Active vibration control techniques for flexible space structures
NASA Technical Reports Server (NTRS)
Parlos, Alexander G.; Jayasuriya, Suhada
1990-01-01
Two proposed control system design techniques for active vibration control in flexible space structures are detailed. Control issues relevant only to flexible-body dynamics are addressed, whereas no attempt was made to integrate the flexible and rigid-body spacecraft dynamics. Both of the proposed approaches revealed encouraging results; however, further investigation of the interaction of the flexible and rigid-body dynamics is warranted.
ERIC Educational Resources Information Center
Wright, F. Virginia; Rosenbaum, Peter L.; Goldsmith, Charles H.; Law, Mary; Fehlings, Darcy L.
2008-01-01
Rehabilitation increasingly addresses the International Classification of Functioning, Disability and Health's (ICF) concepts of activity and participation, but little is known about associations between changes in body functions and structures, activity, and participation. We conducted a before-and-after study of 35 ambulatory children with…
de Oliveira da Silva, Patricia; Miguez Nery Guimarães, Joanna; Härter Griep, Rosane; Caetano Prates Melo, Enirtes; Maria Alvim Matos, Sheila; Del Carmem Molina, Maria; Maria Barreto, Sandhi; de Jesus Mendes da Fonseca, Maria
2018-04-18
This study investigated whether the association between body image dissatisfaction and poor self-rated health is mediated by insufficient physical activity and unhealthy eating habits. The participants were 6727 men and 8037 women from the baseline (2008–2010) of the Longitudinal Study of Adult Health (Estudo Longitudinal de Saúde do Adulto, ELSA-Brasil). Structural equation modelling was used. Associations were found between body image dissatisfaction and poor self-rated health in both sexes. Insufficient physical activity was a mediator. However, unhealthy eating habits were found to exert a mediator effect only via insufficient physical activity. Body image dissatisfaction was found to associate, both directly and possibly indirectly, with poor self-rated health, mediated by insufficient physical activity and unhealthy eating habits. Accordingly, encouraging physical activity and healthy eating can contribute to reducing body image dissatisfaction and favour better self-rated health.
Mak, Kwok-Kei; Cerin, Ester; McManus, Alison M; Lai, Ching-Man; Day, Jeffrey R; Ho, Sai-Yin
2016-01-01
This study investigated the mediating role of body mass index (BMI) in the relationship between physical activity and body esteem in adolescents. Nine hundred and five Hong Kong Chinese students aged 12-18 years participated in a cross-sectional study in 2007. Students' BMI was computed as an indicator of their body composition. Their physical activity level and body esteem were examined using the Physical Activity Rating for Children and Youth (PARCY) and Body Esteem Scale (BES), respectively. Structural equation modelling was used to investigate the mediating effects of BMI and physical activity in predicting body esteem, with stratification by sex. The overall fit of the hypothesized models was satisfactory in boys (NFI = 0.94; NNFI = 0.88; CFI = 0.95; RMSEA = 0.07) and girls (NFI = 0.89; NNFI = 0.77; CFI = 0.91; RMSEA = 0.11). When BMI was considered as a mediator, higher physical activity had a significant negative total effect on body esteem in boys, but not in girls. The indirect effect of higher physical activity on body esteem via BMI was positive in boys, but negative in girls. Regular physical activity may help overweight adolescents, especially boys, improve their body esteem. Kinesiologists and health professionals could explore the use of physical activity prescriptions for weight management, aiming at body esteem improvement in community health programs for adolescents. Among Western adolescents, negative body esteem is more pervasive in girls than in boys. There are consistent findings of the association between higher body mass index and lower body esteem in adolescents, but the association between physical activity and body esteem are equivocal. A negative association between body mass index and body esteem was found in both Hong Kong adolescent boys and girls. The indirect effect of physical activity on body esteem via body mass index was positive in Hong Kong adolescent boys, but negative in girls.
Rouquette, Alexandra; Badley, Elizabeth M; Falissard, Bruno; Dub, Timothée; Leplege, Alain; Coste, Joël
2015-06-01
The International Classification of Functioning, Disability and Health (ICF) published in 2001 describes the consequences of health conditions with three components of impairments in body structures or functions, activity limitations and participation restrictions. Two of the new features of the conceptual model were the possibility of feedback effects between each ICF component and the introduction of contextual factors conceptualized as moderators of the relationship between the components. The aim of this longitudinal study is to provide empirical evidence of these two kinds of effect. Structural equation modeling was used to analyze data from a French population-based cohort of 548 patients with knee osteoarthritis recruited between April 2007 and March 2009 and followed for three years. Indicators of the body structure and function, activity and participation components of the ICF were derived from self-administered standardized instruments. The measurement model revealed four separate factors for body structures impairments, body functions impairments, activity limitations and participation restrictions. The classic sequence from body impairments to participation restrictions through activity limitations was found at each assessment time. Longitudinal study of the ICF component relationships showed a feedback pathway indicating that the level of participation restrictions at baseline was predictive of activity limitations three years later. Finally, the moderating role of personal (age, sex, mental health, etc.) and environmental factors (family relationships, mobility device use, etc.) was investigated. Three contextual factors (sex, family relationships and walking stick use) were found to be moderators for the relationship between the body impairments and the activity limitations components. Mental health was found to be a mediating factor of the effect of activity limitations on participation restrictions. Copyright © 2015 Elsevier Ltd. All rights reserved.
The Influence of Body Discourses on Adolescents' (Non)Participation in Physical Activity
ERIC Educational Resources Information Center
Beltrán-Carrillo, Vicente J.; Devís-Devís, José; Peiró-Velert, Carmen
2018-01-01
Drawing on semi-structured interviews with older adolescents, this article examines how healthism, ideal body discourses and performative body discourses influence their (non)participation in physical activity (PA) and their identity construction concerning exercise, sport and physical education. We illustrate that body transformation through PA,…
The role of body-related self-conscious emotions in motivating women's physical activity.
Sabiston, Catherine M; Brunet, Jennifer; Kowalski, Kent C; Wilson, Philip M; Mack, Diane E; Crocker, Peter R E
2010-08-01
The purpose of this study was to test a model where body-related self-conscious emotions of shame, guilt, and pride were associated with physical activity regulations and behavior. Adult women (N = 389; M age = 29.82, SD = 15.20 years) completed a questionnaire assessing body-related pride, shame, and guilt, motivational regulations, and leisure-time physical activity. The hypothesized measurement and structural models were deemed adequate, as was a revised model examining shame-free guilt and guilt-free shame. In the revised structural model, body-related pride was positively significantly related to identified and intrinsic regulations. Body-related shame-free guilt was significantly associated with external, introjected, and identified regulations. Body-related guilt-free shame was significantly positively related to external and introjected regulation, and negatively associated with intrinsic regulation. Identified and intrinsic regulations were significantly positively related to physical activity (R2 = .62). These findings highlight the importance of targeting and understanding the realm of body-related self-conscious emotions and the associated links to regulations and physical activity behavior.
de Oliveira da Silva, Patricia; Miguez Nery Guimarães, Joanna; Caetano Prates Melo, Enirtes; Maria Alvim Matos, Sheila; del Carmem Molina, Maria; Maria Barreto, Sandhi; de Jesus Mendes da Fonseca, Maria
2018-01-01
This study investigated whether the association between body image dissatisfaction and poor self-rated health is mediated by insufficient physical activity and unhealthy eating habits. The participants were 6727 men and 8037 women from the baseline (2008–2010) of the Longitudinal Study of Adult Health (Estudo Longitudinal de Saúde do Adulto, ELSA-Brasil). Structural equation modelling was used. Associations were found between body image dissatisfaction and poor self-rated health in both sexes. Insufficient physical activity was a mediator. However, unhealthy eating habits were found to exert a mediator effect only via insufficient physical activity. Body image dissatisfaction was found to associate, both directly and possibly indirectly, with poor self-rated health, mediated by insufficient physical activity and unhealthy eating habits. Accordingly, encouraging physical activity and healthy eating can contribute to reducing body image dissatisfaction and favour better self-rated health. PMID:29670031
Bläsing, Bettina; Schack, Thomas; Brugger, Peter
2010-05-01
We investigated mental representations of body parts and body-related activities in two subjects with congenitally absent limbs (one with, the other without phantom sensations), a wheelchair sports group of paraplegic participants, and two groups of participants with intact limbs. To analyse mental representation structures, we applied Structure Dimensional Analysis. Verbal labels indicating body parts and related activities were presented in randomized lists that had to be sorted according to a hierarchical splitting paradigm. Participants were required to group the items according to whether or not they were considered related, based on their own body perception. Results of the groups of physically intact and paraplegic participants revealed separate clusters for the lower body, upper body, fingers and head. The participant with congenital phantom limbs also showed a clear separation between upper and lower body (but not between fingers and hands). In the participant without phantom sensations of the absent arms, no such modularity emerged, but the specific practice of his right foot in communication and daily routines was reflected. Sorting verbal labels of body parts and activities appears a useful method to assess body representation in individuals with special body anatomy or function and leads to conclusions largely compatible with other assessment procedures.
Lewy body disease is one of the most common causes of dementia in the elderly. Dementia is the loss of mental ... to affect normal activities and relationships. Lewy body disease happens when abnormal structures, called Lewy bodies, build ...
Movement Activity Determination with Health-related Variables of University Students in Kosice.
Bakalár, Peter; Zvonar, Martin; Sedlacek, Jaromir; Lenkova, Rut; Sagat, Peter; Vojtasko, Lubos; Liptakova, Erika; Barcalova, Miroslava
2018-06-01
There is currently a strong scientific evidence about the negative health consequences of physical inactivity. One of the potential tools for promoting physical activity at the institutional level of the Ecological model is to create conditions and settings that would enable pupils, students and employees engage in some form of physical activity. However, physical activities as a subject are being eliminated from the study programs at Slovak universities. The purpose of the study was to find current evidence about the level of structured physical activity and health-related variables in university students in Košice. The sample consisted of 1,993 or, more precisely, 1,398 students who attended two universities in Košice. To collect data, students completed a questionnaire and were tested for body height, body weight, circumferential measures and percentage body fat. The university students did not sufficiently engage in a structured physical activity. A large number of students had either low or high values of percentage body fat and BMI and high WHR values. Our findings have shown that the research into physical activity of university students should receive more attention.
Brownian microhydrodynamics of active filaments.
Laskar, Abhrajit; Adhikari, R
2015-12-21
Slender bodies capable of spontaneous motion in the absence of external actuation in an otherwise quiescent fluid are common in biological, physical and technological contexts. The interplay between the spontaneous fluid flow, Brownian motion, and the elasticity of the body presents a challenging fluid-structure interaction problem. Here, we model this problem by approximating the slender body as an elastic filament that can impose non-equilibrium velocities or stresses at the fluid-structure interface. We derive equations of motion for such an active filament by enforcing momentum conservation in the fluid-structure interaction and assuming slow viscous flow in the fluid. The fluid-structure interaction is obtained, to any desired degree of accuracy, through the solution of an integral equation. A simplified form of the equations of motion, which allows for efficient numerical solutions, is obtained by applying the Kirkwood-Riseman superposition approximation to the integral equation. We use this form of equation of motion to study dynamical steady states in free and hinged minimally active filaments. Our model provides the foundation to study collective phenomena in momentum-conserving, Brownian, active filament suspensions.
Botha-Scheepers, S; Riyazi, N; Kroon, H M; Scharloo, M; Houwing-Duistermaat, J J; Slagboom, E; Rosendaal, F R; Breedveld, F C; Kloppenburg, M
2006-11-01
Using the International Classification of Functioning, Disability and Health as framework, we evaluated modifying effects of illness perceptions and mental health on the association between impairments in body structures and functions due to osteoarthritis (OA) and limitation in activities in the lower extremities. Self-reported limitation in activities was assessed by the Western Ontario and McMaster Universities OA index (WOMAC) function subscale in 316 patients with knee or hip pain or evidence of OA on knee or hip radiographs. Body structures and functions were evaluated during clinical and radiological assessments. Illness perceptions and mental health were assessed with the revised Illness Perception Questionnaire (IPQ-R) and the mental component summary score of the RAND 36-item Health Survey, respectively. For each patient an expected WOMAC function score was calculated, using an equation based on a multivariate model of the association of body structures and functions with limitation in activities. The median (interquartile) self-reported WOMAC function score was 22.2 (9.6-43.5). Ninety-one patients reported more and 120 patients reported less limitation in activities than expected. Patients with lumbar spine degeneration, physical or exercise therapy and high IPQ-R identity, consequences and chronic timeline scores had an increased risk to report more limitation in activities than the expected range. Low IPQ-R identity, consequences and emotional representation scores and better mental health were associated with reporting less limitation in activities than the expected range. Illness perceptions and mental health modify the association between self-reported limitation in activities and calculated limitation in activities based on impairments in body structures and functions due to OA.
The anatomy and physiology of the locomotor system.
Farley, Alistair; McLafferty, Ella; Hendry, Charles
Mobilisation is one of the activities of living. The term locomotor system refers to those body tissues and organs responsible for movement. Nurses and healthcare workers should be familiar with the body structures that enable mobilisation to assist those in their care with this activity. This article outlines the structure and function of the locomotor system, including the skeleton, joints, muscles and muscle attachments. Two common bone disorders, osteoporosis and osteoarthritis, are also considered.
Functional Plasticity in the Absence of Structural Change.
Krasovsky, Tal; Landa, Jana; Bar, Orly; Jaana, Ahonniska-Assa; Livny, Abigail; Tsarfaty, Galia; Silberg, Tamar
2017-04-01
This work presents a case of a young woman with apraxia and a severe body scheme disorder, 10 years after a childhood frontal and occipitoparietal brain injury. Despite specific limitations, she is independent in performing all activities of daily living. A battery of tests was administered to evaluate praxis and body representations. Specifically, the Hand Laterality Test was used to compare RS's dynamic body representation to that of healthy controls (N = 14). Results demonstrated RS's severe praxis impairment, and the Hand Laterality Test revealed deficits in accuracy and latency of motor imagery, suggesting a significant impairment in dynamic body representation. However, semantic and structural body representations were intact. These results, coupled with frequent use of verbalizations as a strategy, suggest a possible ventral compensatory mechanism (top-down processing) for dorsal stream deficits, which may explain RS's remarkable recovery of activities of daily living. The link between praxis and dynamic body representation is discussed.
Piezoelectric devices for vibration suppression: Modeling and application to a truss structure
NASA Technical Reports Server (NTRS)
Won, Chin C.; Sparks, Dean W., Jr.; Belvin, W. Keith; Sulla, Jeff L.
1993-01-01
For a space structure assembled from truss members, an effective way to control the structure may be to replace the regular truss elements by active members. The active members play the role of load carrying elements as well as actuators. A piezo strut, made of a stack of piezoceramics, may be an ideal active member to be integrated into a truss space structure. An electrically driven piezo strut generates a pair of forces, and is considered as a two-point actuator in contrast to a one-point actuator such as a thruster or a shaker. To achieve good structural vibration control, sensing signals compatible to the control actuators are desirable. A strain gage or a piezo film with proper signal conditioning to measure member strain or strain rate, respectively, are ideal control sensors for use with a piezo actuator. The Phase 0 CSI Evolutionary Model (CEM) at NASA Langley Research Center used cold air thrusters as actuators to control both rigid body motions and flexible body vibrations. For the Phase 1 and 2 CEM, it is proposed to use piezo struts to control the flexible modes and thrusters to control the rigid body modes. A tenbay truss structure with active piezo struts is built to study the modeling, controller designs, and experimental issues. In this paper, the tenbay structure with piezo active members is modelled using an energy method approach. Decentralized and centralized control schemes are designed and implemented, and preliminary analytical and experimental results are presented.
ERIC Educational Resources Information Center
Conway, Lorraine
This document offers an explanation and drawings of each of the major systems of the human body and of the five senses. It provides teachers with classroom activities, demonstrations, and experiments which are intended to involve students in the acquisition of knowledge concerning the structure and function of their bodies. The drawings of the…
Zhao, Wei; Wang, Xiao-Hua; Li, Hong-Mei; Wang, Shi-Hua; Chen, Tao; Yuan, Zhan-Peng; Tang, Ya-Jie
2014-03-01
Fifty-two polysaccharides were isolated from the fermentation systems of Tuber melanosporum, Tuber indicum, Tuber sinense, Tuber aestivum and the fruiting bodies of Tuber indicum, Tuber himalayense, Tuber sinense by elution with an activated carbon column. Polysaccharides from Tuber fermentation system exhibited relatively higher in vitro antitumor activity against HepG2, A549, HCT-116, SK-BR-3, and HL-60 cells than those from Tuber fruiting bodies. All polysaccharides were mainly composed of D-mannose, D-glucose, and D-galactose, which suggested that the polysaccharides from Tuber fruiting bodies and fermentation system have identical chemical compositions. The results of antitumor activity and structural identification indicated that the polysaccharide fractions could promote antitumor activity. Tuber polysaccharides from Tuber fermentation system exhibited relatively higher than that from Tuber fruiting bodies. These results confirm the potential of Tuber fermentation mycelia for use as an alternative resource for its fruiting bodies.
Recent Developments in Smart Adaptive Structures for Solar Sailcraft
NASA Technical Reports Server (NTRS)
Whorton, M. S.; Kim, Y. K.; Oakley, J.; Adetona, O.; Keel, L. H.
2007-01-01
The "Smart Adaptive Structures for Solar Sailcraft" development activity at MSFC has investigated issues associated with understanding how to model and scale the subsystem and multi-body system dynamics of a gossamer solar sailcraft with the objective of designing sailcraft attitude control systems. This research and development activity addressed three key tasks that leveraged existing facilities and core competencies of MSFC to investigate dynamics and control issues of solar sails. Key aspects of this effort included modeling and testing of a 30 m deployable boom; modeling of the multi-body system dynamics of a gossamer sailcraft; investigation of control-structures interaction for gossamer sailcraft; and development and experimental demonstration of adaptive control technologies to mitigate control-structures interaction.
How does the body representation system develop in the human brain?
Fontan, Aurelie; Cignetti, Fabien; Nazarian, Bruno; Anton, Jean-Luc; Vaugoyeau, Marianne; Assaiante, Christine
2017-04-01
Exploration of the body representation system (BRS) from kinaesthetic illusions in fMRI has revealed a complex network composed of sensorimotor and frontoparietal components. Here, we evaluated the degree of maturity of this network in children aged 7-11 years, and the extent to which structural factors account for network differences with adults. Brain activation following tendon vibration at 100Hz ('illusion') and 30Hz ('no illusion') were analysed using the two-stage random effects model, with or without white and grey matter covariates. The BRS was already well established in children as revealed by the contrast 'illusion' vs 'no illusion', although still immature in some aspects. This included a lower level of activation in primary somatosensory and posterior parietal regions, and the exclusive activation of the frontopolar cortex (FPC) in children compared to adults. The former differences were related to structure, while the latter difference reflected a functional strategy where the FPC may serve as the 'top' in top-down modulation of the activity of the other BRS regions to facilitate the establishment of body representations. Hence, the development of the BRS not only relies on structural maturation, but also involves the disengagement of an executive region not classically involved in body processing. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Mama, Scherezade K; Diamond, Pamela M; McCurdy, Sheryl A; Evans, Alexandra E; McNeill, Lorna H; Lee, Rebecca E
Ecologic frameworks account for multilevel factors related to physical activity (PA) and may be used to develop effective interventions for women. The purpose of this study was to examine the influence of individual, social and environmental factors on PA among African American and Hispanic women using structural equation modeling. Overweight and obese women ( N =164, 65.9% African American) completed a 7-day accelerometer protocol, a physical assessment, and questionnaires on body image, self-efficacy, motivational readiness, social support, home environment for physical activity and perceived environment. Trained assessors evaluated each participant's neighborhood and collected objective measures of physical activity resources and the pedestrian environment. Assessments were completed between 2006 and 2008. Structural model fit was acceptable (RMSEA=.030). Body composition and image was negatively associated with PA, and motivational readiness had an indirect effect on PA through body composition and image. PA resources and the pedestrian environment operated through the perceived environment to positively influence neighborhood cohesion, which was positively associated with body composition and image. PA is more heavily influenced by intrapersonal factors related to weight. Improving intrapersonal factors related to weight and perceptions of the environment may lead to increased PA in African American and Hispanic women.
NASA Technical Reports Server (NTRS)
Pirrello, C. J.; Baker, A. H.; Stone, J. E.
1976-01-01
A detailed analytical study was made to investigate the effects of fuselage cross section (circular and elliptical) and the structural arrangement (integral and nonintegral tanks) on aircraft performance. The vehicle was a 200 passenger, liquid hydrogen fueled Mach 6 transport designed to meet a range goal of 9.26 Mn (5000 NM). A variety of trade studies were conducted in the area of configuration arrangement, structural design, and active cooling design in order to maximize the performance of each of three point design aircraft: (1) circular wing-body with nonintegral tanks, (2) circular wing-body with integral tanks and (3) elliptical blended wing-body with integral tanks. Aircraft range and weight were used as the basis for comparison. The resulting design and performance characteristics show that the blended body integral tank aircraft weights the least and has the greatest range capability, however, producibility and maintainability factors favor nonintegral tank concepts.
2014-01-01
Background A Xist RNA decorated Barr body is the structural hallmark of the compacted inactive X territory in female mammals. Using super-resolution three-dimensional structured illumination microscopy (3D-SIM) and quantitative image analysis, we compared its ultrastructure with active chromosome territories (CTs) in human and mouse somatic cells, and explored the spatio-temporal process of Barr body formation at onset of inactivation in early differentiating mouse embryonic stem cells (ESCs). Results We demonstrate that all CTs are composed of structurally linked chromatin domain clusters (CDCs). In active CTs the periphery of CDCs harbors low-density chromatin enriched with transcriptionally competent markers, called the perichromatin region (PR). The PR borders on a contiguous channel system, the interchromatin compartment (IC), which starts at nuclear pores and pervades CTs. We propose that the PR and macromolecular complexes in IC channels together form the transcriptionally permissive active nuclear compartment (ANC). The Barr body differs from active CTs by a partially collapsed ANC with CDCs coming significantly closer together, although a rudimentary IC channel system connected to nuclear pores is maintained. Distinct Xist RNA foci, closely adjacent to the nuclear matrix scaffold attachment factor-A (SAF-A) localize throughout Xi along the rudimentary ANC. In early differentiating ESCs initial Xist RNA spreading precedes Barr body formation, which occurs concurrent with the subsequent exclusion of RNA polymerase II (RNAP II). Induction of a transgenic autosomal Xist RNA in a male ESC triggers the formation of an ‘autosomal Barr body’ with less compacted chromatin and incomplete RNAP II exclusion. Conclusions 3D-SIM provides experimental evidence for profound differences between the functional architecture of transcriptionally active CTs and the Barr body. Basic structural features of CT organization such as CDCs and IC channels are however still recognized, arguing against a uniform compaction of the Barr body at the nucleosome level. The localization of distinct Xist RNA foci at boundaries of the rudimentary ANC may be considered as snap-shots of a dynamic interaction with silenced genes. Enrichment of SAF-A within Xi territories and its close spatial association with Xist RNA suggests their cooperative function for structural organization of Xi. PMID:25057298
Childhood Markers of Health Behavior Relate to Hippocampal Health, Memory, and Academic Performance
ERIC Educational Resources Information Center
Hassevoort, Kelsey M.; Khan, Naiman A.; Hillman, Charles H.; Cohen, Neal J.
2016-01-01
There has been an increasing body of evidence that a variety of factors, including physical activity, nutrition, and body composition, have a relationship with brain structure and function in school-aged children. Within the brain, the hippocampus is particularly sensitive to modulation by these lifestyle factors. This brain structure is known to…
Schoborg, Todd; Rickels, Ryan; Barrios, Josh
2013-01-01
Chromatin insulators assist in the formation of higher-order chromatin structures by mediating long-range contacts between distant genomic sites. It has been suggested that insulators accomplish this task by forming dense nuclear foci termed insulator bodies that result from the coalescence of multiple protein-bound insulators. However, these structures remain poorly understood, particularly the mechanisms triggering body formation and their role in nuclear function. In this paper, we show that insulator proteins undergo a dramatic and dynamic spatial reorganization into insulator bodies during osmostress and cell death in a high osmolarity glycerol–p38 mitogen-activated protein kinase–independent manner, leading to a large reduction in DNA-bound insulator proteins that rapidly repopulate chromatin as the bodies disassemble upon return to isotonicity. These bodies occupy distinct nuclear territories and contain a defined structural arrangement of insulator proteins. Our findings suggest insulator bodies are novel nuclear stress foci that can be used as a proxy to monitor the chromatin-bound state of insulator proteins and provide new insights into the effects of osmostress on nuclear and genome organization. PMID:23878275
Palma, Gisele Carla Dos Santos; Freitas, Tatiana Beline; Bonuzzi, Giordano Márcio Gatinho; Soares, Marcos Antonio Arlindo; Leite, Paulo Henrique Wong; Mazzini, Natália Araújo; Almeida, Murilo Ruas Groschitz; Pompeu, José Eduardo; Torriani-Pasin, Camila
2017-05-01
This review determines the effects of virtual reality interventions for stroke subjects based on the International Classification of Functioning, Disability,and Health (ICF) framework. Virtual reality is a promising tool for therapy for stroke rehabilitation, but the effects of virtual reality interventions on post-stroke patients based on the specific ICF domains (Body Structures, Body Functions, Activity, and Participation) have not been investigated. A systematic review was conducted, including trials with adults with a clinical diagnosis of a chronic, subacute, or acute stroke. Eligible trials had to include studies with an intervention protocol and follow-up, with a focus on upper limbs and/or lower limbs and/or balance. The Physiotherapy Evidence Database (PEDro) was used to assess the methodological quality of randomized controlled trials. Each trial was separated according to methodological quality into a high-quality trial (PEDro ≥ 6) and a low-quality trial (PEDro ≤ 6). Only high-quality trials were analyzed specifically based on the outcome of these trials. In total, 54 trials involving 1811 participants were included. Of the papers included and considered high quality, 14 trials evaluated areas of the Body Structures component, 20 trials of the Body Functions domain, 17 trials of the Activity component, and 8 trials of the Participation domain. In relation to ICF Part 2, four trials evaluated areas of the Personal Factors component and one trial evaluated domains of the Environmental Factors component. The effects of virtual reality on stroke rehabilitation based on the ICF framework are positive in Body Function and Body Structure. However, the results in the domains Activity and Participation are inconclusive. More high-quality clinical trials are needed to confirm the effectiveness of virtual reality in the domains of Activity and Participation.
Design of a New Integrated Structure of the Active Suspension System and Emergency Lane Change Test
NASA Astrophysics Data System (ADS)
Zhao, Jing-bo; Liu, Hai-mei; Zhang, Lan-chun; Bei, Shao-yi
2017-09-01
An integrated structure of the active suspension system was proposed in order to solve the problem of the individual control of the height of the body or the adjustable damping of the active suspension system of the electric vehicle, which improve the vibration reduction performance of the vehicle. The air bag was used to replace the traditional spiral spring, and the traditional shock absorber was replaced by the damping adjustable shock absorber, and the control module received the body acceleration sensor and the horizontal height sensor signal. The system controlled adjustable damping coefficient of shock absorber through the height of the car body the output of the air pump relay and the height control valve and the output of the electromagnetic valve of the adjustable damping shock absorber, and the emergency lane change test was carried out under different modes of speed of 60km/h. The experimental results indicated that the damping value was greater, average roll angle, yaw angle and average vehicle lateral acceleration were small when vehicle body was in the state of emergency lane change, which verified the feasibility of the integrated control strategy and structure design of the active suspension system. The research has important theoretical research value and engineering application prospect for designing and controlling strategy of vehicle chassis integrated control system.
Ren, Jie; Brann, Lynn S; Bruening, Kay S; Scerpella, Tamara A; Dowthwaite, Jodi N
2017-12-01
In pre-pubertal girls, nutrient intakes and non-aquatic organized activity were evaluated as factors in vertebral body bone mass, structure, and strength. Activity, vitamin B 12 , and dietary fiber predicted bone outcomes most consistently. Exercise and vitamin B 12 appear beneficial, whereas high fiber intake appears to be adverse for vertebral body development. Childhood development sets the baseline for adult fracture risk. Most studies evaluate development using postero-anterior (PA) dual-energy X-ray absorptiometry (DXA) areal bone mineral density, bone mineral content, and bone mineral apparent density. In a prior analysis, we demonstrated that PA DXA reflects posterior element properties, rather than vertebral body fracture sites, such that loading is associated with subtle differences in vertebral body geometry, not 3D density. The current analysis is restricted to pre-pubertal girls, for a focused exploration of key nutrient intakes and physical activity as factors in dual plane indices of vertebral body geometry, density, and strength. This cross-sectional analysis used paired PA and supine lateral (LAT) lumbar spine DXA scans to assess "3D" vertebral body bone mineral apparent density (PALATBMAD), "3D" index of structural strength in axial compression (PALATIBS), and fracture risk index (PALATFRI). Diet data were collected using the Youth/Adolescent Questionnaire (YAQ, 1995); organized physical activity was recorded via calendar-based form. Pearson correlations and backward stepwise multiple linear regression analyzed associations among key nutrients, physical activity, and bone outcomes. After accounting for activity and key covariates, fiber, unsupplemented vitamin B 12 , zinc, carbohydrate, vitamin C, unsupplemented magnesium, and unsupplemented calcium intake explained significant variance for one or more bone outcomes (p < 0.05). After adjustment for influential key nutrients and covariates, activity exposure was associated with postero-anterior (PA) areal bone mineral density, PA bone mineral content, PA width, lateral (LAT) BMC, "3D" bone cross-sectional area (coronal plane), "3D" PALATIBS, and PALATFRI benefits (p < 0.05). Physical activity, fiber intake, and unsupplemented B 12 intake appear to influence vertebral body bone mass, density, geometry, and strength in well-nourished pre-pubertal girls; high fiber intakes may adversely affect childhood vertebral body growth.
Identification and control of structures in space
NASA Technical Reports Server (NTRS)
Meirovitch, L.; Quinn, R. D.; Norris, M. A.
1984-01-01
The derivation of the equations of motion for the Spacecraft Control Laboratory Experiment (SCOLE) is reported and the equations of motion of a similar structure orbiting the earth are also derived. The structure is assumed to undergo large rigid-body maneuvers and small elastic deformations. A perturbation approach is proposed whereby the quantities defining the rigid-body maneuver are assumed to be relatively large, with the elastic deformations and deviations from the rigid-body maneuver being relatively small. The perturbation equations have the form of linear equations with time-dependent coefficients. An active control technique can then be formulated to permit maneuvering of the spacecraft and simultaneously suppressing the elastic vibration.
ER bodies in plants of the Brassicales order: biogenesis and association with innate immunity
Nakano, Ryohei T.; Yamada, Kenji; Bednarek, Paweł; Nishimura, Mikio; Hara-Nishimura, Ikuko
2014-01-01
The endoplasmic reticulum (ER) forms highly organized network structures composed of tubules and cisternae. Many plant species develop additional ER-derived structures, most of which are specific for certain groups of species. In particular, a rod-shaped structure designated as the ER body is produced by plants of the Brassicales order, which includes Arabidopsis thaliana. Genetic analyses and characterization of A. thaliana mutants possessing a disorganized ER morphology or lacking ER bodies have provided insights into the highly organized mechanisms responsible for the formation of these unique ER structures. The accumulation of proteins specific for the ER body within the ER plays an important role in the formation of ER bodies. However, a mutant that exhibits morphological defects of both the ER and ER bodies has not been identified. This suggests that plants in the Brassicales order have evolved novel mechanisms for the development of this unique organelle, which are distinct from those used to maintain generic ER structures. In A. thaliana, ER bodies are ubiquitous in seedlings and roots, but rare in rosette leaves. Wounding of rosette leaves induces de novo formation of ER bodies, suggesting that these structures are associated with resistance against pathogens and/or herbivores. ER bodies accumulate a large amount of β-glucosidases, which can produce substances that potentially protect against invading pests. Biochemical studies have determined that the enzymatic activities of these β-glucosidases are enhanced during cell collapse. These results suggest that ER bodies are involved in plant immunity, although there is no direct evidence of this. In this review, we provide recent perspectives of ER and ER body formation in A. thaliana, and discuss clues for the functions of ER bodies. We highlight defense strategies against biotic stress that are unique for the Brassicales order, and discuss how ER structures could contribute to these strategies. PMID:24653729
Choi, Kevin; Peters, Jaclyn; Tri, Andrew; Chapman, Elizabeth; Sasaki, Ayako; Ismail, Farooq; Boulias, Chris; Reid, Shannon
2017-01-01
Purpose: Goal Attainment Scaling (GAS) is used to assess functional gains in response to treatment. Specific characteristics of the functional goals set by individuals receiving botulinum toxin type A (BoNTA) injections for spasticity management are unknown. The primary objectives of this study were to describe the characteristics of the goals set by patients before receiving BoNTA injections using the International Classification of Functioning, Disability and Health (ICF) and to determine whether the pattern of spasticity distribution affected the goals set. Methods: A cross-sectional retrospective chart review was carried out in an outpatient spasticity-management clinic in Toronto. A total of 176 patients with a variety of neurological lesions attended the clinic to receive BoNTA injections and completed GAS from December 2012 to December 2013. The main outcome measures were the characteristics of the goals set by the participants on the basis of ICF categories (body functions and structures, activity and participation) and the spasticity distribution using Modified Ashworth Scale scores. Results: Of the patients, 73% set activity and participation goals, and 27% set body functions and structures goals (p<0.05). In the activity and participation category, 30% of patients set moving and walking goals, 28% set self-care and dressing goals, and 12% set changing and maintaining body position goals. In the body functions and structures category, 18% set neuromuscular and movement-related goals, and 8% set pain goals. The ICF goal categories were not related to the patterns of spasticity (upper limb vs. lower limb or unilateral vs. bilateral spasticity) or type of upper motor neuron (UMN) lesion (p>0.05). Conclusion: Our results show that patients receiving BoNTA treatment set a higher percentage of activity and participation goals than body functions and structures goals. Goal classification was not affected by type of spasticity distribution or type of UMN disorder. PMID:28539691
Structure, Content, and Bioactivity of Food-Derived Peptides in the Body.
Sato, Kenji
2018-03-28
Orally administered peptides are assumed to be degraded into amino acids in the body. However, our recent studies revealed some food-derived prolyl and pyroglutamyl peptides with 2-3 amino acid residues in the blood of humans and animals, while most of the peptides in the endoproteinase digest of food protein are degraded by exopeptidase. Some food-derived dipeptides in the body display in vitro and in vivo biological activities. These facts indicate that the biological activities of food-derived peptides in the body rather than those in food are crucial to understanding the mechanism of the beneficial effects of orally administered peptides.
Upadhyay, Arun K.; Singh, Anupam; Mukherjee, K. J.; Panda, Amulya K.
2014-01-01
A tetrameric protein of therapeutic importance, Escherichia coli L-asparaginase-II was expressed in Escherichia coli as inclusion bodies (IBs). Asparaginase IBs were solubilized using low concentration of urea and refolded into active tetrameric protein using pulsatile dilution method. Refolded asparaginase was purified in two steps by ion-exchange and gel filtration chromatographic techniques. The recovery of bioactive asparaginase from IBs was around 50%. The melting temperature (Tm) of the purified asparaginase was found to be 64°C. The specific activity of refolded, purified asparaginase was found to be comparable to the commercial asparaginase (190 IU/mg). Enzymatic activity of the refolded asparaginase was high even at four molar urea solutions, where the IB aggregates are completely solubilized. From the comparison of chemical denaturation data and activity at different concentrations of guanidine hydrochloride, it was observed that dissociation of monomeric units precedes the complete loss of helical secondary structures. Protection of the existing native-like protein structure during solubilization of IB aggregates with 4 M urea improved the propensity of monomer units to form oligomeric structure. Our mild solubilization technique retaining native-like structures, improved recovery of asparaginase in bioactive tetrameric form. PMID:25309524
Masajtis-Zagajewska, Anna; Muras, Katarzyna; Nowicki, Michał
2018-05-16
In this study, we compared the effects of an individualized physical activity program on lifestyle, metabolic profile, body composition, and quality of life in kidney transplant recipients and patients with chronic kidney disease. Our study included 24 kidney transplant recipients and 15 patients with chronic kidney disease at stage 3/4. Body composition (impedance spectroscopy) and habitual physical activity (accelerometry) assessed at baseline were used to prepare the individualized physical activity program. Participants received repeated training, which was supervised during the first 2 weeks, followed by short message service reminders. Measurements were repeated after 1 and 3 months. Time spent daily on physical activity and total energy expenditure increased in kidney transplant recipients (from 126 ± 87 to 200 ± 132 min/day [P = .001] and from 1.73 ± 0.37 to 2.24 ± 0.59 cal/min [P < .001]) and in patients with chronic kidney disease (from 79 ± 78 to 109 ± 114 min/day [P < .001] and from 1.5 ± 0.5 to 1.92 ± 0.47 cal/min [P < .001]). Adipose mass (40.8 ± 11.5 vs 38.5 ± 10.3 kg; P = .01), total body water (38.1 ± 9.1 vs 37.3 ± 9.7 L; P = .01), and fat tissue index (14.3 ± 3.7 vs 13.5 ± 3.1 kg/m2; P = .009) decreased significantly only in kidney transplant recipients. Body cell mass decreased in patients with chronic kidney disease. Significant changes of estimated glomerular filtration rates were observed in kidney transplant recipients. Increased physical activity achieved through structured exercise programs induced beneficial effects on metabolic profile and body composition in patients with chronic kidney disease, with even greater benefits in kidney transplant recipients.
Lindemann, Ulrich; Zijlstra, Wiebren; Aminian, Kamiar; Chastin, Sebastien F M; de Bruin, Eling D; Helbostad, Jorunn L; Bussmann, Johannes B J
2014-01-10
Physical activity is an important determinant of health and well-being in older persons and contributes to their social participation and quality of life. Hence, assessment tools are needed to study this physical activity in free-living conditions. Wearable motion sensing technology is used to assess physical activity. However, there is a lack of harmonisation of validation protocols and applied statistics, which make it hard to compare available and future studies. Therefore, the aim of this paper is to formulate recommendations for assessing the validity of sensor-based activity monitoring in older persons with focus on the measurement of body postures and movements. Validation studies of body-worn devices providing parameters on body postures and movements were identified and summarized and an extensive inter-active process between authors resulted in recommendations about: information on the assessed persons, the technical system, and the analysis of relevant parameters of physical activity, based on a standardized and semi-structured protocol. The recommended protocols can be regarded as a first attempt to standardize validity studies in the area of monitoring physical activity.
Flórez, Karen R; Richardson, Andrea S; Ghosh-Dastidar, Madhumita Bonnie; Troxel, Wendy; DeSantis, Amy; Colabianchi, Natalie; Dubowitz, Tamara
2018-04-01
Social support and social networks can elucidate important structural and functional aspects of social relationships that are associated with health-promoting behaviors, including Physical Activity (PA) and weight. A growing number of studies have investigated the relationship between social support, social networks, PA and obesity specifically among African Americans; however, the evidence is mixed and many studies focus exclusively on African American women. Most studies have also focused on either functional or structural aspects of social relationships (but not both) and few have objectively measured moderate-to-vigorous physical activity (MVPA) and body mass index (BMI). Cross-sectional surveys of adult African American men and women living in two low-income predominantly African American neighborhoods in Pittsburgh, PA (N = 799) measured numerous structural features as well as functional aspects of social relationships. Specifically, structural features included social isolation, and social network size and diversity. Functional aspects included perceptions of social support for physical activity from the social network in general as well as from family and friends specifically. Height, weight, and PA were objectively measured. From these, we derived Body Mass Index (BMI) and moderate-to-vigorous physical activity (MVPA). All regression models were stratified by gender, and included age, income, education, employment, marital status, physical limitations, and a neighborhood indicator. Greater social isolation was a significant predictor of lower BMI among men only. Among women only, social isolation was significantly associated with increased MVPA whereas, network diversity was significantly associated with reduced MVPA. Future research would benefit from in-depth qualitative investigations to understand how social networks may act to influence different types of physical activity among African Americans, as well as understand how they can be possible levers for health promotion and prevention.
Three-body correlations and conditional forces in suspensions of active hard disks
NASA Astrophysics Data System (ADS)
Härtel, Andreas; Richard, David; Speck, Thomas
2018-01-01
Self-propelled Brownian particles show rich out-of-equilibrium physics, for instance, the motility-induced phase separation (MIPS). While decades of studying the structure of liquids have established a deep understanding of passive systems, not much is known about correlations in active suspensions. In this work we derive an approximate analytic theory for three-body correlations and forces in systems of active Brownian disks starting from the many-body Smoluchowski equation. We use our theory to predict the conditional forces that act on a tagged particle and their dependence on the propulsion speed of self-propelled disks. We identify preferred directions of these forces in relation to the direction of propulsion and the positions of the surrounding particles. We further relate our theory to the effective swimming speed of the active disks, which is relevant for the physics of MIPS. To test and validate our theory, we additionally run particle-resolved computer simulations, for which we explicitly calculate the three-body forces. In this context, we discuss the modeling of active Brownian swimmers with nearly hard interaction potentials. We find very good agreement between our simulations and numerical solutions of our theory, especially for the nonequilibrium pair-distribution function. For our analytical results, we carefully discuss their range of validity in the context of the different levels of approximation we applied. This discussion allows us to study the individual contribution of particles to three-body forces and to the emerging structure. Thus, our work sheds light on the collective behavior, provides the basis for further studies of correlations in active suspensions, and makes a step towards an emerging liquid state theory.
Disruption of the circadian period of body temperature by the anesthetic propofol.
Touitou, Yvan; Mauvieux, Benoit; Reinberg, Alain; Dispersyn, Garance
2016-01-01
The circadian time structure of an organism can be desynchronized in a large number of instances, including the intake of specific drugs. We have previously found that propofol, which is a general anesthetic, induces a desynchronization of the circadian time structure in rats, with a 60-80 min significant phase advance of body temperature circadian rhythm. We thus deemed it worthwhile to examine whether this phase shift of body temperature was related to a modification of the circadian period Tau. Propofol was administered at three different Zeitgeber Times (ZTs): ZT6 (middle of the rest period), ZT10 (2 h prior to the beginning of activity period), ZT16 (4 h after the beginning of the activity period), with ZT0 being the beginning of the rest period (light onset) and ZT12 being the beginning of the activity period (light offset). Control rats (n = 20) were injected at the same ZTs with 10% intralipid, which is a control lipidic solution. Whereas no modification of the circadian period of body temperature was observed in the control rats, propofol administration resulted in a significant shortening of the period by 96 and 180 min at ZT6 and ZT10, respectively. By contrast, the period was significantly lengthened by 90 min at ZT16. We also found differences in the time it took for the rats to readjust their body temperature to the original 24-h rhythm. At ZT16, the speed of readjustment was more rapid than at the two other ZTs that we investigated. This study hence shows (i) the disruptive effects of the anesthetic propofol on the body temperature circadian rhythm, and it points out that (ii) the period Tau for body temperature responds to this anesthetic drug according to a Tau-response curve. By sustaining postoperative sleep-wake disorders, the disruptive effects of propofol on circadian time structure might have important implications for the use of this drug in humans.
Learning from eponyms: George F. Odland and Odland bodies
Joshi, Rajiv
2014-01-01
Odland bodies (lamellar) bodies are small sub-cellular structures of size 200-300 nm that are present in the upper spinous and granular cell layers of the epidermis. These act as processing and repository areas for lipids that contribute to the epidermal permeability barrier. They also contain proteases, cathepsin D, kallikrein and other proteins including corneo-desmosins. Recent information also credits them with a role in the local innate immune response as they contain beta 2 defensins, which are anti-microbial peptides with potent activity against Gram-negative bacteria and candida. Odland bodies are important for maintaining homeostasis of the epidermis and are involved in epidermal permeability barrier function, desquamation of keratinocytes, formation of the cornified envelope and in local anti-microbial immunity. This article reviews the structure and functions of these bodies with a brief biography of George F. Odland who first described these bodies in 1960 and whose name is eponymically associated with them. PMID:25165659
Kromin, A A; Zenina, O Yu
2013-09-01
In chronic experiments on rabbits, the effect of electric stimulation of the hunger center in the lateral hypothalamus on myoelectric activity of the fundal and antral parts of the stomach was studied under conditions of hunger and satiation in the absence of food. Stimulation of the lateral hypothalamus in rabbits subjected to 24-h food deprivation and in previously fed rabbits produced incessant seeking behavior, which was followed by reorganization of the structure of temporal organization of slow wave electric activity of muscles of the stomach body and antrum specific for hungry and satiated animals. Increased hunger motivation during electric stimulation of the lateral hypothalamus manifested in the structure of temporal organization of slow wave electric activity of the stomach body and antrum muscles in rabbits subjected to 24-h food deprivation in the replacement of bimodal distribution of slow wave periods to a trimodal type typical of 2-day deprivation, while transition from satiation to hunger caused by electric stimulation of the lateral hypothalamus was associated with a shift from monomodal distributions of slow wave periods to a bimodal type typical of 24-h deprivation. Reorganization of the structure of temporal organization of slow wave electric activity of the stomach body and antrum muscles during electric stimulation of the lateral hypothalamus was determined by descending inhibitory influences of food motivational excitation on activity of the myogenic pacemaker of the lesser curvature of the stomach.
The Role of Nutrition in the Changes in Bone and Calcium Metabolism During Space Flight
NASA Technical Reports Server (NTRS)
Morey-Holton, Emily R.; Arnaud, Sara B.
1995-01-01
On Earth, the primary purpose of the skeleton is provide structural support for the body. In space, the support function of the skeleton is reduced since, without gravity, structures have only mass and no weight. The adaptation to space flight is manifested by shifts in mineral distribution, altered bone turnover, and regional mineral deficits in weight-bearing bones. The shifts in mineral distribution appear to be related to the cephalic fluid shift. The redistribution of mineral from one bone to another or to and from areas in the same bone in response to alterations in gravitational loads is more likely to affect skeletal function than quantitative whole body losses and gains. The changes in bone turnover appear dependent upon changes in body weight with weight loss tending to increase bone resorption as well as decrease bone formation. During bedrest, the bone response to unloading varies depending upon the routine activity level of the subjects with more active subjects showing a greater suppression of bone formation in the iliac crest with inactivity. Changes in body composition during space flight are predicted by bedrest studies on Earth which show loss of lean body mass and increase tn body fat in adult males after one month. In ambulatory studies on Earth, exercising adult males of the same age, height, g weight, body mass index, and shoe size show significantly higher whole body mineral and lean body mass. than non-exercising subjects. Nutritional preference appears to change with activity level. Diet histories in exercisers and nonexercisers who maintain identical body weights show no differences in nutrients except for slightly higher carbohydrate intake in the exercisers. The absence of differences in dietary calcium in men with higher total body calcium is noteworthy. In this situation, the increased bone mineral content was facilitated by the calcium endocrine system. This regulatory system can be by-passed by raising dietary calcium. Increased calcium intake can increase the calcium content in normally loaded bone. However, bone with a higher calcium content still decreases proportionally to normal bone during unloading. Nutritional requirements in space should be reevaluated with respect to these adaptive changes to loading and physical activity.
Synthesis and antioxidant activity of curcumin analogs.
Zheng, Qu-Tong; Yang, Ze-Hua; Yu, Liu-Ying; Ren, Yu-Yan; Huang, Qiu-Xia; Liu, Qiu; Ma, Xiang-Yu; Chen, Zi-Kang; Wang, Zong-Bao; Zheng, Xing
2017-05-01
Numerous biological activities including antioxidant, antitumor, anti-inflammation, and antivirus of the natural product curcumin were reported. However, the clinical application of it was significantly limited by its instability, poor solubility, less body absorbing, and low bioavailability. This review focuses on the structure modification and antioxidant activity evaluation of curcumin. To study the structure-activity relationship (SAR), five series of curcumin analogs were synthesized and their antioxidant activity were evaluated in vitro. The results showed that electron-donating groups, especially the phenolic hydroxyl group are an essential component to improve the antioxidant activity.
Two new compounds from the fruiting bodies of Ganoderma philippii.
Yang, Shuang; Ma, Qing-Yun; Kong, Fan-Dong; Xie, Qing-Yi; Huang, Sheng-Zhuo; Zhou, Li-Man; Dai, Hao-Fu; Yu, Zhi-Fang; Zhao, You-Xing
2018-03-01
Two new compounds, philippin (1) and 3β,9α,14α-trihydroxy-(22E,24R)-ergost-22-en-7-one (2), were isolated from the fruiting bodies of Ganoderma philippii. Their structures were elucidated on the basis of the spectroscopic technologies, including 1D and 2D NMR as well as MS. The bioassay of inhibitory activity against acetylcholinesterase (AChE) showed compound 1 exhibited weak inhibitory activity against AChE.
Critical mingling and universal correlations in model binary active liquids
NASA Astrophysics Data System (ADS)
Bain, Nicolas; Bartolo, Denis
2017-06-01
Ensembles of driven or motile bodies moving along opposite directions are generically reported to self-organize into strongly anisotropic lanes. Here, building on a minimal model of self-propelled bodies targeting opposite directions, we first evidence a critical phase transition between a mingled state and a phase-separated lane state specific to active particles. We then demonstrate that the mingled state displays algebraic structural correlations also found in driven binary mixtures. Finally, constructing a hydrodynamic theory, we single out the physical mechanisms responsible for these universal long-range correlations typical of ensembles of oppositely moving bodies.
Requirements for Hirano Body Formation
Griffin, Paul; Piggott, Cleveland; Maselli, Andrew; Fechheimer, Marcus
2014-01-01
Hirano bodies are paracrystalline F-actin-rich structures associated with diverse conditions, including neurodegeneration and aging. Generation of model Hirano bodies using altered forms of Dictyostelium 34-kDa actin-bundling protein allows studies of their physiological function and mechanism of formation. We describe a novel 34-kDa protein mutant, E60K, with a point mutation within the inhibitory domain of the 34-kDa protein. Expression of E60K in Dictyostelium induces the formation of model Hirano bodies. The E60K protein has activated actin binding and is calcium regulated, unlike other forms of the 34-kDa protein that induce Hirano bodies and that have activated actin binding but lack calcium regulation. Actin filaments in the presence of E60K in vitro show enhanced resistance to disassembly induced by latrunculin B. Actin filaments in model Hirano bodies are also protected from latrunculin-induced depolymerization. We used nocodazole and blebbistatin to probe the role of the microtubules and myosin II, respectively, in the formation of model Hirano bodies. In the presence of these inhibitors, model Hirano bodies can form but are smaller than controls at early times of formation. The ultrastructure of model Hirano bodies did not reveal any major difference in structure and organization in the presence of inhibitors. In summary, these results support the conclusion that formation of model Hirano bodies is promoted by gain-of-function actin filament bundling, which enhances actin filament stabilization. Microtubules and myosin II contribute to but are not required for formation of model Hirano bodies. PMID:24632241
Basic instinct undressed: early spatiotemporal processing for primary sexual characteristics.
Legrand, Lore B; Del Zotto, Marzia; Tyrand, Rémi; Pegna, Alan J
2013-01-01
This study investigates the spatiotemporal dynamics associated with conscious and non-conscious processing of naked and dressed human bodies. To this effect, stimuli of naked men and women with visible primary sexual characteristics, as well as dressed bodies, were presented to 20 heterosexual male and female participants while acquiring high resolution EEG data. The stimuli were either consciously detectable (supraliminal presentations) or were rendered non-conscious through backward masking (subliminal presentations). The N1 event-related potential component was significantly enhanced in participants when they viewed naked compared to dressed bodies under supraliminal viewing conditions. More importantly, naked bodies of the opposite sex produced a significantly greater N1 component compared to dressed bodies during subliminal presentations, when participants were not aware of the stimulus presented. A source localization algorithm computed on the N1 showed that the response for naked bodies in the supraliminal viewing condition was stronger in body processing areas, primary visual areas and additional structures related to emotion processing. By contrast, in the subliminal viewing condition, only visual and body processing areas were found to be activated. These results suggest that naked bodies and primary sexual characteristics are processed early in time (i.e., <200 ms) and activate key brain structures even when they are not consciously detected. It appears that, similarly to what has been reported for emotional faces, sexual features benefit from automatic and rapid processing, most likely due to their high relevance for the individual and their importance for the species in terms of reproductive success.
Intervention for an Adolescent With Cerebral Palsy During Period of Accelerated Growth.
Reubens, Rebecca; Silkwood-Sherer, Debbie J
2016-01-01
The purpose of this case report was to describe changes in body functions and structures, activities, and participation after a biweekly 10-week program of home physical therapy and hippotherapy using a weighted compressor belt. A 13-year-old boy with spastic diplegic cerebral palsy, Gross Motor Function Classification System level II, was referred because of accelerated growth and functional impairments that limited daily activities. The Modified Ashworth Scale, passive range of motion, 1-Minute Walk Test, Timed Up and Down Stairs, Pediatric Balance Scale, Pediatric Evaluation of Disability Inventory Computer Adaptive Test, and Dimensions of Mastery Questionnaire 17 were examined at baseline, 5, and 10 weeks. Data at 5 and 10 weeks demonstrated positive changes in passive range of motion, balance, strength, functional activities, and motivation, with additional improvements in endurance and speed after 10 weeks. This report reveals enhanced body functions and structures and activities and improved participation and motivation.
A qualitative study of student responses to body painting.
Finn, Gabrielle M; McLachlan, John C
2010-01-01
One hundred and thirty-three preclinical medical students participated in 24 focus groups over the period 2007-2009 at Durham University. Focus groups were conducted to ascertain whether or not medical students found body painting anatomical structures to be an educationally beneficial learning activity. Data were analyzed using a grounded theory approach. Five principal themes emerged: (1) body painting as a fun learning activity, (2) body painting promoting retention of knowledge, (3) factors contributing to the memorability of body painting, (4) removal from comfort zone, and (5) the impact of body painting on students' future clinical practice. Students perceive body painting to be a fun learning activity, which aids their retention of the anatomical knowledge acquired during the session. Sensory factors, such as visual stimuli, especially color, and the tactile nature of the activity, promote recall. Students' preference for painting a peer or being painted is often dependent upon their learning style, but there are educational benefits for both roles. The moderate amounts of undressing involved encouraging students to consider issues surrounding body image; this informs their attitudes towards future patients. Body painting is a useful adjunct to traditional anatomy and clinical skills teaching. The fun element involved in the delivery of this teaching defuses the often formal academic context, which in turn promotes a positive learning environment. Copyright 2009 American Association of Anatomists.
A fluid-structure interaction model of soft robotics using an active strain approach
NASA Astrophysics Data System (ADS)
Hess, Andrew; Lin, Zhaowu; Gao, Tong
2017-11-01
Soft robotic swimmers exhibit rich dynamics that stem from the non-linear interplay of the fluid and immersed soft elastic body. Due to the difficulty of handling the nonlinear two-way coupling of hydrodynamic flow and deforming elastic body, studies of flexible swimmers often employ either one-way coupling strategies with imposed motions of the solid body or some simplified elasticity models. To explore the nonlinear dynamics of soft robots powered by smart soft materials, we develop a computational model to deal with the two-way fluid/elastic structure interactions using the fictitious domain method. To mimic the dynamic response of the functional soft material under external actuations, we assume the solid phase to be neo-Hookean, and employ an active strain approach to incorporate actuation, which is based on the multiplicative decomposition of the deformation gradient tensor. We demonstrate the capability of our algorithm by performing a series of numerical explorations that manipulate an elastic structure with finite thickness, starting from simple rectangular or circular plates to soft robot prototypes such as stingrays and jellyfish.
[Insulin-like growth factor-1 (IGF-1) - structure and the role in the human body].
Filus, Alicja; Zdrojewicz, Zygmunt
2015-01-01
In the recent years, managed to broadly explore the structure and role of insulin-like growth factors type 1 and 2 (IGF1 I 2). They belong to the structure of polypeptide hormones homologous to proinsulin. They are characterized by a wide range of activities. IGF-1 is a key mediator of most tissue effects of growth hormone (GH). In addition to effects on growth processes of the body, is also an important factor for cell homeostasis, is subject to both endocrine and tissue-specific auto- and paracrine regulation. In this paper, the current, general knowledge on the structure, function and mechanism of biological effects of IGF-1 in the human body was presented. Attention was also drawn to the directions of use of IGf-1 in the treatment of other diseases than the diseases of the hypothalamic-pituitary and growth disorders in children. © Polish Society for Pediatric Endocrinology and Diabetology.
Hattar, Anne; Pal, Sebely; Hagger, Martin S
2016-03-01
We tested the adequacy of a model based on the Health Action Process Approach (HAPA) in predicting changes in psychological, body composition, and cardiovascular risk outcomes with respect to physical activity participation in overweight and obese adults. Measures of HAPA constructs (action and maintenance self-efficacy, outcome expectancies, action planning, risk perceptions, intentions, behaviour), psychological outcomes (quality of life, depression, anxiety, stress symptoms), body composition variables (body weight, body fat mass), cardiovascular risk measures (total cholesterol, low density lipoprotein), and self-reported physical activity behaviour were administered to participants (N = 74) at baseline, and 6 and 12 weeks later. Data were analysed using variance-based structural equation modelling with residualised change scores for HAPA variables. The model revealed effects of action self-efficacy and outcome expectancies on physical activity intentions, action self-efficacy on maintenance self-efficacy, and maintenance self-efficacy and intentions on action planning. Intention predicted psychological and body composition outcomes indirectly through physical activity behaviour. Action planning was a direct predictor of psychological, cardiovascular, and body composition outcomes. Data supported HAPA hypotheses in relation to intentions and behaviour, but not the role of action planning as a mediator of the intention-behaviour relationship. Action planning predicted outcomes independent of intentions and behaviour. © 2016 The International Association of Applied Psychology.
NASA Technical Reports Server (NTRS)
Podwysocki, M. H.; Gold, D. P.
1974-01-01
Hypothetical models are considered for detecting subsurface structure from the fracture or joint pattern, which may be influenced by the structure and propagated to the surface. Various patterns of an initially orthogonal fracture grid are modeled according to active and passive deformation mechanisms. In the active periclinal structure with a vertical axis, fracture frequency increased both over the dome and basin, and remained constant with decreasing depth to the structure. For passive periclinal features such as a reef or sand body, fracture frequency is determined by the arc of curvature and showed a reduction over the reefmound and increased over the basin.
Dense-body aggregates as plastic structures supporting tension in smooth muscle cells.
Zhang, Jie; Herrera, Ana M; Paré, Peter D; Seow, Chun Y
2010-11-01
The wall of hollow organs of vertebrates is a unique structure able to generate active tension and maintain a nearly constant passive stiffness over a large volume range. These properties are predominantly attributable to the smooth muscle cells that line the organ wall. Although smooth muscle is known to possess plasticity (i.e., the ability to adapt to large changes in cell length through structural remodeling of contractile apparatus and cytoskeleton), the detailed structural basis for the plasticity is largely unknown. Dense bodies, one of the most prominent structures in smooth muscle cells, have been regarded as the anchoring sites for actin filaments, similar to the Z-disks in striated muscle. Here, we show that the dense bodies and intermediate filaments formed cable-like structures inside airway smooth muscle cells and were able to adjust the cable length according to cell length and tension. Stretching the muscle cell bundle in the relaxed state caused the cables to straighten, indicating that these intracellular structures were connected to the extracellular matrix and could support passive tension. These plastic structures may be responsible for the ability of smooth muscle to maintain a nearly constant tensile stiffness over a large length range. The finding suggests that the structural plasticity of hollow organs may originate from the dense-body cables within the smooth muscle cells.
Garn, Alex C; Morin, Alexandre J S; Martin, Jeffrey; Centeio, Erin; Shen, Bo; Kulik, Noel; Somers, Cheryl; McCaughtry, Nate
2016-06-01
This study investigated a reciprocal effects model (REM) of children's body fat self-concept and physical self-concept, and objectively measured school physical activity at different intensities. Grade four students (N = 376; M age = 9.07, SD = .61; 55% boys) from the midwest region of the United States completed measures of physical self-concept and body fat self-concept, and wore accelerometers for three consecutive school days at the beginning and end of one school year. Findings from structural equation modeling analyses did not support reciprocal effects. However, children's body fat self-concept predicted future physical self-concept and moderate-to-vigorous physical activity (MVPA). Multigroup analyses explored the moderating role of weight status, sex, ethnicity, and sex*ethnicity within the REM. Findings supported invariance, suggesting that the observed relations were generalizable for these children across demographic groups. Links between body fat self-concept and future physical self-concept and MVPA highlight self-enhancing effects that can promote children's health and well-being.
Generation of dynamo waves by spatially separated sources in the Earth and other celestial bodies
NASA Astrophysics Data System (ADS)
Popova, E.
2017-12-01
The amplitude and the spatial configuration of the planetary and stellar magnetic field can changing over the years. Celestial bodies can have cyclic, chaotic or unchanging in time magnetic activity which is connected with a dynamo mechanism. This mechanism is based on the consideration of the joint influence of the alpha-effect and differential rotation. Dynamo sources can be located at different depths (active layers) of the celestial body and can have different intensities. Application of this concept allows us to get different forms of solutions and some of which can include wave propagating inside the celestial body. We analytically showed that in the case of spatially separated sources of magnetic field each source generates a wave whose frequency depends on the physical parameters of its source. We estimated parameters of sources required for the generation nondecaying waves. We discus structure of such sources and matter motion (including meridional circulation) in the liquid outer core of the Earth and active layers of other celestial bodies.
A Qualitative Study of Student Responses to Body Painting
ERIC Educational Resources Information Center
Finn, Gabrielle M.; McLachlan, John C.
2010-01-01
One hundred and thirty-three preclinical medical students participated in 24 focus groups over the period 2007-2009 at Durham University. Focus groups were conducted to ascertain whether or not medical students found body painting anatomical structures to be an educationally beneficial learning activity. Data were analyzed using a grounded theory…
Dietary fat intake predicts 1-year change in body fat in adolescent girls with type 1 diabetes.
Särnblad, Stefan; Ekelund, Ulf; Aman, Jan
2006-06-01
The purpose of this study was to determine whether objectively measured physical activity and dietary macronutrient intake differentially predict body fat in adolescent girls with type 1 diabetes and control girls. This study comprised 23 girls (12-19 years) with type 1 diabetes and 19 age-matched healthy control girls. At baseline, physical activity and energy intake were assessed for 7 consecutive days by accelerometry and a structured food diary, respectively. Body composition was measured by dual-energy X-ray absorptiometry at baseline and after 1 year. Fat intake was positively related to a 1-year change in percentage body fat (P = 0.006), after adjustment for total energy intake. No significant interaction was observed (case-control group x main exposure), indicating that the association between fat intake and gain in body fat was similar in both groups. Physical activity did not predict gain in body fat; however, total physical activity was positively associated with a gain in lean body mass (P < 0.01). Girls treated with six daily dosages of insulin increased their percentage of body fat significantly more than those treated with four daily injections (P < 0.05). In this prospective case-control study, we found that fat intake predicted gain in percentage of body fat in both adolescent girls with type 1 diabetes and healthy control girls. The number of daily insulin injections seems to influence the accumulation of body fat in girls with type 1 diabetes.
RANZCR Body Systems Framework of diagnostic imaging examination descriptors.
Pitman, Alexander G; Penlington, Lisa; Doromal, Darren; Slater, Gregory; Vukolova, Natalia
2014-08-01
A unified and logical system of descriptors for diagnostic imaging examinations and procedures is a desirable resource for radiology in Australia and New Zealand and is needed to support core activities of RANZCR. Existing descriptor systems available in Australia and New Zealand (including the Medicare DIST and the ACC Schedule) have significant limitations and are inappropriate for broader clinical application. An anatomically based grid was constructed, with anatomical structures arranged in rows and diagnostic imaging modalities arranged in columns (including nuclear medicine and positron emission tomography). The grid was segregated into five body systems. The cells at the intersection of an anatomical structure row and an imaging modality column were populated with short, formulaic descriptors of the applicable diagnostic imaging examinations. Clinically illogical or physically impossible combinations were 'greyed out'. Where the same examination applied to different anatomical structures, the descriptor was kept identical for the purposes of streamlining. The resulting Body Systems Framework of diagnostic imaging examination descriptors lists all the reasonably common diagnostic imaging examinations currently performed in Australia and New Zealand using a unified grid structure allowing navigation by both referrers and radiologists. The Framework has been placed on the RANZCR website and is available for access free of charge by registered users. The Body Systems Framework of diagnostic imaging examination descriptors is a system of descriptors based on relationships between anatomical structures and imaging modalities. The Framework is now available as a resource and reference point for the radiology profession and to support core College activities. © 2014 The Royal Australian and New Zealand College of Radiologists.
Leonova, Olga G; Karajan, Bella P; Ivlev, Yuri F; Ivanova, Julia L; Skarlato, Sergei O; Popenko, Vladimir I
2013-01-01
We have earlier shown that the typical Didinium nasutum nucleolus is a complex convoluted branched domain, comprising a dense fibrillar component located at the periphery of the nucleolus and a granular component located in the central part. Here our main interest was to study quantitatively the spatial distribution of nucleolar chromatin structures in these convoluted nucleoli. There are no "classical" fibrillar centers in D.nasutum nucleoli. The spatial distribution of nucleolar chromatin bodies, which play the role of nucleolar organizers in the macronucleus of D.nasutum, was studied using 3D reconstructions based on serial ultrathin sections. The relative number of nucleolar chromatin bodies was determined in macronuclei of recently fed, starved D.nasutum cells and in resting cysts. This parameter is shown to correlate with the activity of the nucleolus. However, the relative number of nucleolar chromatin bodies in different regions of the same convoluted nucleolus is approximately the same. This finding suggests equal activity in different parts of the nucleolar domain and indicates the existence of some molecular mechanism enabling it to synchronize this activity in D. nasutum nucleoli. Our data show that D. nasutum nucleoli display bipartite structure. All nucleolar chromatin bodies are shown to be located outside of nucleoli, at the periphery of the fibrillar component.
Kumar, G K
1997-02-14
The purposes of the present study are to identify and characterize the major peptidase(s) that may be involved in the inactivation of neuropeptides in the mammalian carotid body. Measurements of a number of peptidase activities in the cell-free extract of the cat carotid body using specific substrates and inhibitors indicated that the previously identified neutral endopeptidase (NEP)-like activity [Kumar et al., Brain Res., 517 (1990) 341-343] is the major peptidase in the chemoreceptor tissue. The NEP-like activity of the carotid body was further characterized using a monoclonal antibody to human neutral endopeptidase, EC 3.4.24.11. Immune blot analysis indicated strong immunoreactivity toward the cat and calf carotid bodies but a weak cross-reactivity with the rabbit carotid body. Furthermore, western blot analysis of the cat carotid body extract revealed the presence of a major 97-kDa protein and a minor 200-kDa protein. The 97-kDa NEP form of the carotid body was comparable to EC 3.4.24.11 and was consistent with its reported molecular weight suggesting NEP-like activity of the carotid body is structurally similar to the neutral endopeptidase, EC 3.4.24.11. In order to assess whether NEP is the primary peptide degrading activity in the cat carotid body in vitro hydrolysis studies using substance P (SP) as a model peptide were performed. HPLC analysis showed that SP is hydrolyzed maximally at pH 7.0 by carotid body peptidases with the formation of SP(1-7) and SP(1-8) as stable intermediates. Inhibitors specific to NEP also inhibited the SP-hydrolyzing activity of the carotid body. Analyses of the cell-free extracts showed the occurrence of both NEP and SP-hydrolyzing activities in the rabbit and rat carotid bodies although at 2- and 4-fold lower levels respectively than that observed in the cat carotid body. Immunoelectron microscopy showed that NEP-specific immunoreactivity is associated with the intercellular region between the type I cells and cell clusters of the carotid body. Taken together, the results from this investigation demonstrate that neutral endopeptidase (EC 3.4.24.11) is one of the major endopeptidases which mediates the degradation and inactivation of neuropeptides in the carotid body.
Beckwée, David; Vaes, Peter; Shahabpour, Maryam; Muyldermans, Ronald; Rommers, Nikki; Bautmans, Ivan
2015-12-01
Bone marrow lesions (BMLs) are considered as predictors of pain, disability, and structural progression of knee osteoarthritis. The relationship between knee loading and BMLs is not yet completely understood. To summarize the available evidence regarding the relationship between joint loading and the prevalence and progression of BMLs in the tibiofemoral joint. Meta-analysis. Three databases (PubMed, Web of Science, and The Cochrane Library) were systematically screened for studies encompassing BMLs and changes in knee loading. A methodological quality assessment was conducted, and a meta-analysis computing overall odds ratios (ORs) was performed where possible. A total of 29 studies involving 7641 participants were included. Mechanical loading was categorized as body weight and composition, compartmental load, structural lesion, and physical activity. High compartmental loads and structural lesions increased the risk for BMLs (overall ORs ranging from 1.56 [95% CI, 1.13-2.15] to 8.2 [95% CI, 4.4-15.1]; P = .006). Body weight increased the risk for BMLs to a lesser extent (overall OR, 1.03; 95% CI, 1.01-1.05; P = .007). Contradictory results for the effect of physical activity on BMLs were found. Augmented compartmental loads and structural lesions increased the risk of the presence or progression of BMLs. Body weight increased the risk for BMLs to a lesser extent. Contradictory results for the effect of physical activity on BMLs may be explained by a dose-response relationship, knee alignment, and structural lesions. It has been shown that unloading the knee temporarily may induce beneficial effects on osteoarthritis-related structural changes. Therefore, an early recognition of BMLs in the aging athlete's knee may provide information to counter the onset and aggravation of symptomatic knee osteoarthritis by reducing the knee load. © 2015 The Author(s).
Chaos in the heart: the interaction between body and mind
NASA Astrophysics Data System (ADS)
Redington, Dana
1993-11-01
A number of factors influence the chaotic dynamics of heart function. Genetics, age, sex, disease, the environment, experience, and of course the mind, play roles in influencing cardiovascular dynamics. The mind is of particular interest because it is an emergent phenomenon of the body admittedly seated and co-occurrent in the brain. The brain serves as the body's controller, and commands the heart through complex multipathway feedback loops. Structures deep within the brain, the hypothalamus and other centers in the brainstem, modulate heart function, partially as a result of afferent input from the body but also a result of higher mental processes. What can chaos in the body, i.e., the nonlinear dynamics of the heart, tell of the mind? This paper presents a brief overview of the spectral structure of heart rate activity followed by a summary of experimental results based on phase space analysis of data from semi-structured interviews. This paper then describes preliminary quantification of cardiovascular dynamics during different stressor conditions in an effort to apply more quantitative methods to clinical data.
A triboelectric motion sensor in wearable body sensor network for human activity recognition.
Hui Huang; Xian Li; Ye Sun
2016-08-01
The goal of this study is to design a novel triboelectric motion sensor in wearable body sensor network for human activity recognition. Physical activity recognition is widely used in well-being management, medical diagnosis and rehabilitation. Other than traditional accelerometers, we design a novel wearable sensor system based on triboelectrification. The triboelectric motion sensor can be easily attached to human body and collect motion signals caused by physical activities. The experiments are conducted to collect five common activity data: sitting and standing, walking, climbing upstairs, downstairs, and running. The k-Nearest Neighbor (kNN) clustering algorithm is adopted to recognize these activities and validate the feasibility of this new approach. The results show that our system can perform physical activity recognition with a successful rate over 80% for walking, sitting and standing. The triboelectric structure can also be used as an energy harvester for motion harvesting due to its high output voltage in random low-frequency motion.
Brain activity elicited by viewing pictures of the own virtually amputated body predicts xenomelia.
Oddo-Sommerfeld, Silvia; Hänggi, Jürgen; Coletta, Ludovico; Skoruppa, Silke; Thiel, Aylin; Stirn, Aglaja V
2018-01-08
Xenomelia is a rare condition characterized by the persistent desire for the amputation of physically healthy limbs. Prior studies highlighted the importance of superior and inferior parietal lobuli (SPL/IPL) and other sensorimotor regions as key brain structures associated with xenomelia. We expected activity differences in these areas in response to pictures showing the desired body state, i.e. that of an amputee in xenomelia. Functional magnetic resonance images were acquired in 12 xenomelia individuals and 11 controls while they viewed pictures of their own real and virtually amputated body. Pictures were rated on several dimensions. Multivariate statistics using machine learning was performed on imaging data. Brain activity when viewing pictures of one's own virtually amputated body predicted group membership accurately with a balanced accuracy of 82.58% (p = 0.002), sensitivity of 83.33% (p = 0.018), specificity of 81.82% (p = 0.015) and an area under the ROC curve of 0.77. Among the highest predictive brain regions were bilateral SPL, IPL, and caudate nucleus, other limb representing areas, but also occipital regions. Pleasantness and attractiveness ratings were higher for amputated bodies in xenomelia. Findings show that neuronal processing in response to pictures of one's own desired body state is different in xenomelia compared with controls and might represent a neuronal substrate of the xenomelia complaints that become behaviourally relevant, at least when rating the pleasantness and attractiveness of one's own body. Our findings converge with structural peculiarities reported in xenomelia and partially overlap in task and results with that of anorexia and transgender research. Copyright © 2017 Elsevier Ltd. All rights reserved.
McCrea, Simon M
2007-06-18
Naming and localization of individual body part words to a high-resolution line drawing of a full human figure was tested in a mixed-sex sample of nine right handed subjects. Activation within the superior medial left parietal cortex and bilateral dorsolateral cortex was consistent with involvement of the body schema which is a dynamic postural self-representation coding and combining sensory afference and motor efference inputs/outputs that is automatic and nonconscious. Additional activation of the left rostral occipitotemporal cortex was consistent with involvement of the neural correlates of the verbalizable body structural description that encodes semantic and categorical representations to animate objects such as full human figures. The results point to a highly distributed cortical representation for the encoding and manipulation of body part information and highlight the need for the incorporation of more ecologically valid measures of body schema coding in future functional neuroimaging studies.
Distributed digital signal processors for multi-body flexible structures
NASA Technical Reports Server (NTRS)
Lee, Gordon K. F.
1992-01-01
Multi-body flexible structures, such as those currently under investigation in spacecraft design, are large scale (high-order) dimensional systems. Controlling and filtering such structures is a computationally complex problem. This is particularly important when many sensors and actuators are located along the structure and need to be processed in real time. This report summarizes research activity focused on solving the signal processing (that is, information processing) issues of multi-body structures. A distributed architecture is developed in which single loop processors are employed for local filtering and control. By implementing such a philosophy with an embedded controller configuration, a supervising controller may be used to process global data and make global decisions as the local devices are processing local information. A hardware testbed, a position controller system for a servo motor, is employed to illustrate the capabilities of the embedded controller structure. Several filtering and control structures which can be modeled as rational functions can be implemented on the system developed in this research effort. Thus the results of the study provide a support tool for many Control/Structure Interaction (CSI) NASA testbeds such as the Evolutionary model and the nine-bay truss structure.
Basic Instinct Undressed: Early Spatiotemporal Processing for Primary Sexual Characteristics
Legrand, Lore B.; Del Zotto, Marzia; Tyrand, Rémi; Pegna, Alan J.
2013-01-01
This study investigates the spatiotemporal dynamics associated with conscious and non-conscious processing of naked and dressed human bodies. To this effect, stimuli of naked men and women with visible primary sexual characteristics, as well as dressed bodies, were presented to 20 heterosexual male and female participants while acquiring high resolution EEG data. The stimuli were either consciously detectable (supraliminal presentations) or were rendered non-conscious through backward masking (subliminal presentations). The N1 event-related potential component was significantly enhanced in participants when they viewed naked compared to dressed bodies under supraliminal viewing conditions. More importantly, naked bodies of the opposite sex produced a significantly greater N1 component compared to dressed bodies during subliminal presentations, when participants were not aware of the stimulus presented. A source localization algorithm computed on the N1 showed that the response for naked bodies in the supraliminal viewing condition was stronger in body processing areas, primary visual areas and additional structures related to emotion processing. By contrast, in the subliminal viewing condition, only visual and body processing areas were found to be activated. These results suggest that naked bodies and primary sexual characteristics are processed early in time (i.e., <200 ms) and activate key brain structures even when they are not consciously detected. It appears that, similarly to what has been reported for emotional faces, sexual features benefit from automatic and rapid processing, most likely due to their high relevance for the individual and their importance for the species in terms of reproductive success. PMID:23894532
Popov, Roman S; Ivanchina, Natalia V; Silchenko, Alexandra S; Avilov, Sergey A; Kalinin, Vladimir I; Dolmatov, Igor Yu; Stonik, Valentin A; Dmitrenok, Pavel S
2017-10-02
The Far Eastern sea cucumber Eupentacta fraudatrix is an inhabitant of shallow waters of the south part of the Sea of Japan. This animal is an interesting and rich source of triterpene glycosides with unique chemical structures and various biological activities. The objective of this study was to investigate composition and distribution in various body components of triterpene glycosides of the sea cucumber E. fraudatrix . We applied LC-ESI MS (liquid chromatography-electrospray mass spectrometry) of whole body extract and extracts of various body components for metabolic profiling and structure elucidation of triterpene glycosides from the E. fraudatrix . Totally, 54 compounds, including 26 sulfated, 18 non-sulfated and 10 disulfated glycosides were detected and described. Triterpene glycosides from the body walls, gonads, aquapharyngeal bulbs, guts and respiratory trees were extracted separately and the distributions of the detected compounds in various body components were analyzed. Series of new glycosides with unusual structural features were described in E. fraudatrix , which allow clarifying the biosynthesis of these compounds. Comparison of the triterpene glycosides contents from the five different body components revealed that the profiles of triterpene glycosides were qualitatively similar, and only some quantitative variabilities for minor compounds were observed.
Active Vibration Control of a Railway Vehicle Carbody Using Piezoelectric Elements
NASA Astrophysics Data System (ADS)
Molatefi, Habibollah; Ayoubi, Pejman; Mozafari, Hozhabr
2017-07-01
In recent years and according to modern transportation development, rail vehicles are manufactured lighter to achieve higher speed and lower transportation costs. On the other hand, weight reduction of rail vehicles leads to increase the structural vibration. In this study, Active Vibration Control of a rail vehicle using piezoelectric elements is investigated. The optimal control employed as the control approach regard to the first two modes of vibration. A simplified Car body structure is modeled in Matlab using the finite element theory by considering six DOF beam element and then the Eigen functions and mode shapes are derived. The surface roughness of different classes of rail tracks have been obtained using random vibration theory and applied to the secondary suspension as the excitation of the structure; Then piezoelectric mounted where the greatest moments were captured. The effectiveness of Piezoelectric in structural vibrations attenuation of car body is demonstrated through the state space equations and its effect on modal coefficient.
NASA Astrophysics Data System (ADS)
Smailbegovic, Amer
This study used a multifaceted approach to investigate the geology and metallogenesis of the Bodie Hills region and the Aurora mining district. The factors influencing regional- and local-scale metallogenesis are compared and discussed in context of the various datasets, analysis techniques and methodologies. The Aurora and Bodie mining districts are located in the Miocene volcanics of the Bodie Hills, north of Mono Lake, on the opposite sides of the Nevada-California state line. From the standpoint of economic geology, both deposits are structurally controlled, low-sulfidation, quartz-adularia-sericite precious metal vein deposits with an extensive alteration halo. The area has been exploited since late 1870s by both underground and minor open pit operations (Aurora), exposing portions of altered andesites, rhyolite flows and tuffs and quartz-adularia-sericite veins. Much of the previous geologic mapping and explanation in Aurora was ad-hoc and primarily in support of the mining operations, without particular interest paid to the system as a whole. Using detailed field mapping and interpretation of the deposit in Bodie as a guide, a combined array of geophysical data in conjunction with traditional field mapping and GIS-based Weights of Evidence (WofE) modeling was utilized to attain better understanding of the Aurora district and both districts in the local and regional framework. The gravity data suggests a NE-trending, positive anomaly, resulting from a density contrast between the presumably uplifted pre-Tertiary basement and Miocene volcanic assemblage in the Bodie Hills. The aeromagnetic data are dominated by the strong signature of the Miocene volcanism (vents, flows, etc.) and suggests that the volcanic activity is concentrated along the northeasterly corridor of basement uplift. Multispectral, spaceborne imagery (Landsat ETM, ASTER) shows the regional structural setting, which is dominated by NNE and NE-trending lineaments and major alteration trends in the Bodie Hills. The high-resolution, narrow-swath, hyperspectral data obtained from high and low altitude AVIRIS targeted on the individual districts, allows identification of hydrothermal alteration assemblages, potential structural mineralization conduits and surface manifestations of mineralization. Individual segments of the regional-to-local geophysical survey are field checked and spatially integrated using WofE. The interpretation and WofE modeling of the geophysical data and detailed geologic field mapping reveal a close relationship between the basement uplift (source for metals), NE-trending structures (conduits), volcanic activity (energy), hydrothermal activity (genesis) and mineralization in Aurora and Bodie. This study confirms that Aurora represents a low-sulfidation system hosted in a strike-slip influenced dilational vein system, which may be genetically associated with the initial phase of Miocene extension and stress accommodation in Western Great Basin during 15--8 Ma.
2012-05-10
Basin, China , the crust and subduction zone beneath western Colombia, and a thermally active region within Utah in the central United States...Burlacu, R., Rowe, C., and Y. Yang (2009). Joint geophysical imaging of the geothermal sites in the Utah area using seismic body waves, surface waves and
Cognition in action: imaging brain/body dynamics in mobile humans.
Gramann, Klaus; Gwin, Joseph T; Ferris, Daniel P; Oie, Kelvin; Jung, Tzyy-Ping; Lin, Chin-Teng; Liao, Lun-De; Makeig, Scott
2011-01-01
We have recently developed a mobile brain imaging method (MoBI), that allows for simultaneous recording of brain and body dynamics of humans actively behaving in and interacting with their environment. A mobile imaging approach was needed to study cognitive processes that are inherently based on the use of human physical structure to obtain behavioral goals. This review gives examples of the tight coupling between human physical structure with cognitive processing and the role of supraspinal activity during control of human stance and locomotion. Existing brain imaging methods for actively behaving participants are described and new sensor technology allowing for mobile recordings of different behavioral states in humans is introduced. Finally, we review recent work demonstrating the feasibility of a MoBI system that was developed at the Swartz Center for Computational Neuroscience at the University of California, San Diego, demonstrating the range of behavior that can be investigated with this method.
NASA Astrophysics Data System (ADS)
Fritsch, A.; Ayyad, Y.; Bazin, D.; Beceiro-Novo, S.; Bradt, J.; Carpenter, L.; Cortesi, M.; Mittig, W.; Suzuki, D.; Ahn, T.; Kolata, J. J.; Howard, A. M.; Becchetti, F. D.; Wolff, M.
Some exotic nuclei appear to exhibit α -cluster structure, which may impact nucleosynthesis reaction rates. While various theoretical models currently describe such clustering, more experimental data are needed to constrain model predictions. The Prototype Active-Target Time-Projection Chamber (PAT-TPC) has low-energy thresholds for charged-particle decay and a high detection efficiency due to its thick gaseous active target volume, making it well-suited to search for low-energy α -cluster reactions. Radioactive-ion beams produced by the TwinSol facility at the University of Notre Dame were delivered to the PAT-TPC to study 14C via α -resonant scattering. Differential cross sections and excitation functions were measured and show evidence of three-body exit channels. Additional data were measured with an updated Micromegas detector more sensitive to three-body decay. Preliminary results are presented.
Anorexia Nervosa, Obesity and Bone Metabolism
Misra, Madhusmita; Klibanski, Anne
2014-01-01
Anorexia nervosa and obesity are conditions at the extreme ends of the nutritional spectrum, associated with marked reductions versus increases respectively in body fat content. Both conditions are also associated with an increased risk for fractures. In anorexia nervosa, body composition and hormones secreted or regulated by body fat content are important determinants of low bone density, impaired bone structure and reduced bone strength. In addition, anorexia nervosa is characterized by increases in marrow adiposity and decreases in cold activated brown adipose tissue, both of which are related to low bone density. In obese individuals, greater visceral adiposity is associated with greater marrow fat, lower bone density and impaired bone structure. In this review, we discuss bone metabolism in anorexia nervosa and obesity in relation to adipose tissue distribution and hormones secreted or regulated by body fat content. PMID:24079076
Lu, Shih-Chin; Lin, Sung-Chyr
2012-01-05
Overexpression of recombinant N-acetyl-D-glucosamine 2-epimerase, one of the key enzymes for the synthesis of N-acetylneuraminic acid, in E. coli led to the formation of protein inclusion bodies. In this study we report the recovery of active epimerase from inclusion bodies by direct solubilization with Tris buffer. At pH 7.0, 25% of the inclusion bodies were solubilized with Tris buffer. The specific activity of the solubilized proteins, 2.08±0.02 U/mg, was similar to that of the native protein, 2.13±0.01 U/mg. The result of circular dichroism spectroscopy analysis indicated that the structure of the solubilized epimerase obtained with pH 7.0 Tris buffer was similar to that of the native epimerase purified from the clarified cell lysate. As expected, the extent of deviation in CD spectra increased with buffer pH. The total enzyme activity recovered by solubilization from inclusion bodies, 170.41±10.06 U/l, was more than 2.5 times higher than that from the clarified cell lysate, 67.32±5.53 U/l. The results reported in this study confirm the hypothesis that the aggregation of proteins into inclusion bodies is reversible and suggest that direct solubilization with non-denaturing buffers is a promising approach for the recovery of active proteins from inclusion bodies, especially for aggregation-prone multisubunit proteins. Copyright © 2011 Elsevier Inc. All rights reserved.
Structure and Barr body formation of an Xp + chromosome with two inactivation centers.
Daly, R F; Patau, K; Therman, E; Sarto, G E
1977-01-01
A patients with seizures, Von Willebrand disease, and symptoms of Turner syndrome was a chromosomal mosaic. In blood culture (1974), 56% of the cells were 45, X 33% 46, XXp+ and 11% 47,XXp + Xp +; in the skin, no cells with 47 chromosomes were found. Presumably the Xp + chromosome arose through a break in the Q-banded dark region next to the centromere on Xp to which an Xq had been attached. The abnormal X was late-labeling and formed a larger than normal Barr body. Of the chromatin-positive fibroblasts, 18.2% showed bipartite Barr bodies, which agrees with the hypothesis that the X inactivation center lies on the proximal part of the Xq. On the basis of the structure and behavior of the bipartite bodies in the present patient, as compared to those formed by other chromosomes with two presumed inactivation centers, we propose that the dark region next to the centromere of Xp remains active in the inactive X. In cells with 45,X and 46,XY, this region has the same relative size, whereas it is significantly shorter in the active X of three females, including the present patient, with one abnormal X. We propose that this region on the active X reveals different states of activity, as reflected in its length, depending on how many other X chromosomes are in the cell. Images Fig. 1 Fig. 2 Fig. 3 PMID:299980
Schultz, M C; Hermo, L; Leblond, C P
1984-09-01
The "round body," a spherical structure typically associated with a nucleolus in male germ cells of the rat, has been examined in the electron microscope using routine and cytochemical methods to determine its structure, composition, and mode of development. Cytochemical analysis indicates that the round body includes neither nucleic acid nor lipid, but is composed of nonhistone protein which appears in the form of 1.6-nm-wide fibrils. Development begins in late leptotene, when a single round body appears in each spermatocyte as an irregular spheroid located along the inner surface of the nuclear envelope. During subsequent stages of the meiotic prophase, the round body leaves the nuclear envelope, becomes a regular sphere, and gradually enlarges from a diameter of 0.4 micron in leptotene to 1.6 micron in diplotene. Concurrently, lacunae appear within its substance and enlarge. At each maturation division, the amount of round-body material is decreased by about half, presumably because the constituent proteins are dissociated at metaphase, distributed between the two daughter cells at telophase, and reconstituted into half-sized round bodies. As spermiogenesis proceeds, the round body shrinks gradually and disappears at step 8. Soon after its appearance at leptotene, the round body becomes associated with and is surrounded by the pars granulosa of one of the nucleoli. Moreover, 3H-uridine incorporation into nucleolar RNA is high as long as the size of the round body increases, but is low or absent when it decreases. It is possible, therefore, that the round body exerts some control on nucleolar activity in meiotic cells.
Wrottesley, Stephanie V.; Cohen, Emmanuel; Reddy, Ankita; Said-Mohamed, Rihlat; Twine, Rhian; Tollman, Stephen M.; Kahn, Kathleen; Dunger, David B.; Norris, Shane A.
2017-01-01
The persistence of food insecurity, malnutrition, increasing adiposity, and decreasing physical activity, heightens the need to understand relationships between body image satisfaction, eating attitudes, BMI and physical activity levels in South Africa. Females aged 18–23 years were recruited from rural (n = 509) and urban (n = 510) settings. Body image satisfaction was measured using Stunkard’s silhouettes, and the 26-item Eating Attitudes questionnaire (EAT-26) was used to evaluate participants’ risk of disordered eating. Minutes per week of moderate to vigorous physical activity (MVPA) was assessed using the Global Physical Activity Questionnaire (GPAQ). Significant linear correlates were included in a series of regressions run separately for urban and rural participants. Structural equation modeling (SEM) was used to test the relationships between variables. Urban females were more likely to be overweight and obese than rural females (p = 0.02), and had a greater desire to be thinner (p = 0.02). In both groups, being overweight or obese was positively associated with a desire to be thinner (p<0.01), and negatively associated with a desire to be fatter (p<0.01). Having a disordered eating attitude was associated with body image dissatisfaction in the urban group (β = 1.27, p<0.01, CI: 0.38; 2.16), but only with a desire to be fatter in the rural group (β = 0.63, p = 0.04, CI: 0.03; 1.23). In the SEM model, body image dissatisfaction was associated with disordered eating (β = 0.63), as well as higher MVPA participation (p<0.01). These factors were directly associated with a decreased risk of disordered eating attitude, and with a decreased desire to be thinner. Findings indicate a shift in both settings towards more Westernised ideals. Physical activity may provide a means to promote a healthy body image, while reducing the risk of disordered eating. Given the high prevalence of overweight and obesity in both rural and urban women, this study provides insights for future interventions aimed at decreasing adiposity in a healthy way. PMID:29145423
Prioreschi, Alessandra; Wrottesley, Stephanie V; Cohen, Emmanuel; Reddy, Ankita; Said-Mohamed, Rihlat; Twine, Rhian; Tollman, Stephen M; Kahn, Kathleen; Dunger, David B; Norris, Shane A
2017-01-01
The persistence of food insecurity, malnutrition, increasing adiposity, and decreasing physical activity, heightens the need to understand relationships between body image satisfaction, eating attitudes, BMI and physical activity levels in South Africa. Females aged 18-23 years were recruited from rural (n = 509) and urban (n = 510) settings. Body image satisfaction was measured using Stunkard's silhouettes, and the 26-item Eating Attitudes questionnaire (EAT-26) was used to evaluate participants' risk of disordered eating. Minutes per week of moderate to vigorous physical activity (MVPA) was assessed using the Global Physical Activity Questionnaire (GPAQ). Significant linear correlates were included in a series of regressions run separately for urban and rural participants. Structural equation modeling (SEM) was used to test the relationships between variables. Urban females were more likely to be overweight and obese than rural females (p = 0.02), and had a greater desire to be thinner (p = 0.02). In both groups, being overweight or obese was positively associated with a desire to be thinner (p<0.01), and negatively associated with a desire to be fatter (p<0.01). Having a disordered eating attitude was associated with body image dissatisfaction in the urban group (β = 1.27, p<0.01, CI: 0.38; 2.16), but only with a desire to be fatter in the rural group (β = 0.63, p = 0.04, CI: 0.03; 1.23). In the SEM model, body image dissatisfaction was associated with disordered eating (β = 0.63), as well as higher MVPA participation (p<0.01). These factors were directly associated with a decreased risk of disordered eating attitude, and with a decreased desire to be thinner. Findings indicate a shift in both settings towards more Westernised ideals. Physical activity may provide a means to promote a healthy body image, while reducing the risk of disordered eating. Given the high prevalence of overweight and obesity in both rural and urban women, this study provides insights for future interventions aimed at decreasing adiposity in a healthy way.
Maselli, Andrew; Furukawa, Ruth; Thomson, Susanne A. M.; Davis, Richard C.; Fechheimer, Marcus
2003-01-01
Hirano bodies are paracrystalline actin filament-containing structures reported to be associated with a variety of neurodegenerative diseases. However, the biological function of Hirano bodies remains poorly understood, since nearly all prior studies of these structures were done with postmortem samples of tissue. In the present study, we generated a full-length form of a Dictyostelium 34-kDa actin cross-linking protein with point mutations in the first putative EF hand, termed 34-kDa ΔEF1. The 34-kDa ΔEF1 protein binds calcium normally but has activated actin binding that is unregulated by calcium. The expression of the 34-kDa ΔEF1 protein in Dictyostelium induces the formation of Hirano bodies, as assessed by both fluorescence microscopy and transmission electron microscopy. Dictyostelium cells bearing Hirano bodies grow normally, indicating that Hirano bodies are not associated with cell death and are not deleterious to cell growth. Moreover, the expression of the 34-kDa ΔEF1 protein rescues the phenotypes of cells lacking the 34-kDa protein and cells lacking both the 34-kDa protein and α-actinin. Finally, the expression of the 34-kDa ΔEF1 protein also initiates the formation of Hirano bodies in cultured mouse fibroblasts. These results show that the failure to regulate the activity and/or affinity of an actin cross-linking protein can provide a signal for the formation of Hirano bodies. More generally, the formation of Hirano bodies is a cellular response to or a consequence of aberrant function of the actin cytoskeleton. PMID:12912897
Quezada, Amado D; Macías-Waldman, Nayeli; Salmerón, Jorge; Swigart, Tessa; Gallegos-Carrillo, Katia
2017-11-17
Depression is a foremost cause of morbidity throughout the world and the prevalence of depression in women is about twice as high as men. Additionally, overweight and obesity are major global health concerns. We explored the relationship between depression and body fat, and the role of physical activity and diet as mediators of this relationship in a sample of 456 adult female Mexican health workers. Longitudinal and cross-sectional analyses using data from adult women of the Health Workers Cohort Study (HWCS) Measures of body fat mass (kg from DEXA), dietary intake (kcal from FFQ), leisure time activity (METs/wk) and depression (CES-D) were determined in two waves (2004-2006 and 2010-2011). We explored the interrelation between body fat, diet, leisure time, physical activity, and depression using a cross-lagged effects model fitted to longitudinal data. We also fitted a structural equations model to cross-sectional data with body fat as the main outcome, and dietary intake and physical activity from leisure time as mediators between depression and body fat. Baseline depression was significantly related to higher depression, higher calorie intake, and lower leisure time physical activity at follow-up. From our cross-sectional model, each standard deviation increase in the depression score was associated with an average increase of 751 ± 259 g (± standard error) in body fat through the mediating effects of calorie intake and physical activity. The results of this study show how depression may influence energy imbalance between calories consumed and calories expended, resulting in higher body fat among those with a greater depression score. Evaluating the role of mental conditions like depression in dietary and physical activity behaviors should be positioned as a key research goal for better designed and targeted public health interventions. The HealthWorkers Cohort Study (HWCS) has been approved by the Institutional IRB. Number: 2005-785-012.
Noise-based body-wave seismic tomography in an active underground mine.
NASA Astrophysics Data System (ADS)
Olivier, G.; Brenguier, F.; Campillo, M.; Lynch, R.; Roux, P.
2014-12-01
Over the last decade, ambient noise tomography has become increasingly popular to image the earth's upper crust. The seismic noise recorded in the earth's crust is dominated by surface waves emanating from the interaction of the ocean with the solid earth. These surface waves are low frequency in nature ( < 1 Hz) and not usable for imaging smaller structures associated with mining or oil and gas applications. The seismic noise recorded at higher frequencies are typically from anthropogenic sources, which are short lived, spatially unstable and not well suited for constructing seismic Green's functions between sensors with conventional cross-correlation methods. To examine the use of ambient noise tomography for smaller scale applications, continuous data were recorded for 5 months in an active underground mine in Sweden located more than 1km below surface with 18 high frequency seismic sensors. A wide variety of broadband (10 - 3000 Hz) seismic noise sources are present in an active underground mine ranging from drilling, scraping, trucks, ore crushers and ventilation fans. Some of these sources generate favorable seismic noise, while others are peaked in frequency and not usable. In this presentation, I will show that the noise generated by mining activity can be useful if periods of seismic noise are carefully selected. Although noise sources are not temporally stable and not evenly distributed around the sensor array, good estimates of the seismic Green's functions between sensors can be retrieved for a broad frequency range (20 - 400 Hz) when a selective stacking scheme is used. For frequencies below 100 Hz, the reconstructed Green's functions show clear body-wave arrivals for almost all of the 153 sensor pairs. The arrival times of these body-waves are picked and used to image the local velocity structure. The resulting 3-dimensional image shows a high velocity structure that overlaps with a known ore-body. The material properties of the ore-body differ from the host rock and is likely the cause of the observed high velocity structure. For frequencies above 200 Hz, the seismic waves are multiply scattered by the tunnels and excavations and used to determine the scattering properties of the medium. The results of this study should be useful for future imaging and exploration projects in mining and oil and gas industries.
Meroterpenoids from the fruiting bodies of Ganoderma theaecolum.
Luo, Qi; Tu, Zheng-Chao; Yang, Zhu-Liang; Cheng, Yong-Xian
2018-03-01
A series of new terminal cyclohexane-type meroterpenoids, ganotheaecoloids A-N (1-6, 8-13, 15, and 16), along with three known ones (7, 14, and 17), were isolated from the dried fruiting bodies of Ganoderma theaecolum. Their chemical structures were identified by using spectroscopic data and computational methods. Biological activity of all the new meroterpenoids against COX-2 was evaluated in vitro, only ganotheaecoloid J (11) was found to have COX-2 inhibitory activity with IC 50 value of 9.96μM. Copyright © 2018 Elsevier B.V. All rights reserved.
[Concept of optimal body composition of professional football players].
Grigoryan, S
2011-09-01
Body composition and body weight are two of the many factors that contribute to optimal exercise performance. Body weight can influence an athlete's speed, endurance, and power, whereas body composition can affect an athlete's strength, agility, and appearance. Individualized assessment of an athlete's body composition and body weight or body image may be advantageous for the improvement of athletic performance. The purpose of the present research consists in development of physiologically proved modelling characteristic of high performance football players on the basis of the analysis of dynamics (changes) of the major parameters of structure of weight of football players of various ages in process of acquiring game experience and skill. 344 football players from 15 to 35 years old were surveyed. The basic parameters of body composition were determined. It was found that general tendency in dynamics of the basic components of structure of body composition at the end of playing season is expressed in appreciable gain of active cellular weight as analogue of the muscular mass, decrease in the absolute fat contents, increase in endocellular liquid and eritrocyte mass. Comparison of changeable parameters to external criteria of success in competition and tested productivity, adaptive reactions and stability of motivation led to the conclusion that quantitative sports-skill evaluation and forecast of the growth in achievements is possible.
Elephants and Their Young: Science and Math Activities for Young Children. Teacher's Guide.
ERIC Educational Resources Information Center
Echols, Jean C.; Kopp, Jaine; Blinderman, Ellen
This book contains a series of playful activities in which young children actively learn about the African elephant's body structure, family life, and social behavior. Children make model elephants out of paper and cardboard, then devise elephant puppets with sock trunks as well as create models of elephant's ears, trunks, tusks, make elephant…
Comparison of three empirical force fields for phonon calculations in CdSe quantum dots
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kelley, Anne Myers
Three empirical interatomic force fields are parametrized using structural, elastic, and phonon dispersion data for bulk CdSe and their predictions are then compared for the structures and phonons of CdSe quantum dots having average diameters of ~2.8 and ~5.2 nm (~410 and ~2630 atoms, respectively). The three force fields include one that contains only two-body interactions (Lennard-Jones plus Coulomb), a Tersoff-type force field that contains both two-body and three-body interactions but no Coulombic terms, and a Stillinger-Weber type force field that contains Coulombic interactions plus two-body and three-body terms. While all three force fields predict nearly identical peak frequencies formore » the strongly Raman-active “longitudinal optical” phonon in the quantum dots, the predictions for the width of the Raman peak, the peak frequency and width of the infrared absorption peak, and the degree of disorder in the structure are very different. The three force fields also give very different predictions for the variation in phonon frequency with radial position (core versus surface). The Stillinger-Weber plus Coulomb type force field gives the best overall agreement with available experimental data.« less
Giannattasio, Antonietta; Officioso, Annunziata; Continisio, Grazia Isabella; Griso, Giovanna; Storace, Cinzia; Coppini, Simonetta; Longhi, Daniela; Mango, Carmela; Guarino, Alfredo; Badolato, Raffaele; Pisacane, Alfredo
2011-01-01
After active antiretroviral therapy, children with HIV are clinically well, whereas psychosocial issues continue to influence their quality of life. The International Classification of Functioning, Disability and Health (ICF) of the World Health Organization evaluates health status and environmental and social factors associated with health. We investigated the efficacy of the ICF to describe the health status and needs of a cohort of children and adolescents with HIV seen at a reference center for pediatric AIDS in Europe. A quantitative analysis of structured interviews was performed. Caregivers of children and adolescents with HIV infection in follow-up at 2 reference centers for pediatric AIDS were enrolled. Four major areas included in the ICF instrument were investigated: impairments of body structures; impairments of body functions; environmental factors; and activity limitations and restrictions to social life. Forty-one families of children with HIV were enrolled. Body structures and functions were marginally impaired, whereas environmental factors and psychosocial issues had a relevant impact on quality of life. Most families considered environmental factors to be "barriers"; these were poverty, unemployment, and single-parent family structure. Activity limitations and social restrictions were also reported in a few cases. Almost all parents reported problems in disclosing their child's HIV status because of the fear of social stigma. Psychosocial issues are part of the well-being of children with HIV. The ICF is a standard tool to evaluate the clinical and psychosocial status of children and adolescents with HIV infection and to measure the impact of therapeutic interventions and strategies on psychosocial functioning.
SA54. The Structure of Embodied Emotions in Schizophrenia
Hong, Seok Jin; Snodgress, Matthew A.; Nichols, Heathman S.; Nummenmaa, Lauri; Glerean, Enrico; Park, Sohee
2017-01-01
Abstract Background: Past research suggests a disconnection between experienced emotions and bodily sensations in individuals with schizophrenia (SZ), but mechanisms underlying abnormal embodiment of emotions in SZ are unknown. There might be an overall reduction in emotion-related bodily sensations, but it is also possible that the spatial distribution of bodily sensations associated with emotions may be altered in SZ. We hypothesized the presence of a more coherent underlying structure giving rise to embodied emotions in healthy controls (HC) compared to SZ. Methods: Fifteen SZ and 15 demographically matched HC (bootstrapped from a possible 300 HC) were asked to complete the emBODY task (Nummenmaa et al., 2014). In the emBODY task, participants were asked to shade in where they felt sensations (activation and deactivation) on the outline of a human body when presented with an emotion word. Fourteen emotion words were presented sequentially. From activation and deactivation data, body maps of emotions were generated and 2 separate principal components analyses (PCA) were conducted, one for each group to determine the multivariate structure of embodied emotions. Results: The pattern of principal components for HC differed significantly from that of the SZ group. SZ showed more diffuse components with lesser magnitude than the HC. Moreover, the variance that accounts for these dimensions was significantly reduced for SZ. This suggests anomalous embodied emotion in SZ. In this PCA framework, a particular set of innate constructs is thought to yield the activation and deactivation maps of emotions on the body. Our results imply that the complexity of this set in SZ is highly deviant from that of the HC. Conclusion: Quantitative modeling of the underlying structure of self-reported embodied emotion provided novel insight into altered emotional experience in SZ. Our findings illustrate radically different bodily maps of emotions in SZ compared to HC. Bodily sensations are not only different in intensity but also in where they are felt in SZ. While an important first step, our analysis was exploratory and limited by the small sample size. Future direction includes probing the specific contents of the underlying dimensions that give rise to embodied emotions.
Where is your shoulder? Neural correlates of localizing others' body parts.
Felician, Olivier; Anton, Jean-Luc; Nazarian, Bruno; Roth, Muriel; Roll, Jean-Pierre; Romaiguère, Patricia
2009-07-01
Neuropsychological studies, based on pointing to body parts paradigms, suggest that left posterior parietal lobe is involved in the visual processing of other persons' bodies. In addition, some patients have been found with mild deficit when dealing with abstract human representations but marked impairment with realistically represented bodies, suggesting that this processing could be modulated by the abstraction level of the body to be analyzed. These issues were examined in the present fMRI experiment, designed to evaluate the effects of visually processing human bodies of different abstraction levels on brain activity. The human specificity of the studied processes was assessed using whole-body representations of humans and of dogs, while the effects of the abstraction level of the representation were assessed using drawings, photographs, and videos. To assess the effect of species and stimulus complexity on BOLD signal, we performed a two-way ANOVA with factors species (human versus animal) and stimulus complexity (drawings, photographs and videos). When pointing to body parts irrespective of the stimulus complexity, we observed a positive effect of humans upon animals in the left angular gyrus (BA 39), as suggested by lesion studies. This effect was also present in midline cortical structures including mesial prefrontal, anterior cingulate and precuneal regions. When pointing to body parts irrespective of the species to be processed, we observed a positive effect of videos upon photographs and drawings in the right superior parietal lobule (BA 7), and bilaterally in the superior temporal sulcus, the supramarginal gyrus (BA 40) and the lateral extrastriate visual cortex (including the "extrastriate body area"). Taken together, these data suggest that, in comparison with other mammalians, the visual processing of other humans' bodies is associated with left angular gyrus activity, but also with midline structures commonly implicated in self-reference. They also suggest a role of the lateral extrastriate cortex in the processing of dynamic and biologically relevant body representations.
[Compartmentalization of the cell nucleus and spatial organization of the genome].
Gavrilov, A A; Razin, S V
2015-01-01
The eukaryotic cell nucleus is one of the most complex cell organelles. Despite the absence of membranes, the nuclear space is divided into numerous compartments where different processes in- volved in the genome activity take place. The most important nuclear compartments include nucleoli, nuclear speckles, PML bodies, Cajal bodies, histone locus bodies, Polycomb bodies, insulator bodies, transcription and replication factories. The structural basis for the nuclear compartmentalization is provided by genomic DNA that occupies most of the nuclear volume. Nuclear compartments, in turn, guide the chromosome folding by providing a platform for the spatial interaction of individual genomic loci. In this review, we discuss fundamental principles of higher order genome organization with a focus on chromosome territories and chromosome domains, as well as consider the structure and function of the key nuclear compartments. We show that the func- tional compartmentalization of the cell nucleus and genome spatial organization are tightly interconnected, and that this form of organization is highly dynamic and is based on stochastic processes.
Chiang, Chung-Jen; Chen, Hong-Chen; Chao, Yun-Peng; Tzen, Jason T C
2005-06-15
Nattokinase, a serine protease, and pronattokinase, when expressed in Escherichia coli, formed insoluble aggregates without enzymatic activity. For functional expression and purification, nattokinase or pronattokinase was first overexpressed in E. coli as an insoluble recombinant protein linked to the C terminus of oleosin, a structural protein of seed oil bodies, by an intein fragment. Artificial oil bodies were reconstituted with triacylglycerol, phospholipid, and the insoluble recombinant protein thus formed. Soluble nattokinase was subsequently released through self-splicing of intein induced by temperature alteration, with the remaining oleosin-intein residing in oil bodies and the leading propeptide of pronattokinase, when present, spontaneously cleaved in the process. Active nattokinase with fibrinolytic activity was harvested by concentrating the supernatant. Nattokinase released from oleosin-intein-pronattokinase exhibited 5 times higher activity than that released from oleosin-intein-nattokinase, although the production yields were similar in both cases. Furthermore, active nattokinase could be harvested in the same system by fusing pronattokinase to the N terminus of oleosin via a different intein linker, with self-splicing induced by 1,4-dithiothreitol. These results have shown a great potential of this system for bacterial expression and purification of functional recombinant proteins.
Secomb, Josh L.; Nimphius, Sophia; Farley, Oliver R.L.; Lundgren, Lina E.; Tran, Tai T.; Sheppard, Jeremy M.
2015-01-01
The purpose of the present study was to determine whether any relationships were present between lower-body muscle structure and, lower-body strength, variables measured during a countermovement jump (CMJ) and squat jump (SJ), and eccentric leg stiffness, in adolescent athletes. Thirty junior male (n = 23) and female (n = 7) surfing athletes (14.8 ± 1.7 y; 1.63 ± 0.09 m; 54.8 ± 12.1 kg) undertook lower-body muscle structure assessment with ultrasonography and performed a; CMJ, SJ and an isometric mid-thigh pull (IMTP). In addition, eccentric leg stiffness was calculated from variables of the CMJ and IMTP. Moderate to very large relationships (r = 0.46-0.73) were identified between the thickness of the vastus lateralis (VL) and lateral gastrocnemius (LG) muscles, and VL pennation angle and; peak force (PF) in the CMJ, SJ and IMTP. Additionally, moderate to large relationships (r = 0.37-0.59) were found between eccentric leg stiffness and; VL and LG thickness, VL pennation angle, and LG fascicle length, with a large relationship (r = 0.59) also present with IMTP PF. These results suggest that greater thickness of the VL and LG were related to improved maximal dynamic and isometric strength, likely due to increased hypertrophy of the extensor muscles. Furthermore, this increased thickness was related to greater eccentric leg stiffness, as the associated enhanced lower-body strength likely allowed for greater neuromuscular activation, and hence less compliance, during a stretch-shortening cycle. Key points Greater thickness of the VL and LG muscles were significantly related to an enhanced ability to express higher levels of isometric and dynamic strength, and explosiveness in adolescent athletes. Isometric strength underpinned performance in the CMJ and SJ in these athletes. Greater lower-body isometric strength was significantly related to eccentric leg stiffness, which is potentially the result of greater neuromuscular activation in the muscle-tendon unit. PMID:26664263
Differences in Femoral Geometry and Structure Due to Immobilization
NASA Technical Reports Server (NTRS)
Kiratli, Beatrice Jenny; Yamada, M.; Smith, A.; Marcus, R. M.; Arnaud, S.; vanderMeulen, M. C. H.; Hargens, Alan R. (Technical Monitor)
1996-01-01
Reduction in bone mass of the lower extremity is well documented in individuals with paralysis resulting from spinal cord injury (SCI). The consequent osteopenia leads to elevated fracture risk with fractures occurring more commonly in the femoral shaft and supracondylar regions than the hip. A model has recently been described to estimate geometry and structure of the femoral midshaft from whole body scans by dual X-ray absorptiometry (DXA). Increases in femoral geometric and structural properties during growth were primarily related to mechanical loading as reflected by body mass. In this study, we investigate the relationship between body mass and femoral geometry and structure in adults with normal habitual mechanical loading patterns and those with severely reduced loading. The subjects were 78 ambulatory men (aged 20-72 yrs) and 113 men with complete paralysis from SCI of more than 4 years duration (aged 21 73 yrs). Subregional analysis was performed on DXA whole body scans to obtain bone mineral content (BMC, g), cortical thickness (cm), crosssectional moment of inertia (CSMI, cm4), and section modulus (cm3) of the femoral midshaft. All measured bone variables were significantly lower in SCI compared with ambulatory subjects: -29% (BMC), -33% (cortical thickness), -23% (CSMI), and -22% (section modulus) while body mass was not significantly different. However, the associations between body mass and bone properties were notably different; r2 values were higher for ambulatory than SCI subjects in regressions of body mass on BMC (0.48 vs 0.20), CSMI (0.59 vs 0.32), and section modulus (0.59 vs 0.31). No association was seen between body mass and cortical thickness for either group. The greatest difference between groups is in the femoral cortex, consistent with reduced bone mass via endosteal expansion. The relatively lesser difference in geometric and structural properties implies that there is less effect on mechanical integrity than would be expected from bone mass results alone. The reduced association in SCI subjects between body mass and bone properties is not unexpected. Although mean body mass differs little between ambulatory and SCI individuals, the association between body mass and in vivo skeletal loading is no longer present, as mechanical influences are removed except for transfer activities. The residual association is probably attributable to the strength of this influence during growth. These results highlight the importance of examining geometry and structure in conjunction with bone mass.
USDA-ARS?s Scientific Manuscript database
Weight reduction is recommended to reduce obesity-related health disorders. This study investigated the differential effects of weight reduction through caloric restriction and/or physical activity on bone structure and molecular characteristics of bone metabolism in an obese rat model. We tested th...
Li, Qiao-Zhen; Wu, Di; Zhou, Shuai; Liu, Yan-Fang; Li, Zheng-Peng; Feng, Jie; Yang, Yan
2016-06-25
HPB-3, a heteropolysaccharide, with a mean molecular weight of 1.5×10(4)Da, was obtained from the maturating-stage IV, V and VI fruiting body of Hericium erinaceus, exhibited higher macrophages stimulation activities, was able to upregulate the functional events mediated by activated macrophages, such as production of nitric oxide (NO). Monosaccharide composition analysis showed that HPB-3 comprised l-fucose, d-galactose and d-glucose in the ratio of 5.2:23.9:1. Its chemical structure was characterized by sugar and methylation analysis, along with (1)H and (13)C NMR spectroscopy, including (1)H-(1)H COSY, TOCSY, NOESY, HMQC and HMBC experiments. The results indicated that HPB-3 contained a-(1/6)-linked galactopyranosyl backbone, partially with a side chain composed of α-l-fucopyranose at the O-2 position. The predicted primary structure of the polysaccharide was established as below. Copyright © 2016 Elsevier Ltd. All rights reserved.
Structure of apo-CAP reveals that large conformational changes are necessary for DNA binding
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharma, Hitesh; Yu, Shaoning; Kong, Jilie
2009-10-21
The binding of cAMP to the Escherichia coli catabolite gene activator protein (CAP) produces a conformational change that enables it to bind specific DNA sequences and regulate transcription, which it cannot do in the absence of the nucleotide. The crystal structures of the unliganded CAP containing a D138L mutation and the unliganded WT CAP were determined at 2.3 and 3.6 {angstrom} resolution, respectively, and reveal that the two DNA binding domains have dimerized into one rigid body and their two DNA recognition helices become buried. The WT structure shows multiple orientations of this rigid body relative to the nucleotide bindingmore » domain supporting earlier biochemical data suggesting that the inactive form exists in an equilibrium among different conformations. Comparison of the structures of the liganded and unliganded CAP suggests that cAMP stabilizes the active DNA binding conformation of CAP through the interactions that the N{sup 6} of the adenosine makes with the C-helices. These interactions are associated with the reorientation and elongation of the C-helices that precludes the formation of the inactive structure.« less
Low nuclear body formation and tax SUMOylation do not prevent NF-kappaB promoter activation.
Bonnet, Amandine; Randrianarison-Huetz, Voahangy; Nzounza, Patrycja; Nedelec, Martine; Chazal, Maxime; Waast, Laetitia; Pene, Sabrina; Bazarbachi, Ali; Mahieux, Renaud; Bénit, Laurence; Pique, Claudine
2012-09-25
The Tax protein encoded by Human T-lymphotropic virus type 1 (HTLV-1) is a powerful activator of the NF-κB pathway, a property critical for HTLV-1-induced immortalization of CD4⁺ T lymphocytes. Tax permanently stimulates this pathway at a cytoplasmic level by activating the IκB kinase (IKK) complex and at a nuclear level by enhancing the binding of the NF-κB factor RelA to its cognate promoters and by forming nuclear bodies, believed to represent transcriptionally active structures. In previous studies, we reported that Tax ubiquitination and SUMOylation play a critical role in Tax localization and NF-κB activation. Indeed, analysis of lysine Tax mutants fused or not to ubiquitin or SUMO led us to propose a two-step model in which Tax ubiquitination first intervenes to activate IKK while Tax SUMOylation is subsequently required for promoter activation within Tax nuclear bodies. However, recent studies showing that ubiquitin or SUMO can modulate Tax activities in either the nucleus or the cytoplasm and that SUMOylated Tax can serve as substrate for ubiquitination suggested that Tax ubiquitination and SUMOylation may mediate redundant rather than successive functions. In this study, we analyzed the properties of a new Tax mutant that is properly ubiquitinated, but defective for both nuclear body formation and SUMOylation. We report that reducing Tax SUMOylation and nuclear body formation do not alter the ability of Tax to activate IKK, induce RelA nuclear translocation, and trigger gene expression from a NF-κB promoter. Importantly, potent NF-κB promoter activation by Tax despite low SUMOylation and nuclear body formation is also observed in T cells, including CD4⁺ primary T lymphocytes. Moreover, we show that Tax nuclear bodies are hardly observed in HTLV-1-infected T cells. Finally, we provide direct evidence that the degree of NF-κB activation by Tax correlates with the level of Tax ubiquitination, but not SUMOylation. These data reveal that the formation of Tax nuclear bodies, previously associated to transcriptional activities in Tax-transfected cells, is dispensable for NF-κB promoter activation, notably in CD4⁺ T cells. They also provide the first evidence that Tax SUMOylation is not a key determinant for Tax-induced NF-κB activation.
Low nuclear body formation and tax SUMOylation do not prevent NF-kappaB promoter activation
2012-01-01
Background The Tax protein encoded by Human T-lymphotropic virus type 1 (HTLV-1) is a powerful activator of the NF-κB pathway, a property critical for HTLV-1-induced immortalization of CD4+ T lymphocytes. Tax permanently stimulates this pathway at a cytoplasmic level by activating the IκB kinase (IKK) complex and at a nuclear level by enhancing the binding of the NF-κB factor RelA to its cognate promoters and by forming nuclear bodies, believed to represent transcriptionally active structures. In previous studies, we reported that Tax ubiquitination and SUMOylation play a critical role in Tax localization and NF-κB activation. Indeed, analysis of lysine Tax mutants fused or not to ubiquitin or SUMO led us to propose a two-step model in which Tax ubiquitination first intervenes to activate IKK while Tax SUMOylation is subsequently required for promoter activation within Tax nuclear bodies. However, recent studies showing that ubiquitin or SUMO can modulate Tax activities in either the nucleus or the cytoplasm and that SUMOylated Tax can serve as substrate for ubiquitination suggested that Tax ubiquitination and SUMOylation may mediate redundant rather than successive functions. Results In this study, we analyzed the properties of a new Tax mutant that is properly ubiquitinated, but defective for both nuclear body formation and SUMOylation. We report that reducing Tax SUMOylation and nuclear body formation do not alter the ability of Tax to activate IKK, induce RelA nuclear translocation, and trigger gene expression from a NF-κB promoter. Importantly, potent NF-κB promoter activation by Tax despite low SUMOylation and nuclear body formation is also observed in T cells, including CD4+ primary T lymphocytes. Moreover, we show that Tax nuclear bodies are hardly observed in HTLV-1-infected T cells. Finally, we provide direct evidence that the degree of NF-κB activation by Tax correlates with the level of Tax ubiquitination, but not SUMOylation. Conclusions These data reveal that the formation of Tax nuclear bodies, previously associated to transcriptional activities in Tax-transfected cells, is dispensable for NF-κB promoter activation, notably in CD4+ T cells. They also provide the first evidence that Tax SUMOylation is not a key determinant for Tax-induced NF-κB activation. PMID:23009398
Sun, Qibiao; Liu, Yaping; Yuan, Huatao; Lian, Bin
2017-02-01
Ectomycorrhizal fungi are an essential component of forest ecosystems, most of which can form edible and medical fruiting bodies. Although many studies have focused on the fructification of ectomycorrhizal fungi in phenology, the impact of environmental contamination, especially living garbage, on the formation of fruiting body is still unknown. A field investigation, combined with a high-throughput sequencing method, was used to study the effect of living garbage pollution on the fructification and hypogeous community structure of ectomycorrhizal fungi symbiosing with cedar (Cedrus deodara (Roxb.) G. Don). The results showed that garbage significantly altered soil abiotic and biotic properties, increasing soil urease activity, decreasing the soil exchangeable metal content and phosphatase activity, and ultimately inhibiting the formation of fruiting bodies. The pollution of garbage also changed the community structure of hypogeous ectomycorrhizal fungi where ectomycorrhizal ascomycetes dominated. In unpolluted sites, the relative abundance of ectomycorrhizal ascomycetes and basidiomycetes were almost equal. Although no fruiting bodies were observed in that soil polluted by living garbage, the sequencing result showed that various ectomycorrhizal fungi were present underground, suggesting that these taxonomic fungi had the potential to cope with adverse conditions. This study not only provided a deeper understanding of the relationship between ectomycorrhizal fungal communities and prevailing environmental conditions, but provided a new pathway for the excavation and utilization of the resource of antistress ectomycorrhizal fungi. © 2016 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Shen, Wenqing; Kumari, Niru; Gibson, Gary; Jeon, Yoocharn; Henze, Dick; Silverthorn, Sarah; Bash, Cullen; Kumar, Satish
2018-02-01
Non-volatile memory is a promising alternative to present memory technologies. Oxygen vacancy diffusion has been widely accepted as one of the reasons for the resistive switching mechanism of transition-metal-oxide based resistive random access memory. In this study, molecular dynamics simulation is applied to investigate the diffusion coefficient and activation energy of oxygen in amorphous hafnia. Two sets of empirical potential, Charge-Optimized Many-Body (COMB) and Morse-BKS (MBKS), were considered to investigate the structural and diffusion properties at different temperatures. COMB predicts the activation energy of 0.53 eV for the temperature range of 1000-2000 K, while MBKS predicts 2.2 eV at high temperature (1600-2000 K) and 0.36 eV at low temperature (1000-1600 K). Structural changes and appearance of nano-crystalline phases with increasing temperature might affect the activation energy of oxygen diffusion predicted by MBKS, which is evident from the change in coordination number distribution and radial distribution function. None of the potentials make predictions that are fully consistent with density functional theory simulations of both the structure and diffusion properties of HfO2. This suggests the necessity of developing a better multi-body potential that considers charge exchange.
Zenina, O Yu; Kromin, A A
2012-10-01
Stimulation of the lateral hypothalamus in preliminary fed animals in the presence of the food is associated with successful food-procuring behavior, accompanied by regular generation of high-amplitude slow electrical waves by muscles of the lesser curvature, body, and antrum of the stomach, which was reflected in the structure of temporal organization of slow electrical activity in the form of unimodal distribution of slow wave periods typical of satiation state. Despite increased level of food motivation caused by stimulation of the lateral hypothalamus, the additional food intake completely abolished the inhibitory effects of hunger motivation excitement on slow electrical muscle activity in the lesser curvature, body, and antrum of the stomach of satiated rabbits. Changes in slow electrical activity of the stomach muscles in rabbits deprived of food over 24 h and offered food and associated food-procuring behavior during electrical stimulation of the lateral hypothalamus have a two-phase pattern. Despite food intake during phase I of electrical stimulation, the downstream inhibitory effect of hunger motivation excitement on myogenic pacemaker of the lesser curvature of stomach abolishes the stimulating effect of food reinforcement on slow electrical muscle activity in the lesser curvature, body, and antrum of the stomach. During phase II of electrical stimulation, the food reinforcement decreases inhibitory effect of hunger motivation excitement on myogenic pacemaker of the lesser curvature that paces maximal rhythm of slow electrical waves for muscles activity in the lesser curvature, body, and antrum of the stomach, which is reflected by unimodal distribution of slow electrical wave periods. Our results indicated that the structure of temporal organization of slow electrical activity of the stomach muscles reflects convergent interactions of food motivation and reinforcement excitations on the dorsal vagal complex neurons in medulla oblongata.
21 CFR 700.35 - Cosmetics containing sunscreen ingredients.
Code of Federal Regulations, 2010 CFR
2010-04-01
.... Sunscreen active ingredients affect the structure or function of the body by absorbing, reflecting, or... premature skin aging, skin cancer, and other harmful effects due to the sun when used in conjunction with...
Spiering, Martin J
2015-01-01
The human body regularly encounters and combats many pathogenic organisms and toxic molecules. Its ensuing responses to these disease-causing agents involve two interrelated systems: innate immunity and adaptive (or acquired) immunity. Innate immunity is active at several levels, both at potential points of entry and inside the body (see figure). For example, the skin represents a physical barrier preventing pathogens from invading internal tissues. Digestive enzymes destroy microbes that enter the stomach with food. Macrophages and lymphocytes, equipped with molecular detectors, such as Toll-like receptors (TLRs), which latch onto foreign structures and activate cellular defenses, patrol the inside of the body. These immune cells sense and devour microbes, damaged cells, and other foreign materials in the body. Certain proteins in the blood (such as proteins of the complement system and those released by natural killer cells, along with antimicrobial host-defense peptides) attach to foreign organisms and toxins to initiate their destruction.
Initiating head development in mouse embryos: integrating signalling and transcriptional activity.
Arkell, Ruth M; Tam, Patrick P L
2012-03-01
The generation of an embryonic body plan is the outcome of inductive interactions between the progenitor tissues that underpin their specification, regionalization and morphogenesis. The intercellular signalling activity driving these processes is deployed in a time- and site-specific manner, and the signal strength must be precisely controlled. Receptor and ligand functions are modulated by secreted antagonists to impose a dynamic pattern of globally controlled and locally graded signals onto the tissues of early post-implantation mouse embryo. In response to the WNT, Nodal and Bone Morphogenetic Protein (BMP) signalling cascades, the embryo acquires its body plan, which manifests as differences in the developmental fate of cells located at different positions in the anterior-posterior body axis. The initial formation of the anterior (head) structures in the mouse embryo is critically dependent on the morphogenetic activity emanating from two signalling centres that are juxtaposed with the progenitor tissues of the head. A common property of these centres is that they are the source of antagonistic factors and the hub of transcriptional activities that negatively modulate the function of WNT, Nodal and BMP signalling cascades. These events generate the scaffold of the embryonic head by the early-somite stage of development. Beyond this, additional tissue interactions continue to support the growth, regionalization, differentiation and morphogenesis required for the elaboration of the structure recognizable as the embryonic head.
Balashov, Iu S; Grigor'eva, L A; Leonovich, S A
2009-01-01
A method of visual estimation of the biological age of living hungry tick females by visible changes in the depth of marginal groove and the structure of the alloscutum cuticle during natural ageing is developed. In recently activated individuals, the body is convex and the marginal groove is exposed, demonstrating distinctly visible cuticular microfolds (Figs 1-4). In attenuated ticks, the body is flattened and marginal fold overlays the marginal groove, concealing cuticular microfolds (Figs 5-8).
Aging and Down syndrome: implications for physical therapy.
Barnhart, Robert C; Connolly, Barbara
2007-10-01
The number of people over the age of 60 years with lifelong developmental delays is predicted to double by 2030. Down syndrome (DS) is the most frequent chromosomal cause of developmental delays. As the life expectancy of people with DS increases, changes in body function and structure secondary to aging have the potential to lead to activity limitations and participation restrictions for this population. The purpose of this update is to: (1) provide an overview of the common body function and structure changes that occur in adults with DS as they age (thyroid dysfunction, cardiovascular disorders, obesity, musculoskeletal disorders, Alzheimer disease, depression) and (2) apply current research on exercise to the prevention of activity limitations and participation restrictions. As individuals with DS age, a shift in emphasis from disability prevention to the prevention of conditions that lead to activity and participation limitations must occur. Exercise programs appear to have potential to positively affect the overall health of adults with DS, thereby increasing the quality of life and years of healthy life for these individuals.
Jiao, Yang; Xie, Ting; Zou, Lu-Hui; Wei, Qian; Qiu, Li; Chen, Li-Xia
2016-08-01
Twenty-nine lanostane triterpenoids (1-29) were obtained from the EtOH extract of fruiting bodies of the Ganoderma curtisii. Among them, compound 1 was a new lanostane triterpenoid and compounds 2-5 were isolated from the genus Ganoderma for the first time and their structures were unambiguously identified in this work. The NMR data of the four known lanostane triterpenoids (2-5) were reported for the first time because their structures were all tentatively characterized by interpreting the MS data from the methanol extract of Ganoderma lucidum or from the metabolites in rat bile after oral administration of crude extract of the fruiting bodies of G. lucidum using fragmentation rules. Their anti-inflammatory activities were tested by measuring their inhibitory effects on nitric oxide (NO) production in BV-2 microglia cells activated by lipopolysaccharide. Their IC50 values were in a range from 3.65±0.41 to 28.04±2.81μM. Copyright © 2016 Elsevier Ltd. All rights reserved.
Cuticular antifungals in spiders: density- and condition dependence.
González-Tokman, Daniel; Ruch, Jasmin; Pulpitel, Tamara; Ponton, Fleur
2014-01-01
Animals living in groups face a high risk of disease contagion. In many arthropod species, cuticular antimicrobials constitute the first protective barrier that prevents infections. Here we report that group-living spiders produce cuticular chemicals which inhibit fungal growth. Given that cuticular antifungals may be costly to produce, we explored whether they can be modulated according to the risk of contagion (i.e. under high densities). For this purpose, we quantified cuticular antifungal activity in the subsocial crab spider Diaea ergandros in both natural nests and experimentally manipulated nests of varying density. We quantified the body-condition of spiders to test whether antifungal activity is condition dependent, as well as the effect of spider density on body-condition. We predicted cuticular antifungal activity to increase and body-condition to decrease with high spider densities, and that antifungal activity would be inversely related to body-condition. Contrary to our predictions, antifungal activity was neither density- nor condition-dependent. However, body-condition decreased with density in natural nests, but increased in experimental nests. We suggest that pathogen pressure is so important in nature that it maintains high levels of cuticular antifungal activity in spiders, impacting negatively on individual energetic condition. Future studies should identify the chemical structure of the isolated antifungal compounds in order to understand the physiological basis of a trade-off between disease prevention and energetic condition caused by group living, and its consequences in the evolution of sociality in spiders.
Cuticular Antifungals in Spiders: Density- and Condition Dependence
González-Tokman, Daniel; Ruch, Jasmin; Pulpitel, Tamara; Ponton, Fleur
2014-01-01
Animals living in groups face a high risk of disease contagion. In many arthropod species, cuticular antimicrobials constitute the first protective barrier that prevents infections. Here we report that group-living spiders produce cuticular chemicals which inhibit fungal growth. Given that cuticular antifungals may be costly to produce, we explored whether they can be modulated according to the risk of contagion (i.e. under high densities). For this purpose, we quantified cuticular antifungal activity in the subsocial crab spider Diaea ergandros in both natural nests and experimentally manipulated nests of varying density. We quantified the body-condition of spiders to test whether antifungal activity is condition dependent, as well as the effect of spider density on body-condition. We predicted cuticular antifungal activity to increase and body-condition to decrease with high spider densities, and that antifungal activity would be inversely related to body-condition. Contrary to our predictions, antifungal activity was neither density- nor condition-dependent. However, body-condition decreased with density in natural nests, but increased in experimental nests. We suggest that pathogen pressure is so important in nature that it maintains high levels of cuticular antifungal activity in spiders, impacting negatively on individual energetic condition. Future studies should identify the chemical structure of the isolated antifungal compounds in order to understand the physiological basis of a trade-off between disease prevention and energetic condition caused by group living, and its consequences in the evolution of sociality in spiders. PMID:24637563
The neuropeptide, vasopressin (VP) is synthesized in magnocellular neuroendocrine cells (MNCs) located within the supraoptic (SON) and paraventricular (PVN) nuclei of the mammalian hypothalamus. VP has multiple functions including maintenance of body fluid homeostasis, cardiovasc...
Massage Changes Babies' Body, Brain and Behavior
NASA Astrophysics Data System (ADS)
Ishikawa, Chihiro; Shiga, Takashi
Tactile stimulation is an important factor in mother-infant interactions. Many studies on both human and animals have shown that tactile stimulation during the neonatal period has various beneficial effects in the subsequent growth of the body and brain. In particular, massage is often applied to preterm human babies as “touch care”, because tactile stimulation together with kinesthetic stimulation increases body weight, which is accompanied by behavioral development and the changes of endocrine and neural conditions. Among them, the elevation of insulin-like growth factor-1, catecholamine, and vagus nerve activity may underlie the body weight gain. Apart from the body weight gain, tactile stimulation has various effects on the nervous system and endocrine system. For example, it has been reported that tactile stimulation on human and animal babies activates parasympathetic nervous systems, while suppresses the hypothalamic-pituitary-adrenalcortical (HPA) axis, which may be related to the reduction of emotionality, anxiety-like behavior, and pain sensitivity. In addition, animal experiments have shown that tactile stimulation improves learning and memory. Facilitation of the neuronal activity and the morphological changes including the hippocampal synapse may underlie the improvement of the learning and memory. In conclusion, it has been strongly suggested that tactile stimulation in early life has beneficial effects on body, brain structure and function, which are maintained throughout life.
Protein aggregation as bacterial inclusion bodies is reversible.
Carrió, M M; Villaverde, A
2001-01-26
Inclusion bodies are refractile, intracellular protein aggregates usually observed in bacteria upon targeted gene overexpression. Since their occurrence has a major economical impact in protein production bio-processes, in vitro refolding strategies are under continuous exploration. In this work, we prove spontaneous in vivo release of both beta-galactosidase and P22 tailspike polypeptides from inclusion bodies resulting in their almost complete disintegration and in the concomitant appearance of soluble, properly folded native proteins with full biological activity. Since, in particular, the tailspike protein exhibits an unusually slow and complex folding pathway involving deep interdigitation of beta-sheet structures, its in vivo refolding indicates that bacterial inclusion body proteins are not collapsed into an irreversible unfolded state. Then, inclusion bodies can be observed as transient deposits of folding-prone polypeptides, resulting from an unbalanced equilibrium between in vivo protein precipitation and refolding that can be actively displaced by arresting protein synthesis. The observation that the formation of big inclusion bodies is reversible in vivo can be also relevant in the context of amyloid diseases, in which deposition of important amounts of aggregated protein initiates the pathogenic process.
NASA Astrophysics Data System (ADS)
Yoo, Jin-Hyeong; Murugan, Muthuvel; Wereley, Norman M.
2013-04-01
This study investigates a lumped-parameter human body model which includes lower leg in seated posture within a quarter-car model for blast injury assessment simulation. To simulate the shock acceleration of the vehicle, mine blast analysis was conducted on a generic land vehicle crew compartment (sand box) structure. For the purpose of simulating human body dynamics with non-linear parameters, a physical model of a lumped-parameter human body within a quarter car model was implemented using multi-body dynamic simulation software. For implementing the control scheme, a skyhook algorithm was made to work with the multi-body dynamic model by running a co-simulation with the control scheme software plug-in. The injury criteria and tolerance levels for the biomechanical effects are discussed for each of the identified vulnerable body regions, such as the relative head displacement and the neck bending moment. The desired objective of this analytical model development is to study the performance of adaptive semi-active magnetorheological damper that can be used for vehicle-occupant protection technology enhancements to the seat design in a mine-resistant military vehicle.
Plastic Schottky-barrier solar cells
Waldrop, J.R.; Cohen, M.J.
1981-12-30
A photovoltaic cell structure is fabricated from an active medium including an undoped polyacetylene, organic semiconductor. When a film of such material is in rectifying contact with a metallic area electrode, a Schottky-barrier junction is obtained within the body of the cell structure. Also, a gold overlayer passivates a magnesium layer on the undoped polyacetylene film. With the proper selection and location of elements a photovoltaic cell structure and solar cell are obtained.
Nascent body ego: metapsychological and neurophysiological aspects.
Lehtonen, Johannes; Partanen, Juhani; Purhonen, Maija; Valkonen-Korhonen, Minna; Kononen, Mervi; Saarikoski, Seppo; Launiala, Kari
2006-10-01
For Freud, body ego was the organizing basis of the structural theory. He defined it as a psychic projection of the body surface. Isakower's and Lewin's classical findings suggest that the body surface experiences of nursing provide the infant with sensory-affective stimulation that initiates a projection of sensory processes towards the psychic realm. During nursing, somato-sensory, gustatory and olfactory modalities merge with a primitive somatic affect of satiation, whereas auditory modality is involved more indirectly and visual contact more gradually. Repeated regularly, such nascent experiences are likely to play a part in the organization of the primitive protosymbolic mental experience. In support of this hypothesis, the authors review findings from a neurophysiological study of infants before, during and after nursing. Nursing is associated with a significant amplitude change in the newborn electroencephalogram (EEG), which wanes before the age of 3 months, and is transformed at the age of 6 months into rhythmic 3-5 Hz hedonic theta-activity. Sucking requires active physiological work, which is shown in a regular rise in heart rate. The hypothesis of a sensory-affective organization of the nascent body ego, enhanced by nursing and active sucking, seems concordant with neurophysiological phenomena related to nursing.
Adamsen, L; Andersen, C; Midtgaard, J; Møller, T; Quist, M; Rørth, M
2009-02-01
Cancer and treatment can negatively affect the body's performance and appearance. Exercise has been tested in a few studies for altered body image among middle-aged women with breast cancer. The aim of the study was to explore how young pre-cancer athletes of both genders experience disease- and treatment-related physical fitness and appearance changes while undergoing chemotherapy and participating in a 6-week group exercise intervention. A prospective, explorative study using semi-structured interviews was conducted before and at termination of the intervention. The study included 22 cancer patients (median age 28 years). The young athletes experienced a change from a high level of physical activity, body satisfaction and a positive self-identity to a low level of physical activity, body denial and a negative self-identity. In the program, the patients experienced increased physical strength and recapture of certain aspects of their former positive body perception. Deterioation of muscle functions caused by chemotherapy was particularly painful to these patients, independent of gender and age. Young physically active patients are heavily dependent on their physical capacity, body satisfaction and self-identity. This should be taken into account when designing programs to rehabilitate and encourage these patients through the often-strenuous antineoplastic treatments.
Plastic Schottky barrier solar cells
Waldrop, James R.; Cohen, Marshall J.
1984-01-24
A photovoltaic cell structure is fabricated from an active medium including an undoped, intrinsically p-type organic semiconductor comprising polyacetylene. When a film of such material is in rectifying contact with a magnesium electrode, a Schottky-barrier junction is obtained within the body of the cell structure. Also, a gold overlayer passivates the magnesium layer on the undoped polyacetylene film.
Foraging behaviour in Drosophila larvae: mushroom body ablation.
Osborne, K A; de Belle, J S; Sokolowski, M B
2001-02-01
Drosophila larvae and adults exhibit a naturally occurring genetically based behavioural polymorphism in locomotor activity while foraging. Larvae of the rover morph exhibit longer foraging trails than sitters and forage between food patches, while sitters have shorter foraging trails and forage within patches. This behaviour is influenced by levels of cGMP-dependent protein kinase (PGK) encoded by the foraging (for) gene. Rover larvae have higher expression levels and higher PGK activities than do sitters. Here we discuss the importance of the for gene for studies of the mechanistic and evolutionary significance of individual differences in behaviour. We also show how structure-function analysis can be used to investigate a role for mushroom bodies in larval behaviour both in the presence and in the absence of food. Hydroxyurea fed to newly hatched larvae prevents the development of all post-embryonically derived mushroom body (MB) neuropil. This method was used to ablate MBs in rover and sitter genetic variants of foraging to test whether these structures mediate expression of the foraging behavioural polymorphism. We found that locomotor activity levels during foraging of both the rover and sitter larval morphs were not significantly influenced by MB ablation. Alternative hypotheses that may explain how variation in foraging behaviour is generated are discussed.
Obtaining information by dynamic (effortful) touching
Turvey, M. T.; Carello, Claudia
2011-01-01
Dynamic touching is effortful touching. It entails deformation of muscles and fascia and activation of the embedded mechanoreceptors, as when an object is supported and moved by the body. It is realized as exploratory activities that can vary widely in spatial and temporal extents (a momentary heft, an extended walk). Research has revealed the potential of dynamic touching for obtaining non-visual information about the body (e.g. limb orientation), attachments to the body (e.g. an object's height and width) and the relation of the body both to attachments (e.g. hand's location on a grasped object) and surrounding surfaces (e.g. places and their distances). Invariants over the exploratory activity (e.g. moments of a wielded object's mass distribution) seem to ground this ‘information about’. The conception of a haptic medium as a nested tensegrity structure has been proposed to express the obtained information realized by myofascia deformation, by its invariants and transformations. The tensegrity proposal rationalizes the relative indifference of dynamic touch to the site of mechanical contact (hand, foot, torso or probe) and the overtness of exploratory activity. It also provides a framework for dynamic touching's fractal nature, and the finding that its degree of fractality may matter to its accomplishments. PMID:21969694
Sharma, Vivek Kumar; Subramanian, Senthil Kumar; Radhakrishnan, Krishnakumar; Rajendran, Rajathi; Ravindran, Balasubramanian Sulur; Arunachalam, Vinayathan
2017-05-01
Physical inactivity contributes to many health issues. The WHO-recommended physical activity for adolescents encompasses aerobic, resistance, and bone strengthening exercises aimed at achieving health-related physical fitness. Heart rate variability (HRV) and maximal aerobic capacity (VO2max) are considered as noninvasive measures of cardiovascular health. The objective of this study is to compare the effect of structured and unstructured physical training on maximal aerobic capacity and HRV among adolescents. We designed a single blinded, parallel, randomized active-controlled trial (Registration No. CTRI/2013/08/003897) to compare the physiological effects of 6 months of globally recommended structured physical activity (SPA), with that of unstructured physical activity (USPA) in healthy school-going adolescents. We recruited 439 healthy student volunteers (boys: 250, girls: 189) in the age group of 12-17 years. Randomization across the groups was done using age and gender stratified randomization method, and the participants were divided into two groups: SPA (n=219, boys: 117, girls: 102) and USPA (n=220, boys: 119, girls: 101). Depending on their training status and gender the participants in both SPA and USPA groups were further subdivided into the following four sub-groups: SPA athlete boys (n=22) and girls (n=17), SPA nonathlete boys (n=95) and girls (n=85), USPA athlete boys (n=23) and girls (n=17), and USPA nonathlete boys (n=96) and girls (n=84). We recorded HRV, body fat%, and VO2 max using Rockport Walk Fitness test before and after the intervention. Maximum aerobic capacity and heart rate variability increased significantly while heart rate, systolic blood pressure, diastolic blood pressure, and body fat percentage decreased significantly after both SPA and USPA intervention. However, the improvement was more in SPA as compared to USPA. SPA is more beneficial for improving cardiorespiratory fitness, HRV, and reducing body fat percentage in terms of magnitude than USPA in adolescent individuals irrespective of their gender and sports activities.
Jocque, M.; Graham, T.; Brendonck, L.
2007-01-01
We used three isolated clusters of small ephemeral rock pools on a sandstone flat in Utah to test the importance of local structuring processes on aquatic invertebrate communities. In the three clusters we characterized all ephemeral rock pools (total: 27) for their morphometry, and monitored their water quality, hydrology and community assemblage during a full hydrocycle. In each cluster we also sampled a set of more permanent interconnected freshwater systems positioned in a wash, draining the water from each cluster of rock pools. This design allowed additional testing for the potential role of more permanent water bodies in the region as source populations for the active dispersers and the effect on the community structure in the rock pools. Species richness and community composition in the rock pools correlated with level of permanence and the ammonia concentration. The length of the rock pool inundation cycle shaped community structure, most probably by inhibiting colonization by some taxa (e.g. tadpoles and insect larvae) through developmental constraints. The gradient in ammonia concentrations probably reflects differences in primary production. The more permanent water bodies in each wash differed both environmentally and in community composition from the connected set of rock pools. A limited set of active dispersers was observed in the rock pools. Our findings indicate that aquatic invertebrate communities in the ephemeral rock pools are mainly structured through habitat permanence, possibly linked with biotic interactions and primary production. ?? 2007 Springer Science+Business Media B.V.
Srbecka, Kristyna; Michalova, Kvetoslava; Curcikova, Radmila; Michal, Michael; Dubova, Magdalena; Svajdler, Marian; Michal, Michal; Daum, Ondrej
2017-09-01
There is a group of lesions in the head and neck region derived from branchial arches and related structures which, when inflamed, are characterized by the formation of cysts lined by squamous or glandular epithelium and surrounded by a heavy inflammatory infiltrate rich in germinal centers. In the thyroid, the main source of various structures which may cause diagnostic dilemma is the ultimobranchial body. To investigate the spectrum of such thyroid lesions, the consultation files were reviewed for thyroid samples containing pathological structures regarded to arise from the ultimobranchial body. Positive reaction with antibodies against CK5/6, p63, galectin 3, and CEA, and negative reaction with antibodies against thyroglobulin, TTF-1, and calcitonin were used to confirm the diagnosis. The specific subtype of the ultimobranchial body-derived lesion was then determined based on histological examination of H&E-stained slides. Twenty-one cases of ultimobranchial body-derived lesions were retrieved from the consultation files, 20 of them along with clinical information (M/F = 6/14, mean age 55 years, range 36-68 years). Lesions derived from the ultimobranchial body were classified as follows: (hyperplastic) solid cell nests (nine cases), solid cell nests with focal cystic change (five cases), cystic solid cell nests (two cases), branchial cleft-like cyst (four cases), and finally a peculiar Warthin tumor-like lesion (one case). We suggest that the common denominator of these structures is that they all arise due to activation of inflammatory cells around the vestigial structures, which leads to cystic dilatation and proliferation of the epithelial component.
Lalucque, Hervé; Malagnac, Fabienne; Green, Kimberly; Gautier, Valérie; Grognet, Pierre; Chan Ho Tong, Laetitia; Scott, Barry; Silar, Philippe
2017-01-15
Filamentous ascomycetes produce complex multicellular structures during sexual reproduction. Little is known about the genetic pathways enabling the construction of such structures. Here, with a combination of classical and reverse genetic methods, as well as genetic mosaic and graft analyses, we identify and provide evidence for key roles for two genes during the formation of perithecia, the sexual fruiting bodies, of the filamentous fungus Podospora anserina. Data indicate that the proteins coded by these two genes function cell-non-autonomously and that their activity depends upon conserved cysteines, making them good candidate for being involved in the transmission of a reactive oxygen species (ROS) signal generated by the PaNox1 NADPH oxidase inside the maturing fruiting body towards the PaMpk1 MAP kinase, which is located inside the underlying mycelium, in which nutrients are stored. These data provide important new insights to our understanding of how fungi build multicellular structures. Copyright © 2016 Elsevier Inc. All rights reserved.
Singularity and steering logic for control moment gyros on flexible space structures
NASA Astrophysics Data System (ADS)
Hu, Quan; Guo, Chuandong; Zhang, Jun
2017-08-01
Control moment gyros (CMGs) are a widely used device for generating control torques for spacecraft attitude control without expending propellant. Because of its effectiveness and cleanness, it has been considered to be mounted on a space structure for active vibration suppression. The resultant system is the so-called gyroelastic body. Since CMGs could exert both torque and modal force to the structure, it can also be used to simultaneously achieve attitude maneuver and vibration reduction of a flexible spacecraft. In this paper, we consider the singularity problem in such application of CMGs. The dynamics of an unconstrained gyroelastic body is established, from which the output equations of the CMGs are extracted. Then, torque singular state and modal force singular state are defined and visualized to demonstrate the singularity. Numerical examples of several typical CMGs configurations on a gyroelastic body are given. Finally, a steering law allowing output error is designed and applied to the vibration suppression of a plate with distributed CMGs.
NASA Technical Reports Server (NTRS)
Hanson, P. W.
1984-01-01
Active controls technology is assessed based on a review of most of the wind-tunnel and flight tests and actual applications of active control concepts since the late sixties. The distinction is made between so-called ""rigid-body'' active control functions and those that involve significant modification of structural elastic response or stability. Both areas are reviewed although the focus is on the latter area. The basic goals and major results of the various studies or applications are summarized, and the anticipated use of active controls on current and near-future research and demonstration aircraft is discussed. Some of the ""holes'' remaining in the feasbility/benefits demonstration of active controls technology are examined.
A Lower Limb-Pelvis Finite Element Model with 3D Active Muscles.
Mo, Fuhao; Li, Fan; Behr, Michel; Xiao, Zhi; Zhang, Guanjun; Du, Xianping
2018-01-01
A lower limb-pelvis finite element (FE) model with active three-dimensional (3D) muscles was developed in this study for biomechanical analysis of human body. The model geometry was mainly reconstructed from a male volunteer close to the anthropometry of a 50th percentile Chinese male. Tissue materials and structural features were established based on the literature and new implemented experimental tests. In particular, the muscle was modeled with a combination of truss and hexahedral elements to define its passive and active properties as well as to follow the detailed anatomy structure. Both passive and active properties of the model were validated against the experiments of Post-Mortem Human Surrogate (PMHS) and volunteers, respectively. The model was then used to simulate driver's emergency braking during frontal crashes and investigate Knee-Thigh-Hip (KTH) injury mechanisms and tolerances of the human body. A significant force and bending moment variance was noted for the driver's femur due to the effects of active muscle forces during emergency braking. In summary, the present lower limb-pelvis model can be applied in various research fields to support expensive and complex physical tests or corresponding device design.
McWhannell, Nicola; Henaghan, Jayne L.
2018-01-01
This paper outlines the implementation of a programme of work that started with the development of a population-level children’s health, fitness and lifestyle study in 1996 (SportsLinx) leading to selected interventions one of which is described in detail: the Active City of Liverpool, Active Schools and SportsLinx (A-CLASS) Project. The A-CLASS Project aimed to quantify the effectiveness of structured and unstructured physical activity (PA) programmes on children’s PA, fitness, body composition, bone health, cardiac and vascular structures, fundamental movement skills, physical self-perception and self-esteem. The study was a four-arm parallel-group school-based cluster randomised controlled trial (clinical trials no. NCT02963805), and compared different exposure groups: a high intensity PA (HIPA) group, a fundamental movement skill (FMS) group, a PA signposting (PASS) group and a control group, in a two-schools-per-condition design. Baseline findings indicate that children’s fundamental movement skill competence levels are low-to-moderate, yet these skills are inversely associated with percentage body fat. Outcomes of this project will make an important contribution to the design and implementation of children’s PA promotion initiatives.
Whole-Body Vibration Intensities in Chronic Stroke: A Randomized Controlled Trial.
Liao, Lin-Rong; Ng, Gabriel Y F; Jones, Alice Y M; Huang, Mei-Zhen; Pang, Marco Y C
2016-07-01
A single-blinded randomized controlled study was conducted to investigate the effects of different whole-body vibration (WBV) intensities on body functions/structures, activity, and participation in individuals with stroke. Eighty-four individuals with chronic stroke (mean age = 61.2 yr, SD = 9.2) with mild to moderate motor impairment (Chedoke-McMaster Stroke Assessment lower limb motor score: median = 9 out of 14, interquartile range = 7-11.8) were randomly assigned to a low-intensity WBV, high-intensity WBV, or control group. The former two groups performed various leg exercises while receiving low-intensity and high-intensity WBV, respectively. Controls performed the same exercises without WBV. All individuals received 30 training sessions over an average period of 75.5 d (SD = 5.2). Outcome measurements included knee muscle strength (isokinetic dynamometry), knee and ankle joint spasticity (Modified Ashworth Scale), balance (Mini Balance Evaluation Systems Test), mobility (Timed-Up-and-Go test), walking endurance (6-Minute Walk Test), balance self-efficacy (Activities-specific Balance Confidence scale), participation in daily activities (Frenchay Activity Index), perceived environmental barriers to societal participation (Craig Hospital Inventory of Environmental Factors), and quality of life (Short-Form 12 Health Survey). Assessments were performed at baseline and postintervention. Intention-to-treat analysis revealed a significant time effect for muscle strength, Timed-Up-and-Go distance, and oxygen consumption rate achieved during the 6-Minute Walk Test, the Mini Balance Evaluation Systems Test, the Activities-specific Balance Confidence scale, and the Short-Form 12 Health Survey physical composite score domain (P < 0.05). However, the time-group interaction was not significant for any of the outcome measures (P > 0.05). The addition of the 30-session WBV paradigm to the leg exercise protocol was no more effective in enhancing body functions/structures, activity, and participation than leg exercises alone in chronic stroke patients with mild to moderate motor impairments.
Expelled grains from an unseen parent body around AU Microscopii
NASA Astrophysics Data System (ADS)
Sezestre, É.; Augereau, J.-C.; Boccaletti, A.; Thébault, P.
2017-11-01
Context. Recent observations of the edge-on debris disk of AU Mic have revealed asymmetric, fast outward-moving arch-like structures above the disk midplane. Although asymmetries are frequent in debris disks, no model can readily explain the characteristics of these features. Aims: We present a model aiming to reproduce the dynamics of these structures, more specifically their high projected speeds and their apparent position. We test the hypothesis of dust emitted by a point source and then expelled from the system by the strong stellar wind of this young M-type star. In this model we make the assumption that the dust grains follow the same dynamics as the structures, I.e., they are not local density enhancements. Methods: We perform numerical simulations of test particle trajectories to explore the available parameter space, in particular the radial location R0 of the dust producing parent body and the size of the dust grains as parameterized by the value of β (ratio of stellar wind and radiation pressure forces over gravitation). We consider the cases of a static and of an orbiting parent body. Results: We find that for all considered scenarios (static or moving parent body), there is always a set of (R0,β) parameters able to fit the observed features. The common characteristics of these solutions is that they all require a high value of β, of around 6. This means that the star is probably very active, and the grains composing the structures are submicronic in order for observable grains to reach such high β values. We find that the location of the hypothetical parent body is closer in than the planetesimal belt, around 8 ± 2 au (orbiting case) or 28 ± 7 au (static case). A nearly periodic process of dust emission appears, of 2 yr in the orbiting scenarios and 7 yr in the static case. Conclusions: We show that the scenario of sequential dust releases by an unseen point-source parent body is able to explain the radial behavior of the observed structures. We predict the evolution of the structures to help future observations discriminate between the different parent body configurations that have been considered. In the orbiting parent body scenario, we expect new structures to appear on the northwest side of the disk in the coming years.
2018-04-01
In the context of the White Book of Physical and Rehabilitation Medicine (PRM) in Europe, this paper addresses the structure, organization and activities of PRM bodies in Europe. There are four main bodies, the Section of Physical and Rehabilitation Medicine of the European Union of Medical Specialists (UEMS) very close to the European Union and is committed to define the professional competencies of PRM, the quality management and accreditation and with the Board the educational matters. The European College of PRM is served by the UEMS PRM Board and its main activities are analyzed below in the description of the Board of the UEMS PRM Section. The European Society of Physical and Rehabilitation Medicine (ESPRM) mainly dedicated to promoting research in rehabilitation and create a network of knowledge of PRM across the Europe. The European Academy of Rehabilitation Medicine mainly dedicated to defining the ethical issues in rehabilitation and finding strategies for better educational approaches in rehabilitation. There are 2 further bodies (the regional Fora) aimed to create bridges across the Mediterranean area (Mediterranean Forum of PRM) and across the northern Europe including the eastern countries such as Russia, Belarus and Ukraine (Baltic and North Sea Forum of PRM). To support the knowledge, we have in Europe 7 main journals dedicated to Rehabilitation with a growing impact factor. Last but not least the PRM bodies have an important role across the world with a connection with the International Society of PRM and WHO. The UEMS Section approved motion of international collaboration. In conclusion, PRM activity in Europe is not limited to the official border but in the network included eastern countries and Mediterranean area. The European extended network is strongly connected with the international PRM bodies, first of all the International Society of PRM.
Investigating 3-body Decays of Cluster States with the PAT-TPC
NASA Astrophysics Data System (ADS)
Carpenter, Lisa; Ayyad Limonge, Y.; Bazin, D.; Beceiro-Novo, S.; Bradt, J.; Cortesi, M.; Mittig, W.; Ahn, T.; Kolata, J. J.; Meisel, Z.; Bechetti, F. D.; Fritsch, A.; Howard, A.
2016-03-01
Recent model calculations with most advanced methods for cluster states have shown the need of experimental data to probe the structure of light exotic nuclei, including those with α-clustering, such as 14C. The Prototype Active Target Time Projection Chamber (PAT-TPC) allows us to investigate these types of structures, giving access to the full excitation function with a single beam energy. This type of experiment measures resonances in 14C that can be compared to the models. With an improved Micromegas pad plane with a circular backgammon design we are able to investigate 3-body decays in addition to 2-body scattering. The measurements were carried out by resonant alpha-scattering on 10Be beam delivered by the TwinSol facility at the University of Notre Dame. We also observed the 3-body decay of the Hoyle State in 12C from a 12N or 12B beam with the same device. Preliminary results will be presented. This work is supported by the National Science Foundation.
Tytell, Eric D; Hsu, Chia-Yu; Williams, Thelma L; Cohen, Avis H; Fauci, Lisa J
2010-11-16
Animal movements result from a complex balance of many different forces. Muscles produce force to move the body; the body has inertial, elastic, and damping properties that may aid or oppose the muscle force; and the environment produces reaction forces back on the body. The actual motion is an emergent property of these interactions. To examine the roles of body stiffness, muscle activation, and fluid environment for swimming animals, a computational model of a lamprey was developed. The model uses an immersed boundary framework that fully couples the Navier-Stokes equations of fluid dynamics with an actuated, elastic body model. This is the first model at a Reynolds number appropriate for a swimming fish that captures the complete fluid-structure interaction, in which the body deforms according to both internal muscular forces and external fluid forces. Results indicate that identical muscle activation patterns can produce different kinematics depending on body stiffness, and the optimal value of stiffness for maximum acceleration is different from that for maximum steady swimming speed. Additionally, negative muscle work, observed in many fishes, emerges at higher tail beat frequencies without sensory input and may contribute to energy efficiency. Swimming fishes that can tune their body stiffness by appropriately timed muscle contractions may therefore be able to optimize the passive dynamics of their bodies to maximize peak acceleration or swimming speed.
49 CFR 229.141 - Body structure, MU locomotives.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 4 2010-10-01 2010-10-01 false Body structure, MU locomotives. 229.141 Section... Design Requirements § 229.141 Body structure, MU locomotives. (a) MU locomotives built new after April 1... body structure designed to meet or exceed the following minimum specifications: (1) The body structure...
Bär, Karl-Jürgen; de la Cruz, Feliberto; Berger, Sandy; Schultz, Carl Christoph; Wagner, Gerd
2015-01-01
Background The dysfunction of specific brain areas might account for the distortion of body image in patients with anorexia nervosa. The present study was designed to reveal brain regions that are abnormal in structure and function in patients with this disorder. We hypothesized, based on brain areas of altered activity in patients with anorexia nervosa and regions involved in pain processing, an interrelation of structural aberrations in the frontoparietal–cingulate network and aberrant functional activation during thermal pain processing in patients with the disorder. Methods We determined pain thresholds outside the MRI scanner in patients with anorexia nervosa and matched healthy controls. Thereafter, thermal pain stimuli were applied during fMRI imaging. Structural analyses with high-resolution structural T1-weighted volumes were performed using voxel-based morphometry and a surface-based approach. Results Twenty-six patients and 26 controls participated in our study, and owing to technical difficulties, 15 participants in each group were included in our fMRI analysis. Structural analyses revealed significantly decreased grey matter volume and cortical thickness in the frontoparietal–cingulate network in patients with anorexia nervosa. We detected an increased blood oxygen level–dependent signal in patients during the painful 45°C condition in the midcingulate and posterior cingulate cortex, which positively correlated with increased pain thresholds. Decreased grey matter and cortical thickness correlated negatively with pain thresholds, symptom severity and illness duration, but not with body mass index. Limitations The lack of a specific quantification of body image distortion is a limitation of our study. Conclusion This study provides further evidence for confined structural and functional brain abnormalities in patients with anorexia nervosa in brain regions that are involved in perception and integration of bodily stimuli. The association of structural and functional deviations with thermal thresholds as well as with clinical characteristics might indicate a common neuronal origin. PMID:25825813
EEG resolutions in detecting and decoding finger movements from spectral analysis
Xiao, Ran; Ding, Lei
2015-01-01
Mu/beta rhythms are well-studied brain activities that originate from sensorimotor cortices. These rhythms reveal spectral changes in alpha and beta bands induced by movements of different body parts, e.g., hands and limbs, in electroencephalography (EEG) signals. However, less can be revealed in them about movements of different fine body parts that activate adjacent brain regions, such as individual fingers from one hand. Several studies have reported spatial and temporal couplings of rhythmic activities at different frequency bands, suggesting the existence of well-defined spectral structures across multiple frequency bands. In the present study, spectral principal component analysis (PCA) was applied on EEG data, obtained from a finger movement task, to identify cross-frequency spectral structures. Features from identified spectral structures were examined in their spatial patterns, cross-condition pattern changes, detection capability of finger movements from resting, and decoding performance of individual finger movements in comparison to classic mu/beta rhythms. These new features reveal some similar, but more different spatial and spectral patterns as compared with classic mu/beta rhythms. Decoding results further indicate that these new features (91%) can detect finger movements much better than classic mu/beta rhythms (75.6%). More importantly, these new features reveal discriminative information about movements of different fingers (fine body-part movements), which is not available in classic mu/beta rhythms. The capability in decoding fingers (and hand gestures in the future) from EEG will contribute significantly to the development of non-invasive BCI and neuroprosthesis with intuitive and flexible controls. PMID:26388720
Kong, Eric C; Woo, Katherine; Li, Haiyan; Lebestky, Tim; Mayer, Nasima; Sniffen, Melissa R; Heberlein, Ulrike; Bainton, Roland J; Hirsh, Jay; Wolf, Fred W
2010-04-01
Dopamine is a mediator of the stimulant properties of drugs of abuse, including ethanol, in mammals and in the fruit fly Drosophila. The neural substrates for the stimulant actions of ethanol in flies are not known. We show that a subset of dopamine neurons and their targets, through the action of the D1-like dopamine receptor DopR, promote locomotor activation in response to acute ethanol exposure. A bilateral pair of dopaminergic neurons in the fly brain mediates the enhanced locomotor activity induced by ethanol exposure, and promotes locomotion when directly activated. These neurons project to the central complex ellipsoid body, a structure implicated in regulating motor behaviors. Ellipsoid body neurons are required for ethanol-induced locomotor activity and they express DopR. Elimination of DopR blunts the locomotor activating effects of ethanol, and this behavior can be restored by selective expression of DopR in the ellipsoid body. These data tie the activity of defined dopamine neurons to D1-like DopR-expressing neurons to form a neural circuit that governs acute responding to ethanol.
Fatmawati, Sri; Kondo, Ryuichiro; Shimizu, Kuniyoshi
2013-11-01
A series of lanostane-type triterpenoids, identified as ganoderma alcohols and ganoderma acids, were isolated from the fruiting body of Ganoderma lingzhi. Some of these compounds were confirmed as active inhibitors of the in vitro human recombinant aldose reductase. This paper aims to explain the structural requirement for α-glucosidase inhibition. Our structure-activity studies of ganoderma alcohols showed that the OH substituent at C-3 and the double-bond moiety at C-24 and C-25 are necessary to increase α-glucosidase inhibitory activity. The structure-activity relationships of ganoderma acids revealed that the OH substituent at C-11 is an important feature and that the carboxylic group in the side chain is essential for the recognition of α-glucosidase inhibitory activity. Moreover, the double-bond moiety at C-20 and C-22 in the side chain and the OH substituent at C-3 of ganoderma acids improve α-glucosidase inhibitory activity. These results provide an approach with which to consider the structural requirements of lanostane-type triterpenoids from G. lingzhi. An understanding of these requirements is considered necessary in order to improve a new type of α-glucosidase inhibitor. Copyright © 2013 Elsevier Ltd. All rights reserved.
Harmful effect of detergents on lipase.
Fatima, Sadaf; Ajmal, Rehan; Badr, Gamal; Khan, Rizwan H
2014-11-01
In order to study effects of detergents at molecular level, we have done activity measurements of wheat germ lipase in increasing concentration of some commercial detergents. Conformational changes in protein structure using circular dichroism and fluorescence spectroscopy were studied in increasing concentration of sodium dodecyl sulfate. Our study proves that detergents may lead to loss of enzymatic activity and structure of plant enzymes. Since detergents are common source of pollution in water bodies and the water from these resources can be used in fields, our study may prove helpful in creating awareness about harmful action of detergents.
Lanostane-type triterpenoids from the fruiting body of Ganoderma calidophilum.
Huang, Sheng-Zhuo; Ma, Qing-Yun; Kong, Fan-Dong; Guo, Zhi-Kai; Cai, Cai-Hong; Hu, Li-Li; Zhou, Li-Man; Wang, Qi; Dai, Hao-Fu; Mei, Wen-Li; Zhao, You-Xing
2017-11-01
To search for active anti-cancer constituents in the fruiting body of Ganoderma calidophilum, we have successfully isolated four previously undescribed spiro-lactone lanostane triterpenoids (spiroganocalitones A-D), two previously undescribed lanostanoids (ganodecalones A and B) together with twenty-three known ones. The structures of the six previously undescribed compounds were elucidated based on 1D, 2D-NMR, and HRMS analyses. Ganoderone A showed moderate cytotoxic activity against K562, BEL7402, and SGC790 cell lines with IC 50 values of 7.62, 6.28, and 3.55 μM, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Baoyu; Sysoeva, Tatyana A.; Chowdhury, Saikat
The NtrC-like AAA+ ATPases control virulence and other important bacterial activities through delivering mechanical work to {sigma}54-RNA polymerase to activate transcription from {sigma}54-dependent genes. We report the first crystal structure for such an ATPase, NtrC1 of Aquifex aeolicus, in which the catalytic arginine engages the {gamma}-phosphate of ATP. Comparing the new structure with those previously known for apo and ADP-bound states supports a rigid-body displacement model that is consistent with large-scale conformational changes observed by low-resolution methods. First, the arginine finger induces rigid-body roll, extending surface loops above the plane of the ATPase ring to bind {sigma}54. Second, ATP hydrolysismore » permits Pi release and retraction of the arginine with a reversed roll, remodeling {sigma}54-RNAP. This model provides a fresh perspective on how ATPase subunits interact within the ring-ensemble to promote transcription, directing attention to structural changes on the arginine-finger side of an ATP-bound interface.« less
Is Empiricism Empirically False? Lessons from Early Nervous Systems.
Miłkowski, Marcin
2017-01-01
Recent work on skin-brain thesis (de Wiljes et al. 2015; Keijzer 2015; Keijzer et al. 2013) suggests the possibility of empirical evidence that empiricism is false. It implies that early animals need no traditional sensory receptors to be engaged in cognitive activity. The neural structure required to coordinate extensive sheets of contractile tissue for motility provides the starting point for a new multicellular organized form of sensing. Moving a body by muscle contraction provides the basis for a multicellular organization that is sensitive to external surface structure at the scale of the animal body. In other words, the nervous system first evolved for action, not for receiving sensory input. Thus, sensory input is not required for minimal cognition; only action is. The whole body of an organism, in particular its highly specific animal sensorimotor organization, reflects the bodily and environmental spatiotemporal structure. The skin-brain thesis suggests that, in contrast to empiricist claims that cognition is constituted by sensory systems, cognition may be also constituted by action-oriented feedback mechanisms. Instead of positing the reflex arc as the elementary building block of nervous systems, it proposes that endogenous motor activity is crucial for cognitive processes. In the paper, I discuss the issue whether the skin-brain thesis and its supporting evidence can be really used to overthrow the main tenet of empiricism empirically, by pointing out to cognizing agents that fail to have any sensory apparatus.
OPS laser EPI design for different wavelengths
NASA Astrophysics Data System (ADS)
Moloney, J. V.; Hader, J.; Li, H.; Kaneda, Y.; Wang, T. S.; Yarborough, M.; Koch, S. W.; Stolz, W.; Kunert, B.; Bueckers, C.; Chaterjee, S.; Hardesty, G.
2009-02-01
Design of optimized semiconductor optically-pumped semiconductor lasers (OPSLs) depends on many ingredients starting from the quantum wells, barrier and cladding layers all the way through to the resonant-periodic gain (RPG) and high reflectivity Bragg mirror (DBR) making up the OPSL active mirror. Accurate growth of the individual layers making up the RPG region is critical if performance degradation due to cavity misalignment is to be avoided. Optimization of the RPG+DBR structure requires knowledge of the heat generation and heating sinking of the active mirror. Nonlinear Control Strategies SimuLaseTM software, based on rigorous many-body calculations of the semiconductor optical response, allows for quantum well and barrier optimization by correlating low intensity photoluminescence spectra computed for the design, with direct experimentally measured wafer-level edge and surface PL spectra. Consequently, an OPSL device optimization procedure ideally requires a direct iterative interaction between designer and grower. In this article, we discuss the application of the many-body microscopic approach to OPSL devices lasing at 850nm, 1040nm and 2μm. The latter device involves and application of the many-body approach to mid-IR OPSLs based on antimonide materials. Finally we will present results on based on structural modifications of the epitaxial structure and/or novel material combinations that offer the potential to extend OPSL technology to new wavelength ranges.
Multidisciplinary analysis of actively controlled large flexible spacecraft
NASA Technical Reports Server (NTRS)
Cooper, Paul A.; Young, John W.; Sutter, Thomas R.
1986-01-01
The control of Flexible Structures (COFS) program has supported the development of an analysis capability at the Langley Research Center called the Integrated Multidisciplinary Analysis Tool (IMAT) which provides an efficient data storage and transfer capability among commercial computer codes to aid in the dynamic analysis of actively controlled structures. IMAT is a system of computer programs which transfers Computer-Aided-Design (CAD) configurations, structural finite element models, material property and stress information, structural and rigid-body dynamic model information, and linear system matrices for control law formulation among various commercial applications programs through a common database. Although general in its formulation, IMAT was developed specifically to aid in the evaluation of the structures. A description of the IMAT system and results of an application of the system are given.
Electrograms (ECG, EEG, EMG, EOG).
Reilly, Richard B; Lee, T Clive
2010-01-01
There is a constant need in medicine to obtain objective measurements of physical and cognitive function as the basis for diagnosis and monitoring of health. The body can be considered as a chemical and electrical system supported by a mechanical structure. Measuring and quantifying such electrical activity provides a means for objective examination of heath status. The term electrogram, from the Greek electro meaning electricity and gram meaning write or record, is the broad definition given to the recording of electrical signal from the body. In order that comparisons of electrical activity can be made against normative data, certain methods and procedures have been defined for different electrograms. This paper reviews these methods and procedures for the more typical electrograms associated with some of the major organs in the body, providing a first point of reference for the reader.
II.3. Electrograms (ECG, EEG, EMG, EOG).
Reilly, Richard B; Lee, T Clive
2010-01-01
There is a constant need in medicine to obtain objective measurements of physical and cognitive function as the basis for diagnosis and monitoring of health. The body can be considered as a chemical and electrical system supported by a mechanical structure. Measuring and quantifying such electrical activity provides a means for objective examination of heath status. The term electrogram, from the Greek electro meaning electricity and gram meaning write or record, is the broad definition given to the recording of electrical signal from the body. In order that comparisons of electrical activity can be made against normative data, certain methods and procedures have been defined for different electrograms. This paper reviews these methods and procedures for the more typical electrograms associated with some of the major organs in the body, providing a first point of reference for the reader.
Cycles of shame: menstrual shame, body shame, and sexual decision-making.
Schooler, Deborah; Ward, L Monique; Merriwether, Ann; Caruthers, Allison S
2005-11-01
Although numerous factors have been implicated in women's sexual decision-making, less attention has been focused on how their feelings about their bodies and reproductive functions affect these processes. Recent findings link menstrual shame to lower levels of sexual activity and higher levels of sexual risk; however the mechanisms behind these relations remain unexplored. Accordingly, this study investigates the contributions of menstrual shame and global body shame to sexual decision-making among 199 undergraduate women. Using structural equation modeling, we evaluated a mediated model, whereby menstrual shame is indirectly associated with sexual decision-making via body shame. As expected, women who reported feeling more comfort about menstruation also reported more body comfort and, in turn, more sexual assertiveness, more sexual experience, and less sexual risk.
Alleva, Jessica M; Martijn, Carolien; Van Breukelen, Gerard J P; Jansen, Anita; Karos, Kai
2015-09-01
This study tested Expand Your Horizon, a programme designed to improve body image by training women to focus on the functionality of their body using structured writing assignments. Eighty-one women (Mage=22.77) with a negative body image were randomised to the Expand Your Horizon programme or to an active control programme. Appearance satisfaction, functionality satisfaction, body appreciation, and self-objectification were measured at pretest, posttest, and one-week follow-up. Following the intervention, participants in the Expand Your Horizon programme experienced greater appearance satisfaction, functionality satisfaction, and body appreciation, and lower levels of self-objectification, compared to participants in the control programme. Partial eta-squared effect sizes were of small to medium magnitude. This study is the first to show that focusing on body functionality can improve body image and reduce self-objectification in women with a negative body image. These findings provide support for addressing body functionality in programmes designed to improve body image. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Glaese, John R.; McDonald, Emmett J.
2000-01-01
Orbiting space solar power systems are currently being investigated for possible flight in the time frame of 2015-2020 and later. Such space solar power (SSP) satellites are required to be extremely large in order to make practical the process of collection, conversion to microwave radiation, and reconversion to electrical power at earth stations or at remote locations in space. These large structures are expected to be very flexible presenting unique problems associated with their dynamics and control. The purpose of this project is to apply the expanded TREETOPS multi-body dynamics analysis computer simulation program (with expanded capabilities developed in the previous activity) to investigate the control problems associated with the integrated symmetrical concentrator (ISC) conceptual SSP system. SSP satellites are, as noted, large orbital systems having many bodies (perhaps hundreds) with flexible arrays operating in an orbiting environment where the non-uniform gravitational forces may be the major load producers on the structure so that a high fidelity gravity model is required. The current activity arises from our NRA8-23 SERT proposal. Funding, as a supplemental selection, has been provided by NASA with reduced scope from that originally proposed.
Sun, Huihui; Gao, Wenyuan; Wang, Hualei; Wei, Dongzhi
2016-03-01
To identify a novel nitrilase with S-selectivity toward mandelonitrile that can produce (S)-mandelic acid in one step. A novel nitrilase PpL19 from Pseudomonas psychrotolerans L19 was discovered by genome mining. It showed S-selectivity with an enantiomeric excess of 52.7 % when used to hydrolyse (R, S)-mandelonitrile. No byproduct was observed. PpL19 was overexpressed in Escherichia coli BL21 (DE3) and formed inclusion bodies that were active toward mandelonitrile and stable across a broad range of temperature and pH. In addition, PpL19 hydrolysed nitriles with diverse structures; arylacetonitriles were the optimal substrates. Homology modelling and docking studies of both enantiomers of mandelonitrile in the active site of nitrilase PpL19 shed light on the enantioselectivity. A novel nitrilase PpL19 from P. psychrotolerans L19 was mined and distinguished from other nitrilases as it was expressed as an active inclusion body and showed S-selectivity toward mandelonitrile.
Sigmundsdottir, Linda; Longley, Wendy A; Tate, Robyn L
2016-10-01
Computerised cognitive training (CCT) is an increasingly popular intervention for people experiencing cognitive symptoms. This systematic review evaluated the evidence for CCT in adults with acquired brain injury (ABI), focusing on how outcome measures used reflect efficacy across components of the International Classification of Functioning, Disability and Health. Database searches were conducted of studies investigating CCT to treat cognitive symptoms in adult ABI. Scientific quality was rated using the PEDro-P and RoBiNT Scales. Ninety-six studies met the criteria. Most studies examined outcomes using measures of mental functions (93/96, 97%); fewer studies included measures of activities/participation (41/96, 43%) or body structures (8/96, 8%). Only 14 studies (15%) provided Level 1 evidence (randomised controlled trials with a PEDro-P score ≥ 6/10), with these studies suggesting strong evidence for CCT improving processing speed in multiple sclerosis (MS) and moderate evidence for improving memory in MS and brain tumour populations. There is a large body of research examining the efficacy of CCT, but relatively few Level 1 studies and evidence is largely limited to body function outcomes. The routine use of outcome measures of activities/participation would provide more meaningful evidence for the efficacy of CCT. The use of body structure outcome measures (e.g., neuroimaging) is a newly emerging area, with potential to increase understanding of mechanisms of action for CCT.
Chromium-induced membrane damage: protective role of ascorbic acid.
Dey, S K; Nayak, P; Roy, S
2001-07-01
Importance of chromium as environmental toxicant is largely due to impact on the body to produce cellular toxicity. The impact of chromium and their supplementation with ascorbic acid was studied on plasma membrane of liver and kidney in male Wistar rats (80-100 g body weight). It has been observed that the intoxication with chromium (i.p.) at the dose of 0.8 mg/100 g body weight per day for a period of 28 days causes significant increase in the level of cholesterol and decrease in the level of phospholipid of both liver and kidney. The alkaline phosphatase, total ATPase and Na(+)-K(+)-ATPase activities were significantly decreased in both liver and kidney after chromium treatment, except total ATPase activity of kidney. It is suggested that chromium exposure at the present dose and duration induce for the alterations of structure and function of both liver and kidney plasma membrane. Ascorbic acid (i.p. at the dose of 0.5 mg/100 g body weight per day for period of 28 days) supplementation can reduce these structural changes in the plasma membrane of liver and kidney. But the functional changes can not be completely replenished by the ascorbic acid supplementation in response to chromium exposure. So it is also suggested that ascorbic acid (nutritional antioxidant) is useful free radical scavenger to restrain the chromium-induced membrane damage.
Reduction of the sonic boom level in supersonic aircraft flight by the method of surface cooling
NASA Astrophysics Data System (ADS)
Fomin, V. M.; Chirkashenko, V. F.; Volkov, V. F.; Kharitonov, A. M.
2013-12-01
Based on the analysis of various aspects of creating a supersonic transport aircraft of the second generation, the necessity of developing unconventional active methods of sonic boom level reduction is demonstrated. Surface cooling is shown to exert a significant effect on formation of the disturbed flow structure up to large distances from the body by an example of a supersonic flow around a body of revolution. A method of reducing the intensity of the intermediate shock wave and excess pressure momentum near the body is proposed. This method allows the length of the reduced (by 50%) sonic boom level to be increased and the bow shock wave intensity in the far zone to be reduced by 12%. A possibility of controlling the process of formation of wave structures, such as hanging pressure shocks arising near the aircraft surface, is demonstrated. The action of the cryogenic mechanism is explained.
Reduction of vortex induced forces and motion through surface roughness control
Bernitsas, Michael M; Raghavan, Kamaldev
2014-04-01
Roughness is added to the surface of a bluff body in a relative motion with respect to a fluid. The amount, size, and distribution of roughness on the body surface is controlled passively or actively to modify the flow around the body and subsequently the Vortex Induced Forces and Motion (VIFM). The added roughness, when designed and implemented appropriately, affects in a predetermined way the boundary layer, the separation of the boundary layer, the level of turbulence, the wake, the drag and lift forces, and consequently the Vortex Induced Motion (VIM), and the fluid-structure interaction. The goal of surface roughness control is to decrease/suppress Vortex Induced Forces and Motion. Suppression is required when fluid-structure interaction becomes destructive as in VIM of flexible cylinders or rigid cylinders on elastic support, such as underwater pipelines, marine risers, tubes in heat exchangers, nuclear fuel rods, cooling towers, SPAR offshore platforms.
Samosky, Joseph T; Baillargeon, Emma; Bregman, Russell; Brown, Andrew; Chaya, Amy; Enders, Leah; Nelson, Douglas A; Robinson, Evan; Sukits, Alison L; Weaver, Robert A
2011-01-01
We have developed a prototype of a real-time, interactive projective overlay (IPO) system that creates augmented reality display of a medical procedure directly on the surface of a full-body mannequin human simulator. These images approximate the appearance of both anatomic structures and instrument activity occurring within the body. The key innovation of the current work is sensing the position and motion of an actual device (such as an endotracheal tube) inserted into the mannequin and using the sensed position to control projected video images portraying the internal appearance of the same devices and relevant anatomic structures. The images are projected in correct registration onto the surface of the simulated body. As an initial practical prototype to test this technique we have developed a system permitting real-time visualization of the intra-airway position of an endotracheal tube during simulated intubation training.
Lucidumol D, a new lanostane-type triterpene from fruiting bodies of Reishi (Ganoderma lingzhi).
Satria, Dedi; Amen, Yhiya; Niwa, Yasuharu; Ashour, Ahmed; Allam, Ahmed E; Shimizu, Kuniyoshi
2018-02-19
A new lanostane-type triterpenoid, lucidumol D (1) was isolated from the fruiting bodies of Ganoderma lingzhi. Its structure was elucidated on the basis of extensive 1D- and 2D-NMR studies as well as mass spectrometry. The cytotoxicity of lucidumol D against proliferation of several cancer cells were assayed by using MTT method and the obtained result suggested selective anti-proliferative and cytotoxic effects against MCF-7, HepG2, HeLa, Caco-2, and HCT-116. In comparison to lucidumol C (2) isolated previously by our group, the structure-activity relationship indicated that carbonyl function at C-11 is necessary to enhance the cytotoxicity.
Sakina, N L; Dontsov, A E; Afanas'ev, G G; Ostrovski, M A; Pelevina, I I
1990-01-01
In studying the effect of whole-body X-irradiation on the accumulation of lipid peroxidation products (conjugated dienes, TBA-active products, and Schiff bases) in retina and retinal pigmented epithelium of pigmented and nonpigmented mice it was shown that irradiation of dark-pigmented mice does not cause even a slight accumulation of lipid peroxidation products as compared to that in the controls. Albino mice exhibited a marked increase in the level of lipid peroxidation products which was manifested soon after irradiation and persisted for at least 3 months after irradiation. Melanine is suggested to participate in protecting eye structures against pro-oxidizing action of ionizing radiation.
Code of Federal Regulations, 2014 CFR
2014-01-01
... OF HANDICAP IN PROGRAMS OR ACTIVITIES CONDUCTED BY THE FEDERAL RETIREMENT THRIFT INVESTMENT BOARD... any portion of buildings, structures, equipment, roads, walks, parking lots, rolling stock or other... body. Individual with handicaps means any person who has a physical or mental impairment that...
The Inner Clock: A New Timepiece for Learning.
ERIC Educational Resources Information Center
Brooks, Andree
1980-01-01
The author suggests the use of chronobiology--the body's 24-hour cycle rhythms--to chart children's physical, emotional, and mental reactions in order to more realistically and productively structure learning activities. This exercise also involves math and science skills. (KC)
The role of body image and self-perception in anorexia nervosa: the neuroimaging perspective.
Esposito, Roberto; Cieri, Filippo; di Giannantonio, Massimo; Tartaro, Armando
2018-03-01
Anorexia nervosa is a severe psychiatric illness characterized by intense fear of gaining weight, relentless pursuit of thinness, deep concerns about food and a pervasive disturbance of body image. Functional magnetic resonance imaging tries to shed light on the neurobiological underpinnings of anorexia nervosa. This review aims to evaluate the empirical neuroimaging literature about self-perception in anorexia nervosa. This narrative review summarizes a number of task-based and resting-state functional magnetic resonance imaging studies in anorexia nervosa about body image and self-perception. The articles listed in references were searched using electronic databases (PubMed and Google Scholar) from 1990 to February 2016 using specific key words. All studies were reviewed with regard to their quality and eligibility for the review. Differences in brain activity were observed using body image perception and body size estimation tasks showing significant modifications in activity of specific brain areas (extrastriate body area, fusiform body area, inferior parietal lobule). Recent studies highlighted the role of emotions and self-perception in anorexia nervosa and their neural substrate involving resting-state networks and particularly frontal and posterior midline cortical structures within default mode network and insula. These findings open new horizons to understand the neural substrate of anorexia nervosa. © 2016 The British Psychological Society.
Kumar, Sandeep; Jain, Kavish Kumar; Singh, Anupam; Panda, Amulya K; Kuhad, Ramesh Chander
2015-06-01
Pectate lyase (EC 4.2.2.2) gene from Bacillus subtilis RCK was cloned and expressed in Escherichia coli to maximize its production. In addition to soluble fraction, bioactive pectate lyase was also obtained from inclusion body aggregates by urea solubilization and refolding under in vitro conditions. Enzyme with specific activity ∼3194IU/mg and ∼1493IU/mg were obtained from soluble and inclusion bodies (IBs) fraction with recovery of 56% and 74% in terms of activity, respectively. The recombinant enzyme was moderately thermostable (t1/2 60min at 50°C) and optimally active in wider alkaline pH range (7.0-10.5). Interaction of protein with its cofactor CaCl2 was found to stimulate the change in tertiary structure as revealed by near UV CD spectra. Intrinsic tryptophan fluorescence spectra indicated that tryptophan is involved in substrate binding and there might be independent binding of Ca(2+) and polygalacturonic acid to the active site. The recombinant enzyme was found to be capable of degrading pectin and polygalacturonic acid. The work reports novel conditions for refolding to obtain active recombinant pectate lyase from inclusion bodies and elucidates the effect of ligand and substrate binding on protein conformation by circular dichroism (CD) and fluorescence spectrofluorometry. Copyright © 2014 Elsevier Inc. All rights reserved.
Tiano, L; Chessa, M G; Carrara, S; Tagliafierro, G; Delmonte Corrado, M U
1999-01-01
The chromatin structure dynamics of the Colpoda inflata macronucleus have been investigated in relation to its functional condition, concerning chromatin body extrusion regulating activity. Samples of 2- and 25-day-old resting cysts derived from a standard culture, and of 1-year-old resting cysts derived from a senescent culture, were examined by means of histogram analysis performed on acquired optical microscopy images. Three groups of histograms were detected in each sample. Histogram classification, clustering and matching were assessed in order to obtain the mean histogram of each group. Comparative analysis of the mean histogram showed a similarity in the grey level range of 25-day- and 1-year-old cysts, unlike the wider grey level range found in 2-day-old cysts. Moreover, the respective mean histograms of the three cyst samples appeared rather similar in shape. All this implies that macronuclear chromatin structural features of 1-year-old cysts are common to both cyst standard cultures. The evaluation of the acquired images and their respective histograms evidenced a dynamic state of the macronuclear chromatin, appearing differently condensed in relation to the chromatin body extrusion regulating activity of the macronucleus. The coexistence of a chromatin-decondensed macronucleus with a pycnotic extrusion body suggests that chromatin unable to decondense, thus inactive, is extruded. This finding, along with the presence of chromatin structural features common to standard and senescent cyst populations, supports the occurrence of 'rejuvenated' cell lines from 1-year-old encysted senescent cells, a phenomenon which could be a result of accomplished macronuclear renewal.
Zeitelhofer, Manuel; Karra, Daniela; Macchi, Paolo; Tolino, Marco; Thomas, Sabine; Schwarz, Martina; Kiebler, Michael; Dahm, Ralf
2008-07-23
The dendritic localization of mRNAs and their subsequent translation at stimulated synapses contributes to the experience-dependent remodeling of synapses and thereby to the establishment of long-term memory. Localized mRNAs are transported in a translationally silent manner to distal dendrites in specific ribonucleoprotein particles (RNPs), termed transport RNPs. A recent study suggested that processing bodies (P-bodies), which have recently been identified as sites of RNA degradation and translational control in eukaryotic cells, may participate in the translational control of dendritically localized mRNAs in Drosophila neurons. This study raised the interesting question of whether dendritic transport RNPs are distinct from P-bodies or whether those structures share significant overlap in their molecular composition in mammalian neurons. Here, we show that P-body and transport RNP markers do not colocalize and are not transported together in the same particles in dendrites of mammalian neurons. Detailed time-lapse videomicroscopy analyses reveal, however, that both P-bodies and transport RNPs can interact in a dynamic manner via docking. Docking is a frequent event involving as much as 50% of all dendritic P-bodies. Chemically induced neuronal activity results in a 60% decrease in the number of P-bodies in dendrites, suggesting that P-bodies disassemble after synaptic stimulation. Our data lend support to the exciting hypothesis that dendritically localized mRNAs might be stored in P-bodies and be released and possibly translated when synapses become activated.
Yeung, Daniel Chi-Shing; Yuan, Xin; Hui, Stanley Sai-Chuen; Feresu, Shingairai Aliifina
2016-05-01
The determinants of physical activity (PA) and body fatness in Chinese adolescents are rarely examined. This study aimed to investigate the effect of attitude toward PA, screen time, parents' socioeconomic status (SES), and exercise habit on PA and body fatness among Chinese children by using structural equation modeling (SEM) analysis. Data obtained from the second Community Fitness Survey in Hong Kong were utilized, in which students from one secondary school of each of the 18 districts of Hong Kong were recruited. A total of 2517 questionnaires with physical fitness items were successfully distributed to students aged 13-19 years in these districts. Families' SES, parents' exercise habit, children's intention to participate in PA, amount of moderate to vigorous PA (MVPA), screen time, children's attitude toward PA, and children's body fat percentage were measured and analyzed with SEM. The structural equation model was composed of a measurement model and a structural model. The model was tested with Mplus 6. The Chi-square test, root mean square error of approximation, comparative fit index, and Tucker-Lewis index were calculated to evaluate model fit. The model was then modified based on the model fit indices. Children's intention to participate in PA was a strong predictor of their engagement in MVPA. Parents' exercise habit had both direct and indirect (via attitude) effects on their children's intention to participate in PA. Screen time was not a predictor of body composition. Children's intention to participate in PA directly affected their body composition. Children's attitude toward PA, parents' exercise habit, and SES had significant effects on the children's intention to participate in PA. Furthermore, obesity had a negative effect on the children's attitude toward PA. To promote MVPA and prevent obesity in Chinese children of Hong Kong, it is important to design intervention that enhances children's intention and attitude in PA, as well as parent's exercise habits. Tailormade programs that take SES into consideration are also essential. Further studies are necessary to extend the results and test the model in other metropolitan areas in China.
Dynamics and Emergent Structures in Active Fluids
NASA Astrophysics Data System (ADS)
Baskaran, Aparna
2014-03-01
In this talk, we consider an active fluid of colloidal sized particles, with the primary manifestation of activity being a self-replenishing velocity along one body axis of the particle. This is a minimal model for varied systems such as bacterial colonies, cytoskeletal filament motility assays vibrated granular particles and self propelled diffusophoretic colloids, depending on the nature of interaction among the particles. Using microscopic Brownian dynamics simulations, coarse-graining using the tools of non-equilibrium statistical mechanics and analysis of macroscopic hydrodynamic theories, we characterize emergent structures seen in these systems, which are determined by the symmetry of the interactions among the active units, such as propagating density waves, dense stationary bands, asters and phase separated isotropic clusters. We identify a universal mechanism, termed ``self-regulation,'' as the underlying physics that leads to these structures in diverse systems. Support from NSF through DMR-1149266 and DMR-0820492.
Chen, Shaodan; Li, Xiangmin; Yong, Tianqiao; Wang, Zhanggen; Su, Jiyan; Jiao, Chunwei; Xie, Yizhen; Yang, Burton B
2017-02-07
We conducted a study of Ganoderma lucidum metabolites and isolated 35 lanostane-type triterpenoids, including 5 new ganoderols (1-5). By spectroscopy, we compared the structures of these compounds with known related compounds in this group. All of the isolated compounds were assayed for their effect against the human breast carcinoma cell line MDA-MB-231 and hepatocellular carcinoma cell line HepG2. Corresponding three-dimensional quantitative structure-activity relationship (3D-QSAR) models were built and analyzed using Discovery Studio. These results provide further evidence for anti-cancer constituents within Ganoderma lucidum, and may provide a theoretical foundation for designing novel therapeutic compounds.
Fish Manoeuvres and Morphology
NASA Astrophysics Data System (ADS)
Singh, Kiran; Pedley, Timothy
2008-11-01
The extraordinary manoeuvrability observed in many fish is attributed to their inherent flexibility, which might be enhanced by the use of appendages like fins. The aim of this work is to understand the role of morphological adaptations, such as body shape and deployment of median fins, on manoeuvrability and internal body dynamics. The 3d vortex lattice numerical method was employed to analyse the hydrodynamics for arbitrary body planforms of infinitesimal thickness. The internal structure of the body due to the combined skeletal system and soft tissue, is represented as an active Euler-Bernoulli beam, in which the time-dependent bending moment distribution is calculated from body inertia and the hydrodynamic pressure difference across the body. C-turns are the manoeuvre of choice for this work and the response for three different species of fish are examined. Angelfish(Pterophyllum eimekei), pike (Esox sp) and tuna (Thunnus albacares) were chosen for their differences in body profile, median fin use and manoeuvrability. Net direction change and bending moment response to prescribed backbone flexure are calculated and used to interpret the influence of body profile on manoeuvrability and muscle work done. Internal stresses may be computed from anatomical data on muscle fibre distribution and recruitment. To the future, it is intended to extend this work to other typical manoeuvres, such as fast starts for which muscle activation patterns have been measured quite widely.
The Interior and Orbital Evolution of Charon as Preserved in Its Geologic Record
NASA Technical Reports Server (NTRS)
Rhoden, Alyssa Rose; Henning, Wade; Hurford, Terry A.; Hamilton, Douglas P.
2014-01-01
Pluto and its largest satellite, Charon, currently orbit in a mutually synchronous state; both bodies continuously show the same face to one another. This orbital configuration is a natural end-state for bodies that have undergone tidal dissipation. In order to achieve this state, both bodies would have experienced tidal heating and stress, with the extent of tidal activity controlled by the orbital evolution of Pluto and Charon and by the interior structure and rheology of each body. As the secondary, Charon would have experienced a larger tidal response than Pluto, which may have manifested as observable tectonism. Unfortunately, there are few constraints on the interiors of Pluto and Charon. In addition, the pathway by which Charon came to occupy its present orbital state is uncertain. If Charon's orbit experienced a high-eccentricity phase, as suggested by some orbital evolution models, tidal effects would have likely been more significant. Therefore, we determine the conditions under which Charon could have experienced tidally-driven geologic activity and the extent to which upcoming New Horizons spacecraft observations could be used to constrain Charon's internal structure and orbital evolution. Using plausible interior structure models that include an ocean layer, we find that tidally-driven tensile fractures would likely have formed on Charon if its eccentricity were on the order of 0.01, especially if Charon were orbiting closer to Pluto than at present. Such fractures could display a variety of azimuths near the equator and near the poles, with the range of azimuths in a given region dependent on longitude; east-west-trending fractures should dominate at mid-latitudes. The fracture patterns we predict indicate that Charon's surface geology could provide constraints on the thickness and viscosity of Charon's ice shell at the time of fracture formation.
Berge, Jerica M; Jin, Seok Won; Hannan, Peter; Neumark-Sztainer, Dianne
2013-06-01
The last decade of research has suggested that family meals play an important role in promoting healthful dietary intake in youth. However, little is known about the structural characteristics and interpersonal dynamics of family meals that might help to inform why family meals are protective for youth. The current mixed methods, cross-sectional study conducted in 2010-2011 includes adolescents and parents who participated in two linked population-based studies. Participants included 40 parents (91.5% female) and adolescents (57.5% female) from the Minneapolis/St Paul, MN, area participating in EAT (Eating and Activity Among Teens) 2010 and F-EAT (Families and Eating and Activity Among Teens). The structural (eg, length of the meal, types of foods served) and interpersonal characteristics (eg, communication, emotion/affect management) of family meals were described, and associations between interpersonal dynamics at family meals and adolescent body mass index and dietary intake were examined via direct observational methods. Families were videorecorded during two mealtimes in their homes. Results indicated that family meals were approximately 20 minutes in length, included multiple family members, were typically served family style (70%), and occurred in the kitchen 62% of the time and 38% of the time in another room (eg, family room, office). In addition, significant associations were found between positive interpersonal dynamics (ie, communication, affect management, interpersonal involvement, overall family functioning) at family meals and lower adolescent body mass index and higher vegetable intake. These findings add to the growing body of literature on family meals by providing a better understanding of what is happening at family meals in order to inform obesity-prevention studies and recommendations for providers working with families of youth. Copyright © 2013 Academy of Nutrition and Dietetics. Published by Elsevier Inc. All rights reserved.
34 CFR 1200.103 - Definitions.
Code of Federal Regulations, 2013 CFR
2013-07-01
... OF HANDICAP IN PROGRAMS OR ACTIVITIES CONDUCTED BY THE NATIONAL COUNCIL ON DISABILITY § 1200.103... any portion of buildings, structures, equipment, roads, walks, parking lots, rolling stock or other... body. Individual with handicaps means any person who has a physical or mental impairment that...
In situ SUMOylation analysis reveals a modulatory role of RanBP2 in the nuclear rim and PML bodies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saitoh, Noriko; Uchimura, Yasuhiro; The 21st Century Center of Excellence, Kumamoto University, 2-2-1 Honjo, Kumamoto 860-0811
2006-05-01
SUMO modification plays a critical role in a number of cellular functions including nucleocytoplasmic transport, gene expression, cell cycle and formation of subnuclear structures such as promyelocytic leukemia (PML) bodies. In order to identify the sites where SUMOylation takes place in the cell, we developed an in situ SUMOylation assay using a semi-intact cell system and subsequently combined it with siRNA-based knockdown of nucleoporin RanBP2, also known as Nup358, which is one of the known SUMO E3 proteins. With the in situ SUMOylation assay, we found that both nuclear rim and PML bodies, besides mitotic apparatuses, are major targets formore » active SUMOylation. The ability to analyze possible SUMO conjugation sites would be a valuable tool to investigate where SUMO E3-like activities and/or SUMO substrates exist in the cell. Specific knockdown of RanBP2 completely abolished SUMOylation along the nuclear rim and dislocated RanGAP1 from the nuclear pore complexes. Interestingly, the loss of RanBP2 markedly reduced the number of PML bodies, in contrast to other, normal-appearing nuclear compartments including the nuclear lamina, nucleolus and chromatin, suggesting a novel link between RanBP2 and PML bodies. SUMOylation facilitated by RanBP2 at the nuclear rim may be a key step for the formation of a particular subnuclear organization. Our data imply that SUMO E3 proteins like RanBP2 facilitate spatio-temporal SUMOylation for certain nuclear structure and function.« less
The DD Cold Fusion-Transmutation Connection
NASA Astrophysics Data System (ADS)
Chubb, Talbot A.
2005-12-01
LENR theory must explain dd fusion, alpha-addition transmutations, radiationless nuclear reactions, and three-body nuclear particle reactions. Reaction without radiation requires many-body D Bloch+ periodicity in both location and internal structure dependencies. Electron scattering leads to mixed quantum states. The radiationless dd fusion reaction is 2-D Bloch+ -> {}4 He Bloch2+. Overlap between {}4 He Bloch2+ and surface Cs leads to alpha absorption. In the Iwamura et al. studies active deuterium is created by scattering at diffusion barriers.
Moreno-Murcia, Juan Antonio; Hellín, Pedro; González-Cutre, David; Martínez-Galindo, Celestina
2011-05-01
The purpose of this study was to test an explanatory model of the relationships between physical self-concept and some healthy habits. A sample of 472 adolescents aged 16 to 20 answered different questionnaires assessing physical self-concept, physical activity, intention to be physically active and consumption of alcohol and tobacco. The results of the structural equation model showed that perceived sport competence positively correlated with current physical activity. Body attractiveness positively correlated with physical activity in boys and negatively in girls. Current physical activity positively correlated with the intention to be physically active in the future and negatively with the consumption of alcohol and tobacco. Nevertheless, this last relationship was only significant in boys. The results are discussed in connection with the promotion of healthy lifestyle guidelines among adolescents. This model shows the importance of physical self-concept for engaging in physical activity in adolescence. It also suggests that physical activity is associated with the intention to continue being physically active and with healthy lifestyle habits.
Lima, R A; Pfeiffer, K A; Bugge, A; Møller, N C; Andersen, L B; Stodden, D F
2017-12-01
We investigated the longitudinal associations among physical activity (PA), motor competence (MC), cardiorespiratory fitness (VO 2peak ), and body fatness across 7 years, and also analyzed the possible mediation effects of PA, MC, and VO 2peak on the relationships with body fatness. This was a seven-year longitudinal study with three measuring points (mean ages [in years] and respective sample size: 6.75±0.37, n=696; 9.59±1.07, n=617; 13.35±0.34, n=513). PA (moderate-to-vigorous PA-MVPA and vigorous PA-VPA) was monitored using accelerometers. MC was assessed by the "Körperkoordinationstest für Kinder-KTK" test battery. VO 2peak was evaluated using a continuous running protocol until exhaustion. Body fatness was determined by the sum of four skinfolds. Structural equation modeling was performed to evaluate the longitudinal associations among PA, MC, VO 2peak, and body fatness and the potential mediation effects of PA, MC, and VO 2peak . All coefficients presented were standardized (z-scores). MC and VO 2peak directly influenced the development of body fatness, and VO 2peak mediated the associations between MVPA, VPA, MC, and body fatness. MC also mediated the associations between MVPA, VPA, and body fatness. In addition, VO 2peak had the largest total association with body fatness (β=-0.431; P<.05), followed by MC (β=-0.369; P<.05) and VPA (β=-0.112; P<.05). As PA, MC, and VO 2peak exhibited longitudinal association with body fatness, it seems logical that interventions should strive to promote the development of fitness and MC through developmentally appropriate physical activities, as the synergistic interactions of all three variables impacted body fatness. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Long-term regulation of carotid body function: acclimatization and adaptation--invited article.
Prabhakar, N R; Peng, Y-J; Kumar, G K; Nanduri, J; Di Giulio, C; Lahiri, Sukhamay
2009-01-01
Physiological responses to hypoxia either continuous (CH) or intermittent (IH) depend on the O(2)-sensing ability of the peripheral arterial chemoreceptors, especially the carotid bodies, and the ensuing reflexes play important roles in maintaining homeostasis. The purpose of this article is to summarize the effects of CH and IH on carotid body function and the underlying mechanisms. CH increases baseline carotid body activity and sensitizes the response to acute hypoxia. These effects are associated with hyperplasia of glomus cells and neovascularization. Enhanced hypoxic sensitivity is due to alterations in ion current densities as well as changes in neurotransmitter dynamics and recruitment of additional neuromodulators (endothelin-1, ET-1) in glomus cells. Morphological alterations are in part due to up-regulation of growth factors (e.g. VEGF). Hypoxia-inducible factor-1 (HIF-1), a transcriptional activator might underlie the remodeling of carotid body structure and function by CH. Chronic IH, on the other hand, is associated with recurrent apneas in adults and premature infants. Two major effects of chronic IH on the adult carotid body are sensitization of the hypoxic sensory response and long-lasting increase in baseline activity i.e., sensory long-term facilitation (LTF) which involve reactive oxygen species (ROS) and HIF-1. In neonates, chronic IH leads to sensitization of the hypoxic response but does not induce sensory LTF. Chronic IH-induced sensitization of the carotid body response to hypoxia increases the likelihood of unstable breathing perpetuating in more number of apneas, whereas sensory LTF may contribute to increased sympathetic tone and systemic hypertension associated with recurrent apneas.
Data mining and visualization from planetary missions: the VESPA-Europlanet2020 activity
NASA Astrophysics Data System (ADS)
Longobardo, Andrea; Capria, Maria Teresa; Zinzi, Angelo; Ivanovski, Stavro; Giardino, Marco; di Persio, Giuseppe; Fonte, Sergio; Palomba, Ernesto; Antonelli, Lucio Angelo; Fonte, Sergio; Giommi, Paolo; Europlanet VESPA 2020 Team
2017-06-01
This paper presents the VESPA (Virtual European Solar and Planetary Access) activity, developed in the context of the Europlanet 2020 Horizon project, aimed at providing tools for analysis and visualization of planetary data provided by space missions. In particular, the activity is focused on minor bodies of the Solar System.The structure of the computation node, the algorithms developed for analysis of planetary surfaces and cometary comae and the tools for data visualization are presented.
Kaur, Gagandeep; Singh, Amninder; Sharma, Rohit; Sharma, Vinay; Verma, Swati; Sharma, Pushpender K
2016-06-01
In the present investigation, a gene encoding extracellular lipase was cloned from a Bacillus licheniformis. The recombinant protein containing His-tag was expressed as inclusion bodies in Esherichia coli BL21DE3 cells, using pET-23a as expression vector. Expressed protein purified from the inclusion bodies demonstrated ~22 kDa protein band on 12 % SDS-PAGE. It exhibited specific activity of 0.49 U mg -1 and % yield of 8.58. Interestingly, the lipase displayed activity at wide range of pH and temperature, i.e., 9.0-14.0 pH and 30-80 °C, respectively. It further demonstrated ~100 % enzyme activity in presence of various organic solvents. Enzyme activity was strongly inhibited in the presence of β-ME. Additionally, the serine and histidine modifiers also inhibited the enzyme activities strongly at all concentrations that suggest their role in the catalytic center. Enzyme could retain its activity in presence of various detergents (Triton X-100, Tween 20, Tween 40, SDS). Sequence and structural analysis employing in silico tools revealed that the lipase contained two highly conserved sequences consisting of ITITGCGNDL and NLYNP, arranged as parallel β-sheet in the core of the 3D structure. The function of these conserve sequences have not fully understood.
Fernando, Thilini; Flibotte, Stephane; Xiong, Sheng; Yin, Jianghua; Yzeiraj, Edlira; Moerman, Donald G.; Meléndez, Alicia; Savage-Dunn, Cathy
2011-01-01
Organismal growth and body size are influenced by both genetic and environmental factors. We have utilized the strong molecular genetic techniques available in the nematode C. elegans to identify genetic determinants of body size. In C. elegans, DBL-1, a member of the conserved family of secreted growth factors known as the Transforming Growth Factor β superfamily, is known to play a major role in growth control. The mechanisms by which other determinants of body size function, however, is less well understood. To identify additional genes involved in body size regulation, a genetic screen for small mutants was previously performed. One of the genes identified in that screen was sma-21. We now demonstrate that sma-21 encodes ADT-2, a member of the ADAMTS (a disintegrin and metalloprotease with thrombospondin motifs) family of secreted metalloproteases. ADAMTS proteins are believed to remodel the extracellular matrix and may modulate the activity of extracellular signals. Genetic interactions suggest that ADT-2 acts in parallel with or in multiple size regulatory pathways. We demonstrate that ADT-2 is required for normal levels of expression of a DBL-1-responsive transcriptional reporter. We further demonstrate that adt-2 regulatory sequences drive expression in glial-like and vulval cells, and that ADT-2 activity is required for normal cuticle collagen fibril organization. We therefore propose that ADT-2 regulates body size both by modulating TGFβ signaling activity and by maintaining normal cuticle structure. PMID:21256840
Carasatorre, M; Ramírez-Amaya, V; Díaz Cintra, S
2016-10-01
Long-lasting memory formation requires that groups of neurons processing new information develop the ability to reproduce the patterns of neural activity acquired by experience. Changes in synaptic efficiency let neurons organise to form ensembles that repeat certain activity patterns again and again. Among other changes in synaptic plasticity, structural modifications tend to be long-lasting which suggests that they underlie long-term memory. There is a large body of evidence supporting that experience promotes changes in the synaptic structure, particularly in the hippocampus. Structural changes to the hippocampus may be functionally implicated in stabilising acquired memories and encoding new information. Copyright © 2012 Sociedad Española de Neurología. Publicado por Elsevier España, S.L.U. All rights reserved.
Localization and regulation of PML bodies in the adult mouse brain.
Hall, Małgorzata H; Magalska, Adriana; Malinowska, Monika; Ruszczycki, Błażej; Czaban, Iwona; Patel, Satyam; Ambrożek-Latecka, Magdalena; Zołocińska, Ewa; Broszkiewicz, Hanna; Parobczak, Kamil; Nair, Rajeevkumar R; Rylski, Marcin; Pawlak, Robert; Bramham, Clive R; Wilczyński, Grzegorz M
2016-06-01
PML is a tumor suppressor protein involved in the pathogenesis of promyelocytic leukemia. In non-neuronal cells, PML is a principal component of characteristic nuclear bodies. In the brain, PML has been implicated in the control of embryonic neurogenesis, and in certain physiological and pathological phenomena in the adult brain. Yet, the cellular and subcellular localization of the PML protein in the brain, including its presence in the nuclear bodies, has not been investigated comprehensively. Because the formation of PML bodies appears to be a key aspect in the function of the PML protein, we investigated the presence of these structures and their anatomical distribution, throughout the adult mouse brain. We found that PML is broadly expressed across the gray matter, with the highest levels in the cerebral and cerebellar cortices. In the cerebral cortex PML is present exclusively in neurons, in which it forms well-defined nuclear inclusions containing SUMO-1, SUMO 2/3, but not Daxx. At the ultrastructural level, the appearance of neuronal PML bodies differs from the classic one, i.e., the solitary structure with more or less distinctive capsule. Rather, neuronal PML bodies have the form of small PML protein aggregates located in the close vicinity of chromatin threads. The number, size, and signal intensity of neuronal PML bodies are dynamically influenced by immobilization stress and seizures. Our study indicates that PML bodies are broadly involved in activity-dependent nuclear phenomena in adult neurons.
Fekete, Christine; Rauch, Alexandra
2012-07-01
Participation in physical activity (PA) decreases after the onset of a spinal cord injury (SCI) and is generally low in persons with SCI. To provide an overview of findings on correlates/determinants of PA in persons with SCI applying the International Classification of Functioning, Disability and Health (ICF) to analyze and report results. A systematic literature review using the databases MEDLINE, PsycINFO, SSCI, and CINHAL was conducted. Independent variables were extracted and linked to ICF codes. Quality of evidence was rated using internationally accepted standards. Overall, evidence quality of the 25 included studies is low. Environmental Factors were consistently found as correlates of PA, whereas Personal Factors (socio-demographics and psychological constructs) were weakly associated with PA in the SCI population. Associations with Body Functions, Body Structures, Activities and Participation and Health Conditions were less frequently studied. Although quality of evidence of reviewed literature is low, results indicate that rather environmental barriers than the 'classical' socio-demographic factors known from social epidemiology correlate with PA in persons with SCI. There is insufficient evidence to draw conclusions concerning the association of Body Functions and Structures and Activity and Participation with PA. Future research is encouraged to better understand the interplay between functioning, contextual factors, health conditions and PA in SCI to establish a sound basis for intervention planning in this special needs population. In addition, our experience showed that linking study results to the ICF facilitates data analysis and reporting. Copyright © 2012 Elsevier Inc. All rights reserved.
Faria-Fortini, Iza; Michaelsen, Stella Maris; Cassiano, Janine Gomes; Teixeira-Salmela, Luci Fuscaldi
2011-01-01
Upper limb (UL) impairments are the most common disabling deficits after stroke and have complex relationships with activity and participation domains. However, relatively few studies have applied the ICF model to identify the contributions of specific UL impairments, such as muscular weakness, pain, and sensory loss, as predictors of activity and participation. The purposes of this predictive study were to evaluate the relationships between UL variables related to body functions/structures, activity, and participation domains and to determine which would best explain activity and participation with 55 subjects with chronic stroke. Body functions/structures were assessed by measures of grip, pinch, and UL strength, finger tactile sensations, shoulder pain, and cognition (MMSE); activity domain by measures of observed performance (BBT, NHPT, and TEMPA); and participation by measures of quality of life (SSQOL). Upper-limb and grip strength were related to all activity measures (0.52
Kopeyan, C; Mansuelle, P; Martin-Eauclaire, M F; Rochat, H; Miranda, F
1993-01-01
The primary structure of toxin III of Leiurus quinquestriatus quinquestriatus (Lqq III) was elucidated by automatic Edman degradation of the reduced and S-carboxymethylated protein and derived tryptic peptides. Like other scorpion toxins that are active on sodium channels, Lqq III, consisting of 64 amino acids, is a 7 kDa single-chain polypeptide crosslinked by four disulfide bridges. It belongs to the alpha-toxin group, as judged by competition experiments with 125I AaH II for binding to rat brain synaptosomes (K0.5 = 7 x 10(-7) M). Lqq III is the first alpha-toxin to be characterized that is highly toxic to mice [LD50 = 50 micrograms (7.1 nmol)/kg body wt], by subcutaneous injection, insects Blatella germanica [LD50 = 60 ng (8.5 pmol)/g body wt.] and Musca domestica [LD50 = 120 ng (17 pmol)/g body wt]. When tested via the intracerebroventricular route, the toxicity for mice [55 micrograms (8 nmol)/kg] was of the same order as that found by subcutaneous injection, indicating that Lqq III has a higher affinity for peripheral sodium channels that for those of the central nervous system. There are three differences between the sequences of Lqq III and Lqh alpha IT, an alpha-toxin isolated from the venom of Leiurus quinquestriatus hebraeus. These substitutions are found at positions 20, 24, and 64 (Ser-->Ala,Asp-->Glu and His-->Arg, respectively). Surprisingly Lqh alpha IT is only weakly active in mice [LD50 = 5 mg (0.7 mumol)/kg], while in insects its toxicity is similar to that of Lqq III [140 ng (20 pmol)/g body wt blowfly larvae]. These observations are relevant to the definition of scorpion toxin structure-activity relationships.
Phenomenological perspectives on self-care in aging.
Söderhamn, Olle
2013-01-01
Self-care is a central concept in health care and may be considered as a means to maintain, restore, and improve one's health and well-being. When performed effectively, self-care contributes not only to human functioning but also to human structural integrity and human development (ie, to a dynamic and holistic state of health). Self-care as a clinical concept is relevant for health care professionals, and it should be meaningful to investigate it at a philosophical level and to further elaborate upon this concept. The aim of this article is to discuss and elaborate upon a phenomenological perspective on self-care in aging that is relevant for the health sciences. Self-care may be preliminarily regarded as a fundamental perspective for the conscious older individual, and as a way of being in the world with both the objective body and with the lived body. The lived body is the personal center of perception and the field of action, and it is also the center of self-care. The potentiality or ability for self-care activity and self-care activity itself are structures given to perception, with self-care ability as an integral part of the lived body. The actualization of self-care ability comes about through a certain meaning, which can be regarded as an important driving force. It is constituted by communication, a healthy lifestyle, and by building meaning and socializing. Successful self-care involves having contacts with the health care system, being conscious of a sound lifestyle, being physically and mentally active, being engaged, having social contacts with family and others, as well as being satisfied, positive, and being able to look forward. One fundamental cornerstone is serenity on behalf of the individual. Self-care can facilitate transitions, and it may also be an outcome of transitions.
Phenomenological perspectives on self-care in aging
Söderhamn, Olle
2013-01-01
Self-care is a central concept in health care and may be considered as a means to maintain, restore, and improve one’s health and well-being. When performed effectively, self-care contributes not only to human functioning but also to human structural integrity and human development (ie, to a dynamic and holistic state of health). Self-care as a clinical concept is relevant for health care professionals, and it should be meaningful to investigate it at a philosophical level and to further elaborate upon this concept. The aim of this article is to discuss and elaborate upon a phenomenological perspective on self-care in aging that is relevant for the health sciences. Self-care may be preliminarily regarded as a fundamental perspective for the conscious older individual, and as a way of being in the world with both the objective body and with the lived body. The lived body is the personal center of perception and the field of action, and it is also the center of self-care. The potentiality or ability for self-care activity and self-care activity itself are structures given to perception, with self-care ability as an integral part of the lived body. The actualization of self-care ability comes about through a certain meaning, which can be regarded as an important driving force. It is constituted by communication, a healthy lifestyle, and by building meaning and socializing. Successful self-care involves having contacts with the health care system, being conscious of a sound lifestyle, being physically and mentally active, being engaged, having social contacts with family and others, as well as being satisfied, positive, and being able to look forward. One fundamental cornerstone is serenity on behalf of the individual. Self-care can facilitate transitions, and it may also be an outcome of transitions. PMID:23807842
[Developing touch through rugby].
Becas, Didier; Luksenberg, Marion; Denis, Sandrine
2013-01-01
Rugby subjects the body to a tough test. Attack, defence, contact, touching are all elements which form part of this physical activity. It is very structured and safe from a psychological perspective. Taking pleasure in the game, with its rules, helps patients to develop interpersonal and relationship skills.
Of Elephant Blankets and Sieves: Designing a Professional Body for Outdoor Education.
ERIC Educational Resources Information Center
Higgins, Peter
1998-01-01
Examines elements in designing a single organization for outdoor education professionals in the United Kingdom. Discusses the responsibilities and activities of a professional association, characteristics of potential members, organizational structure, possible problems, professional image and qualifications, relationships with National Governing…
Individual mammalian mucosal glucosidase subunits digest various starch structures differently
USDA-ARS?s Scientific Manuscript database
Starch digestion in the human body requires two luminal enzymes,salivary and pancreatic alpha-amylase (AMY), and four small intestinal mucosal enzyme activities related to the maltase-glucoamylase (MGAM) and sucrase-isomaltase (SI) complexes. Starch consists of two polysaccharides, amylose (AM) and ...
Distributed Aerodynamic Sensing and Processing Toolbox
NASA Technical Reports Server (NTRS)
Brenner, Martin; Jutte, Christine; Mangalam, Arun
2011-01-01
A Distributed Aerodynamic Sensing and Processing (DASP) toolbox was designed and fabricated for flight test applications with an Aerostructures Test Wing (ATW) mounted under the fuselage of an F-15B on the Flight Test Fixture (FTF). DASP monitors and processes the aerodynamics with the structural dynamics using nonintrusive, surface-mounted, hot-film sensing. This aerodynamic measurement tool benefits programs devoted to static/dynamic load alleviation, body freedom flutter suppression, buffet control, improvement of aerodynamic efficiency through cruise control, supersonic wave drag reduction through shock control, etc. This DASP toolbox measures local and global unsteady aerodynamic load distribution with distributed sensing. It determines correlation between aerodynamic observables (aero forces) and structural dynamics, and allows control authority increase through aeroelastic shaping and active flow control. It offers improvements in flutter suppression and, in particular, body freedom flutter suppression, as well as aerodynamic performance of wings for increased range/endurance of manned/ unmanned flight vehicles. Other improvements include inlet performance with closed-loop active flow control, and development and validation of advanced analytical and computational tools for unsteady aerodynamics.
Weigl, Martin; Wild, Heike
2017-09-15
To validate the International Classification of Functioning, Disability and Health Comprehensive Core Set for Osteoarthritis from the patient perspective in Europe. This multicenter cross-sectional study involved 375 patients with knee or hip osteoarthritis. Trained health professionals completed the Comprehensive Core Set, and patients completed the Short-Form 36 questionnaire. Content validity was evaluated by calculating prevalences of impairments in body function and structures, limitations in activities and participation and environmental factors, which were either barriers or facilitators. Convergent construct validity was evaluated by correlating the International Classification of Functioning, Disability and Health categories with the Short-Form 36 Physical Component Score and the SF-36 Mental Component Score in a subgroup of 259 patients. The prevalences of all body function, body structure and activities and participation categories were >40%, >32% and >20%, respectively, and all environmental factors were relevant for >16% of patients. Few categories showed relevant differences between knee and hip osteoarthritis. All body function categories and all but two activities and participation categories showed significant correlations with the Physical Component Score. Body functions from the ICF chapter Mental Functions showed higher correlations with the Mental Component Score than with the Physical Component Score. This study supports the validity of the International Classification of Functioning, Disability and Health Comprehensive Core Set for Osteoarthritis. Implications for Rehabilitation Comprehensive International Classification of Functioning, Disability and Health Core Sets were developed as practical tools for application in multidisciplinary assessments. The validity of the Comprehensive International Classification of Functioning, Disability and Health Core Set for Osteoarthritis in this study supports its application in European patients with osteoarthritis. The differences in results between this Europe validation study and a previous Singaporean validation study underscore the need to validate the International Classification of Functioning, Disability and Health Core Sets in different regions of the world.
What explains health in persons with visual impairment?
2014-01-01
Background Visual impairment is associated with important limitations in functioning. The International Classification of Functioning, Disability and Health (ICF) adopted by the World Health Organisation (WHO) relies on a globally accepted framework for classifying problems in functioning and the influence of contextual factors. Its comprehensive perspective, including biological, individual and social aspects of health, enables the ICF to describe the whole health experience of persons with visual impairment. The objectives of this study are (1) to analyze whether the ICF can be used to comprehensively describe the problems in functioning of persons with visual impairment and the environmental factors that influence their lives and (2) to select the ICF categories that best capture self-perceived health of persons with visual impairment. Methods Data from 105 persons with visual impairment were collected, including socio-demographic data, vision-related data, the Extended ICF Checklist and the visual analogue scale of the EuroQoL-5D, to assess self-perceived health. Descriptive statistics and a Group Lasso regression were performed. The main outcome measures were functioning defined as impairments in Body functions and Body structures, limitations in Activities and restrictions in Participation, influencing Environmental factors and self-perceived health. Results In total, 120 ICF categories covering a broad range of Body functions, Body structures, aspects of Activities and Participation and Environmental factors were identified. Thirteen ICF categories that best capture self-perceived health were selected based on the Group Lasso regression. While Activities-and-Participation categories were selected most frequently, the greatest impact on self-perceived health was found in Body-functions categories. The ICF can be used as a framework to comprehensively describe the problems of persons with visual impairment and the Environmental factors which influence their lives. Conclusions There are plenty of ICF categories, Environmental-factors categories in particular, which are relevant to persons with visual impairment, but have hardly ever been taken into consideration in literature and visual impairment-specific patient-reported outcome measures. PMID:24886326
Burg, John S; Ingram, Jessica R; Venkatakrishnan, A J; Jude, Kevin M; Dukkipati, Abhiram; Feinberg, Evan N; Angelini, Alessandro; Waghray, Deepa; Dror, Ron O; Ploegh, Hidde L; Garcia, K Christopher
2015-03-06
Chemokines are small proteins that function as immune modulators through activation of chemokine G protein-coupled receptors (GPCRs). Several viruses also encode chemokines and chemokine receptors to subvert the host immune response. How protein ligands activate GPCRs remains unknown. We report the crystal structure at 2.9 angstrom resolution of the human cytomegalovirus GPCR US28 in complex with the chemokine domain of human CX3CL1 (fractalkine). The globular body of CX3CL1 is perched on top of the US28 extracellular vestibule, whereas its amino terminus projects into the central core of US28. The transmembrane helices of US28 adopt an active-state-like conformation. Atomic-level simulations suggest that the agonist-independent activity of US28 may be due to an amino acid network evolved in the viral GPCR to destabilize the receptor's inactive state. Copyright © 2015, American Association for the Advancement of Science.
NASA Astrophysics Data System (ADS)
Pan, Shijia; Mirshekari, Mostafa; Fagert, Jonathon; Ramirez, Ceferino Gabriel; Chung, Albert Jin; Hu, Chih Chi; Shen, John Paul; Zhang, Pei; Noh, Hae Young
2018-02-01
Many human activities induce excitations on ambient structures with various objects, causing the structures to vibrate. Accurate vibration excitation source detection and characterization enable human activity information inference, hence allowing human activity monitoring for various smart building applications. By utilizing structural vibrations, we can achieve sparse and non-intrusive sensing, unlike pressure- and vision-based methods. Many approaches have been presented on vibration-based source characterization, and they often either focus on one excitation type or have limited performance due to the dispersion and attenuation effects of the structures. In this paper, we present our method to characterize two main types of excitations induced by human activities (impulse and slip-pulse) on multiple structures. By understanding the physical properties of waves and their propagation, the system can achieve accurate excitation tracking on different structures without large-scale labeled training data. Specifically, our algorithm takes properties of surface waves generated by impulse and of body waves generated by slip-pulse into account to handle the dispersion and attenuation effects when different types of excitations happen on various structures. We then evaluate the algorithm through multiple scenarios. Our method achieves up to a six times improvement in impulse localization accuracy and a three times improvement in slip-pulse trajectory length estimation compared to existing methods that do not take wave properties into account.
Ariumi, Yasuo; Ego, Takeshi; Kaida, Atsushi; Matsumoto, Mikiko; Pandolfi, Pier Paolo; Shimotohno, Kunitada
2003-03-20
Several viruses target cellular promyelocytic leukemia (PML)-nuclear bodies (PML-NBs) to induce their disruption, marked morphological changes in these structures or the relocation to PML-NB components to the cytoplasm of infected cells. PML conversely interferes with viral replication. We demonstrate that PML acts as a coactivator for the human T-cell leukemia virus type 1 (HTLV-1) Tax oncoprotein without direct binding. Tax was identified within interchromatin granule clusters (IGCs)/RNA splicing bodies (SBs), not PML-NBs; Tax expression did not affect PML-NB formation. Moreover, PML and CBP/p300 cooperatively activated Tax-mediated HTLV-1-LTR-dependent gene expression. Interestingly, two PML mutants, PML-RAR and PMLDelta216-331, which fail to form PML-NBs, could also coactivate Tax-mediated trans-acting function but had no effect on retinoic acid receptor (RAR)- or p53-dependent gene expression. In contrast, SMRT (silencing mediator for retinoic acid and thyroid hormone receptors), a nuclear corepressor found within the matrix-associated deacetylase (MAD) nuclear body, relocalized into Tax-associated nuclear bodies upon coexpression with Tax. SMRT coactivated the trans-acting function of Tax through direct binding. Coexpression of SMRT and PML resulted in an additive activation of Tax trans-acting function. Thus, crosstalk between distinct nuclear bodies may control Tax function.
Osborne, D.L.; Weaver, C.M.; McCabe, L.D.; McCabe, G.M.; Novotny, R.; Van Loan, M.D.; Going, S.; Matkovic, V.; Boushey, C.J.; Savaiano, D.A.
2012-01-01
Variation in structural geometry is present in adulthood, but when this variation arises and what influences this variation prior to adulthood remains poorly understood. Ethnicity is commonly the focus of research of skeletal integrity and appears to explain some of the variation in quantification of bone tissue. However, why ethnicity explains variation in skeletal integrity is unclear. Methods Here we examine predictors of bone cross sectional area (CSA) and section modulus (Z), measured using dual-energy X-ray absorptiometry (DXA) and the Advanced Hip Analysis (AHA) program at the narrow neck of the femur in adolescent (9–14 yr) girls (n=479) living in the United States who were classified as Asian, Hispanic, or white if the subject was 75% of a given group based on parental reported ethnicity. Protocols for measuring height and weight follow standardized procedures. Total body lean mass (LM) and total body fat mass (FM) were quantified in kilograms using DXA. Total dietary and total dairy calcium intakes from the previous month were estimated by the use of an electronic semi-quantitative food frequency questionnaire (eFFQ). Physical activity was estimated for the previous year by a validated self-administered modifiable activity questionnaire for adolescents with energy expenditure calculated from the metabolic equivalent (MET) values from the Compendium of Physical Activities. Multiple regression models were developed to predict CSA and Z. Results Age, time from menarche, total body lean mass (LM), total body fat mass (FM), height, total calcium, and total dairy calcium all shared a significant (p<0.05), positive relationship with CSA. Age, time from menarche, LM, FM, and height shared significant (p<0.05), positive relationships with Z. For both CSA and Z, LM was the most important covariate. Physical activity was not a significant predictor of geometry at the femoral neck (p≥0.339), even after removing LM as a covariate. After adjusting for covariates, ethnicity was not a significant predictor in regression models for CSA and Z. Conclusion Variability in bone geometry at the narrow neck of the femur is best explained by body size and pubertal maturation. After controlling for these covariates there were no differences in bone geometry between ethnic groups. PMID:22944607
Osborne, D L; Weaver, C M; McCabe, L D; McCabe, G P; Novotny, R; Van Loan, M D; Going, S; Matkovic, V; Boushey, C J; Savaiano, D A
2012-11-01
Variation in structural geometry is present in adulthood, but when this variation arises and what influences this variation prior to adulthood remains poorly understood. Ethnicity is commonly the focus of research of skeletal integrity and appears to explain some of the variation in quantification of bone tissue. However, why ethnicity explains variation in skeletal integrity is unclear. Here we examine predictors of bone cross sectional area (CSA) and section modulus (Z), measured using dual-energy X-ray absorptiometry (DXA) and the Advanced Hip Analysis (AHA) program at the narrow neck of the femur in adolescent (9-14 years) girls (n=479) living in the United States who were classified as Asian, Hispanic, or white if the subject was 75% of a given group based on parental reported ethnicity. Protocols for measuring height and weight follow standardized procedures. Total body lean mass (LM) and total body fat mass (FM) were quantified in kilograms using DXA. Total dietary and total dairy calcium intakes from the previous month were estimated by the use of an electronic semi-quantitative food frequency questionnaire (eFFQ). Physical activity was estimated for the previous year by a validated self-administered modifiable activity questionnaire for adolescents with energy expenditure calculated from the metabolic equivalent (MET) values from the Compendium of Physical Activities. Multiple regression models were developed to predict CSA and Z. Age, time from menarche, total body lean mass (LM), total body fat mass (FM), height, total calcium, and total dairy calcium all shared a significant (p<0.05), positive relationship with CSA. Age, time from menarche, LM, FM, and height shared significant (p<0.05), positive relationships with Z. For both CSA and Z, LM was the most important covariate. Physical activity was not a significant predictor of geometry at the femoral neck (p≥0.339), even after removing LM as a covariate. After adjusting for covariates, ethnicity was not a significant predictor in regression models for CSA and Z. Variability in bone geometry at the narrow neck of the femur is best explained by body size and pubertal maturation. After controlling for these covariates there were no differences in bone geometry between ethnic groups. Published by Elsevier Inc.
Fish-like propulsion of an airship with planar membrane dielectric elastomer actuators.
Jordi, C; Michel, S; Fink, E
2010-06-01
The goal of our project is to mimic fish-like movement in air, propelling an airship by undulating its hull and a caudal fin. The activation of the fish-like body in air is realized by dielectric elastomers. These actuators are quite unique for their soft light-weight membrane structure and they are therefore very appropriate to the application on inflated structures. The principles of biomimetics for the structural design and movement are discussed and the conception and design of the airship is described. Various development tests, including wind tunnel testing and flight trials, were performed and the results obtained are presented. It can be shown that an 8 m model airship can be propelled in a fish-like manner in air and that the propulsion can be drastically improved by undulating the body as well as the caudal fin contrary to propulsion with only the caudal fin.
NASA Technical Reports Server (NTRS)
Lin, Jiguan Gene
1987-01-01
The quick suppression of the structural vibrations excited by bang-bang (BB) type time-optional slew maneuvers via modal-dashpot design of velocity output feedback control was investigated. Simulation studies were conducted, and modal dashpots were designed for the SCOLE flexible body dynamics. A two-stage approach was proposed for rapid slewing and precision pointing/retargeting of large, flexible space systems: (1) slew the whole system like a rigid body in a minimum time under specified limits on the control moments and forces, and (2) damp out the excited structural vibrations afterwards. This approach was found promising. High-power modal/dashpots can suppress very large vibrations, and can add a desirable amount of active damping to modeled modes. Unmodeled modes can also receive some concomitant active damping, as a benefit of spillover. Results also show that not all BB type rapid pointing maneuvers will excite large structural vibrations. When properly selected small forces (e.g., vernier thrusters) are used to complete the specified slew maneuver in the shortest time, even BB-type maneuvers will excite only small vibrations (e.g., 0.3 ft peak deflection for a 130 ft beam).
Body weight of hypersonic aircraft, part 1
NASA Technical Reports Server (NTRS)
Ardema, Mark D.
1988-01-01
The load bearing body weight of wing-body and all-body hypersonic aircraft is estimated for a wide variety of structural materials and geometries. Variations of weight with key design and configuration parameters are presented and discussed. Both hot and cool structure approaches are considered in isotropic, organic composite, and metal matrix composite materials; structural shells are sandwich or skin-stringer. Conformal and pillow-tank designs are investigated for the all-body shape. The results identify the most promising hypersonic aircraft body structure design approaches and their weight trends. Geometric definition of vehicle shapes and structural analysis methods are presented in appendices.
Ketone body β-hydroxybutyrate blocks the NLRP3 inflammasome-mediated inflammatory disease
Youm, Yun-Hee; Nguyen, Kim Y.; Grant, Ryan W.; Goldberg, Emily L.; Bodogai, Monica; Kim, Dongin; D'Agostino, Dominic; Planavsky, Noah; Lupfer, Christopher; Kanneganti, Thirumala D.; Kang, Seokwon; Horvath, Tamas L.; Fahmy, Tarek M.; Crawford, Peter A.; Biragyn, Arya; Alnemri, Emad; Dixit, Vishwa Deep
2015-01-01
Ketone bodies , β-hydroxybutyrate (BHB) and acetoacetate support mammalian survival during states of energy deficit by serving as alternative source of ATP1. BHB levels are elevated during starvation, high-intensity exercise or by the low carbohydrate ketogenic diet2. Prolonged caloric restriction or fasting reduces inflammation as immune system adapts to low glucose supply and energy metabolism switches towards mitochondrial fatty acid oxidation, ketogenesis and ketolysis2-6. However, role of ketones bodies in regulation of innate immune response is unknown. We report that BHB, but neither acetoacetate nor structurally-related short chain fatty acids, butyrate and acetate, suppresses activation of the NLRP3 inflammasome in response to several structurally unrelated NLRP3 activators, without impacting NLRC4, AIM2 or non-canonical caspase-11 inflammasome activation. Mechanistically, BHB inhibits NLRP3 inflammasome by preventing K+ efflux and reducing ASC oligomerization and speck formation. The inhibitory effects of BHB on NLRP3 were not dependent on chirality or classical starvation regulated mechanisms like AMPK, reactive oxygen species (ROS), autophagy or glycolytic inhibition. BHB blocked NLRP3 inflammasome without undergoing oxidation in TCA cycle, independently of uncoupling protein-2 (UCP2), Sirt2, receptor Gpr109a and inhibition of NLRP3 did not correlate with magnitude of histone acetylation in macrophages. BHB reduced the NLRP3 inflammasome mediated IL-1β and IL-18 production in human monocytes. In vivo, BHB attenuates caspase-1 activation and IL-1β secretion in mouse models of NLRP3-mediated diseases like Muckle-Wells Syndrome (MWS), Familial Cold Autoinflammatory syndrome (FCAS) and urate crystal induce body cavity inflammation. Taken together, these findings suggest that the anti-inflammatory effects of caloric restriction or ketogenic diets may be mechanistically linked to BHB-mediated inhibition of the NLRP3 inflammasome, and point to the potential use of interventions that elevate circulating BHB against NLRP3-mediated proinflammatory diseases. PMID:25686106
Suri, Lakshmi N M; McCaig, Lynda; Picardi, Maria V; Ospina, Olga L; Veldhuizen, Ruud A W; Staples, James F; Possmayer, Fred; Yao, Li-Juan; Perez-Gil, Jesus; Orgeig, Sandra
2012-07-01
The interfacial surface tension of the lung is regulated by phospholipid-rich pulmonary surfactant films. Small changes in temperature affect surfactant structure and function in vitro. We compared the compositional, thermodynamic and functional properties of surfactant from hibernating and summer-active 13-lined ground squirrels (Ictidomys tridecemlineatus) with porcine surfactant to understand structure-function relationships in surfactant membranes and films. Hibernating squirrels had more surfactant large aggregates with more fluid monounsaturated molecular species than summer-active animals. The latter had more unsaturated species than porcine surfactant. Cold-adapted surfactant membranes displayed gel-to-fluid transitions at lower phase transition temperatures with reduced enthalpy. Both hibernating and summer-active squirrel surfactants exhibited lower enthalpy than porcine surfactant. LAURDAN fluorescence and DPH anisotropy revealed that surfactant bilayers from both groups of squirrels possessed similar ordered phase characteristics at low temperatures. While ground squirrel surfactants functioned well during dynamic cycling at 3, 25, and 37 degrees C, porcine surfactant demonstrated poorer activity at 3 degrees C but was superior at 37 degrees C. Consequently the surfactant composition of ground squirrels confers a greater thermal flexibility relative to homeothermic mammals, while retaining tight lipid packing at low body temperatures. This may represent the most critical feature contributing to sustained stability of the respiratory interface at low lung volumes. Thus, while less effective than porcine surfactant at 37 degrees C, summer-active surfactant functions adequately at both 37 degrees C and 3 degrees C allowing these animals to enter hibernation. Here further compositional alterations occur which improve function at low temperatures by maintaining adequate stability at low lung volumes and when temperature increases during arousal from hibernation.
Wong, Alex W K; Lau, Stephen C L; Cella, David; Lai, Jin-Shei; Xie, Guanli; Chen, Lidian; Chan, Chetwyn C H; Heinemann, Allen W
2017-09-01
The quality of life in neurological disorders (Neuro-QoL) is a U.S. National Institutes of Health initiative that produced a set of self-report measures of physical, mental, and social health experienced by adults or children who have a neurological condition or disorder. To describe the content of the Neuro-QoL at the item level using the World Health Organization's international classification of functioning, disability and health (ICF). We assessed the Neuro-QoL for its content coverage of functioning and disability relative to each of the four ICF domains (i.e., body functions, body structures, activities and participation, and environment). We used second-level ICF three-digit codes to classify items into categories within each ICF domain and computed the percentage of categories within each ICF domain that were represented in the Neuro-QoL items. All items of Neuro-QoL could be mapped to the ICF categories at the second-level classification codes. The activities and participation domain and the mental functions category of the body functions domain were the areas most often represented by Neuro-QoL. Neuro-QoL provides limited coverage of the environmental factors and body structure domains. Neuro-QoL measures map well to the ICF. The Neuro-QoL-ICF-mapped items provide a blueprint for users to select appropriate measures in ICF-based measurement applications.
Physical Activity and Obesity: Biomechanical and Physiological Key Concepts
Nantel, Julie; Mathieu, Marie-Eve; Prince, François
2011-01-01
Overweight (OW) and obesity (OB) are often associated with low levels of physical activity. Physical activity is recommended to reduce excess body weight, prevent body weight regain, and decrease the subsequent risks of developing metabolic and orthopedic conditions. However, the impact of OW and OB on motor function and daily living activities must be taken into account. OW and OB are associated with musculoskeletal structure changes, decreased mobility, modification of the gait pattern, and changes in the absolute and relative energy expenditures for a given activity. While changes in the gait pattern have been reported at the ankle, knee, and hip, modifications at the knee level might be the most challenging for articular integrity. This review of the literature combines concepts and aims to provide insights into the prescription of physical activity for this population. Topics covered include the repercussions of OW and OB on biomechanical and physiological responses associated with the musculoskeletal system and daily physical activity. Special attention is given to the effect of OW and OB in youth during postural (standing) and various locomotor (walking, running, and cycling) activities. PMID:21113311
Teaching through Trade Books: Teaming Up
ERIC Educational Resources Information Center
Royce, Christine Anne
2017-01-01
This column includes activities inspired by children's literature. This month's trade books teach students about external and internal structures that allow animals and humans to survive. This months trade books are: (1) "Creature Features" (Steve Jenkins and Robin Page); and (2) "Body Actions" (Shelley Rotner and David A.…
McKay, H; MacLean, L; Petit, M; MacKelvie-O'Brien, K; Janssen, P; Beck, T; Khan, K
2005-01-01
Objectives: To examine the effects of a simple and inexpensive physical activity intervention on change in bone mass and structure in school aged children. Methods: Fifty one children (n = 23 boys and 28 girls; mean age 10.1 years) participated in "Bounce at the Bell" which consisted of 10 counter-movement jumps 3x per day (total ∼3 min/day). Controls were 71 matched children who followed usual school practice. We assessed dietary calcium, physical activity, physical performance, and anthropometry in September and after 8 months of intervention (June). We measured bone mineral content (BMC) and bone area at the lumbar spine, total body, and proximal femur. Proximal femur scans were also analysed for bone geometry and structural strength using the hip structural analysis program. Lean and fat mass (g) were also calculated. Results: Groups were similar at baseline and did not differ in weight, height, total body, lumbar spine, proximal femur, or femoral neck BMC. Control children had a greater increase in adjusted total body BMC (1.4%). Intervention children gained significantly more BMC at the total proximal femur (2%) and the intertrochanteric region (27%). Change in bone structural parameters did not differ between groups. Conclusions: This novel, easily implemented exercise program, took only a few minutes each day and enhanced bone mass at the weight bearing proximal femur in early pubertal children. A large, randomised study of boys and girls should be undertaken powered to test the effectiveness of Bounce at the Bell in children at different stages of maturity, and in boys and girls independently. PMID:16046335
The presence of food-derived collagen peptides in human body-structure and biological activity.
Sato, Kenji
2017-12-13
It has been demonstrated that the ingestion of some protein hydrolysates exerts health-promoting effects. For understanding the underlying mechanisms responsible for these effects, the identification of bioactive peptides in the target organ is crucial. For this purpose, in vitro activity-guided fractionation for peptides in the protein hydrolysate has been performed. However, the peptides in the hydrolysate may be further degraded during digestion. The concentration of the active peptides, which were identified by in vitro activity-guided fractionation, in human blood is frequently very low (nanomolar levels). In contrast, micromolar levels of food-derived collagen peptides are present in human blood. Pro-Hyp, one of the major food-derived collagen peptides, enhances the growth of fibroblasts and synthesis of hyaluronic acid. These observations partially explain the beneficial effects of collagen hydrolysate ingestion on the enhancement of wound healing and improvement in the skin condition. The recent advancement involving liquid chromatography and mass spectrometry coupled with a pre-column derivatization technique has enabled the identification of food-derived peptides at nanomolar levels in the body post-ingestion of protein hydrolysates. Thus, this technique can be used for the identification of bioactive food-derived peptides in the body.
Changes in hypothalamic staining for c-Fos following 2G exposure in rats
NASA Technical Reports Server (NTRS)
Fuller, C. A.; Murakami, D. M.; Hoban-Higgins, T. M.; Tang, I. H.
1994-01-01
The static gravitational field of the earth has been an important selective pressure that has shaped the evolution of biological organisms. This is illustrated by the evolution of tetrapods from a water environment where gravitational force was partially negated to a terrestrial environment where gravity is of greater consequence. Terrestrial invasion resulted in a series of new structural, physiological, and behavioral features. Therefore, it is not surprising that alterations in the gravitational field can cause widespread effects in many physiological systems and behaviors. Our previous studies have demonstrated that both exposure to hyperdynamic fields and the microgravity condition of space flight have significant effects on body temperature, heartrate, activity, feeding, drinking, and circadian rhythms. However, it has not been determined whether these physiological adaptations are associated with changes in neural activity within the hypothalamic nuclei that regulate these functions. This study examined the changes in body temperature, activity, body weight and food and water intake in rats caused by exposure to a hyperdynamic field. In addition, the immediate early gene activation marker, c-Fos, was used to examine potential protein synthesis changes in the hypothalamic nuclei that regulate these functions.
Central mechanisms for force and motion--towards computational synthesis of human movement.
Hemami, Hooshang; Dariush, Behzad
2012-12-01
Anatomical, physiological and experimental research on the human body can be supplemented by computational synthesis of the human body for all movement: routine daily activities, sports, dancing, and artistic and exploratory involvements. The synthesis requires thorough knowledge about all subsystems of the human body and their interactions, and allows for integration of known knowledge in working modules. It also affords confirmation and/or verification of scientific hypotheses about workings of the central nervous system (CNS). A simple step in this direction is explored here for controlling the forces of constraint. It requires co-activation of agonist-antagonist musculature. The desired trajectories of motion and the force of contact have to be provided by the CNS. The spinal control involves projection onto a muscular subset that induces the force of contact. The projection of force in the sensory motor cortex is implemented via a well-defined neural population unit, and is executed in the spinal cord by a standard integral controller requiring input from tendon organs. The sensory motor cortex structure is extended to the case for directing motion via two neural population units with vision input and spindle efferents. Digital computer simulations show the feasibility of the system. The formulation is modular and can be extended to multi-link limbs, robot and humanoid systems with many pairs of actuators or muscles. It can be expanded to include reticular activating structures and learning. Copyright © 2012 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takayama, Yuki; Schwieters, Charles D.; Grishaev, Alexander
2012-10-23
The first component of the bacterial phosphotransferase system, enzyme I (EI), is a multidomain 128 kDa dimer that undergoes large rigid-body conformational transitions during the course of its catalytic cycle. Here we investigate the solution structure of a non-phosphorylatable active-site mutant in which the active-site histidine is substituted by glutamine. We show that perturbations in the relative orientations and positions of the domains and subdomains can be rapidly and reliably determined by conjoined rigid-body/torsion angle/Cartesian simulated annealing calculations driven by orientational restraints from residual dipolar couplings and shape and translation information afforded by small- and wide-angle X-ray scattering. Although histidinemore » and glutamine are isosteric, the conformational space available to a Gln side chain is larger than that for the imidazole ring of His. An additional hydrogen bond between the side chain of Gln189 located on the EIN{sup {alpha}/{beta}} subdomain and an aspartate (Asp129) on the EIN{sup {alpha}} subdomain results in a small ({approx}9{sup o}) reorientation of the EIN{sup {alpha}} and EIN{sup {alpha}/{beta}} subdomains that is in turn propagated to a larger reorientation ({approx}26{sup o}) of the EIN domain relative to the EIC dimerization domain, illustrating the positional sensitivity of the EIN domain and its constituent subdomains to small structural perturbations.« less
Railway vehicle body structures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1985-01-01
The strength and durability of railway vehicle structures is a major topic of engineering research and design. To reflect this importance the Railway Division of the Institution of Mechanical Engineers organised a conference to discuss all matters relating to railway vehicle design. This book presents the papers discussed in that conference. The contents include: Vehicle body design and the UIC's international contribution; LUL prototype 1986 stock - body structure; vehicle structure for the intermediate capacity transmit system vehicles; car body technology of advanced light rapid transit vehicles; concepts, techniques and experience in the idealization of car body structures for finitemore » element analysis; Calcutta metropolitan railway; design for a lightweight diesel multiple unit body; the design of lightweight inter-city coal structures; the BREL international coach body shell structure; new concepts and design techniques versus material standards; structures of BR diesel electric freight locomotives; structural design philosophy for electric locomotives; suspension design for a locomotive with low structural frequencies; freight wagon structures; a finite element study of coal bodyside panels including the effects of joint flexibility; a fresh approach to the problem of car body design strength; energy absorption in automatic couplings and draw gear; passenger vehicle design loads and structural crashworthiness; design of the front part of railway vehicles (in case of frontal impact); the development of a theoretical technique for rail vehicle structural crashworthiness.« less
Obesity: the new childhood disability?
Tsiros, M D; Coates, A M; Howe, P R C; Grimshaw, P N; Buckley, J D
2011-01-01
This review addresses the impact of obesity on paediatric physical functioning utilizing the World Health Organization International Classification of Functioning, Disability and Health Framework (ICF). The ICF encompasses functioning (as it relates to all body functions and structures), activities (undertaking a particular task) and participation (in a life situation) with disability referring to impairments in body functions/structures, activity restrictions or participation limitations. Electronic databases were searched for peer-reviewed studies published in English prior to May 2009 that examined aspects of physical functioning in children (≤18 years). Eligible studies (N = 104) were ranked by design and synthesized descriptively. Childhood obesity was found to be associated with deficits in function, including impaired cardiorespiratory fitness and performance of motor tasks; and there was some limited evidence of increased musculoskeletal pain and decrements in muscle strength, gait and balance. Health-related quality of life and the subset of physical functioning was inversely related to weight status. However, studies investigating impacts of obesity on wider activity and participation were lacking. Further research utilizing the ICF is required to identify and better characterize the effects of paediatric obesity on physical function, activity and participation, thereby improving targets for intervention to reduce disability in this population. © 2010 The Authors. obesity reviews © 2010 International Association for the Study of Obesity.
Gravitational mechanism of active life of the Earth, planets and satellites
NASA Astrophysics Data System (ADS)
Barkin, Yury
2010-05-01
From positions of geodynamic model of the forced gravitational swing, wobble and displacements of shells of a planet are studied and fundamental problems of geodynamics, geology, geophysics, planetary sciences are solved etc.: 1) The mechanism of cyclic variations of activity of natural processes in various time scales. 2) The power of endogenous activity of planetary natural processes on planets and satellites. 3) The phenomenon of polar inversion of natural processes on planets and satellites. 4) Spasmodic and catastrophic changes of activity of natural processes. 5) The phenomenon of twisting of hemispheres (latitude zones or belts) of celestial bodies. 6) Formation of the pear-shaped form of celestial bodies and the mechanism of its change. 7) The ordered planetary structures of geological formations. 8) The phenomena of bipolarity of celestial bodies and antipodality of geology formations. Mechanism. The fundamental feature of a structure of celestial bodies is their shell structure. The most investigated is the internal structure of the Earth. For the Moon and wide set of other bodies of solar system models of an internal structure have been constructed on the basis of the data of observations obtained at studying of their gravitational fields as a result of realization of the appropriate space missions. The basic components for the majority of celestial bodies are the core, the mantle and the crust. To other shells we concern atmospheres (for example, at Venus, Mars, the Titan etc.) and oceanic shells (the Titan, the Earth, Enceladus etc.). Shells are the complex (composite) formations. Planets and satellites are not spherical celestial bodies. The centers of mass of shells of the given planet (or the satellite) and their appropriate principal axes of inertia do not coincide. Accordingly, all their shells are characterized by the certain dynamic oblatenesses. Differences of dynamical oblatenesses results in various forced influences of external celestial bodies on shells of the given body. Dynamical oblatenesses of shells, thus, characterize the endogenous activity of a planet by external celestial bodies. Other important factor of endogenous activity of a planet is a eccentric position of the centers of mass of the shells (for example, of the core and the mantle). The eccentricity of the shells is inherited during geological evolution of a planet as system of shells (Barkin, 2002). Consequences of exitation of the Earth system. The new tides (Barkin, 2005) are caused by relative displacements of the core and mantle. These displacements are reflected in variations of many natural processes due to gravitational action of the core. The displacing core causes deformations of all layers of viscous-elastic mantle. In the given work from more general positions the mechanisms of excitation of a system of shells of the Earth under action of a gravitational attraction of the Sun, the Moon and planets, the phenomena of their relative swings, translational displacements and turns relatively from each other, and the wide list geodynamical consequences of the specified excitation of the Earth are studied. At once we shall emphasize, that the developed geodynamic model has allowed to carry out the important dynamic researches of displacements of shells of the Earth, their deformations and changes, and variations of its natural processes and for the first time to explain the nature of such fundamental phenomena and processes in geodynamics, geology and geophysics as: cyclicity of natural processes and its mechanism; power of processes in various time scales; unity of cyclic processes and universality of their frequency bases; synchronism of geodynamic, geophysical, biophysical and social events; inversion, contrast and opposite directed changes of activity of natural processes in opposite hemispheres of the Earth; step-by-step variations of natural processes, sawtooth course of activity of natural processes in various time scales; orderliness in an distribution of geological formations on the Earth, planets and satellites; existence of antipodal formations on planets and satellites; the phenomenon of twisting of hemispheres of bodies of solar system, twisting of layers and latitudinal zones of shells of celestial bodies including inner layers and shells, etc. All the specified phenomena from the resulted list to some extent are discussed in the given work and illustrated on the basis of modern researches in Earth's sciences and the researches executed by means of space missions. In a complex, the executed researches have shown universality of discussed mechanisms and their important role in dynamics and geoevolution of planets and satellites in other planetary systems, and also stars and pulsars with the systems of planets (Barkin, 2009). Cyclicity. The excitation on the part of external celestial bodies of the system core-mantle depends from relative positions of external celestial bodies, from particularities of their perturbed orbital motions and from rotary motion of the planet. The specified motions have a cyclic nature which is shown in various time scales. Hence, and excitation of shells and their layers will have also cyclic character and to be shown in various time scales. Hence, cyclic variations of all planetary natural processes in all the variety widely should be observed, as takes place in reality. The periods of variations are characterized by extremely wide range - from hours up to tens and hundreds millions years. If the core makes slow secular drift relatively to the mantle all layers and shells of the Earth test secular deformation, thermodynamic and other changes. The cavity of the core and its flows are changed slowly that results in secular variations of a magnetic field (Barkin, 2002, 2009). Inversion and asymmetry of cyclic and secular variations of natural processes. The essence of it rather wide distributed phenomena is, that activity of natural processes varies in an antiphase in opposite hemispheres of the Earth (first of all in northern and southern hemispheres). Told concerns to all geodynamic and geophysical processes, to variations of physical fields, to tectonic and geodetic reorganizations of layers of the Earth, to redistributions of atmospheric, oceanic and other fluid masses of the Earth. The certain asymmetry of displays of processes in northern and southern hemispheres on the other hand is marked. So secular trends of some processes are contrast in northern and southern hemispheres, i.e. velocities of secular changes are essentially different. All described phenomena are caused first of all by cyclic oscillations and secular drift of the core to the north (in present epoch). In longer time scales the similar phenomena of inversion, dissymmetry also have place and determine a nature and style of displacements of continents and lithospheric plates, planetary magmatic activity and plume tectonics as a whole, formation of mountains, elevations and depressions, systems of lineaments and cracks, regressions and transgressions of sea level (Barkin, 2002). Synchronous steps of activity of natural processes. 'For an explanation of observably step-by-step variations of geodynamic and geophysical processes the mechanism of sharp sporadic relative displacements of the core and the mantle and deformations of the mantle in the certain periods of time (the phenomenon of "galloping of the core') is offered.
Automating a Detailed Cognitive Task Analysis for Structuring Curriculum
1991-08-01
1991-- ] Aleeo/i ISM’-19# l Title: Automating a Detailed Cognitive Task Analysis for Structuring Curriculum Activities: To date we have completed task...The Institute for Management Sciences. Although the particular application of the modified GOMS cognitive task analysis technique under development is...Laboratories 91 9 23 074 Automnating a Detailed Cognitive Task Analysis For Stucuring Curriculum Research Plan Year 1 Task 1.0 Design Task 1.1 Conduct body
A secreted antibacterial neuropeptide shapes the microbiome of Hydra.
Augustin, René; Schröder, Katja; Murillo Rincón, Andrea P; Fraune, Sebastian; Anton-Erxleben, Friederike; Herbst, Eva-Maria; Wittlieb, Jörg; Schwentner, Martin; Grötzinger, Joachim; Wassenaar, Trudy M; Bosch, Thomas C G
2017-09-26
Colonization of body epithelial surfaces with a highly specific microbial community is a fundamental feature of all animals, yet the underlying mechanisms by which these communities are selected and maintained are not well understood. Here, we show that sensory and ganglion neurons in the ectodermal epithelium of the model organism hydra (a member of the animal phylum Cnidaria) secrete neuropeptides with antibacterial activity that may shape the microbiome on the body surface. In particular, a specific neuropeptide, which we call NDA-1, contributes to the reduction of Gram-positive bacteria during early development and thus to a spatial distribution of the main colonizer, the Gram-negative Curvibacter sp., along the body axis. Our findings warrant further research to test whether neuropeptides secreted by nerve cells contribute to the spatial structure of microbial communities in other organisms.Certain neuropeptides, in addition to their neuromodulatory functions, display antibacterial activities of unclear significance. Here, the authors show that a secreted neuropeptide modulates the distribution of bacterial communities on the body surface during development of the model organism Hydra.
Radiation and scattering from bodies of translation, volume 1
NASA Astrophysics Data System (ADS)
Medgyesi-Mitschang, L. N.
1980-04-01
An analytical formulation, based on the method of moments (MM) is described for solving electromagnetic problems associated with finite-length cylinders of arbitrary cross section, denoted in this report as bodies of translation (BOT). This class of bodies can be used to model structures with noncircular cross sections such as wings, fins, and aircraft fuselages. The theoretical development parallels in part the MM formulation developed earlier by Mautz and Harrington for bodies of revolution (BOR). Like the latter approach, a modal expansion is used to describe the unknown surface currents on the BOT. The present analysis has been developed to treat the far-field radiation and scattering from a BOT excited by active antennas or illuminated by a plane wave of arbitrary polarization and angle of incidence. In addition, the electric and magnetic near-field components are determined in the vicinity of active and passive apertures (slots). Using the Schelkunoff equivalence theorem, the aperture-coupled fields within a BOT are also obtained. The formulation has been implemented by a computer algorithm and validated using accepted data in the literature.
Animation of multi-flexible body systems and its use in control system design
NASA Technical Reports Server (NTRS)
Juengst, Carl; Stahlberg, Ron
1993-01-01
Animation can greatly assist the structural dynamicist and control system analyst with better understanding of how multi-flexible body systems behave. For multi-flexible body systems, the structural characteristics (mode frequencies, mode shapes, and damping) change, sometimes dramatically with large angles of rotation between bodies. With computer animation, the analyst can visualize these changes and how the system responds to active control forces and torques. A characterization of the type of system we wish to animate is presented. The lack of clear understanding of the above effects was a key element leading to the development of a multi-flexible body animation software package. The resulting animation software is described in some detail here, followed by its application to the control system analyst. Other applications of this software can be determined on an individual need basis. A number of software products are currently available that make the high-speed rendering of rigid body mechanical system simulation possible. However, such options are not available for use in rendering flexible body mechanical system simulations. The desire for a high-speed flexible body visualization tool led to the development of the Flexible Or Rigid Mechanical System (FORMS) software. This software was developed at the Center for Simulation and Design Optimization of Mechanical Systems at the University of Iowa. FORMS provides interactive high-speed rendering of flexible and/or rigid body mechanical system simulations, and combines geometry and motion information to produce animated output. FORMS is designed to be both portable and flexible, and supports a number of different user interfaces and graphical display devices. Additional features have been added to FORMS that allow special visualization results related to the nature of the flexible body geometric representations.
Seras-Franzoso, Joaquin; Peebo, Karl; García-Fruitós, Elena; Vázquez, Esther; Rinas, Ursula; Villaverde, Antonio
2014-03-01
Bacterial inclusion bodies (IBs) have recently been used to generate biocompatible cell culture interfaces, with diverse effects on cultured cells such as cell adhesion enhancement, stimulation of cell growth or induction of mesenchymal stem cell differentiation. Additionally, novel applications of IBs as sustained protein delivery systems with potential applications in regenerative medicine have been successfully explored. In this scenario, with IBs gaining significance in the biomedical field, the fine tuning of this functional biomaterial is crucial. In this work, the effect of temperature on fibroblast growth factor-2 (FGF-2) IB production and performance has been evaluated. FGF-2 was overexpressed in Escherichia coli at 25 and 37 °C, producing IBs with differences in size, particle structure and biological activity. Cell culture topographies made with FGF-2 IBs biofabricated at 25 °C showed higher levels of biological activity as well as a looser supramolecular structure, enabling a higher protein release from the particles. In addition, the controlled use of FGF-2 protein particles enabled the generation of functional topographies with multiple biological activities being effective on diverse cell types. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Production, Delivery and Application of Vibration Energy in Healthcare
NASA Astrophysics Data System (ADS)
Abundo, Paolo; Trombetta, Chiara; Foti, Calogero; Rosato, Nicola
2011-02-01
In Rehabilitation Medicine therapeutic application of vibration energy in specific clinical treatments and in sport rehabilitation is being affirmed more and more.Vibration exposure can have positive or negative effects on the human body depending on the features and time of the characterizing wave. The human body is constantly subjected to different kinds of vibrations, inducing bones and muscles to actively modify their structure and metabolism in order to fulfill the required functions. Like every other machine, the body supports only certain vibration energy levels over which long term impairments can be recognized. As shown in literature anyway, short periods of vibration exposure and specific frequency values can determine positive adjustments.
Organ economy: organ trafficking in Moldova and Israel.
Lundin, Susanne
2012-02-01
Organ trafficking is an illegal means of meeting the shortage of transplants. The activity flourishes for several interacting reasons, such as medical needs, poverty and criminality. Other factors are fundamental conceptual structures such as the dream of the regenerative body as well as the view of the body as an object of utility and an object of value. The article aims to go behind the normative discussions that usually surround organ trafficking. Why this is happening, and what the societal consequences are, is examined through ethnographic fieldwork. The focus is on the shadow economies that govern existence and in which people, goods, weapons, money, bodies, etc. constitute components of the global market.
DISCOS- DYNAMIC INTERACTION SIMULATION OF CONTROLS AND STRUCTURES (DEC VAX VERSION)
NASA Technical Reports Server (NTRS)
Frisch, H. P.
1994-01-01
The Dynamic Interaction Simulation of Controls and Structure (DISCOS) program was developed for the dynamic simulation and stability analysis of passive and actively controlled spacecraft. In the use of DISCOS, the physical system undergoing analysis may be generally described as a cluster of contiguous flexible structures (bodies) that comprise a mechanical system, such as a spacecraft. The entire system (spacecraft) or portions thereof may be either spinning or nonspinning. Member bodies of the system may undergo large relative excursions, such as those of appendage deployment or rotor/ stator motion. The general system of bodies is, by its inherent nature, a feedback system in which inertial forces (such as those due to centrifugal and Coriolis acceleration) and the restoring and damping forces are motion-dependent. The system may possess a control system in which certain position and rate errors are actively controlled through the use of reaction control jets, servomotors, or momentum wheels. Bodies of the system may be interconnected by linear or nonlinear springs and dampers, by a gimbal and slider block mechanism, or by any combination of these. The DISCOS program can be used to obtain nonlinear and linearized time response of the system, interaction constant forces in the system, total system resonance properties, and frequency domain response and stability information for the system. DISCOS is probably the most powerful computational tool to date for the computer simulation of actively controlled coupled multi-flexible-body systems. The program is not easy to understand and effectively apply, but is not intended for simple problems. The DISCOS user is expected to have extensive working knowledge of rigid-body and flexible-body dynamics, finite-element techniques, numerical methods, and frequency-domain analysis. Various applications of DISCOS include simulation of the Shuttle payload deployment/retrieval mechanism, solar panel array deployment, antenna deployment, analysis of multispin satellites, and analysis of large, highly flexible satellites, including the design of attitude-control systems. The overall approach of DISCOS is unique in that any member body of the system may be flexible, and the system is not restricted to a topological tree configuration. The equations of motion are developed using the most general form of Lagrange's equations, including auxiliary nonholonomic rehenomic conditions of constraint. Lagrange multipliers are used as interaction forces/ torques to maintain prescribed constraints. Nonlinear flexible/rigid dynamic coupling effects are accounted for in unabridged fashion for individual bodies and for the total system. Elastic deformation can be represented by normal vibration modes or by any adequate series of Rayleigh functions, including 'quasi-static' displacement functions. To 'solve' Lagrange's equations of motion, the explicit form of the kinetic and potential energy functions, the dissipation function, and the form of the transformation relating ordinary Cartesian position coordinates to the generalized coordinates must be defined. The potential energy and dissipation functions for a structure are determined with standard finite-element techniques by the NASTRAN program. In order to use the computed functions, the Lagrange's equations and the system kinematic constraint equations are expressed in matrix format. These differential matrix equations are solved numerically by the DISCOS program. Provisions are included for environmental loading of the structure (spacecraft), including solar pressure, gravity gradient, and aerodynamic drag. Input to DISCOS includes topological and geometrical descriptions of the structure under analysis, initial conditions, control system descriptions, and NASTRAN-derived structural matrices. Specialized routines are supplied that read the input data and redimension the DISCOS programs to minimize core requirements. Output includes an extensive list of calculated parameters for each body of the structure, system state vector and its time derivatives, euler angles and position coordinates and their time derivatives, control system variables and their time derivatives, and various system parameters at a given simulation time. For linearized system analysis, output includes the various transfer matrices, eigenvectors, and calculated eigenvalues. The DISCOS program is available by license for a period of ten (10) years to approved licensees. The licensed program product delivered includes the source code and supporting documentation. Additional documentation may be purchased separately at any time. The IBM version of DISCOS is written in FORTRAN IV for batch execution and has been implemented on an IBM 360 series computer under OS with a central memory requirement of approximately 1,100K of 8 bit bytes. The DEC VAX version of DISCOS is written in FORTRAN for batch execution and has been implemented on a DEC VAX series computer under VMS. For plotted output a SC4020 plotting system is required. DISCOS was developed on the IBM in 1978 and was adapted (with enhancements) to the DEC VAX in 1982.
DISCOS- DYNAMIC INTERACTION SIMULATION OF CONTROLS AND STRUCTURES (IBM VERSION)
NASA Technical Reports Server (NTRS)
Frisch, H. P.
1994-01-01
The Dynamic Interaction Simulation of Controls and Structure (DISCOS) program was developed for the dynamic simulation and stability analysis of passive and actively controlled spacecraft. In the use of DISCOS, the physical system undergoing analysis may be generally described as a cluster of contiguous flexible structures (bodies) that comprise a mechanical system, such as a spacecraft. The entire system (spacecraft) or portions thereof may be either spinning or nonspinning. Member bodies of the system may undergo large relative excursions, such as those of appendage deployment or rotor/ stator motion. The general system of bodies is, by its inherent nature, a feedback system in which inertial forces (such as those due to centrifugal and Coriolis acceleration) and the restoring and damping forces are motion-dependent. The system may possess a control system in which certain position and rate errors are actively controlled through the use of reaction control jets, servomotors, or momentum wheels. Bodies of the system may be interconnected by linear or nonlinear springs and dampers, by a gimbal and slider block mechanism, or by any combination of these. The DISCOS program can be used to obtain nonlinear and linearized time response of the system, interaction constant forces in the system, total system resonance properties, and frequency domain response and stability information for the system. DISCOS is probably the most powerful computational tool to date for the computer simulation of actively controlled coupled multi-flexible-body systems. The program is not easy to understand and effectively apply, but is not intended for simple problems. The DISCOS user is expected to have extensive working knowledge of rigid-body and flexible-body dynamics, finite-element techniques, numerical methods, and frequency-domain analysis. Various applications of DISCOS include simulation of the Shuttle payload deployment/retrieval mechanism, solar panel array deployment, antenna deployment, analysis of multispin satellites, and analysis of large, highly flexible satellites, including the design of attitude-control systems. The overall approach of DISCOS is unique in that any member body of the system may be flexible, and the system is not restricted to a topological tree configuration. The equations of motion are developed using the most general form of Lagrange's equations, including auxiliary nonholonomic rehenomic conditions of constraint. Lagrange multipliers are used as interaction forces/ torques to maintain prescribed constraints. Nonlinear flexible/rigid dynamic coupling effects are accounted for in unabridged fashion for individual bodies and for the total system. Elastic deformation can be represented by normal vibration modes or by any adequate series of Rayleigh functions, including 'quasi-static' displacement functions. To 'solve' Lagrange's equations of motion, the explicit form of the kinetic and potential energy functions, the dissipation function, and the form of the transformation relating ordinary Cartesian position coordinates to the generalized coordinates must be defined. The potential energy and dissipation functions for a structure are determined with standard finite-element techniques by the NASTRAN program. In order to use the computed functions, the Lagrange's equations and the system kinematic constraint equations are expressed in matrix format. These differential matrix equations are solved numerically by the DISCOS program. Provisions are included for environmental loading of the structure (spacecraft), including solar pressure, gravity gradient, and aerodynamic drag. Input to DISCOS includes topological and geometrical descriptions of the structure under analysis, initial conditions, control system descriptions, and NASTRAN-derived structural matrices. Specialized routines are supplied that read the input data and redimension the DISCOS programs to minimize core requirements. Output includes an extensive list of calculated parameters for each body of the structure, system state vector and its time derivatives, euler angles and position coordinates and their time derivatives, control system variables and their time derivatives, and various system parameters at a given simulation time. For linearized system analysis, output includes the various transfer matrices, eigenvectors, and calculated eigenvalues. The DISCOS program is available by license for a period of ten (10) years to approved licensees. The licensed program product delivered includes the source code and supporting documentation. Additional documentation may be purchased separately at any time. The IBM version of DISCOS is written in FORTRAN IV for batch execution and has been implemented on an IBM 360 series computer under OS with a central memory requirement of approximately 1,100K of 8 bit bytes. The DEC VAX version of DISCOS is written in FORTRAN for batch execution and has been implemented on a DEC VAX series computer under VMS. For plotted output a SC4020 plotting system is required. DISCOS was developed on the IBM in 1978 and was adapted (with enhancements) to the DEC VAX in 1982.
2011-01-01
Background In recent years, it has been gradually realized that bacterial inclusion bodies (IBs) could be biologically active. In particular, several proteins including green fluorescent protein, β-galactosidase, β-lactamase, alkaline phosphatase, D-amino acid oxidase, polyphosphate kinase 3, maltodextrin phosphorylase, and sialic acid aldolase have been successfully produced as active IBs when fused to an appropriate partner such as the foot-and-mouth disease virus capsid protein VP1, or the human β-amyloid peptide Aβ42(F19D). As active IBs may have many attractive advantages in enzyme production and industrial applications, it is of considerable interest to explore them further. Results In this paper, we report that an ionic self-assembling peptide ELK16 (LELELKLK)2 was able to effectively induce the formation of cytoplasmic inclusion bodies in Escherichia coli (E. coli) when attached to the carboxyl termini of four model proteins including lipase A, amadoriase II, β-xylosidase, and green fluorescent protein. These aggregates had a general appearance similar to the usually reported cytoplasmic inclusion bodies (IBs) under transmission electron microscopy or fluorescence confocal microscopy. Except for lipase A-ELK16 fusion, the three other fusion protein aggregates retained comparable specific activities with the native counterparts. Conformational analyses by Fourier transform infrared spectroscopy revealed the existence of newly formed antiparallel beta-sheet structures in these ELK16 peptide-induced inclusion bodies, which is consistent with the reported assembly of the ELK16 peptide. Conclusions This has been the first report where a terminally attached self-assembling β peptide ELK16 can promote the formation of active inclusion bodies or active protein aggregates in E. coli. It has the potential to render E. coli and other recombinant hosts more efficient as microbial cell factories for protein production. Our observation might also provide hints for protein aggregation-related diseases. PMID:21320350
From video to computation of biological fluid-structure interaction problems
NASA Astrophysics Data System (ADS)
Dillard, Seth I.; Buchholz, James H. J.; Udaykumar, H. S.
2016-04-01
This work deals with the techniques necessary to obtain a purely Eulerian procedure to conduct CFD simulations of biological systems with moving boundary flow phenomena. Eulerian approaches obviate difficulties associated with mesh generation to describe or fit flow meshes to body surfaces. The challenges associated with constructing embedded boundary information, body motions and applying boundary conditions on the moving bodies for flow computation are addressed in the work. The overall approach is applied to the study of a fluid-structure interaction problem, i.e., the hydrodynamics of swimming of an American eel, where the motion of the eel is derived from video imaging. It is shown that some first-blush approaches do not work, and therefore, careful consideration of appropriate techniques to connect moving images to flow simulations is necessary and forms the main contribution of the paper. A combination of level set-based active contour segmentation with optical flow and image morphing is shown to enable the image-to-computation process.
Agricultural Extension: Farm Extension Services in Australia, Britain and the United States.
ERIC Educational Resources Information Center
Williams, Donald B.
By analyzing the scope and structure of agricultural extension services in Australia, Great Britain, and the United States, this work attempts to set guidelines for measuring progress and guiding extension efforts. Extension training, agricultural policy, and activities of national, international, state, and provincial bodies are examined. The…
Assessing Ecosystem Impacts from Simulant and Decontaminant Use
1988-05-01
on the relationship between metak- olism and body weight, W: DMAN = DANIMAL (WANIMAL/WMAN) 0.25 (7) Values of the scaling factor, (WANIMAL/WMAN)P’ 25...chemical. Structure-activity analysis is a relatively new field, and the available tools are still crude. The user must exercise scientific judgment in
ERIC Educational Resources Information Center
Sylwester, Robert
1994-01-01
Studies show our emotional system is a complex, widely distributed, and error-prone system that defines our basic personality early in life and is quite resistant to change. This article describes our emotional system's major parts (the peptides that carry emotional information and the body and brain structures that activate and regulate emotions)…
Structure and bioactivity studies of new polysiloxane-derived materials for orthopedic applications
NASA Astrophysics Data System (ADS)
Paluszkiewicz, Czesława; Gumuła, Teresa; Podporska, Joanna; Błażewicz, Marta
2006-07-01
The aim of this work was to examine the structure of new calcium silicate bioactive ceramic implant material for bone surgery applications. The bioceramic material was obtained by thermal treatment of active fillers-containing organosilicon polymer precursor. Different ceramic active fillers, namely Ca(OH) 2, CaCO 3, Na 2HPO 4 and SiO 2 powders were used. The phase composition of ceramic samples obtained by thermal transformation of active fillers containing polysiloxane was investigated. Morphology and structure of ceramic phases were characterized by means of scanning electron microscopy (SEM) with EDS point analysis, FTIR spectroscopy and XRD analysis. It was found that thermal treatment of active fillers-containing organosilicon precursor lead to the formation of wollastonite-containing ceramic material. This ceramic material showed bioactivity in 'in vitro' conditions studied by immersing the samples in simulated body fluid (SBF). The surface of wollastonite-containing ceramic before and after immersion in SBF was analysed. It can be concluded that this kind of ceramic material may be useful as bone substitute. FTIR spectroscopy is an adequate device for the determination of such derived materials structure.
Mesoscopic Rigid Body Modelling of the Extracellular Matrix Self-Assembly.
Wong, Hua; Prévoteau-Jonquet, Jessica; Baud, Stéphanie; Dauchez, Manuel; Belloy, Nicolas
2018-06-11
The extracellular matrix (ECM) plays an important role in supporting tissues and organs. It even has a functional role in morphogenesis and differentiation by acting as a source of active molecules (matrikines). Many diseases are linked to dysfunction of ECM components and fragments or changes in their structures. As such it is a prime target for drugs. Because of technological limitations for observations at mesoscopic scales, the precise structural organisation of the ECM is not well-known, with sparse or fuzzy experimental observables. Based on the Unity3D game and physics engines, along with rigid body dynamics, we propose a virtual sandbox to model large biological molecules as dynamic chains of rigid bodies interacting together to gain insight into ECM components behaviour in the mesoscopic range. We have preliminary results showing how parameters such as fibre flexibility or the nature and number of interactions between molecules can induce different structures in the basement membrane. Using the Unity3D game engine and virtual reality headset coupled with haptic controllers, we immerse the user inside the corresponding simulation. Untrained users are able to navigate a complex virtual sandbox crowded with large biomolecules models in a matter of seconds.
van Tellingen, C
2009-04-01
The development in cardiovascular anatomy and physiology is described from a Dutch perspective. The newly formed Republic in the 17th century, with its pragmatism and business-like character, became an ideal breeding ground for Descartes' new philosophy. His separation of body and soul provided a mechanistic model of body structure and formed a firm basis for anatomical and physiological research to become catalysts for a tempestuous growth and progress in medicine. (Neth Heart J 2009;17:130-5.).
Jia, Wei; Feng, Jie; Zhang, Jing-Song; Lin, Chi-Chung; Wang, Wen-Han; Chen, Hong-Ge
2017-01-01
FVPA1, a novel polysaccharide, has been isolated from fruiting bodies of the culinary-medicinal mushroom Flammulina velutipes, a historically popular, widely cultivated and consumed functional food with an attractive taste, beneficial nutraceutical properties such as antitumor and immunomodulatory effects, and a number of essential biological activities. The average molecular weight was estimated to be ~1.8 × 104 Da based on high-performance size exclusion chromatography. Sugar analyses, methylation analyses, and 1H, 13C, and 2-dimensional nuclear magnetic resonance spectroscopy revealed the following structure of the repeating units of the FVPA1 polysaccharide Identification of this structure would conceivably lead to better understanding of the nutraceutical functions of this very important edible fungus. Bioactivity tests in vitro indicated that FVPA1 could significantly enhance natural killer cell activity against K562 tumor cells.
Brouwer Award Lecture: Anelastic tides of close-in satellites and exoplanets
NASA Astrophysics Data System (ADS)
Ferraz-Mello, Sylvio
2016-05-01
This lecture reviews a new theory of the anelastic tides of celestial bodies in which the deformation of the body is the result of a Newtonian creep inversely proportional to the viscosity of the body and, along each radius, directly proportional to the distance from the actual surface of the body to the equilibrium. The first version of the theory (AAS/DDA 2012; CeMDA 2013), was restricted to homogeneous bodies. It was applied to many different bodies as the Moon, Mercury, super-Earths and hot Jupiters. An improved version (AAS/DDA 2014) included also the loss of angular momentum due to stellar winds and was applied to the study of the rotational evolution of active stars hosting massive companions. One more recent version (Folonier et al. AAS/DDA 2013; DPS 2015) allowed for the consideration of layered structures and was applied to Titan and Mercury. The resulting anelastic tides depend on the nature of the considered body. In the case of low-viscosity bodies (high relaxation factor), as gaseous planets and stars, the results are nearly the same of Darwin's theory. For instance, in these cases the dissipation grows proportionally to the tidal frequency. In the case of high-viscosity rocky satellites and planets (low relaxation factor), the results are structurally different: the dissipation varies with the tidal frequency following an inverse power law and the rotation may be driven to several attractors whose frequencies are 1/2, 1, 3/2, 2, 5/2,… times the orbital mean-motion, even when no permanent triaxiality exists.
Chromatin organization and global regulation of Hox gene clusters
Montavon, Thomas; Duboule, Denis
2013-01-01
During development, a properly coordinated expression of Hox genes, within their different genomic clusters is critical for patterning the body plans of many animals with a bilateral symmetry. The fascinating correspondence between the topological organization of Hox clusters and their transcriptional activation in space and time has served as a paradigm for understanding the relationships between genome structure and function. Here, we review some recent observations, which revealed highly dynamic changes in the structure of chromatin at Hox clusters, in parallel with their activation during embryonic development. We discuss the relevance of these findings for our understanding of large-scale gene regulation. PMID:23650639
Structure-activity relationship for peptídic growth hormone secretagogues.
Ferro, P; Krotov, G; Zvereva, I; Rodchenkov, G; Segura, J
2017-01-01
Growth hormone releasing peptides (GHRPs) could be widely used by cheating athletes because they produce growth hormone (GH) secretion, so may generate an ergogenic effect in the body. Knowledge of the essential amino acids needed in GHRP structure for interaction with the target biological receptor GHSR1a, the absorption through different administration routes, and the maintenance of pharmacological activity of potential biotransformation products may help in the fight against their abuse in sport. Several GHRPs and truncated analogues with the common core Ala-Trp-(D-Phe)-Lys have been studied with a radio-competitive assay for the GHSR1a receptor against the radioactive natural ligand ghrelin. Relevant chemical modifications influencing the activity for positions 1, 2, 3, and 7 based on the structure aa-aa-aa-Ala-Trp-(D-Phe)-Lys have been obtained. To test in vivo the applicability of the activities observed, the receptor assay activity in samples from excretion studies performed after nasal administration of GHRP-1, GHRP-2, GHRP-6, Hexarelin, and Ipamorelin was confirmed. Overall results obtained allow to infer structure-activity information for those GHRPs and to detect GHSR1a binding (intact GHRPs plus active metabolites) in excreted urines. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Barriers to activity and participation for stroke survivors in rural China.
Zhang, Lifang; Yan, Tiebin; You, Liming; Li, Kun
2015-07-01
To investigate environmental barriers reported by stroke survivors in the rural areas of China and to determine the impact of environmental barriers on activity and participation relative to demographic characteristics and body functioning. Cross-sectional survey. Structured interviews in the participants' homes. Community-dwelling stroke survivors in the rural areas of China (N=639). Not applicable. Activity and participation (Chinese version of the World Health Organization Disability Assessment Schedule 2.0), environmental barriers (Craig Hospital Inventory of Environmental Factors), neurological function (Canadian Neurological Scale), cognitive function (Abbreviated Mental Test), and depression (6-item Hamilton Rating Scale for Depression). Physical/structural barriers are the major impediment to activity and participation for these participants (odds ratio, 1.86 and 1.99 for activity and participation, respectively; P<.01). Services/assistance barriers primarily impede participation rather than activity (odds ratio, 1.58 in participation; P<.05). Physical/structural and services/assistance barriers were considered the dominant barriers to activity and participation for stroke survivors in the rural areas of China. Attitudinal/support and policy barriers did not emerge as serious concerns. To generate an enabling environment, physical/structural and services/assistance barriers are the environmental barriers to be decreased and eliminated first. Copyright © 2015 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Baur, Heidi; Gatterer, Hannes; Hotter, Barbara; Kopp, Martin
2017-06-01
[Purpose] The aim of this study was to examine the influence of Structural Integration and Fascial Fitness, a new form of physical exercise, on body image and the perception of back pain. [Subjects and Methods] In total, 33 participants with non-specific back pain were split into two groups and performed three sessions of Structural Integration or Fascial Fitness within a 3-week period. Before and after the interventions, perception of back pain and body image were evaluated using standardized questionnaires. [Results] Structural Integration significantly decreased non-specified back pain and improved both "negative body image" and "vital body dynamics". Fascial Fitness led to a significant improvement on the "negative body image" subscale. Benefits of Structural Integration did not significantly vary in magnitude from those for fascial fitness. [Conclusion] Both Structural Integration and Fascial Fitness can lead to a more positive body image after only three sessions. Moreover, the therapeutic technique of Structural Integration can reduce back pain.
Configuration selection for a 450-passenger ultraefficient 2020 aircraft
NASA Astrophysics Data System (ADS)
Paulus, D.; Salmon, T.; Mohr, B.; Roessler, C.; Petersson, Ӧ.; Stroscher, F.; Baier, H.; Hornung, M.
2013-12-01
This paper describes the configuration selection process in the FP7 project ACFA (Active Control for Flexible Aircraft) 2020 in view of the Advisory Council for Aeronautics Research in Europe (ACARE) aims. The design process challenges and the comparison of a blended wing body (BWB) aircraft with a wide body carry-through wing box (CWB) configuration are described in detail. Furthermore, the interactions between the conceptual design and structural design using multidisciplinary design optimization (MDO) to rapidly generate and adapt structural models to design changes and provide early feedback of mass and center of gravity values for these nontraditional configurations are discussed. Comparison of the two concepts determined that the developed all-lifting BWB airframe has the potential for a significant reduced fuel consumption compared to the CWB.
Amin, Sk Abdul; Adhikari, Nilanjan; Jha, Tarun
2017-12-01
The pan-histone deacetylase (HDAC) inhibitors comprise a fish-like structural orientation where hydrophobic aryl- and zinc-binding groups act as head and tail, respectively of a fish. The linker moiety correlates the body of the fish linking head and tail groups. Despite these pan-HDAC inhibitors, selective HDAC-8 inhibitors are still in demand as a safe remedy. HDAC-8 is involved in invasion and metastasis in cancer. This review deals with the rationale behind HDAC-8 inhibitory activity and selectivity along with detailed structure-activity relationships of diverse hydroxamate-based HDAC-8 inhibitors. HDAC-8 inhibitory potency may be increased by modifying the fish-like pharmacophoric features of such type of pan-HDAC inhibitors. This review may provide a preliminary basis to design and optimize new lead molecules with higher HDAC-8 inhibitory activity. This work may surely enlighten in providing useful information in the field of target-specific anticancer therapy.
Factor structure of the Body Appreciation Scale among Malaysian women.
Swami, Viren; Chamorro-Premuzic, Tomas
2008-12-01
The present study examined the factor structure of a Malay version of the Body Appreciation Scale (BAS), a recently developed scale for the assessment of positive body image that has been shown to have a unidimensional structure in Western settings. Results of exploratory and confirmatory factor analyses based on data from community sample of 591 women in Kuala Lumpur, Malaysia, failed to support a unidimensional structure for the Malay BAS. Results of a confirmatory factor analysis suggested two stable factors, which were labelled 'General Body Appreciation' and 'Body Image Investment'. Multi-group analysis showed that the two-factor structure was invariant for both Malaysian Malay and Chinese women, and that there were no significant ethnic differences on either factor. Results also showed that General Body Appreciation was significant negatively correlated with participants' body mass index. These results are discussed in relation to possible cross-cultural differences in positive body image.
Lunar In Situ Materials-Based Surface Structure Technology Development Efforts at NASA/MSFC
NASA Technical Reports Server (NTRS)
Fiske, M. R.; McGregor, W.; Pope, R.; McLemore, C. A.; Kaul, R.; Smithers, G.; Ethridge, E.; Toutanji, H.
2007-01-01
For long-duration missions on other planetary bodies, the use of in situ materials will become increasingly critical. As man's presence on these bodies expands, so must the structures to accommodate them, including habitats, laboratories, berms, radiation shielding for surface reactors, garages, solar storm shelters, greenhouses, etc. The use of in situ materials will significantly offset required launch upmass and volume issues. Under the auspices of the In Situ Fabrication & Repair (ISFR) Program at NASA/Marshall Space Flight Center (MSFC), the Surface Structures project has been developing materials and construction technologies to support development of these in situ structures. This paper will report on the development of several of these technologies at MSFC's Prototype Development Laboratory (PDL). These technologies include, but are not limited to, development of extruded concrete and inflatable concrete dome technologies based on waterless and water-based concretes, development of regolith-based blocks with potential radiation shielding binders including polyurethane and polyethylene, pressure regulation systems for inflatable structures, production of glass fibers and rebar derived from molten lunar regolith simulant, development of regolithbag structures, and others, including automation design issues. Results to date and lessons learned will be presented, along with recommendations for future activities.
Three layer functional model and energy exchange concept of aging process
Mihajlovic, William
2006-01-01
Relying on a certain degree of abstraction, we can propose that no particular distinction exists between animate or living matter and inanimate matter. While focusing attention on some specifics, the dividing line between the two can be drawn. The most apparent distinction is in the level of structural and functional organization with the dissimilar streams of ‘energy flow’ between the observed entity and the surrounding environment. In essence, living matter is created from inanimate matter which is organized to contain internal intense energy processes and maintain lower intensity energy exchange processes with the environment. Taking internal and external energy processes into account, we contend in this paper that living matter can be referred to as matter of dissipative structure, with this structure assumed to be a common quality of all living creatures and living matter in general. Interruption of internal energy conversion processes and terminating the controlled energy exchange with the environment leads to degeneration of dissipative structure and reduction of the same to inanimate matter, (gas, liquid and/or solid inanimate substances), and ultimately what can be called ‘death.’ This concept of what we call dissipative nature can be extended from living organisms to social groups of animals, to mankind. An analogy based on the organization of matter provides a basis for a functional model of living entities. The models relies on the parallels among the three central structures of any cell (nucleus, cytoplasm and outer membrane) and the human body (central organs, body fluids along with the connective tissues, and external skin integument). This three-part structural organization may be observed almost universally in nature. It can be observed from the atomic structure to the planetary and intergalactic organizations. This similarity is corroborated by the membrane theory applied to living organisms. According to the energy nature of living matter and the proposed functional model, the decreased integrity of a human body's external envelope membrane is a first cause of the structural degradation and aging of the entire organism. The aging process than progresses externally to internally, as in single cell organisms, suggesting that much of the efforts towards the restoration and maintenance of the mechanisms responsible for structural development should be focused accordingly, on the membrane, i.e., the skin. Numerous reports indicate that all parts of the human body, like: bones, blood with blood vessels, muscles, skin, and so on, have some ability for restoration. Therefore, actual revival of not only aging tissue of the human body's membrane, but the entire human body enclosed within, with all internal organs, might be expected. We assess several aging theories within the context of our model and provide suggestions on how to activate the body's own anti-aging mechanisms and increase longevity. This paper presents some analogies and some distinctions that exist between the living dissipative structure matter and inanimate matter, discusses the aging process and proposes certain aging reversal solutions. PMID:23598683
Evidence Report: Risk Factor of Inadequate Nutrition
NASA Technical Reports Server (NTRS)
Smith, Scott M.; Zwart, Sara R.; Heer, Martina
2015-01-01
The importance of nutrition in exploration has been documented repeatedly throughout history, where, for example, in the period between Columbus' voyage in 1492 and the invention of the steam engine, scurvy resulted in more sailor deaths than all other causes of death combined. Because nutrients are required for the structure and function of every cell and every system in the body, defining the nutrient requirements for spaceflight and ensuring provision and intake of those nutrients are primary issues for crew health and mission success. Unique aspects of nutrition during space travel include the overarching physiological adaptation to weightlessness, psychological adaptation to extreme and remote environments, and the ability of nutrition and nutrients to serve as countermeasures to ameliorate the negative effects of spaceflight on the human body. Key areas of clinical concern for long-duration spaceflight include loss of body mass (general inadequate food intake), bone and muscle loss, cardiovascular and immune system decrements, increased radiation exposure and oxidative stress, vision and ophthalmic changes, behavior and performance, nutrient supply during extravehicular activity, and general depletion of body nutrient stores because of inadequate food supply, inadequate food intake, increased metabolism, and/or irreversible loss of nutrients. These topics are reviewed herein, based on the current gap structure.
Eastern mosquitofish resists invasion by nonindigenous poeciliids through agonistic behaviors
Thompson, Kevin A.; Hill, Jeffrey E.; Nico, Leo G.
2012-01-01
Florida is a hotspot for nonindigenous fishes with over 30 species established, although few of these are small-bodied species. One hypothesis for this pattern is that biotic resistance of native species is reducing the success of small-bodied, introduced fishes. The eastern mosquitofish Gambusia holbrooki is common in many freshwater habitats in Florida and although small-bodied (<50 mm), it is a predator and aggressive competitor. We conducted four mesocosm experiments to examine the potential for biotic resistance by eastern mosquitofish to two small-bodied nonindigenous fishes, variable platyfish (Xiphophorus variatus) and swordtail (X. hellerii). Experiments tested: (1) effect of eastern mosquitofish density on adult survival, (2) effect of eastern mosquitofish on a stage-structured population, (3) role of habitat structural complexity on nonindigenous adult survival, and (4) behavioral effects of eastern mosquitofish presence and habitat complexity. Eastern mosquitofish attacked and killed non-native poeciliids with especially strong effects on juveniles of both species. Higher eastern mosquitofish density resulted in greater effects. Predation on swordtails increased with increasing habitat complexity. Eastern mosquitofish also actively drove swordtails from cover, which could expose non-native fish to other predators under field conditions. Our results suggest that eastern mosquitofish may limit invasion success.
Möller, Wilhelm; Kummer, Wolfgang
2003-07-01
Among recent vertebrates only birds possess a glycogen body (corpus gelatinosum), located in the rhomboidal sinus of the lumbosacral region of the spinal cord and separated from the neural tissue proper. Because of the specific topographical situation of this circumventricular organ, the structure of its vascular system is of special interest with respect to the still unsolved functional problems. The existence of a blood-brain barrier is demonstrated by the exclusion of intravascularly injected tracer (horseradish peroxidase), and immunocytochemical demonstration of glucose transporter-1 as a functional marker and of neurothelin, occludin and ZO-1 as structural markers. Alkaline phosphatase and gamma-glutamyltransferase activities, two enzyme reactions frequently used for demonstration of an established blood-brain barrier in vitro, were localized histochemically on the plasmalemma of glycogen body cells and were absent from the endothelium. In addition, local enlargements of the intercellular space were observed by transmission and scanning electron microscopy. In accordance with the concept of a third circulation the cerebrospinal fluid may be the vehicle for distributing substances originating in the glycogen body to the CNS, while the vascular endothelium maintains the internal milieu by virtue of its dynamic barrier functions.
The integrated motion measurement simulation for SOFIA
NASA Astrophysics Data System (ADS)
Kaswekar, Prashant; Greiner, Benjamin; Wagner, Jörg
2014-07-01
The Stratospheric Observatory for Infrared Astronomy SOFIA consists of a B747-SP aircraft, which carries aloft a 2.7-meter reflecting telescope. The image stability goal for SOFIA is 0:2 arc-seconds rms. The performance of the telescope structure is affected by elastic vibrations induced by aeroacoustic and suspension disturbances. Active compensation of such disturbances requires a fast way of estimating the structural motion. Integrated navigation systems are examples of such estimation systems. However they employ a rigid body assumption. A possible extension of these systems to an elastic structure is shown by different authors for one dimensional beam structures taking into account the eigenmodes of the structural system. The rigid body motion as well as the flexible modes of the telescope assembly, however, are coupled among the three axes. Extending a special mathematical approach to three dimensional structures, the aspect of a modal observer based on integrated motion measurement is simulated for SOFIA. It is in general a fusion of different measurement methods by using their benefits and blinding out their disadvantages. There are no mass and stillness properties needed directly in this approach. However, the knowledge of modal properties of the structure is necessary for the implementation of this method. A finite-element model is chosen as a basis to extract the modal properties of the structure.
What Makes Us Smell: The Biochemistry of Body Odour and the Design of New Deodorant Ingredients.
Natsch, Andreas
2015-08-19
Today, axilla odours are socially stigmatized and are targeted with deodorants and antiperspirants representing a multi-billion market. Axilla odours aren't simple byproducts of our metabolism but specifically formed by an intricate interplay between i) specific glands, ii) secreted amino acid conjugates of highly specific odorants and iii) selective enzymes present in microorganisms colonizing our skin, providing a natural 'controlled-release' mechanism. Within a multidisciplinary research project, we were able to elucidate the structure of key body odorants, isolate and characterize secreted amino acid conjugates and identify the enzymes responsible for odour release. These enzymes then served as targets for the development of specific active compounds in an almost medicinal chemistry approach, an approach rarely used in the cosmetic field so far. Here we review the key new insights into the biochemistry of human body odour formation, with some remarks on the experimental steps undertaken and hurdles encountered. The development of deodorant actives and the difficult path to market for such specifically acting cosmetic actives is discussed. The basic insights into the biochemistry also opened the way to address some questions in population genetics: Why have large proportions of Asians lost the 'ability' to form body odours? Do twins smell the same? Are our typical body odours indeed influenced by the immune system as often claimed? After addressing these questions, I'll conclude with the key remaining challenges in this field on an ecological niche that is 'anatomically very close to our heart'.
What Makes Us Smell: The Biochemistry of Body Odour and the Design of New Deodorant Ingredients.
Natsch, Andreas
2015-01-01
Today, axilla odours are socially stigmatized and are targeted with deodorants and antiperspirants representing a multi-billion market. Axilla odours aren't simple byproducts of our metabolism but specifically formed by an intricate interplay between i) specific glands, ii) secreted amino acid conjugates of highly specific odorants and iii) selective enzymes present in microorganisms colonizing our skin, providing a natural 'controlled-release' mechanism. Within a multidisciplinary research project, we were able to elucidate the structure of key body odorants, isolate and characterize secreted amino acid conjugates and identify the enzymes responsible for odour release. These enzymes then served as targets for the development of specific active compounds in an almost medicinal chemistry approach, an approach rarely used in the cosmetic field so far. Here we review the key new insights into the biochemistry of human body odour formation, with some remarks on the experimental steps undertaken and hurdles encountered. The development of deodorant actives and the difficult path to market for such specifically acting cosmetic actives is discussed. The basic insights into the biochemistry also opened the way to address some questions in population genetics: Why have large proportions of Asians lost the 'ability' to form body odours? Do twins smell the same? Are our typical body odours indeed influenced by the immune system as often claimed? After addressing these questions, I'll conclude with the key remaining challenges in this field on an ecological niche that is 'anatomically very close to our heart'.
ACFA 2020 - An FP7 project on active control of flexible fuel efficient aircraft configurations
NASA Astrophysics Data System (ADS)
Maier, R.
2013-12-01
This paper gives an overview about the project ACFA 2020 which is funded by the European Commission within the 7th framework program. The acronym ACFA 2020 stands for Active Control for Flexible Aircraft 2020. The project is dealing with the design of highly fuel efficient aircraft configurations and, in particular, on innovative active control concepts with the goal to reduce loads and structural weight. Major focus lays on blended wing body (BWB) aircraft. Blended wing body type aircraft configurations are seen as the most promising future concept to fulfill the so-called ACARE (Advisory Council for Aeronautics Research in Europe) vision 2020 goals in regards to reduce fuel consumption and external noise. The paper discusses in some detail the overall goals and how they are addressed in the workplan. Furthermore, the major achievements of the project are outlined and a short outlook on the remaining work is given.
Foreign body granuloma of the penis caused by occupational glass fibre exposure.
Hinnen, U; Elsner, P; Barraud, M; Burg, G
1997-01-01
We report a patient who presented with the suspected diagnosis of syphilis. Clinical findings included a penile ulcer, positive history of syphilis more than 20 years ago, and positive syphilis serology (TPHA, FTA-Abs). A biopsy showed a plasma-cell rich inflammation with granuloma formation. Since a birefractory structure was observed in the biopsy possibly corresponding to a foreign body, the patient's occupational exposure was investigated. Working in the fiber reinforced plastics industry, he was heavily exposed to glass fibre that was even detected on the inside of his underwear. Taking the serological pattern into account that was not consistent with active syphilis, a penile ulcer following a foreign body reaction was diagnosed. This case report demonstrates the difficulties of differentiating foreign body granuloma of the genital region from venereal diseases with granuloma formation. Images PMID:9582491
Integration methods for thermosensitive gel systems in garments
NASA Astrophysics Data System (ADS)
Reich, A.; Rödel, H.; Stoll, A.; Liske, A.; Zehm, D.
2017-10-01
Humans live and work under severe thermophysiological conditions, which are characterized by extreme temperatures and humidities. Furthermore, additional burdens can arise from physical activities of the human body or the work conditions (resulting in psychological stress) [1]. The thermoregulation of the human body compensates such situations and maintains the core body temperature at 37°C (98,6 °F). The currently used systems for supporting human thermoregulation, such as PCM-equipped surface structures or mobile water-based cooling units have the disadvantage that the running cooling process is neither switchable nor reversible. Another promising possibility for a personal cooling is the use of temperature-dependent superabsorbers (so-called LCST and UCST) in garments, which absorb the human sweat and transmit it to the environment by evaporation. Cooling during evaporation results in heat transfer from the human body.
The Moon is a Planet Too: Lunar Science and Robotic Exploration
NASA Technical Reports Server (NTRS)
Cohen, Barbara A.
2009-01-01
This slide presentation reviews some of what is known about the moon, and draws parallels between the moon and any other terrestrial planet. The Moon is a cornerstone for all rocky planets The Moon is a terrestrial body, formed and evolved similarly to Earth, Mars, Mercury, Venus, and large asteroids The Moon is a differentiated body, with a layered internal structure (crust, mantle, and core) The Moon is a cratered body, preserving a record of bombardment history in the inner solar system The Moon is an active body, experiencing moonquakes, releasing primordial heat, conducting electricity, sustaining bombardment, and trapping volatile molecules Lunar robotic missions provide early science return to obtain important science and engineering objectives, rebuild a lunar science community, and keep our eyes on the Moon. These lunar missions, both past and future are reviewed.
Motion Control of Urea-Powered Biocompatible Hollow Microcapsules.
Ma, Xing; Wang, Xu; Hahn, Kersten; Sánchez, Samuel
2016-03-22
The quest for biocompatible microswimmers powered by compatible fuel and with full motion control over their self-propulsion is a long-standing challenge in the field of active matter and microrobotics. Here, we present an active hybrid microcapsule motor based on Janus hollow mesoporous silica microparticles powered by the biocatalytic decomposition of urea at physiological concentrations. The directional self-propelled motion lasts longer than 10 min with an average velocity of up to 5 body lengths per second. Additionally, we control the velocity of the micromotor by chemically inhibiting and reactivating the enzymatic activity of urease. The incorporation of magnetic material within the Janus structure provides remote magnetic control on the movement direction. Furthermore, the mesoporous/hollow structure can load both small molecules and larger particles up to hundreds of nanometers, making the hybrid micromotor an active and controllable drug delivery microsystem.
Iwamoto, Masami; Nakahira, Yuko; Kimpara, Hideyuki
2015-01-01
Active safety devices such as automatic emergency brake (AEB) and precrash seat belt have the potential to accomplish further reduction in the number of the fatalities due to automotive accidents. However, their effectiveness should be investigated by more accurate estimations of their interaction with human bodies. Computational human body models are suitable for investigation, especially considering muscular tone effects on occupant motions and injury outcomes. However, the conventional modeling approaches such as multibody models and detailed finite element (FE) models have advantages and disadvantages in computational costs and injury predictions considering muscular tone effects. The objective of this study is to develop and validate a human body FE model with whole body muscles, which can be used for the detailed investigation of interaction between human bodies and vehicular structures including some safety devices precrash and during a crash with relatively low computational costs. In this study, we developed a human body FE model called THUMS (Total HUman Model for Safety) with a body size of 50th percentile adult male (AM50) and a sitting posture. The model has anatomical structures of bones, ligaments, muscles, brain, and internal organs. The total number of elements is 281,260, which would realize relatively low computational costs. Deformable material models were assigned to all body parts. The muscle-tendon complexes were modeled by truss elements with Hill-type muscle material and seat belt elements with tension-only material. The THUMS was validated against 35 series of cadaver or volunteer test data on frontal, lateral, and rear impacts. Model validations for 15 series of cadaver test data associated with frontal impacts are presented in this article. The THUMS with a vehicle sled model was applied to investigate effects of muscle activations on occupant kinematics and injury outcomes in specific frontal impact situations with AEB. In the validations using 5 series of cadaver test data, force-time curves predicted by the THUMS were quantitatively evaluated using correlation and analysis (CORA), which showed good or acceptable agreement with cadaver test data in most cases. The investigation of muscular effects showed that muscle activation levels and timing had significant effects on occupant kinematics and injury outcomes. Although further studies on accident injury reconstruction are needed, the THUMS has the potential for predictions of occupant kinematics and injury outcomes considering muscular tone effects with relatively low computational costs.
Opportunities for promoting youth physical activity: an examination of youth summer camps.
Hickerson, Benjamin D; Henderson, Karla A
2014-01-01
Youth summer camp programs have the potential to provide opportunities for physical activity, but little to no research has been conducted to determine activity levels of campers. This study aimed to examine physical activity occurring in day and resident summer camps and how activity levels differed in these camps based upon demographic characteristics. Pedometer data were collected during hours of camp operation from 150 day campers and 114 resident campers between the ages of 8 and 12 years old. Independent t tests were used to compare physical activity by sex, race, and Body Mass Index. Campers at day camps averaged 11,916 steps per camp day, while resident campers averaged 19,699 steps per camp day. Day campers averaged 1586 steps per hour over 7.5 hour days and resident campers averaged 1515 steps per hour over 13 hour days. Male sex, Caucasian race, and normal Body Mass Index were significant correlates of more physical activity. Youth summer camps demonstrate the potential to provide ample opportunities for physical activity during the summer months. Traditional demographic disparities persisted in camps, but the structure of camp programs should allow for changes to increase physical activity for all participants.
Ecological allometries and niche use dynamics across Komodo dragon ontogeny.
Purwandana, Deni; Ariefiandy, Achmad; Imansyah, M Jeri; Seno, Aganto; Ciofi, Claudio; Letnic, Mike; Jessop, Tim S
2016-04-01
Ontogenetic allometries in ecological habits and niche use are key responses by which individuals maximize lifetime fitness. Moreover, such allometries have significant implications for how individuals influence population and community dynamics. Here, we examined how body size variation in Komodo dragons (Varanus komodoensis) influenced ecological allometries in their: (1) prey size preference, (2) daily movement rates, (3) home range area, and (4) subsequent niche use across ontogeny. With increased body mass, Komodo dragons increased prey size with a dramatic switch from small (≤10 kg) to large prey (≥50 kg) in lizards heavier than 20 kg. Rates of foraging movement were described by a non-linear concave down response with lizard increasing hourly movement rates up until ∼20 kg body mass before decreasing daily movement suggesting reduced foraging effort in larger lizards. In contrast, home range area exhibited a sigmoid response with increased body mass. Intrapopulation ecological niche use and overlap were also strongly structured by body size. Thus, ontogenetic allometries suggest Komodo dragon's transition from a highly active foraging mode exploiting small prey through to a less active sit and wait feeding strategy focused on killing large ungulates. Further, our results suggest that as body size increases across ontogeny, the Komodo dragon exhibited marked ontogenetic niche shifts that enabled it to function as an entire vertebrate predator guild by exploiting prey across multiple trophic levels.
Ecological allometries and niche use dynamics across Komodo dragon ontogeny
NASA Astrophysics Data System (ADS)
Purwandana, Deni; Ariefiandy, Achmad; Imansyah, M. Jeri; Seno, Aganto; Ciofi, Claudio; Letnic, Mike; Jessop, Tim S.
2016-04-01
Ontogenetic allometries in ecological habits and niche use are key responses by which individuals maximize lifetime fitness. Moreover, such allometries have significant implications for how individuals influence population and community dynamics. Here, we examined how body size variation in Komodo dragons ( Varanus komodoensis) influenced ecological allometries in their: (1) prey size preference, (2) daily movement rates, (3) home range area, and (4) subsequent niche use across ontogeny. With increased body mass, Komodo dragons increased prey size with a dramatic switch from small (≤10 kg) to large prey (≥50 kg) in lizards heavier than 20 kg. Rates of foraging movement were described by a non-linear concave down response with lizard increasing hourly movement rates up until ˜20 kg body mass before decreasing daily movement suggesting reduced foraging effort in larger lizards. In contrast, home range area exhibited a sigmoid response with increased body mass. Intrapopulation ecological niche use and overlap were also strongly structured by body size. Thus, ontogenetic allometries suggest Komodo dragon's transition from a highly active foraging mode exploiting small prey through to a less active sit and wait feeding strategy focused on killing large ungulates. Further, our results suggest that as body size increases across ontogeny, the Komodo dragon exhibited marked ontogenetic niche shifts that enabled it to function as an entire vertebrate predator guild by exploiting prey across multiple trophic levels.
Female sexual function and the clitoral complex using pelvic MRI assessment.
Vaccaro, Christine M; Fellner, Angela N; Pauls, Rachel N
2014-09-01
To report basic measurements of clitoral anatomy, and explore potential relationships between the clitoral complex and female sexual function using MRI assessment. In this retrospective descriptive study, 20 sexually active women (≥18 years) who had a recent pelvic MRI for various gynecologic concerns were invited to participate. Outcome measures included demographic data, medical and sexual history, quality of life questionnaires: Female Sexual Function Index (FSFI), Body Exposure during Sexual Activities Questionnaire (BESAQ), and Short Form Quality of Life Questionnaire (SF-12). These data were then compared to detailed clitoral MRI measurements and analyzed using the Pearson correlation and Chi square test. FSFI domains of desire, arousal, lubrication, and orgasm were inversely correlated with clitoral size (p=0.01-0.04), as were SF-12 physical composite scores (p=0.003), suggesting improved sexual function and physical health in women with smaller clitoral structures (specifically the clitoral body and crus). Sexual function was improved in women with a smaller-sized clitoris, specifically the clitoral body and crus. Published by Elsevier Ireland Ltd.
A passive exoskeleton can push your life up: application on multiple sclerosis patients.
Di Russo, Francesco; Berchicci, Marika; Perri, Rinaldo Livio; Ripani, Francesca Romana; Ripani, Maurizio
2013-01-01
In the present study, we report the benefits of a passive and fully articulated exoskeleton on multiple sclerosis patients by means of behavioral and electrophysiological measures, paying particular attention to the prefrontal cortex activity. Multiple sclerosis is a neurological condition characterized by lesions of the myelin sheaths that encapsulate the neurons of the brain, spine and optic nerve, and it causes transient or progressive symptoms and impairments in gait and posture. Up to 50% of multiple sclerosis patients require walking aids and 10% are wheelchair-bound 15 years following the initial diagnosis. We tested the ability of a new orthosis, the "Human Body Posturizer", designed to improve the structural and functional symmetry of the body through proprioception, in multiple sclerosis patients. We observed that a single Human Body Posturizer application improved mobility, ambulation and response accuracy, in all of the tested patients. Most importantly, we associated these clinical observations and behavioral effects to changes in brain activity, particularly in the prefrontal cortex.
Defining optimal tracer activities in pediatric oncologic whole-body 18F-FDG-PET/MRI.
Gatidis, Sergios; Schmidt, Holger; la Fougère, Christian; Nikolaou, Konstantin; Schwenzer, Nina F; Schäfer, Jürgen F
2016-12-01
To explore the feasibility of reducing administered tracer activities and to assess optimal activities for combined 18 F-FDG-PET/MRI in pediatric oncology. 30 18 F-FDG-PET/MRI examinations were performed on 24 patients with known or suspected solid tumors (10 girls, 14 boys, age 12 ± 5.6 [1-18] years; PET scan duration: 4 min per bed position). Low-activity PET images were retrospectively simulated from the originally acquired data sets using randomized undersampling of list mode data. PET data of different simulated administered activities (0.25-2.5 MBq/kg body weight) were reconstructed with or without point spread function (PSF) modeling. Mean and maximum standardized uptake values (SUV mean and SUV max ) as well as SUV variation (SUV var ) were measured in physiologic organs and focal FDG-avid lesions. Detectability of organ structures and of focal 18 F-FDG-avid lesions as well as the occurrence of false-positive PET lesions were assessed at different simulated tracer activities. Subjective image quality steadily declined with decreasing tracer activities. Compared to the originally acquired data sets, mean relative deviations of SUV mean and SUV max were below 5 % at 18 F-FDG activities of 1.5 MBq/kg or higher. Over 95 % of anatomic structures and all pathologic focal lesions were detectable at 1.5 MBq/kg 18 F-FDG. Detectability of anatomic structures and focal lesions was significantly improved using PSF. No false-positive focal lesions were observed at tracer activities of 1 MBq/kg 18 F-FDG or higher. Administration of 18 F-FDG activities of 1.5 MBq/kg is, thus, feasible without obvious diagnostic shortcomings, which is equivalent to a dose reduction of more than 50 % compared to current recommendations. Significant reduction in administered 18 F-FDG tracer activities is feasible in pediatric oncologic PET/MRI. Appropriate activities of 18 F-FDG or other tracers for specific clinical questions have to be further established in selected patient populations.
Body Weight Relationships in Early Marriage: Weight Relevance, Weight Comparisons, and Weight Talk
Bove, Caron F.; Sobal, Jeffery
2011-01-01
This investigation uncovered processes underlying the dynamics of body weight and body image among individuals involved in nascent heterosexual marital relationships in Upstate New York. In-depth, semi-structured qualitative interviews conducted with 34 informants, 20 women and 14 men, just prior to marriage and again one year later were used to explore continuity and change in cognitive, affective, and behavioral factors relating to body weight and body image at the time of marriage, an important transition in the life course. Three major conceptual themes operated in the process of developing and enacting informants’ body weight relationships with their partner: weight relevance, weight comparisons, and weight talk. Weight relevance encompassed the changing significance of weight during early marriage and included attracting and capturing a mate, relaxing about weight, living healthily, and concentrating on weight. Weight comparisons between partners involved weight relativism, weight competition, weight envy, and weight role models. Weight talk employed pragmatic talk, active and passive reassurance, and complaining and critiquing criticism. Concepts emerging from this investigation may be useful in designing future studies of and approaches to managing body weight in adulthood. PMID:21864601
Dodd, C.K.
1993-01-01
The snout – vent length, tail length, weight, sex, activity, and orientation of a population of swamp snakes (Seminatrix pygaea) in north – central Florida were recorded from 1985 through 1990. A small temporary pond was monitored for 1343 days, using a drift fence – pitfall trap sampling regime. I captured 123 different snakes, plus 45 recaptures. Juveniles comprised 89% of the snakes at the pond. Females were generally longer and weighed more than males, although regression analysis showed no differences between the sexes in the relationship of length versus wet body mass. Males had longer tails than females. The sex ratio of snakes with a snout – vent length of more than 150 mm was 1:1. Activity occurred throughout the year but peaked during summer. Hydroperiod and weather conditions did not appear to influence snake activity. During the latter years of the study, a regional drought that began in the mid-1980s became quite severe. However, drought had little direct effect on overland migration or body condition but caused snakes to leave or to shorten the amount of time they spent within the pond basin. Snakes immigrated and emigrated nonrandomly; orientation was directed to and from the nearest large water body. Certain temporary ponds may comprise developmental habitat for Seminatrix pygaea. The dynamic wet – dry climatic cycles in southeastern North America may lead to the formation of metapopulations in some aquatic snakes.
Awadasseid, Annoor; Hou, Jie; Gamallat, Yaser; Xueqi, Shang; Eugene, Kuugbee D.; Musa Hago, Ahmed; Bamba, Djibril; Meyiah, Abdo; Gift, Chiwala; Xin, Yi
2017-01-01
Cancer is one of the most common causes of deaths worldwide. Herein, we report an efficient natural anticancer glucan (CVG) extracted from Coriolus Versicolar (CV). CVG was extracted by the hot water extraction method followed by ethanol precipitation and purified using gas exclusion chromatography. Structural analysis revealed that CVG has a linear α-glucan chain composed of only (1→ 6)-α-D-Glcp. The antitumor activity of CVG on Sarcoma-180 cells was investigated in vitro and in vivo. Mice were treated with three doses of CVG (40, 100, 200 mg/kg body weight) for 9 days. Tumor weight, relative spleen, thymus weight, and lymphocyte proliferation were studied. A significant increase (P< 0.01) in relative spleen and thymus weight and a decrease (P< 0.01) in tumor weight at the doses of 100 and 200 mg/kg were observed. The results obtained demonstrate CVG has antitumor activity towards Sarcoma-180 cells by its immunomodulation activity. PMID:28178285
Awadasseid, Annoor; Hou, Jie; Gamallat, Yaser; Xueqi, Shang; Eugene, Kuugbee D; Musa Hago, Ahmed; Bamba, Djibril; Meyiah, Abdo; Gift, Chiwala; Xin, Yi
2017-01-01
Cancer is one of the most common causes of deaths worldwide. Herein, we report an efficient natural anticancer glucan (CVG) extracted from Coriolus Versicolar (CV). CVG was extracted by the hot water extraction method followed by ethanol precipitation and purified using gas exclusion chromatography. Structural analysis revealed that CVG has a linear α-glucan chain composed of only (1→ 6)-α-D-Glcp. The antitumor activity of CVG on Sarcoma-180 cells was investigated in vitro and in vivo. Mice were treated with three doses of CVG (40, 100, 200 mg/kg body weight) for 9 days. Tumor weight, relative spleen, thymus weight, and lymphocyte proliferation were studied. A significant increase (P< 0.01) in relative spleen and thymus weight and a decrease (P< 0.01) in tumor weight at the doses of 100 and 200 mg/kg were observed. The results obtained demonstrate CVG has antitumor activity towards Sarcoma-180 cells by its immunomodulation activity.
Structural dynamics of the mitochondrial compartment.
Thorsness, P E
1992-09-01
The metabolic activities of mitochondria have been extensively characterized. However, there is much less known about the morphogenic changes of the mitochondrial compartment during growth, development and aging of the cell and the consequences of those structural changes on cellular metabolism. There is a growing body of evidence for interactions of mitochondria with cytoskeletal components and changes of mitochondrial structure during development and in response to changing environmental conditions. Segregation and recombination of mitochondrial genomes are also processes dependent upon the dynamic nature of the mitochondrial compartment. These regulatory and structural aspects of mitochondrial compartment dynamics will play an important role in the analysis of mitochondrial function and pathology.
Kudo, Yukiko; Sasaki, Makiko; Kikuchi, Yukiko; Sugiyama, Reiko; Hasebe, Makiko; Ishii, Noriko
2018-06-19
The present study was conducted in order to clarify the effects of a warm hand bath at 40°C for 10 min on the blood flow in the shoulder, skin and deep body temperature, autonomic nervous activity, and subjective comfort in healthy women. The study's participants were 40 healthy adult women who were randomly assigned to either a structured hand bath first and no hand bath second (Group A) or to no hand bath first and a hand bath second (Group B). The blood flow in the shoulder, skin and deep body temperature, autonomic nervous activity, and subjective comfort then were recorded in all the participants. A repeated-measures ANOVA revealed no significant difference in the blood flow in the right shoulder or deep body temperature between groups. The skin temperature of the hands, forearms, and arms was significantly increased, but not of the face and upper back. The skin temperature of the forearms was maintained at 0.5°C-1°C higher for 30 min in the hand bath group, compared with the no hand bath group. The hand bath group had a significantly higher heart rate while bathing and a significantly lower parasympathetic nerve activity level during bathing. No significant difference was seen in the sympathetic activity level between groups. The hand bath group had a significantly higher subjective comfort level. Hand baths can improve the level of subjective comfort and increase the heart rate and might affect autonomic nervous activity. The skin temperature of the forearms was maintained for 30 min in the hand bath group. © 2018 Japan Academy of Nursing Science.
Administration of Physical Education and Sports in Nigeria
ERIC Educational Resources Information Center
Alla, J. B.; Ajibua, M. A.
2012-01-01
Physical Education is a vital part of total education. It is that process of education that concerns physical activities, which develop and maintain human body. The attainment of its goals depends on its administrative control structure more than any other thing. Physical Education Curriculum is entrenched in the National Policy on Education and…
Investigation of Intensity Levels during Video Classroom Exercise Sessions
ERIC Educational Resources Information Center
Caldwell, Thad; Ratliffe, Tom
2014-01-01
Classroom Exercises for the Body and Brain was developed in the state of Georgia by the HealthMPowers organization to help classroom teachers provide structured physical activity for their elementary students in their classrooms. These brief video exercises were designed for students to participate at their desks as exercise breaks, as energy…
2014-01-01
Background Inclusion bodies (IBs) were generally considered to be inactive protein deposits and did not hold any attractive values in biotechnological applications. Recently, some IBs of recombinant proteins were confirmed to show their functional properties such as enzyme activities, fluorescence, etc. Such biologically active IBs are not commonly formed, but they have great potentials in the fields of biocatalysis, material science and nanotechnology. Results In this study, we characterized the IBs of DL4, a deletion variant of green fluorescent protein which forms active intracellular aggregates. The DL4 proteins expressed in Escherichia coli were exclusively deposited to IBs, and the IBs were estimated to be mostly composed of active proteins. The spectral properties and quantum yield of the DL4 variant in the active IBs were almost same with those of its native protein. Refolding and stability studies revealed that the deletion mutation in DL4 didn’t affect the folding efficiency of the protein, but destabilized its structure. Analyses specific for amyloid-like structures informed that the inner architecture of DL4 IBs might be amorphous rather than well-organized. The diameter of fluorescent DL4 IBs could be decreased up to 100–200 nm by reducing the expression time of the protein in vivo. Conclusions To our knowledge, DL4 is the first GFP variant that folds correctly but aggregates exclusively in vivo without any self-aggregating/assembling tags. The fluorescent DL4 IBs have potentials to be used as fluorescent biomaterials. This study also suggests that biologically active IBs can be achieved through engineering a target protein itself. PMID:24885571
Kitada, Ryo; Johnsrude, Ingrid S; Kochiyama, Takanori; Lederman, Susan J
2009-10-01
Humans can recognize common objects by touch extremely well whenever vision is unavailable. Despite its importance to a thorough understanding of human object recognition, the neuroscientific study of this topic has been relatively neglected. To date, the few published studies have addressed the haptic recognition of nonbiological objects. We now focus on haptic recognition of the human body, a particularly salient object category for touch. Neuroimaging studies demonstrate that regions of the occipito-temporal cortex are specialized for visual perception of faces (fusiform face area, FFA) and other body parts (extrastriate body area, EBA). Are the same category-sensitive regions activated when these components of the body are recognized haptically? Here, we use fMRI to compare brain organization for haptic and visual recognition of human body parts. Sixteen subjects identified exemplars of faces, hands, feet, and nonbiological control objects using vision and haptics separately. We identified two discrete regions within the fusiform gyrus (FFA and the haptic face region) that were each sensitive to both haptically and visually presented faces; however, these two regions differed significantly in their response patterns. Similarly, two regions within the lateral occipito-temporal area (EBA and the haptic body region) were each sensitive to body parts in both modalities, although the response patterns differed. Thus, although the fusiform gyrus and the lateral occipito-temporal cortex appear to exhibit modality-independent, category-sensitive activity, our results also indicate a degree of functional specialization related to sensory modality within these structures.
Three-dimensional structure of basal body triplet revealed by electron cryo-tomography
Li, Sam; Fernandez, Jose-Jesus; Marshall, Wallace F; Agard, David A
2012-01-01
Basal bodies and centrioles play central roles in microtubule (MT)-organizing centres within many eukaryotes. They share a barrel-shaped cylindrical structure composed of nine MT triplet blades. Here, we report the structure of the basal body triplet at 33 Å resolution obtained by electron cryo-tomography and 3D subtomogram averaging. By fitting the atomic structure of tubulin into the EM density, we built a pseudo-atomic model of the tubulin protofilaments at the core of the triplet. The 3D density map reveals additional densities that represent non-tubulin proteins attached to the triplet, including a large inner circular structure in the basal body lumen, which functions as a scaffold to stabilize the entire basal body barrel. We found clear longitudinal structural variations along the basal body, suggesting a sequential and coordinated assembly mechanism. We propose a model in which δ-tubulin and other components participate in the assembly of the basal body. PMID:22157822
Structural phase transitions in Bi2Se3 under high pressure
Yu, Zhenhai; Wang, Lin; Hu, Qingyang; Zhao, Jinggeng; Yan, Shuai; Yang, Ke; Sinogeikin, Stanislav; Gu, Genda; Mao, Ho-kwang
2015-01-01
Raman spectroscopy and angle dispersive X-ray diffraction (XRD) experiments of bismuth selenide (Bi2Se3) have been carried out to pressures of 35.6 and 81.2 GPa, respectively, to explore its pressure-induced phase transformation. The experiments indicate that a progressive structural evolution occurs from an ambient rhombohedra phase (Space group (SG): R-3m) to monoclinic phase (SG: C2/m) and eventually to a high pressure body-centered tetragonal phase (SG: I4/mmm). Evidenced by our XRD data up to 81.2 GPa, the Bi2Se3 crystallizes into body-centered tetragonal structures rather than the recently reported disordered body-centered cubic (BCC) phase. Furthermore, first principles theoretical calculations favor the viewpoint that the I4/mmm phase Bi2Se3 can be stabilized under high pressure (>30 GPa). Remarkably, the Raman spectra of Bi2Se3 from this work (two independent runs) are still Raman active up to ~35 GPa. It is worthy to note that the disordered BCC phase at 27.8 GPa is not observed here. The remarkable difference in atomic radii of Bi and Se in Bi2Se3 may explain why Bi2Se3 shows different structural behavior than isocompounds Bi2Te3 and Sb2Te3. PMID:26522818
Structural phase transitions in Bi 2Se 3 under high pressure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Zhenhai; Gu, Genda; Wang, Lin
2015-11-02
Raman spectroscopy and angle dispersive X-ray diffraction (XRD) experiments of bismuth selenide (Bi 2Se 3) have been carried out to pressures of 35.6 and 81.2 GPa, respectively, to explore its pressure-induced phase transformation. The experiments indicate that a progressive structural evolution occurs from an ambient rhombohedra phase (Space group (SG): R-3m) to monoclinic phase (SG: C2/m) and eventually to a high pressure body-centered tetragonal phase (SG: I4/mmm). Evidenced by our XRD data up to 81.2 GPa, the Bi 2Se 3 crystallizes into body-centered tetragonal structures rather than the recently reported disordered body-centered cubic (BCC) phase. Furthermore, first principles theoretical calculationsmore » favor the viewpoint that the I4/mmm phase Bi 2Se 3 can be stabilized under high pressure (>30 GPa). Remarkably, the Raman spectra of Bi 2Se 3 from this work (two independent runs) are still Raman active up to ~35 GPa. Furthermore, it is worthy to note that the disordered BCC phase at 27.8 GPa is not observed here. The remarkable difference in atomic radii of Bi and Se in Bi 2Se 3 may explain why Bi 2Se 3 shows different structural behavior than isocompounds Bi 2Te 3 and Sb 2Te 3.« less
Studies on bacterial inclusion bodies.
de Groot, Natalia S; Espargaró, Alba; Morell, Montserrat; Ventura, Salvador
2008-08-01
The field of protein misfolding and aggregation has become an extremely active area of research in recent years. Of particular interest is the deposition of polypeptides into inclusion bodies inside bacterial cells. One reason for this interest is that protein aggregation constitutes a major bottleneck in protein production and restricts the spectrum of protein-based drugs available for commercialization. Additionally, prokaryotic cells could provide a simple yet powerful system for studying the formation and prevention of toxic aggregates, such as those responsible for a number of degenerative diseases. Here, we review recent work that has challenged our understanding of the structure and physiology of inclusion bodies and provided us with a new view of intracellular protein deposition, which has important implications in microbiology, biomedicine and biotechnology.
Investigation of Phase Transition-Based Tethered Systems for Small Body Sample Capture
NASA Technical Reports Server (NTRS)
Quadrelli, Marco; Backes, Paul; Wilkie, Keats; Giersch, Lou; Quijano, Ubaldo; Scharf, Daniel; Mukherjee, Rudranarayan
2009-01-01
This paper summarizes the modeling, simulation, and testing work related to the development of technology to investigate the potential that shape memory actuation has to provide mechanically simple and affordable solutions for delivering assets to a surface and for sample capture and possible return to Earth. We investigate the structural dynamics and controllability aspects of an adaptive beam carrying an end-effector which, by changing equilibrium phases is able to actively decouple the end-effector dynamics from the spacecraft dynamics during the surface contact phase. Asset delivery and sample capture and return are at the heart of several emerging potential missions to small bodies, such as asteroids and comets, and to the surface of large bodies, such as Titan.
Modeling and Testing of Phase Transition-Based Deployable Systems for Small Body Sample Capture
NASA Technical Reports Server (NTRS)
Quadrelli, Marco; Backes, Paul; Wilkie, Keats; Giersch, Lou; Quijano, Ubaldo; Keim, Jason; Mukherjee, Rudranarayan
2009-01-01
This paper summarizes the modeling, simulation, and testing work related to the development of technology to investigate the potential that shape memory actuation has to provide mechanically simple and affordable solutions for delivering assets to a surface and for sample capture and return. We investigate the structural dynamics and controllability aspects of an adaptive beam carrying an end-effector which, by changing equilibrium phases is able to actively decouple the end-effector dynamics from the spacecraft dynamics during the surface contact phase. Asset delivery and sample capture and return are at the heart of several emerging potential missions to small bodies, such as asteroids and comets, and to the surface of large bodies, such as Titan.
Krauss, Ulrich; Jäger, Vera D; Diener, Martin; Pohl, Martina; Jaeger, Karl-Erich
2017-09-20
Bacterial inclusion bodies (IBs) consist of unfolded protein aggregates and represent inactive waste products often accumulating during heterologous overexpression of recombinant genes in Escherichia coli. This general misconception has been challenged in recent years by the discovery that IBs, apart from misfolded polypeptides, can also contain substantial amounts of active and thus correctly or native-like folded protein. The corresponding catalytically-active inclusion bodies (CatIBs) can be regarded as a biologically-active sub-micrometer sized biomaterial or naturally-produced carrier-free protein immobilizate. Fusion of polypeptide (protein) tags can induce CatIB formation paving the way towards the wider application of CatIBs in synthetic chemistry, biocatalysis and biomedicine. In the present review we summarize the history of CatIBs, present the molecular-biological tools that are available to induce CatIB formation, and highlight potential lines of application. In the second part findings regarding the formation, architecture, and structure of (Cat)IBs are summarized. Finally, an overview is presented about the available bioinformatic tools that potentially allow for the prediction of aggregation and thus (Cat)IB formation. This review aims at demonstrating the potential of CatIBs for biotechnology and hopefully contributes to a wider acceptance of this promising, yet not widely utilized, protein preparation. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Wang, Xiaoyong; Guo, Chongling; Hu, Yongli; He, Hongyan
2017-11-01
The primary and secondary mirrors of onaxis three mirror anastigmatic (TMA) space camera are connected and supported by its front mirror-body structure, which affects both imaging performance and stability of the camera. In this paper, the carbon fiber reinforced plastics (CFRP) thin-walled cylinder and titanium alloy connecting rod have been used for the front mirror-body opto-mechanical structure of the long-focus on-axis and TMA space camera optical system. The front mirror-body component structure has then been optimized by finite element analysis (FEA) computing. Each performance of the front mirror-body structure has been tested by mechanics and vacuum experiments in order to verify the validity of such structure engineering design.
Ghosh, Manik C.; Ray, Arun K.
2013-01-01
Cytochrome P450 is a superfamily of membrane-bound hemoprotein that gets involved with the degradation of xenobiotics and internal metabolites. Accumulated body of evidence indicates that phospholipids play a crucial role in determining the enzymatic activity of cytochrome P450 in the microenvironment by modulating its structure during detoxification; however, the structure-function relationship of cytochrome P4501A, a family of enzymes responsible for degrading lipophilic aromatic hydrocarbons, is still not well defined. Inducibility of cytochrome P4501A in cultured catfish hepatocytes in response to carbofuran, a widely used pesticide around the world, was studied earlier in our laboratory. In this present investigation, we observed that treating catfish with carbofuran augmented total phospholipid in the liver. We examined the role of phospholipid on the of cytochrome P4501A-marker enzyme which is known as ethoxyresorufin-O-deethylase (EROD) in the context of structure and function. We purified the carbofuran-induced cytochrome P4501A protein from catfish liver. Subsequently, we examined the enzymatic activity of purified P4501A protein in the presence of phospholipid, and studied how the structure of purified protein was influenced in the phospholipid environment. Membrane phospholipid appeared to accelerate the enzymatic activity of EROD by changing its structural conformation and thus controlling the detoxification of xenobiotics. Our study revealed the missing link of how the cytochrome P450 restores its enzymatic activity by changing its structural conformation in the phospholipid microenvironment. PMID:23469105
Ghosh, Manik C; Ray, Arun K
2013-01-01
Cytochrome P450 is a superfamily of membrane-bound hemoprotein that gets involved with the degradation of xenobiotics and internal metabolites. Accumulated body of evidence indicates that phospholipids play a crucial role in determining the enzymatic activity of cytochrome P450 in the microenvironment by modulating its structure during detoxification; however, the structure-function relationship of cytochrome P4501A, a family of enzymes responsible for degrading lipophilic aromatic hydrocarbons, is still not well defined. Inducibility of cytochrome P4501A in cultured catfish hepatocytes in response to carbofuran, a widely used pesticide around the world, was studied earlier in our laboratory. In this present investigation, we observed that treating catfish with carbofuran augmented total phospholipid in the liver. We examined the role of phospholipid on the of cytochrome P4501A-marker enzyme which is known as ethoxyresorufin-O-deethylase (EROD) in the context of structure and function. We purified the carbofuran-induced cytochrome P4501A protein from catfish liver. Subsequently, we examined the enzymatic activity of purified P4501A protein in the presence of phospholipid, and studied how the structure of purified protein was influenced in the phospholipid environment. Membrane phospholipid appeared to accelerate the enzymatic activity of EROD by changing its structural conformation and thus controlling the detoxification of xenobiotics. Our study revealed the missing link of how the cytochrome P450 restores its enzymatic activity by changing its structural conformation in the phospholipid microenvironment.
Boersma, F G Hidde; Warmink, Jan A; Andreote, Fernando A; van Elsas, Jan Dirk
2009-04-01
The dense hyphal network directly underneath the fruiting bodies of ectomycorrhizal fungi might exert strong influences on the bacterial community of soil. Such fruiting bodies might serve as hot spots for bacterial activity, for instance by providing nutrients and colonization sites in soil. Here, we assessed the putative selection of specific members of the Sphingomonadaceae family at the bases of the fruiting bodies of the ectomycorrhizal fungi Laccaria proxima and Russula exalbicans in comparison to the adjacent bulk soil. To do so, we used a previously designed Sphingomonadaceae-specific PCR-denaturing gradient gel electrophoresis (DGGE) system and complemented this with analyses of sequences from a Sphingomonadaceae-specific clone library. The analyses showed clear selective effects of the fruiting bodies of both fungi on the Sphingomonadaceae community structures. The effect was especially prevalent with R. exalbicans. Strikingly, similar fungi sampled approximately 100 m apart showed similar DGGE patterns, while corresponding bulk soil-derived patterns differed from each other. However, the mycospheres of L. proxima and R. exalbicans still revealed divergent community structures, indicating that different fungi select for different members of the Sphingomonadaceae family. Excision of specific bands from the DGGE patterns, as well as analyses of the clone libraries generated from both habitats, revealed fruiting body-specific Sphingomonadaceae types. It further showed that major groups from the mycospheres of R. exalbicans and L. proxima did not cluster with known bacteria from the database, indicating new groups within the family of Sphingomonadaceae present in these environments.
Hearon, Keith; Singhal, Pooja; Horn, John; Small, Ward; Olsovsky, Cory; Maitland, Kristen C.; Wilson, Thomas S.; Maitland, Duncan J.
2013-01-01
Porous shape memory polymers (SMPs) include foams, scaffolds, meshes, and other polymeric substrates that possess porous three-dimensional macrostructures. Porous SMPs exhibit active structural and volumetric transformations and have driven investigations in fields ranging from biomedical engineering to aerospace engineering to the clothing industry. The present review article examines recent developments in porous SMPs, with focus given to structural and chemical classification, methods of characterization, and applications. We conclude that the current body of literature presents porous SMPs as highly interesting smart materials with potential for industrial use. PMID:23646038
Mann, Steven; Jimenez, Alfonso; Steele, James; Domone, Sarah; Wade, Matthew; Beedie, Chris
2018-03-27
Many sedentary adults have high body fat along with low fitness, strength, and lean body mass (LBM) which are associated with poor health independently of body mass. Physical activity can aid in prevention, management, and treatment of numerous chronic conditions. The potential efficacy of resistance training (RT) in modifying risk factors for cardiovascular and metabolic disease is clear. However, RT is under researched in public health. We report community-based studies of RT in sedentary (Study 1), and overweight and pre-diabetic (Study 2) populations. Study 1 - A semi randomised trial design (48-weeks): Participants choosing either a fitness centre approach, and randomised to structured-exercise (STRUC, n = 107), or free/unstructured gym use (FREE, n = 110), or not, and randomised to physical-activity-counselling (PAC, n = 71) or a measurement only comparator (CONT, n = 76). Study 2 - A randomised wait list controlled trial (12-weeks): Patients were randomly assigned to; traditional-supervised-exercise (STRUC, n = 30), physical-activity-counselling (PAC, n = 23), either combined (COMB, n = 39), or a wait-list comparator (CONT, n = 54). Outcomes for both were BF mass (kg), LBM (kg), BF percentage (%), and strength. Study 1: One-way ANCOVA revealed significant between group effects for BF% and LBM, but not for BF mass or strength. Post hoc paired comparisons revealed significantly greater change in LBM for the STRUC group compared with the CONT group. Within group changes using 95%CIs revealed significant changes only in the STRUC group for both BF% (- 4.1 to - 0.9%) and LBM (0.1 to 4.5 kg), and in FREE (8.2 to 28.5 kg) and STRUC (5.9 to 26.0 kg) for strength. Study 2: One-way ANCOVA did not reveal significant between group effects for strength, BF%, BF mass, or LBM. For strength, 95%CIs revealed significant within group changes for the STRUC (2.4 to 14.1 kg) and COMB (3.7 to 15.0 kg) groups. Strength increased in both studies across all RT treatments compared to controls, yet significant improvements in both strength and body-composition occurred only in programmed and/or supervised RT. As general increases in physical activity have limited impact upon body-composition, public health practitioners should structure interventions to include progressive RT. Study 1: ISRCTN13024854 , retrospectively registered 20/02/2018. Study 2: ISRCTN13509468 , retrospectively registered 20/02/2018).
Astorino, Todd A; Heath, Brendyn; Bandong, Jason; Ordille, Gina M; Contreras, Ramon; Montell, Matthew; Schubert, Matthew M
2018-01-01
High intensity interval training (HIIT) increases maximal oxygen uptake similar to aerobic exercise. However, changes in body composition are equivocal in response to HIIT. We examined changes in body composition and dietary restraint in response to 20 sessions of HIIT varying in structure. Thirty nine active men and women (age and VO2max=22.5±4.4 years and 40.1±5.6 mL/kg/min) were randomized to one of three periodized HIIT regimes performed on a cycle ergometer. Before and after training, body composition was assessed using skinfolds (SKF), circumference measures, and Bioelectrical Impedance Analysis (BIA) following standardized procedures. Hunger, restraint, and disinhibition were also measured using the 3-Factor Eating Questionnaire and Power of Food Survey. Control participants (N.=32, age and VO2max=25.6±4.4 years and 40.6±4.9 mL/kg/min) matched for age and fitness level underwent all testing but did not complete HIIT. There was no change (P>0.05) in body mass, circumferences, or BIA-derived body fat in response to HIIT. However, SKF-derived body fat declined (P=0.04) with HIIT, and gender x time (P=0.03) and gender x time x regimen interactions (P=0.04) were shown in that women but not men exhibited significant reductions in body fat. Hunger was reduced from baseline to post-training (P=0.028), but this response was not different in response to HIIT compared to controls. Twenty sessions of low-volume HIIT reduce body fat in women but not men, but do not alter perceptions of hunger.
Dibble, Leland E; Foreman, K Bo; Addison, Odessa; Marcus, Robin L; LaStayo, Paul C
2015-04-01
Hypokinesia and bradykinesia as movement deficits of Parkinson disease are thought to be mediated by both basal ganglia dysfunction and a loss of muscle mass and strength commensurate with aging and decreased levels of physical activity. For these reasons, we sought to utilize resistance training as a means to increase muscle force and minimize hypokinesia and bradykinesia in persons with Parkinson disease and examine the effects of exercise and medication on Body Structure and Function (muscle force production and muscle cross-sectional area), Activity (mobility), and Participation (Health Status) outcomes. Forty-two participants were enrolled in a 12-week randomized clinical trial that compared 2 active exercise interventions: a standard care control group (Active Control) and an experimental group that underwent Resistance Exercise via Negative Eccentric Work (RENEW). Participants in both groups improved in muscle force production and mobility as a result of exercise and medication (P < 0.02). There were no significant interaction or between-group differences and no significant changes in muscle cross-sectional area or health status were observed. Effect sizes for exercise and medication combined exceeded the effect sizes of either intervention in isolation. Taken together, these results point to the complementary effects of exercise and medication on the Body Structure and Function and Activity outcomes but little effect on Participation outcomes.Video Abstract available for more insights from the authors (see Supplemental Digital Content 1, http://links.lww.com/JNPT/A92).
Perinatal nicotine/smoking exposure and carotid chemoreceptors during development.
Stéphan-Blanchard, E; Bach, V; Telliez, F; Chardon, K
2013-01-01
Tobacco smoking is still a common habit during pregnancy and is the most important preventable cause of many adverse perinatal outcomes. Prenatal smoking exposure can produce direct actions of nicotine in the fetus with the disruption of body and brain development, and actions on the maternal-fetal unit by causing repeated episodes of hypoxia and exposure to many toxic smoke products (such as carbon monoxide). Specifically, nicotine through binding to nicotinic acetylcholine receptors have ubiquitous effects and can affect carotid chemoreception development through structural, functional and neuroregulatory alterations of the neural circuits involved in the chemoafferent pathway, as well as by interfering with the postnatal resetting of the carotid bodies. Reduced carotid body chemosensitivity and tonic activity have thus been reported by the majority of the human and animal studies. This review focuses on the effects of perinatal exposure to tobacco smoke and nicotine on carotid chemoreceptor function during the developmental period. A description of the effects of smoking and nicotine on the control of breathing related to carotid body activity, and of the possible physiopathological mechanisms at the origin of these disturbances is presented. Copyright © 2012 Elsevier B.V. All rights reserved.
Zhang, Yan; Zhang, Ting; Feng, Yanye; Lu, Xiuxiu; Lan, Wenxian; Wang, Jufang; Wu, Houming; Cao, Chunyang; Wang, Xiaoning
2011-01-01
The production of recombinant proteins in a large scale is important for protein functional and structural studies, particularly by using Escherichia coli over-expression systems; however, approximate 70% of recombinant proteins are over-expressed as insoluble inclusion bodies. Here we presented an efficient method for generating soluble proteins from inclusion bodies by using two steps of denaturation and one step of refolding. We first demonstrated the advantages of this method over a conventional procedure with one denaturation step and one refolding step using three proteins with different folding properties. The refolded proteins were found to be active using in vitro tests and a bioassay. We then tested the general applicability of this method by analyzing 88 proteins from human and other organisms, all of which were expressed as inclusion bodies. We found that about 76% of these proteins were refolded with an average of >75% yield of soluble proteins. This “two-step-denaturing and refolding” (2DR) method is simple, highly efficient and generally applicable; it can be utilized to obtain active recombinant proteins for both basic research and industrial purposes. PMID:21829569
The well-designed hierarchical structure of Musa basjoo for supercapacitors
Zheng, Kaiwen; Fan, Xiaorong; Mao, Yingzhu; Lin, Jingkai; Dai, Wenxuan; Zhang, Junying; Cheng, Jue
2016-01-01
Application of biological structure is one of the hottest topics in the field of science and technology. The unimaginable and excellent architectures of living beings supporting their vital activities have attracted the interests of worldwide researchers. An intriguing example is Musa basjoo which belongs to the herb, while appears like a tree. The profound mystery of structure and potential application of Musa basjoo have not been probed. Here we show the finding of the hierarchical structure of Musa basjoo and the outstanding electrochemical performance of the super-capacitors fabricated through the simple carbonization of Musa basjoo followed by KOH activation. Musa basjoo has three layers of structure: nanometer-level, micrometer-level and millimeter-level. The nanometer-level structure constructs the micrometer-level structure, while the micrometer-level structure constructs the millimeter-level structure. Based on this hierarchical structure, Musa basjoo reduces the unnecessary weight and therefore supports its huge body. The super-capacitors derived from Musa basjoo display a high specific capacitance and a good cycling stability. This enlightening work opens a window for the applications of the natural structure and we hope that more and more people could pay attention to the bio-inspired materials. PMID:26842714
The well-designed hierarchical structure of Musa basjoo for supercapacitors.
Zheng, Kaiwen; Fan, Xiaorong; Mao, Yingzhu; Lin, Jingkai; Dai, Wenxuan; Zhang, Junying; Cheng, Jue
2016-02-04
Application of biological structure is one of the hottest topics in the field of science and technology. The unimaginable and excellent architectures of living beings supporting their vital activities have attracted the interests of worldwide researchers. An intriguing example is Musa basjoo which belongs to the herb, while appears like a tree. The profound mystery of structure and potential application of Musa basjoo have not been probed. Here we show the finding of the hierarchical structure of Musa basjoo and the outstanding electrochemical performance of the super-capacitors fabricated through the simple carbonization of Musa basjoo followed by KOH activation. Musa basjoo has three layers of structure: nanometer-level, micrometer-level and millimeter-level. The nanometer-level structure constructs the micrometer-level structure, while the micrometer-level structure constructs the millimeter-level structure. Based on this hierarchical structure, Musa basjoo reduces the unnecessary weight and therefore supports its huge body. The super-capacitors derived from Musa basjoo display a high specific capacitance and a good cycling stability. This enlightening work opens a window for the applications of the natural structure and we hope that more and more people could pay attention to the bio-inspired materials.
The well-designed hierarchical structure of Musa basjoo for supercapacitors
NASA Astrophysics Data System (ADS)
Zheng, Kaiwen; Fan, Xiaorong; Mao, Yingzhu; Lin, Jingkai; Dai, Wenxuan; Zhang, Junying; Cheng, Jue
2016-02-01
Application of biological structure is one of the hottest topics in the field of science and technology. The unimaginable and excellent architectures of living beings supporting their vital activities have attracted the interests of worldwide researchers. An intriguing example is Musa basjoo which belongs to the herb, while appears like a tree. The profound mystery of structure and potential application of Musa basjoo have not been probed. Here we show the finding of the hierarchical structure of Musa basjoo and the outstanding electrochemical performance of the super-capacitors fabricated through the simple carbonization of Musa basjoo followed by KOH activation. Musa basjoo has three layers of structure: nanometer-level, micrometer-level and millimeter-level. The nanometer-level structure constructs the micrometer-level structure, while the micrometer-level structure constructs the millimeter-level structure. Based on this hierarchical structure, Musa basjoo reduces the unnecessary weight and therefore supports its huge body. The super-capacitors derived from Musa basjoo display a high specific capacitance and a good cycling stability. This enlightening work opens a window for the applications of the natural structure and we hope that more and more people could pay attention to the bio-inspired materials.
Jin, Fengliang; Sun, Qiang; Xu, Xiaoxia; Li, Linmiao; Gao, Gang; Xu, Yingjie; Yu, Xiaoqiang; Ren, Shunxiang
2012-10-01
Cecropins are linear cationic antibacterial peptides that have potent activities against microorganisms. In the present study, a 480bp full-length cDNA encoding diamondback moth (Plutella xylostella) cecropin 1 (designated as Px-cec1) was obtained using RT-PCR. A Northern blot analysis showed that the Px-cec1 transcript was predominantly expressed in fat bodies, hemocytes, midgut and epidermis with the highest expression level in fat bodies. The expression of Px-cec1 mRNA in fat bodies was significantly increased 24h after microbial challenge, with the highest induced expression by Staphylococcus aureus. A circular dichroism (CD) analysis revealed that the recombinant Px-cec1 mainly contained α-helixes. Antimicrobial assays demonstrated that recombinant Px-cec1 exhibited a broad spectrum of anti-microbial properties against fungi, Gram-positive and Gram-negative bacteria, but it did not exhibit hemolytic activity against human erythrocytes. Furthermore, Px-cec1 caused significant morphological alterations of S. aureus, as shown by scanning electron microscopy and transmission electron microscopy. These results demonstrated that Px-cec1 exerts its antibacterial activity by acting on the cell membrane to disrupt bacterial cell structures. Copyright © 2012 Elsevier Inc. All rights reserved.
Strong Electron Correlation in Photoionization of Spin-Orbit Doublets
NASA Astrophysics Data System (ADS)
Amusia, M. Ya.; Chernsheva, L. V.; Mnason, S. T.; Msezane, A. Z.; Radojevic, V.
2002-05-01
A new and explicitly many-body aspect of the "leveraging" of the spin-orbit interaction is demonstrated, spin-orbit activated interchannel coupling, which can significantly alter the photoionization cross section of a spin-orbit doublet. As an example, using a modified version of the Spin-Polarized Random-Phase-Approximation with Exchange methodology, a recently observed structure in the photoionization of Xe 3d(A. Kivimaki et al, Phys. Rev. A 63), 012716 (2000) has been explained both qualitatively and quantitatively. The structure is entirely due to this new spin-orbit activated interchannel coupling effect, which should be a general feature of inner-shell photoionization. This work was supported by NSF, NASA, DOE and ISTC.
Structural requirements of oleosin domains for subcellular targeting to the oil body.
van Rooijen, G J; Moloney, M M
1995-01-01
We have investigated the protein domains responsible for the correct subcellular targeting of plant seed oleosins. We have attempted to study this targeting in vivo using "tagged" oleosins in transgenic plants. Different constructs were prepared lacking gene sequences encoding one of three structural domains of natural oleosins. Each was fused in frame to the Escherichia coli uid A gene encoding beta-glucuronidase (GUS). These constructs were introduced into Brassica napus using Agrobacterium-mediated transformation. GUS activity was measured in washed oil bodies and in the soluble protein fraction of the transgenic seeds. It was found that complete Arabidopsis oleosin-GUS fusions undergo correct subcellular targeting in transgenic Brassica seeds. Removal of the C-terminal domain of the Arabidopsis oleosin comprising the last 48 amino acids had no effect on overall subcellular targeting. In contrast, loss of the first 47 amino acids (N terminus) or amino acids 48 to 113 (which make up a lipophilic core) resulted in impaired targeting of the fusion protein to the oil bodies and greatly reduced accumulation of the fusion protein. Northern blotting revealed that this reduction is not due to differences in mRNA accumulation. Results from these measurements indicated that both the N-terminal and central oleosin domain are important for targeting to the oil body and show that there is a direct correlation between the inability to target to the oil body and protein stability. PMID:8539295
NASA Technical Reports Server (NTRS)
Banerdt, W. Bruce; Abercrombie, Rachel; Keddie, Susan; Mizutani, Hitoshi; Nagihara, Seiichi; Nakamura, Yosio; Pike, W. Thomas
1996-01-01
This report identifies two main themes to guide planetary science in the next two decades: understanding planetary origins, and understanding the constitution and fundamental processes of the planets themselves. Within the latter theme, four specific goals related to interior measurements addressing the theme. These are: (1) Understanding the internal structure and dynamics of at least one solid body, other than the Earth or Moon, that is actively convecting, (2) Determine the characteristics of the magnetic fields of Mercury and the outer planets to provide insight into the generation of planetary magnetic fields, (3) Specify the nature and sources of stress that are responsible for the global tectonics of Mars, Venus, and several icy satellites of the outer planets, and (4) Advance significantly our understanding of crust-mantle structure for all the solid planets. These goals can be addressed almost exclusively by measurements made on the surfaces of planetary bodies.
Burliaeva, E V; Tarkhov, A E; Burliaev, V V; Iurkevich, A M; Shvets, V I
2002-01-01
Searching of new anti-HIV agents is still crucial now. In general, researches are looking for inhibitors of certain HIV's vital enzymes, especially for reverse transcriptase (RT) inhibitors. Modern generation of anti-HIV agents represents non-nucleoside reverse transcriptase inhibitors (NNRTIs). They are much less toxic than nucleoside analogues and more chemically stable, thus being slower metabolized and emitted from the human body. Thus, search of new NNRTIs is actual today. Synthesis and study of new anti-HIV drugs is very expensive. So employment of the activity prediction techniques for such a search is very beneficial. This technique allows predicting the activities for newly proposed structures. It is based on the property model built by investigation of a series of known compounds with measured activity. This paper presents an approach of activity prediction based on "structure-activity" models designed to form a hypothesis about probably activity interval estimate. This hypothesis formed is based on structure descriptor domains, calculated for all energetically allowed conformers for each compound in the studied sef. Tetrahydroimidazobenzodiazipenone (TIBO) derivatives and phenylethyltiazolyltiourea (PETT) derivatives illustrated the predictive power of this method. The results are consistent with experimental data and allow to predict inhibitory activity of compounds, which were not included into the training set.
Pusher syndrome--a frequent but little-known disturbance of body orientation perception.
Karnath, Hans-Otto
2007-04-01
Disturbances of body orientation perception after brain lesions may specifically relate to only one dimension of space. Stroke patients with "pusher syndrome" suffer from a severe misperception of their body's orientation in the coronal (roll) plane. They experience their body as oriented 'upright' when it is in fact markedly tilted to one side. The patients use the unaffected arm or leg to actively push away from the un-paralyzed side and resist any attempt to passively correct their tilted body posture. Although pusher patients are unable to correctly determine when their own body is oriented in an upright, vertical position, they seem to have no significant difficulty in determining the orientation of the surrounding visual world in relation to their own body. Pusher syndrome is a distinctive clinical disorder occurring characteristically after unilateral left or right brain lesions in the posterior thalamus and -less frequently- in the insula and postcentral gyrus. These structures thus seem to constitute crucial neural substrates controlling human (upright) body orientation in the coronal (roll) plane. A further disturbance of body orientation that predominantly affects a single dimension of space, namely the transverse (yaw) plane, is observed in stroke patients with spatial neglect. Apparently, our brain has evolved separate neural subsystems for perceiving and controlling body orientation in different dimensions of space.
Advanced analysis of complex seismic waveforms to characterize the subsurface Earth structure
NASA Astrophysics Data System (ADS)
Jia, Tianxia
2011-12-01
This thesis includes three major parts, (1) Body wave analysis of mantle structure under the Calabria slab, (2) Spatial Average Coherency (SPAC) analysis of microtremor to characterize the subsurface structure in urban areas, and (3) Surface wave dispersion inversion for shear wave velocity structure. Although these three projects apply different techniques and investigate different parts of the Earth, their aims are the same, which is to better understand and characterize the subsurface Earth structure by analyzing complex seismic waveforms that are recorded on the Earth surface. My first project is body wave analysis of mantle structure under the Calabria slab. Its aim is to better understand the subduction structure of the Calabria slab by analyzing seismograms generated by natural earthquakes. The rollback and subduction of the Calabrian Arc beneath the southern Tyrrhenian Sea is a case study of slab morphology and slab-mantle interactions at short spatial scale. I analyzed the seismograms traversing the Calabrian slab and upper mantle wedge under the southern Tyrrhenian Sea through body wave dispersion, scattering and attenuation, which are recorded during the PASSCAL CAT/SCAN experiment. Compressional body waves exhibit dispersion correlating with slab paths, which is high-frequency components arrivals being delayed relative to low-frequency components. Body wave scattering and attenuation are also spatially correlated with slab paths. I used this correlation to estimate the positions of slab boundaries, and further suggested that the observed spatial variation in near-slab attenuation could be ascribed to mantle flow patterns around the slab. My second project is Spatial Average Coherency (SPAC) analysis of microtremors for subsurface structure characterization. Shear-wave velocity (Vs) information in soil and rock has been recognized as a critical parameter for site-specific ground motion prediction study, which is highly necessary for urban areas located in seismic active zones. SPAC analysis of microtremors provides an efficient way to estimate Vs structure. Compared with other Vs estimating methods, SPAC is noninvasive and does not require any active sources, and therefore, it is especially useful in big cities. I applied SPAC method in two urban areas. The first is the historic city, Charleston, South Carolina, where high levels of seismic hazard lead to great public concern. Accurate Vs information, therefore, is critical for seismic site classification and site response studies. The second SPAC study is in Manhattan, New York City, where depths of high velocity contrast and soil-to-bedrock are different along the island. The two experiments show that Vs structure could be estimated with good accuracy using SPAC method compared with borehole and other techniques. SPAC is proved to be an effective technique for Vs estimation in urban areas. One important issue in seismology is the inversion of subsurface structures from surface recordings of seismograms. My third project focuses on solving this complex geophysical inverse problems, specifically, surface wave phase velocity dispersion curve inversion for shear wave velocity. In addition to standard linear inversion, I developed advanced inversion techniques including joint inversion using borehole data as constrains, nonlinear inversion using Monte Carlo, and Simulated Annealing algorithms. One innovative way of solving the inverse problem is to make inference from the ensemble of all acceptable models. The statistical features of the ensemble provide a better way to characterize the Earth model.
Simonidze, V; Samushia, O
2014-01-01
The paper deals with the study of the changes in the formed elements of blood during the Alzheimer's and Parkinson's diseases. While studying the structure of thrombocytes, a number of identical structural changes were identified in case of both diseases. The study has revealed various shapes of thrombocytes, the production of pseudopodia on their surface, high level of body outline, specific distribution of glycogen granules and their concentration on the periphery, glycogen eruption, dissociation of Alpha-granules towards the edge, and effective outline and density of the granules. There are frequent cases of the granule eruption from the body (exocytosis), the existence of vacuoles on the matrix, the rise in the number of gigantic thrombocytes and, consequently, considerable enhancement of the ability of absorption. Besides, there is a rise in the number of degenerated cells. The shape of thrombocytes is often changed and stretched on one side. The produced pseudopodia make the impression of participation in phagocytosis. As for the difference between changes, during Parkinson disease the amount of thrombocytes is low, more gigantic and distorted shape, less invagination of plasma membrane, low amount of granules and less intensity of alpha-granule eruption from the body. The changes revealed by the research show the activity of thrombocytes, which should be connected to their participation in protective functions of the body towards existing agent. And the diseases - although with similar but with different pathogenic mechanisms - are being developed with participation of non-specific agents.
Direct Conversion of an Enzyme from Native-like to Amyloid-like Aggregates within Inclusion Bodies.
Elia, Francesco; Cantini, Francesca; Chiti, Fabrizio; Dobson, Christopher Martin; Bemporad, Francesco
2017-06-20
The acylphosphatase from Sulfolobus solfataricus (Sso AcP) is a globular protein able to aggregate in vitro from a native-like conformational ensemble without the need for a transition across the major unfolding energy barrier. This process leads to the formation of assemblies in which the protein retains its native-like structure, which subsequently convert into amyloid-like aggregates. Here, we investigate the mechanism by which Sso AcP aggregates in vivo to form bacterial inclusion bodies after expression in E. coli. Shortly after the initiation of expression, Sso AcP is incorporated into inclusion bodies as a native-like protein, still exhibiting small but significant enzymatic activity. Additional experiments revealed that this overall process of aggregation is enhanced by the presence of the unfolded N-terminal region of the sequence and by destabilization of the globular segment of the protein. At later times, the Sso AcP molecules in the inclusion bodies lose their native-like properties and convert into β-sheet-rich amyloid-like structures, as indicated by their ability to bind thioflavin T and Congo red. These results show that the aggregation behavior of this protein is similar in vivo to that observed in vitro, and that, at least for a predominant part of the protein population, the transition from a native to an amyloid-like structure occurs within the aggregate state. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.
van Tellingen, C.
2009-01-01
The development in cardiovascular anatomy and physiology is described from a Dutch perspective. The newly formed Republic in the 17th century, with its pragmatism and business-like character, became an ideal breeding ground for Descartes' new philosophy. His separation of body and soul provided a mechanistic model of body structure and formed a firm basis for anatomical and physiological research to become catalysts for a tempestuous growth and progress in medicine. (Neth Heart J 2009;17:130-5.19421357) PMID:19421357
Developmental process emerges from extended brain-body-behavior networks
Byrge, Lisa; Sporns, Olaf; Smith, Linda B.
2014-01-01
Studies of brain connectivity have focused on two modes of networks: structural networks describing neuroanatomy and the intrinsic and evoked dependencies of functional networks at rest and during tasks. Each mode constrains and shapes the other across multiple time scales, and each also shows age-related changes. Here we argue that understanding how brains change across development requires understanding the interplay between behavior and brain networks: changing bodies and activities modify the statistics of inputs to the brain; these changing inputs mold brain networks; these networks, in turn, promote further change in behavior and input. PMID:24862251
Development of the Circadian Timing System in Rat Pups Exposed to Microgravity during Gestation
NASA Technical Reports Server (NTRS)
Fuller, Charles A.
2000-01-01
Ten pregnant Sprague Dawley rat dams were exposed to spaceflight aboard the Space Shuttle (STS-70) for gestational days 11-20 (G 11-20; FILT group). Control dams were maintained in either a flight-like (FIDS group) or vivarium cage environment (VIV group) on earth. All dams had ad lib access to food and water and were exposed to a light-dark cycle consisting of 12 hours of light (- 30 lux) followed by 12 hours of darkness. The dams were closely monitored from G 22 until parturition. All pups were cross-fostered at birth; each foster dam had a litter of 10 pups. Pups remained with their foster dam until post-natal day 21 (PN 21). Pup body mass was measured twice weekly. At PN14 FILT pups had a smaller body mass than did the VIV pups (p < 0.01). Circadian rhythms of body temperature and activity of pups from two FILT dams (n = 8), two FIDS dams (n = 9) and two VIV dams (n = 7) were studied starting from age PN 21. All pups had circadian rhythms of temperature and activity at this age. There were no significant differences in rhythms between groups that could be attributed to microgravity exposure. We also examined the development of neural structures involved in circadian rhythmicity: the retina, the intergeniculate leaflet (IGL) and the circadian pacemaker, the suprachiasmatic nucleus (SCN). There were small differences between the flight and control groups at very early stages of development (G 20 and PN3) which indicated that the development of both the SCN and the IGL. These results indicate that exposure to the microgravity environment of spaceflight during this embryonic development period does not affect the development of the circadian rhythms of body temperature and activity, but may affect the early development of the neural structures involved in circadian timing.
Fulka, Helena; Aoki, Fugaku
2016-06-01
In mammals, mature oocytes and early preimplantation embryos contain transcriptionally inactive structures termed nucleolus precursor bodies instead of the typical fibrillo-granular nucleoli. These nuclear organelles are essential and strictly of maternal origin. If they are removed from oocytes, the resulting embryos are unable to replace them and consequently fail to develop. Historically, nucleolus precursor bodies have been perceived as a passive repository site of nucleolar proteins that are required for embryos to form fully functional nucleoli. Recent results, however, contradict this long-standing dogma and show that these organelles are dispensable for nucleologenesis and ribosome biogenesis. In this article, we discuss the possible roles of nucleolus precursor bodies and propose how they might be involved in embryogenesis. Furthermore, we argue that these organelles are essential only shortly after fertilization and suggest that they might actively participate in centromeric chromatin establishment. © 2016 by the Society for the Study of Reproduction, Inc.
Activity-Dependent Exocytosis of Lysosomes Regulates the Structural Plasticity of Dendritic Spines.
Padamsey, Zahid; McGuinness, Lindsay; Bardo, Scott J; Reinhart, Marcia; Tong, Rudi; Hedegaard, Anne; Hart, Michael L; Emptage, Nigel J
2017-01-04
Lysosomes have traditionally been viewed as degradative organelles, although a growing body of evidence suggests that they can function as Ca 2+ stores. Here we examined the function of these stores in hippocampal pyramidal neurons. We found that back-propagating action potentials (bpAPs) could elicit Ca 2+ release from lysosomes in the dendrites. This Ca 2+ release triggered the fusion of lysosomes with the plasma membrane, resulting in the release of Cathepsin B. Cathepsin B increased the activity of matrix metalloproteinase 9 (MMP-9), an enzyme involved in extracellular matrix (ECM) remodelling and synaptic plasticity. Inhibition of either lysosomal Ca 2+ signaling or Cathepsin B release prevented the maintenance of dendritic spine growth induced by Hebbian activity. This impairment could be rescued by exogenous application of active MMP-9. Our findings suggest that activity-dependent exocytosis of Cathepsin B from lysosomes regulates the long-term structural plasticity of dendritic spines by triggering MMP-9 activation and ECM remodelling. Crown Copyright © 2017. Published by Elsevier Inc. All rights reserved.
Vetchinkina, Elena; Gorshkov, Vladimir; Ageeva, Marina; Gogolev, Yuri; Nikitina, Valentina E
2017-01-01
We show here, to our knowledge for the first time, that the brown mycelial mat of the xylotrophic shiitake medicinal mushroom, Lentinus edodes, not only performs a protective function owing to significant changes in the ultrastructure (thickening of the cell wall, increased density, and pigmentation of the fungal hyphae) but also is a metabolically active stage in the development of the mushroom. The cells of this morphological structure exhibit repeated activation of expression of the genes lcc4, tir, exp1, chi, and exg1, coding for laccase, tyrosinase, a specific transcription factor, chitinase, and glucanase, which are required for fungal growth and morphogenesis. This study revealed the maximum activity of functionally important proteins with phenol oxidase and lectin activities, and the emergence of additional laccases, tyrosinases, and lectins, which are typical of only this stage of morphogenesis and have a regulatory function in the development and formation of fruiting bodies.
Osborne, Candice L; Petersson, Christina; Graham, James E; Meyer, Walter J; Simeonsson, Rune J; Suman, Oscar E; Ottenbacher, Kenneth J
2016-11-01
To link, classify and describe the content of the Multicenter Benchmarking Study Burn Outcomes Questionnaires (BOQ) using the International Classification of Functioning, Disability and Health (ICF) to determine if the information garnered provides researchers with the data necessary to develop a comprehensive understanding of life after burns. Two ICF linking experts used a standardized linking technique endorsed by the World Health Organization to link all BOQ concepts to the ICF. Linking results were analyzed to determine the comprehensiveness of each of the five measures. The activities and participation component was most frequently addressed followed by the body functions component. Environmental factors are not extensively covered and body structures are not addressed. ICF chapter and category distribution were skewed and varied between assessments. The majority of BOQ items are of the health status perspective. BOQ item composition could be improved with a more even distribution of pertinent ICF topics. Assessment authors may consider addressing the impact of environmental factors on participation. Including body structure concepts would allow investigators to track structural deformation and/or developmental delay. Generally speaking, this data should not be used to examine quality of life outcomes. Copyright © 2016 Elsevier Ltd and ISBI. All rights reserved.
Association of extracurricular sports participation with obesity in Greek children.
Antonogeorgos, G; Papadimitriou, A; Panagiotakos, D B; Priftis, K N; Nicolaidou, P
2011-03-01
Childhood obesity has become a modern epidemic with escalating rates. The aim of our study was the assessment of the association between extracurricular sports participation with the obesity status among Greek schoolchildren aged 10-12 years. Seven-hundred children (323 boys) aged 10-12 years were evaluated through a standardized questionnaire. Several lifestyle, dietary and physical activity attributes were recorded. Children according to the median hours of participation in after-school structured physical activity were classified as participating for more or less than 3 hours per week. Body height and mass were measured and body mass index was calculated in order to classify children as overweight or obese according to IOTF classification. Multiple logistic regression analysis was used in order to evaluate the association between the participation of more than 3 hours per week in structured physical activity after school with overweight or obesity. A total of 48.9% of the boys and 31.8% of the girls were participating for more than 3 hours per week (P<0.001) in extracurricular sport activities. Moreover, 33.9 % of the boys and 22.1 % of the girls were classified as overweight and 9.4% of the boys and 8.6% of the girls as obese (P=0.006). Girls who participated in excess of 3 hours in extracurricular sport activities were 59% less likely to be overweight or obese than their non participating counterparts, adjusted for several confounders (adjusted OR: 0.41, 95% CI: 0.20-0.83). Participation in extracurricular sports activity is inversely related to overweight or obesity in 10-12 years old Greek girls.
Diaz, Jairo A; Murillo, Mauricio F
2012-01-01
Cancer is, by definition, the uncontrolled growth of autonomous cells that eventually destroy adjacent tissues and generate architectural disorder. However, this concept cannot be totally true. In three well documented studies, we have demonstrated that cancer tissues produce order zones that evolve over time and generate embryoid body structures in a space-time interval. The authors decided to revise the macroscopic and microscopic material in well-developed malignant tumors in which embryoid bodies were identified to determine the phenotype characterization that serves as a guideline for easy recognition. The factors responsible for this morphogenesis are physical, bioelectric, and magnetic susceptibilities produced by crystals that act as molecular designers for the topographic gradients that guide the surrounding silhouette and establish tissue head-tail positional identities. The structures are located in amniotic-like cavities and show characteristic somite-like embryologic segmentation. Immunophenotypic study has demonstrated exclusion factor positional identity in relation to enolase-immunopositive expression of embryoid body and human chorionic gonadotropin immunopositivity exclusion factor expression in the surrounding tissues. The significance of these observations is that they can also be predicted by experimental image data collected by the Large Hadron Collider (LHC) accelerator at the European Organization for Nuclear Research, in which two-beam subatomic collision particles in the resulting debris show hyperorder domains similar to those identified by us in intercellular cancer collisions. Our findings suggest that we are dealing with true reverse biologic system information in an activated collective cancer stem cell memory, in which physics participates in the elaboration of geometric complexes and chiral biomolecules that serve to build bodies with embryoid print as it develops during gestation. Reversal mechanisms in biology are intimately linked with DNA repair. Further genotype studies must be carried out to determine whether the subproducts of these structures can be used in novel strategies to treat cancer.
Diaz, Jairo A; Murillo, Mauricio F
2012-01-01
Cancer is, by definition, the uncontrolled growth of autonomous cells that eventually destroy adjacent tissues and generate architectural disorder. However, this concept cannot be totally true. In three well documented studies, we have demonstrated that cancer tissues produce order zones that evolve over time and generate embryoid body structures in a space-time interval. The authors decided to revise the macroscopic and microscopic material in well-developed malignant tumors in which embryoid bodies were identified to determine the phenotype characterization that serves as a guideline for easy recognition. The factors responsible for this morphogenesis are physical, bioelectric, and magnetic susceptibilities produced by crystals that act as molecular designers for the topographic gradients that guide the surrounding silhouette and establish tissue head-tail positional identities. The structures are located in amniotic-like cavities and show characteristic somite-like embryologic segmentation. Immunophenotypic study has demonstrated exclusion factor positional identity in relation to enolase-immunopositive expression of embryoid body and human chorionic gonadotropin immunopositivity exclusion factor expression in the surrounding tissues. The significance of these observations is that they can also be predicted by experimental image data collected by the Large Hadron Collider (LHC) accelerator at the European Organization for Nuclear Research, in which two-beam subatomic collision particles in the resulting debris show hyperorder domains similar to those identified by us in intercellular cancer collisions. Our findings suggest that we are dealing with true reverse biologic system information in an activated collective cancer stem cell memory, in which physics participates in the elaboration of geometric complexes and chiral biomolecules that serve to build bodies with embryoid print as it develops during gestation. Reversal mechanisms in biology are intimately linked with DNA repair. Further genotype studies must be carried out to determine whether the subproducts of these structures can be used in novel strategies to treat cancer. PMID:22346365
Methods of chemical and phase composition analysis of gallstones
NASA Astrophysics Data System (ADS)
Suvorova, E. I.; Pantushev, V. V.; Voloshin, A. E.
2017-11-01
This review presents the instrumental methods used for chemical and phase composition investigation of gallstones. A great body of data has been collected in the literature on the presence of elements and their concentrations, obtained by fluorescence microscopy, X-ray fluorescence spectroscopy, neutron activation analysis, proton (particle) induced X-ray emission, atomic absorption spectroscopy, high-resolution gamma-ray spectrometry, electron paramagnetic resonance. Structural methods—powder X-ray diffraction, infrared spectroscopy, Raman spectroscopy—provide information about organic and inorganic phases in gallstones. Stone morphology was studied at the macrolevel with optical microscopy. Results obtained by analytical scanning and transmission electron microscopy with X-ray energy dispersive spectrometry are discussed. The chemical composition and structure of gallstones determine the strategy of removing stone from the body and treatment of patients: surgery or dissolution in the body. Therefore one chapter of the review describes the potential of dissolution methods. Early diagnosis and appropriate treatment of the disease depend on the development of clinical methods for in vivo investigation, which gave grounds to present the main characteristics and potential of ultrasonography (ultrasound scanning), magnetic resonance imaging, and X-ray computed tomography.
Planetary Structures And Simulations Of Large-scale Impacts On Mars
NASA Astrophysics Data System (ADS)
Swift, Damian; El-Dasher, B.
2009-09-01
The impact of large meteroids is a possible cause for isolated orogeny on bodies devoid of tectonic activity. On Mars, there is a significant, but not perfect, correlation between large, isolated volcanoes and antipodal impact craters. On Mercury and the Moon, brecciated terrain and other unusual surface features can be found at the antipodes of large impact sites. On Earth, there is a moderate correlation between long-lived mantle hotspots at opposite sides of the planet, with meteoroid impact suggested as a possible cause. If induced by impacts, the mechanisms of orogeny and volcanism thus appear to vary between these bodies, presumably because of differences in internal structure. Continuum mechanics (hydrocode) simulations have been used to investigate the response of planetary bodies to impacts, requiring assumptions about the structure of the body: its composition and temperature profile, and the constitutive properties (equation of state, strength, viscosity) of the components. We are able to predict theoretically and test experimentally the constitutive properties of matter under planetary conditions, with reasonable accuracy. To provide a reference series of simulations, we have constructed self-consistent planetary structures using simplified compositions (Fe core and basalt-like mantle), which turn out to agree surprisingly well with the moments of inertia. We have performed simulations of large-scale impacts, studying the transmission of energy to the antipodes. For Mars, significant antipodal heating to depths of a few tens of kilometers was predicted from compression waves transmitted through the mantle. Such heating is a mechanism for volcanism on Mars, possibly in conjunction with crustal cracking induced by surface waves. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
Research for preparation of cation-conducting solids by high-pressure synthesis and other methods
NASA Technical Reports Server (NTRS)
Goodenough, J. B.; Hong, H. Y. P.; Kafalas, J. A.; Dwight, K., Jr.
1975-01-01
It was shown that two body-centered-cubic skeleton structures, the Im3 KSbO3 phase and the defect-pyrochlore phase A(+)B2X6, do exhibit fast Na(+)-ion transport. The placement of anions at the tunnel intersection sites does not impede Na(+)-ion transport in (NaSb)3)(1/6 NaF), and may not in (Na(1+2x)Ta2 5F)(Ox). The activation energies are higher than those found in beta-alumina. There are two possible explanations for the higher activation energy: breathing of the bottleneck (site face or edge) through which the A(+) ions must pass on jumping from one site to another may be easier in a layer structure and/or A(+)-O bonding may be stronger in the cubic structures because the O(2-) ion bonds with two (instead of three) cations of the skeleton. If the former explanation is dominant, a lower activation energy may be achieved by optimizing the lattice parameter. If the latter is dominant, a new structural principle may have to be explored.
Sun, Yong; Yin, Ting; Chen, Xian-Hui; Zhang, Gong; Curtis, Rempel B; Lu, Zhan-Hui; Jiang, Ji-Hong
2011-01-01
Inonotus obliquus (Pers.:Fr.) Pilát has been traditionally used as a folk remedy for treatment of cancers, cardiovascular disease and diabetes in Russia, Poland, and most of the Baltic countries, but natural reserves of this fungus have nearly been exhausted. This study was designed to investigate the artificial cultivation of I. obliquus and the antitumor activity of its tissues. The ethanol extract of cultivated sclerotium had the highest cell growth inhibitory rate (74.6%) as determined by an 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. 78% of the bags produced sclerotia and only 6.17 g/bag of sclerotium was obtained. Extracts of the cultivated fruiting body showed 44.2% inhibitory activity against tumor cells. However, the yield was as high as 18.24 g/bag, and 98% of the bags produced fruiting body. The results of gas chromatography-mass spectroscopy (GC-MS) showed that similar compounds were extracted from the wild and cultivated samples. The principal compounds observed were lanosterol, inotodiol, and ergosterol. Their percentages of the mass fraction were 86.1, 59.9, and 71.8% of the total, for the wild sclerotium, cultivated sclerotium, and cultivated fruiting body, respectively. Ergosterol was found to be much higher (27.32%) in cultivated fruiting body. We conclude that cultivated fruiting body of I. obliquus obtained by inoculation of the substrate with spawn mycelium of the fifth generation could serve as an ideal substitute for the wild I. obliquus.
Developing Learning Materials Using an Ontology of Mathematical Logic
ERIC Educational Resources Information Center
Boyatt, Russell; Joy, Mike
2012-01-01
Ontologies describe a body of knowledge and give formal structure to a domain by describing concepts and their relationships. The construction of an ontology provides an opportunity to develop a shared understanding and a consistent vocabulary to be used for a given activity. This paper describes the construction of an ontology for an area of…
Griffiths, Stephen R; Donato, David B; Coulson, Graeme; Lumsden, Linda F
2014-06-01
Wildlife and livestock are known to visit and interact with tailings dam and other wastewater impoundments at gold mines. When cyanide concentrations within these water bodies exceed a critical toxicity threshold, significant cyanide-related mortality events can occur in wildlife. Highly mobile taxa such as birds are particularly susceptible to cyanide toxicosis. Nocturnally active bats have similar access to uncovered wastewater impoundments as birds; however, cyanide toxicosis risks to bats remain ambiguous. This study investigated activity of bats in the airspace above two water bodies at an Australian gold mine, to assess the extent to which bats use these water bodies and hence are at potential risk of exposure to cyanide. Bat activity was present on most nights sampled during the 16-month survey period, although it was highly variable across nights and months. Therefore, despite the artificial nature of wastewater impoundments at gold mines, these structures present attractive habitats to bats. As tailings slurry and supernatant pooling within the tailings dam were consistently well below the industry protective concentration limit of 50 mg/L weak acid dissociable (WAD) cyanide, wastewater solutions stored within the tailings dam posed a minimal risk of cyanide toxicosis for wildlife, including bats. This study showed that passively recorded bat echolocation call data provides evidence of the presence and relative activity of bats above water bodies at mine sites. Furthermore, echolocation buzz calls recorded in the airspace directly above water provide indirect evidence of foraging and/or drinking. Both echolocation monitoring and systematic sampling of cyanide concentration in open wastewater impoundments can be incorporated into a gold mine risk-assessment model in order to evaluate the risk of bat exposure to cyanide. In relation to risk minimisation management practices, the most effective mechanism for preventing cyanide toxicosis to wildlife, including bats, is capping the concentration of cyanide in tailings discharged to open impoundments at 50 mg/L WAD.
Misaizu, T; Matsuki, S; Strickland, T W; Takeuchi, M; Kobata, A; Takasaki, S
1995-12-01
To elucidate the role of the branched structure of sugar chains of human erythropoietin (EPO) in the expression of in vivo activity, the pharmacokinetic profile of a less active recombinant human EPO sample (EPO-bi) enriched with biantennary sugar chains was compared with that of a highly active control EPO sample enriched with tetraantennary sugar chains. After an intravenous injection in rats, 125I-EPO-bi disappeared from the plasma with 3.2 times greater total body clearance (Cltot) than control 125I-EPO. Whole-body autoradiography after 20 minutes of administration indicated that the overall distribution of radioactivity is similar, but 125I-EPO-bi showed a higher level of radioactivity in the kidneys than control 125I-EPO. Quantitative determination of radioactivity in the tissues also indicated that radioactivity of 125I-EPO-bi in the kidneys was two times higher than that of control 125I-EPO. The difference in plasma disappearance between 125I-EPO-bi and control 125I-EPO was not observed in bilaterally nephrectomized rats. The distribution of 125I-EPO-bi to bone marrow and spleen was similarly inhibited by simultaneous injection of excess amounts of either the nonlabeled EPO-bi or control EPO. These results indicate that the low in vivo biologic activity of EPO-bi results from rapid clearance from the systemic circulation by renal handling. Thus, the well-branched structure of the N-linked sugar chain of EPO is suggested to play an important role in maintaining its higher plasma level, which guarantees an effective transfer to target organs and stimulation of erythroid progenitor cells.
NASA Technical Reports Server (NTRS)
Peele, E. L.; Adams, W. M., Jr.
1979-01-01
A computer program, ISAC, is described which calculates the stability and response of a flexible airplane equipped with active controls. The equations of motion relative to a fixed inertial coordinate system are formulated in terms of the airplane's rigid body motion and its unrestrained normal vibration modes. Unsteady aerodynamic forces are derived from a doublet lattice lifting surface theory. The theoretical basis for the program is briefly explained together with a description of input data and output results.
2000-10-01
interfere with the function of the mammary cells in which they are expressed. Transgenic technology has been used to evaluate the effects of an activated... wheat germ agglutinin; pfu, plaque-forming units; Cy3, a red fluorescent used for visualization of cell structures in the presence of GFP; DAPI, a...tumorigenesis in mice. The second objective has been achieved in part using transgenic mouse technology. We have begun exploration of the third objective. BODY
Free radical-scavenging delta-lactones from Boletus calopus.
Kim, Jin-Woo; Yoo, Ick-Dong; Kim, Won-Gon
2006-12-01
The methanol extracts from the fruiting body of the mushroom Boletus calopus showed free radical-scavenging activity. Bioactivity-guided fractionation of the methanol extracts led to a new hydroxylated calopin named calopin B, along with the known delta-lactones calopin and cyclocalopin A. The structure of the new calopin analogue was elucidated by spectroscopic methods. All compounds showed potent free radical-scavenging activity against superoxide, DPPH, and ABTS radicals with IC (50) values of 1.2 - 5.4 microg/mL.
NASA Astrophysics Data System (ADS)
Bulova, S.; Purce, K.; Khodak, P.; Sulger, E.; O'Donnell, S.
2016-04-01
Shifts to new ecological settings can drive evolutionary changes in animal sensory systems and in the brain structures that process sensory information. We took advantage of the diverse habitat ecology of Neotropical army ants to test whether evolutionary transitions from below- to above-ground activity were associated with changes in brain structure. Our estimates of genus-typical frequencies of above-ground activity suggested a high degree of evolutionary plasticity in habitat use among Neotropical army ants. Brain structure consistently corresponded to degree of above-ground activity among genera and among species within genera. The most above-ground genera (and species) invested relatively more in visual processing brain tissues; the most subterranean species invested relatively less in central processing higher-brain centers (mushroom body calyces). These patterns suggest a strong role of sensory ecology (e.g., light levels) in selecting for army ant brain investment evolution and further suggest that the subterranean environment poses reduced cognitive challenges to workers. The highly above-ground active genus Eciton was exceptional in having relatively large brains and particularly large and structurally complex optic lobes. These patterns suggest that the transition to above-ground activity from ancestors that were largely subterranean for approximately 60 million years was followed by re-emergence of enhanced visual function in workers.
Wilsch-Bräuninger, Michaela; Schwarz, Heinz; Nüsslein-Volhard, Christiane
1997-01-01
Localization of maternally provided RNAs during oogenesis is required for formation of the antero–posterior axis of the Drosophila embryo. Here we describe a subcellular structure in nurse cells and oocytes which may function as an intracellular compartment for assembly and transport of maternal products involved in RNA localization. This structure, which we have termed “sponge body,” consists of ER-like cisternae, embedded in an amorphous electron-dense mass. It lacks a surrounding membrane and is frequently associated with mitochondria. The sponge bodies are not identical to the Golgi complexes. We suggest that the sponge bodies are homologous to the mitochondrial cloud in Xenopus oocytes, a granulo-fibrillar structure that contains RNAs involved in patterning of the embryo. Exuperantia protein, the earliest factor known to be required for the localization of bicoid mRNA to the anterior pole of the Drosophila oocyte, is highly enriched in the sponge bodies but not an essential structural component of these. RNA staining indicates that sponge bodies contain RNA. However, neither the intensity of this staining nor the accumulation of Exuperantia in the sponge bodies is dependent on the amount of bicoid mRNA present in the ovaries. Sponge bodies surround nuage, a possible polar granule precursor. Microtubules and microfilaments are not present in sponge bodies, although transport of the sponge bodies through the cells is implied by their presence in cytoplasmic bridges. We propose that the sponge bodies are structures that, by assembly and transport of included molecules or associated structures, are involved in localization of mRNAs in Drosophila oocytes. PMID:9348297
Towards revealing the structure of bacterial inclusion bodies
2009-01-01
Protein aggregation is a widely observed phenomenon in human diseases, biopharmaceutical production, and biological research. Protein aggregates are generally classified as highly ordered, such as amyloid fibrils, or amorphous, such as bacterial inclusion bodies. Amyloid fibrils are elongated filaments with diameters of 6–12 nm, they are comprised of residue-specific cross-β structure, and display characteristic properties, such as binding with amyloid-specific dyes. Amyloid fibrils are associated with dozens of human pathological conditions, including Alzheimer disease and prion diseases. Distinguished from amyloid fibrils, bacterial inclusion bodies display apparent amorphous morphology. Inclusion bodies are formed during high-level recombinant protein production, and formation of inclusion bodies is a major concern in biotechnology. Despite of the distinctive morphological difference, bacterial inclusion bodies have been found to have some amyloid-like properties, suggesting that they might contain structures similar to amyloid-like fibrils. Recent structural data further support this hypothesis, and this review summarizes the latest progress towards revealing the structural details of bacterial inclusion bodies. PMID:19806034
Towards revealing the structure of bacterial inclusion bodies.
Wang, Lei
2009-01-01
Protein aggregation is a widely observed phenomenon in human diseases, biopharmaceutical production, and biological research. Protein aggregates are generally classified as highly ordered, such as amyloid fibrils, or amorphous, such as bacterial inclusion bodies. Amyloid fibrils are elongated filaments with diameters of 6-12 nm, they are comprised of residue-specific cross-beta structure, and display characteristic properties, such as binding with amyloid-specific dyes. Amyloid fibrils are associated with dozens of human pathological conditions, including Alzheimer disease and prion diseases. Distinguished from amyloid fibrils, bacterial inclusion bodies display apparent amorphous morphology. Inclusion bodies are formed during high-level recombinant protein production, and formation of inclusion bodies is a major concern in biotechnology. Despite of the distinctive morphological difference, bacterial inclusion bodies have been found to have some amyloid-like properties, suggesting that they might contain structures similar to amyloid-like fibrils. Recent structural data further support this hypothesis, and this review summarizes the latest progress towards revealing the structural details of bacterial inclusion bodies.
Korn, Liat; Gonen, Ester; Shaked, Yael; Golan, Moria
2013-01-01
This study examines health perceptions, self and body image, physical exercise and nutrition among undergraduate students. A structured, self-reported questionnaire was administered to more than 1500 students at a large academic institute in Israel. The study population was heterogenic in both gender and fields of academic study. High correlations between health perceptions, appropriate nutrition, and positive self and body image were found. The relationships between these variables differed between the subpopulation in the sample and the different genders. Engagement in physical exercise contributed to positive body image and positive health perceptions more than engagement in healthy nutrition. Nutrition students reported higher frequencies of positive health perceptions, positive self and body image and higher engagement in physical exercise in comparison to all other students in the sample. This study suggests, as have many before, that successful health promotion policy should reflect a collectivist rather than an individualist ethos by providing health prerequisites through a public policy of health-promotion, where the academic settings support a healthy lifestyle policy, by increasing availability of a healthy, nutritious and varied menu in the cafeterias, and offering students various activities that enhance healthy eating and exercise. IMPLICATIONS AND CONTRIBUTION: This study examined health perceptions, self-image, physical exercise and nutrition among undergraduate students and found high correlations between these topics. Nutrition students reported higher frequencies of positive health perceptions, and positive self and body image and engaged more in physical exercise when compared with all other students in the sample.
A structural design decomposition method utilizing substructuring
NASA Technical Reports Server (NTRS)
Scotti, Stephen J.
1994-01-01
A new method of design decomposition for structural analysis and optimization is described. For this method, the structure is divided into substructures where each substructure has its structural response described by a structural-response subproblem, and its structural sizing determined from a structural-sizing subproblem. The structural responses of substructures that have rigid body modes when separated from the remainder of the structure are further decomposed into displacements that have no rigid body components, and a set of rigid body modes. The structural-response subproblems are linked together through forces determined within a structural-sizing coordination subproblem which also determines the magnitude of any rigid body displacements. Structural-sizing subproblems having constraints local to the substructures are linked together through penalty terms that are determined by a structural-sizing coordination subproblem. All the substructure structural-response subproblems are totally decoupled from each other, as are all the substructure structural-sizing subproblems, thus there is significant potential for use of parallel solution methods for these subproblems.
Superconducting cable connections and methods
DOE Office of Scientific and Technical Information (OSTI.GOV)
van der Laan, Daniel Cornelis
2017-09-05
Superconducting cable connector structures include a terminal body (or other structure) onto which the tapes from the superconducting cable extend. The terminal body (or other structure) has a diameter that is sufficiently larger than the diameter of the former of the superconducting cable, so that the tapes spread out over the outer surface of the terminal body. As a result, gaps are formed between tapes on the terminal body (or other structure). Those gaps are filled with solder (or other suitable flowable conductive material), to provide a current path of relatively high conductivity in the radial direction. Other connector structuresmore » omit the terminal body.« less
Spectroscopic study of biologically active glasses
NASA Astrophysics Data System (ADS)
Szumera, M.; Wacławska, I.; Mozgawa, W.; Sitarz, M.
2005-06-01
It is known that the chemical activity phenomenon is characteristic for some inorganic glasses and they are able to participate in biological processes of living organisms (plants, animals and human bodies). An example here is the selective removal of silicate-phosphate glass components under the influence of biological solutions, which has been applied in designing glasses acting as ecological fertilizers of controlled release rate of the nutrients for plants. The structure of model silicate-phosphate glasses containing the different amounts of the glass network formers, i.e. Ca 2+ and Mg 2+, as a binding components were studied. These elements besides other are indispensable of the normal growth of plants. In order to establish the function and position occupied by the particular components in the glass structure, the glasses were examined by FTIR spectroscopy (with spectra decomposition) and XRD methods. It has been found that the increasing amount of MgO in the structure of silicate-phosphate glasses causes the formation of domains the structure of which changes systematically from a structure of the cristobalite type to a structure corresponding to forsterite type. Whilst the increasing content of CaO in the structure of silicate-phosphate glasses causes the formation of domains the structure of which changes from a structure typical for cristobalite through one similar to the structure of calcium orthophosphate, to a structure corresponding to calcium silicates. The changing character of domains structure is the reason of different chemical activity of glasses.
Should body image programs be inclusive? A focus group study of college students.
Ciao, Anna C; Ohls, Olivia C; Pringle, Kevin D
2018-01-01
Most evidence-based body image programs for college students (e.g., the Body Project) are designed for female-only audiences, although body dissatisfaction is not limited to female-identified individuals. Furthermore, programs do not explicitly discuss diversity, although individuals with marginalized gender, racial, and sexual identities may be particularly vulnerable to body image disturbances. Making programs more inclusive may increase their disseminability. This qualitative study examined the feasibility of adapting the Body Project for universal and inclusive use with college students. Participants (N = 36; M age = 21.66 years; 73% female-identified; 20% sexual minority; 23% racial minority) attended one of five semi-structured focus groups to explore the inclusivity of appearance-based cultural norms using adapted Body Project activities and discuss the feasibility of universal and inclusive interventions. Inductive qualitative content analysis with three-rater consensus identified focus group themes. There was consensus that inclusive interventions could have a positive impact (broadening perspectives, normalizing body image concerns, increasing awareness) despite potential barriers (poor diversity representation, vulnerability). There was strong consensus regarding advice for facilitating inclusive interventions (e.g., skilled facilitation, education, increasing diversity). Results suggest that inclusive body image programs are desirable and provide a framework for creating the EVERYbody Project, a program for more universal audiences. © 2017 Wiley Periodicals, Inc.
On the structure of self-affine convex bodies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Voynov, A S
2013-08-31
We study the structure of convex bodies in R{sup d} that can be represented as a union of their affine images with no common interior points. Such bodies are called self-affine. Vallet's conjecture on the structure of self-affine bodies was proved for d = 2 by Richter in 2011. In the present paper we disprove the conjecture for all d≥3 and derive a detailed description of self-affine bodies in R{sup 3}. Also we consider the relation between properties of self-affine bodies and functional equations with a contraction of an argument. Bibliography: 10 titles.
Turk, Dušan; Janjić, Vojko; Štern, Igor; Podobnik, Marjetka; Lamba, Doriano; Weis Dahl, Søren; Lauritzen, Connie; Pedersen, John; Turk, Vito; Turk, Boris
2001-01-01
Dipeptidyl peptidase I (DPPI) or cathepsin C is the physiological activator of groups of serine proteases from immune and inflammatory cells vital for defense of an organism. The structure presented shows how an additional domain transforms the framework of a papain-like endopeptidase into a robust oligomeric protease-processing enzyme. The tetrahedral arrangement of the active sites exposed to solvent allows approach of proteins in their native state; the massive body of the exclusion domain fastened within the tetrahedral framework excludes approach of a polypeptide chain apart from its termini; and the carboxylic group of Asp1 positions the N-terminal amino group of the substrate. Based on a structural comparison and interactions within the active site cleft, it is suggested that the exclusion domain originates from a metallo-protease inhibitor. The location of missense mutations, characterized in people suffering from Haim–Munk and Papillon–Lefevre syndromes, suggests how they disrupt the fold and function of the enzyme. PMID:11726493
Muscle dysmorphia: a South African sample.
Hitzeroth, V; Wessels, C; Zungu-Dirwayi, N; Oosthuizen, P; Stein, D J
2001-10-01
It has recently been suggested that muscle dysmorphia, a pathological preoccupation with muscularity, is a subtype of body dysmorphic disorder (BDD). There are, however, few studies of the phenomenology of this putative entity. Twenty-eight amateur competitive body builders in the Western Cape, South Africa, were studied using a structured diagnostic interview that incorporated demographic data, body-building activities and clinical questions focusing on muscle dysmorphia and BDD. There was a high rate of muscle dysmorphia in the sample (53.6%). Those with muscle dysmorphia were significantly more likely to have comorbid BDD based on preoccupations other than muscularity (33%). Use of the proposed diagnostic criteria for muscle dysmorphia indicated that this is a common and relevant entity. Its conceptualization as a subtype of BDD seems valid. The disorder deserves additional attention from both clinicians and researchers.
Giant axonal neuropathy-like disease in an Alexandrine parrot (Psittacula eupatria).
Stent, Andrew; Gosbell, Matthew; Tatarczuch, Liliana; Summers, Brian A
2015-09-01
A chronic progressive neurological condition in an Alexandrine parrot (Psittacula eupatria) was manifest as intention tremors, incoordination, and seizure activity. Histology revealed large eosinophilic bodies throughout the central nervous system, and electron microscopy demonstrated that these bodies were greatly expanded axons distended by short filamentous structures that aggregated to form long strands. The presence of periodic acid-Schiff-positive material within the neuronal bodies of Purkinje cells and ganglionic neurons is another distinctive feature of this disease. The histological features of this case display some features consistent with giant axonal neuropathy as reported in humans and dogs. Based on investigation of the lineage in this case, an underlying inherited defect is suspected, but some additional factor appears to have altered the specific disease presentation in this bird. © 2015 The Author(s).
Label-free in situ imaging of oil body dynamics and chemistry in germination
Waschatko, Gustav; Billecke, Nils; Schwendy, Sascha; Jaurich, Henriette; Bonn, Mischa; Vilgis, Thomas A.
2016-01-01
Plant oleosomes are uniquely emulsified lipid reservoirs that serve as the primary energy source during seed germination. These oil bodies undergo significant changes regarding their size, composition and structure during normal seedling development; however, a detailed characterization of these oil body dynamics, which critically affect oil body extractability and nutritional value, has remained challenging because of a limited ability to monitor oil body location and composition during germination in situ. Here, we demonstrate via in situ, label-free imaging that oil bodies are highly dynamic intracellular organelles that are morphologically and biochemically remodelled extensively during germination. Label-free, coherent Raman microscopy (CRM) combined with bulk biochemical measurements revealed the temporal and spatial regulation of oil bodies in native soya bean cotyledons during the first eight days of germination. Oil bodies undergo a cycle of growth and shrinkage that is paralleled by lipid and protein compositional changes. Specifically, the total protein concentration associated with oil bodies increases in the first phase of germination and subsequently decreases. Lipids contained within the oil bodies change in saturation and chain length during germination. Our results show that CRM is a well-suited platform to monitor in situ lipid dynamics and local chemistry and that oil bodies are actively remodelled during germination. This underscores the dynamic role of lipid reservoirs in plant development. PMID:27798279
Chae, Sun-Mi; Kang, Hee Sun; Ra, Jin Suk
2017-02-01
This study examined whether body-esteem would mediate the association between physical activity and depression in adolescents. A total of 848 Korean high school students aged 15 to 18years completed a questionnaire on body-esteem, physical activity recall, and depression. Path analysis was used to test mediating effects of body-esteem on the association between physical activity and depression. Girls showed a significantly higher level of depressive symptoms than boys. Boys showed significantly higher levels of physical activity and body-esteem than girls. Body-esteem mediated the relation of physical activity with depression. Physical activity might reduce the risk of depression in addition to supporting body-esteem in adolescents. Interventions that reinforce healthy body-esteem and encourage physical activity would help prevent depression in adolescents. Future studies should examine the effects of programs addressing physical activity and body-esteem among adolescents with depressive symptoms. Copyright © 2016 Elsevier Inc. All rights reserved.
Liu, Xiaoxiao; Hao, Jiejie; Shan, Xindi; Zhang, Xiao; Zhao, Xiaoliang; Li, Qinying; Wang, Xiaojiang; Cai, Chao; Li, Guoyun; Yu, Guangli
2016-11-05
Fucosylated chondroitin sulfate (FCS), a glycosaminoglycan extracted from the body wall of sea cucumber, is a promising antithrombotic agent. The chemical structures of FCSc isolated from sea cucumber Cucumaria frondosa and its depolymerized fragment (dFCSc) were characterized for the first time. Additionally, anticoagulant and antithrombotic activities were evaluated in vitro and in vivo. The results demonstrated that dFCSc exhibited better antithrombotic-hemorrhagic ratio than native FCSc on the electrical induced arterial thrombosis model in rats. Compared to FCSt obtained from Thelenota ananas, FCSc possessed different sulfation patterns but similar antithrombotic effects. Therefore, sulfation pattern of FCS might not affect anticoagulation and antithrombosis as much as molecular weight may. Our results proposed a new point of view to understand the structure-activity relationship of FCS as alternative agents. Copyright © 2016 Elsevier Ltd. All rights reserved.
Basal body structure and composition in the apicomplexans Toxoplasma and Plasmodium.
Francia, Maria E; Dubremetz, Jean-Francois; Morrissette, Naomi S
2015-01-01
The phylum Apicomplexa encompasses numerous important human and animal disease-causing parasites, including the Plasmodium species, and Toxoplasma gondii, causative agents of malaria and toxoplasmosis, respectively. Apicomplexans proliferate by asexual replication and can also undergo sexual recombination. Most life cycle stages of the parasite lack flagella; these structures only appear on male gametes. Although male gametes (microgametes) assemble a typical 9+2 axoneme, the structure of the templating basal body is poorly defined. Moreover, the relationship between asexual stage centrioles and microgamete basal bodies remains unclear. While asexual stages of Plasmodium lack defined centriole structures, the asexual stages of Toxoplasma and closely related coccidian apicomplexans contain centrioles that consist of nine singlet microtubules and a central tubule. There are relatively few ultra-structural images of Toxoplasma microgametes, which only develop in cat intestinal epithelium. Only a subset of these include sections through the basal body: to date, none have unambiguously captured organization of the basal body structure. Moreover, it is unclear whether this basal body is derived from pre-existing asexual stage centrioles or is synthesized de novo. Basal bodies in Plasmodium microgametes are thought to be synthesized de novo, and their assembly remains ill-defined. Apicomplexan genomes harbor genes encoding δ- and ε-tubulin homologs, potentially enabling these parasites to assemble a typical triplet basal body structure. Moreover, the UNIMOD components (SAS6, SAS4/CPAP, and BLD10/CEP135) are conserved in these organisms. However, other widely conserved basal body and flagellar biogenesis elements are missing from apicomplexan genomes. These differences may indicate variations in flagellar biogenesis pathways and in basal body arrangement within the phylum. As apicomplexan basal bodies are distinct from their metazoan counterparts, it may be possible to selectively target parasite structures in order to inhibit microgamete motility which drives generation of genetic diversity in Toxoplasma and transmission for Plasmodium.
Butt, Joanne; Weinberg, Robert S; Breckon, Jeff D; Claytor, Randal P
2011-11-01
Physical activity (PA) declines as adolescents get older, and the motivational determinants of PA warrant further investigation. The purposes of this study were to investigate the amount of physical and sedentary activity that adolescents participated in across age, gender, and race, and to investigate adolescents' attraction to PA and their perceived barriers and benefits across age, gender, and race. High school students (N = 1163) aged between 13 and 16 years completed questionnaires on minutes and intensity of physical and sedentary activity, interests in physical activity, and perceived benefits and barriers to participating in PA. A series of multivariate analyses of variance were conducted and followed up with discriminant function analysis. PA participation decreased in older females. In addition, fun of physical exertion was a primary attraction to PA for males more than females. Body image as an expected outcome of participating in PA contributed most to gender differences. There is a need to determine why PA drops-off as females get older. Findings underscore the importance of structuring activities differently to sustain interest in male and female adolescents, and highlights motives of having a healthy body image, and making PA fun to enhance participation.
NASA Astrophysics Data System (ADS)
Panning, M. P.; Banerdt, W. B.; Beucler, E.; Blanchette-Guertin, J. F.; Boese, M.; Clinton, J. F.; Drilleau, M.; James, S. R.; Kawamura, T.; Khan, A.; Lognonne, P. H.; Mocquet, A.; van Driel, M.
2015-12-01
An important challenge for the upcoming InSight mission to Mars, which will deliver a broadband seismic station to Mars along with other geophysical instruments in 2016, is to accurately determine event locations with the use of a single station. Locations are critical for the primary objective of the mission, determining the internal structure of Mars, as well as a secondary objective of measuring the activity of distribution of seismic events. As part of the mission planning process, a variety of techniques have been explored for location of marsquakes and inversion of structure, and preliminary procedures and software are already under development as part of the InSight Mars Quake and Mars Structure Services. One proposed method, involving the use of recordings of multiple-orbit surface waves, has already been tested with synthetic data and Earth recordings. This method has the strength of not requiring an a priori velocity model of Mars for quake location, but will only be practical for larger events. For smaller events where only first orbit surface waves and body waves are observable, other methods are required. In this study, we implement a transdimensional Bayesian inversion approach to simultaneously invert for basic velocity structure and location parameters (epicentral distance and origin time) using only measurements of body wave arrival times and dispersion of first orbit surface waves. The method is tested with synthetic data with expected Mars noise and Earth data for single events and groups of events and evaluated for errors in both location and structural determination, as well as tradeoffs between resolvable parameters and the effect of 3D crustal variations.
Chang, Yu-Wei; Ko, Tzu-Ping; Lee, Chien-Der; Chang, Yuan-Chih; Lin, Kuei-Ann; Chang, Chia-Seng; Wang, Andrew H.-J.; Wang, Ting-Fang
2009-01-01
RecA family proteins, including bacterial RecA, archaeal RadA, and eukaryotic Dmc1 and Rad51, mediate homologous recombination, a reaction essential for maintaining genome integrity. In the presence of ATP, these proteins bind a single-strand DNA to form a right-handed nucleoprotein filament, which catalyzes pairing and strand exchange with a homologous double-stranded DNA (dsDNA), by as-yet unknown mechanisms. We recently reported a structure of RadA left-handed helical filament, and here present three new structures of RadA left-handed helical filaments. Comparative structural analysis between different RadA/Rad51 helical filaments reveals that the N-terminal domain (NTD) of RadA/Rad51, implicated in dsDNA binding, is highly flexible. We identify a hinge region between NTD and polymerization motif as responsible for rigid body movement of NTD. Mutant analysis further confirms that structural flexibility of NTD is essential for RadA's recombinase activity. These results support our previous hypothesis that ATP-dependent axial rotation of RadA nucleoprotein helical filament promotes homologous recombination. PMID:19295907
Stasiuk, Maria; Janiszewska, Alicja; Kozubek, Arkadiusz
2014-01-01
Phenolic lipids were isolated from rye grains, cashew nutshell liquid (CNSL) from Anacardium occidentale, and fruit bodies of Merrulius tremellosus, and their effects on the electric eel acetylcholinesterase activity and conformation were studied. The observed effect distinctly depended on the chemical structure of the phenolic lipids that were available for interaction with the enzyme. All of the tested compounds reduced the activity of acetylcholinesterase. The degree of inhibition varied, showing a correlation with changes in the conformation of the enzyme tested by the intrinsic fluorescence of the Trp residues of the protein. PMID:24787269
Altıntaş, A; Aşçı, F H; Kin-İşler, A; Güven-Karahan, B; Kelecek, S; Özkan, A; Yılmaz, A; Kara, F M
2014-01-01
Adolescence represents a transitional period which is marked by physical, social and psychological changes. Changes in body shape and physical activity especially alter and shape the psychological well-being of adolescents. The purpose of this study was to determine the role of physical activity level, body mass index and maturity status in body-related perception and self-esteem of 11-18 years old adolescents. A total of 1012 adolescents participated in this study. The "Social Physique Anxiety Scale", "Body Image Satisfaction Scale", "Physical Self-Perception Profile for Children" and "Rosenberg Self-Esteem Inventory" were administered. Physical activity level and body mass index were assessed using the "Physical Activity Questionnaire" and "Bioelectrical Impedance Analyzer", respectively. Regression analysis indicated that body mass index was the only predictor of perceived body attractiveness, social physique anxiety, body image satisfaction and self-esteem for female adolescents. For male adolescents, both physical activity and body mass index were correlated with perceived body attractiveness and social physique anxiety. Pubertal status were not correlated with self-esteem and body-related perceptions for both males and females adolescents. In summary, body mass index and physical activity plays an important role in body-related perceptions and self-esteem of adolescents.
A histochemical study of rat salivary gland acid phosphatase.
Isacsson, G
1986-01-01
Male Sprague-Dawley rats received 4 mg pilocarpine/100 g body wt intraperitoneally or physiological saline as control and were killed at various intervals. Acid phosphatase was reacted on frozen sections from soft palate, parotid and submandibular glands using sodium-alpha-naphthyl acid phosphate as substrate. Various inhibitors were added to the incubation medium. The strongest acid phosphatase activity was in the parotid gland acinar and proximal secretory duct cells; the mucous minor glands of the palate were completely negative. Activity was found in the acinar cells, proximal secretory duct cells, granular and striated duct and excretory duct cells. Pilocarpine injection slightly reduced the activity up to 6 h after injection. Cupric chloride added to the incubation medium lowered the overall activity. Fluoride and molybdate inhibited the acid phosphatase reaction in all structures. Tartrate inhibited the reaction in all structures except the submandibular striated duct cells. The tartrate-resistant activity may be a Na+K+-dependent ATPase involved in re-absorbing water and electrolytes from the primary saliva.
Head-body righting reflex from the supine position and preparatory eye movements.
Troiani, Diana; Ferraresi, Aldo; Manni, Ermanno
2005-05-01
Saccular and utricular maculae can provide information on the supine static position, considering that both have pronounced curved structures with hair cells having a variety of polarization vectors that enable them to sense an inverted position and thus direct the righting reflex. The vestibular system is essential for the structuring of motor behaviour, senses linear and angular acceleration and has a strong influence on posture and balance at rest, during locomotion and in head body righting reflexes. Using guinea pigs in the supine position with a symmetrical head and trunk position, the ocular position was analysed to ascertain whether any ocular movement that occurred would adopt a spatial deviation indicative of the subsequent head and body righting. The characteristics of the righting reflex (direction, latency, duration and velocity) were analysed in guinea pigs from position signals obtained from search coils implanted in the eye, head and pelvis. The animals were kept in a supine position for a few seconds or even minutes with the eyes in a stable primary position and the head and body symmetrical and immobile. The righting reflex took place either immediately or after a slow deviation of the eyes. In both cases the righting sequence (eyes, head, body) was stereotyped and consistent. The direction of head and body righting was along the longitudinal axis of the animal and was either clockwise or anticlockwise and the direction of righting was related to the direction of the eye deviation. The ocular deviation and the direction of deviation that initiated and determined the direction of the righting reflex could be explained by possible otolithic activation.
Yue, Rui-Qi; Dong, Cai-Xia; Chan, Chung-Lap; Ko, Chun-Hay; Cheung, Wing-Shing; Luo, Ke-Wang; Dai, Hui; Wong, Chun-Kwok; Leung, Ping-Chung; Han, Quan-Bin
2014-01-01
A polysaccharide named GSP-2 with a molecular size of 32 kDa was isolated from the fruiting bodies of Ganoderma sinense. Its structure was well elucidated, by a combined utilization of chemical and spectroscopic techniques, to be a β-glucan with a backbone of (1→4)– and (1→6)–Glcp, bearing terminal- and (1→3)–Glcp side-chains at O-3 position of (1→6)–Glcp. Immunological assay exhibited that GSP-2 significantly induced the proliferation of BALB/c mice splenocytes with target on only B cells, and enhanced the production of several cytokines in human peripheral blood mononuclear cells and derived dendritic cells. Besides, the fluorescent labeled GSP-2 was phagocytosed by the RAW 264.7 cells and induced the nitric oxide secretion from the cells. PMID:25014571
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liakh, Dmitry I
While the formalism of multiresolution analysis (MRA), based on wavelets and adaptive integral representations of operators, is actively progressing in electronic structure theory (mostly on the independent-particle level and, recently, second-order perturbation theory), the concepts of multiresolution and adaptivity can also be utilized within the traditional formulation of correlated (many-particle) theory which is based on second quantization and the corresponding (generally nonorthogonal) tensor algebra. In this paper, we present a formalism called scale-adaptive tensor algebra (SATA) which exploits an adaptive representation of tensors of many-body operators via the local adjustment of the basis set quality. Given a series of locallymore » supported fragment bases of a progressively lower quality, we formulate the explicit rules for tensor algebra operations dealing with adaptively resolved tensor operands. The formalism suggested is expected to enhance the applicability and reliability of local correlated many-body methods of electronic structure theory, especially those directly based on atomic orbitals (or any other localized basis functions).« less
ERIC Educational Resources Information Center
Orhan, Özlem
2015-01-01
The purpose of this study is to compare the physical activity levels, physical activity types, Body Mass Index (BMI) and body fat percentage (BF%) values of elementary school students living in rural and urban. Body height (BH), body weight (BW), BF% and BMI data were measured. Physical activity questionnaire was conducted to determine the…
Lavin Fueyo, Julieta; Totaro Garcia, Leandro Martin; Mamondi, Veronica; Pereira Alencar, Gizelton; Florindo, Alex Antonio; Berra, Silvina
2016-01-01
A growing body of research has been examining neighborhood environment related to children's physical activity and obesity. However, there is still not enough evidence from Latin America. To investigate the association of neighborhood and family perceived environments, use of and distance to public open spaces with leisure-time physical activity (LTPA) and body mass index (BMI) in Argentinean school-aged children. School-based, cross-sectional study with 1777 children (9 to 11years) and their parents, in Cordoba city during 2011. Children were asked about LTPA and family perceived environment. Parents were asked about neighborhood perceived environment, children's use of public open spaces and distance. Weight and height were measured for BMI. We modeled children's LTPA and BMI z-score with structural equation models with latent variables for built, social and safety neighborhood environments. Parents' perceived neighborhood environment was not related with children's LTPA and BMI. Children's perceived autonomy and family environment were positively associated with LTPA. Use of unstructured open spaces and, indirectly, the distance to these, was associated with LTPA among girls. Greater distance to parks reduced their use by children. Policies to increase children's LTPA should include access to better public open spaces, increasing options for activity. A family approach should be incorporated, reinforcing its role for healthy development. Copyright © 2015 Elsevier Inc. All rights reserved.
Planetary Origin Evolution and Structure
NASA Technical Reports Server (NTRS)
Stevenson, David J.
2005-01-01
This wide-ranging grant supported theoretical modeling on many aspects of the formation, evolution and structure of planets and satellites. Many topics were studied during this grant period, including the evolution of icy bodies; the origin of magnetic fields in Ganymede; the thermal histories of terrestrial planets; the nature of flow inside giant planets (especially the coupling to the magnetic field) and the dynamics of silicate/iron mixing during giant impacts and terrestrial planet core formation. Many of these activities are ongoing and have not reached completion. This is the nature of this kind of research.
How animals move: comparative lessons on animal locomotion.
Schaeffer, Paul J; Lindstedt, Stan L
2013-01-01
Comparative physiology often provides unique insights in animal structure and function. It is specifically through this lens that we discuss the fundamental properties of skeletal muscle and animal locomotion, incorporating variation in body size and evolved difference among species. For example, muscle frequencies in vivo are highly constrained by body size, which apparently tunes muscle use to maximize recovery of elastic recoil potential energy. Secondary to this constraint, there is an expected linking of skeletal muscle structural and functional properties. Muscle is relatively simple structurally, but by changing proportions of the few muscle components, a diverse range of functional outputs is possible. Thus, there is a consistent and predictable relation between muscle function and myocyte composition that illuminates animal locomotion. When animals move, the mechanical properties of muscle diverge from the static textbook force-velocity relations described by A. V. Hill, as recovery of elastic potential energy together with force and power enhancement with activation during stretch combine to modulate performance. These relations are best understood through the tool of work loops. Also, when animals move, locomotion is often conveniently categorized energetically. Burst locomotion is typified by high-power outputs and short durations while sustained, cyclic, locomotion engages a smaller fraction of the muscle tissue, yielding lower force and power. However, closer examination reveals that rather than a dichotomy, energetics of locomotion is a continuum. There is a remarkably predictable relationship between duration of activity and peak sustainable performance.
The Effect of Concept Mapping on Student Understanding and Correlation with Student Learning Styles
NASA Astrophysics Data System (ADS)
Mosley, William G.
This study investigated the use of concept mapping as a pedagogical strategy to promote change in the learning styles of pre-nursing students. Students' individual learning styles revealed two subsets of students; those who demonstrated a learning style that favors abstract conceptualization and those who demonstrated a learning style that favors concrete experience. Students in the experimental groups performed concept mapping activities designed to facilitate an integrative understanding of interactions between various organ systems of the body while the control group received a traditional didactic instruction without performing concept mapping activities. Both qualitative and quantitative data were collected in order to measure differences in student achievement. Analysis of the quantitative data revealed no significant change in the learning styles of students in either the control or experimental groups. Learning style groups were analyzed qualitatively for recurring or emergent themes that students identified as facilitating their learning. An analysis of qualitative data revealed that most students in the pre-nursing program were able to identify concepts within the class based upon visual cues, and a majority of these students exhibited the learning style of abstract conceptualization. As the laboratory experience for the course involves an examination of the anatomical structures of the human body, a visual identification of these structures seemed to be the most logical method to measure students' ability to identify anatomical structures.
Reiter, Rachel; Viehdorfer, Matt; Hescock, Kimmy; Clark, Terri; Nemanic, Sarah
The goal of this study was to determine the effectiveness of an interactive radiology software application that we developed to enhance learning of normal canine radiographic anatomy. All first-year veterinary medical students were eligible to participate in this subject pre-test-post-test experimental design. When presented with the software application, all students had completed two terms of gross anatomy in which the complete anatomy of the dog had been taught using a combination of lectures and laboratory dissections, including radiographic examples. The software application was divided into four body regions: front limb, hind limb, skull/spine, and thorax/abdomen, each with a learning mode and a quiz mode. Quizzes were composed of 15 questions drawn pseudo-randomly without repeat from all structures within a region (median 206 structures). Students were initially given the software application with only the quiz mode activated. After completing four quizzes, one for each body region, students were given access to the software application with both learning mode and quiz mode activated. Students were instructed to spend 30 minutes using the learning mode to study the radiographic anatomy of each region and to retake each quiz. Quiz scores after using the learning mode were significantly higher for each body region (p<.001), with a large effect size for all four regions (Cohen's d=0.83-1.56). These results suggest that this radiographic anatomy software application is an effective tool for students to use to learn normal radiographic anatomy.
The Solar System Ballet: A Kinesthetic Spatial Astronomy Activity
NASA Astrophysics Data System (ADS)
Heyer, Inge; Slater, T. F.; Slater, S. J.; Astronomy, Center; Education ResearchCAPER, Physics
2011-05-01
The Solar System Ballet was developed in order for students of all ages to learn about the planets, their motions, their distances, and their individual characteristics. To teach people about the structure of our Solar System can be revealing and rewarding, for students and teachers. Little ones (and some bigger ones, too) often cannot yet grasp theoretical and spatial ideas purely with their minds. Showing a video is better, but being able to learn with their bodies, essentially being what they learn about, will help them understand and remember difficult concepts much more easily. There are three segments to this activity, which can be done together or separately, depending on time limits and age of the students. Part one involves a short introductory discussion about what students know about the planets. Then students will act out the orbital motions of the planets (and also moons for the older ones) while holding a physical model. During the second phase we look at the structure of the Solar System as well as the relative distances of the planets from the Sun, first by sketching it on paper, then by recreating a scaled version in the class room. Again the students act out the parts of the Solar System bodies with their models. The third segment concentrates on recreating historical measurements of Earth-Moon-Sun system. The Solar System Ballet activity is suitable for grades K-12+ as well as general public informal learning activities.
Khawas, Sadhana; Nosáľová, Gabriela; Majee, Sujay Kumar; Ghosh, Kanika; Raja, Washim; Sivová, Veronika; Ray, Bimalendu
2017-06-01
Piper nigrum L. fruits are not only a prized spice, but also highly valued therapeutic agent that heals many ailments including asthma, cold and respiratory problems. Herein, we have investigated structural features and in vivo antitussive activity of three fractions isolated from Piper nigrum fruits. The water extract (PN-WE) upon fractionation with EtOH yielded two fractions: a soluble fraction (PN-eSf) and a precipitated (PN-ePf) one. The existence of a pectic polysaccharide with arabinogalactan type II side chains (147kDa) in PN-ePf and piperine in PN-eSf were revealed. Moreover, oligosaccharides providing fine structural details of side chains were generated from PN-ePf and then characterized. The parental water extract (PN-WE) that contained both pectic polysaccharide and piperine, after oral administration (50mgkg -1 body weight) to guinea pigs, showed antitussive activity comparable to codeine phosphate (10mgkg -1 body weight). The EtOH precipitated fraction (PN-ePf) containing pectic polysaccharide showed comparatively higher antitussive activity than EtOH soluble fraction (PN-eSf) that contained piperine, but their potencies are lower than the parental water extract. Significantly, the specific airway smooth muscle reactivity of all three fractions remained unchanged. Finally, pectic polysaccharide-piperine combination in parental extract synergistically enhances antitussive effect in guinea pigs. Copyright © 2017 Elsevier B.V. All rights reserved.
Seismic Barrier Protection of Critical Infrastructure
2017-05-14
where collapsing buildings claim by far most lives. Moreover, in recent events, industry activity of oil extraction and wastewater reinjection are...engineering building structural designs and materials have evolved over many years to minimize the destructive effects of seismic surface waves. However...Rayleigh, Love, shear). To protect against them, a large body of earthquake engineering has been developed, and effective building practices are
ERIC Educational Resources Information Center
DeVahl, Julie; King, Richard; Williamson, Jon W.
2005-01-01
The authors sought to determine whether a greater academic incentive would improve the effectiveness and student adherence to a 12-week voluntary exercise program designed to decrease students' percentage of body fat. They randomly assigned 210 students to 1 of 2 groups with different academic reward structures. The group with the greater reward…
Body image dissatisfaction, physical activity and screen-time in Spanish adolescents.
Añez, Elizabeth; Fornieles-Deu, Albert; Fauquet-Ars, Jordi; López-Guimerà, Gemma; Puntí-Vidal, Joaquim; Sánchez-Carracedo, David
2018-01-01
This cross-sectional study contributes to the literature on whether body dissatisfaction is a barrier/facilitator to engaging in physical activity and to investigate the impact of mass-media messages via computer-time on body dissatisfaction. High-school students ( N = 1501) reported their physical activity, computer-time (homework/leisure) and body dissatisfaction. Researchers measured students' weight and height. Analyses revealed that body dissatisfaction was negatively associated with physical activity on both genders, whereas computer-time was associated only with girls' body dissatisfaction. Specifically, as computer-homework increased, body dissatisfaction decreased; as computer-leisure increased, body dissatisfaction increased. Weight-related interventions should improve body image and physical activity simultaneously, while critical consumption of mass-media interventions should include a computer component.
Porsgaard, Trine; Xu, Xuebing; Göttsche, Jesper; Mu, Huiling
2005-07-01
The fatty acid composition and intramolecular structure of dietary triacylglycerols (TAGs) influence their absorption. We compared the in vitro pancreatic lipase activity and the lymphatic transport in rats of fish oil and 2 enzymatically interesterified oils containing 10:0 and (n-3) PUFAs of marine origin to investigate whether the positional distribution of fatty acids influenced the overall bioavailability of (n-3) PUFAs in the body. The structured oils had the (n-3) PUFA either mainly at the sn-1,3 position (LML, M = medium-chain fatty acid, L = long-chain fatty acid) or mainly at the sn-2 position (MLM). Oils were administered to lymph-cannulated rats and lymph was collected for 24 h. The fatty acid composition as well as the lipid class distribution of lymph samples was determined. In vitro pancreatic lipase activity was greater when fish oil was the substrate than when the structured oils were the substrates (P < 0.001 at 40 min). This was consistent with a greater 8-h recovery of total fatty acids from fish oil compared with the 2 structured oils (P < 0.05). The absorption profiles of MLM and LML in rats and their in vitro rates of lipase activity did not differ. This indicates that the absorption rate is highly influenced by the lipase activity, which in turn is affected by the fatty acid composition and intramolecular structure. The lipid class distribution in lymph collected from the 3 groups of rats did not differ. In conclusion, the intramolecular structure did not affect the overall absorption of (n-3) PUFAs.
Insight into nuclear body formation of phytochromes through stochastic modelling and experiment.
Grima, Ramon; Sonntag, Sebastian; Venezia, Filippo; Kircher, Stefan; Smith, Robert W; Fleck, Christian
2018-05-01
Spatial relocalization of proteins is crucial for the correct functioning of living cells. An interesting example of spatial ordering is the light-induced clustering of plant photoreceptor proteins. Upon irradiation by white or red light, the red light-active phytochrome, phytochrome B, enters the nucleus and accumulates in large nuclear bodies. The underlying physical process of nuclear body formation remains unclear, but phytochrome B is thought to coagulate via a simple protein-protein binding process. We measure, for the first time, the distribution of the number of phytochrome B-containing nuclear bodies as well as their volume distribution. We show that the experimental data cannot be explained by a stochastic model of nuclear body formation via simple protein-protein binding processes using physically meaningful parameter values. Rather modelling suggests that the data is consistent with a two step process: a fast nucleation step leading to macroparticles followed by a subsequent slow step in which the macroparticles bind to form the nuclear body. An alternative explanation for the observed nuclear body distribution is that the phytochromes bind to a so far unknown molecular structure. We believe it is likely this result holds more generally for other nuclear body-forming plant photoreceptors and proteins. Creative Commons Attribution license.
Medical assessment in athletes.
Pruna, Ricard; Lizarraga, Antonia; Domínguez, David
2018-04-13
Practicing sports at a professional level requires the body to be in good health. The fact of carrying out a continuous and high intensity physical activity in the presence of pathological conditions and/or a maladaptation of the body can be detrimental to the athletes' health and, therefore, to their performance. Many of the problems that arise in the sports field could be prevented with a periodic and well-structured medical assessment. In this review, we describe the protocol of the medical service of a high-level sports club for the assessment of its professional athletes. Copyright © 2017 Elsevier España, S.L.U. All rights reserved.
New lanostane-type triterpenoids from the fruiting body of Ganoderma hainanense.
Li, Wei; Lou, Lan-Lan; Zhu, Jian-Yong; Zhang, Jun-Sheng; Liang, An-An; Bao, Jing-Mei; Tang, Gui-Hua; Yin, Sheng
2016-12-01
Five new lanostane-type triterpenoids, ganoderenses A-E (1-5), two new lanostane nor-triterpenoids, ganoderenses F and G (6 and 7), along with 13 known analogues (8-20) were isolated from the fruiting body of Ganoderma hainanense. Their structures were determined by combined chemical and spectral methods, and the absolute configurations of compounds 1 and 13 were confirmed by single crystal X-ray diffraction. All compounds were evaluated for inhibitory activity against thioredoxin reductase (TrxR), a potential target for cancer chemotherapy with redox balance and antioxidant functions, but were inactive. Copyright © 2016 Elsevier B.V. All rights reserved.
Activation of Phosphorylase Kinase by Physiological Temperature.
Herrera, Julio E; Thompson, Jackie A; Rimmer, Mary Ashley; Nadeau, Owen W; Carlson, Gerald M
2015-12-29
In the six decades since its discovery, phosphorylase kinase (PhK) from rabbit skeletal muscle has usually been studied at 30 °C; in fact, not a single study has examined functions of PhK at a rabbit's body temperature, which is nearly 10 °C greater. Thus, we have examined aspects of the activity, regulation, and structure of PhK at temperatures between 0 and 40 °C. Between 0 and 30 °C, the activity at pH 6.8 of nonphosphorylated PhK predictably increased; however, between 30 and 40 °C, there was a dramatic jump in its activity, resulting in the nonactivated enzyme having a far greater activity at body temperature than was previously realized. This anomalous change in properties between 30 and 40 °C was observed for multiple functions, and both stimulation (by ADP and phosphorylation) and inhibition (by orthophosphate) were considerably less pronounced at 40 °C than at 30 °C. In general, the allosteric control of PhK's activity is definitely more subtle at body temperature. Changes in behavior related to activity at 40 °C and its control can be explained by the near disappearance of hysteresis at physiological temperature. In important ways, the picture of PhK that has emerged from six decades of study at temperatures of ≤30 °C does not coincide with that of the enzyme studied at physiological temperature. The probable underlying mechanism for the dramatic increase in PhK's activity between 30 and 40 °C is an abrupt change in the conformations of the regulatory β and catalytic γ subunits between these two temperatures.
Psammoma bodies - friends or foes of the aging choroid plexus.
Jovanović, Ivan; Ugrenović, Sladjana; Vasović, Ljiljana; Petrović, Dragan; Cekić, Sonja
2010-06-01
Psammoma bodies are structures classified in the group of dystrophic calcifications, which occur in some kind of tumors and in choroid plexus during the aging process. Despite early discovery of their presence in choroid plexus stroma, mechanisms responsible for their formation remained unclear. Their presence in some kind of tumors was even more extensively studied, but significant breakthrough in the field of their etiology was not attained, too. However, till today correlation between their presence in tumors and aging is not established. Also, there are not any data about structural differences between ones found in tumors and ones found in choroid plexus. This might points to the assumption that besides the aging, some other causes might be involved in their formation in choroid plexus. Furthermore, it is contradictory that forms, like psammoma bodies, present in such malignant formations as tumors, represent quite benign phenomenon in choroid plexus. Literature data and the results of our previous researches revealed that there might be connections between, these, on the first sight quite different processes. Firstly, psammoma bodies are present in stroma of tumors with predominantly papillomatous morphology, which is present in choroid plexus, too. Initial forms of psammoma bodies might be formed in fibrovascular core of choroid plexus villi, similarly like in tumors papillae of papillary thyroid cancer. Their further growth leads to the progressive destruction of both tumors papillae and choroidal villi. Choroid plexus stroma is characterized by the fenestrated blood vessels presence, which are similar to newly formed vessels in tumors. This makes it vulnerable to the noxious agents from circulation. It can contain lymphocytes, macrophages, dendritic cells and myofibroblasts in cases with psammoma bodies, similarly to tumors stroma which is in activated, proinflammatory state. So, all these facts can suggest that similar processes can lead to psammoma bodies formation in both tumors and choroid plexus and, that they might have harmful effect on choroid plexus structure and function during the aging process. Significantly higher degree of choroidal epithelial cells atrophy, in cases with present psammoma bodies proves that partially. Further researches should be focused on detection of osteopontin and nanobacteria, already detected in tumors psammoma bodies, in choroid plexus ones. Discovery of choroidal psammoma bodies mechanisms formation can be important for elucidation of some aspects in pathogenesis of some tumors, too. Application of choroid plexus epithelial cells functional markers in cases with psammoma bodies should show their functional status.
[An interactive three-dimensional model of the human body].
Liem, S L
2009-01-01
Driven by advanced computer technology, it is now possible to show the human anatomy on a computer. On the internet, the Visible Body programme makes it possible to navigate in all directions through the anatomical structures of the human body, using mouse and keyboard. Visible Body is a wonderful tool to give insight in the human structures, body functions and organs.
Follow on Researches for X-56A Aircraft at NASA Dryden Flight Research Center (Progress Report)
NASA Technical Reports Server (NTRS)
Pak, Chan-Gi
2012-01-01
A lot of composite materials are used for the modern aircraft to reduce its weight. Aircraft aeroservoelastic models are typically characterized by significant levels of model parameter uncertainty due to composite manufacturing process. Small modeling errors in the finite element model will eventually induce errors in the structural flexibility and mass, thus propagating into unpredictable errors in the unsteady aerodynamics and the control law design. One of the primary objectives of X-56A aircraft is the flight demonstration of active flutter suppression, and therefore in this study, the identification of the primary and secondary modes is based on the flutter analysis of X-56A aircraft. It should be noted that for all three Mach number cases rigid body modes and mode numbers seven and nine are participated 89.1 92.4 % of the first flutter mode. Modal participation of the rigid body mode and mode numbers seven and nine for the second flutter mode are 94.6 96.4%. Rigid body mode and the first two anti-symmetric modes, eighth and tenth modes, are participated 93.2 94.6% of the third flutter mode. Therefore, rigid body modes and the first four flexible modes of X-56A aircraft are the primary modes during the model tuning procedure. The ground vibration test-validated structural dynamic finite element model of the X-56A aircraft is to obtain in this study. The structural dynamics finite element model of X-56A aircraft is improved using the parallelized big-bang big-crunch algorithm together with a hybrid optimization technique.
7 CFR 29.1162 - Leaf (B Group).
Code of Federal Regulations, 2010 CFR
2010-01-01
... Specifications, and Tolerances B1L—Choice Quality Lemon Leaf Ripe, firm leaf structure, medium body, rich in oil... percent. B2L—Fine Quality Lemon Leaf Ripe, firm leaf structure, medium body, rich in oil, deep color.... B3L—Good Quality Lemon Leaf Ripe, firm leaf structure, medium body, oily, strong color intensity...
7 CFR 29.1162 - Leaf (B Group).
Code of Federal Regulations, 2011 CFR
2011-01-01
... Specifications, and Tolerances B1L—Choice Quality Lemon Leaf Ripe, firm leaf structure, medium body, rich in oil... percent. B2L—Fine Quality Lemon Leaf Ripe, firm leaf structure, medium body, rich in oil, deep color.... B3L—Good Quality Lemon Leaf Ripe, firm leaf structure, medium body, oily, strong color intensity...
Modeling, simulation and optimization approaches for design of lightweight car body structures
NASA Astrophysics Data System (ADS)
Kiani, Morteza
Simulation-based design optimization and finite element method are used in this research to investigate weight reduction of car body structures made of metallic and composite materials under different design criteria. Besides crashworthiness in full frontal, offset frontal, and side impact scenarios, vibration frequencies, static stiffness, and joint rigidity are also considered. Energy absorption at the component level is used to study the effectiveness of carbon fiber reinforced polymer (CFRP) composite material with consideration of different failure criteria. A global-local design strategy is introduced and applied to multi-objective optimization of car body structures with CFRP components. Multiple example problems involving the analysis of full-vehicle crash and body-in-white models are used to examine the effect of material substitution and the choice of design criteria on weight reduction. The results of this study show that car body structures that are optimized for crashworthiness alone may not meet the vibration criterion. Moreover, optimized car body structures with CFRP components can be lighter with superior crashworthiness than the baseline and optimized metallic structures.
Eukaryotic cells and their cell bodies: Cell Theory revised.
Baluska, Frantisek; Volkmann, Dieter; Barlow, Peter W
2004-07-01
Cell Theory, also known as cell doctrine, states that all eukaryotic organisms are composed of cells, and that cells are the smallest independent units of life. This Cell Theory has been influential in shaping the biological sciences ever since, in 1838/1839, the botanist Matthias Schleiden and the zoologist Theodore Schwann stated the principle that cells represent the elements from which all plant and animal tissues are constructed. Some 20 years later, in a famous aphorism Omnis cellula e cellula, Rudolf Virchow annunciated that all cells arise only from pre-existing cells. General acceptance of Cell Theory was finally possible only when the cellular nature of brain tissues was confirmed at the end of the 20th century. Cell Theory then rapidly turned into a more dogmatic cell doctrine, and in this form survives up to the present day. In its current version, however, the generalized Cell Theory developed for both animals and plants is unable to accommodate the supracellular nature of higher plants, which is founded upon a super-symplasm of interconnected cells into which is woven apoplasm, symplasm and super-apoplasm. Furthermore, there are numerous examples of multinucleate coenocytes and syncytia found throughout the eukaryote superkingdom posing serious problems for the current version of Cell Theory. To cope with these problems, we here review data which conform to the original proposal of Daniel Mazia that the eukaryotic cell is composed of an elemental Cell Body whose structure is smaller than the cell and which is endowed with all the basic attributes of a living entity. A complement to the Cell Body is the Cell Periphery Apparatus, which consists of the plasma membrane associated with other periphery structures. Importantly, boundary structures of the Cell Periphery Apparatus, although capable of some self-assembly, are largely produced and maintained by Cell Body activities and can be produced from it de novo. These boundary structures serve not only as mechanical support for the Cell Bodies but they also protect them from the hostile external environment and from inappropriate interactions with adjacent Cell Bodies within the organism. From the evolutionary perspective, Cell Bodies of eukaryotes are proposed to represent vestiges of hypothetical, tubulin-based 'guest' proto-cells. After penetrating the equally hypothetical actin-based 'host' proto-cells, tubulin-based 'guests' became specialized for transcribing, storing and partitioning DNA molecules via the organization of microtubules. The Cell Periphery Apparatus, on the other hand, represents vestiges of the actin-based 'host' proto-cells which have become specialized for Cell Body protection, shape control, motility and for actin-mediated signalling across the plasma membrane.
Gregoric, Pavel; Lewis, Orly; Kuhar, Martin
2015-01-01
The aim of this paper is to depict the anatomical and physiological doctrines of the treatise entitled Περι πνευματος, or De spiritu. By closely examining the contents of the treatise on its own accord, rather than through its Aristotelian or Hellenistic contexts, we attempt to overcome the aporetic and often disconnected style of the author, and to present a coherent picture of his doctrine of pneuma, its roles in the body, the anatomical structures in which it acts, and its relation to the soul. We argue that the author envisions three main systems in the body: artēriai, by which external air is taken in, turned into pneuma and distributed to different parts of the body; phlebes, by which blood is produced and distributed; bones and neura, which support the body and effect locomotion. Pneuma is shown to run through the system of artēriai, whereby it performs vital activities such as thermoregulation, digestion and pulsation. It is also engaged in activities such as perception and locomotion, in the form of the "connate pneuma," which, we propose, is a component of bodily parts. The author connects pneuma very closely with soul, and although he is familiar with Aristotle's doctrine of the soul, he does not see to embrace it.
Whole-Body Vibration Mimics the Metabolic Effects of Exercise in Male Leptin Receptor–Deficient Mice
McGee-Lawrence, Meghan E.; Wenger, Karl H.; Misra, Sudipta; Davis, Catherine L.; Pollock, Norman K.; Elsalanty, Mohammed; Ding, Kehong; Isales, Carlos M.; Hamrick, Mark W.; Wosiski-Kuhn, Marlena; Arounleut, Phonepasong; Mattson, Mark P.; Cutler, Roy G.; Yu, Jack C.
2017-01-01
Whole-body vibration (WBV) has gained attention as a potential exercise mimetic, but direct comparisons with the metabolic effects of exercise are scarce. To determine whether WBV recapitulates the metabolic and osteogenic effects of physical activity, we exposed male wild-type (WT) and leptin receptor–deficient (db/db) mice to daily treadmill exercise (TE) or WBV for 3 months. Body weights were analyzed and compared with WT and db/db mice that remained sedentary. Glucose and insulin tolerance testing revealed comparable attenuation of hyperglycemia and insulin resistance in db/db mice following TE or WBV. Both interventions reduced body weight in db/db mice and normalized muscle fiber diameter. TE or WBV also attenuated adipocyte hypertrophy in visceral adipose tissue and reduced hepatic lipid content in db/db mice. Although the effects of leptin receptor deficiency on cortical bone structure were not eliminated by either intervention, exercise and WBV increased circulating levels of osteocalcin in db/db mice. In the context of increased serum osteocalcin, the modest effects of TE and WBV on bone geometry, mineralization, and biomechanics may reflect subtle increases in osteoblast activity in multiple areas of the skeleton. Taken together, these observations indicate that WBV recapitulates the effects of exercise on metabolism in type 2 diabetes. PMID:28323991
Wright, C I; Guela, C; Mesulam, M M
1993-01-01
Neurofibrillary tangles and amyloid plaques express acetylcholinesterase and butyrylcholinesterase activity in Alzheimer disease. We previously reported that traditional acetylcholinesterase inhibitors such as BW284C51, tacrine, and physostigmine were more potent inhibitors of the acetylcholinesterase in normal axons and cell bodies than of the acetylcholinesterase in plaques and tangles. We now report that the reverse pattern is seen with indoleamines (such as serotonin and its precursor 5-hydroxytryptophan), carboxypeptidase inhibitor, and the nonspecific protease inhibitor bacitracin. These substances are more potent inhibitors of the cholinesterases in plaques and tangles than of those in normal axons and cell bodies. These results show that the enzymatic properties of plaque and tangle-associated cholinesterases diverge from those of normal axons and cell bodies. The selective susceptibility to bacitracin and carboxypeptidase inhibitor indicates that the catalytic sites of plaque and tangle-bound cholinesterases are more closely associated with peptidase or protease-like properties than the catalytic sites of cholinesterases in normal axons and cell bodies. This shift in enzymatic affinity may lead to the abnormal protein processing that is thought to play a major role in the pathogenesis of Alzheimer disease. The availability of pharmacological and dietary means for altering brain indoleamines raises therapeutic possibilities for inhibiting the abnormal cholinesterase activity associated with Alzheimer disease. Images PMID:8421706
Joining of porous silicon carbide bodies
Bates, Carl H.; Couhig, John T.; Pelletier, Paul J.
1990-05-01
A method of joining two porous bodies of silicon carbide is disclosed. It entails utilizing an aqueous slip of a similar silicon carbide as was used to form the porous bodies, including the sintering aids, and a binder to initially join the porous bodies together. Then the composite structure is subjected to cold isostatic pressing to form a joint having good handling strength. Then the composite structure is subjected to pressureless sintering to form the final strong bond. Optionally, after the sintering the structure is subjected to hot isostatic pressing to further improve the joint and densify the structure. The result is a composite structure in which the joint is almost indistinguishable from the silicon carbide pieces which it joins.
Dong, Kai; Deng, Jianan; Zi, Yunlong; Wang, Yi-Cheng; Xu, Cheng; Zou, Haiyang; Ding, Wenbo; Dai, Yejing; Gu, Bohong; Sun, Baozhong; Wang, Zhong Lin
2017-10-01
The development of wearable and large-area energy-harvesting textiles has received intensive attention due to their promising applications in next-generation wearable functional electronics. However, the limited power outputs of conventional textiles have largely hindered their development. Here, in combination with the stainless steel/polyester fiber blended yarn, the polydimethylsiloxane-coated energy-harvesting yarn, and nonconductive binding yarn, a high-power-output textile triboelectric nanogenerator (TENG) with 3D orthogonal woven structure is developed for effective biomechanical energy harvesting and active motion signal tracking. Based on the advanced 3D structural design, the maximum peak power density of 3D textile can reach 263.36 mW m -2 under the tapping frequency of 3 Hz, which is several times more than that of conventional 2D textile TENGs. Besides, its collected power is capable of lighting up a warning indicator, sustainably charging a commercial capacitor, and powering a smart watch. The 3D textile TENG can also be used as a self-powered active motion sensor to constantly monitor the movement signals of human body. Furthermore, a smart dancing blanket is designed to simultaneously convert biomechanical energy and perceive body movement. This work provides a new direction for multifunctional self-powered textiles with potential applications in wearable electronics, home security, and personalized healthcare. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Austrian results from Matroshka poncho and organ dose determination
NASA Astrophysics Data System (ADS)
Hajek, M.; Bergmann, R.; Fugger, M.; Vana, N.
Cosmic rays in low-earth orbits LEO primarily consist of high-energy charged particles originating from galactic cosmic radiation GCR energetic solar particle events SPE and trapped radiation belts These radiations of high linear energy transfer LET generally inflict greater biological damage than that resulting from typical terrestrial radiation hazards Particle and energy spectra are attenuated in interaction processes within shielding structures and within the human body Reliable assessment of health risks to astronaut crews is pivotal in the design of future expeditions into interplanetary space and requires knowledge of absorbed radiation doses in critical radiosensitive organs and tissues The European Space Agency ESA Matroshka experiment---conducted under the aegis of the German Aerospace Center DLR ---is aimed at simulating an astronaut s body during extravehicular activities EVA Matroshka basically consists of a human phantom torso attached to a base structure and covered with a protective carbon-fibre container acting as a spacesuit model The phantom is divided into 33 tissue-equivalent polyurethane slices of specific density for tissue and organs Natural bones are embedded Channels and cut-outs enable accommodation of active and passive radiation monitors The torso is dressed by a skin-equivalent poncho which is also designed for dosimeter integration The phantom houses in total 7 active and more than 6000 passive radiation sensors Thereof the Atomic Institute of the Austrian Universities ATI provided more than
Rack assembly for mounting solar modules
Plaisted, Joshua Reed; West, Brian
2010-12-28
A rack assembly is provided for mounting solar modules over an underlying body. The rack assembly may include a plurality of rail structures that are arrangeable over the underlying body to form an overall perimeter for the rack assembly. One or more retention structures may be provided with the plurality of rail structures, where each retention structure is configured to support one or more solar modules at a given height above the underlying body. At least some of the plurality of rail structures are adapted to enable individual rail structures o be sealed over the underlying body so as to constrain air flow underneath the solar modules. Additionally, at least one of (i) one or more of the rail structures, or (ii) the one or more retention structures are adjustable so as to adapt the rack assembly to accommodate solar modules of varying forms or dimensions.
Rack assembly for mounting solar modules
Plaisted, Joshua Reed; West, Brian
2012-09-04
A rack assembly is provided for mounting solar modules over an underlying body. The rack assembly may include a plurality of rail structures that are arrangeable over the underlying body to form an overall perimeter for the rack assembly. One or more retention structures may be provided with the plurality of rail structures, where each retention structure is configured to support one or more solar modules at a given height above the underlying body. At least some of the plurality of rail structures are adapted to enable individual rail structures to be sealed over the underlying body so as to constrain air flow underneath the solar modules. Additionally, at least one of (i) one or more of the rail structures, or (ii) the one or more retention structures are adjustable so as to adapt the rack assembly to accommodate solar modules of varying forms or dimensions.
Rack assembly for mounting solar modules
Plaisted, Joshua Reed; West, Brian
2014-06-10
A rack assembly is provided for mounting solar modules over an underlying body. The rack assembly may include a plurality of rail structures that are arrangeable over the underlying body to form an overall perimeter for the rack assembly. One or more retention structures may be provided with the plurality of rail structures, where each retention structure is configured to support one or more solar modules at a given height above the underlying body. At least some of the plurality of rail structures are adapted to enable individual rail structures o be sealed over the underlying body so as to constrain air flow underneath the solar modules. Additionally, at least one of (i) one or more of the rail structures, or (ii) the one or more retention structures are adjustable so as to adapt the rack assembly to accommodate solar modules of varying forms or dimensions.
Method for fabricating beryllium structures
Hovis, Jr., Victor M.; Northcutt, Jr., Walter G.
1977-01-01
Thin-walled beryllium structures are prepared by plasma spraying a mixture of beryllium powder and about 2500 to 4000 ppm silicon powder onto a suitable substrate, removing the plasma-sprayed body from the substrate and placing it in a sizing die having a coefficient of thermal expansion similar to that of the beryllium, exposing the plasma-sprayed body to a moist atmosphere, outgassing the plasma-sprayed body, and then sintering the plasma-sprayed body in an inert atmosphere to form a dense, low-porosity beryllium structure of the desired thin-wall configuration. The addition of the silicon and the exposure of the plasma-sprayed body to the moist atmosphere greatly facilitate the preparation of the beryllium structure while minimizing the heretofore deleterious problems due to grain growth and grain orientation.
Wright, Kynna; Giger, Joyce Newman; Norris, Keth; Suro, Zulma
2013-01-01
Background Underserved children, particularly girls and those in urban communities, do not meet the recommended physical activity guidelines (>60 min of daily physical activity), and this behavior can lead to obesity. The school years are known to be a critical period in the life course for shaping attitudes and behaviors. Children look to schools for much of their access to physical activity. Thus, through the provision of appropriate physical activity programs, schools have the power to influence apt physical activity choices, especially for underserved children where disparities in obesity-related outcomes exist. Objectives To evaluate the impact of a nurse directed, coordinated, culturally sensitive, school-based, family-centered lifestyle program on activity behaviors and body mass index. Design, settings and participants: This was a parallel group, randomized controlled trial utilizing a community-based participatory research approach, through a partnership with a University and 5 community schools. Participants included 251 children ages 8–12 from elementary schools in urban, low-income neighborhoods in Los Angeles, USA. Methods The intervention included Kids N Fitness©, a 6-week program which met weekly to provide 45 min of structured physical activity and a 45 min nutrition education class for parents and children. Intervention sites also participated in school-wide wellness activities, including health and counseling services, staff professional development in health promotion, parental education newsletters, and wellness policies for the provision of healthy foods at the school. The Child and Adolescent Trial for Cardiovascular Health School Physical Activity and Nutrition Student Questionnaire measured physical activity behavior, including: daily physical activity, participation in team sports, attending physical education class, and TV viewing/computer game playing. Anthropometric measures included height, weight, body mass index, resting blood pressure, and waist circumference. Measures were collected at baseline, completion of the intervention phase (4 months), and 12 months post-intervention. Results Significant results for students in the intervention, included for boys decreases in TV viewing; and girls increases in daily physical activity, physical education class attendance, and decreases in body mass index z-scores from baseline to the 12 month follow-up. Conclusions Our study shows the value of utilizing nurses to implement a culturally sensitive, coordinated, intervention to decrease disparities in activity and TV viewing among underserved girls and boys. PMID:23021318
Initial insights into bacterial succession during human decomposition.
Hyde, Embriette R; Haarmann, Daniel P; Petrosino, Joseph F; Lynne, Aaron M; Bucheli, Sibyl R
2015-05-01
Decomposition is a dynamic ecological process dependent upon many factors such as environment, climate, and bacterial, insect, and vertebrate activity in addition to intrinsic properties inherent to individual cadavers. Although largely attributed to microbial metabolism, very little is known about the bacterial basis of human decomposition. To assess the change in bacterial community structure through time, bacterial samples were collected from several sites across two cadavers placed outdoors to decompose and analyzed through 454 pyrosequencing and analysis of variable regions 3-5 of the bacterial 16S ribosomal RNA (16S rRNA) gene. Each cadaver was characterized by a change in bacterial community structure for all sites sampled as time, and decomposition, progressed. Bacteria community structure is variable at placement and before purge for all body sites. At bloat and purge and until tissues began to dehydrate or were removed, bacteria associated with flies, such as Ignatzschineria and Wohlfahrtimonas, were common. After dehydration and skeletonization, bacteria associated with soil, such as Acinetobacter, were common at most body sites sampled. However, more cadavers sampled through multiple seasons are necessary to assess major trends in bacterial succession.
Enhancement of vortex induced forces and motion through surface roughness control
Bernitsas, Michael M [Saline, MI; Raghavan, Kamaldev [Houston, TX
2011-11-01
Roughness is added to the surface of a bluff body in a relative motion with respect to a fluid. The amount, size, and distribution of roughness on the body surface is controlled passively or actively to modify the flow around the body and subsequently the Vortex Induced Forces and Motion (VIFM). The added roughness, when designed and implemented appropriately, affects in a predetermined way the boundary layer, the separation of the boundary layer, the level of turbulence, the wake, the drag and lift forces, and consequently the Vortex Induced Motion (VIM), and the fluid-structure interaction. The goal of surface roughness control is to increase Vortex Induced Forces and Motion. Enhancement is needed in such applications as harnessing of clean and renewable energy from ocean/river currents using the ocean energy converter VIVACE (Vortex Induced Vibration for Aquatic Clean Energy).
Bertini, E; Salviati, G; Apollo, F; Ricci, E; Servidei, S; Broccolini, A; Papacci, M; Tonali, P
1994-01-01
We describe clinical, morphological and biochemical findings of a patient with reducing body myopathy (RBM). This 15-year-old patient was affected by severe limb-girdle progressive myopathy with asymmetric distribution. Muscle biopsy showed many fibers with cytoplasmic polymorphic masses, which stained dark purple with modified Gomori's trichrome, associated with proliferation of cytoplasmic bodies. Cytoplasmic polymorphic masses showed marked reducing activity with menadione-nitro blue tetrazolium reaction. Ultrastructurally, there was great amount of highly electron-dense tubular-filamentous structures of 16-17 nm in diameter. Immunohistochemistry showed that many fibers were positive for desmin. Sodium dodecyl sulfate-electrophoresis disclosed an increase in two bands of approximately 53 and 70 kDa, and Western blot demonstrated that the 53-kDa band was desmin. It was not possible to characterize the 70-kDa protein further.
Upadhyay, Arun K.; Murmu, Aruna; Singh, Anupam; Panda, Amulya K.
2012-01-01
The objective of the research was to understand the structural determinants governing protein aggregation into inclusion bodies during expression of recombinant proteins in Escherichia coli. Recombinant human growth hormone (hGH) and asparaginase were expressed as inclusion bodies in E.coli and the kinetics of aggregate formation was analyzed in details. Asparaginase inclusion bodies were of smaller size (200 nm) and the size of the aggregates did not increase with induction time. In contrast, the seeding and growth behavior of hGH inclusion bodies were found to be sequential, kinetically stable and the aggregate size increased from 200 to 800 nm with induction time. Human growth hormone inclusion bodies showed higher resistance to denaturants and proteinase K degradation in comparison to those of asparaginase inclusion bodies. Asparaginase inclusion bodies were completely solubilized at 2–3 M urea concentration and could be refolded into active protein, whereas 7 M urea was required for complete solubilization of hGH inclusion bodies. Both hGH and asparaginase inclusion bodies showed binding with amyloid specific dyes. In spite of its low β-sheet content, binding with dyes was more prominent in case of hGH inclusion bodies than that of asparaginase. Arrangements of protein molecules present in the surface as well as in the core of inclusion bodies were similar. Hydrophobic interactions between partially folded amphiphillic and hydrophobic alpha-helices were found to be one of the main determinants of hGH inclusion body formation. Aggregation behavior of the protein molecules decides the nature and properties of inclusion bodies. PMID:22479486
Building machine learning force fields for nanoclusters
NASA Astrophysics Data System (ADS)
Zeni, Claudio; Rossi, Kevin; Glielmo, Aldo; Fekete, Ádám; Gaston, Nicola; Baletto, Francesca; De Vita, Alessandro
2018-06-01
We assess Gaussian process (GP) regression as a technique to model interatomic forces in metal nanoclusters by analyzing the performance of 2-body, 3-body, and many-body kernel functions on a set of 19-atom Ni cluster structures. We find that 2-body GP kernels fail to provide faithful force estimates, despite succeeding in bulk Ni systems. However, both 3- and many-body kernels predict forces within an ˜0.1 eV/Å average error even for small training datasets and achieve high accuracy even on out-of-sample, high temperature structures. While training and testing on the same structure always provide satisfactory accuracy, cross-testing on dissimilar structures leads to higher prediction errors, posing an extrapolation problem. This can be cured using heterogeneous training on databases that contain more than one structure, which results in a good trade-off between versatility and overall accuracy. Starting from a 3-body kernel trained this way, we build an efficient non-parametric 3-body force field that allows accurate prediction of structural properties at finite temperatures, following a newly developed scheme [A. Glielmo et al., Phys. Rev. B 95, 214302 (2017)]. We use this to assess the thermal stability of Ni19 nanoclusters at a fractional cost of full ab initio calculations.
Mendoza, Guillermo; Suárez-Medellín, Jorge; Espinoza, César; Ramos-Ligonio, Angel; Fernández, José J; Norte, Manuel; Trigos, Ángel
2015-01-01
Various species of the genus Ganoderma have been used for centuries according to oriental tradition as a source of medicines and nutrients. A chemical study of the fruiting bodies and mycelial culture of G. oerstedii was carried out with the idea of isolating and characterizing active natural components present to make use of their potential pharmaceutical application in Mexico. The fruiting bodies and mycelial culture of G. oesrtedii were lyophylized and extracted one after the other with hexane, chloroform, and methanol. Following this process, each substance was extracted separately by using column chromatography. From fruiting bodies eight metabolites, five sterols (ergosta-7,22-dien-3β-ol, ergosterol peroxide, ergosterol, cerevisterol, and ergosta-7,22-dien-3-one) as well as three terpene compounds (ganodermanondiol, ganoderic acid Sz, and ganoderitriol M) were obtained from fruiting bodies. From the mycelial culture three metabolites, two sterols (ergosterol and cerevisterol), and a new terpene compound (ganoderic acetate from the acid) were obtained. These structures were established based on a spectroscopic analysis mainly using nuclear magnetic resonance and a comparison with data already established.
Korn, Liat; Gonen, Ester; Shaked, Yael; Golan, Moria
2013-01-01
Purpose This study examines health perceptions, self and body image, physical exercise and nutrition among undergraduate students. Methods A structured, self-reported questionnaire was administered to more than 1500 students at a large academic institute in Israel. The study population was heterogenic in both gender and fields of academic study. Results High correlations between health perceptions, appropriate nutrition, and positive self and body image were found. The relationships between these variables differed between the subpopulation in the sample and the different genders. Engagement in physical exercise contributed to positive body image and positive health perceptions more than engagement in healthy nutrition. Nutrition students reported higher frequencies of positive health perceptions, positive self and body image and higher engagement in physical exercise in comparison to all other students in the sample. Conclusions This study suggests, as have many before, that successful health promotion policy should reflect a collectivist rather than an individualist ethos by providing health prerequisites through a public policy of health-promotion, where the academic settings support a healthy lifestyle policy, by increasing availability of a healthy, nutritious and varied menu in the cafeterias, and offering students various activities that enhance healthy eating and exercise. Implications and contribution This study examined health perceptions, self-image, physical exercise and nutrition among undergraduate students and found high correlations between these topics. Nutrition students reported higher frequencies of positive health perceptions, and positive self and body image and engaged more in physical exercise when compared with all other students in the sample. PMID:23516503
Shiver me titin! Elucidating titin's role in shivering thermogenesis.
Taylor-Burt, Kari R; Monroy, Jenna; Pace, Cinnamon; Lindstedt, Stan; Nishikawa, Kiisa C
2015-03-01
Shivering frequency scales predictably with body mass and is 10 times higher in a mouse than a moose. The link between shivering frequency and body mass may lie in the tuning of muscle elastic properties. Titin functions as a muscle 'spring', so shivering frequency may be linked to titin's structure. The muscular dystrophy with myositis (mdm) mouse is characterized by a deletion in titin's N2A region. Mice that are homozygous for the mdm mutation have a lower body mass, stiffer gait and reduced lifespan compared with their wild-type and heterozygous siblings. We characterized thermoregulation in these mice by measuring metabolic rate and tremor frequency during shivering. Mutants were heterothermic at ambient temperatures of 20-37°C while wild-type and heterozygous mice were homeothermic. Metabolic rate increased at smaller temperature differentials (i.e. the difference between body and ambient temperatures) in mutants than in non-mutants. The difference between observed tremor frequencies and shivering frequencies predicted by body mass was significantly larger for mutant mice than for wild-type or heterozygous mice, even after accounting for differences in body temperature. Together, the heterothermy in mutants, the increase in metabolic rate at low temperature differentials and the decreased tremor frequency demonstrate the thermoregulatory challenges faced by mice with the mdm mutation. Oscillatory frequency is proportional to the square root of stiffness, and we observed that mutants had lower active muscle stiffness in vitro. The lower tremor frequencies in mutants are consistent with reduced active muscle stiffness and suggest that titin affects the tuning of shivering frequency. © 2015. Published by The Company of Biologists Ltd.
The Symmetry and Packing Fraction of the Body Centered Tetragonal Structure
ERIC Educational Resources Information Center
Dunlap, Richard A.
2012-01-01
It is shown that for different ratios of lattice parameters, "c/a," the body centered tetragonal structure may be view as body centered tetragonal, body centered cubic, face centered cubic or hexagonal. This illustrates that the apparent symmetry of a lattice depends on the choice of the conventional unit cell.
Lin, Chien-Yu; Chang, Yu-Ming
2015-02-01
This study uses a body motion interactive game developed in Scratch 2.0 to enhance the body strength of children with disabilities. Scratch 2.0, using an augmented-reality function on a program platform, creates real world and virtual reality displays at the same time. This study uses a webcam integration that tracks movements and allows participants to interact physically with the project, to enhance the motivation of children with developmental disabilities to perform physical activities. This study follows a single-case research using an ABAB structure, in which A is the baseline and B is the intervention. The experimental period was 2 months. The experimental results demonstrated that the scores for 3 children with developmental disabilities increased considerably during the intervention phrases. The developmental applications of these results are also discussed. Copyright © 2014 Elsevier Ltd. All rights reserved.
Ultrastructure of the gravid uterus of Hymenolepis diminuta (Platyhelminthes: Cestoda).
Conn, D B
1993-08-01
The fine structure of the uterus in gravid proglottids of Hymenolepis diminuta was examined by standard techniques for scanning and transmission electron microscopy. The uterus consisted of a syncytial uterine epithelium attached to the medullary parenchyma through a thin extracellular basal matrix. The epithelium contained prominent nuclei in the juxtalumenal cytoplasm. The cytoplasm was dominated by extensive granular endoplasmic reticulum, with dilated cisternae containing an electron-lucent material and widely scattered electron-dense spherical bodies. No Golgi body or other agranular endomembrane component was observed, but the epithelium contained numerous free ribosomes and a few mitochondria. The apical plasma membrane was folded into long microlamellae. Epithelial and epitheliomesenchymal folds and villi resulted in a compartmentalized uterine lumen, with each chamber containing 1 to several eggs. These data suggest a high level of synthetic activity within the uterine epithelium, but the chemical products and functional significance of this activity are not yet known.
Deutsch, Judith E; Westcott McCoy, Sarah
2017-07-01
Use of virtual reality (VR) and serious games (SGs) interventions within rehabilitation as motivating tools for task specific training for individuals with neurological conditions are fast-developing. Within this perspective paper we use the framework of the IV STEP conference to summarize the literature on VR and SG for children and adults by three topics: Prevention; Outcomes: Body-Function-Structure, Activity and Participation; and Plasticity. Overall the literature in this area offers support for use of VR and SGs to improve body functions and to some extent activity domain outcomes. Critical analysis of clients' goals and selective evaluation of VR and SGs are necessary to appropriately take advantage of these tools within intervention. Further research on prevention, participation, and plasticity is warranted. We offer suggestions for bridging the gap between research and practice integrating VR and SGs into physical therapist education and practice.
Conti-Becker, Angela; Doralp, Samantha; Fayed, Nora; Kean, Crystal; Lencucha, Raphael; Leyshon, Rhysa; Mersich, Jackie; Robbins, Shawn; Doyle, Phillip C
2007-01-01
The Disability Tax Credit (DTC) Certification is an assessment tool used to provide Canadians with disability tax relief The International Classification of Functioning, Disability and Health (ICF) provides a universal framework for defining disability. The purpose of this study was to evaluate the DTC and familiarize occupational therapists with the process of mapping measures to the ICF classification system. Concepts within the DTC were identified and mapped to appropriate ICF codes (Cieza et al., 2005). The DTC was linked to 45 unique ICF codes (16 Body Functions, 19 Activities and Participation, and 8 Environmental Factors). The DTC encompasses various domains of the ICF; however, there is no consideration of Personal Factors, Body Structures, and key aspects of Activities and Participation. Refining the DTC to address these aspects will provide an opportunity for fair and just determinations for those who experience disability.
Pu, De-Bing; Zheng, Xi; Gao, Jun-Bo; Zhang, Xing-Jie; Qi, Yan; Li, Xiao-Si; Wang, Yong-Mei; Li, Xiao-Nian; Li, Xiao-Li; Wan, Chun-Ping; Xiao, Wei-Lie
2017-06-01
Eight new highly oxygenated lanostane triterpenes, gibbosic acids A-H (1-8), along with three known ones (9-11), were isolated from the fruiting body of Ganoderma gibbosum. The structures of new isolates were assigned by NMR and HRESIMS experiments. The absolute configurations of 1 were further confirmed by single crystal X-ray diffraction data and computational ECD methods. Immunoregulatory effect and anti-inflammatory activities of these compounds were screened in murine lymphocyte proliferation assay and in lipopolysaccharide (LPS)-stimulated RAW-264.7 macrophages, respectively. Compound 2 exhibited immunostimulatory effect both in lymphocyte proliferation assay without any induction and ConA-induced mitogenic activity of T-lymphocyte, and the proportion of lymphocyte proliferation at the concentration of 0.1μM are 20.01% and 21.40%, respectively. Copyright © 2017 Elsevier B.V. All rights reserved.
Body Aesthetic Preference in Preschoolers and Attraction to Canons Violation: An Exploratory Study.
Di Dio, Cinzia; Berchio, Cristina; Massaro, Davide; Lombardi, Elisabetta; Gilli, Gabriella; Marchetti, Antonella
2017-01-01
Sensitivity to canons of beauty as represented in the human body-and as typically defined in the Western Culture-has been poorly studied in children. Current literature shows that infants as young as about three months are sensitive to the human body structure and its parts. Using a sample of 54 three- to five-year-old children, the present study investigated preference for drawings representing the "canonical" body structure, contrasting these with drawings showing the same bodies, but where the relation between trunk and legs was modified. It was hypothesized that preference for the canonical body structures would emerge as early as three years, increasing with age. Results only partially supported the hypothesis: while three-year-olds showed a significant preference for the canonical body structures as predicted, a significant preference reversal was found for the four-year-olds, with a tendency to return to preferring the canonical body at five years. The results are discussed in light of research findings associated with developmental theories hallmarking visual art perception in children.
Temperature alters food web body-size structure.
Gibert, Jean P; DeLong, John P
2014-08-01
The increased temperature associated with climate change may have important effects on body size and predator-prey interactions. The consequences of these effects for food web structure are unclear because the relationships between temperature and aspects of food web structure such as predator-prey body-size relationships are unknown. Here, we use the largest reported dataset for marine predator-prey interactions to assess how temperature affects predator-prey body-size relationships among different habitats ranging from the tropics to the poles. We found that prey size selection depends on predator body size, temperature and the interaction between the two. Our results indicate that (i) predator-prey body-size ratios decrease with predator size at below-average temperatures and increase with predator size at above-average temperatures, and (ii) that the effect of temperature on predator-prey body-size structure will be stronger at small and large body sizes and relatively weak at intermediate sizes. This systematic interaction may help to simplify forecasting the potentially complex consequences of warming on interaction strengths and food web stability. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
Miyake, Akio; Okudela, Koji; Matsumura, Mai; Hideaki, Mitsui; Arai, Hiromasa; Umeda, Shigeaki; Yamanaka, Shoji; Ishikawa, Yoshihiro; Tajiri, Michihiko; Ohashi, Kenichi
2018-03-01
Psammoma bodies are concentrically lamellated microscopic structures made of calcium. They are commonly observed in papillary carcinomas of the thyroid gland and serous papillary adenocarcinomas of the ovary, but are also occasionally detected in lung adenocarcinomas. Only one study, published in 1972, has systematically described the significance of psammoma bodies in lung adenocarcinomas. The aim of this study was to update the significance of psammoma bodies in lung adenocarcinomas from a modern perspective. Psammoma bodies were detected in 7.2% (59/822) of the adenocarcinomas examined, among which the papillary (20.3%, 12/59) and acinar (44.1%, 26/59) histological subtypes, with the feature of a terminal respiratory unit (91.5%, 54/59), were dominant. Malignant potential (cell growth activity measured by Ki67 labelling, lymph node metastasis, and postoperative survival) did not significantly differ between adenocarcinomas with and without psammoma bodies. On the basis of cytogenetic features, adenocarcinomas with psammoma bodies were preferentially affected by tyrosine kinase inhibitor (TKI)-targetable driver mutations [EGFR (69.8%, 37/53), ALK (13.2%, 7/53), and ROS1 (1.9%, 1/53)]. Multivariate analyses confirmed that psammoma bodies may constitute an independent predictor for these mutations, particularly EGFR and ALK mutations. Psammoma bodies may predict a favourable response of lung adenocarcinomas to TKIs. © 2017 John Wiley & Sons Ltd.
How to Link Brain and Experience? Spatiotemporal Psychopathology of the Lived Body
Northoff, Georg; Stanghellini, Giovanni
2016-01-01
The focus of the present article is on sketching a psychopathology of the body in schizophrenia and linking it to brain activity. This is done providing converging data from psychopathological evidence (phenomenal), phenomenological contructs (trans-phenomenal) and neuroscientific measures (pre-phenomenal). The phenomenal level is the detailed documentation of the patients’ subjective anomalous experiences. These phenomena are explicit contents in the patients’ field of consciousness. The trans-phenomenal level targets the implicit yet operative matrix that underlies these anomalous subjective experiences. Abnormal phenomena are viewed as expressions of a modification of trans-phenomenal matrix, that is, in terms of an abnormal synthesis or integration through time of intero-, proprio- and extero-ceptive stimuli. Finally, we link the abnormalities of the trans-phenomenal matrix to pre-phenomenal alterations of the brain resting state and of its spatio-temporal organization, as documented by neurobiological methods providing spatial and temporal resolution of intrinsic brain activity (with many features of the resting state remaining yet unclear though). Based on phenomenological research, the body in schizophrenia is typically experienced in an itemized way as an object external to one’s self and unrelated to events in the external world. Based on neurobiological data, we tentatively hypothesize that such anomalies of the lived body are related to decreased integration between intero-, extero- and proprioceptive experiences by the brain’s spontaneous activity and its temporal structure. Taken all together, this suggests that we view abnormalities of bodily experience in terms of their underlying abnormal spatiotemporal features which, as we suppose, can be traced back to the spatiotemporal features of the brain’s spontaneous activity. PMID:27199695
Sexton, E; King-Kallimanis, B L; Layte, R; Hickey, A
2015-07-01
The effect of chronic disease status on quality of life (QoL) has been well established. However, less is known about how chronic diseases affect QoL. This article examines impairment in three domains of the WHO International Classification of Functioning, Health and Disability (ICF) - body function, activity and participation, as well as affective well-being, - as potential mediators of the relationship between chronic disease and QoL. A cross-sectional sample (n = 4961) of the general Irish community-dwelling population aged 50+ years was obtained from the Irish Longitudinal Study of Ageing (TILDA). The CASP measure of QoL was examined as two dimensions - control/autonomy and self-realisation/pleasure. Structural equation modelling was used to test the direct and indirect effects of chronic disease on QoL, via variables capturing body function, activity, participation and positive affect. A factor analysis showed that indicators of body function and activity loaded onto a single overall physical impairment factor. This physical impairment factor fully mediated the effect of chronic disease on positive affect and QoL. The total effect of chronic disease on control/autonomy (-0.160) was primarily composed of an indirect effect via physical impairment (-0.86), and via physical impairment and positive affect (-0.45). The decomposition of effects on self-realisation/pleasure was similar, although the direct effect of physical impairment was weaker. The model fitted the data well (RMSEA = 0.02, TLI = 0.96, CFI = 0.96). Chronic disease affects QoL through increased deficits in physical body function and activity. This overall physical impairment affects QoL both directly and indirectly via reduced positive affect.
Zhang, Shuai-Bing; Li, Zheng-Hui; Stadler, Marc; Chen, He-Ping; Huang, Ying; Gan, Xiao-Qing; Feng, Tao; Liu, Ji-Kai
2018-05-11
Eight undescribed lanostane triterpenoids, pardinols A‒H, along with one previously reported lanostane triterpenoid, namely saponaceol B, were isolated from the fruiting bodies of Tricholoma pardinum. Their structures and stereoconfigurations were established via combination of extensive spectroscopic analyses, alkaline methanolysis method and TDDFT/ECD calculations. Pardinols B and E-H exhibited certain inhibition activities of nitric oxide (NO) production with IC 50 value ranging from 5.3 to 14.7 μM, as well as cytotoxicities against human cancer cell-lines. Copyright © 2018 Elsevier Ltd. All rights reserved.
Three new triterpenoids from Ganoderma theaecolum.
Liu, Li-Ying; Yan, Zheng; Kang, Jie; Chen, Ruo-Yun; Yu, De-Quan
2017-09-01
Three new triterpenoids (1-3), together with four known triterpenoids (4-7), were isolated from the fruiting bodies of Ganoderma theaecolum. Their structures were elucidated on the basis of their spectroscopic data and chemical evidence. Compounds 4 and 6 exhibited antitumor activities against H460 cells with IC 50 values of 22.4 and 43.1 μM, respectively. And the cytotoxic activities of compounds 4 and 5 against MDA-MB-231 cancer cell lines were assayed with IC 50 values of 49.1 and 75.8 μM, respectively.
Development of biomimetic quadruped walking robot with 2-DOF waist joint
NASA Astrophysics Data System (ADS)
Kim, Kyoung-Ho; Park, Se-Hoon; Lee, Yun-Jung
2005-12-01
This paper presented a novel bio-mimetic quadruped walking robot with 2-DOF (Degree Of Freedom) waist joint, which connects the front and the rear parts of the body. The waist-jointed walking robot can guarantee more stable and more animal-like gait than that of a conventional single-rigid-body walking robot. The developed robot, called ELIRO-II (Eating LIzard RObot version 2), can bend its body from side to side by using 1-DOF passive waist joint while the legs is transferred, thereby increasing the stride and speed of the robot. In addition, ELIRO-II has one more active DOF to bend its body up and down, which increases the mobility in irregular terrain such as slope and stairs. We design the mechanical structure of the robot, which is small and light to have high mobility. This research described characteristics of the 2-DOF waists joint and leg mechanism as well as a hardware and software of the controller of ELIRO-II.
Soft viscoelastic properties of nuclear actin age oocytes due to gravitational creep
Feric, Marina; Broedersz, Chase P.; Brangwynne, Clifford P.
2015-01-01
The actin cytoskeleton helps maintain structural organization within living cells. In large X. laevis oocytes, gravity becomes a dominant force and is countered by a nuclear actin network that prevents liquid-like nuclear bodies from immediate sedimentation and coalescence. However, nuclear actin’s mechanical properties, and how they facilitate the stabilization of nuclear bodies, remain unknown. Using active microrheology, we find that nuclear actin forms a weak viscoelastic network, with a modulus of roughly 0.1 Pa. Embedded probe particles subjected to a constant force exhibit continuous displacement, due to viscoelastic creep. Gravitational forces also cause creep displacement of nuclear bodies, resulting in their asymmetric nuclear distribution. Thus, nuclear actin does not indefinitely support the emulsion of nuclear bodies, but only kinetically stabilizes them by slowing down gravitational creep to ~2 months. This is similar to the viability time of large oocytes, suggesting gravitational creep ages oocytes, with fatal consequences on long timescales. PMID:26577186
Body size phenology in a regional bee fauna: a temporal extension of Bergmann's rule.
Osorio-Canadas, Sergio; Arnan, Xavier; Rodrigo, Anselm; Torné-Noguera, Anna; Molowny, Roberto; Bosch, Jordi
2016-12-01
Bergmann's rule originally described a positive relationship between body size and latitude in warm-blooded animals. Larger animals, with a smaller surface/volume ratio, are better enabled to conserve heat in cooler climates (thermoregulatory hypothesis). Studies on endothermic vertebrates have provided support for Bergmann's rule, whereas studies on ectotherms have yielded conflicting results. If the thermoregulatory hypothesis is correct, negative relationships between body size and temperature should occur in temporal in addition to geographical gradients. To explore this possibility, we analysed seasonal activity patterns in a bee fauna comprising 245 species. In agreement with our hypothesis of a different relationship for large (endothermic) and small (ectothermic) species, we found that species larger than 27.81 mg (dry weight) followed Bergmann's rule, whereas species below this threshold did not. Our results represent a temporal extension of Bergmann's rule and indicate that body size and thermal physiology play an important role in structuring community phenology. © 2016 John Wiley & Sons Ltd/CNRS.
Peelen, Marius V; Wiggett, Alison J; Downing, Paul E
2006-03-16
Accurate perception of the actions and intentions of other people is essential for successful interactions in a social environment. Several cortical areas that support this process respond selectively in fMRI to static and dynamic displays of human bodies and faces. Here we apply pattern-analysis techniques to arrive at a new understanding of the neural response to biological motion. Functionally defined body-, face-, and motion-selective visual areas all responded significantly to "point-light" human motion. Strikingly, however, only body selectivity was correlated, on a voxel-by-voxel basis, with biological motion selectivity. We conclude that (1) biological motion, through the process of structure-from-motion, engages areas involved in the analysis of the static human form; (2) body-selective regions in posterior fusiform gyrus and posterior inferior temporal sulcus overlap with, but are distinct from, face- and motion-selective regions; (3) the interpretation of region-of-interest findings may be substantially altered when multiple patterns of selectivity are considered.
Method and apparatus for subsurface exploration
NASA Technical Reports Server (NTRS)
Wilcox, Brian (Inventor)
2002-01-01
A subsurface explorer (SSX) for exploring beneath the terrestrial surface of planetary bodies such as the Earth, Mars, or comets. This exploration activity utilizes appropriate sensors and instrument to evaluate the composition, structure, mineralogy and possibly biology of the subsurface medium, as well as perhaps the ability to return samples of that medium back to the surface. The vehicle comprises an elongated skin or body having a front end and a rear end, with a nose piece at the front end for imparting force to composition material of the planetary body. Force is provided by a hammer mechanism to the back side of a nose piece from within the body of the vehicle. In the preferred embodiment, a motor spins an intermediate shaft having two non-uniform threads along with a hammer which engages these threads with two conical rollers. A brake assembly halts the rotation of the intermediate shaft, causing the conical roller to spin down the non-uniform thread to rapidly and efficiently convert the rotational kinetic energy of the hammer into translational energy.
Deep structure of Llaima Volcano from seismic ambient noise tomography: Preliminary results
NASA Astrophysics Data System (ADS)
Franco, L.; Mikesell, T. D.; Rodd, R.; Lees, J. M.; Johnson, J. B.; Ronan, T.
2015-12-01
The ambient seismic noise tomography (ANT) method has become an important tool to image crustal structures and magmatic bodies at volcanoes. The frequency band of ambient noise provides complimentary data and added resolution to the deeper volcanic structures when compared to traditional tomography based on local earthquakes. The Llaima Volcano (38° 41.9' S and 71° 43.8' W) is a stratovolcano of basaltic-andesitic composition. Llaima is located in the South Volcanic Zone (ZVS) of the Andes and is listed as one of the most active volcanoes in South America, with a long documented historical record dating back to 1640. Llaima experienced violent eruptions in 1927 and 1957 (Naranjo and Moreno, 1991), and its last eruptive cycle (2008-2010) is considered the most important after the 1957 eruption. Lacking seismic constraints on the deep structure under Llaima, petrologic data have suggested the presence of magmatic bodies (dikes). These bodies likely play an important role in the eruptive dynamics of Llaima (Bouvet de Maisonneuve, C., et al 2012). Analysis of the 2008-2010 seismicity shows a southern zone (approx. 15 km from the Llaima summit) where there were many Very Long Period events occurring prior to the eruptions. This is in agreement with a deformation zone determined by InSAR analysis (Fournier et al, 2010 and Bathke, 2011), but no geologic model based on geophysical imaging has been created yet. Beginning in 2009, staff from the Chilean Geological Survey (SERNAGEOMIN) started to install a permanent seismic network consisting of nine stations. These nine stations have allowed Chilean seismologists to closely monitor the activity at Llaima, but prevented a high-resolution tomographic imaging study. During the summer of 2015, a temporary seismic network consisting of 26 stations was installed around Llaima. In the work presented here, we analyze continuous waveforms recorded between January and April 2015 from a total of 35 broadband stations (permanent and temporary). This network covers the total area of Llaima and provides the first study aimed at revealing the volcanic structure of Llaima. Moreover this is one of the first attempts to perform high resolution ANT at a Chilean volcano. We will present our tomography results and our first geologic interpretations of Llaima volcanic structure.
NASA Astrophysics Data System (ADS)
Beachly, M. W.; Hooft, E. E.; Toomey, D. R.; Waite, G. P.
2011-12-01
Imaging magmatic systems improves our understanding of magma ascent and storage in the crust and contributes to hazard assessment. Seismic tomography reveals crustal magma bodies as regions of low velocity; however the ability of delay-time tomography to detect small, low-velocity bodies is limited by wavefront healing. Alternatively, crustal magma chambers have been identified from secondary phases including P and S wave reflections and conversions. We use a combination of P-wave tomography and finite-difference waveform modeling to characterize a shallow crustal magma body at Newberry Volcano, central Oregon. Newberry's eruptions are silicic within the central caldera and mafic on its periphery suggesting a central silicic magma storage system. The system may still be active with a recent eruption ~1300 years ago and a drill hole temperature of 256° C at only 932 m depth. A low-velocity anomaly previously imaged at 3-5 km beneath the caldera indicates either a magma body or a fractured pluton. With the goal of detecting secondary arrivals from a magma chamber beneath Newberry Volcano, we deployed a line of densely-spaced (~300 m), three-component seismometers that recorded a shot of opportunity from the High Lava Plains Experiment in 2008. The data record a secondary P-wave arrival originating from beneath the caldera. In addition we combine travel-time data from our 2008 experiment with data collected in the 1980's by the USGS for a P-wave tomography inversion to image velocity structure to 6 km depth. The inversion includes 16 active sources, 322 receivers and 1007 P-wave first arrivals. The tomography results reveal a high-velocity, ring-like anomaly beneath the caldera ring faults to 2 km depth that surrounds a shallow low-velocity region. Beneath 2.5 km high-velocity anomalies are concentrated east and west of the caldera. A central low-velocity body lies below 3 km depth. Tomographic inversions of synthetic data suggest that the central low-velocity body beneath 3 km depth is not well resolved and that, for example, an unrealistically large low-velocity body with a volume up to 72 km3 at 40% velocity reduction (representing 30±7% partial melt) could be consistent with the observed travel-times. We use the tomographically derived velocity structure to construct 2D finite difference models and include synthetic low-velocity bodies in these models to test various magma chamber geometries and melt contents. Waveform modeling identifies the observed secondary phase as a transmitted P-wave formed by delaying and focusing P-wave energy through the low-velocity region. We will further constrain the size and shape of the low-velocity region by comparing arrival times and amplitudes of observed and synthetic primary and secondary phases. Secondary arrivals provide compelling evidence for an active crustal magmatic system beneath Newberry volcano and demonstrate the ability of waveform modeling to constrain the nature of magma bodies beyond the limits of seismic tomography.
Kessler, D A; Barnett, P S; Witt, A; Zeller, M R; Mande, J R; Schultz, W B
1997-02-05
On August 28, 1996, the US Food and Drug Administration (FDA) asserted jurisdiction over cigarettes and smokeless tobacco under the Federal Food, Drug, and Cosmetic Act. Under this Act, a product is a "drug" or "device" subject to FDA jurisdiction if it is "intended to affect the structure or any function of the body." The FDA determined that nicotine in cigarettes and smokeless tobacco does "affect the structure or any function of the body" because nicotine causes addiction and other pharmacological effects. The FDA then determined that these pharmacological effects are "intended" because (1) a scientific consensus has emerged that nicotine is addictive; (2) recent studies have shown that most consumers use cigarettes and smokeless tobacco for pharmacological purposes, including satisfying their addiction to nicotine; and (3) newly disclosed evidence from the tobacco manufacturers has revealed that the manufacturers know that nicotine causes pharmacological effects, including addiction, and design their products to provide pharmacologically active doses of nicotine. The FDA thus concluded that cigarettes and smokeless tobacco are subject to FDA jurisdiction because they contain a "drug," nicotine, and a "device" for delivering this drug to the body.
Pirotte, Nicky; Stevens, An-Sofie; Fraguas, Susanna; Plusquin, Michelle; Van Roten, Andromeda; Van Belleghem, Frank; Paesen, Rik; Ameloot, Marcel; Cebrià, Francesc; Artois, Tom; Smeets, Karen
2015-01-01
Recent research highlighted the impact of ROS as upstream regulators of tissue regeneration. We investigated their role and targeted processes during the regeneration of different body structures using the planarian Schmidtea mediterranea, an organism capable of regenerating its entire body, including its brain. The amputation of head and tail compartments induces a ROS burst at the wound site independently of the orientation. Inhibition of ROS production by diphenyleneiodonium (DPI) or apocynin (APO) causes regeneration defaults at both the anterior and posterior wound sites, resulting in reduced regeneration sites (blastemas) and improper tissue homeostasis. ROS signaling is necessary for early differentiation and inhibition of the ROS burst results in defects on the regeneration of the nervous system and on the patterning process. Stem cell proliferation was not affected, as indicated by histone H3-P immunostaining, fluorescence-activated cell sorting (FACS), in situ hybridization of smedwi-1, and transcript levels of proliferation-related genes. We showed for the first time that ROS modulate both anterior and posterior regeneration in a context where regeneration is not limited to certain body structures. Our results indicate that ROS are key players in neuroregeneration through interference with the differentiation and patterning processes. PMID:26180588
van Ekris, Evi; Chinapaw, Mai J M; Rotteveel, Joost; Altenburg, Teatske M
2018-05-17
Evidence of adverse health effects of TV viewing is stronger than for overall sedentary behaviour in youth. One explanation may be that TV viewing involves less body movement than other sedentary activities. Variations in body movement across sedentary activities are currently unknown, as are age differences in such variations. This study examined body movement differences across various sedentary activities in children and adolescents, assessed by hip-, thigh- and wrist-worn accelerometers, muscle activity and heart rate. Body movement differences between sedentary activities and standing were also examined. Fifty-three children (aged 10⁻12 years) and 37 adolescents (aged 16⁻18 years) performed seven different sedentary activities, a standing activity, and a dancing activity (as a control activity) in a controlled setting. Each activity lasted 10 minutes. Participants wore an Actigraph on their hip and both wrists, an activPAL on their thigh and a heart rate monitor. The muscle activity of weight-bearing leg muscles was measured in a subgroup ( n = 38) by surface electromyography. Variations in body movement across activities were examined using general estimation equations analysis. Children showed significantly more body movement during sedentary activities and standing than adolescents. In both age groups, screen-based sedentary activities involved less body movement than non-screen-based sedentary activities. This may explain the stronger evidence for detrimental health effects of TV viewing while evidence for child sedentary behaviour in general is inconsistent. Differences in body movement during standing and sedentary activities were relatively small. Future research should examine the potential health effects of differences in body movement between screen-based versus non-screen based and standing versus sedentary activities.
Dimensional Model for Estimating Factors influencing Childhood Obesity: Path Analysis Based Modeling
Kheirollahpour, Maryam; Shohaimi, Shamarina
2014-01-01
The main objective of this study is to identify and develop a comprehensive model which estimates and evaluates the overall relations among the factors that lead to weight gain in children by using structural equation modeling. The proposed models in this study explore the connection among the socioeconomic status of the family, parental feeding practice, and physical activity. Six structural models were tested to identify the direct and indirect relationship between the socioeconomic status and parental feeding practice general level of physical activity, and weight status of children. Finally, a comprehensive model was devised to show how these factors relate to each other as well as to the body mass index (BMI) of the children simultaneously. Concerning the methodology of the current study, confirmatory factor analysis (CFA) was applied to reveal the hidden (secondary) effect of socioeconomic factors on feeding practice and ultimately on the weight status of the children and also to determine the degree of model fit. The comprehensive structural model tested in this study suggested that there are significant direct and indirect relationships among variables of interest. Moreover, the results suggest that parental feeding practice and physical activity are mediators in the structural model. PMID:25097878
Deformation-induced structural transition in body-centred cubic molybdenum
Wang, S. J.; Wang, H.; Du, K.; Zhang, W.; Sui, M. L.; Mao, S. X.
2014-01-01
Molybdenum is a refractory metal that is stable in a body-centred cubic structure at all temperatures before melting. Plastic deformation via structural transitions has never been reported for pure molybdenum, while transformation coupled with plasticity is well known for many alloys and ceramics. Here we demonstrate a structural transformation accompanied by shear deformation from an original <001>-oriented body-centred cubic structure to a <110>-oriented face-centred cubic lattice, captured at crack tips during the straining of molybdenum inside a transmission electron microscope at room temperature. The face-centred cubic domains then revert into <111>-oriented body-centred cubic domains, equivalent to a lattice rotation of 54.7°, and ~15.4% tensile strain is reached. The face-centred cubic structure appears to be a well-defined metastable state, as evidenced by scanning transmission electron microscopy and nanodiffraction, the Nishiyama–Wassermann and Kurdjumov–Sachs relationships between the face-centred cubic and body-centred cubic structures and molecular dynamics simulations. Our findings reveal a deformation mechanism for elemental metals under high-stress deformation conditions. PMID:24603655
Promyelocytic Leukemia (Pml) Nuclear Bodies Are Protein Structures That Do Not Accumulate RNA
Boisvert, François-Michel; Hendzel, Michael J.; Bazett-Jones, David P.
2000-01-01
The promyelocytic leukemia (PML) nuclear body (also referred to as ND10, POD, and Kr body) is involved in oncogenesis and viral infection. This subnuclear domain has been reported to be rich in RNA and a site of nascent RNA synthesis, implicating its direct involvement in the regulation of gene expression. We used an analytical transmission electron microscopic method to determine the structure and composition of PML nuclear bodies and the surrounding nucleoplasm. Electron spectroscopic imaging (ESI) demonstrates that the core of the PML nuclear body is a dense, protein-based structure, 250 nm in diameter, which does not contain detectable nucleic acid. Although PML nuclear bodies contain neither chromatin nor nascent RNA, newly synthesized RNA is associated with the periphery of the PML nuclear body, and is found within the chromatin-depleted region of the nucleoplasm immediately surrounding the core of the PML nuclear body. We further show that the RNA does not accumulate in the protein core of the structure. Our results dismiss the hypothesis that the PML nuclear body is a site of transcription, but support the model in which the PML nuclear body may contribute to the formation of a favorable nuclear environment for the expression of specific genes. PMID:10648561
Tectonic constraints on a deep-seated rock slide in weathered crystalline rocks
NASA Astrophysics Data System (ADS)
Borrelli, Luigi; Gullà, Giovanni
2017-08-01
Deep-seated rock slides (DSRSs), recognised as one of the most important mass wasting processes worldwide, involve large areas and cause several consequences in terms of environmental and economic damage; they result from a complex of controlling features and processes. DSRSs are common in Calabria (southern Italy) where the complex geo-structural setting plays a key role in controlling the geometry of the failure surface and its development. This paper describes an integrated multi-disciplinary approach to investigate a DSRS in Palaeozoic high-grade metamorphic rocks of the Sila Massif; it focuses on the definition of the internal structure and the predisposing factors of the Serra di Buda landslide near the town of Acri, which is a paradigm for numerous landslides in this area. An integrated interdisciplinary study based on geological, structural, and geomorphological investigations-including field observations of weathering grade of rocks, minero-petrographic characterisations, geotechnical investigations and, in particular, fifteen years of displacement monitoring-is presented. Stereoscopic analysis of aerial photographs and field observations indicate that the Serra di Buda landslide consists of two distinct compounded bodies: (i) an older and dormant body ( 7 ha) and (ii) a more recent and active body ( 13 ha) that overlies the previous one. The active landslide shows movement linked to a deep-seated translational rock slide (block slide); the velocity scale ranges from slow (1.6 m/year during paroxysmal stages) to extremely slow (< 16 mm/year during stable creep stages). The geological structures and rock weathering have played a key role in the landslide's initiation and further development. Steep slope angles, rugged topography, river deepening and erosion at the toe of the slope are also responsible for the formation of this landslide. In particular, the landslide shows a strongly tectonic constraint: the flanks are bounded by high-angle faults, and the main basal failure surface developed inside an E-W southward-dipping thrust fault zone. The entire active rock mass (total volume of approximately 6 Mm3) slid at one time on a failure surface that dipped < 27°, and the maximum depth, as determined by inclinometer measurements, was approximately 58 m. Petrographic and mineralogical analyses suggest that the rocks in the thrust zones, where the failure surfaces develop, are highly affected by weathering processes that significantly reduce the rock strength and facilitate the extensive failure of the Serra di Buda landslide. Finally, the landslide's internal structure, according to geotechnical investigations and displacement monitoring, is proposed. The proposed approach and the obtained results can be generalised to typify other deep landslides in similar geological settings.
Positive Voltage Hazard to EMU Crewman from Currents through Plasma
NASA Astrophysics Data System (ADS)
Kramer, Leonard; Hamilton, Doug; Mikatarian, Ronald; Thomas, Joseph; Koontz, Steven
2010-09-01
The International Space Station(ISS) in its transit through the ionosphere experiences a variable electrical potential between its bonded structure and the overlying ionospheric plasma. The 160 volt solar arrays on ISS are grounded negative and drive structure to negative floating potential(FP) relative to plasma. This potential is a result of the asymmetric collection properties of currents from ions and electrons moderated by geomagnetic; so called v Å~ B induction distributing an additional 20 volts both positive and negative across ISS’s main structural truss element. Since the space suit or extravehicular mobility unit(EMU) does not protect the crewperson from electrical shock, during extra vehicular activity(EVA) the person is exposed to a hazard from the potential when any of the several metallic suit penetrations come in direct contact with ISS structure. The moisture soaked garment worn by the crewperson and the large interior metal contact areas facilitate currents through the crewperson’s body. There are two hazards; Negative and Positive FP. The Negative hazard is the better known risk created by a shock hazard from arcing of anodized material on the EMU. Negative hazard has been controlled by plasma contactor units(PCU) containing a reserve of Xenon gas which is expelled from ISS. The PCU provide a ground path for the negative charge from the structure to flow to exterior plasma bringing ISS FP closer to zero. The understanding has now emerged that the operation of PCUs to protect the crewmen from negative voltage exposes him to low to moderate positive voltage(≤15V). Positive voltage is also a hazard as it focuses electrons onto exposed metal EMU penetrations completing a circuit from plasma through interior contact with the moist crewman’s body and on to ISS ground through any of several secondary isolated metal penetrations. The resulting direct current from positive voltage exposure is now identified as an electrical shock hazard. This paper describes the model of the EMU with a human body in the circuit that has been used by NASA to evaluate the low positive voltage hazard. The model utilizes the electron collection characterization from on orbit Langmuir probe data as representative of electron collection to a positive charged surface with a wide range of on orbit plasma temperature and density conditions. The data has been unified according to nonlinear theoretical temperature and density variation of the electron saturated probe current collection theory and used as a model for the electron collection at EMU surfaces. Vulnerable paths through the EMU connecting through the crewman’s body have been identified along with electrical impedance of the exposed body parts. The body impedance information is merged with the electron collection characteristics in circuit simulation software known as SPICE. The assessment shows that currents can be on the order of 20 mA for a 15 V exposure and of order 4 mA at 3V. These currents formally violate NASA protocol for electric current exposures. However the human factors associated with subjective consequences of noxious stimuli from low voltage exposure during the stressful conditions of EVA are an area of active inquiry.
Hatfield, Daniel P; Chomitz, Virginia R; Chui, Kenneth K H; Sacheck, Jennifer M; Economos, Christina D
2015-01-01
To describe correlates of physical activity (PA) in structured exercise and structured sports sessions among low-income, overweight children participating in a community-based PA program. A total of 93 children (55% male; 91% Hispanic) aged 8-14 years were included. Participants wore pedometers in a sample of 10 of 59 total sessions offered; mean steps per minute were calculated for structured exercise and sports sessions. Separate multivariable regression models tested associations between steps per minute in exercise and sports sessions and 5 potential correlates: baseline body mass index z-score, aerobic fitness (Progressive Aerobic Cardiorespiratory Endurance Run laps), perceived athletic competence (Harter self-perception profile), sex, and age. Only age (ß = -2.9; P = .02) significantly predicted steps per minute in exercise sessions. Age (ß = -4.3; P = .007), fitness (ß = 0.45; P = .03), and male sex (ß = 8.7; P = .02) significantly predicted steps per minute in sports. In structured exercise and sports, perceived competence may not influence overweight and obese children's PA. However, girls and older or less fit children may engage less actively, especially in sports. Copyright © 2015 Society for Nutrition Education and Behavior. Published by Elsevier Inc. All rights reserved.
Deep Crustal Structure beneath Large Igneous Provinces and the Petrologic Evolution of Flood Basalts
NASA Astrophysics Data System (ADS)
Richards, Mark; Ridley, Victoria
2010-05-01
We present a review of seismological constraints on deep crustal structures underlying large igneous provinces (LIPs), largely from wide-angle seismic refraction surveys. The main purpose of this review is to ascertain whether this seismic evidence is consistent with, or contrary to, petrological models for the genesis of flood basalt lavas. Where high-quality data are available beneath continental flood basalt (CFB) provinces (Emeishan, Columbia River, Deccan, Siberia), high-velocity structures (Vp ~6.9-7.5 km/sec) are typically found immediately overlying the Moho in layers of order ~5-15 km thick. Oceanic plateau (OP) LIPs exhibit similar layers, with a conspicuous layer of very high crustal velocity (Vp~7.7 km/sec) beneath the enormous Ontong-Java plateau. These structures are similar to inferred ultramafic underplating structures seen beneath active hotspots such as Hawaii, the Marqueses, and La Reunion. Petrogenetic models for flood basalt volcanism based on hot plume melting beneath mature lithosphere suggest that these deep seismic structures may consist in large part of cumulate bodies of olivine and clinopyroxene which result from ponding and deep-crustal fractionation of ultramafic primary melts. Such fractionation is necessary to produce basalts with typical MgO contents of ~6-8%, as observed for the vast bulk of observed flood basalts, from primary melts with MgO contents of order ~15-18% (or greater) such as result from hot, deep melting beneath the lithosphere. The volumes of cumulate bodies and ultramafic intrusions in the lowermost crust, often described in the literature as "underplating," are comparable to those of the overlying basaltic formations, also consistent with petrological models. Further definition of the deep seismic structure beneath such prominent LIPs as the Ontong-Java Plateau could place better constraints on flood basalt petrogenesis by determining the relative volumes of ultramafic bodies and basaltic lavas, thereby better constraining the overall process of LIP emplacement.
Deep crustal structure beneath large igneous provinces and the petrologic evolution of flood basalts
NASA Astrophysics Data System (ADS)
Ridley, Victoria A.; Richards, Mark A.
2010-09-01
We present a review of seismological constraints on deep crustal structures underlying large igneous provinces (LIPs), largely from wide-angle seismic refraction surveys. The main purpose of this review is to ascertain whether this seismic evidence is consistent with, or contrary to, petrological models for the genesis of flood basalt lavas. Where high-quality data are available beneath continental flood basalt (CFB) provinces (Emeishan, Columbia River, Deccan, Siberia), high-velocity structures (Vp ˜ 6.9-7.5 km/sec) are typically found immediately overlying the Moho in layers of order ˜5-15 km thick. Oceanic plateau (OP) LIPs exhibit similar layers, with a conspicuous layer of very high crustal velocity (Vp ˜ 7.7 km/sec) beneath the enormous Ontong-Java plateau. These structures are similar to inferred ultramafic underplating structures seen beneath active hot spots such as Hawaii, the Marquesas, and La Reunion. Petrogenetic models for flood basalt volcanism based on hot plume melting beneath mature lithosphere suggest that these deep seismic structures may consist in large part of cumulate bodies of olivine and clinopyroxene which result from ponding and deep-crustal fractionation of ultramafic primary melts. Such fractionation is necessary to produce basalts with typical MgO contents of ˜6-8%, as observed for the vast bulk of observed flood basalts, from primary melts with MgO contents of order ˜15-18% (or greater) such as result from hot, deep melting beneath the lithosphere. The volumes of cumulate bodies and ultramafic intrusions in the lowermost crust, often described in the literature as "underplating," are comparable to those of the overlying basaltic formations, also consistent with petrological models. Further definition of the deep seismic structure beneath such prominent LIPs as the Ontong-Java Plateau could place better constraints on flood basalt petrogenesis by determining the relative volumes of ultramafic bodies and basaltic lavas, thereby better constraining the overall process of LIP emplacement.
Deep Crustal Structure beneath Large Igneous Provinces and the Petrologic Evolution of Flood Basalts
NASA Astrophysics Data System (ADS)
Richards, M. A.; Ridley, V. A.
2010-12-01
We present a review of seismological constraints on deep crustal structures underlying large igneous provinces (LIPs), largely from wide-angle seismic refraction surveys. The main purpose of this review is to ascertain whether this seismic evidence is consistent with, or contrary to, petrological models for the genesis of flood basalt lavas. Where high-quality data are available beneath continental flood basalt (CFB) provinces (Emeishan, Columbia River, Deccan, Siberia), high-velocity structures (Vp ~6.9-7.5 km/sec) are typically found immediately overlying the Moho in layers of order ~5-15 km thick. Oceanic plateau (OP) LIPs exhibit similar layers, with a conspicuous layer of very high crustal velocity (Vp~7.7 km/sec) beneath the enormous Ontong-Java plateau. These structures are similar to inferred ultramafic underplating structures seen beneath active hotspots such as Hawaii, the Marquesas, and La Reunion. Petrogenetic models for flood basalt volcanism based on hot plume melting beneath mature lithosphere suggest that these deep seismic structures may consist in large part of cumulate bodies of olivine and clinopyroxene which result from ponding and deep-crustal fractionation of ultramafic primary melts. Such fractionation is necessary to produce basalts with typical MgO contents of ~6-8%, as observed for the vast bulk of observed flood basalts, from primary melts with MgO contents of order ~15-18% (or greater) such as result from hot, deep melting beneath the lithosphere. The volumes of cumulate bodies and ultramafic intrusions in the lowermost crust, often described in the literature as “underplating,” are comparable to those of the overlying basaltic formations, also consistent with petrological models. Further definition of the deep seismic structure beneath such prominent LIPs as the Ontong-Java Plateau could place better constraints on flood basalt petrogenesis by determining the relative volumes of ultramafic bodies and basaltic lavas, thereby better constraining the overall process of LIP emplacement.
Active Materials Integrated with Actomyosin
NASA Astrophysics Data System (ADS)
Ito, Hiroaki; Makuta, Masahiro; Nishigami, Yukinori; Ichikawa, Masatoshi
2017-10-01
Muscles are the engine of our body, and actomyosin is the engine of a cell. Both muscle and the actomyosin use the same proteins, namely, actin, and myosin, which are the pair of cytoskeleton and motor proteins generating a force to realize deformation. The properties of force generation by actomyosin at a single-molecule level have been studied for many years. Moreover, the active properties of higher-order structures integrated by actomyosin are attracting the attention of researchers. Here, we review the recent progress in the study of reconstituted actomyosin systems in vitro toward real-space models of nonequilibrium systems, collective motion, biological phenomena, and active materials.
The Structure of Conscious Bodily Self-Perception during Full-Body Illusions
Dobricki, Martin; de la Rosa, Stephan
2013-01-01
Previous research suggests that bodily self-identification, bodily self-localization, agency, and the sense of being present in space are critical aspects of conscious full-body self-perception. However, none of the existing studies have investigated the relationship of these aspects to each other, i.e., whether they can be identified to be distinguishable components of the structure of conscious full-body self-perception. Therefore, the objective of the present investigation is to elucidate the structure of conscious full-body self-perception. We performed two studies in which we stroked the back of healthy individuals for three minutes while they watched the back of a distant virtual body being synchronously stroked with a virtual stick. After visuo-tactile stimulation, participants assessed changes in their bodily self-perception with a custom made self-report questionnaire. In the first study, we investigated the structure of conscious full-body self-perception by analyzing the responses to the questionnaire by means of multidimensional scaling combined with cluster analysis. In the second study, we then extended the questionnaire and validated the stability of the structure of conscious full-body self-perception found in the first study within a larger sample of individuals by performing a principle components analysis of the questionnaire responses. The results of the two studies converge in suggesting that the structure of conscious full-body self-perception consists of the following three distinct components: bodily self-identification, space-related self-perception (spatial presence), and agency. PMID:24376765
The structure of conscious bodily self-perception during full-body illusions.
Dobricki, Martin; de la Rosa, Stephan
2013-01-01
Previous research suggests that bodily self-identification, bodily self-localization, agency, and the sense of being present in space are critical aspects of conscious full-body self-perception. However, none of the existing studies have investigated the relationship of these aspects to each other, i.e., whether they can be identified to be distinguishable components of the structure of conscious full-body self-perception. Therefore, the objective of the present investigation is to elucidate the structure of conscious full-body self-perception. We performed two studies in which we stroked the back of healthy individuals for three minutes while they watched the back of a distant virtual body being synchronously stroked with a virtual stick. After visuo-tactile stimulation, participants assessed changes in their bodily self-perception with a custom made self-report questionnaire. In the first study, we investigated the structure of conscious full-body self-perception by analyzing the responses to the questionnaire by means of multidimensional scaling combined with cluster analysis. In the second study, we then extended the questionnaire and validated the stability of the structure of conscious full-body self-perception found in the first study within a larger sample of individuals by performing a principle components analysis of the questionnaire responses. The results of the two studies converge in suggesting that the structure of conscious full-body self-perception consists of the following three distinct components: bodily self-identification, space-related self-perception (spatial presence), and agency.
Body image, BMI, and physical activity in girls and boys aged 14-16 years.
Kantanista, Adam; Osiński, Wiesław; Borowiec, Joanna; Tomczak, Maciej; Król-Zielińska, Magdalena
2015-09-01
The aim of this study was to investigate the relationship between body image, body mass index (BMI), and physical activity in adolescents. The study included 1702 girls and 1547 boys aged 14-16 years. Moderate-to-vigorous physical activity (MVPA) was evaluated by the Physical Activity Screening Measure. Body image was assessed using the Feelings and Attitudes Towards the Body Scale, and participants' BMI was determined based on measured height and weight. Compared to boys, girls reported more negative body image (p<.05). The results of the three-way hierarchical regression revealed that body image was a statistically significant positive predictor of MVPA for adolescents, regardless of BMI. Additionally, body image was a stronger predictor of MVPA in boys than in girls. These findings suggest that body image, rather than BMI, is important in undertaking physical activity in adolescents and should be considered when preparing programs aimed at improving physical activity. Copyright © 2015 Elsevier Ltd. All rights reserved.
Tung, Hsuan; Wei, Sung-Chan; Lo, Huei-Ru; Chao, Yu-Chan
2016-01-01
Baculoviruses have gained popularity as pest control agents and for protein production in insect systems. These viruses are also becoming popular for gene expression, tissue engineering and gene therapy in mammalian systems. Baculovirus infection triggers a heat shock response, and this response is crucial for its successful infection of host insect cells. However, the viral protein(s) or factor(s) that trigger this response are not yet clear. Previously, we revealed that IE2-an early gene product of the baculovirus-could form unique nuclear bodies for the strong trans-activation of various promoters in mammalian cells. Here, we purified IE2 nuclear bodies from Vero E6 cells and investigated the associated proteins by using mass spectrometry. Heat shock proteins (HSPs) were found to be one of the major IE2-associated proteins. Our experiments show that HSPs are greatly induced by IE2 and are crucial for the trans-activation function of IE2. Interestingly, blocking both heat shock protein expression and the proteasome pathway preserved the IE2 protein and its nuclear body structure, and revived its function. These observations reveal that HSPs do not function directly to assist the formation of the nuclear body structure, but may rather protect IE2 from proteasome degradation. Aside from functional studies in mammalian cells, we also show that HSPs were stimulated and required to determine IE2 protein levels, in insect cells infected with baculovirus. Upon inhibiting the expression of heat shock proteins, baculovirus IE2 was substantially suppressed, resulting in a significantly suppressed viral titer. Thus, we demonstrate a unique feature in that IE2 can function in both insect and non-host mammalian cells to stimulate HSPs, which may be associated with IE2 stabilization and lead to the protection of the its strong gene activation function in mammalian cells. On the other hand, during viral infection in insect cells, IE2 could also strongly stimulate HSPs and ultimately affect viral replication.
Düzel, Sandra; Voelkle, Manuel C; Düzel, Emrah; Gerstorf, Denis; Drewelies, Johanna; Steinhagen-Thiessen, Elisabeth; Demuth, Ilja; Lindenberger, Ulman
2016-01-01
A wider subjective time horizon is assumed to be positively associated with longevity and vitality. In particular, a lifestyle with exposure to novel and varied information is considered beneficial for healthy cognitive aging. At present, measures that specifically assess individuals' perceived temporal extension to engage in active lifestyles in the future are not available. We introduce and validate a new self-report measure, the Subjective Health Horizon Questionnaire (SHH-Q). The SHH-Q assesses individuals' future time perspectives in relation to four interrelated but distinct lifestyle dimensions: (1) novelty-oriented exploration (Novelty), (2) bodily fitness (Body), (3) work goals (Work), and (4) goals in life (Life Goals). The present study aims at: (a) validating the hypothesized factor structure of the SHH-Q, according to which the SHH-Q consists of four interrelated but distinct subscales, and (b) testing the hypothesis that the Novelty and Body subscales of the SHH-Q show positive and selective associations with markers of cognition and somatic health, respectively. Using structural equation modeling, we analyzed data from 1,371 healthy individuals (51% women) with a mean age of 70.1 years (SD = 3.6) who participated in the Berlin Aging Study II (BASE-II) and completed the SHH-Q. As predicted, the SHH-Q formed four correlated but distinct subscales: (1) Novelty, (2) Body, (3) Work, and (4) Life Goals. Greater self-reported future novelty orientation was associated with higher current memory performance, and greater future expectations regarding bodily fitness with better current metabolic status. The SHH-Q reliably assesses individual differences in four distinct dimensions of future time perspective. Two of these dimensions, Novelty and Body, show differential associations with cognitive status and somatic health. The SHH-Q may serve as a tool to assess how different facets of future time perspective relate to somatic health, cognition, motivation, and affect, and may help to identify the socioeconomic and individual antecedents, correlates, and consequences of an active lifestyle. © 2016 S. Karger AG, Basel.
[Development and application of artificial vertebral body].
Liu, Jian-Tao; Zhang, Feng; Gao, Zheng-Chao; Niu, Bin-Bin; Li, Yu-Huan; He, Xi-Jing
2017-12-25
Artificial vertebral body has achieved good results in treating spinal tumors, tuberculosis, fracture and other diseases. Currently, artificial vertebral body with variety of kinds and pros and cons, is generally divided into two types: fusion type and movable type. The former according to whether the height could be adjusted and strength of self-stability is divided into three types: support-fixed type, adjust-fixed type and self-fixed type. Whether the height of self-fixed type could be adjusted is dependent on structure of collar thread rotation. The latter is due to mobile device of ball-and-socket joints or hollow structures instead of the disc which retains the activity of the spine to some extent. Materials of artificial vertebral body include metals, ceramics, biomaterials, polymer composites and other materials. Titanium with a dominant role in the metal has developed to the third generation, but there are still defects such as poor surface bioactivity; ceramics with the representative of hydroxyapatite composite, magnetic bioceramics, polycrystalline alumina ceramics and so on, which have the defects of processing complex and uneven mechanical properties; biological material is mainly dominated by xenogeneic bone, which is closest to human bone in structure and properties, but has defects of low toughness and complex production; polymer composites according to biological characteristics in general consists of biodegradable type and non-biodegradable type which are respectively represented by poly-lactide and polyethylene, each with advantages and disadvantages. Although the design and materials of prosthesis have made great progress, it is difficult to fully meet requirements of spinal implants and they need be further optimized. 3D printing technology makes process of the complex structure of prosthesis and individual customization possible and has broad development prospects. However, long production cycles and high cost of defect should be overcome. Although artificial vertebral body has achieved curative effect in treating spinal disease, there were reports of implant loosening or displacement. Combining with evaluation standards not unified, short follow-up time, its exact effect needs further observation. Copyright© 2017 by the China Journal of Orthopaedics and Traumatology Press.
Kargacin, G J; Cooke, P H; Abramson, S B; Fay, F S
1989-04-01
To study the organization of the contractile apparatus in smooth muscle and its behavior during shortening, the movement of dense bodies in contracting saponin skinned, isolated cells was analyzed from digital images collected at fixed time intervals. These cells were optically lucent so that punctate structures, identified immunocytochemically as dense bodies, were visible in them with the phase contrast microscope. Methods were adapted and developed to track the bodies and to study their relative motion. Analysis of their tracks or trajectories indicated that the bodies did not move passively as cells shortened and that nearby bodies often had similar patterns of motion. Analysis of the relative motion of the bodies indicated that some bodies were structurally linked to one another or constrained so that the distance between them remained relatively constant during contraction. Such bodies tended to fall into laterally oriented, semirigid groups found at approximately 6-microns intervals along the cell axis. Other dense bodies moved rapidly toward one another axially during contraction. Such bodies were often members of separate semirigid groups. This suggests that the semirigid groups of dense bodies in smooth muscle cells may provide a framework for the attachment of the contractile structures to the cytoskeleton and the cell surface and indicates that smooth muscle may be more well-ordered than previously thought. The methods described here for the analysis of the motion of intracellular structures should be directly applicable to the study of motion in other cell types.
Kalisvaart, Hanneke; van Broeckhuysen, Saskia; Bühring, Martina; Kool, Marianne B; van Dulmen, Sandra; Geenen, Rinie
2012-01-01
How a patient is connected with one's body is core to rehabilitation of somatoform disorder but a common model to describe body-relatedness is missing. The aim of our study was to investigate the components and hierarchical structure of body-relatedness as perceived by patients with severe somatoform disorder and their therapists. Interviews with patients and therapists yielded statements about components of body-relatedness. Patients and therapists individually sorted these statements according to similarity. Hierarchical cluster analysis was applied to these sortings. Analysis of variance was used to compare the perceived importance of the statements between patients and therapists. The hierarchical structure included 71 characteristics of body-relatedness. It consisted of three levels with eight clusters at the lowest level: 1) understanding, 2) acceptance, 3) adjustment, 4) respect for the body, 5) regulation, 6) confidence, 7) self-esteem, and 8) autonomy. The cluster 'understanding' was considered most important by patients and therapists. Patients valued 'regulating the body' more than therapists. According to patients with somatoform disorders and their therapists, body-relatedness includes awareness of the body and self by understanding, accepting and adjusting to bodily signals, by respecting and regulating the body, by confiding and esteeming oneself and by being autonomous. This definition and structure of body-relatedness may help professionals to improve interdisciplinary communication, assessment, and treatment, and it may help patients to better understand their symptoms and treatment. (German language abstract, Abstract S1; Spanish language abstract, Abstract S2).
Body mass scaling of passive oxygen diffusion in endotherms and ectotherms
Gillooly, James F.; Gomez, Juan Pablo; Mavrodiev, Evgeny V.; Rong, Yue; McLamore, Eric S.
2016-01-01
The area and thickness of respiratory surfaces, and the constraints they impose on passive oxygen diffusion, have been linked to differences in oxygen consumption rates and/or aerobic activity levels in vertebrates. However, it remains unclear how respiratory surfaces and associated diffusion rates vary with body mass across vertebrates, particularly in relation to the body mass scaling of oxygen consumption rates. Here we address these issues by first quantifying the body mass dependence of respiratory surface area and respiratory barrier thickness for a diversity of endotherms (birds and mammals) and ectotherms (fishes, amphibians, and reptiles). Based on these findings, we then use Fick’s law to predict the body mass scaling of oxygen diffusion for each group. Finally, we compare the predicted body mass dependence of oxygen diffusion to that of oxygen consumption in endotherms and ectotherms. We find that the slopes and intercepts of the relationships describing the body mass dependence of passive oxygen diffusion in these two groups are statistically indistinguishable from those describing the body mass dependence of oxygen consumption. Thus, the area and thickness of respiratory surfaces combine to match oxygen diffusion capacity to oxygen consumption rates in both air- and water-breathing vertebrates. In particular, the substantially lower oxygen consumption rates of ectotherms of a given body mass relative to those of endotherms correspond to differences in oxygen diffusion capacity. These results provide insights into the long-standing effort to understand the structural attributes of organisms that underlie the body mass scaling of oxygen consumption. PMID:27118837
Body mass scaling of passive oxygen diffusion in endotherms and ectotherms.
Gillooly, James F; Gomez, Juan Pablo; Mavrodiev, Evgeny V; Rong, Yue; McLamore, Eric S
2016-05-10
The area and thickness of respiratory surfaces, and the constraints they impose on passive oxygen diffusion, have been linked to differences in oxygen consumption rates and/or aerobic activity levels in vertebrates. However, it remains unclear how respiratory surfaces and associated diffusion rates vary with body mass across vertebrates, particularly in relation to the body mass scaling of oxygen consumption rates. Here we address these issues by first quantifying the body mass dependence of respiratory surface area and respiratory barrier thickness for a diversity of endotherms (birds and mammals) and ectotherms (fishes, amphibians, and reptiles). Based on these findings, we then use Fick's law to predict the body mass scaling of oxygen diffusion for each group. Finally, we compare the predicted body mass dependence of oxygen diffusion to that of oxygen consumption in endotherms and ectotherms. We find that the slopes and intercepts of the relationships describing the body mass dependence of passive oxygen diffusion in these two groups are statistically indistinguishable from those describing the body mass dependence of oxygen consumption. Thus, the area and thickness of respiratory surfaces combine to match oxygen diffusion capacity to oxygen consumption rates in both air- and water-breathing vertebrates. In particular, the substantially lower oxygen consumption rates of ectotherms of a given body mass relative to those of endotherms correspond to differences in oxygen diffusion capacity. These results provide insights into the long-standing effort to understand the structural attributes of organisms that underlie the body mass scaling of oxygen consumption.
Nogueira, Julia Aparecida Devide; Macedo da Costa, Teresa Helena
2009-01-01
Body weight and composition are determined by genotype, environment, and energy balance. Physical activity or sedentary behavior have different associations with body weight, fat mass, and fat-free mass, a relationship that is not clear in adolescents. The aim of this study was to test the associations between gender, physical activity, sedentary behavior, and body composition in physically active adolescents. Weight, height, and skinfold thickness were measured in 326 physically active boys and girls age 11 to 15 years. All subjects answered a questionnaire assessing their usual daily activities for the last month. Time spent on each activity was used to estimate the physical activity level (PAL). PAL was associated with body composition after adjustment for age and maturation, with differences between genders. For boys, PAL was positively and significantly associated with body mass index (BMI) and fat-free mass index (beta=0.14 and 0.15, respectively). For girls, PAL was negatively and significantly associated with BMI and fat mass index (beta=-0.11 and -0.75, respectively). Sedentary behavior, expressed by hours of TV, videogame, and computer use, was not associated with any body-composition outcome for either gender. The accumulated amount of physical activity, but not of sedentary behavior, was related to body composition in active adolescents.
Passive colloids work together to become Active
NASA Astrophysics Data System (ADS)
Kandula, Hima Nagamanasa; Wang, Wei; Zhang, Jie; Wu, Huanxin; Han, Ming; Luijten, Erik; Granick, Steve
In recent years there is growing body of research to design self-propelled colloids to gain insights into non-equilibrium systems including living matter. While most active colloids developed hitherto entail prefabrication of Janus colloids and possess single fixed active site, we present one simple system where active colloids are formed in-situ naturally with multiple active sites and are reversible as well as reconfigurable. A binary mixture of Brownian colloids which have opposite polarizations when subjected to an AC electric field spontaneously assemble into clusters which are propelled by asymmetric induced charge electro osmosis. We find that tuning the relative sizes of the two species allows for the control over the number of active sites. More interestingly, the patches are dynamic enabling reconfiguration of the active cluster. Consequently, the clusters are active not only in motion but also in their structure.
An Evaluation of Select Physical Activity Exercise Classes on Bone Metabolism.
Stone, Tori M; Wingo, Jonathan E; Young, John C; Navalta, James W
2018-01-01
Weight-bearing physical activity can optimize bone mass early in life and prevent the development of osteoporosis. However, less is known about the potential benefits of non-weight-bearing activities. The purpose of this study was to assess the efficacy of structured physical activity classes on bone metabolism. Twenty-eight premenopausal women, aged 18-35 years who were either enrolled in a yoga class (n=14) or cardio-kickboxing class (n=14) voluntarily consented to participate. Both classes were introductory classes meeting twice per week for 50 min per session for 12 weeks. Anteroposterior spine (L1-L4), hip (dual femur), and total body bone mineral density (BMD) was measured in both groups pre and post intervention using dual-energy X-ray absorptiometry (DXA). Pre and post blood samples were drawn for measurement of serum osteocalcin (OC) by enzyme-linked immunosorbent assay (ELISA) in each group. Baseline subject characteristics including age, height, weight, body fat percentage, and lean body mass did not differ between groups. BMD levels did not increase but were held stable over the course of the intervention. Yoga increased OC by 68% (P < 0.001) and cardio-kickboxing increased OC by 67% (P < 0.001) over the course of the 12-week classes. While 12 weeks of yoga and cardio-kickboxing were insufficient to induce BMD changes, OC levels reflect the bone formation process was initiated, but not yet complete. Increased OC levels suggest the selected physical activity classes provided enough of a stimulus to precipitate a future response of bone growth, assuming exercise training remains constant.
Somm, Emmanuel; Guérardel, Audrey; Maouche, Kamel; Toulotte, Audrey; Veyrat-Durebex, Christelle; Rohner-Jeanrenaud, Françoise; Maskos, Uwe; Hüppi, Petra S; Schwitzgebel, Valérie M
2014-05-01
Nicotinic acetylcholine receptors (nAChRs) are pentameric ligand-gated cation channels well characterized in neuronal signal transmission. Moreover, recent studies have revealed nAChR expression in nonneuronal cell types throughout the body, including tissues involved in metabolism. In the present study, we screen gene expression of nAChR subunits in pancreatic islets and adipose tissues. Mice pancreatic islets present predominant expression of α7 and β2 nAChR subunits but at a lower level than in central structures. Characterization of glucose and energy homeostasis in α7β2nAChR(-/-) mice revealed no major defect in insulin secretion and sensitivity but decreased glycemia apparently unrelated to gluconeogenesis or glycogenolysis. α7β2nAChR(-/-) mice presented an increase in lean and bone body mass and a decrease in fat storage with normal body weight. These observations were associated with elevated spontaneous physical activity in α7β2nAChR(-/-) mice, mainly due to elevation in fine vertical (rearing) activity while their horizontal (ambulatory) activity remained unchanged. In contrast to α7nAChR(-/-) mice presenting glucose intolerance and insulin resistance associated to excessive inflammation of adipose tissue, the present metabolic phenotyping of α7β2nAChR(-/-) mice revealed a metabolic improvement possibly linked to the increase in spontaneous physical activity related to central β2nAChR deficiency. Copyright © 2014 Elsevier Inc. All rights reserved.
Study on the frame body structure of micro-electric vehicle based on frontal crash safety
NASA Astrophysics Data System (ADS)
Lu, Yaoquan; Zhang, Sanchuan
2017-08-01
In order to research the safety of skeleton type body of micro-electric vehicles in the frontal collision, the method of finite element modeling and simulation are used to analyze frame body that is fitted with the energy absorption structure, the simulation results show that On the basis of absorbing the most energy and the least of body acceleration, the absorbent structure parameters can be optimized, the optimized parameters are length 180 mm, wall thickness 3 mm and materials Q460.
Molina-García, Javier; Castillo, Isabel; Pablos, Carlos; Queralt, Ana
2009-04-01
The objective of this cross-sectional study was to analyze the relation of Body Mass Index with body fat mass while taking into account the amount of leisure-time physical activity for 299 male university students. Body fat mass was measured by bioelectrical impedance analysis. An estimation of energy expenditure in leisure-time physical activity in metabolic equivalents (METs) was obtained so participants were divided into six activity groups by percentile: no physical activity by the first group and participants physically active were divided into five groups by percentiles: < 25%, 26-50%, 51-75%, 76-90%, and 91-100%. Correlations of Body Mass Index with body fat mass were strong in different groups-values ranged from .76 to .85, except for the > 90% group.
Distributed digital signal processors for multi-body structures
NASA Technical Reports Server (NTRS)
Lee, Gordon K.
1990-01-01
Several digital filter designs were investigated which may be used to process sensor data from large space structures and to design digital hardware to implement the distributed signal processing architecture. Several experimental tests articles are available at NASA Langley Research Center to evaluate these designs. A summary of some of the digital filter designs is presented, an evaluation of their characteristics relative to control design is discussed, and candidate hardware microcontroller/microcomputer components are given. Future activities include software evaluation of the digital filter designs and actual hardware inplementation of some of the signal processor algorithms on an experimental testbed at NASA Langley.
Body size satisfaction and physical activity levels among men and women.
Kruger, Judy; Lee, Chong-Do; Ainsworth, Barbara E; Macera, Caroline A
2008-08-01
Body size satisfaction may be an important factor associated with physical activity. We analyzed data from the 2002 National Physical Activity and Weight Loss Survey (NPAWLS), a population-based cross-sectional telephone survey of US adults. Multiple logistic regression models were used to examine the association of body size satisfaction on being regularly active. Participants were aged > or =18 years with complete data on weight, race/ethnicity, physical activity level, and body size satisfaction (n = 10,021). More than half of men (55.8%) and women (53.3%) who reported being very satisfied with the body size were regularly active. After adjustment for covariates, participants who reported being somewhat or not satisfied with their body size had a 13 and 44% lower odds of being regularly active, respectively, compared with those very satisfied with their body size. When stratified by race/ethnicity, this association remained in whites (P for trend <0.001), but became weaker and nonsignificant in blacks, Hispanics, or other racial/ethnic groups. Irrespective of actual weight, those who were satisfied with their body size were more likely to engage in regular physical activity than those less satisfied. Further research is needed to explore predictors of physical activity to reduce health disparities.
BODY DISSATISFACTION, PHYSICAL ACTIVITY, AND SEDENTARY BEHAVIOR IN FEMALE ADOLESCENTS.
Miranda, Valter Paulo Neves; Morais, Núbia Sousa de; Faria, Eliane Rodrigues de; Amorim, Paulo Roberto Dos Santos; Marins, João Carlos Bouzas; Franceschini, Sylvia do Carmo Castro; Teixeira, Paula Costa; Priore, Silvia Eloiza
2018-05-21
To evaluate the association of body image with physical activity level, body composition, and sedentary behavior (SB) of female adolescents. Exploratory cross-sectional study conducted with 120 female adolescents aged between 14-19 years, from the city of Viçosa, Minas Gerais, Southeast Brazil. Body image was evaluated with a Body Silhouette Scale (BSS) and a Body Shape Questionnaire (BSQ). Weight, height, and waist circumference values were analyzed, as well as the waist-to-height ratio and body fat percentage. The physical activity level (PAL) was assessed by 24-hour Physical Activity Recall and SB by screen time, that is, time spent in front of a TV, playing video game, on the computer and using tablets, and, separately, the cell phone time. Mean age was 16.5±1.5 years, and most adolescents were eutrophic (77.6%), sedentary/low PAL (84.2%), with high screen time (85.2%) and cell phone time (58.7%). Body dissatisfaction was stated in 40.6% of BSQ and 45.8% of BSS evaluations. Body distortion was identified in 52.9% of participants. All body composition measures, along with cell phone time and PAL, were associated with body dissatisfaction, the more active adolescents presenting higher levels of dissatisfaction. This study concluded that female adolescents with higher cell phone time also present higher body dissatisfaction, as well as the most physically active ones. All body composition measurements were associated with body dissatisfaction, mainly body mass index, waist circumference, and waist-to-height ratio.
Russell body apical periodontitis: an unusual case report.
Dos Santos, Jean Nunes; Ramos, Eduardo Antônio Gonçalves; Gurgel, Clarissa Araújo Silva; Barros, Adna Conceição; de Freitas, André Carlos; Crusoé-Rebello, Iêda Maria
2008-12-01
Russell bodies (RBs) changes in chronic apical lesions have rarely been reported in the literature. We describe a case of a periapical lesion abundantly and extensively composed of RB. Microscopic examination showed accumulation of plasma cells containing globular, spherical, polygonal, and eosinophilic structures against fibrous connective tissue. Initial diagnostic considerations based on a smaller magnification included hypersecretory plasmocytoma, although there was no evidence of infiltrative growth, mitotic activity, nuclear atypia, or cellular pleomorphism. Then, a panel of immunohistochemical markers was applied and the cells showed positivity with both kappa and lambda chains demonstrating their polyclonal origin. The extensive accumulation of RBs involving the periapical region represents an unreported and significant histologic change, as it was mimicking a malignant neoplasm.
Parkhomenko, V M; Kolpakov, I Ie; Studenykina, O M; Briuzhina, T S; Artemchuk, H P
2012-01-01
An evaluation of correlation between fatty acid composition in pulmonary surfactant lipids and 137Cs content in the body of children, residents of radiation-contaminated areas revealed that a increased incorporation of 137Cs promotes a disruption of fatty acid balance towards an increase in the saturation of the surfactant lipid complex, a destruction of lecithin fraction of surfactant, a decrease in antioxidant properties of surfactant system, an activation of lipid peroxidation processes in the respiratory area of lung by lipoxygenase type, a disturbance of polyunsaturated fatty acid metabolism on the stage of bioregulators-eicosanoid formation.
Eigenspace techniques for active flutter suppression
NASA Technical Reports Server (NTRS)
Garrard, W. L.
1982-01-01
Mathematical models to be used in the control system design were developed. A computer program, which takes aerodynamic and structural data for the ARW-2 aircraft and converts these data into state space models suitable for use in modern control synthesis procedures, was developed. Reduced order models of inboard and outboard control surface actuator dynamics and a second order vertical wind gust model were developed. An analysis of the rigid body motion of the ARW-2 was conducted. The deletion of the aerodynamic lag states in the rigid body modes resulted in more accurate values for the eigenvalues associated with the plunge and pitch modes than were obtainable if the lag states were retained.
NASA Technical Reports Server (NTRS)
Bodley, C. S.; Devers, A. D.; Park, A. C.; Frisch, H. P.
1978-01-01
A theoretical development and associated digital computer program system for the dynamic simulation and stability analysis of passive and actively controlled spacecraft are presented. The dynamic system (spacecraft) is modeled as an assembly of rigid and/or flexible bodies not necessarily in a topological tree configuration. The computer program system is used to investigate total system dynamic characteristics, including interaction effects between rigid and/or flexible bodies, control systems, and a wide range of environmental loadings. In addition, the program system is used for designing attitude control systems and for evaluating total dynamic system performance, including time domain response and frequency domain stability analyses.
Subsurface Structure Interpretation Beneath of Mt. Pandan Based on Gravity Data
NASA Astrophysics Data System (ADS)
Santoso, D.; Wahyudi, E. J.; Alawiyah, S.; Nugraha, A. D.; Widiyantoro, S.; Kadir, W. G. A.; Supendi, P.; Wiyono, S.; Zulkafriza
2017-04-01
Mt. Pandan is one of the volcano that state as dormant volcano. On the other hand, Smyth et al. (2008) defined that Mt. Pandan is an active volcano. This volcano is apart a volcanic chain in Java island which is trending east-west along the island. This volcanic chain known as present day volcanic arc. Mt. Wilis is located in the south and it relatively much bigger compare to Mt. Pandan. There were earthquakes activity experienced in the surrounding Mt. Pandan area in the past several years. This event is interesting, because Mt. Pandan is not classify as the active volcano according to the list of volcanoes in Indonesia. On the otherhand Smyth et. al. (2008) mentioned that G. Pandan as modern volcanic which is located in Kendeng Zone of East Java. Gravity measurement around Mt. Pandan area was done in order to understand subsurface structure of Mt. Pandan. Gravity interpretation results shows that there is a low density structure beneath Mt. Pandan. It could be interpreted as existing of magma body below the surface. Some indication of submagmatic activities were found as hot spring and warm ground. Therefore it could be concluded that there is a possibility of magmatic activity below the Mt. Pandan.
Chacon-Cabrera, Alba; Mateu-Jimenez, Mercè; Langohr, Klaus; Fermoselle, Clara; García-Arumí, Elena; Andreu, Antoni L; Yelamos, Jose; Barreiro, Esther
2017-12-01
Strategies to treat cachexia are still at its infancy. Enhanced muscle protein breakdown and ubiquitin-proteasome system are common features of cachexia associated with chronic conditions including lung cancer (LC). Poly(ADP-ribose) polymerases (PARP), which play a major role in chromatin structure regulation, also underlie maintenance of muscle metabolism and body composition. We hypothesized that protein catabolism, proteolytic markers, muscle fiber phenotype, and muscle anabolism may improve in respiratory and limb muscles of LC-cachectic Parp-1-deficient (Parp-1 -/- ) and Parp-2 -/- mice. In diaphragm and gastrocnemius of LC (LP07 adenocarcinoma) bearing mice (wild type, Parp-1 -/- , and Parp-2 -/- ), PARP activity (ADP-ribose polymers, pADPr), redox balance, muscle fiber phenotype, apoptotic nuclei, tyrosine release, protein ubiquitination, muscle-specific E3 ligases, NF-κB signaling pathway, markers of muscle anabolism (Akt, mTOR, p70S6K, and mitochondrial DNA) were evaluated along with body and muscle weights, and limb muscle force. Compared to wild type cachectic animals, in both respiratory and limb muscles of Parp-1 -/- and Parp-2 -/- cachectic mice: cancer induced-muscle wasting characterized by increased PARP activity, protein oxidation, tyrosine release, and ubiquitin-proteasome system (total protein ubiquitination, atrogin-1, and 20S proteasome C8 subunit) were blunted, the reduction in contractile myosin and atrophy of the fibers was attenuated, while no effects were seen in other structural features (inflammatory cells, internal or apoptotic nuclei), and markers of muscle anabolism partly improved. Activation of either PARP-1 or -2 is likely to play a role in muscle protein catabolism via oxidative stress, NF-κB signaling, and enhanced proteasomal degradation in cancer-induced cachexia. Therapeutic potential of PARP activity inhibition deserves attention. © 2017 Wiley Periodicals, Inc.
Junca, Pierre; Sandoz, Jean-Christophe
2015-01-01
The recent development of the olfactory conditioning of the sting extension response (SER) has provided new insights into the mechanisms of aversive learning in honeybees. Until now, very little information has been gained concerning US detection and perception. In the initial version of SER conditioning, bees learned to associate an odor CS with an electric shock US. Recently, we proposed a modified version of SER conditioning, in which thermal stimulation with a heated probe is used as US. This procedure has the advantage of allowing topical US applications virtually everywhere on the honeybee body. In this study, we made use of this possibility and mapped thermal responsiveness on the honeybee body, by measuring workers' SER after applying heat on 41 different structures. We then show that bees can learn the CS-US association even when the heat US is applied on body structures that are not prominent sensory organs, here the vertex (back of the head) and the ventral abdomen. Next, we used a neuropharmalogical approach to evaluate the potential role of a recently described Transient Receptor Potential (TRP) channel, HsTRPA, on peripheral heat detection by bees. First, we applied HsTRPA activators to assess if such activation is sufficient for triggering SER. Second, we injected HsTRPA inhibitors to ask whether interfering with this TRP channel affects SER triggered by heat. These experiments suggest that HsTRPA may be involved in heat detection by bees, and represent a potential peripheral detection system in thermal SER conditioning. PMID:26635613
Physical inactivity, TV-watching hours and body composition in children and adolescents.
Rivera, Ivan Romero; Silva, Maria Alayde Mendonça da; Silva, Renata D'Andrada Tenório Almeida; Oliveira, Bruno Almeida Viana de; Carvalho, Antonio Carlos Camargo
2010-08-01
Physical inactivity is a predisposing factor to the onset/worsening of other cardiovascular risk factors, particularly obesity. To determine physical activity level (PAL) and daily number of hours of TV (HTV) and the association and/or correlation of these variables with age, gender, economic class, public/private school, overweight and obesity in children and adolescents. Cross sectional study, school-based population, public and private education, primary and secondary education. The sample was calculated based on the minimum expected prevalence of several variables, including physical inactivity. Cluster sampling. structured questionnaire, including Physical Activity for Older Children Questionnaire (PAQ-C) measurements of weight, height, body mass index (BMI) and triceps skinfold (TSF). Chi-square, linear correlation. Among the 1,253 students, averaging 12.4 ± 2.9 years old, of which 549 were male, there was a prevalence of inactivity in 93.5%, more commonly found in female adolescents and there was no association between PAL and excess weight or body fat, soccer and dance were the most frequent activities in boys and girls, respectively; 60% of students did not have physical education classes. Average and median HTV were respectively 3.6 and 3 hours; there was a significant association between HTV and obesity and significant correlation between PAL and age (negative) and between BMI and TSF (positive). Physical inactivity is present in 93.5% of children and adolescents from Maceió. It is more commonly found among teenagers and females, with no association or correlation of this variable with excess weight or body fat; obesity was associated with ≥ 3 HTV.
Olmedilla, A; de Dios Alché, J; Rodríguez-García, M I
1997-10-01
We studied the ultrastructural evolution of the nucleolus during meiotic prophase in olive microsporocytes. During prophase, nuclear bodies morphologically similar to coiled bodies were observed. The nucleic acid composition of these bodies was examined in microsporocytes using electron microscopic techniques with EDTA preferential ribonucleoprotein staining, anti-DNA immunolabeling, the in situ terminal deoxynucleotidyl transferase-immunogold technique, and in situ hybridization with 18S rRNA and U3 snoRNA digoxigenin-labeled probes. The ultrastructural appearance of the meiocyte nucleolus indicated a low level of activity from the early prophase stage: the granular component was practically absent and nucleoli were constituted almost exclusively by dense fibrillar component containing large fibrillar centers that lacked chromatin inclusions. However, the appearance of reactivation vacuoles in the nucleolus during zygotene and high levels of rRNA in the nucleoplasm during pachytene support the presence of a peak in rRNA synthesis. Our results also show that the nuclear bodies that appear during prophase I are ribonucleoproteinaceous in nature; neither DNA nor ribosomal RNA were detected. The presence of U3 snoRNA, as shown by in situ hybridization in nuclear bodies from plant material, is also evidence that these structures are coiled bodies. We suggest that coiled bodies are involved not only in pre- and post-splicing events but also in the storage, transport or recycling of rRNA maturation elements.
Kibanov, Mikhail V; Egorova, Ksenia S; Ryazansky, Sergei S; Sokolova, Olesia A; Kotov, Alexei A; Olenkina, Oxana M; Stolyarenko, Anastasia D; Gvozdev, Vladimir A; Olenina, Ludmila V
2011-09-01
Proteins of the PIWI subfamily Aub and AGO3 associated with the germline-specific perinuclear granules (nuage) are involved in the silencing of retrotransposons and other selfish repetitive elements in the Drosophila genome. PIWI proteins and their 25- to 30-nt PIWI-interacting RNA (piRNAs) are considered as key participants of the piRNA pathway. Using immunostaining, we found a large, nuage-associated organelle in the testes, the piNG-body (piRNA nuage giant body), which was significantly more massive than an ordinary nuage granule. This body contains known ovarian nuage proteins, including Vasa, Aub, AGO3, Tud, Spn-E, Bel, Squ, and Cuff, as well as AGO1, the key component of the microRNA pathway. piNG-bodies emerge at the primary spermatocyte stage of spermatogenesis during the period of active transcription. Aub, Vasa, and Tud are located at the periphery of the piNG-body, whereas AGO3 is found in its core. Mutational analysis revealed that Vasa, Aub, and AGO3 were crucial for both the maintenance of the piNG-body structure and the silencing of selfish Stellate repeats. The piNG-body destruction caused by csul mutations that abolish specific posttranslational symmetrical arginine methylation of PIWI proteins is accompanied by strong derepression of Stellate genes known to be silenced via the piRNA pathway.
Seabra, A C; Seabra, A F; Brito, J; Krustrup, P; Hansen, P R; Mota, J; Rebelo, A; Rêgo, C; Malina, R M
2014-08-01
The effects of a 5-month intervention of football instruction and practice on the perceived psychological status and body composition of overweight boys were examined. Twelve boys (8-12 years; body mass index ≥ 85th percentile) participated in a structured 5-month football program, consisting of four weekly 60-90 min sessions with mean heart rate > 80%HRmax [football group (FG)]. A control group (CG) included eight boys of equivalent age from an obesity clinic located in the same area as the school. Both groups participated in two sessions of 45-90-min physical education per week at school. Indicators of perceived psychological status included body image, self-esteem, attraction to participation in physical activity, and perceived physical competence measured with standardized questionnaires. Body composition was evaluated using dual-energy X-ray absorptiometry. From baseline through 5 months, FG improved (P < 0.05) in all indicators of psychological status (%Δ = +11.7 to +29.2%) compared with CG (%Δ = -32.1 to +0.5%). Changes in percentage body fat and lean body mass, however, did not differ between FG and CG. The findings suggest that a 5-month football intervention program was effective in improving the psychological status of overweight boys but did not significantly alter body composition. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Idei, Masahiko; Osada, Keigo; Sato, Shinya; Nakayama, Takeshi; Nagumo, Tamotsu; Mann, David G
2013-08-01
The most complete account to date of the ultrastructure of flagellate cells in diatoms is given for the sperm of Thalassiosira lacustris and Melosira moniliformis var. octogona, based on serial sections. The sperm are uniflagellate, with no trace of a second basal body, and possess a 9 + 0 axoneme. The significance of the 9 + 0 configuration is discussed: lack of the central pair microtubules and radial spokes does not compromise the mastigoneme-bearing flagellum's capacity to perform planar beats and thrust reversal and may perhaps be related to sensory/secretory function of the sperm flagellum during plasmogamy. The basal bodies of diatoms are confirmed to contain doublets rather than triplets, which may correlate with the absence of some centriolar proteins found in most cells producing active flagella. Whereas Melosira possesses a normal cartwheel structure in the long basal body, no such structure is present in Thalassiosira, which instead possesses 'intercalary fibres' linking the basal body doublets. No transitional helices or transitional plates are present in either species studied. Cones of microtubules are associated with the basal body and partially enclose the nucleus in M. moniliformis and T. lacustris. They do not appear to be true microtubular roots and may arise through transformation of the meiosis II spindle. A close association between cone microtubules and tubules containing mastigonemes may indicate a function in intracellular mastigoneme transport. No correlation can yet be detected between methods of spermatogenesis and phylogeny in diatoms, contrary to previous suggestions.
ERIC Educational Resources Information Center
Pratt, Charlotte; Webber, Larry S.; Baggett, Chris D.; Ward, Dianne; Pate, Russell R.; Murray, David; Lohman, Timothy; Lytle, Leslie; Elder, John P.
2008-01-01
This study describes the relationships between sedentary activity and body composition in 1,458 sixth-grade girls from 36 middle schools across the United States. Multivariate associations between sedentary activity and body composition were examined with regression analyses using general linear mixed models. Mean age, body mass index, and…
About mechanisms of tetonic activity of the satellites
NASA Astrophysics Data System (ADS)
Barkin, Yu. V.
2003-04-01
ABOUT MECHANISMS OF TECTONIC ACTIVITY OF THE SATELLITES Yu.V. Barkin Sternberg Astronomical Institute, Moscow, Russia, barkin@sai.msu.ru Due to attraction of the central planet and others external bodies satellite is subjected by tidal and non-tidal deformations. Elastic energy is changed in dependence from mutual position and motion of celestial bodies and as result the tensional state of satellite and its tectonic (endogenous) activity also is changed. Satellites of the planets have the definite shell’s structure and due to own rotation these shells are characterized by different oblatenesses. Gravitational interaction of the satellite and its mother planet generates big additional mechanical forces (and moments) between the neighboring non-spherical shells of the satellite (mantle, core and crust). These forces and moments are cyclic functions of time, which are changed in the different time-scales. They generate corresponding cyclic perturbations of the tensional state of the shells, their deformations, small relative transnational displacements and slow rotation of the shells and others. In geological period of time it leads to a fundamental tectonic reconstruction of the body. Definite contribution to discussed phenomena are caused by classical tidal mechanism. of planet-satellite interaction. But in this report we discuss in first the new mechanisms of endogenous activity of celestial bodies. They are connected with differential gravitational attraction of non-spherical satellite shells by the external celestial bodies which leads: 1) to small relative rotation (nutations) of the shells; 2) to small relative translational motions of the shells (displacements of their center of mass); 3) to relative displacements and rotations of the shells due to eccentricity of their center of mass positions; 4) to viscous elastic deformations of the shells and oth. (Barkin, 2001). For higher evaluations of the power of satellite endogenous activities were obtained analytical formulae. Obtained theoretical evaluations of the force and power characteristics are in good agreement with observational date and in particular they explain some from the well known problems of planetology. The following phenomena obtain an explanation: 1. Higher endogenous activity of Io; 2. Europe crack systems; 3. high endogenous activity of Ganimede, Titan, Miranda, Enceladus, Ariel. Well known relations of tectonic activity between satellites: Ariel and Umbriel, Reiha and Diona, Titania and Oberon have been explained in terms of numerical values of force and energy characteristics. Conclusion about high endogenous activity of Titan also presents important interest. The work was accepted and financed by RFBR grant N 02-05-64176 and by grant SAB2000-0235 of Ministry of Education of Spain (Secretaria de Estado de Educacion y Universidades).
Why Muscle is an Efficient Shock Absorber
Kopylova, Galina V.; Fernandez, Manuel; Narayanan, Theyencheri
2014-01-01
Skeletal muscles power body movement by converting free energy of ATP hydrolysis into mechanical work. During the landing phase of running or jumping some activated skeletal muscles are subjected to stretch. Upon stretch they absorb body energy quickly and effectively thus protecting joints and bones from impact damage. This is achieved because during lengthening, skeletal muscle bears higher force and has higher instantaneous stiffness than during isometric contraction, and yet consumes very little ATP. We wish to understand how the actomyosin molecules change their structure and interaction to implement these physiologically useful mechanical and thermodynamical properties. We monitored changes in the low angle x-ray diffraction pattern of rabbit skeletal muscle fibers during ramp stretch compared to those during isometric contraction at physiological temperature using synchrotron radiation. The intensities of the off-meridional layer lines and fine interference structure of the meridional M3 myosin x-ray reflection were resolved. Mechanical and structural data show that upon stretch the fraction of actin-bound myosin heads is higher than during isometric contraction. On the other hand, the intensities of the actin layer lines are lower than during isometric contraction. Taken together, these results suggest that during stretch, a significant fraction of actin-bound heads is bound non-stereo-specifically, i.e. they are disordered azimuthally although stiff axially. As the strong or stereo-specific myosin binding to actin is necessary for actin activation of the myosin ATPase, this finding explains the low metabolic cost of energy absorption by muscle during the landing phase of locomotion. PMID:24465673
NASA Technical Reports Server (NTRS)
Gray, N. C.; Senseny, R. M.; Bolton, P. N.
1980-01-01
A fire extinguishing apparatus for delivering an extinguishing agent through a tarrier surrounding a structure into its interior includes an elongated tubular nozzle body which has a pointed penetrating head carried on one end of the tubular body. A source of extinguishing agent coupled to the opposite end of the tubular body is fed through and passes through passages adjacent the head for delivering the extinguishing agent to the interior of the structure. A slidable mass is carried on the tubular body on a remote end of the tubular body from the penetrating head. By manipulating the slidable mass and bringing such in contact with an abutment the force imparted to the tubular body causes the head to penetrate the structure.
Dual allosteric activation mechanisms in monomeric human glucokinase.
Whittington, A Carl; Larion, Mioara; Bowler, Joseph M; Ramsey, Kristen M; Brüschweiler, Rafael; Miller, Brian G
2015-09-15
Cooperativity in human glucokinase (GCK), the body's primary glucose sensor and a major determinant of glucose homeostatic diseases, is fundamentally different from textbook models of allostery because GCK is monomeric and contains only one glucose-binding site. Prior work has demonstrated that millisecond timescale order-disorder transitions within the enzyme's small domain govern cooperativity. Here, using limited proteolysis, we map the site of disorder in unliganded GCK to a 30-residue active-site loop that closes upon glucose binding. Positional randomization of the loop, coupled with genetic selection in a glucokinase-deficient bacterium, uncovers a hyperactive GCK variant with substantially reduced cooperativity. Biochemical and structural analysis of this loop variant and GCK variants associated with hyperinsulinemic hypoglycemia reveal two distinct mechanisms of enzyme activation. In α-type activation, glucose affinity is increased, the proteolytic susceptibility of the active site loop is suppressed and the (1)H-(13)C heteronuclear multiple quantum coherence (HMQC) spectrum of (13)C-Ile-labeled enzyme resembles the glucose-bound state. In β-type activation, glucose affinity is largely unchanged, proteolytic susceptibility of the loop is enhanced, and the (1)H-(13)C HMQC spectrum reveals no perturbation in ensemble structure. Leveraging both activation mechanisms, we engineer a fully noncooperative GCK variant, whose functional properties are indistinguishable from other hexokinase isozymes, and which displays a 100-fold increase in catalytic efficiency over wild-type GCK. This work elucidates specific structural features responsible for generating allostery in a monomeric enzyme and suggests a general strategy for engineering cooperativity into proteins that lack the structural framework typical of traditional allosteric systems.
Kuh, Diana; Bassey, E Joan; Butterworth, Suzanne; Hardy, Rebecca; Wadsworth, Michael E J
2005-02-01
Understanding the health, behavioral, and social factors that influence physical performance in midlife may provide clues to the origins of frailty in old age and the future health of elderly populations. The authors evaluated muscle strength, postural control, and chair rise performance in a large representative prospective cohort of 53-year-old British men and women in relation to functional limitations, body size, health and activity, and socioeconomic conditions. Nurses interviewed 2984 men and women in their own homes in England, Scotland, and Wales and conducted physical examinations in 2956 of them. Objective measures were height, weight, and three physical performance tests: handgrip strength, one-legged standing balance time, and time to complete 10 chair rises. Functional limitations (difficulties walking, stair climbing, gripping, and falls), health status, physical activity, and social class were obtained using a structured questionnaire. Those with the worst scores on the physical performance tests had higher rates of functional limitations for both upper and lower limbs. Women had much weaker handgrip strength, somewhat poorer balance time, and only slightly poorer chair rise time compared with men. In women, health problems and low levels of physical activity contributed to poor physical performance on all three measures. In men, physical activity was the predominant influence. Heavier weight and poorer socioeconomic conditions contributed to poorer balance and chair rise times. In this representative middle-aged group, physical performance levels varied widely, and women were seriously disadvantaged compared with men. In general, physical performance was worse for men and women living in poorer socioeconomic conditions with greater body weight, poorer health status, and inactive lifestyles. These findings support recommendations for controlling excess body weight, effective health interventions, and the maintenance of active lifestyles during aging.
Complementary aspects of diffusion imaging and fMRI; I: structure and function.
Mulkern, Robert V; Davis, Peter E; Haker, Steven J; Estepar, Raul San Jose; Panych, Lawrence P; Maier, Stephan E; Rivkin, Michael J
2006-05-01
Studying the intersection of brain structure and function is an important aspect of modern neuroscience. The development of magnetic resonance imaging (MRI) over the last 25 years has provided new and powerful tools for the study of brain structure and function. Two tools in particular, diffusion imaging and functional MRI (fMRI), are playing increasingly important roles in elucidating the complementary aspects of brain structure and function. In this work, we review basic technical features of diffusion imaging and fMRI for studying the integrity of white matter structural components and for determining the location and extent of cortical activation in gray matter, respectively. We then review a growing body of literature in which the complementary aspects of diffusion imaging and fMRI, applied as separate examinations but analyzed in tandem, have been exploited to enhance our knowledge of brain structure and function.
Gatti-Lafranconi, Pietro; Natalello, Antonino; Ami, Diletta; Doglia, Silvia Maria; Lotti, Marina
2011-07-01
Cells have evolved complex and overlapping mechanisms to protect their proteins from aggregation. However, several reasons can cause the failure of such defences, among them mutations, stress conditions and high rates of protein synthesis, all common consequences of heterologous protein production. As a result, in the bacterial cytoplasm several recombinant proteins aggregate as insoluble inclusion bodies. The recent discovery that aggregated proteins can retain native-like conformation and biological activity has opened the way for a dramatic change in the means by which intracellular aggregation is approached and exploited. This paper summarizes recent studies towards the direct use of inclusion bodies in biotechnology and for the detection of bottlenecks in the folding pathways of specific proteins. We also review the major biophysical methods available for revealing fine structural details of aggregated proteins and which information can be obtained through these techniques. © 2011 The Authors Journal compilation © 2011 FEBS.
Leptin: physiology and pathophysiology.
Frühbeck, G; Jebb, S A; Prentice, A M
1998-09-01
The identification and sequencing of the ob gene and its product, leptin, in late 1994 opened new insights in the study of the mechanisms controlling body weight and led to a surge of research activity. During this time, a considerable body of knowledge regarding leptin's actions has been accumulated and the field continues to expand rapidly. Currently there is particular interest in the interaction of leptin with other peripheral and neural mechanisms to regulate body weight, reproduction and immunological response. In this review, we attempt to place the current state of knowledge about leptin in the broader perspective of physiology, including its structural characteristics, receptors, binding proteins, signalling pathways, regulation of adipose tissue expression and production, secretion patterns, clearance mechanisms and functional effects. In addition, leptin's involvement in the pathophysiology of obesity, anorexia nervosa, diabetes mellitus, polycystic ovary syndrome, acquired immunodeficiency syndrome, cancer, nephropathy, thyroid disease, Cushing's syndrome and growth hormone deficiency will be reviewed.
Analysis of asteroid (216) Kleopatra using dynamical and structural constraints
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hirabayashi, Masatoshi; Scheeres, Daniel J., E-mail: masatoshi.hirabayashi@colorado.edu
This paper evaluates a dynamically and structurally stable size for Asteroid (216) Kleopatra. In particular, we investigate two different failure modes: material shedding from the surface and structural failure of the internal body. We construct zero-velocity curves in the vicinity of this asteroid to determine surface shedding, while we utilize a limit analysis to calculate the lower and upper bounds of structural failure under the zero-cohesion assumption. Surface shedding does not occur at the current spin period (5.385 hr) and cannot directly initiate the formation of the satellites. On the other hand, this body may be close to structural failure;more » in particular, the neck may be situated near a plastic state. In addition, the neck's sensitivity to structural failure changes as the body size varies. We conclude that plastic deformation has probably occurred around the neck part in the past. If the true size of this body is established through additional measurements, this method will provide strong constraints on the current friction angle for the body.« less
Mikkelsen, Maria Rudkjaer; Hendriksen, Carsten; Schiødt, Frank Vinholt; Rydahl-Hansen, Susan
2016-09-01
To identify and describe the impact of a coping and physical activity-oriented rehabilitation intervention on alcoholic liver disease patients after hepatic encephalopathy in terms of their interaction with professionals and relatives. Patients who have experienced alcohol-induced hepatic encephalopathy have reduced quality of life, multiple complications, and social problems, and rehabilitation opportunities for these patients are limited. A grounded theory study and an evaluation study of a controlled intervention study. Semi-structured interviews were conducted with 10 alcoholic liver disease patients who were diagnosed with hepatic encephalopathy and participated in a coping and physical activity-oriented rehabilitation intervention. Richard S. Lazarus's theory of stress and coping inspired the interview guide. The significance of a coping and physical activity-oriented rehabilitation intervention on alcoholic liver disease patients' ability to cope with problems after surviving alcohol-induced hepatic encephalopathy in terms of their interaction with professionals and relatives was characterised by the core category 'regain control over the diseased body'. This is subdivided into three separate categories: 'the experience of being physically strong', 'togetherness' and 'self-control', and they impact each other and are mutually interdependent. Alcoholic liver disease patients described the strength of the rehabilitation as regaining control over the diseased body. Professionals and relatives of patients with alcoholic liver disease may need to focus on strengthening and preserving patients' control of their diseased body by facilitating the experience of togetherness, self-control and physical strength when interacting with and supporting patients with alcoholic liver disease. A coping and physical activity-oriented rehabilitation intervention may help alcoholic liver disease patients to regain control over their diseased body and give patients the experience of togetherness, self-control and physical strength. Professionals should be aware of giving the patients the experience of togetherness in their interactions, help them perceive self-control and gain physical strength during their rehabilitation. © 2016 John Wiley & Sons Ltd.
The Development of Body Structure Knowledge in Infancy
Bhatt, Ramesh S.; Hock, Alyson; White, Hannah; Jubran, Rachel; Galati, Ashley
2016-01-01
Although we know much about the development of face processing, we know considerably less about the development of body knowledge—despite bodies also being significant sources of social information. One set of studies indicated that body structure knowledge is poor during the 1st year of life and spawned a model that posits that, unlike the development of face knowledge, which benefits from innate propensities and dedicated learning mechanisms, the development of body knowledge relies on general learning mechanisms and develops slowly. In this article, we review studies on infants’ knowledge about the structure of bodies and their processing of gender and emotion that paint a different picture. Although questions remain, a general social cognition system likely engenders similar trajectories of development of knowledge about faces and bodies, and may equip developing infants with the capacity to obtain socially critical information from many sources. PMID:28663770
Dosch, Alessandra; Ghisletta, Paolo; Van der Linden, Martial
2016-01-01
This study explored the link between body image and desire to engage in sexual activity (dyadic and solitary desire) in adult women living in a long-term couple relationship. Moreover, it considered two psychological factors that may underlie such a link: the occurrence of body-related distracting thoughts during sexual activity and encoding style (i.e., the tendency to rely on preexisting internal schemata versus external information at encoding). A total of 53 women (29 to 47 years old) in heterosexual relationships completed questionnaires assessing sexual desire (dyadic, solitary), body image, body-related distracting thoughts during sexual activity, and encoding style. Results showed that poor body image was associated with low dyadic and solitary sexual desire. Body-related distracting thoughts during sexual activity mediated the link between body image and solitary (but not dyadic) sexual desire. Finally, the mediation of body-related distracting thoughts between body image and solitary sexual desire was moderated by encoding style. A negative body image promoted the occurrence of body-related distracting thoughts during sexual activity, especially in internal encoders. Our study highlights the importance of body image, distracting thoughts, and encoding style in women's solitary sexuality and suggests possible factors that may reduce the impact of those body-related factors in dyadic sexual desire.
Hartmann, Christina; Dohle, Simone; Siegrist, Michael
2015-01-01
This study focuses on body weight motivation based on self-determination theory. The impact of body weight motivation on longitudinal changes in food choices, recreational physical activity and body mass index was explored. A sample of adults (N = 2917, 47% men), randomly selected from the telephone book, completed a questionnaire in two consecutive years (2012, 2013), self-reporting food choices, recreational physical activity and body weight motivation. Types of body weight motivation at T1 (autonomous regulation, introjected regulation, and external regulation) were tested with regard to their predictive potential for changes in food choices, recreational physical activity and body mass index (BMI). Autonomous motivation predicted improvements in food choices and long-term adherence to vigorous recreational physical activity in both genders. Introjected motivation predicted long-term adherence to vigorous recreational physical activity only in women. External motivation predicted negative changes in food choices; however, the type of body weight motivation had no impact on BMI in overweight adults in the long term. Autonomous goal-setting regarding body weight seems to be substantial for healthy food choices and adherence to recreational physical activity.
Ng, Siu-Kuen; Barron, David; Swami, Viren
2015-03-01
Previous research has suggested that the factor structure of Body Appreciation Scale (BAS), a widely-used measure of positive body image, may not be cross-culturally equivalent. Here, we used confirmatory factor analysis to evaluate the conceptual equivalence of a Chinese (Cantonese) translation of the BAS among women (n=1319) and men (n=1084) in Hong Kong. Results showed that neither the one-dimensional nor proposed two-dimensional factor structures had adequate fit. Instead, a modified two-dimensional structure, which retained 9 of the 13 BAS items in two factors, had the best fit. However, only one of these factors, reflective of General Body Appreciation, had adequate internal consistency. This factor also had good patterns of construct validity, as indicated through significant correlations with participant body mass index, self-esteem, and (among women) actual-ideal weight discrepancy. The present results suggest that there may be cultural differences in the concept and experience of body appreciation. Copyright © 2014 Elsevier Ltd. All rights reserved.
Forward flight of swallowtail butterfly with simple flapping motion.
Tanaka, Hiroto; Shimoyama, Isao
2010-06-01
Unlike other flying insects, the wing motion of swallowtail butterflies is basically limited to flapping because their fore wings partly overlap their hind wings, structurally restricting the feathering needed for active control of aerodynamic force. Hence, it can be hypothesized that the flight of swallowtail butterflies is realized with simple flapping, requiring little feedback control of the feathering angle. To verify this hypothesis, we fabricated an artificial butterfly mimicking the wing motion and wing shape of a swallowtail butterfly and analyzed its flights using images taken with a high-speed video camera. The results demonstrated that stable forward flight could be realized without active feathering or feedback control of the wing motion. During the flights, the artificial butterfly's body moved up and down passively in synchronization with the flapping, and the artificial butterfly followed an undulating flight trajectory like an actual swallowtail butterfly. Without feedback control of the wing motion, the body movement is directly affected by change of aerodynamic force due to the wing deformation; the degree of deformation was determined by the wing venation. Unlike a veinless wing, a mimic wing with veins generated a much higher lift coefficient during the flapping flight than in a steady flow due to the large body motion.
Patterson, Megan S; Goodson, Patricia
2017-05-01
Compulsive exercise, a form of unhealthy exercise often associated with prioritizing exercise and feeling guilty when exercise is missed, is a common precursor to and symptom of eating disorders. College-aged women are at high risk of exercising compulsively compared with other groups. Social network analysis (SNA) is a theoretical perspective and methodology allowing researchers to observe the effects of relational dynamics on the behaviors of people. SNA was used to assess the relationship between compulsive exercise and body dissatisfaction, physical activity, and network variables. Descriptive statistics were conducted using SPSS, and quadratic assignment procedure (QAP) analyses were conducted using UCINET. QAP regression analysis revealed a statistically significant model (R 2 = .375, P < .0001) predicting compulsive exercise behavior. Physical activity, body dissatisfaction, and network variables were statistically significant predictor variables in the QAP regression model. In our sample, women who are connected to "important" or "powerful" people in their network are likely to have higher compulsive exercise scores. This result provides healthcare practitioners key target points for intervention within similar groups of women. For scholars researching eating disorders and associated behaviors, this study supports looking into group dynamics and network structure in conjunction with body dissatisfaction and exercise frequency.
Terasaki, Hiroto; Yamashita, Takehiro; Yoshihara, Naoya; Kii, Yuya; Sakamoto, Taiji
2017-07-12
The purpose of this study is to determine whether the lifestyle and body stature are significantly associated with the axial length (AL) of the eyes of Japanese third grade students. A prospective, cross sectional, observational study was performed on 122 third grade students consisting of 61 boys and 61 girls ages 8 to 9 years. The AL, body height, body weight, and body mass index (BMI) were measured. The lifestyle was determined by activities such as the daily duration of indoor studying, television viewing, use of computers and smart phones, outdoor activity time, bed time, Japanese or Western dietary habits, and parental myopia were investigated by a questionnaire with three or five grade levels. The relationship between AL and the questionnaire variables were analyzed by Spearman's correlation analyses. Westernized dietary habits (r = -0.24, P = 0.01), duration of computer and smart phone use (r = 0.24, P = 0.008), parental myopia (r = 0.39, P < 0.001), body weight (r = 0.26, P = 0.005), and BMI (r = 0.23, P = 0.011) were significantly correlated with the AL. Multiple logistic regression analyses showed that the sex [r = -0.48; 95% confidence interval (CI) -0.80 to -0.17, P = 0.003], body weight (r = 0.04; 95% CI 0.02 to 0.07, P = 0.038), westernized dietary habits (r = -0.30; 95% CI -0.55 to -0.05, P = 0.021), and parental myopia (r = 0.40; 95% CI 0.20 to 0.61, P < 0.001) were significantly and independently correlated with the AL. The body weight and parental myopia and westernized dietary habits are factors significantly associated with myopia. Changing from Japanese food style to westernized food style might increase the risk of progression of school myopia.
Effect of a Single Musical Cakra Activation Manoeuvre on Body Temperature: An Exploratory Study
Sumathy, Sundar; Parmar, Parin N
2016-01-01
Cakra activation/balancing and music therapy are part of the traditional Indian healing system. Little is known about effect of musical (vocal) technique of cakra activation on body temperature. We conducted a single-session exploratory study to evaluate effects of a single musical (vocal) cakra activation manoeuvre on body temperature in controlled settings. Seven healthy adults performed a single musical (vocal) cakra activation manoeuvre for approximately 12 minutes in controlled environmental conditions. Pre- and post-manoeuvre body temperatures were recorded with a clinical mercury thermometer. After a single manoeuvre, increase in body temperature was recorded in all seven subjects. The range of increase in body temperature was from 0.2°F to 1.4°F; with mean temperature rise being 0.5°F and median temperature rise being 0.4°F. We conclude that a single session of musical (vocal) technique of cakra activation elevated body temperatures in all 7 subjects. Further research is required to study effects of various cakra activation techniques on body temperature and other physiological parameters. PMID:28182030
Effect of a Single Musical Cakra Activation Manoeuvre on Body Temperature: An Exploratory Study.
Sumathy, Sundar; Parmar, Parin N
2016-01-01
Cakra activation/balancing and music therapy are part of the traditional Indian healing system. Little is known about effect of musical (vocal) technique of cakra activation on body temperature. We conducted a single-session exploratory study to evaluate effects of a single musical (vocal) cakra activation manoeuvre on body temperature in controlled settings. Seven healthy adults performed a single musical (vocal) cakra activation manoeuvre for approximately 12 minutes in controlled environmental conditions. Pre- and post-manoeuvre body temperatures were recorded with a clinical mercury thermometer. After a single manoeuvre, increase in body temperature was recorded in all seven subjects. The range of increase in body temperature was from 0.2°F to 1.4°F; with mean temperature rise being 0.5°F and median temperature rise being 0.4°F. We conclude that a single session of musical (vocal) technique of cakra activation elevated body temperatures in all 7 subjects. Further research is required to study effects of various cakra activation techniques on body temperature and other physiological parameters.
Opdenacker, Joke; Delecluse, Christophe; Boen, Filip
2011-09-01
To evaluate the long-term effects of a lifestyle intervention and a structured exercise intervention on physical fitness and cardiovascular risk factors in older adults. Controlled trial with randomization between the intervention groups. Belgium, Vlaams-Brabant. One hundred eighty-six sedentary but healthy men and women aged 60 to 83. Participants in the lifestyle intervention were stimulated to integrate physical activity into their daily routines and received an individualized home-based program supported by telephone calls. The structured intervention consisted of three weekly supervised sessions in a fitness center. Both interventions lasted 11 months and focused on endurance, strength, flexibility, and postural and balance exercises. Cardiorespiratory fitness, muscular strength, functional performance, blood pressure, and body composition were measured before (pretest), at the end (11 months, posttest), and 1 year after the end (23 months, follow-up) of the interventions. The results from pretest to posttest have already been published. The current study analyzed the results from posttest to follow-up. There was a decrease in cardiorespiratory fitness, muscular fitness, and functional performance from posttest to follow-up in the structured intervention group but not in the control group or the lifestyle intervention group. At 23 months, participants in both groups still showed improvements in cardiorespiratory fitness. In addition, the structured group showed long-term improvements in muscular fitness, whereas the lifestyle group showed long-term improvements in functional performance. No long-term effects were found for blood pressure or body composition. These results highlight the potential of a structured fitness center-based intervention and a home-based lifestyle intervention in the battle against inactivity in older adults. Lifestyle programs are especially valuable because they require fewer resources and less time from health institutions and health practitioners. © 2011, Copyright the Authors. Journal compilation © 2011, The American Geriatrics Society.
Slater, Amy; Tiggemann, Marika
2006-07-01
This study aimed to investigate the effects of both past and current physical activity and media use on women's body image. A sample of 144 female undergraduate students completed measures of current physical activity, media use and body image, as well as providing retrospective reports of their physical activity participation and media usage during childhood and adolescence. Regression analyses showed that childhood experiences of physical activity and media use predicted adult body-image concerns more strongly than current activities. It was concluded that early experiences of both physical activity and media use during childhood and adolescence play an important role in the development of adult women's body image.
Singh, Shailja; Agarwal, Drishti; Sharma, Kumkum; Sharma, Manish; Nielsen, Morten A; Alifrangis, Michael; Singh, Ashok K; Gupta, Rinkoo D; Awasthi, Satish K
2016-10-21
Synthetic quinoline derivatives continue to be considered as candidates for new drug discovery if they act against CQ-resistant strains of malaria even after the widespread emergence of resistance to CQ. In this study, we explored the activities of two series of new 4-aminoquinoline derivatives and found them to be effective against Plasmodium falciparum under in vitro conditions. Further, we selected four most active derivatives 1m, 1o, 2c and 2j and evaluated their antimalarial potential against Plasmodium berghei in vivo. These 4-aminoquinolines cured BALB/c mice infected with P. berghei. The ED50 values were calculated to be 2.062, 2.231, 1.431, 1.623 and 1.18 mg/kg of body weight for each of the compounds 1m, 1o, 2c, 2j and amodiaquine, respectively. Total doses of 500 mg/kg of body weight were well received. The study suggests that these new 4-aminoquinolines should be used for structure activity relationship to find lead molecules for treating multidrug-resistant Plasmodium falciparum and Plasmodium vivax. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Oxygen control of breathing by an olfactory receptor activated by lactate
Chang, Andy J.; Ortega, Fabian E.; Riegler, Johannes; Madison, Daniel V.; Krasnow, Mark A.
2015-01-01
Summary Animals have evolved homeostatic responses to changes in oxygen availability that act on different time scales. Although the hypoxia-inducible factor (HIF) transcriptional pathway that controls long term responses to low oxygen (hypoxia) has been established1, the pathway that mediates acute responses to hypoxia in mammals is not well understood. Here we show that the olfactory receptor Olfr78 is highly and selectively expressed in oxygen-sensitive glomus cells of the carotid body, a chemosensory organ at the carotid artery bifurcation that monitors blood oxygen and stimulates breathing within seconds when oxygen declines2. Olfr78 mutants fail to increase ventilation in hypoxia but respond normally to hypercapnia. Glomus cells are present in normal numbers and appear structurally intact, but hypoxia-induced carotid body activity is diminished. Lactate, a metabolite that rapidly accumulates in hypoxia and induces hyperventilation3–6, activates Olfr78 in heterologous expression experiments, induces calcium transients in glomus cells, and stimulates carotid sinus nerve activity through Olfr78. We propose that in addition to its role in olfaction, Olfr78 acts as a hypoxia sensor in the breathing circuit by sensing lactate produced when oxygen levels decline. PMID:26560302
Physical activity and cardiac function in the oldest old.
Stessman-Lande, Irit; Jacobs, Jeremy M; Gilon, Dan; Leibowitz, David
2012-02-01
The relationship of physical activity (PA) and cardiac function in the oldest old remains unclear. The objective of this study was to evaluate the relationship between PA and cardiac structure and function, in the oldest old. Subjects were recruited from the Jerusalem Longitudinal Cohort Study that was initiated in 1990 and has followed an age homogeneous cohort of Jerusalem residents born in 1920-1921. A total of 496 of the subjects from the most recent set of data collection in 2005-2006 underwent echocardiography at their place of residence in addition to structured interviews and physical examination. Standard echocardiographic assessment of cardiac structure and function including ejection fraction (EF) and diastolic function as assessed by E:E' measurements was performed. PA was defined as a dichotomous (≥4 hr of light exercise weekly) and as a categorical variable (<4 hr weekly/4 hours weekly/at least 1 hr daily/sport at least twice weekly). On bivariate analysis, mean EF was lower among sedentary versus active women (55.5%±8.5% vs. 58.4%±8.3, p=0.021). No other significant differences were observed between sedentary and active subjects, for either systolic or diastolic function. After adjusting for sex, education, diabetes, ischemic heart disease, hypertension, dependence in activities of daily living, and body mass index (BMI), no significant associations were found between systolic or diastolic function, or left ventricular structure and PA. Gender-specific analyses yielded similar findings. Our study of the oldest old did not demonstrate an association between PA and cardiac structure or function.
Modulation of individual steps in group I intron catalysis by a peripheral metal ion.
Forconi, Marcello; Piccirilli, Joseph A; Herschlag, Daniel
2007-10-01
Enzymes are complex macromolecules that catalyze chemical reactions at their active sites. Important information about catalytic interactions is commonly gathered by perturbation or mutation of active site residues that directly contact substrates. However, active sites are engaged in intricate networks of interactions within the overall structure of the macromolecule, and there is a growing body of evidence about the importance of peripheral interactions in the precise structural organization of the active site. Here, we use functional studies, in conjunction with published structural information, to determine the effect of perturbation of a peripheral metal ion binding site on catalysis in a well-characterized catalytic RNA, the Tetrahymena thermophila group I ribozyme. We perturbed the metal ion binding site by site-specifically introducing a phosphorothioate substitution in the ribozyme's backbone, replacing the native ligands (the pro-R (P) oxygen atoms at positions 307 and 308) with sulfur atoms. Our data reveal that these perturbations affect several reaction steps, including the chemical step, despite the absence of direct contacts of this metal ion with the atoms involved in the chemical transformation. As structural probing with hydroxyl radicals did not reveal significant change in the three-dimensional structure upon phosphorothioate substitution, the effects are likely transmitted through local, rather subtle conformational rearrangements. Addition of Cd(2+), a thiophilic metal ion, rescues some reaction steps but has deleterious effects on other steps. These results suggest that native interactions in the active site may have been aligned by the naturally occurring peripheral residues and interactions to optimize the overall catalytic cycle.
Roles of Shape and Internal Structure in Rotational Disruption of Asteroids
NASA Astrophysics Data System (ADS)
Hirabayashi, Masatoshi; Scheeres, Daniel Jay
2015-08-01
An active research area over the last decade has been to explore configuration changes of rubble pile asteroids due to rotationally induced disruption, initially driven by the remarkable fact that there is a spin period threshold of 2 hr for asteroids larger than a few hundred meters in size. Several different disruption modes due to rapid rotation can be identified, as surface shedding, fission and failure of the internal structure. Relevant to these discussions are many observations of asteroid shapes that have revealed a diversity of forms such as oblate spheroids with equatorial ridges, strongly elongated shapes and contact binaries, to say nothing of multi-body systems. With consideration that rotationally induced deformation is one of the primary drivers of asteroid evolution, we have been developing two techniques for investigating the structure of asteroids, while accounting for their internal mechanical properties through plastic theory. The first technique developed is an analytical model based on limit analysis, which provides rigorous bounds on the asteroid mechanical properties for their shapes to remain stable. The second technique applies finite element model analysis that accounts for plastic deformation. Combining these models, we have explored the correlation between unique shape features and failure modes. First, we have been able to show that contact binary asteroids preferentially fail at their narrow necks at a relatively slow spin period, due to stress concentration. Second, applying these techniques to the breakup event of active asteroid P/2013 R3, we have been able to develop explicit constraints on the cohesion within rubble pile asteroids. Third, by probing the effect of inhomogeneous material properties, we have been able to develop conditions for whether an oblate body will fail internally or through surface shedding. These different failure modes can be tested by measuring the density distribution within a rubble pile body through determination of its gravity field. This talk will explore these different modes of failure and motivate divergent theories of failure that depend on properties of rubble piles.
Interspecific analysis of covariance structure in the masticatory apparatus of galagos.
Vinyard, Christopher J
2007-01-01
The primate masticatory apparatus (MA) is a functionally integrated set of features, each of which performs important functions in biting, ingestive, and chewing behaviors. A comparison of morphological covariance structure among species for these MA features will help us to further understand the evolutionary history of this region. In this exploratory analysis, the covariance structure of the MA is compared across seven galago species to investigate 1) whether there are differences in covariance structure in this region, and 2) if so, how has this covariation changed with respect to size, MA form, diet, and/or phylogeny? Ten measurements of the MA functionally related to bite force production and load resistance were obtained from 218 adults of seven galago species. Correlation matrices were generated for these 10 dimensions and compared among species via matrix correlations and Mantel tests. Subsequently, pairwise covariance disparity in the MA was estimated as a measure of difference in covariance structure between species. Covariance disparity estimates were correlated with pairwise distances related to differences in body size, MA size and shape, genetic distance (based on cytochrome-b sequences) and percentage of dietary foods to determine whether one or more of these factors is linked to differences in covariance structure. Galagos differ in MA covariance structure. Body size appears to be a major factor correlated with differences in covariance structure among galagos. The largest galago species, Otolemur crassicaudatus, exhibits large differences in body mass and covariance structure relative to other galagos, and thus plays a primary role in creating this association. MA size and shape do not correlate with covariance structure when body mass is held constant. Diet also shows no association. Genetic distance is significantly negatively correlated with covariance disparity when body mass is held constant, but this correlation appears to be a function of the small body size and large genetic distance for Galagoides demidoff. These exploratory results indicate that changing body size may have been a key factor in the evolution of the galago MA.
Evaluation of Topramezone and Benzobicyclon for Activity on Giant Salvinia
2016-07-01
in water bodies throughout the southeastern U.S., Puerto Rico, and Hawaii (Mudge et al. 2013). Under optimal growth conditions, plants can double in... hairs (trichomes), topped with four branches united distally to form a structure resembling an “eggbeater” (McFarland et al. 2004), which can impede...herbicide deposition and penetration (Nelson et al. 2007). Giant salvinia initially expands throughout an aquatic system in the primary growth or
NASA Astrophysics Data System (ADS)
Close, Hunter G.; Scherr, Rachel E.
2015-04-01
We demonstrate that a particular blended learning space is especially productive in developing understanding of energy transfers and transformations. In this blended space, naturally occurring learner interactions like body movement, gesture, and metaphorical speech are blended with a conceptual metaphor of energy as a substance in a class of activities called Energy Theater. We illustrate several mechanisms by which the blended aspect of the learning environment promotes productive intellectual engagement with key conceptual issues in the learning of energy, including distinguishing among energy processes, disambiguating matter and energy, identifying energy transfer, and representing energy as a conserved quantity. Conceptual advancement appears to be promoted especially by the symbolic material and social structure of the Energy Theater environment, in which energy is represented by participants and objects are represented by areas demarcated by loops of rope, and by Energy Theater's embodied action, including body locomotion, gesture, and coordination of speech with symbolic spaces in the Energy Theater arena. Our conclusions are (1) that specific conceptual metaphors can be leveraged to benefit science instruction via the blending of an abstract space of ideas with multiple modes of concrete human action, and (2) that participants' structured improvisation plays an important role in leveraging the blend for their intellectual development.
Ward's area location, physical activity, and body composition in 8- and 9-year-old boys and girls.
Cardadeiro, Graça; Baptista, Fátima; Zymbal, Vera; Rodrigues, Luís A; Sardinha, Luís B
2010-11-01
Bone strength is the result of its material composition and structural design, particularly bone mass distribution. The purpose of this study was to analyze femoral neck bone mass distribution by Ward's area location and its relationship with physical activity (PA) and body composition in children 8 and 9 years of age. The proximal femur shape was defined by geometric morphometric analysis in 88 participants (48 boys and 40 girls). Using dual-energy X-ray absorptiometry (DXA) images, 18 landmarks were digitized to define the proximal femur shape and to identify Ward's area position. Body weight, lean and fat mass, and bone mineral were assessed by DXA, PA by accelerometry, and bone age by the Tanner-Whitehouse III method. Warps analysis with Thin-Plate Spline software showed that the first axis explained 63% of proximal femur shape variation in boys and 58% in girls. Most of this variation was associated with differences in Ward's area location, from the central zone to the superior aspect of the femoral neck in both genders. Regression analysis demonstrated that body composition explained 4% to 7% of the proximal femur shape variation in girls. In boys, body composition variables explained a similar amount of variance, but moderate plus vigorous PA (MVPA) also accounted for 6% of proximal femur shape variation. In conclusion, proximal femur shape variation in children ages 8 and 9 was due mainly to differences in Ward's area position determined, in part, by body composition in both genders and by MVPA in boys. These variables were positively associated with a central Ward's area and thus with a more balanced femoral neck bone mass distribution. © 2010 American Society for Bone and Mineral Research.
Feigin, V L; Barker-Collo, S; Parag, V; Senior, H; Lawes, C M M; Ratnasabapathy, Y; Glen, E
2010-11-02
Studying long-term stroke outcomes including body functioning (neurologic and neuropsychological impairments) and activity limitations and participation is essential for long-term evidence-based rehabilitation and service planning, resource allocation, and improving health outcomes in stroke. However, reliable data to address these issues is lacking. This study (February 2007-December 2008) sourced its participants from the population-based incidence study conducted in Auckland in 2002-2003. Participants completed structured self-administered questionnaires, and a face-to-face interview including a battery of neuropsychological tests. Logistic regression analysis was used to analyze associations between and within functional outcomes and their potential predictors. Of 418 5-year stroke survivors, two-thirds had good functional outcome in terms of neurologic impairment and disability (defined as modified Rankin Score <3), 22.5% had cognitive impairment indicative of dementia, 20% had experienced a recurrent stroke, almost 15% were institutionalized, and 29.6% had symptoms suggesting depression. Highly significant correlations were found between and within various measurements of body functioning (especially neuropsychological impairments), activity, and participation. Age, dependency, and depression were independently associated with most outcomes analyzed. The strong associations between neuropsychological impairment and other functional outcomes and across various measurements of body functioning, activity, and participation justify utilizing a multidisciplinary approach to studying and managing long-term stroke outcomes. Observed gender and ethnic differences in some important stroke outcomes warrant further investigations.
High doses of gamma radiation suppress allergic effect induced by food lectin
NASA Astrophysics Data System (ADS)
Vaz, Antônio F. M.; Souza, Marthyna P.; Vieira, Leucio D.; Aguiar, Jaciana S.; Silva, Teresinha G.; Medeiros, Paloma L.; Melo, Ana M. M. A.; Silva-Lucca, Rosemeire A.; Santana, Lucimeire A.; Oliva, Maria L. V.; Perez, Katia R.; Cuccovia, Iolanda M.; Coelho, Luana C. B. B.; Correia, Maria T. S.
2013-04-01
One of the most promising areas for the development of functional foods lies in the development of effective methods to reduce or eliminate food allergenicity, but few reports have summarized information concerning the progress made with food irradiation. In this study, we investigated the relationship between allergenicity and molecular structure of a food allergen after gamma irradiation and evaluate the profile of the allergic response to irradiated allergens. Cramoll, a lectin isolated from a bean and used as a food allergen, was irradiated and the possible structural changes were accompanied by spectrofluorimetry, circular dichroism and microcalorimetry. Subsequently, sensitized animals subjected to intragastric administration of non-irradiated and irradiated Cramoll were treated for 7 days. Then, body weight, leukocytes, cytokine profiles and histological parameters were also determined. Cramoll showed complete inhibition of intrinsic activity after high radiation doses. Changes in fluorescence and CD spectra with a simultaneous collapse of the tertiary structure followed by a pronounced decrease of native secondary structure were observed after irradiation. After oral challenge, sensitized mice demonstrate an association between Cramoll intake, body weight loss, eosinophilia, lymphocytic infiltrate in the gut and Eotaxin secretion. Irradiation significantly reduces, according to the dose, the effects observed by non-irradiated food allergens. We confirm that high-dose radiation may render protein food allergens innocuous by irreversibly compromising their molecular structure.
An examination of body tracing among women with high body dissatisfaction.
Williams, Gail A; Hudson, Danae L; Whisenhunt, Brooke L; Crowther, Janis H
2014-09-01
Within eating disorder treatment programs, a body tracing activity is often used to address body dissatisfaction and overestimation of body size; however, the effects of this activity have never been empirically evaluated. This research examined the effects of body tracing on body dissatisfaction and mood among 56 female participants assigned to either a body tracing or control group. Scores were collected on trait body dissatisfaction and a series of Visual Analogue Scales (VAS). Results showed that trait body dissatisfaction moderated the relationship between group and levels of state appearance dissatisfaction and anxiety. These results suggest that individuals experiencing higher levels of trait body dissatisfaction demonstrated greater state body dissatisfaction following participation in the body tracing activity. Individuals with lower trait body dissatisfaction experienced greater anxiety after drawing a human body. These findings have potential implications for the use of this strategy in the treatment of eating disorder patients. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Psilodimitrakopoulos, Sotiris; Santos, Susana; Amat-Roldan, Ivan; Mathew, Manoj; Thayil K. N., Anisha; Artigas, David; Loza-Alvarez, Pablo
2008-02-01
Second harmonic generation (SHG) imaging has emerged in recent years as an important laboratory imaging technique since it can provide unique structural information with submicron resolution. It enjoys the benefits of non-invasive interaction establishing this imaging modality as ideal for in vivo investigation of tissue architectures. In this study we present, polarization dependant high resolution SHG images of Caenorhabditis elegans muscles in vivo. We imaged a variety of muscular structures such as body walls, pharynx and vulva. By fitting the experimental data into a cylindrical symmetry spatial model we mapped the corresponding signal distribution of the χ (2) tensor and identified its main axis orientation for different sarcomeres of the earth worm. The cylindrical symmetry was considered to arise from the thick filaments architecture of the inside active volume. Moreover, our theoretical analysis allowed calculating the mean orientation of harmonophores (myosin helical pitch). Ultimately, we recorded and analysed vulvae muscle dynamics, where SHG signal decreased during in vivo contraction.
Pretorius, Thea; Lix, Lisa; Giesbrecht, Gordon
2011-03-01
Previous studies showed that core cooling rates are similar when only the head or only the body is cooled. Structural equation modeling was used on data from two cold water studies involving body-only, or whole body (including head) cooling. Exposure of both the body and head increased core cooling, while only body cooling elicited shivering. Body fat attenuates shivering and core cooling. It is postulated that this protection occurs mainly during body cooling where fat acts as insulation against cold. This explains why head cooling increases surface heat loss with only 11% while increasing core cooling by 39%. Copyright © 2011 Elsevier Ltd. All rights reserved.
Jackson, Alan A
2017-01-01
Good clinical practice is based on a secure and accurate diagnosis. Poor nutrition is frequently associated with disorders of the liver, and a specific nutrition diagnosis is needed for providing best care and experiencing successful outcome. There is opportunity for better-structured approaches to making secure and consistent nutritional diagnoses in patients with liver disease. Nutrition is the set of integrated processes by which cells, tissues, organs and the whole body acquire the energy and nutrients to retain normal structure and perform the required functions. At the level of the whole body, this is achieved through dietary supply and the capacity of the body to transform the substrates and cofactors necessary for metabolism. All of these domains (diet, metabolic capacity, activity of the microbiome, body composition and the level of demand for energy and nutrients) are influenced by levels of physical activity and can vary according to physiological and pathological disease states. The liver plays a central role in establishing and maintaining these regulated processes. Its capacity to achieve and maintain these functional capabilities is established during one's early life. When these capabilities are exceeded and the ability to maintain the milieu interieur is compromised, ill-health supervenes. Stress tests that assess flow through gateway pathways can be used to determine the maximal capacity and functional reserve for critical functions. The inability of the liver to reliably integrate body lipid metabolism and the accumulation of abnormal lipid are obvious manifestations of impaired regulation both in situations of weight loss, for example, the fatty liver of severe malnutrition, and in situations of energy excess, as in non-alcoholic fatty liver disease. The use of stable isotopic probes and the more recent definition of the variability in the metabolome in different nutritional and pathological states indicate the great potential for clinical tools that would enable a more precise nutritional diagnosis, but these require systematic investigation and application. For the present, approaches that place emphasis on being able to control the metabolic state without exposing the liver to unnecessary metabolic stress remain the basis for successful nutritional support. © 2017 S. Karger AG, Basel.
Mata, Scott A; Bottjer, David J
2009-11-01
Wrinkle structures are microbially mediated sedimentary structures that are a common feature of Proterozoic and earliest Phanerozoic siliciclastic seafloors on Earth and occur only rarely in post-Cambrian strata. These macroscopic microbially induced sedimentary structures are readily identifiable at the outcrop scale, and their recognition on other planetary bodies by landed missions may suggest the presence of past microbial life. Wrinkle structures of the Lower Triassic (Spathian) Virgin Limestone Member of the Moenkopi Formation in the western United States record an occurrence of widespread microbialite formation in the wake of the end-Permian mass extinction, the largest biotic crisis of the Phanerozoic. Wrinkle structures occur on proximal sandy tempestites deposited within the offshore transition. Storm layers appear to have been rapidly colonized by microbial mats and were subsequently buried by mud during fair-weather conditions. Wrinkle structures exhibit flat-topped crests and sinuous troughs, with associated mica grains oriented parallel to bedding, suggestive of trapping and binding activity. Although Lower Triassic wrinkle structures postdate the widespread occurrence of these features during the Proterozoic and Cambrian, they exhibit many of the same characteristics and environmental trends, which suggests a conservation of microbial formational and preservational processes in subtidal siliciclastic settings on Earth from the Precambrian into the Phanerozoic. In the search for extraterrestrial life, it may be these conservative characteristics that prove to be the most useful and robust for recognizing microbial features on other planetary bodies, and may add to an ever-growing foundation of knowledge for directing future explorations aimed at seeking out macroscopic microbial signatures.
Temperature and Structure of Active Eruptions from a Handheld Camcorder
NASA Astrophysics Data System (ADS)
Radebaugh, Jani; Carling, Greg T.; Saito, Takeshi; Dangerfield, Anne; Tingey, David G.; Lorenz, Ralph D.; Lopes, Rosaly M.; Howell, Robert R.; Diniega, Serina; Turtle, Elizabeth P.
2014-11-01
A commercial handheld digital camcorder can operate as a high-resolution, short-wavelength, low-cost thermal imaging system for monitoring active volcanoes, when calibrated against a laboratory heated rock of similar composition to the given eruptive material. We utilize this system to find full pixel brightness temperatures on centimeter scales at close but safe proximity to active lava flows. With it, observed temperatures of a Kilauea tube flow exposed in a skylight reached 1200 C, compared with pyrometer measurements of the same flow of 1165 C, both similar to reported eruption temperatures at that volcano. The lava lake at Erta Ale, Ethiopia had crack and fountain temperatures of 1175 C compared with previous pyrometer measurements of 1165 C. Temperature calibration of the vigorously active Marum lava lake in Vanuatu is underway, challenges being excessive levels of gas and distance from the eruption (300 m). Other aspects of the fine-scale structure of the eruptions are visible in the high-resolution temperature maps, such as flow banding within tubes, the thermal gradient away from cracks in lake surfaces, heat pathways through pahoehoe crust and temperature zoning in spatter and fountains. High-resolution measurements such as these reveal details of temperature, structure, and change over time at the rapidly evolving settings of active lava flows. These measurement capabilities are desirable for future instruments exploring bodies with active eruptions like Io, Enceladus and possibly Venus.
Xia, Zhen Wei; Cui, Wen Jun; Zhou, Wen Pu; Zhang, Xue Hong; Shen, Qing Xiang; Li, Yun Zhu; Yu, Shan Chang
2004-10-01
Human Heme Oxygenase-1 (hHO-1) is the rate-limiting enzyme in the catabolism reaction of heme, which directly regulates the concentration of bilirubin in human body. The mutant structure was simulated by Swiss-pdbviewer procedure, which showed that the structure of active pocket was changed distinctly after Ala25 substituted for His25 in active domain, but the mutated enzyme still binded with heme. On the basis of the results, the expression vectors, pBHO-1 and pBHO-1(M), were constructed, induced by IPTG and expressed in E. coli DH5alpha strain. The expression products were purified with 30%-60% saturation (NH4)2SO4 and Q-Sepharose Fast Flow column chromatography. The concentration of hHO-1 in 30%-60% saturation (NH4)2SO4 components and in fractions through twice column chromatography was 3.6-fold and 30-fold higher than that in initial product, respectively. The activity of wild hHO-1 (whHO-1) and mutant hHO-1 (deltahHO-1) showed that the activity of deltahHO-1 was reduced 91.21% compared with that of whHO-1. The study shows that His25 is of importance for the mechanism of hHO-1, and provides the possibility for effectively regulating the activity to exert biological function.
Association Between Mind-Body Practice and Cardiometabolic Risk Factors: The Rotterdam Study.
Younge, John O; Leening, Maarten J G; Tiemeier, Henning; Franco, Oscar H; Kiefte-de Jong, Jessica; Hofman, Albert; Roos-Hesselink, Jolien W; Hunink, M G Myriam
2015-09-01
The increased popularity of mind-body practices highlights the need to explore their potential effects. We determined the cross-sectional association between mind-body practices and cardiometabolic risk factors. We used data from 2579 participants free of cardiovascular disease from the Rotterdam Study (2009-2013). A structured home-based interview was used to evaluate engagement in mind-body practices including meditation, yoga, self-prayer, breathing exercises, or other forms of mind-body practice. We regressed engagement in mind-body practices on cardiometabolic risk factors (body mass index, blood pressure, and fasting blood levels of cholesterol, triglycerides, and glucose) and presence of metabolic syndrome. All analyses were adjusted for age, sex, educational level, smoking, alcohol consumption, (in)activities in daily living, grief, and depressive symptoms. Fifteen percent of the participants engaged in a form of mind-body practice. Those who did mind-body practices had significantly lower body mass index (β = -0.84 kg/m, 95% confidence interval [CI] = -1.30 to -0.38, p < .001), log-transformed triglyceride levels (β = -0.02, 95% CI = -0.04 to -0.001, p = .037), and log-transformed fasting glucose levels (β = -0.01, 95% CI = -0.02 to -0.004, p = .004). Metabolic syndrome was less common among individuals who engaged in mind-body practices (odds ratio = 0.71, 95% CI = 0.54-0.95, p = .019). Individuals who do mind-body practices have a favorable cardiometabolic risk profile compared with those who do not. However, the cross-sectional design of this study does not allow for causal inference and prospective, and intervention studies are needed to elucidate the association between mind-body practices and cardiometabolic processes.
Zeng, Yangyang; Han, Zhangrun; Qiu, Peiju; Zhou, Zijing; Tang, Yang; Zhao, Yue; Zheng, Sha; Xu, Chenchen; Zhang, Xiuli; Yin, Pinghe; Jiang, Xiaolu; Lu, Hong; Yu, Guangli; Zhang, Lijuan
2014-01-01
Cordyceps is a rare and exotic mushroom that grows out of the head of a mummified caterpillar. Many companies are cultivating Cordyceps to meet the increased demand for its medicinal applications. However, the structures and functions of polysaccharides, one of the pharmaceutical active ingredients in Cordyceps, are difficult to reproduce in vitro. We hypothesized that mimicking the salty environment inside caterpillar bodies might make the cultured fungus synthesize polysaccharides with similar structures and functions to that of wild Cordyceps. By adding either sodium sulfate or sodium chloride into growth media, we observed the salinity-induced anti-angiogenesis activities of the polysaccharides purified from the cultured C. Militaris. To correlate the activities with the polysaccharide structures, we performed the 13C-NMR analysis and observed profound structural changes including different proportions of α and β glycosidic bonds and appearances of uronic acid signals in the polysaccharides purified from the culture after the salts were added. By coupling the techniques of stable 34S-sulfate isotope labeling, aniline- and D5-aniline tagging, and stable isotope facilitated uronic acid-reduction with LC-MS analysis, our data revealed for the first time the existence of covalently linked sulfate and the presence of polygalacuronic acids in the polysaccharides purified from the salt added C. Militaris culture. Our data showed that culturing C. Militaris with added salts changed the biosynthetic scheme and resulted in novel polysaccharide structures and functions. These findings might be insightful in terms of how to make C. Militaris cultures to reach or to exceed the potency of wild Cordyceps in future. PMID:25203294
Pampel, Fred C.
2011-01-01
While sedentary leisure-time activities such as reading, going to movies, attending cultural events, attending sporting events, watching TV, listening to music, and socializing with friends would seem to contribute to excess weight, a perspective focusing on SES differences in cultural tastes suggests the opposite, that some sedentary activities are associated with lower rather than higher body weight. This study aims to test theories of cultural distinction by examining relationships between leisure-time activities and body weight. Using 2007 data on 17 nations from the International Social Survey Program, the analysis estimates relationships between the body mass index and varied leisure-time activities while controlling for SES, physical activities, and sociodemographic variables. Net of controls for SES and physical activities, participation time in cultural activities is associated with lower rather than higher body weight, particularly in high-income nations. The results suggest that both cultural activities and body weight reflect forms of distinction that separate SES-based lifestyles. PMID:21707664
Alsaleh, Eman; Windle, Richard; Blake, Holly
2016-07-26
Patients with coronary heart disease often do not follow prescribed physical activity recommendations. The aim of this study was to assess the efficacy of a behavioural intervention to increase physical activity in patients with coronary heart disease not attending structured cardiac rehabilitation programmes. Parallel randomised controlled trial comparing 6-month multi-component behavioural change intervention (n = 71) with usual care (n = 85) was conducted in two hospitals in Jordan, Middle East. Intervention included one face-to-face individualised consultation, 6 telephone support calls (for goal-setting, feedback and self-monitoring) and 18 reminder text messages. Patients were randomly allocated to the two groups by opening opaque sealed sequence envelopes. The patients and the researcher who provided the intervention and assessed the outcomes were not blinded. Outcomes were assessed at baseline and 6 months. Primary outcome was physical activity level, secondary outcomes were blood pressure, body mass index, exercise self-efficacy for exercise and health-related quality of life. Intervention and control groups were comparable at baseline. Moderate physical activity significantly increased in the intervention group compared with control group (mean change (SD) of frequency: 0.23 (0.87) days/week versus -.06 (0.40); duration: 15.53 (90.15) minutes/week versus -3.67 (22.60) minutes/week; intensity: 31.05 (105.98) Metabolic equivalents (METs) versus 14.68 (90.40) METs). Effect size was 0.03 for moderate PA frequency, 0.02 for moderate PA duration and 0.01 for moderate PA intensity. Walking significantly increased in the intervention group compared with control group (mean change (SD) of frequency: 3.15 (2.75) days/week versus 0.37 (1.83) days/week; duration: 150.90 (124.47) minutes/week versus 24.05 (195.93) minutes/week; intensity: 495.12 (413.74) METs versus14.62 (265.06) METs). Effect size was 0.36 for walking frequency, 0.05 for walking duration, 0.32 for walking intensity and 0.29 for total PA intensity. Intervention participants had significantly lower blood pressure, lower body mass index, greater exercise self-efficacy and better health-related quality of life at 6 months compared with controls. Multi-component behavioural intervention increases physical activity, and improves body composition, physiological and psychological outcomes in CHD patients not attending structured rehabilitation programmes. Current Controlled Trials retrospectively registered in 21-03-2012. ISRCTN48570595 .
Chemiluminescent activation of the antiviral activity of hypericin: a molecular flashlight.
Carpenter, S; Fehr, M J; Kraus, G A; Petrich, J W
1994-01-01
Hypericin is a naturally occurring photosensitizer that displays potent antiviral activity in the presence of light. The absence of light in many regions of the body may preclude the use of hypericin and other photosensitizers as therapeutic compounds for the treatment of viral infections in vivo. The chemiluminescent oxidation of luciferin by the luciferase from the North American firefly Photinus pyralis was found to generate sufficiently intense and long-lived emission to induce antiviral activity of hypericin. Light-induced virucidal activity of hypericin was demonstrated against equine infectious anemia virus, a lentivirus structurally, genetically, and antigenically related to the human immunodeficiency virus. The implications for exploiting chemiluminescence as a "molecular flashlight" for effecting photodynamic therapy against virus-infected cells and tumor cells are discussed. PMID:7991618
Investigation on micromachining technologies for the realization of LTCC devices and systems
NASA Astrophysics Data System (ADS)
Haas, T.; Zeilmann, C.; Bittner, A.; Schmid, U.
2011-06-01
Low temperature co-fired ceramics (LTCC) has established as a widespread platform for advanced functional ceramic devices in different applications, such as in the space and aviation sector, for micro machined sensors as well as in micro fluidics. This is due to high reliability, excellent physical properties, especially in the high frequency range, and the possibility to integrate passive components in the monolithic LTCC body, offering the potential for a high degree of miniaturisation. However, for further improvement of this technology and for an ongoing increase of the integration level, the realization of miniaturized structures is of utmost importance. Therefore, novel techniques for micro-machining are required providing channel structures and cavities inside the glass-ceramic body, enabling for further application scenarios. Those techniques are punching, laser cutting and embossing. One of the most limitations of LTCC is the poor thermal conductivity. Hence, the possibility to integrate channels enables innovative active cooling approaches using fluidic media for heat critical devices. Doing so, a by far better cooling effect can be achieved than by passive devices as heat spreaders or heat sinks. Furthermore, the realization of mechanic devices as integrated pressure sensors for operation under harsh environmental conditions can be realized by integrating the membrane directly into the ceramic body. Finally, for high power devices substantial improvement can be provided by filling those channel structures with electrical conductive material, so that the resistivity can be decreased drastically without affecting the topography of the ceramics.
Akhmadeev, A V; Kalimullina, L B
2008-01-01
The ultrastructural features of neuroendocrine neurons in the dorsomedial nucleus (DMN) of the amygdaloid body of the brain - one of the major zones of sexual dimorphism - in 12 Wistar rats weighing 250-300 g were studied in three males and nine females at different stages of the estral cycle. On the basis of ultrastructural characteristics, analysis of the functional states of an average of 50 DMN neurons were studied in each animal. A morphofunctional classification reflecting hormone-dependent variations in neuron activity is proposed. DMN neurons were found to be in different structural-functional states, which could be classified as the states of rest, moderate activity, elevated activity, tension (maximal activity), decreased activity (types 1 and 2, depending on prior history), return to the initial state, and apoptosis. At the estrus stage, there was a predominance of neurons in the states of elevated activity (40% of all cells) and maximal activity (26%). At the metestrus stage, neurons in the state of decreased activity type 1 (with increased nuclear heterochromatin content) predominated (30% of cells), while 25% and 20% of cells were in the states of maximal activity and elevated activity respectively. In diestrus, neurons in the resting state, in moderate and elevated activity, in maximal activity, and in decreased activity type 1 were present in essentially identical proportions (18%, 21%, 18%, 20%, and 16% respectively). In males, 35% and 22% of neurons were in the states of elevated and maximal activity respectively. Neuron death was seen only in males.
Pan, Yi-Ling; Hwang, Ai-Wen; Simeonsson, Rune J; Lu, Lu; Liao, Hua-Fang
2015-01-01
Comprehensive description of functioning is important in providing early intervention services for infants with developmental delay/disabilities (DD). A code set of the International Classification of Functioning, Disability and Health: Children and Youth Version (ICF-CY) could facilitate the practical use of the ICF-CY in team evaluation. The purpose of this study was to derive an ICF-CY code set for infants under three years of age with early delay and disabilities (EDD Code Set) for initial team evaluation. The EDD Code Set based on the ICF-CY was developed on the basis of a Delphi survey of international professionals experienced in implementing the ICF-CY and professionals in early intervention service system in Taiwan. Twenty-five professionals completed the Delphi survey. A total of 82 ICF-CY second-level categories were identified for the EDD Code Set, including 28 categories from the domain Activities and Participation, 29 from body functions, 10 from body structures and 15 from environmental factors. The EDD Code Set of 82 ICF-CY categories could be useful in multidisciplinary team evaluations to describe functioning of infants younger than three years of age with DD, in a holistic manner. Future validation of the EDD Code Set and examination of its clinical utility are needed. The EDD Code Set with 82 essential ICF-CY categories could be useful in the initial team evaluation as a common language to describe functioning of infants less than three years of age with developmental delay/disabilities, with a more holistic view. The EDD Code Set including essential categories in activities and participation, body functions, body structures and environmental factors could be used to create a functional profile for each infant with special needs and to clarify the interaction of child and environment accounting for the child's functioning.
Role of ND10 nuclear bodies in the chromatin repression of HSV-1.
Gu, Haidong; Zheng, Yi
2016-04-05
Herpes simplex virus (HSV) is a neurotropic virus that establishes lifelong latent infection in human ganglion sensory neurons. This unique life cycle necessitates an intimate relation between the host defenses and virus counteractions over the long course of infection. Two important aspects of host anti-viral defense, nuclear substructure restriction and epigenetic chromatin regulation, have been intensively studied in the recent years. Upon viral DNA entering the nucleus, components of discrete nuclear bodies termed nuclear domain 10 (ND10), converge at viral DNA and place restrictions on viral gene expression. Meanwhile the infected cell mobilizes its histones and histone-associated repressors to force the viral DNA into nucleosome-like structures and also represses viral transcription. Both anti-viral strategies are negated by various HSV countermeasures. One HSV gene transactivator, infected cell protein 0 (ICP0), is a key player in antagonizing both the ND10 restriction and chromatin repression. On one hand, ICP0 uses its E3 ubiquitin ligase activity to target major ND10 components for proteasome-dependent degradation and thereafter disrupts the ND10 nuclear bodies. On the other hand, ICP0 participates in de-repressing the HSV chromatin by changing histone composition or modification and therefore activates viral transcription. Involvement of a single viral protein in two seemingly different pathways suggests that there is coordination in host anti-viral defense mechanisms and also cooperation in viral counteraction strategies. In this review, we summarize recent advances in understanding the role of chromatin regulation and ND10 dynamics in both lytic and latent HSV infection. We focus on the new observations showing that ND10 nuclear bodies play a critical role in cellular chromatin regulation. We intend to find the connections between the two major anti-viral defense pathways, chromatin remodeling and ND10 structure, in order to achieve a better understanding of how host orchestrates a concerted defense and how HSV adapts with and overcomes the host immunity.
Shriver, Lenka H; Harrist, Amanda W; Page, Melanie; Hubbs-Tait, Laura; Moulton, Michelle; Topham, Glade
2013-01-01
Body satisfaction is important for the prevention of disordered eating and body image disturbances. Yet, little is known about body esteem and what influences it among younger children. The purpose of this study was to evaluate body esteem and the relationships between body esteem, weight, gender, and physical activity in elementary school children. A total of 214 third graders in a U.S. Midwestern state participated in this correlational study. The Body Mass Index-for-age, the Body Esteem Scale (BES), BE-Weight, BE-Appearance, and a Physical Activity Checklist were used to examine the relationships between the variables using bivariate correlations and analysis of variance. While children's body esteem did not differ by physical activity, important interactions were identified between weight status and gender in global body esteem and BE-Appearance. It is critical to examine attitudes about weight and appearance and the relationship between body esteem and self-esteem further among middle childhood-aged children. Copyright © 2012 Elsevier Ltd. All rights reserved.
Generic Long-Range Interactions Between Passive Bodies in an Active Fluid.
Baek, Yongjoo; Solon, Alexandre P; Xu, Xinpeng; Nikola, Nikolai; Kafri, Yariv
2018-02-02
A single nonspherical body placed in an active fluid generates currents via breaking of time-reversal symmetry. We show that, when two or more passive bodies are placed in an active fluid, these currents lead to long-range interactions. Using a multipole expansion, we characterize their leading-order behaviors in terms of single-body properties and show that they decay as a power law with the distance between the bodies, are anisotropic, and do not obey an action-reaction principle. The interactions lead to rich dynamics of the bodies, illustrated by the spontaneous synchronized rotation of pinned nonchiral bodies and the formation of traveling bound pairs. The occurrence of these phenomena depends on tunable properties of the bodies, thus opening new possibilities for self-assembly mediated by active fluids.
Physical activity level and medial temporal health in youth at ultra high-risk for psychosis.
Mittal, Vijay A; Gupta, Tina; Orr, Joseph M; Pelletier-Baldelli, Andrea; Dean, Derek J; Lunsford-Avery, Jessica R; Smith, Ashley K; Robustelli, Briana L; Leopold, Daniel R; Millman, Zachary B
2013-11-01
A growing body of evidence suggests that moderate to vigorous activity levels can affect quality of life, cognition, and brain structure in patients diagnosed with schizophrenia. However, physical activity has not been systematically studied during the period immediately preceding the onset of psychosis. Given reports of exercise-based neurogenesis in schizophrenia, understanding naturalistic physical activity levels in the prodrome may provide valuable information for early intervention efforts. The present study examined 29 ultra high-risk (UHR) and 27 matched controls to determine relationships between physical activity level, brain structure (hippocampus and parahippocampal gyrus), and symptoms. Participants were assessed with actigraphy for a 5-day period, MRI, and structured clinical interviews. UHR participants showed a greater percentage of time in sedentary behavior while healthy controls spent more time engaged in light to vigorous activity. There was a strong trend to suggest the UHR group showed less total physical activity. The UHR group exhibited smaller medial temporal volumes when compared with healthy controls. Total level of physical activity in the UHR group was moderately correlated with parahippocampal gyri bilaterally (right: r = .44, left: r = .55) and with occupational functioning (r = -.36; of negative symptom domain), but not positive symptomatology. Results suggest that inactivity is associated with medial temporal lobe health. Future studies are needed to determine if symptoms are driving inactivity, which in turn may be affecting the health of the parahippocampal structure and progression of illness. Although causality cannot be determined from the present design, these findings hold important implications for etiological conceptions and suggest promise for an experimental trial. PsycINFO Database Record (c) 2013 APA, all rights reserved.