Kasabova, Boryana E; Holliday, Trenton W
2015-04-01
A new model for estimating human body surface area and body volume/mass from standard skeletal metrics is presented. This model is then tested against both 1) "independently estimated" body surface areas and "independently estimated" body volume/mass (both derived from anthropometric data) and 2) the cylindrical model of Ruff. The model is found to be more accurate in estimating both body surface area and body volume/mass than the cylindrical model, but it is more accurate in estimating body surface area than it is for estimating body volume/mass (as reflected by the standard error of the estimate when "independently estimated" surface area or volume/mass is regressed on estimates derived from the present model). Two practical applications of the model are tested. In the first test, the relative contribution of the limbs versus the trunk to the body's volume and surface area is compared between "heat-adapted" and "cold-adapted" populations. As expected, the "cold-adapted" group has significantly more of its body surface area and volume in its trunk than does the "heat-adapted" group. In the second test, we evaluate the effect of variation in bi-iliac breadth, elongated or foreshortened limbs, and differences in crural index on the body's surface area to volume ratio (SA:V). Results indicate that the effects of bi-iliac breadth on SA:V are substantial, while those of limb lengths and (especially) the crural index are minor, which suggests that factors other than surface area relative to volume are driving morphological variation and ecogeographical patterning in limb prorportions. © 2014 Wiley Periodicals, Inc.
Motz, R; Schumacher, M; Nürnberg, J; Viemann, M; Grafmüller, S; Fiedler, K; Claus, M; Kronberg, K
2014-12-01
Looking after children means caring for very small infants up to adult-sized adolescents, with weights ranging from 500 g to more than 100 kg and heights ranging from 25 to more than 200 cm. The available echocardiographic reference data were drawn from a small sample, which did not include preterm infants. Most authors have used body weight or body surface area to predict left ventricular dimensions. The current authors had the impression that body length would be a better surrogate parameter than body weight or body surface area. They analyzed their echocardiographic database retrospectively. The analysis included all available echocardiographic data from 6 June 2001 to 15 December 2011 from their echocardiographic database. The authors included 12,086 of 26,325 subjects documented as patients with normal hearts in their analysis by the examining the pediatric cardiologist. For their analysis, they selected body weight, length, age, and aortic and pulmonary valve diameter in two-dimensional echocardiography and left ventricular dimension in M-mode. They found good correlation between echocardiographic dimensions and body surface area, body weight, and body length. The analysis showed a complex relationship between echocardiographic measurements and body weight and body surface area, whereas body length showed a linear relationship. This makes prediction of echo parameters more reliable. According to this retrospective analysis, body length is a better parameter for evaluating echocardiographic measurements than body weight or body surface area and should therefore be used in daily practice.
The spatial-temporal dynamics of open surface water bodies in CONUS during 1984-2016
NASA Astrophysics Data System (ADS)
Zou, Z.; Xiao, X.; Dong, J.; Qin, Y.; Doughty, R.; Menarguez, M.; Wang, J.
2017-12-01
Open surface water bodies provided 80% of the total water withdrawals in the Contiguous United States (CONUS) in 1985-2010. The inter-annual variability and changing trends of surface water body areas have various impacts on the human society and ecosystems. This study made use of all Landsat 5, 7, and 8 surface reflectance archives ( 370,000 images) during 1984-2016 and a water index- and pixel-based approach to detect and map open surface water bodies in the cloud-based platform of Google Earth Engine. The year-long water body area and annual average water body area were calculated for each of the last 33 years and their inter-annual variations during 1984-2016 were analyzed through anomaly analysis while their changing trends were analyzed through linear regressions. The national annual average water body areas varied from 265,000 to 281,000 km2 during 1984-2016, which is 3% below to 3% above the mean value 274,000 km2. In state level, significant decreasing trends were found in both year-long and annual average water body areas in some states of dry climates in west and southwest U.S., including Oregon, Nevada, Utah, Arizona, New Mexico, and Oklahoma. In comparison, significant increasing trends were found in some states of wet climates in the southeast and north U.S., including Indiana, Ohio, New Jersey, Delaware, Virginia, Tennessee, North Carolina, South Carolina, Louisiana, Alabama, Georgia, North Dakota and South Dakota. Open surface water body areas in CONUS decreased in relatively dry areas but increased in relatively wet areas. The relationships between open surface water body area variability and climate factors (precipitation, temperature) and human impacts (water exploitation) were also analyzed.
Human body surface area: a theoretical approach.
Wang, Jianfeng; Hihara, Eiji
2004-04-01
Knowledge of the human body surface area has important applications in medical practice, garment design, and other engineering sizing. Therefore, it is not surprising that several expressions correlating body surface area with direct measurements of body mass and length have been reported in the literature. In the present study, based on the assumption that the exterior shape of the human body is the result of convex and concave deformations from a basic cylinder, we derive a theoretical equation minimizing body surface area (BSA) at a fixed volume (V): BSA=(9pi VL)(0.5), where L is the reference length of the body. Assuming a body density value of 1,000 kg.m(-3), the equation becomes BSA=(BM.BH/35.37)(0.5), where BSA is in square meters, BM is the body mass in kilograms, and BH is the body height in meters. BSA values calculated by means of this equation fall within +/-7% of the values obtained by means of the equations available in the literature, in the range of BSA from children to adults. It is also suggested that the above equation, which is obtained by minimizing the outer body surface at a fixed volume, implies a fundamental relation set by the geometrical constraints governing the growth and the development of the human body.
Adolescent Body Size and Flexibility
ERIC Educational Resources Information Center
Krahenbuhl, Gary S.; Martin, Stephen L.
1977-01-01
Research suggests that differences in body surface area that occur during adolescence are significantly negatively related to knee, hip, and shoulder flexion-extension range, with flexibility decreasing as body surface area increases, with the relationship strongest for the knee. (MJB)
Eiseman, Julie L; Sciullo, Michael; Wang, Hong; Beumer, Jan H; Horn, Charles C
2017-10-01
Several cancer chemotherapies cause nausea and vomiting, which can be dose-limiting. Musk shrews are used as preclinical models for chemotherapy-induced emesis and for antiemetic effectiveness. Unlike rats and mice, shrews possess a vomiting reflex and demonstrate an emetic profile similar to humans, including acute and delayed phases. As with most animals, dosing of shrews is based on body weight, while translation of such doses to clinically equivalent exposure requires doses based on body surface area. In the current study body surface area in musk shrews was directly assessed to determine the Meeh constant (K m ) conversion factor (female = 9.97, male = 9.10), allowing estimation of body surface area based on body weight. These parameters can be used to determine dosing strategies for shrew studies that model human drug exposures, particularly for investigating the emetic liability of cancer chemotherapeutic agents.
Yapuncich, Gabriel S; Boyer, Doug M
2014-01-01
The articular facets of interosseous joints must transmit forces while maintaining relatively low stresses. To prevent overloading, joints that transmit higher forces should therefore have larger facet areas. The relative contributions of body mass and muscle-induced forces to joint stress are unclear, but generate opposing hypotheses. If mass-induced forces dominate, facet area should scale with positive allometry to body mass. Alternatively, muscle-induced forces should cause facets to scale isometrically with body mass. Within primates, both scaling patterns have been reported for articular surfaces of the femoral and humeral heads, but more distal elements are less well studied. Additionally, examination of complex articular surfaces has largely been limited to linear measurements, so that ‘true area' remains poorly assessed. To re-assess these scaling relationships, we examine the relationship between body size and articular surface areas of the talus. Area measurements were taken from microCT scan-generated surfaces of all talar facets from a comprehensive sample of extant euarchontan taxa (primates, treeshrews, and colugos). Log-transformed data were regressed on literature-derived log-body mass using reduced major axis and phylogenetic least squares regressions. We examine the scaling patterns of muscle mass and physiological cross-sectional area (PCSA) to body mass, as these relationships may complicate each model. Finally, we examine the scaling pattern of hindlimb muscle PCSA to talar articular surface area, a direct test of the effect of mass-induced forces on joint surfaces. Among most groups, there is an overall trend toward positive allometry for articular surfaces. The ectal (= posterior calcaneal) facet scales with positive allometry among all groups except ‘sundatherians', strepsirrhines, galagids, and lorisids. The medial tibial facet scales isometrically among all groups except lemuroids. Scaling coefficients are not correlated with sample size, clade inclusivity or behavioral diversity of the sample. Muscle mass scales with slight positive allometry to body mass, and PCSA scales at isometry to body mass. PCSA generally scales with negative allometry to articular surface area, which indicates joint surfaces increase faster than muscles' ability to generate force. We suggest a synthetic model to explain the complex patterns observed for talar articular surface area scaling: whether ‘muscles or mass' drive articular facet scaling is probably dependent on the body size range of the sample and the biological role of the facet. The relationship between ‘muscle vs. mass' dominance is likely bone-and facet-specific, meaning that some facets should respond primarily to stresses induced by larger body mass, whereas others primarily reflect muscle forces. PMID:24219027
Metabolic rate M 0.75 in human beings
NASA Astrophysics Data System (ADS)
Agrawal, D. C.
2014-11-01
Human beings consume energy every day. Even at rest, energy is still needed for the working of the internal organs. This is achieved by the metabolism of consumed food in the presence of inhaled oxygen. During the resting state this is called the maintenance rate, and follows the mouse-to-elephant formula, Pmet = 70M0.75 kcal per day. Here, M is the body mass of the subject in kilograms. The heat generated in metabolism is lost through the body surface of the subject, so the metabolic rate should also be proportional to the body surface area. In other words, the body surface area in the case of a human being must also depend on M0.75. The present paper examines this issue by finding a relationship between human body surface area and its mass through a very simple model that can be easily understood and verified by physics students, who can also compare it with all the expressions for body surface area available in the literature. This will build confidence in the students that the heat generated from metabolism in fact dissipates through the surface of the body.
Human body surface area database and estimation formula.
Yu, Chi-Yuang; Lin, Ching-Hua; Yang, Yi-Hsueh
2010-08-01
This study established human body surface area (BSA) database and estimation formula based on three-dimensional (3D) scanned data. For each gender, 135 subjects were drawn. The sampling was stratified in five stature heights and three body weights according to a previous survey. The 3D body surface shape was measured using an innovated 3D body scanner and a high resolution hand/foot scanner, the total body surface area (BSA) and segmental body surface area (SBSA) were computed based on the summation of every tiny triangular area of triangular meshes of the scanned surface; and the accuracy of BSA measurement is below 1%. The results of BSA and sixteen SBSAs were tabulated in fifteen strata for the Male, the Female and the Total (two genders combined). The %SBSA data was also used to revise new Lund and Browder Charts. The comparison of BSA shows that the BSA of this study is comparable with the Du Bois and Du Bois' but smaller than that of Tikuisis et al. The difference might be attributed to body size difference between the samples. The comparison of SBSA shows that the differences of SBSA between this study and the Lund and Browder Chart range between 0.00% and 2.30%. A new BSA estimation formula, BSA=71.3989 x H(.7437) x W(.4040), was obtained. An accuracy test showed that this formula has smaller estimation error than that of the Du Bois and Du Bois'; and significantly better than other BSA estimation formulae.
Estimating the surface area of birds: using the homing pigeon (Columba livia) as a model.
Perez, Cristina R; Moye, John K; Pritsos, Chris A
2014-05-08
Estimation of the surface area of the avian body is valuable for thermoregulation and metabolism studies as well as for assessing exposure to oil and other surface-active organic pollutants from a spill. The use of frozen carcasses for surface area estimations prevents the ability to modify the posture of the bird. The surface area of six live homing pigeons in the fully extended flight position was estimated using a noninvasive method. An equation was derived to estimate the total surface area of a pigeon based on its body weight. A pigeon's surface area in the fully extended flight position is approximately 4 times larger than the surface area of a pigeon in the perching position. The surface area of a bird is dependent on its physical position, and, therefore, the fully extended flight position exhibits the maximum area of a bird and should be considered the true surface area of a bird. © 2014. Published by The Company of Biologists Ltd | Biology Open.
Sauropod necks: are they really for heat loss?
Henderson, Donald M
2013-01-01
Three-dimensional digital models of 16 different sauropods were used to examine the scaling relationship between metabolism and surface areas of the whole body, the neck, and the tail in an attempt to see if the necks could have functioned as radiators for the elimination of excess body heat. The sauropod taxa sample ranged in body mass from a 639 kg juvenile Camarasaurus to a 25 t adult Brachiosaurus. Metabolism was assumed to be directly proportional to body mass raised to the ¾ power, and estimates of body mass accounted for the presence of lungs and systems of air sacs in the trunk and neck. Surface areas were determined by decomposing the model surfaces into triangles and their areas being computed by vector methods. It was found that total body surface area was almost isometric with body mass, and that it showed negative allometry when plotted against metabolic rate. In contrast, neck area showed positive allometry when plotted against metabolic rate. Tail area show negative allometry with respect to metabolic rate. The many uncertainties about the biology of sauropods, and the variety of environmental conditions that different species experienced during the groups 150 million years of existence, make it difficult to be absolutely certain about the function of the neck as a radiator. However, the functional combination of the allometric increase of neck area, the systems of air sacs in the neck and trunk, the active control of blood flow between the core and surface of the body, changing skin color, and strategic orientation of the neck with respect to wind, make it plausible that the neck could have functioned as a radiator to avoid over-heating.
Sauropod Necks: Are They Really for Heat Loss?
Henderson, Donald M.
2013-01-01
Three-dimensional digital models of 16 different sauropods were used to examine the scaling relationship between metabolism and surface areas of the whole body, the neck, and the tail in an attempt to see if the necks could have functioned as radiators for the elimination of excess body heat. The sauropod taxa sample ranged in body mass from a 639 kg juvenile Camarasaurus to a 25 t adult Brachiosaurus. Metabolism was assumed to be directly proportional to body mass raised to the ¾ power, and estimates of body mass accounted for the presence of lungs and systems of air sacs in the trunk and neck. Surface areas were determined by decomposing the model surfaces into triangles and their areas being computed by vector methods. It was found that total body surface area was almost isometric with body mass, and that it showed negative allometry when plotted against metabolic rate. In contrast, neck area showed positive allometry when plotted against metabolic rate. Tail area show negative allometry with respect to metabolic rate. The many uncertainties about the biology of sauropods, and the variety of environmental conditions that different species experienced during the groups 150 million years of existence, make it difficult to be absolutely certain about the function of the neck as a radiator. However, the functional combination of the allometric increase of neck area, the systems of air sacs in the neck and trunk, the active control of blood flow between the core and surface of the body, changing skin color, and strategic orientation of the neck with respect to wind, make it plausible that the neck could have functioned as a radiator to avoid over-heating. PMID:24204747
Vozarova, B; Weyer, C; Bogardus, C; Ravussin, E; Tataranni, P A
2002-06-01
Body temperature is a function of heat production and heat dissipation. Substantial interindividual variability has been reported in healthy humans. We hypothesized that Pima Indians, a population with a high prevalence of abdominal obesity, may have a lower surface area relative to volume, that is, lower radiating area, and therefore a higher body temperature compared to Caucasians. Body composition, including volume (hydrodensitometry), and oral temperature were assessed in 69 nondiabetic Caucasian [age, 30 +/- 7 years; body fat, 21 +/- 8% (mean +/- SD)] and 115 Pima Indian males [age, 27 +/- 6 years; body fat, 28 +/- 6%]. Surface area was estimated from height, weight, and waist circumference (Bouchard's equation). In 47 Pima Indians, measures of insulin sensitivity (M, hyperinsulinemic euglycemic clamp) were available. Compared to Caucasians, Pima Indians had a higher oral temperature [36.4 +/- 0.3 degrees C vs. 36.3 +/- 0.3 degrees C (mean +/- SD), p < 0.04] and lower surface area relative to volume (2.19 +/- 0.05 vs. 2.23 +/- 0.26 m(2), p < 0.0001). Surface area relative to volume was negatively correlated with oral temperature (r = -0.14, p < 0.05), but in a multiple linear regression model it did not entirely explain the ethnic difference in oral temperature. Oral temperature was inversely correlated with M (r = -0.28, p < 0.05). Conclusions-Pima Indians have higher oral temperature and lower surface area relative to volume than Caucasians. The ethnic difference in temperature does not seem to be entirely explained by differences in body composition and body shape. Interestingly, higher oral temperature was associated with insulin resistance, a risk factor for type 2 diabetes.
2004-01-01
Abstract A computer program (CalcAnesth) was developed with Visual Basic for the purpose of calculating the doses and prices of injectable medications on the basis of body weight or body surface area. The drug names, concentrations, and prices are loaded from a drug database. This database is a simple text file, that the user can easily create or modify. The animal names and body weights can be loaded from a similar database. After typing the dose and the units into the user interface, the results will be automatically displayed. The program is able to open and save anesthetic protocols, and export or print the results. This CalcAnesth program can be useful in clinical veterinary anesthesiology and research. The rationale for dosing on the basis of body surface area is also discussed in this article. PMID:14979437
Simple formula for the surface area of the body and a simple model for anthropometry.
Reading, Bruce D; Freeman, Brian
2005-03-01
The body surface area (BSA) of any adult, when derived from the arithmetic mean of the different values calculated from four independent accepted formulae, can be expressed accurately in Systeme International d'Unites (SI) units by the simple equation BSA = 1/6(WH)0.5, where W is body weight in kg, H is body height in m, and BSA is in m2. This formula, which is derived in part by modeling the body as a simple solid of revolution or a prolate spheroid (i.e., a stretched ellipsoid of revolution) gives students, teachers, and clinicians a simple rule for the rapid estimation of surface area using rational units. The formula was tested independently for human subjects by using it to predict body volume and then comparing this prediction against the actual volume measured by Archimedes' principle. Copyright 2005 Wiley-Liss, Inc.
Surface area-volume ratios in insects.
Kühsel, Sara; Brückner, Adrian; Schmelzle, Sebastian; Heethoff, Michael; Blüthgen, Nico
2017-10-01
Body mass, volume and surface area are important for many aspects of the physiology and performance of species. Whereas body mass scaling received a lot of attention in the literature, surface areas of animals have not been measured explicitly in this context. We quantified surface area-volume (SA/V) ratios for the first time using 3D surface models based on a structured light scanning method for 126 species of pollinating insects from 4 orders (Diptera, Hymenoptera, Lepidoptera, and Coleoptera). Water loss of 67 species was measured gravimetrically at very dry conditions for 2 h at 15 and 30 °C to demonstrate the applicability of the new 3D surface measurements and relevance for predicting the performance of insects. Quantified SA/V ratios significantly explained the variation in water loss across species, both directly or after accounting for isometric scaling (residuals of the SA/V ∼ mass 2/3 relationship). Small insects with a proportionally larger surface area had the highest water loss rates. Surface scans of insects to quantify allometric SA/V ratios thus provide a promising method to predict physiological responses, improving the potential of body mass isometry alone that assume geometric similarity. © 2016 Institute of Zoology, Chinese Academy of Sciences.
Aquatic adaptations in the nose of carnivorans: evidence from the turbinates
Van Valkenburgh, Blaire; Curtis, Abigail; Samuels, Joshua X; Bird, Deborah; Fulkerson, Brian; Meachen-Samuels, Julie; Slater, Graham J
2011-01-01
Inside the mammalian nose lies a labyrinth of bony plates covered in epithelium collectively known as turbinates. Respiratory turbinates lie anteriorly and aid in heat and water conservation, while more posterior olfactory turbinates function in olfaction. Previous observations on a few carnivorans revealed that aquatic species have relatively large, complex respiratory turbinates and greatly reduced olfactory turbinates compared with terrestrial species. Body heat is lost more quickly in water than air and increased respiratory surface area likely evolved to minimize heat loss. At the same time, olfactory surface area probably diminished due to a decreased reliance on olfaction when foraging under water. To explore how widespread these adaptations are, we documented scaling of respiratory and olfactory turbinate surface area with body size in a variety of terrestrial, freshwater, and marine carnivorans, including pinnipeds, mustelids, ursids, and procyonids. Surface areas were estimated from high-resolution CT scans of dry skulls, a novel approach that enabled a greater sampling of taxa than is practical with fresh heads. Total turbinate, respiratory, and olfactory surface areas correlate well with body size (r2 ≥ 0.7), and are relatively smaller in larger species. Relative to body mass or skull length, aquatic species have significantly less olfactory surface area than terrestrial species. Furthermore, the ratio of olfactory to respiratory surface area is associated with habitat. Using phylogenetic comparative methods, we found strong support for convergence on 1 : 3 proportions in aquatic taxa and near the inverse in terrestrial taxa, indicating that aquatic mustelids and pinnipeds independently acquired similar proportions of olfactory to respiratory turbinates. Constraints on turbinate surface area in the nasal chamber may result in a trade-off between respiratory and olfactory function in aquatic mammals. PMID:21198587
Thermal maps of young women and men
NASA Astrophysics Data System (ADS)
Chudecka, Monika; Lubkowska, Anna
2015-03-01
The objective was to use thermal imaging (ThermaCAM SC500) as an effective tool in establishing a thermal map of young participants, with a high diagnostic value for medicine, physiotherapy and sport. A further aim was to establish temperature distributions and ranges on the body surface of the young women and men as standard temperatures for the examined age group, taking into account BMI, body surface area and selected parameters of body fat distribution. The participants included young, healthy and physically active women (n = 100) and men (n = 100). In the women and men, the highest Tmean temperatures were found on the trunk. The warmest were the chest and upper back, then the lower back and abdomen. The lowest Tmean were found in the distal parts of the body, especially on the lower limbs. The results showed that only in the area of the chest was Tmean significantly higher in women than in men. In the areas of the hands (front and back) Tmean were similar for women and men. In the other analyzed body surface areas, Tmean were significantly lower in women. Research showed significant differences in body surface temperature between the women and men. Among the analyzed characteristics, Tmean in the chest, upper back, abdomen, lower back (both in women and men) were mainly correlated with BMI and PBF; the correlations were negative. Difficulties in interpreting changes in temperature in selected body areas in people with various conditions can be associated with the lack of studies on large and representative populations of healthy individuals with normal weight/height parameters. Therefore, it seems that this presented research is a significant practical and cognitive contribution to knowledge on thermoregulation, and may therefore be used as a reference for other studies using thermal imaging in the evaluation of changes in body surface temperatures.
Shamata, Awatif; Thompson, Tim
2018-04-01
Non-contact three-dimensional (3D) surface scanning methods have been applied to forensic medicine to record injuries and to mitigate ordinary photography shortcoming. However, there are no literature concerning practical guidance for 3D surface scanning of live victims. This paper aimed to investigate key 3D scanning issues of the live body to develop a series of scanning principles for future use on injured victims. The Pico Scan 3D surface scanner was used on live test subjects. The work focused on analysing the following concerns: (1) an appropriate 3D scanning technique to scan different body areas, (2) the ideal number of scans, (3) scanning approaches to access various areas of the body and (4) elimination of environmental background noise in the acquired data. Results showed that scanning only a required surface of the body area in the stable manner was more efficient when compared to complete 360°-scanning; therefore, it used as a standard 3D scanning technique. More than three scans were sufficient when trying to obtain an optimal wireframe mode presentation of the result. Three different approaches were suggested to provide access to the various areas of the body. Undertaking scanning using a black background eliminated the background noise. The work demonstrated that the scanner will be promising to reconstruct injuries from different body areas, although the 3D scanning of the live subjects faced some challenges. Crown Copyright © 2018. Published by Elsevier Ltd. All rights reserved.
21 CFR 522.558 - Dexmedetomidine.
Code of Federal Regulations, 2010 CFR
2010-04-01
... by intramuscular injection. (B) For use as a preanesthetic to general anesthesia, administer 125 µg/m2 of body surface area or 375 µg/m2 of body surface area by intramuscular injection. (ii...) Amount. 40 µg/killogram by intramuscular injection. (ii) Indications for use. For use as a sedative and...
Resuscitation burn card--a useful tool for burn injury assessment.
Malic, C C; Karoo, R O S; Austin, O; Phipps, A
2007-03-01
It is well recognised that the initial assessment of body surface area affected by a burn is often over estimated in Accident and Emergency Departments. A useful aide-memoir in the acute setting is Wallace's "rule of nines" or using the patients' palmar surface of the hand, which approximates 1% of the total body surface area, as a method of assessment. Unfortunately, as with every system, limitations apply. Factors such as patient size and the interpretation of what is exactly the 'palmar surface' may significantly influence burn size estimations and subsequently fluid resuscitation. Our aim is to develop a simple, quick and easy reproducible method of calculating burn injuries for medical professionals in the acute setting. Worldwide, the dimensions of a credit card are standardized (8.5 cm x 5.3 cm), thus producing a surface area of 45 cm2. We created a resuscitation burn card (RBC) using these exact same proportions, upon which a modified body surface area (BSA) nomogram was printed. Knowing the patient height and weight, we calculated the surface area of the card as percentage of total body surface area (TBSA). On the opposite site of the RBC, a Lund and Browder chart was printed, as well as the Parkland formula and a formula to calculate paediatric burn fluid requirements. The plastic, flexible RBC conformed well to the body contour and was designed for single use. We used the resuscitation burn card in the initial assessment of simulated burns in a Regional Burn Centre and in an Accident and Emergency Department. The information present on the card was found to be clear and straightforward to use. The evaluation of burn extent was found to be more accurately measured than the estimation obtained without the RBC. The resuscitation burn card can be a valuable tool in the hands of less experienced medical professionals for the early assessment and fluid resuscitation of a burn.
NASA Astrophysics Data System (ADS)
Kuroda, Keisuke; Hayashi, Takeshi; Do, An Thuan; Canh, Vu Duc; Nga, Tran Thi Viet; Funabiki, Ayako; Takizawa, Satoshi
2017-05-01
Over-exploited groundwater is expected to remain the predominant source of domestic water in suburban areas of Hanoi, Vietnam. In order to evaluate the effect on groundwater recharge, of decreasing surface-water bodies and land-use change caused by urbanization, the relevant groundwater systems and recharge pathways must be characterized in detail. To this end, water levels and water quality were monitored for 3 years regarding groundwater and adjacent surface-water bodies, at two typical suburban sites in Hanoi. Stable isotope (δ18O, δD of water) analysis and hydrochemical analysis showed that the water from both aquifers and aquitards, including the groundwater obtained from both the monitoring wells and the neighboring household tubewells, was largely derived from evaporation-affected surface-water bodies (e.g., ponds, irrigated farmlands) rather than from rivers. The water-level monitoring results suggested distinct local-scale flow systems for both a Holocene unconfined aquifer (HUA) and Pleistocene confined aquifer (PCA). That is, in the case of the HUA, lateral recharge through the aquifer from neighboring ponds and/or irrigated farmlands appeared to be dominant, rather than recharge by vertical rainwater infiltration. In the case of the PCA, recharge by the above-lying HUA, through areas where the aquitard separating the two aquifers was relatively thin or nonexistent, was suggested. As the decrease in the local surface-water bodies will likely reduce the groundwater recharge, maintaining and enhancing this recharge (through preservation of the surface-water bodies) is considered as essential for the sustainable use of groundwater in the area.
Climatic influences on human body size and proportions: ecological adaptations and secular trends.
Katzmarzyk, P T; Leonard, W R
1998-08-01
This study reevaluates the long-standing observation that human morphology varies with climate. Data on body mass, the body mass index [BMI; mass (kg)/stature (m)2], the surface area/body mass ratio, and relative sitting height (RSH; sitting height/stature) were obtained for 223 male samples and 195 female samples derived from studies published since D.F. Roberts' landmark paper "Body weight, race, and climate" in 1953 (Am. J. Phys. Anthropol. 11:533-558). Current analyses indicate that body mass varies inversely with mean annual temperature in males (r=-0.27, P < 0.001) and females (r=-0.28, P < 0.001), as does the BMI (males: r=-0.22, P=0.001; females: r=-0.30, P < 0.001). The surface area/body mass ratio is positively correlated with temperature in both sexes (males: r=0.29, P < 0.001; females: r=0.34, P < 0.001), whereas the relationship between RSH and temperature is negative (males: r=-0.37, P < 0.001; females: r=-0.46, P < 0.001). These results are consistent with previous work showing that humans follow the ecological rules of Bergmann and Allen. However, the slope of the best-fit regressions between measures of body mass (i.e., mass, BMI, and surface area/mass) and temperature are more modest than those presented by Roberts. These differences appear to be attributable to secular trends in mass, particularly among tropical populations. Body mass and the BMI have increased over the last 40 years, whereas the surface area/body mass ratio has decreased. These findings indicate that, although climatic factors continue to be significant correlates of world-wide variation in human body size and morphology, differential changes in nutrition among tropical, developing world populations have moderated their influence.
Body mass scaling of passive oxygen diffusion in endotherms and ectotherms
Gillooly, James F.; Gomez, Juan Pablo; Mavrodiev, Evgeny V.; Rong, Yue; McLamore, Eric S.
2016-01-01
The area and thickness of respiratory surfaces, and the constraints they impose on passive oxygen diffusion, have been linked to differences in oxygen consumption rates and/or aerobic activity levels in vertebrates. However, it remains unclear how respiratory surfaces and associated diffusion rates vary with body mass across vertebrates, particularly in relation to the body mass scaling of oxygen consumption rates. Here we address these issues by first quantifying the body mass dependence of respiratory surface area and respiratory barrier thickness for a diversity of endotherms (birds and mammals) and ectotherms (fishes, amphibians, and reptiles). Based on these findings, we then use Fick’s law to predict the body mass scaling of oxygen diffusion for each group. Finally, we compare the predicted body mass dependence of oxygen diffusion to that of oxygen consumption in endotherms and ectotherms. We find that the slopes and intercepts of the relationships describing the body mass dependence of passive oxygen diffusion in these two groups are statistically indistinguishable from those describing the body mass dependence of oxygen consumption. Thus, the area and thickness of respiratory surfaces combine to match oxygen diffusion capacity to oxygen consumption rates in both air- and water-breathing vertebrates. In particular, the substantially lower oxygen consumption rates of ectotherms of a given body mass relative to those of endotherms correspond to differences in oxygen diffusion capacity. These results provide insights into the long-standing effort to understand the structural attributes of organisms that underlie the body mass scaling of oxygen consumption. PMID:27118837
Body mass scaling of passive oxygen diffusion in endotherms and ectotherms.
Gillooly, James F; Gomez, Juan Pablo; Mavrodiev, Evgeny V; Rong, Yue; McLamore, Eric S
2016-05-10
The area and thickness of respiratory surfaces, and the constraints they impose on passive oxygen diffusion, have been linked to differences in oxygen consumption rates and/or aerobic activity levels in vertebrates. However, it remains unclear how respiratory surfaces and associated diffusion rates vary with body mass across vertebrates, particularly in relation to the body mass scaling of oxygen consumption rates. Here we address these issues by first quantifying the body mass dependence of respiratory surface area and respiratory barrier thickness for a diversity of endotherms (birds and mammals) and ectotherms (fishes, amphibians, and reptiles). Based on these findings, we then use Fick's law to predict the body mass scaling of oxygen diffusion for each group. Finally, we compare the predicted body mass dependence of oxygen diffusion to that of oxygen consumption in endotherms and ectotherms. We find that the slopes and intercepts of the relationships describing the body mass dependence of passive oxygen diffusion in these two groups are statistically indistinguishable from those describing the body mass dependence of oxygen consumption. Thus, the area and thickness of respiratory surfaces combine to match oxygen diffusion capacity to oxygen consumption rates in both air- and water-breathing vertebrates. In particular, the substantially lower oxygen consumption rates of ectotherms of a given body mass relative to those of endotherms correspond to differences in oxygen diffusion capacity. These results provide insights into the long-standing effort to understand the structural attributes of organisms that underlie the body mass scaling of oxygen consumption.
NASA Astrophysics Data System (ADS)
Zou, Z.; Xiao, X.; Menarguez, M.; Dong, J.; Qin, Y.
2016-12-01
Open surface water bodies are important water resource for public supply, irrigation, livestock, and wildlife in Oklahoma. The inter-annual variation of Oklahoma water bodies directly affect the water availability for public supply, irrigation and cattle industry. In this study, tens of thousands of Landsat TM/ETM+ images from 1984 to 2015 were used to track the dynamics of open surface water bodies. Both water-related spectral indices and vegetation indices were used to map water bodies for individual images. The resultant maps show that Oklahoma year-long open surface water bodies varied significantly over the last 32 years, with an average annual water body area equals to 2300 km2, accounting for 1.27 % of the Oklahoma state area (181,037 km2). 4.3 million year-long water body pixels were detected in the 32-year accumulated water frequency map, corresponding to 3100 km2. Only 45% ( 1400 km2) of the those pixels had water throughout the 32 years, while the rest 55% pixels had a dry-up period. The smaller water bodies have a higher risk to dry up and a lower probability to have water throughout the years. Drought years could significantly decrease the number of small water bodies and shrink the area of large water bodies, while pluvial years could create large number of small seasonal water bodies. The significant influencing factors of current year water bodies include the precipitation and temperature of current year and the water body condition of the previous year. This water body dynamics study could be used to support water resource management, crop and livestock production, and biodiversity conservation in Oklahoma.
Human body surface area: measurement and prediction using three dimensional body scans.
Tikuisis, P; Meunier, P; Jubenville, C E
2001-08-01
The development of three dimensional laser scanning technology and sophisticated graphics editing software have allowed an alternative and potentially more accurate determination of body surface area (BSA). Raw whole-body scans of 641 adults (395 men and 246 women) were obtained from the anthropometric data base of the Civilian American and European Surface Anthropometry Resource project. Following surface restoration of the scans (i.e. patching and smoothing), BSA was calculated. A representative subset of the entire sample population involving 12 men and 12 women (G24) was selected for detailed measurements of hand surface area (SAhand) and ratios of surface area to volume (SA/VOL) of various body segments. Regression equations involving wrist circumference and arm length were used to predict SAhand of the remaining population. The overall [mean (SD)] of BSA were 2.03 (0.19) and 1.73 (0.19) m2 for men and women, respectively. Various prediction equations were tested and although most predicted the measured BSA reasonably closely, residual analysis revealed an overprediction with increasing body size in most cases. Separate non-linear regressions for each sex yielded the following best-fit equations (with root mean square errors of about 1.3%): BSA (cm2) = 128.1 x m0.44 x h0.60 for men and BSA = 147.4 x m0.47 x h0.55 for women, where m, body mass, is in kilograms and h, height, is in centimetres. The SA/VOL ratios of the various body segments were higher for the women compared to the men of G24, significantly for the head plus neck (by 7%), torso (19%), upper arms (15%), forearms (20%), hands (18%), and feet (11%). The SA/VOL for both sexes ranged from approximately 12.m-1 for the pelvic region to 104-123.m-1 for the hands, and shape differences were a factor for the torso and lower leg.
NASA Astrophysics Data System (ADS)
Wang, Weidong; Leng, Gangsong
2007-11-01
According to the three notions of mixed affine surface area, Lp-affine surface area and Lp-mixed affine surface area proposed by Lutwak, in this article, we give the concept of ith Lp-mixed affine surface area such that the first and second notions of Lutwak are its special cases. Further, some Lutwak's results are extended associated with this concept. Besides, applying this concept, we establish an inequality for the volumes and dual quermassintegrals of a class of star bodies.
Li, Tiandao; Roer, Robert; Vana, Matthew; Pate, Susan; Check, Jennifer
2006-03-01
Juvenile blue crabs, Callinectes sapidus, extensively utilize oligohaline and freshwater regions of the estuary. With a presumptively larger surface-area-to-body weight ratio, juvenile crabs could experience osmo- and ionoregulatory costs well in excess of that of adults. To test this hypothesis, crabs ranging over three orders of magnitude in body weight were acclimated to either sea water (1,000 mOsm) or dilute sea water (150 mOsm), and gill surface area, water and sodium permeabilities (calculated from the passive efflux of 3H2O and 22Na+), gill Na+, K+ -ATPase activity and expression were measured. Juveniles had a relatively larger gill surface area; weight-specific gill surface area decreased with body weight. Weight-specific water and sodium fluxes also decreased with weight, but not to the same extent as gill surface area; thus juveniles were able to decrease gill permeability slightly more than adults upon acclimation to dilute media. Crabs < 5 g in body weight had markedly higher activities of gill Na+ ,K+ -ATPase than crabs > 5 g in both posterior and anterior gills. Acclimation to dilute medium induced increased expression of Na+, K+ -ATPase and enzyme activity, but the increase was not as great in juveniles as in larger crabs. The increased weight-specific surface area for water gain and salt loss for small crabs in dilute media presents a challenge that is incompletely compensated by reduced permeability and increased affinity of gill Na+, K+ -ATPase for Na+. Juveniles maintain osmotic and ionic homeostasis by the expression and utilization of extremely high levels of gill Na+, K+ -ATPase, in posterior, as well as in anterior, gills. Copyright 2006 Wiley-Liss, Inc.
The revised burn diagram and its effect on diagnosis-related group coding.
Turner, D G; Berger, N; Weiland, A P; Jordan, M H
1996-01-01
Diagnosis-related group (DRG) codes for burn injuries are defined by thresholds of the percentage of total body surface area and depth of burns, and by whether surgery, debridement, or grafting or both occurred. This prospective study was designed to determine whether periodic revisions of the burn diagram resulted in more accurate assignment of the International Classification of Diseases and DRG codes. The admission burn diagrams were revised after admission and after each surgical procedure. All areas grafted (deep second-and third-degree burns) were diagrammed as "third-degree," after the current convention that both are biologically the same and require grafting. The multiple diagrams from 82 charts were analyzed to determine the disparities in the percentage of total body surface area burn and the percentage of body surface area third-degree burn. The revised diagrams differed from the admission diagrams in 96.5% of the cases. In 77% of the cases, the revised diagram correctly depicted the percentage of body surface area third-degree burn as confirmed intraoperatively. In 7.3% of the cases, diagram revision changed the DRG code. Documenting wound evolution in this manner allows more accurate assignment of the International Classification of Diseases and DRG codes, assuring optimal reimbursement under the prospective payment system.
Kuehnapfel, Andreas; Ahnert, Peter; Loeffler, Markus; Scholz, Markus
2017-02-01
Body surface area is a physiological quantity relevant for many medical applications. In clinical practice, it is determined by empirical formulae. 3D laser-based anthropometry provides an easy and effective way to measure body surface area but is not ubiquitously available. We used data from laser-based anthropometry from a population-based study to assess validity of published and commonly used empirical formulae. We performed a large population-based study on adults collecting classical anthropometric measurements and 3D body surface assessments (N = 1435). We determined reliability of the 3D body surface assessment and validity of 18 different empirical formulae proposed in the literature. The performance of these formulae is studied in subsets of sex and BMI. Finally, improvements of parameter settings of formulae and adjustments for sex and BMI were considered. 3D body surface measurements show excellent intra- and inter-rater reliability of 0.998 (overall concordance correlation coefficient, OCCC was used as measure of agreement). Empirical formulae of Fujimoto and Watanabe, Shuter and Aslani and Sendroy and Cecchini performed best with excellent concordance with OCCC > 0.949 even in subgroups of sex and BMI. Re-parametrization of formulae and adjustment for sex and BMI slightly improved results. In adults, 3D laser-based body surface assessment is a reliable alternative to estimation by empirical formulae. However, there are empirical formulae showing excellent results even in subgroups of sex and BMI with only little room for improvement.
Pulmonary diffusional screening and the scaling laws of mammalian metabolic rates
NASA Astrophysics Data System (ADS)
Hou, Chen; Mayo, Michael
2011-12-01
Theoretical considerations suggest that the mammalian metabolic rate is linearly proportional to the surface areas of mitochondria, capillary, and alveolar membranes. However, the scaling exponents of these surface areas to the mammals' body mass (approximately 0.9-1) are higher than exponents of the resting metabolic rate (RMR) to body mass (approximately 0.75), although similar to the one of exercise metabolic rate (EMR); the underlying physiological cause of this mismatch remains unclear. The analysis presented here shows that discrepancies between the scaling exponents of RMR and the relevant surface areas may originate from, at least for the system of alveolar membranes in mammalian lungs, the facts that (i) not all of the surface area is involved in the gas exchange and (ii) that larger mammals host a smaller effective surface area that participates in the material exchange rate. A result of these facts is that lung surface areas unused at rest are activated under heavy breathing conditions (e.g., exercise), wherein larger mammals support larger activated surface areas that provide a higher capability to increase the gas-exchange rate, allowing for mammals to meet, for example, the high energetic demands of foraging and predation.
Shin, Euisup; Kim, Ill Yong; Cho, Sung Baek; Ohtsuki, Chikara
2015-03-01
Hydroxyapatite formation on the surfaces of implanted materials plays an important role in osteoconduction of bone substitutes in bone tissues. Titania hydrogels are known to instigate hydroxyapatite formation in a solution mimicking human blood plasma. To date, the relationship between the surface characteristics of titania and hydroxyapatite formation on its surface remains unclear. In this study, titania powders with varying surface characteristics were prepared by addition of manganese or iron to examine hydroxyapatite formation in a type of simulated body fluid (Kokubo solution). Hydroxyapatite formation was monitored by observation of deposited particles with scale-like morphology on the prepared titania powders. The effect of the titania surface characteristics, i.e., crystal structure, zeta potential, hydroxy group content, and specific surface area, on hydroxyapatite formation was examined. Hydroxyapatite formation was observed on the surface of titania powders that were primarily anatase, and featured a negative zeta potential and low specific surface areas irrespective of the hydroxy group content. High specific surface areas inhibited the formation of hydroxyapatite because calcium and phosphate ions were mostly consumed by adsorption on the titania surface. Thus, these surface characteristics of titania determine its osteoconductivity following exposure to body fluid. Copyright © 2014 Elsevier B.V. All rights reserved.
Ankhelyi, Madeleine V; Wainwright, Dylan K; Lauder, George V
2018-05-29
Shark skin is covered with numerous placoid scales or dermal denticles. While previous research has used scanning electron microscopy and histology to demonstrate that denticles vary both around the body of a shark and among species, no previous study has quantified three-dimensional (3D) denticle structure and surface roughness to provide a quantitative analysis of skin surface texture. We quantified differences in denticle shape and size on the skin of three individual smooth dogfish sharks (Mustelus canis) using micro-CT scanning, gel-based surface profilometry, and histology. On each smooth dogfish, we imaged between 8 and 20 distinct areas on the body and fins, and obtained further comparative skin surface data from leopard, Atlantic sharpnose, shortfin mako, spiny dogfish, gulper, angel, and white sharks. We generated 3D images of individual denticles and measured denticle volume, surface area, and crown angle from the micro-CT scans. Surface profilometry was used to quantify metrology variables such as roughness, skew, kurtosis, and the height and spacing of surface features. These measurements confirmed that denticles on different body areas of smooth dogfish varied widely in size, shape, and spacing. Denticles near the snout are smooth, paver-like, and large relative to denticles on the body. Body denticles on smooth dogfish generally have between one and three distinct ridges, a diamond-like surface shape, and a dorsoventral gradient in spacing and roughness. Ridges were spaced on average 56 µm apart, and had a mean height of 6.5 µm, comparable to denticles from shortfin mako sharks, and with narrower spacing and lower heights than other species measured. We observed considerable variation in denticle structure among regions on the pectoral, dorsal, and caudal fins, including a leading-to-trailing edge gradient in roughness for each region. Surface roughness in smooth dogfish varied around the body from 3 to 42 microns. © 2018 Wiley Periodicals, Inc.
MORBIDITY AND SURVIVAL PROBABILITY IN BURN PATIENTS IN MODERN BURN CARE
Jeschke, Marc G.; Pinto, Ruxandra; Kraft, Robert; Nathens, Avery B.; Finnerty, Celeste C.; Gamelli, Richard L.; Gibran, Nicole S.; Klein, Matthew B.; Arnoldo, Brett D.; Tompkins, Ronald G.; Herndon, David N.
2014-01-01
Objective Characterizing burn sizes that are associated with an increased risk of mortality and morbidity is critical because it would allow identifying patients who might derive the greatest benefit from individualized, experimental, or innovative therapies. Although scores have been established to predict mortality, few data addressing other outcomes exist. The objective of this study was to determine burn sizes that are associated with increased mortality and morbidity after burn. Design and Patients Burn patients were prospectively enrolled as part of the multicenter prospective cohort study, Inflammation and the Host Response to Injury Glue Grant, with the following inclusion criteria: 0–99 years of age, admission within 96 hours after injury, and >20% total body surface area burns requiring at least one surgical intervention. Setting Six major burn centers in North America. Measurements and Main Results Burn size cutoff values were determined for mortality, burn wound infection (at least two infections), sepsis (as defined by ABA sepsis criteria), pneumonia, acute respiratory distress syndrome, and multiple organ failure (DENVER2 score >3) for both children (<16 years) and adults (16–65 years). Five-hundred seventy-three patients were enrolled, of which 226 patients were children. Twenty-three patients were older than 65 years and were excluded from the cutoff analysis. In children, the cutoff burn size for mortality, sepsis, infection, and multiple organ failure was approximately 60% total body surface area burned. In adults, the cutoff for these outcomes was lower, at approximately 40% total body surface area burned. Conclusions In the modern burn care setting, adults with over 40% total body surface area burned and children with over 60% total body surface area burned are at high risk for morbidity and mortality, even in highly specialized centers. PMID:25559438
Leinwand, Joshua C; Zhao, Binsheng; Guo, Xiaotao; Krishnamoorthy, Saravanan; Qi, Jing; Graziano, Joseph H; Slavkovic, Vesna N; Bates, Gleneara E; Lewin, Sharyn N; Allendorf, John D; Chabot, John A; Schwartz, Lawrence H; Taub, Robert N
2013-12-01
Intraperitoneal chemotherapy is used to treat peritoneal surface-spreading malignancies. We sought to determine whether volume and surface area of the intraperitoneal chemotherapy compartments are associated with overall survival and posttreatment glomerular filtration rate (GFR) in malignant peritoneal mesothelioma (MPM) patients. Thirty-eight MPM patients underwent X-ray computed tomography peritoneograms during outpatient intraperitoneal chemotherapy. We calculated volume and surface area of contrast-filled compartments by semiautomated computer algorithm. We tested whether these were associated with overall survival and posttreatment GFR. Decreased likelihood of mortality was associated with larger surface areas (p = 0.0201) and smaller contrast-filled compartment volumes (p = 0.0341), controlling for age, sex, histologic subtype, and presence of residual disease >0.5 cm postoperatively. Larger volumes were associated with higher posttreatment GFR, controlling for pretreatment GFR, body surface area, surface area, and the interaction between body surface area and volume (p = 0.0167). Computed tomography peritoneography is an appropriate modality to assess for maldistribution of intraperitoneal chemotherapy. In addition to identifying catheter failure and frank loculation, quantitative analysis of the contrast-filled compartment's surface area and volume may predict overall survival and cisplatin-induced nephrotoxicity. Prospective studies should be undertaken to confirm and extend these findings to other diseases, including advanced ovarian carcinoma.
A Framework for Analyzing the Whole Body Surface Area from a Single View
Doretto, Gianfranco; Adjeroh, Donald
2017-01-01
We present a virtual reality (VR) framework for the analysis of whole human body surface area. Usual methods for determining the whole body surface area (WBSA) are based on well known formulae, characterized by large errors when the subject is obese, or belongs to certain subgroups. For these situations, we believe that a computer vision approach can overcome these problems and provide a better estimate of this important body indicator. Unfortunately, using machine learning techniques to design a computer vision system able to provide a new body indicator that goes beyond the use of only body weight and height, entails a long and expensive data acquisition process. A more viable solution is to use a dataset composed of virtual subjects. Generating a virtual dataset allowed us to build a population with different characteristics (obese, underweight, age, gender). However, synthetic data might differ from a real scenario, typical of the physician’s clinic. For this reason we develop a new virtual environment to facilitate the analysis of human subjects in 3D. This framework can simulate the acquisition process of a real camera, making it easy to analyze and to create training data for machine learning algorithms. With this virtual environment, we can easily simulate the real setup of a clinic, where a subject is standing in front of a camera, or may assume a different pose with respect to the camera. We use this newly designated environment to analyze the whole body surface area (WBSA). In particular, we show that we can obtain accurate WBSA estimations with just one view, virtually enabling the possibility to use inexpensive depth sensors (e.g., the Kinect) for large scale quantification of the WBSA from a single view 3D map. PMID:28045895
Lefevre, Sjannie; McKenzie, David J; Nilsson, Göran E
2017-09-01
Some recent modelling papers projecting smaller fish sizes and catches in a warmer future are based on erroneous assumptions regarding (i) the scaling of gills with body mass and (ii) the energetic cost of 'maintenance'. Assumption (i) posits that insurmountable geometric constraints prevent respiratory surface areas from growing as fast as body volume. It is argued that these constraints explain allometric scaling of energy metabolism, whereby larger fishes have relatively lower mass-specific metabolic rates. Assumption (ii) concludes that when fishes reach a certain size, basal oxygen demands will not be met, because of assumption (i). We here demonstrate unequivocally, by applying accepted physiological principles with reference to the existing literature, that these assumptions are not valid. Gills are folded surfaces, where the scaling of surface area to volume is not constrained by spherical geometry. The gill surface area can, in fact, increase linearly in proportion to gill volume and body mass. We cite the large body of evidence demonstrating that respiratory surface areas in fishes reflect metabolic needs, not vice versa, which explains the large interspecific variation in scaling of gill surface areas. Finally, we point out that future studies basing their predictions on models should incorporate factors for scaling of metabolic rate and for temperature effects on metabolism, which agree with measured values, and should account for interspecific variation in scaling and temperature effects. It is possible that some fishes will become smaller in the future, but to make reliable predictions the underlying mechanisms need to be identified and sought elsewhere than in geometric constraints on gill surface area. Furthermore, to ensure that useful information is conveyed to the public and policymakers about the possible effects of climate change, it is necessary to improve communication and congruity between fish physiologists and fisheries scientists. © 2017 John Wiley & Sons Ltd.
Biostereometric analysis of body form - The second manned Skylab mission
NASA Technical Reports Server (NTRS)
Whittle, M. W.; Herron, R. E.; Cuzzi, J. R.
1976-01-01
Results of biostereometric analyses of the body form of the Skylab 3 crew before and after flight. The Cartesian coordinates of numerous points on the body surface were derived by stereophotogrammetry, and mathematical analysis of the coordinate description allowed computation of the surface area and volume of the body, the volume of body segments, and the area and shape of cross sections. The weight loss in all three crew members was accompanied by a loss in volume distributed between the trunk and legs, with the legs showing the greatest proportional loss. The observed loss of volume apparently resulted from a combined loss of fluid in the abdomen and legs, of muscle in the legs and paraspinal region, and of fat in the abdomen and buttocks.
Evaluation of surface water resources from machine-processing of ERTS multispectral data
NASA Technical Reports Server (NTRS)
Mausel, P. W.; Todd, W. J.; Baumgardner, M. F.; Mitchell, R. A.; Cook, J. P.
1976-01-01
The surface water resources of a large metropolitan area, Marion County (Indianapolis), Indiana, are studied in order to assess the potential value of ERTS spectral analysis to water resources problems. The results of the research indicate that all surface water bodies over 0.5 ha were identified accurately from ERTS multispectral analysis. Five distinct classes of water were identified and correlated with parameters which included: degree of water siltiness; depth of water; presence of macro and micro biotic forms in the water; and presence of various chemical concentrations in the water. The machine processing of ERTS spectral data used alone or in conjunction with conventional sources of hydrological information can lead to the monitoring of area of surface water bodies; estimated volume of selected surface water bodies; differences in degree of silt and clay suspended in water and degree of water eutrophication related to chemical concentrations.
Coronary artery dimensions in normal Indians.
Raut, Barendra Kumar; Patil, Vijaysinh Namdeo; Cherian, George
Diameter of coronary artery is an important predictor of outcome after percutaneous coronary interventions and coronary artery bypass graft surgery. There is very limited data available about coronary artery dimensions in an Indian population. To study the normal dimensions of the coronary artery segments in Indians without coronary artery disease by using quantitative coronary angiography and also to compare the dimensions in Indians with Western. 229 patients who have undergone coronary angiography with entirely normal coronary angiogram were included in our study. This study showed the diameter of vessels in males and females when taken together the left main was larger in size followed by proximal LAD, proximal RCA & proximal LCX respectively (4.08±0.44mm, 3.27±0.23mm, 3.20±0.37mm, 2.97±0.37mm).When the vessel diameter was indexed to body surface area there was no statistical difference between male and female (p value>0.05). The computed value of proximal coronary artery diameter unadjusted for individual body surface area, when compared to Caucasians showed that Caucasians have larger coronary artery dimensions than Indians. But when the proximal vessel diameter was indexed to body surface area there was no statistical significant difference between Indians and Caucasians (p value>0.05). We found that coronary artery size when indexed to body surface area is not statistically different in Indian males and females and compared to Caucasians. However with a smaller body habitus Indians have smaller coronary arteries. Copyright © 2017. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Koscheyev, Victor S.; Coca, Aitor; Leon, Gloria R.
2007-02-01
Although specialists have attempted to improve the space suit to provide better protection in open space or on planetary surfaces, there has been a relative lack of attention to features of human thermoregulatory processes that influence comfort and therefore have an impact on the effectiveness of protective equipment. Our findings showed that different body tissues transfer heat in/out of the body in a different manner. There are also individual differences in thermal transfer through body areas with different proportions of tissues; therefore, data on the thermal profile of each astronaut needs to be used to estimate the optimal body areas for heat/cold transfer in and out of the body in an individually tailored cooling/warming garment. Principles for supporting thermal comfort in space were formulated based on a series of studies to evaluate the human body's response to uniform/nonuniform thermal conditions on the body surface. We conclude that future space suit design and comfort support of astronauts can be easier and more effective if these principles are incorporated.
Remote sensing of ephemeral water bodies in western Niger
Verdin, J.P.
1996-01-01
Research was undertaken to evaluate the feasibility of monitoring the small ephemeral water bodies of the Sahel with the 1.1 km resolution data of the National Oceanic and Atmospheric Administration (NOAA) Advanced Very High Resolution Radiometer (AVHRR). Twenty-one lakes of western Niger with good ground observation records were selected for examination. Thematic Mapper images from 1988 were first analysed to determine surface areas and temperature differences between water and adjacent land. Six AVHRR scenes from the 1988-89 dry season were then studied. It was found that a lake can be monitored until its surface area drops below 10 ha, in most cases. Furthermore, with prior knowledge of the location and shape of a water body, its surface area can be estimated from AVHRR band 5 data to within about 10 ha. These results are explained by the sharp temperature contrast between water and land, on the order of 13?? C.
Liu, T H; Chiou, W K; Lin, J D; Yu, C Y
2001-11-01
Body mass index (BMI) and waist-hip ratio (WHR) using 1-dimensional circumference data have been proven to be highly related to blood pressure and total cholesterol; these 2 indices have been widely used as health indicators in preventive diagnosis and health examination. Sophisticated software, which allows calculation of the triangular mesh related to the body surface in 3D space, is capable of computing the circumference, width, sectional surface, volume, and surface area of the body. Chang Gung Whole Body Scanner (CGWBS) was used to capture 3D whole body surface images. In this study, the human body was divided into 10 segments consisting of the head, breast, wrist, hip, upper arm, forearm, hand, thigh, calf, and foot. Five independent assessments were made on a total of 32 anthropometric sites, including 12 circumferences, 3 widths, 3 profile areas, 7 surface areas, and 7 volumes. In this study, the somatotype index (SI) was computed through anthropometric data after 1,323 subjects were investigated. Correlation analysis was used to describe the relationship between BMI, WHR, SI, and anthropometric data. One-way analysis of variance (ANOVA) and Duncan's multiple range tests were used to examine differences between examination variables across sex and SI groups. This study found 4 somatotypes from anthropometric data. SI determined by CGWBS has better correlation with anthropometry than WHR or BMI. Of the 644 male subjects, 155 were in the ectomorph group, 232 in the semi-mesomorph group, 136 in the full-mesomorph group, and 121 in the endomorph group. Of the 679 female subjects, 160 were in the ectomorph group, 235 in the semi-mesomorph group, 168 in the full-mesomorph group, and 116 in the endomorph group. The results show that SI has great potential to perform precise somatotype classification.
Hoffmann, G; Schmidt, M; Ammon, C
2016-09-01
In this study, a video-based infrared camera (IRC) was investigated as a tool to monitor the body temperature of calves. Body surface temperatures were measured contactless using videos from an IRC fixed at a certain location in the calf feeder. The body surface temperatures were analysed retrospectively at three larger areas: the head area (in front of the forehead), the body area (behind forehead) and the area of the entire animal. The rectal temperature served as a reference temperature and was measured with a digital thermometer at the corresponding time point. A total of nine calves (Holstein-Friesians, 8 to 35 weeks old) were examined. The average maximum temperatures of the area of the entire animal (mean±SD: 37.66±0.90°C) and the head area (37.64±0.86°C) were always higher than that of the body area (36.75±1.06°C). The temperatures of the head area and of the entire animal were very similar. However, the maximum temperatures as measured using IRC increased with an increase in calf rectal temperature. The maximum temperatures of each video picture for the entire visible body area of the calves appeared to be sufficient to measure the superficial body temperature. The advantage of the video-based IRC over conventional IR single-picture cameras is that more than one picture per animal can be analysed in a short period of time. This technique provides more data for analysis. Thus, this system shows potential as an indicator for continuous temperature measurements in calves.
Inhalation injury after exposure to indoor fire and smoke: The Brazilian disaster experience.
Rech, Tatiana Helena; Boniatti, Márcio Manozzo; Franke, Cristiano Augusto; Lisboa, Thiago; Wawrzeniak, Iuri Christmann; Teixeira, Cassiano; Maccari, Juçara Gasparetto; Schaich, Felipe; Sauthier, Angelica; Schifelbain, Luciele Medianeira; Riveiro, Diego Fontoura Mendes; da Fonseca, Deisi Leticia Oliveira; Berto, Paula Pinheiro; Marques, Leonardo; Dos Santos, Moreno Calcagnotto; de Oliveira, Vanessa Martins; Dornelles, Carlos Fernando Drumond; Vieira, Sílvia Regina Rios
2016-06-01
To describe the pre-hospital, emergency department, and intensive care unit (ICU) care and prognosis of patients with inhalation injury after exposure to indoor fire and smoke. This is a prospective observational cohort study that includes patients admitted to seven ICUs after a fire disaster. The following data were collected: demographic characteristics; use of fiberoptic bronchoscopy; degree of inhalation injury; percentage of burned body surface area; mechanical ventilation parameters; and subsequent events during ICU stay. Patients were followed to determine the ICU and hospital mortality rates. Within 24h of the incident, 68 patients were admitted to seven ICUs. The patients were young and had no comorbidities. Most patients (n=35; 51.5%) only had an inhalation injury. The mean ventilator-free days for patients with an inhalation injury degree of 0 or I was 12.5±8.1 days. For patients with an inhalation injury degree of II or III, the mean ventilator-free days was 9.4±5.8 days (p=0.12). In terms of the length of ICU stay for patients with degrees 0 or I, and patients with degrees II or III, the median was 7.0 days (5.0-8.0 days) and 12.0 days (8.0-23.0 days) (p<0.001), respectively. In addition, patients with a larger percentage of burned surface areas also had a longer ICU stay; however, no association with ventilator-free days was found. The patients with <10% of burned body surface area showed a mean of 9.2±5.4 ventilator-free days. The mean ventilator-free days for patients who had >10% burned body surface area was 11.9±9.5 (p=0.26). The length of ICU stay for the <10% and >10% burned body surface area patients was 7.0 days (5.0-10.0 days) and 23.0 days (11.5-25.5 days) (p<0.001), respectively. We conclude that burn patients with inhalation injuries have different courses of disease, which are mainly determined by the percentage of burned body surface area. Copyright © 2016 Elsevier Ltd and ISBI. All rights reserved.
NASA Astrophysics Data System (ADS)
Xu, Xiaojiang; Rioux, Timothy P.; MacLeod, Tynan; Patel, Tejash; Rome, Maxwell N.; Potter, Adam W.
2017-03-01
The purpose of this paper is to develop a database of tissue composition, distribution, volume, surface area, and skin thickness from anatomically correct human models, the virtual family. These models were based on high-resolution magnetic resonance imaging (MRI) of human volunteers, including two adults (male and female) and two children (boy and girl). In the segmented image dataset, each voxel is associated with a label which refers to a tissue type that occupies up that specific cubic millimeter of the body. The tissue volume was calculated from the number of the voxels with the same label. Volumes of 24 organs in body and volumes of 7 tissues in 10 specific body regions were calculated. Surface area was calculated from the collection of voxels that are touching the exterior air. Skin thicknesses were estimated from its volume and surface area. The differences between the calculated and original masses were about 3 % or less for tissues or organs that are important to thermoregulatory modeling, e.g., muscle, skin, and fat. This accurate database of body tissue distributions and geometry is essential for the development of human thermoregulatory models. Data derived from medical imaging provide new effective tools to enhance thermal physiology research and gain deeper insight into the mechanisms of how the human body maintains heat balance.
Forced heat loss from body surface reduces heat flow to body surface.
Berman, A
2010-01-01
Heat stress is commonly relieved by forced evaporation from body surfaces. The mode of heat stress relief by heat extraction from the periphery is not clear, although it reduces rectal temperature. Radiant surface temperature (Ts) of the right half of the body surface was examined by thermovision in 4 lactating Holstein cows (30 kg of milk/d) during 7 repeated cycles of forced evaporation created by 30s of wetting followed by 4.5 min of forced airflow. Wetting was performed by an array of sprinklers (0.76 m(3)/h), and forced airflow (>3m/s velocity) over the right side of the body surface was produced by fans mounted at a height of 3m above the ground. Sprinkling wetted the hind legs, rump, and chest, but not the lower abdomen side, front legs, or neck. The animals were maintained in shade at an air temperature of 28 degrees C and relative humidity of 47%. Coat thickness was 1 to 2mm, so Ts closely represented skin temperature. Mean Ts of 5 x 20cm areas on the upper and lower hind and front legs, rump, chest, abdomen side, and neck were obtained by converting to temperature their respective gray intensity in single frames obtained at 10-s intervals. Little change occurred in Ts during the first wetting (0.1+/-0.6 degrees C), but it decreased rapidly thereafter (1.6+/-0.6 degrees C in the fifth wetting). The Ts also decreased, to a smaller extent, in areas that remained dry (0.7+/-1.0 degrees C). In all body sites, a plateau in Ts was reached by 2 min after wetting. The difference between dry and wet areas in the first cooling cycle was approximately 1.2 degrees C. The Ts of different body areas decreased during consecutive cooling cycles and reached a plateau by 3 cooling cycles in dry sites (front leg, neck, abdomen side), by 5 cooling cycles in the hind leg, and 7 cooling cycles in the rump and chest. The reduction in mean Ts produced by 7 cycles was 4.0 to 6.0 degrees C in wetted areas and 1.6 to 3.7 degrees C in sites that were not wetted. Initial rectal temperature was 38.9+/-0.1 degrees C; it remained unchanged during first 5 cooling cycles, decreased by 0.1 degrees C after 7 cooling cycles, and decreased to 38.4+/-0.06 degrees C after 8 to 10 cooling cycles, with no additional subsequent decrease. The concomitant reduction in Ts in dry and wet areas suggests an immediate vasoconstrictor response associated with heat extraction and later development of a cooler body shell. The reduction in rectal temperature represents a response involving transfer of heat from the body core to the body shell. This response mode requires consideration in settings of heat stress relief. Copyright 2010 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
The effect of low force chiropractic adjustments on body surface electromagnetic field.
Zhang, John; Snyder, Brian J; Vernor, Lori
2004-03-01
The purpose of this study was to investigate the body surface electromagnetic field (EMF) changes using a sensitive magnetometer before and after a specific Toftness chiropractic adjustment in asymptomatic human subjects. Forty-four subjects were randomly assigned into control (20 subjects) and experimental groups (24 subjects) in a pre and post-test design. The Triaxial Fluxgate Magnetometer FGM-5DTAA (Walker Scientific, Worcester, Massachusetts) with five digit display and resolution of 1 nanotesla (nT) was used for EMF detection. The EMF in the research room and on the adjustment table was monitored and recorded. The subjects' body surface (cervical, thoracic, lumbar and sacral areas) EMF was determined in the prone position before and after the chiropractic adjustment. A low force Toftness chiropractic adjustment was applied to the cervical, thoracic, lumbar and sacral areas as determined by the practitioner. The EMF in the research room was recorded as 41611 nT at the Z axis (earth field), 13761 nT at the X axis and 7438 nT at the Y axis. The EMF on the adjusting table changed minimally during the 15 minute observation period. The EMF on the subjects' body surface decreased at 4 spinal locations after chiropractic adjustment. The EMF (mean +/- SD in nT) decreased significantly at the cervical region from 42449 +/- 907 to 41643 +/- 1165 (p < 0.01) and at the sacral regions from 43206 +/- 760 to 42713 +/- 552 (p < 0.01). The EMF at the lumbar and thoracic regions decreased but did not reach a statistically significant level. No significant changes of the body surface EMF were found in the control group. A low force Toftness chiropractic adjustment in the cervical and sacral areas resulted in a significant reduction of the cervical and sacral surface EMF. No significant body surface EMF changes were observed in the lumbar and thoracic regions. The mechanisms of the EMF reduction after chiropractic adjustment are not known.
The effect of low force chiropractic adjustments on body surface electromagnetic field
Zhang, John; Snyder, Brian J; Vernor, Lori
2004-01-01
Objective The purpose of this study was to investigate the body surface electromagnetic field (EMF) changes using a sensitive magnetometer before and after a specific Toftness chiropractic adjustment in asymptomatic human subjects. Method Forty-four subjects were randomly assigned into control (20 subjects) and experimental groups (24 subjects) in a pre and post-test design. The Triaxial Fluxgate Magnetometer FGM-5DTAA (Walker Scientific, Worcester, Massachusetts) with five digit display and resolution of 1 nanotesla (nT) was used for EMF detection. The EMF in the research room and on the adjustment table was monitored and recorded. The subjects’ body surface (cervical, thoracic, lumbar and sacral areas) EMF was determined in the prone position before and after the chiropractic adjustment. A low force Toftness chiropractic adjustment was applied to the cervical, thoracic, lumbar and sacral areas as determined by the practitioner. Results The EMF in the research room was recorded as 41611 nT at the Z axis (earth field), 13761 nT at the X axis and 7438 nT at the Y axis. The EMF on the adjusting table changed minimally during the 15 minute observation period. The EMF on the subjects’ body surface decreased at 4 spinal locations after chiropractic adjustment. The EMF (mean ± SD in nT) decreased significantly at the cervical region from 42449 ± 907 to 41643 ± 1165 (p < 0.01) and at the sacral regions from 43206 ± 760 to 42713 ± 552 (p < 0.01). The EMF at the lumbar and thoracic regions decreased but did not reach a statistically significant level. No significant changes of the body surface EMF were found in the control group. Conclusion A low force Toftness chiropractic adjustment in the cervical and sacral areas resulted in a significant reduction of the cervical and sacral surface EMF. No significant body surface EMF changes were observed in the lumbar and thoracic regions. The mechanisms of the EMF reduction after chiropractic adjustment are not known. PMID:17549217
Brückner, Adrian; Heethoff, Michael; Blüthgen, Nico
2017-01-01
Long-chain cuticular hydrocarbons (CHCs) are common components of the epicuticle of terrestrial arthropods. CHC serve as a protective barrier against environmental influences but also act as semiochemicals in animal communication. Regarding the latter aspect, species- or intra-functional group specific CHCs composition and variation are relatively well studied. However, comparative knowledge about the relationship of CHC quantity and their relation to surface area—volume ratios in the context of water loss and protection is fragmentary. Hence, we aim to study the taxon-specific relationship of the CHC amount and surface-area to volume ratio related to their functional role (e.g. in water loss). We focused on flower visiting insects and analyzed the CHC amounts of three insect orders (Hymenoptera, Lepidoptera and Diptera) using gas chromatography—mass spectrometry (GC-MS). We included 113 species from two grassland plots, quantified their CHCs, and measured their body mass and surface area. We found differences in the surface area, CHCs per body mass and the CHC density (= amount of CHCs per surface area) across the three insect taxa. Especially the Hymenoptera had a higher CHC density compared to Diptera and Lepidoptera. CHC density could be explained by surface area-volume ratios in Hymenoptera but not in Diptera and Lepidoptera. Unexpectedly, CHC density decreased with increasing surface area—volume ratios. PMID:28384308
Lebwohl, Mark; Preston, Norman; Gottschalk, Ronald W
2012-02-01
Calcitriol 3µg/g ointment has been shown to be a safe and effective treatment for adults with mild-to-moderate plaque psoriasis. This analysis evaluated the response to calcitriol 3µg/g ointment relative to baseline disease. Retrospective analysis of data from a 12-month safety and tolerability trial. At baseline, 40.1 percent (130/324) of patients had an affected body surface area of 11 to 20 percent, and 55.2 percent (179/324) had moderate and 25.9 percent (84/324) had severe disease according to global severity score. Patients applied calcitriol 3µg/g ointment twice daily for up to 52 weeks. Change in investigator's global severity scores and involved body surface area at Week 26 (N=249) and Week 52 (N=130) relative to baseline. Compared with baseline, most patients experienced at least a 1-grade improvement in global severity score at Weeks 26 (195/249, 78.3%) and 52 (109/130, 83.8%). Stabilization (i.e., no change in global severity score) was reported in 19.3 percent (48/249) at Week 26 and in 12.3 percent (16/130) at Week 52. Most patients also experienced at least a 1-grade improvement in body surface area involved at Weeks 26 (152/249, 61.0%) and 52 (95/130, 73.1%). Stabilization (no change in affected body surface area) was reported in 32.5 percent (81/249) at Week 26 and 24.6 percent (32/130) at Week 52. The proportion of patients experiencing improvement in global severity score and body surface area was comparable across all categories of severity and disease extent at baseline. This analysis suggests that calcitriol 3µg/g ointment use for 26 weeks (N=249) and 52 weeks (N=130) was associated with disease improvement or stabilization in most patients with plaque psoriasis.
Daugirdas, John T; Levin, Nathan W; Kotanko, Peter; Depner, Thomas A; Kuhlmann, Martin K; Chertow, Glenn M; Rocco, Michael V
2008-01-01
A number of denominators for scaling the dose of dialysis have been proposed as alternatives to the urea distribution volume (V). These include resting energy expenditure (REE), mass of high metabolic rate organs (HMRO), visceral mass, and body surface area. Metabolic rate is an unlikely denominator as it varies enormously among humans with different levels of activity and correlates poorly with the glomerular filtration rate. Similarly, scaling based on HMRO may not be optimal, as many organs with high metabolic rates such as spleen, brain, and heart are unlikely to generate unusually large amounts of uremic toxins. Visceral mass, in particular the liver and gut, has potential merit as a denominator for scaling; liver size is related to protein intake and the liver, along with the gut, is known to be responsible for the generation of suspected uremic toxins. Surface area is time-honored as a scaling method for glomerular filtration rate and scales similarly to liver size. How currently recommended dialysis doses might be affected by these alternative rescaling methods was modeled by applying anthropometric equations to a large group of dialysis patients who participated in the HEMO study. The data suggested that rescaling to REE would not be much different from scaling to V. Scaling to HMRO mass would mandate substantially higher dialysis doses for smaller patients of either gender. Rescaling to liver mass would require substantially more dialysis for women compared with men at all levels of body size. Rescaling to body surface area would require more dialysis for smaller patients of either gender and also more dialysis for women of any size. Of these proposed alternative rescaling measures, body surface area may be the best, because it reflects gender-based scaling of liver size and thereby the rate of generation of uremic toxins.
Notley, Sean R; Park, Joonhee; Tagami, Kyoko; Ohnishi, Norikazu; Taylor, Nigel A S
2017-05-01
What is the central question of this study? Can sex-related differences in cutaneous vascular and sudomotor responses be explained primarily by variations in the ratio between body surface area and mass during compensable exercise that elicits equivalent heat-loss requirements and mean body temperature changes across participants? What is the main finding and its importance? Mass-specific surface area was a significant determinant of vasomotor and sudomotor responses in men and women, explaining 10-48% of the individual thermoeffector variance. Nonetheless, after accounting for changes in mean body temperature and morphological differences, sex explained only 5% of that inter-individual variability. It was concluded that sex differences in thermoeffector function are morphologically dependent, but not sex dependent. Sex is sometimes thought to be an independent modulator of cutaneous vasomotor and sudomotor function during heat exposure. Nevertheless, it was hypothesized that, when assessed during compensable exercise that evoked equal heat-loss requirements across participants, sex differences in those thermoeffectors would be explained by variations in the ratio between body surface area and mass (specific surface area). To evaluate that possibility, vasomotor and sudomotor functions were assessed in 60 individuals (36 men and 24 women) with widely varying (overlapping) specific surface areas (range, 232.3-292.7 and 241.2-303.1 cm 2 kg -1 , respectively). Subjects completed two trials in compensable conditions (28°C, 36% relative humidity) involving rest (20 min) and steady-state cycling (45 min) at fixed, area-specific metabolic heat-production rates (light, ∼135 W m -2 ; moderate, ∼200 W m -2 ). Equivalent heat-loss requirements and mean body temperature changes were evoked across participants. Forearm blood flow and vascular conductance were positively related to specific surface area during light work in men (r = 0.67 and r = 0.66, respectively; both P < 0.05) and during both exercise intensities in women (light, r = 0.57 and r = 0.69; and moderate, r = 0.64 and r = 0.68; all P < 0.05). Whole-body and local sweat rates were negatively related to that ratio (correlation coefficient range, -0.33 to -0.62; all P < 0.05) during both work rates in men and women. Those relationships accounted for 10-48% of inter-individual thermoeffector variance (P < 0.05). Furthermore, after accounting for morphological differences, sex explained no more than 5% of that variability (P < 0.05). It was concluded that, when assessed during compensable exercise, sex differences in thermoeffector function were largely determined morphologically, rather than being sex dependent. © 2017 The Authors. Experimental Physiology © 2017 The Physiological Society.
Stabilizing geometry for hydrodynamic rotary seals
Dietle, Lannie L.; Schroeder, John E.
2010-08-10
A hydrodynamic sealing assembly including a first component having first and second walls and a peripheral wall defining a seal groove, a second component having a rotatable surface relative to said first component, and a hydrodynamic seal comprising a seal body of generally ring-shaped configuration having a circumference. The seal body includes hydrodynamic and static sealing lips each having a cross-sectional area that substantially vary in time with each other about the circumference. In an uninstalled condition, the seal body has a length defined between first and second seal body ends which varies in time with the hydrodynamic sealing lip cross-sectional area. The first and second ends generally face the first and second walls, respectively. In the uninstalled condition, the first end is angulated relative to the first wall and the second end is angulated relative to the second wall. The seal body has a twist-limiting surface adjacent the static sealing lip. In the uninstalled condition, the twist-limiting surface is angulated relative to the peripheral wall and varies along the circumference. A seal body discontinuity and a first component discontinuity mate to prevent rotation of the seal body relative to the first component.
Clinical anthropometrics and body composition from 3D whole-body surface scans.
Ng, B K; Hinton, B J; Fan, B; Kanaya, A M; Shepherd, J A
2016-11-01
Obesity is a significant worldwide epidemic that necessitates accessible tools for robust body composition analysis. We investigated whether widely available 3D body surface scanners can provide clinically relevant direct anthropometrics (circumferences, areas and volumes) and body composition estimates (regional fat/lean masses). Thirty-nine healthy adults stratified by age, sex and body mass index (BMI) underwent whole-body 3D scans, dual energy X-ray absorptiometry (DXA), air displacement plethysmography and tape measurements. Linear regressions were performed to assess agreement between 3D measurements and criterion methods. Linear models were derived to predict DXA body composition from 3D scan measurements. Thirty-seven external fitness center users underwent 3D scans and bioelectrical impedance analysis for model validation. 3D body scan measurements correlated strongly to criterion methods: waist circumference R 2 =0.95, hip circumference R 2 =0.92, surface area R 2 =0.97 and volume R 2 =0.99. However, systematic differences were observed for each measure due to discrepancies in landmark positioning. Predictive body composition equations showed strong agreement for whole body (fat mass R 2 =0.95, root mean square error (RMSE)=2.4 kg; fat-free mass R 2 =0.96, RMSE=2.2 kg) and arms, legs and trunk (R 2 =0.79-0.94, RMSE=0.5-1.7 kg). Visceral fat prediction showed moderate agreement (R 2 =0.75, RMSE=0.11 kg). 3D surface scanners offer precise and stable automated measurements of body shape and composition. Software updates may be needed to resolve measurement biases resulting from landmark positioning discrepancies. Further studies are justified to elucidate relationships between body shape, composition and metabolic health across sex, age, BMI and ethnicity groups, as well as in those with metabolic disorders.
Suzuki, Satoru; Midorikawa, Sanae; Fukushima, Toshihiko; Shimura, Hiroki; Ohira, Tetsuya; Ohtsuru, Akira; Abe, Masafumi; Shibata, Yoshisada; Yamashita, Shunichi; Suzuki, Shinichi
2015-01-01
Although several reports have defined normal thyroid volume depending on either age or body surface, there are no sequential reference values on childhood thyroid volume evaluated by using ultrasonography and epidemiological analysis in Japan. The aim of the present study was to establish updated reference values for thyroid volume by ultrasound examination and epidemiological analysis in 0-19 year-old Japanese children. It is based on a cross-sectional study conducted from October 9, 2011 to March 31, 2012. The subjects were 38,063 children who were examined by ultrasonography as the initial preliminary survey of the Fukushima Health Management Survey in October 9, 2011 to March 31, 2012. The width, thickness, and height of each lobe were measured and the volume of each lobe was calculated by the mean of the elliptical shape volume formula. The values of thyroid volume at the 2.5 and 97.5 percentiles of age and body surface area for each gender group were obtained from 0-19 year-old children. Positive correlation was observed between thyroid volume and either age or body surface. The right lobe was significantly larger than the left lobe. The thyroid volume in females was larger than that in males after adjusting body surface area. The reference values of childhood thyroid for each age or body surface area were obtained by this extensive survey using ultrasound. These reference values may be used to define the normal size of thyroid gland by echosonography in Japanese children, although thyroid volume may be affected by dimorphic factors such as sex hormones.
Bräuer, A; English, M J M; Lorenz, N; Steinmetz, N; Perl, T; Braun, U; Weyland, W
2003-01-01
Forced-air warming has gained high acceptance as a measure for the prevention of intraoperative hypothermia. However, data on heat transfer with lower body blankets are not yet available. This study was conducted to determine the heat transfer efficacy of six complete lower body warming systems. Heat transfer of forced-air warmers can be described as follows:[1]Qdot;=h.DeltaT.A where Qdot; = heat transfer [W], h = heat exchange coefficient [W m-2 degrees C-1], DeltaT = temperature gradient between blanket and surface [ degrees C], A = covered area [m2]. We tested the following forced-air warmers in a previously validated copper manikin of the human body: (1) Bair Hugger and lower body blanket (Augustine Medical Inc., Eden Prairie, MN); (2) Thermacare and lower body blanket (Gaymar Industries, Orchard Park, NY); (3) WarmAir and lower body blanket (Cincinnati Sub-Zero Products, Cincinnati, OH); (4) Warm-Gard(R) and lower body blanket (Luis Gibeck AB, Upplands Väsby, Sweden); (5) Warm-Gard and reusable lower body blanket (Luis Gibeck AB); and (6) WarmTouch and lower body blanket (Mallinckrodt Medical Inc., St. Luis, MO). Heat flux and surface temperature were measured with 16 calibrated heat flux transducers. Blanket temperature was measured using 16 thermocouples. DeltaT was varied between -10 and +10 degrees C and h was determined by a linear regression analysis as the slope of DeltaT vs. heat flux. Mean DeltaT was determined for surface temperatures between 36 and 38 degrees C, because similar mean skin temperatures have been found in volunteers. The area covered by the blankets was estimated to be 0.54 m2. Heat transfer from the blanket to the manikin was different for surface temperatures between 36 degrees C and 38 degrees C. At a surface temperature of 36 degrees C the heat transfer was higher (between 13.4 W to 18.3 W) than at surface temperatures of 38 degrees C (8-11.5 W). The highest heat transfer was delivered by the Thermacare system (8.3-18.3 W), the lowest heat transfer was delivered by the Warm-Gard system with the single use blanket (8-13.4 W). The heat exchange coefficient varied between 12.5 W m-2 degrees C-1 and 30.8 W m-2 degrees C-1, mean DeltaT varied between 1.04 degrees C and 2.48 degrees C for surface temperatures of 36 degrees C and between 0.50 degrees C and 1.63 degrees C for surface temperatures of 38 degrees C. No relevant differences in heat transfer of lower body blankets were found between the different forced-air warming systems tested. Heat transfer was lower than heat transfer by upper body blankets tested in a previous study. However, forced-air warming systems with lower body blankets are still more effective than forced-air warming systems with upper body blankets in the prevention of perioperative hypothermia, because they cover a larger area of the body surface.
Hierarchical decomposition of burn body diagram based on cutaneous functional units and its utility.
Richard, Reg; Jones, John A; Parshley, Philip
2015-01-01
A burn body diagram (BBD) is a common feature used in the delivery of burn care for estimating the TBSA burn as well as calculating fluid resuscitation and nutritional requirements, wound healing, and rehabilitation intervention. However, little change has occurred for over seven decades in the configuration of the BBD. The purpose of this project was to develop a computerized model using hierarchical decomposition (HD) to more precisely determine the percentage burn within a BBD based on cutaneous functional units (CFUs). HD is a process by which a system is degraded into smaller parts that are more precise in their use. CFUs were previously identified fields of the skin involved in the range of motion. A standard Lund/Browder (LB) BBD template was used as the starting point to apply the CFU segments. LB body divisions were parceled down into smaller body area divisions through a HD process based on the CFU concept. A numerical pattern schema was used to label the various segments in a cephalo/caudal, anterior/posterior, medial/lateral manner. Hand/fingers were divided based on anatomical landmarks and known cutaneokinematic function. The face was considered using aesthetic units. Computer code was written to apply the numeric hierarchical schema to CFUs and applied within the context of the surface area graphic evaluation BBD program. Each segmented CFU was coded to express 100% of itself. The CFU/HD method refined the standard LB diagram from 13 body segments and 33 subdivisions into 182 isolated CFUs. Associated CFUs were reconstituted into 219 various surface area combinations totaling 401 possible surface segments. The CFU/HD schema of the body surface mapping is applicable to measuring and calculating percent wound healing in a more precise manner. It eliminates subjective assessment of the percentage wound healing and the need for additional devices such as planimetry. The development of CFU/HD body mapping schema has rendered a technologically advanced system to depict body burns. The process has led to a more precise estimation of the segmented body areas while preserving the overall TBSA information. Clinical application to date has demonstrated its worthwhile utility.
Water Detection Based on Object Reflections
NASA Technical Reports Server (NTRS)
Rankin, Arturo L.; Matthies, Larry H.
2012-01-01
Water bodies are challenging terrain hazards for terrestrial unmanned ground vehicles (UGVs) for several reasons. Traversing through deep water bodies could cause costly damage to the electronics of UGVs. Additionally, a UGV that is either broken down due to water damage or becomes stuck in a water body during an autonomous operation will require rescue, potentially drawing critical resources away from the primary operation and increasing the operation cost. Thus, robust water detection is a critical perception requirement for UGV autonomous navigation. One of the properties useful for detecting still water bodies is that their surface acts as a horizontal mirror at high incidence angles. Still water bodies in wide-open areas can be detected by geometrically locating the exact pixels in the sky that are reflecting on candidate water pixels on the ground, predicting if ground pixels are water based on color similarity to the sky and local terrain features. But in cluttered areas where reflections of objects in the background dominate the appearance of the surface of still water bodies, detection based on sky reflections is of marginal value. Specifically, this software attempts to solve the problem of detecting still water bodies on cross-country terrain in cluttered areas at low cost.
1980-09-01
where 4BD represents the instantaneous effect of the body, while OFS represents the free surface disturbance generated by the body over all previous...acceleration boundary condition. This deter- mines the time-derivative of the body-induced component of the flow, 4BD (as well as OBD through integration...panel with uniform density ei acting over a surface of area Ai is replaced by a single point source with strength s i(t) - A i(a i(t n ) + (t-t n ) G( td
Code of Federal Regulations, 2010 CFR
2010-07-01
... SAFETY STANDARDS, SURFACE COAL MINES AND SURFACE WORK AREAS OF UNDERGROUND COAL MINES Maps § 77.1200 Mine... elevation of any body of water dammed or held back in any portion of the mine: Provided, however, Such bodies of water may be shown on overlays or tracings attached to the mine maps; (g) All prospect drill...
Reference values of left heart echocardiographic dimensions and mass in male peri-pubertal athletes.
Cavarretta, Elena; Maffessanti, Francesco; Sperandii, Fabio; Guerra, Emanuele; Quaranta, Federico; Nigro, Antonia; Minati, Monia; Rebecchi, Marco; Fossati, Chiara; Calò, Leonardo; Pigozzi, Fabio
2018-01-01
Background Several articles have proposed reference values in healthy paediatric subjects, but none of them has evaluated a large population of healthy trained adolescents. Design The study purpose was to establish normal echocardiographic measurements of left heart (aortic root, left atrium and left ventricular dimensions and mass) in relation to age, weight, height, body mass index, body surface area and training hours in this specific population. Methods We retrospectively evaluated 2151 consecutive, healthy, peri-pubertal athletes (100% male, mean age 12.4 ± 1.4 years, range 8-18) referred to a single centre for pre-participation screening. All participants were young soccer athletes who trained for a mean of 7.2 ± 1.1 h per week. Results Left ventricular internal diameters, wall thickness, left ventricular mass, aortic root and left atrium diameters were significantly correlated to age, body surface area, height and weight ( p < 0.01). Age, height, weight and body surface area were found associated with chamber size, while body mass index and training hours were not. Inclusion of both age and body size parameters in the statistical models resulted in improved overall explained variance for diameters and left ventricular mass. Conclusion Equations, mean values and percentile charts for the different age groups may be useful as reference data in efficiently assessing left ventricular parameters in young athletes.
Universal GFR determination based on two time points during plasma iohexol disappearance.
Ng, Derek K S; Schwartz, George J; Jacobson, Lisa P; Palella, Frank J; Margolick, Joseph B; Warady, Bradley A; Furth, Susan L; Muñoz, Alvaro
2011-08-01
An optimal measurement of glomerular filtration rate (GFR) should minimize the number of blood draws, and reduce procedural invasiveness and the burden to study personnel and cost, without sacrificing accuracy. Equations have been proposed to calculate GFR from the slow compartment separately for adults and children. To develop a universal equation, we used 1347 GFR measurements from two diverse groups consisting of 527 men in the Multicenter AIDS Cohort Study and 514 children in the Chronic Kidney Disease in Children cohort. Both studies used nearly identical two-compartment (fast and slow) protocols to measure GFR. To estimate the fast component from markers of body size and of the slow component, we used standard linear regression methods with the log-transformed fast area as the dependent variable. The fast area could be accurately estimated from body surface area by a simple parameter (6.4/body surface area) with no residual dependence on the slow area or other markers of body size. Our equation measures only the slow iohexol plasma disappearance curve with as few as two time points and was normalized to 1.73 m2 body surface area. It is of the form: GFR=slowGFR/[1+0.12(slowGFR/100)]. In a random sample utilizing a third of the patients for validation, there was excellent agreement between the calculated and measured GFR with low root mean square errors being 4.6 and 1.5 ml/min per 1.73 m2 for adults and children, respectively. Thus, our proposed simple equation, developed in a combined patient group with a broad range of GFRs, may be applied universally and is independent of the injected amount of iohexol.
Contact Analysis of Nominally Flat Surfaces
2008-06-01
to analyze the simple case of Hertz-contact (a spherical body in contact with a rigid flat plane) and determine the change in contact area with...next major area was in the Hertz Contact Theory. This area allowed the authors to develop an analytical solution. The third major area was in the... bodies came into contact with one another. This research concluded with the development and testing of the Finite Element Analysis Program (FEAP) using
Dimpled/grooved face on a fuel injection nozzle body for flame stabilization and related method
Uhm, Jong Ho; Johnson, Thomas Edward; Kim, Kwanwoo; Zuo, Baifang
2013-08-20
A fuel injection head for a fuel nozzle used in a gas turbine combustor includes a substantially hollow body formed with an upstream end face, a downstream end face and a peripheral wall extending therebetween. A plurality of pre-mix tubes or passages extend axially through the hollow body with inlets at the upstream end face and outlets at the downstream end face. An exterior surface of the downstream end face is formed with three-dimensional surface features that increase a total surface area of the exterior surface as compared to a substantially flat, planar downstream end face.
Pesticide mitigation strategies for surface water quality
USDA-ARS?s Scientific Manuscript database
Pesticide residues are being increasingly detected in surface water in agricultural and urban areas. In some cases water bodies are being listed under the Clean Water Act 303(d) as impaired and Total Maximum Daily Loads are required to address the impairments in agricultural areas. Pesticides in sur...
Rumpf, R Wolfgang; Stewart, William C L; Martinez, Stephen K; Gerrard, Chandra Y; Adolphi, Natalie L; Thakkar, Rajan; Coleman, Alan; Rajab, Adrian; Ray, William C; Fabia, Renata
2018-01-01
Treating burns effectively requires accurately assessing the percentage of the total body surface area (%TBSA) affected by burns. Current methods for estimating %TBSA, such as Lund and Browder (L&B) tables, rely on historic body statistics. An increasingly obese population has been blamed for increasing errors in %TBSA estimates. However, this assumption has not been experimentally validated. We hypothesized that errors in %TBSA estimates using L&B were due to differences in the physical proportions of today's children compared with children in the early 1940s when the chart was developed and that these differences would appear as body mass index (BMI)-associated systematic errors in the L&B values versus actual body surface areas. We measured the TBSA of human pediatric cadavers using computed tomography scans. Subjects ranged from 9 mo to 15 y in age. We chose outliers of the BMI distribution (from the 31st percentile at the low through the 99th percentile at the high). We examined surface area proportions corresponding to L&B regions. Measured regional proportions based on computed tomography scans were in reasonable agreement with L&B, even with subjects in the tails of the BMI range. The largest deviation was 3.4%, significantly less than the error seen in real-world %TBSA estimates. While today's population is more obese than those studied by L&B, their body region proportions scale surprisingly well. The primary error in %TBSA estimation is not due to changing physical proportions of today's children and may instead lie in the application of the L&B table. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Mapping multisensory parietal face and body areas in humans.
Huang, Ruey-Song; Chen, Ching-fu; Tran, Alyssa T; Holstein, Katie L; Sereno, Martin I
2012-10-30
Detection and avoidance of impending obstacles is crucial to preventing head and body injuries in daily life. To safely avoid obstacles, locations of objects approaching the body surface are usually detected via the visual system and then used by the motor system to guide defensive movements. Mediating between visual input and motor output, the posterior parietal cortex plays an important role in integrating multisensory information in peripersonal space. We used functional MRI to map parietal areas that see and feel multisensory stimuli near or on the face and body. Tactile experiments using full-body air-puff stimulation suits revealed somatotopic areas of the face and multiple body parts forming a higher-level homunculus in the superior posterior parietal cortex. Visual experiments using wide-field looming stimuli revealed retinotopic maps that overlap with the parietal face and body areas in the postcentral sulcus at the most anterior border of the dorsal visual pathway. Starting at the parietal face area and moving medially and posteriorly into the lower-body areas, the median of visual polar-angle representations in these somatotopic areas gradually shifts from near the horizontal meridian into the lower visual field. These results suggest the parietal face and body areas fuse multisensory information in peripersonal space to guard an individual from head to toe.
A method for examining temporal changes in cyanobacterial ...
Cyanobacterial harmful algal blooms (CyanoHAB) are thought to be increasing globally over the past few decades, but relatively little quantitative information is available about the spatial extent of blooms. Satellite remote sensing provides a potential technology for identifying cyanoHABs in multiple water bodies and across geo-political boundaries. An assessment method was developed using MEdium Resolution Imaging Spectrometer (MERIS) imagery to quantify cyanoHAB surface area extent, transferable to different spatial areas, in Florida, Ohio, and California for the test period of 2008 to 2012. Temporal assessment was used to evaluate changes in satellite resolvable inland waterbodies for each state of interest. To further assess cyanoHAB risk within the states, the World Health Organization’s (WHO) recreational guidance level thresholds were used to categorize surface area of cyanoHABs into three risk categories: low, moderate, and high-risk bloom area. Results showed that in Florida, the area of cyanoHABs increased largely due to observed increases in high-risk bloom area. California exhibited a slight decrease in cyanoHAB extent, primarily attributed to decreases in Northern California. In Ohio (excluding Lake Erie), little change in cyanoHAB surface area was observed. This study uses satellite remote sensing to quantify changes in inland cyanoHAB surface area across numerous water bodies within an entire state. The temporal assessment method developed here
The scaling of urban surface water abundance and impairment with city size
NASA Astrophysics Data System (ADS)
Steele, M. K.
2018-03-01
Urbanization alters surface water compared to nonurban landscapes, yet little is known regarding how basic aquatic ecosystem characteristics, such as the abundance and impairment of surface water, differ with population size or regional context. This study examined the abundance, scaling, and impairment of surface water by quantifying the stream length, water body area, and impaired stream length for 3520 cities in the United States with populations from 2500 to 18 million. Stream length, water body area, and impaired stream length were quantified using the National Hydrography Dataset and the EPA's 303(d) list. These metrics were scaled with population and city area using single and piecewise power-law models and related to biophysical factors (precipitation, topography) and land cover. Results show that abundance of stream length and water body area in cities actually increases with city area; however, the per person abundance decreases with population size. Relative to population, impaired stream length did not increase until city populations were > 25,000 people, then scaled linearly with population. Some variation in abundance and impairment was explained by biophysical context and land cover. Development intensity correlated with stream density and impairment; however, those relationships depended on the orientation of the land covers. When high intensity development occupied the local elevation highs (+ 15 m) and undeveloped land the elevation lows, the percentage of impaired streams was less than the opposite land cover orientation (- 15 m) or very flat land. These results show that surface water abundance and impairment across contiguous US cities are influenced by city size and by biophysical setting interacting with land cover intensity.
Volume to Surface Area Ratios of Foraminifera over the Phanerozoic
NASA Astrophysics Data System (ADS)
Cheung, K.; Gomez, D.; Guo, D.; Jost, A.; Payne, J.
2010-12-01
Although there have been numerous studies regarding the issue of the volume to surface area ratio, no study has been extensive enough to include over 35000 species of foraminifera. The Stanford Paleobiology lab undertook the enormous task of extracting from the Catalogue of Foraminifera, by Ellis and Messina, all relevant data of the foraminifera, such as the three dimensions of the organism, the magnification, and the time period in which the organism existed. For the purpose of calculating the volume and surface area, the foraminifera were generalized as ellipsoids. It is known that the surface area of foraminifera represents where the exchange between the interior body and exterior environment of the foraminifera occurs. The volume of the foraminifera indicates the physical needs of the foraminifera. With more volume in foraminifera, more body functions are occurring and more exterior resources are needed to sustain those bodily functions. Thus with a larger volume to surface area ratio, foraminifera are disadvantaged because they must use more effort in order to acquire adequate resources to fulfill their biological needs. So, the hypothesis is that when there is an increase in oxygen (a vital exterior resource of the foraminifera), the average volume to surface area ratio would be greater because the abundance of oxygen allows foraminifera to work with greater ease in maintaining an exterior resource that they cannot survive without. To prove or refute this assertion, graphs were generated in this study; the graphs indeed suggested that there is a correlation between the volume to surface area ratios and oxygen levels, illustrating that it is plausible that oxygen is a limiting factor of the volume to surface area ratio in foraminifera.
Thermal Imaging of Body Surface Temperature Distribution in Women with Anorexia Nervosa.
Chudecka, Monika; Lubkowska, Anna
2016-01-01
The drastic reduction in body weight observed in anorexia nervosa (AN) leads to various endocrine changes and consequently to disturbance in thermoregulation mechanisms and body temperature. Thermography allows for a noninvasive diagnosis of the distribution of skin surface temperatures, which is especially important for difficult patients such as women with AN, who are often very sensitive and difficult to treat. The main aim of this study was to measure the mean temperatures (Tmean ) of selected body areas in young women diagnosed with AN and identify those areas where the temperature differences were particularly significant between healthy women and them. Additionally, we determined the relationships between body mass index, body composition (especially subcutaneous and VFM) and the value of mean surface temperature (Tmean ) in AN woman. In the subjects with AN, Tmean of the abdomen, lower back and thighs were significantly higher than in the reference group, while Tmean of the hands were significantly lower. Among other things, analysis showed a significant negative correlation between Tmean of the abdomen, lower back and thighs, and the mass of subcutaneous and visceral fat. The lower Tmean of the hand was directly proportional to the reduced anthropomorphic parameters. The direct evaluation of body surface temperature distribution could provide clinical implications for the treatment of anorexic patients, including the potential use of thermotherapy in stimulating the circulatory system, especially in hypothermia, bradycardia and hypotension. Copyright © 2015 John Wiley & Sons, Ltd and Eating Disorders Association.
Wilson, P B
2013-10-01
Psoriasis is associated with serious comorbidities such as cardiovascular disease, type 2 diabetes, and metabolic syndrome. These comorbidities are related to low physical activity in the general population. Limited research has evaluated physical activity in psoriasis, and thus, the purpose of this investigation was to compare physical activity between individuals with and without psoriasis as well as explore the associations between measures of psoriasis severity and physical activity. Cross-sectional study using data from the 2003-2006 National Health and Nutrition Examination Survey. Self-reported psoriasis diagnosis and psoriasis severity were regressed on moderate/vigorous physical activity, as measured objectively by accelerometers. Measures of psoriasis severity included rating of psoriasis as a problem in life and body surface area involvement. A total of 4316 individuals had data on psoriasis, moderate/vigorous physical activity, and relevant covariates, with 3.6% (population weighted) of participants (N.=117) reporting a diagnosis of psoriasis. A psoriasis diagnosis was not associated with moderate/vigorous physical activity, and furthermore, body surface area involvement was not associated with moderate/vigorous physical activity among participants with psoriasis. However, every tertile increase in psoriasis as a problem in life was associated with 28% less moderate/vigorous physical activity, which remained significant after adjusting for covariates and removing outliers. While a diagnosis of psoriasis and body surface area involvement do not appear to be associated with less moderate/vigorous physical activity, individuals that rate their psoriasis to be a large problem engage in less moderate/vigorous physical activity.
Funnel for localizing biological cell placement and arrangement
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soscia, David; Benett, William J.; Mukerjee, Erik V.
2018-03-06
The present disclosure relates to a funnel apparatus for channeling cells onto a plurality of distinct, closely spaced regions of a seeding surface. The funnel apparatus has a body portion having an upper surface and a lower surface. The body portion forms a plurality of flow paths, at least one of which is shaped to have a decreasing cross-sectional area from the upper surface to the lower surface. The flow paths are formed at the lower surface to enable cells deposited into the flow paths at the upper surface of the funnel apparatus to be channeled into a plurality ofmore » distinct, closely spaced regions on the seeding surface positioned adjacent the lower surface.« less
Photovoltaic-thermal collectors
Cox, III, Charles H.
1984-04-24
A photovoltaic-thermal solar cell including a semiconductor body having antireflective top and bottom surfaces and coated on each said surface with a patterned electrode covering less than 10% of the surface area. A thermal-absorbing surface is spaced apart from the bottom surface of the semiconductor and a heat-exchange fluid is passed between the bottom surface and the heat-absorbing surface.
Clinical anthropometrics and body composition from 3D whole-body surface scans
Ng, BK; Hinton, BJ; Fan, B; Kanaya, AM; Shepherd, JA
2017-01-01
BACKGROUND/OBJECTIVES Obesity is a significant worldwide epidemic that necessitates accessible tools for robust body composition analysis. We investigated whether widely available 3D body surface scanners can provide clinically relevant direct anthropometrics (circumferences, areas and volumes) and body composition estimates (regional fat/lean masses). SUBJECTS/METHODS Thirty-nine healthy adults stratified by age, sex and body mass index (BMI) underwent whole-body 3D scans, dual energy X-ray absorptiometry (DXA), air displacement plethysmography and tape measurements. Linear regressions were performed to assess agreement between 3D measurements and criterion methods. Linear models were derived to predict DXA body composition from 3D scan measurements. Thirty-seven external fitness center users underwent 3D scans and bioelectrical impedance analysis for model validation. RESULTS 3D body scan measurements correlated strongly to criterion methods: waist circumference R2 = 0.95, hip circumference R2 = 0.92, surface area R2 = 0.97 and volume R2 = 0.99. However, systematic differences were observed for each measure due to discrepancies in landmark positioning. Predictive body composition equations showed strong agreement for whole body (fat mass R2 = 0.95, root mean square error (RMSE) = 2.4 kg; fat-free mass R2 = 0.96, RMSE = 2.2 kg) and arms, legs and trunk (R2 = 0.79–0.94, RMSE = 0.5–1.7 kg). Visceral fat prediction showed moderate agreement (R2 = 0.75, RMSE = 0.11 kg). CONCLUSIONS 3D surface scanners offer precise and stable automated measurements of body shape and composition. Software updates may be needed to resolve measurement biases resulting from landmark positioning discrepancies. Further studies are justified to elucidate relationships between body shape, composition and metabolic health across sex, age, BMI and ethnicity groups, as well as in those with metabolic disorders. PMID:27329614
Clinical Application Of The Direct Measurement Of Human Shape
NASA Astrophysics Data System (ADS)
Anderson, J.; Vincent, R.; Marks, P.; English, M. J.
1980-07-01
A system is described for the recording and measurement of human body shape by a series of circular ultrasound scans. Computer manipulation of the echo data provides a graphic display of body contour, and a measurement of total body surface area and volume. The theoretical resolution for distance measurements using this device is 2.5 mm, a figure achieved in practical calibration experiments using a metal test object. Measurements from the body surface, although less precise, are sufficiently accurate and reproducible to enable useful clinical information to be obtained, particularly in recording the morphological changes associated with obesity and malnutrition.
The effect of low force chiropractic adjustments for 4 weeks on body surface electromagnetic field.
Zhang, John; Snyder, Brian J
2005-01-01
To study the effects of 4 weeks of low-force chiropractic adjustments on body surface electromagnetic fields (EMFs). Thirty-five chiropractic students randomly assigned into control (17 subjects) and experimental groups (28 subjects). A triaxial fluxgate magnetometer was used for EMF detection. The subjects' body surface EMF was determined in the prone position before and after the chiropractic adjustment. A Toftness low-force chiropractic adjustment was applied to the cervical, thoracic, lumbar, and sacral areas as determined by the practitioner. Heart rate variability analysis was recorded once a week to determine autonomic nervous system activity in both the control and experimental groups. The EMF on the subjects' body surface decreased after chiropractic adjustment at the cervical, thoracic, lumbar, and sacral regions in all 6 visits during the 4-week treatment period. The EMF showed a downtrend over the 4-week period after the low-force adjustment. The same changes were not observed in the control group. The chiropractic adjustment group had a slight decrease in heart rate over the 4-week treatment period, and no significant change was observed in the control group. Heart rate variability analysis did not show consistent changes before and after the low-force adjustments during the treatment period. Low-force chiropractic adjustment in the cervical and thoracic areas resulted in a consistent reduction of the body surface EMF after 4 weeks of active treatment. No statistically significant differences were found in the heart rate and heart rate variability in the 4-week study.
Research on the injectors remanufacturing
NASA Astrophysics Data System (ADS)
Daraba, D.; Alexandrescu, I. M.; Daraba, C.
2017-05-01
During the remanufacturing process, the injector body - after disassembling and cleaning process - should be subjected to some strict control processes, both visually and by an electronic microscope, for evidencing any defects that may occur on the sealing surface of the injector body and the atomizer. In this paper we present the path followed by an injector body in the process of remanufacturing, exemplifying the verification method of roughness and hardness of the sealing surfaces, as well as the microscopic analysis of the sealing surface areas around the inlet. These checks can indicate which path the injector body has to follow during the remanufacturing. The control methodology of the injector body, that is established on the basis of this research, helps preventing some defective injector bodies to enter into the remanufacturing process, thus reducing to a minimum the number of remanufactured injectors to be declared non-conforming after final verification process.
Popov, Vladimir V; Sysueva, Evgeniya V; Nechaev, Dmitry I; Lemazina, Alena A; Supin, Alexander Ya
2016-08-01
Using the auditory evoked response technique, sensitivity to local acoustic stimulation of the ventro-lateral head surface was investigated in a beluga whale (Delphinapterus leucas). The stimuli were tone pip trains of carrier frequencies ranging from 16 to 128 kHz with a pip rate of 1 kHz. For higher frequencies (90-128 kHz), the low-threshold point was located next to the medial side of the middle portion of the lower jaw. For middle (32-64 kHz) and lower (16-22.5 kHz) frequencies, the low-threshold point was located at the lateral side of the middle portion of the lower jaw. For lower frequencies, there was an additional low-threshold point next to the bulla-meatus complex. Based on these data, several frequency-specific paths of sound conduction to the auditory bulla are suggested: (i) through an area on the lateral surface of the lower jaw and further through the intra-jaw fat-body channel (for a wide frequency range); (ii) through an area on the ventro-lateral head surface and further through the medial opening of the lower jaw and intra-jaw fat-body channel (for a high-frequency range); and (iii) through an area on the lateral (near meatus) head surface and further through the lateral fat-body channel (for a low-frequency range).
The use of radar imagery for surface water investigations
NASA Technical Reports Server (NTRS)
Bryan, M. L.
1981-01-01
The paper is concerned with the interpretation of hydrologic features using L-band (HH) imagery collected by aircraft and Seasat systems. Areas of research needed to more precisely define the accuracy and repeatability of measurements related to the conditions of surfaces and boundaries of fresh water bodies are identified. These include: the definition of shoreline, the nature of variations in surface roughness across a water body and along streams and lake shores, and the separation of ambiguous conditions which appear similar to lakes.
Towards a body hair atlas of women of caucasian ethnicity.
Schweiger, D; Hoff, A; Scheede, S; Fischer, F; Tilsner, J; Lüttke, J; Neumann, Y; Hagens, R
2016-08-01
A preliminary study was conducted in 17 female volunteers (mean age 29.8 years) to gain deeper insights into the characteristics of terminal Caucasian female body hair of different body parts. The focus on Caucasian women was driven by the high number of different scalp hair phenotypes in this ethnicity and intended to identify relevant differences between body areas to improve body hair removal approaches. Multiple growth parameters and structural parameters were assessed for hair on the upper arm, forearm, upper leg, lower leg, axilla and intimate area and compared to scalp data. In particular, macroscopic and much less microscopic or hair surface properties differ strikingly in the investigated body areas. Hair density on the body is much lower than on scalp with the highest hair density in the axilla and intimate area. Multihair follicular units are described for scalp but were also found to a smaller proportion in the axilla and the intimate area. Substantial percentages of hair triplets are only found on the scalp and intimate area. Hair diameter is highest in the intimate area, followed by axillary and lower leg hair and correlates with a faster hair growth rate. The angle of emerging hair is smallest in the intimate area, axilla and on the lower leg. Hair shafts on the lower leg and in the axilla have most overlapping cuticle layers, but independent of body region, no significant differences in the mean thickness of cuticle layers were detectable. In addition, no differences were found in the mean distance between cuticle layer edges along the hair shaft and the hair surface roughness. Hair on the scalp, forearm, upper arm and upper leg had an almost round shape, whereas hair of the lower leg, intimate area and axilla had more elliptical shape. Hairs on the arm showed the highest luminance values and no visible medulla. The darkest hairs were in the axilla and intimate area containing the highest level of visible medulla in hair shafts. To our knowledge, this is the first systematic study comparing terminal hair properties in all cosmetically relevant body regions in Caucasian women. © 2015 Society of Cosmetic Scientists and the Société Française de Cosmétologie.
Technology of surface wastewater purification, including high-rise construction areas
NASA Astrophysics Data System (ADS)
Tsyba, Anna; Skolubovich, Yury
2018-03-01
Despite on the improvements in the quality of high-rise construction areas and industrial wastewater treatment, the pollution of water bodies continues to increase. This is due to the organized and unorganized surface untreated sewage entry into the reservoirs. The qualitative analysis of some cities' surface sewage composition is carried out in the work. Based on the published literature review, the characteristic contamination present in surface wastewater was identified. The paper proposes a new technology for the treatment of surface sewage and presents the results of preliminary studies.
Quantification of left ventricular myocardial mass in humans by nuclear magnetic resonance imaging.
Ostrzega, E; Maddahi, J; Honma, H; Crues, J V; Resser, K J; Charuzi, Y; Berman, D S
1989-02-01
The ability of NMRI to assess LV mass was studied in 20 normal males. By means of a 1.5 Tesla GE superconducting magnet and a standard spin-echo pulse sequence, multiple gated short-axis and axial slices of the entire left ventricle were obtained. LV mass was determined by Simpson's rule with the use of a previous experimentally validated method. The weight of the LV apex (subject to partial volume effect in the short-axis images) was derived from axial slices and that of the remaining left ventricle from short-axis slices. The weight of each slice was calculated by multiplying the planimetered surface area of the LV myocardium by slice thickness and by myocardial specific gravity (1.05). Mean +/- standard deviation of LV mass and LV mass index were 146 +/- 23.1 gm (range 92.3 to 190.4 gm) and 78.4 +/- 7.8 gm/m2 (range 57.7 to 89.4 gm/m2), respectively. Interobserver agreement as assessed by ICC was high for determining 161 individual slice masses (ICC = 0.99) and for total LV mass (ICC = 0.97). Intraobserver agreement for total LV mass was also high (ICC = 0.96). NMRI-determined LV mass correlated with body surface area: LV mass = 55 + 108 body surface area, r = 0.83; with body weight: LV mass = 26 + 0.77 body weight, r = 0.82; and with body height: LV mass = 262 +/- 5.9 body height, r = 0.75. Normal limits were developed for these relationships. NMRI-determined LV mass as related to body weight was in agreement with normal limits derived from autopsy literature data.(ABSTRACT TRUNCATED AT 250 WORDS)
AC Electric Field Communication for Human-Area Networking
NASA Astrophysics Data System (ADS)
Kado, Yuichi; Shinagawa, Mitsuru
We have proposed a human-area networking technology that uses the surface of the human body as a data transmission path and uses an AC electric field signal below the resonant frequency of the human body. This technology aims to achieve a “touch and connect” intuitive form of communication by using the electric field signal that propagates along the surface of the human body, while suppressing both the electric field radiating from the human body and mutual interference. To suppress the radiation field, the frequency of the AC signal that excites the transmitter electrode must be lowered, and the sensitivity of the receiver must be raised while reducing transmission power to its minimally required level. We describe how we are developing AC electric field communication technologies to promote the further evolution of a human-area network in support of ubiquitous services, focusing on three main characteristics, enabling-transceiver technique, application-scenario modeling, and communications quality evaluation. Special attention is paid to the relationship between electro-magnetic compatibility evaluation and regulations for extremely low-power radio stations based on Japan's Radio Law.
Thyroid Volume and Its Relation to Anthropometric Measures in a Healthy Cuban Population
Turcios, Silvia; Lence-Anta, Juan J.; Santana, Jose-Luis; Pereda, Celia M.; Velasco, Milagros; Chappe, Mae; Infante, Idalmis; Bustillo, Marlene; García, Anabel; Clero, Enora; Maillard, Stephane; Rodriguez, Regla; Xhaard, Constance; Ren, Yan; Rubino, Carole; Ortiz, Rosa M.; de Vathaire, Florent
2015-01-01
Objectives The aim of this study was to describe the thyroid volume in healthy adults by ultrasound and to correlate this volume with some anthropometric measures and other differentiated thyroid cancer risk factors. Study Design Thyroid volume and anthropometric measures were recorded in a sample of 100 healthy adults, including 21 men and 79 women aged 18-50 years, living in a non-iodine-deficient area of Havana city. Results The average thyroid volume was 6.6 ± 0.26 ml; it was higher in men (7.3 ml) than in women (6.4 ml; p = 0.15). In the univariate analysis, thyroid volume was correlated with all anthropometric measures, but in the multivariate analysis, body surface area was found to be the only significant anthropometric parameter. Thyroid volume was also higher in current or former smokers and in persons with blood group AB or B. Conclusion Specific reference values of thyroid volume as a function of body surface area could be used for evaluating thyroid volume in clinical practice. The relation between body surface area and thyroid volume is coherent with what is known about the relation of thyroid volume to thyroid cancer risk, but the same is not true about the relation between thyroid volume and smoking habit. PMID:25960963
Elwany, S; Salam, S A; Soliman, A; Medanni, A; Talaat, E
2009-03-01
The term septal body refers to a thickened area of the nasal septum which is located superior to the inferior turbinate and anterior to the middle turbinate. Despite its important role in changing nasal airflow resistance, it has received little attention. Clinically, a well developed septal body may be misdiagnosed as high septal deviation. The aim of the present study was to reassess the histological characteristics of the septal body mucosa and the morphometric differences between it and the adjacent septal mucosa. This information was then used to determine the exact location and surface area of the septal body. The study was performed on 30 cadaveric specimens (60 sides). Serial numbered sections of the whole septal mucosa were stained with haematoxylin and eosin as well as periodic acid Schiff - Alcian blue. Morphometric analysis was performed to determine the histological differences between the septal body mucosa, the anterior septal mucosa and the inferior septal mucosa. The precise boundaries of the septal body area were then defined in a manner similar to the Mohs micrographic surgical technique. The histological characteristics of the septal body mucosa included thick (more than 60 microm), pseudostratified, ciliated respiratory epithelium with goblet cells, abundant seromucinous glands and many blood sinusoids. Morphometric analysis showed that the septal body mucosa had thicker epithelium and more glandular acini and blood sinusoids than the rest of the septal mucosa. Mapping of the septal body area showed that its anterior end was 2.2 +/- 0.3 cm (mean +/- standard deviation) behind the caudal edge of the septal cartilage, and its inferior border was 1.1 +/- 0.2 cm above the floor of the nose. The mean horizontal diameter of the septal body was 2.0 +/- 0.15 cm, and the mean vertical diameter was 1.5 +/- 0.11 cm. The present study determined the morphometric characteristics of the septal body as well as its location and surface area. The intimate relationship of the septal body to the internal nasal valve and the histological characteristics of its mucosa should stimulate research into its potential role in modifying nasal airflow pattern and resistance, and its role in changing the humidity and temperature of the inspiratory air stream.
A global, 30-m resolution land-surface water body dataset for 2000
NASA Astrophysics Data System (ADS)
Feng, M.; Sexton, J. O.; Huang, C.; Song, D. X.; Song, X. P.; Channan, S.; Townshend, J. R.
2014-12-01
Inland surface water is essential to terrestrial ecosystems and human civilization. The distribution of surface water in space and its change over time are related to many agricultural, environmental and ecological issues, and are important factors that must be considered in human socioeconomic development. Accurate mapping of surface water is essential for both scientific research and policy-driven applications. Satellite-based remote sensing provides snapshots of Earth's surface and can be used as the main input for water mapping, especially in large areas. Global water areas have been mapped with coarse resolution remotely sensed data (e.g., the Moderate Resolution Imaging Spectroradiometer (MODIS)). However, most inland rivers and water bodies, as well as their changes, are too small to map at such coarse resolutions. Landsat TM (Thematic Mapper) and ETM+ (Enhanced Thematic Mapper Plus) imagery has a 30m spatial resolution and provides decades of records (~40 years). Since 2008, the opening of the Landsat archive, coupled with relatively lower costs associated with computing and data storage, has made comprehensive study of the dynamic changes of surface water over large even global areas more feasible. Although Landsat images have been used for regional and even global water mapping, the method can hardly be automated due to the difficulties on distinguishing inland surface water with variant degrees of impurities and mixing of soil background with only Landsat data. The spectral similarities to other land cover types, e.g., shadow and glacier remnants, also cause misidentification. We have developed a probabilistic based automatic approach for mapping inland surface water bodies. Landsat surface reflectance in multiple bands, derived water indices, and data from other sources are integrated to maximize the ability of identifying water without human interference. The approach has been implemented with open-source libraries to facilitate processing large amounts of Landsat images on high-performance computing machines. It has been applied to the ~9,000 Landsat scenes of the Global Land Survey (GLS) 2000 data collection to produce a global, 30m resolution inland surface water body data set, which will be made available on the Global Land Cover Facility (GLCF) website (http://www.landcover.org).
Body surface infrared thermometry in patients with central venous cateter-related infections
Silvah, José Henrique; de Lima, Cristiane Maria Mártires; de Unamuno, Maria do Rosário Del Lama; Schetino, Marco Antônio Alves; Schetino, Luana Pereira Leite; Fassini, Priscila Giácomo; Brandão, Camila Fernanda Costa e Cunha Moraes; Basile, Anibal; da Cunha, Selma Freire Carvalho; Marchini, Julio Sergio
2015-01-01
Objective To evaluate if body surface temperature close to the central venous catheter insertion area is different when patients develop catheter-related bloodstream infections. Methods Observational cross-sectional study. Using a non-contact infrared thermometer, 3 consecutive measurements of body surface temperature were collected from 39 patients with central venous catheter on the following sites: nearby the catheter insertion area or totally implantable catheter reservoir, the equivalent contralateral region (without catheter), and forehead of the same subject. Results A total of 323 observations were collected. Respectively, both in male and female patients, disregarding the occurrence of infection, the mean temperature on the catheter area minus that on the contralateral region (mean ± standard deviation: -0.3±0.6°C versus -0.2±0.5ºC; p=0.36), and the mean temperature on the catheter area minus that on the forehead (mean ± standard deviation: -0.2±0.5°C versus -0.1±0.5ºC; p=0.3) resulted in negative values. Moreover, in infected patients, higher values were obtained on the catheter area (95%CI: 36.6-37.5ºC versus 36.3-36.5ºC; p<0.01) and by temperature subtractions: catheter area minus contralateral region (95%CI: -0.17 - +0.33ºC versus -0.33 - -0.20ºC; p=0.02) and catheter area minus forehead (95%CI: -0.02 - +0.55ºC versus -0.22 - -0.10ºC; p<0.01). Conclusion Using a non-contact infrared thermometer, patients with catheter-related bloodstream infections had higher temperature values both around catheter insertion area and in the subtraction of the temperatures on the contralateral and forehead regions from those on the catheter area. PMID:26466058
Body surface infrared thermometry in patients with central venous cateter-related infections.
Silvah, José Henrique; Lima, Cristiane Maria Mártires de; Unamuno, Maria do Rosário Del Lama de; Schetino, Marco Antônio Alves; Schetino, Luana Pereira Leite; Fassini, Priscila Giácomo; Brandão, Camila Fernanda Costa e Cunha Moraes; Basile-Filho, Anibal; Cunha, Selma Freire Carvalho da; Marchini, Julio Sergio
2015-01-01
To evaluate if body surface temperature close to the central venous catheter insertion area is different when patients develop catheter-related bloodstream infections. Observational cross-sectional study. Using a non-contact infrared thermometer, 3 consecutive measurements of body surface temperature were collected from 39 patients with central venous catheter on the following sites: nearby the catheter insertion area or totally implantable catheter reservoir, the equivalent contralateral region (without catheter), and forehead of the same subject. A total of 323 observations were collected. Respectively, both in male and female patients, disregarding the occurrence of infection, the mean temperature on the catheter area minus that on the contralateral region (mean ± standard deviation: -0.3±0.6°C versus-0.2±0.5ºC; p=0.36), and the mean temperature on the catheter area minus that on the forehead (mean ± standard deviation: -0.2±0.5°C versus-0.1±0.5ºC; p=0.3) resulted in negative values. Moreover, in infected patients, higher values were obtained on the catheter area (95%CI: 36.6-37.5ºC versus 36.3-36.5ºC; p<0.01) and by temperature subtractions: catheter area minus contralateral region (95%CI: -0.17 - +0.33ºC versus -0.33 - -0.20ºC; p=0.02) and catheter area minus forehead (95%CI: -0.02 - +0.55ºC versus-0.22 - -0.10ºC; p<0.01). Using a non-contact infrared thermometer, patients with catheter-related bloodstream infections had higher temperature values both around catheter insertion area and in the subtraction of the temperatures on the contralateral and forehead regions from those on the catheter area.
Biological plasticity in penguin heat-retention structures.
Thomas, Daniel B; Fordyce, R Ewan
2012-02-01
Insulation and vascular heat-retention mechanisms allow penguins to forage for a prolonged time in water that is much cooler than core body temperature. Wing-based heat retention involves a plexus of humeral arteries and veins, which redirect heat to the body core rather than to the wing periphery. The humeral arterial plexus is described here for Eudyptes and Megadyptes, the only extant penguin genera for which wing vascular anatomy had not previously been reported. The erect-crested (Eudyptes sclateri) and yellow-eyed (Megadyptes antipodes) penguins both have a plexus of three humeral arteries on the ventral surface of the humerus. The wing vascular system shows little variation between erect-crested and yellow-eyed penguins, and is generally conserved across the six extant genera of penguins, with the exception of the humeral arterial plexus. The number of humeral arteries within the plexus demonstrates substantial variation and correlates well with wing surface area. Little penguins (Eudyptula minor) have two humeral arteries and a wing surface area of ∼ 75 cm(2) , whereas emperor penguins (Aptenodytes forsteri) have up to 15 humeral arteries and a wing surface area of ∼ 203 cm(2) . Further, the number of humeral arteries has a stronger correlation with wing surface area than with sea water temperature. We propose that thermoregulation has placed the humeral arterial plexus under a strong selection pressure, driving penguins with larger wing surface areas to compensate for heat loss by developing additional humeral arteries. Copyright © 2011 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Pizarro, Patricia; Ferrarese, Francesco; Loddo, Donato; Eugenio Pappalardo, Salvatore; Varotto, Mauro
2016-04-01
Intensive cropping systems today represent a paramount issue in terms of environmental impacts, since agricultural pollutants can constitute a potential threat to surface water, non-target organisms and aquatic ecosystems. Levels of pesticide concentrations in surface waters are indeed unquestionably correlated to crop and soil management practices at field-scale. Due to the numerous applications of pesticides required, orchards and vineyards can represent relevant non-point sources for pesticide contamination of water bodies, mainly prompted by soil erosion, surface runoff and spray drift. To reduce risks of pesticide contamination of surface water, the Directive 2009/128/CET imposed the local implementation of agricultural good practices and mitigation actions such as the use of vegetative buffer filter strips and hedgerows along river and pond banks. However, implementation of mitigation actions is often difficult, especially in extremely fragmented agricultural landscapes characterized by a complex territorial matrix set up on urban sprawling, frequent surface water bodies, important geomorphological processes and protected natural areas. Typically, such landscape matrix is well represented by the, Prosecco-DOCG vineyards area (NE of Italy, Province of Treviso) which lays on hogback hills of conglomerate, marls and sandstone that ranges between 50 and 500 m asl. Moreover such vineyards landscape is characterized by traditional and non-traditional agricultural terraces The general aim of this paper is to identify areas of surface water bodies with high potential risk of pesticide contamination from surrounding vineyards in the 735 ha of Lierza river basin (Refrontolo, TV), one of the most representative terraced landscape of the Prosecco-DOCG area. Specific aims are i) mapping terraced Prosecco-DOCG vineyards, ii) classifying potential risk from pesticide of the different areas. Remote sensing technologies such as four bands aerial photos (RGB+NIR) and Light Detection and Ranging (LiDAR) have been used to map vineyards and to evaluate slope and drainage systems. All the data and statistics analyses have been performed in GIS environment. The areas of surface water located within a buffer zone of 20 linear meters from vineyard perimeter were considered at risk of pesticide contamination, according to European guidelines and on-site experimental results about the pesticide drift effect. Preliminary results show that 26 ha of the total vineyards within the river basin can potentially affect surface water bodies, highlighting that 19,410 m of perimeter is within 20 m from water courses. Moreover, vineyard classification based on proximity analysis indicates that 6.8 ha are at very high potential risk (<1m from water courses), 8.6 ha are at high risk level (from 1 to 5 m); 4.3 ha are at medium level (from 5 to 10 m), while 8.6 ha are at low level (>10 m).
Bräuer, A; English, M J M; Steinmetz, N; Lorenz, N; Perl, T; Braun, U; Weyland, W
2002-09-01
Forced-air warming with upper body blankets has gained high acceptance as a measure for the prevention of intraoperative hypothermia. However, data on heat transfer with upper body blankets are not yet available. This study was conducted to determine the heat transfer efficacy of eight complete upper body warming systems and to gain more insight into the principles of forced-air warming. Heat transfer of forced-air warmers can be described as follows: Qdot;=h. DeltaT. A, where Qdot;= heat flux [W], h=heat exchange coefficient [W m-2 degrees C-1], DeltaT=temperature gradient between the blanket and surface [ degrees C], and A=covered area [m2]. We tested eight different forced-air warming systems: (1) Bair Hugger and upper body blanket (Augustine Medical Inc. Eden Prairie, MN); (2) Thermacare and upper body blanket (Gaymar Industries, Orchard Park, NY); (3) Thermacare (Gaymar Industries) with reusable Optisan upper body blanket (Willy Rüsch AG, Kernen, Germany); (4) WarmAir and upper body blanket (Cincinnati Sub-Zero Products, Cincinnati, OH); (5) Warm-Gard and single use upper body blanket (Luis Gibeck AB, Upplands Väsby, Sweden); (6) Warm-Gard and reusable upper body blanket (Luis Gibeck AB); (7) WarmTouch and CareDrape upper body blanket (Mallinckrodt Medical Inc., St. Luis, MO); and (8) WarmTouch and reusable MultiCover trade mark upper body blanket (Mallinckrodt Medical Inc.) on a previously validated copper manikin of the human body. Heat flux and surface temperature were measured with 11 calibrated heat flux transducers. Blanket temperature was measured using 11 thermocouples. The temperature gradient between the blanket and surface (DeltaT) was varied between -8 and +8 degrees C, and h was determined by linear regression analysis as the slope of DeltaT vs. heat flux. Mean DeltaT was determined for surface temperatures between 36 and 38 degrees C, as similar mean skin surface temperatures have been found in volunteers. The covered area was estimated to be 0.35 m2. Total heat flow from the blanket to the manikin was different for surface temperatures between 36 and 38 degrees C. At a surface temperature of 36 degrees C the heat flows were higher (4-26.6 W) than at surface temperatures of 38 degrees C (2.6-18.1 W). The highest total heat flow was delivered by the WarmTouch trade mark system with the CareDrape trade mark upper body blanket (18.1-26.6 W). The lowest total heat flow was delivered by the Warm-Gard system with the single use upper body blanket (2.6-4 W). The heat exchange coefficient varied between 15.1 and 36.2 W m-2 degrees C-1, and mean DeltaT varied between 0.5 and 3.3 degrees C. We found total heat flows of 2.6-26.6 W by forced-air warming systems with upper body blankets. However, the changes in heat balance by forced-air warming systems with upper body blankets are larger, as these systems are not only transferring heat to the body but are also reducing heat losses from the covered area to zero. Converting heat losses of approximately 37.8 W to heat gain, results in a 40.4-64.4 W change in heat balance. The differences between the systems result from different heat exchange coefficients and different mean temperature gradients. However, the combination of a high heat exchange coefficient with a high mean temperature gradient is rare. This fact offers some possibility to improve these systems.
Huang, Shengli; Dahal, Devendra; Young, Claudia; Chander, Gyanesh; Liu, Shuguang
2011-01-01
Spatiotemporal variations of wetland water in the Prairie Pothole Region are controlled by many factors; two of them are temperature and precipitation that form the basis of the Palmer Drought Severity Index (PDSI). Taking the 196 km2 Cottonwood Lake area in North Dakota as our pilot study site, we integrated PDSI, Landsat images, and aerial photography records to simulate monthly water surface. First, we developed a new Wetland Water Area Index (WWAI) from PDSI to predict water surface area. Second, we developed a water allocation model to simulate the spatial distribution of water bodies at a resolution of 30 m. Third, we used an additional procedure to model the small wetlands (less than 0.8 ha) that could not be detected by Landsat. Our results showed that i) WWAI was highly correlated with water area with an R2 of 0.90, resulting in a simple regression prediction of monthly water area to capture the intra- and inter-annual water change from 1910 to 2009; ii) the spatial distribution of water bodies modeled from our approach agreed well with the water locations visually identified from the aerial photography records; and iii) the R2 between our modeled water bodies (including both large and small wetlands) and those from aerial photography records could be up to 0.83 with a mean average error of 0.64 km2 within the study area where the modeled wetland water areas ranged from about 2 to 14 km2. These results indicate that our approach holds great potential to simulate major changes in wetland water surface for ecosystem service; however, our products could capture neither the short-term water change caused by intensive rainstorm events nor the wetland change caused by human activities.
NASA Astrophysics Data System (ADS)
Yılmaz, Erkan
2016-04-01
In this study, the seasonal variation of the surface temperature of Ankara urban area and its enviroment have been analyzed by using Landsat 7 image. The Landsat 7 images of each month from 2007 to 2011 have been used to analyze the annually changes of the surface temperature. The land cover of the research area was defined with supervised classification method on the basis of the satellite image belonging to 2008 July. After determining the surface temperatures from 6-1 bands of satellite images, the monthly mean surface temperatures were calculated for land cover classification for the period between 2007 and 2011. According to the results obtained, the surface temperatures are high in summer and low in winter from the airtemperatures. all satellite images were taken at 10:00 am, it is found that urban areas are cooler than rural areas at 10:00 am. Regarding the land cover classification, the water surfaces are the coolest surfaces during the whole year.The warmest areas are the grasslands and dry farming areas. While the parks are warmer than the urban areas during the winter, during the summer they are cooler than artificial land covers. The urban areas with higher building density are the cooler surfaces after water bodies.
Dosage of salicylates for children with juvenile rheumatoid arthritis. A preliminary report.
Mäkelä, A L; Tryänä, T; Haapasaari, J
1975-01-01
The daily dosage of salicylates is traditionally very high for patients with juvenile rheumatoid arthritis. In order to achieve the optimal therapeutic effect, serum salicylate levels are kept at 30-35 mg/100 ml (2175-2540 mumol/l). The recommended daily dosage in the textbooks is about 100 mg/kg of body weight, and the reported dosage/m2 of body surface area has been 3.2 g/m2/day. These dosages are, however, too high in clinical routine. In the present investigation, 19 children were treated with salicylates for 15 days with daily check-ups of the serum salicylate levels. Seven of these children had symptoms of salicylate intoxication which corresponded closely to the serum salicylate levels. If the daily dosage of salicylates exceeds 3 g/m2 of body surface area, intoxication can be expected.
da Cruz, André Luis; Pedretti, Ana Carolina Elias; Fernandes, Marisa Narciso
2009-05-01
The stomach of Pterygoplichthys anisitsi has a thin, translucent wall and a simple squamous epithelium with an underlying dense capillary network. In the cardiac and pyloric regions, most cells have short microvilli distributed throughout the cell surface and their edges are characterized by short, densely packed microvilli. The mucosal layer of the stomach has two types of pavement epithelial cells that are similar to those in the aerial respiratory organs. Type 1 pavement epithelial cells, resembling the Type I pneumocyte in mammal lungs, are flat, with a large nucleus, and extend a thin sheet of cytoplasm on the underlying capillary. Type 2 cells, resembling the Type II pneumocyte, possess numerous mitochondria, a well-developed Golgi complex, rough endoplasmic reticulum, and numerous lamellar bodies in different stages of maturation. The gastric glands, distributed throughout the mucosal layer, also have several cells with many lamellar bodies. The total volume (air + tissue), tissue, and air capacity of the stomach when inflated, increase along with body mass. The surface-to-tissue-volume ratio of stomach varies from 108 cm(-1) in the smallest fish (0.084 kg) to 59 cm(-1) in the largest fish (0.60 kg). The total stomach surface area shows a low correlation to body mass. Nevertheless, the body-mass-specific surface area varied from 281.40 cm(2) kg(-1) in the smallest fish to 68.08 cm(2) kg(-1) in the largest fish, indicating a negative correlation to body mass (b = -0.76). The arithmetic mean barrier thickness between air and blood was 1.52 +/- 0.07 microm, whereas the harmonic mean thickness (tau(h)) of the diffusion barrier ranged from 0.40 to 0.74 microm. The anatomical diffusion factor (ADF = cm(2) microm(-1) kg(-1)) and the morphological O(2) diffusion capacity (D(morphol)O(2) = cm(3) min(-1) mmHg(-1) kg(-1)) are higher in the smallest specimen and lower in the largest one. In conclusion, the structure and morphometric data of P. anisitsi stomach indicate that this organ is adapted for oxygen uptake from air. (c) 2008 Wiley-Liss, Inc.
Abbas, Syed Muzahir; Ranga, Yogesh; Esselle, Karu P
2015-01-01
This paper presents electronically reconfigurable antenna options in healthcare applications. They are suitable for wireless body area network devices operating in the industrial, scientific, and medical (ISM) band at 2.45 GHz and IEEE 802.11 Wireless Local Area Network (WLAN) band at 5 GHz (5.15-5.35 GHz, 5.25-5.35 GHz). Two types of antennas are investigated: Antenna-I has a full ground plane and Antenna-II has a partial ground plane. The proposed antennas provide ISM operation in one mode while in another mode they support 5 GHz WLAN band. Their performance is assessed for body centric wireless communication using a simplified human body model. Antenna sensitivity to the gap between the antenna and the human body is investigated for both modes of each antenna. The proposed antennas exhibit a wide radiation pattern along the body surface to provide wide coverage and their small width (14 mm) makes them suitable for on-body communication in healthcare applications.
Tidal interaction of black holes and Newtonian viscous bodies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Poisson, Eric
The tidal interaction of a (rotating or nonrotating) black hole with nearby bodies produces changes in its mass, angular momentum, and surface area. Similarly, tidal forces acting on a Newtonian, viscous body do work on the body, change its angular momentum, and part of the transferred gravitational energy is dissipated into heat. The equations that describe the rate of change of the black-hole mass, angular momentum, and surface area as a result of the tidal interaction are compared with the equations that describe how the tidal forces do work, torque, and produce heat in the Newtonian body. The equations aremore » strikingly similar, and unexpectedly, the correspondence between the Newtonian-body and black-hole results is revealed to hold in near-quantitative detail. The correspondence involves the combination k{sub 2}{tau} of 'Love quantities' that incorporate the details of the body's internal structure; k{sub 2} is the tidal Love number, and {tau} is the viscosity-produced delay between the action of the tidal forces and the body's reaction. The combination k{sub 2}{tau} is of order GM/c{sup 3} for a black hole of mass M; it does not vanish, in spite of the fact that k{sub 2} is known to vanish individually for a nonrotating black hole.« less
Automotive body panel containing thermally exfoliated graphite oxide
NASA Technical Reports Server (NTRS)
Aksay, Ilhan A. (Inventor); Abdala, Ahmed (Inventor); Prud'Homme, Robert K. (Inventor); Adamson, Douglas (Inventor)
2011-01-01
An automotive body panel containing a polymer composite formed of at least one polymer and a modified graphite oxide material, which is a thermally exfoliated graphite oxide with a surface area of from about 300 m.sup.2/g to 2600 m.sup.2/g.
The Relationship of the Anthropometric Variables to the Infusion Rate of Rocuronium in the Elderly
Koo, Bon Nyeo; Bai, Sun Jun; Lee, Woo Chang
2005-01-01
We have determined the infusion rates of rocuronium in the elderly and young adult patients during sevoflurane and nitrous oxide anesthesia. The correlation of some anthropometric predictors with infusion rate of rocuronium was also investigated for both elderly and young adult. Participating patients were assigned to one of two groups: 1) young adult patients aged 20 to 50 years (n = 30); 2) elderly patients aged over 65 years (n = 30). The anthropometric variables such as height, weight, ratio of weight to body surface area, subscapularis and suprailiac skin folds, body surface area, body mass index and % ideal body weight were evaluated as predictors for infusion rate. The infusion rate in elderly patients was significantly less compared with that in young adult patients (p < 0.05). In elderly patients, no anthropometric predictor was related to the infusion rate of rocuronium. This suggests that the infusion rate of rocuronium for an elderly patient needs to be individualized by monitoring neuromuscular transmission to avoid excessive dose. PMID:16259061
McDonald, Cory P.; Rover, Jennifer; Stets, Edward G.; Striegl, Robert G.
2012-01-01
We analyzed complete geospatial data for the 3.5 million lakes and reservoirs larger than 0.001 km2, with a combined surface area of 131,000 km2, in the contiguous United States (excluding the Laurentian Great Lakes) and identified their regional distribution characteristics. For Alaska, we also analyzed (1) incomplete data that suggest that the state contains 1–2.5 million lakes larger than 0.001 km2 covering over 50,000 km2 and (2) localized high-resolution (5 m) data that suggest that the number of very small water bodies (< 0.001 km2) may be comparable with the number of lakes > 0.001 km2 in some areas. The Pareto distribution cannot accurately describe the lake abundance-size relationship across the entire size spectrum, and extrapolation of this density function to small size classes has likely resulted in the overestimation of the number of small lakes in the world. While small water bodies dominate in terms of numbers, they are not numerous enough to dominate in terms of surface area, as has been previously suggested. Extending our results to the global scale suggests that there are on the order of 64 million water bodies larger than 0.001 km2 in the world, with a total surface area of approximately 3.8 million km2.
Body mass modulates huddling dynamics and body temperature profiles in rabbit pups.
Bautista, Amando; Zepeda, José Alfredo; Reyes-Meza, Verónica; Féron, Christophe; Rödel, Heiko G; Hudson, Robyn
2017-10-01
Altricial mammals typically lack the physiological capacity to thermoregulate independently during the early postnatal period, and in litter-bearing species the young benefit strongly from huddling together with their litter siblings. Such litter huddles are highly dynamic systems, often characterized by competition for energetically favorable, central positions. In the present study, carried out in domestic rabbits Oryctolagus cuniculus, we asked whether individual differences in body mass affect changes in body temperature during changes in the position within the huddle. We predicted that pups with relatively lower body mass should be more affected by such changes arising from huddle dynamics in comparison to heavier ones. Changes in pups' maximum body surface temperature (determined by infrared thermography) were significantly affected by changes in the number of their neighbors in the litter huddle, and indeed these temperature changes largely depended on the pups' body mass relative to their litter siblings. Lighter pups showed significant increases in their maximum body surface temperature when their number of huddling partners increased by one or two siblings whereas pups with intermediate or heavier body mass did not show such significant increases in maximum body temperature when experiencing such changes. A similar pattern was found with respect to average body surface temperature. This strong link between changes in the number of huddling partners and body surface temperature in lighter pups might, on the one hand, arise from a higher vulnerability of such pups due to their less favorable body surface area-to-volume ratio. On the other hand, as lighter pups generally had fewer neighbors than heavier ones and thus typically a comparatively smaller body surface in contact with siblings, they potentially had more to gain from increasing their number of neighbors. The present findings might help to understand how individual differences in body mass within a litter lead to the emergence of individual differences in sibling interactions during early postnatal life in different species of altricial and litter-bearing mammals. Copyright © 2017 Elsevier Inc. All rights reserved.
30 CFR 779.25 - Cross sections, maps, and plans.
Code of Federal Regulations, 2012 CFR
2012-07-01
... locations of monitoring stations used to gather data for water quality and quantity, fish and wildlife, and... encountered, within the proposed permit or adjacent areas; (7) Location of surface water bodies such as... the proposed permit area; (9) Location and dimensions of existing areas of spoil, waste, and non-coal...
30 CFR 779.25 - Cross sections, maps, and plans.
Code of Federal Regulations, 2010 CFR
2010-07-01
... locations of monitoring stations used to gather data for water quality and quantity, fish and wildlife, and... encountered, within the proposed permit or adjacent areas; (7) Location of surface water bodies such as... the proposed permit area; (9) Location and dimensions of existing areas of spoil, waste, and non-coal...
30 CFR 779.25 - Cross sections, maps, and plans.
Code of Federal Regulations, 2014 CFR
2014-07-01
... locations of monitoring stations used to gather data for water quality and quantity, fish and wildlife, and... encountered, within the proposed permit or adjacent areas; (7) Location of surface water bodies such as... the proposed permit area; (9) Location and dimensions of existing areas of spoil, waste, and non-coal...
30 CFR 779.25 - Cross sections, maps, and plans.
Code of Federal Regulations, 2011 CFR
2011-07-01
... locations of monitoring stations used to gather data for water quality and quantity, fish and wildlife, and... encountered, within the proposed permit or adjacent areas; (7) Location of surface water bodies such as... the proposed permit area; (9) Location and dimensions of existing areas of spoil, waste, and non-coal...
30 CFR 779.25 - Cross sections, maps, and plans.
Code of Federal Regulations, 2013 CFR
2013-07-01
... locations of monitoring stations used to gather data for water quality and quantity, fish and wildlife, and... encountered, within the proposed permit or adjacent areas; (7) Location of surface water bodies such as... the proposed permit area; (9) Location and dimensions of existing areas of spoil, waste, and non-coal...
Mechanical seal with textured sidewall
Khonsari, Michael M.; Xiao, Nian
2017-02-14
The present invention discloses a mating ring, a primary ring, and associated mechanical seal having superior heat transfer and wear characteristics. According to an exemplary embodiment of the present invention, one or more dimples are formed onto the cylindrical outer surface of a mating ring sidewall and/or a primary ring sidewall. A stationary mating ring for a mechanical seal assembly is disclosed. Such a mating ring comprises an annular body having a central axis and a sealing face, wherein a plurality of dimples are formed into the outer circumferential surface of the annular body such that the exposed circumferential surface area of the annular body is increased. The texture added to the sidewall of the mating ring yields superior heat transfer and wear characteristics.
Location of Bare Soil Surface and Soil Line on the RED-NIR Spectral Plane
NASA Astrophysics Data System (ADS)
Koroleva, P. V.; Rukhovich, D. I.; Rukhovich, A. D.; Rukhovich, D. D.; Kulyanitsa, A. L.; Trubnikov, A. V.; Kalinina, N. V.; Simakova, M. S.
2017-12-01
Soil as a separate natural body occupies certain area with its own set of spectral characteristics within the RED-NIR spectral space. This is an ellipse-shaped area, and its semi-major axis is the soil line for a satellite image. The spectral area for a bare soil surface is neighboring to the areas of black carbon, straw, vegetating plants, and missing RED-NIR values. A reliable separation of the bare soil surface within the spectral space is possible with the technology of spectral neighborhood of soil line. The accuracy of this method is 90%. The determination of the bare soil surface using vegetation indices, both relative (NDVI), and perpendicular (PVI), is incorrect; the accuracy of these methods does not exceed 65%, and for most of the survey seasons it may be lower than 50%. The flat part of the "tasseled cap" described as the soil line, is not a synonym for the area of the bare soil surface. The bare soil surface on the RED-NIR plots occupies significantly smaller areas than the area of soil line according to Kauth and Thomas.
DOT National Transportation Integrated Search
1970-12-01
The distributions of age, weight, height, body weight/body surface area and ponderal index for the accident versus non-accident segments of the active airman population were compared for years 1966-1967. : The differences in the distributions of thes...
Cross, Alan; Collard, Mark; Nelson, Andrew
2008-01-01
The conventional method of estimating heat balance during locomotion in humans and other hominins treats the body as an undifferentiated mass. This is problematic because the segments of the body differ with respect to several variables that can affect thermoregulation. Here, we report a study that investigated the impact on heat balance during locomotion of inter-segment differences in three of these variables: surface area, skin temperature and rate of movement. The approach adopted in the study was to generate heat balance estimates with the conventional method and then compare them with heat balance estimates generated with a method that takes into account inter-segment differences in surface area, skin temperature and rate of movement. We reasoned that, if the hypothesis that inter-segment differences in surface area, skin temperature and rate of movement affect heat balance during locomotion is correct, the estimates yielded by the two methods should be statistically significantly different. Anthropometric data were collected on seven adult male volunteers. The volunteers then walked on a treadmill at 1.2 m/s while 3D motion capture cameras recorded their movements. Next, the conventional and segmented methods were used to estimate the volunteers' heat balance while walking in four ambient temperatures. Lastly, the estimates produced with the two methods were compared with the paired t-test. The estimates of heat balance during locomotion yielded by the two methods are significantly different. Those yielded by the segmented method are significantly lower than those produced by the conventional method. Accordingly, the study supports the hypothesis that inter-segment differences in surface area, skin temperature and rate of movement impact heat balance during locomotion. This has important implications not only for current understanding of heat balance during locomotion in hominins but also for how future research on this topic should be approached. PMID:18560580
Cross, Alan; Collard, Mark; Nelson, Andrew
2008-06-18
The conventional method of estimating heat balance during locomotion in humans and other hominins treats the body as an undifferentiated mass. This is problematic because the segments of the body differ with respect to several variables that can affect thermoregulation. Here, we report a study that investigated the impact on heat balance during locomotion of inter-segment differences in three of these variables: surface area, skin temperature and rate of movement. The approach adopted in the study was to generate heat balance estimates with the conventional method and then compare them with heat balance estimates generated with a method that takes into account inter-segment differences in surface area, skin temperature and rate of movement. We reasoned that, if the hypothesis that inter-segment differences in surface area, skin temperature and rate of movement affect heat balance during locomotion is correct, the estimates yielded by the two methods should be statistically significantly different. Anthropometric data were collected on seven adult male volunteers. The volunteers then walked on a treadmill at 1.2 m/s while 3D motion capture cameras recorded their movements. Next, the conventional and segmented methods were used to estimate the volunteers' heat balance while walking in four ambient temperatures. Lastly, the estimates produced with the two methods were compared with the paired t-test. The estimates of heat balance during locomotion yielded by the two methods are significantly different. Those yielded by the segmented method are significantly lower than those produced by the conventional method. Accordingly, the study supports the hypothesis that inter-segment differences in surface area, skin temperature and rate of movement impact heat balance during locomotion. This has important implications not only for current understanding of heat balance during locomotion in hominins but also for how future research on this topic should be approached.
Multi-Decadal Surface Water Dynamics in North American Tundra
NASA Technical Reports Server (NTRS)
Carroll, Mark L.; Loboda, Tatiana V.
2017-01-01
Over the last several decades, warming in the Arctic has outpaced the already impressive increases in global mean temperatures. The impact of these increases in temperature has been observed in a multitude of ecological changes in North American tundra including changes in vegetative cover, depth of active layer, and surface water extent. The low topographic relief and continuous permafrost create an ideal environment for the formation of small water bodies - a definitive feature of tundra surface. In this study, water bodies in Nunavut territory in northern Canada were mapped using a long-term record of remotely sensed observations at 30 meters spatial resolution from the Landsat suite of instruments. The temporal trajectories of water extent between 1985 and 2015 were assessed. Over 675,000 water bodies have been identified over the 31-year study period with over 168,000 showing a significant (probability is less than 0.05) trend in surface area. Approximately 55 percent of water bodies with a significant trend were increasing in size while the remaining 45 percent were decreasing in size. The overall net trend for water bodies with a significant trend is 0.009 hectares per year per water body.
Comparative study of the biodegradability of porous silicon films in simulated body fluid.
Peckham, J; Andrews, G T
2015-01-01
The biodegradability of oxidized microporous, mesoporous and macroporous silicon films in a simulated body fluid with ion concentrations similar to those found in human blood plasma were studied using gravimetry. Film dissolution rates were determined by periodically weighing the samples after removal from the fluid. The dissolution rates for microporous silicon were found to be higher than those for mesoporous silicon of comparable porosity. The dissolution rate of macroporous silicon was much lower than that for either microporous or mesoporous silicon. This is attributed to the fact that its specific surface area is much lower than that of microporous and mesoporous silicon. Using an equation adapted from [Surf. Sci. Lett. 306 (1994), L550-L554], the dissolution rate of porous silicon in simulated body fluid can be estimated if the film thickness and specific surface area are known.
Swift, Andrew J; Rajaram, Smitha; Campbell, Michael J; Hurdman, Judith; Thomas, Steve; Capener, Dave; Elliot, Charlie; Condliffe, Robin; Wild, Jim M; Kiely, David G
2014-01-01
There are limited data on the prognostic value of cardiovascular magnetic resonance measurements in idiopathic pulmonary arterial hypertension, with no studies investigating the impact of correction of cardiovascular magnetic resonance indices for age and sex on prognostic value. Consecutive patients with idiopathic pulmonary arterial hypertension underwent cardiovascular magnetic resonance imaging at 1.5T. Steady-state free precession cardiac volumes and mass measurements were corrected for age, sex, and body surface area according to reference data and prognostic significance assessed. A total of 80 patients with idiopathic pulmonary arterial hypertension were identified, and 23 patients died during the mean follow-up of 32±14 months. Corrected for age, sex, and body surface area, right ventricular end-systolic volume (P=0.004) strongly predicted mortality, independent of World Health Organization functional class, mean right atrial pressure, cardiac index, and mixed venous oxygen saturations. Consideration should be given to correcting cardiovascular magnetic resonance measures for age, sex, and body surface area, particularly given the changing demographics of patients with idiopathic pulmonary arterial hypertension. Corrected right ventricular end-systolic volume is a strong prognostic marker in idiopathic pulmonary arterial hypertension, independent of invasively derived measurements, mean right atrial pressure cardiac index, and mixed venous oxygen saturations.
Urquhart, Erin A; Schaeffer, Blake A; Stumpf, Richard P; Loftin, Keith A; Werdell, P Jeremy
2017-07-01
Cyanobacterial harmful algal blooms (CyanoHAB) are thought to be increasing globally over the past few decades, but relatively little quantitative information is available about the spatial extent of blooms. Satellite remote sensing provides a potential technology for identifying cyanoHABs in multiple water bodies and across geo-political boundaries. An assessment method was developed using MEdium Resolution Imaging Spectrometer (MERIS) imagery to quantify cyanoHAB surface area extent, transferable to different spatial areas, in Florida, Ohio, and California for the test period of 2008 to 2012. Temporal assessment was used to evaluate changes in satellite resolvable inland waterbodies for each state of interest. To further assess cyanoHAB risk within the states, the World Health Organization's (WHO) recreational guidance level thresholds were used to categorize surface area of cyanoHABs into three risk categories: low, moderate, and high-risk bloom area. Results showed that in Florida, the area of cyanoHABs increased largely due to observed increases in high-risk bloom area. California exhibited a slight decrease in cyanoHAB extent, primarily attributed to decreases in Northern California. In Ohio (excluding Lake Erie), little change in cyanoHAB surface area was observed. This study uses satellite remote sensing to quantify changes in inland cyanoHAB surface area across numerous water bodies within an entire state. The temporal assessment method developed here will be relevant into the future as it is transferable to the Ocean Land Colour Instrument (OLCI) on Sentinel-3A/3B missions. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Urquhart, Erin A.; Schaeffer, Blake A.; Stumpf, Richard P.; Loftin, Keith A.; Werdell, P. Jeremy
2017-01-01
Cyanobacterial harmful algal blooms (CyanoHAB) are thought to be increasing globally over the past few decades, but relatively little quantitative information is available about the spatial extent of blooms. Satellite remote sensing provides a potential technology for identifying cyanoHABs in multiple water bodies and across geo-political boundaries. An assessment method was developed using MEdium Resolution Imaging Spectrometer (MERIS) imagery to quantify cyanoHAB surface area extent, transferable to different spatial areas, in Florida, Ohio, and California for the test period of 2008 to 2012. Temporal assessment was used to evaluate changes in satellite resolvable inland waterbodies for each state of interest. To further assess cyanoHAB risk within the states, the World Health Organization’s (WHO) recreational guidance level thresholds were used to categorize surface area of cyanoHABs into three risk categories: low, moderate, and high-risk bloom area. Results showed that in Florida, the area of cyanoHABs increased largely due to observed increases in high-risk bloom area. California exhibited a slight decrease in cyanoHAB extent, primarily attributed to decreases in Northern California. In Ohio (excluding Lake Erie), little change in cyanoHAB surface area was observed. This study uses satellite remote sensing to quantify changes in inland cyanoHAB surface area across numerous water bodies within an entire state. The temporal assessment method developed here will be relevant into the future as it is transferable to the Ocean Land Colour Instrument (OLCI) on Sentinel-3A/3B missions.
Sunscreen use optimized by two consecutive applications
Torsnes, Linnea R.; Philipsen, Peter A.; Wulf, Hans Christian
2018-01-01
Sunscreen users are often inadequately protected and become sunburned. This study aimed to investigate how much two consecutive sunscreen applications increased the quantity of sunscreen applied and decreased the skin area left without sunscreen (missed area) compared to a single application. Thirty-one healthy volunteers wearing swimwear were included and applied sunscreen two consecutive times in a laboratory environment. Participants had pictures taken in black light before and after each application. As sunscreens absorb black light, the darkness of the skin increased with increasing amounts of sunscreen applied. We conducted a standard curve establishing a link between change in picture darkness and quantity of sunscreen. The quantity of sunscreen at selected skin sites as well as the percentage of missed area was determined after each application. Participants had missed a median of 20% of their available body surface after a single application. After double application they had missed 9%. The decrease in missed areas was significant for the whole body surface and for each of the body regions separately. The median participant had applied between 13% and 100% more sunscreen at the selected skin sites after double application than after single application. We recommend double application, especially before intense sun exposure. PMID:29590142
Peters, Catherine J; Hill, Nathan; Dattani, Mehul T; Charmandari, Evangelia; Matthews, David R; Hindmarsh, Peter C
2013-03-01
Hydrocortisone therapy is based on a dosing regimen derived from estimates of cortisol secretion, but little is known of how the dose should be distributed throughout the 24 h. We have used deconvolution analysis of 24-h serum cortisol profiles to determine 24-h cortisol secretion and distribution to inform hydrocortisone dosing schedules in young children and older adults. Twenty four hour serum cortisol profiles from 80 adults (41 men, aged 60-74 years) and 29 children (24 boys, aged 5-9 years) were subject to deconvolution analysis using an 80-min half-life to ascertain total cortisol secretion and distribution throughout the 24-h period. Mean daily cortisol secretion was similar between adults (6.3 mg/m(2) body surface area/day, range 5.1-9.3) and children (8.0 mg/m(2) body surface area/day, range 5.3-12.0). Peak serum cortisol concentration was higher in children compared with adults, whereas nadir serum cortisol concentrations were similar. Timing of the peak serum cortisol concentration was similar (07.05-07.25), whereas that of the nadir concentration occurred later in adults (midnight) compared with children (22.48) (P = 0.003). Children had the highest percentage of cortisol secretion between 06.00 and 12.00 (38.4%), whereas in adults this took place between midnight and 06.00 (45.2%). These observations suggest that the daily hydrocortisone replacement dose should be equivalent on average to 6.3 mg/m(2) body surface area/day in adults and 8.0 mg/m(2) body surface area/day in children. Differences in distribution of the total daily dose between older adults and young children need to be taken into account when using a three or four times per day dosing regimen. © 2012 Blackwell Publishing Ltd.
Bohm, Philipp; Schneider, Günther; Linneweber, Lutz; Rentzsch, Axel; Krämer, Nadine; Abdul-Khaliq, Hashim; Kindermann, Wilfried; Meyer, Tim; Scharhag, Jürgen
2016-05-17
It is under debate whether the cumulative effects of intensive endurance exercise induce chronic cardiac damage, mainly involving the right heart. The aim of this study was to examine the cardiac structure and function in long-term elite master endurance athletes with special focus on the right ventricle by contrast-enhanced cardiovascular magnetic resonance. Thirty-three healthy white competitive elite male master endurance athletes (age range, 30-60 years) with a training history of 29±8 years, and 33 white control subjects pair-matched for age, height, and weight underwent cardiopulmonary exercise testing, echocardiography including tissue-Doppler imaging and speckle tracking, and cardiovascular magnetic resonance. Indexed left ventricular mass and right ventricular mass (left ventricular mass/body surface area, 96±13 and 62±10 g/m(2); P<0.001; right ventricular mass/body surface area, 36±7 and 24±5 g/m(2); P<0.001) and indexed left ventricular end-diastolic volume and right ventricular end-diastolic volume (left ventricular end-diastolic volume/body surface area, 104±13 and 69±18 mL/m(2); P<0.001; right ventricular end-diastolic volume/body surface area, 110±22 and 66±16 mL/m(2); P<0.001) were significantly increased in athletes in comparison with control subjects. Right ventricular ejection fraction did not differ between athletes and control subjects (52±8 and 54±6%; P=0.26). Pathological late enhancement was detected in 1 athlete. No correlations were found for left ventricular and right ventricular volumes and ejection fraction with N-terminal pro-brain natriuretic peptide, and high-sensitive troponin was negative in all subjects. Based on our results, chronic right ventricular damage in elite endurance master athletes with lifelong high training volumes seems to be unlikely. Thus, the hypothesis of an exercise-induced arrhythmogenic right ventricular cardiomyopathy has to be questioned. © 2016 American Heart Association, Inc.
Combat-related facial burns: analysis of strategic pitfalls.
Johnson, Benjamin W; Madson, Andrew Q; Bong-Thakur, Sarah; Tucker, David; Hale, Robert G; Chan, Rodney K
2015-01-01
Burns constitute approximately 10% of all combat-related injuries to the head and neck region. We postulated that the combat environment presents unique challenges not commonly encountered among civilian injuries. The purpose of the present study was to determine the features commonly seen among combat facial burns that will result in therapeutic challenges and might contribute to undesired outcomes. The present study was a retrospective study performed using a query of the Burn Registry at the US Army Institute of Surgical Research Burn Center for all active duty facial burn admissions from October 2001 to February 2011. The demographic data, total body surface area of the burn, facial region body surface area involvement, and dates of injury, first operation, and first facial operation were tabulated and compared. A subset analysis of severe facial burns, defined by a greater than 7% facial region body surface area, was performed with a thorough medical record review to determine the presence of associated injuries. Of all the military burn injuries, 67.1% (n = 558) involved the face. Of these, 81.3% (n = 454) were combat related. The combat facial burns had a mean total body surface area of 21.4% and a mean facial region body surface area of 3.2%. The interval from the date of the injury to the first operative encounter was 6.6 ± 0.8 days and was 19.8 ± 2.0 days to the first facial operation. A subset analysis of the severe facial burns revealed that the first facial operation and the definitive coverage operation was performed at 13.45 ± 2.6 days and 31.9 ± 4.1 days after the injury, respectively. The mortality rate for this subset of patients was 32% (n = 10), with a high rate of associated inhalational injuries (61%, n = 19), limb amputations (29%, n = 9), and facial allograft usage (48%, n = 15) and a mean facial autograft thickness of 10.5/1,000th in. Combat-related facial burns present multiple challenges, which can contribute to suboptimal long-term outcomes. These challenges include prolonged transport to the burn center, delayed initial intervention and definitive coverage, and a lack of available high-quality color-matched donor skin. These gaps all highlight the need for novel anti-inflammatory and skin replacement strategies to more adequately address these unique combat-related obstacles. Copyright © 2015 American Association of Oral and Maxillofacial Surgeons. All rights reserved.
Numerical Simulation of the Effects of Water Surface in Building Environment
NASA Astrophysics Data System (ADS)
Li, Guangyao; Pan, Yuqing; Yang, Li
2018-03-01
Water body could affect the thermal environment and airflow field in the building districts, because of its special thermal characteristics, evaporation and flat surface. The thermal influence of water body in Tongji University Jiading Campus front area was evaluated. First, a suitable evaporation model was selected and then was applied to calculate the boundary conditions of the water surface in the Fluent software. Next, the computational fluid dynamics (CFD) simulations were conducted on the models both with and without water, following the CFD practices guidelines. Finally, the outputs of the two simulations were compared with each other. Results showed that the effect of evaporative cooling from water surface strongly depends on the wind direction and temperature decrease was about 2∼5°C. The relative humidity within the enclosing area was affected by both the building arrangement and surrounding water. An increase of about 0.1∼0.2m/s of wind speed induced by the water evaporation was observed in the open space.
Davenport, Andrew; Peters, Sanne A E; Bots, Michiel L; Canaud, Bernard; Grooteman, Muriel P C; Asci, Gulay; Locatelli, Francesco; Maduell, Francisco; Morena, Marion; Nubé, Menso J; Ok, Ercan; Torres, Ferran; Woodward, Mark; Blankestijn, Peter J
2016-01-01
Mortality remains high for hemodialysis patients. Online hemodiafiltration (OL-HDF) removes more middle-sized uremic toxins but outcomes of individual trials comparing OL-HDF with hemodialysis have been discrepant. Secondary analyses reported higher convective volumes, easier to achieve in larger patients, and improved survival. Here we tested different methods to standardize OL-HDF convection volume on all-cause and cardiovascular mortality compared with hemodialysis. Pooled individual patient analysis of four prospective trials compared thirds of delivered convection volume with hemodialysis. Convection volumes were either not standardized or standardized to weight, body mass index, body surface area, and total body water. Data were analyzed by multivariable Cox proportional hazards modeling from 2793 patients. All-cause mortality was reduced when the convective dose was unstandardized or standardized to body surface area and total body water; hazard ratio (95% confidence intervals) of 0.65 (0.51-0.82), 0.74 (0.58-0.93), and 0.71 (0.56-0.93) for those receiving higher convective doses. Standardization by body weight or body mass index gave no significant survival advantage. Higher convection volumes were generally associated with greater survival benefit with OL-HDF, but results varied across different ways of standardization for body size. Thus, further studies should take body size into account when evaluating the impact of delivered convection volume on mortality end points. Copyright © 2015 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.
Dose assessment of 2% chlorhexidine acetate for canine superficial pyoderma.
Murayama, Nobuo; Terada, Yuri; Okuaki, Mio; Nagata, Masahiko
2011-10-01
The dose of 2% chlorhexidine acetate (2CA; Nolvasan(®) Surgical Scrub; Fort Dodge Animal Health, Fort Dodge, IA, USA) for canine superficial pyoderma was evaluated. The first trial compared three doses (group 1, 57 mL/m(2) body surface area; group 2, 29 mL/m(2) body surface area; and group 3, 19 mL/m(2) body surface area) in a randomized, double-blind, controlled fashion. Twenty-seven dogs with superficial pyoderma were treated with 2CA at the allocated doses every 2 days for 1 week. The owners and investigators subjectively evaluated the dogs, and investigators scored skin lesions, including erythema, papules/pustules, alopecia and scales, on a 0-4 scale. There were no significant differences in response between the treatment groups. The second trial established a practical dose-measuring method for 2CA. Sixty-eight owners were asked to apply 2CA on their palm in an amount corresponding to a Japanese ¥500 coin, 26.5 mm in diameter. This yielded an average dose of 0.90±0.40 mL. Mathematically, the doses used in groups 1, 2 and 3 can be represented as one coin per approximately one-, two- and three-hand-sized lesions, respectively. The results therefore suggest that owners instructed to apply one coin of the product per two-hand-sized areas of superficial pyoderma would use the range of doses evaluated in this trial. © 2011 The Authors. Veterinary Dermatology. © 2011 ESVD and ACVD.
Watterson, Dina; Cleland, Heather; Picton, Natalie; Simpson, Pam M; Gabbe, Belinda J
2011-03-01
The percentage of total body surface area burnt (%TBSA) is a critical measure of burn injury severity and a key predictor of burn injury outcome. This study evaluated the level of agreement between four sources of %TBSA using 120 cases identified through the Victorian State Trauma Registry. Expert clinician, ICD-10-AM, Abbreviated Injury Scale, and burns registry coding were compared using measures of agreement. There was near-perfect agreement (weighted Kappa statistic 0.81-1) between all sources of data, suggesting that ICD-10-AM is a valid source of %TBSA and use of ICD-10-AM codes could reduce the resource used by trauma and burns registries capturing this information.
Saaiq, M.; Zaib, S.; Ahmad, S.
2012-01-01
Summary This is a study of 120 patients of either sex and all ages who had sustained deep burns of up to 40% of the total body surface area. Half the patients underwent early excision and skin autografting (i.e., within 4-7 days of sustaining burn injury) while the rest underwent delayed excision and skin autografting (i.e., within 1-4 weeks post-burn). Significant differences were found in favour of the early excision and grafting group with regard to the various burn management outcome parameters taken into consideration, i.e. culture positivity of wounds, graft take, duration of post-graft hospitalization, and mortality. PMID:23467391
Notley, Sean R; Park, Joonhee; Tagami, Kyoko; Ohnishi, Norikazu; Taylor, Nigel A S
2016-07-01
Human heat loss is thought, in part, to be morphologically related. It was therefore hypothesized that when heat-loss requirements and body temperatures were matched, that the mass-specific surface area alone could significantly explain both cutaneous vascular and sudomotor responses during compensable exercise. These thermoeffector responses were examined in 36 men with widely varying mass-specific surface areas (range, 232.3-292.7 cm(2)/kg), but of similar age, aerobic fitness, and adiposity. Subjects completed two trials under compensable conditions (28.1°C, 36.8% relative humidity), each involving rest (20 min) and steady-state cycling (45 min) at two matched metabolic heat-production rates (light, ∼135 W/m(2); moderate, ∼200 W/m(2)). Following equivalent mean body temperature changes, forearm blood flow and vascular conductance (r = 0.63 and r = 0.65) shared significant, positive associations with the mass-specific surface area during light work (P < 0.05), explaining ∼45% of the vasomotor variation. Conversely, during light and moderate work, whole body sweat rate, as well as local sweat rate and sudomotor sensitivity at three of four measured sites, revealed moderate, negative relationships with the mass-specific surface area (correlation coefficient range -0.37 to -0.73, P < 0.05). Moreover, those relationships could uniquely account for between 10 and 53% of those sweating responses (P < 0.05). Therefore, both thermoeffector responses displayed a significant morphological dependency in the presence of equivalent thermoafferent drive. Indeed, up to half of the interindividual variation in these effector responses could now be explained through morphological differences and the first principles governing heat transfer. Copyright © 2016 the American Physiological Society.
Notley, Sean R.; Park, Joonhee; Tagami, Kyoko; Ohnishi, Norikazu
2016-01-01
Human heat loss is thought, in part, to be morphologically related. It was therefore hypothesized that when heat-loss requirements and body temperatures were matched, that the mass-specific surface area alone could significantly explain both cutaneous vascular and sudomotor responses during compensable exercise. These thermoeffector responses were examined in 36 men with widely varying mass-specific surface areas (range, 232.3-292.7 cm2/kg), but of similar age, aerobic fitness, and adiposity. Subjects completed two trials under compensable conditions (28.1°C, 36.8% relative humidity), each involving rest (20 min) and steady-state cycling (45 min) at two matched metabolic heat-production rates (light, ∼135 W/m2; moderate, ∼200 W/m2). Following equivalent mean body temperature changes, forearm blood flow and vascular conductance (r = 0.63 and r = 0.65) shared significant, positive associations with the mass-specific surface area during light work (P < 0.05), explaining ∼45% of the vasomotor variation. Conversely, during light and moderate work, whole body sweat rate, as well as local sweat rate and sudomotor sensitivity at three of four measured sites, revealed moderate, negative relationships with the mass-specific surface area (correlation coefficient range −0.37 to −0.73, P < 0.05). Moreover, those relationships could uniquely account for between 10 and 53% of those sweating responses (P < 0.05). Therefore, both thermoeffector responses displayed a significant morphological dependency in the presence of equivalent thermoafferent drive. Indeed, up to half of the interindividual variation in these effector responses could now be explained through morphological differences and the first principles governing heat transfer. PMID:27125845
Minor burn management: potions and lotions
Hyland, Ela J; Connolly, Siobhan M; Fox, Jade A; Harvey, John G
2015-01-01
Summary The first aid for burns is to run cold water over the burn for 20 minutes. This is effective for up to three hours after the injury. Assess the affected body surface area using the rule of nines. Consult a burn unit if more than 5% of the total body surface area is burnt in a child or if more than 10% in an adult. Extensive or deep burns and burns to special areas, such as the hands, should be referred. Chemical or electrical burns should also be assessed by a burn unit. For minor burns, antimicrobial dressings are recommended, but oral antibiotics should be avoided unless there are signs of infection. As burns are tetanus prone, check the patient’s immunisation status. Burns that become infected or are slow to heal should be discussed with a burn unit. The burn unit can also provide advice if there are uncertainties about how to manage a patient. PMID:26648640
1981-10-01
insulation during shivering in the rat, which nas a large body surface area to mass ratio (Bligh, 1973). Ambient temperature plays a critical role in this...S.M. (1979). Microwaves: Effects on thermoregula- tory behavior in rats. Science 206:1198. Szekely, M. and Szelenyi, Z. (1979). Endotoxin fever in
NASA Astrophysics Data System (ADS)
Terasmaa, Jaanus; Bartout, Pascal; Marzecova, Agata; Touchart, Laurent; Koff, Tiiu; Choffel, Quentin; Kapanen, Galina; Maleval, Véronique; Millot, Camille; Qsair, Zoubida; Vandel, Egert
2015-04-01
Until recently, the small water bodies have been disregarded in the environmental management and protection policies. For example, the European Water Framework Directive 2000/60/EC proposes the threshold surface area of water bodies for typology and reporting as 50 ha. The inventories on state level or scientific studies took into account smaller water bodies (e.g. <10 ha for Meybeck, 1995, <1 ha for Rjanžin, 2005, or <0.05 ha for Kuusisto and Raatikainen, 1988) but these methods of estimations has been region-specific and not suitable for global estimates. The increasing awareness about the important roles that terrestrial standing water bodies play in the biodiversity or hydrological and biogeochemical cycles has facilitated new global and regional inventories of lakes and water bodies. Although with differences in the total counts and in the statistical estimates of abundance-size relationship, these recent global estimates reveal the quantitative importance of the terrestrial standing water bodies in the global hydrology (Downing et al., 2006; Verpoorter et al., 2014). Yet, our analysis of the abundance and distribution EU water bodies suggest that these global counts underrepresents the hydrologically complex terrain of the European territory. One of the main limits is the high cutoff limit that excludes small water bodies below ~0.2 ha. For example, in France, Bartout and Touchart (2013) report that including water bodies below 0.01 ha in the estimates resulted in 16 times higher number of water bodies with the surface area one-third higher than officially registered inventories. Also, in Estonia, the water bodies with a surface area below 1 ha are almost 50 times more abundant than those above 1 ha and 92% of all standing water bodies are smaller than 0.2 ha. Using the OpenStreetMap database we will discuss the differences between global inventories and EU-level analysis. We will show the alternative regional estimates of water bodies with the surface size threshold limit 0.01 ha which will illustrate the quantitative importance of very small often man-made ponds, which are however, abundant cultural heritage in many parts of Europe. Secondly, by comparing detailed national inventories compiled for France and Estonia, we will introduce usefulness of the the 'local to global' approach in which the local databases may significantly strengthen the precision of the regional (EU) level analysis. Overall, we will disss that all standing water bodies - including small and man-made ponds - play an important role in ecosystem services and require careful management to avoid hydrological and environmental deterioration. References: Verpoorter et al. (2014) Geophysical Research Letters, 41. Bartout & Touchart,(2013) Annales de Géographie, 691. Downing et al., (2006) Limnology and Oceanography, 51(5). Kuusisto & Raatikainen, (1988) Terra, 102. Meybeck, (1995) in Lerman et al., Physics and chemistry of lakes. Rjanžin, (2005) Priroda, 4.
Electronic imaging of the human body
NASA Astrophysics Data System (ADS)
Vannier, Michael W.; Yates, Randall E.; Whitestone, Jennifer J.
1992-09-01
The Human Engineering Division of the Armstrong Laboratory (USAF); the Mallinckrodt Institute of Radiology; the Washington University School of Medicine; and the Lister-Hill National Center for Biomedical Communication, National Library of Medicine are sponsoring a working group on electronic imaging of the human body. Electronic imaging of the surface of the human body has been pursued and developed by a number of disciplines including radiology, forensics, surgery, engineering, medical education, and anthropometry. The applications range from reconstructive surgery to computer-aided design (CAD) of protective equipment. Although these areas appear unrelated, they have a great deal of commonality. All the organizations working in this area are faced with the challenges of collecting, reducing, and formatting the data in an efficient and standard manner; storing this data in a computerized database to make it readily accessible; and developing software applications that can visualize, manipulate, and analyze the data. This working group is being established to encourage effective use of the resources of all the various groups and disciplines involved in electronic imaging of the human body surface by providing a forum for discussing progress and challenges with these types of data.
NASA Technical Reports Server (NTRS)
Peterson, Victor L.
1959-01-01
An investigation has been conducted on a triangular wing and body combination to determine the effects on the aerodynamic characteristics resulting from deflecting portions of the wing near the tips 900 to the wing surface about streamwise hinge lines. Experimental data were obtained for Mach numbers of 0.70, 1.30, 1.70, and 2.22 and for angles of attack ranging from -5 deg to +18 deg at sideslip angles of 0 deg and 5 deg. The results showed that the aerodynamic center shift experienced by the triangular wing and body combination as the Mach number was increased from subsonic to supersonic could be reduced by about 40 percent by deflecting the outboard 4 percent of the total area of each wing panel. Deflection about the same hinge line of additional inboard surfaces consisting of 2 percent of the total area of each wing panel resulted in a further reduction of the aerodynamic center travel of 10 percent. The resulting reductions in the stability were accompanied by increases in the drag due to lift and, for the case of the configuration with all surfaces deflected, in the minimum drag. The combined effects of reduced stability and increased drag of the untrimmed configuration on the trimmed lift-drag ratios were estimated from an analysis of the cases in which the wing-body combination with or without tips deflected was assumed to be controlled by a canard. The configurations with deflected surfaces had higher trimmed lift-drag ratios than the model with undeflected surfaces at Mach numbers up to about 1.70. Deflecting either the outboard surfaces or all of the surfaces caused the directional stability to be increased by increments that were approximately constant with increasing angle of attack at each Mach number. The effective dihedral was decreased at all angles of attack and Mach numbers when the surfaces were deflected.
NASA Astrophysics Data System (ADS)
Carroll, M.; Loboda, T. V.
2017-12-01
Over the last several decades, warming in the Arctic has outpaced the already impressiveincreases in global mean temperatures. The impact of these increases in temperature has beenobserved in a multitude of ecological changes in North American tundra including changes invegetative cover, depth of active layer, and surface water extent. The low topographic relief andcontinuous permafrost create an ideal environment for the formation of small water bodies—adefinitive feature of tundra surface. In this study, water bodies in Nunavut territory in northernCanada were mapped using a long-term record of remotely sensed observations at 30 m spatialresolution from the Landsat suite of instruments. The temporal trajectories of water extent between1985 and 2015 were assessed. Over 675,000 water bodies have been identified over the 31-yearstudy period with over 168,000 showing a significant (p < 0.05) trend in surface area. Approximately55% of water bodies with a significant trend were increasing in size while the remaining 45% weredecreasing in size. The overall net trend for water bodies with a significant trend is 0.009 ha year 1per water body.
Simulation studies for surfaces and materials strength
NASA Technical Reports Server (NTRS)
Halicioglu, Timur
1992-01-01
Investigations were carried out in two major areas during the last reporting period. Energy- and structure-related properties of small gold clusters deposited on the GaAs(110) surface were investigated using a molecular dynamics procedure. Additionally, a comparative study of the many-body potentials of silicon systems was performed.
How Close Do We Live to Water? A Global Analysis of Population Distance to Freshwater Bodies
Kummu, Matti; de Moel, Hans; Ward, Philip J.; Varis, Olli
2011-01-01
Traditionally, people have inhabited places with ready access to fresh water. Today, over 50% of the global population lives in urban areas, and water can be directed via tens of kilometres of pipelines. Still, however, a large part of the world's population is directly dependent on access to natural freshwater sources. So how are inhabited places related to the location of freshwater bodies today? We present a high-resolution global analysis of how close present-day populations live to surface freshwater. We aim to increase the understanding of the relationship between inhabited places, distance to surface freshwater bodies, and climatic characteristics in different climate zones and administrative regions. Our results show that over 50% of the world's population lives closer than 3 km to a surface freshwater body, and only 10% of the population lives further than 10 km away. There are, however, remarkable differences between administrative regions and climatic zones. Populations in Australia, Asia, and Europe live closest to water. Although populations in arid zones live furthest away from freshwater bodies in absolute terms, relatively speaking they live closest to water considering the limited number of freshwater bodies in those areas. Population distributions in arid zones show statistically significant relationships with a combination of climatic factors and distance to water, whilst in other zones there is no statistically significant relationship with distance to water. Global studies on development and climate adaptation can benefit from an improved understanding of these relationships between human populations and the distance to fresh water. PMID:21687675
Fusion of radar and optical data for mapping and monitoring of water bodies
NASA Astrophysics Data System (ADS)
Jenerowicz, Agnieszka; Siok, Katarzyn
2017-10-01
Remote sensing techniques owe their great popularity to the possibility to obtain of rapid, accurate and information over large areas with optimal time, spatial and spectral resolutions. The main areas of interest for remote sensing research had always been concerned with environmental studies, especially water bodies monitoring. Many methods that are using visible and near- an infrared band of the electromagnetic spectrum had been already developed to detect surface water reservoirs. Moreover, the usage of an image obtained in visible and infrared spectrum allows quality monitoring of water bodies. Nevertheless, retrieval of water boundaries and mapping surface water reservoirs with optical sensors is still quite demanding. Therefore, the microwave data could be the perfect complement to data obtained with passive optical sensors to detect and monitor aquatic environment especially surface water bodies. This research presents the methodology to detect water bodies with open- source satellite imagery acquired with both optical and microwave sensors. The SAR Sentinel- 1 and multispectral Sentinel- 2 imagery were used to detect and monitor chosen reservoirs in Poland. In the research Level, 1 Sentinel- 2 data and Level 1 SAR images were used. SAR data were mainly used for mapping water bodies. Next, the results of water boundaries extraction with Sentinel-1 data were compared to results obtained after application of modified spectral indices for Sentinel- 2 data. The multispectral optical data can be used in the future for the evaluation of the quality of the reservoirs. Preliminary results obtained in the research had shown, that the fusion of data obtained with optical and microwave sensors allow for the complex detection of water bodies and could be used in the future quality monitoring of water reservoirs.
Hammond, L E; Cuttell, S; Nunley, P; Meyler, J
2014-01-01
This study explored whether anthropometric measures influence magnitude of skin cooling following exposure to whole body cryotherapy (WBC). Height, weight, body fat percentage, and lean mass were measured in 18 male and 14 female participants. Body surface area, body surface area to mass ratio, body mass index, fat-free mass index, and fat mass index were calculated. Thermal images were captured before and after WBC (-60°C for 30 seconds, -110°C for 2 minutes). Skin temperature was measured at the chest, arm, thigh, and calf. Mean skin temperature before and after WBC and change in mean skin temperature (ΔT sk) were calculated. ΔT sk was significantly greater in females (12.07 ± 1.55°C) than males (10.12 ± 1.86°C; t(30) = -3.09, P = .004). A significant relationship was observed between body fat percentage and ΔT sk in the combined dataset (P = .002, r = .516) and between fat-free mass index and ΔT sk in males (P = .005, r = .622). No other significant associations were found. Skin response of individuals to WBC appears to depend upon anthropometric variables and sex, with individuals with a higher adiposity cooling more than thinner individuals. Effects of sex and anthompometrics should be considered when designing WBC research or treatment protocols.
Hammond, L. E.; Cuttell, S.; Nunley, P.; Meyler, J.
2014-01-01
This study explored whether anthropometric measures influence magnitude of skin cooling following exposure to whole body cryotherapy (WBC). Height, weight, body fat percentage, and lean mass were measured in 18 male and 14 female participants. Body surface area, body surface area to mass ratio, body mass index, fat-free mass index, and fat mass index were calculated. Thermal images were captured before and after WBC (−60°C for 30 seconds, −110°C for 2 minutes). Skin temperature was measured at the chest, arm, thigh, and calf. Mean skin temperature before and after WBC and change in mean skin temperature (ΔT sk) were calculated. ΔT sk was significantly greater in females (12.07 ± 1.55°C) than males (10.12 ± 1.86°C; t(30) = −3.09, P = .004). A significant relationship was observed between body fat percentage and ΔT sk in the combined dataset (P = .002, r = .516) and between fat-free mass index and ΔT sk in males (P = .005, r = .622). No other significant associations were found. Skin response of individuals to WBC appears to depend upon anthropometric variables and sex, with individuals with a higher adiposity cooling more than thinner individuals. Effects of sex and anthompometrics should be considered when designing WBC research or treatment protocols. PMID:25061612
Effect of planform and body on supersonic aerodynamics of multibody configurations
NASA Technical Reports Server (NTRS)
Mcmillin, S. Naomi; Bauer, Steven X. S.; Howell, Dorothy T.
1992-01-01
An experimental and theoretical investigation of the effect of the wing planform and bodies on the supersonic aerodynamics of a low-fineness-ratio, multibody configuration has been conducted in the Langley Unitary Plan Wind Tunnel at Mach numbers of 1.60, 1.80, 2.00, and 2.16. Force and moment data, flow-visualization data, and surface-pressure data were obtained on eight low-fineness-ratio, twin-body configurations. These configurations varied in inboard wing planform shape, outboard wing planform shape, outboard wing planform size, and presence of the bodies. The force and moment data showed that increasing the ratio of outboard wing area to total wing area or increasing the leading-edge sweep of the inboard wing influenced the aerodynamic characteristics. The flow-visualization data showed a complex flow-field system of shocks, shock-induced separation, and body vortex systems occurring between the side bodies. This flow field was substantially affected by the inboard wing planform shape but minimally affected by the outboard wing planform shape. The flow-visualization and surface-pressure data showed that flow over the outboard wing developed as expected with changes in angle of attack and Mach number and was affected by the leading-edge sweep of the inboard wing and the presence of the bodies. Evaluation of the linear-theory prediction methods revealed their general inability to consistently predict the characteristics of these multibody configurations.
de Souza, João Batista Freire; de Arruda, Alex Martins Varela; Domingos, Hérica Girlane Tertulino; de Macedo Costa, Leonardo Lelis
2013-05-01
The aim of this study was to evaluate the regional differences in the surface temperature of Naked Neck hens that were subjected to different temperatures in a semi-arid environment. The surface temperature was measured in four body regions (face, neck, legs and feathered area) of 60 Naked Neck hens. The following environmental variables were measured at the center of the shed: the black globe temperature (T G ), air temperature (T A ), wind speed (U) and relative humidity (R H ). The T A was divided into three classes: 1 (24.0-26.0 °C), 2 (26.1-28.9 °C) and 3 (29.0-31.0 °C). An analysis of variance was performed by the least squares method and a comparison of the means by the Tukey-Kramer test. The results showed a significant effect of T A class, the body region and the interaction between these two effects on the surface temperature. There was no significant difference between the T A classes for the face and neck. The legs and feathered area showed significant differences between the T A classes. Regarding the effect of body regions within each T A class, there was a significant difference among all regions in the three T A classes. In all T A classes the neck had the highest average followed by the face and legs. The feathered area showed the lowest average of the different T A classes. In conclusion, this study showed that there are regional differences in the surface temperature of Naked Neck hens, with the legs acting as thermal windows.
Amarello, Melissa; Nowak, Erica M.; Taylor, Emily N.; Schuett, Gordon W.; Repp, Roger A.; Rosen, Philip C.; Hardy, David L.
2010-01-01
Differences in resource availability and quality along environmental gradients are important influences contributing to intraspecific variation in body size, which influences numerous life-history traits. Here, we examined variation in body size and sexual size dimorphism (SSD) in relation to temperature, seasonality, and precipitation among 10 populations located throughout Arizona of the western diamond-backed rattlesnake (Crotalus atrox). Specifically, in our analyses we addressed the following questions: (i) Are adult males larger in cooler, wetter areas? (ii) Does female body size respond differently to environmental variation? (iii) Is seasonality a better predictor of body size variation? (iv) Is SSD positively correlated with increased resources? We demonstrate that male and female C. atrox are larger in body size in cooler (i.e., lower average annual maximum, minimum, and mean temperature) and wetter areas (i.e., higher average annual precipitation, more variable precipitation, and available surface water). Although SSD in C. atrox appeared to be more pronounced in cooler, wetter areas, this relationship did not achieve statistical significance.
Five years' experience of the modified Meek technique in the management of extensive burns.
Hsieh, Chun-Sheng; Schuong, Jen-Yu; Huang, W S; Huang, Ted T
2008-05-01
The Meek technique of skin expansion is useful for covering a large open wound with a small piece of skin graft, but requires a carefully followed protocol. Over the past 5 years, a skin graft expansion technique following the Meek principle was used to treat 37 individuals who had sustained third degree burns involving more than 40% of the body surface. A scheme was devised whereby the body was divided into six areas, in order to clarify the optimal order of wound debridements and skin grafting procedures as well as the regimen of aftercare. The mean body surface involvement was 72.9% and the mean area of third degree burns was 41%. The average number of operations required was 1.84. There were four deaths among in this group of patients. The Meek technique of skin expansion and the suggested protocol are together efficient and effective in covering an open wound, particularly where there is a paucity of skin graft donor sites.
... dog or cat Rolling and playing in contaminated soil Licking its body after contact with a contaminated ... coming into contact with infected feces (poop) or soil. Clean household surfaces regularly. Clean and disinfect areas ...
30 CFR 783.25 - Cross sections, maps, and plans.
Code of Federal Regulations, 2014 CFR
2014-07-01
...) Elevations and locations of monitoring stations used to gather data on water quality and quantity, fish and... aquifers on cross-sections and contour maps; (7) Location of surface water bodies such as streams, lakes... permit area; (9) Location and dimensions of existing areas of spoil, waste, coal development waste, and...
30 CFR 783.25 - Cross sections, maps, and plans.
Code of Federal Regulations, 2011 CFR
2011-07-01
...) Elevations and locations of monitoring stations used to gather data on water quality and quantity, fish and... aquifers on cross-sections and contour maps; (7) Location of surface water bodies such as streams, lakes... permit area; (9) Location and dimensions of existing areas of spoil, waste, coal development waste, and...
30 CFR 783.25 - Cross sections, maps, and plans.
Code of Federal Regulations, 2010 CFR
2010-07-01
...) Elevations and locations of monitoring stations used to gather data on water quality and quantity, fish and... aquifers on cross-sections and contour maps; (7) Location of surface water bodies such as streams, lakes... permit area; (9) Location and dimensions of existing areas of spoil, waste, coal development waste, and...
30 CFR 783.25 - Cross sections, maps, and plans.
Code of Federal Regulations, 2012 CFR
2012-07-01
...) Elevations and locations of monitoring stations used to gather data on water quality and quantity, fish and... aquifers on cross-sections and contour maps; (7) Location of surface water bodies such as streams, lakes... permit area; (9) Location and dimensions of existing areas of spoil, waste, coal development waste, and...
30 CFR 783.25 - Cross sections, maps, and plans.
Code of Federal Regulations, 2013 CFR
2013-07-01
...) Elevations and locations of monitoring stations used to gather data on water quality and quantity, fish and... aquifers on cross-sections and contour maps; (7) Location of surface water bodies such as streams, lakes... permit area; (9) Location and dimensions of existing areas of spoil, waste, coal development waste, and...
10 CFR 63.302 - Definitions for Subpart L.
Code of Federal Regulations, 2010 CFR
2010-01-01
...; and (5) The lithosphere. Aquifer means a water-bearing underground geological formation, group of formations, or part of a formation (excluding perched water bodies) that can yield a significant amount of ground water to a well or spring. Controlled area means: (1) The surface area, identified by passive...
10 CFR 63.302 - Definitions for Subpart L.
Code of Federal Regulations, 2011 CFR
2011-01-01
...; and (5) The lithosphere. Aquifer means a water-bearing underground geological formation, group of formations, or part of a formation (excluding perched water bodies) that can yield a significant amount of ground water to a well or spring. Controlled area means: (1) The surface area, identified by passive...
Johnston, G R; Feeney, D A; Osborne, C A; Johnston, S D; Smith, F O; Jessen, C R
1985-03-01
Positive-contrast retrograde urethrocystograms were obtained serially on 12 male dogs weighing 11.4 to 23.2 kg before, during, and after the injection of contrast medium until the urinary bladder neck and prostatic and membranous portions of the urethra remained open and distended as viewed by fluoroscopy. Correlations of intravesical volumes and pressures required to achieve maximum distension of the midprostatic portion of the urethra with body weight and surface area were not significant. Because of the variability in intravesical volumes and pressures encountered at maximum distension of the prostatic portion of the urethra, a dose of contrast material expressed relative to body weight or surface area could not be determined for consistently providing maximum distension of the prostatic portion of the urethra.
Calorimetry Minisensor for the Localised Measurement of Surface Heat Dissipated from the Human Body.
Socorro, Fabiola; Rodríguez de Rivera, Pedro Jesús; Rodríguez de Rivera, Manuel
2016-11-06
We have developed a calorimetry sensor that can perform a local measurement of the surface heat dissipated from the human body. The operating principle is based on the law of conductive heat transfer: heat dissipated by the human body passes across a thermopile located between the individual and a thermostat. Body heat power is calculated from the signals measured by the thermopile and the amount of power dissipated across the thermostat in order to maintain a constant temperature. The first prototype we built had a detection area measuring 6 × 6 cm², while the second prototype, which is described herein, had a 2 × 2 cm² detection area. This new design offers three advantages over the initial one: (1) greater resolution and three times greater thermal sensitivity; (2) a twice as fast response; and (3) it can take measurements from smaller areas of the body. The sensor has a 5 mW resolution, but the uncertainty is greater, up to 15 mW, due to the measurement and calculation procedure. The order of magnitude of measurements made in healthy subjects ranged from 60 to 300 mW at a thermostat temperature of 28 °C and an ambient room temperature of 21 °C. The values measured by the sensor depend on the ambient temperature and the thermostat's temperature, while the power dissipated depends on the individual's metabolism and any physical and/or emotional activity.
Calorimetry Minisensor for the Localised Measurement of Surface Heat Dissipated from the Human Body
Socorro, Fabiola; Rodríguez de Rivera, Pedro Jesús; Rodríguez de Rivera, Manuel
2016-01-01
We have developed a calorimetry sensor that can perform a local measurement of the surface heat dissipated from the human body. The operating principle is based on the law of conductive heat transfer: heat dissipated by the human body passes across a thermopile located between the individual and a thermostat. Body heat power is calculated from the signals measured by the thermopile and the amount of power dissipated across the thermostat in order to maintain a constant temperature. The first prototype we built had a detection area measuring 6 × 6 cm2, while the second prototype, which is described herein, had a 2 × 2 cm2 detection area. This new design offers three advantages over the initial one: (1) greater resolution and three times greater thermal sensitivity; (2) a twice as fast response; and (3) it can take measurements from smaller areas of the body. The sensor has a 5 mW resolution, but the uncertainty is greater, up to 15 mW, due to the measurement and calculation procedure. The order of magnitude of measurements made in healthy subjects ranged from 60 to 300 mW at a thermostat temperature of 28 °C and an ambient room temperature of 21 °C. The values measured by the sensor depend on the ambient temperature and the thermostat’s temperature, while the power dissipated depends on the individual’s metabolism and any physical and/or emotional activity. PMID:27827977
2012-05-10
Basin, China , the crust and subduction zone beneath western Colombia, and a thermally active region within Utah in the central United States...Burlacu, R., Rowe, C., and Y. Yang (2009). Joint geophysical imaging of the geothermal sites in the Utah area using seismic body waves, surface waves and
Abdel-Sabour, M F; Rabie, F H; Mostafa, T; Hassan, S A
2001-10-01
The studied area (Shoubra El-Khima, Bahteem and Mostorod) lies in the industrial area north of Greater Cairo. The area suffers from several environmental problems such as sewage and disposal of pollutants from the surrounding factories into the surface water pathways in the area. Water samples were collected seasonally from different waterways found in the area, domestic and or industrial liquid wastes from 12 discharge tubes of different factories (as a point source of pollution). Chemical characteristics of different water samples and its heavy metals content were determined using ion coupled plasma technique (ICP). Results indicate that industrial and domestic wastewater samples contain several toxic levels of tested heavy metals (Cd, Co, Pb and Ni) which have a serious impact on surface waterways in the area. Shebin El-Qanater collector drain samples exhibited the highest levels of Cd, Co, Pb and Ni compared to other tested water bodies. Mostorod collector drain samples showed the highest levels of Zn and Cu. Industrial effluent samples collected from Cairo Company for Fabric industry had the highest amounts of total Zn Cu, Cd, Co and Pb, while Delta steel company discharges the highest amounts of total Fe and Mn. Al-Ahleya Plastic Company discharges the highest amounts of total-Ni. Generally, it is necessary to impose the environmental laws and its regulation regarding the industrial wastewater treatments and disposals to minimize the risk of the adverse effects of these pollutants.
[Effect of glutamine on small intestinal repair in weanling rats after chronic diarrhea].
Huang, Zu-xiong; Ye, Li-yan; Zheng, Zhi-yong; Chen, Xin-min; Ren, Rong-na; Tong, Guo-yuan
2005-05-01
To investigate the nutrient effect of glutamine on small intestinal repair in weanling rats after chronic diarrhea. Forty 21-day-old wistar rats were randomly divided into five groups (8 in each). Animal model of chronic diarrhea was induced by a lactose enriched diet in the weanling Wistar rat, normal control group was fed with a standard semipurified diet, and after 14 days the rats in both groups were killed to test the establishment of the model. After the establishment of the model, the other groups were fed with the standard semipurified diet to recover for 7 days, and were randomly divided into three groups: non-intervention group, glutamine (Gln)-intervention group and control group. Glutamine concentrations in blood was detected by high-performance liquid chromatography (HPLC). Morphological changes including villus height and villus surface area of the jejunum were measured under a light microscope and electron microscope, expression of proliferating cell nuclear antigen (PCNA) as an index of cell proliferation was observed using immunohistochemical staining and image analysis. The diarrhea rate in model group was 100 percent, average diarrhea index was 1.16 +/- 0.06, but both diarrhea rate and average diarrhea index in control group were 0 (P < 0.01), which affirmed establishment of the model. There was significant decrease of body weight, plasma Gln concentration, villus height, villus surface area and expression of PCNA in non-intervened group compared with the control group (P < 0.01). There was still significant decrease of body weight, villus height and villus surface area in Gln-intervened group compared with control group (P < 0.01), but plasma Gln concentration and expression of PCNA in Gln-intervened group had recovered to normal (P > 0.05). And compared with non-intervened group, except for body weight (P > 0.05), plasma glutamine, villus height, villus surface area and expression of PCNA were all significantly increased in Gln-intervened group. Chronic diarrhea can induce malnutrition and reduce the villus height, villus surface area, expression of PCNA and plasm glutamine concentration. Oral glutamine could improve the proliferation of crypt cell and promote repair of intestinal mucosa after chronic diarrhea.
Silva, Eduardo Nascimento; Ribas-Filho, Jurandir Marcondes; Czeczko, Nicolau Gregori; Pachnicki, Jan Pawel Andrade; Netto, Mário Rodrigues Montemor; Lipinski, Leandro Cavalcante; Noronha, Lucia de; Colman, Joelmir; Zeni, João Otavio; Carvalho, Caroline Aragão de
2016-12-01
To assess the capsules formed by silicone implants coated with polyurethane foam and with a textured surface. Sixty-four Wistar albinus rats were divided into two groups of 32 each using polyurethane foam and textured surface. The capsules around the implants were analyzed for 30, 50, 70 and 90 days. Were analyzed the following parameters: foreign body reaction, granulation tissue, presence of myofibroblasts, neoangiogenesis, presence of synovial metaplasia, capsular thickness, total area and collagen percentage of type I and III, in capsules formed around silicone implants in both groups. The foreign body reaction was only present in the four polyurethane subgroups. The formation of granulation tissue and the presence of myofibroblasts were higher in the four polyurethane subgroups. Regarding to neoangiogenesis and synovial metaplasia, there was no statistical difference between the groups. Polyurethane group presented (all subgroups) a greater capsule thickness, a smaller total area and collagen percentage of type I and a higher percentage area of type III, with statistical difference. The use of polyurethane-coated implants should be stimulated by the long-term results in a more stable capsule and a lower incidence of capsular contracture, despite developing a more intense and delayed inflammatory reaction in relation to implants with textured surface.
43 CFR 3931.41 - Content of exploration plan.
Code of Federal Regulations, 2012 CFR
2012-10-01
... drilled or altered; (6) Earth-disposal or debris-disposal areas; (7) Existing bodies of surface water; and... topography; (3) Geologic, surface water, and other physical features; (4) Vegetative cover; (5) Endangered or threatened species listed under the Endangered Species Act of 1973 (16 U.S.C. 1531 et seq.) that may be...
43 CFR 3931.41 - Content of exploration plan.
Code of Federal Regulations, 2011 CFR
2011-10-01
... drilled or altered; (6) Earth-disposal or debris-disposal areas; (7) Existing bodies of surface water; and... topography; (3) Geologic, surface water, and other physical features; (4) Vegetative cover; (5) Endangered or threatened species listed under the Endangered Species Act of 1973 (16 U.S.C. 1531 et seq.) that may be...
43 CFR 3931.41 - Content of exploration plan.
Code of Federal Regulations, 2013 CFR
2013-10-01
... drilled or altered; (6) Earth-disposal or debris-disposal areas; (7) Existing bodies of surface water; and... topography; (3) Geologic, surface water, and other physical features; (4) Vegetative cover; (5) Endangered or threatened species listed under the Endangered Species Act of 1973 (16 U.S.C. 1531 et seq.) that may be...
43 CFR 3931.41 - Content of exploration plan.
Code of Federal Regulations, 2014 CFR
2014-10-01
... drilled or altered; (6) Earth-disposal or debris-disposal areas; (7) Existing bodies of surface water; and... topography; (3) Geologic, surface water, and other physical features; (4) Vegetative cover; (5) Endangered or threatened species listed under the Endangered Species Act of 1973 (16 U.S.C. 1531 et seq.) that may be...
Using the Geminids to Characterize the Surface Response of an Airless Body to Meteoroid Bombardment
NASA Astrophysics Data System (ADS)
Szalay, J.; Pokorny, P.; Jenniskens, P. M. M.; Horanyi, M.
2017-12-01
All airless bodies in the solar system are exposed to the continual bombardment by interplanetary meteoroids. These impacts can eject orders of magnitude more mass than the primary impactors, sustaining bound and/or unbound ejecta clouds that vary both spatially and temporally from changes in impactor fluxes. The dust environment in the vicinity of an airless body provides both a scientific resource and a hazard for exploration. Characterizing the spatial and temporal variability of the dust environment of airless planetary bodies provides a novel way to understand their meteoroid environment by effectively using these objects as large surface area meteoroid detectors. Additionally, were a dust detector with chemical sensing capability to be flown near such a body, it would be able to directly measure the composition of the body without requiring the mission design complexity involved in landing and sampling surface material. Paramount to understanding the current and future impact ejecta measurements is a sufficient understanding of the impact ejecta processes at the surface. In this presentation, we focus on data taken by the Lunar Dust Experiment (LDEX), an impact ionization dust detector onboard the Lunar Atmosphere and Dust Environment Explorer (LADEE) mission, designed to measure impact ejecta around the Moon. We use the Geminids meteoroid shower as a well constrained input function, and via comparison to existing ground-based measurements of this shower, to "calibrate" the response of the lunar surface to meteoroid bombardment. Understanding the response of the lunar surface to meteoroid bombardment can by extension allow us to better understand the ejecta response at other regolith airless bodies in the solar system. Future missions equipped with dust detectors sent to the Moon, large Near Earth Asteroids, the Martian moons Phobos and Deimos, or many other airless bodies in the solar system would greatly improve our knowledge of their local meteoroid environments, characterize their chemical compositions, and improve the safety for future manned and unmanned missions to these bodies.
43 CFR 3482.1 - Exploration and resource recovery and protection plans.
Code of Federal Regulations, 2012 CFR
2012-10-01
...; earth- or debris-disposal areas; existing bodies of surface water; and topographic and drainage features... to, mining sequence, production rate, estimated recovery factors, stripping ratios, highwall limits...
Socorro, Fabiola; Rodríguez de Rivera, Pedro Jesús; Rodríguez de Rivera, Miriam; Rodríguez de Rivera, Manuel
2017-11-28
The accuracy of the direct and local measurements of the heat power dissipated by the surface of the human body, using a calorimetry minisensor, is directly related to the calibration rigor of the sensor and the correct interpretation of the experimental results. For this, it is necessary to know the characteristics of the body's local heat dissipation. When the sensor is placed on the surface of the human body, the body reacts until a steady state is reached. We propose a mathematical model that represents the rate of heat flow at a given location on the surface of a human body by the sum of a series of exponentials: W ( t ) = A ₀ + ∑A i exp( -t / τ i ). In this way, transient and steady states of heat dissipation can be interpreted. This hypothesis has been tested by simulating the operation of the sensor. At the steady state, the power detected in the measurement area (4 cm²) varies depending on the sensor's thermostat temperature, as well as the physical state of the subject. For instance, for a thermostat temperature of 24 °C, this power can vary between 100-250 mW in a healthy adult. In the transient state, two exponentials are sufficient to represent this dissipation, with 3 and 70 s being the mean values of its time constants.
REDUCTION OF THE MOMENTUM OF FALLING BODIES
Kendall, J.W.; Morrison, I.H.
1954-09-21
A means for catching free falling bodies that may be damaged upon impact is given. Several layers of floating gas-filled rubber balls are contained within a partially compartmented tank of liquid. The compartment extends from beneath the surface of the liquid to that height necessary to contain the desired number of layers of the balls. The balls and the liquid itself break the force of the fall by absorbing the kinetic energy of falling body. The body may then be retrieved from the floor of the tank by a rake that extends from outside of the tank through the free surface area and underneath the compartment wall. This arrangement is particularly useful in collecting irradiated atomic fuel rods that are discharged from a reactor at considerable height without damaging the thin aluminum jacket of the rods.
Kotwinski, Paul; Smith, Gillian; Cooper, Jackie; Sanders, Julie; Ma, Louise; Teis, Albert; Kotwinski, David; Mythen, Michael; Pennell, Dudley J; Jones, Alison; Montgomery, Hugh
2016-01-01
Anthracyclines are highly effective chemotherapeutic agents which may cause long-term cardiac damage (chronic anthracycline cardiotoxicity) and heart failure. The pathogenesis of anthracycline cardiotoxicity remains incompletely understood and individual susceptibility difficult to predict. We sought clinical features which might contribute to improved risk assessment. Subjects were women with early breast cancer, free of pre-existing cardiac disease. Left ventricular ejection fraction was measured using cardiovascular magnetic resonance before and >12 months after anthracycline-based chemotherapy (>3 months post-Trastuzumab). Variables associated with subclinical cardiotoxicity (defined as a fall in left ventricular ejection fraction of ≥5%) were identified by logistic regression. One hundred and sixty-five women (mean age 48.3 years at enrollment) completed the study 21.7 months [IQR 18.0-26.8] after starting chemotherapy. All received anthracyclines (98.8% epirubicin, cumulative dose 400 [300-450] mg/m2); 18% Trastuzumab. Baseline blood pressure was elevated (≥140/90mmHg, mean 147.3/86.1mmHg) in 18 subjects. Thirty-four subjects (20.7%) were identified with subclinical cardiotoxicity, independent predictors of which were the number of anthracycline cycles (odds ratio, OR 1.64 [1.17-2.30] per cycle), blood pressure ≥140/90mmHg (OR 5.36 [1.73-17.61]), body surface area (OR 2.08 [1.36-3.20] per standard deviation (0.16m2) increase), and Trastuzumab therapy (OR 3.35 [1.18-9.51]). The resultant predictive-model had an area under the receiver operating characteristics curve of 0.78 [0.70-0.86]. We found subclinical cardiotoxicity to be common even within this low risk cohort. Risk of cardiotoxicity was associated with modestly elevated baseline blood pressure-indicating that close attention should be paid to blood pressure in patients considered for anthracycline based chemotherapy. The association with higher body surface area suggests that indexing of anthracycline doses to surface area may not be appropriate for all, and points to the need for additional research in this area.
Hydrographic Surveys for Six Water Bodies in Eastern Nebraska, 2005-07
Johnson, Michaela R.; Andersen, Michael J.; Sebree, Sonja K.
2008-01-01
The U.S. Geological Survey, in cooperation with the Nebraska Department of Environmental Quality, completed hydrographic surveys for six water bodies in eastern Nebraska: Maskenthine Wetland, Olive Creek Lake, Standing Bear Lake, Wagon Train Lake and Wetland, Wildwood Lake, and Yankee Hill Lake and sediment basin. The bathymetric data were collected using a boat-mounted survey-grade fathometer that operated at 200 kHz, and a differentially corrected Global Positioning System with antenna mounted directly above the echo-sounder transducer. Shallow-water and terrestrial areas were surveyed using a Real-Time Kinematic Global Positioning System. The bathymetric, shallow-water, and terrestrial data were processed in a geographic information system to generate a triangulated irregular network representation of the bottom of the water body. Bathymetric contours were interpolated from the triangulated irregular network data using a 2-foot contour interval. Bathymetric contours at the conservation pool elevation for Maskenthine Wetland, Yankee Hill Lake, and Yankee Hill sediment pond also were interpolated in addition to the 2-foot contours. The surface area and storage capacity of each lake or wetland were calculated for 1-foot intervals of water surface elevation and are tabulated in the Appendix for all water bodies.
Hu, Jian; Neoh, Kok-Boon; Appel, Arthur G; Lee, Chow-Yang
2012-02-01
The foraging patterns of termites are strongly related to physiological limits in overcoming desiccation stress. In this study, we examined moisture preferences and physiological characteristics of Macrotermes carbonarius (Hagen) and M. gilvus (Hagen) as both exhibit conspicuous patterns of foraging activity. Despite both species showing no significant differences in calculated cuticular permeability, and percentage of total body water, they differed greatly in rate of water loss and surface area to volume ratio. For example, M. carbonarius which had a lower surface area to volume ratio (29.26-53.66) showed lower rate of water loss and percentage of total body water loss. This also resulted in higher LT(50) when exposed to extreme conditions (≈2% RH). However, contrasting observations were made in M. gilvus that has smaller size with higher surface area to volume ratio of 40.28-69.75. It is likely that the standard equation for calculating insect surface areas is inadequate for these termite species. The trend was further supported by the result of a moisture preference bioassay that indicated M. carbonarius had a broader range of moisture preference (between 5% and 20%) than M. gilvus which had a relatively narrow moisture preference (only 20%). These results explain why M. carbonarius can tolerate desiccation stress for a longer period foraging above-ground in the open air; while M. gilvus only forages below ground or concealed within foraging mud tubes. Copyright © 2011 Elsevier Inc. All rights reserved.
Estimation of standard liver volume in Chinese adult living donors.
Fu-Gui, L; Lu-Nan, Y; Bo, L; Yong, Z; Tian-Fu, W; Ming-Qing, X; Wen-Tao, W; Zhe-Yu, C
2009-12-01
To determine a formula predicting the standard liver volume based on body surface area (BSA) or body weight in Chinese adults. A total of 115 consecutive right-lobe living donors not including the middle hepatic vein underwent right hemi-hepatectomy. No organs were used from prisoners, and no subjects were prisoners. Donor anthropometric data including age, gender, body weight, and body height were recorded prospectively. The weights and volumes of the right lobe liver grafts were measured at the back table. Liver weights and volumes were calculated from the right lobe graft weight and volume obtained at the back table, divided by the proportion of the right lobe on computed tomography. By simple linear regression analysis and stepwise multiple linear regression analysis, we correlated calculated liver volume and body height, body weight, or body surface area. The subjects had a mean age of 35.97 +/- 9.6 years, and a female-to-male ratio of 60:55. The mean volume of the right lobe was 727.47 +/- 136.17 mL, occupying 55.59% +/- 6.70% of the whole liver by computed tomography. The volume of the right lobe was 581.73 +/- 96.137 mL, and the estimated liver volume was 1053.08 +/- 167.56 mL. Females of the same body weight showed a slightly lower liver weight. By simple linear regression analysis and stepwise multiple linear regression analysis, a formula was derived based on body weight. All formulae except the Hong Kong formula overestimated liver volume compared to this formula. The formula of standard liver volume, SLV (mL) = 11.508 x body weight (kg) + 334.024, may be applied to estimate liver volumes in Chinese adults.
Clinical characteristics of patients with facial psoriasis in Malaysia.
Syed Nong Chek, Sharifah Rosniza; Robinson, Suganthy; Mohd Affandi, Azura; Baharum, Nurakmal
2016-10-01
Psoriasis involving the face is visible and can cause considerable emotional distress to patients. Its presence may also confer a poorer prognosis for the patient. This study sought to evaluate the characteristics of facial psoriasis in Malaysia. A cross-sectional study conducted using data from the Malaysian Psoriasis Registry from 2007 to 2011. Specific risk factors, i.e., age, age of onset, gender, duration of disease, obesity group, body surface area, Dermatology Life Quality Index (DLQI), family history of psoriasis, nail involvement, psoriatic arthritis, phototherapy, systemic therapy, clinic visit, days of work/school, and hospital admission due to psoriasis in the last 6 months were analyzed. A total of 48.4% of patients had facial psoriasis. Variables significantly associated with facial psoriasis are younger age, younger age of onset of psoriasis of ≤ 40 years, male, severity of psoriasis involving >10% of the body surface area, higher DLQI of >10, nail involvement, and history of hospitalization due to psoriasis. This study found that facial psoriasis is not as rare as previously thought. Ambient ultraviolet light, sebum, and contact with chemicals from facial products may reduce the severity of facial psoriasis, but these factors do not reduce the prevalence of facial psoriasis. The association with younger age, younger age of onset, higher percentage of body surface area involvement, higher DLQI of > 10, nail involvement, and hospitalization due to psoriasis support the notion that facial psoriasis is a marker of severe disease. © 2016 The International Society of Dermatology.
Structured light: theory and practice and practice and practice...
NASA Astrophysics Data System (ADS)
Keizer, Richard L.; Jun, Heesung; Dunn, Stanley M.
1991-04-01
We have developed a structured light system for noncontact 3-D measurement of human body surface areas and volumes. We illustrate the image processing steps and algorithms used to recover range data from a single camera image, reconstruct a complete surface from one or more sets of range data, and measure areas and volumes. The development of a working system required the solution to a number of practical problems in image processing and grid labeling (the stereo correspondence problem for structured light). In many instances we found that the standard cookbook techniques for image processing failed. This was due in part to the domain (human body), the restrictive assumptions of the models underlying the cookbook techniques, and the inability to consistently predict the outcome of the image processing operations. In this paper, we will discuss some of our successes and failures in two key steps in acquiring range data using structured light: First, the problem of detecting intersections in the structured light grid, and secondly, the problem of establishing correspondence between projected and detected intersections. We will outline the problems and solutions we have arrived at after several years of trial and error. We can now measure range data with an r.m.s. relative error of 0.3% and measure areas on the human body surface within 3% and volumes within 10%. We have found that the solution to building a working vision system requires the right combination of theory and experimental verification.
Three-dimensional ultrastructure of the surface of the tongue of the rat snake, Elaphe climacophora.
Iwasaki, S; Yoshizawa, H; Kawahara, I
1996-05-01
Many studies have been performed to clarify the relationship between behavioral performance of the tongue and Jacobson's organ. The purpose of the present study was to examine the ultrastructural features of the surface of the tongue of the rat snake, Elaphe climacophora, and to delineate the functional relationship between the tongue and Jacobson's organ from a morphological perspective. The three-dimensional ultrastructure of the surface of the tongue of the rat snake Elaphe climacophora was investigated by scanning electron microscopy. Most of the surface of the bifurcated apex of the tongue was relatively smooth. Dome-shaped, hemispherical bulges or microfacets were compactly arranged on the epithelial cell surface over this entire region. Intercellular borders were clearly recognizable as striations. These features were almost the same as those of the dorsal surface of the transitional area between the bifurcated lingual apex and the anterior part of the lingual body. In the posterior half of the lingual body, no microfacets were seen at all. Both microridges and microvilli were compactly distributed on cell surfaces. No evidence was obtained from our ultrastructural analysis for an important role of the lingual apex in the vomeronasal system. By contrast, the epithelial surface of the body of the tongue appeared suitable for retaining stimulating compounds.
Magnetic resonance elastography to observe deep areas: comparison of external vibration systems.
Suga, Mikio; Obata, Takayuki; Hirano, Masaya; Tanaka, Takashi; Ikehira, Hiroo
2007-01-01
MRE methods deform the sample using an external vibration system. We have been using a transverse driver, which generates shear waves at the object surface. One of the problems is that shear waves rapidly attenuate at the surface of tissue and do not propagate into the body. In this study, we compared the shear waves generated by transverse and longitudinal drivers. The longitudinal driver was found to induce shear waves deep inside a porcine liver phantom. These results suggest that the longitudinal driver will allow measurement of the shear modulus deep inside the body.
Poh, Kian-Keong; Chan, Mark Yan-Yee; Yang, Hong; Yong, Quek-Wei; Chan, Yiong-Huak; Ling, Lieng H
2008-05-01
Intact left atrial booster pump function helps maintain cardiac compensation in patients with aortic valve stenosis (AS). Because late diastolic mitral annular (A') velocity reflects left atrial systolic function, we hypothesized that A' velocity correlates with plasma N-terminal pro-B-type natriuretic peptide (NT-proBNP) level and clinical outcome in AS. We prospectively enrolled 53 consecutive patients (median age 74 years) with variable degrees of AS, in sinus rhythm, and left ventricular ejection fraction greater than 50%. Indices of valvular stenosis, left ventricular diastolic dysfunction, and mitral annular motion were correlated with plasma NT-proBNP and a composite clinical end point comprising cardiac death and symptom-driven aortic valve replacement. Tissue Doppler echocardiographic parameters, including early diastolic (E') velocity and A' velocity and ratio of early diastolic transmitral (E) to E' velocity (E/E') at the annular septum correlated better with NT-proBNP levels than body surface area-indexed aortic valve area. Eighteen patients had the composite end point, which was univariately predicted by body surface area-indexed aortic valve area, NT-proBNP, and all tissue Doppler echocardiographic indices. This outcome was most strongly predicted by the combination of septal A' velocity and E/E' ratio in bivariate Cox modeling. Septal annular A' velocity less than 9.6 cm/s was associated with significantly reduced event-free survival (Kaplan Meier log rank = 27.3, P < .0001) and predicted the end point with a sensitivity, specificity, and accuracy of 94%, 80%, and 85%, respectively. In patients with AS and normal ejection fraction, annular tissue Doppler echocardiographic indices may better reflect the physiologic consequences of afterload burden on the left ventricle than body surface area-indexed aortic valve area. Lower A' velocity is a predictor of cardiac death and need for valve surgery, suggesting an important role for compensatory left atrial booster pump function.
Hosoya, Y; Kubota, I; Shibata, T; Yamaki, M; Ikeda, K; Tomoike, H
1992-06-01
There were few studies on the relation between the body surface distribution of high- and low-frequency components within the QRS complex and ventricular tachycardia (VT). Eighty-seven signal-averaged ECGs were obtained from 30 normal subjects (N group) and 30 patients with previous anterior myocardial infarction (MI) with VT (MI-VT[+] group, n = 10) or without VT (MI-VT[-] group, n = 20). The onset and offset of the QRS complex were determined from 87-lead root mean square values computed from the averaged (but not filtered) ECG waveforms. Fast Fourier transform analysis was performed on signal-averaged ECG. The resulting Fourier coefficients were attenuated by use of the transfer function, and then inverse transform was done with five frequency ranges (0-25, 25-40, 40-80, 80-150, and 150-250 Hz). From the QRS onset to the QRS offset, the time integration of the absolute value of reconstructed waveforms was calculated for each of the five frequency ranges. The body surface distributions of these areas were expressed as QRS area maps. The maximal values of QRS area maps were compared among the three groups. In the frequency ranges of 0-25 and 150-250 Hz, there were no significant differences in the maximal values among these three groups. Both MI groups had significantly smaller maximal values of QRS area maps in the frequency ranges of 25-40 and 40-80 Hz compared with the N group. The MI-VT(+) group had significantly smaller maximal values in the frequency ranges of 40-80 and 80-150 Hz than the MI-VT(-) group. These three groups were clearly differentiated by the maximal values of the 40-80-Hz QRS area map. It was suggested that the maximal value of the 40-80-Hz QRS area map was a new marker for VT after anterior MI.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parkhurst, James M.; Price, Gareth J., E-mail: gareth.price@christie.nhs.uk; Faculty of Medical and Human Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Manchester
2013-12-01
Purpose: We present the results of a clinical feasibility study, performed in 10 healthy volunteers undergoing a simulated treatment over 3 sessions, to investigate the use of a wide-field visual feedback technique intended to help patients control their pose while reducing motion during radiation therapy treatment. Methods and Materials: An optical surface sensor is used to capture wide-area measurements of a subject's body surface with visualizations of these data displayed back to them in real time. In this study we hypothesize that this active feedback mechanism will enable patients to control their motion and help them maintain their setup posemore » and position. A capability hierarchy of 3 different level-of-detail abstractions of the measured surface data is systematically compared. Results: Use of the device enabled volunteers to increase their conformance to a reference surface, as measured by decreased variability across their body surfaces. The use of visual feedback also enabled volunteers to reduce their respiratory motion amplitude to 1.7 ± 0.6 mm compared with 2.7 ± 1.4 mm without visual feedback. Conclusions: The use of live feedback of their optically measured body surfaces enabled a set of volunteers to better manage their pose and motion when compared with free breathing. The method is suitable to be taken forward to patient studies.« less
NASA Astrophysics Data System (ADS)
Albano, Raffaele; Sole, Aurelia; Mirauda, Domenica; Adamowski, Jan
2016-10-01
Large debris, including vehicles parked along floodplains, can cause severe damage and significant loss of life during urban area flash-floods. In this study, the authors validated and applied the Smoothed Particle Hydrodynamics (SPH) model, developed in Amicarelli et al. (2015), which reproduces in 3D the dynamics of rigid bodies driven by free surface flows, to the design of flood mitigation measures. To validate the model, the authors compared the model's predictions to the results of an experimental setup, involving a dam breach that strikes two fixed obstacles and three transportable floating bodies. Given the accuracy of the results, in terms of water depth over time and the time history of the bodies' movements, the SPH model explored in this study was used to analyse the mitigation efficiency of a proposed structural intervention - the use of small barriers (groynes) to prevent the transport of floating bodies. Different groynes configurations were examined to identify the most appropriate design and layout for urban area flash-flood damage mitigation. The authors found that groynes positioned upstream and downstream of each floating body can be effective as a risk mitigation measure for damage resulting from their movement.
Identifying environmental features for land management decisions
NASA Technical Reports Server (NTRS)
1983-01-01
Pairs of HCMM day-night thermal infrared (IR) data were selected to examine patterns of surface temperature and thermal inertia (TI) of peninsular Florida. GOES and NOAA-6 thermal IR, as well as National Climatic Center temperatures and rainfall, were also used. The HCMM apparent thermal inertia (ATI) images closely correspond to the General Soil Map of Florida, based on soil drainage classes. Areas with low ATI overlay well-drained soils, such as deep sands and drained organic soils. Areas with high ATI overlay areas with wetlands and bodies of water. The HCMM ATI images also correspond well with GOES-detected winter nocturnal cold-prone areas. Use of HCMM data with Carlson's energy balance model shows both high moisture availability (MA) and high thermal inertia (TI) of wetland-type surfaces and low MA and low TI of upland, well-drained soils. Since soil areas with low TI develop higher temperatures during the day, then antecedent patterns of highest maximum daytime surface temperature can also be used to predict nocturnal cold-prone areas in Florida.
Relative importance of different surface regions for thermal comfort in humans.
Nakamura, Mayumi; Yoda, Tamae; Crawshaw, Larry I; Kasuga, Momoko; Uchida, Yuki; Tokizawa, Ken; Nagashima, Kei; Kanosue, Kazuyuki
2013-01-01
In a previous study, we investigated the contribution of the surface of the face, chest, abdomen, and thigh to thermal comfort by applying local temperature stimulation during whole-body exposure to mild heat or cold. In hot conditions, humans prefer a cool face, and in cold they prefer a warm abdomen. In this study, we extended investigation of regional differences in thermal comfort to the neck, hand, soles, abdomen (Experiment 1), the upper and lower back, upper arm, and abdomen (Experiment 2). The methodology was similar to that used in the previous study. To compare the results of each experiment, we utilized the abdomen as the reference area in these experiments. Thermal comfort feelings were not particularly strong for the limbs and extremities, in spite of the fact that changes in skin temperature induced by local temperature stimulation of the limbs and extremities were always larger than changes that were induced in the more proximal body parts. For the trunk areas, a significant difference in thermal comfort was not observed among the abdomen, and upper and lower back. An exception involved local cooling during whole-body mild cold exposure, wherein the most dominant preference was for a warmer temperature of the abdomen. As for the neck and abdomen, clear differences were observed during local cooling, while no significant difference was observed during local warming. We combined the results for the current and the previous study, and characterized regional differences in thermal comfort and thermal preference for the whole-body surface.
Passive control of a falling sphere by elliptic-shaped appendages
NASA Astrophysics Data System (ADS)
Lācis, Uǧis; Olivieri, Stefano; Mazzino, Andrea; Bagheri, Shervin
2017-03-01
The majority of investigations characterizing the motion of single or multiple particles in fluid flows consider canonical body shapes, such as spheres, cylinders, discs, etc. However, protrusions on bodies—either surface imperfections or appendages that serve a function—are ubiquitous in both nature and applications. In this work, we characterize how the dynamics of a sphere with an axis-symmetric wake is modified in the presence of thin three-dimensional elliptic-shaped protrusions. By investigating a wide range of three-dimensional appendages with different aspect ratios and lengths, we clearly show that the sphere with an appendage may robustly undergo an inverted-pendulum-like (IPL) instability. This means that the position of the appendage placed behind the sphere and aligned with the free-stream direction is unstable, similar to how an inverted pendulum is unstable under gravity. Due to this instability, nontrivial forces are generated on the body, leading to turn and drift, if the body is free to fall under gravity. Moreover, we identify the aspect ratio and length of the appendage that induces the largest side force on the sphere, and therefore also the largest drift for a freely falling body. Finally, we explain the physical mechanisms behind these observations in the context of the IPL instability, i.e., the balance between surface area of the appendage exposed to reversed flow in the wake and the surface area of the appendage exposed to fast free-stream flow.
Surface Area of Patellar Facets: Inferential Statistics in the Iraqi Population
Al-Zamili, Zaid; Omar, Rawan
2017-01-01
Background. The patella is the largest sesamoid bone in the body; its three-dimensional complexity necessitates biomechanical perfection. Numerous pathologies occur at the patellofemoral unit which may end in degenerative changes. This study aims to test the presence of statistical correlation between the surface areas of patellar facets and other patellar morphometric parameters. Materials and Methods. Forty dry human patellae were studied. The morphometry of each patella was measured using a digital Vernier Caliper, electronic balance, and image analyses software known as ImageJ. The patellar facetal surface area was correlated with patellar weight, height, width, and thickness. Results. Inferential statistics proved the existence of linear correlation of total facetal surface area and patellar weight, height, width, and thickness. The correlation was strongest for surface area versus patellar weight. The lateral facetal area was found persistently larger than the medial facetal area, the p value was found to be <0.001 (one-tailed t-test) for right patellae, and another significant p value of < 0.001 (one-tailed t-test) was found for left patellae. Conclusion. These data are vital for the restoration of the normal biomechanics of the patellofemoral unit; these are to be consulted during knee surgeries and implant designs and can be of an indispensable anthropometric, interethnic, and biometric value. PMID:28348891
Relationship among land surface temperature and LUCC, NDVI in typical karst area.
Deng, Yuanhong; Wang, Shijie; Bai, Xiaoyong; Tian, Yichao; Wu, Luhua; Xiao, Jianyong; Chen, Fei; Qian, Qinghuan
2018-01-12
Land surface temperature (LST) can reflect the land surface water-heat exchange process comprehensively, which is considerably significant to the study of environmental change. However, research about LST in karst mountain areas with complex topography is scarce. Therefore, we retrieved the LST in a karst mountain area from Landsat 8 data and explored its relationships with LUCC and NDVI. The results showed that LST of the study area was noticeably affected by altitude and underlying surface type. In summer, abnormal high-temperature zones were observed in the study area, perhaps due to karst rocky desertification. LSTs among different land use types significantly differed with the highest in construction land and the lowest in woodland. The spatial distributions of NDVI and LST exhibited opposite patterns. Under the spatial combination of different land use types, the LST-NDVI feature space showed an obtuse-angled triangle shape and showed a negative linear correlation after removing water body data. In summary, the LST can be retrieved well by the atmospheric correction model from Landsat 8 data. Moreover, the LST of the karst mountain area is controlled by altitude, underlying surface type and aspect. This study provides a reference for land use planning, ecological environment restoration in karst areas.
Effect of infusion regime on doxorubicin pharmacokinetics in the cat.
Hahn, K A; Frazier, D L; Cox, S K; Legendre, A M
1997-01-01
In the pharmacokinetic evaluation of a single doxorubicin dose calculated by body surface area (25 mg/m2) or body weight (1 mg/kg body weight) and given intravenously as a 10-, 15-, or 20-minute infusion, the rate of doxorubicin infusion (mg per minute per m2 or mg per minute per kg) correlated positively with clearance and the distribution rate constant alpha, and it inversely correlated with area under the plasma concentration versus time curve (AUC). These findings suggest that a slower infusion rate results in a greater AUC and longer distribution phase than a faster infusion rate and indicates the importance of normalizing dosage regimes by infusion rate rather than by infusion duration when considering dose-response phenomena in veterinary patients.
Channel Model on Various Frequency Bands for Wearable Body Area Network
NASA Astrophysics Data System (ADS)
Katayama, Norihiko; Takizawa, Kenichi; Aoyagi, Takahiro; Takada, Jun-Ichi; Li, Huan-Bang; Kohno, Ryuji
Body Area Network (BAN) is considered as a promising technology in supporting medical and healthcare services by combining with various biological sensors. In this paper, we look at wearable BAN, which provides communication links among sensors on body surface. In order to design a BAN that manages biological information with high efficiency and high reliability, the propagation characteristics of BAN must be thoroughly investigated. As a preliminary effort, we measured the propagation characteristics of BAN at frequency bands of 400MHz, 600MHz, 900MHz and 2400MHz respectively. Channel models for wearable BAN based on the measurement were derived. Our results show that the channel model can be described by using a path loss model for all frequency bands investigated.
Walowska, Jagoda; Bolach, Bartosz; Bolach, Eugeniusz
2017-11-13
Hearing impairment may affect the body posture maintenance. The aim of the study was to evaluate the effect of modified Pilates exercise program on the body posture maintenance in hearing impaired people. Eighty students (aged 13-24) were enrolled and randomly allocated into two groups: test group (n = 41) which attended an original program based on modified Pilates exercises and control group (n = 39) which attended standard physical education classes. Stabilographic tests were conducted at baseline and after 6-week training program. Both groups showed improved control of body balance in a standing position manifested in reductions of the length of path, surface area, and speed of deflection. Modified Pilates program was significantly more effective in improving body balance control in relaxed posture and with feet together than standard physical education classes. The greater efficiency of the modified Pilates program was expressed in a significant improvement in balance control parameters, i.e., path length, surface area, and speed of deflection. The modified Pilates program was more effective in improving body balance control in the hearing impaired people than standard physical education classes. Modification of physical activity recommendations for hearing impaired students may be considered; however, further research is required. Implications for Rehabilitation Hearing impairment impacts the mental, social and, physical spheres of life as well as deteriorates equivalent reactions and the way body posture is maintained. In hearing impaired people, control of body balance and muscle coordination is often disturbed, thus more attention should be paid to exercises associated with balance which may improve the ability to learn and develop motor skills. Modified Pilates program was significantly more effective in improving body balance control than standard physical education classes in hearing impaired people.
Quantifying Mapping Orbit Performance in the Vicinity of Primitive Bodies
NASA Technical Reports Server (NTRS)
Pavlak, Thomas A.; Broschart, Stephen B.; Lantoine, Gregory
2015-01-01
Predicting and quantifying the capability of mapping orbits in the vicinity of primitive bodies is challenging given the complex orbit geometries that exist and the irregular shape of the bodies themselves. This paper employs various quantitative metrics to characterize the performance and relative effectiveness of various types of mapping orbits including terminator, quasi-terminator, hovering, pingpong, and conic-like trajectories. Metrics of interest include surface area coverage, lighting conditions, and the variety of viewing angles achieved. The metrics discussed in this investigation are intended to enable mission designers and project stakeholders to better characterize candidate mapping orbits during preliminary mission formulation activities.The goal of this investigation is to understand the trade space associated with carrying out remotesensing campaigns at small primitive bodies in the context of a robotic space mission. Specifically,this study seeks to understand the surface viewing geometries, ranges, etc. that are available fromseveral commonly proposed mapping orbits architectures.
Quantifying Mapping Orbit Performance in the Vicinity of Primitive Bodies
NASA Technical Reports Server (NTRS)
Pavlak, Thomas A.; Broschart, Stephen B.; Lantoine, Gregory
2015-01-01
Predicting and quantifying the capability of mapping orbits in the vicinity of primitive bodies is challenging given the complex orbit geometries that exist and the irregular shape of the bodies themselves. This paper employs various quantitative metrics to characterize the performance and relative effectiveness of various types of mapping orbits including terminator, quasi-terminator, hovering, ping pong, and conic-like trajectories. Metrics of interest include surface area coverage, lighting conditions, and the variety of viewing angles achieved. The metrics discussed in this investigation are intended to enable mission designers and project stakeholders to better characterize candidate mapping orbits during preliminary mission formulation activities. The goal of this investigation is to understand the trade space associated with carrying out remote sensing campaigns at small primitive bodies in the context of a robotic space mission. Specifically, this study seeks to understand the surface viewing geometries, ranges, etc. that are available from several commonly proposed mapping orbits architectures
Space weathering and the color indexes of minor bodies in the outer Solar System
NASA Astrophysics Data System (ADS)
Kaňuchová, Zuzana; Brunetto, Rosario; Melita, Mario; Strazzulla, Giovanni
2012-09-01
The surfaces of small bodies in the outer Solar System are rich in organic compounds and carbonaceous refractories mixed with ices and silicates. As made clear by dedicated laboratory experiments space weathering (e.g. energetic ion bombardment) can produce red colored materials starting from bright and spectrally flat ices. In a classical scenario, the space weathering processes “nurture” alter the small bodies surface spectra but are in competition with resurfacing agents that restore the original colors, and the result of these competing processes continuously modifying the surfaces is supposed to be responsible for the observed spectral variety of those small bodies. However an alternative point of view is that the different colors are due to “nature” i.e. to the different primordial composition of different objects. In this paper we present a model, based on laboratory results, that gives an original contribution to the “nature” vs. “nurture” debate by addressing the case of surfaces showing different fractions of rejuvenated vs. space weathered surface, and calculating the corresponding color variations. We will show how a combination of increasing dose coupled to different resurfacing can reproduce the whole range of observations of small outer Solar System bodies. Here we demonstrate, for the first time that objects having a fully weathered material turn back in the color-color diagrams. At the same time, object with the different ratio of pristine and weathered surface areas lay on specific lines in color-color diagrams, if exposed to the same amount of irradiation.
McGarr, Arthur; Vorhis, Robert C.
1968-01-01
Seismic seiches caused by the Alaska earthquake of March 27, 1964, were recorded at more than 850 surface-water gaging stations in North America and at 4 in Australia. In the United States, including Alaska and Hawaii, 763 of 6,435 gages registered seiches. Nearly all the seismic seiches were recorded at teleseismic distance. This is the first time such far-distant effects have been reported from surface-water bodies in North America. The densest occurrence of seiches was in States bordering the Gulf of Mexico. The seiches were recorded on bodies of water having a wide range in depth, width, and rate of flow. In a region containing many bodies of water, seiche distribution is more dependent on geologic and seismic factors than on hydro-dynamic ones. The concept that seiches are caused by the horizontal acceleration of water by seismic surface waves has been extended in this paper to show that the distribution of seiches is related to the amplitude distribution of short-period seismic surface waves. These waves have their greatest horizontal acceleration when their periods range from 5 to 15 seconds. Similarly, the water bodies on which seiches were recorded have low-order modes whose periods of oscillation also range from 5 to 15 seconds. Several factors seem to control the distribution of seiches. The most important is variations of thickness of low-rigidity sediments. This factor caused the abundance of seiches in the Gulf Coast area and along the edge of sedimentary overlaps. Major tectonic features such as thrust faults, basins, arches, and domes seem to control seismic waves and thus affect the distribution of seiches. Lateral refraction of seismic surface waves due to variations in local phase-velocity values was responsible for increase in seiche density in certain areas. For example, the Rocky Mountains provided a wave guide along which seiches were more numerous than in areas to either side. In North America, neither direction nor distance from the epicenter had any apparent effect on the distribution of seiches. Where seismic surface waves propagated into an area with thicker sediment, the horizontal acceleration increased about in proportion to the increasing thickness of the sediment. In the Mississippi Embayment however, where the waves emerged from high rigidity crust into the sediment, the horizontal acceleration increased near the edge of the embayment but decreased in the central part and formed a shadow zone. Because both seiches and seismic intensity depend on the horizontal acceleration from surface waves, the distribution of seiches may be used to map the seismic intensity that can be expected from future local earthquakes.
Relation of streams, lakes, and wetlands to groundwater flow systems
NASA Astrophysics Data System (ADS)
Winter, Thomas C.
Surface-water bodies are integral parts of groundwater flow systems. Groundwater interacts with surface water in nearly all landscapes, ranging from small streams, lakes, and wetlands in headwater areas to major river valleys and seacoasts. Although it generally is assumed that topographically high areas are groundwater recharge areas and topographically low areas are groundwater discharge areas, this is true primarily for regional flow systems. The superposition of local flow systems associated with surface-water bodies on this regional framework results in complex interactions between groundwater and surface water in all landscapes, regardless of regional topographic position. Hydrologic processes associated with the surface-water bodies themselves, such as seasonally high surface-water levels and evaporation and transpiration of groundwater from around the perimeter of surface-water bodies, are a major cause of the complex and seasonally dynamic groundwater flow fields associated with surface water. These processes have been documented at research sites in glacial, dune, coastal, mantled karst, and riverine terrains. Résumé Les eaux de surface sont parties intégrantes des systèmes aquifères. Les eaux souterraines interagissent avec les eaux de surface dans presque tous les types d'environnements, depuis les petits ruisseaux, les lacs et les zones humides jusqu'aux bassins versants des vallées des grands fleuves et aux lignes de côte. Il est en général admis que les zones topographiquement hautes sont des lieux de recharge des aquifères et les zones basses des lieux de décharge, ce qui est le cas des grands systèmes aquifères régionaux. La superposition de systèmes locaux, associés à des eaux de surface, à l'organisation régionale d'écoulements souterrains résulte d'interactions complexes entre les eaux souterraines et les eaux de surface dans tous les environnements, quelle que soit la situation topographique régionale. Les processus hydrologiques associés aux eaux de surface elles-mêmes, tels que des niveaux d'eau de surface saisonnièrement hauts et l'évaporation et la transpiration de l'eau souterraine à la périphérie des eaux de surface, sont les causes essentielles de la dynamique complexe et saisonnière des nappes associées aux eaux de surface. Ces processus ont été mis en évidence sur des sites de recherche dans des formations glaciaires, dunaires, littorales, fluviales et de karst couvert. Resumen Los cuerpos de aguas superficiales son partes integrales de los sistemas de flujo subterráneo. El agua subterránea interactúa con la superficial en prácticamente todo tipo de paisajes, desde pequeños torrentes, lagos y humedales, hasta grandes valles fluviales y costas. Aunque se suele asumir que las áreas topográficamente elevadas son zonas de recarga de aguas subterráneas, mientras las áreas topográficamente más bajas lo son de descarga, esto es cierto básicamente para los sistemas de flujo regional. Al superponer los sistemas de flujo local, asociados a los cuerpos de agua superficial, a las condiciones regionales, resultan interacciones complejas, y esto ocurre independientemente de su posición topográfica. Los procesos hidrológicos asociados con los propios cuerpos de agua superficial, como los niveles superficiales máximos estacionales y la evapotranspiración de agua subterránea en los perímetros de cuerpos superficiales, son una de las principales causas de la complejidad y de las variaciones dinámicas de las interacciones entre aguas subterráneas y superficiales. Estos procesos se han documentado en distintas zonas investigadas, incluyendo depósitos glaciares, dunas, áreas costeras, karsts y terrazas fluviales.
Shiba, Kenji
2015-08-01
We proposed an electrically induced energy transmission method for implantable medical devices deep inside the body. This method makes it possible to transmit energy deep inside the body using only a couple of titanium electrodes attached to the surface of the implantable medical device. In this study, electromagnetic simulations in which the area and distance of the receiving electrodes were changed were conducted. Then, experimental measurements of the received voltage were conducted in which electric energy was transmitted from the surface of the human phantom to an implantable device inside it (transmitting distance: 12 cm). As a result of the electromagnetic simulation, the area and distance of the receiving electrodes were roughly proportional to the received voltage, respectively. As a result of the experimental measurement, a received voltage of 2460 mV could be obtained with a load resistance of 100 Ω. We confirmed that our energy transmission method could be a powerful method for transmitting energy to a deeply implanted medical device.
Setting occupational health standards: toxicokinetic differences among and between men and women.
Silvaggio, T; Mattison, D R
1994-08-01
Differences between and among men, nonpregnant women, and pregnant women can influence exposure and response to workplace toxicants. These differences should be delineated, compared, and used when setting regulatory standards to protect workers from potentially hazardous workplace environments. Anatomical and physiological parameters include: body composition; surface area; blood, organ, and tissue volume; metabolism; and cardiovascular, pulmonary, gastrointestinal, and renal structure and function. Although men differ among themselves, on average, they also differ from women by weighing more, being taller, and having a larger surface area. Total body water is 40% greater in men than nonpregnant women; however, during pregnancy, body water increases from 29 to 33 liters. Extracellular and intracellular water volumes are smallest in nonpregnant women, increase with pregnancy, but remain smaller than those in men. Pulmonary function differs; pregnant women have the largest minute volume and greatest volume of air exchanged in an 8-hour period. This article compares anatomical, physiological, and toxicokinetic characteristics of men and nonpregnant and pregnant women to explore how differences in these factors contribute to variations in exposures, target tissue doses, and responses to workplace or environmental chemicals.
Thermal effects of whole head submersion in cold water on nonshivering humans.
Pretorius, Thea; Bristow, Gerald K; Steinman, Alan M; Giesbrecht, Gordon G
2006-08-01
This study isolated the effect of whole head submersion in cold water, on surface heat loss and body core cooling, when the confounding effect of shivering heat production was pharmacologically eliminated. Eight healthy male subjects were studied in 17 degrees C water under four conditions: the body was either insulated or uninsulated, with the head either above the water or completely submersed in each body-insulation subcondition. Shivering was abolished with buspirone (30 mg) and meperidine (2.5 mg/kg), and subjects breathed compressed air throughout all trials. Over the first 30 min of immersion, exposure of the head increased core cooling both in the body-insulated conditions (head out: 0.47 +/- 0.2 degrees C, head in: 0.77 +/- 0.2 degrees C; P < 0.05) and the body-exposed conditions (head out: 0.84 +/- 0.2 degrees C and head in: 1.17 +/- 0.5 degrees C; P < 0.02). Submersion of the head (7% of the body surface area) in the body-exposed conditions increased total heat loss by only 10%. In both body-exposed and body-insulated conditions, head submersion increased core cooling rate much more (average of 42%) than it increased total heat loss. This may be explained by a redistribution of blood flow in response to stimulation of thermosensitive and/or trigeminal receptors in the scalp, neck and face, where a given amount of heat loss would have a greater cooling effect on a smaller perfused body mass. In 17 degrees C water, the head does not contribute relatively more than the rest of the body to surface heat loss; however, a cold-induced reduction of perfused body mass may allow this small increase in heat loss to cause a relatively larger cooling of the body core.
Latent heat loss and sweat gland histology of male goats in an equatorial semi-arid environment
NASA Astrophysics Data System (ADS)
de Melo Costa, Cíntia Carol; Maia, Alex Sandro Campos; Neto, José Domingues Fontenele; Oliveira, Steffan Edward Octávio; de Queiroz, João Paulo Araújo Fernandes
2014-03-01
The objective of this work was to quantify the heat loss by cutaneous evaporation of goats in an equatorial semi-arid environment. The latent heat loss from the body surfaces of these ten undefined breed goats was measured using a ventilated capsule in sun and shade and in the three body regions (neck, flank and hindquarters). Skin samples from these three regions were histologically analyzed to relate the quantity of sweat glands, the area of sweat glands and the epithelium thickness of each of these regions to the heat loss by cutaneous evaporation of the examined goats. The epithelium thickness that was measured varied significantly for body regions with different quantities and areas of sweat glands ( P < 0.01). Among the body regions that were examined, the samples from the neck demonstrated the highest epithelium thickness (16.23 ± 0.13 μm). However, the samples of sweat glands from the flank had the biggest area (43330.51 ± 778.71 μm2) and quantity per square centimeter (390 ± 9 cm-2). After the animals were exposed to sun, the flanks lost the greatest amount of heat by cutaneous evaporation (73.03 ± 1.75 W m-2) and possessed the highest surface temperatures (39.47 ± 0.18 °C). The histological characteristics may have influenced the heat loss by cutaneous evaporation that was observed in the flank region after the animals were exposed to sun.
[Corrosion resistant properties of different anodized microtopographies on titanium surfaces].
Fangjun, Huo; Li, Xie; Xingye, Tong; Yueting, Wang; Weihua, Guo; Weidong, Tian
2015-12-01
To investigate the corrosion resistant properties of titanium samples prepared by anodic oxidation with different surface morphologies. Pure titanium substrates were treated by anodic oxidation to obtain porous titanium films in micron, submicron, and micron-submicron scales. The surface morphologies, coating cross-sectional morphologies, crystalline structures, and surface roughness of these samples were characterized. Electrochemical technique was used to measure the corrosion potential (Ecorr), current density of corrosion (Icorr), and polarization resistance (Rp) of these samples in a simulated body fluid. Pure titanium could be modified to exhibit different surface morphologies by the anodic oxidation technique. The Tafel curve results showed that the technique can improve the corrosion resistance of pure titanium. Furthermore, the corrosion resistance varied with different surface morphologies. The submicron porous surface sample demonstrated the best corrosion resistance, with maximal Ecorr and Rp and minimal Icorr. Anodic oxidation technology can improve the corrosion resistance of pure titanium in a simulated body fluid. The submicron porous surface sample exhibited the best corrosion resistance because of its small surface area and thick barrier layer.
Discrepancy between body surface area and body composition in cancer.
Stobäus, Nicole; Küpferling, Susanne; Lorenz, Marie-Luise; Norman, Kristina
2013-01-01
Calculation of cytostatic dose is typically based on body surface area (BSA) regardless of body composition. The aim of this study was to assess the discrepancy between BSA and low fat-free mass (FFM) by investigating the prevalence of low FFM with regard to BSA in 630 cancer patients. First, BSA was calculated according to DuBois and DuBois. Patients were divided into 6 categories with respect to their BSA. Each BSA category was further divided into 3 groups according to FFM: low (<-1 SD of mean FFM), normal (-0.99 and 0.99 SD of mean FFM) or high (>1 SD of mean FFM), which was derived through bioelectric impedance analysis. FFM was reduced in 15.7% of patients, 69% had normal and 15.2% had high FFM. In patients with low FFM (i.e., more than-1 SD lower than the mean FFM within their BSA group), body mass index and fatigue were higher whereas functional status was reduced. Moreover, in the subcohort of patients receiving chemotherapy, absolute FFM [Hazard ratio (HR) = 0.970, P = 0.026] as well as the allocation to the low FFM group (HR = 1.644, P = 0.025) emerged as predictors of increased 1-yr mortality. In conclusion, there was a large discrepancy between FFM and BSA. Particularly women were affected by low FFM.
Socorro, Fabiola; Rodríguez de Rivera, Pedro Jesús; Rodríguez de Rivera, Miriam
2017-01-01
The accuracy of the direct and local measurements of the heat power dissipated by the surface of the human body, using a calorimetry minisensor, is directly related to the calibration rigor of the sensor and the correct interpretation of the experimental results. For this, it is necessary to know the characteristics of the body’s local heat dissipation. When the sensor is placed on the surface of the human body, the body reacts until a steady state is reached. We propose a mathematical model that represents the rate of heat flow at a given location on the surface of a human body by the sum of a series of exponentials: W(t) = A0 + ∑Aiexp(−t/τi). In this way, transient and steady states of heat dissipation can be interpreted. This hypothesis has been tested by simulating the operation of the sensor. At the steady state, the power detected in the measurement area (4 cm2) varies depending on the sensor’s thermostat temperature, as well as the physical state of the subject. For instance, for a thermostat temperature of 24 °C, this power can vary between 100–250 mW in a healthy adult. In the transient state, two exponentials are sufficient to represent this dissipation, with 3 and 70 s being the mean values of its time constants. PMID:29182567
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wiberg, Gustav K. H., E-mail: gustav.wiberg@gmail.com, E-mail: m.arenz@chem.ku.dk; Fleige, Michael; Arenz, Matthias, E-mail: gustav.wiberg@gmail.com, E-mail: m.arenz@chem.ku.dk
2015-02-15
We present a detailed description of the construction and testing of an electrochemical cell setup allowing the investigation of a gas diffusion electrode containing carbon supported high surface area catalysts. The setup is designed for measurements in concentrated phosphoric acid at elevated temperature, i.e., very close to the actual conditions in high temperature proton exchange membrane fuel cells (HT-PEMFCs). The cell consists of a stainless steel flow field and a PEEK plastic cell body comprising the electrochemical cell, which exhibits a three electrode configuration. The cell body and flow field are braced using a KF-25 vacuum flange clamp, which allowsmore » an easy assembly of the setup. As demonstrated, the setup can be used to investigate temperature dependent electrochemical processes on high surface area type electrocatalysts, but it also enables quick screening tests of HT-PEMFC catalysts under realistic conditions.« less
NASA Astrophysics Data System (ADS)
Wiberg, Gustav K. H.; Fleige, Michael; Arenz, Matthias
2015-02-01
We present a detailed description of the construction and testing of an electrochemical cell setup allowing the investigation of a gas diffusion electrode containing carbon supported high surface area catalysts. The setup is designed for measurements in concentrated phosphoric acid at elevated temperature, i.e., very close to the actual conditions in high temperature proton exchange membrane fuel cells (HT-PEMFCs). The cell consists of a stainless steel flow field and a PEEK plastic cell body comprising the electrochemical cell, which exhibits a three electrode configuration. The cell body and flow field are braced using a KF-25 vacuum flange clamp, which allows an easy assembly of the setup. As demonstrated, the setup can be used to investigate temperature dependent electrochemical processes on high surface area type electrocatalysts, but it also enables quick screening tests of HT-PEMFC catalysts under realistic conditions.
NASA Astrophysics Data System (ADS)
Hondula, K. L.; Palmer, M.
2017-12-01
One of the biggest uncertainties about global methane sources and sinks is attributed to uncertainties regarding wetland area and its dynamics. This is exacerbated by confusion over the role of small, shallow water bodies like Delmarva bay wetlands that could be categorized as both wetlands and ponds. These small inland water bodies are often poorly quantified due to their size, closed forest canopies, and inter- and intra-annual variability in surface water extent. We are studying wetland-rich areas on the Delmarva Peninsula in the U.S. mid-Atlantic to address this uncertainty at the scale of individual wetland ecosystems (<1000 m2). We present data linking measurements of hydrologic regime and methane gas fluxes in Delmarva bay wetlands to explore how water level, wetland storage capacity, and water residence time influence the magnitude, source area, and fate of wetland methane emissions. We measured air-water and soil-air gas fluxes using transects of chamber measurements spanning from wetland center to upland, in order to quantify the areal extent of the methane emissions source area throughout seasonal changes in surface water inundation (water level 0 to > 1m depth). We estimated the size and temporal variability of the methane emissions source area by combining these measurements with daily estimates of the extent of surface water inundation derived from water level monitoring and a high-resolution digital elevation model. This knowledge is critical for informing land use decisions (e.g. restoring wetlands specifically for climate mitigation), the jurisdiction of environmental policies in the US, and for resolving major outstanding discrepancies in our understanding of the global methane budget.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jenkins, C; Xing, L; Yu, S
Purpose: A correct body contour is essential for the accuracy of dose calculation in radiation therapy. While modern medical imaging technologies provide highly accurate representations of body contours, there are times when a patient’s anatomy cannot be fully captured or there is a lack of easy access to CT/MRI scanning. Recently, handheld cameras have emerged that are capable of performing three dimensional (3D) scans of patient surface anatomy. By combining 3D camera and medical imaging data, the patient’s surface contour can be fully captured. Methods: A proof-of-concept system matches a patient surface model, created using a handheld stereo depth cameramore » (DC), to the available areas of a body contour segmented from a CT scan. The matched surface contour is then converted to a DICOM structure and added to the CT dataset to provide additional contour information. In order to evaluate the system, a 3D model of a patient was created by segmenting the body contour with a treatment planning system (TPS) and fabricated with a 3D printer. A DC and associated software were used to create a 3D scan of the printed phantom. The surface created by the camera was then registered to a CT model that had been cropped to simulate missing scan data. The aligned surface was then imported into the TPS and compared with the originally segmented contour. Results: The RMS error for the alignment between the camera and cropped CT models was 2.26 mm. Mean distance between the aligned camera surface and ground truth model was −1.23 +/−2.47 mm. Maximum deviations were < 1 cm and occurred in areas of high concavity or where anatomy was close to the couch. Conclusion: The proof-of-concept study shows an accurate, easy and affordable method to extend medical imaging for radiation therapy planning using 3D cameras without additional radiation. Intel provided the camera hardware used in this study.« less
Doctor, Tahera H.; Trivedi, Sangeeta S.; Chudasama, Rajesh K.
2010-01-01
Objective: To obtain reference values for FEV1, FVC, FEV1% and PEFR among children aged 8-14 years in south Gujarat region of India. Materials and Methods: This cross-sectional study was conducted among 655 normal healthy school children (408 boys and 247 girls) of Surat city aged 8 to 14 years studying in V to VII standard during November 2007 to April 2008. Height, weight, body surface area were measured. All included children were tested in a sitting position with the head straight after taking written consent from parents. Spirometry was done using the spirometer “Spirolab II” MIR 010. Spirometer used in the study facilitates the total valuation of lung function including forced vital capacity (FVC), forced expiratory volume in one second (FEV1), forced expiratory volume ratio in one second (FEV1%) and peak expiratory flow rate (PEFR). Results: FVC, FEV1 and PEFR were found to be statistically significant in the study groups. For FVC and FEV1, highest correlation was found with age in girls and height in boys. For FEV1%, significant negative correlation was found with age and height in both sexes, but positive correlation was found with surface area. Similarly, PEFR showed highest correlation with surface area in boys and girls. Conclusion: Variables such as FVC, FEV1 and PEFR show good positive correlation with height, age and body surface area in both sexes. There is a need to have regional values for the prediction of normal spirometric parameters in a country like India with considerable diversity. PMID:20931033
Factors that influence the hydrologic recovery of wetlands in the Northern Tampa Bay area, Florida
Metz, P.A.
2011-01-01
Although of less importance than the other three factors, a low-lying topographical position benefited the hydrologic condition of several of the study wetlands (S-68 Cypress and W-12 Cypress) both before and after the reductions in groundwater withdrawals. Compared to wetlands in a higher topographical position, those in a lower position had longer hydroperiods because of their greater ability to receive more runoff from higher elevation wetlands and to establish surface-water connections to other isolated wetlands and surface-water bodies through low-lying surface-water channels during wet conditions. In addition, wetlands in low-lying areas benefited from groundwater inflow when groundwater levels were higher than wetland water levels.
Downs, Nathan; Parisi, Alfio
2012-01-01
In this research, the erythemally effective UV measured using miniaturized polysulphone dosimeters to over 1250 individual body sites and collected over a 4-year period is presented relative to the total exposed skin surface area (SSA) of a life-size manikin model. A new term is also introduced, the mean exposure fraction (MEF). The MEF is used to weight modeled or measured horizontal plane UV exposures to the total unprotected SSA of an individual and is defined as the ratio of exposure per unit area received by the unprotected skin surfaces of the body relative to the exposure received on a horizontal plane. The MEF has been calculated for a range of solar zenith angles (SZA) to provide a sunburning energy data set weighted to the actual SSA of a typically clothed individual. For this research, the MEF was determined as 0.15, 0.26 and 0.41 in the SZA ranges 0°-30°, 30°-50° and 50°-80° providing information that can be used in a variety of different ambient, latitudinal and seasonal climates where total human body UV exposure information is not available. © 2011 Wiley Periodicals, Inc. Photochemistry and Photobiology © 2011 The American Society of Photobiology.
Developing space weathering on the asteroid 25143 Itokawa.
Hiroi, Takahiro; Abe, Masanao; Kitazato, Kohei; Abe, Shinsuke; Clark, Beth E; Sasaki, Sho; Ishiguro, Masateru; Barnouin-Jha, Olivier S
2006-09-07
Puzzlingly, the parent bodies of ordinary chondrites (the most abundant type of meteorites) do not seem to be abundant among asteroids. One possible explanation is that surfaces of the parent bodies become optically altered, to become the S-type asteroids which are abundant in the main asteroid belt. The process is called 'space weathering'-it makes the visible and near-infrared reflectance spectrum of a body darker and redder. A recent survey of small, near-Earth asteroids suggests that the surfaces of small S asteroids may have developing stages of space weathering. Here we report that a dark region on a small (550-metre) asteroid-25143 Itokawa-is significantly more space-weathered than a nearby bright region. Spectra of both regions are consistent with those of LL5-6 chondrites after continuum removal. A simple calculation suggests that the dark area has a shorter mean optical path length and about 0.04 per cent by volume more nanophase metallic iron particles than the bright area. This clearly shows that space-weathered materials accumulate on small asteroids, which are likely to be the parent bodies of LL chondrites. We conclude that, because LL meteorites are the least abundant of ordinary (H, L, and LL) chondrites, there must be many asteroids with ordinary-chondrite compositions in near-Earth orbits.
A Safety and Efficacy Study of Tolvaptan Following Open Heart Surgery in 109 Cases.
Kono, Takanori; Tayama, Eiki; Hori, Hidetsugu; Ueda, Tomohiro; Yamaki, Yuta; Tanaka, Hiroyuki
2016-07-27
This study was conducted to evaluate the safety and efficacy of tolvaptan following open heart surgery.We retrospectively reviewed 109 patients who were administered tolvaptan following open heart surgery between August 2011 and July 2014. We divided the patients according to their urine output index (amount of urine output/body surface area) into tertiles as follows: T1 (low responders; n = 36), T2 (intermediate responders; n = 36), and T3 (high responders; n = 37). No fatal adverse events were observed following tolvaptan administration. The factors that showed a significant difference among the 3 groups were body surface area (BSA) and preoperative body weight. Body weight rapidly decreased and a greater increase in the serum sodium level was observed on day 1 in the T3 group than in the other 2 groups. No decrease in blood pressure and no significant differences in the occurrence of atrial fibrillation were observed among the 3 groups during tolvaptan administration.Tolvaptan can be safely and effectively administered to increase the urine output without adversely affecting the cardiovascular system or renal function following open heart surgery. However, careful attention is required regarding the possibility of a rapid increase in the serum sodium level so it is important to monitor changes in serum Na levels.
A sun holiday is a sunburn holiday.
Petersen, Bibi; Thieden, Elisabeth; Philipsen, Peter Alshede; Heydenreich, Jakob; Young, Antony Richard; Wulf, Hans Christian
2013-08-01
Many people take holidays in sunny locations with the express aim of sunbathing. This may result in sunburn, which is a risk factor for skin cancer. We investigated 25 Danish sun seekers during a week's holiday in the Canary Islands. The percentage of body surface area with sunburn was determined by daily skin examinations by the same observer. Erythemally effective ultraviolet radiation (UVR) exposure was assessed with time-stamped personal dosimeters worn on the wrist. Volunteers reported their clothing cover and sunscreen use in diaries, and this information was used to determine body site-specific UVR doses after adjustment for sun protection factor. Remarkably, we found that all volunteers sunburned at some point. The risk of sunburn correlated significantly with the adjusted body site-specific UVR dose. Furthermore, there was also a significant relationship between the daily UVR dose and percentage of body surface area with sunburn. Our study shows that holiday UVR exposure results in a high risk of sunburn, which potentially increases the risk of skin cancer. Possible protection by melanogenesis is insufficient to protect against sunburn during a 1-week sun holiday. Finally, our data clearly support a substantial skin cancer risk from sun holidays. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Castagna, Maria Grazia; Pinchera, Aldo; Marsili, Alessandro; Giannetti, Monica; Molinaro, Eleonora; Fierabracci, Paola; Grasso, Lucia; Pacini, Furio; Santini, Ferruccio; Elisei, Rossella
2005-07-01
In this study, we evaluated the influence of height, weight, body mass index (BMI), body surface area, and body composition [total lean body mass (LBM) and fat body mass] on serum peak TSH levels obtained after recombinant human (rh)TSH. Furthermore, to verify whether the serum peak TSH influenced the efficacy of radioiodine ((131)I), we compared the rate of thyroid remnant ablation according to the patients' BMI. We studied 105 patients with differentiated thyroid carcinoma who underwent rhTSH stimulation test. Serum TSH measurements were performed before and 24, 48, and 72 h after rhTSH administration. We also compared the rate of thyroid remnant ablation among 70 differentiated thyroid carcinoma patients with different BMI. The serum peak TSH after rhTSH was significantly lower in overweight and obese subjects compared with normal-weight subjects (92.1 +/- 41.8, 82.4 +/- 24.2, and 112.7 +/- 46.3 microU/ml, respectively; P = 0.01) and in males compared with females (74.6 +/- 22.3 and 105.0 +/- 43.0 microU/ml, respectively; P = 0.0002). By univariate analysis, serum peak TSH was negatively related to weight, height, body surface area, BMI, LBM, and fat body mass, but only LBM was independently associated with serum peak TSH levels. Although it was confirmed that overweight and obese patients had a lower serum peak TSH, the rate of ablation did not differ among normal-weight, overweight, and obese patients. With this study we demonstrated that LBM is the only parameter independently associated with serum peak TSH after rhTSH administration. However, the serum peak TSH does not influence the rate of (131)I remnant ablation.
Dawn at Vesta: Characterizing a minor planet
NASA Astrophysics Data System (ADS)
Pieters, C.; Russell, C.; Raymond, C.; Dawn Team
2014-07-01
The Dawn spacecraft arrived at Vesta in July 2011, spent more than a year exploring the surface with orbital instruments, and is now on its way to Ceres to do the same [1]. Beginning the investigations at Vesta, we were in the unique position of having what we believed to be samples from the surface (the HED family of meteorites) to guide our planning of scientific exploration. We also had telescopic spectra of Vesta that linked it to the meteorites [2] and had spatially resolved images of Vesta from HST [3] that indicated variations exist across the surface, and that an enormous depression occurs at the south pole. Since the HED meteorites show evidence of early melting and differentiation, we expected an ancient evolved anhydrous surface, perhaps similar to that of the Moon complete with early magma ocean. Although the Moon has often been considered a small body 'end member' that can be used to study early terrestrial planet evolution, with the year-long exploration of Vesta by Dawn, we now have extensive information for an even smaller differentiated planetary body with which to compare and test models and paradigms. We now know that both bodies are heavily cratered and exhibit at least one enormous basin that models predict should have excavated (and possibly exposed) the mantle [4]. Nevertheless, although compositional diversity is found on both, evidence for mantle material has been illusive. These two airless differentiated silicate bodies are ancient and essentially (but not completely) anhydrous. Regionally coherent areas containing H as well as OH are identified across the surface of Vesta [5] but exhibit no apparent relation to OH recently detected on the Moon [6]. Instead, Vesta's hydrated areas are spatially correlated with low-albedo regions, suggesting an exogeneous source (such as delivery by and mixing with carbonaceous chondritic material) [5,7]. Vesta exhibits its own style of space weathering that transforms fresh craters into background soils, one that involves regolith mixing instead of accumulation of nano-phase opaque components on surface grains [8]. The apparent dearth of nano-phase opaque coatings on regolith grains is due to a combination of factors involving Vesta's location and specific surface composition. The result is a mineralogically rich surface exposed to Dawn's sensors [9], although substantially rearranged by impact processes. Major scientific insights will continue to emerge as calibration improves for the Dawn instruments that measure spectral properties of the surface.
Hand burns surface area: A rule of thumb.
Dargan, Dallan; Mandal, Anirban; Shokrollahi, Kayvan
2018-08-01
Rapid estimation of acute hand burns is important for communication, standardisation of assessment, rehabilitation and research. Use of an individual's own thumbprint area as a fraction of their total hand surface area was evaluated to assess potential utility in hand burn evaluation. Ten health professionals used an ink-covered dominant thumb pulp to cover the surfaces of their own non-dominant hand using the contralateral thumb. Thumbprints were assessed on the web spaces, sides of digits and dorsum and palm beyond the distal wrist crease. Hand surface area was estimated using the Banerjee and Sen method, and thumbprint ellipse area calculated to assess correlation. Mean estimated total hand surface area was 390.0cm 2 ±SD 51.5 (328.3-469.0), mean thumbprint ellipse area was 5.5cm 2 ±SD 1.3 (3.7-8.4), and mean estimated print number was 73.5±SD 11.0 (range 53.1-87.8, 95% CI 6.8). The mean observed number of thumbprints on one hand was 80.1±SD 5.9 (range 70.0-88.0, 95% CI 3.7), χ 2 =0.009. The combined mean of digital prints was 42, comprising a mean of two prints each on volar, dorsal, radial and ulnar digit surfaces, except volar middle and ring (3 prints each). Palmar prints were 15 (11-19), dorsal 15 (11-19), ulnar palm border 3, first web space 2, and second, third and fourth web spaces one each. Using the surface of the palm alone, excluding digits, as 0.5% of total body surface area, the area of one thumbprint was approximated as 1/30th of 1%. We have demonstrated how thumbprint area serves as a simple method for evaluating hand burn surface area. Copyright © 2018 Elsevier Ltd and ISBI. All rights reserved.
COMPARISON OF HYDROLOGIC RESPONSES AT DIFFERENT WATERSHED SCALES
Land surface hydrology controls runoff production and the associated transport of sediments, and a wide variety of anthropogenic organic chemicals, and nutrients from upland landscape areas and hillslopes to streams and other water bodies. Based on interactions between landscape ...
Using surface integrals for checking Archimedes' law of buoyancy
NASA Astrophysics Data System (ADS)
Lima, F. M. S.
2012-01-01
A mathematical derivation of the force exerted by an inhomogeneous (i.e. compressible) fluid on the surface of an arbitrarily shaped body immersed in it is not found in the literature, which may be attributed to our trust in Archimedes' law of buoyancy. However, this law, also known as Archimedes' principle (AP), does not yield the force observed when the body is in contact with the container walls, as is more evident in the case of a block immersed in a liquid and in contact with the bottom, in which a downward force that increases with depth is observed. In this work, by taking into account the surface integral of the pressure force exerted by a fluid over the surface of a body, the general validity of AP is checked. For a body fully surrounded by a fluid, homogeneous or not, a gradient version of the divergence theorem applies, yielding a volume integral that simplifies to an upward force which agrees with the force predicted by AP, as long as the fluid density is a continuous function of depth. For the bottom case, this approach yields a downward force that increases with depth, which contrasts to AP but is in agreement with experiments. It also yields a formula for this force which shows that it increases with the area of contact.
Oria, Maria P.; Hamaker, Bruce R.; Axtell, John D.; Huang, Chia-Ping
2000-01-01
The endosperm of a sorghum mutant cultivar, with high in vitro uncooked and cooked protein digestibilities, was examined by transmission electron microscopy and α-, β-, and γ-kafirins (storage proteins) were localized within its protein bodies. Transmission electron microscopy micrographs revealed that these protein bodies had a unique microstructure related to high protein digestibility. They were irregular in shape and had numerous invaginations, often reaching to the central area of the protein body. Protein bodies from normal cultivars, such as P721N studied here, with much lower uncooked and cooked digestibilities are spherical and contain no invaginations. Immunocytochemistry results showed that the relative location of α- and β-kafirins within the protein bodies of the highly digestible genotype were similar to the normal cultivar, P721N. γ-Kafirin, however, was concentrated in dark-staining regions at the base of the folds instead of at the protein body periphery, as is typical of normal cultivars. The resulting easy accessibility of digestive enzymes to α-kafirin, the major storage protein, in addition to the increased surface area of the protein bodies of the highly digestible cultivar appear to account for its high in vitro protein digestibility. PMID:10792028
The Evolution and Development of Cephalopod Chambers and Their Shape.
Lemanis, Robert; Korn, Dieter; Zachow, Stefan; Rybacki, Erik; Hoffmann, René
2016-01-01
The Ammonoidea is a group of extinct cephalopods ideal to study evolution through deep time. The evolution of the planispiral shell and complexly folded septa in ammonoids has been thought to have increased the functional surface area of the chambers permitting enhanced metabolic functions such as: chamber emptying, rate of mineralization and increased growth rates throughout ontogeny. Using nano-computed tomography and synchrotron radiation based micro-computed tomography, we present the first study of ontogenetic changes in surface area to volume ratios in the phragmocone chambers of several phylogenetically distant ammonoids and extant cephalopods. Contrary to the initial hypothesis, ammonoids do not possess a persistently high relative chamber surface area. Instead, the functional surface area of the chambers is higher in earliest ontogeny when compared to Spirula spirula. The higher the functional surface area the quicker the potential emptying rate of the chamber; quicker chamber emptying rates would theoretically permit faster growth. This is supported by the persistently higher siphuncular surface area to chamber volume ratio we collected for the ammonite Amauroceras sp. compared to either S. spirula or nautilids. We demonstrate that the curvature of the surface of the chamber increases with greater septal complexity increasing the potential refilling rates. We further show a unique relationship between ammonoid chamber shape and size that does not exist in S. spirula or nautilids. This view of chamber function also has implications for the evolution of the internal shell of coleoids, relating this event to the decoupling of soft-body growth and shell growth.
Furukawa, Shota; Sekine, Yoshika; Kimura, Keita; Umezawa, Kazuo; Asai, Satomi; Miyachi, Hayato
2017-05-15
Ammonia is one of the members of odor gases and a possible source of odor in indoor environment. However, little has been known on the actual emission rate of ammonia from the human skin surface. Then, this study aimed to estimate the whole-body dermal emission rate of ammonia by simultaneous and multi-point measurement of emission fluxes of ammonia employing a passive flux sampler - ion chromatography system. Firstly, the emission fluxes of ammonia were non-invasively measured for ten volunteers at 13 sampling positions set in 13 anatomical regions classified by Kurazumi et al. The measured emission fluxes were then converted to partial emission rates using the surface body areas estimated by weights and heights of volunteers and partial rates of 13 body regions. Subsequent summation of the partial emission rates provided the whole body dermal emission rate of ammonia. The results ranged from 2.9 to 12mgh -1 with an average of 5.9±3.2mgh -1 per person for the ten healthy young volunteers. The values were much greater than those from human breath, and thus the dermal emission of ammonia was found more significant odor source than the breath exhalation in indoor environment. Copyright © 2017 Elsevier B.V. All rights reserved.
Using CFD Surface Solutions to Shape Sonic Boom Signatures Propagated from Off-Body Pressure
NASA Technical Reports Server (NTRS)
Ordaz, Irian; Li, Wu
2013-01-01
The conceptual design of a low-boom and low-drag supersonic aircraft remains a challenge despite significant progress in recent years. Inverse design using reversed equivalent area and adjoint methods have been demonstrated to be effective in shaping the ground signature propagated from computational fluid dynamics (CFD) off-body pressure distributions. However, there is still a need to reduce the computational cost in the early stages of design to obtain a baseline that is feasible for low-boom shaping, and in the search for a robust low-boom design over the entire sonic boom footprint. The proposed design method addresses the need to reduce the computational cost for robust low-boom design by using surface pressure distributions from CFD solutions to shape sonic boom ground signatures propagated from CFD off-body pressure.
ERIC Educational Resources Information Center
Banning, Donna
1983-01-01
Using the rattles of Native American cultures as inspiration, students used pinching, coiling, and slab and molding techniques to form the bodies of rattles and clay pellets for sound. Surface decoration included glazed and unglazed areas as well as added handles, feathers, and leather. (IS)
Heat Stress Evaluation of Anti-Exposure Flight Gear
1985-05-15
byo~ 61d umter) \\ onstant-wear anti-exposure suit ens mbles, employing the CWU-62/0 poly tetrafluoroethylene (PTFE coverall,were evaluated for their...run and the mean calculated, Body surface area (BSAI was calculated’ 3’ from the mean weight and height of each subject. Percent bod’. fat was...determined from estimates of body densityi"i, which were computed from skinfold measure. mentss5.ei obtained with Lange Skinfold Calipers (Cambridge
Use of thermal inertia determined by HCMM to predict nocturnal cold prone areas in Florida
NASA Technical Reports Server (NTRS)
Allen, L. H., Jr. (Principal Investigator)
1983-01-01
Pairs of HCMM day-night thermal infrared (IR) data were selected during the 1978-79 winter to examine patterns of surface temperature and thermal inertia (TI) of peninsular Florida. The GOES and NOAA-6 thermal IR, as well as National Climatic Center temperatures and rainfall, were also used. The HCMM apparent thermal inertia (ATI) images closely corresponded to the general soil map of Florida, based on soil drainage classes. Areas with low ATI overlay well-drained soils, such as deep sands and drained organic soils, whereas with high ATI overlay areas with wetlands and bodies of water. The HCMM ATI images also corresponded well with GOES-detected winter nocturnal cold-prone areas. Use of HCMM data with Carlson's energy balance model showed both high moisture availability (MA) and high thermal inertia (TI) of wetland-type surfaces and low MA and low TI of upland, well-drained soils. Since soil areas with low TI develop higher temperatures during the day, then antecedent patterns of highest maximum daytime surface temperature can also be used to predict nocturnal cold-prone areas in Florida.
Brearley, Matt; Walker, Anthony
2015-01-01
Rapidly cooling firefighters post emergency response is likely to increase the operational effectiveness of fire services during prolonged incidents. A variety of techniques have therefore been examined to return firefighters core body temperature to safe levels prior to fire scene re-entry or redeployment. The recommendation of forearm immersion (HFI) in cold water by the National Fire and Protection Association preceded implementation of this active cooling modality by a number of fire services in North America, South East Asia and Australia. The vascularity of the hands and forearms may expedite body heat removal, however, immersion of the torso, pelvis and/or lower body, otherwise known as multi-segment immersion (MSI), exposes a greater proportion of the body surface to water than HFI, potentially increasing the rates of cooling conferred. Therefore, this review sought to establish the efficacy of HFI and MSI to rapidly reduce firefighters core body temperature to safe working levels during rest periods. A total of 38 studies with 55 treatments (43 MSI, 12 HFI) were reviewed. The core body temperature cooling rates conferred by MSI were generally classified as ideal (n = 23) with a range of ~0.01 to 0.35 °C min(-1). In contrast, all HFI treatments resulted in unacceptably slow core body temperature cooling rates (~0.01 to 0.05 °C min(-1)). Based upon the extensive field of research supporting immersion of large body surface areas and comparable logistics of establishing HFI or MSI, it is recommended that fire and rescue management reassess their approach to fireground rehabilitation of responders. Specifically, we question the use of HFI to rapidly lower firefighter core body temperature during rest periods. By utilising MSI to restore firefighter Tc to safe working levels, fire and rescue services would adopt an evidence based approach to maintaining operational capability during arduous, sustained responses. While the optimal MSI protocol will be determined by the specifics of an individual response, maximising the body surface area immersed in circulated water of up to 26 °C for 15 min is likely to return firefighter Tc to safe working levels during rest periods. Utilising cooler water temperatures will expedite Tc cooling and minimise immersion duration.
The impact of cancer drug wastage on economic evaluations.
Truong, Judy; Cheung, Matthew C; Mai, Helen; Letargo, Jessa; Chambers, Alexandra; Sabharwal, Mona; Trudeau, Maureen E; Chan, Kelvin K W
2017-09-15
The objective of this study was to determine the impact of modeling cancer drug wastage in economic evaluations because wastage can result from single-dose vials on account of body surface area- or weight-based dosing. Intravenous chemotherapy drugs were identified from the pan-Canadian Oncology Drug Review (pCODR) program as of January 2015. Economic evaluations performed by drug manufacturers and pCODR were reviewed. Cost-effectiveness analyses and budget impact analyses were conducted for no-wastage and maximum-wastage scenarios (ie, the entire unused portion of the vial was discarded at each infusion). Sensitivity analyses were performed for a range of body surface areas and weights. Twelve drugs used for 17 indications were analyzed. Wastage was reported (ie, assumptions were explicit) in 71% of the models and was incorporated into 53% by manufacturers; this resulted in a mean incremental cost-effectiveness ratio increase of 6.1% (range, 1.3%-14.6%). pCODR reported and incorporated wastage for 59% of the models, and this resulted in a mean incremental cost-effectiveness ratio increase of 15.0% (range, 2.6%-48.2%). In the maximum-wastage scenario, there was a mean increase in the incremental cost-effectiveness ratio of 24.0% (range, 0.0%-97.2%), a mean increase in the 3-year total incremental budget costs of 26.0% (range, 0.0%-83.1%), and an increase in the 3-year total incremental drug budget cost of approximately CaD $102 million nationally. Changing the mean body surface area or body weight caused 45% of the drugs to have a change in the vial size and/or quantity, and this resulted in increased drug costs. Cancer drug wastage can increase drug costs but is not uniformly modeled in economic evaluations. Cancer 2017;123:3583-90. © 2017 American Cancer Society. © 2017 American Cancer Society.
Exception Points and Body Size Contribute to Gender Disparity in Liver Transplantation.
Nephew, Lauren D; Goldberg, David S; Lewis, James D; Abt, Peter; Bryan, Mathew; Forde, Kimberly A
2017-08-01
Women are significantly less likely than men to receive a liver transplant and more likely to die on the waitlist. We investigated potential reasons for these disparities, including match run positioning and organ declines caused by small stature of female recipients. We analyzed data from the United Network of Organ Sharing registry of candidates placed on the waitlist from May 10, 2007, through June 17, 2013. Primary outcomes included ranked in first position on a match run, having an organ declined while in first position, declining an organ while in first position because of size mismatch between donor and recipient (body surface area discordance), and death or becoming too sick for liver transplantation. Among 64,995 patients on the waitlist for liver transplantation, 23.1% of men and 15.6% of women received exception points (P < .001). Women listed without exception points were less likely than men to be ranked first (odds ratio [OR], 0.93; 95% CI, 0.88-0.99). Women who achieved first position were more likely to decline an organ than men (OR, 1.15; 95% CI, 1.06-1.26); this difference was reduced after we accounted for recipient body surface area (OR, 1.08; 95% CI, 0.98-1.19). Women with a single organ decline were more likely than men with a single organ decline to die or become too sick for transplantation (OR, 1.26; 95% CI, 1.12-1.41). The difference was reduced after we accounted for exception points (OR, 1.16; 95% CI, 1.12-1.21) and recipient body surface area (OR, 1.01; 95% CI, 0.96-1.06). In an analysis of data from the United Network of Organ Sharing registry, we found that women when compared with men on the waitlist for liver transplantation are disadvantaged by an imbalance in exception point allocation and organ declines because of small stature. Copyright © 2017 AGA Institute. Published by Elsevier Inc. All rights reserved.
[New methods for determining the relative load due to physical effort of the human body].
Szubert, Józef; Szubert, Sławomir; Koszada-Włodarczyk, Wiesława; Bortkiewicz, Alicja
2014-01-01
The relative physical load (% VO2max) is the quotient of oxygen uptake (Vo2) during physical effort and maximum oxygen uptake (VO2max) by the human body. For this purpose the stress test must be performed. The relative load shows a high correlation with minute ventilation, cardiac output, heart rate, stroke volume, increased concentrations of catecholamines in the blood, inner temperature, weight, height and human body surface area. The relative load is a criterion for the maximum workloads admissible for healthy and sick workers. Besides, the classification of effort can be more precise when based on the relative load than on the energy output. Based on our own and international empirical evidence and the laws of heat transfer and fluid mechanics, a model of temperature control system has been developed, involving the elements of human cardiovascular and respiratory systems. Using this model, we have been able to develop our own methods of determining the relative load, applying only the body core temperature (Tw) or heart rate within one minute (HR), body mass (m), height (H), and body surface area (AD) instead of VO,max. The values of the relative physical load (% VO2max) obtained by using our own methods do not differ significantly from those obtained by other methods and by other researchers. The developed methods for determining the relative physical load (% VO2max) do not require the exercise test to be performed, therefore, they may be considered (after verification in an experimental study) a feasible alternative to current methods.
Woelmer, Whitney; Kao, Yu-Chun; Bunnell, David B.; Deines, Andrew M.; Bennion, David; Rogers, Mark W.; Brooks, Colin N.; Sayers, Michael J.; Banach, David M.; Grimm, Amanda G.; Shuchman, Robert A.
2016-01-01
Prediction of primary production of lentic water bodies (i.e., lakes and reservoirs) is valuable to researchers and resource managers alike, but is very rarely done at the global scale. With the development of remote sensing technologies, it is now feasible to gather large amounts of data across the world, including understudied and remote regions. To determine which factors were most important in explaining the variation of chlorophyll a (Chl-a), an indicator of primary production in water bodies, at global and regional scales, we first developed a geospatial database of 227 water bodies and watersheds with corresponding Chl-a, nutrient, hydrogeomorphic, and climate data. Then we used a generalized additive modeling approach and developed model selection criteria to select models that most parsimoniously related Chl-a to predictor variables for all 227 water bodies and for 51 lakes in the Laurentian Great Lakes region in the data set. Our best global model contained two hydrogeomorphic variables (water body surface area and the ratio of watershed to water body surface area) and a climate variable (average temperature in the warmest model selection criteria to select models that most parsimoniously related Chl-a to predictor variables quarter) and explained ~ 30% of variation in Chl-a. Our regional model contained one hydrogeomorphic variable (flow accumulation) and the same climate variable, but explained substantially more variation (58%). Our results indicate that a regional approach to watershed modeling may be more informative to predicting Chl-a, and that nearly a third of global variability in Chl-a may be explained using hydrogeomorphic and climate variables.
Dirty snowball - now is too primitive for a scientific description of comets
NASA Astrophysics Data System (ADS)
Kochemasov, G.
Success of the "Deep Space 1" scientists which acquired excellent pictures of comet Borrelli, brings comets into the family of small celestial bodies with common regularities of shaping. Often attracted accidental impact process never can explain constantly repeated shapes of small bodies. Understanding their shaping is important in view of coming missions to small bodies. "Orbits make structures". This fundamental notion is unfolded into 4 theorems of planetary tectonics [1]: 1. Celestial bodies are dichotomic; 2. -" - are sectoral; 3. -"- are granular; 4. Angular momenta of different level blocks tend to be equal. All these general rules of shaping and structurization are a consequence of interferences of warping any body standing planetary waves due to inertia forces acting in any moving in non-circular orbit body. Dichotomy is the most global tectonic feature due to the fundamental waves (wave 1). It is typical to all planetary spheres. In Earth it is in the core, mantle, crust, atmosphere. At Venus it is very pronounced in the crust and in atmosphere: lying Y-feature and inverse C-feature in the cloud layer. Coherent martian lithosphere- atmosphere dichotomies are well known. In small bodies the dichotomy is specifically pronounced as ubiquitous convexo -concave shape. Most detailed studied at Eros this shape was also observed at comet Halley and recently at Borrelli. Borrelli's convex extended half is strongly jagged (not easy to find a place for landing!), the contracted concave half spits out tremendous tail. Surface areas around the tail outlets are whitish and lighter than surroundings. It seems that the gas-dust material squeezed out of interiors not only disappears in space but leaves traces on the concave surface. The concave hemisphere has shorter radius than the convex one and tends to compensate loosing angular momentum by denser material extracted from interiors (Theorem 4 [1];compare with the basaltic Pacific hemisphere opposed by the granitic continental one). The arctic-antarctic symptom - an opposition of sharp and blunt ends (Theorem 2) - is perfectly presented at Borrelli. It seems that the blunt end is rather smooth and whiter than the sharp end: again denser material from interiors tends to be on surface (compare basic Arctic and granitic Antarctic). This kind of cometary surfaces probably is m ore suitable for landing and sampling because of relative smoothness and the deeper material exposed on surface. A granular structurization (Theorem 3) is distinguished almost on the whole surface. Crossing lineaments marking rows of equidimensional dark and light spots ("craters") are distinct mainly on the darker areas. Ref.: [1] Kochemasov G. (1999) Geophys. Res. Abstr.,v.1, #3, 700.
Implicit Three-Dimensional Geo-Modelling Based on HRBF Surface
NASA Astrophysics Data System (ADS)
Gou, J.; Zhou, W.; Wu, L.
2016-10-01
Three-dimensional (3D) geological models are important representations of the results of regional geological surveys. However, the process of constructing 3D geological models from two-dimensional (2D) geological elements remains difficult and time-consuming. This paper proposes a method of migrating from 2D elements to 3D models. First, the geological interfaces were constructed using the Hermite Radial Basis Function (HRBF) to interpolate the boundaries and attitude data. Then, the subsurface geological bodies were extracted from the spatial map area using the Boolean method between the HRBF surface and the fundamental body. Finally, the top surfaces of the geological bodies were constructed by coupling the geological boundaries to digital elevation models. Based on this workflow, a prototype system was developed, and typical geological structures (e.g., folds, faults, and strata) were simulated. Geological modes were constructed through this workflow based on realistic regional geological survey data. For extended applications in 3D modelling of other kinds of geo-objects, mining ore body models and urban geotechnical engineering stratum models were constructed by this method from drill-hole data. The model construction process was rapid, and the resulting models accorded with the constraints of the original data.
Johnson, E.A.; Pierce, F.W.
1990-01-01
The Tongue River Member of the Paleocene Fort Union Formation is an important coal-bearing sedimentary unit in the Powder River Basin of Wyoming and Montana. We studied the depositional environments of a portion of this member at three sites 20 km apart in the southeastern part of the basin. Six lithofacies are recognized that we assign to five depositional facies categorized as either channel or interchannel-wetlands environments. (1) Type A sandstone is cross stratified and occurs as lenticular bodies with concave-upward basal surfaces; these bodies are assigned to the channel facies interpreted to be the product of low-sinuosity streams. (2) Type B sandstone occurs in parallel-bedded units containing mudrock partings and fossil plant debris; these units constitute the levee facies. (3) Type C sandstone typically lacks internal structure and occurs as tabular bodies separating finer grained deposits; these bodies represent the crevasse-splay facies. (4) Gray mudrock is generally nonlaminated and contains ironstone concretions; these deposits constitute the floodplain facies. (5) Carbonaceous shale and coal are assigned to the swamp facies. We recognize two styles of stream deposition in our study area. Laterally continuous complexes of single and multistoried channel bodies occur at our middle study site and we interpret these to be the deposits of sandy braided stream systems. In the two adjacent study sites, single and multistoried channel bodies are isolated in a matrix of finer-grained interchannel sediment suggesting deposition by anastomosed streams. A depositional model for our study area contains northwest-trending braided stream systems. Avulsions of these systems created anastomosed streams that flowed into adjacent interchannel areas. We propose that during late Paleocene a broad alluvial plain existed on the southeastern flank of the Powder River Basin. The braided streams that crossed this surface were tributaries to a northward-flowing, basin-axis trunk stream that existed to the west. ?? 1990.
Treatment of vitiligo with the topical Janus kinase inhibitor ruxolitinib.
Rothstein, Brooke; Joshipura, Deep; Saraiya, Ami; Abdat, Rana; Ashkar, Huda; Turkowski, Yana; Sheth, Vaneeta; Huang, Victor; Au, Shiu Chung; Kachuk, Courtney; Dumont, Nicole; Gottlieb, Alice B; Rosmarin, David
2017-06-01
Existing therapies for vitiligo are limited in efficacy and can be associated with undesirable side effects. Topical Janus kinase inhibitors may offer a new therapeutic option for vitiligo. We sought to assess the role of topical ruxolitinib 1.5% cream, a Janus kinase inhibitor, in vitiligo treatment. This 20-week, open-label, proof-of-concept trial of twice-daily topical ruxolitinib 1.5% cream was conducted in 12 patients with a minimum of 1% affected body surface area of vitiligo. The primary outcome was percent improvement in Vitiligo Area Scoring Index from baseline to week 20. Of 12 patients screened, 11 were enrolled and 9 completed the study (54.5% men; mean age, 52 years). Four patients with significant facial involvement at baseline had a 76% improvement in facial Vitiligo Area Scoring Index scores at week 20 (95% confidence interval, 53-99%; P = .001). A 23% improvement in overall Vitiligo Area Scoring Index scores was observed in all enrolled patients at week 20 (95% confidence interval, 4-43%; P = .02). Three of 8 patients responded on body surfaces and 1 of 8 patients responded on acral surfaces. Adverse events were minor, including erythema, hyperpigmentation, and transient acne. Limitations of the study include the small sample size and open-label study design. Topical ruxolitinib 1.5% cream provided significant repigmentation in facial vitiligo and may offer a valuable new treatment for vitiligo. Copyright © 2017 American Academy of Dermatology, Inc. Published by Elsevier Inc. All rights reserved.
Using thermal-infrared imagery to delineate ground-water discharge
Banks, W.S.L.; Paylor, R.L.; Hughes, W.B.
1996-01-01
On March 8 and 9, 1992, a thermal-infrared-multispectral scanner (TIMS) was flown over two military ordnance disposal facilities at the Edgewood Area of Aberdeen Proving Ground, Maryland. The data, collected bythe National Aeronautics and Space Administration, in cooperation with the U.S. Army and the U.S. Geological Survey, were used to locate ground-water discharge zones in surface water. The images from the flight show areas where ground-water discharge is concentrated, as well as areas of diffuse discharge. Concentrated discharge is predominant in isolated or nearly isolated ponds and creeks in the study area. Diffuse dicharge is found near parts of the shoreline where the study area meets the surrounding estuaries of the Chesapeake Bay and the Gunpowder River. The average temperature for surface water, measured directly in the field, and the average temperature, calculated from atmospherically corrected TIMS images, was 10.6??C (Celsius) at the first of two sites. Potentiometric surface maps of both field sites show discharge toward the nontidal marshes, the estuaries which surround the field sites, and creeks which drain into the estuaries. The average measured temperature of ground water at both sites was 10.7??C. The calculated temperature from the TIMS imagery at both sites where ground-water discharge is concentrated within a surface-water body is 10.4??C. In the estuaries which surround the field sites, field measurements of temperature were made resulting in an average temperature of 9.0??C. The average calculated TIMS temperature from the estuaries was 9.3??C. Along the shoreline at the first site and within 40 to 80 meters of the western and southern shores of the second site, water was 1?? to 2??C warmer than water more than 80 meters away. The pattern of warmer water grading to cooler water in an offshore direction could result from diffuse ground-water discharge. Tonal differences in the TIMS imagery could indicate changes in surface-water temperatures. These tonal differences can be interpreted to delineate the location and extent of ground-water discharge to bodies of surface water.
Numerical simulations of rough contacts between viscoelastic materials
NASA Astrophysics Data System (ADS)
Spinu, S.; Cerlinca, D.
2017-08-01
The durability of the mechanical contact is often plagued by surface-related phenomena like rolling contact fatigue, wear or crack propagation, which are linked to the important gradients of stress arising in the contacting bodies due to interaction at the asperity level. The semi-analytical computational approach adopted in this paper is based on a previously reported algorithm capable of simulating the contact between bodies with arbitrary limiting surfaces and viscoelastic behaviour, which is enhanced and adapted for the contact of real surfaces with microtopography. As steep slopes at the asperity level inevitably lead to localized plastic deformation at the tip of the asperities that are first brought into contact, the viscoelastic behaviour is amended by limiting the maximum value of the pressure on the contact area to that of the material hardness, according to the Tabor equation. In this manner, plasticity is considered in a simplified manner that assures the knowledge of the contact area and of the pressure distribution without estimation of the residual state. The main advantage of this approach is the preservation of the algorithmic complexity, allowing the simulation of very fine meshes capable of capturing particular features of the investigated contacting surface. The newly advanced model is expected to predict the contact specifics of rough surfaces as resulting from various manufacturing processes, thus assisting the design of durable machine elements using elastomers or rubbers.
NASA Technical Reports Server (NTRS)
1980-01-01
NASA's Voyager 1 took this high resolution color image of Rhea just before the spacecraft's closest approach to the Saturnian moon on Nov. 12, 1980 from a range of 128,000 kilometers (79,500 miles). The area shown is one of the most heavily cratered on Rhea, and indicates an ancient surface dating back to the period immediately following the formation of the planets 4.5 billion years ago. The photograph shows surface features about 2.5 kilometers (1.5 miles) in diameter, similar to a view of Earth's Moon through a telescope. Other areas of Rhea's surface are deficient in the very large (100 kilometers or 62 miles or larger) craters, indicating a change in the nature of the impacting bodies and an early period of surface activity. White areas on the edges of several of the craters in the upper right corner are probably fresh ice exposed on steep slopes or possibly deposited by volatiles leaking from fractured regions. The Voyager Project is managed for NASA by the Jet Propulsion Laboratory, Pasadena, California.
Establishing water body areal extent trends in interior Alaska from multi-temporal Landsat data
Rover, Jennifer R.; Ji, Lei; Wylie, Bruce K.; Tieszen, Larry L.
2012-01-01
An accurate approach is needed for monitoring, quantifying and understanding surface water variability due to climate change. Separating inter- and intra-annual variances from longer-term shifts in surface water extents due to contemporary climate warming requires repeat measurements spanning a several-decade period. Here, we show that trends developed from multi-date measurements of the extents of more than 15,000 water bodies in central Alaska using Landsat Multispectral Scanner (MSS), Thematic Mapper (TM) and Enhanced Thematic Mapper Plus (ETM+) data (1979–2009) were highly influenced by the quantity and timing of the data. Over the 30-year period from 1979 to 2009, the study area had a net decrease (p < 0.05) in the extents of 3.4% of water bodies whereas 86% of water bodies exhibited no significant change. The Landsat-derived dataset provides an opportunity for additional research assessing the drivers of lake and wetland change in this region.
An equivalent body surface charge model representing three-dimensional bioelectrical activity
NASA Technical Reports Server (NTRS)
He, B.; Chernyak, Y. B.; Cohen, R. J.
1995-01-01
A new surface-source model has been developed to account for the bioelectrical potential on the body surface. A single-layer surface-charge model on the body surface has been developed to equivalently represent bioelectrical sources inside the body. The boundary conditions on the body surface are discussed in relation to the surface-charge in a half-space conductive medium. The equivalent body surface-charge is shown to be proportional to the normal component of the electric field on the body surface just outside the body. The spatial resolution of the equivalent surface-charge distribution appears intermediate between those of the body surface potential distribution and the body surface Laplacian distribution. An analytic relationship between the equivalent surface-charge and the surface Laplacian of the potential was found for a half-space conductive medium. The effects of finite spatial sampling and noise on the reconstruction of the equivalent surface-charge were evaluated by computer simulations. It was found through computer simulations that the reconstruction of the equivalent body surface-charge from the body surface Laplacian distribution is very stable against noise and finite spatial sampling. The present results suggest that the equivalent body surface-charge model may provide an additional insight to our understanding of bioelectric phenomena.
Vitamin D production after UVB exposure - a comparison of exposed skin regions.
Osmancevic, Amra; Sandström, Katarina; Gillstedt, Martin; Landin-Wilhelmsen, Kerstin; Larkö, Olle; Wennberg Larkö, Ann-Marie; F Holick, Michael; Krogstad, Anne-Lene
2015-02-01
Cholecalciferol is an essential steroid produced in the skin by solar ultraviolet B radiation (UVB 290-315nm). Skin production of cholecalciferol depends on factors affecting UVB flux, age and exposed skin area. Serum cholecalciferol and 25-hydroxyvitamin D3 [25(OH)D3] concentrations were measured after UVB irradiation of 3 different skin areas to compare the skin capacity to produce vitamin D in different anatomic sites in the same individuals. Ten voluntary Caucasians (skin photo type II & III, aged 48±12years (±SD)) were exposed to broadband UVB (280-320nm) between February and April. Hands and face, upper body and whole body were exposed to a suberythemic dose of UVB (median 101mJ/cm(2) (min 66, max 143)) (for 3 subsequent days 24h apart with a wash out period of about 3weeks (median 18days (min 11, max 25)) between the exposures of respective area. Serum concentrations of cholecalciferol and 25(OH)D3, were measured immediately before the first and 24h after the last dose of radiation. There was a significantly higher increase in serum cholecalciferol after UVB exposure of the two larger skin areas compared to face and hands, but no difference in increase was found between upper body and whole body exposures. Exposure of a larger skin area was superior to small areas and gave greater increase in both serum cholecalciferol and serum 25(OH)D3 concentrations. However, exposure of face and hands, i.e. only 5% of the body surface area, was capable of increasing serum concentrations of 25(OH)D3. Copyright © 2015 Elsevier B.V. All rights reserved.
Hanna, Melisha G.; Becker-Cohen, Rachel; Langman, Craig B.
2010-01-01
Background and observations: The current denominator for dosing dialysis is the urea distribution volume (V). Normalizing Kt/V to body surface area (S) has been proposed, but the implications of doing this in children have not been examined. Design, setting, participants, & measurements: Dialysis dose given to children and adolescents was calculated in terms of conventional V-based scaling and surface-area-normalized standard Kt/V (SAN-stdKt/V) calculated as stdKt/V·(Vant/S)/17.5, where Vant was an anthropometric estimate of V calculated using the Morgenstern equation. Formal 2-pool modeling was used to compute all dialysis adequacy outputs. Results: In 34 children (11 girls, 23 boys) dialyzed 3 times a week, age range 1.4 to 18 years, the mean delivered equilibrated Kt/V (eKt/V) was 1.40, and the mean stdKt/V was 2.49, both of which tended to be higher in younger children. The ratio of Vant to S was 15.6 ± 2.69 and was strongly associated with age between ages 2 and 16. SAN-stdKt/V averaged 2.21 and was strongly correlated with age between ages 2 and 16. If one considers a desired target for SAN-stdKt/V to be 2.45, all children less than 10 years of age were below target, despite having relatively high values of eKt/V and stdKt/V. Conclusions: If a surface-area-based denominator were to be adopted for dialysis dosing, most children under 10 years of age would receive markedly less dialysis than adolescent patients and would require 6- to 8-hour hemodialysis sessions or, for the youngest children, treatments given more frequently than 3 times/wk. PMID:20299373
Daugirdas, John T; Hanna, Melisha G; Becker-Cohen, Rachel; Langman, Craig B
2010-05-01
BACKGROUND AND OBSERVATIONS: The current denominator for dosing dialysis is the urea distribution volume (V). Normalizing Kt/V to body surface area (S) has been proposed, but the implications of doing this in children have not been examined. Dialysis dose given to children and adolescents was calculated in terms of conventional V-based scaling and surface-area-normalized standard Kt/V (SAN-stdKt/V) calculated as stdKt/V x (Vant/S)/17.5, where Vant was an anthropometric estimate of V calculated using the Morgenstern equation. Formal 2-pool modeling was used to compute all dialysis adequacy outputs. In 34 children (11 girls, 23 boys) dialyzed 3 times a week, age range 1.4 to 18 years, the mean delivered equilibrated Kt/V (eKt/V) was 1.40, and the mean stdKt/V was 2.49, both of which tended to be higher in younger children. The ratio of Vant to S was 15.6 +/- 2.69 and was strongly associated with age between ages 2 and 16. SAN-stdKt/V averaged 2.21 and was strongly correlated with age between ages 2 and 16. If one considers a desired target for SAN-stdKt/V to be 2.45, all children less than 10 years of age were below target, despite having relatively high values of eKt/V and stdKt/V. If a surface-area-based denominator were to be adopted for dialysis dosing, most children under 10 years of age would receive markedly less dialysis than adolescent patients and would require 6- to 8-hour hemodialysis sessions or, for the youngest children, treatments given more frequently than 3 times/wk.
NASA Technical Reports Server (NTRS)
Carroll, M. L.; DiMiceli, C. M.; Townshend, J. R. G.; Sohlberg, R. A.; Elders, A. I.; Devadiga, S.; Sayer, A. M.; Levy, R. C.
2016-01-01
Data from the Moderate Resolution Imaging Spectro-radiometer (MODIS)on-board the Earth Observing System Terra and Aqua satellites are processed using a land water mask to determine when an algorithm no longer needs to be run or when an algorithm needs to follow a different pathway. Entering the fourth reprocessing (Collection 6 (C6)) the MODIS team replaced the 1 km water mask with a 500 m water mask for improved representation of the continental surfaces. The new water mask represents more small water bodies for an overall increase in water surface from 1 to 2 of the continental surface. While this is still a small fraction of the overall global surface area the increase is more dramatic in certain areas such as the Arctic and Boreal regions where there are dramatic increases in water surface area in the new mask. MODIS products generated by the on-going C6 reprocessing using the new land water mask show significant impact in areas with high concentrations of change in the land water mask. Here differences between the Collection 5 (C5) and C6 water masks and the impact of these differences on the MOD04 aerosol product and the MOD11 land surface temperature product are shown.
Chen, H; Zhao, T; Wang, Y; Sun, Y C
2016-10-18
To establish a digital method for production of custom trays for edentulous jaws using fused deposition modeling (FDM) based on three-dimensional (3D) scans of primary jaw impressions, and to quantitatively evaluate the accuracy. A red modeling compound was used to make a primary impression of a standard maxillary edentulous plaster model. The plaster model data and the primary impression tissue surface data were obtained using a 3D scanner. In the Gemomagic 2012 software, several commands were used, such as interactive drawing curves, partial filling holes, local offset, bodily offset, bodily shell, to imitate clinical procedures of drawing tray boundary, filling undercut, buffer, and generating the tray body. A standard shape of tray handle was designed and attached to the tray body and the data saved as stereolithography (STL) format. The data were imported into a computer system connected to a 3D FDM printing device, and the custom tray for the edentulous jaw model was printed layer upon layer at 0.2 mm/layer, using polylactic acid (PLA) filament, the tissue surface of the tray was then scanned with a 3D scanner. The registration functions of Geomagic 2012 was used to register the 3-dimentional surface data, and the point-cloud deviation analysis function of the Imageware 13.0 system was used to analyze the error. The CAD data of the custom tray was registered to the scan data, and the error between them was analyzed. The scanned plaster model surface was registered to the scanned impression surface and the scanned tray data to the CAD data, then the distance between the surface of plaster model and the scanned tissue surface of the custom tray was measured in Imageware 13.0. The deviation between the computer aided design data and the scanned data of the custom tray was (0.17±0.20) mm, with (0.19±0.18) mm in the primary stress-bearing area, (0.17±0.22) mm in the secondary stress-bearing area, (0.30±0.29) mm in the border seal area, (0.08±0.06) mm in the buffer area; the space between the tissue faces of the plaster model and the scanned tissue surface of custom tray was (1.98±0.40) mm, with (1.85±0.24) mm in the primary stress-bearing area, (1.86±0.26) mm in the secondary stress-bearing area, (1.77±0.36) mm in the border seal area, (2.90±0.26) mm in the buffer area. With 3D scanning, computer aided design and FDM technology, an efficient means of custom tray production was established.
Echocardiographic left ventricular masses in distance runners and weight lifters
NASA Technical Reports Server (NTRS)
Longhurst, J. C.; Gonyea, W. J.; Mitchell, J. H.; Kelly, A. R.
1980-01-01
The relationships of different forms of exercise training to left ventricular mass and body mass are investigated by echocardiographic studies of weight lifters, long-distance runners, and comparatively sized untrained control subjects. Left ventricular mass determinations by the Penn convention reveal increased absolute left ventricular masses in long-distance runners and competitive weight lifters with respect to controls matched for age, body weight, and body surface area, and a significant correlation between ventricular mass and lean body mass. When normalized to lean body mass, the ventricular masses of distance runners are found to be significantly higher than those of the other groups, suggesting that dynamic training elevates left ventricular mass compared to static training and no training, while static training increases ventricular mass only to the extent that lean body mass is increased.
A modified surgical technique in the management of eyelid burns: a case series
2011-01-01
Introduction Contractures, ectropion and scarring, the most common sequelae of skin grafts after eyelid burn injuries, can result in corneal exposure, corneal ulceration and even blindness. Split-thickness or full-thickness skin grafts are commonly used for the treatment of acute eyelid burns. Plasma exudation and infection are common early complications of eyelid burns, which decrease the success rate of grafts. Case presentation We present the cases of eight patients, two Chinese women and six Chinese men. The first Chinese woman was 36 years old, with 70% body surface area second or third degree flame burn injuries involving her eyelids on both sides. The other Chinese woman was 28 years old, with sulfuric acid burns on her face and third degree burn on her eyelids. The six Chinese men were aged 21, 31, 38, 42, 44, and 55 years, respectively. The 38-year-old patient was transferred from the ER with 80% body surface area second or third degree flame burn injuries and third degree burn injuries to his eyelids. The other five men were all patients with flame burn injuries, with 7% to 10% body surface area third degree burns and eyelids involved. All patients were treated with a modified surgical procedure consisting of separation and loosening of the musculus orbicularis oculi between tarsal plate and septum orbital, followed by grafting a large full-thickness skin graft in three days after burn injury. The use of our modified surgical procedure resulted in 100% successful eyelid grafting on first attempt, and all our patients were in good condition at six-month follow-up. Conclusions This new surgical technique is highly successful in treating eyelid burn injuries, especially flame burn injuries of the eyelid. PMID:21843322
Recipient body surface area as a predictor of posttransplant renal allograft evolution.
Moreso, F; Serón, D; Anunciada, A I; Hueso, M; Ramón, J M; Fulladosa, X; Gil-Vernet, S; Alsina, J; Grinyó, J M
1998-03-15
The aim of the present study was to analyze whether minor differences in recipient body surface area have any predictive value on renal allograft evolution. For this study, we considered 236 pairs of recipients who received a kidney from the same donor at our center between March 1985 and December 1995. Pairs in whom at least one patient presented any of the following events were excluded: graft loss during the first year of follow-up, diabetes mellitus, noncompliance with treatment, chronic pyelonephritis, and recurrent or de novo glomerulonephritis. Recipients of each pair were classified as large or small according to their body surface area (BSA). The percentage difference of BSA in each pair was calculated, and two cohorts of pairs were defined: BSA difference < or = 10% (n=76 pairs) and BSA difference >10% (n=70 pairs). The large recipients of the cohort with a BSA difference >10% showed a higher incidence of posttransplant delayed graft function (22/70 vs. 12/70, P=0.075), hypertension at 1 year of follow-up (51/70 vs. 35/70, P=0.006), and a higher serum creatinine level at 1-year follow-up (173 vs. 142 micromol/L, P=0.003), whereas in the cohort with a BSA difference < or = 10%, posttransplant evolution in large and small recipients was not different. Multivariate analysis showed that recipient BSA was an independent predictor of delayed graft function, posttransplant hypertension, and serum creatinine at 1-year follow-up. Relatively small differences in recipient BSA influence renal allograft evolution. Consequently, our data support that recipient size should be taken into consideration for renal allograft allocation.
Quantifying the contribution of airborne lead (Pb) to surface waters in northeastern Oklahoma
NASA Astrophysics Data System (ADS)
Li, J. J.; McDonald, J.; Curtis, H.
2017-12-01
The northeastern Oklahoma, home to a number of Native American Tribes, is part of the well-known Tri-State Mining District (TSMD). One hundred years of mining production in this area has left numerous, large chat piles on the surrounding environment, directly affecting the town of Picher and many other tribe communities. Byproducts of the mining, including lead (Pb)-contain dust have been transported to the atmosphere and seeped into groundwater, lakes, ponds and rivers. Due to this contamination, many children in the area have elevated levels of Pb in their bodies. Despite a substantial number of studies and efforts on the restoration of heavy metal contamination in this area (e.g. The Tar Creek Superfund Site, EPA), no studies have attempted to distinguish the contributions of different sources, particularly from the atmospheric deposition, of heavy metals to the aquatic environment. In this study, we analyzed the atmospheric deposition of Pb from 4 sites located close to the chat piles for the period of 2010 to 2016. Our preliminary analysis showed that atmospheric Pb has a strong seasonal pattern with two peak times in early spring and late fall, which largely correspond with the dry periods in the this area. Atmospheric concentrations of Pb monitored at these sites frequently exceeded 0.15 μg/m3, the National Ambient Air Quality Standards (NAAQS) standard for ambient air Pb, and was generally 10 times higher than atmospheric Pb monitored in Tulsa, OK, a major metropolitan area 150 km southwest of the monitoring sites. With the known Pb flux to the sediments of the water bodies, we estimated that the contribution of Pb from the atmospheric deposition to the surface waters is up to 25%, depending on the distance of the water bodies to concentrated distribution of the chat piles.
An Investigation on Ground Electrodes of Capacitive Coupling Human Body Communication.
Mao, Jingna; Yang, Huazhong; Zhao, Bo
2017-08-01
Utilizing the body surface as the signal transmission medium, capacitive coupling human body communication (CC-HBC) can achieve a much higher energy efficiency than conventional wireless communications in future wireless body area network (WBAN) applications. Under the CC-HBC scheme, the body surface serves as the forward signal path, whereas the backward path is formed by the capacitive coupling between the ground electrodes (GEs) of transmitter (TX) and receiver (RX). So the type of communication benefits from a low forward loss, while the backward loss depending on the GE coupling strength dominates the total transmission loss. However, none of the previous works have shown a complete research on the effects of GEs. In this paper, all kinds of GE effects on CC-HBC are investigated by both finite element method (FEM) analysis and human body measurement. We set the TX GE and RX GE at different heights, separation distances, and dimensions to study the corresponding influence on the overall signal transmission path loss. In addition, we also investigate the effects of GEs with different shapes and different TX-to-RX relative angles. Based on all the investigations, an analytical model is derived to evaluate the GE related variations of channel loss in CC-HBC.
Peterson, Jocelyn A.; Caress, Mary E.; Denton, David K.; Spear, James M.
1983-01-01
Although ultramafic terranes such as that underlying the Mount Eddy and Castle Crags Roadless Areas may contain chromite, nickel, platinum-group metals, cobalt, and asbestos, there are no significant identified concentrations of these resources within the roadless areas. Platinum-group metals were sought but not detected in stream-sediment concentrates, although this does not rule out their possible occurrence. Nickel and cobalt did not occur in anomalous amounts although slightly higher nickel values in the northern part of the Mount Eddy Roadless Area may indicate low-grade mineralization within small dunite bodies, if the nickel occurs in sulfide phases rather than in olivine. The region has been examined on the surface for chromite and asbestos. Although both minerals are ubiquitous there is probably only a low potential for asbestos on the basis of the small size of veins at the surface. Only a few small areas of chromite were noted in the Mount Eddy Roadless Area; without subsurface data, however, any dunite body must be considered to have potential for chromite. The geochemical data for boron, barium, and mercury plus abundant quartz veining in gabbro and hornblende diorite suggest pervasive hydrothermal alteration, which could have formed mercury or vein gold deposits. Sand and gravel deposits occur in the Castle Crags Roadless Area but they cannot compete with superior deposits closer to markets. At a borrow pit northwest of the Mount Eddy Roadless Area, sheared serpentinite is quarried for road metal; similar rock occurs in the roadless area; however, better material is more readily available elsewhere.
Dragon Skin - How It Changed Body Armor Testing in the United States Army
2015-09-01
flat front surface for accurate and consistent measurement of depression depths. After the clay has been worked into the rigid frame, the clay backing...material will be simultaneously conditioned for use in filling depressions created by the drop testing and building up areas to fit non-planar body...clay consistency shall be such that a depression of [redacted] in depth is obtained when a [redacted] cylindrical steel mass (see Figure 4
Rodrigues, Wellington Francisco; Miguel, Camila Botelho; Napimoga, Marcelo Henrique; Oliveira, Carlo Jose Freire; Lazo-Chica, Javier Emilio
2014-01-01
Strategies for obtaining reliable results are increasingly implemented in order to reduce errors in the analysis of human and veterinary samples; however, further data are required for murine samples. Here, we determined an average factor from the murine body surface area for the calculation of biochemical renal parameters, assessed the effects of storage and freeze-thawing of C57BL/6 mouse samples on plasmatic and urinary urea, and evaluated the effects of using two different urea-measurement techniques. After obtaining 24 h urine samples, blood was collected, and body weight and length were established. The samples were evaluated after collection or stored at -20°C and -70°C. At different time points (0, 4, and 90 days), these samples were thawed, the creatinine and/or urea concentrations were analyzed, and samples were restored at these temperatures for further measurements. We show that creatinine clearance measurements should be adjusted according to the body surface area, which was calculated based on the weight and length of the animal. Repeated freeze-thawing cycles negatively affected the urea concentration; the urea concentration was more reproducible when using the modified Berthelot reaction rather than the ultraviolet method. Our findings will facilitate standardization and optimization of methodology as well as understanding of renal and other biochemical data obtained from mice.
Rizzo, Maria; Arfuso, Francesca; Alberghina, Daniela; Giudice, Elisabetta; Gianesella, Matteo; Piccione, Giuseppe
2017-10-01
The aim of this study was to evaluate the influence of moderate treadmill exercise session on body surface and core temperature in dog measured by means of two infrared instruments. Ten Jack Russell Terrier/Miniature Pinscher mixed-breed dogs were subjected to 15min of walking, 10min of trotting and 10min of gallop. At every step, body surface temperature (T surface ) was measured on seven regions (neck, shoulder, ribs, flank, back, internal thigh and eye) using two different methods, a digital infrared camera (ThermaCam P25) and a non-contact infrared thermometer (Infrared Thermometer THM010-VT001). Rectal temperature (T rectal ) and blood samples were collected before (T0) and after exercise (T3). Blood samples were tested for red blood cell (RBC), hemoglobin concentration (Hb) and hematocrit (Hct). A significant effect of exercise in all body surface regions was found, as measured by both infrared methods. The temperature obtained in the eye and the thigh area were higher with respect to the other studied regions throughout the experimental period (P<0.0001). RBC, Hb, Hct and T rectal values were higher at T3 (P<0.05). Statistically significant higher temperature values measured by infrared thermometer was found in neck, shoulder, ribs, flank, back regions respect to the values obtained by digital infrared camera (P<0.0001). The results obtained in this study showed that both internal and surface temperatures are influenced by physical exercise probably due to muscle activity and changes in blood flow in dogs. Both infrared instruments used in this study have proven to be useful in detecting surface temperature variations of specific body regions, however factors including type and color of animal hair coat must be taken into account in the interpretation of data obtained by thermography methodology. Copyright © 2017 Elsevier Ltd. All rights reserved.
New Mathematical Model for the Surface Area of the Left Ventricle by the Truncated Prolate Spheroid
Vale, Marcos de Paula; Martinez, Carlos Barreira
2017-01-01
The main aim of this study was the formula application of the superficial area of a truncated prolate spheroid (TPS) in Cartesian coordinates in obtaining a cardiac parameter that is not so much discussed in literature, related to the left ventricle (LV) surface area of the human heart, by age and sex. First we obtain a formula for the area of a TPS. Then a simple mathematical model of association of the axes measures of a TPS with the axes of the LV is built. Finally real values of the average dimensions of the humans LV are used to measure surface areas approximations of this heart chamber. As a result, the average superficial area of LV for normal patients is obtained and it is observed that the percentage differences of areas between men and women and their consecutive age groups are constant. A strong linear correlation between the obtained areas and the ventricular volumes normalized by the body areas was observed. The obtained results indicate that the superficial area of the LV, besides enabling a greater knowledge of the geometrical characteristics of the human LV, may be used as one of the normality cardiac verification criteria and be useful for medical and biological applications. PMID:28547001
NASA Astrophysics Data System (ADS)
Mohammad Sadeghi, Majid; Kececi, Emin Faruk; Bilsel, Kerem; Aralasmak, Ayse
2017-03-01
Medical imaging has great importance in earlier detection, better treatment and follow-up of diseases. 3D Medical image analysis with CT Scan and MRI images has also been used to aid surgeries by enabling patient specific implant fabrication, where having a precise three dimensional model of associated body parts is essential. In this paper, a 3D image processing methodology for finding the plane on which the glenoid surface has a maximum surface area is proposed. Finding this surface is the first step in designing patient specific shoulder joint implant.
The Evolution and Development of Cephalopod Chambers and Their Shape
Lemanis, Robert; Korn, Dieter; Zachow, Stefan; Rybacki, Erik; Hoffmann, René
2016-01-01
The Ammonoidea is a group of extinct cephalopods ideal to study evolution through deep time. The evolution of the planispiral shell and complexly folded septa in ammonoids has been thought to have increased the functional surface area of the chambers permitting enhanced metabolic functions such as: chamber emptying, rate of mineralization and increased growth rates throughout ontogeny. Using nano-computed tomography and synchrotron radiation based micro-computed tomography, we present the first study of ontogenetic changes in surface area to volume ratios in the phragmocone chambers of several phylogenetically distant ammonoids and extant cephalopods. Contrary to the initial hypothesis, ammonoids do not possess a persistently high relative chamber surface area. Instead, the functional surface area of the chambers is higher in earliest ontogeny when compared to Spirula spirula. The higher the functional surface area the quicker the potential emptying rate of the chamber; quicker chamber emptying rates would theoretically permit faster growth. This is supported by the persistently higher siphuncular surface area to chamber volume ratio we collected for the ammonite Amauroceras sp. compared to either S. spirula or nautilids. We demonstrate that the curvature of the surface of the chamber increases with greater septal complexity increasing the potential refilling rates. We further show a unique relationship between ammonoid chamber shape and size that does not exist in S. spirula or nautilids. This view of chamber function also has implications for the evolution of the internal shell of coleoids, relating this event to the decoupling of soft-body growth and shell growth. PMID:26963712
Higashi, K; Ishikawa, T; Shige, H; Tomiyasu, K; Yoshida, H; Ito, T; Nakajima, K; Yonemura, A; Sawada, S; Nakamura, H
1997-10-01
The acute effects of olive oil, milk fat and safflower oil on postprandial lipemia and remnant lipoprotein metabolism were investigated. Eight Healthy male volunteers randomly underwent three types of oral fat-vitamin A loading tests. The test drink was a mixture of retinyl palmitate (RP)(50,000 IU of aqueous vitamin A/m2 body surface area) and one of the three types of oils (40 g of fat/m2 body surface area): olive oil (70.7% oleic acid of total fatty acids); milk fat (69.3% saturated fatty acid); safflower oil (74.2% linoleic acid). Olive oil significantly increased plasma triacylglycerol and RP concentrations 4 hours after fat loading, as compared to other fats. Increases of remnant like particle concentrations were higher after olive oil than after the other two fats. These results show that olive oil increases the magnitude of postprandial chylomicrons and chylomicron remnants compared to milk fat and safflower oil.
NASA Astrophysics Data System (ADS)
Camacho, A. G.; Fernández, J.; Cannavò, F.
2018-02-01
We present a software package to carry out inversions of surface deformation data (any combination of InSAR, GPS, and terrestrial data, e.g., EDM, levelling) as produced by 3D free-geometry extended bodies with anomalous pressure changes. The anomalous structures are described as an aggregation of elementary cells (whose effects are estimated as coming from point sources) in an elastic half space. The linear inverse problem (considering some simple regularization conditions) is solved by means of an exploratory approach. This software represents the open implementation of a previously published methodology (Camacho et al., 2011). It can be freely used with large data sets (e.g. InSAR data sets) or with data coming from small control networks (e.g. GPS monitoring data), mainly in volcanic areas, to estimate the expected pressure bodies representing magmatic intrusions. Here, the software is applied to some real test cases.
NASA Technical Reports Server (NTRS)
Salomonson, V. V.; Rango, A.
1973-01-01
The application of ERTS-1 imagery to the conservation and control of water resources is discussed. The effects of exisiting geology and land use in the water shed area on the hydrologic cycle and the general characteristics of runoff are described. The effects of floods, snowcover, and glaciers are analyzed. The use of ERTS-1 imagery to map surface water and wetland areas to provide rapid inventorying over large regions of water bodies is reported.
Modeling the human body shape in bioimpedance vector measurements.
Kim, Chul-Hyun; Park, Jae-Hyeon; Kim, Hyeoijin; Chung, Sochung; Park, Seung-Hun
2010-01-01
Human body shape, called somatotype, has described physique of humans in health and sports applications, relating anthropometric measurements to fatness, muscularity and linearity in a structured way. Here we propose a new method based on bioelectric impedance vector analysis (BIVA) of R/H and Xc/H to represent the cross-sectional area and the body cell mass in a given surface area (m(2)) respectively. Data from six gymnasts, ten dancers, and five fashion models, groups whose physiques and BMI ranges were distinct from one another, were measured for somatotype and BIVA. The models had highest values of the R/H and gymnasts the lowest. Xc/H was lower in models than in the dancers and gymnasts (p < 0.05). Phase angle was lowest in the models and highest in gymnasts significantly (p < 0.05). Pattern analysis from BIVA corresponded to the calculated anthropometric somatotype supporting the hypothesis that BIA's resistance (R) and reactance (Xc) are meaningful discriminates of body size and function which relate to physique in a purposive way.
Respiratory and olfactory turbinal size in canid and arctoid carnivorans.
Green, Patrick A; Van Valkenburgh, Blaire; Pang, Benison; Bird, Deborah; Rowe, Timothy; Curtis, Abigail
2012-12-01
Within the nasal cavity of mammals is a complex scaffold of paper-thin bones that function in respiration and olfaction. Known as turbinals, the bones greatly enlarge the surface area available for conditioning inspired air, reducing water loss, and improving olfaction. Given their functional significance, the relative development of turbinal bones might be expected to differ among species with distinct olfactory, thermoregulatory and/or water conservation requirements. Here we explore the surface area of olfactory and respiratory turbinals relative to latitude and diet in terrestrial Caniformia, a group that includes the canid and arctoid carnivorans (mustelids, ursids, procyonids, mephitids, ailurids). Using high-resolution computed tomography x-ray scans, we estimated respiratory and olfactory turbinal surface area and nasal chamber volume from three-dimensional virtual models of skulls. Across the Caniformia, respiratory surface area scaled isometrically with estimates of body size and there was no significant association with climate, as estimated by latitude. Nevertheless, one-on-one comparisons of sister taxa suggest that arctic species may have expanded respiratory turbinals. Olfactory surface area scaled isometrically among arctoids, but showed positive allometry in canids, reflecting the fact that larger canids, all of which are carnivorous, had relatively greater olfactory surface areas. In addition, among the arctoids, large carnivorous species such as the polar bear (Ursus maritimus) and wolverine (Gulo gulo) also displayed enlarged olfactory turbinals. More omnivorous caniform species that feed on substantial quantities of non-vertebrate foods had less expansive olfactory turbinals. Because large carnivorous species hunt widely dispersed prey, an expanded olfactory turbinal surface area may improve a carnivore's ability to detect prey over great distances using olfactory cues. © 2012 The Authors. Journal of Anatomy © 2012 Anatomical Society.
Respiratory and olfactory turbinal size in canid and arctoid carnivorans
Green, Patrick A; Valkenburgh, Blaire; Pang, Benison; Bird, Deborah; Rowe, Timothy; Curtis, Abigail
2012-01-01
Within the nasal cavity of mammals is a complex scaffold of paper-thin bones that function in respiration and olfaction. Known as turbinals, the bones greatly enlarge the surface area available for conditioning inspired air, reducing water loss, and improving olfaction. Given their functional significance, the relative development of turbinal bones might be expected to differ among species with distinct olfactory, thermoregulatory and/or water conservation requirements. Here we explore the surface area of olfactory and respiratory turbinals relative to latitude and diet in terrestrial Caniformia, a group that includes the canid and arctoid carnivorans (mustelids, ursids, procyonids, mephitids, ailurids). Using high-resolution computed tomography x-ray scans, we estimated respiratory and olfactory turbinal surface area and nasal chamber volume from three-dimensional virtual models of skulls. Across the Caniformia, respiratory surface area scaled isometrically with estimates of body size and there was no significant association with climate, as estimated by latitude. Nevertheless, one-on-one comparisons of sister taxa suggest that arctic species may have expanded respiratory turbinals. Olfactory surface area scaled isometrically among arctoids, but showed positive allometry in canids, reflecting the fact that larger canids, all of which are carnivorous, had relatively greater olfactory surface areas. In addition, among the arctoids, large carnivorous species such as the polar bear (Ursus maritimus) and wolverine (Gulo gulo) also displayed enlarged olfactory turbinals. More omnivorous caniform species that feed on substantial quantities of non-vertebrate foods had less expansive olfactory turbinals. Because large carnivorous species hunt widely dispersed prey, an expanded olfactory turbinal surface area may improve a carnivore's ability to detect prey over great distances using olfactory cues. PMID:23035637
Effects of clouds on the Earth radiation budget; Seasonal and inter-annual patterns
NASA Technical Reports Server (NTRS)
Dhuria, Harbans L.
1992-01-01
Seasonal and regional variations of clouds and their effects on the climatological parameters were studied. The climatological parameters surface temperature, solar insulation, short-wave absorbed, long wave emitted, and net radiation were considered. The data of climatological parameters consisted of about 20 parameters of Earth radiation budget and clouds of 2070 target areas which covered the globe. It consisted of daily and monthly averages of each parameter for each target area for the period, Jun. 1979 - May 1980. Cloud forcing and black body temperature at the top of the atmosphere were calculated. Interactions of clouds, cloud forcing, black body temperature, and the climatological parameters were investigated and analyzed.
Allometric scaling of infraorbital surface topography in Homo.
Maddux, Scott D; Franciscus, Robert G
2009-02-01
Infraorbital morphology is often included in phylogenetic and functional analyses of Homo. The inclusion of distinct infraorbital configurations, such as the "canine fossa" in Homo sapiens or the "inflated" maxilla in Neandertals, is generally based on either descriptive or qualitative assessments of this morphology, or simple linear chord and subtense measurements. However, the complex curvilinear surface of the infraorbital region has proven difficult to quantify through these traditional methods. In this study, we assess infraorbital shape and its potential allometric scaling in fossil Homo (n=18) and recent humans (n=110) with a geometric morphometric method well-suited for quantifying complex surface topographies. Our results indicate that important aspects of infraorbital shape are correlated with overall infraorbital size across Homo. Specifically, individuals with larger infraorbital areas tend to exhibit relatively flatter infraorbital surface topographies, taller and narrower infraorbital areas, sloped inferior orbital rims, anteroinferiorly oriented maxillary body facies, posteroinferiorly oriented maxillary processes of the zygomatic, and non-everted lateral nasal margins. In contrast, individuals with smaller infraorbital regions generally exhibit relatively depressed surface topographies, shorter and wider infraorbital areas, projecting inferior orbital rims, posteroinferiorly oriented maxillary body facies, anteroinferiorly oriented maxillary processes, and everted lateral nasal margins. These contrasts form a continuum and only appear dichotomized at the ends of the infraorbital size spectrum. In light of these results, we question the utility of incorporating traditionally polarized infraorbital morphologies in phylogenetic and functional analyses without due consideration of continuous infraorbital and facial size variation in Homo. We conclude that the essentially flat infraorbital surface topography of Neandertals is not unique and can be explained, in part, as a function of possessing large infraorbital regions, the ancestral condition for Homo. Furthermore, it appears likely that the diminutive infraorbital region of anatomically modern Homo sapiens is a primary derived trait, with related features such as depressed infraorbital surface topography expressed as correlated secondary characters.
An Impact Ejecta Behavior Model for Small, Irregular Bodies
NASA Technical Reports Server (NTRS)
Richardson, J. E.; Melosh, H. J.; Greenberg, R.
2003-01-01
In recent years, spacecraft observations of asteroids 951 Gaspra, 243 Ida, 253 Mathilde, and 433 Eros have shown the overriding dominance of impact processes with regard to the structure and surface morphology of these small, irregular bodies. In particular, impact ejecta play an important role in regolith formation, ranging from small particles to large blocks, as well as surface feature modification and obscuration. To investigate these processes, a numerical model has been developed based upon the impact ejecta scaling laws provided by Housen, Schmidt, and Holsapple, and modified to more properly simulate the late-stage ejection velocities and ejecta plume shape changes (ejection angle variations) shown in impact cratering experiments. A target strength parameter has also been added to allow the simulation of strength-dominated cratering events in addition to the more familiar gravity-dominated cratering events. The result is a dynamical simulation which models -- via tracer particles -- the ejecta plume behavior, ejecta blanket placement, and impact crater area resulting from a specified impact on an irregularly shaped target body, which is modeled in 3-dimensional polygon fashion. This target body can be placed in a simple rotation state about one of its principal axes, with the impact site and projectile/target parameters selected by the user. The gravitational force from the irregular target body (on each tracer particle) is determined using the polygonized surface (polyhedron) gravity technique developed by Werner.
Imai, Hisao; Kuwako, Tomohito; Kaira, Kyoichi; Masuda, Tomomi; Miura, Yosuke; Seki, Kaori; Sakurai, Reiko; Utsugi, Mitsuyoshi; Shimizu, Kimihiro; Sunaga, Noriaki; Tomizawa, Yoshio; Ishihara, Shinichi; Ishizuka, Takao; Mogi, Akira; Hisada, Takeshi; Minato, Koichi; Takise, Atsushi; Saito, Ryusei; Yamada, Masanobu
2017-03-01
In patients with epidermal growth factor receptor (EGFR)-mutated, advanced, non-small cell lung cancer (NSCLC), common gefitinib-sensitive EGFR mutations that predict a greater response to therapy include the exon 19 deletion and L858R point mutation. The objective of this study was to evaluate whether body surface area (BSA), body weight (BW), and body mass index (BMI) affect gefitinib efficacy in such patients. The medical charts of 138 consecutive patients with advanced NSCLC harboring sensitive EGFR mutations, who underwent gefitinib treatment, were reviewed. The median BSA and BW were used as cutoff values to evaluate their impact on gefitinib efficacy. BMI was categorized as underweight (<18.5 kg/m 2 ), normal (18.5-25 kg/m 2 ), and overweight (≥25 kg/m 2 ). The median BSA and BW were 1.48 m 2 and 53 kg, respectively. The overall response rate, progression-free survival (PFS), and overall survival (OS) were 65.2%, 12.2, and 24.2 months, respectively. There were no significant differences in clinical outcomes according to BSA, BW, or BMI alone. Subgroup analysis based on the mutation type and BSA revealed no significant differences in PFS between the groups; however, the median OS in those with exon 19 deletion combined with low BSA was significantly favorable compared with the other groups. Gefitinib efficacy in patients with NSCLC harboring sensitive EGFR mutations did not differ according to BSA, BW, and BMI. However, OS was superior in patients with both the exon 19 deletion and low BSA.
Foppa, Murilo; Arora, Garima; Gona, Philimon; Ashrafi, Arman; Salton, Carol J; Yeon, Susan B; Blease, Susan J; Levy, Daniel; O'Donnell, Christopher J; Manning, Warren J; Chuang, Michael L
2016-03-01
Cardiac magnetic resonance is uniquely well suited for noninvasive imaging of the right ventricle. We sought to define normal cardiac magnetic resonance reference values and to identify the main determinants of right ventricular (RV) volumes and systolic function using a modern imaging sequence in a community-dwelling, longitudinally followed cohort free of clinical cardiovascular and pulmonary disease. The Framingham Heart Study Offspring cohort has been followed since 1971. We scanned 1794 Offspring cohort members using steady-state free precession cardiac magnetic resonance and identified a reference group of 1336 adults (64±9 years, 576 men) free of prevalent cardiovascular and pulmonary disease. RV trabeculations and papillary muscles were considered cavity volume. Men had greater RV volumes and cardiac output before and after indexation to body size (all P<0.001). Women had higher RV ejection fraction than men (68±6% versus 64±7%; P<0.0001). RV volumes and cardiac output decreased with advancing age. There was an increase in raw and height-indexed RV measurements with increasing body mass index, but this trend was weakly inverted after indexation of RV volumes to body surface area. Sex, age, height, body mass index, and heart rate account for most of the variability in RV volumes and function in this community-dwelling population. We report sex-specific normative values for RV measurements among principally middle-aged and older adults. RV ejection fraction is greater in women. RV volumes increase with body size, are greater in men, and are smaller in older people. Body surface area seems to be appropriate for indexation of cardiac magnetic resonance-derived RV volumes. © 2016 American Heart Association, Inc.
Decentralized or onsite wastewater treatment (OWT) systems have long been implicated in being a major source of N inputs to surface and ground waters and numerous regulatory bodies have promulgated strict total N (TN) effluent standards in N-sensitive areas. These standards, howe...
Hoffmann, Gundula; Schmidt, Mariana; Ammon, Christian; Rose-Meierhöfer, Sandra; Burfeind, Onno; Heuwieser, Wolfgang; Berg, Werner
2013-06-01
The aim of this study was to assess the variability of temperatures measured by a video-based infrared camera (IRC) in comparison to rectal and vaginal temperatures. The body surface temperatures of cows and calves were measured contactless at different body regions using videos from the IRC. Altogether, 22 cows and 9 calves were examined. The differences of the measured IRC temperatures among the body regions, i.e. eye (mean: 37.0 °C), back of the ear (35.6 °C), shoulder (34.9 °C) and vulva (37.2 °C), were significant (P < 0.01), except between eye and vulva (P = 0.99). The quartile ranges of the measured IRC temperatures at the 4 above mentioned regions were between 1.2 and 1.8 K. Of the investigated body regions the eye and the back of the ear proved to be suitable as practical regions for temperature monitoring. The temperatures of these 2 regions could be gained by the use of the maximum temperatures of the head and body area. Therefore, only the maximum temperatures of both areas were used for further analysis. The data analysis showed an increase for the maximum temperature measured by IRC at head and body area with an increase of rectal temperature in cows and calves. The use of infrared thermography videos has the advantage to analyze more than 1 picture per animal in a short period of time, and shows potential as a monitoring system for body temperatures in cattle.
1991-06-01
Anderson and A. Keys, Densitometric analysis of body composition : revision of some quantitative assumptions. Ann. N.Y. Acad. Sci. 110: 113-140, 1963. 6...cylinder at midpoint between adjacent compartments [cm] A, = effective radiating area of the body surface [M’] BF,, n rate of blood flow through...Sutalation for Predicting the Time Cou~rse of ’Thermal and Cardiovrascular Responses to varicus Cmtinations of Heat Stresso Clothing and Excercise 6. AUTHOR
1998-08-10
In the Tile Fabrication Shop, Tony Rollins, with United Space Alliance, cuts a High-Temperature Reusable Surface Insulation (HRSI) tile on a gun stock contour milling machine. About 70 percent of a Space Shuttle orbiter’s external surface is shielded from heat by a network of more than 24,000 tiles formed from a silica fiber compound. HRSI tiles cover the lower surface of the orbiter, areas around the forward windows, upper body flap, the base heat shield, the "eyeballs" on the front of the Orbital Maneuvering System (OMS) pods, and the leading and trailing edges of the vertical stabilizer and the rudder speed brake. They are generally 6 inches square, but may also be as large as 12 inches square in some areas, and 1 to 5 inches thick. More advanced materials such as Flexible Insulation Blankets have replaced tiles on some upper surfaces of the orbiter
Tony Rollins prepares a new tile for the Space Shuttle orbiter
NASA Technical Reports Server (NTRS)
1998-01-01
In the Tile Fabrication Shop, Tony Rollins, with United Space Alliance, cuts a High-Temperature Reusable Surface Insulation (HRSI) tile on a gun stock contour milling machine. About 70 percent of a Space Shuttle orbiter's external surface is shielded from heat by a network of more than 24,000 tiles formed from a silica fiber compound. HRSI tiles cover the lower surface of the orbiter, areas around the forward windows, upper body flap, the base heat shield, the 'eyeballs' on the front of the Orbital Maneuvering System (OMS) pods, and the leading and trailing edges of the vertical stabilizer and the rudder speed brake. They are generally 6 inches square, but may also be as large as 12 inches square in some areas, and 1 to 5 inches thick. More advanced materials such as Flexible Insulation Blankets have replaced tiles on some upper surfaces of the orbiter.
NASA Astrophysics Data System (ADS)
Dallmann, N. A.; Carlsten, B. E.; Stonehill, L. C.
2017-12-01
Orbiting nuclear spectrometers have contributed significantly to our understanding of the composition of solar system bodies. Gamma rays and neutrons are produced within the surfaces of bodies by impacting galactic cosmic rays (GCR) and by intrinsic radionuclide decay. Measuring the flux and energy spectrum of these products at one point in an orbit elucidates the elemental content of the area in view. Deconvolution of measurements from many spatially registered orbit points can produce detailed maps of elemental abundances. In applying these well-established techniques to small and irregularly shaped bodies like Phobos, one encounters unique challenges beyond those of a large spheroid. Polar mapping orbits are not possible for Phobos and quasistatic orbits will realize only modest inclinations unavoidably limiting surface coverage and creating North-South ambiguities in deconvolution. The irregular shape causes self-shadowing both of the body to the spectrometer but also of the body to the incoming GCR. The view angle to the surface normal as well as the distance between the surface and the spectrometer is highly irregular. These characteristics can be synthesized into a complicated and continuously changing measurement system point spread function. We have begun to explore different model-based, statistically rigorous, iterative deconvolution methods to produce elemental abundance maps for a proposed future investigation of Phobos. By incorporating the satellite orbit, the existing high accuracy shape-models of Phobos, and the spectrometer response function, a detailed and accurate system model can be constructed. Many aspects of this model formation are particularly well suited to modern graphics processing techniques and parallel processing. We will present the current status and preliminary visualizations of the Phobos measurement system model. We will also discuss different deconvolution strategies and their relative merit in statistical rigor, stability, achievable resolution, and exploitation of the irregular shape to partially resolve ambiguities. The general applicability of these new approaches to existing data sets from Mars, Mercury, and Lunar investigations will be noted.
The sign, magnitude and potential drivers of change in surface water extent in Canadian tundra
NASA Astrophysics Data System (ADS)
Carroll, Mark L.; Loboda, Tatiana V.
2018-04-01
The accelerated rate of warming in the Arctic has considerable implications for all components of ecosystem functioning in the High Northern Latitudes. Changes to hydrological cycle in the Arctic are particularly complex as the observed and projected warming directly impacts permafrost and leads to variable responses in surface water extent which is currently poorly characterized at the regional scale. In this study we take advantage of the 30 plus years of medium resolution (30 m) Landsat data to quantify the spatial patterns of change in the extent of water bodies in the Arctic tundra in Nunavut, Canada. Our results show a divergent pattern of change—growing surface water extent in the north-west and shrinking in the south-east—which is not a function of the overall distribution of surface water in the region. The observed changes cannot be explained by latitudinal stratification, nor is it explained by available temperature and precipitation records. However, the sign of change appears to be consistent within the boundaries of individual watersheds defined by the Canada National Hydro Network based on the random forest analysis. Using land cover maps as a proxy for ecological function we were able to link shrinking tundra water bodies to substrates with shallow soil layers (i.e. bedrock and barren landscapes) with a moderate correlation (R 2 = 0.46, p < 0.001). It has previously been reported that rising temperatures are driving a deepening of the active layer and shrinking water bodies can be associated with coarse textured soils beneath the lakes. Unlike water bodies with soil, or gravel, beneath them the water bodies that are situated on bedrock are likely cut off from ground water. Drying water bodies clustered in areas of bedrock and thin soils points to evaporation as an important driver of surface water decrease in these cases.
Infrared thermal imaging as a method to evaluate heat loss in newborn lambs.
Labeur, L; Villiers, G; Small, A H; Hinch, G N; Schmoelzl, S
2017-12-01
Thermal imaging technology has been identified as a potential method for non-invasive study of thermogenesis in the neonatal lamb. In comparison to measurement of the core body temperature, infrared thermography may observe thermal loss and thermogenesis linked to subcutaneous brown fat depots. This study aimed to identify a suitable method to measure heat loss in the neonatal lamb under a cold challenge. During late pregnancy (day 125), ewes were subjected to either shearing (n=15) or mock handling (sham-shorn for 2min mimicking the shearing movements) (n=15). Previous studies have shown an increase in brown adipose tissue deposition in lambs born to ewes shorn during pregnancy and we hypothesized that the shearing treatment would impact thermoregulatory capacities in newborn lambs. Lambs born to control ewes (n=14; CONTROL) and shorn ewes (n=13; SHORN) were subjected to a cold challenge of 1h duration at 4h after birth. During the cold challenge, thermography images were taken every 10min, from above, at a fixed distance from the dorsal midline. On each image, four fixed-size areas were identified (shoulder, mid loin, hips and rump) and the average and maximum temperatures of each recorded. In all lambs, body surface temperature decreased over time. Overall the SHORN lambs appeared to maintain body surface temperature better than CONTROL lambs, while CONTROL lambs appeared to have higher core temperature. At 30min post cold challenge SHORN lambs tended to have higher body surface temperatures than lambs (P=0.0474). Both average and maximum temperatures were highest at the hips. Average temperature was lowest at the shoulder (P<0.05), while maximum temperatures were lowest at both shoulder and rump (P<0.005). These results indicate that lambs born to shorn ewes maintained their radiated body surface temperature better than CONTROL lambs. In conjunction with core temperature changes under cold challenge, this insight will allow us to understand whether increased body surface temperature contributes to increased overall heat loss or whether increased body surface temperature is indeed a mechanism contributing to maintenance of core body temperature under cold challenge conditions. This study has confirmed the utility of infrared thermography images to capture and identify different levels of thermoregulatory capacity in newborn lambs. Copyright © 2017 Elsevier Ltd. All rights reserved.
Lean body mass is better than body surface area in correcting GFR.
Si, Hongwei; Lei, Zhili; Li, Sijin; Liu, Jianzhong; Geng, Jianhua; Chen, Shengzu
2013-05-01
The Gates-based renography (gGFR) and plasma-based clearance rate (pGFR) are conventionally corrected with body surface area (BSA). Limited studies indicated that the lean body mass (LBM) might be better than BSA in correcting pGFR. Therefore, we suggest that LBM is also better in correcting gGFR and improve the correlation coefficient between gGFR and pGFR. During June 2009 and December 2010, the gGFR and pGFR of 63 patients with hydronephrosis were measured and corrected with BSA and LBM, respectively. The correlation and regression analyses were conducted to illustrate the power of BSA and LBM correction. In a paired t test, there was no significant difference between pGFR and gGFR in patients with stages 1 and 2, although this was significant in stages 3 and 4. However, neither LBM nor BSA correction could eliminate the difference. In all patients (N = 63), the correlation coefficient (r) between pGFR and gGFR was 0.794 (P <; 0.001). After the BSA and LBM correction, r was improved to 0.809 and 0.828, respectively. In all patients, the regression line of pGFR(LBM) - gGFR(LBM) was nearer to the original point and its slope closer to 1 than pGFR(BSA) - gGFR(BSA) and pGFR - gGFR. Similar results were found in the analysis of most stages and subgroups. The commonsense of BSA correction should be seriously reevaluated. Lean body mass can better improve the correlation coefficient between paired GFRs than BSA can and it can be suitable in the correction.
Weaver, R D; Gerbi, B J; Dusenbery, K E
1995-09-30
To determine acceptable dose variation using thermoluminescent dosimeters (TLD) in the treatment of Mycosis Fungoides with total skin electron beam (TSEB) irradiation. From 1983 to 1993, 22 patients were treated with total skin electron beam therapy in the standing position. A six-field technique was used to deliver 2 Gy in two days, treating 4 days per week, to a total dose of 35 to 40 Gy using a degraded 9 MeV electron beam. Thermoluminescent dosimeters were placed on several locations of the body and the results recorded. The variations in these readings were analyzed to determine normal dose variation for various body locations during TSEB. The dose to flat surfaces of the body was essentially the same as the dose to the prescription point. The dose to tangential surfaces was within +/- 10% of the prescription dose, but the readings showed much more variation (up to 24%). Thin areas of the body showed large deviations from the prescription dose along with a large amount of variation in the readings (up to 22%). Special areas of the body, such as the perineum and eyelid, showed large deviations from the prescription dose with very large (up to 40%) variations in the readings. The TLD results of this study will be used as a quality assurance check for all new patients treated with TSEB. The results of the TLDs will be compared with this baseline study to determine if the delivered dose is within acceptable ranges. If the TLD results fall outside the acceptable limits established above, then the patient position can be modified or the technique itself evaluated.
Magnetic resonance imaging determination of left ventricular mass: junior Olympic weightlifters.
Fleck, S J; Pattany, P M; Stone, M H; Kraemer, W J; Thrush, J; Wong, K
1993-04-01
The relationship between left ventricular mass (LVM) and peak VO2 in junior elite Olympic-style weightlifters and sedentary subjects was investigated. Ten male weightlifters (mean +/- SE, age = 17.5 +/- 0.4 yr, wt = 72.9 +/- 3.3 kg) and 15 sedentary males (age = 18.8 +/- 0.4 yr, wt = 69.6 +/- 2.0 kg) served as subjects. Peak VO2 was measured using a continuous, incrementally loaded bicycle ergometry protocol. LVM was measured using magnetic resonance imaging techniques. Absolute peak VO2 was not significantly different (P > or = 0.05) between the weightlifters and the control subjects (3.5 +/- 0.1 vs 3.3 +/- 0.11.min-1). Absolute LVM (g) was significantly (P < or = 0.05) correlated to absolute peak VO2 (1.min-1) in the weightlifters (r = 0.723), but not in the control subjects. No other correlations between LVM in absolute or normalized by body weight, body surface area, or fat free mass terms, and absolute peak or normalized by body weight peak VO2 were significant. The weightlifters absolute LVM was significantly greater (P < or = 0.05) than that of the controls (208.1 +/- 10.0 vs 179.7 +/- 8.4 g). LVM normalized by body weight and body surface area but not by fat free mass, was significantly greater (P < or = 0.05) in the weightlifters than the control subjects. These data indicate that LVM in junior elite weightlifters is greater than that of control subjects and absolute LVM is related to absolute peak VO2 in weightlifters but not control subjects.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arifvianto, B., E-mail: b.arifvianto@tudelft.nl; L
The present research was aimed at gaining an understanding of the porous structure changes from the green body through water leaching and sintering to titanium scaffolds. Micro-computed tomography (micro-CT) was performed to generate 3D models of titanium scaffold preforms containing carbamide space-holding particles and sintered scaffolds containing macro- and micro-pores. The porosity values and structural parameters were determined by means of image analysis. The result showed that the porosity values, macro-pore sizes, connectivity densities and specific surface areas of the titanium scaffolds sintered at 1200 °C for 3 h did not significantly deviate from those of the green structures withmore » various volume fractions of the space holder. Titanium scaffolds with a maximum specific surface area could be produced with an addition of 60–65 vol% carbamide particles to the matrix powder. The connectivity of pores inside the scaffold increased with rising volume fraction of the space holder. The shrinkage of the scaffolds prepared with > 50 vol% carbamide space holder, occurring during sintering, was caused by the reductions of macro-pore sizes and micro-pore sizes as well as the thickness of struts. In conclusion, the final porous structural characteristics of titanium scaffolds could be estimated from those of the green body. - Highlights: •Porous structures of green body and sintered titanium scaffolds was studied. •Porous structures of both samples were quantitatively characterized with micro-CT. •Porous structures of scaffolds could be controlled from the green body. •Shrinkage mechanisms of titanium scaffolds during sintering was established.« less
Aravinna, Piyal; Priyantha, Namal; Pitawala, Amarasooriya; Yatigammana, Sudharma K
2017-01-02
Pesticides applied on agricultural lands reach groundwater by leaching, and move to offsite water bodies by direct runoff, erosion and spray drift. Therefore, an assessment of the mobility of pesticides in water resources is important to safeguard such resources. Mobility of pesticides on agricultural lands of Mahaweli river basin in Sri Lanka has not been reported to date. In this context, the mobility potential of 32 pesticides on surface water and groundwater was assessed by widely used pesticide risk indicators, such as Attenuation Factor (AF) index and the Pesticide Impact Rating Index (PIRI) with some modifications. Four surface water bodies having greater than 20% land use of the catchment under agriculture, and shallow groundwater table at 3.0 m depth were selected for the risk assessment. According to AF, carbofuran, quinclorac and thiamethoxam are three most leachable pesticides having AF values 1.44 × 10 -2 , 1.87 × 10 -3 and 5.70 × 10 -4 , respectively. Using PIRI, offsite movement of pesticides by direct runoff was found to be greater than with the erosion of soil particles for the study area. Carbofuran and quinclorac are most mobile pesticides by direct runoff with runoff fractions of 0.01 and 0.08, respectively, at the studied area. Thiamethoxam and novaluron are the most mobile pesticides by erosion with erosion factions of 1.02 × 10 -4 and 1.05 × 10 -4 , respectively. Expected pesticide residue levels in both surface and groundwater were predicted to remain below the USEPA health advisory levels, except for carbofuran, indicating that pesticide pollution is unlikely to exceed the available health guidelines in the Mahaweli river basin in Sri Lanka.
Rainfall-runoff model for prediction of waterborne viral contamination in a small river catchment
NASA Astrophysics Data System (ADS)
Gelati, E.; Dommar, C.; Lowe, R.; Polcher, J.; Rodó, X.
2013-12-01
We present a lumped rainfall-runoff model aimed at providing useful information for the prediction of waterborne viral contamination in small rivers. Viral contamination of water bodies may occur because of the discharge of sewage effluents and of surface runoff over areas affected by animal waste loads. Surface runoff is caused by precipitation that cannot infiltrate due to its intensity and to antecedent soil water content. It may transport animal feces to adjacent water bodies and cause viral contamination. We model streamflow by separating it into two components: subsurface flow, which is produced by infiltrated precipitation; and surface runoff. The model estimates infiltrated and non-infiltrated precipitation and uses impulse-response functions to compute the corresponding fractions of streamflow. The developed methodologies are applied to the Glafkos river, whose catchment extends for 102 km2 and includes the city of Patra. Streamflow and precipitation observations are available at a daily time resolution. Waterborne virus concentration measurements were performed approximately every second week from the beginning of 2011 to mid 2012. Samples were taken at several locations: in river water upstream of Patras and in the urban area; in sea water at the river outlet and approximately 2 km south-west of Patras; in sewage effluents before and after treatment. The rainfall-runoff model was calibrated and validated using observed streamflow and precipitation data. The model contribution to waterborne viral contamination prediction was benchmarked by analyzing the virus concentration measurements together with the estimated surface runoff values. The presented methodology may be a first step towards the development of waterborne viral contamination alert systems. Predicting viral contamination of water bodies would benefit sectors such as water supply and tourism.
Two forms of touch perception in the human brain.
Spitoni, Grazia Fernanda; Galati, Gaspare; Antonucci, Gabriella; Haggard, Patrick; Pizzamiglio, Luigi
2010-12-01
We compared the judgment of distance between two simultaneous tactile stimuli applied to different body parts, with judgment of intensity of skin contact of the very same stimulation. Results on normal subjects showed that both tasks bilaterally activate parietal and frontal areas. However, the evaluation of distances on the body surface selectively activated the angular gyrus and the temporo-parieto-occipital junction in the right hemisphere. The different involvement of the brain areas in the two tactile tasks is interpreted as the need for using a Mental Body Representation (MBR) in the distance task, while the judgment of the intensity of skin deflection can be performed without the mediation of the MBR. The present study suggests that the cognitive processes underlying the two tasks are supported by partially different brain networks. In particular, our results show that metric spatial evaluation is lateralized to the right hemisphere.
NASA Technical Reports Server (NTRS)
Stone, R. H.
1975-01-01
Kevlar-49 fairing panels were inspected and found to be performing satisfactorily after two years flight service on an Eastern and an Air Canada L-1011. Six panels are on each aircraft including sandwich and solid laminate wing-body panels, and 300 F service aft engine fairings. Some of the panels were removed from the aircraft to permit inspection of inner surfaces and fastener hole conditions. Minor defects such as surface cracks due to impact damage, small delaminated areas, elongation and fraying of fastener holes, were noted. None of these defects were considered serious enough to warrant corrective action in the opinion of airline personnel. The defects are typical for the most part of defects noted on similar fiberglass parts.
Teeth and bones: applications of surface science to dental materials and related biomaterials
NASA Astrophysics Data System (ADS)
Jones, F. H.
2001-05-01
Recent years have seen a considerable upsurge in publications concerning the surface structure and chemistry of materials with biological or biomedical applications. Within the body, gas-solid interactions become relatively less significant and solid-liquid or solid-solid interfaces dominate, providing new challenges for the surface scientist. The current paper aims to provide a timely review of the use of surface analysis and modification techniques within the biomaterials field. A broad overview of applications in a number of related areas is given with particular attention focusing on those materials commonly encountered in dentistry and oral or maxillofacial implantology. Several specific issues of current interest are discussed. The interaction between synthetic and natural solids, both in the oral environment and elsewhere in the body is important in terms of adhesion, related stresses and strains and ultimately the longevity of a dental restoration, biomedical implant, or indeed the surrounding tissue. Exposure to body fluids, of course, can also affect stability, leading to the degradation or corrosion of materials within the body. Whilst this could potentially be harmful, e.g., if cytotoxic elements are released, it may alternatively provide a route to the preferential release of beneficial substances. Furthermore, in some cases, the controlled disintegration of a biomaterial is desirable, allowing the removal of an implant, e.g., without the need for further surgery. The presence of cells in the immediate bioenvironment additionally complicates the situation. A considerable amount of current research activity is targeted at the development of coatings or surface treatments to encourage tissue growth. If this is to be achieved by stimulating enhanced cell productivity, determination of the relationship between cell function and surface composition is essential.
Introducing a New International Society of Aeolian Research
USDA-ARS?s Scientific Manuscript database
Aeolian research is long-standing and rapidly growing area of study where scientists of many disciplines meet to investigate the effects of wind on the surface of the Earth and other planetary bodies, such as Mars and Titan. Fields of study in aeolian research cover a broad spectrum ranging from dev...
NASA Astrophysics Data System (ADS)
Pathiraja, G. C.; Wijesingha, M. S.; Nanayakkara, N.
2017-05-01
Chlorpyrifos, a widely used organophosphate pesticide which can be found in surface water bodies, is harmful for human body. Thus, treating water contaminated with chlorpyrifos is important. In our previous studies, novel Ti/IrO2-SnO2 anode was successfully developed for electrochemical degradation of chlorpyrifos in chloride free water. In this study, optimization of previously developed Ti/IrO2-SnO2 anode for mineralization of chlorpyrifos was successfully performed through response surface methodology. During the optimization study, two-level factorial design was used to determine the optimal coating solutions concentration for developing the Ti/IrO2-SnO2 anode. Cyclic voltammetry and open circuit potential were performed to investigate the electrochemically active surface area and stability of these anodes. The response surface and contour plots show that 0.3 M of [Ir] and 7.5 mM of [Sn] coated electrode has both highest anodic charge and stability. Scanning Electron Microscopic (SEM) images show the evidence of having both compact and porous regions in the surface of the thin film, resulting larger surface area. Within 6 h, the best result for mineralization (55.56%) of chlorpyrifos was obtained with 0.3 M of [Ir] and 7.5 mM of [Sn] coated anode using Total organic Carbon (TOC) analyzer. Therefore, the optimum coating concentration was found as 0.3 M of [Ir] and 7.5 mM of [Sn]. It would require an energy consumption of 6 kWhm-3.
1990-10-25
Compatibility Sub- Group Steering Committee Sub- Group Chairman Wiley I. Robinson Air Force Systems Command Study Group Chairmen Electrical Interface Joe...on the surface of the body organized into groups defining the corners of a series of four -sided surface panel elements which represent a faceted...Structures Technology. In the Aeroanalysis Group , Dr. Cunningham has conducted many studies leading to devel- opments in the area of analytically
Analysis of body form using biostereometrics
NASA Technical Reports Server (NTRS)
1979-01-01
The general objective of the research was to provide the space and life sciences directorate with an improved biostereometric measurement capability. This objective was determined from the usefulness of stereophotogrametric techniques developed during the Apollo and Skylab Missions to measure body conformation, surface area, volume and relative density of astronauts. These noninvasive anthropometric measurements provided invaluable data concerning the physiological, biochemical and nutritional effects of the space environment upon the human body. The indirect nature of the technique has many advantages over other methods, and has a potential for many other applications. The stereophotographs contain an enormous amount of data which can be later reexamined should the need arise.
Kim, Yoo Chun; Oh, Kyung Hee; Edelhauser, Henry F; Prausnitz, Mark R
2015-09-01
In this work, we tested the hypothesis that particles injected into the suprachoroidal space can be localized at the site of injection or broadly distributed throughout the suprachoroidal space by controlling polymeric formulation properties. Single hollow microneedles were inserted into the sclera of New Zealand White rabbits and injected non-biodegradable fluorescently tagged nanoparticles and microparticles suspended in polymeric formulations into the suprachoroidal space of the eye. When formulated in saline, the particles were distributed over 29-42% of the suprachoroidal space immediately after injection. To spread particles over larger areas of the choroidal surface, addition of hyaluronic acid to make moderately non-Newtonian solutions increased particle spread to up to 100% of the suprachoroidal space. To localize particles at the site of injection adjacent to the ciliary body, strongly non-Newtonian polymer solutions localized particles to 8.3-20% of the suprachoroidal space, which exhibited a small increase in area over the course of two months. This study demonstrates targeted particle delivery within the suprachoroidal space using polymer formulations that spread particles over the whole choroidal surface or localized them adjacent to the ciliary body after injection. Copyright © 2015 Elsevier B.V. All rights reserved.
Protection of the Lifeless Environment in the Solar System
NASA Astrophysics Data System (ADS)
Almar, I.
The main concern of planetary protection policy is how to protect the (hypothetical) extraterrestrial life against contamination and back-contamination. There is almost no interest in the preservation of the existing lifeless surfaces of extraterrestrial bodies, although some planetary transformation plans (in order to exploit hypothetical resources) were made public a long time ago. It should be remembered that planetary environments are practically unchanged since ages and damage caused by any human intervention would be irreversible. Our intention is not to prevent any commercial utilization of Solar System resources, but to make space exploration and exploitation of resources a controlled and well planned endeavor. The three main issues connected with the protection of the lifeless space environment are the following: 1/ The scientific aspect: a limited, well defined initiative to select by scientific investigation areas and objects of highest scientific priority on different celestial bodies. 2/ The legal aspect: to start the drafting of a declaration of principles supporting the protection of selected areas and objects on celestial bodies with a solid surface. It might evolve into an international legal instrument or treaty in order to limit the "free-for-all" intervention and use of Solar System resources. 3/ The societal aspect: to initiate a large scale discussion on the possible "ethical values" of the lifeless environment.
Huckabee, M.L.; Buljan, S.T.; Neil, J.T.
1991-09-17
A powder mixture and a green body for producing a silicon nitride-based article of improved fracture toughness and strength are disclosed. The powder mixture includes (a) a bimodal silicon nitride powder blend consisting essentially of about 10-30% by weight of a first silicon nitride powder of an average particle size of about 0.2 [mu]m and a surface area of about 8-12m[sup 2]g, and about 70-90% by weight of a second silicon nitride powder of an average particle size of about 0.4-0.6 [mu]m and a surface area of about 2-4 m[sup 2]/g, (b) about 10-50 percent by volume, based on the volume of the densified article, of refractory whiskers or fibers having an aspect ratio of about 3-150 and having an equivalent diameter selected to produce in the densified article an equivalent diameter ratio of the whiskers or fibers to grains of silicon nitride of greater than 1.0, and (c) an effective amount of a suitable oxide densification aid. The green body is formed from the powder mixture, an effective amount of a suitable oxide densification aid, and an effective amount of a suitable organic binder. No Drawings
Huckabee, Marvin L.; Buljan, Sergej-Tomislav; Neil, Jeffrey T.
1991-01-01
A powder mixture and a green body for producing a silicon nitride-based article of improved fracture toughness and strength. The powder mixture includes 9a) a bimodal silicon nitride powder blend consisting essentially of about 10-30% by weight of a first silicon mitride powder of an average particle size of about 0.2 .mu.m and a surface area of about 8-12m.sup.2 g, and about 70-90% by weight of a second silicon nitride powder of an average particle size of about 0.4-0.6 .mu.m and a surface area of about 2-4 m.sup.2 /g, (b) about 10-50 percent by volume, based on the volume of the densified article, of refractory whiskers or fibers having an aspect ratio of about 3-150 and having an equivalent diameter selected to produce in the densified articel an equivalent diameter ratio of the whiskers or fibers to grains of silicon nitride of greater than 1.0, and (c) an effective amount of a suitable oxide densification aid. The green body is formed from the powder mixture, an effective amount of a suitable oxide densification aid, and an effective amount of a suitable organic binder.
Ridgway, Sam H; Carlin, Kevin P; Van Alstyne, Kaitlin R; Hanson, Alicia C; Tarpley, Raymond J
2016-01-01
We compared mature dolphins with 4 other groupings of mature cetaceans. With a large data set, we found great brain diversity among 5 different taxonomic groupings. The dolphins in our data set ranged in body mass from about 40 to 6,750 kg and in brain mass from 0.4 to 9.3 kg. Dolphin body length ranged from 1.3 to 7.6 m. In our combined data set from the 4 other groups of cetaceans, body mass ranged from about 20 to 120,000 kg and brain mass from about 0.2 to 9.2 kg, while body length varied from 1.21 to 26.8 m. Not all cetaceans have large brains relative to their body size. A few dolphins near human body size have human-sized brains. On the other hand, the absolute brain mass of some other cetaceans is only one-sixth as large. We found that brain volume relative to body mass decreases from Delphinidae to a group of Phocoenidae and Monodontidae, to a group of other odontocetes, to Balaenopteroidea, and finally to Balaenidae. We also found the same general trend when we compared brain volume relative to body length, except that the Delphinidae and Phocoenidae-Monodontidae groups do not differ significantly. The Balaenidae have the smallest relative brain mass and the lowest cerebral cortex surface area. Brain parts also vary. Relative to body mass and to body length, dolphins also have the largest cerebellums. Cortex surface area is isometric with brain size when we exclude the Balaenidae. Our data show that the brains of Balaenidae are less convoluted than those of the other cetaceans measured. Large vascular networks inside the cranial vault may help to maintain brain temperature, and these nonbrain tissues increase in volume with body mass and with body length ranging from 8 to 65% of the endocranial volume. Because endocranial vascular networks and other adnexa, such as the tentorium cerebelli, vary so much in different species, brain size measures from endocasts of some extinct cetaceans may be overestimates. Our regression of body length on endocranial adnexa might be used for better estimates of brain volume from endocasts or from endocranial volume of living species or extinct cetaceans. © 2017 The Author(s) Published by S. Karger AG, Basel.
Ridgway, Sam H.; Carlin, Kevin P.; Van Alstyne, Kaitlin R.; Hanson, Alicia C.; Tarpley, Raymond J.
2017-01-01
We compared mature dolphins with 4 other groupings of mature cetaceans. With a large data set, we found great brain diversity among 5 different taxonomic groupings. The dolphins in our data set ranged in body mass from about 40 to 6,750 kg and in brain mass from 0.4 to 9.3 kg. Dolphin body length ranged from 1.3 to 7.6 m. In our combined data set from the 4 other groups of cetaceans, body mass ranged from about 20 to 120,000 kg and brain mass from about 0.2 to 9.2 kg, while body length varied from 1.21 to 26.8 m. Not all cetaceans have large brains relative to their body size. A few dolphins near human body size have human-sized brains. On the other hand, the absolute brain mass of some other cetaceans is only one-sixth as large. We found that brain volume relative to body mass decreases from Delphinidae to a group of Phocoenidae and Monodontidae, to a group of other odontocetes, to Balaenopteroidea, and finally to Balaenidae. We also found the same general trend when we compared brain volume relative to body length, except that the Delphinidae and Phocoenidae-Monodontidae groups do not differ significantly. The Balaenidae have the smallest relative brain mass and the lowest cerebral cortex surface area. Brain parts also vary. Relative to body mass and to body length, dolphins also have the largest cerebellums. Cortex surface area is isometric with brain size when we exclude the Balaenidae. Our data show that the brains of Balaenidae are less convoluted than those of the other cetaceans measured. Large vascular networks inside the cranial vault may help to maintain brain temperature, and these nonbrain tissues increase in volume with body mass and with body length ranging from 8 to 65% of the endocranial volume. Because endocranial vascular networks and other adnexa, such as the tentorium cerebelli, vary so much in different species, brain size measures from endocasts of some extinct cetaceans may be overestimates. Our regression of body length on endocranial adnexa might be used for better estimates of brain volume from endocasts or from endocranial volume of living species or extinct cetaceans. PMID:28122370
Satellite monitoring at high spatial resolution of water bodies used for irrigation purposes
NASA Astrophysics Data System (ADS)
Baup, F.; Flanquart, S.; Marais-Sicre, C.; Fieuzal, R.
2012-04-01
In a changing climate context, with an increase of the need for food, it becomes increasingly important to improve our knowledge for monitoring agricultural surfaces by satellite for a better food management and to reduce the waste of natural resources (water storages and shortages, irrigation management, increase of soil and water salinity, soil erosion, threats on biodiversity). The main objective of this study is to evaluate the potentialities of multi-spectral and multi-resolution satellites for monitoring the temporal evolution of water bodies surfaces (mainly used for irrigation purposes). This analysis is based on the use of a series of images acquired between the years 2003 and 2011. The year 2010 is considered as a reference, with 110 acquisitions performed during the MCM'10 campaign (Multispectral Crop Monitoring 2010, http://www.cesbio.ups-tlse.fr/us/mcm.html). Those images are provided by 8 satellites (optical, thermal and RADAR) such as ALOS, TERRASAR-X, RADARSAT-2, FORMOSAT-2, SPOT-2, SPOT-4, SPOT-5, LANDSAT-5. The studied area is situated in the South-West of Toulouse in France; in a region governed by a temperate climate. The irrigated cultures represent almost 12% of the cultivated surface in 2009. The method consists in estimating the water bodies surfaces by using a generic approach suitable for all images, whatever the wavelength (optical, infrared, RADAR). The supervised parallelepiped classification allows discriminating four types of surfaces coverage: forests, water expanses, crops and bare soils. All RADAR images are filtered (Gamma) to reduce speckle effects and false detections of water bodies. In the context if the "South-West" project of the CESBIO laboratory, two spatial coverages are analyzed: SPOT 4 (4800km2) and FORMOSAT 2 (576km2). At these scales, 154 and 38 water bodies are identify. They respectively represent 4.85 km2 (0.10% of the image cover) and 2.06 km2 (0.36% of the image cover). Statistical analyses show that 8% of lakes have a surface inferior to 10 ha (0.1 km2). Temporal analyses, over the year 2010, show that only five lakes offer a strong surface dynamic (from 21% to 125% of evolution). The weak signal observed over all the other lakes are due to the banks of lakes (steep slope). The long term analyses, from 2003 to middle of 2011, show alternation of wet and dry years due to rainfalls variations. Annual cycle are also well marked showing filling and emptying phases respectively occurring in spring and at the end of summer. Filling phase is both attributed to runoff contributions over the watershed and to pumping effects. Irrigation and evaporation are the main factors during emptying phases. Two examples of water storages estimates are presented over one specific watershed. To conclude, high spatial resolution images appear suitable for mapping water bodies at fine scale. Limitations come from the form of the edge of the lake (steep or slight slope) and only 3% of lakes can be monitored over the studied area. In the following, interferometric approaches will be evaluated to estimate the height of water bodies, improving the estimate of water storage.
Determinants of heat production in newborn lambs
NASA Astrophysics Data System (ADS)
Eales, F. A.; Small, J.
1980-06-01
Measurement of summit metabolism (the maximum rate of heat production) in lambs aged 1 or 4h revealed considerable between animal variation. Summit metabolism per unit body weight decreased as body weight increased whereas summit metabolism per unit body surface area was independent of body weight. Severe pre-partum hypoxia was apparently associated with a low summit metabolism at 1 or 4h of age which made such lambs very susceptible to hypothermia. This deficiency in heat production capacity did not appear to be a permanent featuresince most lambs so affected recovered full thermoregulatory ability by 12h of age. Feeding of colostrum conferred an immediate 18% increase in summit metabolism. The significance of these findings to the prevention of hypothermia in the newborn lamb is discussed.
Destructive behavior of iron oxide in projectile impact
NASA Astrophysics Data System (ADS)
Shang, Wang; Xiaochen, Wang; Quan, Yang; Zhongde, Shan
2017-12-01
The damage strain values of Q235-A surface oxide scale were obtained by scanning electron microscopy (SEM/EDS) and universal tensile testing machine. The finite element simulation was carried out to study the destruction effects of oxidation at different impact rates. The results show that the damage value of the oxide strain is 0.08%. With the increase of the projectile velocity, the damage area of the oxide scale is increased, and the damage area is composed of the direct destruction area and the indirect failure area. The indirect damage area is caused by the stress/strain to the surrounding expansion after the impact of the steel body.
NASA Astrophysics Data System (ADS)
Tulbure, Mirela G.; Kininmonth, Stuart; Broich, Mark
2014-11-01
The concept of habitat networks represents an important tool for landscape conservation and management at regional scales. Previous studies simulated degradation of temporally fixed networks but few quantified the change in network connectivity from disintegration of key features that undergo naturally occurring spatiotemporal dynamics. This is particularly of concern for aquatic systems, which typically show high natural spatiotemporal variability. Here we focused on the Swan Coastal Plain, a bioregion that encompasses a global biodiversity hotspot in Australia with over 1500 water bodies of high biodiversity. Using graph theory, we conducted a temporal analysis of water body connectivity over 13 years of variable climate. We derived large networks of surface water bodies using Landsat data (1999-2011). We generated an ensemble of 278 potential networks at three dispersal distances approximating the maximum dispersal distance of different water dependent organisms. We assessed network connectivity through several network topology metrics and quantified the resilience of the network topology during wet and dry phases. We identified ‘stepping stone’ water bodies across time and compared our networks with theoretical network models with known properties. Results showed a highly dynamic seasonal pattern of variability in network topology metrics. A decline in connectivity over the 13 years was noted with potential negative consequences for species with limited dispersal capacity. The networks described here resemble theoretical scale-free models, also known as ‘rich get richer’ algorithm. The ‘stepping stone’ water bodies are located in the area around the Peel-Harvey Estuary, a Ramsar listed site, and some are located in a national park. Our results describe a powerful approach that can be implemented when assessing the connectivity for a particular organism with known dispersal distance. The approach of identifying the surface water bodies that act as ‘stepping stone’ over time may help prioritize surface water bodies that are essential for maintaining regional scale connectivity.
Polymeric Micelles as Novel Carriers for Poorly Soluble Drugs--A Review.
Reddy, B Pavan Kumar; Yadav, Hemant K S; Nagesha, Dattatri K; Raizaday, Abhay; Karim, Abdul
2015-06-01
Polymeric micelles are used as 'smart drug carriers' for targeting certain areas of the body by making them stimuli-sensitive or by attachment of a specific ligand molecule onto their surface. The main aim of using polymeric micelles is to deliver the poorly water soluble drugs. Now-a-days they are used especially in the areas of cancer therapy also. In this article we have reviewed several aspects of polymeric micelles concerning their mechanism of formation, chemical nature, preparation and characterization techniques, and their applications in the areas of drug delivery.
Oral Rehydration Therapy in Burn Patients
2014-04-24
Burn Any Degree Involving 20-29 Percent of Body Surface; Burn Any Degree Involving 30-39 Percent of Body Surface; Burn Any Degree Involving 40-49 Percent of Body Surface; Burn Any Degree Involving 50-59 Percent of Body Surface; Burn Any Degree Involving 60-65 Percent of Body Surface
Shape shifting predicts ontogenetic changes in metabolic scaling in diverse aquatic invertebrates
Glazier, Douglas S.; Hirst, Andrew G.; Atkinson, David
2015-01-01
Metabolism fuels all biological activities, and thus understanding its variation is fundamentally important. Much of this variation is related to body size, which is commonly believed to follow a 3/4-power scaling law. However, during ontogeny, many kinds of animals and plants show marked shifts in metabolic scaling that deviate from 3/4-power scaling predicted by general models. Here, we show that in diverse aquatic invertebrates, ontogenetic shifts in the scaling of routine metabolic rate from near isometry (bR = scaling exponent approx. 1) to negative allometry (bR < 1), or the reverse, are associated with significant changes in body shape (indexed by bL = the scaling exponent of the relationship between body mass and body length). The observed inverse correlations between bR and bL are predicted by metabolic scaling theory that emphasizes resource/waste fluxes across external body surfaces, but contradict theory that emphasizes resource transport through internal networks. Geometric estimates of the scaling of surface area (SA) with body mass (bA) further show that ontogenetic shifts in bR and bA are positively correlated. These results support new metabolic scaling theory based on SA influences that may be applied to ontogenetic shifts in bR shown by many kinds of animals and plants. PMID:25652833
Occlusion, sternocleidomastoid muscle activity, and body sway: a pilot study in male astronauts.
Sforza, Chiarella; Tartaglia, Gianluca M; Solimene, Umberto; Morgun, Valery; Kaspranskiy, Rustem R; Ferrario, Virgilio F
2006-01-01
The modifications induced by microgravity on the coordinated patterns of movement of the head, trunk, and limbs are reported on extensively. However, apparently there is little data on the masticatory muscles. In normal gravitational conditions, information from the neck and stomatognathic apparatus play a role in maintaining the body's balance and equilibrium. The current pilot study used normal gravity conditions to investigate the hypothesis of a functional coupling between occlusion and neck muscles and body postural oscillations. The immediate effect of modified occlusal surfaces on the contraction pattern of the sternocleidomastoid muscles during maximum voluntary clenching and on the oscillation of the center of foot pressure was analyzed in 11 male astronauts (aged 31-54 yrs). All subjects were healthy and free from pathologies of the neck and stomatognathic apparatus. Occlusal splints were prepared using impressions of their dental arches. The splints were modeled on the mandibular arch, had only posterior contacts, and were modified to obtain a more symmetric, standardized contraction of the masseter and temporalis muscles during teeth clenching. Surface EMG activity of the sternocleidomastoid muscles was recorded during a maximal voluntary clench with and without the splint. Sternocleidomastoid potentials were standardized as percent of the mean potentials recorded during a maximum contralateral rotation of the head, and the symmetry of the EMG waves of left- and right-side muscles was measured. Body sway was assessed with and without the splint, either with eyes open or closed. The variations of the center of foot pressure were analyzed through bivariate analysis, and the area of the 90% standard ellipse was computed. Within each visual condition (eyes open or closed), the difference between the areas of oscillation measured with and without the splint was computed. Muscular activity was more symmetric with the splint. The area of oscillation of the center of foot pressure was larger without the splint than with the splint, both with eyes open and eyes closed. The modifications, induced by the occlusal splint in the sternocleidomastoid muscles' symmetry, and center of foot pressure differential area with closed eyes, were significantly related (p < 0.05): the larger the increment in muscular symmetry, the smaller the area of oscillation with the splint as compared to without the splint. A functionally more symmetric maxillo-mandibular position resulted in a more symmetric sternocleidomastoid muscle contraction pattern and less body sway. Modifications in the contraction of the masticatory muscles may therefore affect the whole body.
Thiriet, Pierre; Di Franco, Antonio; Francour, Patrice
2017-01-01
Monitoring fish assemblages is needed to assess whether Marine Protected Areas (MPAs) are meeting their conservation and fisheries management goals, as it allows one to track the progress of recovery of exploited species and associated communities. Underwater Visual Census techniques (UVC) are used to monitor fish assemblages in MPAs. UVCs should be adapted to fish abundance, body-size and behaviour, which can strongly affect fish detectability. In Mediterranean subtidal habitats, however, UVC strip transects of one surface area (25x5 m2) are commonly used to survey the whole fish assemblage, from large shy fish to small crypto-benthic fish. Most high trophic level predators (HTLPs) are large shy fish which rarely swim close to divers and, consequently, their abundance may be under-estimated with commonly used transects. Here, we propose an improvement to traditional transect surveys to better account for differences in behaviour among and within species. First, we compared the effectiveness of combining two transect surface areas (large: 35x20 m2; medium: 25x5 m2) in quantifying large, shy fish within and outside Mediterranean MPAs. We identified species-specific body-size thresholds defining a smaller and a larger size class better sampled by medium and large transects respectively. Combining large and medium transects provided more accurate biomass and species richness estimates for large, shy species than using medium transects alone. We thus combined the new approach with two other transect surface areas commonly used to survey crypto-benthic (10x1 m2) and necto-benthic (25x5 m2) species in order to assess how effectively MPAs protection the whole fish assemblage. We verified that MPAs offer significant protection for HTLPs, their response in terms of biomass and density increase in MPAs was always higher in magnitude than other functional groups. Inside MPAs, the contribution of HTLP reached >25% of total fish biomass, against < 2% outside MPAs. Surveys with multiple transect surface areas allow for a more realistic assessment of the structure of the whole fish assemblage and better assessment of potential recovery of HTLPs within reserves of HTLP. PMID:28594836
Prato, Giulia; Thiriet, Pierre; Di Franco, Antonio; Francour, Patrice
2017-01-01
Monitoring fish assemblages is needed to assess whether Marine Protected Areas (MPAs) are meeting their conservation and fisheries management goals, as it allows one to track the progress of recovery of exploited species and associated communities. Underwater Visual Census techniques (UVC) are used to monitor fish assemblages in MPAs. UVCs should be adapted to fish abundance, body-size and behaviour, which can strongly affect fish detectability. In Mediterranean subtidal habitats, however, UVC strip transects of one surface area (25x5 m2) are commonly used to survey the whole fish assemblage, from large shy fish to small crypto-benthic fish. Most high trophic level predators (HTLPs) are large shy fish which rarely swim close to divers and, consequently, their abundance may be under-estimated with commonly used transects. Here, we propose an improvement to traditional transect surveys to better account for differences in behaviour among and within species. First, we compared the effectiveness of combining two transect surface areas (large: 35x20 m2; medium: 25x5 m2) in quantifying large, shy fish within and outside Mediterranean MPAs. We identified species-specific body-size thresholds defining a smaller and a larger size class better sampled by medium and large transects respectively. Combining large and medium transects provided more accurate biomass and species richness estimates for large, shy species than using medium transects alone. We thus combined the new approach with two other transect surface areas commonly used to survey crypto-benthic (10x1 m2) and necto-benthic (25x5 m2) species in order to assess how effectively MPAs protection the whole fish assemblage. We verified that MPAs offer significant protection for HTLPs, their response in terms of biomass and density increase in MPAs was always higher in magnitude than other functional groups. Inside MPAs, the contribution of HTLP reached >25% of total fish biomass, against < 2% outside MPAs. Surveys with multiple transect surface areas allow for a more realistic assessment of the structure of the whole fish assemblage and better assessment of potential recovery of HTLPs within reserves of HTLP.
Comparative Analysis of InSAR Digital Surface Models for Test Area Bucharest
NASA Astrophysics Data System (ADS)
Dana, Iulia; Poncos, Valentin; Teleaga, Delia
2010-03-01
This paper presents the results of the interferometric processing of ERS Tandem, ENVISAT and TerraSAR- X for digital surface model (DSM) generation. The selected test site is Bucharest (Romania), a built-up area characterized by the usual urban complex pattern: mixture of buildings with different height levels, paved roads, vegetation, and water bodies. First, the DSMs were generated following the standard interferometric processing chain. Then, the accuracy of the DSMs was analyzed against the SPOT HRS model (30 m resolution at the equator). A DSM derived by optical stereoscopic processing of SPOT 5 HRG data and also the SRTM (3 arc seconds resolution at the equator) DSM have been included in the comparative analysis.
Mathematically Derived Body Volume and Risk of Musculoskeletal Pain among Housewives in North India
Bihari, Vipin; Kesavachandran, Chandrasekharan Nair; Mathur, Neeraj; Pangtey, Balram Singh; Kamal, Ritul; Pathak, Manoj Kumar; Srivastava, Anup Kumar
2013-01-01
Background Global Burden of Disease Study 2010 demonstrates the impact of musculoskeletal diseases as the second greatest cause of disability globally in all regions of the world. The study was conducted to determine the role of mathematically derived body volume (BV), body volume index (BVI), body mass index (BMI), body surface area (BSA) and body fat % (BF %) on musculoskeletal pain (MSP) among housewives in National Capital Region (NCR). Methods A cross sectional study was undertaken among 495 housewives from Gurgaon and New Okhla Industrial Development Area (NOIDA) in National Capital Region (NCR), New Delhi, India. The study includes questionnaire survey, clinical examination and body composition monitoring among housewives. Results A significantly higher BMI, BVI, BV and BSA were observed in subjects with MSP as compared to those who had no MSP. This was also true for subjects with pain in knee for BMI category for overweight. Subjects with pain in limbs had significantly high BMI and BVI as compared to subjects with no MSP. A significant positive correlation of age with BMI, BVI, BV and BSA was observed among subjects having no MSP denoting a direct relationship of age and these body factors. Conclusions The prevalence of MSP among housewives is associated with increasing age, BMI and BVI. This can possibly be used for formulating a strategy for prevention of MSP. PMID:24223218
Neighbourhood effects on body constitution-A case study of Hong Kong.
Low, Chien Tat; Lai, Poh Chin; Li, Han Dong; Ho, Wai Kit; Wong, Paulina; Chen, Si; Wong, Wing Cheung
2016-06-01
Traditional Chinese Medicine (TCM) has long perceived environment as an integral part of the development of body constitution, which is a personal state of health closely related to disease presence. Despite of the ever-growing studies on the clinical effectiveness of TCM and the scientific linking between body constitution and diseases, the geographical influence on body constitution has yet remained an unexplored territory. This study sought to investigate whether the neighbourhood environment is relevant to the composition of body type of a population through statistical multilevel and Geographic Information Systems modelling. The analysis comprised 3277 participants who had completed their body type assessment between 2009 and 2012 inclusive. The multilevel analysis also took simultaneous accounts of both individual-level (gender, age, BMI, type of housing) and area-level (percent greenery, percent road surface, total road intersection, sky view factor, temperature, relative humidity, rainfall and social deprivation index) characteristics to explain geographical variation by body types. Significant random or place effects (p < 0.001) were identified in the multilevel models. The spatial variation of body constitution involved the dynamic interplay between individual and environmental factors. The findings amassed the first scientific indications to back the common belief that place does play a role in the development of body constitution and is worthy of further investigation. By considering spatial and personal attributes simultaneously, the study can yield valuable insights into the patterning of area variation in body constitution and disease presence. Copyright © 2016 Elsevier Ltd. All rights reserved.
Estimating Surface and Subsurface Ice Abundance on Mercury Using a Thermophysical Model
NASA Astrophysics Data System (ADS)
Rubanenko, L.; Mazarico, E.; Neumann, G. A.; Paige, D. A.
2016-12-01
The small obliquity of the Moon and Mercury causes some topographic features near their poles to cast permanent shadows for geologic time periods. In the past, these permanently shadowed regions (PSRs) were found to have low enough temperatures to trap surface and subsurface water ice. On Mercury, high normal albedo is correlated with maximum temperatures <100 m and high radar backscatter, possibly indicating the presence of surface ice. Areas with slightly higher maximum temperatures were measured to have a decreased albedo, postulated to contain of organic materials overlaying buried ice. We evaluate this theory by employing a thermophysical model that considers insolation, scattering, thermal emissions and subsurface conduction. We model the area fraction of surface and subsurface cold-traps on realistic topography at scales of ˜500 m , recorded by the Mercury Laster Altimeter (MLA) on board the MErcury Surface, Space ENviroment, GEochemistry and Ranging (MESSENGER) spacecraft. At smaller scales, below the instrument threshold, we consider a statistical description of the surface assuming a Gaussian slope distribution. Using the modeled cold-trap area fraction we calculate the expected surface albedo and compare it to MESSENGER's near-infrared surface reflectance data. Last, we apply our model to other airless small-obliquity planetary bodies such as the Moon and Ceres in order to explain other correlations between the maximum temperature and normal albedo.
Use of mineral oil Fleet enema for the removal of a large tar burn: a case report.
Carta, Tricia; Gawaziuk, Justin; Liu, Song; Logsetty, Sarvesh
2015-03-01
Extensive hot tar burns are relatively uncommon. Management of these burns provides a significant clinical challenge especially with respect to tar removal involving a large total body surface area (TBSA), without causing further tissue injury. We report a case of an over 40-year old male construction worker who was removing a malfunctioning cap from broken valve. This resulted in tar spraying over the anterior surface of his body including legs, feet, chest, abdomen, arms, face and oral cavity (80% TBSA covered in tar resulting in a 50% TBSA burn injury). Initially, petrolatum-based, double antibiotic ointment was used to remove the tar, based on our previous experience with small tar burns. However, this was time-consuming and ineffective. The tar was easily removed with mineral oil without irritation. In order to meet the demand for quantity of mineral oil, the pharmacy suggested using mineral oil Fleet enema (C.B. Fleet Company, Inc., Lynchburg, Virginia, USA). The squeezable bottle and catheter tip facilitated administration of oil into the patient's construction boots and under clothing that was adhered to the patient's skin. Tar removal requires an effective, non-toxic and non-irritating agent. Mineral oil is such an agent. For patients that may present with a large surface area tar burn, using mineral oil Fleet enema is a viable option that facilitates application into difficult areas. Grant Support: The Firefighters' Burn Fund (Manitoba) supported this project. Copyright © 2014 Elsevier Ltd and ISBI. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raisbeck, M.L.; Vance, G.F.; Steward, D.G.
1995-09-01
Samples of liver tissue from deer mice trapped on not-yet-mined areas and reclaimed areas at five surface coal mines in the Powder River Basin of northeastern Wyoming were analyzed for selenium. The overall mean concentration of selenium in wet weight liver tissue was 1.685 ppm. The mean value from not-yet-mined areas was 1.437 ppm; the mean value from reclaimed areas was 1.910 ppm (significant at p<0.1016). When one not-yet-mined outlier was removed, significance rose to p<0.0004. Mine-to-mine comparison of samples stratified by type (that is, by not-yet-mined or reclaimed), showed average tissue concentrations from the reclaimed area of Mine 1more » were also higher (p<0.0143) then not-yet-mined area samples at Mine 1. No statistically significant differences were found between mines for samples from not-yet-mined areas, and no statistically significant differences were found between Mines 2, 3, 4, and 5 for samples from reclaimed areas. Multiple analysis of variance using the factors: site (mine) and type (not-yet-mined or reclaimed) was not significantly significant (p<0.2115). Simple linear regression showed that selenium concentrations in dry tissue could easily be predicted from wet tissue selenium (r2=0.9775), demonstrating that percent water in the samples was relatively constant. Animal body weight in general was not a predictor for either wet or dry tissue selenium concentrations, but was related to body weight at the higher tissue concentrations of selenium encountered in samples from the reclaimed area at Mine 1. Mouse body weights at Mine 1 were higher on the reclaimed area than mouse body weights from the not-yet-mined area.« less
Ohashi, Hidenori; Tamaki, Takanori; Yamaguchi, Takeo
2011-12-29
Molecular collisions, which are the microscopic origin of molecular diffusive motion, are affected by both the molecular surface area and the distance between molecules. Their product can be regarded as the free space around a penetrant molecule defined as the "shell-like free volume" and can be taken as a characteristic of molecular collisions. On the basis of this notion, a new diffusion theory has been developed. The model can predict molecular diffusivity in polymeric systems using only well-defined single-component parameters of molecular volume, molecular surface area, free volume, and pre-exponential factors. By consideration of the physical description of the model, the actual body moved and which neighbor molecules are collided with are the volume and the surface area of the penetrant molecular core. In the present study, a semiempirical quantum chemical calculation was used to calculate both of these parameters. The model and the newly developed parameters offer fairly good predictive ability. © 2011 American Chemical Society
NASA Astrophysics Data System (ADS)
Muralidharan, D.; Andrade, R.; Anand, K.; Sathish, R.; Goud, K.
2009-12-01
Mining activities results into generation of disintegrated waste materials attaining increased mobilization status and requires a safe disposal mechanism through back filling process or secluded storage on surface with prevention of its interaction with environment cycle. The surface disposal of waste materials will become more critical in case of mined minerals having toxic or radioactive elements. In such cases, the surface disposal site is to be characterized for its sub-surface nature to understand its role in environmental impact due to the loading of waste materials. Near surface geophysics plays a major role in mapping the geophysical characters of the sub-surface formations in and around the disposal site and even to certain extent helps in designing of the storage structure. Integrated geophysical methods involving resistivity tomography, ground magnetic and shallow seismic studies were carried out over proposed tailings pond area of 0.3 sq. kms underlined by dipping sedimentary rocks consisting of ferruginous shales and dolomitic to siliceous limestone with varying thicknesses. The investigated site being located in tectonically disturbed area, geophysical investigations were carried out with number of profiles to visualize the sub-surface nature with clarity. The integration of results of twenty profiles of resistivity tomography with 2 m (shallow) and 10 m (moderate depth) electrode spacing’s enabled in preparing probable sub-surface geological section along the strike direction of the formation under the tailings pond with some geo-tectonic structure inferred to be a fault. Similarly, two resistivity tomography profiles perpendicular to the strike direction of the formations brought out the existence of buried basic intrusive body on the northern boundary of the proposed tailings pond. Two resistivity tomography profiles in criss-cross direction over the suspected fault zone confirmed fault existence on the north-eastern part of tailings pond. Thirty two magnetic profiles inside the tailings pond and surrounding areas on the southern part of the tailings pond enabled in identifying two parallel east-west intrusive bodies forming the impermeable boundary for the tailings pond. The shallow seismic refraction and the geophysical studies in and around the proposed tailings pond brought out the suitability of the site, even when the toxic elements percolates through the subsurface formations in to the groundwater system, the existence of dykes on either side of the proposed ponding area won’t allow the water to move across them thus by restricting the contamination within the tailings pond area. Similarly, the delineation of a fault zone within the tailings pond area helped in shifting the proposed dam axis of the pond to avoid leakage through the fault zone causing concern to environment pollution.
Heterotrophic bacterial flora in aquaculture area around Xuejiadao
NASA Astrophysics Data System (ADS)
Du, Zongjun; Li, Yun; Yu, Dehua; Wang, Xianghong; Chen, Jixiang; Robertson, P. A. W.; Austin, B.; Xu, Huaishu
2002-10-01
From Oct., 1999 to Oct., 2000, the heterotrophic bacterial flora in the aquaculture area around Xuejiadao was investigated. The result shows that the populations of the heterotrophic bacteria are heavier in summer and autumn than those in winter and spring. The average populations in seawater, sediment, the surface of seaweed and the surface of fish are 1.4×104cfu mL-1, 5.4×106cfu g-1, 1.5×106cfu g-1 and 1.8×103cfu cm-2, respectively. A total of 301 strains were isolated, among them 259 were Gram-negative. All the Gram-negative bacteria belong to 13 genera and some genera of Enterobacteriaceae. The communities of bacteria are slightly different among the samples. In the body surface of fish, Genus vibrio is dominant. In the remaining samples, dominant genus is Aeromonas.
FDTD analysis of body-core temperature elevation in children and adults for whole-body exposure.
Hirata, Akimasa; Asano, Takayuki; Fujiwara, Osamu
2008-09-21
The temperature elevations in anatomically based human phantoms of an adult and a 3-year-old child were calculated for radio-frequency whole-body exposure. Thermoregulation in children, however, has not yet been clarified. In the present study, we developed a computational thermal model of a child that is reasonable for simulating body-core temperature elevation. Comparison of measured and simulated temperatures revealed thermoregulation in children to be similar to that of adults. Based on this finding, we calculated the body-core temperature elevation in a 3-year-old child and an adult for plane-wave exposure at the basic restriction in the international guidelines. The body-core temperature elevation in the 3-year-old child phantom was 0.03 degrees C at a whole-body-averaged specific absorption rate of 0.08 W kg(-1), which was 35% smaller than in the adult female. This difference is attributed to the child's higher body surface area-to-mass ratio.
Assunção, Flávia Fernanda Oliveira; Dantas, Rosana Aparecida Spadoti; Ciol, Márcia Aparecida; Gonçalves, Natália; Farina, Jayme Adriano; Rossi, Lidia Aparecida
2013-06-01
The aims of this study were to adapt the Body Image Quality of Life Inventory (BIQLI) into Brazilian Portuguese (BP) and to assess the psychometric properties of the adapted version. Construct validity was assessed by correlating the BIQLI-BP scores with the Rosenberg's Self-Esteem Scale, with Burns Specific Health Scale-Revised (BSHS-R), and with gender, total body surface area burned, and visibility of the scars. Participants were 77 adult burn patients. Cronbach's alpha for the adapted version was .90 and moderate linear correlations were found between body image and self-esteem and between BIQLI-BP scores and two domains of the BSHS-R: affect and body image and interpersonal relationships. The BIQLI-BP showed acceptable levels of reliability and validity for Brazilian burn patients. Copyright © 2013 Wiley Periodicals, Inc.
Apparatus for premixing in a gas turbine engine
McCormick, Keith Alan; Smith, Duane A.
2002-01-01
An apparatus for mixing fuel with oxidizing agent is disclosed comprising an outer body and an inner body. The outer body has an interior surface extending between an inlet end toward an outlet end. The interior surface includes a first plurality of openings. The inner body has an exterior surface extending between the first end and the second end of the inner body. The exterior surface of the inner body includes a second plurality of openings. At least a portion of the exterior surface of the inner body is positioned within the outer body to define a mixing channel between the exterior surface of the inner body and the interior surface of the outer body. In one form the first and second plurality of openings substantially longitudinally span at least one of the outer body and the inner body. In another form the first and second plurality of openings are substantially radially oriented. In yet another form the first and second plurality of openings are offset from one another.
Directions for rf-controlled intelligent microvalve
NASA Astrophysics Data System (ADS)
Enderling, Stefan; Varadan, Vijay K.; Abbott, Derek
2001-03-01
In this paper, we consider the novel concept of a Radio Frequency (RF) controllable microvalve for different medical applications. Wireless communication via a Surface Acoustic Wave Identification-mark (SAW ID-tag) is used to control, drive and locate the microvalve inside the human body. The energy required for these functions is provided by RF pulses, which are transmitted to the valve and back by a reader/transmitter system outside of the body. These RF bursts are converted into Surface Acoustic Waves (SAWs), which propagate along the piezoelectric actuator material of the microvalve. These waves cause deflections, which are employed to open and close the microvalve. We identified five important areas of application of the microvalve in biomedicine: 1) fertility control; 2) artificial venous valves; 3) flow cytometry; 4) drug delivery and 5) DNA mapping.
Predicting ground-water movement in large mine spoil areas in the Appalachian Plateau
Wunsch, D.R.; Dinger, J.S.; Graham, C.D.R.
1999-01-01
Spoil created by surface mining can accumulate large quantities of ground-water, which can create geotechnical or regulatory problems, as well as flood active mine pits. A current study at a large (4.1 km2), thick, (up to 90 m) spoil body in eastern Kentucky reveals important factors that control the storage and movement of water. Ground-water recharge occurs along the periphery of the spoil body where surface-water drainage is blocked, as well as from infiltration along the spoil-bedrock contact, recharge from adjacent bedrock, and to a minor extent, through macropores at the spoil's surface. Based on an average saturated thickness of 6.4 m for all spoil wells, and assuming an estimated porosity of 20%, approximately 5.2 x 106 m3 of water is stored within the existing 4.1 km2 of reclaimed spoil. A conceptual model of ground-water flow, based on data from monitoring wells, dye-tracing data, discharge from springs and ponds, hydraulic gradients, chemical data, field reconnaissance, and aerial photographs indicate that three distinct but interconnected saturated zones have been established: one in the spoil's interior, and others in the valley fills that surround the main spoil body at lower elevations. Ground-water movement is sluggish in the spoil's interior, but moves quickly through the valley fills. The conceptual model shows that a prediction of ground-water occurrence, movement, and quality can be made for active or abandoned spoil areas if all or some of the following data are available: structural contour of the base of the lowest coal seam being mined, pre-mining topography, documentation of mining methods employed throughout the mine, overburden characteristics, and aerial photographs of mine progression.Spoil created by surface mining can accumulate large quantities of ground-water, which can create geotechnical or regulatory problems, as well as flood active mine pits. A current study at a large (4.1 km2), thick, (up to 90 m) spoil body in eastern Kentucky reveals important factors that control the storage and movement of water. Ground-water recharge occurs along the periphery of the spoil body where surface-water drainage is blocked, as well as from infiltration along the spoil-bedrock contact, recharge from adjacent bedrock, and to a minor extent, through macropores at the spoil's surface. Based on an average saturated thickness of 6.4 m for all spoil wells, and assuming an estimated porosity of 20%, approximately 5.2 ?? 106 m3 of water is stored within the existing 4.1 km2 of reclaimed spoil. A conceptual model of ground-water flow, based on data from monitoring wells, dye-tracing data, discharge from springs and ponds, hydraulic gradients, chemical data, field reconnaissance, and aerial photographs indicate that three distinct but interconnected saturated zones have been established: one in the spoil's interior, and others in the valley fills that surround the main spoil body at lower elevations. Ground-water movement is sluggish in the spoil's interior, but moves quickly through the valley fills. The conceptual model shows that a prediction of ground-water occurrence, movement, and quality can be made for active or abandoned spoil areas if all or some of the following data are available: structural contour of the base of the lowest coal seam being mined, pre-mining topography, documentation of mining methods employed throughout the mine, overburden characteristics, and aerial photographs of mine progression.
Method for forming a potential hydrocarbon sensor with low sensitivity to methane and CO
Mukundan, Rangachary; Brosha, Eric L.; Garzon, Fernando
2003-12-02
A hydrocarbon sensor is formed with an electrolyte body having a first electrolyte surface with a reference electrode depending therefrom and a metal oxide electrode body contained within the electrolyte body and having a first electrode surface coplanar with the first electrolyte surface. The sensor was formed by forming a sintered metal-oxide electrode body and placing the metal-oxide electrode body within an electrolyte powder. The electrolyte powder with the metal-oxide electrode body was pressed to form a pressed electrolyte body containing the metal-oxide electrode body. The electrolyte was removed from an electrolyte surface above the metal-oxide electrode body to expose a metal-oxide electrode surface that is coplanar with the electrolyte surface. The electrolyte body and the metal-oxide electrode body were then sintered to form the hydrocarbon sensor.
Lake Michigan, the sixth largest freshwater lake in the world by surface area, was utilized as a water body for assessment within a case study. Field data collected at 116 sediment sampling sites throughout the lake in an intensive monitoring effort were utilized for assessment ...
[Treatment of burn wounds with dibunol liniment].
Shalonov, P M; Dadabaev, T D; Khalilov, Kh N
1989-01-01
In 40 burned patients with the area of damage from 10 to 40% of the body surface in local treatment with dibunol against the background of active infusion-transfusion therapy, the accelerated rejection of the necrotic crust was noted, which permitted to reduce the period of preparation for autodermoplasty. The antiinflammatory effect of dibunol was established.
The Effects of Weather on Rapid Runway Repair. Volume 1
1983-05-01
stress include chronic heat exhaustion, forms of tropical dermatosis , and renal stones. Interestingly, no chronic physiological failures resulting from...kcal/m2 /hr as described by Lowry), or 90 kcal/hr or 105 watts for the average adult male (with 1.8 m2 of body surface area). Normal work is expected
NASA Astrophysics Data System (ADS)
Saygin, E.; Lumley, D. E.
2017-12-01
We use continuous seismic data recorded with an array of 909 buried geophones at Otway, South Australia, to investigate the potential of using ambient seismic noise for time-lapse monitoring of the subsurface. The array was installed prior to a 15,000 ton CO2 injection in 2016-17, in order to detect and monitor the evolution of the injected CO2 plume, and any associated microseismic activity. Continuously recorded data from the vertical components of the geophone array were cross-correlated to retrieve the inter-station Green's functions. The dense collection of Green's functions contains diving body waves and surface Rayleigh waves. Green's Functions were then compared with each other at different time frames including the pre-injection period to track subtle changes in the travel times due to the CO2 injection. Our results show a clear change in the velocities of Green's functions at the start of injection for both body waves and surface waves for wave paths traversing the injection area, whereas the observed changes are much smaller for areas which are far from the injection well.
Tweens feel the burn: "salt and ice challenge" burns.
Roussel, Lauren O; Bell, Derek E
2016-05-01
To review our institution's experience with frostbite injury secondary to "salt and ice challenge" (SIC) participation. We conducted a retrospective analysis of intentional freezing burns from 2012 to 2014. Demographics, depth and location of burn, total body surface area of burn, treatment, time to wound healing, length of stay, complications, and motives behind participation were analyzed. Five patients were seen in the emergency department for intentional freezing burns that resulted from SIC (all females; mean age: 12.3 years; range age: 10.0-13.2 years). Mean total body surface area was 0.408%. Salt and ice was in contact with skin for >10 min for two patients, >20 min for two patients, and an unknown duration for one patient. Complications included pain and burn scar dyschromia. Four patients cited peer pressure and desire to replicate SIC as seen on the Internet as their motivation in attempting the challenge. SIC has become a popular, self-harming behavior among youths. Increased public education, and provider and parent awareness of SIC are essential to address this public health concern.
Saura, Daniel; Dulgheru, Raluca; Caballero, Luis; Bernard, Anne; Kou, Seisyou; Gonjilashvili, Natalia; Athanassopoulos, George D; Barone, Daniele; Baroni, Monica; Cardim, Nuno; Hagendorff, Andreas; Hristova, Krasimira; Lopez, Teresa; de la Morena, Gonzalo; Popescu, Bogdan A; Penicka, Martin; Ozyigit, Tolga; Rodrigo Carbonero, Jose David; Van De Veire, Nico; Von Bardeleben, Ralph Stephan; Vinereanu, Dragos; Zamorano, Jose Luis; Gori, Ann-Stephan; Cosyns, Bernard; Donal, Erwan; Habib, Gilbert; Addetia, Karima; Lang, Roberto M; Badano, Luigi P; Lancellotti, Patrizio
2017-02-01
To report normal reference ranges for echocardiographic dimensions of the proximal aorta obtained in a large group of healthy volunteers recruited using state-of-the-art cardiac ultrasound equipment, considering different measurement conventions, and taking into account gender, age, and body size of individuals. A total of 704 (mean age: 46.0 ± 13.5 years) healthy volunteers (310 men and 394 women) were prospectively recruited from the collaborating institutions of the Normal Reference Ranges for Echocardiography (NORRE) study. A comprehensive echocardiographic examination was obtained in all subjects following pre-defined protocols. Aortic dimensions were obtained in systole and diastole, following both the leading-edge to leading-edge and the inner-edge to inner-edge conventions. Diameters were measured at four levels: ventricular-arterial junction, sinuses of Valsalva, sino-tubular junction, and proximal tubular ascending aorta. Measures of aortic root in the short-axis view following the orientation of each of the three sinuses were also performed. Men had significantly larger body sizes when compared with women, and showed larger aortic dimensions independently of the measurement method used. Dimensions indexed by height and body surface area are provided, and stratification by age ranges is also displayed. In multivariable analysis, the independent predictors of aortic dimensions were age, gender, and height or body surface area. The NORRE study provides normal values of proximal aorta dimensions as assessed by echocardiography. Reference ranges for different anatomical levels using different (i) measurement conventions and (ii) at different times of the cardiac cycle (i.e. mid-systole and end-diastole) are provided. Age, gender, and body size were significant determinants of aortic dimensions. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2016. For permissions please email: journals.permissions@oup.com.
Ali, Raafi; Baracos, Vickie E; Sawyer, Michael B; Bianchi, Laurent; Roberts, Sarah; Assenat, Eric; Mollevi, Caroline; Senesse, Pierre
2016-04-01
Evidence suggests that lean body mass (LBM) may be useful to normalize chemotherapy doses. Data from one prospective and one retrospective study were used to determine if the highest doses of oxaliplatin/kg LBM within FOLFOX regimens would be associated with dose-limiting toxicity (DLT) in colon cancer patients. Toxicity over four cycles was graded according to NCI Common Toxicity Criteria V2 or V3 (Common Terminology Criteria for Adverse Events, National Cancer Institute, Bethesda, MD). Muscle tissue was measured by computerized tomography (CT) and used to evaluate the LBM compartment of the whole body. In prospective randomized clinical trials conducted in France (n = 58), for patients given FOLFOX-based regimens according to body surface area, values of oxaliplatin/kg LBM were highly variable, ranging from 2.55 to 6.6 mg/kg LBM. A cut point of 3.09 mg oxaliplatin/kg LBM for developing toxicity was determined by Receiver Operating Characteristic (ROC) analysis, below this value 0/17 (0.0%) of patients experienced DLT; in contrast above this value 18/41 (44.0%) of patients were dose reduced or had treatment terminated owing to toxicity (≥Grade 3 or neuropathy ≥Grade 2); for 9/41 the DLT was sensory neuropathy. These findings were validated in an independent cohort of colon cancer patients (n = 80) receiving FOLFOX regimens as part of standard care, in Canada. Low LBM is a significant predictor of toxicity and neuropathy in patients administered FOLFOX-based regimens using conventional body surface area (BSA) dosing. © 2016 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.
Anuracpreeda, Panat; Phutong, Sumittra; Ngamniyom, Arin; Panyarachun, Busaba; Sobhon, Prasert
2015-03-01
Adult Carmyerius spatiosus or stomach fluke has an elongate, cylindrical-shaped, straight to slightly curved body, with conical anterior end and truncated posterior end. The worm measures about 8.7-11.2mm in body length and 2.3-3.0mm in body width across the mid-section. When observed by SEM, the tegumental surface in all part of the body appears highly corrugated with ridges and furrows, and having no spines. The ventral surface has more complex corrugation than those of the dorsal surface. Both anterior and posterior suckers have thick edges covered with transverse folds and appear spineless. The genital pore is located at the anterior part of the body. There are two types of sensory papillae on the surface: type 1 is bulbous in shape with nipple-like tips; type 2 has a similar shape with short cilia on the tip. The dorsal surface exhibits similar surface features, but papillae appear less numerous and are smaller. When observed by TEM, the tegument is divided into four layers. The first layer includes the ridges and furrows which are covered by a trilaminate membrane underlined by a dense lamina and coated externally with the glycocalyx. The second layer of the tegument is a narrow region of cytoplasm that contains high concentrations of ovoid electron lucent tegumental granules (TG1), and disc-shaped electron dense tegumental granules (TG2) as well as lysosomes. TG1 close to the surface invariably exocytose their content into bottoms of the ridges, while some TG2 are fused and have their membrane joined up with the surface membrane. The third layer is the widest middle area of the tegument which contains numerous and evenly distributed mitochondria. Both TG1 and TG2 granules are present but in much fewer number than in the first and second layers. The fourth layer is the innermost zone that rests on and couples with a thick basal lamina. The cytoplasm in this layer is loosely packed and contains numerous infoldings of the basal plasma membrane with closely associated mitochondria. It also contains fairly large numbers of TG1 and TG2 granules which are produced and transported to the tegument by one type of tegumental cells lying in rows underneath the muscular layers. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Akhalaia, G.; Cakir, Z.; Tsiskarishvili, L.; Otinashvili, M.; Sukhishvili, L.; Merebashvili, G.; Tserodze, M.; Akubardia, D.; Managadze, M.
2016-12-01
At the night of 13th of June 2015 complex-type landslide was triggered by heavy rainfall in the river Vere basin, 10 km to the west of Georgian capital Tbilisi. Flashflood flow transported the landslide body to the center of Tbilisi. As a result 20 people are dead and 2 still missing, direct infrastructure damage is about 50 mln USD. The landslide is located at Mtatsminda anticline, its length is 3600 meters and sliding surface area estimates 315 000 km2. Bedrock dips varies 20-800 and surface inclination is almost the same. Our group used geodetic, geophysical and UAV survey approaches to estimate total volume of landslide body. As a result of the investigation we calculated that 1 300 000 m3 was transported but about 25% of total amount is still on sliding surface. As the whole area is prone to landslide, different approaches were applied to assess slope stability and indentifing ongoing deformation areas. Two most challenging factors were steep terrain and forest cover, so we used InSAR techniques, optical remote sensing, RTK measurements and geophysical methods. The detection and assessment pre and post-failure deformation, represent important task to understand the failure mechanism and geometry of the landslide, an ultimately purpose is to evaluate its stability. Interferometric Synthetic Aperture Radar data from ENVISAT sensor was utilized in the analysis of the pre-/ post-event deformation. Also, Network of GNSS (Continuously Operating Reference Stations) was used for RTK, to provide centimeter precise measurements. After comparing results derived from these different approaches, proper methods were selected to identify the most unstable areas within the landslide zone.
Cultured Skin Substitutes Reduce Donor Skin Harvesting for Closure of Excised, Full-Thickness Burns
Boyce, Steven T.; Kagan, Richard J.; Yakuboff, Kevin P.; Meyer, Nicholas A.; Rieman, Mary T.; Greenhalgh, David G.; Warden, Glenn D.
2002-01-01
Objective Comparison of cultured skin substitutes (CSS) and split-thickness skin autograft (AG) was performed to assess whether donor-site harvesting can be reduced quantitatively and whether functional and cosmetic outcome is similar qualitatively in the treatment of patients with massive cutaneous burns. Summary Background Data Cultured skin substitutes consisting of collagen-glycosaminoglycan substrates populated with autologous fibroblasts and keratinocytes have been shown to close full-thickness skin wounds in preclinical and clinical studies with acceptable functional and cosmetic results. Methods Qualitative outcome was compared between CSS and AG in 45 patients on an ordinal scale (0, worst; 10, best) with primary analyses at postoperative day 28 and after about 1 year for erythema, pigmentation, pliability, raised scar, epithelial blistering, and surface texture. In the latest 12 of the 45 patients, tracings were performed of donor skin biopsies and wounds treated with CSS at postoperative days 14 and 28 to calculate percentage engraftment, the ratio of closed wound:donor skin areas, and the percentage of total body surface area closed with CSS. Results Measures of qualitative outcome of CSS or AG were not different statistically at 1 year after grafting. Engraftment at postoperative day 14 exceeded 75% in the 12 patients evaluated. The ratio of closed wound:donor skin areas for CSS at postoperative day 28 was significantly greater than for conventional 4:1 meshed autografts. The percentage of total body surface area closed with CSS at postoperative day 28 was significantly less than with AG. Conclusions The requirement for harvesting of donor skin for CSS was less than for conventional skin autografts. These results suggest that acute-phase recovery of patients with extensive burns is facilitated and that complications are reduced by the use of CSS together with conventional skin grafting. PMID:11807368
Cultured skin substitutes reduce donor skin harvesting for closure of excised, full-thickness burns.
Boyce, Steven T; Kagan, Richard J; Yakuboff, Kevin P; Meyer, Nicholas A; Rieman, Mary T; Greenhalgh, David G; Warden, Glenn D
2002-02-01
Comparison of cultured skin substitutes (CSS) and split-thickness skin autograft (AG) was performed to assess whether donor-site harvesting can be reduced quantitatively and whether functional and cosmetic outcome is similar qualitatively in the treatment of patients with massive cutaneous burns. Cultured skin substitutes consisting of collagen-glycosaminoglycan substrates populated with autologous fibroblasts and keratinocytes have been shown to close full-thickness skin wounds in preclinical and clinical studies with acceptable functional and cosmetic results. Qualitative outcome was compared between CSS and AG in 45 patients on an ordinal scale (0, worst; 10, best) with primary analyses at postoperative day 28 and after about 1 year for erythema, pigmentation, pliability, raised scar, epithelial blistering, and surface texture. In the latest 12 of the 45 patients, tracings were performed of donor skin biopsies and wounds treated with CSS at postoperative days 14 and 28 to calculate percentage engraftment, the ratio of closed wound:donor skin areas, and the percentage of total body surface area closed with CSS. Measures of qualitative outcome of CSS or AG were not different statistically at 1 year after grafting. Engraftment at postoperative day 14 exceeded 75% in the 12 patients evaluated. The ratio of closed wound:donor skin areas for CSS at postoperative day 28 was significantly greater than for conventional 4:1 meshed autografts. The percentage of total body surface area closed with CSS at postoperative day 28 was significantly less than with AG. The requirement for harvesting of donor skin for CSS was less than for conventional skin autografts. These results suggest that acute-phase recovery of patients with extensive burns is facilitated and that complications are reduced by the use of CSS together with conventional skin grafting.
Traces of warping subsided tectonic blocks on Miranda, Enceladus, Titan
NASA Astrophysics Data System (ADS)
Kochemasov, G.
2007-08-01
Icy satellites of the outer Solar system have very large range of sizes - from kilometers to thousands of kilometers. Bodies less than 400-500 km across have normally irregular shapes , often presenting simple Plato's polyhedrons woven by standing inertiagravity waves (see an accompanying abstract of Kochemasov). Larger bodies with enhanced gravity normally are rounded off and have globular shapes but far from ideal spheres. This is due to warping action of inertia-gravity waves of various wavelengths origin of which is related to body movements in elliptical keplerian orbits with periodically changing accelerations (alternating accelerations cause periodically changing forces acting upon a body what means oscillations of its spheres in form of standing warping waves). The fundamental wave 1 and its first overtone wave 2 produce ubiquitous tectonic dichotomy - two segmental structure and tectonic sectoring superimposed on this dichotomy. Two kinds of tectonic blocks (segments and sectors) are formed: uplifted (+) and subsided (-). Uplifting means increasing planetary radius of blocks, subsiding - decreasing radius (as a sequence subsiding blocks diminishing their surfaces must be warped, folded, wrinkled; uplifting blocks increasing their surfaces tend to be deeply cracked, fallen apart). To level changing angular momenta of blocks subsided areas are filled with denser material than uplifted ones (one of the best examples is Earth with its oceanic basins filled with dense basalts and uplifted continents built of less dense on average andesitic material). Icy satellites follow the same rule. Their warped surfaces show differing chemistries or structures of constructive materials. Uplifted blocks are normally built with light (by color and density) water ice. Subsided blocks - depressions, "seas', "lakes", coronas - by somewhat denser material differing in color from water ice (very sharply - Iapetus, moderately - Europa, slightly - many saturnian satellites). A very sharp difference between uplifted and subsided blocks presents Miranda having very sharp relief range. Subsided areas (coronas) are strongly folded, uplifted areas strongly degassed what was witnessed by numerous craters of various sizes (not all craters are of impact origin!). Coronas on Miranda present subsided segment and sectors. Typical is a very sharp boundary between risen (+) and fallen (-) blocks. On Enceladus the subsided (squeezed) southern pole area is characterized by "tiger stripes" - traces of contraction, young ice deposits and famous ejections of water vapor and ice. The squeezed area expels 'molten" material from interior - compare with periodically active Hawaiian volcano expelling basalts from constantly under contraction Pacific basin interior. As to the subsided Pacific basin, it is antepodean to uplifted deeply cracked and degassing Africa. On Enceladus to contracted south is opposed expanded north where past degassing is witnessed by numerous craters (not all of them are impacts!). Contraction traces are very impressive on subsided Titan's surfaces - methane filled thinly folded huge areas mainly in near equatorial regions (some scientists think that these folds are eolian dunes but they are parallel, not perpendicular to presumed winds and, besides, winds below ˜60 km in Titan's atmosphere are not detected by "Huygens") [1, 2]. This methane rich area of intensive folding is antepodean to the uplifted and mainly composed of water ice region Xanadu cut by numerous tectonically controlled dry "valleys". So, in spite of many varieties of surface features on icy satellites of the outer Solar system a common main tectonic tendency exists: opposition of subsided contracted and uplifted expanded blocks. References: [1] Kochemasov G.G. (2006)Titan's radar images: crosscutting ripples are dunes or warping surface waves?// Berlin, 22-26 Sept. 2006, EUROPLANET Sci. Conf. 1, EPSC2006-A-00045. [2] Kochemasov G.G. (2006)Planetary plains: subsidence and warping // Ibid., EPSC2006-A-00018.
Kato, Hideki; Sawada, Michito
2015-12-01
When an inhomogeneous medium such as bone, whose composition or density are clearly different from that of soft tissue of human body, exist in irradiated body, a subjective contrast of X-ray image changes by the location of these inhomogeneous medium. This cause due to the change of behavior of scattered photons in the body depends on the location of inhomogeneous medium besides due to the influence of a penumbra. But this mechanism is not explained clearly yet. In this paper, it was analyzed by means of the Monte Carlo simulation that what kind of difference occurs to a subjective contrast by the difference in location of inhomogeneous medium in water phantom and that a change in behavior of scattered photons in the phantom influences a subjective contrast by what kind of mechanism. In this case the inhomogeneous medium is bone, whose effective atomic number and density are higher than that of water, the subjective contrast of X-ray image degrades when bone is located near the entrance surface (upper position) than located near the exit surface (lower position). This is caused by the number of scattered photons, originated in primary photons incident upon the zone besides the region from entrance surface to exit surface including inhomogeneous medium and incident on the area of shadow of inhomogeneous medium on the image detector, is greater in case of the upper position than in case of the lower position. In the lower position, many of these scattered photons are interacted in bone located near the exit surface by the photo-electric absorption and only a small amount is incident on the image detector.
NASA Astrophysics Data System (ADS)
Fahnestock, Eugene Gregory
The Full Two-Body-Problem (F2BP) describes the dynamics of two unconstrained rigid bodies in close proximity, having arbitrary spatial distribution of mass, charge, or similar field quantity, and interacting through a mutual potential dependent on that distribution. While the F2BP has applications in areas as wide ranging as molecular dynamics to satellite formation flying, this dissertation focuses on its application to natural bodies in space with nontrivial mass distribution interacting through mutual gravitational potential, i.e. binary asteroids. This dissertation first describes further development and implementation of methods for accurate and efficient F2BP propagation based upon a flexible method for computing the mutual potential between bodies modeled as homogenous polyhedra. Next application of these numerical tools to the study of binary asteroid (66391) 1999 KW4 is summarized. This system typifies the largest class of NEO binaries, which includes nearly half of them, characterized by a roughly oblate spheroid primary rotating rapidly and roughly triaxial ellipsoid secondary in on-average synchronous rotation. Thus KW4's dynamics generalize to any member of that class. Analytical formulae are developed which separately describe the effects of primary oblateness and secondary triaxial ellipsoid shape on frequencies of system motions revealed through the F2BP simulation. These formulae are useful for estimating inertia elements and highest-level internal mass distributions of bodies in any similar system, simply from standoff observation of these motion frequencies. Finally precise dynamical simulation and analysis of the motion of test particles within the time-varying gravity field of the F2BP system is detailed. This Restricted Full-detail Three-Body-Problem encompasses exploration of three types of particle motion within a binary asteroid: (1) Orbital motion such as that for a spacecraft flying within the system about the primary, secondary, or system barycenter at large distance; (2) Motion of ejecta particles originating from the body surfaces with substantial initial surface-relative velocity; (3) Motion of particles originating from the primary surface near the equator, with no initial surface-relative velocity, but when primary spin rate is raised past the "disruption spin rate" for which material on the surface will be spun off.
The global abundance and size distribution of lakes, ponds, and impoundments
Downing, J.A.; Prairie, Y.T.; Cole, J.J.; Duarte, C.M.; Tranvik, L.J.; Striegl, Robert G.; McDowell, W.H.; Kortelainen, Pirkko; Caraco, N.F.; Melack, J.M.; Middelburg, J.J.
2006-01-01
One of the major impediments to the integration of lentic ecosystems into global environmental analyses has been fragmentary data on the extent and size distribution of lakes, ponds, and impoundments. We use new data sources, enhanced spatial resolution, and new analytical approaches to provide new estimates of the global abundance of surface-water bodies. A global model based on the Pareto distribution shows that the global extent of natural lakes is twice as large as previously known (304 million lakes; 4.2 million km 2 in area) and is dominated in area by millions of water bodies smaller than 1 km2. Similar analyses of impoundments based on inventories of large, engineered dams show that impounded waters cover approximately 0.26 million km2. However, construction of low-tech farm impoundments is estimated to be between 0.1 % and 6% of farm area worldwide, dependent upon precipitation, and represents >77,000 km 2 globally, at present. Overall, about 4.6 million km2 of the earth's continental "land" surface (>3%) is covered by water. These analyses underscore the importance of explicitly considering lakes, ponds, and impoundments, especially small ones, in global analyses of rates and processes. ?? 2006, by the American Society of Limnology and Oceanography, Inc.
Vesta and Ceres by the light of Dawn
NASA Astrophysics Data System (ADS)
Russell, Christopher T.
2015-11-01
Ceres and Vesta are the most massive bodies in the main asteroid belt. They both appear to be intact protoplanets whose growth may have been drastically altered by the concomitant formation of Jupiter.. These two bodies have witnessed 4.6 Ga of solar system history, much, but not all, of which has been recorded in their surfaces. Dawn’s objective is to interview these two witnesses to learn as much as possible about the early epoch. These bodies are protoplanets, our best archetypes of the early building blocks of the terrestrial planets. In particular, siderophile elements in the Earth’s core were probably first segregated in Vesta-like bodies, and its water was likely first condensed in Ceres-like bodies.Many of the basaltic achondrites originated from a common parent body. Dawn verified that Vesta was consistent with that parent body. hence strengthening geochemical inferences from these samples on the formation and evolution of the solar system and supporting hypotheses for their delivery from Vesta to Earth. Ceres has not revealed itself with a meteoritic record. While the surface is scarred with craters, it is probable that the ejecta from the crater-forming event created little competent material from the icy crust and any such ejected projectiles that reached Earth might have disintegrated upon entry into the Earth’s atmosphere.Ceres’ surface differs greatly from Vesta’s. Plastic or fluidized mass wasting is apparent, as are many irregularly shaped craters, including many polygonal crater forms. There are many central-pit craters possibly caused by volatilization of the crust in the center of the impact. There are also many central-peak craters, which were made by rebound or pingo-like formation processes. Bright deposits dot the landscape, which are possibly salt-rich, suggesting fluvial activity beneath the crust. Observations of the brightest spots on Ceres could suggest sublimation from the surface of the bright area, which may be water vapor driven, as Herschel observations suggest. Ceres is not only the most massive body in the asteroid belt but also possibly the most active.
Change of serum phosphate level and clinical outcome of hypophosphatemia in massive burn patient.
Yang, Hyeong Tae; Yim, Haejun; Cho, Yong Suk; Kim, Dohern; Hur, Jun; Kim, Jong Hyun; Lee, Boung Chul; Seo, Cheong Hoon; Chun, Wook
2012-11-01
Hypophosphatemia is relatively common phenomenon in patients with massive burn injury. Therefore, we check serum phosphate level routinely and try to supply phosphate in a timely manner. The purpose of this study was to investigate the change of the serum phosphate level of early postburn period and the impact of hypophosphatemia on the prognosis of patients. A total of 227 patients with burn injury were reviewed retrospectively. We performed analysis of serum phosphate level within 20 days from burn injury. Patients' mean (SD) age was 47.0 (14.1) years, and mean (SD) percentage of total body surface area burned were 47.7 (21.9). Severe hypophosphatemia (phosphate < 1.0 mg/dL) was observed in 35 patients (15.8%), and moderate hypophosphatemia (1.0 ≤ phosphate < 2.0 mg/dL) was found in 115 patients (50.6%). Therefore, overall incidence of hypophosphatemia was 66.4%. There was no significant difference in serum phosphate level with survival, total body surface area burned, and mechanical ventilation. Age (odds ratio [OR], 3.180; 95% confidence interval [CI], 1.025-9.871; p = 0.045), total body surface area burned (OR, 20.934; 95% CI, 6.845-64.024; p = 0.000), and mechanical ventilation (OR, 5.581; 95% CI, 2.380-13.085; p = 0.002) were independently associated with mortality. However, serum phosphate level (OR, 0.828; 95% CI, 0.275-2.495; p = 0.737) does not have a statistical significance. Although multiple studies have evaluated the efficacy and safety of phosphate repletion regimens, the effect on mortality and morbidity is not well reported. However, our results show that patients with massive burn injury have high incidence of hypophosphatemia, and hypophosphatemia can result in many complications. Therefore, routine check and supply of phosphate can be suggested in patients with massive burn injury. Prognostic study, level II.
Reference Values of Aortic Root in Male and Female White Elite Athletes According to Sport.
Boraita, Araceli; Heras, Maria-Eugenia; Morales, Francisco; Marina-Breysse, Manuel; Canda, Alicia; Rabadan, Manuel; Barriopedro, Maria-Isabel; Varela, Amai; de la Rosa, Alejandro; Tuñón, José
2016-10-01
There is limited information regarding the aortic root upper physiological limits in all planes in elite athletes according to static and dynamic cardiovascular demands and sex. A cross-sectional study was performed in 3281 healthy elite athletes (2039 men and 1242 women) aged 23.1±5.7 years, with body surface area of 1.9±0.2 m 2 and 8.9±4.9 years and 19.2±9.6 hours/week of training. Maximum end-diastolic aortic root diameters were measured in the parasternal long axis by 2-dimensional echocardiography. Age, left ventricular mass, and body surface area were the main predictors of aortic dimensions. Raw values were greater in males than in females (P<0.0001) at all aortic root levels. Dimensions corrected by body surface area were higher in men than in women at the aortic annulus (13.1±1.7 versus 12.9±1.7 mm/m 2 ; P=0.007), without significant differences at the sinus of Valsalva (16.3±1.9 versus 16.3±1.9 mm/m 2 ; P=0.797), and were smaller in men at the sinotubular junction (13.6±1.8 versus 13.8±1.8 mm/m 2 ; P=0.008) and the proximal ascending aorta (13.8±1.9 versus 14.1±1.9 mm/m 2 ; P=0.001). Only 1.8% of men and 1.5% of women had values >40 mm and 34 mm, respectively. Raw and corrected aortic measures at all levels were significantly greater in sports, with a high dynamic component in both sexes, except for corrected values of the sinotubular junction in women. Aortic root dimensions in healthy elite athletes are within the established limits for the general population. This study describes the normal dimensions for healthy elite athletes classified according to sex and dynamic and static components of their sports. © 2016 American Heart Association, Inc.
Thickened boundary layer theory for air film drag reduction on a van body surface
NASA Astrophysics Data System (ADS)
Xie, Xiaopeng; Cao, Lifeng; Huang, Heng
2018-05-01
To elucidate drag reduction mechanism on a van body surface under air film condition, a thickened boundary layer theory was proposed and a frictional resistance calculation model of the van body surface was established. The frictional resistance on the van body surface was calculated with different parameters of air film thickness. In addition, the frictional resistance of the van body surface under the air film condition was analyzed by computational fluid dynamics (CFD) simulation and different air film states that influenced the friction resistance on the van body surface were discussed. As supported by the CFD simulation results, the thickened boundary layer theory may provide reference for practical application of air film drag reduction on a van body surface.
Hawwa, Ahmed F; Collier, Paul S; Millership, Jeff S; McCarthy, Anthony; Dempsey, Sid; Cairns, Carole; McElnay, James C
2008-01-01
WHAT IS ALREADY KNOWN ABOUT THIS SUBJECTThe cytotoxic effects of 6-mercaptopurine (6-MP) were found to be due to drug-derived intracellular metabolites (mainly 6-thioguanine nucleotides and to some extent 6-methylmercaptopurine nucleotides) rather than the drug itself.Current empirical dosing methods for oral 6-MP result in highly variable drug and metabolite concentrations and hence variability in treatment outcome. WHAT THIS STUDY ADDSThe first population pharmacokinetic model has been developed for 6-MP active metabolites in paediatric patients with acute lymphoblastic leukaemia and the potential demographic and genetically controlled factors that could lead to interpatient pharmacokinetic variability among this population have been assessed.The model shows a large reduction in interindividual variability of pharmacokinetic parameters when body surface area and thiopurine methyltransferase polymorphism are incorporated into the model as covariates.The developed model offers a more rational dosing approach for 6-MP than the traditional empirical method (based on body surface area) through combining it with pharmacogenetically guided dosing based on thiopurine methyltransferase genotype. AIMS To investigate the population pharmacokinetics of 6-mercaptopurine (6-MP) active metabolites in paediatric patients with acute lymphoblastic leukaemia (ALL) and examine the effects of various genetic polymorphisms on the disposition of these metabolites. METHODS Data were collected prospectively from 19 paediatric patients with ALL (n = 75 samples, 150 concentrations) who received 6-MP maintenance chemotherapy (titrated to a target dose of 75 mg m−2 day−1). All patients were genotyped for polymorphisms in three enzymes involved in 6-MP metabolism. Population pharmacokinetic analysis was performed with the nonlinear mixed effects modelling program (nonmem) to determine the population mean parameter estimate of clearance for the active metabolites. RESULTS The developed model revealed considerable interindividual variability (IIV) in the clearance of 6-MP active metabolites [6-thioguanine nucleotides (6-TGNs) and 6-methylmercaptopurine nucleotides (6-mMPNs)]. Body surface area explained a significant part of 6-TGNs clearance IIV when incorporated in the model (IIV reduced from 69.9 to 29.3%). The most influential covariate examined, however, was thiopurine methyltransferase (TPMT) genotype, which resulted in the greatest reduction in the model's objective function (P < 0.005) when incorporated as a covariate affecting the fractional metabolic transformation of 6-MP into 6-TGNs. The other genetic covariates tested were not statistically significant and therefore were not included in the final model. CONCLUSIONS The developed pharmacokinetic model (if successful at external validation) would offer a more rational dosing approach for 6-MP than the traditional empirical method since it combines the current practice of using body surface area in 6-MP dosing with a pharmacogenetically guided dosing based on TPMT genotype. PMID:18823306
Acupuncture therapy related cardiac injury.
Li, Xue-feng; Wang, Xian
2013-12-01
Cardiac injury is the most serious adverse event in acupuncture therapy. The causes include needling chest points near the heart, the cardiac enlargement and pericardial effusion that will enlarge the projected area on the body surface and make the proper depth of needling shorter, and the incorrect needling method of the points. Therefore, acupuncture practitioners must be familiar with the points of the heart projected area on the chest and the correct needling methods in order to reduce the risk of acupuncture therapy related cardiac injury.
Interference drag in a simulated wing-fuselage juncture
NASA Technical Reports Server (NTRS)
Kubendran, L. R.; Mcmahon, H.; Hubbartt, J. E.
1984-01-01
The interference drag in a wing fuselage juncture as simulated by a flat plate and a body of constant thickness having a 1.5:1 elliptical leading edge is evaluated experimentally. The experimental measurements consist of mean velocity data taken with a hot wire at a streamwise location corresponding to 16 body widths downstream of the body leading edge. From these data, the interference drag is determined by calculating the total momentum deficit (momentum area) in the juncture and also in the two dimensional turbulent boundary layers on the flat plate and body at locations sufficiently far from the juncture flow effect. The interference drag caused by the juncture drag as measured at this particular streamwise station is -3% of the total drag due to the flat plate and body boundary layers in isolation. If the body is considered to be a wing having a chord and span equal to 16 body widths, the interference drag due to the juncture is only -1% of the frictional drag of one surface of such a wing.
Entropy flow and entropy production in the human body in basal conditions.
Aoki, I
1989-11-08
Entropy inflow and outflow for the naked human body in basal conditions in the respiration calorimeter due to infrared radiation, convection, evaporation of water and mass-flow are calculated by use of the energetic data obtained by Hardy & Du Bois. Also, the change of entropy content in the body is estimated. The entropy production in the human body is obtained as the change of entropy content minus the net entropy flow into the body. The entropy production thus calculated becomes positive. The magnitude of entropy production per effective radiating surface area does not show any significant variation with subjects. The entropy production is nearly constant at the calorimeter temperatures of 26-32 degrees C; the average in this temperature range is 0.172 J m-2 sec-1 K-1. The forced air currents around the human body and also clothing have almost no effect in changing the entropy production. Thus, the entropy production of the naked human body in basal conditions does not depend on its environmental factors.
Buchwalter, D.B.; Jenkins, J.J.; Curtis, L.R.
2002-01-01
Despite the extensive use of aquatic insects to evaluate freshwater ecosystem health, little is known about the underlying factors that result in sensitivity differences between taxa. Organismal characteristics (respiratory strategy and body size) were used to explore the rates of [3H]H2O and [14)C]chlorpyrifos accumulation in aquatic insects. Ten aquatic insect taxa, including ephemeropteran, trichopteran, dipteran, hemipteran, and coleopteran species, were exposed to [14C]chlorpyrifos (240 ng??L-1) and [3H]H2O for up to 12 h. Because exchange epithelial surfaces on the)integument are permeable to water, [3H]H2O was used as a quantitative surrogate for exposed cellular surface area.) [14C]Chlorpyrifos uptake rates were highly correlated with water permeability in all 10 taxa tested and largely covaried with body size and respiratory strategy. Rates were highest among smaller organisms on a per-weight basis and in taxa with relatively large external cellular surfaces such as gills. Air-breathing taxa were significantly less permeable to both [3)HH20 and [14C)C]chlorpyrifos. A method for labeling exposed epithelial surfaces with a fluorescent dye was developed. This technique allowed discrimination between exchange epithelium and barrier tissue on the integument. Fluorescent dye distributions on the body surface provided a rapid method for estimating exposed epithelium consistent with [3H]H2O and [14)C]chlorpyrifos accumulation.
The Measurement of Unsteady Surface Pressure Using a Remote Microphone Probe.
Guan, Yaoyi; Berntsen, Carl R; Bilka, Michael J; Morris, Scott C
2016-12-03
Microphones are widely applied to measure pressure fluctuations at the walls of solid bodies immersed in turbulent flows. Turbulent motions with various characteristic length scales can result in pressure fluctuations over a wide frequency range. This property of turbulence requires sensing devices to have sufficient sensitivity over a wide range of frequencies. Furthermore, the small characteristic length scales of turbulent structures require small sensing areas and the ability to place the sensors in very close proximity to each other. The complex geometries of the solid bodies, often including large surface curvatures or discontinuities, require the probe to have the ability to be set up in very limited spaces. The development of a remote microphone probe, which is inexpensive, consistent, and repeatable, is described in the present communication. It allows for the measurement of pressure fluctuations with high spatial resolution and dynamic response over a wide range of frequencies. The probe is small enough to be placed within the interior of typical wind tunnel models. The remote microphone probe includes a small, rigid, and hollow tube that penetrates the model surface to form the sensing area. This tube is connected to a standard microphone, at some distance away from the surface, using a "T" junction. An experimental method is introduced to determine the dynamic response of the remote microphone probe. In addition, an analytical method for determining the dynamic response is described. The analytical method can be applied in the design stage to determine the dimensions and properties of the RMP components.
NASA Technical Reports Server (NTRS)
Kobrick, Ryan L.; Klaus, David M.; Street, Kenneth W., Jr.
2010-01-01
A limitation has been identified in the existing test standards used for making controlled, two-body abrasion scratch measurements based solely on the width of the resultant score on the surface of the material. A new, more robust method is proposed for analyzing a surface scratch that takes into account the full three-dimensional profile of the displaced material. To accomplish this, a set of four volume displacement metrics are systematically defined by normalizing the overall surface profile to statistically denote the area of relevance, termed the Zone of Interaction (ZOI). From this baseline, depth of the trough and height of the ploughed material are factored into the overall deformation assessment. Proof of concept data were collected and analyzed to demonstrate the performance of this proposed methodology. This technique takes advantage of advanced imaging capabilities that now allow resolution of the scratched surface to be quantified in greater detail than was previously achievable. A quantified understanding of fundamental particle-material interaction is critical to anticipating how well components can withstand prolonged use in highly abrasive environments, specifically for our intended applications on the surface of the Moon and other planets or asteroids, as well as in similarly demanding, harsh terrestrial settings
Trans-Membrane Area Asymmetry Controls the Shape of Cellular Organelles
Beznoussenko, Galina V.; Pilyugin, Sergei S.; Geerts, Willie J. C.; Kozlov, Michael M.; Burger, Koert N. J.; Luini, Alberto; Derganc, Jure; Mironov, Alexander A.
2015-01-01
Membrane organelles often have complicated shapes and differ in their volume, surface area and membrane curvature. The ratio between the surface area of the cytosolic and luminal leaflets (trans-membrane area asymmetry (TAA)) determines the membrane curvature within different sites of the organelle. Thus, the shape of the organelle could be critically dependent on TAA. Here, using mathematical modeling and stereological measurements of TAA during fast transformation of organelle shapes, we present evidence that suggests that when organelle volume and surface area are constant, TAA can regulate transformation of the shape of the Golgi apparatus, endosomal multivesicular bodies, and microvilli of brush borders of kidney epithelial cells. Extraction of membrane curvature by small spheres, such as COPI-dependent vesicles within the Golgi (extraction of positive curvature), or by intraluminal vesicles within endosomes (extraction of negative curvature) controls the shape of these organelles. For instance, Golgi tubulation is critically dependent on the fusion of COPI vesicles with Golgi cisternae, and vice versa, for the extraction of membrane curvature into 50–60 nm vesicles, to induce transformation of Golgi tubules into cisternae. Also, formation of intraluminal ultra-small vesicles after fusion of endosomes allows equilibration of their TAA, volume and surface area. Finally, when microvilli of the brush border are broken into vesicles and microvilli fragments, TAA of these membranes remains the same as TAA of the microvilli. Thus, TAA has a significant role in transformation of organelle shape when other factors remain constant. PMID:25761238
Moseley, G Lorimer; Gallace, Alberto; Spence, Charles
2012-01-01
Illusions that induce a feeling of ownership over an artificial body or body-part have been used to explore the complex relationships that exist between the brain's representation of the body and the integrity of the body itself. Here we discuss recent findings in both healthy volunteers and clinical populations that highlight the robust relationship that exists between a person's sense of ownership over a body part, cortical processing of tactile input from that body part, and its physiological regulation. We propose that a network of multisensory and homeostatic brain areas may be responsible for maintaining a 'body-matrix'. That is, a dynamic neural representation that not only extends beyond the body surface to integrate both somatotopic and peripersonal sensory data, but also integrates body-centred spatial sensory data. The existence of such a 'body-matrix' allows our brain to adapt to even profound anatomical and configurational changes to our body. It also plays an important role in maintaining homeostatic control over the body. Its alteration can be seen to have both deleterious and beneficial effects in various clinical populations. Copyright © 2011 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Ragan, R.
1982-01-01
General problems faced by hydrologists when using historical records, real time data, statistical analysis, and system simulation in providing quantitative information on the temporal and spatial distribution of water are related to the limitations of these data. Major problem areas requiring multispectral imaging-based research to improve hydrology models involve: evapotranspiration rates and soil moisture dynamics for large areas; the three dimensional characteristics of bodies of water; flooding in wetlands; snow water equivalents; runoff and sediment yield from ungaged watersheds; storm rainfall; fluorescence and polarization of water and its contained substances; discriminating between sediment and chlorophyll in water; role of barrier island dynamics in coastal zone processes; the relationship between remotely measured surface roughness and hydraulic roughness of land surfaces and stream networks; and modeling the runoff process.
Leung, Ka-Ngo; Gordon, K.C.; Kippenhan, D.O.; Purgalis, P.; Moussa, D.; Williams, M.D.; Wilde, S.B.; West, M.W.
1987-10-16
A large area directly heated lanthanum hexaboride (LaB/sub 6/) cathode system is disclosed. The system comprises a LaB/sub 6/ cathode element generally circular in shape about a central axis. The cathode element has a head with an upper substantially planar emission surface, and a lower downwardly and an intermediate body portion which diminishes in cross-section from the head towards the base of the cathode element. A central rod is connected to the base of the cathode element and extends along the central axis. Plural upstanding spring fingers are urged against an outer peripheral contact surface of the head end to provide a mechanical and electrical connection to the cathode element. 7 figs
Preliminary analysis of phosphorus flow in Hue Citadel.
Anh, T N Q; Harada, H; Fujii, S; Anh, P N; Lieu, P K; Tanaka, S
2016-01-01
Characteristics of waste and wastewater management can affect material flows. Our research investigates the management of waste and wastewater in urban areas of developing countries and its effects on phosphorus flow based on a case study in Hue Citadel, Hue, Vietnam. One hundred households were interviewed to gain insight into domestic waste and wastewater management together with secondary data collection. Next, a phosphorus flow model was developed to quantify the phosphorus input and output in the area. The results showed that almost all wastewater generated in Hue Citadel was eventually discharged into water bodies and to the ground/groundwater. This led to most of the phosphorus output flowing into water bodies (41.2 kg P/(ha year)) and ground/groundwater (25.3 kg P/(ha year)). Sewage from the sewer system was the largest source of phosphorus loading into water bodies, while effluent from on-site sanitation systems was responsible for a major portion of phosphorus into the ground/groundwater. This elevated phosphorus loading is a serious issue in considering surface water and groundwater protection.
A dual layer hair array of the brown lacewing: repelling water at different length scales.
Watson, Jolanta A; Cribb, Bronwen W; Hu, Hsuan-Ming; Watson, Gregory S
2011-02-16
Additional weight due to contamination (water and/or contaminating particles) can potentially have a detrimental effect on the flight capabilities of large winged insects such as butterflies and dragonflies. Insects where the wing surface area-body mass ratio is very high will be even more susceptible to these effects. Water droplets tend to move spontaneously off the wing surface of these insects. In the case of the brown lacewing, the drops effectively encounter a dual bed of hair springs with a topographical structure which aids in the hairs resisting penetration into water bodies. In this article, we demonstrate experimentally how this protective defense system employed by the brown lacewing (Micromus tasmaniae) aids in resisting contamination from water and how the micro- and nanostructures found on these hairs are responsible for quickly shedding water from the wing which demonstrates an active liquid-repelling surface. Copyright © 2011 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Boulders on asteroid Toutatis as observed by Chang’e-2
Jiang, Yun; Ji, Jianghui; Huang, Jiangchuan; Marchi, Simone; Li, Yuan; Ip, Wing-Huen
2015-01-01
Boulders are ubiquitously found on the surfaces of small rocky bodies in the inner solar system and their spatial and size distributions give insight into the geological evolution and collisional history of the parent bodies. Using images acquired by the Chang’e-2 spacecraft, more than 200 boulders have been identified over the imaged area of the near-Earth asteroid Toutatis. The cumulative boulder size frequency distribution (SFD) shows a steep slope of −4.4 ± 0.1, which is indicative of a high degree of fragmentation. Similar to Itokawa, Toutatis probably has a rubble-pile structure, as most boulders on its surface cannot solely be explained by impact cratering. The significantly steeper slope for Toutatis’ boulder SFD compared to Itokawa may imply a different preservation state or diverse formation scenarios. In addition, the cumulative crater SFD has been used to estimate a surface crater retention age of approximately 1.6 ± 0.3 Gyr. PMID:26522880
Mishra, Devi Prasad; Sahu, Patitapaban; Panigrahi, Durga Charan; Jha, Vivekanand; Patnaik, R Lokeswara
2014-02-01
This paper presents a comparative study of (222)Rn emanation from the ore and backfill tailings in an underground uranium mine located at Jaduguda, India. The effects of surface area, porosity, (226)Ra and moisture contents on (222)Rn emanation rate were examined. The study revealed that the bulk porosity of backfill tailings is more than two orders of magnitude than that of the ore. The geometric mean radon emanation rates from the ore body and backfill tailings were found to be 10.01 × 10(-3) and 1.03 Bq m(-2) s(-1), respectively. Significant positive linear correlations between (222)Rn emanation rate and the (226)Ra content of ore and tailings were observed. For normalised (226)Ra content, the (222)Rn emanation rate from tailings was found to be 283 times higher than the ore due to higher bulk porosity and surface area. The relative radon emanation from the tailings with moisture fraction of 0.14 was found to be 2.4 times higher than the oven-dried tailings. The study suggested that the mill tailings used as a backfill material significantly contributes to radon emanation as compared to the ore body itself and the (226)Ra content and bulk porosity are the dominant factors for radon emanation into the mine atmosphere.
NASA Technical Reports Server (NTRS)
Whittle, M. W.; Herron, R. L.; Cuzzi, J. R.; Keys, C. W.
1977-01-01
Biostereometric analysis of body form was performed several times preflight and postflight on the astronauts of all three skylab flights. The analysis was made by deriving the three-dimensional coordinates of numerous points on the body surface from stereoscopic pairs of photographs of the subject, using a stereoplotter. The volume of segments of the body, and of the body as a whole, was calculated by integration of cross sectional areas derived from the coordinate data. All nine astronauts demonstrated regional changes in volume distribution which could be related to changes in total body water, muscle mass, and fat deposits. The change in water resulted from a redistribution of fluid in response to zero gravity. Changes in muscle mass resulted from an alternation in patterns of musclar activity in the absence of gravity, and changes in fat resulted from discrepancies between the individual's caloric needs and his food consumption.
Shape shifting predicts ontogenetic changes in metabolic scaling in diverse aquatic invertebrates.
Glazier, Douglas S; Hirst, Andrew G; Atkinson, David
2015-03-07
Metabolism fuels all biological activities, and thus understanding its variation is fundamentally important. Much of this variation is related to body size, which is commonly believed to follow a 3/4-power scaling law. However, during ontogeny, many kinds of animals and plants show marked shifts in metabolic scaling that deviate from 3/4-power scaling predicted by general models. Here, we show that in diverse aquatic invertebrates, ontogenetic shifts in the scaling of routine metabolic rate from near isometry (bR = scaling exponent approx. 1) to negative allometry (bR < 1), or the reverse, are associated with significant changes in body shape (indexed by bL = the scaling exponent of the relationship between body mass and body length). The observed inverse correlations between bR and bL are predicted by metabolic scaling theory that emphasizes resource/waste fluxes across external body surfaces, but contradict theory that emphasizes resource transport through internal networks. Geometric estimates of the scaling of surface area (SA) with body mass (bA) further show that ontogenetic shifts in bR and bA are positively correlated. These results support new metabolic scaling theory based on SA influences that may be applied to ontogenetic shifts in bR shown by many kinds of animals and plants. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
Manual Therapy Practices of Sobadores in North Carolina
Graham, Alan; Sandberg, Joanne C.; Quandt, Sara A.; Mora, Dana C.
2016-01-01
Abstract Objectives: This analysis provides a description of the manual-therapy elements of sobadores practicing in North Carolina, using videotapes of patient treatment sessions. Design: Three sobadores allowed the video recording of eight patient treatment sessions (one each for two sobadores, six for the third sobador). Each of the recordings was reviewed by an experienced chiropractor who recorded the frequencies of seven defined manual-therapy elements: (1) treatment time; (2) patient position on treatment surface; (3) patient body part contacted by the sobador; (4) sobador examination methods; (5) primary treatment processes; (6) sobador body part area referencing patient; and (7) adjunctive treatment processes. Results: The range of treatment time of 9–30 min was similar to the treatment spectra that combine techniques used by conventional massage and manipulative practitioners. The patient positions on the treatment surface were not extraordinary, given the wide variety of treatment processes used, and indicated the sobadores treat patients in multiple positions. The patient body part contacted by the sobadores indicated that they were treating each of the major parts of the musculoskeletal system. Basic palpation dominated the sobadores' examination methods. The sobadores' primary treatment processes included significant variety, but rubbing was the dominant practice. The hands were the sobador body area that most often made contact with the patient. They all used lubricants. Conclusions: Sobadores' methods are similar to those of other manual-therapy practitioners. Additional study of video-recorded sobador practices is needed. Video-recorded practice of other traditional and conventional manual therapies for comparative analysis will help delineate the specific similarities and differences among the manual therapies. PMID:27400120
Morphologic study of three collagen materials for body wall repair.
Soiderer, Emily E; Lantz, Gary C; Kazacos, Evelyn A; Hodde, Jason P; Wiegand, Ryan E
2004-05-15
The search for ideal prostheses for body wall repair continues. Synthetic materials such as polypropylene mesh (PPM) are associated with healing complications. A porcine-derived collagen-based material (CBM), small intestinal submucosa (SIS), has been studied for body wall repair. Renal capsule matrix (RCM) and urinary bladder submucosa (UBS) are CBMs not previously evaluated in this application. This is the first implant study using RCM. Full-thickness muscle/fascia ventral abdominal wall defects were repaired with SIS, RCM, UBS, and PPM in rats with omentum and omentectomy. A random complete block design was used to allot implant type to each of 96 rats. Healing was evaluated at 4 and 8 weeks. Adhesion tenacity and surface area were scored. Implant site dimensions were measured at implantation and necropsy. Inflammation, vascularization, and fibrosis were histopathologically scored. Data were compared by analysis of variance (P < 0.05). PPM produced a granulomatous foreign body response in contrast to the organized healing of CBM implants. CBM mean scores were lower than PPM scores for adhesion tenacity, surface area, and inflammation at each follow-up time for rats with omentums (P < 0.02). The CBMs had less tenacity and inflammation than PPM at each follow-up time in omentectomy groups (P < 0.008). Wound contraction was greater for PPM (P < 0.0001) for all rats. RCM and UBS were similar to SIS invoking reduced inflammation, adhesion, and contraction compared to PPM. The fibrotic response to PPM was unique and more intense compared to CBMs. These CBM implants appear morphologically acceptable and warrant continued investigation.
Łakuta, Patryk; Marcinkiewicz, Kamil; Bergler-Czop, Beata; Brzezińska-Wcisło, Ligia; Słomian, Anna
2018-02-01
Research has demonstrated a link between psoriasis and a multitude of psychological impairments; however, relatively few studies have examined the importance of site of skin lesions for negative psychological outcomes in psoriasis patients. To investigate relationships between anatomical location of psoriatic lesions and experiences of stigmatization, negative emotional attitude towards the body, depression and social anxiety. Adult psoriasis patients ( N = 193) completed the Stigmatization Scale, the Body Emotions Scale, the Beck Depression Inventory and the Social Anxiety Questionnaire. The body surface area index was used to assess the location and extent of psoriasis. Feelings of stigmatization were found to be most closely related to the presence of psoriatic lesions on the chest, and the arms and hands. Higher levels of social anxiety were found to be most closely related to the location of psoriatic lesions on the head and neck. Negative emotional attitude towards the body was found to be most closely related to the location of psoriatic lesions on the arms and hands, and on the head and neck. Higher levels of depressive symptoms were most closely related to the presence of psoriatic lesions on the head and neck, the arms and hands, and the genital area. The presence of psoriatic lesions on the head, neck, and chest, and also on the arms and hands and the genital area, should alert clinicians to a higher risk of psychological impairments. This may help to better recognize and prevent cumulative life course impairment.
NASA Technical Reports Server (NTRS)
Saltzman, Edwin J.; Wang, K. Charles; Iliff, Kenneth W.
2002-01-01
This report examines subsonic flight-measured lift and drag characteristics of seven lifting-body and wing-body reentry vehicle configurations with truncated bases. The seven vehicles are the full-scale M2-F1, M2-F2, HL-10, X-24A, X-24B, and X-15 vehicles and the Space Shuttle Enterprise. Subsonic flight lift and drag data of the various vehicles are assembled under aerodynamic performance parameters and presented in several analytical and graphical formats. These formats are intended to unify the data and allow a greater understanding than individually studying the vehicles allows. Lift-curve slope data are studied with respect to aspect ratio and related to generic wind-tunnel model data and to theory for low-aspect-ratio platforms. The definition of reference area is critical for understanding and comparing the lift data. The drag components studied include minimum drag coefficient, lift-related drag, maximum lift-to drag ratio, and, where available, base pressure coefficients. The influence of forebody drag on afterbody and base drag at low lift is shown to be related to Hoerner's compilation for body, airfoil, nacelle, and canopy drag. This feature may result in a reduced need of surface smoothness for vehicles with a large ratio of base area to wetted area. These analyses are intended to provide a useful analytical framework with which to compare and evaluate new vehicle configurations of the same generic family.
Older adults with type 2 diabetes store more heat during exercise.
Kenny, Glen P; Stapleton, Jill M; Yardley, Jane E; Boulay, Pierre; Sigal, Ronald J
2013-10-01
It is unknown if diabetes-related reductions in local skin blood flow (SkBF) and sweating (LSR) measured during passive heat stress translate into greater heat storage during exercise in the heat in individuals with type 2 diabetes (T2D) compared with nondiabetic control (CON) subjects. This study aimed to examine the effects of T2D on whole-body heat exchange during exercise in the heat. Ten adults (6 males and 4 females) with T2D and 10 adults (6 males and 4 females) without diabetes matched for age, sex, body surface area, and body surface area and aerobic fitness cycled continuously for 60 min at a fixed rate of metabolic heat production (∼370 W) in a whole-body direct calorimeter (30°C and 20% relative humidity). Upper back LSR, forearm SkBF, rectal temperature, and heart rate were measured continuously. Whole-body heat loss and changes in body heat content (ΔHb) were determined using simultaneous direct whole-body and indirect calorimetry. Whole-body heat loss was significantly attenuated from 15 min throughout the remaining exercise with the differences becoming more pronounced over time for T2D relative to CON (P = 0.004). This resulted in a significantly greater ΔHb in T2D (367 ± 35; CON, 238 ± 25 kJ, P = 0.002). No differences were measured during recovery (T2D, -79 ± 23; CON, -132 ± 23 kJ, P = 0.083). By the end of the 60-min recovery, the T2D group lost only 21% (79 kJ) of the total heat gained during exercise, whereas their nondiabetic counterparts lost in excess of 55% (131 kJ). No difference were observed in LSR, SkBF, rectal temperature or heart rate during exercise. Similarly, no differences were measured during recovery with the exception that heart rate was elevated in the T2D group relative to CON (p=0.004). Older adults with T2D have a reduced capacity to dissipate heat during exercise, resulting in a greater heat storage and therefore level of thermal strain.
Lakes and lake-like waters of the Hawaiian Archipelago
Maciolek, J.A.
1982-01-01
This summary of Hawaiian lacustrine limnology is based on 12 years of field and literature surveys of archipelagic inland waters. Lakes here are distinguished from other standing waters by limits on surface oceanic area (> 0.1 ha) and depth (> 2 m), and by the absence of flatural surface oceanic connection. A variety of extinct and existing water bodies, sometimes referred to as lakes, are noted. Six lakes are described. Five of them are in crater basins, 3 are freshwater, and 2 are elevated (highest = 3969 m). The scarcity of elevated lakes results from general permeability of the substrata. Among the 6 lakes, surface areas range from 0.22 to 88 ha and maximum depths from 3 to 248 m. Naturally occurring aquatic biota generally is low in species diversity except for phytoplankton; fishes and submersed vascular plants are absent. Two lowland lakes, freshwater Green (Wai a Pele) and saline Kauhak6, are described for the first time. Profundal Kauhak6, 248 m deep, has a surface area of only 0.35 ha, which results in an extraordinary relative depth of 370%. It is permanently stratified, a condition apparently due primarily to the unique morphometry of its basin.
Active sediment caps are being considered for addressing contaminated sediment areas in surface-water bodies. A demonstration of an active cap designed to reduce advective transport of contaminants using AquaBlok® (active cap material) was initiated in a small study a...
NASA Astrophysics Data System (ADS)
Belov, M. Ye.; Shayko-Shaykovskiy, O. G.; Makhrova, Ye. G.; Kramar, V. M.; Oleksuik, I. S.
2018-01-01
We represent here the theoretical justifications, block scheme and experimental sample of a new automated complex "Thermodyn" for remote contactless diagnostics of inflammatory processes of the surfaces and in subcutaneous areas of human body. Also we described here the methods and results of diagnostic measurements, and results of practical applications of this complex.
Sub-discretized surface model with application to contact mechanics in multi-body simulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, S; Williams, J
2008-02-28
The mechanics of contact between rough and imperfectly spherical adhesive powder grains are often complicated by a variety of factors, including several which vary over sub-grain length scales. These include several traction factors that vary spatially over the surface of the individual grains, including high energy electron and acceptor sites (electrostatic), hydrophobic and hydrophilic sites (electrostatic and capillary), surface energy (general adhesion), geometry (van der Waals and mechanical), and elasto-plastic deformation (mechanical). For mechanical deformation and reaction, coupled motions, such as twisting with bending and sliding, as well as surface roughness add an asymmetry to the contact force which invalidatesmore » assumptions for popular models of contact, such as the Hertzian and its derivatives, for the non-adhesive case, and the JKR and DMT models for adhesive contacts. Though several contact laws have been offered to ameliorate these drawbacks, they are often constrained to particular loading paths (most often normal loading) and are relatively complicated for computational implementation. This paper offers a simple and general computational method for augmenting contact law predictions in multi-body simulations through characterization of the contact surfaces using a hierarchically-defined surface sub-discretization. For the case of adhesive contact between powder grains in low stress regimes, this technique can allow a variety of existing contact laws to be resolved across scales, allowing for moments and torques about the contact area as well as normal and tangential tractions to be resolved. This is especially useful for multi-body simulation applications where the modeler desires statistical distributions and calibration for parameters in contact laws commonly used for resolving near-surface contact mechanics. The approach is verified against analytical results for the case of rough, elastic spheres.« less
Positive Voltage Hazard to EMU Crewman from Currents through Plasma
NASA Technical Reports Server (NTRS)
Koontz, Steven L.; Kramer, Leonard; Hamilton, Doug; Mikatarian, Ronald
2010-01-01
This paper describes the model of the EMU with a human body in the circuit that has been used by NASA to evaluate the low positive voltage hazard. The model utilizes the electron collection characterization from on orbit Langmuir probe data as representative of electron collection to a positive charged surface with a wide range of on orbit plasma temperature and density conditions. The data has been unified according to non-linear theoretical temperature and density variation of the electron saturated probe current collection theory and used as a model for the electron collection at EMU surfaces. Vulnerable paths through the EMU connecting through the crewman s body have been identified along with electrical impedance of the exposed body parts. The body impedance information is merged with the electron collection characteristics in circuit simulation software (SPICE). The assessment shows that currents can be on the order of 20 mA for a 15 V exposure and of order 4 mA at 3V. These currents formally violate NASA protocol for electric current exposures however the human factors associated with subjective consequences of noxious stimuli from low voltage exposure during the stressful conditions of EVA are an area of active inquiry.
Modification of Surface Density of a Porous Medium
NASA Technical Reports Server (NTRS)
Stackpoole, Margaret M. (Inventor); Espinoza, Christian (Inventor)
2016-01-01
A method for increasing density of a region of a porous, phenolic bonded ("PPB") body adjacent to a selected surface to increase failure tensile strength of the adjacent region and/or to decrease surface recession at elevated temperatures. When the surface-densified PPB body is brought together with a substrate, having a higher failure tensile strength, to form a composite body with a PPB body/substrate interface, the location of tensile failure is moved to a location spaced apart from the interface, the failure tensile strength of the PPB body is increased, and surface recession of the material at elevated temperature is reduced. The method deposits and allows diffusion of a phenolic substance on the selected surface. The PPB body and the substrate may be heated and brought together to form the composite body. The phenolic substance is allowed to diffuse into the PPB body, to volatilize and to cure, to provide a processed body with an increased surface density.
Individual thermal profiles as a basis for comfort improvement in space and other environments
NASA Technical Reports Server (NTRS)
Koscheyev, V. S.; Coca, A.; Leon, G. R.; Dancisak, M. J.
2002-01-01
BACKGROUND: The development of individualized countermeasures to address problems in thermoregulation is of considerable importance for humans in space and other extreme environments. A methodology is presented for evaluating minimal/maximal heat flux from the total human body and specific body zones, and for assessing individual differences in the efficiency of heat exchange from these body areas. The goal is to apply this information to the design of individualized protective equipment. METHODS: A multi-compartment conductive plastic tubing liquid cooling/warming garment (LCWG) was developed. Inlet water temperatures of 8-45 degrees C were imposed sequentially to specific body areas while the remainder of the garment was maintained at 33 degrees C. RESULTS: There were significant differences in heat exchange level among body zones in both the 8 degrees and 45 degrees C temperature conditions (p < 0.001). The greatest amount of heat was absorbed/released by the following areas: thighs (8 degrees C: -2.12 +/- 0.14 kcal min(-1); 45 degrees C: +1.58 +/- 0.23); torso (8 degrees C: -2.12 +/- 0.13 kcal min(-1); 45 degrees C: +1.31 +/- 0.27); calves (8 degrees C: -1.59 +/- 0.26 kcal min(-1); 45 degrees C: +1.53 +/- 0.24); and forearms (8 degrees C: -1.67 +/- 0.29 kcal x min(-1); 45 degrees C: +1.45 +/- 0.20). These are primarily zones with relatively large muscle mass and adipose tissue. Calculation of absorption/release heat rates standardized per unit tube length and flow rate instead of zonal surface area covered showed that there was significantly greater heat transfer in the head, hands, and feet (p < 0.001). The areas in which there was considerable between-subject variability in rates of heat transfer and thus most informative for individual profile design were the torso, thighs, shoulders, and calves or forearms. CONCLUSIONS: The methodology developed is sensitive to individual differences in the process of heat exchange and variations in different body areas, depending on their size and tissue mass content. The design of individual thermal profiles is feasible for better comfort of astronauts on long-duration missions and personnel in other extreme environments.
NASA Astrophysics Data System (ADS)
Alemu, H.; Velpuri, N.; Senay, G. B.; Angerer, J.
2011-12-01
Information on the location and availability of water resources is a day-to-day challenge for pastoralists in the Sahelian region of Mali. They move seasonally along their migration corridors in search for water and forage. Satellite data can be used to map the spatial and temporal dynamics of these water resources. In this work, ASTER imagery is selected for its high (15 m) spatial resolution and suitable spectral bands for water body identification. Our research indicates that as most of the waterholes of interest in the study area are very shallow and heavily sediment-laden, using only one of those commonly used water identification indices such as the Simple Band Ratio (SBR), or the Normalized Difference Water Index (NDWI) alone does not help in effectively characterizing all the surface water bodies in the region. As a result, we used four different spectral indices to identify surface water features: (i) Simple Band Ratio (SBR), (ii) Normalized Difference Water Index (NDWI), (iii) Modified Normalized Difference Water Index (MNDWI), and (iv) the Mean Absolute Deviation (MAD) to identify and delineate surface water bodies using 91 ASTER images. Initial results indicate that the SBR method identified 17 waterholes while the NDWI 18, the MNDWI 36, and the MAD method identified 28 waterholes. However, by combining the results from the four aforementioned spectral indices following a multi-index approach, 89 waterholes that were previously unidentified by a single approach alone were identified. Furthermore, our analysis indicates that the SBR and the NDWI methods identify relatively clearer waterholes better (29% of the waterholes), whereas MNDWI and MAD proved to be good indices for identifying sediment-laden waterholes. Identifying the location and spatial distribution of surface water bodies is the first step towards monitoring their seasonal dynamics using a hydrologic modeling system, similar to an existing setup for east Africa (http://watermon.tamu.edu/). Seasonal trends in relative surface water levels are one of the most important inputs in the livestock early warning system (LEWS) along with forage and livestock market prices.
Development of a universal water signature for the LANDSAT-3 Multispectral Scanner, part 1
NASA Technical Reports Server (NTRS)
Schlosser, E. H.
1980-01-01
A generalized four channel hyperplane to discriminate water from nonwater was developed using LANDSAT-3 multispectral scaner (MSS) scenes and matching same/next day color infrared aerial photography. The MSS scenes varied in sun elevation angle from 40 to 58 deg. The 28 matching air photo frames contained over 1400 water bodies larger than one surface acre. A preliminary water discriminant, was used to screen the data and eliminate from further consideration all pixels distant from water in MSS spectral space. A linear discriminant was iteratively fitted to the labelled pixels. This discriminant correctly classified 98.7% of the water pixels and 98.6% of the nonwater pixels. The discriminant detected 91.3% of the 414 water bodies over 10 acres in surface area, and misclassified as water 36 groups of contiguous nonwater pixels.
Impact of Rice Paddy Areas Decrease on Local Climate over Taiwan
NASA Astrophysics Data System (ADS)
Lo, M. H.; Wen, W. H.; Chen, C. C.
2014-12-01
Agricultural irrigation practice is one of the important anthropogenic processes in the land surface modeling. Irrigation can decrease local surface temperature with alternating surface energy partitioning. Rice paddy is the major food crop in Asian monsoon region and rice is grown under flooded conditions during the growing season; hence, the rice paddy can be considered as an open water body, which has more impacts on the surface energy budget than other cropland does. In this study, we explore how the rice paddy area changes affect Taiwan's regional climate from both observational data and numerical modeling exercise. The Weather Research and Forecasting (WRF) model is utilized to explore impacts of rice paddy area changes on the regional climate, and energy and water budget changes. In addition, temperature datasets from six automatic weather stations in the northern Taiwan and two stations in the southern Taiwan are analyzed in this study to explore how the Daily Temperature Range (DTR) changes with the decreased rice paddy areas. Previous studies show that due to the urban heat island effect, aerosol direct and indirect effects, and global warming, the DTR has decreased in the past 4 decades observed from most of the weather stations around Taiwan. However, the declined rice paddy area may increase the DTR with higher Bowen ratio during the daytime. Preliminary results show that DTR is decreased in weather stations near the urban area, but increased in weather stations near fallow areas in the past 20 years. It shows that different land use changes may have opposite impacts on local and regional climate.
Laser diode with thermal conducting, current confining film
NASA Technical Reports Server (NTRS)
Hawrylo, Frank Z. (Inventor)
1980-01-01
A laser diode formed of a rectangular parallelopiped body of single crystalline semiconductor material includes regions of opposite conductivity type indium phosphide extending to opposite surfaces of the body. Within the body is a PN junction at which light can be generated. A stripe of a conductive material is on the surface of the body to which the P type region extends and forms an ohmic contact with the P type region. The stripe is spaced from the side surfaces of the body and extends to the end surfaces of the body. A film of germanium is on the portions of the surface of the P type region which is not covered by the conductive stripe. The germanium film serves to conduct heat from the body and forms a blocking junction with the P type region so as to confine the current through the body, across the light generating PN junction, away from the side surfaces of the body.
Spatial regression models of park and land-use impacts on the urban heat island in central Beijing.
Dai, Zhaoxin; Guldmann, Jean-Michel; Hu, Yunfeng
2018-06-01
Understanding the relationship between urban land structure and land surface temperatures (LST) is important for mitigating the urban heat island (UHI). This paper explores this relationship within central Beijing, an area located within the 2nd Ring Road. The urban variables include the Normalized Difference Vegetation Index (NDVI), the Normalized Difference Build-up Index (NDBI), the area of building footprints, the area of main roads, the area of water bodies and a gravity index for parks that account for both park size and distance. The data are captured over 8 grids of square cells (30 m, 60 m, 90 m, 120 m, 150 m, 180 m, 210 m, 240 m). The research involves: (1) estimating land surface temperatures using Landsat 8 satellite imagery, (2) building the database of urban variables, and (3) conducting regression analyses. The results show that (1) all the variables impact surface temperatures, (2) spatial regressions are necessary to capture neighboring effects, and (3) higher-order polynomial functions are more suitable for capturing the effects of NDVI and NDBI. Copyright © 2018 Elsevier B.V. All rights reserved.
A rare case of failed healing in previously burned skin after a secondary burns.
Goldie, Stephen J; Parsons, Shaun; Menezes, Hana; Ives, Andrew; Cleland, Heather
2017-01-01
Patients presenting with large surface area burns are common in our practice; however, patients with a secondary large burn on pre-existing burn scars and grafts are rare and not reported. We report on an unusual case of a patient sustaining a secondary large burn to areas previously injured by a burn from a different mechanism. We discuss the potential implications when managing a case like this and suggest potential biological reasons why the skin may behave differently. Our patient was a 33-year-old man who presented with a 5% TBSA burn on skin scarred by a previous 40% total body surface area (TBSA) burn and skin grafts. Initially assessed as superficial partial thickness in depth, the wounds were treated conservatively with dressings; however, they failed to heal and became infected requiring surgical management. Burns sustained in areas of previous burn scars and grafts may behave differently to normal patterns of healing, requiring more aggressive management and surgical intervention at an early stage.
Computer-aided analysis with Image J for quantitatively assessing psoriatic lesion area.
Sun, Z; Wang, Y; Ji, S; Wang, K; Zhao, Y
2015-11-01
Body surface area is important in determining the severity of psoriasis. However, objective, reliable, and practical method is still in need for this purpose. We performed a computer image analysis (CIA) of psoriatic area using the image J freeware to determine whether this method could be used for objective evaluation of psoriatic area. Fifteen psoriasis patients were randomized to be treated with adalimumab or placebo in a clinical trial. At each visit, the psoriasis area of each body site was estimated by two physicians (E-method), and standard photographs were taken. The psoriasis area in the pictures was assessed with CIA using semi-automatic threshold selection (T-method), or manual selection (M-method, gold standard). The results assessed by the three methods were analyzed with reliability and affecting factors evaluated. Both T- and E-method correlated strongly with M-method, and T-method had a slightly stronger correlation with M-method. Both T- and E-methods had a good consistency between the evaluators. All the three methods were able to detect the change in the psoriatic area after treatment, while the E-method tends to overestimate. The CIA with image J freeware is reliable and practicable in quantitatively assessing the lesional of psoriasis area. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Wygel, C. M.; Sahagian, D. L.
2017-12-01
Volcanic eruptions are natural hazards due to their explosive nature and widespread transportation and deposition of ash particles. After deposition and subsequent leaching in soils or water bodies, ash deposition positively (nutrients) and negatively (contaminants) impacts the health of flora and fauna, including humans. The effects of ash leachates have been difficult to replicate in field and laboratory studies due to the many complexities and differences between ash particles. Ash morphology is characteristic for each eruption, dependent upon eruption energy, and should play a critical role in determining leaching rates. Morphology reflects overall particle surface area, which is strongly influenced by the presence of surface dust. In addition, ash composition, which in part controls morphology and particle size, may also affect leaching rates. This study determines the extent to which ash morphology, surface area, composition, and particle size control ash dissolution rates. Further, it is necessary to determine whether compound vesicular ash particles permit water into their interior structures to understand if both the internal and external surface areas are available for leaching. To address this, six fresh, unhydrated ash samples from diverse volcanic environments and a large range in morphology, from Pele's spheres to vesicular compound ash, are tested in the laboratory. Ash morphology was characterized on the Scanning Electron Microscope (SEM) before and after leaching and surface area was quantified by Brunauer Emmett Teller (BET) analysis and with geometric calculations. Column Leachate Tests (CLT) were conducted to compare leaching rates over a range of basaltic to silicic ashes as a function of time and surface area, to recreate the effects of ash deposition in diverse volcanic environments. After the CLT, post-leaching water analyses were conducted by Ion Coupled Plasma-Mass Spectrometry (ICP-MS) and Ion Chromatography (IC). We find that leaching rates are correlated to characteristic surface area of ash particles.
Estimating malaria burden in Nigeria: a geostatistical modelling approach.
Onyiri, Nnadozie
2015-11-04
This study has produced a map of malaria prevalence in Nigeria based on available data from the Mapping Malaria Risk in Africa (MARA) database, including all malaria prevalence surveys in Nigeria that could be geolocated, as well as data collected during fieldwork in Nigeria between March and June 2007. Logistic regression was fitted to malaria prevalence to identify significant demographic (age) and environmental covariates in STATA. The following environmental covariates were included in the spatial model: the normalized difference vegetation index, the enhanced vegetation index, the leaf area index, the land surface temperature for day and night, land use/landcover (LULC), distance to water bodies, and rainfall. The spatial model created suggests that the two main environmental covariates correlating with malaria presence were land surface temperature for day and rainfall. It was also found that malaria prevalence increased with distance to water bodies up to 4 km. The malaria risk map estimated from the spatial model shows that malaria prevalence in Nigeria varies from 20% in certain areas to 70% in others. The highest prevalence rates were found in the Niger Delta states of Rivers and Bayelsa, the areas surrounding the confluence of the rivers Niger and Benue, and also isolated parts of the north-eastern and north-western parts of the country. Isolated patches of low malaria prevalence were found to be scattered around the country with northern Nigeria having more such areas than the rest of the country. Nigeria's belt of middle regions generally has malaria prevalence of 40% and above.
Progression of methanogenic degradation of crude oil in the subsurface
Bekins, B.A.; Hostettler, F.D.; Herkelrath, W.N.; Delin, G.N.; Warren, E.; Essaid, H.I.
2005-01-01
Our results show that subsurface crude-oil degradation rates at a long-term research site were strongly influenced by small-scale variations in hydrologic conditions. The site is a shallow glacial outwash aquifer located near Bemidji in northern Minnesota that became contaminated when oil spilled from a broken pipeline in August 1979. In the study area, separate-phase oil forms a subsurface oil body extending from land surface to about 1 m (3.3 ft) below the 6-8-m (20-26 ft)-deep water table. Oil saturation in the sediments ranges from 10-20% in the vadose zone to 30-70% near the water table. At depths below 2 m (6.6 ft), degradation of the separate-phase crude oil occurs under methanogenic conditions. The sequence of methanogenic alkane degradation depletes the longer chain n-alkanes before the shorter chain n-alkanes, which is opposite to the better known aerobic sequence. The rates of degradation vary significantly with location in the subsurface. Oil-coated soils within 1.5 m (5 ft) of land surface have experienced little degradation where soil water saturation is less than 20%. Oil located 2-8 m (6.6-26 ft) below land surface in areas of higher recharge has been substantially degraded. The best explanation for the association between recharge and enhanced degradation seems to be increased downward transport of microbial growth nutrients to the oil body. This is supported by observations of greater microbial numbers at higher elevations in the oil body and significant decreases with depth in nutrient concentrations, especially phosphorus. Our results suggest that environmental effects may cause widely diverging degradation rates in the same spill, calling into question dating methods based on degradation state. Copyright ?? 2005. The American Association of Petroleum Geologists/Division of Environmental Geosciences. All rights reserved.
Pérez-Guisado, Joaquín; de Haro-Padilla, Jesús M; Rioja, Luis F; DeRosier, Leo C; de la Torre, Jorge I
2013-01-01
Objective: Serum albumin levels have been used to evaluate the severity of the burns and the nutrition protein status in burn people, specifically in the response of the burn patient to the nutrition. Although it hasn’t been proven if all these associations are fully funded. The aim of this retrospective study was to determine the relationship of serum albumin levels at 3-7 days after the burn injury, with the total body surface area burned (TBSA), the length of hospital stay (LHS) and the initiation of the oral/enteral nutrition (IOEN). Subject and methods: It was carried out with the health records of patients that accomplished the inclusion criteria and were admitted to the burn units at the University Hospital of Reina Sofia (Córdoba, Spain) and UAB Hospital at Birmingham (Alabama, USA) over a 10 years period, between January 2000 and December 2009. We studied the statistical association of serum albumin levels with the TBSA, LHS and IOEN by ANOVA one way test. The confidence interval chosen for statistical differences was 95%. Duncan’s test was used to determine the number of statistically significantly groups. Results: Were expressed as mean±standard deviation. We found serum albumin levels association with TBSA and LHS, with greater to lesser serum albumin levels found associated to lesser to greater TBSA and LHS. We didn’t find statistical association with IOEN. Conclusion: We conclude that serum albumin levels aren’t a nutritional marker in burn people although they could be used as a simple clinical tool to identify the severity of the burn wounds represented by the total body surface area burned and the lenght of hospital stay. PMID:23875122
Pérez-Guisado, Joaquín; de Haro-Padilla, Jesús M; Rioja, Luis F; Derosier, Leo C; de la Torre, Jorge I
2013-01-01
Serum albumin levels have been used to evaluate the severity of the burns and the nutrition protein status in burn people, specifically in the response of the burn patient to the nutrition. Although it hasn't been proven if all these associations are fully funded. The aim of this retrospective study was to determine the relationship of serum albumin levels at 3-7 days after the burn injury, with the total body surface area burned (TBSA), the length of hospital stay (LHS) and the initiation of the oral/enteral nutrition (IOEN). It was carried out with the health records of patients that accomplished the inclusion criteria and were admitted to the burn units at the University Hospital of Reina Sofia (Córdoba, Spain) and UAB Hospital at Birmingham (Alabama, USA) over a 10 years period, between January 2000 and December 2009. We studied the statistical association of serum albumin levels with the TBSA, LHS and IOEN by ANOVA one way test. The confidence interval chosen for statistical differences was 95%. Duncan's test was used to determine the number of statistically significantly groups. Were expressed as mean±standard deviation. We found serum albumin levels association with TBSA and LHS, with greater to lesser serum albumin levels found associated to lesser to greater TBSA and LHS. We didn't find statistical association with IOEN. We conclude that serum albumin levels aren't a nutritional marker in burn people although they could be used as a simple clinical tool to identify the severity of the burn wounds represented by the total body surface area burned and the lenght of hospital stay.
Iron aluminide alloy coatings and joints, and methods of forming
Wright, Richard N.; Wright, Julie K.; Moore, Glenn A.
1994-01-01
A method of joining two bodies together, at least one of the bodies being predominantly composed of metal, the two bodies each having a respective joint surface for joining with the joint surface of the other body, the two bodies having a respective melting point, includes the following steps: a) providing aluminum metal and iron metal on at least one of the joint surfaces of the two bodies; b) after providing the aluminum metal and iron metal on the one joint surface, positioning the joint surfaces of the two bodies in juxtaposition against one another with the aluminum and iron positioned therebetween; c) heating the aluminum and iron on the juxtaposed bodies to a temperature from greater than or equal to 600.degree. C. to less than the melting point of the lower melting point body; d) applying pressure on the juxtaposed surfaces; and e) maintaining the pressure and the temperature for a time period effective to form the aluminum and iron into an iron aluminide alloy joint which bonds the juxtaposed surfaces and correspondingly the two bodies together. The method can also effectively be used to coat a body with an iron aluminide coating.
Iron aluminide alloy coatings and joints, and methods of forming
Wright, R.N.; Wright, J.K.; Moore, G.A.
1994-09-27
Disclosed is a method of joining two bodies together, at least one of the bodies being predominantly composed of metal, the two bodies each having a respective joint surface for joining with the joint surface of the other body, the two bodies having a respective melting point, includes the following steps: (a) providing aluminum metal and iron metal on at least one of the joint surfaces of the two bodies; (b) after providing the aluminum metal and iron metal on the one joint surface, positioning the joint surfaces of the two bodies in juxtaposition against one another with the aluminum and iron positioned therebetween; (c) heating the aluminum and iron on the juxtaposed bodies to a temperature from greater than or equal to 600 C to less than the melting point of the lower melting point body; (d) applying pressure on the juxtaposed surfaces; and (e) maintaining the pressure and the temperature for a time period effective to form the aluminum and iron into an iron aluminide alloy joint which bonds the juxtaposed surfaces and correspondingly the two bodies together. The method can also effectively be used to coat a body with an iron aluminide coating.
Bunner, Danny W.
1993-01-01
The Midwestern Basins and Arches Regional Aquifer-Systems Analysis (RASA) is one of 28 projects that were identified by Congress in 1978, after a period of severe drought, to be studied by the U.S. Geological Survey (Sun, 1984). The Midwestern Basins and Arches RASA study area in parts of Indiana, Ohio, Michigan, and Illinois is defined by either the limestone-shale contact of rocks of Devonian age or by the contact of the land with surface-water bodies (fig. 1).
NASA Astrophysics Data System (ADS)
Hasan, Mejs; Moody, Aaron
2017-04-01
The fast-paced conflicts in the Middle East have the potential to disrupt management and supply of water resources in the region. In this research, we use the normalized difference water index (NDWI) in order to monitor changes in the extent of various water bodies over the time span of the Landsat 4, 5, 7, and 8 satellites (1984-present). We focused on Mosul and Haditha dam lakes, located on the Tigris and Euphrates Rivers, respectively, each of which has experienced changes in sovereignty over the last few years of conflict. We established two areas, one land and one water, on each image, plotted the distributions of all NDWI values for each area, and used the number of standard deviations between the two distributions in order to set a dynamic NDWI threshold for each image. Using this threshold, we determined water pixels and lake surface area, and computed daily percent change in lake extent between images. Furthermore, we took account of explanatory water resource variables, such as upstream dam management (via surface extent of upstream Turkish dams), precipitation (via globally-compiled databases), evaporation (based on surface area decreases during non-rainy months), and irrigation withdrawals (based on MODIS Enhanced Vegetation Indices). We used these explanatory variables in order to build a general model of expected dam lake surface extent, and we looked to see if anomalies from expected surface area corresponded with periods of conflict. We found that the recent years of conflict do not appear to have had as much impact on the Mosul and Haditha dam lakes as did the conflicts related to the earlier Gulf Wars. The dam lakes have recorded an overall decrease in surface area simultaneous to increases of upstream dams. A strong seasonal signal driven by springtime Turkish snowmelt and summer evaporation is also evident.
Geophysical investigation of sentinel lakes in Lake, Seminole, Orange, and Volusia Counties, Florida
Reich, Christopher; Flocks, James; Davis, Jeffrey
2012-01-01
This study was initiated in cooperation with the St. Johns River Water Management District (SJRWMD) to investigate groundwater and surface-water interaction in designated sentinel lakes in central Florida. Sentinel lakes are a SJRWMD established set of priority water bodies (lakes) for which minimum flows and levels (MFLs) are determined. Understanding both the structure and lithology beneath these lakes can ultimately lead to a better understanding of the MFLs and why water levels fluctuate in certain lakes more so than in other lakes. These sentinel lakes have become important water bodies to use as water-fluctuation indicators in the SJRWMD Minimum Flows and Levels program and will be used to define long-term hydrologic and ecologic performance measures. Geologic control on lake hydrology remains poorly understood in this study area. Therefore, the U.S. Geological Survey investigated 16 of the 21 water bodies on the SJRWMD priority list. Geologic information was obtained by the tandem use of high-resolution seismic profiling (HRSP) and direct-current (DC) resistivity profiling to isolate both the geologic framework (structure) and composition (lithology). Previous HRSP surveys from various lakes in the study area have been successful in identifying karst features, such as subsidence sinkholes. However, by using this method only, it is difficult to image highly irregular or chaotic surfaces, such as collapse sinkholes. Resistivity profiling was used to complement HRSP by detecting porosity change within fractured or collapsed structures and increase the ability to fully characterize the subsurface. Lake Saunders (Lake County) is an example of a lake composed of a series of north-south-trending sinkholes that have joined to form one lake body. HRSP shows surface depressions and deformation in the substrate. Resistivity data likewise show areas in the southern part of the lake where resistivity shifts abruptly from approximately 400 ohm meters (ohm-m) along the edges to approximately 12 ohm-m in the center. These well-defined areas may indicate a "ravel" zone of increased porosity or clay content. Within Lake Helen (Volusia County), a parallel set of seismic reflectors within a host of chaotic reflectors may represent fill within a large sinkhole. The feature extends to more than 50 meters (m) deep and contains very steep pinnacles within the center. Seismic data in Lake Helen are supported by high resistivity values from adjacent continuous resistivity profiles that show possible center collapse within the lake and infilling of sandy material. When used together, HRSP and DC resistivity techniques provide a composite image of structure and lithology to detect potential conduits for fluid flow.
Bhat, Swapna; Boynton, Tye O; Pham, Dan; Shimkets, Lawrence J
2014-01-01
Myxococcus xanthus responds to amino acid limitation by producing fruiting bodies containing dormant spores. During development, cells produce triacylglycerides in lipid bodies that become consumed during spore maturation. As the cells are starved to induce development, the production of triglycerides represents a counterintuitive metabolic switch. In this paper, lipid bodies were quantified in wild-type strain DK1622 and 33 developmental mutants at the cellular level by measuring the cross sectional area of the cell stained with the lipophilic dye Nile red. We provide five lines of evidence that triacylglycerides are derived from membrane phospholipids as cells shorten in length and then differentiate into myxospores. First, in wild type cells, lipid bodies appear early in development and their size increases concurrent with an 87% decline in membrane surface area. Second, developmental mutants blocked at different stages of shortening and differentiation accumulated lipid bodies proportionate with their cell length with a Pearson's correlation coefficient of 0.76. Third, peripheral rods, developing cells that do not produce lipid bodies, fail to shorten. Fourth, genes for fatty acid synthesis are down-regulated while genes for fatty acid degradation are up regulated. Finally, direct movement of fatty acids from membrane lipids in growing cells to lipid bodies in developing cells was observed by pulse labeling cells with palmitate. Recycling of lipids released by Programmed Cell Death appears not to be necessary for lipid body production as a fadL mutant was defective in fatty acid uptake but proficient in lipid body production. The lipid body regulon involves many developmental genes that are not specifically involved in fatty acid synthesis or degradation. MazF RNA interferase and its target, enhancer-binding protein Nla6, appear to negatively regulate cell shortening and TAG accumulation whereas most cell-cell signals activate these processes.
NASA Astrophysics Data System (ADS)
Abtew, M. A.; Bruniaux, P.; Boussu, F.
2017-10-01
The traditional two dimensional (2D) pattern making method for developing female body armour has a negative effect on the ballistic protective performance as well as the comfort of the wearer. This is due to, unlike the male body armour, the female body armour manufacturing involves different darts to accommodate the natural curvature of the female body, i.e. bust area, which will reveals the weak parts at the seam and stitch area while ballistic impact. Moreover, the proper bra size also plays an important role not only in bra design but also in the design of a women’s ballistic vest. The present research study tried to propose the novel 3D designing approach for developing different volumes of breast using feature points (both bust surface and outline points) in the specific 3D adaptive mannequin. Later the flattened 3D bra patterns of this method has been also compare with the 2D standard pattern making in order to modify and match with 2D traditional method. The result indicated that the proposed method which conceives the 3D patterns on the 3D bust is easier to implement and can generate patterns with satisfactory fit and comfort as compared to 2D patterns.
Zelle, Dorien M.; Bakker, Stephan J.L.; Navis, Gerjan
2013-01-01
Central distribution of body fat is associated with a higher risk of renal disease, but whether it is the distribution pattern or the overall excess weight that underlies this association is not well understood. Here, we studied the association between waist-to-hip ratio (WHR), which reflects central adiposity, and renal hemodynamics in 315 healthy persons with a mean body mass index (BMI) of 24.9 kg/m2 and a mean 125I-iothalamate GFR of 109 ml/min per 1.73 m2. In multivariate analyses, WHR was associated with lower GFR, lower effective renal plasma flow, and higher filtration fraction, even after adjustment for sex, age, mean arterial pressure, and BMI. Multivariate models produced similar results regardless of whether the hemodynamic measures were indexed to body surface area. Thus, these results suggest that central body fat distribution, independent of BMI, is associated with an unfavorable pattern of renal hemodynamic measures that could underlie the increased renal risk reported in observational studies. PMID:23578944
Hierarchical activated mesoporous phenolic-resin-based carbons for supercapacitors.
Wang, Zhao; Zhou, Min; Chen, Hao; Jiang, Jingui; Guan, Shiyou
2014-10-01
A series of hierarchical activated mesoporous carbons (AMCs) were prepared by the activation of highly ordered, body-centered cubic mesoporous phenolic-resin-based carbon with KOH. The effect of the KOH/carbon-weight ratio on the textural properties and capacitive performance of the AMCs was investigated in detail. An AMC prepared with a KOH/carbon-weight ratio of 6:1 possessed the largest specific surface area (1118 m(2) g(-1)), with retention of the ordered mesoporous structure, and exhibited the highest specific capacitance of 260 F g(-1) at a current density of 0.1 A g(-1) in 1 M H2 SO4 aqueous electrolyte. This material also showed excellent rate capability (163 F g(-1) retained at 20 A g(-1)) and good long-term electrochemical stability. This superior capacitive performance could be attributed to a large specific surface area and an optimized micro-mesopore structure, which not only increased the effective specific surface area for charge storage but also provided a favorable pathway for efficient ion transport. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Wetting of crystalline polymer surfaces: A molecular dynamics simulation
NASA Astrophysics Data System (ADS)
Fan, Cun Feng; Caǧin, Tahir
1995-11-01
Molecular dynamics has been used to study the wetting of model polymer surfaces, the crystal surfaces of polyethylene (PE), poly(tetrafluoroethylene) (PTFE), and poly(ethylene terephthalate) (PET) by water and methylene iodide. In the simulation a liquid droplet is placed on a model surface and constant temperature, rigid body molecular dynamics is carried out while the model surface is kept fixed. A generally defined microscopic contact angle between a liquid droplet and a solid surface is quantitatively calculated from the volume of the droplet and the interfacial area between the droplet and the surface. The simulation results agree with the trend in experimental data for both water and methylene iodide. The shape of the droplets on the surface is analyzed and no obvious anisotropy of the droplets is seen in the surface plane, even though the crystal surfaces are highly oriented. The surface free energies of the model polymer surfaces are estimated from their contact angles with the two different liquid droplets.
Baum, R.L.; Messerich, J.; Fleming, R.W.
1998-01-01
Two slow-moving landslides in Honolulu, Hawaii, were the subject of photogrammetric measurements, field mapping, and subsurface investigation to learn whether surface observations can yield useful information consistent with results of subsurface investigation. Mapping focused on structural damage and on surface features such as scarps, shears, and toes. The x-y-z positions of photo-identifiable points were obtained from aerial photographs taken at three different times. The measurements were intended to learn if the shape of the landslide failure surface can be determined from systematic surface observations and whether surface observations about deformation are consistent with photogrammetrically-obtained displacement gradients. Field and aerial photographic measurements were evaluated to identify the boundaries of the landslides, distinguish areas of incipient landslide enlargement, and identify zones of active and passive failure in the landslides. Data reported here apply mainly to the Alani-Paty landslide, a translational, earth-block landslide that damaged property in a 3.4-ha residential area. It began moving in the 1970s and displacement through 1991 totaled 4 m. Thickness, determined from borehole data, ranges from about 7 to 10 m; and the slope of the ground surface averages about 9??. Field evidence of deformation indicated areas of potential landslide enlargement outside the well-formed landslide boundaries. Displacement gradients obtained photogrammetrically and deformation mapping both identified similar zones of active failure (longitudinal stretching) and passive failure (longitudinal shortening) within the body of the landslide. Surface displacement on the landslide is approximately parallel to the broadly concave slip surface.
Connection Zones, Surface Water - Groundwater: Aquifers Associated To Niger Central Delta, In Mali.
NASA Astrophysics Data System (ADS)
Kone, S.
2016-12-01
Surface water infiltration recharging Mali aquifers occurs through, underlying perched hydrogeological networks, lacustrine zones of the Central Delta or inundation valleys. The mapping of both the Surface water and the Groundwater, their types and availabilities, are briefly presented, and the focus of the study is on the types of hydraulic connections between these water bodies. The aquifers hydraulically connected to the Niger Central Delta flows systems are Continental Terminal/Quaternary, and they concern some areas where either inundation or perennial surface water flow occurs. These aquifers belong to the hydrogeological Unit of Central Delta where the recharge by surface water is estimated to be five percent of the flow loss between the entry and the outlet of this hydrological system. Some attempts of simulation along with a review based on the first studies synthetized in "Synthese Hydrogeologique du Mali" would permit to pave the way to other studies on these hydraulically connected zones in Mali. A previews simulation study, about mapping the potential rate of pumping capacity, corroborates some observed structural characteristics and leads to subdivide the area in two hydrogeological sectors, and the present simulation studies focus on the sector "Macina -Diaka" where surface water are in hydraulic relation with groundwater.
Process of producing a ceramic matrix composite article and article formed thereby
DOE Office of Scientific and Technical Information (OSTI.GOV)
Corman, Gregory Scot; McGuigan, Henry Charles; Brun, Milivoj Konstantin
A CMC article and process for producing the article to have a layer on its surface that protects a reinforcement material within the article from damage. The method entails providing a body containing a ceramic reinforcement material in a matrix material that contains a precursor of a ceramic matrix material. A fraction of the reinforcement material is present and possibly exposed at a surface of the body. The body surface is then provided with a surface layer formed of a slurry containing a particulate material but lacking the reinforcement material of the body. The body and surface layer are heatedmore » to form the article by converting the precursor within the body to form the ceramic matrix material in which the reinforcement material is contained, and by converting the surface layer to form the protective layer that covers any fraction of the reinforcement material exposed at the body surface.« less
Process of producing a ceramic matrix composite article and article formed thereby
Corman, Gregory Scot [Ballston Lake, NY; McGuigan, Henry Charles [Duanesburg, NY; Brun, Milivoj Konstantin [Ballston Lake, NY
2011-10-25
A CMC article and process for producing the article to have a layer on its surface that protects a reinforcement material within the article from damage. The method entails providing a body containing a ceramic reinforcement material in a matrix material that contains a precursor of a ceramic matrix material. A fraction of the reinforcement material is present and possibly exposed at a surface of the body. The body surface is then provided with a surface layer formed of a slurry containing a particulate material but lacking the reinforcement material of the body. The body and surface layer are heated to form the article by converting the precursor within the body to form the ceramic matrix material in which the reinforcement material is contained, and by converting the surface layer to form the protective layer that covers any fraction of the reinforcement material exposed at the body surface.
Multiscale geomorphometric modeling of Mercury
NASA Astrophysics Data System (ADS)
Florinsky, I. V.
2018-02-01
Topography is one of the key characteristics of a planetary body. Geomorphometry deals with quantitative modeling and analysis of the topographic surface and relationships between topography and other natural components of landscapes. The surface of Mercury is systematically studied by interpretation of images acquired during the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) mission. However, the Mercurian surface is still little explored by methods of geomorphometry. In this paper, we evaluate the Mercury MESSENGER Global DEM MSGR_DEM_USG_SC_I_V02 - a global digital elevation model (DEM) of Mercury with the resolution of 0.015625° - as a source for geomorphometric modeling of this planet. The study was performed at three spatial scales: the global, regional (the Caloris basin), and local (the Pantheon Fossae area) ones. As the initial data, we used three DEMs of these areas with resolutions of 0.25°, 0.0625°, and 0.015625°, correspondingly. The DEMs were extracted from the MESSENGER Global DEM. From the DEMs, we derived digital models of several fundamental morphometric variables, such as: slope gradient, horizontal curvature, vertical curvature, minimal curvature, maximal curvature, catchment area, and dispersive area. The morphometric maps obtained represent peculiarities of the Mercurian topography in different ways, according to the physical and mathematical sense of a particular variable. Geomorphometric models are a rich source of information on the Mercurian surface. These data can be utilized to study evolution and internal structure of the planet, for example, to visualize and quantify regional topographic differences as well as to refine geological boundaries.
NASA Astrophysics Data System (ADS)
Lee, S.-H.; Kim, S.-W.; Angevine, W. M.; Bianco, L.; McKeen, S. A.; Senff, C. J.; Trainer, M.; Tucker, S. C.; Zamora, R. J.
2011-03-01
The performance of different urban surface parameterizations in the WRF (Weather Research and Forecasting) in simulating urban boundary layer (UBL) was investigated using extensive measurements during the Texas Air Quality Study 2006 field campaign. The extensive field measurements collected on surface (meteorological, wind profiler, energy balance flux) sites, a research aircraft, and a research vessel characterized 3-dimensional atmospheric boundary layer structures over the Houston-Galveston Bay area, providing a unique opportunity for the evaluation of the physical parameterizations. The model simulations were performed over the Houston metropolitan area for a summertime period (12-17 August) using a bulk urban parameterization in the Noah land surface model (original LSM), a modified LSM, and a single-layer urban canopy model (UCM). The UCM simulation compared quite well with the observations over the Houston urban areas, reducing the systematic model biases in the original LSM simulation by 1-2 °C in near-surface air temperature and by 200-400 m in UBL height, on average. A more realistic turbulent (sensible and latent heat) energy partitioning contributed to the improvements in the UCM simulation. The original LSM significantly overestimated the sensible heat flux (~200 W m-2) over the urban areas, resulting in warmer and higher UBL. The modified LSM slightly reduced warm and high biases in near-surface air temperature (0.5-1 °C) and UBL height (~100 m) as a result of the effects of urban vegetation. The relatively strong thermal contrast between the Houston area and the water bodies (Galveston Bay and the Gulf of Mexico) in the LSM simulations enhanced the sea/bay breezes, but the model performance in predicting local wind fields was similar among the simulations in terms of statistical evaluations. These results suggest that a proper surface representation (e.g. urban vegetation, surface morphology) and explicit parameterizations of urban physical processes are required for accurate urban atmospheric numerical modeling.
Morphological Alterations in the Thalamus, Striatum, and Pallidum in Autism Spectrum Disorder
Schuetze, Manuela; Park, Min Tae M; Cho, Ivy YK; MacMaster, Frank P; Chakravarty, M Mallar; Bray, Signe L
2016-01-01
Autism spectrum disorder (ASD) is a common neurodevelopmental disorder with cognitive, motor, and emotional symptoms. The thalamus and basal ganglia form circuits with the cortex supporting all three of these behavioral domains. Abnormalities in the structure of subcortical regions may suggest atypical development of these networks, with implications for understanding the neural basis of ASD symptoms. Findings from previous volumetric studies have been inconsistent. Here, using advanced surface-based methodology, we investigated localized differences in shape and surface area in the basal ganglia and thalamus in ASD, using T1-weighted anatomical images from the Autism Brain Imaging Data Exchange (373 male participants aged 7–35 years with ASD and 384 typically developing). We modeled effects of diagnosis, age, and their interaction on volume, shape, and surface area. In participants with ASD, we found expanded surface area in the right posterior thalamus corresponding to the pulvinar nucleus, and a more concave shape in the left mediodorsal nucleus. The shape of both caudal putamen and pallidum showed a relatively steeper increase in concavity with age in ASD. Within ASD participants, restricted, repetitive behaviors were positively associated with surface area in bilateral globus pallidus. We found no differences in overall volume, suggesting that surface-based approaches have greater sensitivity to detect localized differences in subcortical structure. This work adds to a growing body of literature implicating corticobasal ganglia-thalamic circuits in the pathophysiology of ASD. These circuits subserve a range of cognitive, emotional, and motor functions, and may have a broad role in the complex symptom profile in ASD. PMID:27125303
Groundwater exploration in a Quaternary sediment body by shear-wave reflection seismics
NASA Astrophysics Data System (ADS)
Pirrung, M.; Polom, U.; Krawczyk, C. M.
2008-12-01
The detailed investigation of a shallow aquifer structure is the prerequisite for choosing a proper well location for groundwater exploration drilling for human drinking water supply and subsequent managing of the aquifer system. In the case of shallow aquifers of some 10 m in depth, this task is still a challenge for high-resolution geophysical methods, especially in populated areas. In areas of paved surfaces, shallow shear-wave reflection seismics is advantageous compared to conventional P-wave seismic methods. The sediment body of the Alfbach valley within the Vulkaneifel region in Germany, partly covered by the village Gillenfeld, was estimated to have a maximum thickness of nearly 60 m. It lies on top of a complicated basement structure, constituted by an incorporated lava flow near the basement. For the positioning of new well locations, a combination of a SH-wave land streamer receiver system and a small, wheelbarrow-mounted SH-wave source was used for the seismic investigations. This equipment can be easily applied also in residential areas without notable trouble for the inhabitants. The results of the 2.5D profiling show a clear image of the sediment body down to the bedrock with high resolution. Along a 1 km seismic profile, the sediment thickness varies between 20 to more than 60 m in the centre of the valley. The reflection behaviour from the bedrock surface corroborates the hypothesis of a basement structure with distinct topography, including strong dipping events from the flanks of the valley and strong diffractions from subsurface discontinuities. The reflection seismic imaging leads to an estimation of the former shape of the valley and a reconstruction of the flow conditions at the beginning of the sedimentation process.
Micro Asteroid Prospector Powered by Energetic Radioisotopes: MAPPER
NASA Astrophysics Data System (ADS)
Howe, Steven D.; Jackson, Gerald P.
2005-02-01
The solar system is an almost limitless store-house of resources. As humanity begins to expand into space, we can greatly reduce the cost and effort of exploration by using the resources from other orbiting bodies. The ability to extract volatile gases or structural materials from moons and other planetesimals will allow smaller ships, faster missions, and lower costs. Part of the problem, however, will be to locate the desired deposits from the billions of square miles of surface area present in the solar system. The asteroid belt between Mars and Jupiter is perhaps the most valuable and most overlooked of resource deposits in the solar system. The total mass of the Belt is estimated to be 1/1000 the mass of the Earth. The ultimate goal of this project is to identify and investigate an exploration architecture that would allow a hundreds of ultra-light-weight instrument packages to be sent to the Asteroid Belt. We have performed a preliminary analysis that has characterized the bodies in the Asteroid Belt, identified subsystems needed on the platform, and completed a preliminary optimization of the flight profile and propulsion characteristics to maximize the number of bodies that could be catalogued. The results showed that the mass and power of the platform is strongly dependent upon the average cruise velocity, the specific impulse of the thruster, and the time to accelerate up to speed. The preliminary optimization indicates that the best cruise velocity is around 0.5 km/s and the best Isp is 1500 s. Our conclusion is that platforms with near 100 kg total mass could be built relatively inexpensively. This many spacecraft would catalogue an area equivalent to 20% the area of the Earth's surface in a 20 year period.
NASA Astrophysics Data System (ADS)
Finizola, Anthony; Ricci, Tullio; Antoine, Raphael; Delcher, Eric; Peltier, Aline; Bernard, Julien; Brothelande, Elodie; Fargier, Yannick; Fauchard, Cyrille; Foucart, Brice; Gailler, Lydie; Gusset, Rachel; Lazarte, Ivonne; Martin, Erwan; Mézon, Cécile; Portal, Angélie; Poret, Matthieu; Rossi, Matteo
2016-04-01
In the framework of the EC FP7 project "MEDiterranean SUpersite Volcanoes", one profile coupling DC electrical resistivity tomography (Pole-Dipole configuration with a remote electrode located between 8-10 km from the middle of the different acquisitions, 64 electrodes and 40 m spacing between the electrodes), self-potential, soil CO2 degassing, Radon measurements and sub-surface (30cm depth) temperature have been performed between June 25th and July 13th 2015. This profile, NE-SW direction, crossed the summit part of Mount Etna. A total 5720m of profile was performed, with a roll along protocol of 1/4 of the dispositive, for each new acquisitions. A total of 6 acquisitions was made to complete the entire profile. For the first time in the world, a multi-electrodes DC ERT profile, of high resolution (40 m of spacing between the electrodes) reached, thanks to a pole-dipole configuration, 900m for the depth of investigation. The ERT profile clearly evidences the hydrothermal system of Mount Etna: the lowest resistivity values are associated with a large scale positive self-potential anomaly, and smaller wavelength anomalies for temperature, CO2 concentration and Radon, in the area where the electrical conductor reach the surface. Structural discontinuities such as the Elliptic crater, was clearly evidenced by a sharp decrease of the self-potential values in the inner part of this crater. The striking result of this profile is the presence of a resistive body located just below the NE crater. This structure displays the highest degassing values of the entire profile. We interpret this resistive body as a consequence of the thermic over-heated plume rising from the top of the shallow feeding system. Indeed, above several hundred of degrees Celsuis, it is impossible to consider rain water infiltration and the presence of a wet hydrothermal system. The consequence would be therefore to obtain this resistive body, centred on the area of main heat transfer. Above this resistive body, we clearly note a preferential hydrothermal fluid flow, associated with maximum of self-potential anomaly, temperature and radon, and reaching the surface on the highest elevation area along the profile.
NASA Astrophysics Data System (ADS)
Futaana, Yoshifumi; Barabash, Stas; Wieser, Martin; Wurz, Peter; Hurley, Dana; Horányi, Mihaly; Mall, Urs; Andre, Nicolas; Ivchenko, Nickolay; Oberst, Jürgen; Retherford, Kurt; Coates, Andrew; Masters, Adam; Wahlund, Jan-Erik; Kallio, Esa; SELMA Proposal Team
2018-07-01
The Moon is an archetypal atmosphere-less celestial body in the Solar System. For such bodies, the environments are characterized by complex interaction among the space plasma, tenuous neutral gas, dust and the outermost layer of the surface. Here we propose the SELMA mission (Surface, Environment, and Lunar Magnetic Anomalies) to study how airless bodies interact with space environment. SELMA uses a unique combination of remote sensing via ultraviolet and infrared wavelengths, and energetic neutral atom imaging, as well as in situ measurements of exospheric gas, plasma, and dust at the Moon. After observations in a lunar orbit for one year, SELMA will conduct an impact experiment to investigate volatile content in the soil of the permanently shadowed area of the Shackleton crater. SELMA also carries an impact probe to sound the Reiner-Gamma mini-magnetosphere and its interaction with the lunar regolith from the SELMA orbit down to the surface. SELMA was proposed to the European Space Agency as a medium-class mission (M5) in October 2016. Research on the SELMA scientific themes is of importance for fundamental planetary sciences and for our general understanding of how the Solar System works. In addition, SELMA outcomes will contribute to future lunar explorations through qualitative characterization of the lunar environment and, in particular, investigation of the presence of water in the lunar soil, as a valuable resource to harvest from the lunar regolith.
Urbanová, Petra; Hejna, Petr; Jurda, Mikoláš
2015-05-01
Three-dimensional surface technologies particularly close range photogrammetry and optical surface scanning have recently advanced into affordable, flexible and accurate techniques. Forensic postmortem investigation as performed on a daily basis, however, has not yet fully benefited from their potentials. In the present paper, we tested two approaches to 3D external body documentation - digital camera-based photogrammetry combined with commercial Agisoft PhotoScan(®) software and stereophotogrammetry-based Vectra H1(®), a portable handheld surface scanner. In order to conduct the study three human subjects were selected, a living person, a 25-year-old female, and two forensic cases admitted for postmortem examination at the Department of Forensic Medicine, Hradec Králové, Czech Republic (both 63-year-old males), one dead to traumatic, self-inflicted, injuries (suicide by hanging), the other diagnosed with the heart failure. All three cases were photographed in 360° manner with a Nikon 7000 digital camera and simultaneously documented with the handheld scanner. In addition to having recorded the pre-autopsy phase of the forensic cases, both techniques were employed in various stages of autopsy. The sets of collected digital images (approximately 100 per case) were further processed to generate point clouds and 3D meshes. Final 3D models (a pair per individual) were counted for numbers of points and polygons, then assessed visually and compared quantitatively using ICP alignment algorithm and a cloud point comparison technique based on closest point to point distances. Both techniques were proven to be easy to handle and equally laborious. While collecting the images at autopsy took around 20min, the post-processing was much more time-demanding and required up to 10h of computation time. Moreover, for the full-body scanning the post-processing of the handheld scanner required rather time-consuming manual image alignment. In all instances the applied approaches produced high-resolution photorealistic, real sized or easy to calibrate 3D surface models. Both methods equally failed when the scanned body surface was covered with body hair or reflective moist areas. Still, it can be concluded that single camera close range photogrammetry and optical surface scanning using Vectra H1 scanner represent relatively low-cost solutions which were shown to be beneficial for postmortem body documentation in forensic pathology. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Lake Michigan, the sixth largest freshwater lake in the world by surface area, was utilized as a water body for assessment within a case study. Field data collected at 116 sampling sites throughout the lake in an intensive monitoring effort were utilized for evaluation of the di...
Musculoaponeurotic Area of the Hip and Clinicophotographic Scaling System
Mena-Chávez, J. Alejandro
2015-01-01
Background: With the evolution of body contouring, few innovative alternatives have been developed for cosmetic treatment in the hip area. Methods: A multicenter controlled study was conducted, including a prior review of the literature regarding the hip area. Dissections were performed on 4 male cadavers, outlining the “musculoaponeurotic area of the hip.” The area was subdivided into anterior and posterior surfaces. A clinical study was conducted in 79 patients, obtaining a scale by using the most prominent points on the sides of both thighs as the main reference. With the lines marked on photographs and the measurements, a “clinicophotographic scaling system” was designed. Results: The anterior surface corresponds to the tensor fasciae latae and its tendon as well as to the aponeurosis of the gluteus medius. The posterior surface corresponds with the iliotibial tract and the tendon insertions of the gluteus maximus. The average dimensions of the cadaver “musculoaponeurotic area of the hip” are as follows: length, 17.5 cm, and width, 11.5 cm. Using the “clinicophotographic scaling system,” the dimensions are as follows: length, 14.9 cm, and width, 10.3 cm. Conclusions: The “musculoaponeurotic area of the hip” was defined involving muscles, tendons, aponeurosis, fascia, subcutaneous cellular tissue, and skin. The borders were established using important anatomical points that determine the length and width of the area. The “clinicophotographic scaling system” was used to clinically calculate the length and width of the area. By examination and palpation, the borders and dimensions of this area could be determined. PMID:26180724
Effects of repeated cycles of starvation and refeeding on lungs of growing rats.
Sahebjami, H; Domino, M
1992-12-01
Adult male rats were subjected to four cycles of mild starvation (2 wk) and refeeding (1 wk) and were compared with a fed group. Starvation was induced by giving rats one-third of their measured daily food consumption. During each starvation cycle, rats lost approximately 20% of their body weight. Despite catch-up growth and overall weight gain, starved rats had lower final body weight than fed rats. Lung dry weight and lung volumes were also reduced in the starved group. The mechanical properties of air- and saline-filled lungs did not change significantly with repeated cycles of starvation. Mean linear intercept was similar in the two groups, but alveolar surface area was reduced in the starved rats. Total content of crude connective tissue and concentration per lung dry weight of hydroxyproline and crude connective tissue were reduced in starved rats. We conclude that lung growth is retarded in growing rats subjected to repeated cycles of mild starvation and refeeding, as manifested by smaller lung volume and reduced alveolar surface area. Because alveolar size is unchanged, a reduced number of alveoli is most likely responsible for decreased lung volumes.
van der Wal, Martijn B A; Vloemans, Jos F P M; Tuinebreijer, Wim E; van de Ven, Peter; van Unen, Ella; van Zuijlen, Paul P M; Middelkoop, Esther
2012-01-01
Long-term outcome of burn scars as well as the relation with clinically relevant parameters has not been studied quantitatively. Therefore, we conducted a detailed analysis on the clinical changes of burn scars in a longitudinal setup. In addition, we focused on the differences in scar quality in relation to the depth, etiology of the burn wound and age of the patient. Burn scars of 474 patients were subjected to a scar assessment protocol 3, 6, and 12 months postburn. Three different age groups were defined (≤5, 5-18, and ≥18 years). The observer part of the patient and observer scar assessment scale revealed a significant (p < 0.001) improvement in scar quality at 12 months compared with the 3- and 6-month data. Predictors for severe scarring are depth of the wound (p < 0.001) and total body surface area burned (p < 0.001). Etiology (p = 0.753) and age (p > 0.230) have no significant influence on scar quality when corrected for sex, total body surface area burned, time, and age or etiology, respectively. © 2012 by the Wound Healing Society.
Zhang, Baofeng; Kilburg, Denise; Eastman, Peter; Pande, Vijay S; Gallicchio, Emilio
2017-04-15
We present an algorithm to efficiently compute accurate volumes and surface areas of macromolecules on graphical processing unit (GPU) devices using an analytic model which represents atomic volumes by continuous Gaussian densities. The volume of the molecule is expressed by means of the inclusion-exclusion formula, which is based on the summation of overlap integrals among multiple atomic densities. The surface area of the molecule is obtained by differentiation of the molecular volume with respect to atomic radii. The many-body nature of the model makes a port to GPU devices challenging. To our knowledge, this is the first reported full implementation of this model on GPU hardware. To accomplish this, we have used recursive strategies to construct the tree of overlaps and to accumulate volumes and their gradients on the tree data structures so as to minimize memory contention. The algorithm is used in the formulation of a surface area-based non-polar implicit solvent model implemented as an open source plug-in (named GaussVol) for the popular OpenMM library for molecular mechanics modeling. GaussVol is 50 to 100 times faster than our best optimized implementation for the CPUs, achieving speeds in excess of 100 ns/day with 1 fs time-step for protein-sized systems on commodity GPUs. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Vesta and Ceres as Seen by Dawn
NASA Astrophysics Data System (ADS)
Russell, C. T.; Nathues, A.; De Sanctis, M. C.; Prettyman, T. H.; Konopliv, A. S.; Park, R. S.; Jaumann, R.; McSween, H. Y., Jr.; Raymond, C. A.; Pieters, C. M.; McCord, T. B.; Marchi, S.; Schenk, P.; Buczkowski, D.
2015-12-01
Ceres and Vesta are the most massive bodies in the main asteroid belt. They have witnessed 4.6 Ga of solar system history. Dawn's objective is to interview these two witnesses. These bodies are relatively simple protoplanets, with a modest amount of thermal evolution and geochemical alteration. They are our best archetypes of the early building blocks of the terrestrial planets. In particular siderophile elements in the Earth's core were probably first segregated in Vesta-like bodies, and its water was likely first condensed in Ceres-like bodies. Vesta has provided copious meteorites for geochemical analysis. This knowledge was used to infer the constitution of the parent body. Dawn verified that Vesta was consistent with being that body, confirming the geochemical inferences from these samples on the formation and evolution of the solar system. Ceres has not revealed itself with a meteoritic record nor an asteroid family. While the surface is scarred with craters, it is probable that the ejecta from the crater-forming events created little competent material from the icy crust and any such ejected material that reached Earth might have disintegrated upon entry into the Earth's atmosphere. Ceres' surface differs greatly from Vesta's. Plastic or fluidized mass wasting is apparent as are many irregularly shaped craters, including many polygonal crater forms. There are many central-pit craters possibly caused by volatilization of the crust in the center of the impact. There are many central-peak craters but are these due to rebound or pingo-like formation processes? Bright spots, possibly salt deposits, dot the landscape, evidence of fluvial processes beneath the crust. Observations of the largest region of bright spots may suggest sublimation from the surface of the bright area, consistent with Herschel water vapor observations. Ceres is not only the most massive body in the asteroid belt but also possibly the most active occupant of the main belt.
Leung, Ka-Ngo; Gordon, Keith C.; Kippenham, Dean O.; Purgalis, Peter; Moussa, David; Williams, Malcom D.; Wilde, Stephen B.; West, Mark W.
1989-01-01
A large area directly heated lanthanum hexaboride (LaB.sub.6) cathode system (10) is disclosed. The system comprises a LaB.sub.6 cathode element (11) generally circular in shape about a central axis. The cathode element (11) has a head (21) with an upper substantially planar emission surface (23), and a lower downwardly and an intermediate body portion (26) which diminishes in cross-section from the head (21) towards the base (22) of the cathode element (11). A central rod (14) is connected to the base (22) of the cathode element (11) and extends along the central axis. Plural upstanding spring fingers (37) are urged against an outer peripheral contact surface (24) of the head end (21) to provide a mechanical and electrical connection to the cathode element (11).
NASA Astrophysics Data System (ADS)
Hudson, Paul; Boot, Dax; Sounny-Slitinne, M. Anwar; Kristensen, Kristiaan
2015-04-01
A Geomorphic Analysis of Floodplain Lakes along the Embanked Lower Mississippi River for Managing Hydrologic Connectivity Floodplain lakes are vital to the environmental integrity of lowland rivers. Embankment by levees (dikes) for flood control greatly reduces the size of lowland floodplains and is detrimental to the quality and functioning of floodplain water bodies, presenting a challenge to government agencies charged with environmental management. The embanked floodplain of the Lower Mississippi River is an enormous surface which includes a variety of lake types formed by geomorphic and anthropogenic processes. While much is known about the channel and hydrologic regime, very little is known about the physical structure and functioning of the embanked floodplain of the lower Mississippi. Importantly, management agencies do not have an inventory of the basic characteristics (e.g., type, frequency, location, size, shape) of water bodies within the lower Mississippi embanked floodplain. An analysis of lakes along the Lower Mississippi River embanked floodplain is performed by utilizing the National Hydrographic Dataset (NHD) from the U.S. Geological Survey, a LiDAR digital elevation model (DEM), as well as streamflow data from the USGS. The vector NHD data includes every official mapped water body (blue line polygons) on USGS topographic maps at scales of 1:100,000 and 1:24,000. Collectively, we identify thousands of discreet water bodies within the embanked floodplain. Utilizing planimetric properties the water bodies were classified into the following lake types: cutoffs (neck and chute), sloughs, crevasse (scour), local drainage (topographic), and borrow pits. The data is then statistically analyzed to examine significant differences in the spatial variability in lake types along the entire lower Mississippi embanked floodplain in association with geomorphic divisions and hydrologic regime. The total embanked floodplain area of the LMR is 7,303 km2,. The total area of floodplain lakes within the embanked floodplain is 382 km2, or 5.2% of the embanked floodplain surface area. Considerable variability in embanked floodplain area along the lower Mississippi, however, results in spatial variability in the frequency of specific lake types. Meander cutoff lakes represent the largest proportion of lake area, at 49%, with approximately half of this area comprised of artificial cutoff lakes. The next largest class of lakes are borrow pit lakes (at 16%), which are anthropogenic water bodies created for the process of levee (dike) construction and maintenance, but which represent valuable environmental habitat. Meander cutoff lakes are especially dominant in the upper reaches of the Lower Mississippi and diminish moving downstream, where the area of embanked floodplain also decreases. Interestingly, anthropogenic lakes (borrow pits) become increasingly prevalent further downstream and dominate over natural formed lakes. The location of lake types along the Lower Mississippi does not correspond with recent historic geomorphic and hydrologic activity. The highest frequency of meander cutoff and crevasse lakes are not located within floodplain sections which historically had the highest rates of lateral migration (m/yr) and flooding (duration). Although overbank hydrologic connectivity varies along the river, it does not vary necessarily where it would be most advantageous to the connectivity of specific types of lakes. The research results provide government agencies with a spatial inventory and methodological approach to improve the management of floodplain water bodies for sustaining valuable aquatic habitat, whether by artificially restricting or enhancing hydrologic connectivity. Key words: floodplain lakes, fluvial geomorphology, hydrologic connectivity, anthropogenic impacts, Lower Mississippi River
NASA Technical Reports Server (NTRS)
Street, K. W. Jr.; Kobrick, R. L.; Klaus, D. M.
2011-01-01
A limitation has been identified in the existing test standards used for making controlled, two-body abrasion scratch measurements based solely on the width of the resultant score on the surface of the material. A new, more robust method is proposed for analyzing a surface scratch that takes into account the full three-dimensional profile of the displaced material. To accomplish this, a set of four volume- displacement metrics was systematically defined by normalizing the overall surface profile to denote statistically the area of relevance, termed the Zone of Interaction. From this baseline, depth of the trough and height of the plowed material are factored into the overall deformation assessment. Proof-of-concept data were collected and analyzed to demonstrate the performance of this proposed methodology. This technique takes advantage of advanced imaging capabilities that allow resolution of the scratched surface to be quantified in greater detail than was previously achievable. When reviewing existing data analysis techniques for conducting two-body abrasive scratch tests, it was found that the ASTM International Standard G 171 specified a generic metric based only on visually determined scratch width as a way to compare abraded materials. A limitation to this method was identified in that the scratch width is based on optical surface measurements, manually defined by approximating the boundaries, but does not consider the three-dimensional volume of material that was displaced. With large, potentially irregular deformations occurring on softer materials, it becomes unclear where to systematically determine the scratch width. Specifically, surface scratches on different samples may look the same from a top view, resulting in an identical scratch width measurement, but may vary in actual penetration depth and/or plowing deformation. Therefore, two different scratch profiles would be measured as having identical abrasion properties, although they differ significantly.
Scattering of electromagnetic waves from a body over a random rough surface
NASA Astrophysics Data System (ADS)
Ripoll, J.; Madrazo, A.; Nieto-Vesperinas, M.
1997-02-01
A numerical study is made of the effect on the angular distribution of mean far field intensity due to the presence of an arbitrary body located over a random rough surface. It is found that the presence of the body decreases the coherent backscattering peak produced by the surface roughness. Also, for low dielectric constants, the reflected intensity is practically equal to the sum of the individual reflected intensities of the body and the surface respectively, namely, interaction between both bodies is almost negligible. The full interaction between object and surface only appears when both bodies are highly reflective. Results are compared with the case when the body is buried beneath the surface, and are illustrated with a 2-D calculation of a cylinder either partially immersed or above a 2-D rough profile.
Preparing for the Next Space Race: Legislation and Policy Recommendations for Space Colonies
2018-04-01
Finally, as humanity expands away from the surface of the Earth, it is important to create a free society based on the principles of the Rule of Law...with Listner, took this one step further, arguing that this means “any base or settlement on Mars would have to be free to use by anyone who can...established by a single State would deny other states free access to an area of a celestial body (namely the area where the colony is established), then
Depigmentation Therapies for Vitiligo.
Grimes, Pearl E; Nashawati, Rama
2017-04-01
The general goals of medical management of vitiligo are to repigment vitiliginous areas of skin and to stabilize the progression of depigmentation. However, for some patients with vitiligo affecting extensive body surface areas who are unresponsive to repigmentation therapies, depigmentation of the remaining normal skin may be a better choice. Candidates for depigmentation therapy should be carefully screened and patient education is essential. Permanent topical therapies used for depigmentation include monobenzyl ether of hydroquinone, 4-methoxyphenol, and 88% phenol. Physical modalities, such as cryotherapy and lasers, are also being used successfully. Copyright © 2016 Elsevier Inc. All rights reserved.
Misut, Paul E.; Monti,, Jack
2016-10-05
To assist resource managers and planners in developing informed strategies to address nitrogen loading to coastal water bodies of Long Island, New York, the U.S. Geological Survey and the New York State Department of Environmental Conservation initiated a program to delineate a comprehensive dataset of groundwater recharge areas (or areas contributing groundwater), travel times, and outflows to streams and saline embayments on Long Island. A four-layer regional three-dimensional finite-difference groundwater-flow model of hydrologic conditions from 1968 to 1983 was used to provide delineations of 48 groundwater watersheds on Long Island. Sixteen particle starting points were evenly spaced within each of the 4,000- by 4,000-foot model cells that receive water-table recharge and tracked using forward particle-tracking analysis modeling software to outflow zones. For each particle, simulated travel times were grouped by age as follows: less than or equal to 10 years, greater than 10 years and less than or equal to 100 years, greater than 100 years and less than or equal to 1,000 years, and greater than 1,000 years; and simulated ending zones were grouped into 48 receiving water bodies, based on the New York State Department of Environmental Conservation Waterbody Inventory/Priority Waterbodies List. Areal delineation of travel time zones and groundwater contributing areas were generated and a table was prepared presenting the sum of groundwater outflow for each area.
Perlmutter, N.M.; Geraghty, J.J.
1963-01-01
Test drilling, electrical logging, and water sampling of 'outpost' and other wells have revealed the existence of a deep confined body of salt water in the Magothy(?) formation beneath southwestern Nassau and southeastern Queens Counties, Long Island, N.Y. In connection with a test-drilling program, cooperatively sponsored by the U.S. Geological Survey, the Nassau County Department of Public Works, and the New York State Water Resources Commission (formerly Water Power and Control Commission), 13 wells ranging in depth from about 130 to 800 feet were drilled during 1952 and 1953 and screened at various depths in the Magothy(?) formation and Jameco gravel. On the basis of the preliminary geologic, hydrologic, and chemical data from these wells, a detailed investigation of ground-water conditions from the water table to the bedrock was begun in a 200-square-mile area in southern Nassau and southeastern Queens Counties. The Inain purposes of the investigation were to delineate the bodies of fresh and salty ground water in the project area, to relate their occurrence and movement to geologic and hydrologic conditions, to estimate the rate of encroachment, if any, of the salty water, and to evaluate the effectiveness of the existing network of outpost wells as detectors of salt-water encroachment. About a million people in the report area, residing mainly in southern Nassau County, are completely dependent on ground water as a source of supply. Fortunately, precipitation averages about 44 inches per year, of which approximately half is estimated to percolate into the ground-water reservoir. The ground water is contained in and moves through eight differentiated geologic units composed of unconsolidated gravel, sand, and clay, of Late Cretaceous, Pleistocene, and Recent age, having a maximum total thickness of about 1,700 feet. The underlying metamorphic and igneous crystalline basement rocks are of Precambrian age and are not water bearing. The water-yielding units from the surface down are (1) the upper Pleistocene deposits, (2) the principal artesian aquifer, composed of the Jameco gravel and Magothy(?) formation, and (3) the Lloyd sand member of the Raritar formation. The confining units are the '20-foot' clay, the Gardiners clay, and the clay member of the Raritan formation. The upper Pleistocene deposits contain an extensive unconfined body of fresh water. Fresh water under artesian conditions is contained in the principal artesian aquifer and the Lloyd sand member. The piezometric surface of the principal artesian aquifer is similar in shape to the south-ward-sloping water table; it ranges in altitude from about sea level to 55 feet above. The chemical quality of the fresh ground water in most of the area in all aquifers is good to excellent, and concentrations of dissolved solids and of chloride generally are below 100 ppm (parts per million) and 10 ppm, respectively. Analyses of water samples from selected wells show no progressive increase in concentration of chloride in most of the area. The data on quality of water have been used to delineate one major and several minor bodies of salty ground water. The wedgeshaped main confined salt-water body, in which the concentration of chloride reaches about 17,000 ppm, is in the Magothy(?) formation and Jameco gravel in extreme southwestern Nassau County and southeastern Queens County. The base of the salt-water wedge is about at the top of the clay member of the Raritan formation. Beneath the barrier beach in south-central and southeastern Nassau County a shallow extension of the main confined salt-water body contains as much as 4,000 ppm of chloride and is separated from the lower main salt-water body by fresh ground water. Shallow, thin bodies of unconfined salty ground water are common in the upper Pleistocene and Recent deposits adjacent to salty surface water in tidal creeks, bays, and the Atlantic
Fields, David A; Higgins, Paul B; Hunter, Gary R
2004-04-01
BACKGROUND: To investigate the effect of body temperature and moisture on body fat (%fat), volume and density by air-displacement plethysmography (BOD POD). METHODS: %fat, body volume and density by the BOD POD before (BOD PODBH) and immediately following hydrostatic weighing (BOD PODFH) were performed in 32 healthy females (age (yr) 33 +/- 11, weight (kg) 64 +/- 14, height (cm) 167 +/- 7). Body temperature and moisture were measured prior to BOD PODBH and prior to BOD PODFH with body moisture defined as the difference in body weight (kg) between the BOD PODBH and BOD PODFH measurements. RESULTS: BOD PODFH %fat (27.1%) and body volume (61.5 L) were significantly lower (P = 0.001) and body density (1.0379 g/cm3) significantly higher (P = 0.001) than BOD PODBH %fat (28.9%), body volume (61.7 L), and body density (1.0341 g/cm3). A significant increase in body temperature (~0.6 degrees C; P = 0.001) and body moisture (0.08 kg; P = 0.01) were observed between BOD PODBH and BOD PODFH. Body surface area was positively associated with the difference in %fat independent of changes in body temperature and moisture, r = 0.30, P < 0.05. CONCLUSION: These data demonstrate for the first time that increases in body heat and moisture result in an underestimation of body fat when using the BOD POD, however, the precise mechanism remains unidentified.
Zhu, Guang; Su, Yuanjie; Bai, Peng; Chen, Jun; Jing, Qingshen; Yang, Weiqing; Wang, Zhong Lin
2014-06-24
Energy harvesting from ambient water motions is a desirable but underexplored solution to on-site energy demand for self-powered electronics. Here we report a liquid-solid electrification-enabled generator based on a fluorinated ethylene propylene thin film, below which an array of electrodes are fabricated. The surface of the thin film is charged first due to the water-solid contact electrification. Aligned nanowires created on the thin film make it hydrophobic and also increase the surface area. Then the asymmetric screening to the surface charges by the waving water during emerging and submerging processes causes the free electrons on the electrodes to flow through an external load, resulting in power generation. The generator produces sufficient output power for driving an array of small electronics during direct interaction with water bodies, including surface waves and falling drops. Polymer-nanowire-based surface modification increases the contact area at the liquid-solid interface, leading to enhanced surface charging density and thus electric output at an efficiency of 7.7%. Our planar-structured generator features an all-in-one design without separate and movable components for capturing and transmitting mechanical energy. It has extremely lightweight and small volume, making it a portable, flexible, and convenient power solution that can be applied on the ocean/river surface, at coastal/offshore areas, and even in rainy places. Considering the demonstrated scalability, it can also be possibly used in large-scale energy generation if layers of planar sheets are connected into a network.
Nanoparticles as biochemical sensors
El-Ansary, Afaf; Faddah, Layla M
2010-01-01
There is little doubt that nanoparticles offer real and new opportunities in many fields, such as biomedicine and materials science. Such particles are small enough to enter almost all areas of the body, including cells and organelles, potentially leading to new approaches in nanomedicine. Sensors for small molecules of biochemical interest are of critical importance. This review is an attempt to trace the use of nanomaterials in biochemical sensor design. The possibility of using nanoparticles functionalized with antibodies as markers for proteins will be elucidated. Moreover, capabilities and applications for nanoparticles based on gold, silver, magnetic, and semiconductor materials (quantum dots), used in optical (absorbance, luminescence, surface enhanced Raman spectroscopy, surface plasmon resonance), electrochemical, and mass-sensitive sensors will be highlighted. The unique ability of nanosensors to improve the analysis of biochemical fluids is discussed either through considering the use of nanoparticles for in vitro molecular diagnosis, or in the biological/biochemical analysis for in vivo interaction with the human body. PMID:24198472
Investigation of two-dimensional wedge exhaust nozzles for advanced aircraft
NASA Technical Reports Server (NTRS)
Maiden, D. L.; Petit, J. E.
1975-01-01
Two-dimensional wedge nozzle performance characteristics were investigated in a series of wind-tunnel tests. An isolated single-engine/nozzle model was used to study the effects of internal expansion area ratio, aftbody cowl boattail angle, and wedge length. An integrated twin-engine/nozzle model, tested with and without empenage surfaces, included cruise, acceleration, thrust vectoring and thrust reversing nozzle operating modes. Results indicate that the thrust-minus-aftbody drag performance of the twin two-dimensional nozzle integration is significantly higher, for speeds greater than Mach 0.8, than the performance achieved with twin axisymmetric nozzle installations. Significant jet-induced lift was obtained on an aft-mounted lifting surface using a cambered wedge center body to vector thrust. The thrust reversing capabilities of reverser panels installed on the two-dimensional wedge center body were very effective for static or in-flight operation.
Applications of thermal remote sensing to detailed ground water studies
NASA Technical Reports Server (NTRS)
Souto-Maior, J.
1973-01-01
Three possible applications of thermal (8-14 microns) remote sensing to detailed hydrogeologic studies are discussed in this paper: (1) the direct detection of seeps and springs, (2) the indirect evaluation of shallow ground water flow through its thermal effects on the land surface, and (3) the indirect location of small volumes of ground water inflow into surface water bodies. An investigation carried out with this purpose in an area containing a complex shallow ground water flow system indicates that the interpretation of the thermal imageries is complicated by many factors, among which the most important are: (1) altitude, angle of view, and thermal-spatial resolution of the sensor; (2) vegetation type, density, and vigor; (3) topography; (4) climatological and micrometeorological effects; (5) variation in soil type and soil moisture; (6) variation in volume and temperature of ground water inflow; (7) the hydraulic characteristics of the receiving water body, and (8) the presence of decaying organic material.
Biophysical aspects of human thermoregulation during heat stress.
Cramer, Matthew N; Jay, Ollie
2016-04-01
Humans maintain a relatively constant core temperature through the dynamic balance between endogenous heat production and heat dissipation to the surrounding environment. In response to metabolic or environmental disturbances to heat balance, the autonomic nervous system initiates cutaneous vasodilation and eccrine sweating to facilitate higher rates of dry (primarily convection and radiation) and evaporative transfer from the body surface; however, absolute heat losses are ultimately governed by the properties of the skin and the environment. Over the duration of a heat exposure, the cumulative imbalance between heat production and heat dissipation leads to body heat storage, but the consequent change in core temperature, which has implications for health and safety in occupational and athletic settings particularly among certain clinical populations, involves a complex interaction between changes in body heat content and the body's morphological characteristics (mass, surface area, and tissue composition) that collectively determine the body's thermal inertia. The aim of this review is to highlight the biophysical aspects of human core temperature regulation by outlining the principles of human energy exchange and examining the influence of body morphology during exercise and environmental heat stress. An understanding of the biophysical factors influencing core temperature will enable researchers and practitioners to better identify and treat individuals/populations most vulnerable to heat illness and injury during exercise and extreme heat events. Further, appropriate guidelines may be developed to optimize health, safety, and work performance during heat stress. Copyright © 2016 Elsevier B.V. All rights reserved.
Chinnakotla, Srinath; Bellin, Melena D.; Schwarzenberg, Sarah J.; Radosevich, David M.; Cook, Marie; Dunn, Ty B.; Beilman, Gregory J.; Freeman, Martin L.; Balamurugan, A.N.; Wilhelm, Josh; Bland, Barbara; Jimenez-Vega, Jose M; Hering, Bernhard J.; Vickers, Selwyn M.; Pruett, Timothy L.; Sutherland, David E.R.
2014-01-01
Objective Describe the surgical technique, complications and long term outcomes of total pancreatectomy and islet auto transplantation (TP-IAT) in a large series of pediatric patients. Summary Background Data Surgical management of childhood pancreatitis is not clear; partial resection or drainage procedures often provide transient pain relief, but long term recurrence is common due to the diffuse involvement of the pancreas. Total pancreatectomy (TP) removes the source of the pain, while islet auto transplantation (IAT) potentially can prevent or minimize TP-related diabetes. Methods Retrospective review of 75 children undergoing TP-IAT for chronic pancreatitis who had failed medical, endoscopic or surgical treatment between 1989–2012. Results Pancreatitis pain and the severity of pain statistically improved in 90% of patients after TP-IAT (p =<0.001). The relief from narcotics was sustained. Of the 75 patients undergoing TP-IAT, 31 (41.3%) achieved insulin independence. Younger age (p=0.032), lack of prior Puestow (p=0.018), lower body surface area (p=0.048), IEQ per Kg Body Weight (p=0.001) and total IEQ (100,000) (0.004) were associated with insulin independence. By multivariate analysis, 3 factors were associated with insulin independence after TP-IAT:(1) male gender, (2) lower body surface area and the (3) higher total IEQ per kilogram body weight. Total IEQ (100,000) was the single factor most strongly associated with insulin independence (OR = 2.62; p value < 0.001). Conclusions TP-IAT provides sustained pain relief and improved quality of life. The β cell function is dependent on islet yield. TP-IAT is an effective therapy for children with painful pancreatitis that fail medical and or endoscopic management PMID:24509206
Chinnakotla, Srinath; Bellin, Melena D; Schwarzenberg, Sarah J; Radosevich, David M; Cook, Marie; Dunn, Ty B; Beilman, Gregory J; Freeman, Martin L; Balamurugan, A N; Wilhelm, Josh; Bland, Barbara; Jimenez-Vega, Jose M; Hering, Bernhard J; Vickers, Selwyn M; Pruett, Timothy L; Sutherland, David E R
2014-07-01
Describe the surgical technique, complications, and long-term outcomes of total pancreatectomy and islet autotransplantation (TP-IAT) in a large series of pediatric patients. Surgical management of childhood pancreatitis is not clear; partial resection or drainage procedures often provide transient pain relief, but long-term recurrence is common due to the diffuse involvement of the pancreas. Total pancreatectomy (TP) removes the source of the pain, whereas islet autotransplantation (IAT) potentially can prevent or minimize TP-related diabetes. Retrospective review of 75 children undergoing TP-IAT for chronic pancreatitis who had failed medical, endoscopic, or surgical treatment between 1989 and 2012. Pancreatitis pain and the severity of pain statistically improved in 90% of patients after TP-IAT (P < 0.001). The relief from narcotics was sustained. Of the 75 patients undergoing TP-IAT, 31 (41.3%) achieved insulin independence. Younger age (P = 0.032), lack of prior Puestow procedure (P = 0.018), lower body surface area (P = 0.048), higher islet equivalents (IEQ) per kilogram body weight (P = 0.001), and total IEQ (100,000) (P = 0.004) were associated with insulin independence. By multivariate analysis, 3 factors were associated with insulin independence after TP-IAT: (1) male sex, (2) lower body surface area, and (3) higher total IEQ per kilogram body weight. Total IEQ (100,000) was the single factor most strongly associated with insulin independence (odds ratio = 2.62; P < 0.001). Total pancreatectomy and islet autotransplantation provides sustained pain relief and improved quality of life. The β-cell function is dependent on islet yield. Total pancreatectomy and islet autotransplantation is an effective therapy for children with painful pancreatitis that failed medical and/or endoscopic management.
Aging impairs heat loss, but when does it matter?
Stapleton, Jill M.; Poirier, Martin P.; Flouris, Andreas D.; Boulay, Pierre; Sigal, Ronald J.; Malcolm, Janine
2014-01-01
Aging is associated with an attenuated physiological ability to dissipate heat. However, it remains unclear if age-related impairments in heat dissipation only occur above a certain level of heat stress and whether this response is altered by aerobic fitness. Therefore, we examined changes in whole body evaporative heat loss (HE) as determined using whole body direct calorimetry in young (n = 10; 21 ± 1 yr), untrained middle-aged (n = 10; 48 ± 5 yr), and older (n = 10; 65 ± 3 yr) males matched for body surface area. We also studied a group of trained middle-aged males (n = 10; 49 ± 5 yr) matched for body surface area with all groups and for aerobic fitness with the young group. Participants performed intermittent aerobic exercise (30-min exercise bouts separated by 15-min rest) in the heat (40°C and 15% relative humidity) at progressively greater fixed rates of heat production equal to 300 (Ex1), 400 (Ex2), and 500 (Ex3) W. Results showed that HE was significantly lower in middle-aged untrained (Ex2: 426 ± 34; and Ex3: 497 ± 17 W) and older (Ex2: 424 ± 38; and Ex3: 485 ± 44 W) compared with young (Ex2: 472 ± 42; and Ex3: 558 ± 51 W) and middle-aged trained (474 ± 21; Ex3: 552 ± 23 W) males at the end of Ex2 and Ex3 (P < 0.05). No differences among groups were observed during recovery. We conclude that impairments in HE in older and middle-aged untrained males occur at exercise-induced heat loads of ≥400 W when performed in a hot environment. These impairments in untrained middle-aged males can be minimized through regular aerobic exercise training. PMID:25505030
Pancreas volume and fat fraction in children with Type 1 diabetes.
Regnell, S E; Peterson, P; Trinh, L; Broberg, P; Leander, P; Lernmark, Å; Månsson, S; Elding Larsson, H
2016-10-01
People with Type 1 diabetes have smaller pancreases than healthy individuals. Several diseases causing pancreatic atrophy are associated with pancreatic steatosis, but pancreatic fat in Type 1 diabetes has not been measured. This cross-sectional study aimed to compare pancreas size and fat fraction in children with Type 1 diabetes and controls. The volume and fat fraction of the pancreases of 22 children with Type 1 diabetes and 29 controls were determined using magnetic resonance imaging. Pancreas volume was 27% smaller in children with diabetes (median 34.9 cm(3) ) than in controls (47.8 cm(3) ; P < 0.001). Pancreas volume correlated positively with age in controls (P = 0.033), but not in children with diabetes (P = 0.649). Pancreas volume did not correlate with diabetes duration, but it did correlate positively with units of insulin/kg body weight/day (P = 0.048). A linear model of pancreas volume as influenced by age, body surface area and insulin units/kg body weight/day found that insulin dosage correlated with pancreas volume after controlling for both age and body surface area (P = 0.009). Pancreatic fat fraction was not significantly different between the two groups (1.34% vs. 1.57%; P = 0.891). Our findings do not indicate that pancreatic atrophy in Type 1 diabetes is associated with an increased pancreatic fat fraction, unlike some other diseases featuring reduced pancreatic volume. We speculate that our results may support the hypotheses that much of pancreatic atrophy in Type 1 diabetes occurs before the clinical onset of the disease and that exogenous insulin administration decelerates pancreatic atrophy after diabetes onset. © 2016 Diabetes UK.
Fienen, Michael N.; Saad, David A.; Juckem, Paul F.
2013-01-01
The shallow groundwater system in the Forest County Potawatomi Comminity, Forest County, Wisconsin, was simulated by expanding and recalibrating a previously calibrated regional model. The existing model was updated using newly collected water-level measurements, inclusion of surface-water features beyond the previous near-field boundary, and refinements to surface-water features. The updated model then was used to calculate the area contributing recharge for seven existing and three proposed pumping locations on lands of the Forest County Potawatomi Community. The existing wells were the subject of a 2004 source-water evaluation in which areas contributing recharge were calculated using the fixed-radius method. The motivation for the present (2012) project was to improve the level of detail of areas contributing recharge for the existing wells and to provide similar analysis for the proposed wells. Delineated 5- and 10-year areas contributing recharge for existing and proposed wells extend from the areas of pumping to delineate the area at the surface contributing recharge to the wells. Steady-state pumping was simulated for two scenarios: a base-pumping scenario using pumping rates that reflect what the Community currently (2012) pumps (or plans to in the case of proposed wells), and a high-pumping scenario in which the rate was set to the maximum expected from wells installed in this area, according to the Forest County Potawatomi Community Natural Resources Department. In general, the 10-year areas contributing recharge did not intersect surface-water bodies. The 5- and 10-year areas contributing recharge simulated at the maximum pumping rate at Bug Lake Road may intersect Bug Lake. At the casino near the Town of Carter, Wisconsin, the 10-year areas contributing recharge intersect infiltration ponds. At the Devils Lake and Lois Crow Drive wells, areas contributing recharge are near cultural features, including residences.
NASA Astrophysics Data System (ADS)
Ji, Y.; Han, H.; Lee, H.
2014-12-01
Analysis of the surface properties of Antarctica is very important to study the change of environment and climate in the polar region. Synthetic aperture radar (SAR) has been widely used to study Antarctic surface properties because it is independent of sun altitude and atmospheric conditions. Interferometric SAR (InSAR) observes surface topography and deformation, by calculating the phase differences between two or more SAR images obtained over same area. InSAR technique can be used for height mapping in stable areas with a few meter accuracy. However, the InSAR-derived height map can have errors if the phase differences due to surface deformation or change of the scattering center by microwave penetration into snow are misinterpreted as the elevation. In this study, we generated the height maps around Terra Nova Bay in East Antarctica from 13 COSMO-SkyMed one-day tandem InSAR pairs obtained from December 2010 to January 2012. By analyzing the height maps averaged over the 13 interferograms and its standard deviation (STD) map, we could classify the surface types into glacier, mountains and basin areas covered with snow. The mountain areas showed very small STD because its surface property is unchanged with time, except for the small STD values caused by the errors from the unwrapping processing, satellite orbit or atmospheric phase distortion. Over the basin areas, however, the STD of the height was much larger than the mountain area due to the variation of scattering center either from the change in surface property such as snowfall and sublimation or by the surface displacement of snow mass that are too slow. A year-long constant motion of such slow-creeping snow body was positively identified by its linear relationship between the misinterpreted elevation and the baseline perpendicular component of InSAR pair. Analysis of time-series coherence maps and amplitude maps have also contributed to clarify the surface properties and its changes due to various environmental factors such as snow fall, wind, sublimation, and the freezing-thawing processes in this Antarctic land surface. Acknowledgement - This research was supported by National Research Foundation of Korea through NRF-2013R1A1A2008062 and NRF-2013M1A3A3A02041853.
Diviner lunar radiometer observations of cold traps in the moon's south polar region
Paige, D.A.; Siegler, M.A.; Zhang, J.A.; Hayne, P.O.; Foote, E.J.; Bennett, K.A.; Vasavada, A.R.; Greenhagen, B.T.; Schofield, J.T.; McCleese, D.J.; Foote, M.C.; DeJong, E.; Bills, B.G.; Hartford, W.; Murray, B.C.; Allen, C.C.; Snook, K.; Soderblom, L.A.; Calcutt, S.; Taylor, F.W.; Bowles, N.E.; Bandfield, J.L.; Elphic, R.; Ghent, R.; Glotch, T.D.; Wyatt, M.B.; Lucey, P.G.
2010-01-01
Diviner Lunar Radiometer Experiment surface-temperature maps reveal the existence of widespread surface and near-surface cryogenic regions that extend beyond the boundaries of persistent shadow. The Lunar Crater Observation and Sensing Satellite (LCROSS) struck one of the coldest of these regions, where subsurface temperatures are estimated to be 38 kelvin. Large areas of the lunar polar regions are currently cold enough to cold-trap water ice as well as a range of both more volatile and less volatile species. The diverse mixture of water and high-volatility compounds detected in the LCROSS ejecta plume is strong evidence for the impact delivery and cold-trapping of volatiles derived from primitive outer solar system bodies.
Tools for Asteroid Regolith Operations
NASA Technical Reports Server (NTRS)
Mueller, Robert P.; Calle, Carlos I.; Mantovani, James G.
2013-01-01
This RFI response is targeting Area 5. Crew Systems for Asteroid Exploration: concepts for lightweight and low volume robotic and extra-vehicular activity (EVA) systems, such as space suits, tools, translation aids, stowage containers, and other equipment.The NASA KSC Surface Systems Office, Granular Mechanics and Regolith Operations (GMRO) Lab and the Electrostatics Surface Physics Lab (ESPL) are dedicated to developing technologies for operating in regolith environments on target body surfaces. We have identified two technologies in our current portfolio that are highly relevant and useful for crews that will visit a re-directed asteroid in Cis-Lunar Space. Both technologies are at a high TRL of 56 and could be rapidly implemented in time for an ARM mission in this decade.
Aortic root dilation in kidney transplant recipients.
Obremska, Marta; Boratyńska, Maria; Szymczak, Maciej; Zyśko, Dorota; Płonek, Tomasz; Goździk, Anna; Klinger, Marian
2018-05-30
INTRODUCTION Aortic root (AoR) dilation is associated with cardiac damage and higher cardiovascular risk. Cardiovascular disease is the most common cause of death in patients after kidney transplantation (KTx ). OBJECTIVES The aim of this study was to assess the prevalence of enlarged AoR diameter in KTx recipients. Patients with bicuspid aortic valve, significant valvular disease, or evidence of connective tissue disorder were excluded. PATIENTS AND METHODS A total of 87 KTx recipients were divided into 2 groups depending on immunosuppressive regimen: 41 patients receiving mammalian target of rapamycin inhibitors (mTORi) and 46 patients treated with calcineurin inhibitors (CNIs). In all patients, echocardiography was performed, laboratory and clinical markers of cardiovascular risk were assessed, and the AoR diameter was calculated. RESULTS There were no differences between groups in age, sex, body surface area, body mass index, frequency of diabetes, hypertension, dyslipidemia, time after replacement therapy, creatinine levels, and estimated glomerular filtration rate. In the CNI group, the observed and calculated AoR diameters were similar (P = 0.8). In the mTORi group, the observed AoR diameter was higher than the calculated one (P = 0.002). The concentric and eccentric left ventricular hypertrophy was similar in both groups (P = 0.12 and P = 0.69, respectively). In the stepwise regression analysis, the AoR diameter was associated with body surface area and mTORi treatment. CONCLUSIONS KTx recipients have a high prevalence of AoR dilation. Immunosuppressive regimen based on mTORi increases the incidence of AoR enlargement.
Cohen, H; McCabe, C; Harris, N; Hall, J; Lewis, J; Blake, D R
2013-04-01
Unusual symptoms such as digit misidentification and neglect-like phenomena have been reported in complex regional pain syndrome (CRPS), which we hypothesized could be explained by parietal lobe dysfunction. Twenty-two patients with chronic CRPS attending an in-patient rehabilitation programme underwent standard neurological examination followed by clinical assessment of parietal lobe function and detailed sensory testing. Fifteen (68%) patients had evidence of parietal lobe dysfunction. Six (27%) subjects failed six or more test categories and demonstrated new clinical signs consistent with their parietal testing impairments, which were impacting significantly on activities of daily living. A higher incidence was noted in subjects with >1 limb involvement, CRPS affecting the dominant side and in left-handed subjects. Eighteen patients (82%) had mechanical allodynia covering 3-57.5% of the body surface area. Allochiria (unilateral tactile stimulation perceived only in the analogous location on the opposite limb), sensory extinction (concurrent bilateral tactile stimulation perceived only in one limb), referred sensations (unilateral tactile stimulation perceived concurrently in another discrete body area) and dysynchiria (unilateral non-noxious tactile stimulation perceived bilaterally as noxious) were present in some patients. Greater extent of body surface allodynia was correlated with worse parietal function (Spearman's rho = -0.674, p = 0.001). In patients with chronic CRPS, detailed clinical examination may reveal parietal dysfunction, with severity relating to the extent of allodynia. © 2012 European Federation of International Association for the Study of Pain Chapters.
Siddique, Muhammad Irfan; Katas, Haliza; Amin, Mohd Cairul Iqbal Mohd; Ng, Shiow-Fern; Zulfakar, Mohd Hanif; Buang, Fhataheya; Jamil, Adawiyah
2015-12-01
Hydrocortisone (HC) is a topical glucocorticoid for the treatment of atopic dermatitis (AD); the local as well as systemic side effects limit its use. Hydroxytyrosol (HT) is a polyphenol present in olive oil that has strong antimicrobial and antioxidant activities. HC-HT coloaded chitosan nanoparticles (HC-HT CSNPs) were therefore developed to improve the efficacy against AD. In this study, HC-HT CSNPs of 235 ± 9 nm in size and with zeta potential +39.2 ± 1.6 mV were incorporated into aqueous cream (vehicle) and investigated for acute dermal toxicity, dermal irritation, and repeated dose toxicity using albino Wistar rats. HC-HT CSNPs exhibited LD50 > 125 mg/body surface area of active, which is 100-fold higher than the normal human dose of HC. Compared with the commercial formulation, 0.5 g of HC-HT CSNPs did not cause skin irritation, as measured by Tewameter®, Mexameter®, and as observed visually. Moreover, no-observed-adverse-effect level was observed with respect to body weight, organ weight, feed consumption, blood hematological and biochemical, urinalysis, and histopathological parameters at a dose of 1000 mg/body surface area per day of HC-HT CSNPs for 28 days. This in vivo study demonstrated that nanoencapsulation significantly reduced the toxic effects of HC and this should allow further clinical investigations. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.
Ortega, Jason M.; Sabari, Kambiz
2005-12-27
An aerodynamic base drag reduction apparatus and method for bluff bodies, such as tractor-trailer trucks, utilizing a pair of lift surfaces extending to lift surface tips and located alongside the bluff body such as on opposing left and right side surfaces. In a flowstream substantially parallel to the longitudinal centerline of the bluff body, the pair of lift surfaces generate a pair of counter-rotating trailing vortices which confluence together in the wake of the bluff body in a direction orthogonal to the flowstream. The confluence draws or otherwise turns the flowstream, such as the flowstream passing over a top surface of the bluff body, in and around behind a trailing end of the bluff body to raise the pressure on a base surface at the trailing end and thereby reduce the aerodynamic base drag.
Ortega, Jason M.; Salari, Kambiz
2005-08-09
An aerodynamic base drag reduction apparatus and method for bluff bodies, such as tractor-trailer trucks, utilizing a pair of lift surfaces extending to lift surface tips and located alongside the bluff body such as on opposing left and right side surfaces. In a flowstream substantially parallel to the longitudinal centerline of the bluff body, the pair of lift surfaces generate a pair of counter-rotating trailing vortices which confluence together in the wake of the bluff body in a direction orthogonal to the flowstream. The confluence draws or otherwise turns the flowstream, such as the flowstream passing over a top surface of the bluff body, in and around behind a trailing end of the bluff body to raise the pressure on a base surface at the trailing end and thereby reduce the aerodynamic base drag.
Effect of antiperspirants on whole body sweat rate and thermoregulation.
Burry, J S; Evans, R L; Rawlings, A V; Shiu, J
2003-08-01
It is well established that the evaporation of sweat from the human body surface is the main mechanism by which heat balance is maintained following a rise in body core temperature. Since the introduction of the first brand name antiperspirant in the United States during the early 1900s, antiperspirant products designed to control underarm wetness have grown to represent one of the largest cosmetic categories in most global markets. However, although axillary sweating only constitutes less than 1% of whole body sweat rate, consumers, particularly in hot countries, have begun to articulate the concern that antiperspirants may interfere with the body's natural cooling process. To investigate this, we undertook carefully designed experiments that measured the effects of axillary antiperspirant application on whole body sweat rate and body core temperature, following a regimen of exercise-induced heat stress in a hot environment in human volunteers. Our data show clearly that although antiperspirant prevents sweat production in the axillary area, this does not impact the ability of the body to thermoregulate following a rise in body core temperature. Thus, recent consumer questioning over this aspect of antiperspirant use appears to be unwarranted.
Deviation from Power Law Behavior in Landslide Phenomenon
NASA Astrophysics Data System (ADS)
Li, L.; Lan, H.; Wu, Y.
2013-12-01
Power law distribution of magnitude is widely observed in many natural hazards (e.g., earthquake, floods, tornadoes, and forest fires). Landslide is unique as the size distribution of landslide is characterized by a power law decrease with a rollover in the small size end. Yet, the emergence of the rollover, i.e., the deviation from power law behavior for small size landslides, remains a mystery. In this contribution, we grouped the forces applied on landslide bodies into two categories: 1) the forces proportional to the volume of failure mass (gravity and friction), and 2) the forces proportional to the area of failure surface (cohesion). Failure occurs when the forces proportional to volume exceed the forces proportional to surface area. As such, given a certain mechanical configuration, the failure volume to failure surface area ratio must exceed a corresponding threshold to guarantee a failure. Assuming all landslides share a uniform shape, which means the volume to surface area ratio of landslide regularly increase with the landslide volume, a cutoff of landslide volume distribution in the small size end can be defined. However, in realistic landslide phenomena, where heterogeneities of landslide shape and mechanical configuration are existent, a simple cutoff of landslide volume distribution does not exist. The stochasticity of landslide shape introduce a probability distribution of the volume to surface area ratio with regard to landslide volume, with which the probability that the volume to surface ratio exceed the threshold can be estimated regarding values of landslide volume. An experiment based on empirical data showed that this probability can induce the power law distribution of landslide volume roll down in the small size end. We therefore proposed that the constraints on the failure volume to failure surface area ratio together with the heterogeneity of landslide geometry and mechanical configuration attribute for the deviation from power law behavior in landslide phenomenon. Figure shows that a rollover of landslide size distribution in the small size end is produced as the probability for V/S (the failure volume to failure surface ratio of landslide) exceeding the mechanical threshold applied to the power law distribution of landslide volume.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hirsch, E.F.; Vezina, R.; Corbett, S.
1990-01-01
The present study was undertaken to establish an animal model of combined whole-body irradiation and thermal injury and to determine the effectiveness of early excision and closure of the burn wound in such a model. Whole-body irradiation over a range of doses resulted in a predictable mortality rate, with an LD50/30 of 783 rad with 95% confidence limits of 737 and 823 rad. A controlled 10% body surface area full-thickness thermal injury resulted in no deaths in 30 animals. When combined with a standard nonlethal 10% thermal injury, varying doses of whole-body irradiation resulted in widely differing LD50/30 values inmore » three separate cohorts of rats. Excision and closure of a 10% burn 24 hours after exposure to 200 rads did not improve survival.« less
Electromagnetic field triggered drug and chemical delivery via liposomes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liburdy, R.P.
1993-03-02
The present invention relates to a system and to a method of delivering a drug to a preselected target body site of a patient, comprising the steps of encapsulating the chemical agent within liposomes, essentially temperature insensitive, i.e. not having a specific predetermined phase transition temperature within the specific temperature range of drug administration; administering the liposomes to the target body site; and subjecting the target body site to nonionizing electromagnetic fields in an area of the preselected target body in order to release the chemical agent from the liposomes at a temperature of between about +10 and 65 C.more » The invention further relates to the use of the liposomes to bind to the surface of or to enter target tissue or an organ in a living system, and, when subjected to a nonionizing field, to release a drug from the liposomes into the target site.« less
Research on external flow field of a car based on reverse engineering
NASA Astrophysics Data System (ADS)
Hu, Shushan; Liu, Ronge
2018-05-01
In this paper, the point cloud data of FAW-VOLKSWAGEN car body shape is obtained by three coordinate measuring instrument and laser scanning method. The accurate three dimensional model of the car is obtained using CATIA software reverse modelling technology. The car body is gridded, the calculation field and boundary condition type of the car flow field are determined, and the numerical simulation is carried out in Hyper Mesh software. The pressure cloud diagram, velocity vector diagram, air resistance coefficient and lift coefficient of the car are obtained. The calculation results reflect the aerodynamic characteristics of the car's external flow field. The motion of the separation flow on the surface of the vehicle body is well simulated, and the area where the vortex motion is relatively intense has been determined. The results provide a theoretical basis for improving and optimizing the body shape.
Electromagnetic field triggered drug and chemical delivery via liposomes
Liburdy, R.P.
1993-03-02
The present invention relates to a system and to a method of delivering a drug to a preselected target body site of a patient, comprising the steps of encapsulating the chemical agent within liposomes, essentially temperature insensitive, i.e. not having a specific predetermined phase transition temperature within the specific temperature range of drug administration; administering the liposomes to the target body site; and subjecting the target body site to nonionizing electromagnetic fields in an area of the preselected target body in order to release the chemical agent from the liposomes at a temperature of between about +10 and 65 C. The invention further relates to the use of the liposomes to bind to the surface of or to enter target tissue or an organ in a living system, and, when subjected to a nonionizing field, to release a drug from the liposomes into the target site.
Electromagnetic field triggered drug and chemical delivery via liposomes
Liburdy, Robert P.
1993-01-01
The present invention relates to a system and to a method of delivering a drug to a preselected target body site of a patient, comprising the steps of encapsulating the chemical agent within liposomes, essentially temperature insensitive, i.e. not having a specific predetermined phase transition temperature within the specific temperature range of drug administration; administering the liposomes to the target body site; and subjecting the target body site to nonionizing electromagnetic fields in an area of the preselected target body in order to release said chemical agent from the liposomes at a temperature of between about +10 and 65.degree. C. The invention further relates to the use of said liposomes to bind to the surface of or to enter target tissue or an organ in a living system, and, when subjected to a nonionizing field, to release a drug from the liposomes into the target site.
Aerodynamics of a highly irregular body at transonic speeds-Analysis of STRATOS flight data.
Guerster, Markus; Walter, Ulrich
2017-01-01
In this paper, we analyze the trajectory and body attitude data of Felix Baumgartner's supersonic free fall through the atmosphere on October 14, 2012. As one of us (UW) was scientific advisor to the Red Bull Stratos team, the analysis is based on true body data (body mass, wetted pressure suit surface area) and actual atmospheric data from weather balloon measurements. We also present a fully developed theoretical analysis and solution of atmospheric free fall. By matching the flight data against this solution, we are able to derive and track the drag coefficient CD from the subsonic to the transonic and supersonic regime, and back again. Although the subsonic drag coefficient is the expected CD = 0.60 ± 0.05, surprisingly the transonic compressibility drag coefficient is only 19% of the expected value. We provide a plausible explanation for this unexpected result.
Aerodynamics of a highly irregular body at transonic speeds—Analysis of STRATOS flight data
Guerster, Markus; Walter, Ulrich
2017-01-01
In this paper, we analyze the trajectory and body attitude data of Felix Baumgartner’s supersonic free fall through the atmosphere on October 14, 2012. As one of us (UW) was scientific advisor to the Red Bull Stratos team, the analysis is based on true body data (body mass, wetted pressure suit surface area) and actual atmospheric data from weather balloon measurements. We also present a fully developed theoretical analysis and solution of atmospheric free fall. By matching the flight data against this solution, we are able to derive and track the drag coefficient CD from the subsonic to the transonic and supersonic regime, and back again. Although the subsonic drag coefficient is the expected CD = 0.60 ± 0.05, surprisingly the transonic compressibility drag coefficient is only 19% of the expected value. We provide a plausible explanation for this unexpected result. PMID:29216204
Jeong, Yoo-Seong; Yim, Chang-Soon; Ryu, Heon-Min; Noh, Chi-Kyoung; Song, Yoo-Kyung; Chung, Suk-Jae
2017-06-01
The objective of the current study was to determine the minimum permeability coefficient, P, needed for perfusion-limited distribution in PBPK. Two expanded kinetic models, containing both permeability and perfusion terms for the rate of tissue distribution, were considered: The resulting equations could be simplified to perfusion-limited distribution depending on tissue permeability. Integration plot analyses were carried out with theophylline in 11 typical tissues to determine their apparent distributional clearances and the model-dependent permeabilities of the tissues. Effective surface areas were calculated for 11 tissues from the tissue permeabilities of theophylline and its PAMPA P. Tissue permeabilities of other drugs were then estimated from their PAMPA P and the effective surface area of the tissues. The differences between the observed and predicted concentrations, as expressed by the sum of squared log differences with the present models were at least comparable to or less than the values obtained using the traditional perfusion-limited distribution model for 24 compounds with diverse PAMPA P values. These observations suggest that the use of a combination of the proposed models, PAMPA P and the effective surface area can be used to reasonably predict the pharmacokinetics of 22 out of 24 model compounds, and is potentially applicable to calculating the kinetics for other drugs. Assuming that the fractional distribution parameter of 80% of the perfusion rate is a reasonable threshold for perfusion-limited distribution in PBPK, our theoretical prediction indicates that the pharmacokinetics of drugs having an apparent PAMPA P of 1×10 -6 cm/s or more will follow the traditional perfusion-limited distribution in PBPK for major tissues in the body. Copyright © 2017 Elsevier B.V. All rights reserved.
Apparatus for measuring surface particulate contamination
Woodmansee, Donald E.
2002-01-01
An apparatus for measuring surface particulate contamination includes a tool for collecting a contamination sample from a target surface, a mask having an opening of known area formed therein for defining the target surface, and a flexible connector connecting the tool to the mask. The tool includes a body portion having a large diameter section defining a surface and a small diameter section extending from the large diameter section. A particulate collector is removably mounted on the surface of the large diameter section for collecting the contaminants. The tool further includes a spindle extending from the small diameter section and a spool slidingly mounted on the spindle. A spring is disposed between the small diameter section and the spool for biasing the spool away from the small diameter section. An indicator is provided on the spindle so as to be revealed when the spool is pressed downward to compress the spring.
The contact sport of rough surfaces
NASA Astrophysics Data System (ADS)
Carpick, Robert W.
2018-01-01
Describing the way two surfaces touch and make contact may seem simple, but it is not. Fully describing the elastic deformation of ideally smooth contacting bodies, under even low applied pressure, involves second-order partial differential equations and fourth-rank elastic constant tensors. For more realistic rough surfaces, the problem becomes a multiscale exercise in surface-height statistics, even before including complex phenomena such as adhesion, plasticity, and fracture. A recent research competition, the “Contact Mechanics Challenge” (1), was designed to test various approximate methods for solving this problem. A hypothetical rough surface was generated, and the community was invited to model contact with this surface with competing theories for the calculation of properties, including contact area and pressure. A supercomputer-generated numerical solution was kept secret until competition entries were received. The comparison of results (2) provides insights into the relative merits of competing models and even experimental approaches to the problem.
NASA Technical Reports Server (NTRS)
Sleeman, William C., Jr.
1957-01-01
The present investigation was conducted in the Langley high-speed 7-by 10-foot tunnel to determine the static longitudinal and lateral stability characteristics at high subsonic speeds of two canard airplane configurations previously tested at supersonic speeds. The Mach number range of this investigation extended from 0.60 to 0.94 and a maximum angle-of-attack range of -2dewg to 24deg was obtained at the lowest test Mach number. Two wing plan forms of equal area were studied in the present tests; one was a 60deg delta wing and the other was a trapezoid wing having an aspect ratio of 3, taper ratio of 0.143, and an unswept 80-percent-chord line. The canard control had a trapezoidal plan form and its area was approximately 11.5 percent of the wing area. The model also had a low-aspect-ratio highly swept vertical tail and twin ventral fins. The longitudinal control characteristics of the models were consistent with past experience at low speed on canard configurations in that stalling of the canard surface occurred at moderate and high control deflections for moderate values of angle of attack. This stalling could impose appreciable limitations on the maximum trim-lift coefficient attainable. The control effectiveness and maximum value of trim-lift was significantly increased by addition of a body flap having a conical shape and located slightly behind the canard surface on the bottom of the body. Addition of the canard surface at 0deg deflection had relatively little effect on overall directional stability of the delta-wing configuration; however, deflection of the canard surface from 0deg to 10deg had a large favorable effect on directional stability at high angles of attack for both the trapezoid- and delta-wing configurations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shen, Jinmei; Arritt, R.W.
The importance of land-atmosphere interactions and biosphere in climate change studies has long been recognized, and several land-atmosphere interaction schemes have been developed. Among these, the Simple Biosphere scheme (SiB) of Sellers et al. and the Biosphere Atmosphere Transfer Scheme (BATS) of Dickinson et al. are two of the most widely known. The effects of GCM subgrid-scale inhomogeneities of surface properties in general circulation models also has received increasing attention in recent years. However, due to the complexity of land surface processes and the difficulty to prescribe the large number of parameters that determine atmospheric and soil interactions with vegetation,more » many previous studies and results seem to be contradictory. A GCM grid element typically represents an area of 10{sup 4}-10{sup 6} km{sup 2}. Within such an area, there exist variations of soil type, soil wetness, vegetation type, vegetation density and topography, as well as urban areas and water bodies. In this paper, we incorporate both BATS and SiB2 land surface process schemes into a nonhydrostatic, compressible version of AMBLE model (Atmospheric Model -- Boundary-Layer Emphasis), and compare the surface heat fluxes and mesoscale circulations calculated using the two schemes. 8 refs., 5 figs.« less
Javard, Romain; Bélanger, Marie-Claude; Côté, Etienne; Beauchamp, Guy; Pibarot, Philippe
2014-12-15
To evaluate the usefulness of Doppler-derived peak flow velocity through the left ventricular outflow tract (LVOT Vmax) and effective orifice area indexed to body surface area (EOAi) in puppies to predict development of subaortic stenosis (SAS) in the same dogs as adults. Prospective, longitudinal, observational study. 38 Golden Retrievers. Cardiac auscultation and echocardiography were performed on 2- to 6-month-old puppies, then repeated at 12 to 18 months. Subaortic stenosis was diagnosed when LVOT Vmax was ≥ 2.3 m/s in adult dogs with left basilar systolic murmurs. All puppies with EOAi < 1.46 cm(2)/m(2) had SAS as adults. All adults with EOAi < 1.29 cm(2)/m(2) had SAS. An LVOT Vmax > 2.3 m/s in puppyhood was 63% sensitive and 100% specific for SAS in adulthood. In puppies, LVOT Vmax was more strongly associated with a future diagnosis of SAS (area under the curve [AUC], 0.89) than was EOAi (AUC, 0.80). In puppies, the combination of LVOT Vmax and EOAi yielded slightly higher sensitivity (69%) and specificity (100%) for adult SAS than did LVOT Vmax alone. In unaffected and affected dogs, LVOT Vmax increased significantly from puppyhood to adulthood but EOAi did not. In Golden Retriever puppies, LVOT Vmax > 2.3 m/s and EOAi < 1.46 cm(2)/m(2) were both associated with a diagnosis of SAS at adulthood. The combination of these 2 criteria may result in higher sensitivity for SAS screening. Unlike LVOT Vmax, EOAi did not change during growth in either unaffected Golden Retrievers or those with SAS.
Paul, Carle; Leonardi, Craig; Menter, Alan; Reich, Kristian; Gold, Linda Stein; Warren, Richard B; Møller, Anders; Lebwohl, Mark
2017-06-01
Fixed-combination calcipotriol 50 μg/g plus betamethasone 0.5 mg/g (Cal/BD) aerosol foam is a new topical treatment for psoriasis. Although moderate-to-severe psoriasis is typically treated with systemic/biologic therapies, a topical treatment that is efficacious in these patients may be a significant cost-saving alternative to systemic therapy. The objective of this study was to assess the response to Cal/BD foam and gel in patients with moderate-to-severe psoriasis enrolled in the phase III, 12-week PSO-ABLE study. Patients eligible for this analysis had moderate-to-severe psoriasis, defined by the 'Rule of Tens': body surface area ≥10% or Psoriasis Area and Severity Index (PASI) [excluding head; modified PASI (mPASI)] >10 or Dermatology Life-Quality Index >10. Endpoints included: proportion of patients achieving mPASI75 or mPASI90; change in body surface area; proportion of patients clear/almost clear with a ≥2 grade improvement (i.e., treatment success); change in Dermatology Life-Quality Index. Seventy-seven Cal/BD foam patients and 82 gel patients had moderate-to-severe psoriasis. A greater proportion achieved mPASI75 and mPASI90 with Cal/BD foam than gel at weeks 4, 8, and 12 (57.1 vs. 35.4%; p = 0.006 and 15.6 vs. 12.2% at week 12, respectively); overall reduction in mPASI from baseline to week 12 was 64% with the foam vs. 51% with the gel. Overall reduction in body surface area at week 12 was 50% with the foam and 39% with the gel. Treatment success rates were higher with the Cal/BD foam than the gel at weeks 1, 2, 4, 8 (p = 0.0089), and 12, and a greater proportion of foam patients achieved a Dermatology Life-Quality Index score of 0/1 at weeks 4 (p = 0.004), 8, and 12 (p = 0.001). Cal/BD foam can be considered as a treatment option in some patients with moderate-to-severe psoriasis who are potential candidates for systemic therapy. CLINICALTRIALS. NCT02132936.
Cléro, Enora; Leux, Christophe; Brindel, Pauline; Truong, Thérèse; Anger, Antoinette; Teinturier, Cécile; Diallo, Ibrahima; Doyon, Françoise; Guénel, Pascal; de Vathaire, Florent
2010-11-01
New Caledonia and French Polynesia have among of the world highest thyroid cancer incidence rates. Studies have demonstrated a relationship between anthropometric parameters and the prevalence of cancer. In this study we evaluated further the relationship between body mass index (BMI) and other anthropometric parameters on the incidence of thyroid cancer in the New Caledonia and French Polynesia populations. We performed a pooled analysis of two case-control studies in New Caledonia and French Polynesia. We included a total of 554 cases (65 men and 489 women) of differentiated thyroid cancers and 776 population control subjects matched on sex, age, and study. Anthropometric factors (height, weight, BMI, body fat percentage [BF%], and body surface area [BSA]), at age 18 and before diagnosis, were analyzed by conditional logistic regression, adjusting for other independent risk factors. A high proportion of cases (73%) were overweight (25-29.9 kg/m(2)) or obese (≥30 kg/m(2)) before diagnosis of thyroid cancer (against 57% of control subjects). An increased risk of thyroid cancer was observed with greater height, weight, BMI, BF%, and BSA. The association of thyroid cancer risk with height, weight, BMI, and BF% did not remain when adjustment was made for BSA. By comparison, the odds ratios for the highest versus the lowest quartile of BSA at age 18 were 3.97 (95% confidence interval, 2.57-6.15; p < 0.001) for women and 4.06 (95% confidence interval, 1.03-16.06; p = 0.04) for men. The association between thyroid cancer risk and each of anthropometric factors did not depend on tumor size or menopausal status before diagnosis. Among anthropometric factors, BSA plays a dominant role in thyroid cancer risk and explains the apparent role of BMI.
Effect of ascorbic acid on prevention of hypercholesterolemia induced atherosclerosis.
Das, S; Ray, R; Snehlata; Das, N; Srivastava, L M
2006-04-01
The notion that oxidation of lipids and propagation of free radicals may contribute to the pathogenesis of atherosclerosis is supported by a large body of evidence. To circumvent the damage caused by oxygen free radicals, antioxidants are needed which provide the much needed neutralization of free radical by allowing the pairing of electrons. In this study we have investigated the effect of ascorbic acid, a water soluble antioxidant on the development of hypercholesterolemia induced atherosclerosis in rabbits. Rabbits were made hypercholesterolemic and atherosclerotic by feeding 100 mg cholesterol/day. Different doses of ascorbic acid were administered to these rabbits. Low dose of ascorbic acid (0.5 mg/100 g body weight/day) did not have any significant effect on the percent of total area covered by atherosclerotic plaque. However, ascorbic acid when fed at a higher dose (15 mg/100 g body weight/day) was highly effective in reducing the atherogenecity. With this dose the percent of total surface area covered by atherosclerotic plaque was significantly less (p < 0.001). This suggests that use of ascorbic acid may have great promise in the prevention of hypercholesterolemia induced atherosclerosis.
Pretorius, Thea; Cahill, Farrell; Kocay, Sheila; Giesbrecht, Gordon G
2008-05-01
Many cold-water scenarios cause the head to be partially or fully immersed (e.g., ship wreck survival, scuba diving, cold-water adventure swim racing, cold-water drowning, etc.). However, the specific effects of head cold exposure are minimally understood. This study isolated the effect of whole-head submersion in cold water on surface heat loss and body core cooling when the protective shivering mechanism was intact. Eight healthy men were studied in 17 degrees C water under four conditions: the body was either insulated or exposed, with the head either out of the water or completely submersed under the water within each insulated/exposed subcondition. Submersion of the head (7% of the body surface area) in the body-exposed condition increased total heat loss by 11% (P < 0.05). After 45 min, head-submersion increased core cooling by 343% in the body-insulated subcondition (head-out: 0.13 +/- 0.2 degree C, head-in: 0.47 +/- 0.3 degree C; P < 0.05) and by 56% in the body-exposed subcondition (head-out: 0.40 +/- 0.3 degree C and head-in: 0.73 +/- 0.6 degree C; P < 0.05). In both body-exposed and body-insulated subconditions, head submersion increased the rate of core cooling disproportionally more than the relative increase in total heat loss. This exaggerated core-cooling effect is consistent with a head cooling induced reduction of the thermal core, which could be stimulated by cooling of thermosensitive and/or trigeminal receptors in the scalp, neck, and face. These cooling effects of head submersion are not prevented by shivering heat production.
Distribution of leached radioactive material in the Legin Group Area, San Miguel County, Colorado
Rogers, Allen S.
1950-01-01
Radioactivity anomalies, which are small in magnitude, and probably are not caused by extensions of known uranium-vanadium ore bodies, were detected during the gamma-ray logging of diamond-drill holes in the Legin group of claims, southwest San Miguel County, Colo. The positions of these anomalies are at the top surfaces of mudstone strata within, and at the base of, the ore-bearing sandstone of the Salt Wash member of the Morrison formation. The distribution of these anomalies suggests that ground water has leached radioactive material from the ore bodies and has carried it down dip and laterally along the top surfaces of underlying impermeable mudstone strata for distance as great as 300 feet. The anomalies are probably caused by radon and its daughter elements. Preliminary tests indicate that radon in quantities up to 10-7 curies per liter may be present in ground water flowing along sandstone-mudstone contacts under carnotite ore bodies. In comparison, the radium content of the same water is less than 10-10 curies per liter. Further substantiation of the relationship between ore bodies, the movement of water, and the radon-caused anomalies may greatly increase the scope of gamma-ray logs of drill holes as an aid to prospecting.
Okamoto, Eiji; Kato, Yoshikuni; Kikuchi, Sakiko; Mitamura, Yoshinori
2014-01-01
The electrical property between an electrode and skin or tissue is one of the important issues for communication performance of the transcutaneous communication system (TCS) using a human body as a conductive medium.In this study, we used a simple method to measure interface resistance between the electrode and skin on the surface of the body. The electrode-electrode impedance was measured by a commercially available LCR meter with changes in the distance between two electrodes on an arm of a healthy male subject, and we obtained the tissue resistivity and electrode-skin interface resistance using the cross-sectional area of the arm.We also measured transmission gain of the TCS on the surface of the body, and we investigated the relationship between electrode-skin interface resistance and transmission gain. We examined four kinds of electrodes: a stainless steel electrode, a titanium electrode, an Ag-AgCl electrode and an Ag-AgCl paste electrode. The stainless steel electrode, which had lower electrode-skin resistance, had higher transmission gain.The results indicate that an electrode that has lower electrode-skin resistance will contribute to improvement of the performance of the TCS and that electrode-skin interface resistance is one of valuable evaluation parameters for selecting an optimum electrode for the TCS.
Spectral feature measurements and analyses of the East Lake
NASA Astrophysics Data System (ADS)
Fang, Shenghui; Zhou, Yuan; Zhu, Wu
2005-10-01
It is one of basis of water color remote sensing to investigate the method to obtain and analyze the spectral features of the water bodies. This paper concerns the above-water method for the spectral measurements of inland water. A series of experiments were taken in areas of the East Lake with the EPP2000CCD radiometer, and the geometry attitude of the observation and the method of the elimination of the noise of the water Signals will be discussed. The method of the above-water spectral measurements was studied from the point of view of error source. On the basis of the experiments of the water depth and the observing direction form the sun and surface, it is suggested to remove the radiances of the whitecaps, surface-reflected sun glint and skylight which have not the spectral features of water from the lake surface by specialized observing attitude and data processing. At last, a suit of methods is concluded for the water body of the East Lake in measuring and analyzing the spectral features from above-water.
Cyclic fluctuations of water level as a basis for determining aquifer transmissibility
Ferris, John G.
1952-01-01
In coastal areas, wells near bodies of tidal water frequently exhibit sinusoidal fluctuations of water level, in response to periodic changes of tidewater stage. Inland, the regulation of a surface reservoir often produces correlative changes of ground-water stage in wells adjacent either to the reservoir or to its attendant stream. As the stage of the surface water rises, the head upon the subaqueous outcrop of the aquifer increases and thereby either increases the rate of inflow to the aquifer or reduces the rate of outflow therefrom. The increase in recharge or reduction in discharge results in a general recovery of water level in the aquifer. On the subsequent falling stage this pattern is reversed. When the stage of the surface body fluctuates as a simple harmonic motion a train of sinusoidal waves is propagated shoreward through the sub-outcrop of the aquifer. With increasing distance from the sub-outcrop, the amplitude of the transmitted wave decreases and the time lag of a given maximum or minimum increases.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kertesz, Vilmos; Van Berkel, Gary J
A fully automated liquid extraction-based surface sampling system utilizing a commercially available autosampler coupled to high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) detection is reported. Discrete spots selected for droplet-based sampling and automated sample queue generation for both the autosampler and MS were enabled by using in-house developed software. In addition, co-registration of spatially resolved sampling position and HPLC-MS information to generate heatmaps of compounds monitored for subsequent data analysis was also available in the software. The system was evaluated with whole-body thin tissue sections from propranolol dosed rat. The hands-free operation of the system was demonstrated by creating heatmapsmore » of the parent drug and its hydroxypropranolol glucuronide metabolites with 1 mm resolution in the areas of interest. The sample throughput was approximately 5 min/sample defined by the time needed for chromatographic separation. The spatial distributions of both the drug and its metabolites were consistent with previous studies employing other liquid extraction-based surface sampling methodologies.« less
Sputtering of ices in the outer solar system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, R.E.
1996-01-01
Exploration of the outer solar system has led to studies in a new area of physics: electronically induced sputtering of low-temperature, condensed-gas solids (ices). Many of the icy bodies in the outer solar system were found to be bombarded by relatively intense fluxes of ions and electrons, causing both changes in their optical reflectance and ejection (sputtering) of molecules from their surfaces. The small cohesive energies of the condensed-gas solids afford relatively large sputtering rates from the electronic excitations produced in the solid by fast ions and electrons. Such sputtering produces an ambient gas about an icy body, often themore » source of the local plasma. This colloquium outlines the physics of the sputtering of ices and its relevance to several outer-solar-system phenomena: the sputter-produced plasma trapped in Saturn{close_quote}s magnetosphere; the O{sub 2} atmosphere on Europa; and optical absorption features such as SO{sub 2} in the surface of Europa and O{sub 2} and, possibly, O{sub 3} in the surface of Ganymede. {copyright} {ital 1996 The American Physical Society.}« less
Enhanced Biocompatibility of Porous Nitinol
Munroe, Norman; Pulletikurthi, Chandan; Haider, Waseem
2009-01-01
Porous Nitinol (PNT) has found vast applications in the medical industry as interbody fusion devices, synthetic bone grafts, etc. However, the tendency of the PNT to corrode is anticipated to be greater as compared to solid nitinol since there is a larger surface area in contact with body fluids. In such cases, surface preparation is known to play a major role in a material’s biocompatibility. In an effort to check the effect of surface treatments on the in vitro corrosion properties of PNT, in this investigation, they were subjected to different surface treatments such as boiling in water, dry heating, and passivation. The localized corrosion resistance of alloys before and after each treatment was evaluated in phosphate buffer saline solution (PBS) using cyclic polarization tests in accordance with ASTM F 2129-08. PMID:19956797
Enhanced Biocompatibility of Porous Nitinol
NASA Astrophysics Data System (ADS)
Munroe, Norman; Pulletikurthi, Chandan; Haider, Waseem
2009-08-01
Porous Nitinol (PNT) has found vast applications in the medical industry as interbody fusion devices, synthetic bone grafts, etc. However, the tendency of the PNT to corrode is anticipated to be greater as compared to solid nitinol since there is a larger surface area in contact with body fluids. In such cases, surface preparation is known to play a major role in a material’s biocompatibility. In an effort to check the effect of surface treatments on the in vitro corrosion properties of PNT, in this investigation, they were subjected to different surface treatments such as boiling in water, dry heating, and passivation. The localized corrosion resistance of alloys before and after each treatment was evaluated in phosphate buffer saline solution (PBS) using cyclic polarization tests in accordance with ASTM F 2129-08.
Human Skin Is the Largest Epithelial Surface for Interaction with Microbes.
Gallo, Richard L
2017-06-01
Human skin contains an abundant and diverse population of microbial organisms. Many of these microbes inhabit follicular structures of the skin. Furthermore, numerous studies have shown that the interaction of some members of the skin microbiome with host cells will result in changes in cell function. However, estimates of the potential for the microbiome to influence human health through skin have ignored the inner follicular surface, and therefore vastly underestimated the potential of the skin microbiome to have a systemic effect on the human body. By calculating the surface area of follicular and the interfollicular epithelial surface it is shown that skin provides a vast interface for interactions with the microbiome. Copyright © 2017 The Author. Published by Elsevier Inc. All rights reserved.
Apollo 12 - Bean - Conrad - during geological field trip
1969-10-24
S69-55667 (10 Oct. 1969) --- Astronauts Charles Conrad Jr. and Alan L. Bean train for their upcoming Apollo 12 lunar landing mission. Here they are entering a simulated lunar surface area near Flagstaff, Arizona. Both are wearing lunar surface cameras strapped to their bodies. Conrad (left), the Apollo 12 mission commander, is carrying some of the tools from the geological tool container. The geological tool container, being carried here by Bean, the lunar module pilot, is similar to the one which will be used during scheduled extravehicular activity (EVA) periods on Nov. 19 and 20, 1969, on the lunar surface. While astronauts Conrad and Bean conduct their scheduled EVA on the moon's surface, astronaut Richard F. Gordon Jr., command module pilot, will man the Command and Service Modules (CSM) in lunar orbit.
Detecting Water Bodies in LANDSAT8 Oli Image Using Deep Learning
NASA Astrophysics Data System (ADS)
Jiang, W.; He, G.; Long, T.; Ni, Y.
2018-04-01
Water body identifying is critical to climate change, water resources, ecosystem service and hydrological cycle. Multi-layer perceptron(MLP) is the popular and classic method under deep learning framework to detect target and classify image. Therefore, this study adopts this method to identify the water body of Landsat8. To compare the performance of classification, the maximum likelihood and water index are employed for each study area. The classification results are evaluated from accuracy indices and local comparison. Evaluation result shows that multi-layer perceptron(MLP) can achieve better performance than the other two methods. Moreover, the thin water also can be clearly identified by the multi-layer perceptron. The proposed method has the application potential in mapping global scale surface water with multi-source medium-high resolution satellite data.
NASA Astrophysics Data System (ADS)
Schwadron, Nathan A.; Cooper, John F.; Desai, Mihir; Downs, Cooper; Gorby, Matt; Jordan, Andrew P.; Joyce, Colin J.; Kozarev, Kamen; Linker, Jon A.; Mikíc, Zoran; Riley, Pete; Spence, Harlan E.; Török, Tibor; Townsend, Lawrence W.; Wilson, Jody K.; Zeitlin, Cary
2017-11-01
Particle radiation has significant effects for astronauts, satellites and planetary bodies throughout the Solar System. Acute space radiation hazards pose risks to human and robotic exploration. This radiation also naturally weathers the exposed surface regolith of the Moon, the two moons of Mars, and other airless bodies, and contributes to chemical evolution of planetary atmospheres at Earth, Mars, Venus, Titan, and Pluto. We provide a select review of recent areas of research covering the origin of SEPs from coronal mass ejections low in the corona, propagation of events through the solar system during the anomalously weak solar cycle 24 and important examples of radiation interactions for Earth, other planets and airless bodies such as the Moon.
Patterned structures of graphene and graphitic carbon and methods for their manufacture
Polsky, Ronen; Xiao, Xiaoyin; Burckel, David Bruce; Wheeler, David R.; Brozik, Susan M.; Beechem, Thomas Edwin
2017-01-03
A patterned graphene or graphitic body is produced by providing a three-dimensionally patterned carbonaceous body; coating the body with a catalytic metal whereby is formed a coating having an inner surface proximal the body and an outer surface distal the body; and annealing the coated body under time and temperature conditions effective to form a graphene or graphitic layer on the outer surface of the catalytic metal coating.
Patterned structures of graphene and graphitic carbon and methods for their manufacture
DOE Office of Scientific and Technical Information (OSTI.GOV)
Polsky, Ronen; Xiao, Xiaoyin; Burckel, David Bruce
A patterned graphene or graphitic body is produced by providing a three-dimensionally patterned carbonaceous body; coating the body with a catalytic metal whereby is formed a coating having an inner surface proximal the body and an outer surface distal the body; and annealing the coated body under time and temperature conditions effective to form a graphene or graphitic layer on the outer surface of the catalytic metal coating.
Study of the wide area of a lake with remote sensing
NASA Astrophysics Data System (ADS)
Lazaridou, Maria A.; Karagianni, Aikaterini C.
2016-08-01
Water bodies are particularly important for environment and development issues. Their study requires multiple information. Remote sensing has been proven useful in the above study. This paper concerns the wide area of Lake Orestiada in the region of Western Macedonia in Greece. The area is of particular interest because Lake Orestiada is included in the Natura 2000 network and is surrounded by diverse landcovers as built up areas and agricultural land. Multispectral and thermal Landsat 5 satellite images of two time periods are being used. Their processing is being done by Erdas Imagine software. The general physiognomy of the area and the lake shore are examined after image enhancement techniques and image interpretation. Directions of the study concern geomorphological aspects, land covers, estimation of surface temperature as well as changes through time.
Casualty Estimation for Nuclear and Radiological Weapons
2016-06-01
usually defined as energy deposited (joule) per unit of mass (kilogram). See gray and rad. Acute Radiation Syndrome (ARS): ARS is a serious illness...I-2 ARS Acute Radiation Syndrome BSA body surface area CBRN chemical, biological, radiological, and nuclear CONV convalescent CUT cutaneous DOW...include acute effects, which may result from internal or external radiation exposure. The severity of these effects is directly related to the dosage
NASA Astrophysics Data System (ADS)
Unsworth, M. J.; Cordell, D. R.; Diaz, D.; Reyes, V.
2016-12-01
Geodetic data has shown that the surface around the Laguna del Maule volcanic field in central Chile has been moving upwards at rates in excess of 19 cm/yr since 2007 over a 200 km2 area. It has been hypothesized that this ground deformation is due to the inflation of a magma body beneath the lake. InSAR deformation modeling and gravity inversion suggest that the depth to the magma body is between 3 km b.s.l. and 0 km (at sea level). This magma body is a likely source for the large number of rhyolitic eruptions at this location over the last 25 ka. A dense broadband magnetotelluric (MT) array was collected from 2009 to 2015 and inverted using the ModEM inversion algorithm to produce a three-dimensional electrical resistivity model. The presence of a large surface conductor (<0.5 Ωm; 2.3 km a.s.l.) spatially coincident with the lake bed has the potential to attenuate signal and decrease resolution beneath the area of inflation. Additional broadband MT data were collected in 2016 and this new data suggest there is a mid-depth, weakly conductive feature (5 Ωm; 1 km b.s.l.) coincident with the area of maximum inflation which is resolvable despite the low-resistivity surface layer. There are many conductive features which lie on the perimeter of the zone of inflation including a large low-resistivity zone (<5 Ωm) at 5 km depth (3 km b.s.l.) north-west of the lake and a large low-resistivity zone (<10 Ωm) at 5 km depth (3 km b.s.l) north of the lake. The complex, three-dimensional model structure is supported by phase tensor analysis showing poorly-defined strike and high beta skew values (>3) at periods >2 s. The conductive features identified could be interpreted as either hydrothermal systems or magma and further analysis will contribute to better understanding this dynamic system.
Ahmed, Golam; Miah, M Arzu; Anawar, Hossain M; Chowdhury, Didarul A; Ahmad, Jasim U
2012-07-01
Industrial wastewater discharged into aquatic ecosystems either directly or because of inadequate treatment of process water can increase the concentrations of pollutants such as toxic metals and others, and subsequently deteriorate water quality, environmental ecology and human health in the Dhaka Export Processing Zone (DEPZ), the largest industrial belt of 6-EPZ in Bangladesh. Therefore, in order to monitor the contamination levels, this study collected water samples from composite effluent points inside DEPZ and the surrounding surface water body connected to effluent disposal sites and determined the environmental hazards by chemical analysis and statistical approach. The water samples were analysed by inductively coupled plasma mass spectrometry to determine 12 trace metals such as As, Ag, Cr, Co, Cu, Li, Ni, Pb, Se, Sr, V and Zn in order to assess the influence of multi-industrial activities on metal concentrations. The composite effluents and surface waters from lagoons were characterized by a strong colour and high concentrations of biochemical oxygen demand, chemical oxygen demand, electrical conductivity, pH, total alkalinity, total hardness, total organic carbon, Turb., Cl(-), total suspended solids and total dissolved solids, which were above the limit of Bangladesh industrial effluent standards, but dissolved oxygen concentration was lower than the standard value. The measurement of skewness and kurtosis values showed asymmetric and abnormal distribution of the elements in the respective phases. The mean trend of variation was found in a decreasing order: Zn > Cu > Sr > Pb > Ni > Cr > Li > Co > V > Se > As > Ag in composite industrial effluents and Zn > Cu > Sr > Pb > Ni > Cr > Li > V > As > Ag > Co > Se in surface waters near the DEPZ. The strong correlations between effluent and surface water metal contents indicate that industrial wastewaters discharged from DEPZ have a strong influence on the contamination of the surrounding water bodies by toxic metals. The average contamination factors were reported to be 0.70-96.57 and 2.85-1,462 for industrial effluents and surface waters, respectively. The results reveal that the surface water in the area is highly contaminated with very high concentrations of some heavy/toxic metals like Zn, Pb, Cu, Ni and Cr; their average contamination factors are 1,460, 860, 136, 74.71 and 4.9, respectively. The concentrations of the metals in effluent and surface water were much higher than the permissible limits for drinking water and the world average concentrations in surface water. Therefore, the discharged effluent and surface water may create health hazards especially for people working and living inside and in the surrounding area of DEPZ.
NASA Astrophysics Data System (ADS)
Slinski, K.; Hogue, T. S.; McCray, J. E.
2017-12-01
Drought in semi-arid areas can have substantial impact on ephemeral and small water bodies, which provide critical ecological habitat and have important socio-economic value. This is particularly true in the pastoral areas of East Africa, where these ecosystems provide local communities with water for human and animal consumption and pasture for livestock. However, monitoring the impact of drought on ephemeral and small water bodies in East Africa is challenging because of sparse in situ observational systems. Satellite remote sensing observations have been shown to be a viable option for monitoring surface water change in data-poor regions. Landsat data is widely used to detect open water, but the use of Landsat data in small waterbody studies is limited by its 30-meter spatial resolution. New remote sensing-based tools are necessary to better understand the vulnerability of ephemeral and small waterbodies in semi-arid areas to drought and to monitor drought impacts. This study combines Landsat and Sentinel 1 SAR observations to create a series of monthly waterbody maps over the Awash River basin in Ethiopia depicting the change in surface water from October 2014 to March 2017. The study time period corresponds with a major drought event in the area. Waterbody maps were generated using a 10-meter resolution and utilized to monitor drought impacts on ephemeral and small waterbodies in the Awash River basin over the course of the drought event. Initial results show that surface waterbodies in the lower catchments of the Awash basin were more severely impacted by the drought event than the upper catchments. It is anticipated that the new information provided by this tool will inform decisions affecting the water, energy, agriculture and other sectors in East Africa reliant on water resources, enabling water authorities to better manage future drought events.
The Benefits of Using Dense Temperature Sensor Networks to Monitor Urban Warming
NASA Astrophysics Data System (ADS)
Twine, T. E.; Snyder, P. K.; Kucharik, C. J.; Schatz, J.
2015-12-01
Urban heat islands (UHIs) occur when urban and suburban areas experience temperatures that are elevated relative to their rural surroundings because of differences in the fraction of gray and green infrastructure. Studies have shown that communities most at risk for impacts from climate-related disasters (i.e., lower median incomes, higher poverty, lower education, and minorities) tend to live in the hottest areas of cities. Development of adequate climate adaptation tools for cities relies on knowledge of how temperature varies across space and time. Traditionally, a city's urban heat island has been quantified using near-surface air temperature measurements from a few sites. This methodology assumes (1) that the UHI can be characterized by the difference in air temperature from a small number of points, and (2) that these few points represent the urban and rural signatures of the region. This methodology ignores the rich information that could be gained from measurements across the urban to rural transect. This transect could traverse elevations, water bodies, vegetation fraction, and other land surface properties. Two temperature sensor networks were designed and implemented in the Minneapolis-Saint Paul, MN and Madison, WI metropolitan areas beginning in 2011 and 2012, respectively. Both networks use the same model sensor and record temperature every 15 minutes from ~150 sensors. Data from each network has produced new knowledge of how temperature varies diurnally and seasonally across the cities and how the UHI magnitude is influenced by weather phenomena (e.g., wind, snow cover, heat waves) and land surface characteristics such as proximity to inland lakes. However, the two metropolitan areas differ in size, population, structure, and orientation to water bodies. In addition, the sensor networks were established in very different manners. We describe these differences and present lessons learned from the design and ongoing efforts of these two dense networks located in the Midwest USA.
Industrial and biomedical use of aerospace personal cooling garments
NASA Technical Reports Server (NTRS)
Williams, B. A.; Mcewen, G. N., Jr.; Montgomery, L. D.; Elkins, W. E.
1975-01-01
Liquid-cooled garments (LCG) have been developed which utilize liquid-cooled modules rather than the network of tygon tubing typical of Apollo LCG's. The ultra-thin, heat-sealed, polyurethane modules are situated over the body to cover 50 percent of the body surface area with special emphasis on the 'working' muscles and the head-neck area. These garments are being designed specifically for industrial and biomedical uses, such as: a head-neck cooling system which is being tested for race-car drivers, tractor drivers, truck drivers, or a head-neck cooling system tested for the reduction of the scalp hair loss which normally accompanies cancer treatments. A combined head-neck and thorax unit is being developed for use during mine distaster rescue operations, and for other hazardous hot applications. Finally applications for head-neck and partitional cooling are anticipated for military pilots, tank drivers, and heavy equipment operations.
Perry, Jonathan M G; Cooke, Siobhán B; Runestad Connour, Jacqueline A; Burgess, M Loring; Ruff, Christopher B
2018-02-01
Body mass is an important component of any paleobiological reconstruction. Reliable skeletal dimensions for making estimates are desirable but extant primate reference samples with known body masses are rare. We estimated body mass in a sample of extinct platyrrhines and Fayum anthropoids based on four measurements of the articular surfaces of the humerus and femur. Estimates were based on a large extant reference sample of wild-collected individuals with associated body masses, including previously published and new data from extant platyrrhines, cercopithecoids, and hominoids. In general, scaling of joint dimensions is positively allometric relative to expectations of geometric isometry, but negatively allometric relative to expectations of maintaining equivalent joint surface areas. Body mass prediction equations based on articular breadths are reasonably precise, with %SEEs of 17-25%. The breadth of the distal femoral articulation yields the most reliable estimates of body mass because it scales similarly in all major anthropoid taxa. Other joints scale differently in different taxa; therefore, locomotor style and phylogenetic affinity must be considered when calculating body mass estimates from the proximal femur, proximal humerus, and distal humerus. The body mass prediction equations were applied to 36 Old World and New World fossil anthropoid specimens representing 11 taxa, plus two Haitian specimens of uncertain taxonomic affinity. Among the extinct platyrrhines studied, only Cebupithecia is similar to large, extant platyrrhines in having large humeral (especially distal) joints. Our body mass estimates differ from each other and from published estimates based on teeth in ways that reflect known differences in relative sizes of the joints and teeth. We prefer body mass estimators that are biomechanically linked to weight-bearing, and especially those that are relatively insensitive to differences in locomotor style and phylogenetic history. Whenever possible, extant reference samples should be chosen to match target fossils in joint proportionality. Copyright © 2017 Elsevier Ltd. All rights reserved.
Seebaluck, Sh; Babaev, M V; Kondrashev, A V
2003-01-01
The objective of this study was to analyze echocardiographic parameters in 143 healthy individuals aged 18-21 years with different somatotypes. The evaluation of somatotype was performed using the the method of R.N. Dorokhov and V.G. Petrukhin (1989). During the echocardiography, left ventricular wall thickness, internal diameter and myocardial mass were measured. The investigation showed marked sex- and somatotype-related differences in left ventricular parameters. The correlations between the studied left ventricular parameters and body mass, length and surface area were demonstrated. The optimal method of the indexation of left ventricular myocardial mass as related to (body length)3, is described.
[Study on sweat gland regeneration induced by microenvironment of three-dimensional bioprinting].
Yao, B; Xie, J F; Huang, S; Fu, X B
2017-01-20
Sweat glands are abundant in the body surface and essential for thermoregulation. Sweat glands fail to conduct self-repair in patients with large area of burn and trauma, and the body temperature of patients increases in hot climate, which may cause shock or even death. Now, co-culture system, reprogramming, and tissue engineering have made progresses in inducing sweat gland regeneration, but the inductive efficiency and duration need to be improved. Cellular microenvironment can regulate cell biological behavior, including cell migration and cell differentiation. This article reviews the studies of establishment of microenvironment in vitro by three-dimensional bioprinting technology to induce sweat gland regeneration.
The flow around circular cylinders partially coated with porous media
NASA Astrophysics Data System (ADS)
Ruck, Bodo; Klausmann, Katharina; Wacker, Tobias
2012-05-01
There are indications that the flow resistance of bodies can be reduced by a porous coating or porous sheath. A few numerical investigations exists in this field, however, experimental evidence is lacking. In order to investigate this phenomenon, the drag resistance of cylinders with porous coating has been investigated qualitatively and quantitatively in wind tunnel experiments. The Reynolds number was systematically varied in the range from 104 to 1.3*105. The results show that the boundary layer over the porous surface is turbulent right from the beginning and thickens faster because of the possible vertical momentum exchange at the interface. The region of flow detachment is widened resulting in a broader area with almost vanishing low flow velocities. All in all, the measurements show that a full porous coating of the cylinders increase the flow resistance. However, the measurements show that a partial coating only on the leeward side can decrease the flow resistance of the body. This effect seems due to the fact that the recirculating velocity and the underpressure in the wake is reduced significantly through a leeward porous coating. Thus, combining a smooth non-permeable windward side with a porous-coated leeward side can lead to a reduction of the body's flow resistance. These findings can be applied advantageously in many technical areas, such as energy saving of moving bodies (cars/trains/planes) or in reducing fluid loads on submersed bodies.
Childhood Body Size and the Risk of Malignant Melanoma in Adulthood
Meyle, Kathrine D.; Gamborg, Michael; Sørensen, Thorkild I. A.; Baker, Jennifer L.
2017-01-01
Abstract Malignant melanoma (MM) is the most aggressive form of skin cancer. Adult anthropometry influences MM development; however, associations between childhood body size and future melanomagenesis are largely unknown. We investigated whether height, body mass index (BMI; weight (kg)/height (m)2), and body surface area (BSA) at ages 7–13 years and birth weight are associated with adult MM. Data from the Copenhagen School Health Records Register, containing annual height and weight measurements of 372,636 Danish children born in 1930–1989, were linked with the Danish Cancer Registry. Cox regression analyses were performed. During follow-up, 2,329 MM cases occurred. Height at ages 7–13 years was significantly associated with MM, even after BMI and BSA adjustments. No significant BMI-MM or BSA-MM associations were detected when adjusting for height. Children who were persistently tall at both age 7 years and age 13 years had a significantly increased MM risk compared with children who grew taller between those ages. Birth weight was positively associated with MM. We conclude that associations between body size and MM originate early in life and are driven largely by height and birth weight, without any comparable influence of BMI or BSA. Melanoma transformation is unlikely to be due to height per se; however, height-regulating processes in childhood present new areas for mechanistic explorations of this disease. PMID:28369155
Daytime Water Detection Based on Color Variation
NASA Technical Reports Server (NTRS)
Rankin, Arturo L.; Matthies, Larry H.
2010-01-01
Robust water detection is a critical perception requirement for unmanned ground vehicle (UGV) autonomous navigation. This is particularly true in wide open areas where water can collect in naturally occurring terrain depressions during periods of heavy precipitation and form large water bodies (such as ponds). At far range, reflections of the sky provide a strong cue for water. But at close range, the color coming out of a water body dominates sky reflections and the water cue from sky reflections is of marginal use. We model this behavior by using water body intensity data from multiple frames of RGB imagery to estimate the total reflection coefficient contribution from surface reflections and the combination of all other factors. Then we describe an algorithm that uses one of the color cameras in a forward- looking, UGV-mounted stereo-vision perception system to detect water bodies in wide open areas. This detector exploits the knowledge that the change in saturation-to-brightness ratio across a water body from the leading to trailing edge is uniform and distinct from other terrain types. In test sequences approaching a pond under clear, overcast, and cloudy sky conditions, the true positive and false negative water detection rates were (95.76%, 96.71%, 98.77%) and (0.45%, 0.60%, 0.62%), respectively. This software has been integrated on an experimental unmanned vehicle and field tested at Ft. Indiantown Gap, PA.
Extending the potential of evaporative cooling for heat-stress relief.
Berman, A
2006-10-01
Factors were analyzed that limit the range of environmental conditions in which stress from heat may be relieved by evaporative cooling in shaded animals. Evaporative cooling reduces air temperature (Ta), but increases humidity. Equations were developed to predict Ta reduction as a function of ambient temperature and humidity and of humidity in cooled air. Predictions indicated that a reduction of Ta becomes marginal at humidities beyond 45%. A reduction of Ta lessens with rising ambient Ta. The impact of increasing humidity on respiratory heat loss (Hre) was estimated from existing data published on Holstein cattle. Respiratory heat loss is reduced by increased humidity up to 45%, but is not affected by higher humidity. Skin evaporative and sensible heat losses are determined not only by the humidity and temperature gradient, but also by air velocity close to the body surface. At higher Ta, the reduction in sensible heat loss is compensated for by an increased demand for Hre. High Hre may become a stressor when panting interferes with resting and rumination. Effects of temperature, humidity, air velocity, and body surface exposure to free air on Hre were estimated by a thermal balance model for lactating Holstein cows yielding 35 kg/d. The predictions of the simulations were supported by respiratory rate observations. The Hre was assumed to act as a stressor when exceeding 50% of the maximal capacity. When the full body surface was exposed to a 1.5 m/s air velocity, humidity (15 to 75%) had no significant predicted effect on Hre. For an air velocity of 0.3 m/s, Hre at 50% of the maximum rate was predicted at 34, 32.5, and 31.5 degrees C for relative humidities of 55, 65, and 75%, respectively. Similar results were predicted for an animal with two-thirds of its body surface exposed to 1.5 m/s air velocity. If air velocity was reduced for such animals to 0.3 m/s, the rise in Hre was expected to occur at approximately 25 degrees C and 50% relative humidity. Maximal rates of Hre were estimated at 27 to 30 degrees C when ambient humidity was 55% relative humidity and higher. High humidity may stress animals in evaporative cooling systems. Humidity stress may be prevented by a higher air velocity on the body surface of the animal, particularly in sheltered areas in which the exposed body surface is reduced, such as mangers and stalls. This may extend the use of evaporative cooling to less dry environments.
Divergent Geophysical Evolution of Vesta and Ceres
NASA Astrophysics Data System (ADS)
Raymond, C. A.; Ermakov, A.; Castillo, J. C.; Fu, R. R.; McSween, H. Y., Jr.; McCord, T. B.; Park, R. S.; Russell, C. T.; De Sanctis, M. C.; Jaumann, R.; Konopliv, A. S.
2017-12-01
The Dawn mission explored two massive protoplanets in the main asteroid belt, Vesta and Ceres, that are fossils from the earliest epoch of solar system formation. Dawn's data provide evidence that these bodies formed very early, within the first few million years after CAIs, yet they followed divergent evolutionary paths. Vesta formed <1.5 Myr after CAIs of volatile-depleted chondritic material. Dawn confirmed the HED-based prediction that Vesta melted, forming at least a partial magma ocean, that yielded a large iron core. Gravity and spectral data support a complex magmatic evolution, resulting in a compositionally stratified mantle, with olivine sequestered in the deep mantle, and eruption of evolved melts. Such complexity can explain the apparent distinct magmatic reservoirs implied by trace elements in the HED clan. Discovery of hydrated material on Vesta's surface implies that volatile delivery to the inner solar system was an important process. Thus, while the basic HED paradigm was confirmed, we learned that differentiation on a small planet is more complex than envisioned. Dwarf planet Ceres was known to be water-rich before Dawn arrived. However, contrary to the expected ice-rich, viscously-relaxed smooth surface resulting from physical differentiation and freezing of an ancient subsurface ocean, its surface has many craters, implying a mechanically strong thick crust. The lack of large craters and Ceres' gravitationally-relaxed shape at long wavelengths implies that a strong crust overlies a weaker deep interior. The globally homogeneous distribution of minerals across the surface indicates that Ceres' interior experienced pervasive alteration. Topography and morphology of the surface reveals smoother, apparently resurfaced areas, generally at lower elevation, and rougher areas with greater relief. Local morphology such as crater floor deposits, isolated mountains, and enigmatic bright areas indicate recently active processes on Ceres, likely driven by brine cryovolcanism. Causes of the divergent evolution of these bodies include their accretionary environment, timing of accretion and size. Acknowledgements: Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract to the National Aeronautics and Space Administration.
Bloecker, Katja; Englund, Martin; Wirth, Wolfgang; Hudelmaier, Martin; Burgkart, Rainer; Frobell, Richard B; Eckstein, Felix
2011-10-28
Meniscus extrusion or hypertrophy may occur in knee osteoarthritis (OA). However, currently no data are available on the position and size of the meniscus in asymptomatic men and women with normal meniscus integrity. Three-dimensional coronal DESSwe MRIs were used to segment and quantitatively measure the size and position of the medial and lateral menisci, and their correlation with sex, height, weight, and tibial plateau area. 102 knees (40 male and 62 female) were drawn from the Osteoarthritis Initiative "non-exposed" reference cohort, including subjects without symptoms, radiographic signs, or risk factors for knee OA. Knees with MRI signs of meniscus lesions were excluded. The tibial plateau area was significantly larger (p < 0.001) in male knees than in female ones (+23% medially; +28% laterally), as was total meniscus surface area (p < 0.001, +20% medially; +26% laterally). Ipsi-compartimental tibial plateau area was more strongly correlated with total meniscus surface area in men (r = .72 medially; r = .62 laterally) and women (r = .67; r = .75) than contra-compartimental or total tibial plateau area, body height or weight. The ratio of meniscus versus tibial plateau area was similar between men and women (p = 0.22 medially; p = 0.72 laterally). Tibial coverage by the meniscus was similar between men and women (50% medially; 58% laterally), but "physiological" medial meniscal extrusion was greater in women (1.83 ± 1.06mm) than in men (1.24mm ± 1.18mm; p = 0.011). These data suggest that meniscus surface area strongly scales with (ipsilateral) tibial plateau area across both sexes, and that tibial coverage by the meniscus is similar between men and women.
2011-01-01
Background Meniscus extrusion or hypertrophy may occur in knee osteoarthritis (OA). However, currently no data are available on the position and size of the meniscus in asymptomatic men and women with normal meniscus integrity. Methods Three-dimensional coronal DESSwe MRIs were used to segment and quantitatively measure the size and position of the medial and lateral menisci, and their correlation with sex, height, weight, and tibial plateau area. 102 knees (40 male and 62 female) were drawn from the Osteoarthritis Initiative "non-exposed" reference cohort, including subjects without symptoms, radiographic signs, or risk factors for knee OA. Knees with MRI signs of meniscus lesions were excluded. Results The tibial plateau area was significantly larger (p < 0.001) in male knees than in female ones (+23% medially; +28% laterally), as was total meniscus surface area (p < 0.001, +20% medially; +26% laterally). Ipsi-compartimental tibial plateau area was more strongly correlated with total meniscus surface area in men (r = .72 medially; r = .62 laterally) and women (r = .67; r = .75) than contra-compartimental or total tibial plateau area, body height or weight. The ratio of meniscus versus tibial plateau area was similar between men and women (p = 0.22 medially; p = 0.72 laterally). Tibial coverage by the meniscus was similar between men and women (50% medially; 58% laterally), but "physiological" medial meniscal extrusion was greater in women (1.83 ± 1.06mm) than in men (1.24mm ± 1.18mm; p = 0.011). Conclusions These data suggest that meniscus surface area strongly scales with (ipsilateral) tibial plateau area across both sexes, and that tibial coverage by the meniscus is similar between men and women. PMID:22035074
Renzi, Ronald F.
2005-11-22
A microvalve for extracting small volume samples into analytical devices, e.g., high pressure liquid chromatography (HPLC) column, includes: a first body having a first interior surface and two or more outlet ports at the first interior surface that are in fluid communication with two or more first channels; a second body having a second interior surface and two or more inlet ports at the second interior surface that are in fluid communication with two or more second channels wherein the outlet ports of the first body are coaxial with the corresponding inlet ports of the second body such that there are at least two sets of coaxial port outlets and port inlets; a plate member, which has a substantially planar first mating surface and a substantially planar second mating surface, that is slidably positioned between the first interior surface and the second interior surface wherein the plate member has at least one aperture that traverses the height of the plate member, and wherein the aperture can be positioned to be coaxial with any of the at least two sets of coaxial port outlets and port inlets; and means for securing the first surface of the first body against the first mating surface and for securing the second surface of the second body against the second mating surface.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bounoua, Lahouari; Kahime, Kholoud; Houti, Leila
Shifts in surface climate may have changed the dynamic of zoonotic cutaneous leishmaniasis (ZCL) in the pre-Saharan zones of North Africa. Caused by Leishmania major, this form multiplies in the body of rodents serving as reservoirs of the disease. The parasite is then transmitted to human hosts by the bite of a Phlebotomine sand fly (Diptera: Psychodidae) that was previously fed by biting an infected reservoir. We examine the seasonal and interannual dynamics of the incidence of this ZCL as a function of surface climate indicators in two regions covering a large area of the semi-arid Pre-Saharan North Africa. Resultsmore » suggest that in this area, changes in climate may have initiated a trophic cascade that resulted in an increase in ZCL incidence.« less
A Compact Instrument for Remote Raman and Fluorescence Measurements to a Radial Distance of 100 m
NASA Technical Reports Server (NTRS)
Sharma, S. K.; Misra, A. K.; Lucey, P. g.; McKay, C. P.
2005-01-01
Compact remote spectroscopic instruments that could provide detailed information about mineralogy, organic and biomaterials on a planetary surface over a relatively large area are desirable for NASA s planetary exploration program. Ability to explore a large area on the planetary surfaces as well as in impact craters from a fixed location of a rover or lander will enhance the probability of selecting target rocks of high scientific contents as well as desirable sites in search of organic compounds and biomarkers on Mars and other planetary bodies. We have developed a combined remote inelastic scattering (Raman) and laser-induced fluorescence emission (LIFE) compact instrument capable of providing accurate information about minerals, organic and biogenic materials to a radial distance of 100 m. Here we present the Raman and LIFE (R-LIFE) data set.
STS-57 Earth observation of King Sound in northwest Australia
NASA Technical Reports Server (NTRS)
1993-01-01
STS-57 Earth observation taken aboard Endeavour, Orbiter Vehicle (OV) 105, is of King Sound in northwest Australia. Roebuck Bay with the city of Broom on its northern shore is south of King Sound. Sediment in the sound is deposited by the Fitzroy River, which is the major body draining the Kimberley Plateau about 200 miles to the west. The extent of the tidal flats around the Sound is indicated by the large white areas covered with a salty residue. According to NASA scientists studying the STS-57 Earth photos, northwest wind gusts are ruffling areas of the water's surface at the mouth of King Sound and in neighboring Collier Bay. Therefore the water is less reflective and dark. The higher reflectance on the brightest areas is caused by biological oils floating on the surface and reducing the capillary wave action. The scientists point out that the oils take the forms of the currents and eddies in the picture. These eddies indicate that the water offshore is moving at a different speed
Advanced analysis of complex seismic waveforms to characterize the subsurface Earth structure
NASA Astrophysics Data System (ADS)
Jia, Tianxia
2011-12-01
This thesis includes three major parts, (1) Body wave analysis of mantle structure under the Calabria slab, (2) Spatial Average Coherency (SPAC) analysis of microtremor to characterize the subsurface structure in urban areas, and (3) Surface wave dispersion inversion for shear wave velocity structure. Although these three projects apply different techniques and investigate different parts of the Earth, their aims are the same, which is to better understand and characterize the subsurface Earth structure by analyzing complex seismic waveforms that are recorded on the Earth surface. My first project is body wave analysis of mantle structure under the Calabria slab. Its aim is to better understand the subduction structure of the Calabria slab by analyzing seismograms generated by natural earthquakes. The rollback and subduction of the Calabrian Arc beneath the southern Tyrrhenian Sea is a case study of slab morphology and slab-mantle interactions at short spatial scale. I analyzed the seismograms traversing the Calabrian slab and upper mantle wedge under the southern Tyrrhenian Sea through body wave dispersion, scattering and attenuation, which are recorded during the PASSCAL CAT/SCAN experiment. Compressional body waves exhibit dispersion correlating with slab paths, which is high-frequency components arrivals being delayed relative to low-frequency components. Body wave scattering and attenuation are also spatially correlated with slab paths. I used this correlation to estimate the positions of slab boundaries, and further suggested that the observed spatial variation in near-slab attenuation could be ascribed to mantle flow patterns around the slab. My second project is Spatial Average Coherency (SPAC) analysis of microtremors for subsurface structure characterization. Shear-wave velocity (Vs) information in soil and rock has been recognized as a critical parameter for site-specific ground motion prediction study, which is highly necessary for urban areas located in seismic active zones. SPAC analysis of microtremors provides an efficient way to estimate Vs structure. Compared with other Vs estimating methods, SPAC is noninvasive and does not require any active sources, and therefore, it is especially useful in big cities. I applied SPAC method in two urban areas. The first is the historic city, Charleston, South Carolina, where high levels of seismic hazard lead to great public concern. Accurate Vs information, therefore, is critical for seismic site classification and site response studies. The second SPAC study is in Manhattan, New York City, where depths of high velocity contrast and soil-to-bedrock are different along the island. The two experiments show that Vs structure could be estimated with good accuracy using SPAC method compared with borehole and other techniques. SPAC is proved to be an effective technique for Vs estimation in urban areas. One important issue in seismology is the inversion of subsurface structures from surface recordings of seismograms. My third project focuses on solving this complex geophysical inverse problems, specifically, surface wave phase velocity dispersion curve inversion for shear wave velocity. In addition to standard linear inversion, I developed advanced inversion techniques including joint inversion using borehole data as constrains, nonlinear inversion using Monte Carlo, and Simulated Annealing algorithms. One innovative way of solving the inverse problem is to make inference from the ensemble of all acceptable models. The statistical features of the ensemble provide a better way to characterize the Earth model.
Fernandes, Marisa Narciso; da Cruz, André Luis; da Costa, Oscar Tadeu Ferreira; Perry, Steven Franklin
2012-09-01
The gills and the respiratory swim bladders of juvenile specimens (mean body mass 100g) of the basal teleost Arapaima gigas (Cuvier 1829) were evaluated using stereological methods in vertical sections. The surface areas, harmonic mean barrier thicknesses and morphometric diffusing capacities for oxygen and carbon dioxide were estimated. The average respiratory surface area of the swim bladder (2173 cm² kg⁻¹) exceeded that of the gills (780 cm² kg⁻¹) by a factor of 2.79. Due to the extremely thin air-blood barrier in the swim bladder (harmonic mean 0.22 μm) and the much thicker water-blood barrier of the gills (9.61 μm), the morphometric diffusing capacity for oxygen and carbon dioxide was 88 times greater in the swim bladder than in the gills. These data clearly indicate the importance of the swim bladder, even in juvenile A. gigas that still engage in aquatic respiration. Because of the much greater diffusion constant of CO₂ than O₂ in water, the gills also remain important for CO₂ release. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Guo, Zhen; Wang, Kai; Yang, Yingjie; Tang, Youcai; John Chen, Y.; Hung, Shu-Huei
2018-03-01
We present a 3-D model of NE China by joint inversion of body and surface waves. The joint inversion significantly improves the resolution at shallow depths compared with body wave tomography alone and provides seismic evidence for the origin of Quaternary volcanism in NE China. Our model reveals that the mantle upwelling beneath the Changbaishan volcano originates from the transition zone and extends up to 60 km, and spreads at the base of the lithosphere with the upwelling head 5 times wider than the raising tail in the lower upper mantle. However, low velocities beneath the Halaha and Abaga volcanoes in the Xingmeng belt are confined to depths shallower than 150 km, suggesting that magmatism in the Xingmeng belt is more likely caused by localized asthenospheric upwelling at shallow depths rather than from the common deep source. A small-scale sublithospheric mantle convection may control the spatial and temporal distribution of Quaternary magmatism in NE China; that is, the upwelling beneath the Changbaishan volcano triggers the downwelling beneath the southern Songliao basin, where the high velocity imaged extends to 300 km. The downwelling may further induce localized upwelling in the surrounding areas, such as the Halaha and Abaga volcanoes. Thanks to the joint constraints from both surface and body waves, we can estimate the dimension of the convection cell. The convection cell is located between 42°N and 45°N, spreads around 500 km in the W-E direction measured from the distance between centers of downwelling and upwelling, and extends to 300 km vertically.
Heat removal using microclimate foot cooling: a thermal foot manikin study.
Castellani, John W; Demes, Robert; Endrusick, Thomas L; Cheuvront, Samuel N; Montain, Scott J
2014-04-01
It has been proposed that microclimate cooling systems exploit the peripheral extremities because of more efficient heat transfer. The purpose of this study was to quantify, using a patented microclimate cooling technique, the heat transfer from the plantar surface of the foot for comparison to other commonly cooled body regions. A military boot was fitted with an insole embedded with a coiled, 1.27 m length of hollow tubing terminating in inlet and outlet valves. A thermal foot manikin with a surface temperature of 34 degrees C was placed in the boot and the valves were connected to a system that circulated water through the insole at a temperature of 20 degrees C and flow rate of 120 ml x min(-1). The manikin foot served as a constant heat source to determine heat transfer provided by the insole. Testing was done with the foot model dry and sweating at a rate of 500 ml x h(- 1) x m(-2). Climatic chamber conditions were 30 degrees C with 30% RH. Heat loss was approximately 4.1 +/- 0.1 and approximately 7.7 +/- 0.3 W from the dry and sweating foot models, respectively. On a relative scale, the heat loss was 3.0 W and 5.5 W per 1% (unit) body surface area, respectively, for the dry and sweating conditions. The relative heat loss afforded by plantar foot cooling was similar compared to other body regions, but the absolute amount of heat removal is unlikely to make an impact on whole body heat balance.
NASA Astrophysics Data System (ADS)
Schmedemann, N.; Neukum, G.; Denk, T.; Wagner, R.; Hartmann, O.
2009-04-01
The examination of the geologic history of the saturnian satellites is a major goal of the Cassini imaging experiment (ISS) [5]. The study of the impact crater-SFD is necessary to derive ages of the saturnian satellite surface units. Furthermore it can be used for resolving the main impactor source and the impactor orbital characteristics for understanding the nature of the bombardment. While large and old areas are suited to measure the branch of large crater sizes, smaller craters can be found in a state of production only at relatively young areas on the saturnian satellites. The impact-crater SFD is derived only from such crater populations which are in production. Hence the measurement of the whole production function in one specific area is impossible. Therefore we have to measure it piece-wise in crater size range in a number of suitable areas. On Iapetus the production function has been measured in seven crater size range pieces, covering a crater size range from 0.15 km to 700 km. At the same crater size, these areas have somewhat different crater frequencies, since they are of different ages. The crater frequency differences of the respective pieces to each other have to be taken out, in order to obtain continuous curves. We have achieved that by normalizing the frequencies measured on the older surface units at the respective smallest crater sizes to the tail ends of the crater frequencies for the largest craters on the younger surface units. The resulting continuous curves give us a reliable production SFD over the whole accessible range. Doing so, we assumed that the production SFD has not changed over time in the parts of the SFD not directly accessible by measurement. Hence the resulting SFD curve is a consequence of a compilation of measurements taken in different areas. Intensive analyses of the crater diameter SFD of the lunar surface have revealed a characteristic W-shaped curve, when it is R-plotted. Crater counting on other planetary surfaces such as Mercury, Venus, Mars, Gaspra, Callisto, Ganymede and Mimas have revealed similarly shaped crater diameter SFDs e.g. [4]. While those SFD curves are equally shaped, the whole curves with their characteristic W-shapes appear to be shifted along the diameter axis. Most likely, this shift is primarily the result of different impact velocities. Other factors of scaling relationships between crater diameter and projectile diameter such as density and gravity on different target bodies are of secondary importance. The measurements of the crater diameter SFD on the saturnian satellites Tethys, Dione, Rhea, and Iapetus also show high similarities to the lunar W-shaped curve. The most complete and statistically valid data set was generated in the case of Iapetus. We have been able to measure crater sizes over four orders of magnitude. The most likely impactor source for the craters in the inner solar system is the asteroid belt orbiting the sun between Mars and Jupiter e.g. [3],[4]. The asteroid body diameter SFD has more recently been analyzed by [2] using the latest discoveries and the absolute geometric albedo of the asteroids. Those albedo values have been converted to asteroid-body diameters using the method of [1]. The body SFD of the asteroid belt in the range from its inner border out to the 5:2 resonance gap gives a very good match to the lunar SFD. The same W-shape characteristics is found at the jovian and saturnian satellite SFD curves as mentioned earlier. Based on these observations and similarities, it is reasonable to suspect asteroids as the major contribution for the outer solar system bombardment in the range of Saturn as well. References: [1]Fowler & Chillemi (1992) in "The IRAS minor planet survey" [2]Ivanov at al. (2002) in „Asteroids III"; The University of Arizona Press: 89-101 [3]Neukum (1983) Habilitation Thesis, "Meteoritenbombardement und Datierung planetarer Oberflächen"; Ludwig-Maximilians-University of Munich. [4]Neukum & Ivanov (1994) in "Hazards due to comets & Asteroids"; The University of Arizona Press: 359-416 [5]Porco et al. (2004) Space Science Reviews 115: 363-497
Validation of Proposed Metrics for Two-Body Abrasion Scratch Test Analysis Standards
NASA Technical Reports Server (NTRS)
Kobrick, Ryan L.; Klaus, David M.; Street, Kenneth W., Jr.
2011-01-01
The objective of this work was to evaluate a set of standardized metrics proposed for characterizing a surface that has been scratched from a two-body abrasion test. This is achieved by defining a new abrasion region termed Zone of Interaction (ZOI). The ZOI describes the full surface profile of all peaks and valleys, rather than just measuring a scratch width as currently defined by the ASTM G 171 Standard. The ZOI has been found to be at least twice the size of a standard width measurement, in some cases considerably greater, indicating that at least half of the disturbed surface area would be neglected without this insight. The ZOI is used to calculate a more robust data set of volume measurements that can be used to computationally reconstruct a resultant profile for detailed analysis. Documenting additional changes to various surface roughness parameters also allows key material attributes of importance to ultimate design applications to be quantified, such as depth of penetration and final abraded surface roughness. Data are presented to show that different combinations of scratch tips and abraded materials can actually yield the same scratch width, but result in different volume displacement or removal measurements and therefore, the ZOI method is more discriminating than the ASTM method scratch width. Furthermore, by investigating the use of custom scratch tips for our specific needs, the usefulness of having an abrasion metric that can measure the displaced volume in this standardized manner, and not just by scratch width alone, is reinforced. This benefit is made apparent when a tip creates an intricate contour having multiple peaks and valleys within a single scratch. This work lays the foundation for updating scratch measurement standards to improve modeling and characterization of three-body abrasion test results.
Oxygen fraction adjustment according to body surface area during extracorporeal circulation.
Arıtürk, Cem; Özgen, Serpil Ustalar; Danışan, Behiç; Karabulut, Hasan; Toraman, Fevzi
2015-06-26
The inspiratory oxygen fraction (FiO2) is usually set between 60% and 100% during conventional extracorporeal circulation (ECC). However, this strategy causes partial oxygen pressure (PaO2) to reach hyperoxemic levels (>180 mmHg). During anesthetic management of cardiothoracic surgery it is important to keep PaO2 levels between 80-180 mmHg. The aim of this study was to assess whether adjusting FiO2 levels in accordance with body temperature and body surface area (BSA) during ECC is an effective method for maintaining normoxemic PaO2 during cardiac surgery. After approval from the Ethics Committee of the University of Acıbadem, informed consent was given from 60 patients. FiO2 adjustment strategies applied to the patients in the groups were as follows: FiO2 levels were set as 0.21 × BSA during hypothermia and 0.21 × BSA + 10 during rewarming in Group I; 0.18 × BSA during hypothermia and 0.18 × BSA + 15 during rewarming in Group II; and 0.18 × BSA during hypothermia and variable with body temperature during rewarming in Group III. Arterial blood gas values and hemodynamic parameters were recorded before ECC (T1); at the 10th minute of cross clamp (T2); when the esophageal temperature (OT) reached 34°C (T3); when OT reached 36°C (T4); and just before the cessation of ECC (T5). Mean PaO2 was significantly higher in Group I than in Group II at T2 and T3 (P = .0001 and P = .0001, respectively); in Group I than in Group III at T1 (P = .02); and in Group II than in Group III at T2, T3, and T4 (P = .0001 for all). Adjustment of FiO2 according to BSA rather than keeping it at a constant level is more appropriate for keeping PaO2 between safe level limits. However, since oxygen consumption of cells vary with body temperature, it would be appropriate to set FiO2 levels in concordance with the body temperature in the rewarming period.
Fields, David A; Higgins, Paul B; Hunter, Gary R
2004-01-01
Background To investigate the effect of body temperature and moisture on body fat (%fat), volume and density by air-displacement plethysmography (BOD POD). Methods %fat, body volume and density by the BOD POD before (BOD PODBH) and immediately following hydrostatic weighing (BOD PODFH) were performed in 32 healthy females (age (yr) 33 ± 11, weight (kg) 64 ± 14, height (cm) 167 ± 7). Body temperature and moisture were measured prior to BOD PODBH and prior to BOD PODFH with body moisture defined as the difference in body weight (kg) between the BOD PODBH and BOD PODFH measurements. Results BOD PODFH %fat (27.1%) and body volume (61.5 L) were significantly lower (P ≤ 0.001) and body density (1.0379 g/cm3) significantly higher (P ≤ 0.001) than BOD PODBH %fat (28.9%), body volume (61.7 L), and body density (1.0341 g/cm3). A significant increase in body temperature (~0.6°C; P ≤ 0.001) and body moisture (0.08 kg; P ≤ 0.01) were observed between BOD PODBH and BOD PODFH. Body surface area was positively associated with the difference in %fat independent of changes in body temperature and moisture, r = 0.30, P < 0.05. Conclusion These data demonstrate for the first time that increases in body heat and moisture result in an underestimation of body fat when using the BOD POD, however, the precise mechanism remains unidentified. PMID:15059287
Morais, Jorge E; Garrido, Nuno D; Marques, Mário C; Silva, António J; Marinho, Daniel A; Barbosa, Tiago M
2013-12-18
(i) gender; (ii) performance and; (iii) gender versus performance interactions in young swimmers' anthropometric, kinematic and energetic variables. One hundred and thirty six young swimmers (62 boys: 12.76 ± 0.72 years old at Tanner stages 1-2 by self-evaluation; and 64 girls: 11.89 ± 0.93 years old at Tanner stages 1-2 by self-evaluation) were evaluated. Performance, anthropometrics, kinematics and energetic variables were selected. There was a non-significant gender effect on performance, body mass, height, arm span, trunk transverse surface area, stroke length, speed fluctuation, swimming velocity, propulsive efficiency, stroke index and critical velocity. A significant gender effect was found for foot surface area, hand surface area and stroke frequency. A significant sports level effect was verified for all variables, except for stroke frequency, speed fluctuation and propulsive efficiency. Overall, swimmers in quartile 1 (the ones with highest sports level) had higher anthropometric dimensions, better stroke mechanics and energetics. These traits decrease consistently throughout following quartiles up to the fourth one (i.e. swimmers with the lowest sports level). There was a non-significant interaction between gender and sports level for all variables. Our main conclusions were as follows: (i) there are non-significant differences in performance, anthropometrics, kinematics and energetics between boys and girls; (ii) swimmers with best performance are taller, have higher surface areas and better stroke mechanics; (iii) there are non-significant interactions between sports level and gender for anthropometrics, kinematics and energetics.
Sunlight Exposure and Vitamin D Status in Breastfed Infants.
Meena, Pinky; Dabas, Aashima; Shah, Dheeraj; Malhotra, Rajeev Kumar; Madhu, S V; Gupta, Piyush
2017-02-15
To correlate the sunlight exposure in first 6 months to vitamin D status at 6 months of age in predominantly breastfed infants; and to quantify the sunlight exposure required to achieve serum 25(OH)D level >20 ng/mL, by 6 months of age. Design: Prospective cohort. Tertiary-care hospital predominantly catering to urban poor population in Delhi. 132 healthy infants, delivered at term, and predominantly breastfed were enrolled at 6-8 weeks of age. Of these, 100 infants were available for final evaluation at 6 months of age (mean (SD) follow-up: 126 (17) days). Baseline maternal vitamin D (serum 25(OH)D) levels were obtained at enrolment. The mothers were asked to maintain a daily record of duration of sunlight exposure, timing of exposure, and body surface area exposed, for the infant, on a pre-designed proforma, till the child was 6 months of age. Infant's serum 25(OH)D was measured at 6 months of age. Cumulative Sun Index was calculated as a composite measure of overall duration/time/body surface area exposed to sunlight; and correlated with the infant serum 25(OH)D after adjusting for baseline maternal serum 25(OH)D levels, season of exposure, and skin color of the infant. Sun index for exposure in morning (before 10 am) and afternoon (10 am-3 pm) were also correlated to vitamin D status. Of 100 mother-infant pairs completing the study, 90 mothers had vitamin D deficiency (serum 25(OH)D <12 ng/mL). The median duration of exposure of infants to sunlight was 17 min per week, on 6% of body surface area. Vitamin D levels of 67 (67%) infants at 6 months were less than 12 ng/mL and another 23% had insufficient levels (12-20 ng/mL). Cumulative sun index correlated positively to infant's serum 25(OH)D level at 6 months of age (r= 0.461, P<0.001). Increment in afternoon sun index by 1 unit increased the serum 25(OH)D level by 1.07 ng/mL (95% CI 0.37, 1.78; P= 0.003). A minimum 30 minute weekly afternoon sunlight exposure, between 10 am and 3 pm, over 40% body area (infant clothed in diapers, in prone position) for at least 16 weeks, was estimated requirement to achieve sufficient vitamin D levels (>20 ng/mL) by 6 months of age. There is a significant positive correlation between afternoon sunlight exposure and infant's vitamin D levels, independent of maternal vitamin D status. Randomized controlled trials are suggested to explore the effectiveness of this simple intervention to prevent or treat vitamin D deficiency in children.
Current conducting end plate of fuel cell assembly
Walsh, Michael M.
1999-01-01
A fuel cell assembly has a current conducting end plate with a conductive body formed integrally with isolating material. The conductive body has a first surface, a second surface opposite the first surface, and an electrical connector. The first surface has an exposed portion for conducting current between a working section of the fuel cell assembly and the electrical connector. The isolating material is positioned on at least a portion of the second surface. The conductive body can have support passage(s) extending therethrough for receiving structural member(s) of the fuel cell assembly. Isolating material can electrically isolate the conductive body from the structural member(s). The conductive body can have service passage(s) extending therethrough for servicing one or more fluids for the fuel cell assembly. Isolating material can chemically isolate the one or more fluids from the conductive body. The isolating material can also electrically isolate the conductive body from the one or more fluids.
Responses of coral reef fishes to past climate changes are related to life-history traits.
Ottimofiore, Eduardo; Albouy, Camille; Leprieur, Fabien; Descombes, Patrice; Kulbicki, Michel; Mouillot, David; Parravicini, Valeriano; Pellissier, Loïc
2017-03-01
Coral reefs and their associated fauna are largely impacted by ongoing climate change. Unravelling species responses to past climatic variations might provide clues on the consequence of ongoing changes. Here, we tested the relationship between changes in sea surface temperature and sea levels during the Quaternary and present-day distributions of coral reef fish species. We investigated whether species-specific responses are associated with life-history traits. We collected a database of coral reef fish distribution together with life-history traits for the Indo-Pacific Ocean. We ran species distribution models (SDMs) on 3,725 tropical reef fish species using contemporary environmental factors together with a variable describing isolation from stable coral reef areas during the Quaternary. We quantified the variance explained independently by isolation from stable areas in the SDMs and related it to a set of species traits including body size and mobility. The variance purely explained by isolation from stable coral reef areas on the distribution of extant coral reef fish species largely varied across species. We observed a triangular relationship between the contribution of isolation from stable areas in the SDMs and body size. Species, whose distribution is more associated with historical changes, occurred predominantly in the Indo-Australian archipelago, where the mean size of fish assemblages is the lowest. Our results suggest that the legacy of habitat changes of the Quaternary is still detectable in the extant distribution of many fish species, especially those with small body size and the most sedentary. Because they were the least able to colonize distant habitats in the past, fish species with smaller body size might have the most pronounced lags in tracking ongoing climate change.
Contaminant trap for gas-insulated apparatus
Adcock, James L.; Pace, Marshall O.; Christophorou, Loucas G.
1984-01-01
A contaminant trap for a gas-insulated electrical conductor is provided. A resinous dielectric body such as Kel-F wax, grease or other sticky polymeric or oligomeric compound is disposed on the inside wall of the outer housing for the conductor. The resinous body is sufficiently sticky at ambient temperatures to immobilize contaminant particles in the insulating gas on the exposed surfaces thereof. An electric resistance heating element is disposed in the resinous body to selectively raise the temperature of the resinous body to a molten state so that the contaminant particles collected on the surface of the body sink into the body so that the surface of the resinous body is renewed to a particle-less condition and, when cooled, returns to a sticky collecting surface.
NASA Astrophysics Data System (ADS)
Ishii, Daisuke; Yamasaki, Hiroshi; Uozumi, Ryosuke; Hirose, Euichi
2016-10-01
The body surface of aquatic invertebrates is generally thought to be hydrophilic to prevent the attachment of air bubbles. In contrast, some interstitial invertebrates, such as kinorhynchs and some crustaceans, have a hydrophobic body surface: they are often trapped at the water surface when the sediment in which they reside is mixed with air and water. Here, we directly measured the wettability of the body surface of the kinorhynch Echinoderes komatsui, using a microscopic contact angle meter. The intact body surface of live specimens was not hydrophobic, but the anterior part was less hydrophilic. Furthermore, washing with seawater significantly decreased the wettability of the body surface, but a hydrophilic surface was recovered after a 1 h incubation in seawater. We believe that the hydrophobic cuticle of the kinorhynch has a hydrophilic coat that is readily exfoliated by disturbance. Ultrastructural observations supported the presence of a mucus-like coating on the cuticle. Regulation of wettability is crucial to survival in shallow, fluctuating habitats for microscopic organisms and may also contribute to expansion of the dispersal range of these animals.
Olives, Juan
2010-03-03
The thermodynamics and mechanics of the surface of a deformable body are studied here, following and refining the general approach of Gibbs. It is first shown that the 'local' thermodynamic variables of the state of the surface are only the temperature, the chemical potentials and the surface strain tensor (true thermodynamic variables, for a viscoelastic solid or a viscous fluid). A new definition of the surface stress is given and the corresponding surface thermodynamics equations are presented. The mechanical equilibrium equation at the surface is then obtained. It involves the surface stress and is similar to the Cauchy equation for the volume. Its normal component is a generalization of the Laplace equation. At a (body-fluid-fluid) triple contact line, two equations are obtained, which represent: (i) the equilibrium of the forces (surface stresses) for a triple line fixed on the body; (ii) the equilibrium relative to the motion of the line with respect to the body. This last equation leads to a strong modification of Young's classical capillary equation.