0.4 W kg(-1). Numeric Japanese male model is considered together with a thermoregulatory response formula proposed in the authors' previous study. The frequencies considered were at 65 MHz and 2 GHz where the total power absorption in humans becomes maximal for the allowable power density prescribed in the international guidelines. From the computational results used here, the core temperature elevation in the older adult model was larger than that in the younger one at both frequencies. The reason for this difference is attributable to the difference of sweating, which is originated from the difference in the threshold activating the sweating and the decline in sweating in the legs.
Prahm, August P; Brandt, Christopher F; Askov-Hansen, Carsten; Mortensen, Per B; Jeppesen, Palle B
2017-09-01
Background : In research settings that use metabolic balance studies (MBSs) of stable adult patients with short bowel syndrome, intestinal failure (IF) and dependence on parenteral support (PS) have been defined objectively as energy absorption <84% of calculated basal metabolic rate (BMR), wet weight (WW) absorption <23 g · kg body weight -1 · d -1 , or both. Objective: This study aimed to explore and validate these borderlines in the clinical setting. Design: Intestinal absorption was measured from April 2003 to March 2015 in 175 consecutive patients with intestinal insufficiency (INS) in 96-h MBSs. They had not received PS 3 mo before referral. Results: To avoid the need for PS, the minimum absorptive requirements were energy absorption of ≥81% of BMR and WW absorption of ≥21 g · kg body weight -1 · d -1 , which were equivalent to findings in research settings (differences of 3.6% and 8.7%; P = 0.65 and 0.60, respectively). Oral failure defined as energy intake <130% of calculated BMR or WW intake <40 g · kg body weight -1 · d -1 was seen in 71% and 82% of the 10% of patients with the lowest energy absorption and WW absorption, respectively. Conclusions: In clinical settings, the borderlines between INS and IF were not significantly different from those in research settings, even in an unselected patient population in which oral failure was also a predominant cause of nutritional dyshomeostasis. MBSs may be recommended to identify the individual patient in the spectrum from INS to IF, to objectivize the cause of nutritional dyshomeostasis (oral failure, malabsorption, or both), and to quantify the effects of treatment. © 2017 American Society for Nutrition.
Preliminary studies: far-field microwave dosimetric measurements of a full-scale model of man.
Olsen, R G
1979-12-01
Measurements of microwave heating were made in a full-size, upright human model. The 75-Kg model, composed of electrically simulated muscle, was placed in the far-zone of a standard-gain horn inside an absorber-lined chamber. Pulsed energy at 1.29 GHz was obtained from a military radar transmitter (AN/TPS-1G) and produced radiation at 6-14 mW/cm2 average power density at the location of the model. Microwave heating at the front surface was measured at nine locations on the phantom. Measurements at several depths within the phantom were also made at a central location to gain information on the depth-of-penetration of the microwave energy. Results of the frontal surface measurements and of the penetration study permitted a calculation of the approximate whole-body average specific absorption rate (SAR) when the model's long axis was parallel to the E-field vector. For a normalized power density of 1 mW/cm2 at a frequency of 1.29 GHz, the whole-body average SAR approximated 0.03 W/Kg. This result agrees well with theoretical predictions based on absorption in prolate spheroidal models of man.
Jandacek, Ronald J.; Genuis, Stephen J.
2013-01-01
Many individuals maintain a persistent body burden of organochlorine compounds (OCs) as well as other lipophilic compounds, largely as a result of airborne and dietary exposures. Ingested OCs are typically absorbed from the small intestine along with dietary lipids. Once in the body, stored OCs can mobilize from adipose tissue storage sites and, along with circulating OCs, are delivered into the small intestine via hepatic processing and biliary transport. Retained OCs are also transported into both the large and small intestinal lumen via non-biliary mechanisms involving both secretion and desquamation from enterocytes. OCs and some other toxicants can be reabsorbed from the intestine, however, they take part in enterohepatic circulation(EHC). While dietary fat facilitates the absorption of OCs from the small intestine, it has little effect on OCs within the large intestine. Non-absorbable dietary fats and fat absorption inhibitors, however, can reduce the re-absorption of OCs and other lipophiles involved in EHC and may enhance the secretion of these compounds into the large intestine—thereby hastening their elimination. Clinical studies are currently underway to determine the efficacy of using non-absorbable fats and inhibitors of fat absorption in facilitating the elimination of persistent body burdens of OCs and other lipophilic human contaminants. PMID:23476122
Jandacek, Ronald J; Genuis, Stephen J
2013-01-01
Many individuals maintain a persistent body burden of organochlorine compounds (OCs) as well as other lipophilic compounds, largely as a result of airborne and dietary exposures. Ingested OCs are typically absorbed from the small intestine along with dietary lipids. Once in the body, stored OCs can mobilize from adipose tissue storage sites and, along with circulating OCs, are delivered into the small intestine via hepatic processing and biliary transport. Retained OCs are also transported into both the large and small intestinal lumen via non-biliary mechanisms involving both secretion and desquamation from enterocytes. OCs and some other toxicants can be reabsorbed from the intestine, however, they take part in enterohepatic circulation(EHC). While dietary fat facilitates the absorption of OCs from the small intestine, it has little effect on OCs within the large intestine. Non-absorbable dietary fats and fat absorption inhibitors, however, can reduce the re-absorption of OCs and other lipophiles involved in EHC and may enhance the secretion of these compounds into the large intestine--thereby hastening their elimination. Clinical studies are currently underway to determine the efficacy of using non-absorbable fats and inhibitors of fat absorption in facilitating the elimination of persistent body burdens of OCs and other lipophilic human contaminants.
Lucano, Elena; Liberti, Micaela; Lloyd, Tom; Apollonio, Francesca; Wedan, Steve; Kainz, Wolfgang; Angelone, Leonardo M
2018-02-01
This study aims to investigate how the positions of the feeding sources of the transmit radiofrequency (RF) coil, field orientation direction with respect to the patient, and patient dimensions affect the global and local electromagnetic exposure in human body models. Three RF coil models were implemented, namely a specific two-source (S2) feed and two multisource feed configurations: generic 32-source (G32) and hybrid 16-source (H16). Thirty-two feeding conditions were studied for the S2, whereas two were studied for the G32 and H16. The study was performed using five human body models. Additionally, for two of the body models, the case of a partially implanted lead was evaluated. The results showed an overall variation due to coil feeding conditions of the whole-body specific absorption rate (SAR) of less than 20%, but deviations up to 98% of the magnitude of the electric field tangential to a possible lead path. For the analysis with the partially implanted lead, a variation of local SAR at the tip of the lead of up to 60% was observed with respect to feed position and field orientation direction. The results of this study suggest that specific information about feed position and field orientation direction must be considered for an accurate evaluation of patient exposure. Magn Reson Med 79:1135-1144, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.
NASA Astrophysics Data System (ADS)
Yu, D.; Wang, M.; Liu, Q.
2015-09-01
A reference man is a theoretical individual that represents the average anatomical structure and physiological and metabolic features of a specific group of people and has been widely used in radiation safety research. With the help of an advantage in deformation, the present work proposed a Chinese reference man adult-male polygon-mesh surface phantom based on the Visible Chinese Human segment image dataset by surface rendering and deforming. To investigate the influence of physique on electromagnetic dosimetry in humans, a series of human phantoms with 10th, 50th and 90th body mass index and body circumference percentile physiques for Chinese adult males were further constructed by deforming the Chinese reference man surface phantom. All the surface phantoms were then voxelized to perform electromagnetic field simulation in a frequency range of 20 MHz to 3 GHz using the finite-difference time-domain method and evaluate the whole-body average and organ average specific absorption rate and the ratios of absorbed energy in skin, fat and muscle to the whole body. The results indicate thinner physique leads to higher WBSAR and the volume of subcutaneous fat, the penetration depth of the electromagnetic field in tissues and standing-wave occurrence may be the influence factors of physique on electromagnetic dosimetry.
Anderson, Rodolfo C O; Bovo, Rafael P; Eismann, Carlos E; Menegario, Amauri A; Andrade, Denis V
Because of their permeable skin, terrestrial amphibians are constantly challenged by the potential risk of dehydration. However, some of the physiological consequences associated with dehydration may affect aspects that are themselves relevant to the regulation of water balance. Accordingly, we examined the effects of graded levels of dehydration on the rates of evaporative water loss and water absorption through the skin in the terrestrial Neotropical toad, Rhinella schneideri. Concomitantly, we monitored the effects of dehydration on the mass of visceral organs; hematocrit and hemoglobin content; plasma osmolality; and plasma concentration of urea, sodium, chloride, and potassium. We found that dehydration caused an increase in the concentration of body fluids, as indicated by virtually all the parameters examined. There was a proportional change in the relative masses of visceral organs, except for the liver and kidneys, which exhibited a decrease in their relative masses greater than the whole-body level of dehydration. Changes-or the preservation-of relative organ masses during dehydration may be explained by organ-specific physiological adjustments in response to the functional stress introduced by the dehydration itself. As dehydration progressed, evaporative water loss diminished and water reabsorption increased. In both cases, the increase in body fluid concentration associated with the dehydration provided the osmotic driver for these changes in water flux. Additionally, dehydration-induced alterations on the cutaneous barrier may also have contributed to the decrease in water flux. Dehydration, therefore, while posing a considerable challenge on the water balance regulation of anurans, paradoxically facilitates water conservation and absorption.
Numerical evaluation of human exposure to WiMax patch antenna in tablet or laptop.
Siervo, Beatrice; Morelli, Maria Sole; Landini, Luigi; Hartwig, Valentina
2018-04-30
The use of wireless communication devices, such as tablets or laptops, is increasing among children. Only a few studies assess specific energy absorption rate (SAR) due to exposure from wireless-enabled tablets and laptops, in particular with Worldwide Interoperability for Microwave Access (WiMax) technology. This paper reports the estimation of the interaction between an E-shaped patch antenna (3.5 GHz) and human models, by means of finite-difference time-domain (FDTD) method. Specifically, four different human models (young adult male, young adult female, pre-teenager female, male child) in different exposure conditions (antenna at different distances from the human model, in different positions, and orientations) were considered and whole-body, 10 and 1 g local SAR and magnetic field value (Bmax) were evaluated. From our results, in some worst-case scenarios involving male and female children's exposure, the maximum radiofrequency energy absorption (hot spots) is located in more sensitive organs such as eye, genitals, and breast. Bioelectromagnetics. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.
Chen, Bingxin; Wang, Jiamin; Qi, Hongxin; Zhang, Jie; Chen, Shude; Wang, Xianghui
2017-03-01
As electromagnetic exposure experiments can only be performed on small animals, usually rats, research on the characteristics of specific absorption rate (SAR) distribution in the rat has received increasing interest. A series of calculations, which simulated the SAR in a male rat anatomical model exposed to electromagnetic plane waves ranging from 0.05 to 5 GHz with different incidence and polarization, were conducted. The whole-body-averaged SAR (SARwb) and the tissue-averaged SAR (SARavg) in 20 major tissues were determined. Results revealed that incidence has great impact on SAR in the rat at higher frequencies owing to the skin effect and the effect on SARavg in tissues is much more apparent than that on SARwb; while polarization plays an important role under lower frequencies. Not only the incidence, but also the polarization in the rat keeps changing when the rat is in free movement. Thus, this article discussed a convenient way to obtain relatively accurate SARwb in a free-moving rat.
Quantum quench of Kondo correlations in optical absorption.
Latta, C; Haupt, F; Hanl, M; Weichselbaum, A; Claassen, M; Wuester, W; Fallahi, P; Faelt, S; Glazman, L; von Delft, J; Türeci, H E; Imamoglu, A
2011-06-29
The interaction between a single confined spin and the spins of an electron reservoir leads to one of the most remarkable phenomena of many-body physics--the Kondo effect. Electronic transport measurements on single artificial atoms, or quantum dots, have made it possible to study the effect in great detail. Here we report optical measurements on a single semiconductor quantum dot tunnel-coupled to a degenerate electron gas which show that absorption of a single photon leads to an abrupt change in the system Hamiltonian and a quantum quench of Kondo correlations. By inferring the characteristic power-law exponents from the experimental absorption line shapes, we find a unique signature of the quench in the form of an Anderson orthogonality catastrophe, induced by a vanishing overlap between the initial and final many-body wavefunctions. We show that the power-law exponent that determines the degree of orthogonality can be tuned using an external magnetic field, which unequivocally demonstrates that the observed absorption line shape originates from Kondo correlations. Our experiments demonstrate that optical measurements on single artificial atoms offer new perspectives on many-body phenomena previously studied using transport spectroscopy only.
Bauer, Paige V; Duca, Frank A; Waise, T M Zaved; Dranse, Helen J; Rasmussen, Brittany A; Puri, Akshita; Rasti, Mozhgan; O'Brien, Catherine A; Lam, Tony K T
2018-03-06
Long-chain acyl-CoA synthetase (ACSL)-dependent upper small intestinal lipid metabolism activates pre-absorptive pathways to regulate metabolic homeostasis, but whether changes in the upper small intestinal microbiota alter specific fatty acid-dependent pathways to impact glucose homeostasis remains unknown. We here first find that upper small intestinal infusion of Intralipid, oleic acid, or linoleic acid pre-absorptively increases glucose tolerance and lowers glucose production in rodents. High-fat feeding impairs pre-absorptive fatty acid sensing and reduces upper small intestinal Lactobacillus gasseri levels and ACSL3 expression. Transplantation of healthy upper small intestinal microbiota to high-fat-fed rodents restores L. gasseri levels and fatty acid sensing via increased ACSL3 expression, while L. gasseri probiotic administration to non-transplanted high-fat-fed rodents is sufficient to restore upper small intestinal ACSL3 expression and fatty acid sensing. In summary, we unveil a glucoregulatory role of upper small intestinal L. gasseri that impacts an ACSL3-dependent glucoregulatory fatty acid-sensing pathway. Copyright © 2018 Elsevier Inc. All rights reserved.
X-ray spectroscopy of the super soft source RXJ0925.7-475
NASA Technical Reports Server (NTRS)
Ebisawa, Ken; Asai, Kazumi; Dotani, Tadayasu; Mukai, Koji; Smale, Alan
1996-01-01
The super soft source (SSS) RXJ 0925.7-475 was observed with the Advanced Satellite for Cosmology and Astrophysics (ASCA) solid state spectrometer and its energy spectrum was analyzed. A simple black body model does not fit the data, and several absorption edges of ionized heavy elements are required. Without the addition of absorption edges, the best-fit black body radius and the estimated bolometric luminosity are 6800 (d/1 kpc) km and 1.2 x 10(exp 37) (d/1 kps)(exp 2) erg/s, respectively. The introduction of absorption edges significantly reduces the best-fit radius and luminosity to 140 (d/1 KPS) km and 6 x 10(exp 34) (d/1 kpc)(exp 2) erg/s, respectively. This suggests that the estimation of the emission region size and luminosity of SSS based on the black body model fit to the observed data is not reliable.
Shtemberg, A S; Uzbekov, M G; Shikhov, S N; Bazian, A S; Cherniakov, G M
2000-01-01
Behavioral and neurochemical reactions of small laboratory animals (mice and rats of different age) under exposure to ultralow-intensity electromagnetic fields (EMF, frequency of 4200 and 970 MHz, modulated by a quasistochastic signal in the range of 20-20,000 Hz, power density 15 microW/cm2, specific body absorption rate up to 4.5 mJ/kg) were studied. The EMF basically inhibited the locomotor and exploratory activity in the "open-field" test. The species- and age-specific features rather than radiation conditions dominated. However, decrease in the EMF frequency considerably intensified the observed effect. Change in animal behavior was accompanied by shifts in neurochemical processes, i.e., sharp activation of serotoninergic and inhibition of morepinephrinergic system.
Cholecystokinin knockout mice are resistant to high-fat diet-induced obesity
Lo, Chun-Min; King, Alexandra; Samuelson, Linda C; Kindel, Tammy Lyn; Rider, Therese; Jandacek, Ronald J; Raybould, Helen E; Woods, Stephen C; Tso, Patrick
2011-01-01
Background & Aims Cholecystokinin (CCK) is a satiation peptide released during meals in response to lipid intake; it regulates pancreatic digestive enzymes that are required for absorption of nutrients. We proposed that mice with a disruption in the CCK gene (CCK-KO mice) that were fed a diet of 20% butter fat would have altered fat metabolism. Methods We used quantitative magnetic resonance imaging to determine body composition and monitored food intake of CCK-KO mice using an automated measurement system. Intestinal fat absorption and energy expenditure were determined using a noninvasive assessment of intestinal fat absorption and an open circuit calorimeter, respectively. Results After consuming a high-fat diet for 10 weeks, CCK-KO mice had reduced body weight gain and body fat mass and enlarged adipocytes, despite the same level of food intake as wild-type mice. CCK-KO mice also had defects in fat absorption, especially of long-chain saturated fatty acids, but pancreatic triglyceride lipase (PTL) did not appear to have a role in the fat malabsorption. Energy expenditure was higher in CCK-KO than wild-type mice and CCK-KO mice had greater oxidation of carbohydrates while on the high-fat diet. Plasma leptin levels in the CCK-KO mice fed the high-fat diet were markedly lower than in wild-type mice, although levels of insulin, gastric-inhibitory polypeptide, and glucagon-like peptide-1 were normal. Conclusion CCK is involved in regulating the metabolic rate and is important for lipid absorption and control of body weight in mice placed on a high-fat diet. PMID:20117110
NASA Technical Reports Server (NTRS)
Gandhi, O. P.; Hagmann, M. J.; Dandrea, J. A.
1979-01-01
Fine structure in the whole-body resonant curve for radio-frequency energy deposition in man can be attributed to part-body resonances. As for head resonance, which occurs near 350 MHz in man, the absorptive cross section is nearly three times the physical cross section of the head. The arm has a prominent resonance at 150 MHz. Numerical solutions, antenna theory, and experimental results on animals have shown that whole-body energy deposition may be increased by 50 percent or more because of multiple bodies that are strategically located in the field. Empirical equations for SARs are also presented along with test data for several species of laboratory animals. Barbiturate anesthesia is sufficiently disruptive of thermoregulation that delta Ts of colonic temperature yield energy dose values in several mammals that compare quite favorably with those based on whole-body calorimetry.
[Amalgam. IV. Metabolism of mercury].
Gladys, S; van Meerbeek, B; Vanherle, G; Lambrechts, P
1993-04-01
After absorption in the body by four ways, each type of mercury undergoes a specific metabolism. Elementary mercury as mercury vapour becomes rapidly oxidized to Hg2+ and, afterwards, is metabolized as an inorganic mercurial compound. From the blood circulation mercury reaches target organs like the kidneys, the central nervous system, the liver and the hypophysis, in which mercury accumulates. The retention time varies by organ and is longest in the brain. Mercury is mainly eliminated with urine and faeces, to a lesser degree with transpiration and mother's milk and sometimes by respiration.
Zimmermann, Michael B; Biebinger, Ralf; Egli, Ines; Zeder, Christophe; Hurrell, Richard F
2011-04-01
Fe absorption from water-soluble forms of Fe is inversely proportional to Fe status in humans. Whether this is true for poorly soluble Fe compounds is uncertain. Our objectives were therefore (1) to compare the up-regulation of Fe absorption at low Fe status from ferrous sulphate (FS) and ferric pyrophosphate (FPP) and (2) to compare the efficacy of FS with FPP in a fortification trial to increase body Fe stores in Fe-deficient children v. Fe-sufficient children. Using stable isotopes in test meals in young women (n 49) selected for low and high Fe status, we compared the absorption of FPP with FS. We analysed data from previous efficacy trials in children (n 258) to determine whether Fe status at baseline predicted response to FS v. FPP as salt fortificants. Plasma ferritin was a strong negative predictor of Fe bioavailability from FS (P < 0·0001) but not from FPP. In the efficacy trials, body Fe at baseline was a negative predictor of the change in body Fe for both FPP and FS, but the effect was significantly greater with FS (P < 0·01). Because Fe deficiency up-regulates Fe absorption from FS but not from FPP, food fortification with FS may have relatively greater impact in Fe-deficient children. Thus, more soluble Fe compounds not only demonstrate better overall absorption and can be used at lower fortification levels, but they also have the added advantage that, because their absorption is up-regulated in Fe deficiency, they innately 'target' Fe-deficient individuals in a population.
Nagaoka, T; Saito, K; Takahashi, M; Ito, K; Watanabe, S
2008-01-01
The safety of a human body exposed to radio-frequency (RF) electromagnetic fields (EMFs) has become important today. In recent times, conducting numerical dosimetry on the mother and the fetus during pregnancy has become a particularly important issue. This paper outlines the development of pregnant woman models that were adjusted to the reference values of physiological characteristics of maternal tissues in pregnant women for gestation ages of 13, 18, and 26 weeks The models are composed of voxels of 2 x 2 x 2 mm(3), and there are 56 tissue types. The basic specific absorption rate (SAR) characteristics in the pregnant woman models for whole-body exposure to RF electromagnetic fields that were calculated using the finite-difference time-domain (FDTD) method are described here.
NASA Technical Reports Server (NTRS)
Moisan, John R.; Moisan, Tiffany A. H.; Linkswiler, Matthew A.
2011-01-01
Phytoplankton absorption spectra and High-Performance Liquid Chromatography (HPLC) pigment observations from the Eastern U.S. and global observations from NASA's SeaBASS archive are used in a linear inverse calculation to extract pigment-specific absorption spectra. Using these pigment-specific absorption spectra to reconstruct the phytoplankton absorption spectra results in high correlations at all visible wavelengths (r(sup 2) from 0.83 to 0.98), and linear regressions (slopes ranging from 0.8 to 1.1). Higher correlations (r(sup 2) from 0.75 to 1.00) are obtained in the visible portion of the spectra when the total phytoplankton absorption spectra are unpackaged by multiplying the entire spectra by a factor that sets the total absorption at 675 nm to that expected from absorption spectra reconstruction using measured pigment concentrations and laboratory-derived pigment-specific absorption spectra. The derived pigment-specific absorption spectra were further used with the total phytoplankton absorption spectra in a second linear inverse calculation to estimate the various phytoplankton HPLC pigments. A comparison between the estimated and measured pigment concentrations for the 18 pigment fields showed good correlations (r(sup 2) greater than 0.5) for 7 pigments and very good correlations (r(sup 2) greater than 0.7) for chlorophyll a and fucoxanthin. Higher correlations result when the analysis is carried out at more local geographic scales. The ability to estimate phytoplankton pigments using pigment-specific absorption spectra is critical for using hyperspectral inverse models to retrieve phytoplankton pigment concentrations and other Inherent Optical Properties (IOPs) from passive remote sensing observations.
Brzoska, Malgorzata M; Galazyn-Sidorczuk, Malgorzata; Jurczuk, Maria; Tomczyk, Michal
2015-01-01
Recently a growing attention has been paid to the possibility of using biologically active compounds, including polyphenols, for the prevention of unfavourable effects of exposure to xenobiotics. The study was aimed to investigate, in a female rat model, whether consumption of Aronia melanocarpa polyphenols (AMP) under chronic exposure to cadmium (Cd) decreases the gastrointestinal absorption and body burden of this heavy metal. For this purpose, Cd turnover (apparent absorption, retention in the body, concentration in the blood, soft tissues and bone tissue, total pool in internal organs, faecal and urinary excretion) was evaluated in the female Wistar rats who were administered only a 0.1% aqueous extract of AMP (prepared from the powdered extract containing 65.74% of polyphenols) as drinking fluid or/and Cd in diet (1 and 5 mg/kg) for up to 24 months. AMP administration under the low Cd treatment (1 mg/kg diet) had only a very slight protective impact against this metal accumulation in the organism, whereas polyphenols application under moderate exposure (5 mg Cd/kg diet) significantly decreased apparent absorption and retention in the body, and increased urinary concentration of this xenobiotic, resulting in its lower concentration in the blood and lower accumulation in soft tissues (mainly in the liver and kidneys) and bone tissue. Based on the study, it can be concluded that consumption of polyphenol- rich products may prevent Cd absorption from the diet polluted by this metal and its accumulation in the females' body, and thus also prevent its toxic action.
Specific dynamic action: a review of the postprandial metabolic response.
Secor, Stephen M
2009-01-01
For more than 200 years, the metabolic response that accompanies meal digestion has been characterized, theorized, and experimentally studied. Historically labeled "specific dynamic action" or "SDA", this physiological phenomenon represents the energy expended on all activities of the body incidental to the ingestion, digestion, absorption, and assimilation of a meal. Specific dynamic action or a component of postprandial metabolism has been quantified for more than 250 invertebrate and vertebrate species. Characteristic among all of these species is a rapid postprandial increase in metabolic rate that upon peaking returns more slowly to prefeeding levels. The average maximum increase in metabolic rate stemming from digestion ranges from a modest 25% for humans to 136% for fishes, and to an impressive 687% for snakes. The type, size, composition, and temperature of the meal, as well as body size, body composition, and several environmental factors (e.g., ambient temperature and gas concentration) can each significantly impact the magnitude and duration of the SDA response. Meals that are large, intact or possess a tough exoskeleton require more digestive effort and thus generate a larger SDA than small, fragmented, or soft-bodied meals. Differences in the individual effort of preabsorptive (e.g., swallowing, gastric breakdown, and intestinal transport) and postabsorptive (e.g., catabolism and synthesis) events underlie much of the variation in SDA. Specific dynamic action is an integral part of an organism's energy budget, exemplified by accounting for 19-43% of the daily energy expenditure of free-ranging snakes. There are innumerable opportunities for research in SDA including coverage of unexplored taxa, investigating the underlying sources, determinants, and the central control of postprandial metabolism, and examining the integration of SDA across other physiological systems.
Vermeeren, G; Gosselin, M C; Kühn, S; Kellerman, V; Hadjem, A; Gati, A; Joseph, W; Wiart, J; Meyer, F; Kuster, N; Martens, L
2010-09-21
The environment is an important parameter when evaluating the exposure to radio-frequency electromagnetic fields. This study investigates numerically the variation on the whole-body and peak spatially averaged-specific absorption rate (SAR) in the heterogeneous virtual family male placed in front of a base station antenna in a reflective environment. The SAR values in a reflective environment are also compared to the values obtained when no environment is present (free space). The virtual family male has been placed at four distances (30 cm, 1 m, 3 m and 10 m) in front of six base station antennas (operating at 300 MHz, 450 MHz, 900 MHz, 2.1 GHz, 3.5 GHz and 5.0 GHz, respectively) and in three reflective environments (a perfectly conducting wall, a perfectly conducting ground and a perfectly conducting ground + wall). A total of 72 configurations are examined. The absorption in the heterogeneous body model is determined using the 3D electromagnetic (EM) finite-difference time-domain (FDTD) solver Semcad-X. For the larger simulations, requirements in terms of computer resources are reduced by using a generalized Huygens' box approach. It has been observed that the ratio of the SAR in the virtual family male in a reflective environment and the SAR in the virtual family male in the free-space environment ranged from -8.7 dB up to 8.0 dB. A worst-case reflective environment could not be determined. ICNIRP reference levels not always showed to be compliant with the basic restrictions.
Evaluation of the intake of radon through skin from thermal water
Sakoda, Akihiro; Ishimori, Yuu; Tschiersch, Jochen
2016-01-01
The biokinetics of radon in the body has previously been studied with the assumption that its absorption through the skin is negligibly small. This assumption would be acceptable except in specific situations, such as bathing in a radon hot spring where the radon concentration in thermal water is far higher than that in air. The present study focused on such a situation in order to better understand the biokinetics of radon. To mathematically express the entry of radon through the skin into the body, we first modified the latest sophisticated biokinetic model for noble gases. Values of an important parameter for the model—the skin permeability coefficient K (m s−1)—were derived using data from previous human studies. The analysis of such empirical data, which corresponded to radon concentrations in the air exhaled by subjects during and following bathing in radon-rich thermal water, revealed that the estimated K values had a log-normal distribution. The validity of the K values and the characteristics of the present model are then discussed. Furthermore, the impact of the intake of radon or its progeny via inhalation or skin absorption on radiation dose was also assessed for possible exposure scenarios in a radon hot spring. It was concluded that, depending on the radon concentration in thermal water, there might be situations in which the dose contribution resulting from skin absorption of radon is comparable to that resulting from inhalation of radon and its progeny. This conclusion can also apply to other therapeutic situations (e.g. staying in the pool for a longer period). PMID:26983980
Hip fractures: incidence, risk factors, energy absorption, and prevention.
Lauritzen, J B
1996-01-01
The present review summarizes the pathogenic mechanisms leading to hip fracture based on epidemiological, experimental, and controlled clinical studies. The estimated lifetime risk of hip fracture is about 14% in postmenopausal women and 6% in men. The incidence of hip fractures increases exponentially with aging, but the time trend in increasing age-specific incidence may finally reach a plateau. Postmenopausal women suffering earlier non-hip fractures have an increased risk of later hip fracture. The relative risk is highest within the first years following the fracture. Nursing home residents have a high risk of hip fracture (annual rate of 5-6%), and their incidence of falls is about 1.5 falls/person per year. Most hip fractures are a result of a direct trauma against the hip. The incidence of falls on the hip among nursing home residents is about 0.29 falls/person per year and about 20% of these traumas lead to hip fracture. Women with hip fractures have a lower body weight compared with controls, and they may also have less soft tissue covering the hip, even when adjusted for body mass index, indicating a more android body habitus. Experimental studies show that the passive energy absorption in soft tissue covering the hip may influence the risk of hip fracture and be an important determinant for the development of hip fracture, perhaps even more important than bone strength. External hip protectors were developed and tested in an open randomized nursing home study. The rate of hip fracture was reduced by 50%, corresponding to 9 of 247 residents saved from sustaining a hip fracture. This review points to the essentials in the development of hip fracture: risk of fall; type of fall; type of impact; energy absorption; and last, bone strength, which is the final permissive factor leading to hip fracture. Risk estimation and prevention of hip fracture may prove realistic when these issues are taken into consideration.
Analysis of the Exposure Levels and Potential Biologic Effects of the PAVE PAWS Radar System.
1979-01-01
total body) yielded local SARs at hot spots (above the palate area and the upper part of the back of the neck) about 5 times the average values for the...increase the field intensity; whether the energy absorption is averaged over the entire body or over local areas, such as the head or particularly absorptive...animal. Full implications of the multibody effects on AAR are not completely understood, even though pilot experimental studies with anesthetized rats
Lauer, Oliver; Frei, Patrizia; Gosselin, Marie-Christine; Joseph, Wout; Röösli, Martin; Fröhlich, Jürg
2013-07-01
A framework for the combination of near-field (NF) and far-field (FF) radio frequency electromagnetic exposure sources to the average organ and whole-body specific absorption rates (SARs) is presented. As a reference case, values based on numerically derived SARs for whole-body and individual organs and tissues are combined with realistic exposure data, which have been collected using personal exposure meters during the Swiss Qualifex study. The framework presented can be applied to any study region where exposure data is collected by appropriate measurement equipment. Based on results derived from the data for the region of Basel, Switzerland, the relative importance of NF and FF sources to the personal exposure is examined for three different study groups. The results show that a 24-h whole-body averaged exposure of a typical mobile phone user is dominated by the use of his or her own mobile phone when a Global System for Mobile Communications (GSM) 900 or GSM 1800 phone is used. If only Universal Mobile Telecommunications System (UMTS) phones are used, the user would experience a lower exposure level on average caused by the lower average output power of UMTS phones. Data presented clearly indicate the necessity of collecting band-selective exposure data in epidemiological studies related to electromagnetic fields. Copyright © 2013 Wiley Periodicals, Inc.
Martínez-Búrdalo, M; Martín, A; Anguiano, M; Villar, R
2005-09-07
In this work, the procedures for safety assessment in the close proximity of cellular communications base-station antennas at three different frequencies (900, 1800 and 2170 MHz) are analysed. For each operating frequency, we have obtained and compared the distances to the antenna from the exposure places where electromagnetic fields are below reference levels and the distances where the specific absorption rate (SAR) values in an exposed person are below the basic restrictions, according to the European safety guidelines. A high-resolution human body model has been located, in front of each base-station antenna as a worst case, at different distances, to compute whole body averaged SAR and maximum 10 g averaged SAR inside the exposed body. The finite-difference time-domain method has been used for both electromagnetic fields and SAR calculations. This paper shows that, for antenna-body distances in the near zone of the antenna, the fact that averaged field values be below the reference levels could, at certain frequencies, not guarantee guidelines compliance based on basic restrictions.
Dual-energy x-ray image decomposition by independent component analysis
NASA Astrophysics Data System (ADS)
Jiang, Yifeng; Jiang, Dazong; Zhang, Feng; Zhang, Dengfu; Lin, Gang
2001-09-01
The spatial distributions of bone and soft tissue in human body are separated by independent component analysis (ICA) of dual-energy x-ray images. It is because of the dual energy imaging modelí-s conformity to the ICA model that we can apply this method: (1) the absorption in body is mainly caused by photoelectric absorption and Compton scattering; (2) they take place simultaneously but are mutually independent; and (3) for monochromatic x-ray sources the total attenuation is achieved by linear combination of these two absorption. Compared with the conventional method, the proposed one needs no priori information about the accurate x-ray energy magnitude for imaging, while the results of the separation agree well with the conventional one.
Impact of yogurt on appetite control, energy balance, and body composition.
Tremblay, Angelo; Doyon, Caroline; Sanchez, Marina
2015-08-01
Recent data support the idea that regular yogurt consumption promotes body weight stability. The simplest explanation is that regular consumption of healthful foods such as yogurt results in decreased intake of less healthful foods containing high amounts of fat and/or sugar. There is also evidence to suggest that the high calcium and protein contents of yogurt and other dairy foods influence appetite and energy intake. The existence of a calcium-specific appetite control mechanism has been proposed. Milk proteins differ in terms of absorption rate and post-absorptive responses, which can influence their satiating properties. Studies in humans have shown that consumption of milk and yogurt increases the circulating concentration of the anorectic peptides glucagon-like peptide (GLP)-1 and peptide YY (PYY). The food matrix can also affect appetite and satiety. Yogurt is a fermented milk that contains bacteria that enrich the microbiota of the host. It appears that lean vs obese humans differ in the composition of their gut microbiota. The available relevant literature suggests that yogurt is a food that facilitates the regulation of energy balance. © The Author(s) 2015. Published by Oxford University Press on behalf of the International Life Sciences Institute. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Bioavailability of zinc, copper, and manganese from infant diets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bell, J.G.
1987-01-01
A series of trace element absorption experiments were performed using the Sprague-Dawley suckling rat put and infant rhesis monkey (Macaca mulatta) with extrinsic radiolabeling to assess the bioavailability of Zn, Cu, and Mn from infant diets and to examine specific factors that affect absorption of these essential nutrients. Bioavailability of Cu as assessed by 6 h liver uptake (% of /sup 64/Cu dose) was highest from human milk and cow milk based formula and significantly lower from cow milk and soy based formula. Copper bioavailability from infant cereal products as assessed by whole body uptake (% of /sup 64/Cu dose)more » in d 20 rats, 9 h postintubation, was low compared to the bioavailability from cow milk or human milk alone. /sup 65/Zn uptake in d 20 rats, 9 h postintubation, was significantly lower from cereals fed alone or in combination with cow or human milk as compared to the uptake from the milks fed alone. Zn bioavailability varied among cereal diets, (lowest from cereals containing phytate and highest from cereal/fruit products). Mn bioavailability from infant diets was assessed using a modified suckling rat pup model. Bioavailability (24 h whole body retention of /sup 54/Mn) was high from all milks and commercial formulas tested.« less
Chan, Lingtak-Neander; Mike, Leigh Ann
2014-08-01
Nutritional anemia is the most common type of anemia, affecting millions of people in all age groups worldwide. While inadequate access to food and nutrients can lead to anemia, patients with certain health status or medical conditions are also at increased risk of developing nutritional anemia. Iron, cobalamin, and folate are the most recognized micronutrients that are vital for the generation of erythrocytes. Iron deficiency is associated with insufficient production of hemoglobin. Deficiency of cobalamin or folate leads to impaired synthesis of deoxyribonucleic acid, proteins, and cell division. Recent research has demonstrated that the status of copper and zinc in the body can significantly affect iron absorption and utilization. With an increasing number of patients undergoing bariatric surgical procedures, more cases of anemia associated with copper and zinc deficiencies have also emerged. The intestinal absorption of these 5 critical micronutrients are highly regulated and mediated by specific apical transport mechanisms in the enterocytes. Health conditions that persistently alter the histology of the upper intestinal architecture, expression, or function of these substrate-specific transporters, or the normal digestion and flow of these key micronutrients, can lead to nutritional anemia. The focus of this article is to review the science of intestinal micronutrient absorption, discuss the clinical assessment of micronutrient deficiencies in relation to anemia, and suggest an effective treatment plan and monitoring strategies using an evidence-based approach. © 2014 American Society for Parenteral and Enteral Nutrition.
Overcoming black body radiation limit in free space: metamaterial superemitter
NASA Astrophysics Data System (ADS)
Maslovski, Stanislav I.; Simovski, Constantin R.; Tretyakov, Sergei A.
2016-01-01
Here, we demonstrate that the power spectral density of thermal radiation at a specific wavelength produced by a body of finite dimensions set up in free space under a fixed temperature could be made theoretically arbitrary high, if one could realize double negative metamaterials with arbitrary small loss and arbitrary high absolute values of permittivity and permeability (at a given frequency). This result refutes the widespread belief that Planck’s law itself sets a hard upper limit on the spectral density of power emitted by a finite macroscopic body whose size is much greater than the wavelength. Here we propose a physical realization of a metamaterial emitter whose spectral emissivity can be greater than that of the ideal black body under the same conditions. Due to the reciprocity between the heat emission and absorption processes such cooled down superemitter also acts as an optimal sink for the thermal radiation—the ‘thermal black hole’—which outperforms Kirchhoff-Planck’s black body which can absorb only the rays directly incident on its surface. The results may open a possibility to realize narrowband super-Planckian thermal radiators and absorbers for future thermo-photovoltaic systems and other devices.
Estimating radiofrequency power deposition in body NMR imaging.
Bottomley, P A; Redington, R W; Edelstein, W A; Schenck, J F
1985-08-01
Simple theoretical estimates of the average, maximum, and spatial variation of the radiofrequency power deposition (specific absorption rate) during hydrogen nuclear magnetic resonance imaging are deduced for homogeneous spheres and for cylinders of biological tissue with a uniformly penetrating linear rf field directed axially and transverse to the cylindrical axis. These are all simple scalar multiples of the expression for the cylinder in an axial field published earlier (Med. Phys. 8, 510 (1981]. Exact solutions for the power deposition in the cylinder with axial (Phys. Med. Biol. 23, 630 (1978] and transversely directed rf field are also presented, and the spatial variation of power deposition in head and body models is examined. In the exact models, the specific absorption rates decrease rapidly and monotonically with decreasing radius despite local increases in rf field amplitude. Conversion factors are provided for calculating the power deposited by Gaussian and sinc-modulated rf pulses used for slice selection in NMR imaging, relative to rectangular profiled pulses. Theoretical estimates are compared with direct measurements of the total power deposited in the bodies of nine adult males by a 63-MHz body-imaging system with transversely directed field, taking account of cable and NMR coil losses. The results for the average power deposition agree within about 20% for the exact model of the cylinder with axial field, when applied to the exposed torso volume enclosed by the rf coil. The average values predicted by the simple spherical and cylindrical models with axial fields, the exact cylindrical model with transverse field, and the simple truncated cylinder model with transverse field were about two to three times that measured, while the simple model consisting of an infinitely long cylinder with transverse field gave results about six times that measured. The surface power deposition measured by observing the incremental power as a function of external torso radius was comparable to the average value. This is consistent with the presence of a variable thickness peripheral adipose layer which does not substantially increase surface power deposition with increasing torso radius. The absence of highly localized intensity artifacts in 63-MHz body images does not suggest anomalously intense power deposition at localized internal sites, although peak power is difficult to measure.
Conservative Estimation of Whole-body Average SAR in Infant Model for 0.3-6GHz Far-Field Exposure
NASA Astrophysics Data System (ADS)
Hirata, Akimasa; Nagaya, Yoshio; Ito, Naoki; Fujiwara, Osamu; Nagaoka, Tomoaki; Watanabe, Soichi
From an anatomically-based Japanese model of three-year-old child with a resolution of 1 mm, we developed a nine-month Japanese infant with linear shrink. With these models, we calculated the whole-body average specific absorption rate (WBA-SAR) for plane-wave exposure from 0.1 to 6 GHz. A conservative estimate of the WBA-SAR was also investigated by using three kinds of simple-shaped models: cuboid, ellipsoid and spheroid, whose parameters were determined based on the above three-year-old child model. As a result, the cuboid and ellipsoid were found to provide an overestimate of the WBA-SAR compared to the realistic model, whereas the spheroid does an underestimate. Based on these findings for different body models, we have specified the incident power density required to produce WBA-SAR of 0.08 W/kg, which is the basic restriction for public exposure in the guidelines of International Commission on Non-Ionizing Radiation Protection.
Textile antenna integrated with compact AMC and parasitic elements for WLAN/WBAN applications
NASA Astrophysics Data System (ADS)
Lago, Herwansyah; Soh, Ping Jack; Jamlos, Mohd Faizal; Shohaimi, Nursuriati; Yan, Sen; Vandenbosch, Guy A. E.
2016-12-01
A wearable antenna fully designed and fabricated using textile is presented. Both antenna and artificial magnetic conductor plane are designed for operation in the wireless local area network (WLAN)/wireless body area network (WBAN) band from 2.4 to 2.5 GHz. The AMC unit element is designed based on the rectangular patch structure, which is then integrated using slots and slits for bandwidth broadening. Meanwhile, the combination of the slits and L-shaped parasitic elements applied at four edges of the rectangular antenna structure enabled unidirectional radiation outwards from the body. The structure is coaxially fed using a rectangular ring slot centered on the radiating element. Simulated and measured reflection and radiation performance indicate a satisfactory agreement, fulfilling the requirements for WLAN/WBAN applications both in free space and on body. The shielding effectiveness provided by the AMC plane is also evaluated numerically in terms of specific absorption rate, indicating levels below the European regulatory limit of 2 W/kg.
Understanding THz spectra of aqueous solutions: glycine in light and heavy water.
Sun, Jian; Niehues, Gudrun; Forbert, Harald; Decka, Dominique; Schwaab, Gerhard; Marx, Dominik; Havenith, Martina
2014-04-02
THz spectroscopy of aqueous solutions has been established as of recently to be a valuable and complementary experimental tool to provide direct insights into the solute-solvent coupling due to hydrogen-bond dynamics involving interfacial water. Despite much experimental progress, understanding THz spectra in terms of molecular motions, akin to mid-infrared spectra, still remains elusive. Here, using the osmoprotectant glycine as a showcase, we demonstrate how this can be achieved by combining THz absorption spectroscopy and ab initio molecular dynamics. The experimental THz spectrum is characterized by broad yet clearly discernible peaks. Based on substantial extensions of available mode-specific decomposition schemes, the experimental spectrum can be reproduced by theory and assigned on an essentially quantitative level. This joint effort reveals an unexpectedly clear picture of the individual contributions of molecular motion to the THz absorption spectrum in terms of distinct modes stemming from intramolecular vibrations, rigid-body-like hindered rotational and translational motion, and specific couplings to interfacial water molecules. The assignment is confirmed by the peak shifts observed in the THz spectrum of deuterated glycine in heavy water, which allow us to separate the distinct modes experimentally.
Shiba, Kenji; Zulkifli, Nur Elina Binti; Ishioka, Yuji
2017-06-01
In this study, we analyzed the internal electric field E and specific absorption rate (SAR) of human biological tissues surrounding an air-core coil transcutaneous energy transmission transformer. Using an electromagnetic simulator, we created a model of human biological tissues consisting of a dry skin, wet skin, fat, muscle, and cortical bone. A primary coil was placed on the surface of the skin, and a secondary coil was located subcutaneously inside the body. The E and SAR values for the model representing a 34-year-old male subject were analyzed using electrical frequencies of 0.3-1.5 MHz. The transmitting power was 15 W, and the load resistance was 38.4 Ω. The results showed that the E values were below the International Commission on Non-ionizing Radiation Protection (ICNIRP) limit for the general public exposure between the frequencies of 0.9 and 1.5 MHz, and SAR values were well below the limit prescribed by the ICNIRP for the general public exposure between the frequencies of 0.3 and 1.2 MHz.
Index extraction for electromagnetic field evaluation of high power wireless charging system.
Park, SangWook
2017-01-01
This paper presents the precise dosimetry for highly resonant wireless power transfer (HR-WPT) system using an anatomically realistic human voxel model. The dosimetry for the HR-WPT system designed to operate at 13.56 MHz frequency, which one of the ISM band frequency band, is conducted in the various distances between the human model and the system, and in the condition of alignment and misalignment between transmitting and receiving circuits. The specific absorption rates in the human body are computed by the two-step approach; in the first step, the field generated by the HR-WPT system is calculated and in the second step the specific absorption rates are computed with the scattered field finite-difference time-domain method regarding the fields obtained in the first step as the incident fields. The safety compliance for non-uniform field exposure from the HR-WPT system is discussed with the international safety guidelines. Furthermore, the coupling factor concept is employed to relax the maximum allowable transmitting power. Coupling factors derived from the dosimetry results are presented. In this calculation, the external magnetic field from the HR-WPT system can be relaxed by approximately four times using coupling factor in the worst exposure scenario.
Two families of exocomets in the β Pictoris system.
Kiefer, F; des Etangs, A Lecavelier; Boissier, J; Vidal-Madjar, A; Beust, H; Lagrange, A-M; Hébrard, G; Ferlet, R
2014-10-23
The young planetary system surrounding the star β Pictoris harbours active minor bodies. These asteroids and comets produce a large amount of dust and gas through collisions and evaporation, as happened early in the history of our Solar System. Spectroscopic observations of β Pictoris reveal a high rate of transits of small evaporating bodies, that is, exocomets. Here we report an analysis of more than 1,000 archival spectra gathered between 2003 and 2011, which provides a sample of about 6,000 variable absorption signatures arising from exocomets transiting the disk of the parent star. Statistical analysis of the observed properties of these exocomets allows us to identify two populations with different physical properties. One family consists of exocomets producing shallow absorption lines, which can be attributed to old exhausted (that is, strongly depleted in volatiles) comets trapped in a mean motion resonance with a massive planet. Another family consists of exocomets producing deep absorption lines, which may be related to the recent fragmentation of one or a few parent bodies. Our results show that the evaporating bodies observed for decades in the β Pictoris system are analogous to the comets in our own Solar System.
Absorption fever characteristics due to percutaneous renal biopsy-related hematoma.
Hu, Tingyang; Liu, Qingquan; Xu, Qin; Liu, Hui; Feng, Yan; Qiu, Wenhui; Huang, Fei; Lv, Yongman
2016-09-01
This study aims to describe the unique characteristics of absorption fever in patients with a hematoma after percutaneous renal biopsy (PRB) and distinguish it from secondary infection of hematoma.We retrospectively studied 2639 percutaneous renal biopsies of native kidneys. We compared the clinical characteristics between 2 groups: complication group (gross hematuria and/or perirenal hematoma) and no complication group. The axillary temperature of patients with a hematoma who presented with fever was measured at 06:00, 10:00, 14:00, and 18:00. The onset and duration of fever and the highest body temperature were recorded. Thereafter, we described the time distribution of absorption fever and obtained the curve of fever pattern.Of 2639 patients, PRB complications were observed in 154 (5.8%) patients. Perirenal hematoma was the most common complication, which occurred in 118 (4.5%) of biopsies, including 74 small hematoma cases (thickness ≤3 cm) and 44 large hematoma cases (thickness >3 cm). Major complications were observed in only 6 (0.2%) cases resulting from a large hematoma. Of 118 patients with a perirenal hematoma, absorption fever was observed in 48 cases. Furthermore, large hematomas had a 5.23-fold higher risk for absorption fever than the small ones.Blood pressure, renal insufficiency, and prothrombin time could be risk factors for complications. Fever is common in patients with hematoma because of renal biopsy and is usually noninfectious. Evaluation of patients with post-biopsy fever is necessary to identify any obvious infection sources. If no focus is identified, empiric antibiotic therapy should not be initiated nor should prophylactic antibiotics be extended for prolonged durations. Absorption fevers will resolve in time without specific therapeutic interventions.
Energy absorption is reduced with oleic acid supplements in human short bowel syndrome.
Compher, Charlene W; Kinosian, Bruce P; Rubesin, Stephen E; Ratcliffe, Sarah J; Metz, David C
2009-01-01
Oleic acid premeal supplements have been described as a method to trigger the ileal brake and thus lengthen transit time and the opportunity for nutrient absorption. The aims of this study were to determine whether oleic acid supplements would lengthen transit time and improve absorption of nutrients in study participants with short bowel syndrome as well as affect diarrhea or patient weight. A double-blind, controlled, random-order crossover trial was conducted in 8 study participants with longstanding and severe short bowel syndrome, employing blue food color appearance, breath hydrogen testing, and radio-opaque markers as measures of transit time. Absorption of energy, protein, fat, and fluid was conducted by classic nutrient balance methods. Diarrhea was estimated by daily stool weight and number of bowel actions. Although 8 patients were enrolled, only 7 completed the study. Transit time was not significantly different between oleic acid and placebo treatment, although peptide YY levels trended higher with the oleic acid treatment. Energy absorption was reduced 14% by oleic acid, significantly more than the 3% reduction by placebo. Fat, protein, and fluid absorption was not changed significantly. Neither diarrhea nor patient body weight was changed by oleic acid. Energy absorption is reduced by oleic acid supplements in severe short bowel syndrome. The study may have lacked power to determine whether oleic acid affects diarrhea or body weight.
Bhan, Shivam; Levine, Iris C; Laing, Andrew C
2014-07-18
Impact mechanics theory suggests that peak loads should decrease with increase in system energy absorption. In light of the reduced hip fracture risk for persons with high body mass index (BMI) and for falls on soft surfaces, the purpose of this study was to characterize the effects of participant BMI, gender, and flooring surface on system energy absorption during lateral falls on the hip with human volunteers. Twenty university-aged participants completed the study with five men and five women in both low BMI (<22.5 kg/m(2)) and high BMI (>27.5 kg/m(2)) groups. Participants underwent lateral pelvis release experiments from a height of 5 cm onto two common floors and four safety floors mounted on a force plate. A motion-capture system measured pelvic deflection. The energy absorbed during the initial compressive phase of impact was calculated as the area under the force-deflection curve. System energy absorption was (on average) 3-fold greater for high compared to low BMI participants, but no effects of gender were observed. Even after normalizing for body mass, high BMI participants absorbed 1.8-fold more energy per unit mass. Additionally, three of four safety floors demonstrated significantly increased energy absorption compared to a baseline resilient-rolled-sheeting system (% increases ranging from 20.7 to 28.3). Peak system deflection was larger for high BMI persons and for impacts on several safety floors. This study indicates that energy absorption may be a common mechanism underlying the reduced risk of hip fracture for persons with high BMI and for those who fall on soft surfaces. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.
Janssens, Pilou L H R; Hursel, Rick; Westerterp-Plantenga, Margriet S
2015-05-01
Green tea (GT) extract may play a role in body weight regulation. Suggested mechanisms are decreased fat absorption and increased energy expenditure. We examined whether GT supplementation for 12 wk has beneficial effects on weight control via a reduction in dietary lipid absorption as well as an increase in resting energy expenditure (REE). Sixty Caucasian men and women [BMI (in kg/m²): 18-25 or >25; age: 18-50 y] were included in a randomized placebo-controlled study in which fecal energy content (FEC), fecal fat content (FFC), resting energy expenditure, respiratory quotient (RQ), body composition, and physical activity were measured twice (baseline vs. week 12). For 12 wk, subjects consumed either GT (>0.56 g/d epigallocatechin gallate + 0.28-0.45 g/d caffeine) or placebo capsules. Before the measurements, subjects recorded energy intake for 4 consecutive days and collected feces for 3 consecutive days. No significant differences between groups and no significant changes over time were observed for the measured variables. Overall means ± SDs were 7.2 ± 3.8 g/d, 6.1 ± 1.2 MJ/d, 67.3 ± 14.3 kg, and 29.8 ± 8.6% for FFC, REE, body weight, and body fat percentage, respectively. GT supplementation for 12 wk in 60 men and women did not have a significant effect on FEC, FFC, REE, RQ, and body composition. © 2015 American Society for Nutrition.
Evaluation of Propagation Characteristics Using the Human Body as an Antenna
Li, Jingzhen; Liu, Yuhang; Hao, Yang
2017-01-01
In this paper, an inhomogeneous human body model was presented to investigate the propagation characteristics when the human body was used as an antenna to achieve signal transmission. Specifically, the channel gain of four scenarios, namely, (1) both TX electrode and RX electrode were placed in the air, (2) TX electrode was attached on the human body, and RX electrode was placed in the air, (3) TX electrode was placed in the air, and RX electrode was attached on the human body, (4) both the TX electrode and RX electrode were attached on the human body, were studied through numerical simulation in the frequency range 1 MHz to 90 MHz. Furthermore, the comparisons of input efficiency, accepted efficiency, total efficiency, absorption power of human body, and electric field distribution of different distances of four aforementioned scenarios were explored when the frequency was at 44 MHz. In addition, the influences of different human tissues, electrode position, and the distance between electrode and human body on the propagation characteristics were investigated respectively at 44 MHz. The results showed that the channel gain of Scenario 4 was the maximum when the frequency was from 1 MHz to 90 MHz. The propagation characteristics were almost independent of electrode position when the human body was using as an antenna. However, as the distance between TX electrode and human body increased, the channel gain decreased rapidly. The simulations were verified by experimental measurements. The results showed that the simulations were in agreement with the measurements. PMID:29232905
Evaluation of Propagation Characteristics Using the Human Body as an Antenna.
Li, Jingzhen; Nie, Zedong; Liu, Yuhang; Wang, Lei; Hao, Yang
2017-12-11
In this paper, an inhomogeneous human body model was presented to investigate the propagation characteristics when the human body was used as an antenna to achieve signal transmission. Specifically, the channel gain of four scenarios, namely, (1) both TX electrode and RX electrode were placed in the air, (2) TX electrode was attached on the human body, and RX electrode was placed in the air, (3) TX electrode was placed in the air, and RX electrode was attached on the human body, (4) both the TX electrode and RX electrode were attached on the human body, were studied through numerical simulation in the frequency range 1 MHz to 90 MHz. Furthermore, the comparisons of input efficiency, accepted efficiency, total efficiency, absorption power of human body, and electric field distribution of different distances of four aforementioned scenarios were explored when the frequency was at 44 MHz. In addition, the influences of different human tissues, electrode position, and the distance between electrode and human body on the propagation characteristics were investigated respectively at 44 MHz. The results showed that the channel gain of Scenario 4 was the maximum when the frequency was from 1 MHz to 90 MHz. The propagation characteristics were almost independent of electrode position when the human body was using as an antenna. However, as the distance between TX electrode and human body increased, the channel gain decreased rapidly. The simulations were verified by experimental measurements. The results showed that the simulations were in agreement with the measurements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marshall, H.L.
1976-01-06
The shutter and beam expander for diverting the output of a high power laser into an absorption body comprises a onepiece metallic structure having a convex spherically shaped portion adapted to be moved into the beam path for simultaneously reflecting and expanding the beam into energy absorption material.
Cai, Xixi; Lin, Jiaping; Wang, Shaoyun
2016-01-01
Peptide-calcium can probably be a suitable supplement to improve calcium absorption in the human body. In this study, a specific peptide Phe-Tyr (FY) with calcium-binding capacity was purified from Schizochytrium sp. protein hydrolysates through gel filtration chromatography and reversed phase HPLC. The calcium-binding capacity of FY reached 128.77 ± 2.57 μg/mg. Results of ultraviolet spectroscopy, fluorescence spectroscopy, and infrared spectroscopy showed that carboxyl groups, amino groups, and amido groups were the major chelating sites. FY-Ca exhibited excellent thermal stability and solubility, which were beneficial to be absorbed and transported in the basic intestinal tract of the human body. Moreover, the calcium bioavailability in Caco-2 cells showed that FY-Ca could enhance calcium uptake efficiency by more than three times when compared with CaCl2, and protect calcium ions against dietary inhibitors, such as tannic acid, oxalate, phytate, and Zn2+. Our findings further the progress of algae-based peptide-calcium, suggesting that FY-Ca has the potential to be developed as functionally nutraceutical additives. PMID:28036002
Microscopic Theory and Simulation of Quantum-Well Intersubband Absorption
NASA Technical Reports Server (NTRS)
Li, Jianzhong; Ning, C. Z.
2004-01-01
We study the linear intersubband absorption spectra of a 15 nm InAs quantum well using the intersubband semiconductor Bloch equations with a three-subband model and a constant dephasing rate. We demonstrate the evolution of intersubband absorption spectral line shape as a function of temperature and electron density. Through a detailed examination of various contributions, such as the phase space filling effects, the Coulomb many-body effects and the non-parabolicity effect, we illuminate the underlying physics that shapes the spectra. Keywords: Intersubband transition, linear absorption, semiconductor heterostructure, InAs quantum well
Population pharmacokinetic model of transdermal nicotine delivered from a matrix-type patch.
Linakis, Matthew W; Rower, Joseph E; Roberts, Jessica K; Miller, Eleanor I; Wilkins, Diana G; Sherwin, Catherine M T
2017-12-01
Nicotine addiction is an issue faced by millions of individuals worldwide. As a result, nicotine replacement therapies, such as transdermal nicotine patches, have become widely distributed and used. While the pharmacokinetics of transdermal nicotine have been extensively described using noncompartmental methods, there are few data available describing the between-subject variability in transdermal nicotine pharmacokinetics. The aim of this investigation was to use population pharmacokinetic techniques to describe this variability, particularly as it pertains to the absorption of nicotine from the transdermal patch. A population pharmacokinetic parent-metabolite model was developed using plasma concentrations from 25 participants treated with transdermal nicotine. Covariates tested in this model included: body weight, body mass index, body surface area (calculated using the Mosteller equation) and sex. Nicotine pharmacokinetics were best described with a one-compartment model with absorption based on a Weibull distribution and first-order elimination and a single compartment for the major metabolite, cotinine. Body weight was a significant covariate on apparent volume of distribution of nicotine (exponential scaling factor 1.42). After the inclusion of body weight in the model, no other covariates were significant. This is the first population pharmacokinetic model to describe the absorption and disposition of transdermal nicotine and its metabolism to cotinine and the pharmacokinetic variability between individuals who were administered the patch. © 2017 The British Pharmacological Society.
Evaluation of the intake of radon through skin from thermal water.
Sakoda, Akihiro; Ishimori, Yuu; Tschiersch, Jochen
2016-07-01
The biokinetics of radon in the body has previously been studied with the assumption that its absorption through the skin is negligibly small. This assumption would be acceptable except in specific situations, such as bathing in a radon hot spring where the radon concentration in thermal water is far higher than that in air. The present study focused on such a situation in order to better understand the biokinetics of radon. To mathematically express the entry of radon through the skin into the body, we first modified the latest sophisticated biokinetic model for noble gases. Values of an important parameter for the model-the skin permeability coefficient K (m s(-1))-were derived using data from previous human studies. The analysis of such empirical data, which corresponded to radon concentrations in the air exhaled by subjects during and following bathing in radon-rich thermal water, revealed that the estimated K values had a log-normal distribution. The validity of the K values and the characteristics of the present model are then discussed. Furthermore, the impact of the intake of radon or its progeny via inhalation or skin absorption on radiation dose was also assessed for possible exposure scenarios in a radon hot spring. It was concluded that, depending on the radon concentration in thermal water, there might be situations in which the dose contribution resulting from skin absorption of radon is comparable to that resulting from inhalation of radon and its progeny. This conclusion can also apply to other therapeutic situations (e.g. staying in the pool for a longer period). © The Author 2016. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.
Ferritin iron minerals are chelator targets, antioxidants, and coated, dietary iron.
Theil, Elizabeth C
2010-08-01
Cellular ferritin is central for iron balance during transfusions therapies; serum ferritin is a small fraction of body ferritin, albeit a convenient reporter. Iron overload induces extra ferritin protein synthesis but the protein is overfilled with the extra iron that damages ferritin, with conversion to toxic hemosiderin. Three new approaches that manipulate ferritin to address excess iron, hemosiderin, and associated oxidative damage in Cooley's Anemia and other iron overload conditions are faster removal of ferritin iron with chelators guided to ferritin gated pores by peptides; more ferritin protein synthesis using ferritin mRNA activators, by metal complexes that target mRNA 3D structures; and determining if endocytotic absorption of iron from legumes, which is mostly ferritin, is regulated during iron overload to prevent excess iron entry while providing protein. More of a focus on ferritin features, including protein cage structure, iron mineral, regulatable mRNA, and specific gut absorption properties, will achieve the three novel experimental goals for managing iron homeostasis with transfusion therapies.
Di Marco, Mariagrazia; Shamsuddin, Shaharum; Razak, Khairunisak Abdul; Aziz, Azlan Abdul; Devaux, Corinne; Borghi, Elsa; Levy, Laurent; Sadun, Claudia
2010-01-01
The latest development of protein engineering allows the production of proteins having desired properties and large potential markets, but the clinical advances of therapeutical proteins are still limited by their fragility. Nanotechnology could provide optimal vectors able to protect from degradation therapeutical biomolecules such as proteins, enzymes or specific polypeptides. On the other hand, some proteins can be also used as active ligands to help nanoparticles loaded with chemotherapeutic or other drugs to reach particular sites in the body. The aim of this review is to provide an overall picture of the general aspects of the most successful approaches used to combine proteins with nanosystems. This combination is mainly achieved by absorption, bioconjugation and encapsulation. Interactions of nanoparticles with biomolecules and caveats related to protein denaturation are also pointed out. A clear understanding of nanoparticle-protein interactions could make possible the design of precise and versatile hybrid nanosystems. This could further allow control of their pharmacokinetics as well as activity, and safety. PMID:20161986
Vermeeren, Günter; Joseph, Wout; Martens, Luc
2013-04-01
Assessing the whole-body absorption in a human in a realistic environment requires a statistical approach covering all possible exposure situations. This article describes the development of a statistical multi-path exposure method for heterogeneous realistic human body models. The method is applied for the 6-year-old Virtual Family boy (VFB) exposed to the GSM downlink at 950 MHz. It is shown that the whole-body SAR does not differ significantly over the different environments at an operating frequency of 950 MHz. Furthermore, the whole-body SAR in the VFB for multi-path exposure exceeds the whole-body SAR for worst-case single-incident plane wave exposure by 3.6%. Moreover, the ICNIRP reference levels are not conservative with the basic restrictions in 0.3% of the exposure samples for the VFB at the GSM downlink of 950 MHz. The homogeneous spheroid with the dielectric properties of the head suggested by the IEC underestimates the absorption compared to realistic human body models. Moreover, the variation in the whole-body SAR for realistic human body models is larger than for homogeneous spheroid models. This is mainly due to the heterogeneity of the tissues and the irregular shape of the realistic human body model compared to homogeneous spheroid human body models. Copyright © 2012 Wiley Periodicals, Inc.
Luo, Jianming; Han, Lulu; Liu, Liu; Gao, Lijuan; Xue, Bin; Wang, Yong; Ou, Shiyi; Miller, Michael; Peng, Xichun
2018-05-23
Our previous study showed that catechin controlled rats' body weights and changed gut microbiota composition when supplemented into a high-fructo-oligosaccharide (FOS) diet. This experiment is devised to further confirm the relationship between specific bacteria in the colon and body weight gain, and to investigate how specific bacteria impact body weight by changing the expression of colonic epithelial cells. Forty obese rats were divided into four groups: three catechin-supplemented groups with a high-FOS diet (100, 400, and 700 mg kg-1 d-1 catechin, orally administered) and one group with a high-FOS diet only. Food consumption and body weights were recorded each week. After one month of treatment, rats' cecal content and colonic epithelial cells were individually collected and analyzed with MiSeq and gene expression profiling techniques, respectively. Results identified some specific bacteria at the genus level-including the increased Parabacteroides sp., Prevotella sp., Robinsoniella sp., [Ruminococcus], Phascolarctobacterium sp. and an unknown genus of YS2, and the decreased Lachnospira sp., Oscillospira sp., Ruminococcus sp., an unknown genus of Peptococcaceae and an unknown genus of Clostridiales in rats' cecum-and eight genes-including one downregulated Pla2g2a and seven upregulated genes: Apoa1, Apoa4, Aabr07073400.1, Fabp4, Pik3r5, Dgat2 and Ptgs2 of colonic epithelial cells-that were due to the consumption of catechin. Consequently, various biological functions in connection with energy metabolism in colonic epithelial cells were altered, including fat digestion and absorption and the regulation of lipolysis in adipocytes. In conclusion, catechin induces host weight loss by altering gut microbiota and gene expression and function in colonic epithelial cells.
Mechanistic and regulatory aspects of intestinal iron absorption
Gulec, Sukru; Anderson, Gregory J.
2014-01-01
Iron is an essential trace mineral that plays a number of important physiological roles in humans, including oxygen transport, energy metabolism, and neurotransmitter synthesis. Iron absorption by the proximal small bowel is a critical checkpoint in the maintenance of whole-body iron levels since, unlike most other essential nutrients, no regulated excretory systems exist for iron in humans. Maintaining proper iron levels is critical to avoid the adverse physiological consequences of either low or high tissue iron concentrations, as commonly occurs in iron-deficiency anemia and hereditary hemochromatosis, respectively. Exquisite regulatory mechanisms have thus evolved to modulate how much iron is acquired from the diet. Systemic sensing of iron levels is accomplished by a network of molecules that regulate transcription of the HAMP gene in hepatocytes, thus modulating levels of the serum-borne, iron-regulatory hormone hepcidin. Hepcidin decreases intestinal iron absorption by binding to the iron exporter ferroportin 1 on the basolateral surface of duodenal enterocytes, causing its internalization and degradation. Mucosal regulation of iron transport also occurs during low-iron states, via transcriptional (by hypoxia-inducible factor 2α) and posttranscriptional (by the iron-sensing iron-regulatory protein/iron-responsive element system) mechanisms. Recent studies demonstrated that these regulatory loops function in tandem to control expression or activity of key modulators of iron homeostasis. In health, body iron levels are maintained at appropriate levels; however, in several inherited disorders and in other pathophysiological states, iron sensing is perturbed and intestinal iron absorption is dysregulated. The iron-related phenotypes of these diseases exemplify the necessity of precisely regulating iron absorption to meet body demands. PMID:24994858
Simonidze, V; Samushia, O
2014-01-01
The paper deals with the study of the changes in the formed elements of blood during the Alzheimer's and Parkinson's diseases. While studying the structure of thrombocytes, a number of identical structural changes were identified in case of both diseases. The study has revealed various shapes of thrombocytes, the production of pseudopodia on their surface, high level of body outline, specific distribution of glycogen granules and their concentration on the periphery, glycogen eruption, dissociation of Alpha-granules towards the edge, and effective outline and density of the granules. There are frequent cases of the granule eruption from the body (exocytosis), the existence of vacuoles on the matrix, the rise in the number of gigantic thrombocytes and, consequently, considerable enhancement of the ability of absorption. Besides, there is a rise in the number of degenerated cells. The shape of thrombocytes is often changed and stretched on one side. The produced pseudopodia make the impression of participation in phagocytosis. As for the difference between changes, during Parkinson disease the amount of thrombocytes is low, more gigantic and distorted shape, less invagination of plasma membrane, low amount of granules and less intensity of alpha-granule eruption from the body. The changes revealed by the research show the activity of thrombocytes, which should be connected to their participation in protective functions of the body towards existing agent. And the diseases - although with similar but with different pathogenic mechanisms - are being developed with participation of non-specific agents.
Hip fractures. Epidemiology, risk factors, falls, energy absorption, hip protectors, and prevention.
Lauritzen, J B
1997-04-01
The present review summarizes the pathogenic mechanisms leading to hip fracture based on epidemiological, experimental, and controlled studies. The estimated lifetime risk of hip fracture is about 14% in postmenopausal women and 6% in men. The incidence of hip fractures increases exponentially with aging, but the time-trend in increasing age-specific incidence may not be a universal phenomenon. Postmenopausal women suffering earlier non-hip fractures have an increased risk of later hip fracture. The relative risk being highest within the first years following the fracture. Nursing home residents have a high risk of hip fracture (annual rate of 5-6%), and the incidence of falls is about 1,500 falls/1,000 persons/year. Most hip fractures are a result of a direct trauma against the hip. The incidence of falls on the hip among nursing home residents is about 290 falls/1,000 persons/year and about 24% of these impacts lead to hip fracture. The force acting on the hip may reach 3.7 kN in falls on the hip from standing height, which means that only susceptible subjects will sustain a hip fracture in such falls. The effective load acting on the hip is 35% of the body weight in unprotected falls on the hip. Women with hip fractures have a lower body weight compared with controls, and they may also have less soft tissue covering the hip even when adjusted for body mass index, indicating a more android body habitus. Experimental studies show that the passive energy absorption in soft tissue covering the hip may influence the risk of hip fracture, and being an important determinant for the development of hip fracture, maybe more important than bone strength. External hip protectors were developed and tested in an open randomised nursing home study. The rate of hip fractures was reduced by 50%, corresponding to 9 out of 247 residents saved from sustaining a hip fracture. The review points to the essentials of the development of hip fracture, which constitutes; risk of fall, type of fall, type of impact, energy absorption, and lastly bone strength, which is the ultimate and last permissive factor in the cascade leading to hip fracture. Risk estimation and prevention of hip fractures may prove realistic when these issues are taken into consideration.
Interleukin-15 Modulates Adipose Tissue by Altering Mitochondrial Mass and Activity
Barra, Nicole G.; Palanivel, Rengasamy; Denou, Emmanuel; Chew, Marianne V.; Gillgrass, Amy; Walker, Tina D.; Kong, Josh; Richards, Carl D.; Jordana, Manel; Collins, Stephen M.; Trigatti, Bernardo L.; Holloway, Alison C.; Raha, Sandeep; Steinberg, Gregory R.; Ashkar, Ali A.
2014-01-01
Interleukin-15 (IL-15) is an immunomodulatory cytokine that affects body mass regulation independent of lymphocytes; however, the underlying mechanism(s) involved remains unknown. In an effort to investigate these mechanisms, we performed metabolic cage studies, assessed intestinal bacterial diversity and macronutrient absorption, and examined adipose mitochondrial activity in cultured adipocytes and in lean IL-15 transgenic (IL-15tg), overweight IL-15 deficient (IL-15−/−), and control C57Bl/6 (B6) mice. Here we show that differences in body weight are not the result of differential activity level, food intake, or respiratory exchange ratio. Although intestinal microbiota differences between obese and lean individuals are known to impact macronutrient absorption, differing gut bacteria profiles in these murine strains does not translate to differences in body weight in colonized germ free animals and macronutrient absorption. Due to its contribution to body weight variation, we examined mitochondrial factors and found that IL-15 treatment in cultured adipocytes resulted in increased mitochondrial membrane potential and decreased lipid deposition. Lastly, IL-15tg mice have significantly elevated mitochondrial activity and mass in adipose tissue compared to B6 and IL-15−/− mice. Altogether, these results suggest that IL-15 is involved in adipose tissue regulation and linked to altered mitochondrial function. PMID:25517731
Thors, B; Hansson, B; Törnevik, C
2009-07-07
In this paper, a procedure is proposed for generating simple and practical compliance boundaries for mobile communication base station antennas. The procedure is based on a set of formulae for estimating the specific absorption rate (SAR) in certain directions around a class of common base station antennas. The formulae, given for both whole-body and localized SAR, require as input the frequency, the transmitted power and knowledge of antenna-related parameters such as dimensions, directivity and half-power beamwidths. With knowledge of the SAR in three key directions it is demonstrated how simple and practical compliance boundaries can be generated outside of which the exposure levels do not exceed certain limit values. The conservativeness of the proposed procedure is discussed based on results from numerical radio frequency (RF) exposure simulations with human body phantoms from the recently developed Virtual Family.
Vibration energy absorption in the whole-body system of a tractor operator.
Szczepaniak, Jan; Tanaś, Wojciech; Kromulski, Jacek
2014-01-01
Many people are exposed to whole-body vibration (WBV) in their occupational lives, especially drivers of vehicles such as tractor and trucks. The main categories of effects from WBV are perception degraded comfort interference with activities-impaired health and occurrence of motion sickness. Absorbed power is defined as the power dissipated in a mechanical system as a result of an applied force. The vibration-induced injuries or disorders in a substructure of the human system are primarily associated with the vibration power absorption distributed in that substructure. The vibration power absorbed by the exposed body is a measure that combines both the vibration hazard and the biodynamic response of the body. The article presents measurement method for determining vibration power dissipated in the human whole body system called Vibration Energy Absorption (VEA). The vibration power is calculated from the real part of the force-velocity cross-spectrum. The absorbed power in the frequency domain can be obtained from the cross-spectrum of the force and velocity. In the context of the vibration energy transferred to a seated human body, the real component reflects the energy dissipated in the biological structure per unit of time, whereas the imaginary component reflects the energy stored/released by the system. The seated human is modeled as a series/parallel 4-DOF dynamic models. After introduction of the excitation, the response in particular segments of the model can be analyzed. As an example, the vibration power dissipated in an operator has been determined as a function of the agricultural combination operating speed 1.39 - 4.16 ms(-1).
Dissociative absorption: An empirically unique, clinically relevant, dissociative factor.
Soffer-Dudek, Nirit; Lassri, Dana; Soffer-Dudek, Nir; Shahar, Golan
2015-11-01
Research of dissociative absorption has raised two questions: (a) Is absorption a unique dissociative factor within a three-factor structure, or a part of one general dissociative factor? Even when three factors are found, the specificity of the absorption factor is questionable. (b) Is absorption implicated in psychopathology? Although commonly viewed as "non-clinical" dissociation, absorption was recently hypothesized to be specifically associated with obsessive-compulsive symptoms. To address these questions, we conducted exploratory and confirmatory factor analyses on 679 undergraduates. Analyses supported the three-factor model, and a "purified" absorption scale was extracted from the original inclusive absorption factor. The purified scale predicted several psychopathology scales. As hypothesized, absorption was a stronger predictor of obsessive-compulsive symptoms than of general psychopathology. In addition, absorption was the only dissociative scale that longitudinally predicted obsessive-compulsive symptoms. We conclude that absorption is a unique and clinically relevant dissociative tendency that is particularly meaningful to obsessive-compulsive symptoms. Copyright © 2015 Elsevier Inc. All rights reserved.
Duan, J; Kesisoglou, F; Novakovic, J; Amidon, GL; Jamei, M; Lukacova, V; Eissing, T; Tsakalozou, E; Zhao, L; Lionberger, R
2017-01-01
On May 19, 2016, the US Food and Drug Administration (FDA) hosted a public workshop, entitled “Mechanistic Oral Absorption Modeling and Simulation for Formulation Development and Bioequivalence Evaluation.”1 The topic of mechanistic oral absorption modeling, which is one of the major applications of physiologically based pharmacokinetic (PBPK) modeling and simulation, focuses on predicting oral absorption by mechanistically integrating gastrointestinal transit, dissolution, and permeation processes, incorporating systems, active pharmaceutical ingredient (API), and the drug product information, into a systemic mathematical whole‐body framework.2 PMID:28571121
2009-01-01
BN2 − CN3 + (1− ηe)BN2 (9) Here α(ν,N) is the interband absorption coefficient that in- cludes many-body and blocking factors. The recombination...the reso- nant absorption coefficient and αb is the unwanted parasitic (background) absorption coefficient . As will be derived in sections II and IV... coefficient of αb. It is straightforward to evaluate the steady-state solution to the above rate equations by setting the time derivatives to zero
NASA Astrophysics Data System (ADS)
Nima, Ciren; Frette, Øyvind; Hamre, Børge; Erga, Svein Rune; Chen, Yi-Chun; Zhao, Lu; Muyimbwa, Dennis; Ssenyonga, Taddeo; Ssebiyonga, Nicolausi; Okullo, Willy; Stamnes, Knut; Stamnes, Jakob J.
2017-02-01
Colored Dissolved Organic Matter (CDOM) is one of the main factors controlling the penetration of solar radiation in Case 2 water and affecting satellite-based estimation of ocean color. We present absorption properties of CDOM sampled in 6 water bodies including three in Norway (Røst coastal water, Samnangerfjord, Lysefjord), two in China (Bohai Sea, Lake Namtso), and one in Africa (Lake Victoria). These locations, which range from near the equator to subarctic regions, include water types from oligotrophic to eutrophic, and altitudes from sea level to 4,700 m above sea level.
Brown, T N; O'Donovan, M; Hasselquist, L; Corner, B; Schiffman, J M
2016-01-01
Fifteen military personnel performed 30-cm drop landings to quantify how body borne load (light, ∼6 kg, medium, ∼20 kg, and heavy, ∼40 kg) impacts lower limb kinematics and knee joint energy absorption during landing, and determine whether greater lower limb flexion increases energy absorption while landing with load. Participants decreased peak hip (P = 0.002), and knee flexion (P = 0.007) posture, but did not increase hip (P = 0.796), knee (P = 0.427) or ankle (P = 0.161) energy absorption, despite exhibiting greater peak hip (P = 0.003) and knee (P = 0.001) flexion, and ankle (P = 0.003) dorsiflexion angular impulse when landing with additional load. Yet, when landing with the light and medium loads, greater hip (R(2) = 0.500, P = 0.003 and R(2) = 0.314, P = 0.030) and knee (R(2) = 0.431, P = 0.008 and R(2) = 0.342, P = 0.022) flexion posture predicted larger knee joint energy absorption. Thus, military training that promotes hip and knee flexion, and subsequently greater energy absorption during landing, may potentially reduce risk of musculoskeletal injury and optimize soldier performance. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Wang, Jianqing; Wake, Kanako; Kawai, Hiroki; Watanabe, Soichi; Fujiwara, Osamu
2012-01-01
A 2 GHz whole-body exposure to rats over a multigeneration has been conducted as part of bio-effect research in Japan. In this study, the rats moved freely in the cage inside the exposure system. From observation of the activity of rats in the cage, we found that the rats do not stay in each position with uniform possibility. In order to determine the specific absorption rate (SAR) during the entire exposure period with high accuracy, we present a new approach to statistically determine the SAR level in an exposure system. First, we divided the rat cage in the exposure system into several small areas, and derived the fraction of time the rats spent in each small area based on the classification of the documentary photos of rat activity. Then, using the fraction of time spent in each small area as a weighting factor, we calculated the statistical characteristics of the whole-body average SAR for pregnant rats and young rats during the entire exposure period. As a result, this approach gave the statistical distribution as well as the corresponding mean value, median value and mode value for the whole-body SAR so that we can reasonably clarify the relationship between the exposure level and possible biological effect.
Improving Assessments of Chlorophyll Concentration From In Situ Optical Measurements
NASA Astrophysics Data System (ADS)
Nardelli, S.; Twardowski, M.
2016-02-01
Florescence as a chlorophyll proxy has poor accuracy because it is dependent on specific absorption (effective molar absorptivity of packaged chlorophyll in living cells) and fluorescence quantum yield, both of which are highly variable. Absorption is a better proxy, as it is only dependent on specific absorption for packaged chlorophyll, although excepted accuracy in using a nominal specific absorption for all phytoplankton is still about 50%. Bricaud et al. (1995), Ciotti et al. (2002), Mouw et al. (2010), etc. have shown, however, that specific absorption is closely related to the average size of phytoplankton due to the relative packaging effect. Through other methods that have been developed over the years (Morel 1973; Diehl and Haart 1980; Boss et al. 2001; Slade and Boss 2015), it has been shown that measurements of spectral particulate attenuation (i.e., light transmission), and perhaps spectral particulate backscattering, can be used as simple proxies for the average size of the particle field. We therefore test the hypothesis that information on average particle size may be used to better estimate specific absorption for packaged chlorophyll, possibly enabling more accurate retrievals of chlorophyll concentration from optical measurements. The required optical measurements can be made with compact commercial off-the-shelf sensors with high sampling frequency that can be operated from autonomous vehicles; as a result, derived chlorophyll concentration could be resolved at far higher temporal and spatial frequency than is currently possible through extracting chlorophyll from discretely collected samples. This study examines the relationship between specific absorption and the attenuation spectral slope in extensive datasets from Case I and Case II waters found globally in an attempt to assess the link between pigment packaging and phytoplankton size dynamics and the impact on improving the derivation of chlorophyll from in situ optical measurements.
Percutaneous absorption of several chemicals, some pesticides included, in the red-winged blackbird
Rogers, J.G.; Cagan, R.H.; Kare, M.R.
1974-01-01
Percutaneous absorption in vivo through the skin of the feet of the red-winged blackbird (Agelaius phoeniceus) has been investigated. Absorption after 18-24 hours exposure to 0.01 M solutions of salicylic acid, caffeine, urea, 2,4-D, dieldrin, diethylstilbesterol, and DDT was measured. Of these, only DDT and diethylstilbesterol were not absorbed to a measurable degree. The solvents ethanol, dimethylsulfoxide (DMSO), and vegetable oil were compared with water in their effects on the absorption ofcaffeine, urea, and salicylic acid. Ethanol, DMSO,and oil each decreased percutaneous absorption of salicylic acid. DMSO increased absorption of caffeine, and ethanol had no effect on it. Neither DMSO nor ethanol affected penetration of urea. Partition coefficients (K) (epidermis/water) were determined for all seven penetrants. Compounds with higher values of K showed lower percutaneous absorption. These findings suggest that K may be useful to predict percutaneous absorption in vivo. It appears unlikely that percutaneous absorption contributes greatly to the body burden of 2,4-D and dieldrin in A. phoeniceus.
The effect of trunk flexion on lower-limb kinetics of able-bodied gait.
Kluger, David; Major, Matthew J; Fatone, Stefania; Gard, Steven A
2014-02-01
Able-bodied individuals spontaneously adopt crouch gait when walking with induced anterior trunk flexion, but the effect of this adaptation on lower-limb kinetics is unknown. Sustained forward trunk displacement during walking can greatly alter body center-of-mass location and necessitate a motor control response to maintain upright balance. Understanding this response may provide insight into the biomechanical demands on the lower-limb joints of spinal pathology that alter trunk alignment (e.g., flatback). The purpose of this study was to determine the effect of sustained trunk flexion on lower-limb kinetics in able-bodied gait, facilitating understanding of the effects of spinal pathologies. Subjects walked with three postures: 0° (normal upright), 25±7°, and 50±7° trunk flexion. With increased trunk flexion, decreased peak ankle plantar flexor moments were observed with increased energy absorption during stance. Sustained knee flexion during mid- and terminal stance decreased knee flexor moments, but energy absorption/generation remained unchanged across postures. Increased trunk flexion placed significant demand on the hip extensors, thus increasing peak hip extensor moments and energy generation. The direct relationship between trunk flexion and energy absorption/generation at the ankle and hip, respectively, suggest increased muscular demand during gait. These findings on able-bodied subjects might shed light on muscular demands associated with individuals having pathology-induced positive sagittal spine balance. Copyright © 2013 Elsevier B.V. All rights reserved.
Fetih, Gihan; Lindberg, Sara; Itoh, Katsuhito; Okada, Naoki; Fujita, Takuya; Habib, Fawsia; Artersson, Per; Attia, Mohammed; Yamamoto, Akira
2005-04-11
In general, absorption enhancing effects of various absorption enhancers were greater in the large intestine than those in the small intestinal regions. Therefore, the effectiveness of absorption enhancers is expected to be remarkably observed, if these enhancers can be delivered to the large intestine with some poorly absorbable drugs after oral administration. In this study, therefore, we examined whether chitosan capsules were effective for the colon-specific delivery of a certain absorption enhancer and can improve the absorption enhancing action of the absorption enhancer after oral administration. 5(6)-Carboxyfluorescein (CF) was used as a model drug to investigate the site-dependent effectiveness of various absorption enhancers by an in situ closed loop method. Sodium glycocholate (NaGC), n-dodecyl-beta-d-maltopyranoside (LM), sodium salicylate (NaSal) and sodium caprate (NaCap) were used as models of absorption enhancers in this study. Overall, the absorption enhancing effects of these enhancers for intestinal absorption of CF were greater in the colon than those in the jejunum and the ileum. Especially, among these enhancers tested in this study, LM showed much greater absorption enhancing effect in the colon than in the jejunum and the ileum. Therefore, LM was selected as a model absorption enhancer to examine the effect of chitosan capsules on the absorption enhancing effect of LM. When CF and LM were orally administered to rats using chitosan capsules, the plasma concentration of CF was much higher than those in other dosage forms including solution and gelatin capsules. Therefore, chitosan capsules may be useful carriers for colon-specific delivery of LM, thereby increasing its absorption enhancing effect from the intestinal membranes.
A Spectral Comparison of the M Asteroid 75 Eurydike and S Asteroid 27 Euterpe
NASA Astrophysics Data System (ADS)
Busarev, V. V.
1996-09-01
75 Euridyke and 27 Euterpe were observed under small phase angles and air mass differences with the same reference star of solar type (HD11170) in the course of a night. A scanning spectrophotometer operating in the mode of photon counting in the {3380--7617 Angstroms} range with a resolution of {48 Angstroms} mounted on the 1.25-m telescope in Crimea was used. The obtained reflectance spectra are similar in general shapes to those of other asteroids of corresponding classes [1]. So the bodies may have ordinary contents. On the spectra there are the following absorption features exeeded the error limits (RMSD). For 75 Eurydike these are at {5100 Angstroms} ( ~ 10% with a width of ~ {200 Angstroms}) and {6300 Angstroms} ( ~ 8% with a width of ~ {300 Angstroms}). For 27 Euterpe there are {5100 Angstroms} and {5650 Angstroms} (3--4% with widths of {200 Angstroms}), {6000 Angstroms} and {6550 Angstroms} (2--3% with widths of {400--500 Angstroms}) weak absorption bands. The common spectral features on the bodies at {5100 Angstroms} and {5650 Angstroms} may be a result of crystal-field transitions of Fe(2+) in pyroxenes as in lunar those [2]. The specific absorption band for 75 Eurydike at {6300 Angstroms} may be caused by charge transfer transitions Fe(2+) -Fe(3+) in oxidized pyroxenes as on Earth [4]. The features on the 27 Euterpe's spectra at {6000 Angstroms} and {6550 Angstroms} may arise in oxidized Fe-Ni metal and spinel-group minerals as on other S asteroids [3]. The results show that regolithes of both M and S asteroids may contain pyroxenes and Fe-Ni metal including their oxidized states as common factors influencing optical properties of the bodies. REFERENCES: 1. Chapman C. R. and M. J. Gaffey 1979. In: "Asteroids"(T. Gehrels, Ed.), p. 655--687. Univ. of Arizona Press, Tucson. 2. Hazen R. M. et al. 1978. In: "Proc. LPSC 9th", p. 2919--2934. 3. Hiroi T. and F. Vilas 1996. "Icarus", V.119, p. 202--208. 4. Wagner J. K. et al. 1987. "Icarus", V.69, p. 14--28.
USDA-ARS?s Scientific Manuscript database
The lining of the gastrointestinal (GI) tract is the largest surface exposed to the external environment in the human body. One of the main functions of the small intestine is absorption, and intestinal absorption is a route used by essential nutrients, chemicals, and pharmaceuticals to enter the sy...
Gutiérrez-Juárez, G; Vargas-Luna, M; Córdova, T; Varela, J B; Bernal-Alvarado, J J; Sosa, M
2002-08-01
A photoacoustic technique is used for studying topically applied substance absorption in human skin. The proposed method utilizes a double-chamber PA cell. The absorption determination was obtained through the measurement of the thermal effusivity of the binary system substance-skin. The theoretical model assumes that the effective thermal effusivity of the binary system corresponds to that of a two-phase system. Experimental applications of the method employed different substances of topical application in different parts of the body of a volunteer. The method is demonstrated to be an easily used non-invasive technique for dermatology research. The relative concentrations as a function of time of substances such as ketoconazol and sunscreen were determined by fitting a sigmoidal function to the data, while an exponential function corresponds to the best fit for the set of data for nitrofurazona, vaseline and vaporub. The time constants associated with the rates of absorption, were found to vary in the range between 10 and 58 min, depending on the substance and the part of the body.
Field method to measure changes in percent body fat of young women: The TIGER Study
USDA-ARS?s Scientific Manuscript database
Body mass index (BMI), waist (W) and hip (H) circumference (C) are commonly used to assess changes in body composition for field research. We developed a model to estimate changes in dual energy X-ray absorption (DXA) percent fat (% fat) from these variables with a diverse sample of young women fro...
Index extraction for electromagnetic field evaluation of high power wireless charging system
2017-01-01
This paper presents the precise dosimetry for highly resonant wireless power transfer (HR-WPT) system using an anatomically realistic human voxel model. The dosimetry for the HR-WPT system designed to operate at 13.56 MHz frequency, which one of the ISM band frequency band, is conducted in the various distances between the human model and the system, and in the condition of alignment and misalignment between transmitting and receiving circuits. The specific absorption rates in the human body are computed by the two-step approach; in the first step, the field generated by the HR-WPT system is calculated and in the second step the specific absorption rates are computed with the scattered field finite-difference time-domain method regarding the fields obtained in the first step as the incident fields. The safety compliance for non-uniform field exposure from the HR-WPT system is discussed with the international safety guidelines. Furthermore, the coupling factor concept is employed to relax the maximum allowable transmitting power. Coupling factors derived from the dosimetry results are presented. In this calculation, the external magnetic field from the HR-WPT system can be relaxed by approximately four times using coupling factor in the worst exposure scenario. PMID:28708840
Guérin, Bastien; Setsompop, Kawin; Ye, Huihui; Poser, Benedikt A; Stenger, Andrew V; Wald, Lawrence L
2015-05-01
To design parallel transmit (pTx) simultaneous multislice (SMS) spokes pulses with explicit control for peak power and local and global specific absorption rate (SAR). We design SMS pTx least-squares and magnitude least squares spokes pulses while constraining local SAR using the virtual observation points (VOPs) compression of SAR matrices. We evaluate our approach in simulations of a head (7T) and a body (3T) coil with eight channels arranged in two z-rows. For many of our simulations, control of average power by Tikhonov regularization of the SMS pTx spokes pulse design yielded pulses that violated hardware and SAR safety limits. On the other hand, control of peak power alone yielded pulses that violated local SAR limits. Pulses optimized with control of both local SAR and peak power satisfied all constraints and therefore had the best excitation performance under limited power and SAR constraints. These results extend our previous results for single slice pTx excitations but are more pronounced because of the large power demands and SAR of SMS pulses. Explicit control of local SAR and peak power is required to generate optimal SMS pTx excitations satisfying both the system's hardware limits and regulatory safety limits. © 2014 Wiley Periodicals, Inc.
Inelastic losses in X-ray absorption theory
NASA Astrophysics Data System (ADS)
Campbell, Luke Whalin
There is a surprising lack of many body effects observed in XAS (X-ray Absorption Spectroscopy) experiments. While collective excitations and other satellite effects account for between 20% and 40% of the spectral weight of the core hole and photoelectron excitation spectrum, the only commonly observed many body effect is a relatively structureless amplitude reduction to the fine structure, typically no more than a 10% effect. As a result, many particle effects are typically neglected in the XAS codes used to predict and interpret modern experiments. To compensate, the amplitude reduction factor is simply fitted to experimental data. In this work, a quasi-boson model is developed to treat the case of XAS, when the system has both a photoelectron and a core hole. We find that there is a strong interference between the extrinsic and intrinsic losses. The interference reduces the excitation amplitudes at low energies where the core hole and photo electron induced excitations tend to cancel. At high energies, the interference vanishes, and the theory reduces to the sudden approximation. The x-ray absorption spectrum including many-body excitations is represented by a convolution of the one-electron absorption spectrum with an energy dependent spectral function. The latter has an asymmetric quasiparticle peak and broad satellite structure. The net result is a phasor sum, which yields the many body amplitude reduction and phase shift of the fine structure oscillations (EXAFS), and possibly additional satellite structure. Calculations for several cases of interest are found to be in reasonable agreement with experiment. Edge singularity effects and deviations from the final state rule arising from this theory are also discussed. The ab initio XAS code FEFF has been extended for calculations of the many body amplitude reduction and phase shift in x-ray spectroscopies. A new broadened plasmon pole self energy is added. The dipole matrix elements are modified to include a projection operator to calculate deviations from the final state rule and edge singularities.
Thin structured rigid body for acoustic absorption
NASA Astrophysics Data System (ADS)
Starkey, T. A.; Smith, J. D.; Hibbins, A. P.; Sambles, J. R.; Rance, H. J.
2017-01-01
We present a thin acoustic metamaterial absorber, comprised of only rigid metal and air, that gives rise to near unity absorption of airborne sound on resonance. This simple, easily fabricated, robust structure comprising a perforated metal plate separated from a rigid wall by a deeply subwavelength channel of air is an ideal candidate for a sound absorbing panel. The strong absorption in the system is attributed to the thermo-viscous losses arising from a sound wave guided between the plate and the wall, defining the subwavelength channel.
Dark matter in the outer solar system
NASA Technical Reports Server (NTRS)
Owen, T.; Cruikshank, D.; De Bergh, C.; Geballe, T.
1994-01-01
There are now a large number of small bodies in the outer solar system that are known to be covered with dark material. Attempts to identify that material have been thwarted by the absence of discrete absorption features in the reflection spectra of these planetesimals. An absorption at 2.2 micrometers that appeared to be present in several objects has not been confirmed by new observations. Three absorptions in the spectrum of the unusually red planetesimal 5145 Pholus are well-established, but their identity remains a mystery.
Ab initio calculation of the electronic absorption spectrum of liquid water
NASA Astrophysics Data System (ADS)
Martiniano, Hugo F. M. C.; Galamba, Nuno; Cabral, Benedito J. Costa
2014-04-01
The electronic absorption spectrum of liquid water was investigated by coupling a one-body energy decomposition scheme to configurations generated by classical and Born-Oppenheimer Molecular Dynamics (BOMD). A Frenkel exciton Hamiltonian formalism was adopted and the excitation energies in the liquid phase were calculated with the equation of motion coupled cluster with single and double excitations method. Molecular dynamics configurations were generated by different approaches. Classical MD were carried out with the TIP4P-Ew and AMOEBA force fields. The BLYP and BLYP-D3 exchange-correlation functionals were used in BOMD. Theoretical and experimental results for the electronic absorption spectrum of liquid water are in good agreement. Emphasis is placed on the relationship between the structure of liquid water predicted by the different models and the electronic absorption spectrum. The theoretical gas to liquid phase blue-shift of the peak positions of the electronic absorption spectrum is in good agreement with experiment. The overall shift is determined by a competition between the O-H stretching of the water monomer in liquid water that leads to a red-shift and polarization effects that induce a blue-shift. The results illustrate the importance of coupling many-body energy decomposition schemes to molecular dynamics configurations to carry out ab initio calculations of the electronic properties in liquid phase.
Pereira, Rúben F; Carvalho, Anabela; Gil, M H; Mendes, Ausenda; Bártolo, Paulo J
2013-10-15
This study investigates the influence of Aloe vera on water absorption and the in vitro degradation rate of Aloe vera-Ca-alginate hydrogel films, for wound healing and drug delivery applications. The influence of A. vera content (5%, 15% and 25%, v/v) on water absorption was evaluated by the incubation of the films into a 0.1 M HCl solution (pH 1.0), acetate buffer (pH 5.5) and simulated body fluid solution (pH 7.4) during 24h. Results show that the water absorption is significantly higher for films containing high A. vera contents (15% and 25%), while no significant differences are observed between the alginate neat film and the film with 5% of A. vera. The in vitro enzymatic degradation tests indicate that an increase in the A. vera content significantly enhances the degradation rate of the films. Control films, incubated in a simulated body fluid solution without enzymes, are resistant to the hydrolytic degradation, exhibiting reduced weight loss and maintaining its structural integrity. Results also show that the water absorption and the in vitro degradation rate of the films can be tailored by changing the A. vera content. Copyright © 2013 Elsevier Ltd. All rights reserved.
Stahlschmidt, Zachary R; Davis, Jon R; Denardo, Dale F
2011-04-01
Sex-specific variation in morphology (sexual dimorphism) is a prevalent phenomenon among animals, and both dietary intake and resource allocation strategies influence sexually dimorphic traits (e.g., body size or composition). However, we investigated whether assimilation efficiency (AE), an intermediate step between dietary intake and allocation, can also vary between the sexes. Specifically, we tested whether sex-based differences in AE can explain variation in phenotypic traits. We measured morphometric characteristics (i.e., body length, mass, condition, and musculature) and AE of total energy, crude protein, and crude fat in post-reproductive adult Children's pythons (which exhibit a limited female-biased sexual size dimorphism) fed both low and high dietary intakes. Meal size was negatively related to AE of energy. Notably, male snakes absorbed crude protein more efficiently and increased epaxial (dorsal) musculature faster than females, which demonstrates a link between AE and phenotype. However, females grew in body length faster but did not absorb any nutrient more efficiently than males. Although our results do not provide a direct link between AE and sexual size dimorphism, they demonstrate that sexual variation in nutrient absorption exists and can contribute to other types of sex-based differences in phenotype (i.e., sexual dimorphism in growth of musculature). Hence, testing the broader applicability of AE's role in sexually dimorphic traits among other species is warranted.
Zhang, Bei; Sodickson, Daniel K; Lattanzi, Riccardo; Duan, Qi; Stoeckel, Bernd; Wiggins, Graham C
2012-04-01
In 7 T traveling wave imaging, waveguide modes supported by the scanner radiofrequency shield are used to excite an MR signal in samples or tissue which may be several meters away from the antenna used to drive radiofrequency power into the system. To explore the potential merits of traveling wave excitation for whole-body imaging at 7 T, we compare numerical simulations of traveling wave and TEM systems, and juxtapose full-wave electrodynamic simulations using a human body model with in vivo human traveling wave imaging at multiple stations covering the entire body. The simulated and in vivo traveling wave results correspond well, with strong signal at the periphery of the body and weak signal deep in the torso. These numerical results also illustrate the complicated wave behavior that emerges when a body is present. The TEM resonator simulation allowed comparison of traveling wave excitation with standard quadrature excitation, showing that while the traveling wave B +1 per unit drive voltage is much less than that of the TEM system, the square of the average B +1 compared to peak specific absorption rate (SAR) values can be comparable in certain imaging planes. Both systems produce highly inhomogeneous excitation of MR signal in the torso, suggesting that B(1) shimming or other parallel transmission methods are necessary for 7 T whole body imaging. Copyright © 2011 Wiley-Liss, Inc.
The relationship between skin function, barrier properties, and body-dependent factors.
Dąbrowska, A K; Spano, F; Derler, S; Adlhart, C; Spencer, N D; Rossi, R M
2018-05-01
Skin is a multilayer interface between the body and the environment, responsible for many important functions, such as temperature regulation, water transport, sensation, and protection from external triggers. This paper provides an overview of principal factors that influence human skin and describes the diversity of skin characteristics, its causes and possible consequences. It also discusses limitations in the barrier function of the skin, describing mechanisms of absorption. There are a number of in vivo investigations focusing on the diversity of human skin characteristics with reference to barrier properties and body-dependent factors. Skin properties vary among individuals of different age, gender, ethnicity, and skin types. In addition, skin characteristics differ depending on the body site and can be influenced by the body-mass index and lifestyle. Although one of the main functions of the skin is to act as a barrier, absorption of some substances remains possible. Various factors can alter human skin properties, which can be reflected in skin function and the quality of everyday life. Skin properties and function are strongly interlinked. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Influent of Borax Decahydrate Composition as Additional Flux into Stoneware Bodies
NASA Astrophysics Data System (ADS)
Bakil, Siti Natrah Abd; Hussin, Rosniza; Bakar Aramjat, Abu
2017-08-01
Stoneware is vitrified, has less porosity and requires high sintering temperature. The influent of borax decahydrate composition at sintering temperature 1050°C and 1150°C on the thermal analysis, fracture surface, linear shrinkage, water absorption and modular of rapture (MOR) were investigated. Rectangular sample were produced by uniaxially pressing at 40MPa. The thermal behavior was determined by thermogravimetric and different thermal analysis (TGA-DTA). The Scanning electron microscopy (SEM) was used for fracture surface analysis. The water absorption (%) of the sample were determined using Archimedes’ method. The experimental result showed that content of borax decahydrate have influent the properties of stoneware bodies.
Development of new test procedures for measuring fine and coarse aggregates specific gravity.
DOT National Transportation Integrated Search
2009-09-01
The objective of the research is to develop and evaluate new test methods at determining the specific gravity and absorption of both fine and coarse aggregates. Current methods at determining the specific gravity and absorption of fine and coarse agg...
The comparative kinetics of Ca, Sr, And Ra in a freshwater turtle, Trachemys scripta
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hinton, T.G.
1989-01-01
The accumulation of {sup 45}Ca, {sup 47}Ca, {sup 88}Sr, and {sup 226}Ra was studied in the yellow-bellied slider, a common freshwater turtle of the Southeastern US. The author was particularly interested in testing the hypothesis of competitive inhibition, a concept whereby decreasing the intake of a stable dietary element increases the absorption and retention of chemically similar radionuclides. He established four specific hypotheses and examined the processes of absorption and elimination as a function of stable dietary calcium (2 and 20 mg g{sup {minus}1}), season (summer, fall, winter and spring), and age and sex of the animals (hatchlings, juveniles, adultmore » males, adult females, and gravid females). Turtles were gavaged with radionuclides and the gamma-emitting isotopes were detected during serial whole-body counts performed on the live animals for up to 480 d. The analysis of the beta-emitting {sup 45}Ca was accomplished by chemical separation procedures. Data were fit to a two-component exponential retention model by nonlinear regression. The 10-fold reduction in dietary Ca did not affect the elimination rate constants, and increased the assimilation of Sr and Ra only within juveniles. For all animals the absorption of Ca was significantly greater than Sr, and likewise, Sr was greater than Ra. Mean absorptions were generally higher than values reported for other organisms. Unlike many other organisms, absorption rates did not decline at maturity. He suspects that high Ca demands in constructing and maintaining the massive shell, necessitated by the turtle's survival strategy, may contribute to the high absorption, as well as the lack of a decline at maturity. Elimination rate constants were greatest in the summer and declined to levels that were generally not distinguishable from zero in the spring, winter, and fall seasons.« less
Lattimer, Lauren J; Lanovaz, Joel L; Farthing, Jonathan P; Madill, Stéphanie; Kim, Soo; Robinovitch, Stephen; Arnold, Cathy
2017-07-01
The purposes of this study were to examine female age differences in: (1) upper extremity (UE) and trunk muscle activity, elbow joint moment, loading force, and UE energy absorption during a controlled forward body descent; and (2) UE muscle strength. Twenty young (mean 24.8 ± 3.4 years) and 20 older (68.4 ± 5.7 years) women were assessed via dynamometry for isometric, concentric, and eccentric UE strength and performed forward descents on force plates at three body lean angles (60°, 45°, and 30° from horizontal). Significant differences (p < .05) were found for muscle strength, biomechanics, and muscle activity. Concentric UE strength averaged 15% lower in older women. At 30° body lean, older women absorbed less energy. Older women had greater biceps brachii activation and less external oblique activation at all body lean angles. Age differences in muscle strength, activation, and energy absorption may contribute to fall-related injury risk.
NASA Astrophysics Data System (ADS)
Nelson, James R.; Guarda, Sonia
1995-05-01
Visible absorption spectra of particulate and dissolved materials were characterized on the continental shelf off the southeastern United States (the South Atlantic Bight), emphasizing cross-shelf and seasonal variability. A coastal front separates turbid coastal waters from clearer midshelf waters. Spatial and seasonal patterns were evident in absorption coefficients for phytoplankton, detritus, and colored dissolved organic matter (CDOM); spectral shape parameters for CDOM and detritus; and phytoplankton chlorophyll-specific absorption. The magnitude of CDOM absorption reflected seasonal differences in freshwater discharge and the salinity of the midshelf waters. In the spring of 1993 (high discharge), CDOM absorption at 443 nm was >10 times that of total particulate absorption between 12 and 50 km offshore (0.28-0.69 m-1 versus 0.027-0.062 m-1) and up to 10 times the CDOM absorption measured in the previous summer (low discharge). Phytoplankton chlorophyll-specific absorption in the blue increased with distance from shore (from <0.03 m2 mg-1 in inner shelf waters to ˜0.1 m2 mg-1 at the most seaward stations in summer) and, for similar chlorophyll concentrations, was higher in summer than in the winter-spring. These spatial and seasonal patterns in phytoplankton chlorophyll-specific absorption can be attributed to a shift in phytoplankton species composition (from predominantly diatoms inshore to a cyanobacteria-dominated assemblage midshelf in summer), pigment packaging, and higher carotenoid:chlorophyll with distance from shore.
Food Ingredients That Inhibit Cholesterol Absorption
Jesch, Elliot D.; Carr, Timothy P.
2017-01-01
Cholesterol is a vital component of the human body. It stabilizes cell membranes and is the precursor of bile acids, vitamin D and steroid hormones. However, cholesterol accumulation in the bloodstream (hypercholesterolemia) can cause atherosclerotic plaques within artery walls, leading to heart attacks and strokes. The efficiency of cholesterol absorption in the small intestine is of great interest because human and animal studies have linked cholesterol absorption with plasma concentration of total and low density lipoprotein cholesterol. Cholesterol absorption is highly regulated and influenced by particular compounds in the food supply. Therefore, it is desirable to learn more about natural food components that inhibit cholesterol absorption so that food ingredients and dietary supplements can be developed for consumers who wish to manage their plasma cholesterol levels by non-pharmacological means. Food components thus far identified as inhibitors of cholesterol absorption include phytosterols, soluble fibers, phospholipids, and stearic acid. PMID:28702423
Sandström, B; Arvidsson, B; Cederblad, A; Björn-Rasmussen, E
1980-04-01
The absorption of zinc in man from composite meals based on bread was measured with a radionuclide technique using 65Zn and whole-body counting. Bread was made up from wheat flour of 100 and 72% extraction rate. A lower absolute amount of zinc was absorbed from the white bread compared to the absorption from the same amount of wholemeal bread. When the two types of bread were enriched with zinc chloride the absorption was higher from the white bread than from the wholemeal bread. Addition of calcium in the form of milk products improved the absorption of zinc from a meal with wholemeal bread. A significant positive correlation was found between zinc absorption and the protein content in meals containing milk, cheese, beef, and egg in various combinations with the wholemeal bread.
2013-01-01
The dynamic impact response of giant buckyball C720 is investigated by using molecular dynamics simulations. The non-recoverable deformation of C720 makes it an ideal candidate for high-performance energy absorption. Firstly, mechanical behaviors under dynamic impact and low-speed crushing are simulated and modeled, which clarifies the buckling-related energy absorption mechanism. One-dimensional C720 arrays (both vertical and horizontal alignments) are studied at various impact speeds, which show that the energy absorption ability is dominated by the impact energy per buckyball and less sensitive to the number and arrangement direction of buckyballs. Three-dimensional stacking of buckyballs in simple cubic, body-centered cubic, hexagonal, and face-centered cubic forms are investigated. Stacking form with higher occupation density yields higher energy absorption. The present study may shed lights on employing C720 assembly as an advanced energy absorption system against low-speed impacts. PMID:23360618
Shaul, Oren; Fanrazi-Kahana, Michal; Meitav, Omri; Pinhasi, Gad A; Abookasis, David
2017-11-10
Heat stress (HS) is a medical emergency defined by abnormally elevated body temperature that causes biochemical, physiological, and hematological changes. The goal of the present research was to detect variations in optical properties (absorption, reduced scattering, and refractive index coefficients) of mouse brain tissue during HS by using near-infrared (NIR) spatial light modulation. NIR spatial patterns with different spatial phases were used to differentiate the effects of tissue scattering from those of absorption. Decoupling optical scattering from absorption enabled the quantification of a tissue's chemical constituents (related to light absorption) and structural properties (related to light scattering). Technically, structured light patterns at low and high spatial frequencies of six wavelengths ranging between 690 and 970 nm were projected onto the mouse scalp surface while diffuse reflected light was recorded by a CCD camera positioned perpendicular to the mouse scalp. Concurrently to pattern projection, brain temperature was measured with a thermal camera positioned slightly off angle from the mouse head while core body temperature was monitored by thermocouple probe. Data analysis demonstrated variations from baseline measurements in a battery of intrinsic brain properties following HS.
Quantum quench of Kondo correlations in optical absorption
NASA Astrophysics Data System (ADS)
Weichselbaum, Andreas
2013-03-01
Absorption spectra of individual semiconductor quantum dots tunnel-coupled to a degenerate electron gas in the Kondo regime have recently become accessible to the experiment. The absorption of a single photon leads to an abrupt change in the system Hamiltonian, which can be tailored such that it results in a quantum quench of the Kondo correlations. This is accompanied by a clear signature in the form of an Anderson orthogonality catastrophe, induced by a vanishing overlap between initial and final many-body wave functions and with power-law exponents that can be tuned by an applied magnetic field. We have modeled the experiment in terms of an Anderson impurity model undergoing an optically induced quench, and studied this Kondo exciton in detail using both analytical methods and the Numerical Renormalization Group (NRG). Our NRG results reproduce the measured absorption line shapes very well, showing that NRG is ideally suited for the study of Kondo excitons. In summary, the experiments demonstrate that optical measurements on single artificial atoms offer new perspectives on many-body phenomena previously studied using transport spectroscopy only. Co-authors: Andreas Weichselbaum, Markus Hanl, and Jan von Delft, Ludwig Maximilians University.
Ingestion, inhalation, and dermal exposures to chloroform and trichloroethene from tap water.
Weisel, C P; Jo, W K
1996-01-01
Individuals are exposed to volatile compounds present in tap water by ingestion, inhalation, and dermal absorption. Traditional risk assessments for water often only consider ingestion exposure to toxic chemicals, even though showering has been shown to increase the body burden of certain chemicals due to inhalation exposure and dermal absorption. We collected and analyzed time-series samples of expired alveolar breath to evaluate changes in concentrations of volatile organic compounds being expired, which reflects the rate of change in the bloodstream due to expiration, metabolism, and absorption into tissues. Analysis of chloroform and trichloethene in expired breath, compounds regulated in water, was also used to determine uptake from tap water by each route (inhalation, ingestion, or absorption). Each route of exposure contributed to the total exposure of these compounds from daily water use. Further, the ingestion dose was completely metabolized before entering the bloodstream, whereas the dose from the other routes was dispersed throughout the body. Thus, differences in potential biologically effective doses depend on route, target organ, and whether the contaminant or metabolite is the biologically active agent. Images Figure 1. A Figure 1. B Figure 1. C Figure 2. A Figure 2. B PMID:8834861
Numerical compliance testing of human exposure to electromagnetic radiation from smart-watches.
Hong, Seon-Eui; Lee, Ae-Kyoung; Kwon, Jong-Hwa; Pack, Jeong-Ki
2016-10-07
In this study, we investigated the electromagnetic dosimetry for smart-watches. At present, the standard for compliance testing of body-mounted and handheld devices specifies the use of a flat phantom to provide conservative estimates of the peak spatial-averaged specific absorption rate (SAR). This means that the estimated SAR using a flat phantom should be higher than the SAR in the exposure part of an anatomical human-body model. To verify this, we numerically calculated the SAR for a flat phantom and compared it with the numerical calculation of the SAR for four anatomical human-body models of different ages. The numerical analysis was performed using the finite difference time domain method (FDTD). The smart-watch models were used in the three antennas: the shorted planar inverted-F antenna (PIFA), loop antenna, and monopole antenna. Numerical smart-watch models were implemented for cellular commutation and wireless local-area network operation at 835, 1850, and 2450 MHz. The peak spatial-averaged SARs of the smart-watch models are calculated for the flat phantom and anatomical human-body model for the wrist-worn and next to mouth positions. The results show that the flat phantom does not provide a consistent conservative SAR estimate. We concluded that the difference in the SAR results between an anatomical human-body model and a flat phantom can be attributed to the different phantom shapes and tissue structures.
Numerical compliance testing of human exposure to electromagnetic radiation from smart-watches
NASA Astrophysics Data System (ADS)
Hong, Seon-Eui; Lee, Ae-Kyoung; Kwon, Jong-Hwa; Pack, Jeong-Ki
2016-10-01
In this study, we investigated the electromagnetic dosimetry for smart-watches. At present, the standard for compliance testing of body-mounted and handheld devices specifies the use of a flat phantom to provide conservative estimates of the peak spatial-averaged specific absorption rate (SAR). This means that the estimated SAR using a flat phantom should be higher than the SAR in the exposure part of an anatomical human-body model. To verify this, we numerically calculated the SAR for a flat phantom and compared it with the numerical calculation of the SAR for four anatomical human-body models of different ages. The numerical analysis was performed using the finite difference time domain method (FDTD). The smart-watch models were used in the three antennas: the shorted planar inverted-F antenna (PIFA), loop antenna, and monopole antenna. Numerical smart-watch models were implemented for cellular commutation and wireless local-area network operation at 835, 1850, and 2450 MHz. The peak spatial-averaged SARs of the smart-watch models are calculated for the flat phantom and anatomical human-body model for the wrist-worn and next to mouth positions. The results show that the flat phantom does not provide a consistent conservative SAR estimate. We concluded that the difference in the SAR results between an anatomical human-body model and a flat phantom can be attributed to the different phantom shapes and tissue structures.
Health risk assessment of arsenic from blended water in distribution systems.
Zhang, Hui; Zhou, Xue; Wang, Kai; Wang, Wen D
2017-12-06
In a water distribution system with different sources, water blending occurs, causing specific variations of the arsenic level. This study was undertaken to investigate the concentration and cancer risk of arsenic in blended water in Xi'an city. A total of 672 tap water samples were collected from eight sampling points in the blending zones for arsenic determination. The risk was evaluated through oral ingestion and dermal absorption, separately for males and females, as well as with respect to seasons and blending zones. Although the arsenic concentrations always fulfilled the requirements of the World Health Organization (WHO) (≤10 μg L -1 ), the total cancer risk value was higher than the general guidance risk value of 1.00 × 10 -6 . In the blending zone of the Qujiang and No.3 WTPs (Z2), the total cancer risk value was over 1.00 × 10 -5 , indicating that public health would be affected to some extent. More than 99% of the total cancer risk was from oral ingestion, and dermal absorption had a little contribution. With higher exposure duration and lower body weight, women had a higher cancer risk. In addition, due to several influential factors, the total cancer risk in the four blending zones reached the maximum in different seasons. The sensitivity analysis by the tornado chart proved that body weight, arsenic concentration and ingestion rate significantly contributed to cancer risk. This study suggests the regular monitoring of water blending zones for improving risk management.
Zhang, X; Duan, J; Kesisoglou, F; Novakovic, J; Amidon, G L; Jamei, M; Lukacova, V; Eissing, T; Tsakalozou, E; Zhao, L; Lionberger, R
2017-08-01
On May 19, 2016, the US Food and Drug Administration (FDA) hosted a public workshop, entitled "Mechanistic Oral Absorption Modeling and Simulation for Formulation Development and Bioequivalence Evaluation." The topic of mechanistic oral absorption modeling, which is one of the major applications of physiologically based pharmacokinetic (PBPK) modeling and simulation, focuses on predicting oral absorption by mechanistically integrating gastrointestinal transit, dissolution, and permeation processes, incorporating systems, active pharmaceutical ingredient (API), and the drug product information, into a systemic mathematical whole-body framework. © 2017 The Authors CPT: Pharmacometrics & Systems Pharmacology published by Wiley Periodicals, Inc. on behalf of American Society for Clinical Pharmacology and Therapeutics.
The opacity of the universe and the strong equivalence principle
NASA Technical Reports Server (NTRS)
Canuto, V. M.; Goldman, I.
1983-01-01
A possible explanation of why the advanced solutions of Maxwell's equations are not observed in nature is by way of absorption by an opaque universe. As Davies has shown, the ever expanding, general relativistic cosmological models fail to provide the needed absorption. The absorption mechanism calling for an interplay between local physics and cosmology, is usually developed adopting the strong equivalence principle, SEP, which precludes such interplay. It is shown that complete absorption of electromagnetic radiation by ionized intergalactic plasma is obtained provided a violation of the SEP, of the order of the Hubble's constant, is allowed to occur. The same degree of violation was previously found to be compatible with a large body of observational data.
Ab initio calculation of the electronic absorption spectrum of liquid water
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martiniano, Hugo F. M. C.; Galamba, Nuno; Cabral, Benedito J. Costa, E-mail: ben@cii.fc.ul.pt
2014-04-28
The electronic absorption spectrum of liquid water was investigated by coupling a one-body energy decomposition scheme to configurations generated by classical and Born-Oppenheimer Molecular Dynamics (BOMD). A Frenkel exciton Hamiltonian formalism was adopted and the excitation energies in the liquid phase were calculated with the equation of motion coupled cluster with single and double excitations method. Molecular dynamics configurations were generated by different approaches. Classical MD were carried out with the TIP4P-Ew and AMOEBA force fields. The BLYP and BLYP-D3 exchange-correlation functionals were used in BOMD. Theoretical and experimental results for the electronic absorption spectrum of liquid water are inmore » good agreement. Emphasis is placed on the relationship between the structure of liquid water predicted by the different models and the electronic absorption spectrum. The theoretical gas to liquid phase blue-shift of the peak positions of the electronic absorption spectrum is in good agreement with experiment. The overall shift is determined by a competition between the O–H stretching of the water monomer in liquid water that leads to a red-shift and polarization effects that induce a blue-shift. The results illustrate the importance of coupling many-body energy decomposition schemes to molecular dynamics configurations to carry out ab initio calculations of the electronic properties in liquid phase.« less
NASA Astrophysics Data System (ADS)
Martínez-Búrdalo, M.; Sanchis, A.; Martín, A.; Villar, R.
2010-02-01
Electronic article surveillance (EAS) devices are widely used in most stores as anti-theft systems. In this work, the compliance with international guidelines in the human exposure to these devices is analysed by using the finite-difference time-domain (FDTD) method. Two sets of high resolution numerical phantoms of different size (REMCOM/Hershey and Virtual Family), simulating adult and child bodies, are exposed to a 10 MHz pass-by panel-type EAS consisting of two overlapping current-carrying coils. Two different relative positions between the EAS and the body (frontal and lateral exposures), which imply the exposure of different parts of the body at different distances, have been considered. In all cases, induced current densities in tissues of the central nervous system and specific absorption rates (SARs) are calculated to be compared with the limits from the guidelines. Results show that induced current densities are lower in the case of adult models as compared with those of children in both lateral and frontal exposures. Maximum SAR values calculated in lateral exposure are significantly lower than those calculated in frontal exposure, where the EAS-body distance is shorter. Nevertheless, in all studied cases, with an EAS driving current of 4 A rms, maximum induced current and SAR values are below basic restrictions.
Martínez-Búrdalo, M; Sanchis, A; Martín, A; Villar, R
2010-02-21
Electronic article surveillance (EAS) devices are widely used in most stores as anti-theft systems. In this work, the compliance with international guidelines in the human exposure to these devices is analysed by using the finite-difference time-domain (FDTD) method. Two sets of high resolution numerical phantoms of different size (REMCOM/Hershey and Virtual Family), simulating adult and child bodies, are exposed to a 10 MHz pass-by panel-type EAS consisting of two overlapping current-carrying coils. Two different relative positions between the EAS and the body (frontal and lateral exposures), which imply the exposure of different parts of the body at different distances, have been considered. In all cases, induced current densities in tissues of the central nervous system and specific absorption rates (SARs) are calculated to be compared with the limits from the guidelines. Results show that induced current densities are lower in the case of adult models as compared with those of children in both lateral and frontal exposures. Maximum SAR values calculated in lateral exposure are significantly lower than those calculated in frontal exposure, where the EAS-body distance is shorter. Nevertheless, in all studied cases, with an EAS driving current of 4 A rms, maximum induced current and SAR values are below basic restrictions.
The role of fluid temperature and form on endurance performance in the heat.
Tan, P M S; Lee, J K W
2015-06-01
Exercising in the heat often results in an excessive increase in body core temperature, which can be detrimental to health and endurance performance. Research in recent years has shifted toward the optimum temperature at which drinks should be ingested. The ingestion of cold drinks can reduce body core temperature before exercise but less so during exercise. Temperature of drinks does not seem to have an effect on the rate of gastric emptying and intestinal absorption. Manipulating the specific heat capacity of a solution can further induce a greater heat sink. Ingestion of ice slurry exploits the additional energy required to convert the solution from ice to water (enthalpy of fusion). Body core temperature is occasionally observed to be higher at the point of exhaustion with the ingestion of ice slurry. There is growing evidence to suggest that ingesting ice slurry is an effective and practical strategy to prevent excessive rise of body core temperature and improve endurance performance. This information is especially important when only a fixed amount of fluid is allowed to be carried, often seen in some ultra-endurance events and military operations. Future studies should evaluate the efficacy of ice slurry in various exercise and environmental conditions. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
When a chemical stressor crosses the body barrier it becomes an internal dose. In the context of risk assessment, this internal dose provides a critical linkage between exposure and effects. Pharmacokinetic processes (i.e., what the body does to the chemical) such as absorption, ...
Ruppert, Claudia; Chernikov, Alexey; Hill, Heather M.; ...
2017-01-06
We study transient changes of the optical response of WS 2 monolayers by femtosecond broadband pump–probe spectroscopy. Time-dependent absorption spectra are analyzed by tracking the line width broadening, bleaching, and energy shift of the main exciton resonance as a function of time delay after the excitation. Two main sources for the pump-induced changes of the optical response are identified. Specifically, we find an interplay between modifications induced by many-body interactions from photoexcited carriers and by the subsequent transfer of the excitation to the phonon system followed by cooling of the material through the heat transfer to the substrate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruppert, Claudia; Chernikov, Alexey; Hill, Heather M.
We study transient changes of the optical response of WS 2 monolayers by femtosecond broadband pump–probe spectroscopy. Time-dependent absorption spectra are analyzed by tracking the line width broadening, bleaching, and energy shift of the main exciton resonance as a function of time delay after the excitation. Two main sources for the pump-induced changes of the optical response are identified. Specifically, we find an interplay between modifications induced by many-body interactions from photoexcited carriers and by the subsequent transfer of the excitation to the phonon system followed by cooling of the material through the heat transfer to the substrate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nie Liming; Xing Da; Yang Diwu
2007-04-23
Current imaging modalities face challenges in clinical applications due to limitations in resolution or contrast. Microwave-induced thermoacoustic imaging may provide a complementary modality for medical imaging, particularly for detecting foreign objects due to their different absorption of electromagnetic radiation at specific frequencies. A thermoacoustic tomography system with a multielement linear transducer array was developed and used to detect foreign objects in tissue. Radiography and thermoacoustic images of objects with different electromagnetic properties, including glass, sand, and iron, were compared. The authors' results demonstrate that thermoacoustic imaging has the potential to become a fast method for surgical localization of occult foreignmore » objects.« less
Biokinetic data and models for occupational intake of lanthanoids
Leggett, Richard Wayne; Ansoborlo, Eric; Bailey, Michael; ...
2014-05-12
The lanthanoid (or lanthanide) chemical elements comprise fifteen elements with atomic numbers 57 (lanthanum) through 71 (lutetium). This paper reviews data related to the biological behavior of these elements in the human body and proposes biokinetic models for application to occupational intake of radio-lanthanoids. Generic (element-independent) absorption rates from the respiratory and alimentary tracts to blood are proposed. The proposed systemic models are largely generic but include some element-specific parameter values to reflect regular changes with ionic radius in certain aspects of the behavior of the lanthanoids. This work was performed within the internal dosimetry task group (INDOS) of Committeemore » 2 of the International Commission on Radiological Protection (ICRP).« less
[Differences of inherent optical properties of inland lake water body in typical seasons].
Sun, De-Yong; Li, Yun-Mei; Wang, Qiao; Le, Cheng-Fen; Huang, Chang-Chun; Wang, Li-Zhen
2008-05-01
Inherent optical property is one of the important properties of water body, which lays the foundation for the establishment of water color analytical models. By using quantity filter technology (QFT) and BB9 backscattering meter, the absorption coefficients of chromophoric dissolved organic matter (CDOM) and total suspended matters (TSM) and the backscattering coefficient of TSM in the water body at Meiliang Bay of Taihu Lake were measured in summer and winter. Based on the spectral comparison of the absorption and backscattering coefficients, their differences between the two seasons were demonstrated, and the reasons that caused these differences were also explored in the context of their relations to the changes in water quality. Consequently, water environment condition could be revealed by using the inherent optical property. The relationship between the backscattering coefficient and the TSM concentration was established, which could provide supporting coefficients to the analytical models to be developed.
Cole, M.; Kenig, M. D.; Hewitt, Valerie A.
1973-01-01
Penicillins can be metabolized to penicilloic acids in man, the extent being dependent on the penicillin structure. In the phenoxy penicillin series, phenoxymethyl penicillin was found to be particularly unstable, but the higher homologues were more stable. In the isoxazolyl series, oxacillin was unstable, and progressive insertion of halogen in the phenyl ring increased stability. Ampicillin and amoxycillin showed some instability, ampicillin possibly being the more stable. After intramuscular administration, carbenicillin was very stable in the body, ampicillin was fairly stable, and benzyl penicillin was unstable. It is important to take into account the penicilloic acid content of urine when estimating total absorption of a penicillin. Increased stability in the body as well as slower renal clearance can lead to high concentrations in the serum. Penicilloic acids seemed to be more slowly cleared from the body than penicillins. The liver is probably the site of inactivation. PMID:4364176
Cooper, Justin; Marx, Bernd; Buhl, Johannes; Hombach, Volker
2002-09-01
This paper investigates the minimum distance for a human body in the near field of a cellular telephone base station antenna for which there is compliance with the IEEE or ICNIRP threshold values for radio frequency electromagnetic energy absorption in the human body. First, local maximum specific absorption rates (SARs), measured and averaged over volumes equivalent to 1 and to 10 g tissue within the trunk region of a physical, liquid filled shell phantom facing and irradiated by a typical GSM 900 base station antenna, were compared to corresponding calculated SAR values. The calculation used a homogeneous Visible Human body model in front of a simulated base station antenna of the same type. Both real and simulated base station antennas operated at 935 MHz. Antenna-body distances were between 1 and 65 cm. The agreement between measurements and calculations was excellent. This gave confidence in the subsequent calculated SAR values for the heterogeneous Visible Human model, for which each tissue was assigned the currently accepted values for permittivity and conductivity at 935 MHz. Calculated SAR values within the trunk of the body were found to be about double those for the homogeneous case. When the IEEE standard and the ICNIRP guidelines are both to be complied with, the local SAR averaged over 1 g tissue was found to be the determining parameter. Emitted power values from the antenna that produced the maximum SAR value over 1 g specified in the IEEE standard at the base station are less than those needed to reach the ICNIRP threshold specified for the local SAR averaged over 10 g. For the GSM base station antenna investigated here operating at 935 MHz with 40 W emitted power, the model indicates that the human body should not be closer to the antenna than 18 cm for controlled environment exposure, or about 95 cm for uncontrolled environment exposure. These safe distance limits are for SARs averaged over 1 g tissue. The corresponding safety distance limits under the ICNIRP guidelines for SAR taken over 10 g tissue are 5 cm for occupational exposure and about 75 cm for general-public exposure. Copyright 2002 Wiley-Liss, Inc.
Sweet Taste Receptor Signaling Network: Possible Implication for Cognitive Functioning
Welcome, Menizibeya O.; Mastorakis, Nikos E.; Pereverzev, Vladimir A.
2015-01-01
Sweet taste receptors are transmembrane protein network specialized in the transmission of information from special “sweet” molecules into the intracellular domain. These receptors can sense the taste of a range of molecules and transmit the information downstream to several acceptors, modulate cell specific functions and metabolism, and mediate cell-to-cell coupling through paracrine mechanism. Recent reports indicate that sweet taste receptors are widely distributed in the body and serves specific function relative to their localization. Due to their pleiotropic signaling properties and multisubstrate ligand affinity, sweet taste receptors are able to cooperatively bind multiple substances and mediate signaling by other receptors. Based on increasing evidence about the role of these receptors in the initiation and control of absorption and metabolism, and the pivotal role of metabolic (glucose) regulation in the central nervous system functioning, we propose a possible implication of sweet taste receptor signaling in modulating cognitive functioning. PMID:25653876
Studies on Inhibition of Intestinal Absorption of Radioactive Strontium
Skoryna, Stanley C.; Paul, T. M.; Edward, Deirdre Waldron
1964-01-01
A method is reported which permits selective suppression of absorption of radioactive strontium from ingested food material, permitting the calcium to be available to the body. Studies were carried out in vivo by injection of Sr89 and Ca45 in the presence of inert carrier into ligated intestinal segments in rats, and the amount of absorption was measured by standard monitoring techniques. The pattern of absorption of both ions is very similar but the rate of absorption is different. It was found that the polyelectrolyte, sodium alginate, obtained from brown algae (Phaeophyceae), injected simultaneously with radiostrontium effectively reduces the absortion of Sr89 from all segments of the intestine by as much as 50-80% of the control values. No significant reduction in absorption of Ca45 was observed in equivalent concentrations. The reduction in blood levels of Sr89 and in bone uptake corresponded to the absorption pattern. The difference in the effect on strontium and calcium absorption may be due to differences in the binding capacity of sodium alginate from the two metal ions under the conditions present in vivo. PMID:14180534
Kohl, Kevin D; Dearing, M Denise
2017-03-01
Herbivores employ numerous strategies to reduce their exposure to toxic plant secondary chemicals (PSCs). However, the physiological mechanisms of PSC absorption have not been extensively explored. In particular, the absorption of PSCs via intestinal lymphatic absorption has been largely overlooked in herbivores, even though this pathway is well recognized for pharmaceutical uptake. Here, we investigated for the first time whether PSCs might be absorbed by lymphatic transport. We fed woodrats (Neotoma albigula) diets with increasing concentrations of terpene-rich juniper (Juniperus monosperma) either with or without a compound that blocks intestinal lymphatic absorption (Pluronic L-81). Woodrats consuming diets that contained the intestinal lymphatic absorption blocker exhibited increased food intakes and maintained higher body masses on juniper diets. Our study represents the first demonstration that PSCs may be absorbed by intestinal lymphatic absorption. This absorption pathway has numerous implications for the metabolism and distribution of PSCs in the systemic circulation, given that compounds absorbed via lymphatic transport bypass first-pass hepatic metabolism. The area of lymphatic transport of PSCs represents an understudied physiological pathway in plant-herbivore interactions.
NASA Astrophysics Data System (ADS)
Takata, Fumiya; Ito, Keita; Takeda, Yukiharu; Saitoh, Yuji; Takanashi, Koki; Kimura, Akio; Suemasu, Takashi
2018-02-01
X-ray absorption spectroscopy (XAS) and x-ray magnetic circular dichroism measurements were performed at the Ni and Fe L2 ,3 absorption edges for N ixF e4 -xN (x =1 and 3) epitaxial films. Spectral line-shape analysis and element-specific magnetic moment evaluations are presented. Shoulders at approximately 2 eV above the Ni L2 ,3 main peaks in the XAS spectrum of N i3FeN were interpreted to originate from hybridization of orbitals between Ni 3 d at face-centered (II) sites and N 2 p at body-centered sites, while such features were missing in NiF e3N film. Similar shoulders were observed at Fe L2 ,3 edges in both films. These results indicate that the orbitals of Ni atoms did not hybridize with those of N atoms in the NiF e3N film. Hence, Ni atoms preferentially occupied corner (I) sites, where the hybridization was weak because of the relatively long distance between Ni at I sites and N atoms. The relatively large magnetic moment deduced from sum-rule analysis of NiF e3N also showed a good agreement with the presence of Ni atoms at I sites.
Psychological absorption. Affect investment in marijuana intoxication.
Fabian, W D; Fishkin, S M
1991-01-01
Absorption (a trait capacity for total attentional involvement) was reported to increase during episodes of marijuana intoxication. Several subsets of the absorption scale items specifically characterized marijuana intoxication, and groups of users and nonusers showed differential affective involvement with these experiences. Additionally, within the drug-using group, a positive correlation between frequency of marijuana use and affective ratings of these experiences was found. The findings support the hypothesis that a specific type of alteration in consciousness that enhances capacity for total attentional involvement (absorption) characterizes marijuana intoxication, and that this enhancement may act as a reinforcer, possibly influencing future use.
Hulshof, T G; van der Poel, A F B; Hendriks, W H; Bikker, P
2017-07-01
Feed ingredients used in swine diets are often processed to improve nutritional value. However, (over-)processing may result in chemical reactions with amino acids (AAs) that decrease their ileal digestibility. This study aimed to determine effects of (over-)processing of soybean meal (SBM) and rapeseed meal (RSM) on post-absorptive utilization of ileal digestible AAs for retention and on body AA composition of growing pigs. Soybean meal and RSM were processed by secondary toasting in the presence of lignosulfonate to obtain processed soybean meal (pSBM) and processed rapeseed meal (pRSM). Four diets contained SBM, pSBM, RSM or pRSM as sole protein source. Two additional diets contained pSBM or pRSM and were supplemented with crystalline AA to similar standardized ileal digestible (SID) AA level as the SBM or RSM diet. These diets were used to verify that processing affected AA retention by affecting ileal AA digestibility rather than post-absorptive AA utilization. The SID AA levels of the protein sources were determined in a previous study. In total, 59 pigs were used (initial BW of 15.6±0.7 kg) of which five were used to determine initial body composition at the start of the experiment. In total, 54 pigs were fed one of six experimental diets and were slaughtered at a BW of 40 kg. The organ fraction (i.e. empty organs plus blood) and carcass were analyzed separately for N and AA content. Post-absorptive AA utilization was calculated from AA retention and SID AA intake. An interaction between diet type, comprising effects of processing and supplementing crystalline AA, and protein source was observed for CP content in the organ fraction, carcass and empty body and for nutrient retention. Processing reduced CP content and nutrient retention more for SBM than for RSM. Moreover, processing reduced (P<0.001) the lysine content in the organ fraction for both protein sources. Supplementing crystalline AA ameliorated the effect of processing on these variables. Thus, the data indicated that processing affected retention by reducing digestibility. Correcting AA retention for SID AA intake was, therefore, expected to result in similar post-absorptive AA utilization which was observed for the RSM diets. However, post-absorptive AA utilization was lower for the pSBM diet than for the SBM diet which might be related to an imbalanced post-absorptive AA supply. In conclusion, processing negatively affected nutrient retention for both protein sources and post-absorptive utilization of SID AA for retention for SBM. Effects of processing were compensated by supplementing crystalline AA.
Hayashi, K; Hara, H; Asvarujanon, P; Aoyama, Y; Luangpituksa, P
2001-10-01
We examined the effects of ingestion of five types of insoluble fibre on growth and Zn absorption in rats fed a marginally Zn-deficient diet (6.75 mg (0.103 mmol) Zn/kg diet) with or without added sodium phytate (12.6 mmol/kg diet). The types of insoluble fibre tested were corn husks, watermelon skin, yam-bean root (Pachyrhizus erosus) and pineapple core, and cellulose was used as a control (100 g/kg diet). Body-weight gain in the cellulose groups was suppressed by 57 % by feeding phytate. Body-weight gain in phytate-fed rats was 80 % greater in the watermelon skin fibre and yam-bean root fibre group than that in the cellulose group. Zn absorption ratio in the cellulose groups was lowered by 46 and 70 % in the first (days 7-10) and second (days 16-19) measurement periods with feeding phytate. In the rats fed the phytate-containing diets, Zn absorption ratio in the watermelon skin, yam-bean root and pineapple core fibre groups was 140, 80 and 54 % higher respectively than that in the cellulose group, in the second period. Fe absorption was not suppressed by phytate, however, feeding of these three types of fibre promoted Fe absorption in rats fed phytate-free diets. The concentration of soluble Zn in the caecal contents in the watermelon skin fibre or yam-bean root fibre groups was identical to that in the control group in spite of a higher short-chain fatty acid concentration and lower pH in the caecum. These findings indicate that ingestion of these types of insoluble fibre recovered the growth and Zn absorption suppressed by feeding a high level of phytate, and factors other than caecal fermentation may also be involved in this effect of insoluble fibre.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ogawa, Eiichi; Hosokawa, Masaya; Faculty of Human Sciences, Tezukayama Gakuin University, Osaka
2011-01-07
Research highlights: {yields} Exogenous GIP inhibits intestinal motility through a somatostatin-mediated pathway. {yields} Exogenous GIP inhibits intestinal glucose absorption by reducing intestinal motility. {yields} The GIP-receptor-mediated action in intestine does not involve in GLP-1-mediated pathway. -- Abstract: Gastric inhibitory polypeptide (GIP) is released from the small intestine upon meal ingestion and increases insulin secretion from pancreatic {beta} cells. Although the GIP receptor is known to be expressed in small intestine, the effects of GIP in small intestine are not fully understood. This study was designed to clarify the effect of GIP on intestinal glucose absorption and intestinal motility. Intestinal glucosemore » absorption in vivo was measured by single-pass perfusion method. Incorporation of [{sup 14}C]-glucose into everted jejunal rings in vitro was used to evaluate the effect of GIP on sodium-glucose co-transporter (SGLT). Motility of small intestine was measured by intestinal transit after oral administration of a non-absorbed marker. Intraperitoneal administration of GIP inhibited glucose absorption in wild-type mice in a concentration-dependent manner, showing maximum decrease at the dosage of 50 nmol/kg body weight. In glucagon-like-peptide-1 (GLP-1) receptor-deficient mice, GIP inhibited glucose absorption as in wild-type mice. In vitro examination of [{sup 14}C]-glucose uptake revealed that 100 nM GIP did not change SGLT-dependent glucose uptake in wild-type mice. After intraperitoneal administration of GIP (50 nmol/kg body weight), small intestinal transit was inhibited to 40% in both wild-type and GLP-1 receptor-deficient mice. Furthermore, a somatostatin receptor antagonist, cyclosomatostatin, reduced the inhibitory effect of GIP on both intestinal transit and glucose absorption in wild-type mice. These results demonstrate that exogenous GIP inhibits intestinal glucose absorption by reducing intestinal motility through a somatostatin-mediated pathway rather than through a GLP-1-mediated pathway.« less
Characterizing the interaction among bullet, body armor, and human and surrogate targets.
Shen, Weixin; Niu, Yuqing; Bykanova, Lucy; Laurence, Peter; Link, Norman
2010-12-01
This study used a combined experimental and modeling approach to characterize and quantify the interaction among bullet, body armor, and human surrogate targets during the 10-1000 μs range that is crucial to evaluating the protective effectiveness of body armor against blunt injuries. Ballistic tests incorporating high-speed flash X-ray measurements were performed to acquire the deformations of bullets and body armor samples placed against ballistic clay and gelatin targets with images taken between 10 μs and 1 ms of the initial impact. Finite element models (FEMs) of bullet, armor, and gelatin and clay targets were developed with material parameters selected to best fit model calculations to the test measurements. FEMs of bullet and armor interactions were then assembled with a FEM of a human torso and FEMs of clay and gelatin blocks in the shape of a human torso to examine the effects of target material and geometry on the interaction. Test and simulation results revealed three distinct loading phases during the interaction. In the first phase, the bullet was significantly slowed in about 60 μs as it transferred a major portion of its energy into the body armor. In the second phase, fibers inside the armor were pulled toward the point of impact and kept on absorbing energy until about 100 μs after the initial impact when energy absorption reached its peak. In the third phase, the deformation on the armor's back face continued to grow and energies inside both armor and targets redistributed through wave propagation. The results indicated that armor deformation and energy absorption in the second and third phases were significantly affected by the material properties (density and stiffness) and geometrical characteristics (curvature and gap at the armor-target interface) of the targets. Valid surrogate targets for testing the ballistic resistance of the armor need to account for these factors and produce the same armor deformation and energy absorption as on a human torso until at least about 100 μs (maximum armor energy absorption) or more preferably 300 μs (maximum armor deformation).
Han, Jijun; Yang, Deqiang; Sun, Houjun; Xin, Sherman Xuegang
2017-01-01
Inverse method is inherently suitable for calculating the distribution of source current density related with an irregularly structured electromagnetic target field. However, the present form of inverse method cannot calculate complex field-tissue interactions. A novel hybrid inverse/finite-difference time domain (FDTD) method that can calculate the complex field-tissue interactions for the inverse design of source current density related with an irregularly structured electromagnetic target field is proposed. A Huygens' equivalent surface is established as a bridge to combine the inverse and FDTD method. Distribution of the radiofrequency (RF) magnetic field on the Huygens' equivalent surface is obtained using the FDTD method by considering the complex field-tissue interactions within the human body model. The obtained magnetic field distributed on the Huygens' equivalent surface is regarded as the next target. The current density on the designated source surface is derived using the inverse method. The homogeneity of target magnetic field and specific energy absorption rate are calculated to verify the proposed method.
Thermoregulation in intense microwave fields
DOE Office of Scientific and Technical Information (OSTI.GOV)
Michaelson, S.M.
1981-10-01
These studies clearly indicate the thermoregulatory capacity of the dog to withstand exposure to high microwave fields at specific absorption rates (SAR) of 3.7 and 6.1 W/kg. It appears that adequate thermoregulation takes place at an SAR of 3.7 W/kg but only transiently at 6.1 W/kg. These values, compared with the standardized resting metabolic rate of 3.29 W/kg (0.75), provide a basis for assessing the relationship of the thermal burden and thermo-regulatory disruption by microwaves in the dog. To elucidate the thermal potential of microwave exposure, it was helpful to conduct these exposures at various ambient temperatures in which themore » normal body temperature remained stable, thus permitting comparison of heat production and dissipation with our without microwaves. The zone of the thermal neutrality or thermoneutral zone of vasomotor activity, 22-26.5 deg C, where body temperature is regulated by changes in vasomotor tonus, fulfilled this requirement.« less
RF Safety Analysis of a Novel Ultra-wideband Fetal Monitoring System.
Bushberg, Jerrold T; Tupin, J Paul
2017-05-01
The LifeWave Ultra-Wideband RF sensor (LWUWBS) is a monitoring solution for a variety of physiologic assessment applications, including maternal fetal monitoring in both the antepartum and intrapartum periods. The system uses extremely low power radio frequency (RF) ultra-wide band (UWB) signals to provide continuous fetal heart rate and contractions monitoring during labor and delivery. Even with the incorporation of three very conservative assumptions, (1) concentration of the RF energy in 1 cm, (2) minimal (2.5 cm) maternal tissue attenuation of fetal exposure, and (3) absence of normal thermoregulatory compensation, the maternal whole body spatial-averaged specific absorption rate (WBSAR) would be 34,000 times below the FCC public exposure limit of 0.08 W kg and, at 8 wk or more gestation, the peak spatial-averaged specific absorption rate (PSSAR) in the fetus would be more than 160 times below the localized exposure limit of 1.6 mW g. Even when using very conservative assumptions, an analysis of the LWUWBS's impact on tissue heating is a factor of 7 lower than what is allowed for fetal ultrasound and at least a factor of 650 compared to fetal MRI. The actual transmitted power levels of the LWUWBS are well below all Federal safety standards, and the potential for tissue heating is substantially lower than associated with current ultrasonic fetal monitors and MRI.
ELECTRON MICROSCOPY OF ABSORPTION OF TRACER MATERIALS BY TOAD URINARY BLADDER EPITHELIUM
Choi, Jae Kwon
1965-01-01
The absorption of Thorotrast and saccharated iron oxide by the epithelium of the toad urinary bladder was studied by electron microscopy. Whether the toads were hydrated, dehydrated, or given Pitressin, no significant differences in transport of colloidal particles by epithelial cells were observed. This implies that these physiological factors had little effect on the transport of the tracer particles. Tracer particles were encountered in three types of epithelial cells which line the bladder lumen, but most frequently in the mitochondria-rich cells. Tracer materials were incorporated into the cytoplasm of epithelial cells after being adsorbed to the coating layer covering the luminal surface of the cells. In the intermediate stage (1 to 3 hours after introducing tracer) particles were present in small vesicles, tubules, and multivesicular bodies. In the later stages (up to 65 hours), the particles were more commonly seen to be densely packed within large membrane-bounded bodies which were often found near the Golgi region. These large bodies probably were formed by the fusion of small vesicles. Irrespective of the stages of absorption, no particles were found in the intercellular spaces or in the submucosa. Particles apparently did not penetrate the intercellular spaces of the epithelium beyond the level of the tight junction. PMID:14287173
Beynen, A C; Meijer, G W; Lemmens, A G; Glatz, J F; Versluis, A; Katan, M B; Van Zutphen, L F
1989-06-01
In 2 inbred strains of rabbits with high or low response of plasma cholesterol to dietary cholesterol, excretion of steroids in the feces and efficiency of cholesterol absorption were determined. Rates of whole-body cholesterol synthesis, measured as fecal excretion of bile acids and neutral steroids minus cholesterol intake, were similar in hypo- and hyperresponders fed a low-cholesterol (8 mumol/100 g) diet. Transfer of the rabbits to a high-cholesterol (182 mumol/100 g) diet caused an increase in fecal bile acid excretion in hypo- but not in hyperresponders. Dietary cholesterol did not affect neutral steroid excretion in either rabbit strain. Hyperresponders tended to accumulate more cholesterol in their body than did hyporesponders. After the rabbits were switched back from the high- to the low-cholesterol diet, rates of whole-body cholesterol synthesis were significantly higher in the hypo- than in the hyperresponders. With the use of the simultaneous oral administration of [3H]cholesterol and beta-[14C]sitosterol, hyperresponders were found to absorb significantly higher percentages of cholesterol than hyporesponders. It is concluded that the differences in stimulation of bile acid excretion after cholesterol feeding and the efficiency of cholesterol absorption are important determinants of the phenomenon of hypo- and hyperresponsiveness in the 2 inbred rabbit strains.
Siauve, N; Nicolas, L; Vollaire, C; Marchal, C
2004-12-01
This article describes an optimization process specially designed for local and regional hyperthermia in order to achieve the desired specific absorption rate in the patient. It is based on a genetic algorithm coupled to a finite element formulation. The optimization method is applied to real human organs meshes assembled from computerized tomography scans. A 3D finite element formulation is used to calculate the electromagnetic field in the patient, achieved by radiofrequency or microwave sources. Space discretization is performed using incomplete first order edge elements. The sparse complex symmetric matrix equation is solved using a conjugate gradient solver with potential projection pre-conditionning. The formulation is validated by comparison of calculated specific absorption rate distributions in a phantom to temperature measurements. A genetic algorithm is used to optimize the specific absorption rate distribution to predict the phases and amplitudes of the sources leading to the best focalization. The objective function is defined as the specific absorption rate ratio in the tumour and healthy tissues. Several constraints, regarding the specific absorption rate in tumour and the total power in the patient, may be prescribed. Results obtained with two types of applicators (waveguides and annular phased array) are presented and show the faculties of the developed optimization process.
Bernardo, Ana Paula; Oliveira, Jose C; Santos, Olivia; Carvalho, Maria J; Cabrita, Antonio; Rodrigues, Anabela
2015-12-07
Insulin resistance has been associated with cardiovascular disease in peritoneal dialysis patients. Few studies have addressed the impact of fast transport status or dialysis prescription on insulin resistance. The aim of this study was to test whether insulin resistance is associated with obesity parameters, peritoneal transport rate, and glucose absorption. Insulin resistance was evaluated with homeostasis model assessment method (HOMA-IR), additionally corrected by adiponectin (HOMA-AD). Enrolled patients were prevalent nondiabetics attending at Santo António Hospital Peritoneal Dialysis Unit, who were free of hospitalization or infectious events in the previous 3 months (51 patients aged 50.4 ± 15.9 years, 59% women). Leptin, adiponectin, insulin-like growth factor-binding protein 1 (IGFBP-1), and daily glucose absorption were also measured. Lean tissue index, fat tissue index (FTI), and relative fat mass (rel.FM) were assessed using multifrequency bioimpedance. Patients were categorized according to dialysate to plasma creatinine ratio at 4 hours, 3.86% peritoneal equilibration test, and obesity parameters. Obesity was present in 49% of patients according to rel.FM. HOMA-IR correlated better with FTI than with body mass index. Significant correlations were found in obese, but not in nonobese patients, between HOMA-IR and leptin, leptin/adiponectin ratio (LAR), and IGFBP-1. HOMA-IR correlated with HOMA-AD, but did not correlate with glucose absorption or transport rate. There were no significant differences in insulin resistance indices, glucose absorption, and body composition parameters between fast and nonfast transporters. A total of 18 patients (35.3%) who had insulin resistance presented with higher LAR and rel.FM (7.3 [12.3, interquartile range] versus 0.7 [1.4, interquartile range], P<0.001, and 39.4 ± 10.1% versus 27.2 ± 11.5%, P=0.002, respectively), lower IGFBP-1 (8.2 ± 7.2 versus 21.0 ± 16.3 ng/ml, P=0.002), but similar glucose absorption and small-solute transport compared with patients without insulin resistance. FTI and LAR were independent correlates of HOMA-IR in multivariate analysis adjusted for glucose absorption and small-solute transport (r=0.82, P<0.001). Insulin resistance in nondiabetic peritoneal dialysis patients is associated with obesity and LAR independent of glucose absorption and small-solute transport status. Fast transport status was not associated with higher likelihood of obesity or insulin resistance. Copyright © 2015 by the American Society of Nephrology.
Effects of whole-body exposure to 915 MHz RFID on secretory functions of the thyroid system in rats.
Kim, Hye Sun; Paik, Man-Jeong; Kim, Yeon Ju; Lee, Gwang; Lee, Yun-Sil; Choi, Hyung-Do; Kim, Byung Chan; Pack, Jeong-Ki; Kim, Nam; Ahn, Young Hwan
2013-10-01
As a part of an investigation on the potential risks of radiofrequency identification (RFID) on human health, we studied whether exposure to 915 MHz RFID in rats significantly affected the secretory function of the thyroid system. A reverberation chamber was used as a whole-body exposure system. Male Sprague-Dawley rats were exposed for 8 h per day, 5 days per week, for a duration of 2, 4, 8, or 16 weeks. The estimated whole-body average specific absorption rate (SAR) varied from 3.2 to 4.6 W/kg depending on the age/mass of the animals for the field of the 915 MHz RFID reader. Plasma levels of triiodothyronine (T3), thyroxine (T4), and thyroid-stimulating hormone (TSH) were evaluated via enzyme-linked immunosorbent assay. Morphological changes in the thyroid gland were then analyzed. No changes in T3, T4, or TSH were observed over time between the sham- and RFID-exposed groups. We suggest that subchronic exposure to 915 MHz RFID at a SAR of 4 W/kg does not cause significant effects on thyroid secretory function. © 2013 Wiley Periodicals, Inc.
Tolazoline decreases survival time during microwave-induced lethal heat stress in anesthetized rats
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jauchem, J.R.; Chang, K.S.; Frei, M.R.
1996-03-01
Effects of {alpha}-adrenergic antagonists have been studied during environmental heating but not during microwave-induced heating. Tolazoline may exert some of its effects via {alpha}-adrenergic blockade. In the present study, ketamine-anesthetized Sprague-Dawley rats were exposed to 2450-MHz microwaves at an average power density of 60 mW/cm{sup 2} (whole-body specific absorption rate of approximately 14 W/kg) until lethal temperatures were attained. The effects of tolazoline (10 mg/kg body weight) on physiological responses (including changes in body temperature, heart rate, blood pressure, and respiratory rate) were examined. Survival time was significantly shorter in the tolazoline group than in saline-treated animals. In general, heartmore » rate and blood pressure responses were similar to those that occur during environmental heat stress. Heart rate, however, was significantly elevated in animals that received tolazoline, both before and during terminal microwave exposure. It is possible that changes associated with the elevated heart rate (e.g., less cardiac filling) in tolazoline-treated animals resulted in greater susceptibility to microwave-induced heating and the lower survival time. 47 refs., 3 figs., 2 tabs.« less
Compact planar monopole antenna for wearable wireless applications
NASA Astrophysics Data System (ADS)
Andriamiharivolamena, Tsitoha; Lemaître-Auger, Pierre; Tedjini, Smail; Tirard, Franck
2015-11-01
We report in this paper the design and the realization of a compact wearable monopole antenna directly placed over an Artificial Magnetic Conductor (AMC), which is located directly on the body. The major contribution is that there is no space between the monopole and the AMC, or between the AMC and the body. Simulation results and measurements are in good agreement and show that the antenna's performances are as good as the best ones reported so far in the literature, while having a smaller volume. The antenna operates at 1.92 GHz with a bandwidth of 8%. The reflection coefficient of the antenna is - 35 dB. The measurement of the antenna gain provides a value of 4.3 dBi with a half-power beamwidth of 70° and a front-to-back radiation ratio of 15.8 dB. Measurement and simulation results also show that the AMC isolates well the monopole from the body: the localized Specific Absorption Rate (SAR) value calculated with 1 g of tissue is 0.34 W/kg with an injected power of 1 W. The antenna with the AMC is well adapted for wearable applications.
Five-Photon Absorption and Selective Enhancement of Multiphoton Absorption Processes
2015-01-01
We study one-, two-, three-, four-, and five-photon absorption of three centrosymmetric molecules using density functional theory. These calculations are the first ab initio calculations of five-photon absorption. Even- and odd-order absorption processes show different trends in the absorption cross sections. The behavior of all even- and odd-photon absorption properties shows a semiquantitative similarity, which can be explained using few-state models. This analysis shows that odd-photon absorption processes are largely determined by the one-photon absorption strength, whereas all even-photon absorption strengths are largely dominated by the two-photon absorption strength, in both cases modulated by powers of the polarizability of the final excited state. We demonstrate how to selectively enhance a specific multiphoton absorption process. PMID:26120588
Five-Photon Absorption and Selective Enhancement of Multiphoton Absorption Processes.
Friese, Daniel H; Bast, Radovan; Ruud, Kenneth
2015-05-20
We study one-, two-, three-, four-, and five-photon absorption of three centrosymmetric molecules using density functional theory. These calculations are the first ab initio calculations of five-photon absorption. Even- and odd-order absorption processes show different trends in the absorption cross sections. The behavior of all even- and odd-photon absorption properties shows a semiquantitative similarity, which can be explained using few-state models. This analysis shows that odd-photon absorption processes are largely determined by the one-photon absorption strength, whereas all even-photon absorption strengths are largely dominated by the two-photon absorption strength, in both cases modulated by powers of the polarizability of the final excited state. We demonstrate how to selectively enhance a specific multiphoton absorption process.
Collisional Processing of Comet and Asteroid Surfaces: Velocity Effects on Absorption Spectra
NASA Technical Reports Server (NTRS)
Lederer, S. M.; Jensen, E. A.; Wooden, D. H.; Lindsay, S. S.; Smith, D. C.; Nakamura-Messenger, K.; Keller, L. P.; Cintala, M. J.; Zolensky, M. E.
2012-01-01
A new paradigm has emerged where 3.9 Gyr ago, a violent reshuffling reshaped the placement of small bodies in the solar system (the Nice model). Surface properties of these objects may have been affected by collisions caused by this event, and by collisions with other small bodies since their emplacement. These impacts affect the spectrographic observations of these bodies today. Shock effects (e.g., planar dislocations) manifest in minerals allowing astronomers to better understand geophysical impact processing that has occurred on small bodies. At the Experimental Impact Laboratory at NASA Johnson Space Center, we have impacted forsterite and enstatite across a range of velocities. We find that the amount of spectral variation, absorption wavelength, and full width half maximum of the absorbance peaks vary non-linearly with the velocity of the impact. We also find that the spectral variation increases with decreasing crystal size (single solid rock versus granular). Future analyses include quantification of the spectral changes with different impactor densities, temperature, and additional impact velocities. Results on diopside, fayalite, and magnesite can be found in Lederer et al., this meeting.
NASA Astrophysics Data System (ADS)
Cucinotta, Francis A.; Yan, Congchong; Saganti, Premkumar B.
2018-01-01
Heavy ion absorption cross sections play an important role in radiation transport codes used in risk assessment and for shielding studies of galactic cosmic ray (GCR) exposures. Due to the GCR primary nuclei composition and nuclear fragmentation leading to secondary nuclei heavy ions of charge number, Z with 3 ≤ Z ≥ 28 and mass numbers, A with 6 ≤ A ≥ 60 representing about 190 isotopes occur in GCR transport calculations. In this report we describe methods for developing a data-base of isotopic dependent heavy ion absorption cross sections for interactions. Calculations of a 2nd-order optical model solution to coupled-channel solutions to the Eikonal form of the nucleus-nucleus scattering amplitude are compared to 1st-order optical model solutions. The 2nd-order model takes into account two-body correlations in the projectile and target ground-states, which are ignored in the 1st-order optical model. Parameter free predictions are described using one-body and two-body ground state form factors for the isotopes considered and the free nucleon-nucleon scattering amplitude. Root mean square (RMS) matter radii for protons and neutrons are taken from electron and muon scattering data and nuclear structure models. We report on extensive comparisons to experimental data for energy-dependent absorption cross sections for over 100 isotopes of elements from Li to Fe interacting with carbon and aluminum targets. Agreement between model and experiments are generally within 10% for the 1st-order optical model and improved to less than 5% in the 2nd-order optical model in the majority of comparisons. Overall the 2nd-order optical model leads to a reduction in absorption compared to the 1st-order optical model for heavy ion interactions, which influences estimates of nuclear matter radii.
Mid-IR absorption sensing of heavy water using a silicon-on-sapphire waveguide.
Singh, Neetesh; Casas-Bedoya, Alvaro; Hudson, Darren D; Read, Andrew; Mägi, Eric; Eggleton, Benjamin J
2016-12-15
We demonstrate a compact silicon-on-sapphire (SOS) strip waveguide sensor for mid-IR absorption spectroscopy. This device can be used for gas and liquid sensing, especially to detect chemically similar molecules and precisely characterize extremely absorptive liquids that are difficult to detect by conventional infrared transmission techniques. We reliably measure concentrations up to 0.25% of heavy water (D2O) in a D2O-H2O mixture at its maximum absorption band at around 4 μm. This complementary metal-oxide-semiconductor (CMOS) compatible SOS D2O sensor is promising for applications such as measuring body fat content or detection of coolant leakage in nuclear reactors.
NASA Astrophysics Data System (ADS)
Cubeddu, Rinaldo; Canti, Gianfranco L.; Pifferi, Antonio; Taroni, Paola; Valentini, Gianluca
1995-03-01
The absorption spectrum of disulphonated aluminum phthalocyanine (AlS2Pc) between 650 nm and 695 nm was measured in vivo by means of time-resolved reflectance. The experiments were performed on mice bearing the L1210 leukemia 1, 4, and 7 hr after the i.p. administration of 2.5 mg/kg body weight (b.w.) of AlS2Pc. The absorption peak is centered at 685 nm, red-shifted of 10 - 15 nm with respect to the spectra obtained in solution in various environments. Measurements performed in vitro confirm the results in vivo and seem to suggest that the extracellular environment can cause the shift in the absorption line shape.
Kiss, Joseph E; Birch, Rebecca J; Steele, Whitney R; Wright, David J; Cable, Ritchard G
2017-07-01
Repeated blood donation alters the iron balance of blood donors. We quantified these effects by analyzing changes in body iron as well as calculating iron absorbed per day for donors enrolled in a prospective study. For 1308 donors who completed a final study visit, we calculated total body iron at the enrollment and final visits and the change in total body iron over the course of the study. Taking into account iron lost from blood donations during the study and obligate losses, we also calculated the average amount of iron absorbed per day. First-time/reactivated donors at enrollment had iron stores comparable to previous general population estimates. Repeat donors had greater donation intensity and greater mean iron losses than first-time/reactivated donors, yet they had little change in total body iron over the study period, whereas first-time/reactivated donors had an average 35% drop. There was higher estimated iron absorption in the repeat donors (men: 4.49 mg/day [95% confidence interval [CI], 4.41-4.58 mg/day]; women: 3.75 mg/day [95% CI, 3.67-3.84 mg/day]) compared with estimated iron absorption in first-time/reactivated donors (men: 2.89 mg/day [95% CI, 2.75-3.04 mg/day]; women: 2.76 mg/day [95% CI, 2.64-2.87 mg/day]). The threshold for negative estimated iron stores (below "0" mg/kg stores) was correlated with the development of anemia at a plasma ferritin value of 10 ng/mL. These analyses provide quantitative data on changes in estimated total body iron for a broad spectrum of blood donors. In contrast to using ferritin alone, this model allows assessment of the iron content of red blood cells and the degree of both iron surplus and depletion over time. © 2017 AABB.
RADIOACTIVE IRON ABSORPTION BY GASTRO-INTESTINAL TRACT
Hahn, P. F.; Bale, W. F.; Ross, J. F.; Balfour, W. M.; Whipple, G. H.
1943-01-01
Iron absorption is a function of the gastro-intestinal mucosal epithelium. The normal non-anemic dog absorbs little iron but chronic anemia due to blood loss brings about considerable absorption—perhaps 5 to 15 times normal. In general the same differences are observed in man (1). Sudden change from normal to severe anemia within 24 hours does not significantly increase iron absorption. As the days pass new hemoglobin is formed. The body iron stores are depleted and within 7 days iron absorption is active, even when the red cell hematocrit is rising. Anoxemia of 50 per cent normal oxygen concentration for 48 hours does not significantly enhance iron absorption. In this respect it resembles acute anemia. Ordinary doses of iron given 1 to 6 hours before radio-iron will cause some "mucosa block"—that is an intake of radio-iron less than anticipated. Many variables which modify peristalsis come into this reaction. Iron given by vein some days before the dose of radio-iron does not appear to inhibit iron absorption. Plasma radio-iron absorption curves vary greatly. The curves may show sharp peaks in 1 to 2 hours when the iron is given in an empty stomach but after 6 hours when the radio-iron is given with food. Duration time of curves also varies widely, the plasma iron returning to normal in 6 to 12 hours. Gastric, duodenal, or jejunal pouches all show very active absorption of iron. The plasma concentration peak may reach a maximum before the solution of iron is removed from the gastric pouch—another example of "mucosa block." Absorption and distribution of radio-iron in the body of growing pups give very suggestive experimental data. The spleen, heart, upper gastro-intestinal tract, marrow, and pancreas show more radio-iron than was expected. The term "physiological saturation" with iron may be applied to the gastro-intestinal mucosal epithelium and explain one phase of acceptance or refusal of ingested iron. Desaturation is a matter of days not hours, whereas saturation may take place within 1 to 2 hours. We believe this change is a part of the complex protein metabolism of the cell. PMID:19871320
Optical probe with light fluctuation protection
Da Silva, Luiz B.; Chase, Charles L.
2003-11-11
An optical probe for tissue identification includes an elongated body. Optical fibers are located within the elongated body for transmitting light to and from the tissue. Light fluctuation protection is associated with the optical fibers. In one embodiment the light fluctuation protection includes a reflective coating on the optical fibers to reduce stray light. In another embodiment the light fluctuation protection includes a filler with very high absorption located within the elongated body between the optical fibers.
Renal Control of Calcium, Phosphate, and Magnesium Homeostasis
Chonchol, Michel; Levi, Moshe
2015-01-01
Calcium, phosphate, and magnesium are multivalent cations that are important for many biologic and cellular functions. The kidneys play a central role in the homeostasis of these ions. Gastrointestinal absorption is balanced by renal excretion. When body stores of these ions decline significantly, gastrointestinal absorption, bone resorption, and renal tubular reabsorption increase to normalize their levels. Renal regulation of these ions occurs through glomerular filtration and tubular reabsorption and/or secretion and is therefore an important determinant of plasma ion concentration. Under physiologic conditions, the whole body balance of calcium, phosphate, and magnesium is maintained by fine adjustments of urinary excretion to equal the net intake. This review discusses how calcium, phosphate, and magnesium are handled by the kidneys. PMID:25287933
Energy Absorption Mechanisms in Unidirectional Composites Subjected to Dynamic Loading Events
2012-03-30
integral part of commercial, recreation, and defense markets . The proliferation of applications for fiber-reinforced composite technology can be in large...soft body armors. The growth of composites in high-performance markets continues to outpace the development of new and improved physics-based...pp. 718 – 730, 2008. 16. G. C. Jacob, J. F. Fellers, S. Simunovic, and J. M. Starbuck , “Energy Absorption in Polymer Composites for
Evaluation of the whole body physiologically based pharmacokinetic (WB-PBPK) modeling of drugs.
Munir, Anum; Azam, Shumaila; Fazal, Sahar; Bhatti, A I
2018-08-14
The Physiologically based pharmacokinetic (PBPK) modeling is a supporting tool in drug discovery and improvement. Simulations produced by these models help to save time and aids in examining the effects of different variables on the pharmacokinetics of drugs. For this purpose, Sheila and Peters suggested a PBPK model capable of performing simulations to study a given drug absorption. There is a need to extend this model to the whole body entailing all another process like distribution, metabolism, and elimination, besides absorption. The aim of this scientific study is to hypothesize a WB-PBPK model through integrating absorption, distribution, metabolism, and elimination processes with the existing PBPK model.Absorption, distribution, metabolism, and elimination models are designed, integrated with PBPK model and validated. For validation purposes, clinical records of few drugs are collected from the literature. The developed WB-PBPK model is affirmed by comparing the simulations produced by the model against the searched clinical data. . It is proposed that the WB-PBPK model may be used in pharmaceutical industries to create of the pharmacokinetic profiles of drug candidates for better outcomes, as it is advance PBPK model and creates comprehensive PK profiles for drug ADME in concentration-time plots. Copyright © 2018 Elsevier Ltd. All rights reserved.
Zinc absorption in humans from meals based on rye, barley, oatmeal, triticale and whole wheat
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sandstroem, B.A.; Almgren, A.; Kivistoe, B.C.
The absorption of zinc from meals based on 60 g of rye, barley, oatmeal, triticale or whole wheat was studied by use of extrinsic labelling with /sup 65/Zn and measurement of the whole-body retention of the radionuclide. The cereals were prepared in the form of bread or porridge and were served with 200 mL of milk. The oatmeal flakes were also served without further preparation. The absorption of zinc was negatively correlated to the phytic acid content of the meal with the highest absorption, 26.8 +/- 7.4%, from the rye bread meal containing 100 mumol of phytic acid and themore » lowest, 8.4 +/- 1.0%, from oatmeal porridge with a phytic acid content of 600 mumol. It is concluded that food preparation that decreases the phytic acid content improves zinc absorption.« less
Luo, Min; Zhang, Xin; Sun, Wen Juan; Jiao, Ning; Li, De Fa; Yin, Jing Dong
2016-01-01
Dietary protein restriction is not only beneficial to health and longevity in humans, but also protects against air pollution and minimizes feeding cost in livestock production. However, its impact on amino acid (AA) absorption and metabolism is not quite understood. Therefore, the study aimed to explore the effect of protein restriction on nitrogen balance, circulating AA pool size, and AA absorption using a pig model. In Exp.1, 72 gilts weighting 29.9 ± 1.5 kg were allocated to 1 of the 3 diets containing 14, 16, or 18% CP for a 28-d trial. Growth (n = 24), nitrogen balance (n = 6), and the expression of small intestinal AA and peptide transporters (n = 6) were evaluated. In Exp.2, 12 barrows weighting 22.7 ± 1.3 kg were surgically fitted with catheters in the portal and jejunal veins as well as the carotid artery and assigned to a diet containing 14 or 18% CP. A series of blood samples were collected before and after feeding for determining the pool size of circulating AA and AA absorption in the portal vein, respectively. Protein restriction did not sacrifice body weight gain and protein retention, since nitrogen digestibility was increased as dietary protein content reduced. However, the pool size of circulating AA except for lysine and threonine, and most AA flux through the portal vein were reduced in pigs fed the low protein diet. Meanwhile, the expression of peptide transporter 1 (PepT-1) was stimulated, but the expression of the neutral and cationic AA transporter systems was depressed. These results evidenced that protein restriction with essential AA-balanced diets, decreased AA absorption and reduced circulating AA pool size. Increased expression of small intestinal peptide transporter PepT-1 could not compensate for the depressed expression of jejunal AA transporters for AA absorption. PMID:27611307
NASA Astrophysics Data System (ADS)
Doney, Robert L.; Agui, Juan H.; Sen, Surajit
2009-09-01
Rapid absorption of impulses using light-weight, small, reusable systems is a challenging problem. An axially aligned set of progressively shrinking elastic spheres, a "tapered chain," has been shown to be a versatile and scalable shock absorber in earlier simulational, theoretical, and experimental works by several authors. We have recently shown (see R. L. Doney and S. Sen, Phys. Rev. Lett. 97, 155502 (2006)) that the shock absorption ability of a tapered chain can be dramatically enhanced by placing small interstitial grains between the regular grains in the tapered chain systems. Here we focus on a detailed study of the problem introduced in the above mentioned letter, present extensive dynamical simulations using parameters for a titanium-aluminum-vanadium alloy Ti6Al4V, derive attendant hard-sphere analyses based formulae to describe energy dispersion, and finally discuss some preliminary experimental results using systems with chrome spheres and small Nitinol interstitial grains to present the underlying nonlinear dynamics of this so-called decorated tapered granular alignment. We are specifically interested in small systems, comprised of several grains. This is because in real applications, mass and volume occupied must inevitably be minimized. Our conclusion is that the decorated tapered chain offers enhanced energy dispersion by locking in much of the input energy in the grains of the tapered chain rather than in the small interstitial grains. Thus, the present study offers insights into how the shock absorption capabilities of these systems can be pushed even further by improving energy absorption capabilities of the larger grains in the tapered chains. We envision that these scalable, decorated tapered chains may be used as shock absorbing components in body armor, armored vehicles, building applications and in perhaps even in applications in rehabilitation science.
1993-06-15
for another polar area. For samples from Antartic waters, the mean a*pan(4 3 5 ), normalized to chl a + pheo, was 0.0 18 m2 (mg chl a)-I (Mitchell and...specific absorption coefficients, was suggested as the cause of relatively low mean specific absorption coefficients in the Antartic . The values of c1...moored optical sensors in the Sargasso Sea. J. Geophys. Res. 97, 7399-7412. Mitchell, B.G., and 0. Holm-Hansen 1991. Bio-optical properties of Antartic
The effect of volatility on percutaneous absorption.
Rouse, Nicole C; Maibach, Howard I
2016-01-01
Topically applied chemicals may volatilize, or evaporate, from skin leaving behind a chemical residue with new percutaneous absorptive capabilities. Understanding volatilization of topical medications, such as sunscreens, fragrances, insect repellants, cosmetics and other commonly applied topicals may have implications for their safety and efficacy. A systematic review of English language articles from 1979 to 2014 was performed using key search terms. Articles were evaluated to assess the relationship between volatility and percutaneous absorption. A total of 12 articles were selected and reviewed. Key findings were that absorption is enhanced when coupled with a volatile substance, occlusion prevents evaporation and increases absorption, high ventilation increases volatilization and reduces absorption, and pH of skin has an affect on a chemical's volatility. The articles also brought to light that different methods may have an affect on volatility: different body regions; in vivo vs. in vitro; human vs. Data suggest that volatility is crucial for determining safety and efficacy of cutaneous exposures and therapies. Few articles have been documented reporting evaporation in the context of percutaneous absorption, and of those published, great variability exists in methods. Further investigation of volatility is needed to properly evaluate its role in percutaneous absorption.
Occupant seating anthropometry: body ellipses and contact zones for side-impact protection research
NASA Astrophysics Data System (ADS)
Culver, Clyde C.; Viano, David C.
The study has developed an anthropometric description of seated occupants and determined body regions representing major paths in side-impact crashes. The study has identified five major body ellipses defining the head, shoulder, chest, abdomen and pelvis of seated occupants of various sizes, including the six-year-old child. Body contact zones have been determined for front-seated occupants. These templates provide information for the design of side interiors to improve occupant protection in side-impact crashes by load-transfer and energy-absorption characteristics of biocompatible interiors.
The Transiting Exocomets of HD 172555
NASA Technical Reports Server (NTRS)
Grady, C. A.; Brown, Alex; Kamp, Inga; Riviere-Marichalar, Pablo; Roberge, Aki; Welsh, Barry
2016-01-01
While most attention has been garnered by searches for super-Jovian mass exo-planets the presence of minor bodies can be detected, at least through their dissociation products in suitably oriented systems. The principal detection technique is line-of-sight absorption spectroscopy of systems viewed close to edge-on. I review what we have learned about such bodies in beta Pictoris, and HD 172555, their link to more massive bodies in their systems, and what this tells us about the frequency and potential locations of Jovian-mass bodies in advance of their direct imaging detection.
Study on the frame body structure of micro-electric vehicle based on frontal crash safety
NASA Astrophysics Data System (ADS)
Lu, Yaoquan; Zhang, Sanchuan
2017-08-01
In order to research the safety of skeleton type body of micro-electric vehicles in the frontal collision, the method of finite element modeling and simulation are used to analyze frame body that is fitted with the energy absorption structure, the simulation results show that On the basis of absorbing the most energy and the least of body acceleration, the absorbent structure parameters can be optimized, the optimized parameters are length 180 mm, wall thickness 3 mm and materials Q460.
Development of numerical phantoms by MRI for RF electromagnetic dosimetry: a female model.
Mazzurana, M; Sandrini, L; Vaccari, A; Malacarne, C; Cristoforetti, L; Pontalti, R
2004-01-01
Numerical human models for electromagnetic dosimetry are commonly obtained by segmentation of CT or MRI images and complex permittivity values are ascribed to each issue according to literature values. The aim of this study is to provide an alternative semi-automatic method by which non-segmented images, obtained by a MRI tomographer, can be automatically related to the complex permittivity values through two frequency dependent transfer functions. In this way permittivity and conductivity vary with continuity--even in the same tissue--reflecting the intrinsic realistic spatial dispersion of such parameters. A female human model impinged by a plane wave is tested using finite-difference time-domain algorithm and the results of the total body and layer-averaged specific absorption rate are reported.
1978-11-01
the Proceedings of the IEEE (January 1980) Special Issue on Biologi - cal and Ecoigical Effects and Medical Applications of Electromag- netic Energy...prolate spheroidal and ellipsoidal equivalents of biologi - cal bodies, theoretical calculations have recently been given in a dosimetry handbook3 for...surface layers, e.g., skin, fat, muscle, which normally occur in biologi - cal bodies. It is found that the layering resonance for three-dimensional bodies
Spectral radiative properties of a living human body
NASA Astrophysics Data System (ADS)
Terada, N.; Ohnishi, K.; Kobayashi, M.; Kunitomo, T.
1986-09-01
Spectral radiative properties of the human body were studied experimentally in the region from the ultraviolet to the far-infrared to know the thermal response of the human body exposed to solar radiation and infrared radiation. The measuring equipment for reflectance and transmittance of a semitransparent scattering medium was developed and measurement on a living human skin was performed in vivo. The measured parts are forearm, cheek, dorsum hand, hip, and hair. The values obtained by the present study are much different from those of previous in vitro measurements. Fairly large values for hemispherical reflectances are observed in the visible and near-infrared regions but very small values for hemispherical reflectances are observed in the infrared region, below 0.05. By applying the four-flux treatment of radiative transfer, the absorption coefficient and scattering coefficient in the human skin are determined. The scattering coefficient is large in the visible region but negligible in the infrared region. The absorption coefficient is very close to that of water and large in the infrared region.
A new concept for solar pumped lasers
NASA Technical Reports Server (NTRS)
Christiansen, W. H.
1978-01-01
A new approach is proposed in which an intermediate body heated by sunlight is used as the pumping source for IR systems, i.e., concentration solar radiation is absorbed and reradiated via an intermediate blackbody. This body is heated by focused sunlight to a high temperature and its heat losses are engineered to be small. The cooled laser tube (or tubes) is placed within the cavity and is pumped by it. The advantage is that the radiation spectrum is like a blackbody at the intermediate temperature and the laser medium selectively absorbs this light. Focusing requirements, heat losses, and absorption bandwidths of laser media are examined, along with energy balance and potential efficiency. The results indicate that for lasers pumped through an IR absorption spectrum, the use of an intermediate blackbody offers substantial and important advantages. The loss in radiative intensity for optical pumping by a lower-temperature body is partly compensated by the increased solid angle of exposure to the radiative environment.
Carvajal-Zarrabal, O.; Hayward-Jones, P. M.; Orta-Flores, Z.; Nolasco-Hipólito, C.; Barradas-Dermitz, D. M.; Aguilar-Uscanga, M. G.; Pedroza-Hernández, M. F.
2009-01-01
The effect of Hibiscus sabdariffa L. (Hs) calyx extract on fat absorption-excretion and body weight in rats, was investigated. Rats were fed with either a basal diet (SDC = Control diet) or the same diet supplemented with Hs extracts at 5%, 10% and 15% (SD5, SD10 and SD15). Only SD5 did not show significant increases in weight, food consumption and efficiency compared to SDC. The opposite occurred in SD15 group which showed a significant decrease for these three parameters. The SD10 responses were similar to SD15, with the exception of food consumption. In both SDC and SD5 groups, no body weight loss was observed; however, only in the latter group was there a significantly greater amount of fatty acids found in feces. A collateral effect emerging from the study is that components of Hs extract at the intermediate and greater concentrations used in this experiment could be considered possible antiobesity agents. PMID:19756159
NASA Astrophysics Data System (ADS)
Panova, Ina G.; Tatikolov, Alexander S.
2009-02-01
We used one of cyanine dyes as a spectral and fluorescent probe in the study of the composition of the extracellular matrix of the human eye (its vitreous body). Owing to the unique ability of the dye to bind to collagens and human serum albumin, we revealed the simultaneous presence of both types of biomacromolecules in the vitreous body. The formation of the dye complex with human serum albumin leads to appearance of a long-wavelength absorption band (~612 nm) and a steep rise of fluorescence, whereas in the presence of collagens the dye forms J-aggregates with a longer-wavelength absorption band (640-660 nm) and moderate fluorescence. In this work we studied the composition of the human fetus vitreous body and its dynamics from 9 to 31 gestation weeks. On the basis of the data obtained by this method, we may assume that albumin, being a carrier protein, probably provides the vitreous body and surrounding tissues with necessary growth factors, hormones, lipids, vitamins, and some other biomolecules. The data show that the dye is promising not only for study of albumin functions in eye development, but also for characterization of some eye diseases and for analysis of other extracellular media.
NASA Astrophysics Data System (ADS)
Ramli, N. H.; Jaafar, H.; Lee, Y. S.
2018-03-01
Recently, wireless implantable body area network (WiBAN) system become an active area of research due to their various applications such as healthcare, support systems for specialized occupations and personal communications. Biomedical sensors networks mounted in the human body have drawn greater attention for health care monitoring systems. The implantable chip printed antenna for WiBAN applications is designed and the antenna performances is investigated in term of gain, efficiency, return loss, operating bandwidth and radiation pattern at different environments. This paper is presents the performances of implantable chip printed antenna in selected part of human body (hand, chest, leg, heart and skull). The numerical investigation is done by using human voxel model in built in the CST Microwave Studio Software. Results proved that the chip printed antenna is suitable to implant in the human hand model. The human hand model has less complex structure as it consists of skin, fat, muscle, blood and bone. Moreover, the antenna is implanted under the skin. Therefore the signal propagation path length to the base station at free space environment is considerably short. The antenna’s gain, efficiency and Specific Absorption Rate (SAR) are - 13.62dBi, 1.50 % and 0.12 W/kg respectively; which confirms the safety of the antenna usage. The results of the investigations can be used as guidance while designing chip implantable antenna in future.
[Impact of high-fat diet induced obesity on glucose absorption in small intestinal mucose in rats].
Huang, Wei; Liu, Rui; Guo, Wei; Wei, Na; Qiang, Ou; Li, Xian; Ou, Yan; Tang, Chengwei
2012-11-01
To investigate whether high-fat diet induced obesity was associated with variation of glucose absorption in small intestinal mucosa of rats. 46 male SD rats were randomly divided into high-fat diet group (n = 31) and control group (n = 15), fed with high-fat diet and normal diet for 24 weeks, respectively. After 24 weeks, the rats were divided into obese (n = 16) and obesity-resistant group (n = 10) according to their body weight. Rats' body weight, abdominal fat weight, plasma glucose level, maltase, sucrase activity in small intestinal mucosa were measured. SGLT-1 expression in intestinal mucosa was detected by immunohistochemistry, RT-PCR and Western blot. Mean body weight, abdominal fat weight, fast plasma glucose levels, maltase activities and SGLT-1 protein expression in intestinal mucosa of obese rats were significantly higher than those in the control and obesity-resistant rats (P < 0.05). Sucrase activities in intestinal mucosa showed no statistical difference among the three groups (P > 0.05). The SGLT-1 mRNA expression in obese group was increased by 12.5% and 23% when compare with the control and obesity-resistant group, respectively. But the difference was not statistical significant (P > 0.05). High-fat diet induced obesity was associated with the increased intestinal maltase activity and expression of SGLT-1 in rats, the key molecule in glucose absorption.
Nilsson, Anna; Peric, Alexandra; Strimfors, Marie; Goodwin, Richard J A; Hayes, Martin A; Andrén, Per E; Hilgendorf, Constanze
2017-07-25
Knowledge about the region-specific absorption profiles from the gastrointestinal tract of orally administered drugs is a critical factor guiding dosage form selection in drug development. We have used a novel approach to study three well-characterized permeability and absorption marker drugs in the intestine. Propranolol and metoprolol (highly permeable compounds) and atenolol (low-moderate permeability compound) were orally co-administered to rats. The site of drug absorption was revealed by high spatial resolution matrix-assisted laser desorption ionization mass spectrometry imaging (MALDI-MSI) and complemented by quantitative measurement of drug concentration in tissue homogenates. MALDI-MSI identified endogenous molecular markers that illustrated the villi structures and confirmed the different absorption sites assigned to histological landmarks for the three drugs. Propranolol and metoprolol showed a rapid absorption and shorter transit distance in contrast to atenolol, which was absorbed more slowly from more distal sites. This study provides novel insights into site specific absorption for each of the compounds along the crypt-villus axis, as well as confirming a proximal-distal absorption gradient along the intestine. The combined analytical approach allowed the quantification and spatial resolution of drug distribution in the intestine and provided experimental evidence for the suggested absorption behaviour of low and highly permeable compounds.
Interference between extrinsic and intrinsic losses in x-ray absorption fine structure
NASA Astrophysics Data System (ADS)
Campbell, L.; Hedin, L.; Rehr, J. J.; Bardyszewski, W.
2002-02-01
The interference between extrinsic and intrinsic losses in x-ray absorption fine structure (XAFS) is treated within a Green's-function formalism, without explicit reference to final states. The approach makes use of a quasiboson representation of excitations and perturbation theory in the interaction potential between electrons and quasibosons. These losses lead to an asymmetric broadening of the main quasiparticle peak plus an energy-dependent satellite in the spectral function. The x-ray absorption spectra (XAS) is then given by a convolution of an effective spectral function over a one-electron cross section. It is shown that extrinsic and intrinsic losses tend to cancel near excitation thresholds, and correspondingly, the strength in the main peak increases. At high energies, the theory crosses over to the sudden approximation. These results thus explain the observed weakness of multielectron excitations in XAS. The approach is applied to estimate the many-body corrections to XAFS, beyond the usual mean-free path, using a phasor summation over the spectral function. The asymmetry of the spectral function gives rise to an additional many-body phase shift in the XAFS formula.
Moderately nonlinear ultrasound propagation in blood-mimicking fluid.
Kharin, Nikolay A; Vince, D Geoffrey
2004-04-01
In medical diagnostic ultrasound (US), higher than-in-water nonlinearity of body fluids and tissue usually does not produce strong nonlinearly distorted waves because of the high absorption. The relative influence of absorption and nonlinearity can be characterized by the Gol'dberg number Gamma. There are two limiting cases in nonlinear acoustics: weak waves (Gamma < 1) or strong waves (Gamma > 1). However, at diagnostic frequencies in tissue and body fluids, the nonlinear effects and effects of absorption more likely are comparable (Gol'dberg number Gamma approximately 1). The aim of this work was to study the nonlinear propagation of a moderately nonlinear US second harmonic signal in a blood-mimicking fluid. Quasilinear solutions to the KZK equation are presented, assuming radiation from a flat and geometrically focused circular Gaussian source. The solutions are expressed in a new simplified closed form and are in very good agreement with those of previous studies measuring and modeling Gaussian beams. The solutions also show good agreement with the measurements of the beams produced by commercially available transducers, even without special Gaussian shading.
Ferreira, H. G.; Jesus, C. H.
1973-01-01
1. The capacity of adaptation of toads (Bufo bufo) to environments of high salinity was studied and the relative importance of skin, kidney and urinary bladder in controlling the balance of water and salt was assessed. 2. Toads were kept in NaCl solutions of 20, 50, 110, 150 and 220 mM and studied in their fourth week of adaptation. A group of animals considered as `control' was kept in wet soil with free access to water. Plasma, ureter urine, and bladder and colon contents were analysed for sodium, potassium, chloride and osmolality, and total body sodium and water were determined. Absorption of water and 22Na through the skin, and water flow and sodium excretion through the ureter, of intact animals was studied. Hydrosmotic water transport through the isolated urinary bladder of `control' and adapted animals was determined. The effects of pitressin and aldosterone on the water and sodium balance are described. 3. The survival rates of toads kept in saline concentrations up to 150 mM were identical to that of `control' animals, but half of the animals kept in 220 mM died within 4 weeks. 4. There is a linear correlation between the sodium concentrations and osmolality of plasma and of the external media. 5. The sodium concentration in colon contents rose with rising external concentrations, up to values higher than the values in plasma. 6. Sodium concentrations and osmolalities of ureter and bladder urine increased in adapted animals, the values for bladder urine becoming much higher than those for ureter urine in animals adapted to 110, 150 and 220 mM. 7. Total body water, as a percentage of total weight was kept within very narrow limits, although the total body sodium increased with adaptation. 8. Absorption of water through the skin for the same osmotic gradients was smaller in adapted than in `control' animals. 9. The ureteral output of water of toads adapted to 110 and 150 mM-NaCl was larger than the water absorption through the skin. 10. Skin absorption of sodium was lower in animals adapted to concentrated saline solutions than in `control' animals. 11. Sodium output by the ureter was identical to skin absorption in `control' animals adapted to 20, 50 and 110 mM-NaCl but was higher in animals adapted to 150 mM-NaCl. 12. Aldosterone increased the absorption of sodium in `control' and adapted toads, but at all dose levels absorption by control was greater than by adapted animals. 13. The stimulation of water absorption by vasopressin in vivo or in isolated bladders was not modified in animals adapted to high salinities. PMID:4633911
Specific absorption rate analysis of broadband mobile antenna with negative index metamaterial
NASA Astrophysics Data System (ADS)
Alam, Touhidul; Faruque, Mohammad Rashed Iqbal; Islam, Mohammad Tariqul
2016-03-01
This paper presents a negative index metamaterial-inspired printed mobile wireless antenna that can support most mobile applications such as GSM, UMTS, Bluetooth and WLAN frequency bands. The antenna consists of a semi-circular patch, a 50Ω microstrip feed line and metamaterial ground plane. The antenna occupies a very small space of 37 × 47 × 0.508 mm3, making it suitable for mobile wireless application. The perceptible novelty shown in this proposed antenna is that reduction of specific absorption rate using the negative index metamaterial ground plane. The proposed antenna reduced 72.11 and 75.53 % of specific absorption rate at 1.8 and 2.4 GHz, respectively.
An Alternative Wearable Tracking System Based on a Low-Power Wide-Area Network.
Fernández-Garcia, Raul; Gil, Ignacio
2017-03-14
This work presents an alternative wearable tracking system based on a low-power wide area network. A complete GPS receiver was integrated with a textile substrate, and the latitude and longitude coordinates were sent to the cloud by means of the SIM-less SIGFOX network. To send the coordinates over SIGFOX protocol, a specific codification algorithm was used and a customized UHF antenna on jeans fabric was designed, simulated and tested. Moreover, to guarantee the compliance to international regulations for human body exposure to electromagnetic radiation, the electromagnetic specific absorption rate of this antenna was analyzed. A specific remote server was developed to decode the latitude and longitude coordinates. Once the coordinates have been decoded, the remote server sends this information to the open source data viewer SENTILO to show the location of the sensor node in a map. The functionality of this system has been demonstrated experimentally. The results guarantee the utility and wearability of the proposed tracking system for the development of sensor nodes and point out that it can be a low cost alternative to other commercial products based on GSM networks.
Renal control of calcium, phosphate, and magnesium homeostasis.
Blaine, Judith; Chonchol, Michel; Levi, Moshe
2015-07-07
Calcium, phosphate, and magnesium are multivalent cations that are important for many biologic and cellular functions. The kidneys play a central role in the homeostasis of these ions. Gastrointestinal absorption is balanced by renal excretion. When body stores of these ions decline significantly, gastrointestinal absorption, bone resorption, and renal tubular reabsorption increase to normalize their levels. Renal regulation of these ions occurs through glomerular filtration and tubular reabsorption and/or secretion and is therefore an important determinant of plasma ion concentration. Under physiologic conditions, the whole body balance of calcium, phosphate, and magnesium is maintained by fine adjustments of urinary excretion to equal the net intake. This review discusses how calcium, phosphate, and magnesium are handled by the kidneys. Copyright © 2015 by the American Society of Nephrology.
Constraining the Intergalactic and Circumgalactic Media with Lyman-Alpha Absorption
NASA Astrophysics Data System (ADS)
Sorini, Daniele; Onorbe, Jose; Hennawi, Joseph F.; Lukic, Zarija
2018-01-01
Lyman-alpha (Ly-a) absorption features detected in quasar spectra in the redshift range 0
Fakhri, Yadolah; Alinejad, Azim; Keramati, Hassan; Bay, Abotaleb; Avazpour, Moayed; Zandsalimi, Yahya; Moradi, Bigard; Amirhajeloo, Leila Rasouli; Mirzaei, Maryam
2016-01-01
The use of smart phones is increasing in the world. This excessive use, especially in the last two decades, has created too much concern on the effects of emitted electromagnetic fields and specific absorption rate on human health. In this descriptive-analytical study of the electric field resulting from smart phones of Samsung and Nokia by portable measuring device, electromagnetic field, Model HI-3603-VDT/VLF, were measured. Then, head absorption rate was calculated in these two mobiles by ICNIRP equation. Finally, the comparison of specific absorption rate, especially between Samsung and Nokia smart phones, was conducted by T-Test statistics analysis. The mean of electric field for Samsung and Nokia smart mobile phones was obtained 1.8 ±0.19 v/m and 2.23±0.39 v/m, respectively, while the range of the electric field was obtained as 1.56-2.21 v/m and 1.69-2.89 v/m for them, respectively. The mean of specific absorption rate in Samsung and Nokia was obtained 0.002 ± 0.0005 W/Kg and 0.0041±0.0013 W/Kg at the frequency of 900 MHz and 0.004±0.001 W/Kg and 0.0062±0.0002 W/Kg at the frequency of 1800 MHz respectively. The ratio of mean electronic field to guidance in the Samsung mobile phone at the frequency of 900 MHz and 1800 MHz was 4.36% and 3.34%, while was 5.62% and 4.31% in the Nokia mobile phone, respectively. The ratio of mean head specific absorption rate in smart mobile phones of Samsung and Nokia in the guidance level at the frequency of 900 was 0.15% and 0.25%, respectively, while was 0.23% and 0.38% at the frequency of 1800 MHz, respectively. The rate of specific absorption of Nokia smart mobile phones at the frequencies of 900 and 1800 MHz was significantly higher than Samsung (p value <0.05). Hence, we can say that in a fixed period, health risks of Nokia smart phones is higher than Samsung smart mobile phone. PMID:27157169
Fakhri, Yadolah; Alinejad, Azim; Keramati, Hassan; Bay, Abotaleb; Avazpour, Moayed; Zandsalimi, Yahya; Moradi, Bigard; Rasouli Amirhajeloo, Leila; Mirzaei, Maryam
2016-09-01
The use of smart phones is increasing in the world. This excessive use, especially in the last two decades, has created too much concern on the effects of emitted electromagnetic fields and specific absorption rate on human health. In this descriptive-analytical study of the electric field resulting from smart phones of Samsung and Nokia by portable measuring device, electromagnetic field, Model HI-3603-VDT/VLF, were measured. Then, head absorption rate was calculated in these two mobiles by ICNIRP equation. Finally, the comparison of specific absorption rate, especially between Samsung and Nokia smart phones, was conducted by T-Test statistics analysis. The mean of electric field for Samsung and Nokia smart mobile phones was obtained 1.8 ±0.19 v/m and 2.23±0.39 v/m , respectively, while the range of the electric field was obtained as 1.56-2.21 v/m and 1.69-2.89 v/m for them, respectively. The mean of specific absorption rate in Samsung and Nokia was obtained 0.002 ± 0.0005 W/Kg and 0.0041±0.0013 W/Kg at the frequency of 900 MHz and 0.004±0.001 W/Kg and 0.0062±0.0002 W/Kg at the frequency of 1800 MHz respectively. The ratio of mean electronic field to guidance in the Samsung mobile phone at the frequency of 900 MHz and 1800 MHz was 4.36% and 3.34%, while was 5.62% and 4.31% in the Nokia mobile phone, respectively. The ratio of mean head specific absorption rate in smart mobile phones of Samsung and Nokia in the guidance level at the frequency of 900 was 0.15% and 0.25%, respectively, while was 0.23 %and 0.38% at the frequency of 1800 MHz, respectively. The rate of specific absorption of Nokia smart mobile phones at the frequencies of 900 and 1800 MHz was significantly higher than Samsung (p value <0.05). Hence, we can say that in a fixed period, health risks of Nokia smart phones is higher than Samsung smart mobile phone.
Wainwright, P R
2003-10-07
Of the biological effects of human exposure to radiofrequency and microwave radiation, the best-established are those due to elevation of tissue temperature. To prevent harmful levels of heating, restrictions have been proposed on the specific absorption rate (SAR). However, the relationship between SAR and temperature rise is not an invariant, since not only the heat capacity but also the efficiency of heat dissipation varies between different tissues and exposure scenarios. For small enough SAR, the relationship is linear and may be characterized by a 'heating factor' deltaT/SAR. Under whole-body irradiation the SAR may be particularly high in the ankles due to the concentration of current flowing through a relatively small cross-sectional area. In a previous paper, the author has presented calculations of the SAR distribution in a human leg in the high frequency (HF) band. In this paper, the heating factor for this situation is derived using a finite element approximation of the Pennes bioheat equation. The sensitivity of the results to different blood perfusion rates is investigated, and a simple local thermoregulatory model is applied. Both time-dependent and steady-state solutions are considered. Results confirm the appropriateness of the ICNIRP reference level of 100 mA on current through the leg, but suggest that at higher currents significant thermoregulatory adjustments to muscle blood flow will occur.
Many-body and spin-orbit aspects of the alternating current phenomena
NASA Astrophysics Data System (ADS)
Glenn, Rachel M.
The thesis reports on research in the general field of light interaction with matter. According to the topics addressed, it can be naturally divided into two parts: Part I, many-body aspects of the Rabi oscillations which a two-level systems undergoes under a strong resonant drive; and Part II, absorption of the ac field between the spectrum branches of two-dimensional fermions that are split by the combined action of Zeeman and spin-orbit (SO) fields. The focus of Part I is the following many-body effects that modify the conventional Rabi oscillations: Chapter 1, coupling of a two-level system to a single vibrational mode of the environment. Chapter 2, correlated Rabi oscillations in two electron-hole systems coupled by tunneling with strong electron-hole attraction. In Chapter 1, a new effect of Rabi-vibronic resonance is uncovered. If the frequency of the Rabi oscillations, OR, is close to the frequency o0 of the vibrational mode, the oscillations acquire a collective character. It is demonstrated that the actual frequency of the collective oscillations exhibits a bistable behavior as a function of OR - o0. The main finding in Chapter 2 is, that the Fourier spectrum of the Rabi oscillations in two coupled electron-hole systems undergoes a strong transformation with increasing O R. For OR smaller than the tunneling frequency, the spectrum is dominated by a low-frequency (<< OR ) component and contains two additional weaker lines; conventional Rabi oscillations are restored only as OR exceeds the electron-hole attraction strength. The highlight of Part II is a finding that, while the spectrum of absorption between either Zeeman-split branches or SO-split branches is close to a delta-peak, in the presence of both, it transforms into a broad line with singular behavior at the edges. In particular, when the magnitudes of Zeeman and SO are equal, absorption of very low (much smaller than the splitting) frequencies become possible. The shape of the absorption spectrum is highly anisotropic with respect to the exciting field. This peculiar behavior of the absorption is also studied in wire geometry, where the interplay between two couplings (Zeeman and spin-orbit splitting) affects the shape of numerous absorption peaks.
Significance of Ca-soap formation for calcium absorption in the rat.
Gacs, G; Barltrop, D
1977-01-01
The significance of calcium soap formation in the inhibition of calcium absorption has been studied in rats. 47Ca labelled soaps of fatty acids were introduced into the duodenum and the absorption of calcium measured after four hours in a whole body counter. The absorption of calcium was inversely correlated with the chain length of the fatty acid varying from 1% for Ca-stearate to 60% for Ca-hexanoate. Increasing the degree of unsaturation of the fatty acid was accompanied by increased calcium absorption. The availability of calcium for absorption from the soaps was correlated with their solubility in 1% aqueous Na-tauroglycocholate. The percentages of calcium as soap in the small intestine and the faeces after intragastric administration of calcium and fats were similar, which suggests that the faecal content of calcium soaps is an index of intestinal soap formation. Soap formation was negligible when CaCl2 was given with tristearate, triolaeate, or tridecanoate and no depression of calcium absorption was observed. Calcium absorption was markedly impaired by the addition of phosphates at a Ca/P ratio of 1:1 irrespective of the presence of neutral fats. Stearic acid resulted in significant soap formation and reduced calcium absorption. The degree of Ca-soap formation and the inhibition of calcium absorption were well correlated. The results suggest that, although calcium soap formation may markedly depress calcium absorption in the rat, no significant soap formation takes place when fats are given in the form of triglycerides. PMID:838405
21 CFR 862.1820 - Xylose test system.
Code of Federal Regulations, 2014 CFR
2014-04-01
... DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems § 862.1820... absorption of dietary constituents and thus excessive loss from the body of the nonabsorbed substances). (b...
21 CFR 862.1820 - Xylose test system.
Code of Federal Regulations, 2012 CFR
2012-04-01
... DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems § 862.1820... absorption of dietary constituents and thus excessive loss from the body of the nonabsorbed substances). (b...
21 CFR 862.1820 - Xylose test system.
Code of Federal Regulations, 2013 CFR
2013-04-01
... DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems § 862.1820... absorption of dietary constituents and thus excessive loss from the body of the nonabsorbed substances). (b...
Sergent, Thérèse; Croizet, Karine; Schneider, Yves-Jacques
2017-02-01
Silicon (Si) is one of the most abundant trace elements in the body. Although pharmacokinetics data described its absorption from the diet and its body excretion, the mechanisms involved in the uptake and transport of Si across the gut wall have not been established. Caco-2 cells were used as a well-accepted in vitro model of the human intestinal epithelium to investigate the transport, across the intestinal barrier in both the absorption and excretion directions, of Si supplied as orthosilicic acid stabilized by vanillin complex (OSA-VC). The transport of this species was found proportional to the initial concentration and to the duration of incubation, with absorption and excretion mean rates similar to those of Lucifer yellow, a marker of paracellular diffusion, and increasing in the presence of EGTA, a chelator of divalents cations including calcium. A cellular accumulation of Si, polarized from the apical side of cells, was furthermore detected. These results provide evidence that Si, ingested as a food supplement containing OSA-VC, crosses the intestinal mucosa by passive diffusion via the paracellular pathway through the intercellular tight junctions and accumulates intracellularly, probably by an uptake mechanism of facilitated diffusion. This study can help to further understand the kinetic of absorption of Si. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moody, R.P.; Ritter, L.
1989-01-01
Dermal absorption of the insecticide lindane (1 delta, 2 delta, 3 beta, 4 delta, 5 delta, 6 beta-hexachlorocyclohexane) was determined in rats and rhesus monkeys. Lindane is in widespread use as a 1% cream or lotion scabicide formulation and as a 1% miticide shampoo for body lice control in humans. Results obtained following our in vivo dermal absorption procedure demonstrated that 18 +/- 4.1%, 34 +/- 5.2%, and 54 +/- 26.3% of the applied dose was absorbed following topical applications at a rate of 1.5 micrograms/cm2 (6.2 micrograms/100 microliters of acetone) of the 14C-labeled pesticide to 4.2-cm2 regions of themore » forearm (n = 8), forehead (n = 7), and palm (n = 4) of rhesus monkeys, respectively. Dose sites were washed with soapy water 24 h posttreatment. Comparative studies in rats (n = 5) dosed middorsally demonstrated 31 +/- 9.5% absorption. Statistical analysis of the 14C excretion kinetics demonstrated slower clearance of lindane from rats than monkey forearm, forehead, or palm. Intramuscular (im) injections of 14C-lindane gave 52 +/- 7.1% recovery in monkey (n = 8) and 64 +/- 5.9% in rats (n = 5), suggesting body storage of this lipophilic chemical.« less
... function in one or more connecting or supporting structures of the body. celiac disease —a digestive disease that damages the small intestine and interferes with the absorption of nutrients from food. People who have celiac ...
Eldercare at Home: Constipation
... much bran too quickly may cause diarrhea, excess gas (flatus), stomach cramps, and reduce absorption into the body of certain vitamins. Drink plenty of water Liquids like water and juice add fluid to the ...
Park, Jin Seo; Jung, Yong Wook; Choi, Hyung-Do; Lee, Ae-Kyoung
2018-01-01
Abstract The anatomical structures in most phantoms are classified according to tissue properties rather than according to their detailed structures, because the tissue properties, not the detailed structures, are what is considered important. However, if a phantom does not have detailed structures, the phantom will be unreliable because different tissues can be regarded as the same. Thus, we produced the Visible Korean (VK) -phantoms with detailed structures (male, 583 structures; female, 459 structures) based on segmented images of the whole male body (interval, 1.0 mm; pixel size, 1.0 mm2) and the whole female body (interval, 1.0 mm; pixel size, 1.0 mm2), using house-developed software to analyze the text string and voxel information for each of the structures. The density of each structure in the VK-phantom was calculated based on Virtual Population and a publication of the International Commission on Radiological Protection. In the future, we will standardize the size of each structure in the VK-phantoms. If the VK-phantoms are standardized and the mass density of each structure is precisely known, researchers will be able to measure the exact absorption rate of electromagnetic radiation in specific organs and tissues of the whole body. PMID:29659988
Park, Jin Seo; Jung, Yong Wook; Choi, Hyung-Do; Lee, Ae-Kyoung
2018-05-01
The anatomical structures in most phantoms are classified according to tissue properties rather than according to their detailed structures, because the tissue properties, not the detailed structures, are what is considered important. However, if a phantom does not have detailed structures, the phantom will be unreliable because different tissues can be regarded as the same. Thus, we produced the Visible Korean (VK) -phantoms with detailed structures (male, 583 structures; female, 459 structures) based on segmented images of the whole male body (interval, 1.0 mm; pixel size, 1.0 mm2) and the whole female body (interval, 1.0 mm; pixel size, 1.0 mm2), using house-developed software to analyze the text string and voxel information for each of the structures. The density of each structure in the VK-phantom was calculated based on Virtual Population and a publication of the International Commission on Radiological Protection. In the future, we will standardize the size of each structure in the VK-phantoms. If the VK-phantoms are standardized and the mass density of each structure is precisely known, researchers will be able to measure the exact absorption rate of electromagnetic radiation in specific organs and tissues of the whole body.
The abject gaze and the homosexual body: Flandrin's Figure d'Etude.
Camille, M
1994-01-01
This article charts the history of the reception, reproduction and appropriation of a single image that has recently become a kind of "gay icon"--the Figure d'Etude in the Louvre, painted by Hippolyte Flandrin in 1835. Initially no more than a neo-classical academic exercise, the formal emptiness of this picture meant that it could be re-invested and reinscribed with new meanings and new titles at every turn. Emblematic of the anxious visibility/invisibility of the newly discovered homosexual body during a period when the gaze still had to be kept a dark secret, Flandrin's image only "came out" in its later photographic reworkings by Frederick Holland Day and Baron von Gloeden. After being reproduced for a specifically homosexual audience early this century, the popular Romantic pose of the young man curled-up in profile became a standard one, reappearing recently in the photographs of Robert Mapplethorpe. The inactive, abject and inward-turned isolation of the figure with its narcissistic self-absorption makes it, in my view, a profoundly negative stereotype of the gay gaze and the homosexual body. Flandrin's figure nonetheless appears today on gay merchandise world-wide as a sign of our separate and secluded subject positions and our community's unwillingness to radically alter older imposed and inherited classical stereotypes.
The use of contraception for patients after bariatric surgery.
Ostrowska, Lucyna; Lech, Medard; Stefańska, Ewa; Jastrzębska-Mierzyńska, Marta; Smarkusz, Joanna
2016-01-01
Obesity in women of reproductive age is a serious concern regarding reproductive health. In many cases of infertility in obese women, reduction of body weight may lead to spontaneous pregnancy, without the need for more specific methods of treatment. Bariatric surgery is safe and is the most effective method for body weight reduction in obese and very obese patients. In practice there are two bariatric techniques; gastric banding, which leads to weight loss through intake restriction, and gastric bypass, leads to weight loss through food malabsorption. Gastric bypass surgery (the more frequently performed procedure), in most cases, leads to changes in eating habits and may result in vomiting, diarrhea and rapid body mass reduction. There are reliable data describing the continuous increase in the number of women who are trying to conceive, or are already pregnant, following bariatric surgery. Most medical specialists advise women to avoid pregnancy within 12-18 months after bariatric surgery. This allows for time to recover sufficiency from the decreased absorption of nutrients caused by the bariatric surgery. During this period there is a need for the use of reliable contraception. As there is a risk for malabsorption of hormones taken orally, the combined and progestogen-only pills are contraindicated, and displaced by non-oral hormonal contraception or non-hormonal methods, including intrauterine devices and condoms.
Individual thermal profiles as a basis for comfort improvement in space and other environments
NASA Technical Reports Server (NTRS)
Koscheyev, V. S.; Coca, A.; Leon, G. R.; Dancisak, M. J.
2002-01-01
BACKGROUND: The development of individualized countermeasures to address problems in thermoregulation is of considerable importance for humans in space and other extreme environments. A methodology is presented for evaluating minimal/maximal heat flux from the total human body and specific body zones, and for assessing individual differences in the efficiency of heat exchange from these body areas. The goal is to apply this information to the design of individualized protective equipment. METHODS: A multi-compartment conductive plastic tubing liquid cooling/warming garment (LCWG) was developed. Inlet water temperatures of 8-45 degrees C were imposed sequentially to specific body areas while the remainder of the garment was maintained at 33 degrees C. RESULTS: There were significant differences in heat exchange level among body zones in both the 8 degrees and 45 degrees C temperature conditions (p < 0.001). The greatest amount of heat was absorbed/released by the following areas: thighs (8 degrees C: -2.12 +/- 0.14 kcal min(-1); 45 degrees C: +1.58 +/- 0.23); torso (8 degrees C: -2.12 +/- 0.13 kcal min(-1); 45 degrees C: +1.31 +/- 0.27); calves (8 degrees C: -1.59 +/- 0.26 kcal min(-1); 45 degrees C: +1.53 +/- 0.24); and forearms (8 degrees C: -1.67 +/- 0.29 kcal x min(-1); 45 degrees C: +1.45 +/- 0.20). These are primarily zones with relatively large muscle mass and adipose tissue. Calculation of absorption/release heat rates standardized per unit tube length and flow rate instead of zonal surface area covered showed that there was significantly greater heat transfer in the head, hands, and feet (p < 0.001). The areas in which there was considerable between-subject variability in rates of heat transfer and thus most informative for individual profile design were the torso, thighs, shoulders, and calves or forearms. CONCLUSIONS: The methodology developed is sensitive to individual differences in the process of heat exchange and variations in different body areas, depending on their size and tissue mass content. The design of individual thermal profiles is feasible for better comfort of astronauts on long-duration missions and personnel in other extreme environments.
Multinucleon pion absorption in the sup 4 He(. pi. sup + , ppp ) n reaction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weber, P.; McAlister, J.; Olszewski, R.
1991-04-01
Three-proton emission cross sections for the {sup 4}He({pi}{sup +},{ital ppp}){ital n} reaction were measured at an incident pion kinetic energy of {ital T}{sub {pi}}{sup +}=165 MeV over a wide angular range in a kinematically complete experiment. Angular correlations, missing momentum distributions, and energy spectra are compared with three- and four-body phase-space Monte Carlo calculations. The results provide strong evidence that most of the three-proton coincidences result from three-nucleon absorption. From phase-space integration the total three-nucleon absorption cross section is estimated to be {sigma}{sup 3{ital N}}=4.8{plus minus}1.0 mb. The cross section involving four nucleons is small and is estimated to bemore » {sigma}{sup 4{ital N}}{lt}2 mb. On the scale of the total absorption cross section in {sup 4}He, multinucleon pion absorption seems to represent only a small fraction.« less
NASA Astrophysics Data System (ADS)
Vigasin, A. A.; Mokhov, I. I.
2017-03-01
It is believed that the greenhouse effect is related to the parameters of absorption spectra of polyatomic molecules, usually trace gases, in planetary atmospheres. The main components of all known atmospheres of celestial bodies are symmetrical molecules that do not possess the dipole-allowed purely rotational (and in the case of diatomic molecules, vibrational-rotational) absorption spectrum. Upon increased pressure, a weak absorption appears, induced by intermolecular interaction, which can lead to a greenhouse effect. The contribution of the induced absorption in radiative forcing of a dense atmosphere may amount to a few or even tens of W/m2. In conditions typical for the atmospheres of terrestrial planets (including paleoatmospheres), the collision-induced absorption and associated greenhouse effect may lead to an increase in surface temperature above the freezing point of water. There is a correlation between the temperature of an atmosphere and the intermolecular bonding energy of gases that dominate in planetary atmospheres of the Solar System.
Uchôa, Adriana F; DaMatta, Renato A; Retamal, Claudio A; Albuquerque-Cunha, José M; Souza, Sheila M; Samuels, Richard I; Silva, Carlos P; Xavier-Filho, José
2006-02-01
Variant vicilins (7S storage globulins) of cowpea seeds (Vigna unguiculata) are considered as the main resistance factor present in some African genotypes against the bruchid Callosobruchus maculatus. It has been suggested that the toxic properties of vicilins may be related to their recognition and interaction with glycoproteins and other membrane constituents along the digestive tract of the insect. However, the possibility of a systemic effect has not yet been investigated. The objective of this work was to study the fate of 7S storage globulins of V. unguiculata in several organs of larvae of the cowpea weevil C. maculatus. Results demonstrated binding of vicilins to brush border membrane vesicles, suggesting the existence of specific receptors. Vicilins were detected in the haemolymph, in the midgut, and in internal organs, such as fat body and malpighian tubules. There is evidence of accumulation of vicilins in the fat body of both larvae and adults. The absorption of vicilins and their presence in insect tissues parallels classical sequestration of secondary compounds.
Electromagnetic assessment of embedded micro antenna for a novel sphincter in the human body.
Zan, Peng; Liu, Jinding; Ai, Yutao; Jiang, Enyu
2013-05-01
This paper presents a wireless, miniaturized, bi-directional telemetric artificial anal sphincter system that can be used for controlling patients' anal incontinence. The artificial anal sphincter system is mainly composed of an executive mechanism, a wireless power supply system and a wireless communication system. The wireless communication system consists of an internal RF transceiver, an internal RF antenna, a data transmission pathway, an external RF antenna and an external RF control transceiver. A micro NMHA (Normal Mode Helical Antenna) has been used for the transceiver of the internal wireless communication system and a quarter wave-length whip antenna of 7.75 cm has been used for the external wireless communication system. The RF carrier frequency of wireless communication is located in a license-free 433.1 MHz ISM (Industry, Science, and Medical) band. The radiation characteristics and SAR (Specific Absorption Rate) are evaluated using the finite difference time-domain method and 3D human body model. Results show that the SAR values of the antenna satisfy the ICNIRP (International Commission on Nonionizing Radiation Protection) limitations.
Crashworthiness analysis on alternative square honeycomb structure under axial loading
NASA Astrophysics Data System (ADS)
Li, Meng; Deng, Zongquan; Guo, Hongwei; Liu, Rongqiang; Ding, Beichen
2013-07-01
Hexagonal metal honeycomb is widely used in energy absorption field for its special construction. However, many other metal honeycomb structures also show good energy absorption characteristics. Currently, most of the researches focus on hexagonal honeycomb, while few are performed into different honeycomb structures. Therefore, a new alternative square honeycomb is developed to expand the non-hexagonal metal honeycomb applications in the energy absorption fields with the aim of designing low mass and low volume energy absorbers. The finite element model of alternative square honeycomb is built to analyze its specific energy absorption property. As the diversity of honeycomb structure, the parameterized metal honeycomb finite element analysis program is conducted based on PCL language. That program can automatically create finite element model. Numerical results show that with the same foil thickness and cell length of metal honeycomb, the alternative square has better specific energy absorption than hexagonal honeycomb. Using response surface method, the mathematical formulas of honeycomb crashworthiness properties are obtained and optimization is done to get the maximum specific energy absorption property honeycomb. Optimal results demonstrate that to absorb same energy, alternative square honeycomb can save 10% volume of buffer structure than hexagonal honeycomb can do. This research is significant in providing technical support in the extended application of different honeycomb used as crashworthiness structures, and is absolutely essential in low volume and low mass energy absorber design.
Water Clouds in the Atmosphere of a Jupiter-Like Brown Dwarf
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2016-07-01
Lying a mere 7.2 light-years away, WISE 0855 is the nearest known planetary-mass object. This brown dwarf, a failed star just slightly more massive than Jupiter, is also the coldest known compact body outside of our solar system and new observations have now provided us with a first look at its atmosphere.Temperaturepressure profiles of Jupiter, WISE 0855, and what was previously the coldest extrasolar object with a 5-m spectrum, Gl 570D. Thicker lines show the location of each objects 5-m photospheres. WISE 0855s and Jupiters photospheres are near the point where water starts to condense out into clouds (dashed line). [Skemer et al. 2016]Challenging ObservationsWith a chilly temperature of 250 K, the brown dwarf WISE 0855 is the closest thing weve been able to observe to a body resembling Jupiters ~130 K. WISE 0855 therefore presents an intriguing opportunity to directly study the atmosphere of an object whose physical characteristics are similar to our own gas giants.But studying the atmospheric characteristics of such a body is tricky. WISE 0855 is too cold and faint to be able to obtain traditional optical or near-infrared ( 2.5 m) spectroscopy of it. Luckily, like Jupiter, the opacity of its gas allows thermal emission from its deep atmosphere to escape through an atmospheric window around ~5 m.A team of scientists led by Andrew Skemer (UC Santa Cruz) set out to observe WISE 0855 in this window with the Gemini-North telescope and the Gemini Near-Infrared Spectrograph. Though WISE 0855 is five times fainter than the faintest object previously detected with ground-based 5-m spectroscopy, the dry air of Mauna Kea (and a lot of patience!) allowed the team to obtain unprecedented spectra of this object.WISE 0855s spectrum shows absorption features consistent with water vapor, and its best fit by a cloudy brown-dwarf model. [Skemer et al. 2016]Water Clouds FoundExoplanets and brown dwarfs cooler than ~350 K are expected to form water ice clouds in upper atmosphere and these clouds should be thick enough to alter the emergent spectrum that we observe. Does WISE 0855 fit this picture?Yes! By modeling the spectrum of WISE 0855, Skemer and collaborators demonstrate that its completely dominated by water absorption lines. This represents the first evidence of water clouds in a body outside of our solar system.Atmospheric TurbulenceWISE 0855s water absorption profile bears a striking resemblance to Jupiters. Where the spectra differ, however, is in the lower-wavelength end of observations: Jupiter also shows absorption by a molecule called phosphine, whereas WISE 0855 doesnt.Jupiters spectrum is strikingly similar to WISE 0855s from 4.8 to 5.2 m, where both objects are dominated by water absorption. But from 4.5 to 4.8 m, Jupiters spectrum is dominated by phosphine absorption, indicating a turbulent atmosphere, while WISE 0855s is not. [Skemer et al. 2016]Interestingly, if the bodies were both in equilibrium, neither WISE 0855 nor Jupiter should contain detectable phosphine in their photospheres. The reason Jupiter does is because theres a significant amount of turbulent mixing in its atmosphere that dredges up phosphine from the planets hot interior. The fact that WISE 0855 has no sign of phosphine suggests its atmosphere may be much less turbulent than Jupiters.These observations represent an important step as we attempt to understand the atmospheres of extrasolar bodies that are similar to our own gas-giant planets. Observations of other such bodies in the future especially using new technology like the James Webb Space Telescope will allow us to learn more about the dynamical and chemical processes that occur in cold atmospheres.CitationAndrew J. Skemer et al 2016 ApJ 826 L17. doi:10.3847/2041-8205/826/2/L17
Electromagnetic field generated in model of human head by simplified telephone transceiver
NASA Astrophysics Data System (ADS)
King, Ronold W. P.
1995-01-01
Possible adverse effects of electromagnetic fields on the human body and especially on the nervous system and the brain are of increasing concern, particularly with reference to cellular telephone transceivers held close to the head. An essential step in the study of this problem is the accurate determination of the complete electromagnetic field penetrating through the skull into the brain. Simple analytical formulas are derived from the theory of the horizontal electric dipole over a layered region. These give the components of the electric and magnetic fields on the air-head surface, in the skin-skull layer, and throughout the brain in terms of a planar model with the dimensions and average electrical properties of the human head. The specific absorption rate (SAR) is also determined.
Experimental investigation of a metasurface resonator for in vivo imaging at 1.5 T
NASA Astrophysics Data System (ADS)
Shchelokova, Alena V.; Slobozhanyuk, Alexey P.; de Bruin, Paul; Zivkovic, Irena; Kallos, Efthymios; Belov, Pavel A.; Webb, Andrew
2018-01-01
In this work, we experimentally demonstrate an increase in the local transmit efficiency of a 1.5 T MRI scanner by using a metasurface formed by an array of brass wires embedded in a high permittivity low loss medium. Placement of such a structure inside the scanner results in strong coupling of the radiofrequency field produced by the body coil with the lowest frequency electromagnetic eigenmode of the metasurface. This leads to spatial redistribution of the near fields with enhancement of the local magnetic field and an increase in the transmit efficiency per square root maximum specific absorption rate in the region-of-interest. We have investigated this structure in vivo and achieved a factor of 3.3 enhancement in the local radiofrequency transmit efficiency.
New way of body composition analysis using total body electrical conductivity method
NASA Astrophysics Data System (ADS)
Piasecki, Wojciech; Koteja, Pawel; Weiner, January; Froncisz, Wojciech
1995-04-01
Traditional methods of measuring total body water and fat content of animals that require sacrificing specimens are generally unacceptable when endangered species, or large animal sizes, or humans are involved. These methods are also unsuitable for following changes of fat and water content in individuals. An alternative method, based on the nonresonant absorption of a rf electromagnetic field has been used for constructing a new body composition analyzer. As the electrical conductivity of lipids is approximately 20 times lower than that of lean tissues, the rf power absorbed by the animal provides information which enables one to calculate the lean body mass and total body water. The new instrument measures rf power absorbed by an animal by measuring the quality factor (Q) of the resonant circuit with an animal placed inside the coil. Numerical calculations of the rf power absorbed by a cylindrical object containing 0.9% NaCl aqueous solution have also been performed. Experimental values confirmed the calculated dependence of the absorbed power on the cylinder radius. The device built has been calibrated on 9 males and 11 females of laboratory mice. The amount of lipids was then measured by ether extraction. The relation between instrument reading, which is proportional to the power absorption, and lean body mass (LBM) or water mass (WM) was linear and highly significant: the simple regression coefficients of determination were 0.983 for LBM, and 0.990 for WM (p<0.001). It has been found that for an individual animal with a body mass ranging from 15.9 to 40.7 g, the accuracy of measurement was ±1.6 g for LBM and ±1 g for WM.
Electronic and optical properties of phosphorene-like arsenic phosphorus: a many-body study
NASA Astrophysics Data System (ADS)
Shu, Huabing; Guo, Jiyuan
2018-03-01
By employing density functional and many-body perturbation theories, we explore the geometrics, quasiparticle band structure, and optical response of two-dimensional arsenic phosphorus (α-AsxP1-x). Calculations indicate that the α-AsxP1-x exhibits excellent stability at high temperature. The quasi-particle bandgap of α-AsxP1-x is highly tunable in a broad range of 1.54-2.14 eV depending on the composition. The optical absorption of α-AsxP1-x can cover the visible and ultraviolet regions, and is highly anisotropic. More interestingly, it is tunable to optical absorption of α-AsxP1-x when the composition continuously increased. Also, they have sizable exciton binding energies. These findings suggest that α-AsxP1-x holds great potentials for applications in high-performance electronics and optoelectronics.
NASA Astrophysics Data System (ADS)
Bukreeva, Ekaterina B.; Bulanova, Anna A.; Kistenev, Yury V.; Kuzmin, Dmitry A.; Tuzikov, Sergei A.; Yumov, Evgeny L.
2014-11-01
The results of the joint use of laser photoacoustic spectroscopy and chemometrics methods in gas analysis of exhaled air of patients with respiratory diseases (chronic obstructive pulmonary disease, pneumonia and lung cancer) are presented. The absorption spectra of exhaled breath of all volunteers were measured, the classification methods of the scans of the absorption spectra were applied, the sensitivity/specificity of the classification results were determined. It were obtained a result of nosological in pairs classification for all investigated volunteers, indices of sensitivity and specificity.
Diagnostics of jaundice from the change of the transmission coefficient of the human body
NASA Astrophysics Data System (ADS)
Guminetskiy, S. G.; Kirsh, N. L.; Lomanets, V. S.; Lazurka, I. I.; Yakobets, I. I.
2004-06-01
The paper deals with the absorption spectra of bilirubin solutions, patient blood plasma with jaundice manifestations with a different degree of disease and whole blood. Using as an analysis base the dependencies of blood plasma absorption spectra on bilirubin concentration in this blood there has been proposed the method of disease diagnostics with jaundice manifestations, and there has been realized the corresponding portable laboratory device, the functioning of which is based on registering the radiation propagated through the ear lobule.
Jiang, Zhi Hao; Cui, Zheng; Yue, Taiwei; Zhu, Yong; Werner, Douglas H
2017-08-01
A compact and flexible circularly polarized (CP) wearable antenna is introduced for wireless body-area network systems at the 2.4 GHz industrial, scientific, and medical (ISM) band, which is implemented by employing a low-loss composite of polydimethylsiloxane (PDMS) and silver nanowires (AgNWs). The circularly polarized radiation is enabled by placing a planar linearly polarized loop monopole above a finite anisotropic artificial ground plane. By truncating the anisotropic artificial ground plane to contain only 2 by 2 unit cells, an integrated antenna with a compact form factor of 0.41λ 0 × 0.41λ 0 × 0.045λ 0 is obtained, all while possessing an improved angular coverage of CP radiation. A flexible prototype was fabricated and characterized, experimentally achieving S 11 <- 15 dB, an axial ratio of less than 3 dB, a gain of around 5.2 dBi, and a wide CP angular coverage in the targeted ISM band. Furthermore, this antenna is compared to a conventional CP patch antenna of the same physical size, which is also comprised of the same PDMS and AgNW composite. The results of this comparison reveal that the proposed antenna has much more stable performance under bending and human body loading, as well as a lower specific absorption rate. In all, the demonstrated wearable antenna offers a compact, flexible, and robust solution which makes it a strong candidate for future integration into body-area networks that require efficient off-body communications.
Terahertz spectral change associated with glass transition of poly-ε-caprolactone
DOE Office of Scientific and Technical Information (OSTI.GOV)
Komatsu, Marina, E-mail: mkomatsu@toki.waseda.jp; Mizuno, Maya; Fukunaga, Kaori
2015-04-07
We measured absorption spectra of unidirectionally stretched poly-ε-caprolactone (PCL) film in a range from 0.3 to 3.6 THz at temperatures from 10 to 300 K. Several absorption peaks were observed, when the electric field of THz waves was set in directions parallel and perpendicular to the stretching direction. The absorption bandwidths became significantly broad at around 200 K and above at least in two specific peaks. This temperature is close to the glass transition temperature of PCL. Further, it is shown by quantum chemical calculations that all the peaks obtained experimentally originate in skeletal vibrations of PCL. Therefore, it has become clear thatmore » a specific feature appears in the THz absorption spectrum of PCL associated with its glass transition.« less
Landsberger, S; Sharp, A; Wang, S; Pontikes, Y; Tkaczyk, A H
2017-07-01
This study employs thermal and epithermal neutron activation analysis (NAA) to quantitatively and specifically determine absorption dose rates to various body parts from uranium, thorium and potassium. Specifically, a case study of bauxite residue (red mud) from an industrial facility was used to demonstrate the feasibility of the NAA approach for radiological safety assessment, using small sample sizes to ascertain the activities of 235 U, 238 U, 232 Th and 40 K. This proof-of-concept was shown to produce reliable results and a similar approach could be used for quantitative assessment of other samples with possible radiological significance. 238 U and 232 Th were determined by epithermal and thermal neutron activation analysis, respectively. 235 U was determined based on the known isotopic ratio of 238 U/ 235 U. 40 K was also determined using epithermal neutron activation analysis to measure total potassium content and then subtracting its isotopic contribution. Furthermore, the work demonstrates the application of Monte Carlo Neutral-Particle (MCNP) simulations to estimate the radiation dose from large quantities of red mud, to assure the safety of humans and the surrounding environment. Phantoms were employed to observe the dose distribution throughout the human body demonstrating radiation effects on each individual organ. Copyright © 2016 Elsevier Ltd. All rights reserved.
Hydration shell parameters of aqueous alcohols: THz excess absorption and packing density.
Matvejev, V; Zizi, M; Stiens, J
2012-12-06
Solvation in water requires minimizing the perturbations in its hydrogen bonded network. Hence solutes distort water molecular motions in a surrounding domain, forming a molecule-specific hydration shell. The properties of those hydration shells impact the structure and function of the solubilized molecules, both at the single molecule and at higher order levels. The size of the hydration shell and the picoseconds time-scale water dynamics retardation are revealed by terahertz (THz) absorption coefficient measurements. Room-temperature absorption coefficient at f = 0.28 [THz] is measured as a function of alcohol concentration in aqueous methanol, ethanol, 1,2-propanol, and 1-butanol solutions. Highly diluted alcohol measurements and enhanced overall measurement accuracy are achieved with a THz absorption measurement technique of nL-volume liquids in a capillary tube. In the absorption analysis, bulk and interfacial molecular domains of water and alcohol are considered. THz ideal and excess absorption coefficients are defined in accordance with thermodynamics mixing formulations. The parameter extraction method is developed based on a THz excess absorption model and hydrated solute molecule packing density representation. First, the hydration shell size is deduced from the hydrated solute packing densities at two specific THz excess absorption nonlinearity points: at infinite alcohol dilution (IAD) and at the THz excess absorption extremum (EAE). Consequently, interfacial water and alcohol molecular domain absorptions are deduced from the THz excess absorption model. The hydration shell sizes obtained at the THz excess absorption extremum are in excellent agreement with other reports. The hydration shells of methanol, ethanol, 1- and 2-propanol consist of 13.97, 22.94, 22.99, and 31.10 water molecules, respectively. The hydration shell water absorption is on average 0.774 ± 0.028 times the bulk water absorption. The hydration shell parameters might shed light on hydration dynamics of biomolecules.
Glucose Plus Fructose Ingestion for Post-Exercise Recovery-Greater than the Sum of Its Parts?
Gonzalez, Javier T; Fuchs, Cas J; Betts, James A; van Loon, Luc J C
2017-03-30
Carbohydrate availability in the form of muscle and liver glycogen is an important determinant of performance during prolonged bouts of moderate- to high-intensity exercise. Therefore, when effective endurance performance is an objective on multiple occasions within a 24-h period, the restoration of endogenous glycogen stores is the principal factor determining recovery. This review considers the role of glucose-fructose co-ingestion on liver and muscle glycogen repletion following prolonged exercise. Glucose and fructose are primarily absorbed by different intestinal transport proteins; by combining the ingestion of glucose with fructose, both transport pathways are utilised, which increases the total capacity for carbohydrate absorption. Moreover, the addition of glucose to fructose ingestion facilitates intestinal fructose absorption via a currently unidentified mechanism. The co-ingestion of glucose and fructose therefore provides faster rates of carbohydrate absorption than the sum of glucose and fructose absorption rates alone. Similar metabolic effects can be achieved via the ingestion of sucrose (a disaccharide of glucose and fructose) because intestinal absorption is unlikely to be limited by sucrose hydrolysis. Carbohydrate ingestion at a rate of ≥1.2 g carbohydrate per kg body mass per hour appears to maximise post-exercise muscle glycogen repletion rates. Providing these carbohydrates in the form of glucose-fructose (sucrose) mixtures does not further enhance muscle glycogen repletion rates over glucose (polymer) ingestion alone. In contrast, liver glycogen repletion rates are approximately doubled with ingestion of glucose-fructose (sucrose) mixtures over isocaloric ingestion of glucose (polymers) alone. Furthermore, glucose plus fructose (sucrose) ingestion alleviates gastrointestinal distress when the ingestion rate approaches or exceeds the capacity for intestinal glucose absorption (~1.2 g/min). Accordingly, when rapid recovery of endogenous glycogen stores is a priority, ingesting glucose-fructose mixtures (or sucrose) at a rate of ≥1.2 g·kg body mass -1 ·h -1 can enhance glycogen repletion rates whilst also minimising gastrointestinal distress.
Calcium absorption from apple and orange juice fortified with calcium citrate malate (CCM).
Andon, M B; Peacock, M; Kanerva, R L; De Castro, J A
1996-06-01
Determine calcium (Ca) absorption from Ca fortified orange and apple juice. Absorbability was assessed by measuring 45Ca absorption in healthy women (mean age 57 years, n = 57/group) and whole body 47Ca retention in adult female beagle dogs (n = 6/group) and young adult male rats (n = 6/group). Women received 6.24 mmol (250 mg) Ca as calcium citrate malate fortified orange juice (CCM-OJ) or apple juice (CCM-AJ). Dogs received 3.12 mmol (125 mg) Ca as CCM-OJ or CCM-AJ. Rats were administered 0.15 mmol (6 mg) Ca as either milk, CCM-OJ, or CCM-AJ. Additional 47Ca whole body retention experiments in rats measured the effects of differences in the carbohydrate and organic acid contents of the juices on Ca absorption. Mean +/- SEM percent Ca fractional absorption was greater (p < 0.003) in women who consumed CCM-AJ (42 +/- 2%) than those who consumed CCM-OJ (36 +/- 1%). Ca retention in dogs was 15 +/- 1% for CCM-OJ and 29 +/- 2% for CCM-AJ (p < 0.001). Ca retention was significantly different (p < 0.05) in rats administered milk (42 +/- 2%), CCM-OJ (52 +/- 2%), or CCM-AJ (61 +/- 2%). By manipulating the carbohydrate and organic acid concentrations of test solutions to mimic the composition of Ca fortified juices, we found that the greater fructose and lower organic acid content of apple juice accounted for its greater Ca absorbability. CCM fortified versions of orange and apple juice have high Ca absorbability and are potentially important vehicles for increasing dietary Ca intake. The greater Ca absorption from CCM-AJ compared with CCM-OJ is accounted for by differences in the carbohydrate and organic acid content of the juices. These data suggest that by modifying common beverage ingredients, products with even greater Ca absorbability could be formulated.
Glucose Plus Fructose Ingestion for Post-Exercise Recovery—Greater than the Sum of Its Parts?
Gonzalez, Javier T.; Fuchs, Cas J.; Betts, James A.; van Loon, Luc J. C.
2017-01-01
Carbohydrate availability in the form of muscle and liver glycogen is an important determinant of performance during prolonged bouts of moderate- to high-intensity exercise. Therefore, when effective endurance performance is an objective on multiple occasions within a 24-h period, the restoration of endogenous glycogen stores is the principal factor determining recovery. This review considers the role of glucose–fructose co-ingestion on liver and muscle glycogen repletion following prolonged exercise. Glucose and fructose are primarily absorbed by different intestinal transport proteins; by combining the ingestion of glucose with fructose, both transport pathways are utilised, which increases the total capacity for carbohydrate absorption. Moreover, the addition of glucose to fructose ingestion facilitates intestinal fructose absorption via a currently unidentified mechanism. The co-ingestion of glucose and fructose therefore provides faster rates of carbohydrate absorption than the sum of glucose and fructose absorption rates alone. Similar metabolic effects can be achieved via the ingestion of sucrose (a disaccharide of glucose and fructose) because intestinal absorption is unlikely to be limited by sucrose hydrolysis. Carbohydrate ingestion at a rate of ≥1.2 g carbohydrate per kg body mass per hour appears to maximise post-exercise muscle glycogen repletion rates. Providing these carbohydrates in the form of glucose–fructose (sucrose) mixtures does not further enhance muscle glycogen repletion rates over glucose (polymer) ingestion alone. In contrast, liver glycogen repletion rates are approximately doubled with ingestion of glucose–fructose (sucrose) mixtures over isocaloric ingestion of glucose (polymers) alone. Furthermore, glucose plus fructose (sucrose) ingestion alleviates gastrointestinal distress when the ingestion rate approaches or exceeds the capacity for intestinal glucose absorption (~1.2 g/min). Accordingly, when rapid recovery of endogenous glycogen stores is a priority, ingesting glucose–fructose mixtures (or sucrose) at a rate of ≥1.2 g·kg body mass−1·h−1 can enhance glycogen repletion rates whilst also minimising gastrointestinal distress. PMID:28358334
Protein recycling in growing rabbits: contribution of microbial lysine to amino acid metabolism.
Belenguer, Alvaro; Balcells, Joaquim; Guada, Jose A; Decoux, Marc; Milne, Eric
2005-11-01
To study the absorption of microbial lysine in growing rabbits, a labelled diet (supplemented with (15)NH4Cl) was administered to six animals (group ISOT); a control group (CTRL, four rabbits) received a similar, but unlabelled, diet. Diets were administered for 30 d. An additional group of six animals were fed the unlabelled diet for 20 d and then the labelled diet for 10 d while wearing a neck collar to avoid caecotrophy (group COLL), in order to discriminate it from direct intestinal absorption. At day 30 animals were slaughtered and caecal bacteria and liver samples taken. The (15)N enrichment in amino acids of caecal bacteria and liver were determined by GC-combustion/isotope ratio MS. Lysine showed a higher enrichment in caecal microflora (0.925 atom% excess, APE) than liver (0.215 APE) in group ISOT animals, confirming the double origin of body lysine: microbial and dietary. The COLL group showed a much lower enrichment in tissue lysine (0.007 (se 0.0029) APE for liver). Any enrichment in the latter animals was due to direct absorption of microbial lysine along the digestive tract, since recycling of microbial protein (caecotrophy) was avoided. In such conditions liver enrichment was low, indicating a small direct intestinal absorption. From the ratio of [(15)N]lysine enrichment between liver and bacteria the contribution of microbes to body lysine was estimated at 23 %, with 97 % of this arising through caecotrophy. Absorption of microbial lysine through caecotrophy was 119 (se 4.0) mg/d, compared with 406 (se 1.8) mg/d available from the diet. This study confirms the importance of caecotrophy in rabbit nutrition (15 % of total protein intake).
NPC1L1 is a key regulator of intestinal vitamin K absorption and a modulator of warfarin therapy.
Takada, Tappei; Yamanashi, Yoshihide; Konishi, Kentaro; Yamamoto, Takehito; Toyoda, Yu; Masuo, Yusuke; Yamamoto, Hideaki; Suzuki, Hiroshi
2015-02-18
Vitamin K (VK) is a micronutrient that facilitates blood coagulation. VK antagonists, such as warfarin, are used in the clinic to prevent thromboembolism. Because VK is not synthesized in the body, its intestinal absorption is crucial for maintaining whole-body VK levels. However, the molecular mechanism of this absorption is unclear. We demonstrate that Niemann-Pick C1-like 1 (NPC1L1) protein, a cholesterol transporter, plays a central role in intestinal VK uptake and modulates the anticoagulant effect of warfarin. In vitro studies using NPC1L1-overexpressing intestinal cells and in vivo studies with Npc1l1-knockout mice revealed that intestinal VK absorption is NPC1L1-dependent and inhibited by ezetimibe, an NPC1L1-selective inhibitor clinically used for dyslipidemia. In addition, in vivo pharmacological studies demonstrated that the coadministration of ezetimibe and warfarin caused a reduction in hepatic VK levels and enhanced the pharmacological effect of warfarin. Adverse events caused by the coadministration of ezetimibe and warfarin were rescued by oral VK supplementation, suggesting that the drug-drug interaction effects observed were the consequence of ezetimibe-mediated VK malabsorption. This mechanism was supported by a retrospective evaluation of clinical data showing that, in more than 85% of warfarin-treated patients, the anticoagulant activity was enhanced by cotreatment with ezetimibe. Our findings provide insight into the molecular mechanism of VK absorption. This new drug-drug interaction mechanism between ezetimibe (a cholesterol transport inhibitor) and warfarin (a VK antagonist and anticoagulant) could inform clinical care of patients on these medications, such as by altering the kinetics of essential, fat-soluble vitamins. Copyright © 2015, American Association for the Advancement of Science.
Population Pharmacokinetics of Oral Baclofen in Pediatric Patients with Cerebral Palsy
He, Yang; Brunstrom-Hernandez, Janice E.; Thio, Liu Lin; Lackey, Shellie; Gaebler-Spira, Deborah; Kuroda, Maxine M.; Stashinko, Elaine; Hoon, Alexander H.; Vargus-Adams, Jilda; Stevenson, Richard D.; Lowenhaupt, Stephanie; McLaughlin, John F.; Christensen, Ana; Dosa, Nienke P.; Butler, Maureen; Schwabe, Aloysia; Lopez, Christina; Roge, Desiree; Kennedy, Diane; Tilton, Ann; Krach, Linda E.; Lewandowski, Andrew; Dai, Hongying; Gaedigk, Andrea; Leeder, J. Steven; Jusko, William J.
2014-01-01
Objective To characterize the population pharmacokinetics (PK) of oral baclofen and assess impact of patient-specific covariates in children with cerebral palsy (CP) in order to support its clinical use. Subjects design Children (2-17 years of age) with CP received a dose of titrated oral baclofen from 2.5 mg 3 times a day to a maximum tolerated dose of up to 20 mg 4 times a day. PK sampling followed titration of 10-12 weeks. Serial R- and S-baclofen plasma concentrations were measured for up to 16 hours in 49 subjects. Population PK modeling was performed using NONMEM 7.1 (ICON PLC; Ellicott City, Maryland). Results R- and S-baclofen showed identical concentration-time profiles. Both baclofen enantiomers exhibited linear and dose/kg-proportional PK, and no sex differences were observed. Average baclofen terminal half-life was 4.5 hours. A 2-compartment PK model with linear elimination and transit absorption steps adequately described concentration-time profiles of both baclofen enantiomers. The mean population estimate of apparent clearance/F was 0.273 L/h/kg with 33.4% inter-individual variability (IIV), and the apparent volume of distribution (Vss/F) was 1.16 L/kg with 43.9% IIV. Delayed absorption was expressed by a mean transit time of 0.389 hours with 83.7% IIV. Body weight, a possible genetic factor, and age were determinants of apparent clearance in these children. Conclusion The PK of oral baclofen exhibited dose-proportionality and were adequately described by a 2-compartment model. Our population PK findings suggest that baclofen dosage can be based on body weight (2 mg/kg per day) and the current baclofen dose escalation strategy is appropriate in the treatment of children with CP older than 2 years of age. PMID:24607242
NASA Astrophysics Data System (ADS)
Yahya, I.; Kusuma, J. I.; Harjana; Kristiani, R.; Hanina, R.
2016-02-01
This paper emphasizes the influence of tubular shaped microresonators phononic crystal insertion on the sound absorption coefficient of profiled sound absorber. A simple cubic and two different bodies centered cubic phononic crystal lattice model were analyzed in a laboratory test procedure. The experiment was conducted by using transfer function based two microphone impedance tube method refer to ASTM E-1050-98. The results show that sound absorption coefficient increase significantly at the mid and high-frequency band (600 - 700 Hz) and (1 - 1.6 kHz) when tubular shaped microresonator phononic crystal inserted into the tested sound absorber element. The increment phenomena related to multi-resonance effect that occurs when sound waves propagate through the phononic crystal lattice model that produce multiple reflections and scattering in mid and high-frequency band which increases the sound absorption coefficient accordingly
Persimmon-Tannin, an α-Amylase Inhibitor, Retards Carbohydrate Absorption in Rats.
Tsujita, Takahiro
2016-01-01
Inhibitors of carbohydrate-hydrolyzing enzymes play an important role in controlling postprandial blood glucose levels. Thus the effect of persimmon tannin on pancreatic α-amylase and intestinal α-glucosidase has been investigated. Persimmon tannin inhibits pancreatic α-amylase and intestinal α-glucosidase in a concentration-dependent manner with the 50% inhibition concentration (IC50) for amylase, maltase and sucrase being 1.7 μg/mL, 632 μg/mL and 308 μg/mL, respectively. The effect of persimmon-tannin extract on carbohydrate absorption in rats has also been investigated. Oral administration of persimmon tannin to normal rats fed cornstarch (2 g/kg body weight) significantly suppressed the increase in blood glucose levels and the area under the curve (AUC) after starch loading in a dose-dependent manner. The effective dose of persimmon tannin required to achieve 50% suppression of the rise in blood glucose level was estimated to be 300 mg/kg body weight. Administration of persimmon tannin to rats fed maltose or sucrose delayed the increase of blood glucose level and slightly suppressed AUC, but not significantly. These results suggest that persimmon tannin retards absorption of carbohydrate and reduces post-prandial hyperglycemia mainly through inhibition of α-amylase.
Energy absorption of impacts during running at various stride lengths.
Derrick, T R; Hamill, J; Caldwell, G E
1998-01-01
The foot-ground impact experienced during running produces a shock wave that is transmitted through the human skeletal system. This shock wave is attenuated by deformation of the ground/shoe as well as deformation of biological tissues in the body. The goal of this study was to investigate the locus of energy absorption during the impact phase of the running cycle. Running speed (3.83 m x s[-1]) was kept constant across five stride length conditions: preferred stride length (PSL), +10% of PSL, -10% of PSL, +20% of PSL, and -20% of PSL. Transfer functions were generated from accelerometers attached to the leg and head of ten male runners. A rigid body model was used to estimate the net energy absorbed at the hip, knee, and ankle joints. There was an increasing degree of shock attenuation as stride length increased. The energy absorbed during the impact portion of the running cycle also increased with stride length. Muscles that cross the knee joint showed the greatest adjustment in response to increased shock. It was postulated that the increased perpendicular distance from the line of action of the resultant ground reaction force to the knee joint center played a role in this increased energy absorption.
Diagram of Calcium Movement in the Human Body
NASA Technical Reports Server (NTRS)
2002-01-01
This diagram shows the normal pathways of calcium movement in the body and indicates changes (green arrows) seen during preliminary space flight experiments. Calcium plays a central role because 1) it gives strength and structure to bone and 2) all types of cells require it to function normally. To better understand how and why weightlessness induces bone loss, astronauts have participated in a study of calcium kinetics -- that is, the movement of calcium through the body, including absorption from food, and its role in the formation and breakdown of bone.
Food, gastrointestinal pH, and models of oral drug absorption.
Abuhelwa, Ahmad Y; Williams, Desmond B; Upton, Richard N; Foster, David J R
2017-03-01
This article reviews the major physiological and physicochemical principles of the effect of food and gastrointestinal (GI) pH on the absorption and bioavailability of oral drugs, and the various absorption models that are used to describe/predict oral drug absorption. The rate and extent of oral drug absorption is determined by a complex interaction between a drug's physicochemical properties, GI physiologic factors, and the nature of the formulation administered. GI pH is an important factor that can markedly affect oral drug absorption and bioavailability as it may have significant influence on drug dissolution & solubility, drug release, drug stability, and intestinal permeability. Different regions of the GI tract have different drug absorptive properties. Thus, the transit time in each GI region and its variability between subjects may contribute to the variability in the rate and/or extent of drug absorption. Food-drug interactions can result in delayed, decreased, increased, and sometimes un-altered drug absorption. Food effects on oral absorption can be achieved by direct and indirect mechanisms. Various models have been proposed to describe oral absorption ranging from empirical models to the more sophisticated "mechanism-based" models. Through understanding of the physicochemical and physiological rate-limiting factors affecting oral absorption, modellers can implement simplified population-based modelling approaches that are less complex than whole-body physiologically-based models but still capture the essential elements in a physiological way and hence will be more suited for population modelling of large clinical data sets. It will also help formulation scientists to better predict formulation performance and to develop formulations that maximize oral bioavailability. Copyright © 2016 Elsevier B.V. All rights reserved.
Significance of radiation models in investigating the flow phenomena around a Jovian entry body
NASA Technical Reports Server (NTRS)
Tiwari, S. N.; Subramanian, S. V.
1978-01-01
Formulation is presented to demonstrate the significance of a simplified radiation model in investigating the flow phenomena in the viscous radiating shock layer of a Jovian entry body. The body configurations used are a 55 degree sphere cone and 50 degree hyperboloid. A nongray absorption model for hydrogen-helium gas is developed which consists of 30 steps over the spectral range of 0 to 20 eV. By employing this model, results were obtained for temperature, pressure, density, the shock layer and along the body surface. These are compared with results of two sophisticated radiative transport models available in the literature.
Absorption properties and graphitic carbon emission factors of forest fire aerosols
E.M. Patterson; Charles K. McMahon; D.E. Ward
1986-01-01
Abstract. Data on the optical absorption properties (expressed as a specific absorption, Ba) of the smoke emissions from fires with forest fuels have been determined for a series of low-intensity field fires and a series of laboratory scale fires. The B, data have been used to estimate the emission factors for graphitic...
Principles of Toxicological Interactions Associated with Multiple Chemical Exposures.
1980-12-01
chemicals from sites of activation or deactivation , the agent possessing the higher binding affinity would also be expected to antagonize or act...kcal/mol. Because of their high binding energy, covalent bonds are essentially irreversible at ordinary body temperature unless a catalytic agent such...determining the toxicity of chemicals is the route or routes by which such agents gain entry into the body. The inhalation and dermal routes of absorption
Greene, Sara; McConnachie, Suzanne; Secor, Stephen; Perrin, Mike
2013-06-01
African egg-eating snakes (Dasypeltis) feed only on freshly laid bird eggs which they perforate within their esophagus before swallowing the liquid contents and regurgitating the empty shell. Compared to a snake's typical intact meal, the liquid diet of Dasypeltis would expectedly generate a more moderate postprandial metabolic response and specific dynamic action (SDA). Free-ranging Dasypeltis feed over a range of ambient temperatures and thereby experience predicted temperature-dependent shifts in the duration and magnitude of their postprandial metabolic response. Such shifts would undoubtedly be shared among different species and age classes of Dasypeltis. To examine these expectations, we measured pre- and postprandial metabolic rates of adult Dasypeltis inornata and adult and neonate Dasypeltis scabra in response to liquid egg meals weighing 20% of snake body mass at 20, 25, 27, 30, and 32 °C. With an increase in body temperature, postprandial metabolic profiles of neonate and adult snakes became narrower and shorter in duration. Specific dynamic action varied among temperature treatments, increasing from 20 to 32 °C. Standard metabolic rate, postprandial peak metabolic rate, and SDA scaled with mass exponents that typically did not differ from 1.0. As expected, Dasypeltis digesting a liquid egg diet experienced a more modest postprandial response and SDA, expending on average only 10.6% of the meal's energy on the breakdown, absorption, and assimilation of the egg meal, whereas other colubrids consuming intact rodent or fish meals expend on average 16.3% of the meal's energy on digestion and assimilation. Actively foraging and feeding throughout the avian egg laying season enable Dasypeltis to survive when eggs are not available. The adaptive suite of traits that enable Dasypeltis to consume eggs of large relative size and ingest only the liquid contents may also be joined by physiological adaptations specific to their liquid diet and extended bouts of fasting. Copyright © 2013 Elsevier Inc. All rights reserved.
Generation, absorption, and transfer of mechanical energy during walking in children.
Umberger, Brian R; Augsburger, Sam; Resig, JoAnne; Oeffinger, Donna; Shapiro, Robert; Tylkowski, Chester
2013-05-01
The purpose of this study was to characterize the manner in which net joint moments and non-muscular forces generate, absorb, and transfer mechanical energy during walking in able-bodied children. Standard gait data from seven healthy subjects between 6 and 17 years of age were combined with a dynamic model of the whole body to perform a power analysis based on induced acceleration techniques. These data were used to determine how each moment and force generates energy to, absorbs energy from, and transfers energy among the major body segments. The joint moments were found to induce transfers of mechanical energy between body segments that generally exceeded the magnitudes of energy generation and absorption. The amount of energy transferred by gravitational and velocity-dependent forces was considerably less than for the joint moments. The hip and ankle joint moments had relatively simple power patterns that tended to oppose each other, particularly over the stance phase. The knee joint moment had a more complex power pattern that appeared distinct from the hip and ankle moments. The general patterns of mechanical energy flow were similar to previous reports in adults. The approach described in this paper should provide a useful complement to standard clinical gait analysis procedures. Copyright © 2012 IPEM. Published by Elsevier Ltd. All rights reserved.
Absorption of zinc from lupin (Lupinus angustifolius)-based foods.
Petterson, D S; Sandström, B; Cederblad, A
1994-12-01
The absorption of Zn from a lupin (Lupinus angustifolius) milk fortified with Ca, a bread containing lupin flour (230 g/kg), a sauce containing lupin flour and a sauce containing a lupin-protein isolate was determined in humans by measuring the whole-body retention of radioisotope from meals labelled with 0.02 MBq 65Zn, allowing for endogenous excretion of Zn, after 14 d. The absorption of Zn from the Ca-enriched milk (16.2%) and the bread made with lupin flour (27.0%) was similar to literature figures for comparable soya-bean products. The absorption from composite meals made with lupin flour (28.2%) and protein isolate (32.7%) was significantly higher than that reported for comparable soya-bean products. In a second experiment the absorption of Zn from a lupin-milk base and a soya-bean-milk base was compared with that from Ca-supplemented bases. The absorption of Zn from the lupin-milk base (26.3%) was significantly higher than from the soya-bean-milk base (17.6%), and neither was significantly altered by the addition of Ca. Overall the absorption of Zn from lupin-protein foods was found to be higher than from comparable soya-bean products. Lupin milk could be an attractive alternative to soya-bean milk for infant formulas.
The Transiting Exocomets in the HD 172555 System
NASA Technical Reports Server (NTRS)
Grady, C. A.; Brown, A.; Kamp, I.; Roberge, A.; Riviere-Marichalar, P.; Welsh, B.
2017-01-01
The Earth is thought to have formed dry, in a part of the Solar Nebula deficient in organic material, and to have acquired its organics and water through bombardment by minor bodies. Observations of this process in well-dated systems can provide insight into the probable origin and composition of the bombarding parent bodies. Transiting cometary activity has previously been reported in Ca II for the late-A member of the 241 Myr old Pictoris Moving Group member, HD 172555(Kiefer et al. 2014). We present HST STIS and COS spectra of HD 172555 demonstrating that the star has chromospheric emission and variable in falling gas features in transitions of silicon and carbon ions at times when no Fe II absorption is seen in the UV data, and no Ca II absorption is seen in contemporary optical spectra. The lack of CO absorption and stable gas absorption at the system velocity is consistent with the absence of a cold Kuiper belt analog (Riviere-Marichalar et al. 2012) in this system. The presence of infall in some species at one epoch and others at different epochs suggests that, like Pictoris, there may be more than one family of exocomets. If perturbed into star-grazing orbits by the same mechanism as for Pic, these data suggest that the wide planet frequency among A-early F stars in the PMG is at least 37.5, well above the frequency estimated for young moving groups independent of host star spectral type.
Phytosterol glycosides reduce cholesterol absorption in humans
Lin, Xiaobo; Ma, Lina; Racette, Susan B.; Anderson Spearie, Catherine L.; Ostlund, Richard E.
2009-01-01
Dietary phytosterols inhibit intestinal cholesterol absorption and regulate whole body cholesterol excretion and balance. However, they are biochemically heterogeneous and a portion is glycosylated in some foods with unknown effects on biological activity. We tested the hypothesis that phytosterol glycosides reduce cholesterol absorption in humans. Phytosterol glycosides were extracted and purified from soy lecithin in a novel two-step process. Cholesterol absorption was measured in a series of three single-meal tests given at intervals of 2 wk to each of 11 healthy subjects. In a randomized crossover design, participants received ∼300 mg of added phytosterols in the form of phytosterol glycosides or phytosterol esters, or placebo in a test breakfast also containing 30 mg cholesterol-d7. Cholesterol absorption was estimated by mass spectrometry of plasma cholesterol-d7 enrichment 4–5 days after each test. Compared with the placebo test, phytosterol glycosides reduced cholesterol absorption by 37.6 ± 4.8% (P < 0.0001) and phytosterol esters 30.6 ± 3.9% (P = 0.0001). These results suggest that natural phytosterol glycosides purified from lecithin are bioactive in humans and should be included in methods of phytosterol analysis and tables of food phytosterol content. PMID:19246636
NASA Astrophysics Data System (ADS)
Hasan Rhaif Al-Sahlanee, Mayyadah; Maizan Ramli, Ramzun; Abdul Hassan Ali, Miami; Fadhil Tawfiq, Nada; Zahirah Noor Azman, Nurul; Abdul Rahman, Azhar; Shahrim Mustafa, Iskandar; Noor Ashikin Nik Abdul Razak, Nik; Zakiah Yahaya, Nor; Mohammed Al-Marri, Hana; Syuhada Ayob, Nur; Zakaria, Nabela
2017-10-01
Trace elements are essential nutritional components in humans and inconvenient tissue content that have a significant influence on infant size. The aim of this study is to evaluate the effects of concentration of elements (uranium (U), lead (Pb) and iron (Fe)) and absorption of Pb and Fe on maternal and umbilical cord blood samples. The concentration and absorption of Pb and Fe in blood samples were determined by using atomic absorption spectrophotometry device, while the uranium concentration was determined by using CR-39 detector. Fifty women of age 16-44 years are involved in this study. Results show that the maximum and minimum values of both concentration and absorption in the maternal samples were for Pb and Fe, respectively. In addition, for umbilical cord, the maximum values of concentration and absorption were for Fe and the minimum concentration and absorption were for U and Pb, respectively. A significant correlation between maternal and umbilical cord blood samples was found. This indicates that the Pb, U and Fe elements can easily transfer from maternal to the fetal body which impacts the growth of fetus.
The Pathophysiology of Malabsorption
Keller, Jutta; Layer, Peter
2014-01-01
Summary Physiological digestion and absorption of nutrients within the gastrointestinal tract requires a complex interaction between motor, secretory, digestive, and absorptive functions that is vulnerable to a multitude of potential disturbances which may lead to global or specific malabsorption syndromes. Potential pathomechanisms that are illustrated in this article include insufficient mechanical breakdown of harder food components due to chewing problems and/or decreased antral contractility, critical reduction of time for absorption in patients with markedly enhanced upper gastrointestinal transit (e.g. dumping syndrome), impaired digestion and absorption of nutrient components caused by reduced gastric acid secretion, pancreatic exocrine insufficiency or reduced biliary secretion, defects of the enteral mucosa with enzyme deficiencies (e.g. disaccharidases) or lack of specific carrier mechanisms (e.g. hexose or aminoacid transporters), and critical quantitative loss of intestinal mucosa in patients with short bowel syndrome. PMID:26288588
Qiu, Xu; Wang, Lixi; Zhu, Hongli; Guan, Yongkang; Zhang, Qitu
2017-06-08
Lightweight microwave absorbing materials have drawn tremendous attention. Herein, nano-porous biomass carbon materials have been prepared by carbonization with a subsequent potassium hydroxide activation of walnut shells and the microwave absorption properties have also been investigated. The obtained samples have large specific surface areas with numerous micropores and nanopores. The sample activated at 600 °C with a specific surface area of 736.2 m 2 g -1 exhibits the most enhanced microwave absorption performance. It has the maximum reflection loss of -42.4 dB at 8.88 GHz and the effective absorption bandwidth (reflection loss below -10 dB) is 1.76 GHz (from 8.08 GHz to 9.84 GHz), corresponding to a thickness of 2 mm. Additionally, the effective absorption bandwidth can reach 2.24 GHz (from 10.48 GHz to 12.72 GHz) when the absorber thickness is 1.5 mm. Three-dimensional porous architecture, interfacial polarization relaxation loss, and the dipolar relaxation loss make a great contribution to the excellent microwave absorption performance. In contrast, the non-activated sample with lower specific surface area (435.3 m 2 g -1 ) has poor microwave absorption performance due to a poor dielectric loss capacity. This comparison highlights the role of micropores and nanopores in improving the dielectric loss property of porous carbon materials. To sum up, porous biomass carbon has great potential to become lightweight microwave absorbers. Moreover, KOH is an efficient activation agent in the fabrication of carbonaceous materials.
Wu, Xiaoping; Zhang, Xiaotong; Tian, Jinfeng; Schmitter, Sebastian; Hanna, Brian; Strupp, John; Pfeuffer, Josef; Hamm, Michael; Wang, Dingxin; Nistler, Juergen; He, Bin; Vaughan, J. Thomas; Ugurbil, Kamil; Van de Moortele, Pierre-Francois
2015-01-01
The performance of multichannel transmit coil layouts and parallel transmission (pTx) radiofrequency (RF) pulse design was evaluated with respect to transmit B1 (B1+) homogeneity and Specific Absorption Rate (SAR) at 3 Tesla for a whole body coil. Five specific coils were modeled and compared: a 32-rung birdcage body coil (driven either in a fixed quadrature mode or a two-channel transmit mode), two single-ring stripline arrays (with either 8 or 16 elements), and two multi-ring stripline arrays (with 2 or 3 identical rings, stacked in the z-axis and each comprising eight azimuthally distributed elements). Three anatomical targets were considered, each defined by a 3D volume representative of a meaningful region of interest (ROI) in routine clinical applications. For a given anatomical target, global or local SAR controlled pTx pulses were designed to homogenize RF excitation within the ROI. At the B1+ homogeneity achieved by the quadrature driven birdcage design, pTx pulses with multichannel transmit coils achieved up to ~8 fold reduction in local and global SAR. When used for imaging head and cervical spine or imaging thoracic spine, the double-ring array outperformed all coils including the single-ring arrays. While the advantage of the double-ring array became much less pronounced for pelvic imaging with a substantially larger ROI, the pTx approach still provided significant gains over the quadrature birdcage coil. For all design scenarios, using the 3-ring array did not necessarily improve the RF performance. Our results suggest that pTx pulses with multichannel transmit coils can reduce local and global SAR substantially for body coils while attaining improved B1+ homogeneity, particularly for a “z-stacked” double-ring design with coil elements arranged on two transaxial rings. PMID:26332290
Human Exposure to Electromagnetic Fields from Parallel Wireless Power Transfer Systems.
Wen, Feng; Huang, Xueliang
2017-02-08
The scenario of multiple wireless power transfer (WPT) systems working closely, synchronously or asynchronously with phase difference often occurs in power supply for household appliances and electric vehicles in parking lots. Magnetic field leakage from the WPT systems is also varied due to unpredictable asynchronous working conditions. In this study, the magnetic field leakage from parallel WPT systems working with phase difference is predicted, and the induced electric field and specific absorption rate (SAR) in a human body standing in the vicinity are also evaluated. Computational results are compared with the restrictions prescribed in the regulations established to limit human exposure to time-varying electromagnetic fields (EMFs). The results show that the middle region between the two WPT coils is safer for the two WPT systems working in-phase, and the peripheral regions are safer around the WPT systems working anti-phase. Thin metallic plates larger than the WPT coils can shield the magnetic field leakage well, while smaller ones may worsen the situation. The orientation of the human body will influence the maximum magnitude of induced electric field and its distribution within the human body. The induced electric field centralizes in the trunk, groin, and genitals with only one exception: when the human body is standing right at the middle of the two WPT coils working in-phase, the induced electric field focuses on lower limbs. The SAR value in the lungs always seems to be greater than in other organs, while the value in the liver is minimal. Human exposure to EMFs meets the guidelines of the International Committee on Non-Ionizing Radiation Protection (ICNIRP), specifically reference levels with respect to magnetic field and basic restrictions on induced electric fields and SAR, as the charging power is lower than 3.1 kW and 55.5 kW, respectively. These results are positive with respect to the safe applications of parallel WPT systems working simultaneously.
Human Exposure to Electromagnetic Fields from Parallel Wireless Power Transfer Systems
Wen, Feng; Huang, Xueliang
2017-01-01
The scenario of multiple wireless power transfer (WPT) systems working closely, synchronously or asynchronously with phase difference often occurs in power supply for household appliances and electric vehicles in parking lots. Magnetic field leakage from the WPT systems is also varied due to unpredictable asynchronous working conditions. In this study, the magnetic field leakage from parallel WPT systems working with phase difference is predicted, and the induced electric field and specific absorption rate (SAR) in a human body standing in the vicinity are also evaluated. Computational results are compared with the restrictions prescribed in the regulations established to limit human exposure to time-varying electromagnetic fields (EMFs). The results show that the middle region between the two WPT coils is safer for the two WPT systems working in-phase, and the peripheral regions are safer around the WPT systems working anti-phase. Thin metallic plates larger than the WPT coils can shield the magnetic field leakage well, while smaller ones may worsen the situation. The orientation of the human body will influence the maximum magnitude of induced electric field and its distribution within the human body. The induced electric field centralizes in the trunk, groin, and genitals with only one exception: when the human body is standing right at the middle of the two WPT coils working in-phase, the induced electric field focuses on lower limbs. The SAR value in the lungs always seems to be greater than in other organs, while the value in the liver is minimal. Human exposure to EMFs meets the guidelines of the International Committee on Non-Ionizing Radiation Protection (ICNIRP), specifically reference levels with respect to magnetic field and basic restrictions on induced electric fields and SAR, as the charging power is lower than 3.1 kW and 55.5 kW, respectively. These results are positive with respect to the safe applications of parallel WPT systems working simultaneously. PMID:28208709
Application of postured human model for SAR measurements
NASA Astrophysics Data System (ADS)
Vuchkovikj, M.; Munteanu, I.; Weiland, T.
2013-07-01
In the last two decades, the increasing number of electronic devices used in day-to-day life led to a growing interest in the study of the electromagnetic field interaction with biological tissues. The design of medical devices and wireless communication devices such as mobile phones benefits a lot from the bio-electromagnetic simulations in which digital human models are used. The digital human models currently available have an upright position which limits the research activities in realistic scenarios, where postured human bodies must be considered. For this reason, a software application called "BodyFlex for CST STUDIO SUITE" was developed. In its current version, this application can deform the voxel-based human model named HUGO (Dipp GmbH, 2010) to allow the generation of common postures that people use in normal life, ensuring the continuity of tissues and conserving the mass to an acceptable level. This paper describes the enhancement of the "BodyFlex" application, which is related to the movements of the forearm and the wrist of a digital human model. One of the electromagnetic applications in which the forearm and the wrist movement of a voxel based human model has a significant meaning is the measurement of the specific absorption rate (SAR) when a model is exposed to a radio frequency electromagnetic field produced by a mobile phone. Current SAR measurements of the exposure from mobile phones are performed with the SAM (Specific Anthropomorphic Mannequin) phantom which is filled with a dispersive but homogeneous material. We are interested what happens with the SAR values if a realistic inhomogeneous human model is used. To this aim, two human models, a homogeneous and an inhomogeneous one, in two simulation scenarios are used, in order to examine and observe the differences in the results for the SAR values.
Accurate Human Tissue Characterization for Energy-Efficient Wireless On-Body Communications
Vallejo, Mónica; Recas, Joaquín; del Valle, Pablo García; Ayala, José L.
2013-01-01
The demand for Wireless Body Sensor Networks (WBSNs) is rapidly increasing due to the revolution in wearable systems demonstrated by the penetration of on-the-body sensors in hospitals, sports medicine and general health-care practices. In WBSN, the body acts as a communication channel for the propagation of electromagnetic (EM) waves, where losses are mainly due to absorption of power in the tissue. This paper shows the effects of the dielectric properties of biological tissues in the signal strength and, for the first time, relates these effects with the human body composition. After a careful analysis of results, this work proposes a reactive algorithm for power transmission to alleviate the effect of body movement and body type. This policy achieves up to 40.8% energy savings in a realistic scenario with no performance overhead. PMID:23752565
Applications of a Pharmacokinetic Simulation Program in Pharmacy Courses.
ERIC Educational Resources Information Center
Ingram, D.; And Others
1979-01-01
Presents a multicompartment model which illustrates aspects of drug absorption, distribution, and elimination in the human body for a course in pharmacokinetics. The course work consists of the interpretation of computer generated simulated data. (Author/CMV)
SeHCAT absorption: a simple test of ileal dysfunction.
Fagan, E A; Chadwick, V S; Baird, I M
1983-01-01
A new selenium-labelled synthetic bile salt SeHCAT (taurine conjugate of 23-[75Se]-25-homocholic acid) was assessed as a test of ileal dysfunction in 20 patients with inflammatory bowel disease (IBD). Whole body retention of SeHCAT was compared with tests of vitamin B12 absorption (Schilling test and whole body retention) and the cholylglycine-1-14C breath test and faecal isotope excretion. Clear differentiation, with no overlap was obtained between 10 normal subjects and patients with ileal disease/resection in the SeHCAT 7-day retention results. The Schilling test was more sensitive; enabling discrimination between patients with limited and extensive ileal disease/resection. An unexpected rise in SeHCAT retention was observed in patients with colonic IBD. The 7-day SeHCAT retention is a safe, simple screening test for ileal dysfunction and has practical advantages compared with the Schilling test.
NASA Technical Reports Server (NTRS)
Zong, Jin-Ho; Szekely, Julian; Schwartz, Elliot
1992-01-01
An improved computational technique for calculating the electromagnetic force field, the power absorption and the deformation of an electromagnetically levitated metal sample is described. The technique is based on the volume integral method, but represents a substantial refinement; the coordinate transformation employed allows the efficient treatment of a broad class of rotationally symmetrical bodies. Computed results are presented to represent the behavior of levitation melted metal samples in a multi-coil, multi-frequency levitation unit to be used in microgravity experiments. The theoretical predictions are compared with both analytical solutions and with the results or previous computational efforts for the spherical samples and the agreement has been very good. The treatment of problems involving deformed surfaces and actually predicting the deformed shape of the specimens breaks new ground and should be the major usefulness of the proposed method.
Two-dimensional Fano lineshapes: Excited-state absorption contributions
NASA Astrophysics Data System (ADS)
Finkelstein-Shapiro, Daniel; Pullerits, Tõnu; Hansen, Thorsten
2018-05-01
Fano interferences in nanostructures are influenced by dissipation effects as well as many-body interactions. Two-dimensional coherent spectroscopies have just begun to be applied to these systems where the spectroscopic signatures of a discrete-continuum structure are not known. In this article, we calculate the excited-state absorption contribution for different models of higher lying excited states. We find that the characteristic asymmetry of one-dimensional spectroscopies is recovered from the many-body contributions and that the higher lying excited manifolds have distorted lineshapes that are not anticipated from discrete-level Hamiltonians. We show that the Stimulated Emission cannot have contributions from a flat continuum of states. This work completes the Ground-State Bleach and Stimulated Emission signals that were calculated previously [D. Finkelstein-Shapiro et al., Phys. Rev. B 94, 205137 (2016)]. The model reproduces the observations reported for molecules on surfaces probed by 2DIR.
NASA Astrophysics Data System (ADS)
Fujisawa, Takeshi; Arai, Masakazu; Kano, Fumiyoshi
2010-05-01
Electroabsorption in highly strained GaInAs and GaInNAs quantum wells (QWs) grown on GaInAs or quasi-GaInAs substrates is investigated by using microscopic many-body theory. The effects of various parameters, such as strain, barrier height, substrate composition, and temperature are thoroughly examined. It is shown that the value of the absorption coefficient strongly depends on the depth of the QWs under large bias electric field due to the small overlap integral of wave functions between the conduction and valence bands. The use of GaInNAs QWs makes the strain in the well layer very small. Further, the effective quantum-well depth is increased in GaInNAs QWs due to the anticrossing interaction between the conduction and N-resonant bands, making it possible to obtain larger absorption coefficient under large bias electric fields without using wide-band gap materials for barriers.
Two-dimensional Fano lineshapes: Excited-state absorption contributions.
Finkelstein-Shapiro, Daniel; Pullerits, Tõnu; Hansen, Thorsten
2018-05-14
Fano interferences in nanostructures are influenced by dissipation effects as well as many-body interactions. Two-dimensional coherent spectroscopies have just begun to be applied to these systems where the spectroscopic signatures of a discrete-continuum structure are not known. In this article, we calculate the excited-state absorption contribution for different models of higher lying excited states. We find that the characteristic asymmetry of one-dimensional spectroscopies is recovered from the many-body contributions and that the higher lying excited manifolds have distorted lineshapes that are not anticipated from discrete-level Hamiltonians. We show that the Stimulated Emission cannot have contributions from a flat continuum of states. This work completes the Ground-State Bleach and Stimulated Emission signals that were calculated previously [D. Finkelstein-Shapiro et al., Phys. Rev. B 94, 205137 (2016)]. The model reproduces the observations reported for molecules on surfaces probed by 2DIR.
Specific absorption and backscatter coefficient signatures in southeastern Atlantic coastal waters
NASA Astrophysics Data System (ADS)
Bostater, Charles R., Jr.
1998-12-01
Measurements of natural water samples in the field and laboratory of hyperspectral signatures of total absorption and reflectance were obtained using long pathlength absorption systems (50 cm pathlength). Water was sampled in Indian River Lagoon, Banana River and Port Canaveral, Florida. Stations were also occupied in near coastal waters out to the edge of the Gulf Stream in the vicinity of Kennedy Space Center, Florida and estuarine waters along Port Royal Sound and along the Beaufort River tidal area in South Carolina. The measurements were utilized to calculate natural water specific absorption, total backscatter and specific backscatter optical signatures. The resulting optical cross section signatures suggest different models are needed for the different water types and that the common linear model may only appropriate for coastal and oceanic water types. Mean particle size estimates based on the optical cross section, suggest as expected, that particle size of oceanic particles are smaller than more turbid water types. The data discussed and presented are necessary for remote sensing applications of sensors as well as for development and inversion of remote sensing algorithms.
Absorption-Edge-Modulated Transmission Spectra for Water Contaminant Monitoring
2016-03-31
Naval Research Laboratory Washington, DC 20375-5320 NRL/MR/6390--16-9675 Absorption-Edge-Modulated Transmission Spectra for Water Contaminant ...ABSTRACT c. THIS PAGE 18. NUMBER OF PAGES 17. LIMITATION OF ABSTRACT Absorption-Edge-Modulated Transmission Spectra for Water Contaminant Monitoring...Unlimited Unclassified Unlimited 35 Samuel G. Lambrakos (202) 767-2601 Monitoring of contaminants associated with specific water resources using
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keller, M.; Bostater, C.
1997-06-01
A portable, long path length (50 cm), flow through, absorption tube system is utilized to obtain in-situ specific absorption coefficients from various water environments consisting of both clear and turbid water conditions from an underway ship or vessel. The high spectral resolution absorption signatures can be obtained and correlated with measured water quality parameters along a ship track. The long path cuvette system is capable of measuring important water quality parameters such as chlorophyll-a, seston or total suspended matter, tannins, humics, fulvic acids, or dissolved organic matter (dissolved organic carbon, DOC). The various concentrations of these substances can be determinedmore » and correlated with laboratory measurements using the double inflection ratio (DIR) of the spectra based upon derivative spectroscopy. The DIR is determined for all of the possible combinations of the bands ranging from 362-1115 nm using 252 channels, as described previously by Bostater. The information gathered from this system can be utilized in conjunction with hyperspectral imagery that allows one to relate reflectance and absorption to water quality of a particular environment. A comparison is made between absorption signatures and reflectance obtained from the Banana River, Florida.« less
Stallings, Virginia A; Schall, Joan I; Maqbool, Asim; Mascarenhas, Maria R; Alshaikh, Belal N; Dougherty, Kelly A; Hommel, Kevin; Ryan, Jamie; Elci, Okan U; Shaw, Walter A
2016-12-01
Pancreatic enzyme therapy does not normalize dietary fat absorption in patients with cystic fibrosis and pancreatic insufficiency. Efficacy of LYM-X-SORB (LXS), an easily absorbable lipid matrix that enhances fat absorption, was evaluated in a 12-month randomized, double-blinded, placebo-controlled trial with plasma fatty acids (FA) and coefficient of fat absorption (CFA) outcomes. A total of 110 subjects (age 10.4 ± 3.0 years) were randomized. Total FA increased with LXS at 3 and 12 months (+1.58, +1.14 mmol/L) and not with placebo (P = 0.046). With LXS, linoleic acid (LA) increased at 3 and 12 months (+298, +175 nmol/mL, P ≤ 0.046), with a 6% increase in CFA (P < 0.01). LA increase was significant in LXS versus placebo (445 vs 42 nmol/mL, P = 0.038). Increased FA and LA predicted increased body mass index Z scores. In summary, the LXS treatment improved dietary fat absorption compared with placebo as indicated by plasma FA and LA and was associated with better growth status.
The Star-grazing Bodies in the HD 172555 System
NASA Astrophysics Data System (ADS)
Grady, C. A.; Brown, Alexander; Welsh, Barry; Roberge, Aki; Kamp, Inga; Rivière Marichalar, P.
2018-06-01
Kiefer et al. reported the detection of infalling Ca II absorption in HD 172555, a member of the β Pictoris Moving Group (βPMG). We obtained HST Space Telescope Imaging Spectrograph and Cosmic Origins Spectrograph spectroscopy of this star at 2 epochs separated by a week, and we report the discovery of infalling gas in resonant transitions of Si III and IV, C II and IV, and neutral atomic oxygen. Variable absorption is seen in the C II transitions and is optically thick, with covering factors which range between 58% and 68%, similar to features seen in β Pictoris. The O I spectral profile resembles that of C II, showing a strong low-velocity absorption to +50 km s‑1 in the single spectral segment obtained during orbital night, as well as what may be higher-velocity absorption. Studies of the mid-IR spectrum of this system have suggested the presence of silica. The O I absorption differs from that seen in Si III, suggesting that the neutral atomic oxygen does not originate in SiO dissociation products but in a more volatile parent molecule such as CO.
Cibulsky, Susan M; Sokolowski, Danny; Lafontaine, Marc; Gagnon, Christine; Blain, Peter G.; Russell, David; Kreppel, Helmut; Biederbick, Walter; Shimazu, Takeshi; Kondo, Hisayoshi; Saito, Tomoya; Jourdain, Jean- René; Paquet, Francois; Li, Chunsheng; Akashi, Makoto; Tatsuzaki, Hideo; Prosser, Lesley
2015-01-01
Hazardous chemical, radiological, and nuclear materials threaten public health in scenarios of accidental or intentional release which can lead to external contamination of people. Without intervention, the contamination could cause severe adverse health effects, through systemic absorption by the contaminated casualties as well as spread of contamination to other people, medical equipment, and facilities. Timely decontamination can prevent or interrupt absorption into the body and minimize opportunities for spread of the contamination, thereby mitigating the health impact of the incident. Although the specific physicochemical characteristics of the hazardous material(s) will determine the nature of an incident and its risks, some decontamination and medical challenges and recommended response strategies are common among chemical and radioactive material incidents. Furthermore, the identity of the hazardous material released may not be known early in an incident. Therefore, it may be beneficial to compare the evidence and harmonize approaches between chemical and radioactive contamination incidents. Experts from the Global Health Security Initiative’s Chemical and Radiological/Nuclear Working Groups present here a succinct summary of guiding principles for planning and response based on current best practices, as well as research needs, to address the challenges of managing contaminated casualties in a chemical or radiological/nuclear incident. PMID:26635995
An Alternative Wearable Tracking System Based on a Low-Power Wide-Area Network
Fernández-Garcia, Raul; Gil, Ignacio
2017-01-01
This work presents an alternative wearable tracking system based on a low-power wide area network. A complete GPS receiver was integrated with a textile substrate, and the latitude and longitude coordinates were sent to the cloud by means of the SIM-less SIGFOX network. To send the coordinates over SIGFOX protocol, a specific codification algorithm was used and a customized UHF antenna on jeans fabric was designed, simulated and tested. Moreover, to guarantee the compliance to international regulations for human body exposure to electromagnetic radiation, the electromagnetic specific absorption rate of this antenna was analyzed. A specific remote server was developed to decode the latitude and longitude coordinates. Once the coordinates have been decoded, the remote server sends this information to the open source data viewer SENTILO to show the location of the sensor node in a map. The functionality of this system has been demonstrated experimentally. The results guarantee the utility and wearability of the proposed tracking system for the development of sensor nodes and point out that it can be a low cost alternative to other commercial products based on GSM networks. PMID:28335424
Numerical simulation of magnetic nano drug targeting in patient-specific lower respiratory tract
NASA Astrophysics Data System (ADS)
Russo, Flavia; Boghi, Andrea; Gori, Fabio
2018-04-01
Magnetic nano drug targeting, with an external magnetic field, can potentially improve the drug absorption in specific locations of the body. However, the effectiveness of the procedure can be reduced due to the limitations of the magnetic field intensity. This work investigates this technique with the Computational Fluid Dynamics (CFD) approach. A single rectangular coil generates the external magnetic field. A patient-specific geometry of the Trachea, with its primary and secondary bronchi, is reconstructed from Digital Imaging and Communications in Medicine (DICOM) formatted images, throughout the Vascular Modelling Tool Kit (VMTK) software. A solver, coupling the Lagrangian dynamics of the magnetic nanoparticles with the Eulerian dynamics of the air, is used to perform the simulations. The resistive pressure, the pulsatile inlet velocity and the rectangular coil magnetic field are the boundary conditions. The dynamics of the injected particles is investigated without and with the magnetic probe. The flow field promotes particles adhesion to the tracheal wall. The particles volumetric flow rate in both cases has been calculated. The magnetic probe is shown to increase the particles flow in the target region, but at a limited extent. This behavior has been attributed to the small particle size and the probe configuration.
Optical Properties of Multi-Layered Insulation
NASA Technical Reports Server (NTRS)
Rodriguez, Heather M.; Abercromby, Kira J.; Barker, Edwin
2007-01-01
Multi-layer insulation, MLI, is a material used on rocket bodies and satellites mainly for thermal insulation. MLI can be comprised of a variety of materials, layer numbers, and dimensions based on its purpose. A common composition of MLI consists of outer facing copper-colored Kapton with an aluminized backing for the top and bottom layers and the middle consisting of alternating layers of DARCON or Nomex netting with aluminized Mylar. If this material became separated from the spacecraft or rocket body its orbit would vary greatly in eccentricity due to its high area to mass (A/m) and susceptibility to solar radiation pressure perturbations. Recently a debris population was found with high A/m, which could be MLI. Laboratory photometric measurements of one intact piece and three different layers of MLI is presented in an effort to predict the characteristics of a MLI light curve and aid in identifying the source of the new population. For this paper, the layers used will be consistent with the common MLI mentioned in the above paragraph. Using a robotic arm, the piece was rotated from 0-360 degrees in one degree increments along the object s longest axis. Laboratory photometric data was recorded with a CCD camera using various filters (Johnson B, Johnson V and Bessell R). The measurements were taken at an 18 degree (light-object-camera) phase angle. As expected, the MLI pieces showed characteristics similar to a bimodal magnitude plot of a flat plate, but with more photometric features, dependant upon the layer of MLI. Time exposures varied from piece to piece such that the amount of pixels saturated would be minimal. In addition to photometric laboratory measurements, laboratory spectral measurements are shown for the same MLI samples. Spectral data will be combined to match the wavelength region of photometric data so a measure of truth can be established for the photometric measurements. Spectral data shows a strong absorption feature near 4800 angstroms, which is due to the copper color of Kapton. If the debris is MLI and the outer layer of copper coloring of Kapton is present, evidence would be seen spectrally by the specific absorption feature as well as using R-B (red-blue) light curves. Using laboratory photometric measurements and the results from spectral laboratory measurements, an optical property database is provided for an object with a high A/m. The benefits of this database for remote optical measurements of orbital debris are shown by illustrating the optical properties expected for a high A/m object, specifically common satellite and rocket body MLI.
Yang, Jing; Cai, Jingbo; Wang, Hongyu; Tian, Haishan; Huang, Jian; Qiang, Weidong; Zhang, Linbo; Li, Haiyan; Li, Xiaokun; Jiang, Chao
2017-01-01
Recombinant human fibroblast growth factor 10 (rhFGF-10) is frequently used to treat patients with skin injuries. It can also promote hair growth. However, the effective application of rhFGF-10 is limited because of its poor stability and transdermal absorption. In this study, polymerase chain reaction (PCR) and Southern blotting were used to identify transgenic safflowers carrying a gene encoding an oleosin-rhFGF-10 fusion protein. The size and structural integrity of oleosin-rhFGF-10 in oil bodies extracted from transgenic safflower seeds was characterized by polyacrylamide gel electrophoresis and western blotting. Oil body extracts containing oleosin-rhFGF-10 were topically applied to mouse skin. The absorption of oleosin-rhFGF-10 was studied by immunohistochemistry. Its efficiency in promoting wound healing and hair regeneration were evaluated in full thickness wounds and hair growth assays. We identified a safflower line that carried the transgene and expressed a 45 kDa oleosin-rhFGF-10 protein. Oil body-bound oleosin-rhFGF-10 was absorbed by the skin with higher efficiency and speed compared with prokaryotically-expressed rhFGF-10. Oleosin-rhFGF-10 also enhanced wound closure and promoted hair growth better than rhFGF-10. The application of oleosin-rhFGF-10 in oil bodies promoted its delivery through the skin, providing a basis for improved therapeutic effects in enhancing wound healing and hair growth. PMID:29057820
Li, Wenqing; Yang, Jing; Cai, Jingbo; Wang, Hongyu; Tian, Haishan; Huang, Jian; Qiang, Weidong; Zhang, Linbo; Li, Haiyan; Li, Xiaokun; Jiang, Chao
2017-10-18
Recombinant human fibroblast growth factor 10 (rhFGF-10) is frequently used to treat patients with skin injuries. It can also promote hair growth. However, the effective application of rhFGF-10 is limited because of its poor stability and transdermal absorption. In this study, polymerase chain reaction (PCR) and Southern blotting were used to identify transgenic safflowers carrying a gene encoding an oleosin-rhFGF-10 fusion protein. The size and structural integrity of oleosin-rhFGF-10 in oil bodies extracted from transgenic safflower seeds was characterized by polyacrylamide gel electrophoresis and western blotting. Oil body extracts containing oleosin-rhFGF-10 were topically applied to mouse skin. The absorption of oleosin-rhFGF-10 was studied by immunohistochemistry. Its efficiency in promoting wound healing and hair regeneration were evaluated in full thickness wounds and hair growth assays. We identified a safflower line that carried the transgene and expressed a 45 kDa oleosin-rhFGF-10 protein. Oil body-bound oleosin-rhFGF-10 was absorbed by the skin with higher efficiency and speed compared with prokaryotically-expressed rhFGF-10. Oleosin-rhFGF-10 also enhanced wound closure and promoted hair growth better than rhFGF-10. The application of oleosin-rhFGF-10 in oil bodies promoted its delivery through the skin, providing a basis for improved therapeutic effects in enhancing wound healing and hair growth.
The life history of a botulinum toxin molecule.
Simpson, Lance
2013-06-01
There is an emerging literature describing the absorption, distribution, metabolism and elimination of botulinum toxin. This work reveals that the toxin can be absorbed by both the oral and inhalation routes. The primary mechanism for absorption is binding and transport across epithelial cells. Toxin that enters the body undergoes a distribution phase, which is quite short, and an elimination phase, which is comparatively long. During the distribution phase, botulinum toxin migrates to the peri-neuronal microcompartment in the vicinity of vulnerable cells, such as cholinergic nerve endings. Only these cells have the ability to selectively accumulate the molecule. When the toxin moves from the cell membrane to the cell interior, it undergoes programmed death. This is coincident with release of the catalytically active light chain that paralyzes transmission. Intraneuronal metabolism of light chain is via the ubiquitination-proteasome pathway. Systemic metabolism and elimination is assumed to be via the liver. The analysis of absorption, distribution, metabolism and elimination of the toxin helps to create a life history of the molecule in the body. This has many benefits, including: a) clarifying the mechanisms that underlie the disease botulism, b) providing insights for development of medical countermeasures against the toxin, and c) helping to explain the meaning of a lethal dose of toxin. It is likely that work intended to enhance understanding of the fate of botulinum toxin in the body will intensify. These efforts will include new and powerful analytic tools, such as single molecule-single cell analyses in vitro and real time, 3-dimensional pharmacokinetic studies in vivo. Copyright © 2013 Elsevier Ltd. All rights reserved.
Analysis and parameterization of absorption properties of northern Norwegian coastal water
NASA Astrophysics Data System (ADS)
Nima, Ciren; Frette, Øyvind; Hamre, Børge; Erga, Svein Rune; Chen, Yi-Chun; Zhao, Lu; Sørensen, Kai; Norli, Marit; Stamnes, Knut; Muyimbwa, Dennis; Ssenyonga, Taddeo; Ssebiyonga, Nicolausi; Stamnes, Jakob J.
2017-02-01
Coastal water bodies are generally classified as Case 2 water, in which non-algal particles (NAP) and colored dissolved organic matter (CDOM) contribute significantly to the optical properties in addition to phytoplankton. These three constituents vary independently in Case 2 water and tend to be highly variable in space and time. We present data from measurements and analyses of the spectral absorption due to CDOM, total suspended matter (TSM), phytoplankton, and NAP in high-latitude northern Norwegian coastal water based on samples taken in spring, summer, and autumn.
Elastomeric Cellular Structure Enhanced by Compressible Liquid Filler
NASA Astrophysics Data System (ADS)
Sun, Yueting; Xu, Xiaoqing; Xu, Chengliang; Qiao, Yu; Li, Yibing
2016-05-01
Elastomeric cellular structures provide a promising solution for energy absorption. Their flexible and resilient nature is particularly relevant to protection of human bodies. Herein we develop an elastomeric cellular structure filled with nanoporous material functionalized (NMF) liquid. Due to the nanoscale infiltration in NMF liquid and its interaction with cell walls, the cellular structure has a much enhanced mechanical performance, in terms of loading capacity and energy absorption density. Moreover, it is validated that the structure is highly compressible and self-restoring. Its hyper-viscoelastic characteristics are elucidated.
Experimental investigation of a metasurface resonator for in vivo imaging at 1.5 T.
Shchelokova, Alena V; Slobozhanyuk, Alexey P; de Bruin, Paul; Zivkovic, Irena; Kallos, Efthymios; Belov, Pavel A; Webb, Andrew
2018-01-01
In this work, we experimentally demonstrate an increase in the local transmit efficiency of a 1.5 T MRI scanner by using a metasurface formed by an array of brass wires embedded in a high permittivity low loss medium. Placement of such a structure inside the scanner results in strong coupling of the radiofrequency field produced by the body coil with the lowest frequency electromagnetic eigenmode of the metasurface. This leads to spatial redistribution of the near fields with enhancement of the local magnetic field and an increase in the transmit efficiency per square root maximum specific absorption rate in the region-of-interest. We have investigated this structure in vivo and achieved a factor of 3.3 enhancement in the local radiofrequency transmit efficiency. Copyright © 2017 Elsevier Inc. All rights reserved.
Stage, C; Bergmann, TK; Ferrero‐Milliani, L; Bjerre, D; Thomsen, R; Dalhoff, KP; Rasmussen, HB; Jürgens, G
2016-01-01
The aim of this study was to identify demographic and genetic factors that significantly affect methylphenidate (MPH) pharmacokinetics (PK), and may help explain interindividual variability and further increase the safety of MPH. d‐MPH plasma concentrations, demographic covariates, and carboxylesterase 1 (CES1) genotypes were gathered from 122 healthy adults and analyzed using nonlinear mixed effects modeling. The structural model that best described the data was a two‐compartment disposition model with absorption transit compartments. Novel effects of rs115629050 and CES1 diplotypes, as well as previously reported effects of rs71647871 and body weight, were included in the final model. Assessment of the independent and combined effect of CES1 covariates identified several specific risk factors that may result in severely increased d‐MPH plasma exposure. PMID:27754602
RESPONSE OF THE THERMOREGULATORY SYSTEM TO TOXIC CHEMICALS
The thermoregulatory system plays a crucial role in the physiological response to pesticides, airborne pollutants, and other toxic agents. The exposure to toxicants via inhalation, cutaneous absorption, or ingestion, their clearance from the body, the physiological responses, del...
Response of the Thermoregulatory System to Toxic Chemicals
The thermoregulatory system plays a crucial role in the physiological response to pesticides, airborne pollutants, and other toxic agents. The exposure to toxicants via inhalation, cutaneous absorption, or ingestion, their clearance from the body, the physiological responses, del...
BREATH MEASUREMENT AND MODELS TO ASSESS VOC DERMAL ABSORPTION IN WATER
Dermal exposure to volatile organic compounds (VOCs) in water results from environmental contamination of surface, ground-, and drinking waters. This exposure occurs both in occupational and residential settings. Compartmental models incorporating body burden measurements have ...
A Reflection on the Fate of Chiral 1,2,4-Triazole Fungicides in Biological Systems
In biological systems, stereoisomers of chiral compounds can exhibit significantly different pharmacokinetics (absorption, distribution, metabolism, and elimination) and pharmacodynamics (physiological effects). Pharmacokinetic processes (i.e., what the body does to the chemical)...
Analysis of advanced conceptual designs for single-family-size absorption chillers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Macriss, R.A.; Zawacki, T.S.; Kouo, M.T.
1978-01-01
The objective of this research study is the development of radically new fluid systems, specifically tailored to the needs and requirements of solar-absorption cooling for single-family-size residences. Progress is reported.
Development of CIP/graphite composite additives for electromagnetic wave absorption applications
NASA Astrophysics Data System (ADS)
Woo, Soobin; Yoo, Chan-Sei; Kim, Hwijun; Lee, Mijung; Quevedo-Lopez, Manuel; Choi, Hyunjoo
2017-09-01
In this study, the electromagnetic (EM) wave absorption ability of carbonyl iron powder (CIP)/graphite composites produced by ball milling were studied in a range of 28.5 GHz to examine the effects of the morphology and volume fraction of graphite on EM wave absorption ability. The results indicated that a ball milling technique was effective in exfoliating the graphite and covering it with CIP, thereby markedly increasing the specific surface area of the hybrid powder. The increase in the surface area and hybridization with dielectric loss materials (i.e., graphite) improved EM absorbing properties of CIP in the range of S and X bands. Specifically, the CIP/graphite composite containing 3 wt% graphite exhibited electromagnetic wave absorption of -13 dB at 7 GHz, -21 dB at 5.8 GHz, and -29 dB at 4.3 GHz after 1 h, 8 h, and 16 h of milling, respectively. [Figure not available: see fulltext.
Bakker, J F; Paulides, M M; Neufeld, E; Christ, A; Kuster, N; van Rhoon, G C
2011-08-07
To avoid potentially adverse health effects of electromagnetic fields (EMF), the International Commission on Non-Ionizing Radiation Protection (ICNIRP) has defined EMF reference levels. Restrictions on induced whole-body-averaged specific absorption rate (SAR(wb)) are provided to keep the whole-body temperature increase (T(body, incr)) under 1 °C during 30 min. Additional restrictions on the peak 10 g spatial-averaged SAR (SAR(10g)) are provided to prevent excessive localized tissue heating. The objective of this study is to assess the localized peak temperature increase (T(incr, max)) in children upon exposure at the reference levels. Finite-difference time-domain modeling was used to calculate T(incr, max) in six children and two adults exposed to orthogonal plane-wave configurations. We performed a sensitivity study and Monte Carlo analysis to assess the uncertainty of the results. Considering the uncertainties in the model parameters, we found that a peak temperature increase as high as 1 °C can occur for worst-case scenarios at the ICNIRP reference levels. Since the guidelines are deduced from temperature increase, we used T(incr, max) as being a better metric to prevent excessive localized tissue heating instead of localized peak SAR. However, we note that the exposure time should also be considered in future guidelines. Hence, we advise defining limits on T(incr, max) for specified durations of exposure.
Of Mice, Men and Elephants: The Relation between Articular Cartilage Thickness and Body Mass
Malda, Jos; de Grauw, Janny C.; Benders, Kim E. M.; Kik, Marja J. L.; van de Lest, Chris H. A.; Creemers, Laura B.; Dhert, Wouter J. A.; van Weeren, P. René
2013-01-01
Mammalian articular cartilage serves diverse functions, including shock absorption, force transmission and enabling low-friction joint motion. These challenging requirements are met by the tissue’s thickness combined with its highly specific extracellular matrix, consisting of a glycosaminoglycan-interspersed collagen fiber network that provides a unique combination of resilience and high compressive and shear resistance. It is unknown how this critical tissue deals with the challenges posed by increases in body mass. For this study, osteochondral cores were harvested post-mortem from the central sites of both medial and lateral femoral condyles of 58 different mammalian species ranging from 25 g (mouse) to 4000 kg (African elephant). Joint size and cartilage thickness were measured and biochemical composition (glycosaminoclycan, collagen and DNA content) and collagen cross-links densities were analyzed. Here, we show that cartilage thickness at the femoral condyle in the mammalian species investigated varies between 90 µm and 3000 µm and bears a negative allometric relationship to body mass, unlike the isometric scaling of the skeleton. Cellular density (as determined by DNA content) decreases with increasing body mass, but gross biochemical composition is remarkably constant. This however need not affect life-long performance of the tissue in heavier mammals, due to relatively constant static compressive stresses, the zonal organization of the tissue and additional compensation by joint congruence, posture and activity pattern of larger mammals. These findings provide insight in the scaling of articular cartilage thickness with body weight, as well as in cartilage biochemical composition and cellularity across mammalian species. They underscore the need for the use of appropriate in vivo models in translational research aiming at human applications. PMID:23437402
Rezai, Ali R; Finelli, Daniel; Nyenhuis, John A; Hrdlicka, Greg; Tkach, Jean; Sharan, Ashwini; Rugieri, Paul; Stypulkowski, Paul H; Shellock, Frank G
2002-03-01
To assess magnetic resonance imaging (MRI)-related heating for a neurostimulation system (Activa Tremor Control System, Medtronic, Minneapolis, MN) used for chronic deep brain stimulation (DBS). Different configurations were evaluated for bilateral neurostimulators (Soletra Model 7426), extensions, and leads to assess worst-case and clinically relevant positioning scenarios. In vitro testing was performed using a 1.5-T/64-MHz MR system and a gel-filled phantom designed to approximate the head and upper torso of a human subject. MRI was conducted using the transmit/receive body and transmit/receive head radio frequency (RF) coils. Various levels of RF energy were applied with the transmit/receive body (whole-body averaged specific absorption rate (SAR); range, 0.98-3.90 W/kg) and transmit/receive head (whole-body averaged SAR; range, 0.07-0.24 W/kg) coils. A fluoroptic thermometry system was used to record temperatures at multiple locations before (1 minute) and during (15 minutes) MRI. Using the body RF coil, the highest temperature changes ranged from 2.5 degrees-25.3 degrees C. Using the head RF coil, the highest temperature changes ranged from 2.3 degrees-7.1 degrees C.Thus, these findings indicated that substantial heating occurs under certain conditions, while others produce relatively minor, physiologically inconsequential temperature increases. The temperature increases were dependent on the type of RF coil, level of SAR used, and how the lead wires were positioned. Notably, the use of clinically relevant positioning techniques for the neurostimulation system and low SARs commonly used for imaging the brain generated little heating. Based on this information, MR safety guidelines are provided. These observations are restricted to the tested neurostimulation system.
NASA Technical Reports Server (NTRS)
Perlwitz, Jan; Miller, Ron L.
2010-01-01
We reexamine the aerosol semidirect effect using a general circulation model and four cases of the single-scattering albedo of dust aerosols. Contrary to the expected decrease in low cloud cover due to heating by tropospheric aerosols, we find a significant increase with increasing absorptivity of soil dust particles in regions with high dust load, except during Northern Hemisphere winter. The strongest sensitivity of cloud cover to dust absorption is found over land during Northern Hemisphere summer. Here even medium and high cloud cover increase where the dust load is highest. The cloud cover change is directly linked to the change in relative humidity in the troposphere as a result of contrasting changes in specific humidity and temperature. More absorption by aerosols leads to larger diabatic heating and increased warming of the column, decreasing relative humidity. However, a corresponding increase in the specific humidity exceeds the temperature effect on relative humidity. The net effect is more low cloud cover with increasing aerosol absorption. The higher specific humidity where cloud cover strongly increases is attributed to an enhanced convergence of moisture driven by dust radiative heating. Although in some areas our model exhibits a reduction of low cloud cover due to aerosol heating consistent with the conventional description of the semidirect effect, we conclude that the link between aerosols and clouds is more varied, depending also on changes in the atmospheric circulation and the specific humidity induced by the aerosols. Other absorbing aerosols such as black carbon are expected to have a similar effect.
Wang, Lin; Zhao, Dong-Zhi; Yang, Jian-Hong; Chen, Yan-Long
2010-12-01
Chromophoric dissolved organic matter (CDOM) near ultraviolet absorption spectra contains CDOM molecular structure, composition and other important physical and chemical information. Based on the measured data of CDOM absorption coefficient in March 2009 in the north area of Yellow Sea, the present paper analyzed near ultraviolet absorption spectral properties of CDOM. The results showed that due to the impact of near-shore terrigenous input, the composition of CDOM is quite different in the north area of Yellow Sea, and this area is a typical case II water; fitted slope with specific range of spectral band and absorption coefficient at specific band can indicate the relative size of CDOM molecular weight, correlation between spectral slope of the Sg,275-300), Sg,300-350, Sg,350-400 and Sg,250-275 and the relative size of CDOM molecular weight indicative parameter M increases in turn and the highest is up to 0.95. Correlation between a(g)(lambda) and M value increases gradually with the increase in wavelength, and the highest is up to 0.92 at 400 nm; being correlated or not between spectral slope and absorption coefficient is decided by the fitting-band wavelength range for the spectra slope and the wavelength for absorption coefficient. Correlation between Sg,275-300 and a(g)(400) is the largest, up to 0.87.
Current understanding of iron homeostasis.
Anderson, Gregory J; Frazer, David M
2017-12-01
Iron is an essential trace element, but it is also toxic in excess, and thus mammals have developed elegant mechanisms for keeping both cellular and whole-body iron concentrations within the optimal physiologic range. In the diet, iron is either sequestered within heme or in various nonheme forms. Although the absorption of heme iron is poorly understood, nonheme iron is transported across the apical membrane of the intestinal enterocyte by divalent metal-ion transporter 1 (DMT1) and is exported into the circulation via ferroportin 1 (FPN1). Newly absorbed iron binds to plasma transferrin and is distributed around the body to sites of utilization with the erythroid marrow having particularly high iron requirements. Iron-loaded transferrin binds to transferrin receptor 1 on the surface of most body cells, and after endocytosis of the complex, iron enters the cytoplasm via DMT1 in the endosomal membrane. This iron can be used for metabolic functions, stored within cytosolic ferritin, or exported from the cell via FPN1. Cellular iron concentrations are modulated by the iron regulatory proteins (IRPs) IRP1 and IRP2. At the whole-body level, dietary iron absorption and iron export from the tissues into the plasma are regulated by the liver-derived peptide hepcidin. When tissue iron demands are high, hepcidin concentrations are low and vice versa. Too little or too much iron can have important clinical consequences. Most iron deficiency reflects an inadequate supply of iron in the diet, whereas iron excess is usually associated with hereditary disorders. These disorders include various forms of hemochromatosis, which are characterized by inadequate hepcidin production and, thus, increased dietary iron intake, and iron-loading anemias whereby both increased iron absorption and transfusion therapy contribute to the iron overload. Despite major recent advances, much remains to be learned about iron physiology and pathophysiology. © 2017 American Society for Nutrition.
Resonant Absorption in GaAs-Based Nanowires by Means of Photo-Acoustic Spectroscopy
NASA Astrophysics Data System (ADS)
Petronijevic, E.; Leahu, G.; Belardini, A.; Centini, M.; Li Voti, R.; Hakkarainen, T.; Koivusalo, E.; Guina, M.; Sibilia, C.
2018-03-01
Semiconductor nanowires made of high refractive index materials can couple the incoming light to specific waveguide modes that offer resonant absorption enhancement under the bandgap wavelength, essential for light harvesting, lasing and detection applications. Moreover, the non-trivial ellipticity of such modes can offer near field interactions with chiral molecules, governed by near chiral field. These modes are therefore very important to detect. Here, we present the photo-acoustic spectroscopy as a low-cost, reliable, sensitive and scattering-free tool to measure the spectral position and absorption efficiency of these modes. The investigated samples are hexagonal nanowires with GaAs core; the fabrication by means of lithography-free molecular beam epitaxy provides controllable and uniform dimensions that allow for the excitation of the fundamental resonant mode around 800 nm. We show that the modulation frequency increase leads to the discrimination of the resonant mode absorption from the overall absorption of the substrate. As the experimental data are in great agreement with numerical simulations, the design can be optimized and followed by photo-acoustic characterization for a specific application.
Collapse characteristics of hydroformed tubes
NASA Astrophysics Data System (ADS)
Kim, Young-Suk; Lee, Young-Moon; Kim, Cheol; Hwang, Sang-Moo
2002-07-01
Tube hydroforming technology (THF) has been extensively applied to auto-body structural members such as the engine cradle and side member in order to meet the urgent need for vehicle weight and cost reduction as well as high quality for collision accidents. In this paper, the mechanical properties for hydroformed tubes with various bulging strians under the plane strain mode are experimentally investigated. Axial compression tests for hydroformed tubes are performed to investigate the collapse load and collapse absorption capacity through the collapse load-displacement curves. Moreover, the collapse absorption capacities are compared and discussed among as-received, hydroformed, and press formed tubes. Results demonstrate that the hydroformed tubes show higher collapse absorption capability in comparison with the as-received tube and the press formed tube because of its high yield strength due to strain hardening.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Teeguarden, Justin G.; Twaddle, Nathan C.; Churchwell, Mona I.
Here we present data to evaluate potential absorption of Bisphenol A through non-metabolizing tissues of the upper digestive tract. Concurrent serum and urine concentrations of d6-BPA, and its glucuronide and sulfate conjugates, were measured over a 24 h period in 10 adult male volunteers following ingestion of 30 μg d6-BPA/kg body weight in soup. The pharmacokinetic behavior of BPA and its metabolites in this cohort (rapid absorption, complete elimination, evidence against sublingual absorption) was reported. This Data in Brief article contains the corresponding individual pharmacokinetic data, reports the demographics of the cohort and provides additional details related to the analyticalmore » methods employed and is related to [4].« less
Teeguarden, Justin G.; Twaddle, Nathan C.; Churchwell, Mona I.; ...
2015-09-01
Here we present data to evaluate potential absorption of Bisphenol A through non-metabolizing tissues of the upper digestive tract. Concurrent serum and urine concentrations of d6-BPA, and its glucuronide and sulfate conjugates, were measured over a 24 h period in 10 adult male volunteers following ingestion of 30 μg d6-BPA/kg body weight in soup. The pharmacokinetic behavior of BPA and its metabolites in this cohort (rapid absorption, complete elimination, evidence against sublingual absorption) was reported. This Data in Brief article contains the corresponding individual pharmacokinetic data, reports the demographics of the cohort and provides additional details related to the analyticalmore » methods employed and is related to [4].« less
Teeguarden, Justin G.; Twaddle, Nathan C.; Churchwell, Mona I.; Yang, Xiaoxia; Fisher, Jeffrey W.; Seryak, Liesel M.; Doerge, Daniel R.
2015-01-01
Here we present data to evaluate potential absorption of Bisphenol A through non-metabolizing tissues of the upper digestive tract. Concurrent serum and urine concentrations of d6-BPA, and its glucuronide and sulfate conjugates, were measured over a 24 h period in 10 adult male volunteers following ingestion of 30 μg d6-BPA/kg body weight in soup. The pharmacokinetic behavior of BPA and its metabolites in this cohort (rapid absorption, complete elimination, evidence against sublingual absorption) was reported. This Data in Brief article contains the corresponding individual pharmacokinetic data, reports the demographics of the cohort and provides additional details related to the analytical methods employed and is related to [4]. PMID:26217767
Bach Kristensen, Mette; Hels, Ole; Morberg, Catrine; Marving, Jens; Bügel, Susanne; Tetens, Inge
2005-07-01
Meat increases absorption of non-haem iron in single-meal studies. The aim of the present study was to investigate, over a 5 d period, the potential increasing effect of consumption of pork meat in a whole diet on the fractional absorption of non-haem iron and the total absorption of iron, when compared to a vegetarian diet. A randomised cross-over design with 3 x 5 d whole-diet periods with diets containing Danish-produced meat, Polish-produced meat or a vegetarian diet was conducted. Nineteen healthy female subjects completed the study. All main meals in the meat diets contained 60 g of pork meat and all diets had high phytic acid content (1250 mumol/d). All main meals were extrinsically labelled with the radioactive isotope (59)Fe and absorption of iron was measured in a whole body counter. The non-haem iron absorption from the Danish meat diet was significantly higher compared to the vegetarian diet (P=0.031). The mean fractional absorption of non-haem iron was 7.9 (se1.1), 6.8 (se 1.0) and 5.3 (se 0.6) % for the Danish and Polish meat diets and vegetarian diet, respectively. Total absorption of iron was higher for both meat diets compared to the vegetarian diet (Danish meat diet: P=0.006, Polish meat diet: P=0.003). The absorption ratios of the present study were well in accordance with absorption ratios estimated using algorithms on iron bioavailability. Neither the meat diets nor the vegetarian diets fulfilled the estimated daily requirements of absorbed iron in spite of a meat intake of 180 g/d in the meat diets.
Segmental transport of Ca²⁺ and Mg²⁺ along the gastrointestinal tract.
Lameris, Anke L; Nevalainen, Pasi I; Reijnen, Daphne; Simons, Ellen; Eygensteyn, Jelle; Monnens, Leo; Bindels, René J M; Hoenderop, Joost G J
2015-02-01
Calcium (Ca(2+)) and magnesium (Mg(2+)) ions are involved in many vital physiological functions. Since dietary intake is the only source of minerals for the body, intestinal absorption is essential for normal homeostatic levels. The aim of this study was to characterize the absorption of Ca(2+) as well as Mg(2+) along the gastrointestinal tract at a molecular and functional level. In both humans and mice the Ca(2+) channel transient receptor potential vanilloid subtype 6 (TRPV6) is expressed in the proximal intestinal segments, whereas Mg(2+) channel transient receptor potential melastatin subtype 6 (TRPM6) is expressed in the distal parts of the intestine. A method was established to measure the rate of Mg(2+) absorption from the intestine in a time-dependent manner by use of (25)Mg(2+). In addition, local absorption of Ca(2+) and Mg(2+) in different segments of the intestine of mice was determined by using surgically implanted intestinal cannulas. By these methods, it was demonstrated that intestinal absorption of Mg(2+) is regulated by dietary needs in a vitamin D-independent manner. Also, it was shown that at low luminal concentrations, favoring transcellular absorption, Ca(2+) transport mainly takes place in the proximal segments of the intestine, whereas Mg(2+) absorption predominantly occurs in the distal part of the gastrointestinal tract. Vitamin D treatment of mice increased serum Mg(2+) levels and 24-h urinary Mg(2+) excretion, but not intestinal absorption of (25)Mg(2+). Segmental cannulation of the intestine and time-dependent absorption studies using (25)Mg(2+) provide new ways to study intestinal Mg(2+) absorption. Copyright © 2015 the American Physiological Society.
Bering, Stine; Sjøltov, Laila; Wrisberg, Seema S; Berggren, Anna; Alenfall, Jan; Jensen, Mikael; Højgaard, Liselotte; Tetens, Inge; Bukhave, Klaus
2007-11-01
Lactic acid-fermented foods have been shown to increase Fe absorption in human subjects, possibly by lowering pH, activation of phytases, production of organic acids, or by the viable lactic acid bacteria. In this study the effect of a heat-inactivated lactic acid-fermented oat gruel with and without added viable, lyophilized Lactobacillus plantarum 299v on non-haem Fe absorption was investigated. Furthermore, Fe absorption in the distal intestine was determined. In a randomized, double-blinded crossover trial eighteen healthy young women aged 22 (SD 3) years with low Fe status (serum ferritin < 30 microg/l) were served the two test gruels, extrinsically labelled with 59Fe and served with two enterocoated capsules (containing 55Fe(II) and 55Fe(III), respectively) designed to disintegrate in the ileum. The meals were consumed on two consecutive days, e.g. in the order AA followed by BB in a second period. Non-haem Fe absorption was determined from 59Fe whole-body retention and isotope activities in blood samples. The concentrations of Fe, lactate, phytate, and polyphenols, and the pH were similar in the heat-inactivated lactic acid-fermented oat gruels with and without added L. plantarum 299v, and no difference in Fe absorption was observed between the test gruels (1.4 and 1.3%, respectively). Furthermore, no absorption of Fe in the distal intestine was observed. In conclusion, addition of viable, lyophilized lactobacillus to a heat-inactivated lactic acid-fermented oat gruel does not affect Fe absorption, and no absorption seems to occur in the distal part of the intestine from low Fe bioavailability meals in these women.
The Transient Dermal Exposure II: Post-Exposure Absorption and Evaporation of Volatile Compounds
FRASCH, H. FREDERICK; BUNGE, ANNETTE L.
2016-01-01
The transient dermal exposure is one where the skin is exposed to chemical for a finite duration, after which the chemical is removed and no residue remains on the skin’s surface. Chemical within the skin at the end of the exposure period can still enter the systemic circulation. If it has some volatility, a portion of it will evaporate from the surface before it has a chance to be absorbed by the body. The fate of this post-exposure “skin depot” is the focus of this theoretical study. Laplace domain solutions for concentration distribution, flux, and cumulative mass absorption and evaporation are presented, and time domain results are obtained through numerical inversion. The Final Value Theorem is applied to obtain the analytical solutions for the total fractional absorption by the body and evaporation from skin at infinite time following a transient exposure. The solutions depend on two dimensionless variables: χ, the ratio of evaporation rate to steady-state dermal permeation rate; and the ratio of exposure time to membrane lag time. Simple closed form algebraic equations are presented that closely approximate the complete analytical solutions. Applications of the theory to the dermal risk assessment of pharmaceutical, occupational, and environmental exposures are presented for four example chemicals. PMID:25611182
Effect of guar on second-meal glucose tolerance in normal man.
Trinick, T R; Laker, M F; Johnston, D G; Keir, M; Buchanan, K D; Alberti, K G
1986-07-01
Whole body glucose turnover and absorption of a 50 g glucose drink was studied in six healthy volunteers on two occasions, 4 h after a 'breakfast' of 50 g of glucose, mixed on one occasion with 20 g of guar gum. Plasma glucose concentrations were significantly reduced with guar gum compared with those obtained without guar gum (P less than 0.0001). Whole body glucose turnover studied by an intravenous primed dose constant infusion technique using D-[3-3H]glucose showed no significant difference between the two groups: 353 +/- 15 mmol with guar and 350 +/- 9 mmol without guar. Total oral glucose absorption, followed with a D-[1-14C]glucose tracer, was significantly decreased by guar treatment, being 219 +/- 3 mmol with guar and 239 +/- 5 mmol without guar (P less than 0.05). Serum insulin levels were lowered by guar treatment (P less than 0.05) while those of C-peptide, gastric inhibitory polypeptide, glucagon, cortisol and pancreatic polypeptide did not differ significantly. Blood lactate concentrations were raised in the guar treated group (P less than 0.05) whereas pyruvate, alanine, glycerol and 3-hydroxybutyrate concentrations did not differ significantly. These results support the suggestion that guar improves second-meal tolerance to glucose by decreasing absorption.
Non-destructive elemental analysis of vertebral body trabecular bone using muonic X-rays.
Hosoi, Y; Watanabe, Y; Sugita, R; Tanaka, Y; Nagamine, K; Ono, T; Sakamoto, K
1995-12-01
Non-destructive elemental analysis with muonic X-rays was performed on human vertebral bone and lumbar torso phantoms. It can provide quantitative information on all elements in small deep-seated localized volumes. The experiment was carried out using the superconducting muon channel at TRIUMF in Vancouver, Canada and a lithium drifted germanium detector with an active area of 18.5 cm2. The muon channel produced backward-decayed negative muons with wide kinetic energy range from 0.5 to 54.2 MeV. The muon beam was collimated to a diameter of 18 mm. The number of incoming muons was about 4 x 10(6) approximately 5 x 10(7) per data point. In the measurements with human vertebral bones fixed with neutralized formaldehyde, the correlation coefficient between calcium content measured by muons and by atomic absorption analysis was 0.99 and the level of significance was 0.0003. In the measurements with lumbar torso phantoms, the correlation coefficient between calcium content measured by muons and by atomic absorption analysis was 0.99 and the level of significance was 0.02. The results suggest that elemental analysis in vertebral body trabecular bone using muonic X-rays closely correlates with measurements by atomic absorption analysis.
Exposure limits: the underestimation of absorbed cell phone radiation, especially in children.
Gandhi, Om P; Morgan, L Lloyd; de Salles, Alvaro Augusto; Han, Yueh-Ying; Herberman, Ronald B; Davis, Devra Lee
2012-03-01
The existing cell phone certification process uses a plastic model of the head called the Specific Anthropomorphic Mannequin (SAM), representing the top 10% of U.S. military recruits in 1989 and greatly underestimating the Specific Absorption Rate (SAR) for typical mobile phone users, especially children. A superior computer simulation certification process has been approved by the Federal Communications Commission (FCC) but is not employed to certify cell phones. In the United States, the FCC determines maximum allowed exposures. Many countries, especially European Union members, use the "guidelines" of International Commission on Non-Ionizing Radiation Protection (ICNIRP), a non governmental agency. Radiofrequency (RF) exposure to a head smaller than SAM will absorb a relatively higher SAR. Also, SAM uses a fluid having the average electrical properties of the head that cannot indicate differential absorption of specific brain tissue, nor absorption in children or smaller adults. The SAR for a 10-year old is up to 153% higher than the SAR for the SAM model. When electrical properties are considered, a child's head's absorption can be over two times greater, and absorption of the skull's bone marrow can be ten times greater than adults. Therefore, a new certification process is needed that incorporates different modes of use, head sizes, and tissue properties. Anatomically based models should be employed in revising safety standards for these ubiquitous modern devices and standards should be set by accountable, independent groups.
Regulation of the Iron Homeostatic Hormone Hepcidin123
Sangkhae, Veena; Nemeth, Elizabeta
2017-01-01
Iron is required for many biological processes but is also toxic in excess; thus, body iron balance is maintained through sophisticated regulatory mechanisms. The lack of a regulated iron excretory mechanism means that body iron balance is controlled at the level of absorption from the diet. Iron absorption is regulated by the hepatic peptide hormone hepcidin. Hepcidin also controls iron release from cells that recycle or store iron, thus regulating plasma iron concentrations. Hepcidin exerts its effects through its receptor, the cellular iron exporter ferroportin. Important regulators of hepcidin, and therefore of systemic iron homeostasis, include plasma iron concentrations, body iron stores, infection and inflammation, and erythropoiesis. Disturbances in the regulation of hepcidin contribute to the pathogenesis of many iron disorders: hepcidin deficiency causes iron overload in hereditary hemochromatosis and nontransfused β-thalassemia, whereas overproduction of hepcidin is associated with iron-restricted anemias seen in patients with chronic kidney disease, chronic inflammatory diseases, some cancers, and inherited iron-refractory iron deficiency anemia. This review summarizes our current understanding of the molecular mechanisms and signaling pathways involved in the control of hepcidin synthesis in the liver, a principal determinant of plasma hepcidin concentrations. PMID:28096133
Klarica, Marijan; Radoš, Milan; Erceg, Gorislav; Petošić, Antonio; Jurjević, Ivana; Orešković, Darko
2014-01-01
Intracranial hypertension is a severe therapeutic problem, as there is insufficient knowledge about the physiology of cerebrospinal fluid (CSF) pressure. In this paper a new CSF pressure regulation hypothesis is proposed. According to this hypothesis, the CSF pressure depends on the laws of fluid mechanics and on the anatomical characteristics inside the cranial and spinal space, and not, as is today generally believed, on CSF secretion, circulation and absorption. The volume and pressure changes in the newly developed CSF model, which by its anatomical dimensions and basic biophysical features imitates the craniospinal system in cats, are compared to those obtained on cats with and without the blockade of craniospinal communication in different body positions. During verticalization, a long-lasting occurrence of negative CSF pressure inside the cranium in animals with normal cranio-spinal communication was observed. CSF pressure gradients change depending on the body position, but those gradients do not enable unidirectional CSF circulation from the hypothetical site of secretion to the site of absorption in any of them. Thus, our results indicate the existence of new physiological/pathophysiological correlations between intracranial fluids, which opens up the possibility of new therapeutic approaches to intracranial hypertension.
Effects of 900 MHz radiofrequency radiation on skin hydroxyproline contents.
Çam, Semra Tepe; Seyhan, Nesrin; Kavaklı, Cengiz; Çelikbıçak, Ömür
2014-09-01
The present study aimed to investigate the possible effect of pulse-modulated radiofrequency radiation (RFR) on rat skin hydroxyproline content, since skin is the first target of external electromagnetic fields. Skin hydroxyproline content was measured using liquid chromatography mass spectrometer method. Two months old male wistar rats were exposed to a 900 MHz pulse-modulated RFR at an average whole body specific absorption rate (SAR) of 1.35 W/kg for 20 min/day for 3 weeks. The radiofrequency (RF) signals were pulse modulated by rectangular pulses with a repetition frequency of 217 Hz and a duty cycle of 1:8 (pulse width 0.576 ms). A skin biopsy was taken at the upper part of the abdominal costa after the exposure. The data indicated that whole body exposure to a pulse-modulated RF radiation that is similar to that emitted by the global system for mobile communications (GSM) mobile phones caused a statistically significant increase in the skin hydroxyproline level (p = 0.049, Mann-Whitney U test). Under our experimental conditions, at a SAR less than the International Commission on Non-Ionizing Radiation Protection safety limit recommendation, there was evidence that GSM signals could alter hydroxyproline concentration in the rat skin.
Naltrexone-sensitive analgesia following exposure of mice to 2450-MHz radiofrequency radiation (RFR)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maillefer, R.H.; Quock, R.M.
1991-03-11
This study was conducted to determine whether exposure to RFR might induce sufficient thermal stress to activate endogenous opioid mechanisms and induce analgesia. Male Swiss Webster mice, 20-25 g, were exposed to 10, 15 or 20 mV/cm{sup 2} RFR in a 2,450-MHz waveguide system for 10 min, then tested in the abdominal constriction paradigm. Specific absorption rates (SAR) were 23.7 W/kg at 10 mW/cm{sup 2}, 34.6 W/kg at 15 mW/cm{sup 2} and 45.5 W/kg at 20 mW/cm{sup 2}. Confinement in the exposure chamber alone did not appreciably alter body temperature but did appear to induce a stress-associated analgesia that wasmore » insensitive to the opioid receptor blocker naltrexone. Exposure of confined mice to RFR elevated body temperature and further increased analgesia in SAR-dependent manner. The high-SAR RFR-induced analgesia, but not the hyperthermia, was reduced by naltrexone. These findings suggest that (1) RFR produces SAR-dependent hyperthermia and analgesia and (2) RFR-induced analgesia is mediated by opioid mechanisms while confinement-induced analgesia involves non-opioid mechanisms.« less
Gong, Feixiang; Wei, Zhiqiang; Cong, Yanping; Chi, Haokun; Yin, Bo; Sun, Mingui
2017-07-20
In this paper, a novel wireless power transfer antenna system was designed for human head implantable devices. The antenna system used the structure of three plates and four coils and operated at low frequencies to transfer power via near field. In order to verify the electromagnetic radiation safety on the human head, the electromagnetic intensity and specific absorption rate (SAR) were studied by finite-difference-time-domain (FDTD) method. A three-layer model of human head including skin, bone and brain tissues was constructed. The transmitting and receiving antenna were set outside and inside the model. The local and average SAR were simulated at the resonance frequency of 18.67 MHz in two situations, in one scenario both transmitting and receiving coil worked, while in the other scenario only the transmitting coil worked. The results showed that the maximum of 10 g SAR average value of human thoracic were 0.142 W/kg and 0.148 W/kg, respectively, both were lower than the international safety standards for human body of the ICNIRP and FCC, which verified the safety of the human body in wireless power transmission based on magnetic coupling resonance.
Bone, body weight, and weight reduction: what are the concerns?
Shapses, Sue A; Riedt, Claudia S
2006-06-01
Of the U.S. population, 65% is either overweight or obese, and weight loss is recommended to reduce co-morbid conditions. However, bone mobilization and loss may also occur with weight loss. The risk for bone loss depends on initial body weight, age, gender, physical activity, and conditions of dieting such as the extent of energy restriction and specific levels of nutrient intake. Older populations are more prone to bone loss with weight loss; in women, this is due at least in part to a reduced dietary Ca intake and/or efficiency of absorption. Potential hormonal mechanisms regulating bone loss during weight loss are discussed, including decreases in estrogen, leptin, glucagon-like peptide-2, growth hormone, and insulin-like growth factor-1, or an increase in cortisol. In contrast, the rise in adiponectin and ghrelin with weight reduction should not be detrimental to bone. Combining energy restriction with exercise does not necessarily prevent bone loss, but may attenuate loss as was shown with additional Ca intake or osteoporosis medications. Future controlled weight loss trials should be designed to further address mechanisms influencing the density and quality of bone sites vulnerable to fracture, in the prevention of osteoporosis.
Nutrigenomics and nutrigenetics.
Farhud, Dd; Zarif Yeganeh, M; Zarif Yeganeh, M
2010-01-01
The nutrients are able to interact with molecular mechanisms and modulate the physiological functions in the body. The Nutritional Genomics focuses on the interaction between bioactive food components and the genome, which includes Nutrigenetics and Nutrigenomics. The influence of nutrients on f genes expression is called Nutrigenomics, while the heterogeneous response of gene variants to nutrients, dietary components and developing nutraceticals is called Nutrigenetics. Genetic variation is known to affect food tolerances among human subpopulations and may also influence dietary requirements and raising the possibility of individualizing nutritional intake for optimal health and disease prevention on the basis of an individual's genome. Nutrigenomics provides a genetic understanding for how common dietary components affect the balance between health and disease by altering the expression and/or structure of an individual's genetic makeup. Nutrigenetics describes that the genetic profile have impact on the response of body to bioactive food components by influencing their absorption, metabolism, and site of action.In this way, considering different aspects of gene-nutrient interaction and designing appropriate diet for every specific genotype that optimize individual health, diagnosis and nutritional treatment of genome instability, we could prevent and control conversion of healthy phenotype to diseases.
Nutrigenomics and Nutrigenetics
Farhud, DD; Zarif Yeganeh, M; Zarif Yeganeh, M
2010-01-01
The nutrients are able to interact with molecular mechanisms and modulate the physiological functions in the body. The Nutritional Genomics focuses on the interaction between bioactive food components and the genome, which includes Nutrigenetics and Nutrigenomics. The influence of nutrients on f genes expression is called Nutrigenomics, while the heterogeneous response of gene variants to nutrients, dietary components and developing nutraceticals is called Nutrigenetics. Genetic variation is known to affect food tolerances among human subpopulations and may also influence dietary requirements and raising the possibility of individualizing nutritional intake for optimal health and disease prevention on the basis of an individual’s genome. Nutrigenomics provides a genetic understanding for how common dietary components affect the balance between health and disease by altering the expression and/or structure of an individual’s genetic makeup. Nutrigenetics describes that the genetic profile have impact on the response of body to bioactive food components by influencing their absorption, metabolism, and site of action. In this way, considering different aspects of gene–nutrient interaction and designing appropriate diet for every specific genotype that optimize individual health, diagnosis and nutritional treatment of genome instability, we could prevent and control conversion of healthy phenotype to diseases. PMID:23113033
Many-body effects in valleytronics: direct measurement of valley lifetimes in single-layer MoS2.
Mai, Cong; Barrette, Andrew; Yu, Yifei; Semenov, Yuriy G; Kim, Ki Wook; Cao, Linyou; Gundogdu, Kenan
2014-01-08
Single layer MoS2 is an ideal material for the emerging field of "valleytronics" in which charge carrier momentum can be finely controlled by optical excitation. This system is also known to exhibit strong many-body interactions as observed by tightly bound excitons and trions. Here we report direct measurements of valley relaxation dynamics in single layer MoS2, by using ultrafast transient absorption spectroscopy. Our results show that strong Coulomb interactions significantly impact valley population dynamics. Initial excitation by circularly polarized light creates electron-hole pairs within the K-valley. These excitons coherently couple to dark intervalley excitonic states, which facilitate fast electron valley depolarization. Hole valley relaxation is delayed up to about 10 ps due to nondegeneracy of the valence band spin states. Intervalley biexciton formation reveals the hole valley relaxation dynamics. We observe that biexcitons form with more than an order of magnitude larger binding energy compared to conventional semiconductors. These measurements provide significant insight into valley specific processes in 2D semiconductors. Hence they could be used to suggest routes to design semiconducting materials that enable control of valley polarization.
Zinc: physiology, deficiency, and parenteral nutrition.
Livingstone, Callum
2015-06-01
The essential trace element zinc (Zn) has a large number of physiologic roles, in particular being required for growth and functioning of the immune system. Adaptive mechanisms enable the body to maintain normal total body Zn status over a wide range of intakes, but deficiency can occur because of reduced absorption or increased gastrointestinal losses. Deficiency impairs physiologic processes, leading to clinical consequences that include failure to thrive, skin rash, and impaired wound healing. Mild deficiency that is not clinically overt may still cause nonspecific consequences, such as susceptibility to infection and poor growth. The plasma Zn concentration has poor sensitivity and specificity as a test of deficiency. Consequently, diagnosis of deficiency requires a combination of clinical assessment and biochemical tests. Patients receiving parenteral nutrition (PN) are susceptible to Zn deficiency and its consequences. Nutrition support teams should have a strategy for assessing Zn status and optimizing this by appropriate supplementation. Nutrition guidelines recommend generous Zn provision from the start of PN. This review covers the physiology of Zn, the consequences of its deficiency, and the assessment of its status, before discussing its role in PN. © 2015 American Society for Parenteral and Enteral Nutrition.
NASA Astrophysics Data System (ADS)
Belgasam, Tarek M.; Zbib, Hussein M.
2018-06-01
The increase in use of dual-phase (DP) steel grades by vehicle manufacturers to enhance crash resistance and reduce body car weight requires the development of a clear understanding of the effect of various microstructural parameters on the energy absorption in these materials. Accordingly, DP steelmakers are interested in predicting the effect of various microscopic factors as well as optimizing microstructural properties for application in crash-relevant components of vehicle bodies. This study presents a microstructure-based approach using a multiscale material and structure model. In this approach, Digimat and LS-DYNA software were coupled and employed to provide a full micro-macro multiscale material model, which is then used to simulate tensile tests. Microstructures with varied ferrite grain sizes, martensite volume fractions, and carbon content in DP steels were studied. The impact of these microstructural features at different strain rates on energy absorption characteristics of DP steels is investigated numerically using an elasto-viscoplastic constitutive model. The model is implemented in a multiscale finite-element framework. A comprehensive statistical parametric study using response surface methodology is performed to determine the optimum microstructural features for a required tensile toughness at different strain rates. The simulation results are validated using experimental data found in the literature. The developed methodology proved to be effective for investigating the influence and interaction of key microscopic properties on the energy absorption characteristics of DP steels. Furthermore, it is shown that this method can be used to identify optimum microstructural conditions at different strain-rate conditions.
NASA Astrophysics Data System (ADS)
Belgasam, Tarek M.; Zbib, Hussein M.
2018-03-01
The increase in use of dual-phase (DP) steel grades by vehicle manufacturers to enhance crash resistance and reduce body car weight requires the development of a clear understanding of the effect of various microstructural parameters on the energy absorption in these materials. Accordingly, DP steelmakers are interested in predicting the effect of various microscopic factors as well as optimizing microstructural properties for application in crash-relevant components of vehicle bodies. This study presents a microstructure-based approach using a multiscale material and structure model. In this approach, Digimat and LS-DYNA software were coupled and employed to provide a full micro-macro multiscale material model, which is then used to simulate tensile tests. Microstructures with varied ferrite grain sizes, martensite volume fractions, and carbon content in DP steels were studied. The impact of these microstructural features at different strain rates on energy absorption characteristics of DP steels is investigated numerically using an elasto-viscoplastic constitutive model. The model is implemented in a multiscale finite-element framework. A comprehensive statistical parametric study using response surface methodology is performed to determine the optimum microstructural features for a required tensile toughness at different strain rates. The simulation results are validated using experimental data found in the literature. The developed methodology proved to be effective for investigating the influence and interaction of key microscopic properties on the energy absorption characteristics of DP steels. Furthermore, it is shown that this method can be used to identify optimum microstructural conditions at different strain-rate conditions.
Deciphering the iron isotope message of the human body
NASA Astrophysics Data System (ADS)
Walczyk, Thomas; von Blanckenburg, Friedhelm
2005-04-01
Mass-dependent variations in isotopic composition are known since decades for the light elements such as hydrogen, carbon or oxygen. Multicollector-inductively coupled plasma mass spectrometry (MC-ICP-MS) and double-spike thermal ionization mass spectrometry (TIMS) permit us now to resolve small variations in isotopic composition even for the heavier elements such as iron. Recent studies on the iron isotopic composition of human blood and dietary iron sources have shown that lighter iron isotopes are enriched along the food chain and that each individual bears a certain iron isotopic signature in blood. To make use of this finding in biomedical research, underlying mechanisms of isotope fractionation by the human body need to be understood. In this paper available iron isotope data for biological samples are discussed within the context of isotope fractionation concepts and fundamental aspects of human iron metabolism. This includes evaluation of new data for body tissues which show that blood and muscle tissue have a similar iron isotopic composition while heavier iron isotopes are concentrated in the liver. This new observation is in agreement with our earlier hypothesis of a preferential absorption of lighter iron isotopes by the human body. Possible mechanisms for inducing an iron isotope effect at the cellular and molecular level during iron uptake are presented and the potential of iron isotope effects in human blood as a long-term measure of dietary iron absorption is discussed.
Narayan, Jagdish; Chen, Yok
1983-01-01
This invention is a new process for producing refractory crystalline oxides having improved or unusual properties. The process comprises the steps of forming a doped-metal crystal of the oxide; exposing the doped crystal in a bomb to a reducing atmosphere at superatmospheric pressure and a temperature effecting precipitation of the dopant metal in the crystal lattice of the oxide but insufficient to effect net diffusion of the metal out of the lattice; and then cooling the crystal. Preferably, the cooling step is effected by quenching. The process forms colloidal precipitates of the metal in the oxide lattice. The process may be used, for example, to produce thermally stable black MgO crystalline bodies containing magnetic colloidal precipitates consisting of about 99% Ni. The Ni-containing bodies are solar-selective absorbers, having a room-temperature absorptivity of about 0.96 over virtually all of the solar-energy spectrum and exhibiting an absorption edge in the region of 2 .mu.m. The process parameters can be varied to control the average size of the precipitates. The process can produce a black MgO crystalline body containing colloidal Ni precipitates, some of which have the face-centered-cubic structure and others of which have the body-centered cubic structure. The products of the process are metal-precipitate-containing refractory crystalline oxides which have improved or unique optical, mechanical, magnetic, and/or electronic properties.
Exciton Absorption in Semiconductor Quantum Wells Driven by a Strong Intersubband Pump Field
NASA Technical Reports Server (NTRS)
Liu, Ansheng; Ning, Cun-Zheng
1999-01-01
Optical interband excitonic absorption of semiconductor quantum wells (QW's) driven by a coherent pump field is investigated based on semiconductor Bloch equations. The pump field has a photon energy close to the intersubband spacing between the first two conduction subbands in the QW's. An external weak optical field probes the interband transition. The excitonic effects and pump-induced population redistribution within the conduction subbands in the QW system are included. When the density of the electron-hole pairs in the QW structure is low, the pump field induces an Autler-Townes splitting of the exciton absorption spectrum. The split size and the peak positions of the absorption doublet depend not only on the pump frequency and intensity but also on the carrier density. As the density of the electron-hole pairs is increased, the split contrast (the ratio between the maximum and minimum values) is decreased because the exciton effect is suppressed at higher densities due to the many-body screening.
NASA Astrophysics Data System (ADS)
Huang, Danhong; Iurov, Andrii; Gao, Fei; Gumbs, Godfrey; Cardimona, D. A.
2018-02-01
The effects of point defects on the loss of either energies of ballistic electron beams or incident photons are studied by using a many-body theory in a multi-quantum-well system. This theory includes the defect-induced vertex correction to a bare polarization function of electrons within the ladder approximation, and the intralayer and interlayer screening of defect-electron interactions is also taken into account in the random-phase approximation. The numerical results of defect effects on both energy-loss and optical-absorption spectra are presented and analyzed for various defect densities, numbers of quantum wells, and wave vectors. The diffusion-reaction equation is employed for calculating distributions of point defects in a layered structure. For completeness, the production rate for Frenkel-pair defects and their initial concentration are obtained based on atomic-level molecular-dynamics simulations. By combining the defect-effect, diffusion-reaction, and molecular-dynamics models with an available space-weather-forecast model, it will be possible in the future to enable specific designing for electronic and optoelectronic quantum devices that will be operated in space with radiation-hardening protection and, therefore, effectively extend the lifetime of these satellite onboard electronic and optoelectronic devices. Specifically, this theory can lead to a better characterization of quantum-well photodetectors not only for high quantum efficiency and low dark current density but also for radiation tolerance or mitigating the effects of the radiation.
Parallel transmission RF pulse design with strict temperature constraints.
Deniz, Cem M; Carluccio, Giuseppe; Collins, Christopher
2017-05-01
RF safety in parallel transmission (pTx) is generally ensured by imposing specific absorption rate (SAR) limits during pTx RF pulse design. There is increasing interest in using temperature to ensure safety in MRI. In this work, we present a local temperature correlation matrix formalism and apply it to impose strict constraints on maximum absolute temperature in pTx RF pulse design for head and hip regions. Electromagnetic field simulations were performed on the head and hip of virtual body models. Temperature correlation matrices were calculated for four different exposure durations ranging between 6 and 24 min using simulated fields and body-specific constants. Parallel transmission RF pulses were designed using either SAR or temperature constraints, and compared with each other and unconstrained RF pulse design in terms of excitation fidelity and safety. The use of temperature correlation matrices resulted in better excitation fidelity compared with the use of SAR in parallel transmission RF pulse design (for the 6 min exposure period, 8.8% versus 21.0% for the head and 28.0% versus 32.2% for the hip region). As RF exposure duration increases (from 6 min to 24 min), the benefit of using temperature correlation matrices on RF pulse design diminishes. However, the safety of the subject is always guaranteed (the maximum temperature was equal to 39°C). This trend was observed in both head and hip regions, where the perfusion rates are very different. Copyright © 2017 John Wiley & Sons, Ltd.
Why Muscle is an Efficient Shock Absorber
Kopylova, Galina V.; Fernandez, Manuel; Narayanan, Theyencheri
2014-01-01
Skeletal muscles power body movement by converting free energy of ATP hydrolysis into mechanical work. During the landing phase of running or jumping some activated skeletal muscles are subjected to stretch. Upon stretch they absorb body energy quickly and effectively thus protecting joints and bones from impact damage. This is achieved because during lengthening, skeletal muscle bears higher force and has higher instantaneous stiffness than during isometric contraction, and yet consumes very little ATP. We wish to understand how the actomyosin molecules change their structure and interaction to implement these physiologically useful mechanical and thermodynamical properties. We monitored changes in the low angle x-ray diffraction pattern of rabbit skeletal muscle fibers during ramp stretch compared to those during isometric contraction at physiological temperature using synchrotron radiation. The intensities of the off-meridional layer lines and fine interference structure of the meridional M3 myosin x-ray reflection were resolved. Mechanical and structural data show that upon stretch the fraction of actin-bound myosin heads is higher than during isometric contraction. On the other hand, the intensities of the actin layer lines are lower than during isometric contraction. Taken together, these results suggest that during stretch, a significant fraction of actin-bound heads is bound non-stereo-specifically, i.e. they are disordered azimuthally although stiff axially. As the strong or stereo-specific myosin binding to actin is necessary for actin activation of the myosin ATPase, this finding explains the low metabolic cost of energy absorption by muscle during the landing phase of locomotion. PMID:24465673
Hansson, Björn; Thors, Björn; Törnevik, Christer
2011-12-01
In this work, the effect of antenna element loading on the localized specific absorption rate (SAR) has been analyzed for base station antennas. The analysis was conducted in order to determine whether localized SAR measurements of large multi-element base station antennas can be conducted using standardized procedures and commercially available equipment. More specifically, it was investigated if the antenna shifting measurement procedure, specified in the European base station exposure assessment standard EN 50383, will produce accurate localized SAR results for base station antennas larger than the specified measurement phantom. The obtained results show that SAR accuracy is affected by the presence of lossy material within distances of one wavelength from the tested antennas as a consequence of coupling and redistribution of transmitted power among the antenna elements. It was also found that the existing standardized phantom is not optimal for SAR measurements of large base station antennas. A new methodology is instead proposed based on a larger, box-shaped, whole-body phantom. Copyright © 2011 Wiley Periodicals, Inc.
Wang, Shu; Su, Rui; Nie, Shufang; Sun, Ming; Zhang, Jia; Wu, Dayong; Moustaid-Moussa, Naima
2013-01-01
Nanotechnology is an innovative approach that has potential applications in nutraceutical research. Phytochemicals have promising potential for maintaining and promoting health, as well as preventing and potentially treating some diseases. However, the generally low solubility, stability, bioavailability and target specificity, together with the side-effects seen when used at high levels, have limited their application. Indeed, nanoparticles can increase solubility and stability of phytochemicals, enhance their absorption, protect them from premature degradation in the body, and prolong their circulation time. Moreover, these nanoparticles exhibit high differential uptake efficiency in the target cells (or tissue) over normal cells (or tissue)through preventing them from prematurely interacting with the biological environment, enhanced permeation and retention effect in disease tissues, and improving their cellular uptake, resulting in decreased toxicity, In this review we outline the commonly used biocompatible and biodegradable nanoparticles including liposomes, emulsions, solid lipid nanoparticles, nanostructured lipid carriers, micelles and poly (lactic-co-glycolic acid) (PLGA) nanoparticles. We then summarize studies that have used these nanoparticles as carriers for EGCG, quercetin, resveratrol and curcuminadministration to enhance their aqueous solubility, stability, bioavailability, target specificity, and bioactivities. PMID:24406273
NASA Technical Reports Server (NTRS)
Hoepffner, Nicolas; Sathyendranath, Shubha
1993-01-01
The contributions of detrital particles and phytoplankton to total light absorption are retrieved by nonlinear regression on the absorption spectra of total particles from various oceanic regions. The model used explains more than 96% of the variance in the observed particle absorption spectra. The resulting absorption spectra of phytoplankton are then decomposed into several Gaussian bands reflecting absorption by phytoplankton pigments. Such a decomposition, combined with high-performance liquid chromatography data on phytoplankton pigment concentrations, allows the computation of specific absorption coefficients for chlorophylls a, b, and c and carotenoids. The spectral values of these in vivo absorption coefficients are then discussed, considering the effects of secondary pigments which were not measured quantitatively. We show that these coefficients can be used to reconstruct the absorption spectra of phytoplankton at various locations and depths. Discrepancies that do occur at some stations are explained in terms of particle size effect. These coefficients can be used to determine the concentrations of phytoplankton pigments in the water, given the absorption spectrum of total particles.
Toward imaging the body at 10.5 tesla.
Ertürk, M Arcan; Wu, Xiaoping; Eryaman, Yiğitcan; Van de Moortele, Pierre-François; Auerbach, Edward J; Lagore, Russell L; DelaBarre, Lance; Vaughan, J Thomas; Uğurbil, Kâmil; Adriany, Gregor; Metzger, Gregory J
2017-01-01
To explore the potential of performing body imaging at 10.5 Tesla (T) compared with 7.0T through evaluating the transmit/receive performance of similarly configured dipole antenna arrays. Fractionated dipole antenna elements for 10.5T body imaging were designed and evaluated using numerical simulations. Transmit performance of antenna arrays inside the prostate, kidneys and heart were investigated and compared with those at 7.0T using both phase-only radiofrequency (RF) shimming and multi-spoke pulses. Signal-to-noise ratio (SNR) comparisons were also performed. A 10-channel antenna array was constructed to image the abdomen of a swine at 10.5T. Numerical methods were validated with phantom studies at both field strengths. Similar power efficiencies were observed inside target organs with phase-only shimming, but RF nonuniformity was significantly higher at 10.5T. Spokes RF pulses allowed similar transmit performance with accompanying local specific absorption rate increases of 25-90% compared with 7.0T. Relative SNR gains inside the target anatomies were calculated to be >two-fold higher at 10.5T, and 2.2-fold SNR gain was measured in a phantom. Gradient echo and fast spin echo imaging demonstrated the feasibility of body imaging at 10.5T with the designed array. While comparable power efficiencies can be achieved using dipole antenna arrays with static shimming at 10.5T; increasing RF nonuniformities underscore the need for efficient, robust, and safe parallel transmission methods. Magn Reson Med 77:434-443, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.
A 16-channel combined loop-dipole transceiver array for 7 Tesla body MRI.
Ertürk, M Arcan; Raaijmakers, Alexander J E; Adriany, Gregor; Uğurbil, Kâmil; Metzger, Gregory J
2017-02-01
To develop a 16-channel transceive body imaging array at 7.0 T with improved transmit, receive, and specific absorption rate (SAR) performance by combining both loop and dipole elements and using their respective and complementary near and far field characteristics. A 16-channel radiofrequency (RF) coil array consisting of eight loop-dipole blocks (16LD) was designed and constructed. Transmit and receive performance was quantitatively investigated in phantom and human model simulations, and experiments on five healthy volunteers inside the prostate. Comparisons were made with 16-channel microstrip line (16ML) and 10-channel fractionated dipole antenna (10DA) arrays. The 16LD was used to acquire anatomic and functional images of the prostate, kidneys, and heart. The 16LD provided > 14% improvements in the signal-to-noise ratio (SNR), peak B1+, B1+ transmit, and SAR efficiencies over the 16ML and 10DA in simulations inside the prostate. Experimentally, the 16LD had > 20% higher SNR and B1+ transmit efficiency compared with other arrays, and achieved up to 51.8% higher peak B1+ compared with 10DA. Combining loop and dipole elements provided a body imaging array with high channel count and density while limiting inter-element coupling. The 16LD improved both near and far-field performance compared with existing 7.0T body arrays and provided high-quality MRI of the prostate kidneys and heart. Magn Reson Med 77:884-894, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.
Chauhan, Parul; Verma, H N; Sisodia, Rashmi; Kesari, Kavindra Kumar
2017-01-01
Man-made microwave and radiofrequency (RF) radiation technologies have been steadily increasing with the growing demand of electronic appliances such as microwave oven and cell phones. These appliances affect biological systems by increasing free radicals, thus leading to oxidative damage. The aim of this study was to explore the effect of 2.45 GHz microwave radiation on histology and the level of lipid peroxide (LPO) in Wistar rats. Sixty-day-old male Wistar rats with 180 ± 10 g body weight were used for this study. Animals were divided into two groups: sham exposed (control) and microwave exposed. These animals were exposed for 2 h a day for 35 d to 2.45 GHz microwave radiation (power density, 0.2 mW/cm 2 ). The whole-body specific absorption rate (SAR) was estimated to be 0.14 W/kg. After completion of the exposure period, rats were sacrificed, and brain, liver, kidney, testis and spleen were stored/preserved for determination of LPO and histological parameters. Significantly high level of LPO was observed in the liver (p < 0.001), brain (p < 0.004) and spleen (p < 0.006) in samples from rats exposed to microwave radiation. Also histological changes were observed in the brain, liver, testis, kidney and spleen after whole-body microwave exposure, compared to the control group. Based on the results obtained in this study, we conclude that exposure to microwave radiation 2 h a day for 35 d can potentially cause histopathology and oxidative changes in Wistar rats. These results indicate possible implications of such exposure on human health.
Water absorption tests for measuring permeability of field concrete.
DOT National Transportation Integrated Search
2013-09-01
The research results from CFIRE Project 04-06 were communicated to engineers and researchers in this project. : Specifically, the water absorption of concrete samples (i.e., 2-in. thick, 4-in. diameter discs cut from concrete : cylinders) was found s...
Durability of saw-cut joints in plain cement concrete pavements.
DOT National Transportation Integrated Search
2011-01-01
The objective of this project was to evaluate factors influencing the durability of the joints in portland cement concrete : pavement in the state of Indiana. Specifically this work evaluated the absorption of water, the absorption of deicing solutio...
Dipole saturated absorption modeling in gas phase: Dealing with a Gaussian beam
NASA Astrophysics Data System (ADS)
Dupré, Patrick
2018-01-01
With the advent of new accurate and sensitive spectrometers, cf. combining optical cavities (for absorption enhancement), the requirement for reliable molecular transition modeling is becoming more pressing. Unfortunately, there is no trivial approach which can provide a definitive formalism allowing us to solve the coupled systems of equations associated with nonlinear absorption. Here, we propose a general approach to deal with any spectral shape of the electromagnetic field interacting with a molecular species under saturation conditions. The development is specifically applied to Gaussian-shaped beams. To make the analytical expressions tractable, approximations are proposed. Finally, two or three numerical integrations are required for describing the Lamb-dip profile. The implemented model allows us to describe the saturated absorption under low pressure conditions where the broadening by the transit-time may dominate the collision rates. The model is applied to two specific overtone transitions of the molecular acetylene. The simulated line shapes are discussed versus the collision and the transit-time rates. The specific collisional and collision-free regimes are illustrated, while the Rabi frequency controls the intermediate regime. We illustrate how to recover the input parameters by fitting the simulated profiles.
Signal-domain optimization metrics for MPRAGE RF pulse design in parallel transmission at 7 tesla.
Gras, V; Vignaud, A; Mauconduit, F; Luong, M; Amadon, A; Le Bihan, D; Boulant, N
2016-11-01
Standard radiofrequency pulse design strategies focus on minimizing the deviation of the flip angle from a target value, which is sufficient but not necessary for signal homogeneity. An alternative approach, based directly on the signal, here is proposed for the MPRAGE sequence, and is developed in the parallel transmission framework with the use of the k T -points parametrization. The flip angle-homogenizing and the proposed methods were investigated numerically under explicit power and specific absorption rate constraints and tested experimentally in vivo on a 7 T parallel transmission system enabling real time local specific absorption rate monitoring. Radiofrequency pulse performance was assessed by a careful analysis of the signal and contrast between white and gray matter. Despite a slight reduction of the flip angle uniformity, an improved signal and contrast homogeneity with a significant reduction of the specific absorption rate was achieved with the proposed metric in comparison with standard pulse designs. The proposed joint optimization of the inversion and excitation pulses enables significant reduction of the specific absorption rate in the MPRAGE sequence while preserving image quality. The work reported thus unveils a possible direction to increase the potential of ultra-high field MRI and parallel transmission. Magn Reson Med 76:1431-1442, 2016. © 2015 International Society for Magnetic Resonance in Medicine. © 2015 International Society for Magnetic Resonance in Medicine.
Xu, Z H; Lee, H; Vu, T; Hu, C; Yan, H; Baker, D; Hsu, B; Pendley, C; Wagner, C; Davis, H M; Zhou, H
2010-09-01
To develop a population pharmacokinetic (PK) model of subcutaneously administered golimumab, a human anti-tumor necrosis factor monoclonal antibody, in patients with ankylosing spondylitis (AS), estimate typical fixed and random population PK parameters, and identify significant covariates on golimumab pharmacokinetics. Serum concentration data through Week 24 of a randomized, double-blind, placebo-controlled Phase III trial of golimumab (50 or 100 mg every 4 weeks) were analyzed using a nonlinear mixed-effects modeling approach. The effects of potential covariates on golimumab were evaluated. A one-compartment PK model with first-order absorption and elimination was chosen to describe the observed golimumab concentration-time data in patients with AS. Population estimates obtained from the final model for a typical 70-kg patient were: apparent systemic clearance (CL/F), 1.41 l/day (95% confidence interval (CI): 1.31 - 1.51) and apparent volume of distribution (V/F), 22.6 L (95% CI: 20.7 - 24.4). The first-order absorption rate constant (Ka) was estimated to be 1.01 day-1 (95% CI: 0.760 - 1.46). The between-subject variabilities for CL/F, V/F, and Ka were 35.2%, 38.6%, and 78.6%, respectively. Body weight was the most significant covariate, affecting both CL/F and V/F. Antibody-to-golimumab status, baseline C-reactive protein level, and sex were also identified as significant covariates on CL/F. A one-compartment model with first-order absorption and elimination adequately described the PK of golimumab following subcutaneous administrations in patients with AS. Body weight and anti-golimumab antibody status were found to significantly influence golimumab clearance. When a patient does not respond to the prescribed golimumab therapy, the possibility of the development of antibodies to golimumab has to be considered.
Cholesterol Absorption and Synthesis in Vegetarians and Omnivores.
Lütjohann, Dieter; Meyer, Sven; von Bergmann, Klaus; Stellaard, Frans
2018-03-01
Vegetarian diets are considered health-promoting; however, a plasma cholesterol lowering effect is not always observed. We investigate the link between vegetarian-diet-induced alterations in cholesterol metabolism. We study male and female omnivores, lacto-ovo vegetarians, lacto vegetarians, and vegans. Cholesterol intake, absorption, and fecal sterol excretion are measured as well as plasma concentrations of cholesterol and noncholesterol sterols. These serve as markers for cholesterol absorption, synthesis, and catabolism. The biliary cholesterol secretion rate is estimated. Flux data are related to body weight. Individual vegetarian diet groups are statistically compared to the omnivore group. Lacto vegetarians absorb 44% less dietary cholesterol, synthesized 22% more cholesterol, and show no differences in plasma total and LDL cholesterol. Vegan subjects absorb 90% less dietary cholesterol, synthesized 35% more cholesterol, and have a similar plasma total cholesterol, but a 13% lower plasma LDL cholesterol. No diet-related differences in biliary cholesterol secretion and absorption are observed. Total cholesterol absorption is lower only in vegans. Total cholesterol input is similar under all vegetarian diets. Unaltered biliary cholesterol secretion and higher cholesterol synthesis blunt the lowered dietary cholesterol intake in vegetarians. LDL cholesterol is significantly lower only in vegans. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Hart, Roger C; Herring, G C; Balla, R Jeffrey
2007-06-15
Nonintrusive, off-body flow barometry in Mach 2 airflow has been demonstrated in a large-scale supersonic wind tunnel using seedless laser-induced thermal acoustics (LITA). The static pressure of the gas flow is determined with a novel differential absorption measurement of the ultrasonic sound produced by the LITA pump process. Simultaneously, the streamwise velocity and static gas temperature of the same spatially resolved sample volume were measured with this nonresonant time-averaged LITA technique. Mach number, temperature, and pressure have 0.2%, 0.4%, and 4% rms agreement, respectively, in comparison with known free-stream conditions.
Harnessing molecular excited states with Lanczos chains.
Baroni, Stefano; Gebauer, Ralph; Bariş Malcioğlu, O; Saad, Yousef; Umari, Paolo; Xian, Jiawei
2010-02-24
The recursion method of Haydock, Heine and Kelly is a powerful tool for calculating diagonal matrix elements of the resolvent of quantum-mechanical Hamiltonian operators by elegantly expressing them in terms of continued fractions. In this paper we extend the recursion method to off-diagonal matrix elements of general (possibly non-Hermitian) operators and apply it to the simulation of molecular optical absorption and photoemission spectra within time-dependent density-functional and many-body perturbation theories, respectively. This method is demonstrated with a couple of applications to the optical absorption and photoemission spectra of the caffeine molecule.
NASA Technical Reports Server (NTRS)
Hart, Roger C.; Herring, Gregory C.; Balla, Robert J.
2007-01-01
Nonintrusive, off-body flow barometry in Mach-2 airflow has been demonstrated in a large-scale supersonic wind tunnel using seedless laser-induced thermal acoustics (LITA). The static pressure of the gas flow is determined with a novel differential absorption measurement of the ultrasonic sound produced by the LITA pump process. Simultaneously, stream-wise velocity and static gas temperature of the same spatially-resolved sample volume were measured with this nonresonant time-averaged LITA technique. Mach number, temperature and pressure have 0.2%, 0.4%, and 4% rms agreement, respectively, in comparison with known free-stream conditions.
Harnessing molecular excited states with Lanczos chains
NASA Astrophysics Data System (ADS)
Baroni, Stefano; Gebauer, Ralph; Bariş Malcioğlu, O.; Saad, Yousef; Umari, Paolo; Xian, Jiawei
2010-02-01
The recursion method of Haydock, Heine and Kelly is a powerful tool for calculating diagonal matrix elements of the resolvent of quantum-mechanical Hamiltonian operators by elegantly expressing them in terms of continued fractions. In this paper we extend the recursion method to off-diagonal matrix elements of general (possibly non-Hermitian) operators and apply it to the simulation of molecular optical absorption and photoemission spectra within time-dependent density-functional and many-body perturbation theories, respectively. This method is demonstrated with a couple of applications to the optical absorption and photoemission spectra of the caffeine molecule.
The nature of C-class asteroids from 3-micron spectrophotometry
NASA Technical Reports Server (NTRS)
Feierberg, M. A.; Lebofsky, L. A.; Tholen, D. J.
1985-01-01
Narrowband spectrophotometry between 2.3 and 3.5 micrometers is presented for 14 main-belt C asteroids greater than 100 km in diameter. Absorption features at 3 micrometers due to water of hydration are present in the spectra of nine of the asteroids, with intensities ranging from 6 to 23 percent. The other five asteroids have no such absorption greater than 2 percent in intensity. The present C-asteroid population may be fragments of larger parent bodies with anhydrous C3-like cores and hydrated C1I- or C2M-like mantles.
NASA Astrophysics Data System (ADS)
Macriss, R. A.; Zawacki, T. S.
Development of improved data for the thermodynamic, transport and physical properties of absorption fluids were studied. A specific objective of this phase of the study is to compile, catalog and coarse screen the available US data of known absorption fluid systems and publish it as a first edition document to be distributed to manufacturers, researchers and others active in absorption heat pump activities. The methodology and findings of the compilation, cataloguing and coarse screening of the available US data on absorption fluid properties and presents current status and future work on this project are summarized. Both in house file and literature searches were undertaken to obtain available US publications with pertinent physical, thermodynamic and transport properties data for absorption fluids. Cross checks of literature searches were also made, using available published bibliographies and literature review articles, to eliminate secondary sources for the data and include only original sources and manuscripts. The properties of these fluids relate to the liquid and/or vapor state, as encountered in normal operation of absorption equipment employing such fluids, and to the crystallization boundary of the liquid phase, where applicable. The actual data were systematically classified according to the type of fluid and property, as well as temperature, pressure and concentration ranges over which data were available. Data were sought for 14 different properties: Vapor-Liquid Equilibria, Crystallization Temperature, Corrosion Characteristics, Heat of Mixing, Liquid-Phase-Densities, Vapor-Liquid-Phase Enthalpies, Specific Heat, Stability, Viscosity, Mass Transfer Rate, Heat Transfer Rate, Thermal Conductivity, Flammability, and Toxicity.
2002-07-31
This diagram shows the normal pathways of calcium movement in the body and indicates changes (green arrows) seen during preliminary space flight experiments. Calcium plays a central role because 1) it gives strength and structure to bone and 2) all types of cells require it to function normally. To better understand how and why weightlessness induces bone loss, astronauts have participated in a study of calcium kinetics -- that is, the movement of calcium through the body, including absorption from food, and its role in the formation and breakdown of bone.
A SURVEY ON THE ACCURACY OF WHOLE-BODY COUNTERS OPERATED IN FUKUSHIMA AFTER THE NUCLEAR DISASTER.
Nakano, T; Kim, E; Tani, K; Kurihara, O; Sakai, K
2016-09-01
To check internal contamination, whole-body counters (WBCs) have been used continuously in Fukushima prefecture since the 2011 disaster. Many WBCs have been installed recently. The accuracy of these WBCs has been tested with bottle manikin absorption phantoms. No significant problems with the performance or accuracy of the WBCs have been found. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
The DD Cold Fusion-Transmutation Connection
NASA Astrophysics Data System (ADS)
Chubb, Talbot A.
2005-12-01
LENR theory must explain dd fusion, alpha-addition transmutations, radiationless nuclear reactions, and three-body nuclear particle reactions. Reaction without radiation requires many-body D Bloch+ periodicity in both location and internal structure dependencies. Electron scattering leads to mixed quantum states. The radiationless dd fusion reaction is 2-D Bloch+ -> {}4 He Bloch2+. Overlap between {}4 He Bloch2+ and surface Cs leads to alpha absorption. In the Iwamura et al. studies active deuterium is created by scattering at diffusion barriers.
One body, many heads; the Cerberus of catalysis. A new multipurpose in-situ cell for XAS at ALBA
NASA Astrophysics Data System (ADS)
Guilera, G.; Rey, F.; Hernández-Fenollosa, J.; Cortés-Vergaz, J. J.
2013-04-01
A new multi-purpose in-situ cell and its control system have been developed for synchrotron-based techniques as are X-Ray Absorption spectroscopy (XAS) and X-Ray Diffraction (XRD). The cell is made of a stainless steel 'body' and three different exchangeable 'heads' to tackle different scientific areas that include solid-gas catalysis, solid-liquid catalysis and electrocatalysis. The different versions of the cell are herein described and their functionality is exemplified by some case studies.
Proline-rich proteins moderate the inhibitory effect of tea on iron absorption in rats.
Kim, Hee-Seon; Miller, Dennis D
2005-03-01
Tea inhibits iron absorption in studies in which tea is given with radiolabeled iron to humans as a single dose. Our objective was to test the hypothesis that proline-rich proteins (PRPs) may act as a defense against this effect by forming complexes with tannins, thereby preventing them from inhibiting iron absorption. Two studies were conducted. In study 1, rats were given test solutions containing (59)FeCl(3) in water, tea, or tea + gelatin (T/G). In study 2, the rats were divided into 3 groups and assigned to one of 3 nutritionally complete diets: control, tea (5 g tea tannin/kg diet), or T/G (5 g tea tannin + 60 g gelatin/kg diet). Rats were fed the respective diets for 5 d and then given a single (59)Fe-labeled meal of the diet. Iron absorption was measured by whole-body retention of the (59)Fe over a 2-wk period. Iron absorption in study 1 was lower in the tea group (24 +/- 9.6%, P < 0.05) than in the T/G (42 +/- 19.4%) or water groups (50 +/- 7.5%). In study 2, iron absorption did not differ among the groups. Rats fed the tea diet had dramatic hypertrophy of the parotid salivary glands. Adding gelatin as a proxy for salivary PRPs to the tea eliminated the inhibitory effect of tea on iron absorption. The results suggest that PRPs, whether from salivary glands or diet, can protect against the inhibition of iron absorption by tea.
NASA Technical Reports Server (NTRS)
Mcdonald, G. E.; Curtis, H. B.; Gianelos, L.
1975-01-01
The spectral reflectance properties of electroplated and chemically converted zinc were measured for both chromate and chloride conversion coatings. The reflectance properties were measured for various times of conversion and for conversion at various chromate concentrations. The values of absorptance, integrated over the solar spectrum, and of infrared emittance, integrated over black body radiation at 250 F were then calculated from the measured reflectance values. The interdependent variations of absorptance and infrared emittance were plotted. The results indicate that the optimum combination of the highest absorptance in the solar spectrum and the lowest emittance in the infrared of the converted electroplated zinc is produced by chromate conversion at 1/2 concentration of the standard NEOSTAR chromate black solution for 0.50 minute or by chloride conversion for 0.50 minute.
Oral pharmacokinetics of acetaminophen to evaluate gastric emptying profiles of Shiba goats.
Elbadawy, Mohamed; Sasaki, Kazuaki; Miyazaki, Yuji; Aboubakr, Mohamed; Khalil, Waleed Fathy; Shimoda, Minoru
2015-10-01
The pharmacokinetics of acetaminophen was investigated following oral dosing to Shiba goats in order to evaluate the properties of gastric emptying. Acetaminophen was intravenously and orally administered at 30 mg/kg body weight to goats using a crossover design with a 3-week washout period. The stability of acetaminophen in rumen juice was also assessed. Acetaminophen concentrations were measured by HPLC. Since acetaminophen was stable in rumen juice for 24 hr, the extremely low bioavailability (16%) was attributed to its hepatic extensive first-pass effect. The mean absorption time and absorption half-life were unexpectedly short (4.93 and 3.35 hr, respectively), indicating its marked absorption from the forestomach, which may have been due to its smaller molecular weight. Therefore, acetaminophen was considered to be unsuitable for evaluating gastric emptying in Shiba goats.
Interplay of Collective Excitations in Quantum Well Intersubband Resonances
NASA Technical Reports Server (NTRS)
Li, Jian-Zhong; Ning, C. Z.
2003-01-01
Intersubband resonances in a semiconductor quantum well (QW) display some of the most fascinating features involving various collective excitations such as Fermi-edge singularity (FES) and intersubband plasmon (ISP). Using a density matrix approach, we treated many-body effects such as depolarization, vertex correction, and self-energy consistently for a two-subband system. We found a systematic change in resonance spectra from FES-dominated to ISP-dominated features, as QW- width or electron density is varied. Such an interplay between FES and ISP significantly changes both line shape and peak position of the absorption spectrum. In particular, we found that a cancellation of FES and ISP undresses the resonant responses and recovers the single-particle features of absorption for semiconductors with a strong nonparabolicity such as InAs, leading to a dramatic broadening of the absorption spectrum.
Cooper, Christopher A.; Wilson, Rod W.
2010-01-01
The intestine of marine teleosts must effectively absorb fluid from ingested seawater to avoid dehydration. This fluid transport has been almost exclusively characterized as driven by NaCl absorption. However, an additional feature of the osmoregulatory role of the intestine is substantial net HCO3− secretion. This is suggested to drive additional fluid absorption directly (via Cl−/HCO3− exchange) and indirectly by precipitating ingested Ca2+ as CaCO3, thus creating the osmotic gradient for additional fluid absorption. The present study tested this hypothesis by perfusing the intestine of the European flounder in vivo with varying [Ca2+]: 10 (control), 40, and 90 mM. Fractional fluid absorption increased from 47% (control) to 73% (90 mM Ca2+), where almost all secreted HCO3− was excreted as CaCO3. This additional fluid absorption could not be explained by NaCl cotransport. Instead, a significant positive relationship between Na+-independent fluid absorption and total HCO3− secretion was consistent with the predicted roles for anion exchange and CaCO3 precipitation. Further analysis suggested that Na+-independent fluid absorption could be accounted for by net Cl− and H+ absorption (from Cl−/HCO3− exchange and CO2 hydration, respectively). There was no evidence to suggest that CaCO3 alone was responsible for driving fluid absorption. However, by preventing the accumulation of luminal Ca2+ it played a vital role by dynamically maintaining a favorable osmotic gradient all along the intestine, which permits substantially higher rates of solute-linked fluid absorption. To overcome the resulting hyperosmotic and highly acidic absorbate, it is proposed that plasma HCO3− buffers the absorbed H+ (from HCO3− production), and consequently reduces the osmolarity of the absorbed fluid entering the body. PMID:20130226
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lewis, S.M.; Bayly, R.J.
1986-01-01
This book contains the following chapters: Some prerequisites to the use of radionuclides in haematology; Instrumentation and counting techniques; In vitro techniques; Cell labelling; Protein labelling; Autoradiography; Imaging and quantitative scanning; Whole body counting; Absorption and excretion studies; Blood volume studies; Plasma clearance studies; and Radionuclide blood cell survival studies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Price, D.C.; Forsyth, E.M.; Cohn, S.H.
An established method for determining radioiron absorption by whole body counting was used to study six parous women with hypochromic anemia and menorrhagia, and a seventh nulliparous woman with normal blood values and normal menses. In addition to demonstrating iron deficiency by increased radioiron absorption, the method was found useful in estimating the quantity of blood lost with each menstrual period. As much as 550 ml of menstrual loss was noted in two of the patients studied. Estimates in the patient with normal menses were 59 and 33 ml. Two additional patients demonstrated patierns of blood loss found in continuousmore » gastrointestinal hemorrhage due to hereditary hemorrhagic telangiectasia, and in severe epistaxis, as further applications of the technique. Where available, the method is to be recommended for routine investigation of hypochromic anemia when episodic or continuous blood loss such as that of menorrhagia is suspected. (auth)« less
Monitoring of aflatoxins and ochratoxin A in Czechoslovak human sera by immunoassay
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fukal, L.; Reisnerova, H.
1990-03-01
Since a level of food contamination with aflatoxins and ochratoxin A has been found low in Czechoslovakia, human exposure to these mycotoxins may not be negligible. However, analysis of food samples provides only indirect evidence of mycotoxin ingestion and no evidence about mycotoxin absorption. Direct evidence can only be obtained by analysis of human body fluids. Therefore, the authors decided to carry out a monitoring of aflatoxin and ochratoxin A level in human sera. In general, TLC and HPLC are most commonly used to analyze mycotoxins and its metabolites. The recent development of immunochemical techniques opens the possibility of determiningmore » individual exposure in a relatively large human population. These assays have the advantage of high specificity and sensitivity. Sample through-put is high, and the methods are technically simple and can be performed at low cost.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jauchem, J.R.; Frei, M.R.
1991-01-01
Sprague-Dawley rats were exposed to 2.8-GHz radiofrequency radiation, first while unanesthetized and then while anesthetized with ketamine (150 mg/kg.I.M.). Irradiation at a power density of 60 mW/cm2 (whole-body average specific absorption rate of approximately 14 W/kg) was conducted for sufficient duration to increase colonic temperature from 38.5 to 39.5 degrees C. The time required for the temperature increase was significantly longer in the anesthetized state. During irradiation, heart rate increased significantly both with and without anesthesia, while mean arterial blood pressure increased only when the rats were unanesthetized. The heart rate increase in the anesthetized state contrasts with a lackmore » of change in a previous study of Fischer rats. This difference between anesthetized Sprague-Dawley and Fischer rats should be considered when comparing cardiovascular data obtained from these two strains of rats.« less
Lamb Shift in the Near Field of Hyperbolic Metamaterial Half Space
NASA Astrophysics Data System (ADS)
Deng, Nai Jing; Yu, Kin Wah
2013-03-01
Hyperbolic metamaterials give a large magnification of the density of states in a specific frequency ranges, and has motivated various applications in emission lifetime reduction, strong absorption, and extraordinary black body radiation, etc. The boost of vacuum energy, which is proportional to the density of states, is expected in hyperbolic metamaterial. We have studied the Lamb shift in vacuum-hyperbolic-metamterial half spaces and shown the non-trivial role of vacuum energy. In our calculation, the easy-fabricated multilayer structure is employed to generate a hyperbolic dispersion relation. The spectrum of hydrogen atoms is calculated with a perturbation method after quantizing the half spaces with a complete mode expansion. It appears that the shift of spectrum is mainly contributed by the terahertz response of materials, which has been well described and predicted in both theories and experiments. Work supported by the General Research Fund of the Hong Kong SAR Government
Salt, chloride, bleach, and innate host defense
Wang, Guoshun; Nauseef, William M.
2015-01-01
Salt provides 2 life-essential elements: sodium and chlorine. Chloride, the ionic form of chlorine, derived exclusively from dietary absorption and constituting the most abundant anion in the human body, plays critical roles in many vital physiologic functions, from fluid retention and secretion to osmotic maintenance and pH balance. However, an often overlooked role of chloride is its function in innate host defense against infection. Chloride serves as a substrate for the generation of the potent microbicide chlorine bleach by stimulated neutrophils and also contributes to regulation of ionic homeostasis for optimal antimicrobial activity within phagosomes. An inadequate supply of chloride to phagocytes and their phagosomes, such as in CF disease and other chloride channel disorders, severely compromises host defense against infection. We provide an overview of the roles that chloride plays in normal innate immunity, highlighting specific links between defective chloride channel function and failures in host defense. PMID:26048979
[Clinical MR at 3 Tesla: current status].
Baudendistel, K T; Heverhagen, J T; Knopp, M V
2004-01-01
Clinical MRI is mostly performed at field strengths up to 1.5 Tesla (T). Recently, approved clinical whole-body MR-systems with a field strength of 3 T became available. Its installation base is more rapidly growing than anticipated. While site requirements and operation of these systems do not differ substantially from systems with lower field strength, there are differences in practical applications. Imaging applications can use the gain in signal-to-noise for increased spatial resolution or gain in speed. This comes at a trade off in increased sensitivity to field inhomogeneities and changes in relaxation times, which lead to changes in image contrast. The benefit of high field for spectroscopy consists in increased signal-to-noise-ratio and improvement in frequency resolution. The increase in energy deposition necessitates the use of special strategies to reduce the specific absorption rate (SAR). This paper summarizes the current state of MR at 3 T.
NASA Astrophysics Data System (ADS)
Khan, Sohel Rana; Ajij, Sayyad
2017-12-01
This review paper focuses on the basic relations between wireless power transfer, wireless information transfer and combined phenomenon of simultaneous wireless information and power transfer. The authors reviewed and discussed electromagnetic fields behaviour (EMB) for enhancing the power allocation strategies (PAS) in energy harvesting (EH) wireless communication systems. Further, this paper presents relations between Friis transmission equation and Maxwell's equations to be used in propagation models for reduction in specific absorption rate (SAR). This paper provides a review of various methods and concepts reported in earlier works. This paper also reviews Poynting vector and power densities along with boundary conditions for antennas and human body. Finally, this paper explores the usage of electromagnetic behaviour for the possible enhancement in power saving methods for electromagnetic behaviour centered-wireless energy harvesting (EMBC-WEH). At the same time, possibilities of PAS for reduction in SAR are discussed.
Salt, chloride, bleach, and innate host defense.
Wang, Guoshun; Nauseef, William M
2015-08-01
Salt provides 2 life-essential elements: sodium and chlorine. Chloride, the ionic form of chlorine, derived exclusively from dietary absorption and constituting the most abundant anion in the human body, plays critical roles in many vital physiologic functions, from fluid retention and secretion to osmotic maintenance and pH balance. However, an often overlooked role of chloride is its function in innate host defense against infection. Chloride serves as a substrate for the generation of the potent microbicide chlorine bleach by stimulated neutrophils and also contributes to regulation of ionic homeostasis for optimal antimicrobial activity within phagosomes. An inadequate supply of chloride to phagocytes and their phagosomes, such as in CF disease and other chloride channel disorders, severely compromises host defense against infection. We provide an overview of the roles that chloride plays in normal innate immunity, highlighting specific links between defective chloride channel function and failures in host defense. © Society for Leukocyte Biology.
NASA Astrophysics Data System (ADS)
Raman, R.; Jayanth, K.; Sarkar, I.; Ravi, K.
2017-11-01
Crashworthiness of a material is a measure of its ability to absorb energy during a crash. A well-designed crash box is instrumental in protecting the costly vehicle components. A square, hollow, hybrid beam of aluminum/CFRP was subjected to dynamic axial load to analyze the effect of five different lay-up sequences on its crashworthiness. The beam was placed between two plates. Boundary conditions were imposed on them to simulate a frontal body crash test model. Modeling and dynamic analysis of composite structures was done on ABAQUS. Different orientation of carbon fibers varies the crashworthiness of the hybrid beam. Addition of CFRP layer showed clear improvement in specific energy absorption and crush force efficiency compared to pure aluminum beam. Two layers of CFRP oriented at 90° on Aluminum showed 52% increase in CFE.
Electromagnetic limits to radiofrequency (RF) neuronal telemetry.
Diaz, R E; Sebastian, T
2013-12-18
The viability of a radiofrequency (RF) telemetry channel for reporting individual neuron activity wirelessly from an embedded antenna to an external receiver is determined. Comparing the power at the transmitting antenna required for the desired Channel Capacity, to the maximum power that this antenna can dissipate in the body without altering or damaging surrounding tissue reveals the severe penalty incurred by miniaturization of the antenna. Using both Specific Absorption Rate (SAR) and thermal damage limits as constraints, and 300 Kbps as the required capacity for telemetry streams 100 ms in duration, the model shows that conventional antennas smaller than 0.1 mm could not support human neuronal telemetry to a remote receiver (1 m away.) Reducing the antenna to 10 microns in size to enable the monitoring of single human neuron signals to a receiver at the surface of the head would require operating with a channel capacity of only 0.3 bps.
Butyric acid in functional constipation.
Pituch, Aleksandra; Walkowiak, Jarosław; Banaszkiewicz, Aleksandra
2013-01-01
Butyric acid, a short-chain fatty acid, is a major energy source for colonocytes. It occurs in small quantities in some foods, and in the human body, it is produced in the large intestine by intestinalkacteria. This production can be reduced in some cases, for which butyric acid supplementation may be useful. So far, the use of butyric acid in the treatment of gastrointestinal disorders has been limited because of its specific characteristics such as its rancid smell and rapid absorption in the upper gastrointestinal tract. In the Polish market, sodium butyrate has been recently made available, produced by the modern technology of microencapsulation, which allows the active substance to reach the small and large intestines, where butyrate easily dissociates into butyric acid. This article presents the potential beneficial mechanisms of action of butyric acid in defecation disorders, which are primarily associated with reductions in pain during defecation and inflammation in the gut, among others.
New insights into iron deficiency and iron deficiency anemia.
Camaschella, Clara
2017-07-01
Recent advances in iron metabolism have stimulated new interest in iron deficiency (ID) and its anemia (IDA), common conditions worldwide. Absolute ID/IDA, i.e. the decrease of total body iron, is easily diagnosed based on decreased levels of serum ferritin and transferrin saturation. Relative lack of iron in specific organs/tissues, and IDA in the context of inflammatory disorders, are diagnosed based on arbitrary cut offs of ferritin and transferrin saturation and/or marker combination (as the soluble transferrin receptor/ferritin index) in an appropriate clinical context. Most ID patients are candidate to traditional treatment with oral iron salts, while high hepcidin levels block their absorption in inflammatory disorders. New iron preparations and new treatment modalities are available: high-dose intravenous iron compounds are becoming popular and indications to their use are increasing, although long-term side effects remain to be evaluated. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Essama, Bedel Giscard Onana; Atangana, Jacques; Frederick, Biya Motto; Mokhtari, Bouchra; Eddeqaqi, Noureddine Cherkaoui; Kofane, Timoleon Crepin
2014-09-01
We investigate the behavior of the electromagnetic wave that propagates in a metamaterial for negative index regime. Second-order dispersion and cubic-quintic nonlinearities are taken into account. The behavior obtained for negative index regime is compared to that observed for absorption regime. The collective coordinates technique is used to characterize the light pulse intensity profile at some frequency ranges. Five frequency ranges have been pointed out. The perfect combination of second-order dispersion and cubic nonlinearity leads to a robust soliton at each frequency range for negative index regime. The soliton peak power progressively decreases for absorption regime. Further, this peak power also decreases with frequency. We show that absorption regime can induce rogue wave trains generation at a specific frequency range. However, this rogue wave trains generation is maintained when the quintic nonlinearity comes into play for negative index regime and amplified for absorption regime at a specific frequency range. It clearly appears that rogue wave behavior strongly depends on the frequency and the regime considered. Furthermore, the stability conditions of the electromagnetic wave have also been discussed at frequency ranges considered for both negative index and absorption regimes.
Essama, Bedel Giscard Onana; Atangana, Jacques; Frederick, Biya Motto; Mokhtari, Bouchra; Eddeqaqi, Noureddine Cherkaoui; Kofane, Timoleon Crepin
2014-09-01
We investigate the behavior of the electromagnetic wave that propagates in a metamaterial for negative index regime. Second-order dispersion and cubic-quintic nonlinearities are taken into account. The behavior obtained for negative index regime is compared to that observed for absorption regime. The collective coordinates technique is used to characterize the light pulse intensity profile at some frequency ranges. Five frequency ranges have been pointed out. The perfect combination of second-order dispersion and cubic nonlinearity leads to a robust soliton at each frequency range for negative index regime. The soliton peak power progressively decreases for absorption regime. Further, this peak power also decreases with frequency. We show that absorption regime can induce rogue wave trains generation at a specific frequency range. However, this rogue wave trains generation is maintained when the quintic nonlinearity comes into play for negative index regime and amplified for absorption regime at a specific frequency range. It clearly appears that rogue wave behavior strongly depends on the frequency and the regime considered. Furthermore, the stability conditions of the electromagnetic wave have also been discussed at frequency ranges considered for both negative index and absorption regimes.
Water quality monitor for recovered spacecraft water
NASA Technical Reports Server (NTRS)
Ejzak, E. M.; Price, D. F.
1985-01-01
A total organic carbon (TOC) analysis system based on ultraviolet absorption is described. The equation for measuring the intensity of the absorbed radiation of the organic substances, which is based on the Lambert-Beer law, is given; the intensity of the absorption is proportional to the concentration of the solution. The operation of the UV-Absorption analyzer, which utilizes a split beam, two wvaelength method, is studied. The influences of the cell path length and specific compounds in the solution flowing through the cell on absorbances is discussed. The performance and response of the analyzer is evaluated; good correlation is observed between the absorption value and TOC. The advantage of the UV-Absorption as compared with the UV-Oxidation are examined.
Gray, Lawrence W.; Peng, Fangyu; Molloy, Shannon A.; Pendyala, Venkata S.; Muchenditsi, Abigael; Muzik, Otto; Lee, Jaekwon; Kaplan, Jack H.; Lutsenko, Svetlana
2012-01-01
Body copper homeostasis is regulated by the liver, which removes excess copper via bile. In Wilson's disease (WD), this function is disrupted due to inactivation of the copper transporter ATP7B resulting in hepatic copper overload. High urinary copper is a diagnostic feature of WD linked to liver malfunction; the mechanism behind urinary copper elevation is not fully understood. Using Positron Emission Tomography-Computed Tomography (PET-CT) imaging of live Atp7b−/− mice at different stages of disease, a longitudinal metal analysis, and characterization of copper-binding molecules, we show that urinary copper elevation is a specific regulatory process mediated by distinct molecules. PET-CT and atomic absorption spectroscopy directly demonstrate an age-dependent decrease in the capacity of Atp7b−/− livers to accumulate copper, concomitant with an increase in urinary copper. This reciprocal relationship is specific for copper, indicating that cell necrosis is not the primary cause for the initial phase of metal elevation in the urine. Instead, the urinary copper increase is associated with the down-regulation of the copper-transporter Ctr1 in the liver and appearance of a 2 kDa Small Copper Carrier, SCC, in the urine. SCC is also elevated in the urine of the liver-specific Ctr1 −/− knockouts, which have normal ATP7B function, suggesting that SCC is a normal metabolite carrying copper in the serum. In agreement with this hypothesis, partially purified SCC-Cu competes with free copper for uptake by Ctr1. Thus, hepatic down-regulation of Ctr1 allows switching to an SCC-mediated removal of copper via kidney when liver function is impaired. These results demonstrate that the body regulates copper export through more than one mechanism; better understanding of urinary copper excretion may contribute to an improved diagnosis and monitoring of WD. PMID:22802922
Negative Searches for Evidence of Aqueous Alteration on Asteroid Surfaces
NASA Technical Reports Server (NTRS)
Vilas, F.
2005-01-01
Small bodies in the Solar System preserve evidence of the processes occurring during early Solar System formation, unlike the larger planets that undergo continuous churning of their surfaces. We study these bodies to understand what processes affected different stages of Solar System formation. The action of aqueous alteration (the alteration of material by the interaction of that material with liquid formed by the melting of incorporated ice) of near-subsurface material has been inferred to occur on many asteroids based on the spectrophotometric evidence of phyllosilicates and iron alteration minerals. The definitive indication of aqueous alteration is the 3.0- micron absorption feature attributed to structural hydroxyl (OH) and interlayer and adsorbed water (H2O) in phyllosilicates (clays) (hereafter water of hydration). A weak absorption feature centered near 0.7 microns attributed to an Fe (2+) right arrow Fe (3+) charge transfer transition in oxidized iron in phyllosilicates has been observed in the reflectance spectra and photometry of approximately 50% of the main-belt C-class asteroids. An approximately 85% correlation between this 0.7- micron feature and the 3.0- micron water of hydration absorption feature was found among the low-albedo asteroids. The feature is usually centered near 0.68 microns in asteroid spectra, and ranges in wavelength from approximately 0.57 to 0.83 microns. Serendipitously, three of the Eight Color Asteroid Survey filters the v (0.550 microns), w (0.701 microns), and x (0.853 microns)-bracket this feature well, and can be used to determine the presence of this feature in the reflectance properties of an asteroid, and probe the aqueous alteration history of larger samples of asteroid data. Two efforts to search for evidence of aqueous alteration based on the presence of this 0.7- micron absorption feature are presented here.
Baila-Rueda, Lucía; Cenarro, Ana; Lamiquiz-Moneo, Itziar; Perez-Calahorra, Sofía; Bea, Ana M; Marco-Benedí, Victoria; Jarauta, Estíbaliz; Mateo-Gallego, Rocío; Civeira, Fernando
2018-03-01
Primary hypercholesterolemia of genetic origin, negative for mutations in LDLR, APOB, PCSK9 and APOE genes (non-FH GH), and familial combined hyperlipidemia (FCHL) are polygenic genetic diseases that occur with hypercholesterolemia, and both share a very high cardiovascular risk. In order to better characterize the metabolic abnormalities associated with these primary hypercholesterolemias, we used noncholesterol sterols, as markers of cholesterol metabolism, to determine their potential differences. Hepatic cholesterol synthesis markers (desmosterol and lanosterol) and intestinal cholesterol absorption markers (sitosterol and campesterol) were determined in non-FH GH (n=200), FCHL (n=100) and genetically defined heterozygous familial hypercholesterolemia subjects (FH) (n=100) and in normolipidemic controls (n=100). FCHL subjects had lower cholesterol absorption and higher cholesterol synthesis than non-FH GH, FH and controls (P<.001). When noncholesterol sterols were adjusted by body mass index (BMI), FCHL subjects had higher cholesterol synthesis than non-FG GH, FH and controls (P<.001). An increase in BMI was accompanied by increased cholesterol synthesis and decreased cholesterol absorption in non-FH GH, FH and controls. However, this association between BMI and cholesterol synthesis was not observed in FCHL. Non-high-density-lipoprotein cholesterol showed a positive correlation with cholesterol synthesis markers similar to that of BMI in non-FH GH, FH and normolipemic controls, but there was no correlation in FCHL. These results suggest that FCHL and non-FH GH have different mechanisms of production. Cholesterol synthesis and absorption are dependent of BMI in non-FH GH, but cholesterol synthesis is increased as a pathogenic mechanism in FCHL independently of age, gender, APOE and BMI. Copyright © 2017 Elsevier Inc. All rights reserved.
The river absorption capacity determination as a tool to evaluate state of surface water
NASA Astrophysics Data System (ADS)
Wilk, Paweł; Orlińska-Woźniak, Paulina; Gębala, Joanna
2018-02-01
In order to complete a thorough and systematic assessment of water quality, it is useful to measure the absorption capacity of a river. Absorption capacity is understood as a pollution load introduced into river water that will not cause permanent and irreversible changes in the aquatic ecosystem and will not cause a change in the classification of water quality in the river profile. In order to implement the method, the Macromodel DNS/SWAT basin for the Middle Warta pilot (central Poland) was used to simulate nutrient loads. This enabled detailed analysis of water quality in each water body and the assessment of the size of the absorption capacity parameter, which allows the determination of how much pollution can be added to the river without compromising its quality class. Positive values of the calculated absorption capacity parameter mean that it is assumed that the ecosystem is adjusted in such a way that it can eliminate pollution loads through a number of self-purification processes. Negative values indicate that the load limit has been exceeded, and too much pollution has been introduced into the ecosystem for it to be able to deal with through the processes of self-purification. Absorption capacity thus enables the connection of environmental standards of water quality and water quality management plans in order to meet these standards.
Reduced vertebral bone density in hypercalciuric nephrolithiasis
NASA Technical Reports Server (NTRS)
Pietschmann, F.; Breslau, N. A.; Pak, C. Y.
1992-01-01
Dual-energy x-ray absorptiometry and single-photon absorptiometry were used to determine bone density at the lumbar spine and radial shaft in 62 patients with absorptive hypercalciuria, 27 patients with fasting hypercalciuria, and 31 nonhypercalciuric stone formers. Lumbar bone density was significantly lower in patients with absorptive (-10%) as well as in those with fasting hypercalciuria (-12%), with 74 and 92% of patients displaying values below the normal mean, whereas only 48% of the nonhypercalciuric stone formers had bone density values below the normal mean. In contrast, radial bone density was similar in all three groups of renal stone formers investigated. The comparison of urinary chemistry in patients with absorptive hypercalciuria and low normal bone density compared to those with high normal bone density showed a significantly increased 24 h urinary calcium excretion on random diet and a trend toward a higher 24 h urinary uric acid excretion and a higher body mass index in patients with low normal bone density. Moreover, among the patients with absorptive hypercalciuria we found a statistically significant correlation between the spinal bone density and the 24 h sodium and sulfate excretion and the urinary pH. These results gave evidence for an additional role of environmental factors (sodium and animal proteins) in the pathogenesis of bone loss in absorptive hypercalciuria. In conclusion, our data suggest an osteopenia of trabecular-rich bone tissues in patients with fasting and absorptive hypercalciurias.
Carmosino, Monica; Rizzo, Federica; Procino, Giuseppe; Zolla, Lello; Timperio, Anna Maria; Basco, Davide; Barbieri, Claudia; Torretta, Silvia; Svelto, Maria
2012-11-01
The renal Na(+) -K(+) -2Cl(-) co-transporter (NKCC2) is expressed in kidney thick ascending limb cells, where it mediates NaCl re-absorption regulating body salt levels and blood pressure. In this study, we used a well-characterised NKCC2 construct (c-NKCC2) to identify NKCC2-interacting proteins by an antibody shift assay coupled with blue native/SDS-PAGE and mass spectrometry. Among the interacting proteins, we identified moesin, a protein belonging to ezrin, eadixin and moesin family. Co-immunoprecipitation experiments confirmed that c-NKCC2 interacts with the N-terminal domain of moesin in LLC-PK1 cells. Moreover, c-NKCC2 accumulates in intracellular and sub-apical vesicles in cells transfected with a moesin dominant negative green fluorescent protien (GFP)-tagged construct. In addition, moesin knock-down by short interfering RNA decreases by about 50% c-NKCC2 surface expression. Specifically, endocytosis and exocytosis assays showed that moesin knock-down does not affect c-NKCC2 internalisation but strongly reduces exocytosis of the co-transporter. Our data clearly demonstrate that moesin plays a critical role in apical membrane insertion of NKCC2, suggesting a possible involvement of moesin in regulation of Na(+) and Cl(-) absorption in the kidney. Copyright © 2012 Soçiété Francaise des Microscopies and Société de Biologie Cellulaire de France.
NASA Astrophysics Data System (ADS)
Khairullina, Alphiya Y.; Oleinik, Tatiana V.
1995-01-01
Our previous works concerned with the development of methods for studying blood and action of low-intensity laser radiation on blood and erythrocyte suspensions had shown the light- scattering methods gave a large body of information on a medium studied due to the methodological relationship between irradiation processes and techniques for investigations. Detail analysis of spectral diffuse reflectivities and transmissivities of optically thick blood layers, spectral absorptivities calculated on this basis over 600 - 900 nm, by using different approximations, for a pathological state owing to hypoxia testifies to the optical significance of not only hemoglobin derivatives but also products of hemoglobin decomposition. Laser action on blood is specific and related to an initial state of blood absorption due to different composition of chromoproteids. This work gives the interpretation of spectral observations. Analysis of spectral dependencies of the exinction coefficient e, mean cosine m of phase function, and parameter Q equals (epsilon) (1-(mu) )H/(lambda) (H - hematocrit) testifies to decreasing the relative index of refraction of erythrocytes and to morphological changes during laser action under pathology owing to hypoxia. The possibility to obtain physical and chemical information on the state of blood under laser action in vivo is shown to be based on the method proposed by us for calculating multilayered structures modeling human organs and on the technical implementation of this method.
Human Diet and Nutrition. LC Science Tracer Bullet.
ERIC Educational Resources Information Center
Rodgers, Kay, Comp.
This bibliography of publications on nutrition and diet includes materials on the following subjects: diet selection, nutritional content of foods, ingestion, digestion, absorption, transportation, metabolism, utilization of nutrients and food by the cells of the body, excretion, and the results of inadequate, deficient, or excessive nutrient…
NASA Astrophysics Data System (ADS)
Ozbek, Nil; Baysal, Asli
2017-04-01
Human hair is a valuable contributor for biological monitoring. It is an information storage point to assess the effects of environmental, nutritional or occupational sources on the body. Human proteins, amino acids or other compounds are among the key components to find the sources of different effects or disorders in the human body. Sulfur is a significant one of these compounds, and it has great affinity to some metals and compounds. This property of the sulfur affects the human health positively or negatively. In this manuscript, sulfur was determined in hair samples of autistic and age-match control group children via molecular absorption of CS using a high-resolution continuum source graphite furnace atomic absorption spectrometer. For this purpose, hair samples were appropriately washed and dried at 75 °C. Then samples were dissolved in microwave digestion using HNO3 for sulfur determination. Extraction was performed with HCl hydrolysation by incubation for 24 h at 110 °C for total protein and albumin determination. The validity of the method for the sulfur determination was tested using hair standard reference materials. The results were in the uncertainty limits of the certified values at 95% confidence level. Finally correlation of sulfur levels of autistic children's hair with their total protein and albumin levels were done.
STRUCTURAL ANALYSIS OF THE COMBUSTION SYNTHESIZED Y3+ DOPED CERIA (Ce0.9Y0.1O1.95)
NASA Astrophysics Data System (ADS)
Jeyanthi, C. Esther; Siddheswaran, R.; Kumar, Pushpendra; Mangalaraja, R. V.; Siva Shankar, V.; Rajarajan, K.
2013-07-01
Y3+ doped CeO2 nanopowders (Ce0.9Y0.1O1.95, abbreviated as YDC) were synthesized by citrate-nitrate-auto combustion process using cerium nitrate hexahydrate, yttrium nitrate hexahydrate and citric acid. The as-synthesized powders were calcined at 700°C and converted into dense bodies followed by sintering at 1200°C. The microstructure of the synthesized powders and sintered bodies were examined by scanning electron microscopy (SEM). The surface morphology of the nanoparticles and clusters were also analysed by transmission electron microscopy (TEM). The particles size of the YDC was found to be in the range from 10 to 30 nm, which is in good agreement with the crystallite size calculated from X-ray peak broadening method. Also, the X-ray diffraction confirmed that the Ce0.9Y0.1O1.95 crystallizes as the cubic fluorite structure of pure ceria. The optical absorption by functional molecules, impurities and oxygen vacancies were analysed by FTIR and Raman spectroscopic studies. From the FTIR spectrum, the absorption peak found at 530 cm-1 is attributed to the vibrations of metal-oxygen bonds. The characteristic Raman peak was found to be 468 cm-1, and the minute absorption of oxygen vacancies were observed in the region 500-640 cm-1.
NASA Astrophysics Data System (ADS)
Prameswari, I. K.; Manuhara, G. J.; Amanto, B. S.; Atmaka, W.
2018-05-01
Tapioca starch application in bread processing change water absorption level by the dough, while sufficient mixing time makes the optimal water absorption. This research aims to determine the effect of variations in water volume and mixing time on physical properties of tapioca starch – wheat composite bread and the best method for the composite bread processing. This research used Complete Randomized Factorial Design (CRFD) with two factors: variations of water volume (111,8 ml, 117,4 ml, 123 ml) and mixing time (16 minutes, 17 minutes 36 seconds, 19 minutes 12 seconds). The result showed that water volume significantly affected on dough volume, bread volume and specific volume, baking expansion, and crust thickness. Mixing time significantly affected on dough volume and specific volume, bread volume and specific volume, baking expansion, bread height, and crust thickness. While the combination of water volume and mixing time significantly affected for all physical properties parameters except crust thickness.
Newby, Danielle; Freitas, Alex A; Ghafourian, Taravat
2015-01-27
Oral absorption of compounds depends on many physiological, physiochemical and formulation factors. Two important properties that govern oral absorption are in vitro permeability and solubility, which are commonly used as indicators of human intestinal absorption. Despite this, the nature and exact characteristics of the relationship between these parameters are not well understood. In this study a large dataset of human intestinal absorption was collated along with in vitro permeability, aqueous solubility, melting point, and maximum dose for the same compounds. The dataset allowed a permeability threshold to be established objectively to predict high or low intestinal absorption. Using this permeability threshold, classification decision trees incorporating a solubility-related parameter such as experimental or predicted solubility, or the melting point based absorption potential (MPbAP), along with structural molecular descriptors were developed and validated to predict oral absorption class. The decision trees were able to determine the individual roles of permeability and solubility in oral absorption process. Poorly permeable compounds with high solubility show low intestinal absorption, whereas poorly water soluble compounds with high or low permeability may have high intestinal absorption provided that they have certain molecular characteristics such as a small polar surface or specific topology. Copyright © 2015 Elsevier Masson SAS. All rights reserved.
Sources of background light on space based laser communications links
NASA Astrophysics Data System (ADS)
Farrell, Thomas C.
2018-05-01
We discuss the sources and levels of background light that should be expected on space based laser communication (lasercom) crosslinks and uplinks, as well as on downlinks to ground stations. The analyses are valid for both Earth orbiting satellites and inter-planetary links. Fundamental equations are derived suitable for first order system engineering analyses of potential lasercom systems. These divide sources of background light into two general categories: extended sources which fill the field of view of a receiver's optics, and point sources which cannot be resolved by the optics. Specific sources of background light are discussed, and expected power levels are estimated. For uplinks, reflected sunlight and blackbody radiation from the Earth dominates. For crosslinks, depending on specific link geometry, sources of background light may include the Sun in the field of view (FOV), reflected sunlight and blackbody radiation from planets and other bodies in the solar system, individual bright stars in the FOV, the amalgam of dim stars in the FOV, zodiacal light, and reflected sunlight off of the transmitting spacecraft. For downlinks, all of these potentially come into play, and the effects of the atmosphere, including turbulence, scattering, and absorption contribute as well. Methods for accounting for each of these are presented. Specific examples are presented to illustrate the relative contributions of each source for various link geometries.
Muniz, Cinara Knychala; dos Santos, José Sebastião; Pfrimer, Karina; Ferrioli, Eduardo; Kemp, Rafael; Marchini, Júlio Sérgio; Cunha, Selma Freire
2014-04-01
This study aimed to compare the body composition, dietary intake and serum levels of vitamins and minerals, and exocrine pancreatic function in patients late after pancreaticoduodenectomy (PD) and healthy subjects. Fifteen patients (PD group) who had undergone PD over 1 year before the study and 15 health volunteers (control group) were included in the study. All volunteers underwent dietary intake evaluation, body composition, laboratory data, exocrine pancreatic function by elastase-1, and carbon (C )-labeled triglycerides in breath tests. The PD group subjects also underwent upper gastrointestinal endoscopy and small intestinal bacterial overgrowth analysis. Nutrient intake was adequate, and there were no differences in body mass index and mineral serum levels between the groups. The PD group showed lower serum levels of retinol, α-tocopherol, and ascorbic acid. Small intestinal bacterial overgrowth occurred in 39% of the patients. Fecal elastase-1 was lower in the PD group. The PD group had a higher C peak time; the cumulative label C recovery in 7 hours was similar in both groups. Fecal elastase-1 decreased, and the excretion of C in breath was similar to healthy controls. Although the data point toward an adaptation in the absorptive capacity of fats, A, C, and E hypovitaminosis indicate that some absorptive insufficiency persists late after PD.
Theory of dynamical screening of excitons in monolayer transition-metal dichalcogenides
NASA Astrophysics Data System (ADS)
Dery, Hanan
Exciton optical transitions in transition-metal dichalcogenides offer unique opportunities to study rich many-body physics. Recent experiments in monolayer WSe2 and WS2 have shown that, while the low-temperature absorption and photoluminescence from neutral excitons and three-body complexes is suppressed in the presence of elevated electron densities or strong photoexcitation, new dominant peaks emerge in the low-energy side of the spectrum. I present a theory that elucidates the nature of these optical transitions showing the role of the intervalley Coulomb interaction and ensuing valley plasmons. Considering their signature in the self-energy of electrons from the top spin-split conduction valleys leads to the emergence of a correlation-induced virtual state in the band gap. This phenomenon sheds light on the origin of the luminescence in monolayer WSe2 and WS2 in the presence of pronounced many-body interactions. I will also present numerical results of the absorption spectrum calculated from the two-particle Dyson Equation of the pair Green's function. Inclusion of dynamical screening in the potential is imperative to correctly describe the physics of excitons in gated structures. Department of Energy under Contract No. DE-SC0014349, the National Science Foundation under Contract No. DMR-1503601, and the Defense Threat Reduction Agency under Contract No. HDTRA1-13-1-0013.
Whole body acid-base modeling revisited.
Ring, Troels; Nielsen, Søren
2017-04-01
The textbook account of whole body acid-base balance in terms of endogenous acid production, renal net acid excretion, and gastrointestinal alkali absorption, which is the only comprehensive model around, has never been applied in clinical practice or been formally validated. To improve understanding of acid-base modeling, we managed to write up this conventional model as an expression solely on urine chemistry. Renal net acid excretion and endogenous acid production were already formulated in terms of urine chemistry, and we could from the literature also see gastrointestinal alkali absorption in terms of urine excretions. With a few assumptions it was possible to see that this expression of net acid balance was arithmetically identical to minus urine charge, whereby under the development of acidosis, urine was predicted to acquire a net negative charge. The literature already mentions unexplained negative urine charges so we scrutinized a series of seminal papers and confirmed empirically the theoretical prediction that observed urine charge did acquire negative charge as acidosis developed. Hence, we can conclude that the conventional model is problematic since it predicts what is physiologically impossible. Therefore, we need a new model for whole body acid-base balance, which does not have impossible implications. Furthermore, new experimental studies are needed to account for charge imbalance in urine under development of acidosis. Copyright © 2017 the American Physiological Society.
Steingraeber, M.T.; Gingerich, W.H.
1991-01-01
Brook trout eyed eggs and subsequent alevins were exposed to pH 5.0, 6.5, and 7.0 in soft reconstituted water and to pH 8.2 in hard well water for up to 72 d. Hatching was delayed and hatching success reduced (p K+ > Cl- during yolk absorption and early exogenous feeding. Whole-body monovalent ion concentrations were reduced for short periods during yolk absorption in alevins exposed to pH 6.5 and throughout most of the experiment for those exposed to pH 5.0. Whole-body Mg2+ concentrations were not affected by treatment pH and remained near their median hatch level throughout the exposure. The whole-body concentration of Ca2+ was reduced in fish exposed to pH 5.0, particularly near the end of the experiment. Calcium accumulation in fish was influenced by the interaction of pH and time at pH 5.0 but not at the other pH levels. Alevins exposed to pH 5.0 experienced delayed ossification of skeletal structures associated with feeding, respiration, and locomotion that usually persisted for up to 10 d. The detection of skeletal abnormalities early in life might aid in identifying fish populations at risk in acidified waters.
Radoš, Milan; Erceg, Gorislav; Petošić, Antonio; Jurjević, Ivana
2014-01-01
Intracranial hypertension is a severe therapeutic problem, as there is insufficient knowledge about the physiology of cerebrospinal fluid (CSF) pressure. In this paper a new CSF pressure regulation hypothesis is proposed. According to this hypothesis, the CSF pressure depends on the laws of fluid mechanics and on the anatomical characteristics inside the cranial and spinal space, and not, as is today generally believed, on CSF secretion, circulation and absorption. The volume and pressure changes in the newly developed CSF model, which by its anatomical dimensions and basic biophysical features imitates the craniospinal system in cats, are compared to those obtained on cats with and without the blockade of craniospinal communication in different body positions. During verticalization, a long-lasting occurrence of negative CSF pressure inside the cranium in animals with normal cranio-spinal communication was observed. CSF pressure gradients change depending on the body position, but those gradients do not enable unidirectional CSF circulation from the hypothetical site of secretion to the site of absorption in any of them. Thus, our results indicate the existence of new physiological/pathophysiological correlations between intracranial fluids, which opens up the possibility of new therapeutic approaches to intracranial hypertension. PMID:24748150
Many body calculations of the optoelectronic properties of h-AlN: from 3D to 2D
NASA Astrophysics Data System (ADS)
Kecik, Deniz; Bacaksiz, Cihan; Durgun, Engin; Senger, Tugrul
Outstanding electronic and optical properties of graphene, h-BN, MoS2 etc. motivate the further discovery of novel 2D materials such as AlN, a III-V compound, with remarkable features for potential optoelectronic applications, due to its wide indirect band gap. The layer and strain dependent optoelectronic properties of the recently synthesized monolayer hexagonal AlN (h-AlN) were investigated using density functional and many body perturbation theories, where RPA and BSE were employed on top of the QPG0W0 method. The optical spectra of 1-4 layered h-AlN revealed prominent absorption beyond the visible light regime; absorbance within the UV range increasing with the number of layers. In addition, the applied tensile strain (1 - 7 %) was observed to gradually redshift the absorption spectra. While the many body corrections induced significant blueshift to the optical spectra, evidence of bound excitons were also found for the layered structures. Hence, the optoelectronic properties of layered h-AlN can be tuned by modifying their structure and applying strain, moreover are greatly altered when electron-hole interactions are considered. This work was supported by the Scientific and Technological Research Council of Turkey (TUBITAK, Project No. 113T050).
Molecular Characterization of Brown Carbon in Biomass Burning Aerosol Particles.
Lin, Peng; Aiona, Paige K; Li, Ying; Shiraiwa, Manabu; Laskin, Julia; Nizkorodov, Sergey A; Laskin, Alexander
2016-11-01
Emissions from biomass burning are a significant source of brown carbon (BrC) in the atmosphere. In this study, we investigate the molecular composition of freshly emitted biomass burning organic aerosol (BBOA) samples collected during test burns of sawgrass, peat, ponderosa pine, and black spruce. We demonstrate that both the BrC absorption and the chemical composition of light-absorbing compounds depend significantly on the type of biomass fuels. Common BrC chromophores in the selected BBOA samples include nitro-aromatics, polycyclic aromatic hydrocarbon derivatives, and polyphenols spanning a wide range of molecular weights, structures, and light absorption properties. A number of biofuel-specific BrC chromophores are observed, indicating that some of them may be used as source-specific markers of BrC. On average, ∼50% of the light absorption in the solvent-extractable fraction of BBOA can be attributed to a limited number of strong BrC chromophores. The absorption coefficients of BBOA are affected by solar photolysis. Specifically, under typical atmospheric conditions, the 300 nm absorbance decays with a half-life of ∼16 h. A "molecular corridor" analysis of the BBOA volatility distribution suggests that many BrC compounds in the fresh BBOA have low saturation mass concentration (<1 μg m -3 ) and will be retained in the particle phase under atmospherically relevant conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pellett, L.; Kattelmann, K.; Zinn, K.
1991-03-15
The objectives of the study were to determine the effects of dietary Fe and stress on Cu-67 retention and serum Cp activity in the rat. A 2 {times} 2 {times} 2 factorial arrangement of treatments was utilized. Male Sprague Dawley weanling rats were fed AIN-76 diets ad lib containing 0.8 ppm Cu (CuD) or 5.7 ppm Cu (CuA) with 22.5 ppm Fe (FeA) or 280 ppm Fe (FeE). After 19 days, one-half of the animals of each treatment were stressed by an intramuscular injection of 0.1 ml turpentine/100 gm body weight. Forty-eight hours later, animals were gavaged with Cu-67 andmore » counted over a 7 day period in a whole body high resolution gamma counter. Cu-67 retention was 20% higher in CuD rats compared to CuA rats. There were no significant effects caused by Fe or stress or the interaction between these variables on Cu-67 retention. In rats fed FeE-CuA diets, serum Cp activity was significantly depressed compared to rats fed FeA-CuA diets. These reductions in the acute phase protein Cp, were 85% and 70% in nonstressed and stressed rats, respectively. The results of this study suggest that the negative interaction effects of excess Fe on Cu utilization does not occur at the site of Cu absorption, but within the body and specifically in the liver.« less
Equator and High-Latitude Ionosphere-to-Magnetosphere Research
2010-12-04
characterizing plasma velocity profile in the heated region above HAARP has been clearly established. Specification of D region absorption from Digisonde...Electron density profile, Ground truth, Cal/Val, Doppler skymap, HAARP , Plasma velocity profile, Ionogram autoscaling, D region absorption...2 3 HAARP INVESTIGATIONS ............................................................................ 5 3.1
Spectral absorption coefficients and fluorescence quantum efficiencies were determined for humic substances from a variety of sources. Specific absorption coefficients, K(h), for humic substances at wavelengths lambda from 300 to 500 nm can be closely described by the relation Ae...
This paper describes an automated system for the oxidation state specific speciation of inorganic and methylated arsenicals by selective hydride generation - cryotrapping- gas chromatography - atomic absorption spectrometry with the multiatomizer. The corresponding arsines are ge...
Hoppe, Michael; Önning, Gunilla; Berggren, Anna; Hulthén, Lena
2015-10-28
Iron deficiency is common, especially among young women. Adding probiotics to foods could be one way to increase iron absorption. The aim of this study was to test the hypothesis that non-haem iron absorption from a fruit drink is improved by adding Lactobacillus plantarum 299v (Lp299v). Iron absorption was studied in healthy women of reproductive age using a single-blind cross-over design in two trials applying the double-isotope (55Fe and 59Fe) technique. In Trial 1, iron absorption from a fruit drink containing 109 colony-forming units (CFU) Lp299v was compared with that from a control drink without Lp299v. Trial 2 had the same design but 1010 CFU were used. The test and control drinks contained approximately 5 mg of iron as ferrous lactate and were labelled with 59Fe (B) and 55Fe (A), respectively, and consumed on 4 consecutive days in the order AABB. Retention of the isotopes was measured with whole-body counting and in blood. Mean iron absorption from the drink containing 109 CFU Lp299v (28·6(sd 12·5) %) was significantly higher than from the control drink (18·5(sd 5·8) %), n 10, P<0·028). The fruit drink with 1010 CFU Lp299v gave a mean iron absorption of 29·1(sd 17·0) %, whereas the control drink gave an absorption of (20·1(sd 6·4) %) (n 11, P<0·080). The difference in iron absorption between the 109 CFU Lp299v and the 1010 CFU Lp299v drinks was not significant (P=0·941). In conclusion, intake of probiotics can increase iron absorption by approximately 50 % from a fruit drink having an already relatively high iron bioavailability.
Enhanced light absorption by mixed source black and brown carbon particles in UK winter
Liu, Shang; Aiken, Allison C.; Gorkowski, Kyle; Dubey, Manvendra K.; Cappa, Christopher D.; Williams, Leah R.; Herndon, Scott C.; Massoli, Paola; Fortner, Edward C.; Chhabra, Puneet S.; Brooks, William A.; Onasch, Timothy B.; Jayne, John T.; Worsnop, Douglas R.; China, Swarup; Sharma, Noopur; Mazzoleni, Claudio; Xu, Lu; Ng, Nga L.; Liu, Dantong; Allan, James D.; Lee, James D.; Fleming, Zoë L.; Mohr, Claudia; Zotter, Peter; Szidat, Sönke; Prévôt, André S. H.
2015-01-01
Black carbon (BC) and light-absorbing organic carbon (brown carbon, BrC) play key roles in warming the atmosphere, but the magnitude of their effects remains highly uncertain. Theoretical modelling and laboratory experiments demonstrate that coatings on BC can enhance BC's light absorption, therefore many climate models simply assume enhanced BC absorption by a factor of ∼1.5. However, recent field observations show negligible absorption enhancement, implying models may overestimate BC's warming. Here we report direct evidence of substantial field-measured BC absorption enhancement, with the magnitude strongly depending on BC coating amount. Increases in BC coating result from a combination of changing sources and photochemical aging processes. When the influence of BrC is accounted for, observationally constrained model calculations of the BC absorption enhancement can be reconciled with the observations. We conclude that the influence of coatings on BC absorption should be treated as a source and regionally specific parameter in climate models. PMID:26419204
Spectral Absorption Properties of Atmospheric Aerosols
NASA Technical Reports Server (NTRS)
Bergstrom, R. W.; Pilewskie, P.; Russell, P. B.; Redemann, J.; Bond, T. C.; Quinn, P. K.; Sierau, B.
2007-01-01
We have determined the solar spectral absorption optical depth of atmospheric aerosols for specific case studies during several field programs (three cases have been reported previously; two are new results). We combined airborne measurements of the solar net radiant flux density and the aerosol optical depth with a detailed radiative transfer model for all but one of the cases. The field programs (SAFARI 2000, ACE Asia, PRIDE, TARFOX, INTEX-A) contained aerosols representing the major absorbing aerosol types: pollution, biomass burning, desert dust and mixtures. In all cases the spectral absorption optical depth decreases with wavelength and can be approximated with a power-law wavelength dependence (Absorption Angstrom Exponent or AAE). We compare our results with other recent spectral absorption measurements and attempt to briefly summarize the state of knowledge of aerosol absorption spectra in the atmosphere. We discuss the limitations in using the AAE for calculating the solar absorption. We also discuss the resulting spectral single scattering albedo for these cases.
Enhanced light absorption by mixed source black and brown carbon particles in UK winter
Liu, Shang; Aiken, Allison C.; Gorkowski, Kyle; ...
2015-09-30
We report that black carbon (BC) and light-absorbing organic carbon (brown carbon, BrC) play key roles in warming the atmosphere, but the magnitude of their effects remains highly uncertain. Theoretical modelling and laboratory experiments demonstrate that coatings on BC can enhance BC’s light absorption, therefore many climate models simply assume enhanced BC absorption by a factor of ~1.5. However, recent field observations show negligible absorption enhancement, implying models may overestimate BC’s warming. Here we report direct evidence of substantial field-measured BC absorption enhancement, with the magnitude strongly depending on BC coating amount. Increases in BC coating result from a combinationmore » of changing sources and photochemical aging processes. When the influence of BrC is accounted for, observationally constrained model calculations of the BC absorption enhancement can be reconciled with the observations. In conclusion, we find that the influence of coatings on BC absorption should be treated as a source and regionally specific parameter in climate models.« less
Water absorption characteristics and structural properties of rice for sake brewing.
Mizuma, Tomochika; Kiyokawa, Yoshifumi; Wakai, Yoshinori
2008-09-01
This study investigated the water absorption curve characteristics and structural properties of rice used for sake brewing. The parameter values in the water absorption rate equation were calculated using experimental data. Differences between sample parameters for rice used for sake brewing and typical rice were confirmed. The water absorption curve for rice suitable for sake brewing showed a quantitatively sharper turn in the S-shaped water absorption curve than that of typical rice. Structural characteristics, including specific volume, grain density, and powdered density of polished rice, were measured by a liquid substitution method using a Gay-Lussac pycnometer. In addition, we calculated internal porosity from whole grain and powdered grain densities. These results showed that a decrease in internal porosity resulted from invasion of water into the rice grain, and that a decrease in the grain density affected expansion during the water absorption process. A characteristic S-shape water absorption curve for rice suitable for sake brewing was related to the existence of an invisible Shinpaku-like structure.
Fruetel, Julie A [Livermore, CA; Fiechtner, Gregory J [Bethesda, MD; Kliner, Dahv A. V. [San Ramon, CA; McIlroy, Andrew [Livermore, CA
2009-05-05
The present embodiment describes a miniature, microfluidic, absorption-based sensor to detect proteins at sensitivities comparable to LIF but without the need for tagging. This instrument utilizes fiber-based evanescent-field cavity-ringdown spectroscopy, in combination with faceted prism microchannels. The combination of these techniques will increase the effective absorption path length by a factor of 10.sup.3 to 10.sup.4 (to .about.1-m), thereby providing unprecedented sensitivity using direct absorption. The coupling of high-sensitivity absorption with high-performance microfluidic separation will enable real-time sensing of biological agents in aqueous samples (including aerosol collector fluids) and will provide a general method with spectral fingerprint capability for detecting specific bio-agents.
Optical absorption in disordered monolayer molybdenum disulfide
NASA Astrophysics Data System (ADS)
Ekuma, C. E.; Gunlycke, D.
2018-05-01
We explore the combined impact of sulfur vacancies and electronic interactions on the optical properties of monolayer MoS2. First, we present a generalized Anderson-Hubbard Hamiltonian that accounts for both randomly distributed sulfur vacancies and the presence of dielectric screening within the material. Second, we parametrize this energy-dependent Hamiltonian from first-principles calculations based on density functional theory and the Green's function and screened Coulomb (GW) method. Third, we apply a first-principles-based many-body typical medium method to determine the single-particle electronic structure. Fourth, we solve the Bethe-Salpeter equation to obtain the charge susceptibility χ with its imaginary part being related to the absorbance A . Our results show that an increased vacancy concentration leads to decreased absorption both in the band continuum and from exciton states within the band gap. We also observe increased absorption below the band-gap threshold and present an expression, which describes Lifshitz tails, in excellent qualitative agreement with our numerical calculations. This latter increased absorption in the 1.0 -2.5 eV range makes defect engineering of potential interest for solar cell applications.
Pennings, Bart; Groen, Bart B L; van Dijk, Jan-Willem; de Lange, Anneke; Kiskini, Alexandra; Kuklinski, Marjan; Senden, Joan M G; van Loon, Luc J C
2013-07-01
Older individuals generally experience a reduced food-chewing efficiency. As a consequence, food texture may represent an important factor that modulates dietary protein digestion and absorption kinetics and the subsequent postprandial protein balance. We assessed the effect of meat texture on the dietary protein digestion rate, amino acid availability, and subsequent postprandial protein balance in vivo in older men. Ten older men (mean ± SEM age: 74 ± 2 y) were randomly assigned to a crossover experiment that involved 2 treatments in which they consumed 135 g of specifically produced intrinsically L-[1-(13)C]phenylalanine-labeled beef, which was provided as beef steak or minced beef. Meat consumption was combined with continuous intravenous L-[ring-(2)H5]phenylalanine and L-[ring-(2)H2]tyrosine infusion to assess beef protein digestion and absorption kinetics as well as whole-body protein balance and skeletal muscle protein synthesis rates. Meat protein-derived phenylalanine appeared more rapidly in the circulation after minced beef than after beef steak consumption (P < 0.05). Also, its availability in the circulation during the 6-h postprandial period was greater after minced beef than after beef steak consumption (61 ± 3% compared with 49 ± 3%, respectively; P < 0.01). The whole-body protein balance was more positive after minced beef than after beef steak consumption (29 ± 2 compared with 19 ± 3 μmol phenylalanine/kg, respectively; P < 0.01). Skeletal muscle protein synthesis rates did not differ between treatments when assessed over a 6-h postprandial period. Minced beef is more rapidly digested and absorbed than beef steak, which results in increased amino acid availability and greater postprandial protein retention. However, this does not result in greater postprandial muscle protein synthesis rates. This trial was registered at clinicaltrials.gov as NCT01145131.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kotani, Teruhisa, E-mail: tkotani@iis.u-tokyo.ac.jp; Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505; Advanced Technology Research Laboratories, Sharp Corporation, 2613-1 Ichinomoto-cho, Tenri, Nara 632-8567
2015-09-14
Blue shift and broadening of the absorption spectra of mid-infrared intersubband transition in non-polar m-plane AlGaN/GaN 10 quantum wells were observed with increasing doping density. As the doping density was increased from 6.6 × 10{sup 11} to 6.0 × 10{sup 12 }cm{sup −2} per a quantum well, the intersubband absorption peak energy shifted from 274.0 meV to 302.9 meV, and the full width at half maximum increased from 56.4 meV to 112.4 meV. Theoretical calculations reveal that the blue shift is due to many body effects, and the intersubband linewidth in doped AlGaN/GaN QW is mainly determined by scattering due to interface roughness, LO phonons, and ionized impurities.
Mahnam, Karim; Raisi, Fatame
2017-03-01
Aspartame (L-Aspartyl-L-phenylalanine methyl ester) is a sweet dipeptide used in some foods and beverages. Experimental studies show that aspartame causes osteoporosis and some illnesses, which are similar to those of copper and calcium deficiency. This raises the issue that aspartame in food may interact with cations and excrete them from the body. This study aimed to study aspartame interaction with calcium, zinc, iron, sodium, and cadmium ions via molecular dynamics simulation (MD) and spectroscopy. Following a 480-ns molecular dynamics simulation, it became clear that the aspartame is able to sequester Fe 2+ , Ca 2+ , Cd 2+ , and Zn 2+ ions for a long time. Complexation led to increasing UV-Vis absorption spectra and emission spectra of the complexes. This study suggests a potential risk of cationic absorption of aspartame. This study suggests that purification of cadmium-polluted water by aspartame needs a more general risk assessment.
Determination of zinc availability in foods by the extrinsic label technique.
Evans, G W; Johnson, P E
1977-06-01
The absorption of intrinsic 65Zn and extrinsic 65Zn from corn and liver was measured in rats. No significant difference between the absorption of intrinsic- and extrinsic-label was observed. These results indicate that endogenous zinc and exogenous 65Zn enter a common pool prior to being absorbed from the intestine. Since extrinsic 65Zn enters a common pool with intrinsic zinc, whole-body absorption of extrinsic 65Zn can be used to obtain an accurate estimate of the availability of zinc in food. The availability of zinc in human breast milk, in cow's milk, in infant formulas, and in reconstituted dry milk was analyzed by use of the extrinsic label. The zinc in human breast milk was most available (59%) while the zinc in the infant formulas was the least available (26 to 37%). Zinc from both raw and cooked corn was more available than zinc from either cooked or uncooked rat liver.
Fujitani, N; Matoba, R; Kobayashi, T; Matsuda, H; Yoshida, K; Fukita, K
1991-04-01
This paper reports a homicidal case in which the absorption-elution technique using nitrocellulose beads as immunoadsorbents was successfully applied to ABO grouping from highly-diluted blood. A 21-year-old man was found dead in bed while staying in a hotel. He had multiple wounds over the entire body. By autopsy the cause of death was decided to be traumatic shock. The victim's blood group was A. A bucket filled with faint-colored water was found at the scene. By means of the absorption-elution technique using nitrocellulose beads the water was grouped as B. Later, a 32-year-old man staying in the hotel together with the victim was suspected and arrested. The suspect's blood group was B. He confessed that he had injured himself in the hands with a knife during the struggle and washed them in the water.
Non-invasive multiwavelength photoplethysmography under low partial pressure of oxygen.
Fang, Yung Chieh; Tai, Cheng-Chi
2016-08-01
A reduction in partial pressure of oxygen in the environment may be caused by a gain in altitude, which reduces the atmospheric pressure; it may also be caused by the carbon dioxide generated from breathing in an enclosed space. Does inhaling oxygen of lower partial pressure affect the oxygen-carrying function of haemoglobin in vivo? This study uses non-invasive multiwavelength photoplethysmography to measure the effects that inhaling this type of oxygen can have on the plethysmography of the appendages of the body (fingertips). The results indicate that under low partial pressure of oxygen, be it the result of a gain in carbon dioxide concentration or altitude, the change in visible light absorption is the biggest for short wavelengths (approximately 620 or 640 nm) near deoxyhaemoglobin, which has higher absorption coefficient. Moreover, increasing carbon dioxide concentration from 5000 to 10,000 ppm doubly reduces the absorption rate of these short wavelengths.
Sherlock, C H; Ashley, R L; Shurtleff, M L; Mack, K D; Corey, L
1986-01-01
We evaluated the type specificity of complement-fixing (CF) antibody against the AG-4 early antigen of herpes simplex virus (HSV) type 2 (HSV-2) by comparing a commercial AG-4 CF kit (Simplex-2; Gene Link Australia, Inc., Princeton, N.J.) with quantal microneutralization (MN) and absorption-Western blotting in testing sera from patients with and without a history of genital herpes. Sera characterized as HSV type 1 (HSV-1) or HSV-2 positive or negative by MN were selected and tested by CF, and those with discordant results were further analyzed for specific antibodies by absorption with HSV-1 or HSV-2 antigen and Western blotting with heterologous HSV proteins. A total of 34 of 42 (81%) sera HSV-2 positive by MN, 19 of 43 (44%) sera HSV-1 positive by MN, and 0 of 19 sera negative by MN were positive by CF. Absorption-Western blotting showed that 12 of 18 (67%) sera HSV-1 positive by MN but positive by CF had no HSV-2-specific antibody and that all 7 sera HSV-2 positive by MN but negative by CF had HSV-2-specific antibody. When MN and absorption-Western blotting data were combined to analyze patients with no history of genital herpes, 7 of 19 (37%) with no HSV-2-specific antibody were positive by CF, and 7 of 27 (26%) with HSV-2-specific antibody were negative by CF. The positive and negative predictive values for the CF test were 78 and 75%, respectively, in this group. The presence of antibody to the HSV AG-4 antigen does not discriminate sufficiently between HSV-1- and HSV-2-infected patients to be of value in predicting HSV-2 infection in the absence of symptomatic disease. Images PMID:3023439
genannt Bonsmann, S Storcksdieck; Walczyk, T; Renggli, S; Hurrell, R F
2008-03-01
To evaluate the influence of oxalic acid (OA) on nonhaem iron absorption in humans. Two randomized crossover stable iron isotope absorption studies. Zurich, Switzerland. Sixteen apparently healthy women (18-45 years, <60 kg body weight), recruited by poster advertizing from the staff and student populations of the ETH, University and University Hospital of Zurich, Switzerland. Thirteen subjects completed both studies. Iron absorption was measured based on erythrocyte incorporation of (57)Fe or (58)Fe 14 days after the administration of labelled meals. In study I, test meals consisted of two wheat bread rolls (100 g) and either 150 g spinach with a native OA content of 1.27 g (reference meal) or 150 g kale with a native OA content of 0.01 g. In study II, 150 g kale given with a potassium oxalate drink to obtain a total OA content of 1.27 g was compared to the spinach meal. After normalization for the spinach reference meal absorption, geometric mean iron absorption from wheat bread rolls with kale (10.7%) did not differ significantly from wheat rolls with kale plus 1.26 g OA added as potassium oxalate (11.5%, P=0.86). Spinach was significantly higher in calcium and polyphenols than kale and absorption from the spinach meal was 24% lower compared to the kale meal without added OA, but the difference did not reach statistical significance (P>0.16). Potassium oxalate did not influence iron absorption in humans from a kale meal and our findings strongly suggest that OA in fruits and vegetables is of minor relevance in iron nutrition.
Force-controlled absorption in a fully-nonlinear numerical wave tank
NASA Astrophysics Data System (ADS)
Spinneken, Johannes; Christou, Marios; Swan, Chris
2014-09-01
An active control methodology for the absorption of water waves in a numerical wave tank is introduced. This methodology is based upon a force-feedback technique which has previously been shown to be very effective in physical wave tanks. Unlike other methods, an a-priori knowledge of the wave conditions in the tank is not required; the absorption controller being designed to automatically respond to a wide range of wave conditions. In comparison to numerical sponge layers, effective wave absorption is achieved on the boundary, thereby minimising the spatial extent of the numerical wave tank. In contrast to the imposition of radiation conditions, the scheme is inherently capable of absorbing irregular waves. Most importantly, simultaneous generation and absorption can be achieved. This is an important advance when considering inclusion of reflective bodies within the numerical wave tank. In designing the absorption controller, an infinite impulse response filter is adopted, thereby eliminating the problem of non-causality in the controller optimisation. Two alternative controllers are considered, both implemented in a fully-nonlinear wave tank based on a multiple-flux boundary element scheme. To simplify the problem under consideration, the present analysis is limited to water waves propagating in a two-dimensional domain. The paper presents an extensive numerical validation which demonstrates the success of the method for a wide range of wave conditions including regular, focused and random waves. The numerical investigation also highlights some of the limitations of the method, particularly in simultaneously generating and absorbing large amplitude or highly-nonlinear waves. The findings of the present numerical study are directly applicable to related fields where optimum absorption is sought; these include physical wavemaking, wave power absorption and a wide range of numerical wave tank schemes.
Evaluation of Mycelium Based Acoustic Absorbers Grown on Select Agricultural Byproduct Substrates
USDA-ARS?s Scientific Manuscript database
This research examines the use of a novel new renewable resource in acoustic absorption applications. The material under test is based on the fruiting body of fungi, a mushroom, in the phylum of Basidiomycetes, which are grown on semi-hydrophobic substrates such as cotton byproducts, leaves, sticks ...
76 FR 55689 - Endocrinologic and Metabolic Drugs Advisory Committee; Notice of Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-08
..., Center for Drug Evaluation and Research, Food and Drug Administration, 10903 New Hampshire Ave., Bldg. 31.../Schering-Plough) Singapore Company, LLC. Simvastatin lowers lipids (fats that circulate in the bloodstream... in producing lipids in the body, and ezetimibe lowers lipids by inhibiting the absorption of...
USDA-ARS?s Scientific Manuscript database
Ingestion of nanoparticles from products such as agricultural chemicals, processed food, and nutritional supplements is nearly unavoidable. The gastrointestinal tract serves as a critical interface and a barrier between the body and the external environment, and is the site of essential nutrient abs...
Klaus, S; Pültz, S; Thöne-Reineke, C; Wolfram, S
2005-06-01
To examine the antiobesity effect of epigallocatechin gallate (EGCG), a green tea bioactive polyphenol in a mouse model of diet-induced obesity. Obesity was induced in male New Zealand black mice by feeding of a high-fat diet. EGCG purified from green tea (TEAVIGO) was supplemented in the diet (0.5 and 1%). Body composition (quantitative magnetic resonance), food intake, and food digestibility were recorded over a 4-week period. Animals were killed and mRNA levels of uncoupling proteins (UCP1-3), leptin, malic enzyme (ME), stearoyl-CoA desaturase-1 (SCD1), glucokinase (GK), and pyruvate kinase (PK) were analysed in different tissues. Also investigated were acute effects of orally administered EGCG (500 mg/kg) on body temperature, activity (transponders), and energy expenditure (indirect calorimetry). Dietary supplementation of EGCG resulted in a dose-dependent attenuation of body fat accumulation. Food intake was not affected but faeces energy content was slightly increased by EGCG, indicating a reduced food digestibility and thus reduced long-term energy absorption. Leptin and SCD1 gene expression in white fat was reduced but SCD1 and UCP1 expression in brown fat was not changed. In liver, gene expression of SCD1, ME, and GK was reduced and that of UCP2 increased. Acute oral administration of EGCG over 3 days had no effect on body temperature, activity, and energy expenditure, whereas respiratory quotient during night (activity phase) was decreased, supportive of a decreased lipogenesis and increased fat oxidation. Dietary EGCG attenuated diet-induced body fat accretion in mice. EGCG apparently promoted fat oxidation, but its fat-reducing effect could be entirely explained by its effect in reducing diet digestibility.
The interconversion and disposal of ketone bodies in untreated and injured post-absorptive rats
Barton, Roger N.
1973-01-01
[3-14C]Acetoacetate and β-hydroxy[3-14C]butyrate were used to investigate the kinetics of ketone body metabolism in rats 3h after bilateral hind-limb ischaemia and in controls, both groups being in the post-absorptive state and in a 20°C environment. Calculations were carried out as described by Heath & Barton (1973) and the following conclusions were reached. 1. In both injured and control rats, the rates of irreversible disposal (extrahepatic utilization) of β-hydroxybutyrate and acetoacetate were proportional within experimental error to their blood concentrations up to at least 0.4mm (the maximum found in these rats), implying that they were determined, via these concentrations, by the rates of production by the liver. 2. Conversion of blood β-hydroxybutyrate into blood acetoacetate took place mainly in the liver, but the reverse process occurred mainly in extrahepatic tissues. 3. The `metabolic clearance rate' (the volume of blood which, if completely cleared of substrate in unit time, would give a disposal rate equal to that in the whole animal) was calculated for β-hydroxybutyrate and acetoacetate. Comparison with the cardiac output showed that in control rats the proportion of circulating β-hydroxybutyrate extracted was lower than that of acetoacetate, clearance of which appeared almost complete. After injury both metabolic clearance rates decreased, probably because of the lower cardiac output. 4. After injury, because the average blood concentrations of ketone bodies, especially acetoacetate, were higher, the mean total rate of disposal also increased. Assuming complete oxidation, the mean contribution of ketone bodies to the whole body O2 consumption rose from 7 to 15%. PMID:4798577
The interconversion and disposal of ketone bodies in untreated and injured post-absorptive rats.
Barton, R N
1973-11-01
[3-(14)C]Acetoacetate and beta-hydroxy[3-(14)C]butyrate were used to investigate the kinetics of ketone body metabolism in rats 3h after bilateral hind-limb ischaemia and in controls, both groups being in the post-absorptive state and in a 20 degrees C environment. Calculations were carried out as described by Heath & Barton (1973) and the following conclusions were reached. 1. In both injured and control rats, the rates of irreversible disposal (extrahepatic utilization) of beta-hydroxybutyrate and acetoacetate were proportional within experimental error to their blood concentrations up to at least 0.4mm (the maximum found in these rats), implying that they were determined, via these concentrations, by the rates of production by the liver. 2. Conversion of blood beta-hydroxybutyrate into blood acetoacetate took place mainly in the liver, but the reverse process occurred mainly in extrahepatic tissues. 3. The ;metabolic clearance rate' (the volume of blood which, if completely cleared of substrate in unit time, would give a disposal rate equal to that in the whole animal) was calculated for beta-hydroxybutyrate and acetoacetate. Comparison with the cardiac output showed that in control rats the proportion of circulating beta-hydroxybutyrate extracted was lower than that of acetoacetate, clearance of which appeared almost complete. After injury both metabolic clearance rates decreased, probably because of the lower cardiac output. 4. After injury, because the average blood concentrations of ketone bodies, especially acetoacetate, were higher, the mean total rate of disposal also increased. Assuming complete oxidation, the mean contribution of ketone bodies to the whole body O(2) consumption rose from 7 to 15%.
Crashworthiness Assessment of Auto-body Members Considering the Fabrication Histories
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huh, Hoon; Song, Jung-Han; Kim, Kee-Poong
2005-08-05
This paper is concerned with crashworthiness of auto-body members considering the effect of fabrication. Most auto-body members are fabricated with sheet metal forming process and welding process that induce fabrication histories such as the plastic work hardening, non-uniform thickness distribution and residual stress. Crash simulation is carried out for auto-body members with LS-DYNA3D in order to identify the fabrication effect on the crashworthiness. The analysis calculated crash mode, the reaction force and the energy absorption for crashworthiness assessment with the forming effect. The result shows that the crash analysis with considering the forming history leads to a different result frommore » that without considering the forming effect. The analysis results demonstrate that the design of auto-body members should be carried out considering the forming history for accurate assessment of the crashworthiness.« less
UWB pulse propagation into human tissues
NASA Astrophysics Data System (ADS)
Cavagnaro, Marta; Pittella, Erika; Pisa, Stefano
2013-12-01
In this paper the propagation of a UWB pulse into a layered model of the human body is studied to characterize absorption and reflection of the UWB signal due to the different body tissues. Several time behaviours for the incident UWB pulse are considered and compared with reference to the feasibility of breath and heartbeat activity monitoring. Results show that if the UWB source is placed far from the human body, the reflection coming from the interface between air and skin can be used to detect the respiratory activity. On the contrary, if the UWB source is placed close to the human body, a small reflection due to the interface between the posterior lung wall and the bone, which is well distanced in time from the reflections due to the first layers of the body model, can be used to detect lung and heart changes associated with the cardio-respiratory activity.
Brown carbon absorption in the red and near-infrared spectral region
NASA Astrophysics Data System (ADS)
Hoffer, András; Tóth, Ádám; Pósfai, Mihály; Eddy Chung, Chul; Gelencsér, András
2017-06-01
Black carbon (BC) aerosols have often been assumed to be the only light-absorbing carbonaceous particles in the red and near-infrared spectral regions of solar radiation in the atmosphere. Here we report that tar balls (a specific type of organic aerosol particles from biomass burning) do absorb red and near-infrared radiation significantly. Tar balls were produced in a laboratory experiment, and their chemical and optical properties were measured. The absorption of these particles in the range between 470 and 950 nm was measured with an aethalometer, which is widely used to measure atmospheric aerosol absorption. We find that the absorption coefficient of tar balls at 880 nm is more than 10 % of that at 470 nm. The considerable absorption of red and infrared light by tar balls also follows from their relatively low absorption Ångström coefficient (and significant mass absorption coefficient) in the spectral range between 470 and 950 nm. Our results support the previous finding that tar balls may play an important role in global warming. Due to the non-negligible absorption of tar balls in the near-infrared region, the absorption measured in the field at near-infrared wavelengths cannot solely be due to soot particles.
[Study on intestinal absorption of formononetin in Millettia nitita var. hirsutissima in rats].
Liu, Ya-Li; Xiong, Xian-Bing; Su, Dan; Song, Yong-Gui; Zhang, Ling; Yang, Shi-Lin
2013-10-01
To use the single-pass intestine perfusion (SPIP) model and HPLC to determine the concentration of formononetin, the effect of quality concentrations of formononetin, different intestinal segments and P-glycoprotein inhibitor on intestinal absorption of formononetin, in order to observe the intestinal absorption mechanism of formononetin from Millettia nitita var. hirsutissima in rats. The experimental results showed that the qulaity concentration of formononetin in the perfusate had no significant effect on the absorption rate constant (K(a)) and the apparent absorption coefficient (P(app)); K(a) and P(app) of formononetin in duodenum, jejunum and ileum showed no significant difference. However, K(a) was significantly higher than that in colon (P < 0.05), with significant difference between that in intestinum tenue and colon. P-glycoprotein inhibitor verapamil showed significant difference in K(a) and P(app) in intestinal segments (P < 0.05). This indicated that the absorption mechanism of formononein in rat intestinal tracts passive diffusion, without any saturated absorption. Formononein is absorbed well in all intestines. Their absorption windows were mainly concentrated in the intestinum tenue, without specific absorption sites. Formononein may be the substrate of P-glycoprotein.
Whole-body and splanchnic amino acid metabolism in sheep during an acute endotoxin challenge.
McNeil, C J; Hoskin, S O; Bremner, D M; Holtrop, G; Lobley, G E
2016-07-01
Supplemented protein or specific amino acids (AA) are proposed to help animals combat infection and inflammation. The current study investigates whole-body and splanchnic tissue metabolism in response to a lipopolysaccharide (LPS) challenge with or without a supplement of six AA (cysteine, glutamine, methionine, proline, serine and threonine). Eight sheep were surgically prepared with vascular catheters across the gut and liver. On two occasions, four sheep were infused through the jugular vein for 20 h with either saline or LPS from Escherichia coli (2 ng/kg body weight per min) in a random order, plus saline infused into the mesenteric vein; the other four sheep were treated with saline or LPS plus saline or six AA infused via the jugular vein into the mesenteric vein. Whole-body AA irreversible loss rate (ILR) and tissue protein metabolism were monitored by infusion of [ring-2H2]phenylalanine. LPS increased (P<0·001) ILR (+17 %), total plasma protein synthesis (+14 %) and lymphocyte protein synthesis (+386 %) but decreased albumin synthesis (-53 %, P=0·001), with no effect of AA infusion. Absorption of dietary AA was not reduced by LPS, except for glutamine. LPS increased the hepatic removal of leucine, lysine, glutamine and proline. Absolute hepatic extraction of supplemented AA increased, but, except for glutamine, this was less than the amount infused. This increased net appearance across the splanchnic bed restored arterial concentrations of five AA to, or above, values for the saline-infused period. Infusion of key AA does not appear to alter the acute period of endotoxaemic response, but it may have benefits for the chronic or recovery phases.
Patel, Chirag; Douard, Veronique; Yu, Shiyan; Gao, Nan; Ferraris, Ronaldo P.
2015-01-01
Dietary fructose that is linked to metabolic abnormalities can up-regulate its own absorption, but the underlying regulatory mechanisms are not known. We hypothesized that glucose transporter (GLUT) protein, member 5 (GLUT5) is the primary fructose transporter and that fructose absorption via GLUT5, metabolism via ketohexokinase (KHK), as well as GLUT5 trafficking to the apical membrane via the Ras-related protein-in-brain 11 (Rab11)a-dependent endosomes are each required for regulation. Introducing fructose but not lysine and glucose solutions into the lumen increased by 2- to 10-fold the heterogeneous nuclear RNA, mRNA, protein, and activity levels of GLUT5 in adult wild-type mice consuming chow. Levels of GLUT5 were >100-fold that of candidate apical fructose transporters GLUTs 7, 8, and 12 whose expression, and that of GLUT 2 and the sodium-dependent glucose transporter protein 1 (SGLT1), was not regulated by luminal fructose. GLUT5-knockout (KO) mice exhibited no facilitative fructose transport and no compensatory increases in activity and expression of SGLT1 and other GLUTs. Fructose could not up-regulate GLUT5 in GLUT5-KO, KHK-KO, and intestinal epithelial cell-specific Rab11a-KO mice. The fructose-specific metabolite glyceraldehyde did not increase GLUT5 expression. GLUT5 is the primary transporter responsible for facilitative absorption of fructose, and its regulation specifically requires fructose uptake and metabolism and normal GLUT5 trafficking to the apical membrane.—Patel, C., Douard, V., Yu, S., Gao, N., Ferraris, R. P. Transport, metabolism, and endosomal trafficking-dependent regulation of intestinal fructose absorption. PMID:26071406
Predicting the impact of diet and enzymopathies on human small intestinal epithelial cells
Sahoo, Swagatika; Thiele, Ines
2013-01-01
Small intestinal epithelial cells (sIECs) have a significant share in whole body metabolism as they perform enzymatic digestion and absorption of nutrients. Furthermore, the diet plays a key role in a number of complex diseases including obesity and diabetes. The impact of diet and altered genetic backgrounds on human metabolism may be studied by using computational modeling. A metabolic reconstruction of human sIECs was manually assembled using the literature. The resulting sIEC model was subjected to two different diets to obtain condition-specific metabolic models. Fifty defined metabolic tasks evaluated the functionalities of these models, along with the respective secretion profiles, which distinguished between impacts of different dietary regimes. Under the average American diet, the sIEC model resulted in higher secretion flux for metabolites implicated in metabolic syndrome. In addition, enzymopathies were analyzed in the context of the sIEC metabolism. Computed results were compared with reported gastrointestinal (GI) pathologies and biochemical defects as well as with biomarker patterns used in their diagnosis. Based on our simulations, we propose that (i) sIEC metabolism is perturbed by numerous enzymopathies, which can be used to study cellular adaptive mechanisms specific for such disorders, and in the identification of novel co-morbidities, (ii) porphyrias are associated with both heme synthesis and degradation and (iii) disturbed intestinal gamma-aminobutyric acid synthesis may be linked to neurological manifestations of various enzymopathies. Taken together, the sIEC model represents a comprehensive, biochemically accurate platform for studying the function of sIEC and their role in whole body metabolism. PMID:23492669
The effects of gastric bypass surgery on drug absorption and pharmacokinetics.
Brocks, Dion R; Ben-Eltriki, Mohamed; Gabr, Raniah Q; Padwal, Raj S
2012-12-01
Being overweight is widespread in most societies and represents a major health threat. Gastric bypass surgery offers a highly effective mode of treatment for the morbidly obese patients. The procedures cause an alteration in normal gastrointestinal anatomy and physiology, with consequences not only on nutrient absorption, but also possibly on orally administered drugs. Bypass of the acidic environment of the stomach, partial impairment of bile salts-drug interactions and reduced absorptive surface, all create the potential for reduced absorption of drugs. This article provides an overview of the effects of obesity and the most prevalent type of gastric bypass (Roux-en-Y) on pharmacokinetics. Articles for review were searched using Pubmed. The absorption of those drugs with known bioavailability issues generally seem to be most affected by bypass surgery. It is important to consider the effect of obesity on pharmacokinetics independent of the bypass procedure, because it leads to a dramatic drop in body mass over a relatively short period of time. This may be associated with reversals in the influence of obesity on drug disposition to characteristics more in line with leaner patients. Drugs will differ in their pharmacokinetic response to surgery, limiting any general conclusions regarding the impact of the surgery on drug disposition.
Zhang, Xuan; Yao, Jiahao; Liu, Bin; Yan, Jun; Lu, Lei; Li, Yi; Gao, Huajian; Li, Xiaoyan
2018-06-14
Mechanical metamaterials with three-dimensional micro- and nano-architectures exhibit unique mechanical properties, such as high specific modulus, specific strength and energy absorption. However, a conflict exists between strength and recoverability in nearly all the mechanical metamaterials reported recently, in particular the architected micro-/nanolattices, which restricts the applications of these materials in energy storage/absorption and mechanical actuation. Here, we demonstrated the fabrication of three-dimensional architected composite nanolattices that overcome the strength-recoverability trade-off. The nanolattices under study are made up of a high entropy alloy coated (14.2-126.1 nm in thickness) polymer strut (approximately 260 nm in the characteristic size) fabricated via two-photon lithography and magnetron sputtering deposition. In situ uniaxial compression inside a scanning electron microscope showed that these composite nanolattices exhibit a high specific strength of 0.027 MPa/kg m3, an ultra-high energy absorption per unit volume of 4.0 MJ/m3, and nearly complete recovery after compression under strains exceeding 50%, thus overcoming the traditional strength-recoverability trade-off. During multiple compression cycles, the composite nanolattices exhibit a high energy loss coefficient (converged value after multiple cycles) of 0.5-0.6 at a compressive strain beyond 50%, surpassing the coefficients of all the micro-/nanolattices fabricated recently. Our experiments also revealed that for a given unit cell size, the composite nanolattices coated with a high entropy alloy with thickness in the range of 14-50 nm have the optimal specific modulus, specific strength and energy absorption per unit volume, which is related to a transition of the dominant deformation mechanism from local buckling to brittle fracture of the struts.
NASA Technical Reports Server (NTRS)
Sutton, K.
1973-01-01
A computational method was developed for the fully-coupled solution of nongray, radiating gas flows with ablation product effects about blunt bodies during planetary entries. The treatment of radiation accounts for molecular band, continuum, and atomic line transitions with a detailed frequency dependence of the absorption coefficient. The ablation of the entry body was solved as part of the solution for a steady-state ablation process. The method was applied by results at typical conditions during entry to Venus. The radiative heating rates along the downstream region of the body can exceed the stagnation point value. The radiative heating to the body is attenuated in the boundary layer at the downstream region of the body and at the stagnation point of the body. A study of the radiation, inviscid flow about spherically capped, conical bodies during planetary entries shows that the nondimensional, radiative heating distributions are nonsimilar with entry conditions. Caution should be exercised in attempting to extrapolate results from known distributions to other entry conditions for which solutions have not yet been obtained.
NASA Astrophysics Data System (ADS)
Thiel, F.; Kreiseler, D.; Seifert, F.
2009-11-01
Electromagnetic waves can propagate through the body and are reflected at interfaces between materials with different dielectric properties. Therefore the reason for using ultrawideband (UWB) radar for probing the human body in the frequency range from 100 MHz up to 10 GHz is obvious and suggests an ability to monitor the motion of organs within the human body as well as obtaining images of internal structures. The specific advantages of UWB sensors are high temporal and spatial resolutions, penetration into object, low integral power, and compatibility with established narrowband systems. The sensitivity to ultralow power signals makes them suitable for human medical applications including mobile and continuous noncontact supervision of vital functions. Since no ionizing radiation is used, and due to the ultralow specific absorption rate applied, UWB techniques permit noninvasive sensing with no potential risks. This research aims at the synergetic use of UWB sounding combined with magnetic resonance imaging (MRI) to gain complementary information for improved functional diagnosis and imaging, especially to accelerate and enhance cardiac MRI by applying UWB radar as a noncontact navigator of myocardial contraction. To this end a sound understanding of how myocardial's mechanic is rendered by reflected and postprocessed UWB radar signals must be achieved. Therefore, we have executed the simultaneous acquisition and evaluation of radar signals with signals from a high-resolution electrocardiogram. The noncontact UWB illumination was done from several radiographic standard positions to monitor selected superficial myocardial areas during the cyclic physiological myocardial deformation in three different respiratory states. From our findings we could conclude that UWB radar can serve as a navigator technique for high and ultrahigh field magnetic resonance imaging and can be beneficial preserving the high resolution capability of this imaging modality. Furthermore it can potentially be used to support standard electrocardiography (ECG) analysis by complementary information where sole ECG analysis fails, e.g., electromechanical dissociation.
Thiel, F; Kreiseler, D; Seifert, F
2009-11-01
Electromagnetic waves can propagate through the body and are reflected at interfaces between materials with different dielectric properties. Therefore the reason for using ultrawideband (UWB) radar for probing the human body in the frequency range from 100 MHz up to 10 GHz is obvious and suggests an ability to monitor the motion of organs within the human body as well as obtaining images of internal structures. The specific advantages of UWB sensors are high temporal and spatial resolutions, penetration into object, low integral power, and compatibility with established narrowband systems. The sensitivity to ultralow power signals makes them suitable for human medical applications including mobile and continuous noncontact supervision of vital functions. Since no ionizing radiation is used, and due to the ultralow specific absorption rate applied, UWB techniques permit noninvasive sensing with no potential risks. This research aims at the synergetic use of UWB sounding combined with magnetic resonance imaging (MRI) to gain complementary information for improved functional diagnosis and imaging, especially to accelerate and enhance cardiac MRI by applying UWB radar as a noncontact navigator of myocardial contraction. To this end a sound understanding of how myocardial's mechanic is rendered by reflected and postprocessed UWB radar signals must be achieved. Therefore, we have executed the simultaneous acquisition and evaluation of radar signals with signals from a high-resolution electrocardiogram. The noncontact UWB illumination was done from several radiographic standard positions to monitor selected superficial myocardial areas during the cyclic physiological myocardial deformation in three different respiratory states. From our findings we could conclude that UWB radar can serve as a navigator technique for high and ultrahigh field magnetic resonance imaging and can be beneficial preserving the high resolution capability of this imaging modality. Furthermore it can potentially be used to support standard electrocardiography (ECG) analysis by complementary information where sole ECG analysis fails, e.g., electromechanical dissociation.
NASA Technical Reports Server (NTRS)
Frederick, J. E.; Blake, A. J.; Freeman, D. E.; Nicholls, R. W.; Ogawa, T.; Simon, P. C.
1983-01-01
The information presently available on the absorption cross sections of O2 and O3 with attention to the application of these data in middle atmospheric science is reviewed. The cross sections values reported by different groups are intercompared in tabular form where feasible, and specific values are recommended when there is a basis for preferring a particular set of results over other available data. When no such basis exists, the differences among published cross sections then serve to indicate a range of uncertainty. In these cases the need for additional work is indicated. Specific topics addressed are the absorption of molecular oxygen at Lyman alpha, in the Schumann-Runge continuum, in the Schumann-Runge bands, and in the Herzberg continuum. For ozone, the Hartley and Huggins bands are considered.
Could G Asteroids be the Parent Bodies of the CM Chondrites?
NASA Astrophysics Data System (ADS)
Burbine, T. H.; Binzel, R. P.
1995-09-01
Since almost all meteorites are believed to be derived from asteroidal source bodies, the comparison of asteroid and meteorite spectra should allow for possible meteorite parent bodies to be identified. However only two asteroids with unique spectral characteristics, 4 Vesta with the basaltic achondrites [1] and near-Earth asteroid 3103 Eger with the aubrites [2], have been convincingly linked with any meteorite type. Farinella et al. [3] has done a study of 2355 numbered main-belt asteroids to determine which asteroids have the highest probability of having their fragments injected into the 3:1 mean motion and the nu6 secular resonance regions. Interestingly, asteroids with the third (19 Fortuna), tenth (1 Ceres) and eleventh (13 Egeria) highest theoretical total fragment delivery efficiencies are G-asteroids, a moderately rare type of asteroid with approximately ten known members. (Vesta has the fifth highest theoretical total fragment delivery efficiency.) G-asteroids tend to have the strongest ultraviolet, 0.7 micrometers and 3 micrometers absorption features of all C-type (B, C, F and G) asteroids, appearing to indicate that G-asteroids are at the upper range of the aqueous alteration sequence in the asteroid population. (The 0.7 micrometers feature is apparently due to iron oxides in hydrated silicates and the 3 micrometers feature is apparently due to hydrated minerals.) Meteorites that have reflectance spectra with a 3 micrometers feature of comparable intensity to those of the G-asteroids are the CI, CM and CR chondrites. However, G-asteroids (like all C-types) have ultraviolet absorption features that are weaker than previously measured meteorite spectra. Comparisons of reflectance spectra between Ceres and meteorite samples appear to indicate that Ceres is compositionally different from almost all known carbonaceous chondrites. Both Fortuna and Egeria have an absorption feature centered around 0.7 micrometers [4] that is similar in structure and strength to those found in many CM chondrites. The visible and near-infrared spectrum of Fortuna [5] matches very well the spectra of CM chondrites Murchison (bulk powder) [6] and LEW90500 (particle sizes less than 100 micrometers) [7]. However, the ultraviolet absorption feature is still weaker in Fortuna's spectrum. A spectrum of a bulk powder of LEW90500 does have an ultraviolet feature that matches Fortuna's feature, but this spectrum is substantially bluer than Fortuna in the near-infrared. Egeria's ultraviolet absorption feature also matches very well the ultraviolet feature in LEW90500Us (bulk powder) spectrum, but this spectrum is slightly redder than Egeria [5] in the near-infrared. The question is how unique is any postulated linkage between the CM chondrites and the G-asteroids. The problem is that approximately two-thirds of all C-type asteroids have 3 micrometers absorption features [8] and approximately three-fourths have 0.7 micrometers absorption features [4]. However of all observed C-type asteroids, Fortuna and Egeria appear to be two of the best spectral matches for the CM chondrites. Coupled with the high probability that these two asteroids are injecting large numbers of fragments into meteorite-supplying resonances, G-asteroids Fortuna and Egeria appear to be possible CM chondrite parent bodies. Acknowledgments: This research is supported by NASA Grant Number NAGW-2049. References: [1] Binzel R. P. and Xu S. (1993) Science, 260, 186-191. [2] Gaffey M. J. et al. (1992) Icarus, 100, 95-109. [3] Farinella P. et al. (1993) Icarus, 101, 174-187. [4] Sawyer S. R. (1991) Ph.D. thesis, Univ. of Texas, Austin. [5] Bell J. F. et al. (1988) LPS XIX, 57-58. [6] Gaffey M. J. (1976) JGR, 81, 905-920. [7] Hiroi T. et al. (1993) Science, 261, 1016-1018. [8] Jones T. D. et al. (1990) Icarus, 88,172-192.
Exposure assessment in front of a multi-band base station antenna.
Kos, Bor; Valič, Blaž; Kotnik, Tadej; Gajšek, Peter
2011-04-01
This study investigates occupational exposure to electromagnetic fields in front of a multi-band base station antenna for mobile communications at 900, 1800, and 2100 MHz. Finite-difference time-domain method was used to first validate the antenna model against measurement results published in the literature and then investigate the specific absorption rate (SAR) in two heterogeneous, anatomically correct human models (Virtual Family male and female) at distances from 10 to 1000 mm. Special attention was given to simultaneous exposure to fields of three different frequencies, their interaction and the additivity of SAR resulting from each frequency. The results show that the highest frequency--2100 MHz--results in the highest spatial-peak SAR averaged over 10 g of tissue, while the whole-body SAR is similar at all three frequencies. At distances > 200 mm from the antenna, the whole-body SAR is a more limiting factor for compliance to exposure guidelines, while at shorter distances the spatial-peak SAR may be more limiting. For the evaluation of combined exposure, a simple summation of spatial-peak SAR maxima at each frequency gives a good estimation for combined exposure, which was also found to depend on the distribution of transmitting power between the different frequency bands. Copyright © 2010 Wiley-Liss, Inc.
Building a Low Cost Solar Oven: An Opportunity to Teach Thermodynamics
NASA Astrophysics Data System (ADS)
Nogueira, Ana
2014-03-01
We suggested building a solar oven using cardboard boxes, glass wool and metal plate as part of a school project permeated by the discussion of physical concepts. The main topics addressed are from the heat and thermodynamics areas, and for these themes we followed the standard books used in high school. We can work in a practical manner with the thermometer, along with the concept of temperature, measuring the temperature of the oven when cooking. To discuss how the oven works, we introduce the concept of heat as an energy flow of a body with a higher temperature to one with lower temperature. Threads as heat capacity and specific heat of a substance are introduced, also discussing the use of glass wool, which function is to prevent heat exchange from the oven's interior with the environment. It is possible to demonstrate the three forms of heat transfer using the solar oven, and how the greenhouse effect is harnessed. One can discuss topics such as electromagnetic radiation, black-body radiation and the Stefan-Boltzmann law. We surveyed the response curve of our oven and an estimate of its total solar energy absorption efficiency. The development of this project allows a good understanding of the operation principles of a solar oven. UNIMONTES.
The fractionated dipole antenna: A new antenna for body imaging at 7 Tesla.
Raaijmakers, Alexander J E; Italiaander, Michel; Voogt, Ingmar J; Luijten, Peter R; Hoogduin, Johannes M; Klomp, Dennis W J; van den Berg, Cornelis A T
2016-03-01
Dipole antennas in ultrahigh field MRI have demonstrated advantages over more conventional designs. In this study, the fractionated dipole antenna is presented: a dipole where the legs are split into segments that are interconnected by capacitors or inductors. A parameter study has been performed on dipole antenna length using numerical simulations. A subsequent simulation study investigates the optimal intersegment capacitor/inductor value. The resulting optimal design has been constructed and compared to a previous design, the single-side adapted dipole (SSAD) by simulations and measurements. An array of eight elements has been constructed for prostate imaging on four subjects (body mass index 20-27.5) using 8 × 2 kW amplifiers. For prostate imaging at 7T, lowest peak local specific-absorption rate (SAR) levels are achieved if the antenna is 30 cm or longer. A fractionated dipole antenna design with inductors between segments has been chosen to achieve even lower SAR levels and more homogeneous receive sensitivities. With the new design, good quality prostate images are acquired. SAR levels are reduced by 41% to 63% in comparison to the SSAD. Coupling levels are moderate (average nearest neighbor: -14.6 dB) for each subject and prostate B1+ levels range from 12 to 18 μT. © 2015 Wiley Periodicals, Inc.
Carluccio, Giuseppe; Bruno, Mary; Collins, Christopher M.
2015-01-01
Purpose Present a novel method for rapid prediction of temperature in vivo for a series of pulse sequences with differing levels and distributions of specific energy absorption rate (SAR). Methods After the temperature response to a brief period of heating is characterized, a rapid estimate of temperature during a series of periods at different heating levels is made using a linear heat equation and Impulse-Response (IR) concepts. Here the initial characterization and long-term prediction for a complete spine exam are made with the Pennes’ bioheat equation where, at first, core body temperature is allowed to increase and local perfusion is not. Then corrections through time allowing variation in local perfusion are introduced. Results The fast IR-based method predicted maximum temperature increase within 1% of that with a full finite difference simulation, but required less than 3.5% of the computation time. Even higher accelerations are possible depending on the time step size chosen, with loss in temporal resolution. Correction for temperature-dependent perfusion requires negligible additional time, and can be adjusted to be more or less conservative than the corresponding finite difference simulation. Conclusion With appropriate methods, it is possible to rapidly predict temperature increase throughout the body for actual MR examinations. (200/200 words) PMID:26096947
Carluccio, Giuseppe; Bruno, Mary; Collins, Christopher M
2016-05-01
Present a novel method for rapid prediction of temperature in vivo for a series of pulse sequences with differing levels and distributions of specific energy absorption rate (SAR). After the temperature response to a brief period of heating is characterized, a rapid estimate of temperature during a series of periods at different heating levels is made using a linear heat equation and impulse-response (IR) concepts. Here the initial characterization and long-term prediction for a complete spine exam are made with the Pennes' bioheat equation where, at first, core body temperature is allowed to increase and local perfusion is not. Then corrections through time allowing variation in local perfusion are introduced. The fast IR-based method predicted maximum temperature increase within 1% of that with a full finite difference simulation, but required less than 3.5% of the computation time. Even higher accelerations are possible depending on the time step size chosen, with loss in temporal resolution. Correction for temperature-dependent perfusion requires negligible additional time and can be adjusted to be more or less conservative than the corresponding finite difference simulation. With appropriate methods, it is possible to rapidly predict temperature increase throughout the body for actual MR examinations. © 2015 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yourick, Jeffrey J.; Jung, Connie T.; Bronaugh, Robert L.
2008-08-15
The percutaneous absorption of retinol (Vitamin A) from cosmetic formulations was studied to predict systemic absorption and to understand the significance of the skin reservoir in in vitro absorption studies. Viable skin from fuzzy rat or human subjects was assembled in flow-through diffusion cells for in vitro absorption studies. In vivo absorption studies using fuzzy rats were performed in glass metabolism cages for collection of urine, feces, and body content. Retinol (0.3%) formulations (hydroalcoholic gel and oil-in-water emulsion) containing {sup 3}H-retinol were applied and absorption was measured at 24 or 72 h. All percentages reported are % of applied dose.more » In vitro studies using human skin and the gel and emulsion vehicles found 0.3 and 1.3% retinol, respectively, in receptor fluid at 24 h. Levels of absorption in the receptor fluid increased over 72 h with the gel and emulsion vehicles. Using the gel vehicle, in vitro rat skin studies found 23% in skin and 6% in receptor fluid at 24 h, while 72-h studies found 18% in skin and 13% in receptor fluid. Thus, significant amounts of retinol remained in rat skin at 24 h and decreased over 72 h, with proportional increases in receptor fluid. In vivo rat studies with the gel found 4% systemic absorption of retinol after 24 h and systemic absorption did not increase at 72 h. Retinol remaining in rat skin after in vivo application was 18% and 13% of the applied dermal dose after 24 and 72 h, respectively. Similar observations were made with the oil-in water emulsion vehicle in the rat. Retinol formed a reservoir in rat skin both in vivo and in vitro. Little additional retinol was bioavailable after 24 h. Comparison of these in vitro and in vivo results for absorption through rat skin indicates that the 24-h in vitro receptor fluid value accurately estimated 24-h in vivo systemic absorption. Therefore, the best single estimate of retinol systemic absorption from in vitro human skin studies is the 24-h receptor fluid value. However, the receptor fluid value from the 72-h extended study may be used in a worst-case exposure estimate. In conclusion, in vivo skin absorption studies can be useful in determining whether to include material in the in vitro skin reservoir as absorbable material in estimates of systemic absorption.« less
NASA Astrophysics Data System (ADS)
Matsui, Fumihiko; Matsushita, Tomohiro; Kato, Yukako; Hashimoto, Mie; Daimon, Hiroshi
2009-11-01
In order to investigate the electronic and magnetic structures of each atomic layer at subsurface, we have proposed a new method, Auger electron diffraction spectroscopy, which is the combination of x-ray absorption spectroscopy (XAS) and Auger electron diffraction (AED) techniques. We have measured a series of Ni LMM AED patterns of the Ni film grown on Cu(001) surface for various thicknesses. Then we deduced a set of atomic-layer-specific AED patterns in a numerical way. Furthermore, we developed an algorithm to disentangle XANES spectra from different atomic layers using these atomic-layer-specific AED patterns. Surface and subsurface core level shift were determined for each atomic layer.
NASA Astrophysics Data System (ADS)
Łukaszewski, M.; Żurowski, A.; Czerwiński, A.
Reticulated vitreous carbon (RVC) has been used as a matrix for electrodeposition of thin layers of Pd and Pd-rich Pd-Rh alloys. It was found that RVC substrate does not affect qualitatively hydrogen absorption behavior of Pd-based deposits. Similarly to thin Pd or Pd alloy layers deposited on Au wires, the α-β phase transition controls the overall rate of hydrogen absorption and desorption into/from Pd-based/RVC electrodes. The possibility of the application of these materials as phase charging-discharging systems was investigated. The values of specific pseudocapacitance, specific power and specific energy were comparable with those for supercapacitors utilizing various redox reactions.
USDA-ARS?s Scientific Manuscript database
Soil salinity and sodicity can not only directly restrain crop growth by osmotic and specific ion stresses, it also may reduce grain yield indirectly by impacting plant absorption of essential nutrients. Ensuring adequate nitrogen is an important management aspect of rice production in saline-sodic ...
USDA-ARS?s Scientific Manuscript database
Tropical enteropathy is characterized by an increased urinary lactulose-to-mannitol (L:M) ratio on a site-specific sugar absorption test and is associated with increased intestinal permeability and decreased nutrient absorptive capacity. The etiology of tropical enteropathy is postulated to be intes...
Scientific issues and potential remote-sensing requirements for plant biochemical content
NASA Technical Reports Server (NTRS)
Peterson, David L.; Hubbard, G. S.
1992-01-01
Application of developments in imaging spectrometry to the study of terrestrial ecosystems, which began in 1983, demonstrate the potential to estimate lignin and nitrogen concentrations of plant canopies by remote-sensing techniques. Estimation of these parameters from the first principles of radiative transfer and the interactions of light with plant materials is not presently possible, principally because of lack of knowledge about internal leaf scattering and specific absorption involving biochemical compounds. From the perspective of remote-sensing instrumentation, sensors are needed to support derivative imaging spectroscopy. Biochemical absorption features tend to occur in functional groupings throughout the 1100- to 2500-nm region. Derivative spectroscopy improves the information associated with the weaker, narrower absorption features of biochemical absorption that are superimposed on the strong absolute variations due to foliar biomass, pigments, and leaf water content of plant canopies. Preliminary sensor specifications call for 8-nm bandwidths at 2-nm centers in four spectral regions (about 400 bands total) and a signal-to-noise performance of at least 1000:1 for 20 percent albedo targets in the 2000-nm region.