Corrected body surface potential mapping.
Krenzke, Gerhard; Kindt, Carsten; Hetzer, Roland
2007-02-01
In the method for body surface potential mapping described here, the influence of thorax shape on measured ECG values is corrected. The distances of the ECG electrodes from the electrical heart midpoint are determined using a special device for ECG recording. These distances are used to correct the ECG values as if they had been measured on the surface of a sphere with a radius of 10 cm with its midpoint localized at the electrical heart midpoint. The equipotential lines of the electrical heart field are represented on the virtual surface of such a sphere. It is demonstrated that the character of a dipole field is better represented if the influence of the thorax shape is reduced. The site of the virtual reference electrode is also important for the dipole character of the representation of the electrical heart field.
Variability in surface ECG morphology: signal or noise?
NASA Technical Reports Server (NTRS)
Smith, J. M.; Rosenbaum, D. S.; Cohen, R. J.
1988-01-01
Using data collected from canine models of acute myocardial ischemia, we investigated two issues of major relevance to electrocardiographic signal averaging: ECG epoch alignment, and the spectral characteristics of the beat-to-beat variability in ECG morphology. With initial digitization rates of 1 kHz, an iterative a posteriori matched filtering alignment scheme, and linear interpolation, we demonstrated that there is sufficient information in the body surface ECG to merit alignment to a precision of 0.1 msecs. Applying this technique to align QRS complexes and atrial pacing artifacts independently, we demonstrated that the conduction delay from atrial stimulus to ventricular activation may be so variable as to preclude using atrial pacing as an alignment mechanism, and that this variability in conduction time be modulated at the frequency of respiration and at a much lower frequency (0.02-0.03Hz). Using a multidimensional spectral technique, we investigated the beat-to-beat variability in ECG morphology, demonstrating that the frequency spectrum of ECG morphological variation reveals a readily discernable modulation at the frequency of respiration. In addition, this technique detects a subtle beat-to-beat alternation in surface ECG morphology which accompanies transient coronary artery occlusion. We conclude that physiologically important information may be stored in the variability in the surface electrocardiogram, and that this information is lost by conventional averaging techniques.
Thin and flexible active electrodes with shield for capacitive electrocardiogram measurement.
Lee, Seung Min; Sim, Kyo Sik; Kim, Ko Keun; Lim, Yong Gyu; Park, Kwang Suk
2010-05-01
Capacitive electrocardiogram (ECG) measurement over clothing requires large electrodes that can remain in contact with curved body surfaces to increase the signal-to-noise ratio (SNR). In this article, we propose a new, thin, and flexible active electrode for use as a capacitive ECG measurement electrode. This electrode contains a shielding plate over its surface and it is extremely thin and can bend freely to cover larger body surfaces of the curve-shaped human torso. We evaluated the characteristics of flexible active electrodes under conditions of varying cloth thickness, electrode size, and contacting pressure. Electrodes of two sizes (45 and 12 cm(2)) were attached to a chest belt to measure the ECG from the human torso, and the results obtained for both the sizes were compared. Cloth thickness and electrode size showed a dominant effect on the SNR, whereas contacting pressure had almost no effect. The flexible active electrodes attached to chest belts wrapped closely and uniformly over the curved surface of the torso and SNR was increased with an increase in electrode size. Although the ECG signal became more distorted as the cloth thickness increased, the larger-sized flexible active electrode (45 cm(2)) showed less distortion than the smaller-sized one (12 cm(2)).
Czosek, Richard J; Cnota, James F; Knilans, Timothy K; Pratt, Jesse; Guerrier, Karine; Anderson, Jeffrey B
2014-09-01
In attempts to detect diseases that may place adolescents at risk for sudden death, some have advocated for population-based screening. Controversy exists over electrocardiography (ECG) screening due to the lack of specificity, cost, and detrimental effects of false positive or extraneous outcomes. Analyze the relationship between precordial lead voltage on ECG and left ventricle (LV) mass by echocardiogram in adolescent athletes. Retrospective cohort analysis of a prospectively obtained population of self-identified adolescent athletes during sports screening with ECG and echocardiogram. Correlation between ECG LV voltages (R wave in V6 [RV6] and S wave in lead V1 [SV1]) was compared to echocardiogram-based measurements of left ventricular mass. Potential effects on ECG voltages by body anthropometrics, including weight, body mass index (BMI), and body surface area were analyzed, and ECG voltages indexed to BMI were compared to LV mass indices to analyze for improved correlation. A total of 659 adolescents enrolled in this study (64% male). The mean age was 15.4 years (14-18). The correlations between LV mass and RV6, SV1, and RV6 + SV1 were all less than 0.20. The false positive rate for abnormal voltages was relatively high (5.5%) but improved if abnormal voltages in both RV6 and SV1 were mandated simultaneously (0%). Indexing ECG voltages to BMI significantly improved correlation to LV mass, though false positive findings were increased (12.9%). There is poor correlation between ECG precordial voltages and echocardiographic LV mass. This relationship is modified by BMI. This finding may contribute to the poor ECG screening characteristics. ©2014 Wiley Periodicals, Inc.
Perez-Alday, Erick A; Thomas, Jason A; Kabir, Muammar; Sedaghat, Golriz; Rogovoy, Nichole; van Dam, Eelco; van Dam, Peter; Woodward, William; Fuss, Cristina; Ferencik, Maros; Tereshchenko, Larisa G
We conducted a prospective clinical study (n=14; 29% female) to assess the accuracy of a three-dimensional (3D) photography-based method of torso geometry reconstruction and body surface electrodes localization. The position of 74 body surface electrocardiographic (ECG) electrodes (diameter 5mm) was defined by two methods: 3D photography, and CT (marker diameter 2mm) or MRI (marker size 10×20mm) imaging. Bland-Altman analysis showed good agreement in X (bias -2.5 [95% limits of agreement (LoA) -19.5 to 14.3] mm), Y (bias -0.1 [95% LoA -14.1 to 13.9] mm), and Z coordinates (bias -0.8 [95% LoA -15.6 to 14.2] mm), as defined by the CT/MRI imaging, and 3D photography. The average Hausdorff distance between the two torso geometry reconstructions was 11.17±3.05mm. Thus, accurate torso geometry reconstruction using 3D photography is feasible. Body surface ECG electrodes coordinates as defined by the CT/MRI imaging, and 3D photography, are in good agreement. Copyright © 2017 Elsevier Inc. All rights reserved.
Multichannel ECG and Noise Modeling: Application to Maternal and Fetal ECG Signals
NASA Astrophysics Data System (ADS)
Sameni, Reza; Clifford, Gari D.; Jutten, Christian; Shamsollahi, Mohammad B.
2007-12-01
A three-dimensional dynamic model of the electrical activity of the heart is presented. The model is based on the single dipole model of the heart and is later related to the body surface potentials through a linear model which accounts for the temporal movements and rotations of the cardiac dipole, together with a realistic ECG noise model. The proposed model is also generalized to maternal and fetal ECG mixtures recorded from the abdomen of pregnant women in single and multiple pregnancies. The applicability of the model for the evaluation of signal processing algorithms is illustrated using independent component analysis. Considering the difficulties and limitations of recording long-term ECG data, especially from pregnant women, the model described in this paper may serve as an effective means of simulation and analysis of a wide range of ECGs, including adults and fetuses.
Guillem, Maria S; Climent, Andreu M; Millet, José; Berne, Paola; Ramos, Rafael; Brugada, Josep; Brugada, Ramon
2016-05-01
The diagnosis of Brugada syndrome based on the ECG is hampered by the dynamic nature of its ECG manifestations. Brugada syndrome patients are only 25% likely to present a type 1 ECG. The objective of this study is to provide an ECG diagnostic criterion for Brugada syndrome patients that can be applied consistently even in the absence of a type 1 ECG. We recorded 67-lead body surface potential maps from 94 Brugada syndrome patients and 82 controls (including right bundle branch block patients and healthy individuals). The spatial propagation direction during the last r' wave and the slope at the end of the QRS complex were measured and compared between patients groups. Receiver-operating characteristic curves were constructed for half of the database to identify optimal cutoff values; sensitivity and specificity for these cutoff values were measured in the other half of the database. A spontaneous type 1 ECG was present in only 30% of BrS patients. An orientation in the sagittal plane < 101º during the last r' wave and a descending slope < 9.65 mV/s enables the diagnosis of the syndrome with a sensitivity of 69% and a specificity of 97% in non-type 1 Brugada syndrome patients. Spatiotemporal characteristics of surface ECG recordings can enable a robust identification of BrS even without the presence of a type 1 ECG. © 2016 Wiley Periodicals, Inc.
A Primary Study of Indirect ECG Monitor Embedded in a Bed for Home Health Care
NASA Astrophysics Data System (ADS)
Ueno, Akinori; Shiogai, Yuuki; Ishiyama, Yoji
A system for monitoring electrocardiogram (ECG) through clothes inserted between the measuring electrodes and the body surface of a subject when lying on a mattress has been proposed. The principle of the system is based on capacitive coupling involving the electrode, the clothes, and the skin. Validation of the system revealed the following: (1) In spite of the gain attenuation in the pass band of the system, distortion of the detected signal was subtle even when clothes thicker than 1mm were inserted, (2) The system was able to yield a stable ECG from a subject particularly during sound sleep, (3) The system succeeded in detecting ECG after changing the posture into any of supine, right lateral, or left lateral positions by adopting a newly devised electrode configuration. Therefore, the proposed system appears promising for application to bedding as a non-invasive and awareness-free system for ECG monitoring during sleep.
Smart wireless sensor for physiological monitoring.
Tomasic, Ivan; Avbelj, Viktor; Trobec, Roman
2015-01-01
Presented is a wireless body sensor capable of measuring local potential differences on a body surface. By using on-sensor signal processing capabilities, and developed algorithms for off-line signal processing on a personal computing device, it is possible to record single channel ECG, heart rate, breathing rate, EMG, and when three sensors are applied, even the 12-lead ECG. The sensor is portable, unobtrusive, and suitable for both inpatient and outpatient monitoring. The paper presents the sensor's hardware and results of power consumption analysis. The sensor's capabilities of recording various physiological parameters are also presented and illustrated. The paper concludes with envisioned sensor's future developments and prospects.
Tripolar Laplacian electrocardiogram and moment of activation isochronal mapping.
Besio, W; Chen, T
2007-05-01
The electrocardiogram (ECG) provides useful global temporal assessment of the cardiac activity, but has limited spatial capabilities. The Laplacian electrocardiogram (LECG), an improvement over the ECG, provides high spatiotemporal distributed information about cardiac electrical activation. We designed and developed LECG tripolar concentric ring electrode active sensors based on the finite element algorithm 'nine-point method' (NPM). The active sensors were used in an array of 6 by 12 (72) locations to record bipolar and tripolar LECG from the body surface over the anterolateral chest. Compared to bipolar LECG, tripolar LECG showed significantly higher spatial selectivity which may be helpful in inferring information about cardiac activations detected on the body surface. In this study the moment of activation (MOA), an indicator of a depolarization wave passing below the active sensors, was used to surmise possible timing information of the cardiac electrical activation below the active sensors' recording sites. The MOA on the body surface was used to generate isochronal maps that may some day be used by clinicians in diagnosing arrhythmias and assessing the efficacy of therapies.
Swenson, Darrell J.; Geneser, Sarah E.; Stinstra, Jeroen G.; Kirby, Robert M.; MacLeod, Rob S.
2012-01-01
The electrocardiogram (ECG) is ubiquitously employed as a diagnostic and monitoring tool for patients experiencing cardiac distress and/or disease. It is widely known that changes in heart position resulting from, for example, posture of the patient (sitting, standing, lying) and respiration significantly affect the body-surface potentials; however, few studies have quantitatively and systematically evaluated the effects of heart displacement on the ECG. The goal of this study was to evaluate the impact of positional changes of the heart on the ECG in the specific clinical setting of myocardial ischemia. To carry out the necessary comprehensive sensitivity analysis, we applied a relatively novel and highly efficient statistical approach, the generalized polynomial chaos-stochastic collocation method, to a boundary element formulation of the electrocardiographic forward problem, and we drove these simulations with measured epicardial potentials from whole-heart experiments. Results of the analysis identified regions on the body-surface where the potentials were especially sensitive to realistic heart motion. The standard deviation (STD) of ST-segment voltage changes caused by the apex of a normal heart, swinging forward and backward or side-to-side was approximately 0.2 mV. Variations were even larger, 0.3 mV, for a heart exhibiting elevated ischemic potentials. These variations could be large enough to mask or to mimic signs of ischemia in the ECG. Our results suggest possible modifications to ECG protocols that could reduce the diagnostic error related to postural changes in patients possibly suffering from myocardial ischemia. PMID:21909818
Fetal ECG Extraction From Maternal Body Surface Measurement Using Independent Component Analysis
2001-10-25
Ibaraki 305-0901, Japan Abstract – A method applying independent component analysis (ICA) to detect the electrocardiogram of a prenatal cattle foetus is...monitoring the health status of an unborn cattle foetus is indispensable in preventing natural abortion and premature birth [3]. One of the applicable...and Y. Honda, “ECG and Heart Rate Detection of Prenatal Cattle Foetus Using Adaptive Digital Filtering,” World Congress on Med. Phys.& Biomed. Eng., Chicago TU-CXH-75, pp. 1-4, 2000.
NASA Astrophysics Data System (ADS)
Agung, Mochammad Anugrah; Basari
2017-02-01
Electrocardiogram (ECG) devices measure electrical activity of the heart muscle to determine heart conditions. ECG signal quality is the key factor in determining the diseases of the heart. This paper presents the design of 3-lead acquistion on single channel wireless ECG device developed on AD8232 chip platform using microcontroller. To make the system different from others, monopole antenna 2.4 GHz is used in order to send and receive ECG signal. The results show that the system still can receive ECG signal up to 15 meters by line of sight (LOS) condition. The shape of ECG signals is precisely similar with the expected signal, although some delays occur between two consecutive pulses. For further step, the system will be applied with on-body antenna in order to investigate body to body communication that will give variation in connectivity from the others.
Performance of human body communication-based wearable ECG with capacitive coupling electrodes
Sakuma, Jun; Anzai, Daisuke
2016-01-01
Wearable electrocardiogram (ECG) is attracting much attention in daily healthcare applications, and human body communication (HBC) technology provides an evident advantage in making the sensing electrodes of ECG also working for transmission through the human body. In view of actual usage in daily life, however, non-contact electrodes to the human body are desirable. In this Letter, the authors discussed the ECG circuit structure in the HBC-based wearable ECG for removing the common mode noise when employing non-contact capacitive coupling electrodes. Through the comparison of experimental results, they have shown that the authors’ proposed circuit structure with the third electrode directly connected to signal ground can provide an effect on common mode noise reduction similar to the usual drive-right-leg circuit, and a sufficiently good acquisition performance of ECG signals. PMID:27733931
Performance of human body communication-based wearable ECG with capacitive coupling electrodes.
Sakuma, Jun; Anzai, Daisuke; Wang, Jianqing
2016-09-01
Wearable electrocardiogram (ECG) is attracting much attention in daily healthcare applications, and human body communication (HBC) technology provides an evident advantage in making the sensing electrodes of ECG also working for transmission through the human body. In view of actual usage in daily life, however, non-contact electrodes to the human body are desirable. In this Letter, the authors discussed the ECG circuit structure in the HBC-based wearable ECG for removing the common mode noise when employing non-contact capacitive coupling electrodes. Through the comparison of experimental results, they have shown that the authors' proposed circuit structure with the third electrode directly connected to signal ground can provide an effect on common mode noise reduction similar to the usual drive-right-leg circuit, and a sufficiently good acquisition performance of ECG signals.
Wearable ECG Based on Impulse-Radio-Type Human Body Communication.
Wang, Jianqing; Fujiwara, Takuya; Kato, Taku; Anzai, Daisuke
2016-09-01
Human body communication (HBC) provides a promising physical layer for wireless body area networks (BANs) in healthcare and medical applications, because of its low propagation loss and high security characteristics. In this study, we have developed a wearable electrocardiogram (ECG) which employs impulse radio (IR)-type HBC technology for transmitting vital signals on the human body in a wearable BAN scenario. The HBC-based wearable ECG has two excellent features. First, the wideband performance of the IR scheme contributed to very low radiation power so that the transceiver is easy to satisfy the extremely weak radio laws, which does not need a license. This feature can provide big convenience in the use and spread of the wearable ECG. Second, the realization of common use of sensing and transmitting electrodes based on time sharing and capacitive coupling largely simplified the HBC-based ECG structure and contributed to its miniaturization. To verify the validity of the HBC-based ECG, we evaluated its communication performance and ECG acquisition performance. The measured bit error rate, smaller than 10 -3 at 1.25 Mb/s, showed a good physical layer communication performance, and the acquired ECG waveform and various heart-rate variability parameters in time and frequency domains exhibited good agreement with a commercially available radio-frequency ECG and a Holter ECG. These results sufficiently showed the validity and feasibility of the HBC-based ECG for healthcare applications. This should be the first time to have realized a real-time ECG transmission by using the HBC technology.
Hosoya, Y; Kubota, I; Shibata, T; Yamaki, M; Ikeda, K; Tomoike, H
1992-06-01
There were few studies on the relation between the body surface distribution of high- and low-frequency components within the QRS complex and ventricular tachycardia (VT). Eighty-seven signal-averaged ECGs were obtained from 30 normal subjects (N group) and 30 patients with previous anterior myocardial infarction (MI) with VT (MI-VT[+] group, n = 10) or without VT (MI-VT[-] group, n = 20). The onset and offset of the QRS complex were determined from 87-lead root mean square values computed from the averaged (but not filtered) ECG waveforms. Fast Fourier transform analysis was performed on signal-averaged ECG. The resulting Fourier coefficients were attenuated by use of the transfer function, and then inverse transform was done with five frequency ranges (0-25, 25-40, 40-80, 80-150, and 150-250 Hz). From the QRS onset to the QRS offset, the time integration of the absolute value of reconstructed waveforms was calculated for each of the five frequency ranges. The body surface distributions of these areas were expressed as QRS area maps. The maximal values of QRS area maps were compared among the three groups. In the frequency ranges of 0-25 and 150-250 Hz, there were no significant differences in the maximal values among these three groups. Both MI groups had significantly smaller maximal values of QRS area maps in the frequency ranges of 25-40 and 40-80 Hz compared with the N group. The MI-VT(+) group had significantly smaller maximal values in the frequency ranges of 40-80 and 80-150 Hz than the MI-VT(-) group. These three groups were clearly differentiated by the maximal values of the 40-80-Hz QRS area map. It was suggested that the maximal value of the 40-80-Hz QRS area map was a new marker for VT after anterior MI.
Software design for analysis of multichannel intracardial and body surface electrocardiograms.
Potse, Mark; Linnenbank, André C; Grimbergen, Cornelis A
2002-11-01
Analysis of multichannel ECG recordings (body surface maps (BSMs) and intracardial maps) requires special software. We created a software package and a user interface on top of a commercial data analysis package (MATLAB) by a combination of high-level and low-level programming. Our software was created to satisfy the needs of a diverse group of researchers. It can handle a large variety of recording configurations. It allows for interactive usage through a fast and robust user interface, and batch processing for the analysis of large amounts of data. The package is user-extensible, includes routines for both common and experimental data processing tasks, and works on several computer platforms. The source code is made intelligible using software for structured documentation and is available to the users. The package is currently used by more than ten research groups analysing ECG data worldwide.
FastICA peel-off for ECG interference removal from surface EMG.
Chen, Maoqi; Zhang, Xu; Chen, Xiang; Zhu, Mingxing; Li, Guanglin; Zhou, Ping
2016-06-13
Multi-channel recording of surface electromyographyic (EMG) signals is very likely to be contaminated by electrocardiographic (ECG) interference, specifically when the surface electrode is placed on muscles close to the heart. A novel fast independent component analysis (FastICA) based peel-off method is presented to remove ECG interference contaminating multi-channel surface EMG signals. Although demonstrating spatial variability in waveform shape, the ECG interference in different channels shares the same firing instants. Utilizing the firing information estimated from FastICA, ECG interference can be separated from surface EMG by a "peel off" processing. The performance of the method was quantified with synthetic signals by combining a series of experimentally recorded "clean" surface EMG and "pure" ECG interference. It was demonstrated that the new method can remove ECG interference efficiently with little distortion to surface EMG amplitude and frequency. The proposed method was also validated using experimental surface EMG signals contaminated by ECG interference. The proposed FastICA peel-off method can be used as a new and practical solution to eliminating ECG interference from multichannel EMG recordings.
XML-BSPM: an XML format for storing Body Surface Potential Map recordings.
Bond, Raymond R; Finlay, Dewar D; Nugent, Chris D; Moore, George
2010-05-14
The Body Surface Potential Map (BSPM) is an electrocardiographic method, for recording and displaying the electrical activity of the heart, from a spatial perspective. The BSPM has been deemed more accurate for assessing certain cardiac pathologies when compared to the 12-lead ECG. Nevertheless, the 12-lead ECG remains the most popular ECG acquisition method for non-invasively assessing the electrical activity of the heart. Although data from the 12-lead ECG can be stored and shared using open formats such as SCP-ECG, no open formats currently exist for storing and sharing the BSPM. As a result, an innovative format for storing BSPM datasets has been developed within this study. The XML vocabulary was chosen for implementation, as opposed to binary for the purpose of human readability. There are currently no standards to dictate the number of electrodes and electrode positions for recording a BSPM. In fact, there are at least 11 different BSPM electrode configurations in use today. Therefore, in order to support these BSPM variants, the XML-BSPM format was made versatile. Hence, the format supports the storage of custom torso diagrams using SVG graphics. This diagram can then be used in a 2D coordinate system for retaining electrode positions. This XML-BSPM format has been successfully used to store the Kornreich-117 BSPM dataset and the Lux-192 BSPM dataset. The resulting file sizes were in the region of 277 kilobytes for each BSPM recording and can be deemed suitable for example, for use with any telemonitoring application. Moreover, there is potential for file sizes to be further reduced using basic compression algorithms, i.e. the deflate algorithm. Finally, these BSPM files have been parsed and visualised within a convenient time period using a web based BSPM viewer. This format, if widely adopted could promote BSPM interoperability, knowledge sharing and data mining. This work could also be used to provide conceptual solutions and inspire existing formats such as DICOM, SCP-ECG and aECG to support the storage of BSPMs. In summary, this research provides initial ground work for creating a complete BSPM management system.
Leigh, J. Adam; O’Neal, Wesley T.; Soliman, Elsayed Z.
2016-01-01
Left ventricular hypertrophy (LVH) diagnosed by electrocardiography (ECG-LVH) and echocardiography (echo-LVH) are independently associated with an increased risk of cardiovascular disease (CVD) events. However, it is unknown if ECG-LVH retains its predictive properties independent of left ventricular anatomy. We compared the risk of CVD associated with ECG-LVH and echo-LVH in 4,076 participants (41% male, 86% white) from the Cardiovascular Health Study (CHS), who were free of baseline CVD. ECG-LVH was defined with Minnesota ECG Classification criteria from baseline ECG data. Echo-LVH was defined by sex-specific left ventricular mass values normalized to body surface area (male: >102 g/m2; female: >88 g/m2). ECG-LVH was detected in 144 (3.5%) participants and echo-LVH in 430 (11%) participants. Over a median follow-up of 10.6 years, 2,274 CVD events occurred. In a multivariable Cox regression analysis adjusted for common CVD risk factors, ECG-LVH (HR=1.84, 95%CI=1.51, 2.24) and echo-LVH (HR=1.35, 95%CI=1.19, 1.54) were associated with an increased risk for CVD events. The association between ECG-LVH and CVD events was not substantively altered with further adjustment for echo-LVH (HR=1.76, 95%CI=1.45, 2.15). In conclusion, the association of ECG-LVH with CVD events is not dependent on echo-LVH. This finding provides support to the concept that ECG-LVH is an electrophysiologic marker with predictive properties independent of left ventricular anatomy. PMID:27067620
Oresko, Joseph J; Duschl, Heather; Cheng, Allen C
2010-05-01
Cardiovascular disease (CVD) is the single leading cause of global mortality and is projected to remain so. Cardiac arrhythmia is a very common type of CVD and may indicate an increased risk of stroke or sudden cardiac death. The ECG is the most widely adopted clinical tool to diagnose and assess the risk of arrhythmia. ECGs measure and display the electrical activity of the heart from the body surface. During patients' hospital visits, however, arrhythmias may not be detected on standard resting ECG machines, since the condition may not be present at that moment in time. While Holter-based portable monitoring solutions offer 24-48 h ECG recording, they lack the capability of providing any real-time feedback for the thousands of heart beats they record, which must be tediously analyzed offline. In this paper, we seek to unite the portability of Holter monitors and the real-time processing capability of state-of-the-art resting ECG machines to provide an assistive diagnosis solution using smartphones. Specifically, we developed two smartphone-based wearable CVD-detection platforms capable of performing real-time ECG acquisition and display, feature extraction, and beat classification. Furthermore, the same statistical summaries available on resting ECG machines are provided.
Mincholé, Ana; Martínez, Juan Pablo; Laguna, Pablo; Rodriguez, Blanca
2018-01-01
Widely developed for clinical screening, electrocardiogram (ECG) recordings capture the cardiac electrical activity from the body surface. ECG analysis can therefore be a crucial first step to help diagnose, understand and predict cardiovascular disorders responsible for 30% of deaths worldwide. Computational techniques, and more specifically machine learning techniques and computational modelling are powerful tools for classification, clustering and simulation, and they have recently been applied to address the analysis of medical data, especially ECG data. This review describes the computational methods in use for ECG analysis, with a focus on machine learning and 3D computer simulations, as well as their accuracy, clinical implications and contributions to medical advances. The first section focuses on heartbeat classification and the techniques developed to extract and classify abnormal from regular beats. The second section focuses on patient diagnosis from whole recordings, applied to different diseases. The third section presents real-time diagnosis and applications to wearable devices. The fourth section highlights the recent field of personalized ECG computer simulations and their interpretation. Finally, the discussion section outlines the challenges of ECG analysis and provides a critical assessment of the methods presented. The computational methods reported in this review are a strong asset for medical discoveries and their translation to the clinical world may lead to promising advances. PMID:29321268
Couderc, Jean-Philippe
2011-01-01
We present an initiative supported by the National Heart Lung, and Blood Institute and the Food and Drug Administration for the development of a repository containing continuous electrocardiographic information to be shared with the worldwide scientific community. We believe that sharing data reinforces open scientific inquiry. It encourages diversity of analysis and opinion while promoting new research and facilitating the education of new researchers. In this paper, we present the resources available in this initiative for the scientific community. We describe the set of ECG signals currently hosted and we briefly discuss the associated clinical information (medical history. Disease and study-specific endpoints) and software tools we propose. Currently, the repository contains more than 250GB of data from eight clinical studies including healthy individuals and cardiac patients. This data is available for the development, implementation and validation of technologies related to body-surface ECGs. To conclude, the Telemetric and Holter ECG Warehouse (THEW) is an initiative developed to benefit the scientific community and to advance the field of quantitative electrocardiography and cardiac safety. PMID:21097349
Leigh, J Adam; O'Neal, Wesley T; Soliman, Elsayed Z
2016-06-01
Left ventricular hypertrophy (LVH) diagnosed by electrocardiography (ECG-LVH) and echocardiography (echo-LVH) are independently associated with an increased risk of cardiovascular disease (CVD) events. However, it is unknown if ECG-LVH retains its predictive properties independent of LV anatomy. We compared the risk of CVD associated with ECG-LVH and echo-LVH in 4,076 participants (41% men, 86% white) from the Cardiovascular Health Study, who were free of baseline CVD. ECG-LVH was defined with Minnesota ECG Classification criteria from baseline ECG data. Echo-LVH was defined by gender-specific LV mass values normalized to body surface area (male: >102 g/m(2); female: >88 g/m(2)). ECG-LVH was detected in 144 participants (3.5%) and echo-LVH in 430 participants (11%). Over a median follow-up of 10.6 years, 2,274 CVD events occurred. In a multivariate Cox regression analysis adjusted for common CVD risk factors, ECG-LVH (hazard ratio [HR] 1.84, 95% CI 1.51 to 2.24) and echo-LVH (HR 1.35, 95% CI 1.19 to 1.54) were associated with an increased risk for CVD events. The association between ECG-LVH and CVD events was not substantively altered with further adjustment for echo-LVH (HR 1.76, 95% CI 1.45 to 2.15). In conclusion, the association of ECG-LVH with CVD events is not dependent on echo-LVH. This finding provides support to the concept that ECG-LVH is an electrophysiological marker with predictive properties independent of LV anatomy. Copyright © 2016 Elsevier Inc. All rights reserved.
Ma, Rui; Kim, Dae-Hyeong; McCormick, Martin; Coleman, Todd; Rogers, John
2010-01-01
This paper reports a class of stretchable electrode array capable of intimate, conformal integration onto the curvilinear surfaces of skin on the human body. The designs employ conventional metallic conductors but in optimized mechanical layouts, on soft, thin elastomeric substrates. These devices exhibit an ability to record spontaneous EEG activity even without conductive electrolyte gels, with recorded alpha rhythm responses that are 40% stronger than those collected using conventional tin electrodes and gels under otherwise similar conditions. The same type of device can also measure high quality ECG and EMG signals. The results suggest broad utility for skin-mounted measurements of electrical activity in the body, with advantages in signal levels, wearability and modes of integration compared to alternatives.
Closed-Loop Control of Humidification for Artifact Reduction in Capacitive ECG Measurements.
Leicht, Lennart; Eilebrecht, Benjamin; Weyer, Soren; Leonhardt, Steffen; Teichmann, Daniel
2017-04-01
Recording biosignals without the need for direct skin contact offers new opportunities for ubiquitous health monitoring. Electrodes with capacitive coupling have been shown to be suitable for the monitoring of electrical potentials on the body surface, in particular ECG. However, due to triboelectric charge generation and motion artifacts, signal and thus diagnostic quality is inferior to galvanic coupling. Active closed-loop humidification of capacitive electrodes is proposed in this work as a new concept to improve signal quality. A capacitive ECG recording system integrated into a common car seat is presented. It can regulate the micro climate at the interface of electrode and patient by actively dispensing water vapour and monitoring humidity in a closed-loop approach. As a regenerative water reservoir, silica gel is used. The system was evaluated with respect to subjective and objective ECG signal quality. Active humidification was found to have a significant positive effect in case of previously poor quality. Also, it had no diminishing effect in case of already good signal quality.
Spatial-temporal filter effect in a computer model study of ventricular fibrillation.
Nowak, Claudia N; Fischer, Gerald; Wieser, Leonhard; Tilg, Bernhard; Neurauter, Andreas; Strohmenger, Hans U
2008-08-01
Prediction of countershock success from ventricular fibrillation (VF) ECG is a major challenge in critical care medicine. Recent findings indicate that stable, high frequency mother rotors are one possible mechanism maintaining VF. A computer model study was performed to investigate how epicardiac sources are reflected in the ECG. In the cardiac tissues of two computer models - a model with cubic geometry and a simplified torso model with a left ventricle - a mother rotor was induced by increasing the potassium rectifier current. On the epicardium, the dominant frequency (DF) map revealed a constant DF of 23 Hz (cubic model) and 24.4 Hz (torso model) in the region of the mother rotor, respectively. A sharp drop of frequency (3-18 Hz in the cubic model and 12.4-18 Hz in the torso model) occurred in the surrounding epicardial tissue of chaotic fibrillatory conduction. While no organized pattern was observable on the body surface of the cubic model, the mother rotor frequency can be identified in the anterior surface of the torso model because of the chosen position of the mother rotor in the ventricle (shortest distance to the body surface). Nevertheless, the DFs were damped on the body surfaces of both models (4.6-8.5 Hz in the cubic model and 14.4-16.4 Hz in the torso model). Thus, it was shown in this computer model study that wave propagation transforms the spatial low pass filtering of the thorax into a temporal low pass. In contrast to the resistive-capacitive low pass filter formed by the tissue, this spatial-temporal low pass filter becomes effective at low frequencies (tens of Hertz). This effect damps the high frequency components arising from the heart and it hampers a direct observation of rapid, organized sources of VF in the ECGs, when in an emergency case an artifact-free recording is not possible.
The correlation between the amplitude of Osborn wave and core body temperature.
Omar, Hesham R; Camporesi, Enrico M
2015-08-01
Several reports illustrate an inverse correlation between the Osborn wave (J wave) amplitude and core body temperature. We attempted to study the strength of this correlation. We reviewed all articles reporting hypothermic J waves from 1950-2014 for patient demographics, core body temperature in Celsius (°C), amplitude of the J wave in millimeters (mm), lead with the highest amplitude of J wave, presence of acidosis, PO2, electrolytes and outcome. In cases with more than one electrocardiogram (ECG), the respective core body temperature and J wave amplitude of each ECG were recorded. The main study outcome is to evaluate the correlation between the J wave amplitude and core body temperature in the admission ECG. We have also examined the strength of this relationship in cases with more than one ECG. We attempted to find the most frequent lead that recorded the highest amplitude of the J wave in addition to the correlation between the amplitude of J wave and pH. We found 64 articles comprising a total of 68 cases. When analyzing only cases with more than one reported ECG, there was a strong inverse correlation (r = - 0.682, p<0.001) between J wave amplitude and body temperature: however, when analyzing admission ECG of all cases, the correlation was only moderate (r = - 0.410, p<0.001). The lead with the highest amplitude of the J wave was V4 (44% of the cases, p<0.001) followed by V3 (23.7% of the cases, p<0.001). The amplitude of the J wave in the admission ECG of hypothermic patients may not accurately predict the core body temperature. © The European Society of Cardiology 2014.
Laszlo, Roman; Kunz, Katia; Dallmeier, Dhayana; Klenk, Jochen; Denkinger, Michael; Koenig, Wolfgang; Rothenbacher, Dietrich; Steinacker, Juergen Michael
2017-10-01
The detection of left ventricular hypertrophy (LVH) is still a common objective of electrocardiography (ECG) in clinical practice. The aim of our study was to evaluate the accuracy of LVH ECG indices in people older than 65 recruited from a population-based cohort (ActiFE-Ulm study). In 432 subjects (mean age 76.2 ± 5.5 years, 51% male), left ventricular mass was echocardiographically determined (Devereux formula) and indexed (LVMI) to body surface area. Several LVH ECG indices (Lewis voltage, Gubner-Ungerleider voltage, Sokolow-Lyon voltage/product, Cornell voltage/product) were calculated with the help of resting ECG data and compared with the echocardiographic assessment. Despite echocardiographic signs of LVH [LVMI > 115 (♂) or >95 g/m 2 (♀)] in 47.5% of all subjects, diagnostic performance of all ECG indices was generally low. Magnitude of all LVH-indices was mainly predicted by frontal QRS axis in multivariate linear regression analysis. In comparison with the literature data from younger subjects, average frontal QRS axis turned counterclockwise. Most probably, age-related counterclockwise turn of frontal QRS axis is mainly explanatory for the decreased magnitude of LVH ECG indices and consecutive worse diagnostic performance of these indices in the elderly. ECG indices for detection of LVH have insufficient predictive values in geriatric subjects and should therefore not be used clinically for this purpose. Nevertheless, due to its established relevancy in cardiac risk stratification in this age group, usage of some established ECG indices might keep its significance even in the age of modern cardiac imaging.
NASA Astrophysics Data System (ADS)
Lynn, W. D.; Escalona, O. J.; McEneaney, D. J.
2013-06-01
This study addresses an important question in the development of a ECG device that enables long term monitoring of cardiac rhythm. This device would utilise edge sensor technologies for dry, non-irritant skin contact suitable for distal limb application and would be supported by embedded ECG denoising processes. Contemporary ECG databases including those provided by MIT-BIH and Physionet are focused on interpretation of cardiac disease and rhythm tracking. The data is recorded using chest leads as in standard clinical practise. For the development of a peripherally located heart rhythm monitor, such data would be of limited use. To provide a useful database adequate for the development of the above mentioned cardiac monitoring device a unipolar body surface potential map from the left arm and wrist was gathered in 37 volunteer patients and characterized in this study. For this, the reference electrode was placed at the wrist. Bipolar far-field electrogram leads were derived and analysed. Factors such as skin variability, 50Hz noise interference, electrode contact noise, motion artifacts and electromyographic noise, presented a challenge. The objective was quantify the signal-to-noise ratio (SNR) at the far-field locations. Preliminary results reveal that an electrogram indicative of the QRS complex can be recorded on the distal portion of the left arm when denoised using signal averaging techniques.
A Novel Approach to ECG Classification Based upon Two-Layered HMMs in Body Sensor Networks
Liang, Wei; Zhang, Yinlong; Tan, Jindong; Li, Yang
2014-01-01
This paper presents a novel approach to ECG signal filtering and classification. Unlike the traditional techniques which aim at collecting and processing the ECG signals with the patient being still, lying in bed in hospitals, our proposed algorithm is intentionally designed for monitoring and classifying the patient's ECG signals in the free-living environment. The patients are equipped with wearable ambulatory devices the whole day, which facilitates the real-time heart attack detection. In ECG preprocessing, an integral-coefficient-band-stop (ICBS) filter is applied, which omits time-consuming floating-point computations. In addition, two-layered Hidden Markov Models (HMMs) are applied to achieve ECG feature extraction and classification. The periodic ECG waveforms are segmented into ISO intervals, P subwave, QRS complex and T subwave respectively in the first HMM layer where expert-annotation assisted Baum-Welch algorithm is utilized in HMM modeling. Then the corresponding interval features are selected and applied to categorize the ECG into normal type or abnormal type (PVC, APC) in the second HMM layer. For verifying the effectiveness of our algorithm on abnormal signal detection, we have developed an ECG body sensor network (BSN) platform, whereby real-time ECG signals are collected, transmitted, displayed and the corresponding classification outcomes are deduced and shown on the BSN screen. PMID:24681668
Alday, Erick A. Perez; Colman, Michael A.; Langley, Philip; Butters, Timothy D.; Higham, Jonathan; Workman, Antony J.; Hancox, Jules C.; Zhang, Henggui
2015-01-01
Rapid atrial arrhythmias such as atrial fibrillation (AF) predispose to ventricular arrhythmias, sudden cardiac death and stroke. Identifying the origin of atrial ectopic activity from the electrocardiogram (ECG) can help to diagnose the early onset of AF in a cost-effective manner. The complex and rapid atrial electrical activity during AF makes it difficult to obtain detailed information on atrial activation using the standard 12-lead ECG alone. Compared to conventional 12-lead ECG, more detailed ECG lead configurations may provide further information about spatio-temporal dynamics of the body surface potential (BSP) during atrial excitation. We apply a recently developed 3D human atrial model to simulate electrical activity during normal sinus rhythm and ectopic pacing. The atrial model is placed into a newly developed torso model which considers the presence of the lungs, liver and spinal cord. A boundary element method is used to compute the BSP resulting from atrial excitation. Elements of the torso mesh corresponding to the locations of the placement of the electrodes in the standard 12-lead and a more detailed 64-lead ECG configuration were selected. The ectopic focal activity was simulated at various origins across all the different regions of the atria. Simulated BSP maps during normal atrial excitation (i.e. sinoatrial node excitation) were compared to those observed experimentally (obtained from the 64-lead ECG system), showing a strong agreement between the evolution in time of the simulated and experimental data in the P-wave morphology of the ECG and dipole evolution. An algorithm to obtain the location of the stimulus from a 64-lead ECG system was developed. The algorithm presented had a success rate of 93%, meaning that it correctly identified the origin of atrial focus in 75/80 simulations, and involved a general approach relevant to any multi-lead ECG system. This represents a significant improvement over previously developed algorithms. PMID:25611350
Microelectronic bioinstrumentation systems
NASA Technical Reports Server (NTRS)
Ko, W. H.
1976-01-01
Progress was made in the development of an RF cage, a single channel RF powered ECG telemetry system, and a three channel RF powered ECG, aortic blood pressure, and body temperature telemetry system. Encapsulation materials for chronic implantation of electronic circuits in the body were also evaluated.
NASA Astrophysics Data System (ADS)
Yao, Bing; Yang, Hui
2016-12-01
This paper presents a novel physics-driven spatiotemporal regularization (STRE) method for high-dimensional predictive modeling in complex healthcare systems. This model not only captures the physics-based interrelationship between time-varying explanatory and response variables that are distributed in the space, but also addresses the spatial and temporal regularizations to improve the prediction performance. The STRE model is implemented to predict the time-varying distribution of electric potentials on the heart surface based on the electrocardiogram (ECG) data from the distributed sensor network placed on the body surface. The model performance is evaluated and validated in both a simulated two-sphere geometry and a realistic torso-heart geometry. Experimental results show that the STRE model significantly outperforms other regularization models that are widely used in current practice such as Tikhonov zero-order, Tikhonov first-order and L1 first-order regularization methods.
Some regularity on how to locate electrodes for higher fECG SNRs
NASA Astrophysics Data System (ADS)
Zhang, Jie-Min; Huang, Xiao-Lin; Guan, Qun; Liu, Tie-Bing; Li, Ping; Zhao, Ying; Liu, Hong-Xing
2015-03-01
The electrocardiogram (ECG) recorded from the abdominal surface of a pregnant woman is a composite of maternal ECG, fetal ECG (fECG) and other noises, while only the fECG component is always needed by us. With different locations of electrode pairs on the maternal abdominal surface to measure fECGs, the signal-to-noise ratios (SNRs) of the recorded abdominal ECGs are also correspondingly different. Some regularity on how to locate electrodes to obtain higher fECG SNRs is needed practically. In this paper, 343 groups of abdominal ECG records were acquired from 78 pregnant women with different electrode pairs locating, and an appropriate extended research database is formed. Then the regularity on fECG SNRs corresponding to different electrode pairs locating was studied. Based on statistical analysis, it is shown that the fECG SNRs are significantly higher in certain locations than others. Reasonable explanation is also provided to the statistical result using the theories of the fetal cardiac electrical axis and the signal phase delay. Project supported by the National Natural Science Foundation of China (Grant No. 61271079) and the Supporting Plan Project of Jiangsu Province, China (Grant No. BE2010720).
Cho, Hakyung; Lee, Joo Hyeon
2015-09-01
Smart clothing is a sort of wearable device used for ubiquitous health monitoring. It provides comfort and efficiency in vital sign measurements and has been studied and developed in various types of monitoring platforms such as T-shirt and sports bra. However, despite these previous approaches, smart clothing for electrocardiography (ECG) monitoring has encountered a serious shortcoming relevant to motion artifacts caused by wearer movement. In effect, motion artifacts are one of the major problems in practical implementation of most wearable health-monitoring devices. In the ECG measurements collected by a garment, motion artifacts are usually caused by improper location of the electrode, leading to lack of contact between the electrode and skin with body motion. The aim of this study was to suggest a design for ECG-monitoring clothing contributing to reduction of motion artifacts. Based on the clothing science theory, it was assumed in this study that the stability of the electrode in a dynamic state differed depending on the electrode location in an ECG-monitoring garment. Founded on this assumption, effects of 56 electrode positions were determined by sectioning the surface of the garment into grids with 6 cm intervals in the front and back of the bodice. In order to determine the optimal locations of the ECG electrodes from the 56 positions, ECG measurements were collected from 10 participants at every electrode position in the garment while the wearer was in motion. The electrode locations indicating both an ECG measurement rate higher than 80.0 % and a large amplitude during motion were selected as the optimal electrode locations. The results of this analysis show four electrode locations with consistently higher ECG measurement rates and larger amplitudes amongst the 56 locations. These four locations were abstracted to be least affected by wearer movement in this research. Based on this result, a design of the garment-formed ECG monitoring platform reflecting the optimal positions of the electrode was suggested.
NASA Technical Reports Server (NTRS)
Scheuring, Richard A.; Hamilton, D.; Jones, J. A.; Alexander, D.
2008-01-01
Currently there are several physiological monitoring requirements for Extravehicular Activity (EVA) in the Human-Systems Interface Requirements (HSIR) document, including continuous heart rhythm monitoring. However, it is not known whether heart rhythm monitoring in the lunar surface space suit is a necessary capability for lunar surface operations or in launch/landing suit the event of a cabin depressurization enroute to or from the moon. Methods: Current US astronaut corps demographic information was provided to an expert panel of cardiovascular medicine experts, including specialists in electrophysiology, exercise physiology, interventional cardiology and arrhythmia. This information included averages for male/female age, body mass index (BMI), blood pressure, cholesterol, inflammatory markers, echocardiogram, ranges for coronary artery calcium (CAC) scores for long duration astronauts, and ranges for heart rate (HR) and metabolic (MET) rates obtained during microgravity and lunar EVA. Results: The panel determined that no uncontrolled hazard was likely to occur in the suit during lunar surface or contingency microgravity ops that would require ECG monitoring in the highly screened US astronaut population. However having the capability for rhythm monitoring inside the vehicle (IVA) was considered critical to manage an astronaut in distress. Discussion: Heart rate (HR) monitoring alone allows effective monitoring of astronaut health and function. Consequently, electrocardiographic (ECG) monitoring capability as a clinical tool is not essential in the lunar or launch/landing space suit. However, the panel considered that rhythm monitoring could be useful in certain clinical situations, it was not considered required for safe operations. Also, lunar vehicles should be required to have ECG monitoring capability with a minimum of 5-lead ECG (derived 12- lead) for IVA medical assessments.
Schulze, Walther H. W.; Jiang, Yuan; Wilhelms, Mathias; Luik, Armin; Dössel, Olaf; Seemann, Gunnar
2015-01-01
In case of chest pain, immediate diagnosis of myocardial ischemia is required to respond with an appropriate treatment. The diagnostic capability of the electrocardiogram (ECG), however, is strongly limited for ischemic events that do not lead to ST elevation. This computational study investigates the potential of different electrode setups in detecting early ischemia at 10 minutes after onset: standard 3-channel and 12-lead ECG as well as body surface potential maps (BSPMs). Further, it was assessed if an additional ECG electrode with optimized position or the right-sided Wilson leads can improve sensitivity of the standard 12-lead ECG. To this end, a simulation study was performed for 765 different locations and sizes of ischemia in the left ventricle. Improvements by adding a single, subject specifically optimized electrode were similar to those of the BSPM: 2–11% increased detection rate depending on the desired specificity. Adding right-sided Wilson leads had negligible effect. Absence of ST deviation could not be related to specific locations of the ischemic region or its transmurality. As alternative to the ST time integral as a feature of ST deviation, the K point deviation was introduced: the baseline deviation at the minimum of the ST-segment envelope signal, which increased 12-lead detection rate by 7% for a reasonable threshold. PMID:26587538
Loewe, Axel; Schulze, Walther H W; Jiang, Yuan; Wilhelms, Mathias; Luik, Armin; Dössel, Olaf; Seemann, Gunnar
2015-01-01
In case of chest pain, immediate diagnosis of myocardial ischemia is required to respond with an appropriate treatment. The diagnostic capability of the electrocardiogram (ECG), however, is strongly limited for ischemic events that do not lead to ST elevation. This computational study investigates the potential of different electrode setups in detecting early ischemia at 10 minutes after onset: standard 3-channel and 12-lead ECG as well as body surface potential maps (BSPMs). Further, it was assessed if an additional ECG electrode with optimized position or the right-sided Wilson leads can improve sensitivity of the standard 12-lead ECG. To this end, a simulation study was performed for 765 different locations and sizes of ischemia in the left ventricle. Improvements by adding a single, subject specifically optimized electrode were similar to those of the BSPM: 2-11% increased detection rate depending on the desired specificity. Adding right-sided Wilson leads had negligible effect. Absence of ST deviation could not be related to specific locations of the ischemic region or its transmurality. As alternative to the ST time integral as a feature of ST deviation, the K point deviation was introduced: the baseline deviation at the minimum of the ST-segment envelope signal, which increased 12-lead detection rate by 7% for a reasonable threshold.
Low-power analog integrated circuits for wireless ECG acquisition systems.
Tsai, Tsung-Heng; Hong, Jia-Hua; Wang, Liang-Hung; Lee, Shuenn-Yuh
2012-09-01
This paper presents low-power analog ICs for wireless ECG acquisition systems. Considering the power-efficient communication in the body sensor network, the required low-power analog ICs are developed for a healthcare system through miniaturization and system integration. To acquire the ECG signal, a low-power analog front-end system, including an ECG signal acquisition board, an on-chip low-pass filter, and an on-chip successive-approximation analog-to-digital converter for portable ECG detection devices is presented. A quadrature CMOS voltage-controlled oscillator and a 2.4 GHz direct-conversion transmitter with a power amplifier and upconversion mixer are also developed to transmit the ECG signal through wireless communication. In the receiver, a 2.4 GHz fully integrated CMOS RF front end with a low-noise amplifier, differential power splitter, and quadrature mixer based on current-reused folded architecture is proposed. The circuits have been implemented to meet the specifications of the IEEE 802.15.4 2.4 GHz standard. The low-power ICs of the wireless ECG acquisition systems have been fabricated using a 0.18 μm Taiwan Semiconductor Manufacturing Company (TSMC) CMOS standard process. The measured results on the human body reveal that ECG signals can be acquired effectively by the proposed low-power analog front-end ICs.
Scott, Peter J; Navarro, Cesar; Stevenson, Mike; Murphy, John C; Bennett, Johan R; Owens, Colum; Hamilton, Andrew; Manoharan, Ganesh; Adgey, A A Jennifer
2011-01-01
For the assessment of patients with chest pain, the 12-lead electrocardiogram (ECG) is the initial investigation. Major management decisions are based on the ECG findings, both for attempted coronary artery revascularization and risk stratification. The aim of this study was to determine if the current 6 precordial leads (V(1)-V(6)) are optimally located for the detection of ST-segment elevation in ST-segment elevation myocardial infarction (STEMI). We analyzed 528 (38% anterior [200], 44% inferior [233], and 18% lateral [95]) patients with STEMI with both a 12-lead ECG and an 80-lead body surface map (BSM) ECG (Prime ECG, Heartscape Technologies, Bangor, Northern Ireland). Body surface map was recorded within 15 minutes of the 12-lead ECG during the acute event and before revascularization. ST-segment elevation of each lead on the BSM was compared with the corresponding 12-lead precordial leads (V(1)-V(6)) for anterior STEMI. In addition, for lateral STEMI, leads I and aVL of the BSM were also compared; and limb leads II, III, aVF of the BSM were compared with inferior unipolar BSM leads for inferior STEMI. Leads with the greatest mean ST-segment elevation were selected, and significance was determined by analysis of variance of the mean ST segment. For anterior STEMI, leads V(1), V(2), 32, 42, 51, and 57 had the greatest mean ST elevation. These leads are located in the same horizontal plane as that of V(1) and V(2). Lead 32 had a significantly greater mean ST elevation than the corresponding precordial lead V(3) (P = .012); and leads 42, 51, and 57 were also significantly greater than corresponding leads V(4), V(5), V(6), respectively (P < .001). Similar findings were also found for lateral STEMI. For inferior STEMI, the limb leads of the BSM (II, III, and aVF) had the greatest mean ST-segment elevation; and lead III was significantly superior to the inferior unipolar leads (7, 17, 27, 37, 47, 55, and 61) of the BSM (P < .001). Leads placed on a horizontal strip, in line with leads V(1) and V(2), provided the optimal placement for the diagnosis of anterior and lateral STEMI and appear superior to leads V(3), V(4), V(5), and V(6). This is of significant clinical interest, not only for ease and replication of lead placement but also may lead to increased recruitment of patients eligible for revascularization with none or borderline ST-segment elevation on the initial 12-lead ECG. Copyright © 2011 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Toyama, S.; Suzuki, K.; Takahashi, T.
1987-07-01
Based on epicardial isopotential mapping (the Ep Map), which was calculated from body surface isopotential mapping (the Body Map) with Yamashita's method, using the finite element technique, we predicted the location and size of the abnormal depolarized area (the infarcted area) in 19 clinical cases of anterior and 18 cases of inferoposterior infarction. The prediction was done using Toyama's diagnostic method, previously reported. The accuracy of the prediction by the Ep Map was assessed by comparing it with findings from thallium-201 scintigraphy (SCG), electrocardiography (ECG) and vectorcardiography (VCG). In all cases of anterior infarction, the location of the abnormal depolarizedmore » areas determined on the Ep Map, which was localized at the anterior wall along the anterior intraventricular septum, agreed with the location of the abnormal findings obtained by SCG, ECG and VCG. For all inferoposterior infarction cases, the abnormal depolarized areas were localized at the posterior wall and the location also coincided with that of the abnormal findings obtained by SCG, ECG and VCG. Furthermore, we ranked and ordered the size of the abnormal depolarized areas, which were predicted by the Ep Map for both anterior and inferoposterior infarction cases. In the cases of anterior infarction, the order of the size of the abnormal depolarized area by the Ep Map was correlated to the size of the abnormal findings by SCG, as well as to the results from Selvester's QRS scoring system in ECG and to the angle of the maximum QRS vector in the horizontal plane in VCG.« less
Design of Secure ECG-Based Biometric Authentication in Body Area Sensor Networks
Peter, Steffen; Pratap Reddy, Bhanu; Momtaz, Farshad; Givargis, Tony
2016-01-01
Body area sensor networks (BANs) utilize wireless communicating sensor nodes attached to a human body for convenience, safety, and health applications. Physiological characteristics of the body, such as the heart rate or Electrocardiogram (ECG) signals, are promising means to simplify the setup process and to improve security of BANs. This paper describes the design and implementation steps required to realize an ECG-based authentication protocol to identify sensor nodes attached to the same human body. Therefore, the first part of the paper addresses the design of a body-area sensor system, including the hardware setup, analogue and digital signal processing, and required ECG feature detection techniques. A model-based design flow is applied, and strengths and limitations of each design step are discussed. Real-world measured data originating from the implemented sensor system are then used to set up and parametrize a novel physiological authentication protocol for BANs. The authentication protocol utilizes statistical properties of expected and detected deviations to limit the number of false positive and false negative authentication attempts. The result of the described holistic design effort is the first practical implementation of biometric authentication in BANs that reflects timing and data uncertainties in the physical and cyber parts of the system. PMID:27110785
Design of Secure ECG-Based Biometric Authentication in Body Area Sensor Networks.
Peter, Steffen; Reddy, Bhanu Pratap; Momtaz, Farshad; Givargis, Tony
2016-04-22
Body area sensor networks (BANs) utilize wireless communicating sensor nodes attached to a human body for convenience, safety, and health applications. Physiological characteristics of the body, such as the heart rate or Electrocardiogram (ECG) signals, are promising means to simplify the setup process and to improve security of BANs. This paper describes the design and implementation steps required to realize an ECG-based authentication protocol to identify sensor nodes attached to the same human body. Therefore, the first part of the paper addresses the design of a body-area sensor system, including the hardware setup, analogue and digital signal processing, and required ECG feature detection techniques. A model-based design flow is applied, and strengths and limitations of each design step are discussed. Real-world measured data originating from the implemented sensor system are then used to set up and parametrize a novel physiological authentication protocol for BANs. The authentication protocol utilizes statistical properties of expected and detected deviations to limit the number of false positive and false negative authentication attempts. The result of the described holistic design effort is the first practical implementation of biometric authentication in BANs that reflects timing and data uncertainties in the physical and cyber parts of the system.
Somauroo, J; Pyatt, J; Jackson, M; Perry, R; Ramsdale, D
2001-01-01
OBJECTIVE—To assess physiological cardiac adaptation in adolescent professional soccer players. SUBJECTS AND DESIGN—Over a 32 month period 172 teenage soccer players were screened by echocardiography and ECG at a tertiary referral cardiothoracic centre. They were from six professional soccer teams in the north west of England, competing in the English Football League. One was excluded because of an atrial septal defect. The median age of the 171 players assessed was 16.7 years (5th to 95th centile range: 14-19) and median body surface area 1.68 m2 (1.39-2.06 m2). MAIN OUTCOME MEASURES—Standard echocardiographic measurements were compared with predicted mean, lower, and upper limits in a cohort of normal controls after matching for age and surface area. Univariate regression analysis was used to assess the correlation between echocardiographic variables and the age and surface area of the soccer player cohort. ECG findings were also assessed. RESULTS—All mean echocardiographic variables were greater than predicted for age and surface area matched controls (p < 0.001). All variables except left ventricular septal and posterior wall thickness showed a modest linear correlation with surface area (r = 0.2 to 0.4, p < 0.001); however, left ventricular mass was the only variable that was significantly correlated with age (r = 0.2, p < 0.01). Only six players (3.5%) had structural anomalies, none of which required further evaluation. All had normal left ventricular systolic function. Sinus bradycardia was found in 65 (39%). The Solokow-Lyon voltage criteria for left ventricular hypertrophy were present in 85 (50%) and the Romhilt-Estes points score (five or more) in 29 (17%). Repolarisation changes were present in 19 (11%), mainly in the inferior leads. CONCLUSIONS—Chamber dimensions, left ventricular wall thickness and mass, and aortic root size were all greater than predicted for controls after matching for age and surface area. Sinus bradycardia and the ECG criteria for left ventricular hypertrophy were common but there was poor correlation with echocardiographic left ventricular hypertrophy. The type of hypertrophy found reflected the combined endurance and strength based training undertaken. Keywords: cardiac morphology; professional soccer players; echocardiography; ECG findings PMID:11359746
Image-guided optimization of the ECG trace in cardiac MRI.
Barnwell, James D; Klein, J Larry; Stallings, Cliff; Sturm, Amanda; Gillespie, Michael; Fine, Jason; Hyslop, W Brian
2012-03-01
Improper electrocardiogram (ECG) lead placement resulting in suboptimal gating may lead to reduced image quality in cardiac magnetic resonance imaging (CMR). A patientspecific systematic technique for rapid optimization of lead placement may improve CMR image quality. A rapid 3 dimensional image of the thorax was used to guide the realignment of ECG leads relative to the cardiac axis of the patient in forty consecutive adult patients. Using our novel approach and consensus reading of pre- and post-correction ECG traces, seventy-three percent of patients had a qualitative improvement in their ECG tracings, and no patient had a decrease in quality of their ECG tracing following the correction technique. Statistically significant improvement was observed independent of gender, body mass index, and cardiac rhythm. This technique provides an efficient option to improve the quality of the ECG tracing in patients who have a poor quality ECG with standard techniques.
DexterNet: An Open Platform for Heterogeneous Body Sensor Networks and Its Applications
2008-12-19
motion, ECG PC, PDA 802.15.4 No No ALARM-NET pulse oximetry STARGATE Bluetooth No Yes [19] motion, ECG PDA, PC 802.11 (temperature, light, PIR) DexterNet...motion, ECG PDA 802.15.4 Yes Possible via SPINE EIP, GPS PC (e.g., air pollution sensor) MICAz, SHIMMER uses MICAz sensors and STARGATE to relay the
Hombach, V; Kebbel, U; Höpp, H W; Winter, U J; Braun, V; Deutsch, H; Hirche, H; Hilger, H H
1982-12-24
A new ECG-amplifier system for recording cardiac microvolt potentials from the body surface is described. The improvement in signal-to-noise ratio was achieved by using specially designed suction electrodes, which were isolated from each other; by applying parallel signal averaging from four electrode pairs via four low-noise amplifiers; and by conducting the registration in Faraday cage. in 14 normal subjects, 12 patients with coronary heart disease and one patient with surgically corrected ventricular septal defect and pulmonary stenosis, pre-P-potentials (possible sinus node activity), His bundle potentials and ventricular late potentials were recorded with differing degrees of success. Variations of the time intervals to the preceding QRS complex were observed within the S-T segment in six of nine patients with demonstrable ventricular late ventricular late potentials. The advantage of such continuously recording ECG system lies in the highly accurate registration of cardiac micropotentials, particularly with ventricular late potentials that are changing in time, whereas the signal-averaging technique does not provide such possibilities.
Tan, Eugene S J; Yap, Jonathan; Xu, Chang Fen; Feng, Liang; Nyunt, Shwe Zin; Santhanakrishnan, Rajalakshmi; Chan, Michelle M Y; Seow, Swee Chong; Ching, Chi Keong; Yeo, Khung Keong; Richards, A Mark; Ng, Tze Pin; Lim, Toon Wei; Lam, Carolyn S P
2016-07-01
Existing electrocardiographic (ECG) reference values were derived in middle-aged Caucasian adults. We aimed to assess the association of age, sex, body size and ethnicity on ECG parameters in a multi-ethnic Asian population. Resting 12-lead ECG and anthropometric measurements were performed in a community-based cohort of 3777 older Asians (age 64.7±9.1 years, 1467 men, 88.8% Chinese, 7.7% Malay, 3.5% Indian, body mass index [BMI] 24.0±3.9kg/m(2)). Men had longer PR interval, wider QRS, shorter QTc interval and taller SV3. In both sexes, older age was associated with longer PR interval, wider QRS, larger R aVL and more leftward QRS axis, while higher BMI was associated with longer PR interval, wider QRS, larger RaVL and more negative QRS axis. There were significant inter-ethnic differences in QRS duration among men, as well as in PR and QTc intervals among women (all adjusted p<0.05). Findings were similar in a healthy subset of 1158 adults (age 61.2±9.1 years, 365 men) without cardiovascular risk factors. These first community-based ECG data in multi-ethnic older Asians highlight the independent effects of age, sex, body size and ethnicity on ECG parameters. Copyright © 2016 Australian and New Zealand Society of Cardiac and Thoracic Surgeons (ANZSCTS) and the Cardiac Society of Australia and New Zealand (CSANZ). Published by Elsevier B.V. All rights reserved.
Rowe, Matthew K; Moore, Peter; Pratap, Jit; Coucher, John; Gould, Paul A; Kaye, Gerald C
2017-05-01
Controversy exists regarding the optimal lead position for chronic right ventricular (RV) pacing. Placing a lead at the RV septum relies upon fluoroscopy assisted by a surface 12-lead electrocardiogram (ECG). We compared the postimplant lead position determined by ECG-gated multidetector contrast-enhanced computed tomography (MDCT) with the position derived from the surface 12-lead ECG. Eighteen patients with permanent RV leads were prospectively enrolled. Leads were placed in the RV septum (RVS) in 10 and the RV apex (RVA) in eight using fluoroscopy with anteroposterior and left anterior oblique 30° views. All patients underwent MDCT imaging and paced ECG analysis. ECG criteria were: QRS duration; QRS axis; positive or negative net QRS amplitude in leads I, aVL, V1, and V6; presence of notching in the inferior leads; and transition point in precordial leads at or after V4. Of the 10 leads implanted in the RVS, computed tomography (CT) imaging revealed seven to be at the anterior RV wall, two at the anteroseptal junction, and one in the true septum. For the eight RVA leads, four were anterior, two septal, and two anteroseptal. All leads implanted in the RVS met at least one ECG criteria (median 3, range 1-6). However, no criteria were specific for septal position as judged by MDCT. Mean QRS duration was 160 ± 24 ms in the RVS group compared with 168 ± 14 ms for RVA pacing (P = 0.38). We conclude that the surface ECG is not sufficiently accurate to determine RV septal lead tip position compared to cardiac CT. © 2017 Wiley Periodicals, Inc.
Saturation of the right-leg drive amplifier in low-voltage ECG monitors.
Freeman, Daniel K; Gatzke, Ronald D; Mallas, Georgios; Chen, Yu; Brouse, Chris J
2015-01-01
Electrocardiogram (ECG) monitoring is a critical tool in patient care, but its utility is often balanced with frustration from clinicians who are constantly distracted by false alarms. This has motivated the need to readdress the major factors that contribute to ECG noise with the goal of reducing false alarms. In this study, we describe a previously unreported phenomenon in which ECG noise can result from an unintended interaction between two systems: 1) the dc lead-off circuitry that is used to detect whether electrodes fall off the patient; and 2) the right-leg drive (RLD) system that is responsible for reducing ac common-mode noise that couples into the body. Using a circuit model to study this interaction, we found that in the presence of a dc lead-off system, even moderate increases in the right-leg skin-electrode resistance can cause the RLD amplifier to saturate. Such saturation can produce ECG noise because the RLD amplifier will no longer be capable of attenuating ac common-mode noise on the body. RLD saturation is particularly a problem for modern ECG monitors that use low-voltage supply levels. For example, for a 12-lead ECG and a 2 V power supply, saturation will occur when the right-leg electrode resistance reaches only 2 MΩ. We discuss several design solutions that can be used in low-voltage monitors to avoid RLD saturation.
ECG artifact cancellation in surface EMG signals by fractional order calculus application.
Miljković, Nadica; Popović, Nenad; Djordjević, Olivera; Konstantinović, Ljubica; Šekara, Tomislav B
2017-03-01
New aspects for automatic electrocardiography artifact removal from surface electromyography signals by application of fractional order calculus in combination with linear and nonlinear moving window filters are explored. Surface electromyography recordings of skeletal trunk muscles are commonly contaminated with spike shaped artifacts. This artifact originates from electrical heart activity, recorded by electrocardiography, commonly present in the surface electromyography signals recorded in heart proximity. For appropriate assessment of neuromuscular changes by means of surface electromyography, application of a proper filtering technique of electrocardiography artifact is crucial. A novel method for automatic artifact cancellation in surface electromyography signals by applying fractional order calculus and nonlinear median filter is introduced. The proposed method is compared with the linear moving average filter, with and without prior application of fractional order calculus. 3D graphs for assessment of window lengths of the filters, crest factors, root mean square differences, and fractional calculus orders (called WFC and WRC graphs) have been introduced. For an appropriate quantitative filtering evaluation, the synthetic electrocardiography signal and analogous semi-synthetic dataset have been generated. The examples of noise removal in 10 able-bodied subjects and in one patient with muscle dystrophy are presented for qualitative analysis. The crest factors, correlation coefficients, and root mean square differences of the recorded and semi-synthetic electromyography datasets showed that the most successful method was the median filter in combination with fractional order calculus of the order 0.9. Statistically more significant (p < 0.001) ECG peak reduction was obtained by the median filter application compared to the moving average filter in the cases of low level amplitude of muscle contraction compared to ECG spikes. The presented results suggest that the novel method combining a median filter and fractional order calculus can be used for automatic filtering of electrocardiography artifacts in the surface electromyography signal envelopes recorded in trunk muscles. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.
Teh, Andrew W; Kistler, Peter M; Kalman, Jonathan M
2009-06-01
Focal atrial tachycardia is an unusual form of supraventricular tachycardia arising from defined anatomic locations and sites within the atria. Although recent advances in mapping technology have facilitated successful ablation, the surface ECG remains an important aid in localizing the focus. This review discusses the use of P-wave morphology on surface ECG to localize the site of focal atrial tachycardia.
ECG-cryptography and authentication in body area networks.
Zhang, Zhaoyang; Wang, Honggang; Vasilakos, Athanasios V; Fang, Hua
2012-11-01
Wireless body area networks (BANs) have drawn much attention from research community and industry in recent years. Multimedia healthcare services provided by BANs can be available to anyone, anywhere, and anytime seamlessly. A critical issue in BANs is how to preserve the integrity and privacy of a person's medical data over wireless environments in a resource efficient manner. This paper presents a novel key agreement scheme that allows neighboring nodes in BANs to share a common key generated by electrocardiogram (ECG) signals. The improved Jules Sudan (IJS) algorithm is proposed to set up the key agreement for the message authentication. The proposed ECG-IJS key agreement can secure data communications over BANs in a plug-n-play manner without any key distribution overheads. Both the simulation and experimental results are presented, which demonstrate that the proposed ECG-IJS scheme can achieve better security performance in terms of serval performance metrics such as false acceptance rate (FAR) and false rejection rate (FRR) than other existing approaches. In addition, the power consumption analysis also shows that the proposed ECG-IJS scheme can achieve energy efficiency for BANs.
Development of a portable wireless system for bipolar concentric ECG recording
NASA Astrophysics Data System (ADS)
Prats-Boluda, G.; Ye-Lin, Y.; Bueno Barrachina, J. M.; Senent, E.; Rodriguez de Sanabria, R.; Garcia-Casado, J.
2015-07-01
Cardiovascular diseases (CVDs) remain the biggest cause of deaths worldwide. ECG monitoring is a key tool for early diagnosis of CVDs. Conventional monitors use monopolar electrodes resulting in poor spatial resolution surface recordings and requiring extensive wiring. High-spatial resolution surface electrocardiographic recordings provide valuable information for the diagnosis of a wide range of cardiac abnormalities, including infarction and arrhythmia. The aim of this work was to develop and test a wireless recording system for acquiring high spatial resolution ECG signals, based on a flexible tripolar concentric electrode (TCE) without cable wiring or external reference electrode which would make more comnfortable its use in clinical practice. For this, a portable, wireless sensor node for analogue conditioning, digitalization and transmission of a bipolar concentric ECG signal (BC-ECG) using a TCE and a Mason-likar Lead-I ECG (ML-Lead-I ECG) signal was developed. Experimental results from a total of 32 healthy volunteers showed that the ECG fiducial points in the BC-ECG signals, recorded with external and internal reference electrode, are consistent with those of simultaneous ML-Lead-I ECG. No statistically significant difference was found in either signal amplitude or morphology, regardless of the reference electrode used, being the signal-to-noise similar to that of ML-Lead-I ECG. Furthermore, it has been observed that BC-ECG signals contain information that could not available in conventional records, specially related to atria activity. The proposed wireless sensor node provides non-invasive high-local resolution ECG signals using only a TCE without additional wiring, which would have great potential in medical diagnosis of diseases such as atrial or ventricular fibrillations or arrhythmias that currently require invasive diagnostic procedures (catheterization).
Noncontact ECG system for unobtrusive long-term monitoring.
McDonald, Neil J; Anumula, Harini A; Duff, Eric; Soussou, Walid
2012-01-01
This paper describes measurements made using an ECG system with QUASAR's capacitive bioelectrodes integrated into a pad system that is placed over a chair. QUASAR's capacitive bioelectrode has the property of measuring bioelectric potentials at a small separation from the body. This enables the measurement of ECG signals through fabric, without the removal of clothing or preparation of skin. The ECG was measured through the subject's clothing while the subject sat in the chair without any supporting action from the subject. The ECG pad system is an example of a high compliance system that places minimal requirements upon the subject and, consequently, can be used to generate a long-term record from ECG segments collected on a daily basis, providing valuable information on long-term trends in cardiac health.
Effect of gender on computerized electrocardiogram measurements in college athletes.
Mandic, Sandra; Fonda, Holly; Dewey, Frederick; Le, Vy-van; Stein, Ricardo; Wheeler, Matt; Ashley, Euan A; Myers, Jonathan; Froelicher, Victor F
2010-06-01
Broad criteria for classifying an electrocardiogram (ECG) as abnormal and requiring additional testing prior to participating in competitive athletics have been recommended for the preparticipation examination (PPE) of athletes. Because these criteria have not considered gender differences, we examined the effect of gender on the computerized ECG measurements obtained on Stanford student athletes. Currently available computer programs require a basis for "normal" in athletes of both genders to provide reliable interpretation. During the 2007 PPE, computerized ECGs were recorded and analyzed on 658 athletes (54% male; mean age, 19 +/- 1 years) representing 22 sports. Electrocardiogram measurements included intervals and durations in all 12 leads to calculate 12-lead voltage sums, QRS amplitude and QRS area, spatial vector length (SVL), and the sum of the R wave in V5 and S wave in V2 (RSsum). By computer analysis, male athletes had significantly greater QRS duration, PR interval, Q-wave duration, J-point amplitude, and T-wave amplitude, and shorter QTc interval compared with female athletes (all P < 0.05). All ECG indicators of left ventricular electrical activity were significantly greater in males. Although gender was consistently associated with indices of atrial and ventricular electrical activity in multivariable analysis, ECG measurements correlated poorly with body dimensions. Significant gender differences exist in ECG measurements of college athletes that are not explained by differences in body size. Our tables of "normal" computerized gender-specific measurements can facilitate the development of automated ECG interpretation for screening young athletes.
Opadijo, O G; Omotoso, A B O; Akande, A A
2003-12-01
Left ventricular hypertrophy (LVH) is considered an independent risk factor even in the absence of systemic hypertension. Electrocardiographic (ECG) LVH with repolarisation changes has been found in some countries to carry more coronary risk than LVH alone. How far this observation is true among adult Nigerians is not known. We therefore decided to study adult Nigerians with ECG-LVH with or without ST-T waves changes and compare them with normal age matched controls (without ECG-LVH) in relation with established modifiable risk factors such as systemic hypertension (BP), body mass index (BMI), fasting blood sugar (FBS) and serum lipids such as total cholesterol (Tc), low density lipoprotein cholesterol (LDL-C), high density lipoprotein cholesterol (HDL-C) and triglyceride (TG). Adult Nigerians who were consecutively referred to the ECG laboratory were randomly recruited. Three hundred patients were studied. Their blood pressures (BP) as well as body mass indices were recorded after recording their resting 12 read ECG using portable Seward 9953 ECG machine. Their waist-hip ratio (WHR) was also recorded. Blood samples were taken to determine their fasting blood sugar and serum lipids. Their ECG tracings were read by the cardiologists involved in the study while the blood samples were analysed by the chemical pathologist also involved in the study. At the end of the ECG reading, the patients were divided into 3 groups according to whether there was no ECG-LVH (control group A), ECG-LVH alone (group B), and ECG-LVH with ST-T waves changes (group C). One hundred and fifty (50%) patients belonged to group A, 100 (33.3%) patients to group B and 50 (16.7%) group C. Group B patients were found to have higher modifiable risk factors in form of systemic BP. Tc, LDL-C, and WHR compared to group A. However, the group C patients had increased load of these coronary risk factors in terms of BP elevation, higher BMI, FBS, and scrum cholesterol compared to group B. In addition, more female patients were involved in group C. The mean age of group C patients compared to group B was also significantly higher (P<0.001) even though no significant age difference was noted between group C and group A patients. It is concluded that Nigerians with ECG-LVH with ST-T waves changes have increased risk of cardiovascular risk factors compared to normal group A patients and even patients with EGC-LVH (group B) alone. Hence, they represent subset of patients to be aggressively followed up with multiple risk factors intervention.
E-healthcare at an experimental welfare techno house in Japan.
Tamura, Toshiyo; Kawarada, Atsushi; Nambu, Masayuki; Tsukada, Akira; Sasaki, Kazuo; Yamakoshi, Ken-Ichi
2007-01-01
An automated monitoring system for home health care has been designed for an experimental house in Japan called the Welfare Techno House (WTH). Automated electrocardiogram (ECG) measurements can be taken while in bed, in the bathtub, and on the toilet, without the subject's awareness, and without using body surface electrodes. In order to evaluate this automated health monitoring system, overnight measurements were performed to monitor health status during the daily lives of both young and elderly subjects.
IT-based diagnostic instrumentation systems for personalized healthcare services.
Chun, Honggu; Kang, Jaemin; Kim, Ki-Jung; Park, Kwang Suk; Kim, Hee Chan
2005-01-01
This paper describes recent research and development activities on the diagnostic instruments for personalized healthcare services in Seoul National University. Utilizing the state-of-the-art information technologies (IT), various diagnostic medical instruments have been integrated into a personal wearable device and a home telehealthcare system. We developed a wrist-worn integrated health monitoring device (WIHMD) which performs the measurements of non-invasive blood pressure (NIBP), pulse oximetry (SpO2), electrocardiogram (ECG), respiration rate, heart rate, and body surface temperature and the detection of falls to determine the onset of emergency situation. The WIHMD also analyzes the acquired bio-signals and transmits the resultant data to a healthcare service center through a commercial cellular phone. Two different kinds of IT-based blood glucometer have been developed using a cellular phone and PDA(personal digital assistant) as a main unit. A blood glucometer was also integrated within a wrist pressure measurement module which is interfaced with a cellular phone via Telecommunications Technology Association (TTA) standard in order to provide users with easiness in measuring and handling two important health parameters. Non-intrusive bio-signal measurement systems were developed for the ease of home use. One can measure his ECG on a bed while he is sleeping; measure his ECG, body temperature, bodyfat ratio and weight on a toilet seat; measure his ECG on a chair; and estimate the degree of activity by motion analysis using a camera. Another integrated diagnostic system for home telehealthcare services has been developed to include a 12 channels ECG, a pressure meter for NIBP, a blood glucometer, a bodyfat meter and a spirometer. It is an expert system to analyze the measured health data and based on the diagnostic result, the system provides an appropriate medical consultation. The measured data can be either stored on the system or transmitted to the central server through the internet. We have installed the developed systems on a model house for the performance evaluation and confirmed the possibility of the system as an effective tool for the personalized healthcare services.
Sugano, Hiroto; Hara, Shinsuke; Tsujioka, Tetsuo; Inoue, Tadayuki; Nakajima, Shigeyoshi; Kozaki, Takaaki; Namkamura, Hajime; Takeuchi, Kazuhide
2011-01-01
For ubiquitous health care systems which continuously monitor a person's vital signs such as electrocardiogram (ECG), body surface temperature and three-dimensional (3D) acceleration by wireless, it is important to accurately detect the occurrence of an abnormal event in the data and immediately inform a medical doctor of its detail. In this paper, we introduce a remote health care system, which is composed of a wireless vital sensor, multiple receivers and a triage engine installed in a desktop personal computer (PC). The middleware installed in the receiver, which was developed in C++, supports reliable data handling of vital data to the ethernet port. On the other hand, the human interface of the triage engine, which was developed in JAVA, shows graphics on his/her ECG data, 3D acceleration data, body surface temperature data and behavior status in the display of the desktop PC and sends an urgent e-mail containing the display data to a pre-registered medical doctor when it detects the occurrence of an abnormal event. In the triage engine, the lethal arrhythmia detection algorithm based on short time Fourier transform (STFT) analysis can achieve 100 % sensitivity and 99.99 % specificity, and the behavior recognition algorithm based on the combination of the nearest neighbor method and the Naive Bayes method can achieve more than 71 % classification accuracy.
3D Finite Element Electrical Model of Larval Zebrafish ECG Signals
Crowcombe, James; Dhillon, Sundeep Singh; Hurst, Rhiannon Mary; Egginton, Stuart; Müller, Ferenc; Sík, Attila; Tarte, Edward
2016-01-01
Assessment of heart function in zebrafish larvae using electrocardiography (ECG) is a potentially useful tool in developing cardiac treatments and the assessment of drug therapies. In order to better understand how a measured ECG waveform is related to the structure of the heart, its position within the larva and the position of the electrodes, a 3D model of a 3 days post fertilisation (dpf) larval zebrafish was developed to simulate cardiac electrical activity and investigate the voltage distribution throughout the body. The geometry consisted of two main components; the zebrafish body was modelled as a homogeneous volume, while the heart was split into five distinct regions (sinoatrial region, atrial wall, atrioventricular band, ventricular wall and heart chambers). Similarly, the electrical model consisted of two parts with the body described by Laplace’s equation and the heart using a bidomain ionic model based upon the Fitzhugh-Nagumo equations. Each region of the heart was differentiated by action potential (AP) parameters and activation wave conduction velocities, which were fitted and scaled based on previously published experimental results. ECG measurements in vivo at different electrode recording positions were then compared to the model results. The model was able to simulate action potentials, wave propagation and all the major features (P wave, R wave, T wave) of the ECG, as well as polarity of the peaks observed at each position. This model was based upon our current understanding of the structure of the normal zebrafish larval heart. Further development would enable us to incorporate features associated with the diseased heart and hence assist in the interpretation of larval zebrafish ECGs in these conditions. PMID:27824910
Segmentation of ECG from Surface EMG Using DWT and EMD: A Comparison Study
NASA Astrophysics Data System (ADS)
Shahbakhti, Mohammad; Heydari, Elnaz; Luu, Gia Thien
2014-10-01
The electrocardiographic (ECG) signal is a major artifact during recording the surface electromyography (SEMG). Removal of this artifact is one of the important tasks before SEMG analysis for biomedical goals. In this paper, the application of discrete wavelet transform (DWT) and empirical mode decomposition (EMD) for elimination of ECG artifact from SEMG is investigated. The focus of this research is to reach the optimized number of decomposed levels using mean power frequency (MPF) by both techniques. In order to implement the proposed methods, ten simulated and three real ECG contaminated SEMG signals have been tested. Signal-to-noise ratio (SNR) and mean square error (MSE) between the filtered and the pure signals are applied as the performance indexes of this research. The obtained results suggest both techniques could remove ECG artifact from SEMG signals fair enough, however, DWT performs much better and faster in real data.
A review on digital ECG formats and the relationships between them.
Trigo, Jesús Daniel; Alesanco, Alvaro; Martínez, Ignacio; García, José
2012-05-01
A plethora of digital ECG formats have been proposed and implemented. This heterogeneity hinders the design and development of interoperable systems and entails critical integration issues for the healthcare information systems. This paper aims at performing a comprehensive overview on the current state of affairs of the interoperable exchange of digital ECG signals. This includes 1) a review on existing digital ECG formats, 2) a collection of applications and cardiology settings using such formats, 3) a compilation of the relationships between such formats, and 4) a reflection on the current situation and foreseeable future of the interoperable exchange of digital ECG signals. The objectives have been approached by completing and updating previous reviews on the topic through appropriate database mining. 39 digital ECG formats, 56 applications, tools or implantation experiences, 47 mappings/converters, and 6 relationships between such formats have been found in the literature. The creation and generalization of a single standardized ECG format is a desirable goal. However, this unification requires political commitment and international cooperation among different standardization bodies. Ongoing ontology-based approaches covering ECG domain have recently emerged as a promising alternative for reaching fully fledged ECG interoperability in the near future.
Reconstruction of an 8-lead surface ECG from two subcutaneous ICD vectors.
Wilson, David G; Cronbach, Peter L; Panfilo, D; Greenhut, Saul E; Stegemann, Berthold P; Morgan, John M
2017-06-01
Techniques exist which allow surface ECGs to be reconstructed from reduced lead sets. We aimed to reconstruct an 8-lead ECG from two independent S-ICD sensing electrodes vectors as proof of this principle. Participants with ICDs (N=61) underwent 3minute ECGs using a TMSi Porti7 multi-channel signal recorder (TMS international, The Netherlands) with electrodes in the standard S-ICD and 12-lead positions. Participants were randomised to either a training (N=31) or validation (N=30) group. The transformation used was a linear combination of the 2 independent S-ICD vectors to each of the 8 independent leads of the 12-lead ECG, with coefficients selected that minimized the root mean square error (RMSE) between recorded and derived ECGs when applied to the training group. The transformation was then applied to the validation group and agreement between the recorded and derived lead pairs was measured by Pearson correlation coefficient (r) and normalised RMSE (NRMSE). In total, 27 patients with complete data sets were included in the validation set consisting of 57,888 data points from 216 full lead sets. The distribution of the r and NRMSE were skewed. Mean r=0.770 (SE 0.024), median r=0.925. NRMSE mean=0.233 (SE 0.015) median=0.171. We have demonstrated that the reconstruction of an 8-lead ECG from two S-ICD vectors is possible. If perfected, the ability to generate accurate multi-lead surface ECG data from an S-ICD would potentially allow recording and review of clinical arrhythmias at follow-up. Copyright © 2017 Elsevier B.V. All rights reserved.
Manegold, C; Patzschke, U
1979-06-08
Typical signs of left ventricular hypertrophy (LVH) were present in the ECG of 36 (10 women, 26 men) of 127 persons with essential hypertension (46 women, 81 men). After a two-year course of combined drug treatment (chlortalidone, reserpine, methyl-dopa, hydralazine) with effective blood-pressure reduction LVH was still present in the ECG of 29, after a four-year course of only 15 among 36, i. e. a reduction in the presence of LVH of nearly 60%. Since the patients' body-weight remained unchanged during this period, the regression in ECG changes is ascribed to the effectiveness of the drug treatment.
NASA Astrophysics Data System (ADS)
Kwon, Hyeokjun; Oh, Sechang; Varadan, Vijay K.
2012-04-01
The Electrocardiogram(ECG) signal is one of the bio-signals to check body status. Traditionally, the ECG signal was checked in the hospital. In these days, as the number of people who is interesting with periodic their health check increase, the requirement of self-diagnosis system development is being increased as well. Ubiquitous concept is one of the solutions of the self-diagnosis system. Zigbee wireless sensor network concept is a suitable technology to satisfy the ubiquitous concept. In measuring ECG signal, there are several kinds of methods in attaching electrode on the body called as Lead I, II, III, etc. In addition, several noise components occurred by different measurement situation such as experimenter's respiration, sensor's contact point movement, and the wire movement attached on sensor are included in pure ECG signal. Therefore, this paper is based on the two kinds of development concept. The first is the Zibee wireless communication technology, which can provide convenience and simpleness, and the second is motion artifact remove algorithm, which can detect clear ECG signal from measurement subject. The motion artifact created by measurement subject's movement or even respiration action influences to distort ECG signal, and the frequency distribution of the noises is around from 0.2Hz to even 30Hz. The frequencies are duplicated in actual ECG signal frequency, so it is impossible to remove the artifact without any distortion of ECG signal just by using low-pass filter or high-pass filter. The suggested algorithm in this paper has two kinds of main parts to extract clear ECG signal from measured original signal through an electrode. The first part is to extract motion noise signal from measured signal, and the second part is to extract clear ECG by using extracted motion noise signal and measured original signal. The paper suggests several techniques in order to extract motion noise signal such as predictability estimation theory, low pass filter, a filter including a moving weighted factor, peak to peak detection, and interpolation techniques. In addition, this paper introduces an adaptive filter in order to extract clear ECG signal by using extracted baseline noise signal and measured signal from sensor.
[Method of recording impulses from an implanted cardiostimulator].
Vetkin, A N; Osipov, V P
1976-01-01
An analysis of pulses from an implanted cardiostimulator recorded from the surface of the patient's body is one of the methods permitting it to pass judgment as to its functioning. Because of the possibility of the recording electrodes location coinciding with the equipotential line an erroneous interpretation of the cardiostimulator's condition is not to be ruled out. It is recommended that the pulses should be recorded with their subsequent analysis in no less than 2 standard ECG leads from the limbs.
Rautaharju, Pentti M; Zhang, Zhu-ming; Gregg, Richard E; Haisty, Wesley K; Z Vitolins, Mara; Curtis, Anne B; Warren, James; Horaĉek, Milan B; Zhou, Sophia H; Soliman, Elsayed Z
2013-01-01
Substantial new information has emerged recently about the prognostic value for a variety of new ECG variables. The objective of the present study was to establish reference standards for these novel risk predictors in a large, ethnically diverse cohort of healthy women from the Women's Health Initiative (WHI) study. The study population consisted of 36,299 healthy women. Racial differences in rate-adjusted QT end (QT(ea)) and QT peak (QT(pa)) intervals as linear functions of RR were small, leading to the conclusion that 450 and 390 ms are applicable as thresholds for prolonged and shortened QT(ea) and similarly, 365 and 295 ms for prolonged and shortened QT(pa), respectively. As a threshold for increased dispersion of global repolarization (T(peak)T(end) interval), 110 ms was established for white and Hispanic women and 120 ms for African-American and Asian women. ST elevation and depression values for the monitoring leads of each person with limb electrodes at Mason-Likar positions and chest leads at level of V1 and V2 were first computed from standard leads using lead transformation coefficients derived from 892 body surface maps, and subsequently normal standards were determined for the monitoring leads, including vessel-specific bipolar left anterior descending, left circumflex artery and right coronary artery leads. The results support the choice 150 μV as a tentative threshold for abnormal ST-onset elevation for all monitoring leads. Body mass index (BMI) had a profound effect on Cornell voltage and Sokolow-Lyon voltage in all racial groups and their utility for left ventricular hypertrophy classification remains open. Common thresholds for all racial groups are applicable for QT(ea), and QT(pa) intervals and ST elevation. Race-specific normal standards are required for many other ECG parameters. Copyright © 2013 Elsevier Inc. All rights reserved.
Use of the Surface Electrocardiogram to Define the Nature of Challenging Arrhythmias.
Singh, David K; Peter, C Thomas
2016-03-01
Despite unprecedented advances in technology, the electrocardiogram (ECG) remains essential to the practice of modern electrophysiology. Since its emergence at the turn of the nineteenth century, the form of the ECG has changed little. What has changed is our ability to understand the complex mechanisms that underlie various arrhythmias. In this article, the authors review several important principles of ECG interpretation by providing illustrative tracings. The authors also highlight several important concepts that be can used in ECG analysis. There are several fundamental principles that should be considered in ECG interpretation. Copyright © 2016 Elsevier Inc. All rights reserved.
2014-01-01
Since cell membranes are weak sources of electrostatic fields, this ECG interpretation relies on the analogy between cells and electrets. It is here assumed that cell-bound electric fields unite, reach the body surface and the surrounding space and form the thoracic electric field that consists from two concentric structures: the thoracic wall and the heart. If ECG leads measure differences in electric potentials between skin electrodes, they give scalar values that define position of the electric field center along each lead. Repolarised heart muscle acts as a stable positive electric source, while depolarized heart muscle produces much weaker negative electric field. During T-P, P-R and S-T segments electric field is stable, only subtle changes are detectable by skin electrodes. Diastolic electric field forms after ventricular depolarization (T-P segments in the ECG recording). Telediastolic electric field forms after the atria have been depolarized (P-Q segments in the ECG recording). Systolic electric field forms after the ventricular depolarization (S-T segments in the ECG recording). The three ECG waves (P, QRS and T) can then be described as unbalanced transitions of the heart electric field from one stable configuration to the next and in that process the electric field center is temporarily displaced. In the initial phase of QRS, the rapidly diminishing septal electric field makes measured potentials dependent only on positive charges of the corresponding parts of the left and the right heart that lie within the lead axes. If more positive charges are near the "DOWN" electrode than near the "UP" electrode, a Q wave will be seen, otherwise an R wave is expected. Repolarization of the ventricular muscle is dampened by the early septal muscle repolarization that reduces deflection of T waves. Since the "UP" electrode of most leads is near the usually larger left ventricle muscle, T waves are in these leads positive, although of smaller amplitude and longer duration than the QRS wave in the same lead. The proposed interpretation is applied to bundle branch blocks, fascicular (hemi-) blocks and changes during heart muscle ischemia. PMID:24506945
Bartolome, J A; Wallace, S Perez; de la Sota, R L; Thatcher, W W
2012-09-15
The objective was to evaluate the effect of equine chorionic gonadotropin (eCG) and hCG post artificial insemination (AI) on fertility of lactating dairy cows. In Experiment 1, cows were either treated with eCG on Day 22 post AI (400 IU; n = 80) or left untreated (n = 84). On Day 29, pregnant cows were either treated with hCG (2500 IU; n = 32) or left untreated (n = 36). Pregnancy and progesterone were evaluated on Days 29 and 45. In Experiment 2, cows (n = 28) were either treated with eCG on Day 22 (n = 13) or left untreated (n = 15) and either treated with hCG on Day 29 (n = 14) or left untreated (n = 14). Blood sampling and ultrasonography were conducted between Days 22 and 45. In Experiment 3, cows were either treated with eCG on Day 22 post AI (n = 229) or left untreated (n = 241). Pregnancy was evaluated on Days 36 and 85. In Experiment 1, eCG on Day 22 increased (P < 0.02) the number of pregnant cows on Day 29 (50.0 vs. 33.3%) and on Day 45, the increase was higher (P < 0.01) in cows with timed AI (41.2 vs. 6.5%) than in cows AI at detected estrus (50.0 vs. 37.8%). Pregnancy losses were reduced by eCG and hCG, but increased in cows that did not receive eCG but were given hCG (P < 0.01). Treatment with hCG tended (P < 0.06) to increase progesterone in control cows, but not in cows treated with eCG. In Experiment 2, hCG increased (P < 0.01) the number of accessory CLs on Day 35 (28.5 vs. 0.0%) and tended (P < 0.07) to increase progesterone. In Experiment 3, eCG increased the number of pregnant cows (P < 0.05) on Days 36 and 85, but only in cows with low body condition (eCG = 45.6 and 43.5%; Control = 22.9 and 22.9%). In conclusion, eCG at 22 days post insemination increased fertility, primarily in cows with low body condition and reduced pregnancy losses when given 7 days before hCG; hCG induced accessory CLs and slightly increased progesterone, but hCG given in the absence of a prior eCG treatment reduced fertility. Copyright © 2012 Elsevier Inc. All rights reserved.
Assurance of energy efficiency and data security for ECG transmission in BASNs.
Ma, Tao; Shrestha, Pradhumna Lal; Hempel, Michael; Peng, Dongming; Sharif, Hamid; Chen, Hsiao-Hwa
2012-04-01
With the technological advancement in body area sensor networks (BASNs), low cost high quality electrocardiographic (ECG) diagnosis systems have become important equipment for healthcare service providers. However, energy consumption and data security with ECG systems in BASNs are still two major challenges to tackle. In this study, we investigate the properties of compressed ECG data for energy saving as an effort to devise a selective encryption mechanism and a two-rate unequal error protection (UEP) scheme. The proposed selective encryption mechanism provides a simple and yet effective security solution for an ECG sensor-based communication platform, where only one percent of data is encrypted without compromising ECG data security. This part of the encrypted data is essential to ECG data quality due to its unequally important contribution to distortion reduction. The two-rate UEP scheme achieves a significant additional energy saving due to its unequal investment of communication energy to the outcomes of the selective encryption, and thus, it maintains a high ECG data transmission quality. Our results show the improvements in communication energy saving of about 40%, and demonstrate a higher transmission quality and security measured in terms of wavelet-based weighted percent root-mean-squared difference.
[Development of a wearable electrocardiogram monitor with recognition of physical activity scene].
Wang, Zihong; Wu, Baoming; Yin, Jian; Gong, Yushun
2012-10-01
To overcome the problems of current electrocardiogram (ECG) tele-monitoring devices used for daily life, according to information fusion thought and by means of wearable technology, we developed a new type of wearable ECG monitor with the capability of physical activity recognition in this paper. The ECG monitor synchronously detected electrocardiogram signal and body acceleration signal, and recognized the scene information of physical activity, and finally determined the health status of the heart. With the advantages of accuracy for measurement, easy to use, comfort to wear, private feelings and long-term continuous in monitoring, this ECG monitor is quite fit for the heart-health monitoring in daily life.
Zheng, Guanglou; Fang, Gengfa; Shankaran, Rajan; Orgun, Mehmet A; Zhou, Jie; Qiao, Li; Saleem, Kashif
2017-05-01
Generating random binary sequences (BSes) is a fundamental requirement in cryptography. A BS is a sequence of N bits, and each bit has a value of 0 or 1. For securing sensors within wireless body area networks (WBANs), electrocardiogram (ECG)-based BS generation methods have been widely investigated in which interpulse intervals (IPIs) from each heartbeat cycle are processed to produce BSes. Using these IPI-based methods to generate a 128-bit BS in real time normally takes around half a minute. In order to improve the time efficiency of such methods, this paper presents an ECG multiple fiducial-points based binary sequence generation (MFBSG) algorithm. The technique of discrete wavelet transforms is employed to detect arrival time of these fiducial points, such as P, Q, R, S, and T peaks. Time intervals between them, including RR, RQ, RS, RP, and RT intervals, are then calculated based on this arrival time, and are used as ECG features to generate random BSes with low latency. According to our analysis on real ECG data, these ECG feature values exhibit the property of randomness and, thus, can be utilized to generate random BSes. Compared with the schemes that solely rely on IPIs to generate BSes, this MFBSG algorithm uses five feature values from one heart beat cycle, and can be up to five times faster than the solely IPI-based methods. So, it achieves a design goal of low latency. According to our analysis, the complexity of the algorithm is comparable to that of fast Fourier transforms. These randomly generated ECG BSes can be used as security keys for encryption or authentication in a WBAN system.
Implementation of a wireless ECG acquisition SoC for IEEE 802.15.4 (ZigBee) applications.
Wang, Liang-Hung; Chen, Tsung-Yen; Lin, Kuang-Hao; Fang, Qiang; Lee, Shuenn-Yuh
2015-01-01
This paper presents a wireless biosignal acquisition system-on-a-chip (WBSA-SoC) specialized for electrocardiogram (ECG) monitoring. The proposed system consists of three subsystems, namely, 1) the ECG acquisition node, 2) the protocol for standard IEEE 802.15.4 ZigBee system, and 3) the RF transmitter circuits. The ZigBee protocol is adopted for wireless communication to achieve high integration, applicability, and portability. A fully integrated CMOS RF front end containing a quadrature voltage-controlled oscillator and a 2.4-GHz low-IF (i.e., zero-IF) transmitter is employed to transmit ECG signals through wireless communication. The low-power WBSA-SoC is implemented by the TSMC 0.18-μm standard CMOS process. An ARM-based displayer with FPGA demodulation and an RF receiver with analog-to-digital mixed-mode circuits are constructed as verification platform to demonstrate the wireless ECG acquisition system. Measurement results on the human body show that the proposed SoC can effectively acquire ECG signals.
Daly, Michael J; Finlay, Dewar D; Guldenring, Daniel; Bond, Raymond R; McCann, Aaron J; Scott, Peter J; Adgey, Jennifer A; Harbinson, Mark T
2017-12-01
Epicardial potentials (EPs) derived from the body surface potential map (BSPM) improve acute myocardial infarction (AMI) diagnosis. In this study, we compared EPs derived from the 80-lead BSPM using a standard thoracic volume conductor model (TVCM) with those derived using a patient-specific torso model (PSTM) based on body mass index (BMI). Consecutive patients presenting to both the emergency department and pre-hospital coronary care unit between August 2009 and August 2011 with acute ischaemic-type chest pain at rest were enrolled. At first medical contact, 12-lead electrocardiograms and BSPMs were recorded. The BMI for each patient was calculated. Cardiac troponin T (cTnT) was sampled 12 hours after symptom onset. Patients were excluded from analysis if they had any ECG confounders to interpretation of the ST-segment. A cardiologist assessed the 12-lead ECG for ST-segment elevation myocardial infarction by Minnesota criteria and the BSPM. BSPM ST-elevation (STE) was ⩾0.2 mV in anterior, ⩾0.1 mV in lateral, inferior, right ventricular or high right anterior and ⩾0.05 mV in posterior territories. To derive EPs, the BSPM data were interpolated to yield values at 352 nodes of a Dalhousie torso. Using an inverse solution based on the boundary element method, EPs at 98 cardiac nodes positioned within a standard TVCM were derived. The TVCM was then scaled to produce a PSTM using a model developed from computed tomography in 48 patients of varying BMIs, and EPs were recalculated. EPs >0.3 mV defined STE. A cardiologist blinded to both the 12-lead ECG and BSPM interpreted the EP map. AMI was defined as cTnT ⩾0.1 µg/L. Enrolled were 400 patients (age 62 ± 13 years; 57% male); 80 patients had exclusion criteria. Of the remaining 320 patients, the BMI was an average of 27.8 ± 5.6 kg/m 2 . Of these, 180 (56%) had AMI. Overall, 132 had Minnesota STE on ECG (sensitivity 65%, specificity 89%) and 160 had BSPM STE (sensitivity 81%, specificity 90%). EP STE occurred in 165 patients using TVCM (sensitivity 88%, specificity 95%; p < 0.001) and in 206 patients using PSTM (sensitivity 98%, specificity 79%; p < 0.001). Of those with AMI by cTnT and EPs ⩽0.3 mV using TVCM ( n = 22), 18 (82%) patients had EPs >0.3 mV when an individualised PSTM was used. Among patients presenting with ischaemic-type chest pain at rest, EPs derived from BSPM using a novel PSTM significantly improve sensitivity for AMI diagnosis.
Acute Myocardial Ischemia: Cellular Mechanisms Underlying ST Segment Elevation
Di Diego, José M.; Antzelevitch, Charles
2014-01-01
The electrocardiogram (ECG) is an essential tool for the diagnosis of acute myocardial ischemia in the emergency department, as well as for that of an evolving acute myocardial infarction (AMI). Changes in the surface ECG in leads whose positive poles face the ischemic region are known to be related to injury currents flowing across the boundaries between the ischemic and the surrounding normal myocardium. Although experimental studies have also shown an endocardium to epicardium differential sensitivity to the effect of acute ischemia, the important contribution of this transmural heterogeneous response to the changes observed in the surface ECG are less appreciated by the clinical cardiologist. This review briefly discusses our current knowledge regarding the electrophysiology of the ischemic myocardium focusing primarily on the electrophysiologic changes underlying the ECG alterations observed at the onset of a transmural AMI. PMID:24742586
[Low-power Wireless Micro Ambulatory Electrocardiogram Node].
Cai, Zhipeng; Luo, Kan; Li, Jianqing
2016-02-01
Ambulatory electrocardiogram (ECG) monitoring can effectively reduce the risk and death rate of patients with cardiovascular diseases (CVDs). The Body Sensor Network (BSN) based ECG monitoring is a new and efficien method to protect the CVDs patients. To meet the challenges of miniaturization, low power and high signal quality of the node, we proposed a novel 50 mmX 50 mmX 10 mm, 30 g wireless ECG node, which includes the single-chip an alog front-end AD8232, ultra-low power microprocessor MSP430F1611 and Bluetooth module HM-11. The ECG signal quality is guaranteed by the on-line digital filtering. The difference threshold algorithm results in accuracy of R-wave detection and heart rate. Experiments were carried out to test the node and the results showed that the pro posed node reached the design target, and it has great potential in application of wireless ECG monitoring.
Gu, Jiwei; Andreasen, Jan J; Melgaard, Jacob; Lundbye-Christensen, Søren; Hansen, John; Schmidt, Erik B; Thorsteinsson, Kristinn; Graff, Claus
2017-02-01
To investigate if electrocardiogram (ECG) markers from routine preoperative ECGs can be used in combination with clinical data to predict new-onset postoperative atrial fibrillation (POAF) following cardiac surgery. Retrospective observational case-control study. Single-center university hospital. One hundred consecutive adult patients (50 POAF, 50 without POAF) who underwent coronary artery bypass grafting, valve surgery, or combinations. Retrospective review of medical records and registration of POAF. Clinical data and demographics were retrieved from the Western Denmark Heart Registry and patient records. Paper tracings of preoperative ECGs were collected from patient records, and ECG measurements were read by two independent readers blinded to outcome. A subset of four clinical variables (age, gender, body mass index, and type of surgery) were selected to form a multivariate clinical prediction model for POAF and five ECG variables (QRS duration, PR interval, P-wave duration, left atrial enlargement, and left ventricular hypertrophy) were used in a multivariate ECG model. Adding ECG variables to the clinical prediction model significantly improved the area under the receiver operating characteristic curve from 0.54 to 0.67 (with cross-validation). The best predictive model for POAF was a combined clinical and ECG model with the following four variables: age, PR-interval, QRS duration, and left atrial enlargement. ECG markers obtained from a routine preoperative ECG may be helpful in predicting new-onset POAF in patients undergoing cardiac surgery. Copyright © 2017 Elsevier Inc. All rights reserved.
International recommendations for electrocardiographic interpretation in athletes.
Sharma, Sanjay; Drezner, Jonathan A; Baggish, Aaron; Papadakis, Michael; Wilson, Mathew G; Prutkin, Jordan M; La Gerche, Andre; Ackerman, Michael J; Borjesson, Mats; Salerno, Jack C; Asif, Irfan M; Owens, David S; Chung, Eugene H; Emery, Michael S; Froelicher, Victor F; Heidbuchel, Hein; Adamuz, Carmen; Asplund, Chad A; Cohen, Gordon; Harmon, Kimberly G; Marek, Joseph C; Molossi, Silvana; Niebauer, Josef; Pelto, Hank F; Perez, Marco V; Riding, Nathan R; Saarel, Tess; Schmied, Christian M; Shipon, David M; Stein, Ricardo; Vetter, Victoria L; Pelliccia, Antonio; Corrado, Domenico
2018-04-21
Sudden cardiac death (SCD) is the leading cause of mortality in athletes during sport. A variety of mostly hereditary, structural, or electrical cardiac disorders are associated with SCD in young athletes, the majority of which can be identified or suggested by abnormalities on a resting 12-lead electrocardiogram (ECG). Whether used for diagnostic or screening purposes, physicians responsible for the cardiovascular care of athletes should be knowledgeable and competent in ECG interpretation in athletes. However, in most countries a shortage of physician expertise limits wider application of the ECG in the care of the athlete. A critical need exists for physician education in modern ECG interpretation that distinguishes normal physiological adaptations in athletes from distinctly abnormal findings suggestive of underlying pathology. Since the original 2010 European Society of Cardiology recommendations for ECG interpretation in athletes, ECG standards have evolved quickly over the last decade; pushed by a growing body of scientific data that both tests proposed criteria sets and establishes new evidence to guide refinements. On 26-27 February 2015, an international group of experts in sports cardiology, inherited cardiac disease, and sports medicine convened in Seattle, Washington, to update contemporary standards for ECG interpretation in athletes. The objective of the meeting was to define and revise ECG interpretation standards based on new and emerging research and to develop a clear guide to the proper evaluation of ECG abnormalities in athletes. This statement represents an international consensus for ECG interpretation in athletes and provides expert opinion-based recommendations linking specific ECG abnormalities and the secondary evaluation for conditions associated with SCD.
Matched Filtering for Heart Rate Estimation on Compressive Sensing ECG Measurements.
Da Poian, Giulia; Rozell, Christopher J; Bernardini, Riccardo; Rinaldo, Roberto; Clifford, Gari D
2017-09-14
Compressive Sensing (CS) has recently been applied as a low complexity compression framework for long-term monitoring of electrocardiogram signals using Wireless Body Sensor Networks. Long-term recording of ECG signals can be useful for diagnostic purposes and to monitor the evolution of several widespread diseases. In particular, beat to beat intervals provide important clinical information, and these can be derived from the ECG signal by computing the distance between QRS complexes (R-peaks). Numerous methods for R-peak detection are available for uncompressed ECG. However, in case of compressed sensed data, signal reconstruction can be performed with relatively complex optimisation algorithms, which may require significant energy consumption. This article addresses the problem of hearth rate estimation from compressive sensing electrocardiogram (ECG) recordings, avoiding the reconstruction of the entire signal. We consider a framework where the ECG signals are represented under the form of CS linear measurements. The QRS locations are estimated in the compressed domain by computing the correlation of the compressed ECG and a known QRS template. Experiments on actual ECG signals show that our novel solution is competitive with methods applied to the reconstructed signals. Avoiding the reconstruction procedure, the proposed method proves to be very convenient for real-time, low-power applications.
[The relationship of ECG and pregnancy outcome of older pregnant woman in late pregnancy].
Zhao, Xiao-Qin; Wang, Chun-Guang; Song, Yu-Xia; Jiao, Hong
2014-01-01
To observe the changes of electrocardiogram (ECG) and pregnancy outcome of the late pregnancy women. Late pregnancy women were divided into two groups by age: over 35 group and under 35 group. The incidence of abnormal electrocardiogram was recorded when the patients were subjected to routine ECG examination. Then the pregnancy, delivery outcome and if there's low birth weight newborn were recorded later. The incidence of abnormal ECG in over 35 group was significantly higher than that in under 35 group (P < 0.05). And the incidence of ST segment changes, arrhythmia in the group of former was higher than that in the group of latter (P < 0.05). Among the different type of arrhythmia, the incidence of sinus bradycardia and ventricular premature beat in the group of former were higher than those in the group of latter (P < 0.05). But the incidence of sinus tachycardia in the former group was obviously lower than that in the latter group (P < 0.05). The incidence of pregnancy loss in over 35 with abnormal ECG group was significantly higher than that in under 35 with normal or abnormal ECG groups (P < 0.05). The incidence of premature birth in over 35 with abnormal ECG group was significantly higher than that in over 35 with normal ECG group (P < 0.05). The incidence of low body weight in over 35 with abnormal ECG group was significantly higher than that in under 35 with normal ECG group (P < 0.05). The late pregnancy women with the age of over 35 are more likely to have ECG abnormalities, such as arrhythmia, myocardial ischemia and so on. The older pregnant women with abnormal ECG easily suffer from pregnancy losing, premature birth and having a low birth weight baby.
The effect of sport on computerized electrocardiogram measurements in college athletes.
Gademan, Maaike G J; Uberoi, Abhimanyu; Le, Vy-Van; Mandic, Sandra; van Oort, Eddy R; Myers, Jonathan; Froelicher, Victor F
2012-02-01
Broad criteria for abnormal electrocardiogram (ECG) findings, requiring additional testing, have been recommended for preparticipation exams (PPE) of athletes. As these criteria have not considered the sport in which athletes participate, we examined the effect of sports on the computerized ECG measurements obtained in college athletes. During the Stanford 2007 PPE, computerized 12-lead ECGs (Schiller AG) were obtained in 641 athletes (350 male/291 female, age 19.5 ± 2 years). Athletes were engaged in 22 different sports and were grouped into 16 categories: baseball/softball, basketball, crew, crosscountry, fencing, field events, football linemen, football other positions, golf, gymnastics, racquet sports, sailing, track/field, volleyball, water sports, and wrestling. The analysis focused on ECG leads V2, aVF and V5 which provide a three-dimensional representation of the heart's electrical activity. As marked ECG differences exist between males and females, the data are presented by gender. In males, ANOVA analysis yielded significant ECG differences between sports for heart rate, QRS duration, QTc, J-amplitude in V2 and V5, spatial vector length (SVL) of the P wave, SVL R wave, and SVL T wave, and RS(sum) (p < 0.05). In females ECG differences between sports were found for heart rate, QRS duration, QRS axis and SVL T wave (p < 0.05). Poor correlations were found between body dimensions and ECG measurements (r < 0.50). Significant ECG changes exist between college athletes participating in different sports, and these differences were more apparent in males than females. Therefore, sport-specific ECG criteria for abnormal ECG findings should be developed to obtain a more useful approach to ECG screening in athletes.
Using Intracardiac Vectorcardiographic Loop for Surface ECG Synthesis
NASA Astrophysics Data System (ADS)
Kachenoura, A.; Porée, F.; Hernández, A. I.; Carrault, G.
2008-12-01
Current cardiac implantable devices offer improved processing power and recording capabilities. Some of these devices already provide basic telemonitoring features that may help to reduce health care expenditure. A challenge is posed in particular for the telemonitoring of the patient's cardiac electrical activity. Indeed, only intracardiac electrograms (EGMs) are acquired by the implanted device and these signals are difficult to analyze directly by clinicians. In this paper, we propose a patient-specific method to synthesize the surface electrocardiogram (ECG) from a set of EGM signals, based on a 3D representation of the cardiac electrical activity and principal component analysis (PCA). The results, in the case of sinus rhythm, show a correlation coefficient between the real ECG and the synthesized ECG of about 0.85. Moreover, the application of the proposed method to the patients who present an abnormal heart rhythm exhibits promising results, especially for characterizing the bundle branch blocs. Finally, in order to evaluate the behavior of our procedure in some practical situations, the quality of the ECG reconstruction is studied as a function of the number of EGM electrodes provided by the CIDs.
Helical prospective ECG-gating in cardiac computed tomography: radiation dose and image quality.
DeFrance, Tony; Dubois, Eric; Gebow, Dan; Ramirez, Alex; Wolf, Florian; Feuchtner, Gudrun M
2010-01-01
Helical prospective ECG-gating (pECG) may reduce radiation dose while maintaining the advantages of helical image acquisition for coronary computed tomography angiography (CCTA). Aim of this study was to evaluate helical pECG-gating in CCTA in regards to radiation dose and image quality. 86 patients undergoing 64-multislice CCTA were enrolled. pECG-gating was performed in patients with regular heart rates (HR) < 65 bpm; with the gating window set at 70-85% of the cardiac cycle. All patients received oral and some received additional IV beta-blockers to achieve HR < 65 bpm. In patients with higher or irregular HR, or for functional evaluation, retrospective ECG-gating (rECG) was performed. The average X-ray dose was estimated from the dose length product. Each arterial segment (modified AHA/ACC 17-segment-model) was evaluated on a 4-point image quality scale (4 = excellent; 3 = good, mild artefact; 2 = acceptable, some artefact, 1 = uninterpretable). pECG-gating was applied in 57 patients, rECG-gating in 29 patients. There was no difference in age, gender, body mass index, scan length or tube output settings between both groups. HR in the pECG-group was 54.7 bpm (range, 43-64). The effective radiation dose was significantly lower for patients scanned with pECG-gating with mean 6.9 mSv +/- 1.9 (range, 2.9-10.7) compared to rECG with 16.9 mSv +/- 4.1 (P < 0.001), resulting in a mean dose reduction of 59.2%. For pECG-gating, out of 969 coronary segments, 99.3% were interpretable. Image quality was excellent in 90.2%, good in 7.8%, acceptable in 1.3% and non-interpretable in 0.7% (n = 7 segments). For patients with steady heart rates <65 bpm, helical prospective ECG-gating can significantly lower the radiation dose while maintaining high image quality.
Out in the cold: the hypothermic heart response
Nabeel, Yassar; Ali, Omair
2014-01-01
We present an interesting case of a 49-year-old woman with hypothermia and associated Osborn waves (also called J waves) on ECG. She was found on the floor of her home and difficult to arouse. On arrival to the emergency department (ED), her rectal temperature was 87.5°F. ECG showed Osborn waves in diffuse leads. She was intubated in the ED and was started on vasopressor support for hypotension refractory to intravenous fluid boluses. She was transferred to the critical care unit for continued respiratory and cardiovascular support. With active external rewarming her core body temperature continued to improve. Blood pressure also improved and vasopressor was tapered off. She was extubated and was transferred to the medical floor for continued supportive care. Osborn waves on ECG resolved within 12 h of achieving normal range body temperature. The patient was eventually discharged home with medical follow-up. PMID:25406217
Out in the cold: the hypothermic heart response.
Nabeel, Yassar; Ali, Omair
2014-11-18
We present an interesting case of a 49-year-old woman with hypothermia and associated Osborn waves (also called J waves) on ECG. She was found on the floor of her home and difficult to arouse. On arrival to the emergency department (ED), her rectal temperature was 87.5°F. ECG showed Osborn waves in diffuse leads. She was intubated in the ED and was started on vasopressor support for hypotension refractory to intravenous fluid boluses. She was transferred to the critical care unit for continued respiratory and cardiovascular support. With active external rewarming her core body temperature continued to improve. Blood pressure also improved and vasopressor was tapered off. She was extubated and was transferred to the medical floor for continued supportive care. Osborn waves on ECG resolved within 12 h of achieving normal range body temperature. The patient was eventually discharged home with medical follow-up. 2014 BMJ Publishing Group Ltd.
Low-power wireless ECG acquisition and classification system for body sensor networks.
Lee, Shuenn-Yuh; Hong, Jia-Hua; Hsieh, Cheng-Han; Liang, Ming-Chun; Chang Chien, Shih-Yu; Lin, Kuang-Hao
2015-01-01
A low-power biosignal acquisition and classification system for body sensor networks is proposed. The proposed system consists of three main parts: 1) a high-pass sigma delta modulator-based biosignal processor (BSP) for signal acquisition and digitization, 2) a low-power, super-regenerative on-off keying transceiver for short-range wireless transmission, and 3) a digital signal processor (DSP) for electrocardiogram (ECG) classification. The BSP and transmitter circuits, which are the body-end circuits, can be operated for over 80 days using two 605 mAH zinc-air batteries as the power supply; the power consumption is 586.5 μW. As for the radio frequency receiver and DSP, which are the receiving-end circuits that can be integrated in smartphones or personal computers, power consumption is less than 1 mW. With a wavelet transform-based digital signal processing circuit and a diagnosis control by cardiologists, the accuracy of beat detection and ECG classification are close to 99.44% and 97.25%, respectively. All chips are fabricated in TSMC 0.18-μm standard CMOS process.
Surface 12 lead electrocardiogram recordings using smart phone technology.
Baquero, Giselle A; Banchs, Javier E; Ahmed, Shameer; Naccarelli, Gerald V; Luck, Jerry C
2015-01-01
AliveCor ECG is an FDA approved ambulatory cardiac rhythm monitor that records a single channel (lead I) ECG rhythm strip using an iPhone. In the past few years, the use of smartphones and tablets with health related applications has significantly proliferated. In this initial feasibility trial, we attempted to reproduce the 12 lead ECG using the bipolar arrangement of the AliveCor monitor coupled to smart phone technology. We used the AliveCor heart monitor coupled with an iPhone cellular phone and the AliveECG application (APP) in 5 individuals. In our 5 individuals, recordings from both a standard 12 lead ECG and the AliveCor generated 12 lead ECG had the same interpretation. This study demonstrates the feasibility of creating a 12 lead ECG with a smart phone. The validity of the recordings would seem to suggest that this technology could become an important useful tool for clinical use. This new hand held smart phone 12 lead ECG recorder needs further development and validation. Copyright © 2015 Elsevier Inc. All rights reserved.
López, Débora N; Galante, Micaela; Alvarez, Estela M; Risso, Patricia H; Boeris, Valeria
2017-10-01
Model systems formed by sodium caseinate (NaCAS) and espina corona gum (ECG) were studied. There was no evidence of attractive interactions between NaCAS and ECG macromolecules. Aqueous mixtures of NaCAS and ECG phase-separate segregatively over a wide range of concentrations. According to the images obtained by confocal laser scanning microscopy, NaCAS particles form larger protein aggregates when ECG is present in the system. An increase in the hydrodynamic diameter of NaCAS particles, as a result of ECG addition, was also observed by light scattering in diluted systems. A depletion-flocculation phenomenon, in which ECG is excluded from NaCAS surface, is proposed to occur in the concentrated mixed systems, resulting in NaCAS aggregation. ECG raises the viscosity of NaCAS dispersions without affecting the Newtonian flow behaviour of NaCAS. These results contribute to improve the knowledge of a barely-studied hydrocolloid which may be useful in the development of innovative food systems. Copyright © 2017 Elsevier Ltd. All rights reserved.
A sub-nJ CMOS ECG classifier for wireless smart sensor.
Chollet, Paul; Pallas, Remi; Lahuec, Cyril; Arzel, Matthieu; Seguin, Fabrice
2017-07-01
Body area sensor networks hold the promise of more efficient and cheaper medical care services through the constant monitoring of physiological markers such as heart beats. Continuously transmitting the electrocardiogram (ECG) signal requires most of the wireless ECG sensor energy budget. This paper presents the analog implantation of a classifier for ECG signals that can be embedded onto a sensor. The classifier is a sparse neural associative memory. It is implemented using the ST 65 nm CMOS technology and requires only 234 pJ per classification while achieving a 93.6% classification accuracy. The energy requirement is 6 orders of magnitude lower than a digital accelerator that performs a similar task. The lifespan of the resulting sensor is 191 times as large as that of a sensor sending all the data.
Kim, Diana H; Verdino, Ralph J
To define clinical correlates of low voltage isolated to precordial leads on the surface electrocardiogram (ECG). Low voltage (V) on the ECG is defined as QRS V<5mm in all limb leads and <10mm in all precordial leads. The diagnostic use of ECGs with low voltage isolated to the precordial leads with normal limb lead voltages is unclear. Twelve-lead ECGs with QRS V>5mm in one or more limb leads and <10mm in all precordial leads were collected. Associated clinical conditions were determined from clinical data, echocardiograms, and chest radiographs. Low precordial voltage was found in 256 of 150,000 ECGs (~0.2%). 50.4% of patients had discordant ECGs that correlated with classic etiologies, with a higher incidence of LV dilation in those with classic etiologies than those without. Low precordial voltage is associated with classic etiologies and LV dilation. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Scheuring, Richard A.; Hamilton, Doug; Jones, Jeffrey A.; Alexander, David
2009-01-01
There are currently several physiological monitoring requirements for EVA in the Human-Systems Interface Requirements (HSIR) document. There are questions as to whether the capability to monitor heart rhythm in the lunar surface space suit is a necessary capability for lunar surface operations. Similarly, there are questions as to whether the capability to monitor heart rhythm during a cabin depressurization scenario in the launch/landing space suit is necessary. This presentation seeks to inform space medicine personnel of recommendations made by an expert panel of cardiovascular medicine specialists regarding in-suit ECG heart rhythm monitoring requirements during lunar surface operations. After a review of demographic information and clinical cases and panel discussion, the panel recommended that ECG monitoring capability as a clinical tool was not essential in the lunar space suit; ECG monitoring was not essential in the launch/landing space suit for contingency scenarios; the current hear rate monitoring capability requirement for both launch/landing and lunar space suits should be maintained; lunar vehicles should be required to have ECG monitoring capability with a minimum of 5-lead ECG for IVA medical assessments; and, exercise stress testing for astronaut selection and retention should be changed from the current 85% maximum heart rate limit to maximal, exhaustive 'symptom-limited' testing to maximize diagnostic utility as a screening tool for evaluating the functional capacity of astronauts and their cardiovascular health.
Arteyeva, Natalia V; Azarov, Jan E
2017-01-01
The changes in ventricular repolarization gradients lead to significant alterations of the electrocardiographic body surface T waves up to the T wave inversion. However, the contribution of a specific gradient remains to be elucidated. The objective of the present investigation was to study the role of the transmural repolarization gradient in the inversion of the body surface T wave with a mathematical model of the hypothermia-induced changes of ventricular repolarization. By means of mathematical simulation, we set the hypothermic action potential duration (APD) distribution on the rabbit ventricular epicardium as it was previously experimentally documented. Then the parameters of the body surface potential distribution were tested with the introduction of different scenarios of the endocardial and epicardial APD behavior in hypothermia resulting in the unchanged, reversed or enlarged transmural repolarization gradient. The reversal of epicardial repolarization gradients (apicobasal, anterior-posterior and interventricular) caused the inversion of the T waves regardless of the direction of the transmural repolarization gradient. However, the most realistic body surface potentials were obtained when the endocardial APDs were not changed under hypothermia while the epicardial APDs prolonged. This produced the reversed and increased transmural repolarization gradient in absolute magnitude. The body surface potentials simulated under the unchanged transmural gradient were reduced in comparison to those simulated under the reversed transmural gradient. The simulations demonstrated that the transmural repolarization gradient did not play a crucial role in the cardiac electric field inversion under hypothermia, but its magnitude and direction contribute to the T wave amplitude. © 2016 Wiley Periodicals, Inc.
Noninvasive measurement of physiological signals on a modified home bathroom scale.
Inan, O T; Dookun Park; Giovangrandi, L; Kovacs, G T A
2012-08-01
A commercial bathroom scale with both handlebar and footpad electrodes was modified to enable measurement of four physiological signals: the ballistocardiogram (BCG), electrocardiogram (ECG), lower body impedance plethysmogram (IPG), and lower body electromyogram (EMG). The BCG, which describes the reaction of the body to cardiac ejection of blood, was measured using the strain gauges in the scale. The ECG was detected using handlebar electrodes with a two-electrode amplifier. For the lower body IPG, the two electrodes under the subject's toes were driven with an ac current stimulus, and the resulting differential voltage across the heels was measured and demodulated synchronously with the source. The voltage signal from the same two footpad electrodes under the heels was passed through a passive low-pass filter network into another amplifier, and the output was the lower body EMG signal. The signals were measured from nine healthy subjects, and the average signal-to-noise ratio (SNR) while the subjects were standing still was estimated for the four signals as follows: BCG, 7.6 dB; ECG, 15.8 dB; IPG, 10.7 dB. During periods of motion, the decrease in SNR for the BCG signal was found to be correlated to the increase in rms power for the lower body EMG (r = 0.89, p <; 0.01). The EMG could, thus, be used to flag noise-corrupted segments of the BCG, increasing the measurement robustness. This setup could be used for monitoring the cardiovascular health of patients at home.
Pant, Jeevan K; Krishnan, Sridhar
2018-03-15
To present a new compressive sensing (CS)-based method for the acquisition of ECG signals and for robust estimation of heart-rate variability (HRV) parameters from compressively sensed measurements with high compression ratio. CS is used in the biosensor to compress the ECG signal. Estimation of the locations of QRS segments is carried out by applying two algorithms on the compressed measurements. The first algorithm reconstructs the ECG signal by enforcing a block-sparse structure on the first-order difference of the signal, so the transient QRS segments are significantly emphasized on the first-order difference of the signal. Multiple block-divisions of the signals are carried out with various block lengths, and multiple reconstructed signals are combined to enhance the robustness of the localization of the QRS segments. The second algorithm removes errors in the locations of QRS segments by applying low-pass filtering and morphological operations. The proposed CS-based method is found to be effective for the reconstruction of ECG signals by enforcing transient QRS structures on the first-order difference of the signal. It is demonstrated to be robust not only to high compression ratio but also to various artefacts present in ECG signals acquired by using on-body wireless sensors. HRV parameters computed by using the QRS locations estimated from the signals reconstructed with a compression ratio as high as 90% are comparable with that computed by using QRS locations estimated by using the Pan-Tompkins algorithm. The proposed method is useful for the realization of long-term HRV monitoring systems by using CS-based low-power wireless on-body biosensors.
Association between obesity and ECG variables in children and adolescents: A cross-sectional study.
Sun, Guo-Zhe; Li, Yang; Zhou, Xing-Hu; Guo, Xiao-Fan; Zhang, Xin-Gang; Zheng, Li-Qiang; Li, Yuan; Jiao, Yun-DI; Sun, Ying-Xian
2013-12-01
Obesity exhibits a wide variety of electrocardiogram (ECG) abnormalities in adults, which often lead to cardiovascular events. However, there is currently no evidence of an association between obesity and ECG variables in children and adolescents. The present study aimed to explore the associations between obesity and ECG intervals and axes in children and adolescents. A cross-sectional observational study of 5,556 students aged 5-18 years was performed. Anthropometric data, blood pressure and standard 12-lead ECGs were collected for each participant. ECG variables were measured manually based on the temporal alignment of simultaneous 12 leads using a CV200 ECG Work Station. Overweight and obese groups demonstrated significantly longer PR intervals, wider QRS durations and leftward shifts of frontal P-wave, QRS and T-wave axes, while the obese group also demonstrated significantly higher heart rates, compared with normal weight groups within normotensive or hypertensive subjects (P<0.05). Abdominal obesity was also associated with longer PR intervals, wider QRS duration and a leftward shift of frontal ECG axes compared with normal waist circumference (WC) within normotensive or hypertensive subjects (P<0.05). Gender was a possible factor affecting the ECG variables. Furthermore, the ECG variables, including PR interval, QRS duration and frontal P-wave, QRS and T-wave axes, were significantly linearly correlated with body mass index, WC and waist-to-height ratio adjusted for age, gender, ethnicity and blood pressure. However, there was no significant association between obesity and the corrected QT interval (P>0.05). The results of the current study indicate that in children and adolescents, general and abdominal obesity is associated with longer PR intervals, wider QRS duration and a leftward shift of frontal P-wave, QRS and T-wave axes, independent of age, gender, ethnicity and blood pressure.
van Dam, Peter M; Boyle, Noel G; Laks, Michael M; Tung, Roderick
2016-12-01
The precise localization of the site of origin of a premature ventricular contraction (PVC) prior to ablation can facilitate the planning and execution of the electrophysiological procedure. In clinical practice, the targeted ablation site is estimated from the standard 12-lead ECG. The accuracy of this qualitative estimation has limitations, particularly in the localization of PVCs originating from the papillary muscles. Clinical available electrocardiographic imaging (ECGi) techniques that incorporate patient-specific anatomy may improve the localization of these PVCs, but require body surface maps with greater specificity for the epicardium. The purpose of this report is to demonstrate that a novel cardiac isochrone positioning system (CIPS) program can accurately detect the specific location of the PVC on the papillary muscle using only a 12-lead ECG. Cardiac isochrone positioning system uses three components: (i) endocardial and epicardial cardiac anatomy and torso geometry derived from MRI, (ii) the patient-specific electrode positions derived from an MRI model registered 3D image, and (iii) the 12-lead ECG. CIPS localizes the PVC origin by matching the anatomical isochrone vector with the ECG vector. The predicted PVC origin was compared with the site of successful ablation or stimulation. Three patients who underwent electrophysiological mapping and ablation of PVCs originating from the papillary muscles were studied. CIPS localized the PVC origin for all three patients to the correct papillary muscle and specifically to the base, mid, or apical region. A simplified form of ECGi utilizing only 12 standard electrocardiographic leads may facilitate accurate localization of the origin of papillary muscle PVCs. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2016. For Permissions, please email: journals.permissions@oup.com.
Selvester scoring in patients with strict LBBB using the QUARESS software.
Xia, Xiaojuan; Chaudhry, Uzma; Wieslander, Björn; Borgquist, Rasmus; Wagner, Galen S; Strauss, David G; Platonov, Pyotr; Ugander, Martin; Couderc, Jean-Philippe
2015-01-01
Estimation of the infarct size from body-surface ECGs in post-myocardial infarction patients has become possible using the Selvester scoring method. Automation of this scoring has been proposed in order to speed-up the measurement of the score and improving the inter-observer variability in computing a score that requires strong expertise in electrocardiography. In this work, we evaluated the quality of the QuAReSS software for delivering correct Selvester scoring in a set of standard 12-lead ECGs. Standard 12-lead ECGs were recorded in 105 post-MI patients prescribed implantation of an implantable cardiodefibrillator (ICD). Amongst the 105 patients with standard clinical left bundle branch block (LBBB) patterns, 67 had a LBBB pattern meeting the strict criteria. The QuAReSS software was applied to these 67 tracings by two independent groups of cardiologists (from a clinical group and an ECG core laboratory) to measure the Selvester score semi-automatically. Using various level of agreement metrics, we compared the scores between groups and when automatically measured by the software. The average of the absolute difference in Selvester scores measured by the two independent groups was 1.4±1.5 score points, whereas the difference between automatic method and the two manual adjudications were 1.2±1.2 and 1.3±1.2 points. Eighty-two percent score agreement was observed between the two independent measurements when the difference of score was within two point ranges, while 90% and 84% score agreements were reached using the automatic method compared to the two manual adjudications. The study confirms that the QuAReSS software provides valid measurements of the Selvester score in patients with strict LBBB with minimal correction from cardiologists. Copyright © 2015 Elsevier Inc. All rights reserved.
Gulizia, Michele Massimo; Casolo, Giancarlo; Zuin, Guerrino; Morichelli, Loredana; Calcagnini, Giovanni; Ventimiglia, Vincenzo; Censi, Federica; Caldarola, Pasquale; Russo, Giancarmine; Leogrande, Lorenzo; Franco Gensini, Gian
2017-05-01
The electrocardiogram (ECG) signal can be derived from different sources. These include systems for surface ECG, Holter monitoring, ergometric stress tests, and telemetry systems and bedside monitoring of vital parameters, which are useful for rhythm and ST-segment analysis and ECG screening of electrical sudden cardiac death predictors. A precise ECG diagnosis is based upon correct recording, elaboration, and presentation of the signal. Several sources of artefacts and potential external causes may influence the quality of the original ECG waveforms. Other factors that may affect the quality of the information presented depend upon the technical solutions employed to improve the signal. The choice of the instrumentations and solutions used to offer a high-quality ECG signal are, therefore, of paramount importance. Some requirements are reported in detail in scientific statements and recommendations. The aim of this consensus document is to give scientific reference for the choice of systems able to offer high quality ECG signal acquisition, processing, and presentation suitable for clinical use.
Casolo, Giancarlo; Zuin, Guerrino; Morichelli, Loredana; Calcagnini, Giovanni; Ventimiglia, Vincenzo; Censi, Federica; Caldarola, Pasquale; Russo, Giancarmine; Leogrande, Lorenzo; Franco Gensini, Gian
2017-01-01
Abstract The electrocardiogram (ECG) signal can be derived from different sources. These include systems for surface ECG, Holter monitoring, ergometric stress tests, and telemetry systems and bedside monitoring of vital parameters, which are useful for rhythm and ST-segment analysis and ECG screening of electrical sudden cardiac death predictors. A precise ECG diagnosis is based upon correct recording, elaboration, and presentation of the signal. Several sources of artefacts and potential external causes may influence the quality of the original ECG waveforms. Other factors that may affect the quality of the information presented depend upon the technical solutions employed to improve the signal. The choice of the instrumentations and solutions used to offer a high-quality ECG signal are, therefore, of paramount importance. Some requirements are reported in detail in scientific statements and recommendations. The aim of this consensus document is to give scientific reference for the choice of systems able to offer high quality ECG signal acquisition, processing, and presentation suitable for clinical use. PMID:28751842
Balsam, Paweł; Lodziński, Piotr; Tymińska, Agata; Ozierański, Krzysztof; Januszkiewicz, Łukasz; Główczyńska, Renata; Wesołowska, Katarzyna; Peller, Michał; Pietrzak, Radosław; Książczyk, Tomasz; Borodzicz, Sonia; Kołtowski, Łukasz; Borkowski, Mariusz; Werner, Bożena; Opolski, Grzegorz; Grabowski, Marcin
2018-01-01
Today, the main challenge for researchers is to develop new technologies which may help to improve the diagnoses of cardiovascular disease (CVD), thereby reducing healthcare costs and improving the quality of life for patients. This study aims to show the utility of biomedical shirt-based electrocardiography (ECG) monitoring of patients with CVD in different clinical situations using the Nuubo® ECG (nECG) system. An investigator-initiated, multicenter, prospective observational study was carried out in a cardiology (adult and pediatric) and cardiac rehabilitation wards. ECG monitoring was used with the biomedical shirt in the following four independent groups of patients: 1) 30 patients after pulmonary vein isolation (PVI), 2) 30 cardiac resynchronization therapy (CRT) recipients, 3) 120 patients during cardiac rehabilitation after myocardial infarction, and 4) 40 pediatric patients with supraventricular tachycardia (SVT) before electrophysiology study. Approval for all study groups was obtained from the institutional review board. The biomedical shirt captures the electrocardiographic signal via textile electrodes integrated into a garment. The software allows the visualization and analysis of data such as ECG, heart rate, arrhythmia detecting algorithm and relative position of the body is captured by an electronic device. The major advantages of the nECG system are continuous ECG monitoring during daily activities, high quality of ECG recordings, as well as assurance of a proper adherence due to adequate comfort while wearing the shirt. There are only a few studies that have examined wearable systems, especially in pediatric populations. This study is registered in ClinicalTrials.gov: Identifier NCT03068169. (Cardiol J 2018; 25, 1: 52-59).
Advanced ECG in 2016: is there more than just a tracing?
Reichlin, Tobias; Abächerli, Roger; Twerenbold, Raphael; Kühne, Michael; Schaer, Beat; Müller, Christian; Sticherling, Christian; Osswald, Stefan
2016-01-01
The 12-lead electrocardiogram (ECG) is the most frequently used technology in clinical cardiology. It is critical for evidence-based management of patients with most cardiovascular conditions, including patients with acute myocardial infarction, suspected chronic cardiac ischaemia, cardiac arrhythmias, heart failure and implantable cardiac devices. In contrast to many other techniques in cardiology, the ECG is simple, small, mobile, universally available and cheap, and therefore particularly attractive. Standard ECG interpretation mainly relies on direct visual assessment. The progress in biomedical computing and signal processing, and the available computational power offer fascinating new options for ECG analysis relevant to all fields of cardiology. Several digital ECG markers and advanced ECG technologies have shown promise in preliminary studies. This article reviews promising novel surface ECG technologies in three different fields. (1) For the detection of myocardial ischaemia and infarction, QRS morphology feature analysis, the analysis of high frequency QRS components (HF-QRS) and methods using vectorcardiography as well as ECG imaging are discussed. (2) For the identification and management of patients with cardiac arrhythmias, methods of advanced P-wave analysis are discussed and the concept of ECG imaging for noninvasive localisation of cardiac arrhythmias is presented. (3) For risk stratification of sudden cardiac death and the selection of patients for medical device therapy, several novel markers including an automated QRS-score for scar quantification, the QRS-T angle or the T-wave peak-to-end-interval are discussed. Despite the existing preliminary data, none of the advanced ECG markers and technologies has yet accomplished the transition into clinical practice. Further refinement of these technologies and broader validation in large unselected patient cohorts are the critical next step needed to facilitate translation of advanced ECG technologies into clinical cardiology.
Effect of potassium depletion in normal males: an Apollo 15 simulation.
Hyatt, K H; Johnson, P C; Hoffler, G W; Rambaut, P C; Rummel, J A; Hulley, S B; Vogel, J M; Huntoon, C; Spears, C P
1975-01-01
In the course of Apollo 15, physiologic abnormalities, manifested by ectopic activity on the ECG and unusual alterations in excerise tolerance, occurred in the crew of the Lunar Excursion Module. These were associated with decreases in total body potassium, measured by 42K, of 10% and 15%. The possibility of inadequate potassium (K plus) intake existed. A simulation study was performed prior to Apollo 16, corresponding in duration to Apollo 15. Subjects endured the same sleep aberrations and caloric expenditure as the Apollo 15 astronauts. Subjects consumed a diet containing only 15 mEq/d of K plus during the entire 12 d of absolute bedrest. ECG was continuously monitored, body fluid compartments and total body K plus were measured at intervals by radionuclide methods, electrolyte balance was determined daily, and excercise and orthostatic tolerances were determined prior to and after bedrest. In spite of decreases in total body K plus measured by 42K of 14.5% and 10.5%, and by potassium balances of 3.3% and 6.5%, respectively, neither of the two subjects developed symptomatic hypokalemia. Minor ECG abnormalities were noted in one subject. Orthostatic and exercise tolerance showed only those changes expected as a result of bedrest. Muscle strength was unaffected. Study implications and reasons for discrepancies between K plus loss measured by balance techniques and 42K are reviewed.
Castrillón, Reinel; Pérez, Jairo J; Andrade-Caicedo, Henry
2018-04-02
Wearable textile electrodes for the detection of biopotentials are a promising tool for the monitoring and early diagnosis of chronic diseases. We present a comparative study of the electrical characteristics of four textile electrodes manufactured from common fabrics treated with a conductive polymer, a commercial fabric, and disposable Ag/AgCl electrodes. These characteristics will allow identifying the performance of the materials when used as ECG electrodes. The electrodes were subjected to different electrical tests, and complemented with conductivity calculations and microscopic images to determine their feasibility in the detection of ECG signals. We evaluated four electrical characteristics: contact impedance, electrode polarization, noise, and long-term performance. We analyzed PEDOT:PSS treated fabrics based on cotton, cotton-polyester, lycra and polyester; also a commercial fabric made of silver-plated nylon Shielde® Med-Tex P130, and commercial Ag/AgCl electrodes. We calculated conductivity from the surface resistance and, analyzed their surface at a microscopic level. Rwizard was used in the statistical analysis. The results showed that textile electrodes treated with PEDOT:PSS are suitable for the detection of ECG signals. The error detecting features of the ECG signal was lower than 2% and the electrodes kept working properly after 36 h of continuous use. Even though the contact impedance and the polarization level in textile electrodes were greater than in commercial electrodes, these parameters did not affect the acquisition of the ECG signals. Fabrics conductivity calculations were consistent to the contact impedance.
Isoflurane increases cardiorespiratory coordination in rats
NASA Astrophysics Data System (ADS)
Kabir, Muammar M.; Beig, Mirza I.; Nalivaiko, Eugene; Abbott, Derek; Baumert, Mathias
2008-12-01
Anesthetics such as isoflurane adversely affect heart rate. In this study we analysed the interaction between heart rhythm and respiration at different concentrations of isoflurane and ventilation rates. In two rats, the electrocardiogram (ECG) and respiratory signals were recorded under the influence of isoflurane. For the assessment of cardiorespiratory coordination, we analysed the phase locking between heart rate, computed from the R-R intervals of body surface ECG, and respiratory rate, computed from impedance changes, using Hilbert transform. The changes in heart rate, percentage of synchronization and duration of synchronized epochs at different isoflurane concentrations and ventilation rates were assessed using linear regression model. From this study it appears that the amount of phase locking between cardiac and respiratory rates increases with the increase in concentration of isoflurane. Heart rate and duration of synchronized epochs increased significantly with the increase in the level of isoflurane concentration while respiratory rate was not significantly affected. Cardiorespiratory coordination also showed a considerable increase at the ventilation rates of 50- 55 cpm in both the rats, suggesting that the phase-locking between the cardiac and respiratory oscillators can be increased by breathing at a particular respiratory frequency.
Electrocardiographic patterns in African University strength and endurance athletes of Zulu descent.
Grace, J; Duvenage, E; Jordaan, J P
2015-11-01
There is concern over the effect of training on heart function of athletes as recorded by 12-lead electrocardiography (ECG). Although ECG abnormalities with respect to ethnic origin of black athletes from the Caribbean, West Africa and East Africa have been reported, black athletes from southern Africa, specifically participating in different sports, have never been investigated before. The purpose of this study was to analyze the ECG patterns in South African students of Zulu descent, who represented our university in boxing (endurance modality) and body building (resistance modality) at a regional level. Fifteen subjects each were assigned to an endurance (E), resistance (R) or control (C) group, respectively. ECG patterns were recorded with a 12-lead ECG. Our subjects indicated no significant differences in ECG patterns in relation to whether they participate in strength or endurance related sport. However, 80% of the endurance group and 67% of the resistance displayed ECG criteria indicative of left ventricular hypertrophy (LVH), group E displays higher R5/S1-wave voltages (E=43.3 mm; R=36.8 mm; C=37.1 mm) as well distinctly abnormal ECG patterns (E=87%; R=73%; C=53%), raising clinical suspicion of structural heart disease. Our cohort presented with non-significant, marked ST-segment elevation (53% of both the E and R groups) and inverted T-waves in 27% of the E group. Similar to findings in other ethnic Africans, a large proportion of our Zulu study population displayed ECG criteria indicative of LVH on the evidence of a marked increase of R5/S1-wave voltage and ST/T-segment changes with no differences in relation to whether they participate in strength or endurance related sport.
Smart ECG Monitoring Patch with Built-in R-Peak Detection for Long-Term HRV Analysis.
Lee, W K; Yoon, H; Park, K S
2016-07-01
Since heart rate variability (HRV) analysis is widely used to evaluate the physiological status of the human body, devices specifically designed for such applications are needed. To this end, we developed a smart electrocardiography (ECG) patch. The smart patch measures ECG using three electrodes integrated into the patch, filters the measured signals to minimize noise, performs analog-to-digital conversion, and detects R-peaks. The measured raw ECG data and the interval between the detected R-peaks can be recorded to enable long-term HRV analysis. Experiments were performed to evaluate the performance of the built-in R-wave detection, robustness of the device under motion, and applicability to the evaluation of mental stress. The R-peak detection results obtained with the device exhibited a sensitivity of 99.29%, a positive predictive value of 100.00%, and an error of 0.71%. The device also exhibited less motional noise than conventional ECG recording, being stable up to a walking speed of 5 km/h. When applied to mental stress analysis, the device evaluated the variation in HRV parameters in the same way as a normal ECG, with very little difference. This device can help users better understand their state of health and provide physicians with more reliable data for objective diagnosis.
IEEE-802.15.4-based low-power body sensor node with RF energy harvester.
Tran, Thang Viet; Chung, Wan-Young
2014-01-01
This paper proposes the design and implementation of a low-voltage and low-power body sensor node based on the IEEE 802.15.4 standard to collect electrocardiography (ECG) and photoplethysmography (PPG) signals. To achieve compact size, low supply voltage, and low power consumption, the proposed platform is integrated into a ZigBee mote, which contains a DC-DC booster, a PPG sensor interface module, and an ECG front-end circuit that has ultra-low current consumption. The input voltage of the proposed node is very low and has a wide range, from 0.65 V to 3.3 V. An RF energy harvester is also designed to charge the battery during the working mode or standby mode of the node. The power consumption of the proposed node reaches 14 mW in working mode to prolong the battery lifetime. The software is supported by the nesC language under the TinyOS environment, which enables the proposed node to be easily configured to function as an individual health monitoring node or a node in a wireless body sensor network (BSN). The proposed node is used to set up a wireless BSN that can simultaneously collect ECG and PPG signals and monitor the results on the personal computer.
Hinterberger, Thilo; Fürnrohr, Elena
2016-09-01
The Sensorium is a multimodal neurofeedback environment that reflects a person's physiological state by presenting physiological signals via orchestral sounds from a speaker and multi-coloured lights projected onto a white surface. The software manages acquisition, real-time processing, storage, and sonification of various physiological signals such as the electroencephalogram (EEG) or electrocardiogram (ECG). Each of the 36 participants completed 6 interventional conditions consisting of three different Sensorium-phases with EEG and ECG feedback, a mindfulness meditation, a guided body scan exercise, and a Pseudo-Sensorium using pre-recorded data that did not reflect the subject's own physiology. During all phases EEG, ECG, skin conductance, and respiration were recorded. A feedback questionnaire assessed the participants' subjective reports of changes in well-being, perception, and life-spirit. The results indicate that the Sensorium sessions were not statistically inferior compared to their corresponding active control conditions with respect to improvements in subjective reports concerning well-being and perception. Additionally, the Sensorium was rated as being a more extraordinary experience, as compared to meditation. During the Sensorium conditions the EEG showed lower levels of theta2 (7-8.5 Hz), alpha (9-12 Hz) and beta (12.5-25 Hz) activity. Since participants reported benefit from the Sensorium experience regardless of any prior experience with meditation, we propose this novel method of meditative and extraordinary self-experience to be utilized as a modern alternative to more traditional forms of meditation.
Association of electrocardiogram abnormalities and incident heart failure events.
Gencer, Baris; Butler, Javed; Bauer, Douglas C; Auer, Reto; Kalogeropoulos, Andreas; Marques-Vidal, Pedro; Applegate, William B; Satterfield, Suzanne; Harris, Tamara; Newman, Anne; Vittinghoff, Eric; Rodondi, Nicolas
2014-06-01
Unless effective preventive strategies are implemented, aging of the population will result in a significant worsening of the heart failure (HF) epidemic. Few data exist on whether baseline electrocardiographic (ECG) abnormalities can refine risk prediction for HF. We examined a prospective cohort of 2,915 participants aged 70 to 79 years without preexisting HF, enrolled between April 1997 and June 1998 in the Health, Aging, and Body Composition (Health ABC) study. Minnesota Code was used to define major and minor ECG abnormalities at baseline and at year 4 follow-up. Using Cox models, we assessed (1) the association between ECG abnormalities and incident HF and (2) the incremental value of adding ECG to the Health ABC HF Risk Score using the net reclassification index. At baseline, 380 participants (13.0%) had minor, and 620 (21.3%) had major ECG abnormalities. During a median follow-up of 11.4 years, 485 participants (16.6%) developed incident HF. After adjusting for the Health ABC HF Risk Score variables, the hazard ratio (HR) was 1.27 (95% CI 0.96-1.68) for minor and 1.99 (95% CI 1.61-2.44) for major ECG abnormalities. At year 4, 263 participants developed new and 549 had persistent abnormalities; both were associated with increased subsequent HF risk (HR 1.94, 95% CI 1.38-2.72 for new and HR 2.35, 95% CI 1.82-3.02 for persistent ECG abnormalities). Baseline ECG correctly reclassified 10.5% of patients with HF events, 0.8% of those without HF events, and 1.4% of the overall population. The net reclassification index across the Health ABC HF risk categories was 0.11 (95% CI 0.03-0.19). Among older adults, baseline and new ECG abnormalities are independently associated with increased risk of HF. The contribution of ECG screening for targeted prevention of HF should be evaluated in clinical trials. Copyright © 2014 Mosby, Inc. All rights reserved.
van Herpen, Gerard
2014-01-01
Einthoven not only designed a high quality instrument, the string galvanometer, for recording the ECG, he also shaped the conceptual framework to understand it. He reduced the body to an equilateral triangle and the cardiac electric activity to a dipole, represented by an arrow (i.e. a vector) in the triangle's center. Up to the present day the interpretation of the ECG is based on the model of a dipole vector being projected on the various leads. The model is practical but intuitive, not physically founded. Burger analysed the relation between heart vector and leads according to the principles of physics. It then follows that an ECG lead must be treated as a vector (lead vector) and that the lead voltage is not simply proportional to the projection of the vector on the lead, but must be multiplied by the value (length) of the lead vector, the lead strength. Anatomical lead axis and electrical lead axis are different entities and the anatomical body space must be distinguished from electrical space. Appreciation of these underlying physical principles should contribute to a better understanding of the ECG. The development of these principles by Burger is described, together with some personal notes and a sketch of the personality of this pioneer of medical physics. Copyright © 2014. Published by Elsevier Inc.
NASA Astrophysics Data System (ADS)
Richter, Daniel; Immo Lehmann, H.; Eichhorn, Anna; Constantinescu, Anna M.; Kaderka, Robert; Prall, Matthias; Lugenbiel, Patrick; Takami, Mitsuru; Thomas, Dierk; Bert, Christoph; Durante, Marco; Packer, Douglas L.; Graeff, Christian
2017-09-01
Noninvasive ablation of cardiac arrhythmia by scanned particle radiotherapy is highly promising, but especially challenging due to cardiac and respiratory motion. Irradiations for catheter-free ablation in intact pigs were carried out at the GSI Helmholtz Center in Darmstadt using scanned carbon ions. Here, we present real-time electrocardiogram (ECG) data to estimate time-resolved (4D) delivered dose. For 11 animals, surface ECGs and temporal structure of beam delivery were acquired during irradiation. R waves were automatically detected from surface ECGs. Pre-treatment ECG-triggered 4D-CT phases were synchronized to the R-R interval. 4D-dose calculation was performed using GSI’s in-house 4D treatment planning system. Resulting dose distributions were assessed with respect to coverage (D95 and V95), heterogeneity (HI = D5-D95) and normal tissue exposure. Final results shown here were performed offline, but first calculations were started shortly after irradiation The D95 for TV and PTV was above 95% for 10 and 8 out of 11 animals, respectively. HI was reduced for PTV versus TV volumes, especially for some of the animals targeted at the atrioventricular junction, indicating residual interplay effects due to cardiac motion. Risk structure exposure was comparable to static and 4D treatment planning simulations. ECG-based 4D-dose reconstruction is technically feasible in a patient treatment-like setting. Further development of the presented approach, such as real-time dose calculation, may contribute to safe, successful treatments using scanned ion beams for cardiac arrhythmia ablation.
Printed soft-electronics for remote body monitoring
NASA Astrophysics Data System (ADS)
Mantysalo, Matti; Vuorinen, Tiina; Jeihani, Vala; Vehkaoja, Antti
2017-08-01
Wearable electronics has emerged into the consumer markets over the past few years. Wrist worn and textile integrated devices are the most common apparatuses for unobtrusive monitoring in sports and wellness sectors. Disposable patches and bandages, however, represent the new era of wearable electronics. Soft and stretchable electronics is the enabling technology of this paradigm shift. It can conform to temporary transfer tattoo and deform with the skin without detachment or fracture. In this paper, we focus on screen-printed soft-electronics for remote body monitoring. We will present a fabrication process of a skin conformable electrode bandage designed for long-term outpatient electrocardiography (ECG) monitoring. The soft bandage is designed to be attached to the patient chest and miniaturized data collection device is connected to the bandage via Micro-USB connector. The fabricated bandage is tested in short exercise as well as continued long-term (72 hours) monitoring during normal daily activities. The attained quality of the measured ECG signals is fully satisfactory for rhythm-based cardiac analysis also during moderate-intensity exercise. After pre-processing, the signals could be used also for more profound morphological analysis of ECG wave shapes.
Yongsu Lee; Hyeonwoo Lee; Seunghyup Yoo; Hoi-Jun Yoo
2016-08-01
The sticker-type sensor system is proposed targeting ECG/PPG concurrent monitoring for cardiovascular diseases. The stickers are composed of two types: Hub and Sensor-node (SN) sticker. Low-power CMOS SoC for measuring ECG and PPG signal is hybrid integrated with organic light emitting diodes (OLEDs) and organic photo detector (OPD). The sticker has only 2g weight and only consumes 141μW. The optical calibration loop is adopted for maintaining SNR of PPG signal higher than 30dB. The pulse arrival time (PAT) and SpO2 value can be extracted from various body parts and verified comparing with the reference device from 20 people in-vivo experiments.
An ECG electrode-mounted heart rate, respiratory rhythm, posture and behavior recording system.
Yoshimura, Takahiro; Yonezawa, Yoshiharu; Maki, Hiromichi; Ogawa, Hidekuni; Ninomiya, Ishio; Morton Caldwell, W
2004-01-01
R-R interval, respiration rhythm, posture and behavior recording system has been developed for monitoring a patient's cardiovascular regulatory system in daily life. The recording system consists of three ECG chest electrodes, a variable gain instrumentation amplifier, a dual axis accelerometer, a low power 8-bit single-chip microcomputer and a 1024 KB EEPROM. The complete system is mounted on the chest electrodes. R-R interval and respiration rhythm are calculated by the R waves detected from the ECG. Posture and behavior such as walking and running are detected from the body movements recorded by the accelerometer. The detected data are stored by the EEPROM and, after recording, are downloaded to a desktop computer for analysis.
Moller, Christina Strom; Byberg, Liisa; Sundstrom, Johan; Lind, Lars
2006-01-01
Background Most studies on risk factors for development of coronary heart disease (CHD) have been based on the clinical outcome of CHD. Our aim was to identify factors that could predict the development of ECG markers of CHD, such as abnormal Q/QS patterns, ST segment depression and T wave abnormalities, in 70-year-old men, irrespective of clinical outcome. Methods Predictors for development of different ECG abnormalities were identified in a population-based study using stepwise logistic regression. Anthropometrical and metabolic factors, ECG abnormalities and vital signs from a health survey of men at age 50 were related to ECG abnormalities identified in the same cohort 20 years later. Results At the age of 70, 9% had developed a major abnormal Q/QS pattern, but 63% of these subjects had not been previously hospitalized due to MI, while 57% with symptomatic MI between age 50 and 70 had no major Q/QS pattern at age 70. T wave abnormalities (Odds ratio 3.11, 95% CI 1.18–8.17), high lipoprotein (a) levels, high body mass index (BMI) and smoking were identified as significant independent predictors for the development of abnormal major Q/QS patterns. T wave abnormalities and high fasting glucose levels were significant independent predictors for the development of ST segment depression without abnormal Q/QS pattern. Conclusion T wave abnormalities on resting ECG should be given special attention and correlated with clinical information. Risk factors for major Q/QS patterns need not be the same as traditional risk factors for clinically recognized CHD. High lipoprotein (a) levels may be a stronger risk factor for silent myocardial infarction (MI) compared to clinically recognized MI. PMID:16519804
Is there evidence for mandating electrocardiogram as part of the pre-participation examination?
Borjesson, Mats; Dellborg, Mikael
2011-01-01
The risk of sudden cardiac death may be increased up to 2.8 times in competitive athletes compared with nonathletes. The majority of sudden cardiac death cases are caused by an underlying abnormality that potentially may be identified on cardiovascular screening, depending on the specific abnormality and the content of the cardiovascular screening applied. Indeed, today, cardiac screening is universally recommended by the cardiac societies [European Society of Cardiology (ESC) and American Heart Association (AHA)] and required by the sporting bodies [Fédération Internationale de Football Association (FIFA) and Union of European Football Associations (UEFA)]. Pre-participation examination is by consensus understood to include personal history and physical examination; controversy exists regarding the usefulness and appropriateness of screening using resting 12-lead electrocardiogram (ECG), with an apparent transatlantic difference. The ESC recommends screening consisting of personal history, physical examination, and 12-lead resting ECG, whereas recommendations from the AHA includes only personal history and physical examination. There is firm scientific ground to state that the sensitivity of screening with ECG is vastly superior to, and the cost-effectiveness significantly better than, screening without ECG. Cardiac screening of elite athletes with personal history, physical examination, and ECG is cost-effective also in comparison with other well-accepted procedures of modern health care, such as dialysis and implantable cardiac defibrillators. Newly published recommendations for the interpretation of the ECG in athletes (ESC) and future studies on ECGs in athletes of different ethnicity, gender, and age may further increase the specificity of ECG in cardiac screening, refining the screening procedure and lowering the costs for additional follow-up testing. Cardiac screening without ECG is not cost-effective and may be only marginally better than no screening at all and at a considerable higher cost. The difficulties in feasibility and liability issues for recommending ECGs in some countries need to be acknowledged but must be dealt with within those countries/systems. On ethical grounds, the reasons (logistical, legal, economic) for not screening individual athletes should be clearly stated. Alas, the current evidence, as presented here, suggests that the ECG should be mandatory in pre-participation screening of athletes.
A robust approach for ECG-based analysis of cardiopulmonary coupling.
Zheng, Jiewen; Wang, Weidong; Zhang, Zhengbo; Wu, Dalei; Wu, Hao; Peng, Chung-Kang
2016-07-01
Deriving respiratory signal from a surface electrocardiogram (ECG) measurement has advantage of simultaneously monitoring of cardiac and respiratory activities. ECG-based cardiopulmonary coupling (CPC) analysis estimated by heart period variability and ECG-derived respiration (EDR) shows promising applications in medical field. The aim of this paper is to provide a quantitative analysis of the ECG-based CPC, and further improve its performance. Two conventional strategies were tested to obtain EDR signal: R-S wave amplitude and area of the QRS complex. An adaptive filter was utilized to extract the common component of inter-beat interval (RRI) and EDR, generating enhanced versions of EDR signal. CPC is assessed through probing the nonlinear phase interactions between RRI series and respiratory signal. Respiratory oscillations presented in both RRI series and respiratory signals were extracted by ensemble empirical mode decomposition for coupling analysis via phase synchronization index. The results demonstrated that CPC estimated from conventional EDR series exhibits constant and proportional biases, while that estimated from enhanced EDR series is more reliable. Adaptive filtering can improve the accuracy of the ECG-based CPC estimation significantly and achieve robust CPC analysis. The improved ECG-based CPC estimation may provide additional prognostic information for both sleep medicine and autonomic function analysis. Copyright © 2016 IPEM. Published by Elsevier Ltd. All rights reserved.
Riding, Nathan R; Sheikh, Nabeel; Adamuz, Carmen; Watt, Victoria; Farooq, Abdulaziz; Whyte, Gregory P; George, Keith P; Drezner, Jonathan A; Sharma, Sanjay; Wilson, Mathew G
2015-01-01
Background An increasing number of sporting bodies report unacceptably high levels of false-positive ECGs when undertaking pre-participation cardiac screening. To address this issue, modified ECG interpretation criteria have become available for use within athletes. Objective This study assessed the accuracy of the new 2014 ‘Refined Criteria’ against the 2013 Seattle Criteria and the 2010 European Society of Cardiology (ESC) recommendations in a cohort of Arabic, black and Caucasian athletes. Methods 2491 male athletes (1367 Arabic, 748 black and 376 Caucasian) undertook pre-participation screening including a 12-lead ECG, with further investigation(s) upon indication. Results Ten athletes (0.4%) were identified with cardiac pathology; seven with hypertrophic cardiomyopathy (HCM; five black and two Arabic) and three Arabs with Wolff–Parkinson–White syndrome (WPW). All three ECG criteria were 100% sensitive identifying all cases of HCM and WPW. The 2014 Refined Criteria reduced (p<0.0001) the prevalence of an abnormal ECG to 5.3% vs 11.6% (Seattle Criteria) and 22.3% (2010 ESC recommendations). The 2014 Refined Criteria significantly (p<0.0001) improved specificity (94.0%) across all ethnicities compared with the Seattle Criteria (87.5%) and ESC recommendations (76.6%). Black athletes continue to present a higher prevalence (p<0.0001) of abnormal ECGs compared with Arabic and Caucasian athletes (10% vs 3.6% and 2.1%). Conclusions The 2014 Refined Criteria for athlete ECG interpretation outperformed both the 2013 Seattle Criteria and the 2010 ESC recommendations by significantly reducing the number of false-positive ECGs in Arabic, black and Caucasian athletes while maintaining 100% sensitivity for serious cardiac pathologies. PMID:25502812
Brugada syndrome: More than 20 years of scientific excitement.
Brugada, Pedro
2016-03-01
In 1992 we reported on eight patients with a particular electrocardiograph (ECG) showing ST segment elevation in the right precordial leads. All patients had a structurally normal heart and had survived one or multiple episodes of near sudden death caused by ventricular fibrillation. We showed 6 years later that this disease, known nowadays as Brugada syndrome, was caused by mutations in the SCN5A gene which encodes for the cardiac sodium channel. Other genes where mutations result in the same ECG have been also identified, with at present more than 17 different genes published. These data show that Brugada syndrome is a genetically heterogeneous disease as is also the case in the long QT syndrome. In Brugada syndrome, the clue to the initial clinical diagnosis remains the abnormal ECG. However, it was evident from the beginning that the ECG of Brugada syndrome is variable and sensitive to many autonomic, drug, exercise, emotions and other external influences such as a meal, fever, changes in heart rate from any cause, and even body position. When followed intensively, all patients with a Brugada ECG will show a completely normal ECG at one or another moment in their lives. The spontaneous normalization of the ECG represents a major diagnostic challenge, because a patient with Brugada syndrome seen during normalization of the ECG may fail to get the correct diagnosis. In these more than 20 years great challenges have been overcome but some remain, mainly the approach to the asymptomatic individual with a diagnosis of Brugada syndrome. In 30-50% of individuals who die suddenly because of documented or suspected Brugada syndrome, sudden death is the first manifestation of the disease. Thus, these individuals were fully asymptomatic until the first fatal event. Copyright © 2015. Published by Elsevier Ltd.
Lankveld, Theo; de Vos, Cees B; Limantoro, Ione; Zeemering, Stef; Dudink, Elton; Crijns, Harry J; Schotten, Ulrich
2016-05-01
Electrical cardioversion (ECV) is one of the rhythm control strategies in patients with persistent atrial fibrillation (AF). Unfortunately, recurrences of AF are common after ECV, which significantly limits the practical benefit of this treatment in patients with AF. The objectives of this study were to identify noninvasive complexity or frequency parameters obtained from the surface electrocardiogram (ECG) to predict sinus rhythm (SR) maintenance after ECV and to compare these ECG parameters with clinical predictors. We studied a wide variety of ECG-derived time- and frequency-domain AF complexity parameters in a prospective cohort of 502 patients with persistent AF referred for ECV. During 1-year follow-up, 161 patients (32%) maintained SR. The best clinical predictor of SR maintenance was antiarrhythmic drug (AAD) treatment. A model including clinical parameters predicted SR maintenance with a mean cross-validated area under the receiver operating characteristic curve (AUC) of 0.62 ± 0.05. The best single ECG parameter was the dominant frequency (DF) on lead V6. Combining several ECG parameters predicted SR maintenance with a mean AUC of 0.64 ± 0.06. Combining clinical and ECG parameters improved prediction to a mean AUC of 0.67 ± 0.05. Although the DF was affected by AAD treatment, excluding patients taking AADs did not significantly lower the predictive performance captured by the ECG. ECG-derived parameters predict SR maintenance during 1-year follow-up after ECV at least as good as known clinical predictors of rhythm outcome. The DF proved to be the most powerful ECG-derived predictor. Copyright © 2016 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.
Cheng, Li-Fang; Chen, Tung-Chien; Chen, Liang-Gee
2012-01-01
Most of the abnormal cardiac events such as myocardial ischemia, acute myocardial infarction (AMI) and fatal arrhythmia can be diagnosed through continuous electrocardiogram (ECG) analysis. According to recent clinical research, early detection and alarming of such cardiac events can reduce the time delay to the hospital, and the clinical outcomes of these individuals can be greatly improved. Therefore, it would be helpful if there is a long-term ECG monitoring system with the ability to identify abnormal cardiac events and provide realtime warning for the users. The combination of the wireless body area sensor network (BASN) and the on-sensor ECG processor is a possible solution for this application. In this paper, we aim to design and implement a digital signal processor that is suitable for continuous ECG monitoring and alarming based on the continuous wavelet transform (CWT) through the proposed architectures--using both programmable RISC processor and application specific integrated circuits (ASIC) for performance optimization. According to the implementation results, the power consumption of the proposed processor integrated with an ASIC for CWT computation is only 79.4 mW. Compared with the single-RISC processor, about 91.6% of the power reduction is achieved.
Myocardial complications of immunisations.
Helle, E P; Koskenvuo, K; Heikkilä, J; Pikkarainen, J; Weckström, P
1978-10-01
Immunisation may induce myocardial complications. In this pilot study clinical, electrocardiographic, chemical and immunological findings have been studied during a six weeks' follow-up after routine immunisation (mumps, polio, tetanus, smallpox, diphtheria and type A meningococcal disease) among 234 Finnish conscripts at the beginning of their military service. Serial pattern of ECG changes suggestive of myocarditis was recorded in eight of the 234 conscripts one to two weeks after vaccination against smallpox and diphtheria. Changes were mainly minor ST segment elevations and T wave inversions and usually they disappeared in a few weeks. The ECG positives more often had a history of atopy, and their mean body temperatures and heart rates after the vaccinations were higher than among the other subjects (p less than 0.01). However, clinical myocarditis was never noted, nor were immunological or enzymological changes different among the ECG positives. Thus in 3% of the study population, evidence of postvaccinal myocarditis was noted, based on serial ECG patterns, but without any other evidence of cardiac disease.
A New Strategy for ECG Baseline Wander Elimination Using Empirical Mode Decomposition
NASA Astrophysics Data System (ADS)
Shahbakhti, Mohammad; Bagheri, Hamed; Shekarchi, Babak; Mohammadi, Somayeh; Naji, Mohsen
2016-06-01
Electrocardiogram (ECG) signals might be affected by various artifacts and noises that have biological and external sources. Baseline wander (BW) is a low-frequency artifact that may be caused by breathing, body movements and loose sensor contact. In this paper, a novel method based on empirical mode decomposition (EMD) for removal of baseline noise from ECG is presented. When compared to other EMD-based methods, the novelty of this research is to reach the optimized number of decomposed levels for ECG BW de-noising using mean power frequency (MPF), while the reduction of processing time is considered. To evaluate the performance of the proposed method, a fifth-order Butterworth high pass filtering (BHPF) with cut-off frequency at 0.5Hz and wavelet approach are applied. Three performance indices, signal-to-noise ratio (SNR), mean square error (MSE) and correlation coefficient (CC), between pure and filtered signals have been utilized for qualification of presented techniques. Results suggest that the EMD-based method outperforms the other filtering method.
Multifractal analysis of electronic cardiogram taken from healthy and unhealthy adult subjects
NASA Astrophysics Data System (ADS)
Wang, Jun; Ning, Xinbao; Chen, Ying
2003-05-01
Electronic Cardiogram (ECG) data taken from healthy adult subjects are found to characterize multifractality. In order to quantitatively analyze multifractal spectrum, the area of the spectrum is computed. We have a comparison between the spectrum of the young subjects and that of the old ones. We find that the area of young adult subject's multifractal spectrum is far larger than the older one's and the logarithm of the area of the spectrum is inversely proportion to age. It shows that when time is running on human heartbeat energy is exponentially decreasing until heart failure. And distinct difference between the area of the multifractal spectrum of healthy subjects and that of having coronary disease is not found. We analyze the ECG data taken from patients with brain injury. The area of their ECG multifractal spectrum is distinctly descending. It shows that a person's multifractal spectrum is controlled mainly by his neurosystem. With advancing age, the neuroautonomic control of people's body on the ECG decreases and tends from multifractality to monofractality.
Maanja, Maren; Wieslander, Björn; Schlegel, Todd T; Bacharova, Ljuba; Abu Daya, Hussein; Fridman, Yaron; Wong, Timothy C; Schelbert, Erik B; Ugander, Martin
2017-01-22
Myocardial fibrosis quantified by myocardial extracellular volume fraction (ECV) and left ventricular mass (LVM) index (LVMI) measured by cardiovascular magnetic resonance might represent independent and opposing contributors to ECG voltage measures of left ventricular hypertrophy (LVH). Diffuse myocardial fibrosis can occur in LVH and interfere with ECG voltage measures. This phenomenon could explain the decreased sensitivity of LVH detectable by ECG, a fundamental diagnostic tool in cardiology. We identified 77 patients (median age, 53 [interquartile range, 26-60] years; 49% female) referred for contrast-enhanced cardiovascular magnetic resonance with ECV measures and 12-lead ECG. Exclusion criteria included clinical confounders that might influence ECG measures of LVH. We evaluated ECG voltage-based LVH measures, including Sokolow-Lyon index, Cornell voltage, 12-lead voltage, and the vectorcardiogram spatial QRS voltage, with respect to LVMI and ECV. ECV and LVMI were not correlated (R 2 =0.02; P=0.25). For all voltage-related parameters, higher LVMI resulted in greater voltage (r=0.33-0.49; P<0.05 for all), whereas increased ECV resulted in lower voltage (r=-0.32 to -0.57; P<0.05 for all). When accounting for body fat, LV end-diastolic volume, and mass-to-volume ratio, both LVMI (β=0.58, P=0.03) and ECV (β=-0.46, P<0.001) were independent predictors of QRS voltage (multivariate adjusted R 2 =0.39; P<0.001). Myocardial mass and diffuse myocardial fibrosis have independent and opposing effects upon ECG voltage measures of LVH. Diffuse myocardial fibrosis quantified by ECV can obscure the ECG manifestations of increased LVM. This provides mechanistic insight, which can explain the limited sensitivity of the ECG for detecting increased LVM. © 2017 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.
Nitzken, Matthew; Bajaj, Nihit; Aslan, Sevda; Gimel’farb, Georgy; Ovechkin, Alexander
2013-01-01
Surface Electromyography (EMG) is a standard method used in clinical practice and research to assess motor function in order to help with the diagnosis of neuromuscular pathology in human and animal models. EMG recorded from trunk muscles involved in the activity of breathing can be used as a direct measure of respiratory motor function in patients with spinal cord injury (SCI) or other disorders associated with motor control deficits. However, EMG potentials recorded from these muscles are often contaminated with heart-induced electrocardiographic (ECG) signals. Elimination of these artifacts plays a critical role in the precise measure of the respiratory muscle electrical activity. This study was undertaken to find an optimal approach to eliminate the ECG artifacts from EMG recordings. Conventional global filtering can be used to decrease the ECG-induced artifact. However, this method can alter the EMG signal and changes physiologically relevant information. We hypothesize that, unlike global filtering, localized removal of ECG artifacts will not change the original EMG signals. We develop an approach to remove the ECG artifacts without altering the amplitude and frequency components of the EMG signal by using an externally recorded ECG signal as a mask to locate areas of the ECG spikes within EMG data. These segments containing ECG spikes were decomposed into 128 sub-wavelets by a custom-scaled Morlet Wavelet Transform. The ECG-related sub-wavelets at the ECG spike location were removed and a de-noised EMG signal was reconstructed. Validity of the proposed method was proven using mathematical simulated synthetic signals and EMG obtained from SCI patients. We compare the Root-mean Square Error and the Relative Change in Variance between this method, global, notch and adaptive filters. The results show that the localized wavelet-based filtering has the benefit of not introducing error in the native EMG signal and accurately removing ECG artifacts from EMG signals. PMID:24307920
Nitzken, Matthew; Bajaj, Nihit; Aslan, Sevda; Gimel'farb, Georgy; El-Baz, Ayman; Ovechkin, Alexander
2013-07-18
Surface Electromyography (EMG) is a standard method used in clinical practice and research to assess motor function in order to help with the diagnosis of neuromuscular pathology in human and animal models. EMG recorded from trunk muscles involved in the activity of breathing can be used as a direct measure of respiratory motor function in patients with spinal cord injury (SCI) or other disorders associated with motor control deficits. However, EMG potentials recorded from these muscles are often contaminated with heart-induced electrocardiographic (ECG) signals. Elimination of these artifacts plays a critical role in the precise measure of the respiratory muscle electrical activity. This study was undertaken to find an optimal approach to eliminate the ECG artifacts from EMG recordings. Conventional global filtering can be used to decrease the ECG-induced artifact. However, this method can alter the EMG signal and changes physiologically relevant information. We hypothesize that, unlike global filtering, localized removal of ECG artifacts will not change the original EMG signals. We develop an approach to remove the ECG artifacts without altering the amplitude and frequency components of the EMG signal by using an externally recorded ECG signal as a mask to locate areas of the ECG spikes within EMG data. These segments containing ECG spikes were decomposed into 128 sub-wavelets by a custom-scaled Morlet Wavelet Transform. The ECG-related sub-wavelets at the ECG spike location were removed and a de-noised EMG signal was reconstructed. Validity of the proposed method was proven using mathematical simulated synthetic signals and EMG obtained from SCI patients. We compare the Root-mean Square Error and the Relative Change in Variance between this method, global, notch and adaptive filters. The results show that the localized wavelet-based filtering has the benefit of not introducing error in the native EMG signal and accurately removing ECG artifacts from EMG signals.
A PC-based generator of surface ECG potentials for computer electrocardiograph testing.
Franchi, D; Palagi, G; Bedini, R
1994-02-01
The system is composed of an electronic circuit, connected to a PC, whose outputs, starting from ECGs digitally collected by commercial interpretative electrocardiographs, simulate virtual patients' limb and chest electrode potentials. Appropriate software manages the D/A conversion and lines up the original short-term signal in a ring buffer to generate continuous ECG traces. The device also permits the addition of artifacts and/or baseline wanders/shifts on each lead separately. The system has been accurately tested and statistical indexes have been computed to quantify the reproduction accuracy analyzing, in the generated signal, both the errors induced on the fiducial point measurements and the capability to retain the diagnostic significance. The device integrated with an annotated ECG data base constitutes a reliable and powerful system to be used in the quality assurance testing of computer electrocardiographs.
Niegowski, Maciej; Zivanovic, Miroslav
2016-03-01
We present a novel approach aimed at removing electrocardiogram (ECG) perturbation from single-channel surface electromyogram (EMG) recordings by means of unsupervised learning of wavelet-based intensity images. The general idea is to combine the suitability of certain wavelet decomposition bases which provide sparse electrocardiogram time-frequency representations, with the capacity of non-negative matrix factorization (NMF) for extracting patterns from images. In order to overcome convergence problems which often arise in NMF-related applications, we design a novel robust initialization strategy which ensures proper signal decomposition in a wide range of ECG contamination levels. Moreover, the method can be readily used because no a priori knowledge or parameter adjustment is needed. The proposed method was evaluated on real surface EMG signals against two state-of-the-art unsupervised learning algorithms and a singular spectrum analysis based method. The results, expressed in terms of high-to-low energy ratio, normalized median frequency, spectral power difference and normalized average rectified value, suggest that the proposed method enables better ECG-EMG separation quality than the reference methods. Copyright © 2015 IPEM. Published by Elsevier Ltd. All rights reserved.
Tanantong, Tanatorn; Nantajeewarawat, Ekawit; Thiemjarus, Surapa
2015-02-09
False alarms in cardiac monitoring affect the quality of medical care, impacting on both patients and healthcare providers. In continuous cardiac monitoring using wireless Body Sensor Networks (BSNs), the quality of ECG signals can be deteriorated owing to several factors, e.g., noises, low battery power, and network transmission problems, often resulting in high false alarm rates. In addition, body movements occurring from activities of daily living (ADLs) can also create false alarms. This paper presents a two-phase framework for false arrhythmia alarm reduction in continuous cardiac monitoring, using signals from an ECG sensor and a 3D accelerometer. In the first phase, classification models constructed using machine learning algorithms are used for labeling input signals. ECG signals are labeled with heartbeat types and signal quality levels, while 3D acceleration signals are labeled with ADL types. In the second phase, a rule-based expert system is used for combining classification results in order to determine whether arrhythmia alarms should be accepted or suppressed. The proposed framework was validated on datasets acquired using BSNs and the MIT-BIH arrhythmia database. For the BSN dataset, acceleration and ECG signals were collected from 10 young and 10 elderly subjects while they were performing ADLs. The framework reduced the false alarm rate from 9.58% to 1.43% in our experimental study, showing that it can potentially assist physicians in diagnosing a vast amount of data acquired from wireless sensors and enhance the performance of continuous cardiac monitoring.
Comparison of bipolar vs. tripolar concentric ring electrode Laplacian estimates.
Besio, W; Aakula, R; Dai, W
2004-01-01
Potentials on the body surface from the heart are of a spatial and temporal function. The 12-lead electrocardiogram (ECG) provides useful global temporal assessment, but it yields limited spatial information due to the smoothing effect caused by the volume conductor. The smoothing complicates identification of multiple simultaneous bioelectrical events. In an attempt to circumvent the smoothing problem, some researchers used a five-point method (FPM) to numerically estimate the analytical solution of the Laplacian with an array of monopolar electrodes. The FPM is generalized to develop a bi-polar concentric ring electrode system. We have developed a new Laplacian ECG sensor, a trielectrode sensor, based on a nine-point method (NPM) numerical approximation of the analytical Laplacian. For a comparison, the NPM, FPM and compact NPM were calculated over a 400 x 400 mesh with 1/400 spacing. Tri and bi-electrode sensors were also simulated and their Laplacian estimates were compared against the analytical Laplacian. We found that tri-electrode sensors have a much-improved accuracy with significantly less relative and maximum errors in estimating the Laplacian operator. Apart from the higher accuracy, our new electrode configuration will allow better localization of the electrical activity of the heart than bi-electrode configurations.
A multichannel decision-level fusion method for T wave alternans detection
NASA Astrophysics Data System (ADS)
Ye, Changrong; Zeng, Xiaoping; Li, Guojun; Shi, Chenyuan; Jian, Xin; Zhou, Xichuan
2017-09-01
Sudden cardiac death (SCD) is one of the most prominent causes of death among patients with cardiac diseases. Since ventricular arrhythmia is the main cause of SCD and it can be predicted by T wave alternans (TWA), the detection of TWA in the body-surface electrocardiograph (ECG) plays an important role in the prevention of SCD. But due to the multi-source nature of TWA, the nonlinear propagation through thorax, and the effects of the strong noises, the information from different channels is uncertain and competitive with each other. As a result, the single-channel decision is one-sided while the multichannel decision is difficult to reach a consensus on. In this paper, a novel multichannel decision-level fusion method based on the Dezert-Smarandache Theory is proposed to address this issue. Due to the redistribution mechanism for highly competitive information, higher detection accuracy and robustness are achieved. It also shows promise to low-cost instruments and portable applications by reducing demands for the synchronous sampling. Experiments on the real records from the Physikalisch-Technische Bundesanstalt diagnostic ECG database indicate that the performance of the proposed method improves by 12%-20% compared with the one-dimensional decision method based on the periodic component analysis.
Gottschalk, Byron H; Garcia-Niebla, Javier; Anselm, Daniel D; Jaidka, Atul; De Luna, Antoni Bayés; Baranchuk, Adrian
2016-01-01
Brugada phenocopies (BrP) are clinical entities characterized by ECG patterns that are identical to true Brugada syndrome (BrS), but are elicited by various clinical circumstances. A recent study demonstrated that the patterns of BrP and BrS are indistinguishable under the naked eye, thereby validating the concept that the patterns are identical. The aim of our study was to determine whether recently developed ECG criteria would allow for discrimination between type-2 BrS ECG pattern and type-2 BrP ECG pattern. Ten ECGs from confirmed BrS (aborted sudden death, transformation into type 1 upon sodium channel blocking test and/or ventricular arrhythmias, positive genetics) cases and 9 ECGs from confirmed BrP were included in the study. Surface 12-lead ECGs were scanned, saved in JPEG format for blind measurement of two values: (i) β-angle; and (ii) the base of the triangle. Cut-off values of ≥58° for the β-angle and ≥4mm for the base of the triangle were used to determine the BrS ECG pattern. Mean values for the β-angle in leads V1 and V2 were 66.7±25.5 and 55.4±28.1 for BrS and 54.1±26.5 and 43.1±16.1 for BrP respectively (p=NS). Mean values for the base of the triangle in V1 and V2 were 7.5±3.9 and 5.7±3.9 for BrS and 5.6±3.2 and 4.7±2.7 for BrP respectively (p=NS). The β-angle had a sensitivity of 60%, specificity of 78% (LR+ 2.7, LR- 0.5). The base of the triangle had a sensitivity of 80%, specificity of 40% (LR+ 1.4, LR- 0.5). New ECG criteria presented relatively low sensitivity and specificity, positive and negative predictive values to discriminate between BrS and BrP ECG patterns, providing further evidence that the two patterns are identical. Copyright © 2016 Elsevier Inc. All rights reserved.
Zumbakytė-Šermukšnienė, Renata; Kajėnienė, Alma; Vainoras, Alfonsas; Berškienė, Kristina; Augutienė, Viktorija
2010-01-01
We consider the human body as an adaptable, complex, and dynamic system capable of organizing itself, though there is none, the only one, factor inside the system capable of doing this job. Making use of the computerized ECG analysis system "Kaunas-load" with parallel registration of ECG carrying out body motor characteristics, ABP, or other processes characterizing hemodynamics enable one to reveal and evaluate the synergistic aspects of essential systems of the human body what particularly extends the possibilities of functional diagnostics. The aim of the study was to determine the features of alterations in the functional condition of basketball and football players and nonathletes during the bicycle ergometry test by applying the model of evaluation of the functional condition of the human body. The study population consisted of 266 healthy athletes and nonathletes. Groups of male basketball players, male football players, male nonathletes, female basketball players, and female nonathletes were studied. A computerized ECG analysis system "Kaunas-load" that is capable of both registering and analyzing the power developed by the subject and 12-lead ECG synchronically were used for evaluating the functional condition of the CVS. The subject did a computer-based bicycle ergometry test. The following ECG parameters at rest and throughout the load - HR, JT interval, and the deduced JT/RR ratio index that reflects the condition between regulatory and supplying systems - were evaluated. After measuring ABP, the pulse amplitude (S-D) was evaluated. The pulse blood pressure ratio amplitude (S-D)/S that depicts the connection between the periphery and regulatory systems was also evaluated. Speeds of changes in physiological parameters during physical load were evaluated too. Heart rate and JT/RR ratio of athletes at the rest and during load were lower, and JT interval of rest was longer and became shorter more slowly during load, compared to that of healthy nonathletes. The pulse arterial blood pressure amplitude of men at rest and during load was higher than that of women. The pulse ABP amplitude of athletes was higher than that of nonathletes. The relative pulse ABP amplitude in the state of rest in the groups of men was higher than in groups of women. The relative pulse amplitude of female basketball players at rest and during load was higher than that of female nonathletes. Significant differences in the dynamics of speed of changes in HR, the pulse ABP amplitude, and the relative pulse ABP amplitude of male and female basketball players, male football players, as well as male and female nonathletes were observed. The newly deduced parameters, namely, speeds of changes in the parameters with changes in the phase of the load reflect very well peculiarities of functional condition of the human body during bicycle ergometry test. The sum total of those newly deduced parameters and customary parameters reveals new functional peculiarities of the human body.
Use of equine chorionic gonadotropin to control reproduction of the dairy cow: a review.
De Rensis, F; López-Gatius, F
2014-04-01
Equine chorionic gonadotropin (eCG) is a member of the glycoprotein family of hormones along with LH, FSH and thyroid-stimulating hormone. In non-equid species, eCG shows high LH- and FSH-like activities and has a high affinity for both FSH and LH receptors in the ovaries. On the granulosa and thecal cells of the follicle, eCG has long-lasting LH- and FSH-like effects that stimulate oestradiol and progesterone secretion. Thus, eCG administration in dairy cattle results in fewer atretic follicles, the recruitment of more small follicles showing an elevated growth rate, the sustained growth of medium and large follicles and improved development of the dominant and pre-ovulatory follicle. In consequence, the quality of the ensuing CL is improved, and thereby progesterone secretion increased. Based on these characteristics, eCG treatment is utilized in veterinary medicine to control the reproductive activity of the cow by i) improving reproductive performance during early post-partum stages; ii) increasing ovulation and pregnancy rates in non-cyclic cows; iii) improving the conception rate in cows showing delayed ovulation; and finally, iv) eCG is currently included in protocols for fixed-time artificial insemination since after inducing the synchrony of ovulation using a progesterone-releasing device, eCG has beneficial effects on embryo development and survival. The above effects are not always observed in cyclic animals, but they are evident in animals in which LH secretion and ovarian activity are reduced or compromised, for instance, during the early post-partum period, under seasonal heat stress, in anoestrus animals or in animals with a low body condition score. © 2014 Blackwell Verlag GmbH.
How valuable is P-wave dispersion in the determination of carboxyhemoglobin levels?
Sener, M T; Anci, Y; Kalkan, K; Kir, M Z; Emet, M
2014-05-01
To determine whether or not wave/interval dispersions in electrocardiography (ECG) are increased, and to define whether wave and interval dispersions are correlated with carboxyhemoglobin (COHb) levels. ECG, complete blood count, and biochemical parameters were taken from 87 patients with carbon monoxide (CO) poisoning as well as 90 control patients with similar age, gender, and body mass index distribution. COHb levels were recorded in CO-poisoning patients. The COHb levels and the relationships with ECG parameters were studied. Pmax, Pmin, Pd, PRmax, PRmin, PRd, QTmax, QTmin, QTd, cQTmax, cQTmin, cQTd, Tmax, Tmin, and Td in ECG were higher in intoxicated patients than the control group (p < 0.05 for all). Pearson's correlation analyses showed moderately significant positive correlations between COHb level and Pmax (r = 0.224; p = 0.037) and Pd (r = 0.222; p = 0.039). The receiver-operator characteristic (ROC) curve showed that a Pd value of 38 ms determined by ECG separates patients with a COHb ≥ 20% with area under the ROC curve of 0.78 (95%CI = 0.71-0.83), a sensitivity of 67.9% (95%CI = 59.4-75.6), a specificity of 95% (95%CI = 83.0-99.2], a positive predictive value of 97.9% (95%CI = 92.5-99.7), and a negative predictive value of 46.3% (95%CI = 35.3-57.7.) A significant increase in wave/interval dispersions in the ECG of CO-poisoning patients compared with controls may show that not only a part is affected but both atrium and the ventricles as a whole are affected by hypoxic ischemia. When COHb levels of the patients are unavailable, P dispersion on ECG may show CO poisoning level of the patient.
Omura, Yoshiaki; Lu, Dominic; O'Young, Brian; Jones, Marilyn; Nihrane, Abdallah; Duvvi, Harsha; Shimotsuura, Yasuhiro; Ohki, Motomu
2015-01-01
There are many methods of detecting cancers including detection of cancer markers by blood test, (which is invasive, time consuming and relatively expensive), detection of cancers by non-invasive methods such as X-Ray, CT scan, and MRI & PET Scan (which are non-invasive and quick but very expensive). Our research was performed to develop new non-invasive, safe, quick economical method of detecting cancers and the 1st author already developed for clinically important non-invasive new methods including early stage of present method using his method of localizing accurate organ representation areas of face, eyebrows, upper lip, lower lip, surface and dorsal part of the tongue, surface backs, and palm side of the hands. This accurate localization of the organ representation area of the different parts of the body was performed using electromagnetic field resonance phenomenon between 2 identical molecules or tissues based on our US patented non-invasive method in 1993. Since year 2000, we developed the following non-invasive diagnostic methods that can be quickly identified by the patented simple non-invasive method without using expensive or bulky instrument at any office or field where there is no electricity or instrument available. The following are examples of non-invasive quick method of diagnosis and treatment of cancers using different approaches: 1) Soft red laser beam scanning of different parts of body; 2) By speaking voice; 3) Visible and invisible characteristic abnormalities on different organ representation areas of the different parts of the body, and 4) Mouth, Hand, and Foot Writings of both right and left side of the body. As a consequence of our latest research, we were able to develop a simple method of detecting cancer from existing recorded electrocardiograms. In this article, we are going to describe the method and result of clinical applications on many different cancers of different organs including lung, esophagus, breast, stomach, colon, uterus, ovary, prostate gland, as well as common bone marrow related malignancies such as Hodgkin's Lymphoma, Non-Hodgkin's Lymphoma, Multiple Myeloma as well as Leukemia.
Zhang, Jun; Gu, Zhenghui; Yu, Zhu Liang; Li, Yuanqing
2015-03-01
Low energy consumption is crucial for body area networks (BANs). In BAN-enabled ECG monitoring, the continuous monitoring entails the need of the sensor nodes to transmit a huge data to the sink node, which leads to excessive energy consumption. To reduce airtime over energy-hungry wireless links, this paper presents an energy-efficient compressed sensing (CS)-based approach for on-node ECG compression. At first, an algorithm called minimal mutual coherence pursuit is proposed to construct sparse binary measurement matrices, which can be used to encode the ECG signals with superior performance and extremely low complexity. Second, in order to minimize the data rate required for faithful reconstruction, a weighted ℓ1 minimization model is derived by exploring the multisource prior knowledge in wavelet domain. Experimental results on MIT-BIH arrhythmia database reveals that the proposed approach can obtain higher compression ratio than the state-of-the-art CS-based methods. Together with its low encoding complexity, our approach can achieve significant energy saving in both encoding process and wireless transmission.
Mechanism linking T-wave alternans to the genesis of cardiac fibrillation.
Pastore, J M; Girouard, S D; Laurita, K R; Akar, F G; Rosenbaum, D S
1999-03-16
Although T-wave alternans has been closely associated with vulnerability to ventricular arrhythmias, the cellular processes underlying T-wave alternans and their role, if any, in the mechanism of reentry remain unclear. -T-wave alternans on the surface ECG was elicited in 8 Langendorff-perfused guinea pig hearts during fixed-rate pacing while action potentials were recorded simultaneously from 128 epicardial sites with voltage-sensitive dyes. Alternans of the repolarization phase of the action potential was observed above a critical threshold heart rate (HR) (209+/-46 bpm) that was significantly lower (by 57+/-36 bpm) than the HR threshold for alternation of action potential depolarization. The magnitude (range, 2.7 to 47.0 mV) and HR threshold (range, 171 to 272 bpm) of repolarization alternans varied substantially between cells across the epicardial surface. T-wave alternans on the surface ECG was explained primarily by beat-to-beat alternation in the time course of cellular repolarization. Above a critical HR, membrane repolarization alternated with the opposite phase between neighboring cells (ie, discordant alternans), creating large spatial gradients of repolarization. In the presence of discordant alternans, a small acceleration of pacing cycle length produced a characteristic sequence of events: (1) unidirectional block of an impulse propagating against steep gradients of repolarization, (2) reentrant propagation, and (3) the initiation of ventricular fibrillation. Repolarization alternans at the level of the single cell accounts for T-wave alternans on the surface ECG. Discordant alternans produces spatial gradients of repolarization of sufficient magnitude to cause unidirectional block and reentrant ventricular fibrillation. These data establish a mechanism linking T-wave alternans of the ECG to the pathogenesis of sudden cardiac death.
George, Jason; Abdulla, Rami Khoury; Yeow, Raymond; Aggarwal, Anshul; Boura, Judith; Wegner, James; Franklin, Barry A
2017-02-15
Our increasingly sedentary lifestyle is associated with a heightened risk of obesity, diabetes, heart disease, and cardiovascular mortality. Using the recently developed heart rate index formula in 843 patients (mean ± SD age 62.3 ± 15.7 years) who underwent 24-hour ambulatory electrocardiographic (ECG) monitoring, we estimated average and peak daily energy expenditure, expressed as metabolic equivalents (METs), and related these data to subsequent hospital encounters and health care costs. In this cohort, estimated daily average and peak METs were 1.7 ± 0.7 and 5.5 ± 2.1, respectively. Patients who achieved daily bouts of peak energy expenditure ≥5 METs had fewer hospital encounters (p = 0.006) and median health care costs that were nearly 50% lower (p <0.001) than their counterparts who attained <5 METs. In patients whose body mass index was ≥30 kg/m 2 , there were significant differences in health care costs depending on whether they achieved <5 or ≥5 METs estimated by ambulatory ECG monitoring (p = 0.005). Interestingly, patients who achieved ≥5 METs had lower and no significant difference in their health care costs, regardless of their body mass index (p = 0.46). Patients with previous percutaneous coronary intervention who achieved ≥5 METs had lower health care costs (p = 0.044) and fewer hospital encounters (p = 0.004) than those who achieved <5 METs. In conclusion, average and peak daily energy expenditures estimated from ambulatory ECG monitoring may provide useful information regarding health care utilization in patients with and without previous percutaneous coronary intervention, irrespective of body habitus. Our findings are the first to link lower intensities of peak daily energy expenditure, estimated from ambulatory ECG monitoring, with increased health care utilization. Copyright © 2016 Elsevier Inc. All rights reserved.
Fossa, Anthony A
2017-09-01
Cardiac restitution is the ability of the heart to recover from one beat to the next. Ventricular arrhythmia vulnerability can occur when the heart does not properly adjust to sudden changes in rate or in hemodynamics leading to excessive temporal and/or spatial heterogeneity in conduction or repolarization. Restitution has historically been used to study, by invasive means, the dynamics of the relationship between action potential duration (APD) and diastolic interval (DI) in sedated subjects using various pacing protocols. Even though the analogous measures of APD and DI can be obtained using the surface ECG to acquire the respective QT and TQ intervals for ECG restitution, this methodology has not been widely adopted for a number of reasons. Recent development of more advanced software algorithms enables ECG intervals to be measured accurately, on a continuous beat-to-beat basis, in an automated manner, and under highly dynamic conditions (i.e., ambulatory or exercise) providing information beyond that available in the typical resting state. Current breakthroughs in ECG technology will allow ECG restitution measures to become a practical approach for providing quantitative measures of the risks for ventricular arrhythmias as well as cardiac stress in general. In addition to a review of the underlying principles and caveats of ECG restitution, a new approach toward an advancement of more integrated restitution biomarkers is proposed. © 2017 Wiley Periodicals, Inc.
Heart Health Tests for Diabetes Patients
... or fluids in the body. They include: Electrocardiogram ("EKG" or "ECG") This test measures the electrical activity ... Tools & Resources Popular Articles 1 Understanding Blood Pressure Readings 2 Sodium and Salt 3 Heart Attack Symptoms ...
Fuchs, Tomasz; Pomorski, Michał; Grobelak, Krzysztof; Tomiałowicz, Marek; Zimmer, Mariusz
2014-01-01
Fetal electrocardiography is one of the methods for monitoring the well-being of the fetus. Signal loss limits the proper interpretation of electrocardiogram traces. The aim of this study was to assess the average signal loss in non-invasive abdominal fetal electrocardiogram (fECG) monitoring using the KOMPOREL fetal monitoring system (ITAM, Zabrze, Poland) in women between 28 and 42 week of pregnancy. The results were compared to FIGO (International Federation of Gynaecology and Obstetric) and DGGG (Deutsche Gesellschaft für Gynäkologie und Geburtshilfe e.V.) recommendations concerning fetal heart monitoring. The correlation between fetal ECG signal quality, week of pregnancy and patient BMI was evaluated. 773 pregnant women, hospitalized and diagnosed in the Department of Gynecology and Obstetrics, Wroclaw Medical University, underwent 30 min of abdominal fECG recordings using the KOMPOREL fetal monitoring system. The average signal loss in abdominal fECG monitoring in the study group was 32%. FIGO recommendations describe an acceptable fetal signal loss of 20%. In our study, 46% (357/773) of the recordings were up to FIGO standards, with fetal heart rate success rates above 80%. According to DGGG guidelines, with acceptable fetal signal loss of 15%, only 39% (303/773) of the recordings could be assessed as accurate. No correlation between fECG signal quality, week of pregnancy and patient BMI was proved. The average signal loss in abdominal fECG monitoring in our study group was 32%. Low fECG signal quality may constitute a potentially limiting factor of the described fetal heart monitoring system. No relationship between fECG signal quality, week of pregnancy and patient BMI was proved.
Asif, Irfan M; Drezner, Jonathan A
2012-01-01
Sudden cardiac death (SCD) is the leading cause of death in young athletes during exercise, and there is international agreement among major medical and sporting bodies that young athletes should undergo preparticipation cardiovascular screening. However, there is currently no universally accepted screening protocol, and substantial debate exists about what constitutes the ideal approach to preparticipation screening. The primary objective of preparticipation screening is the detection of intrinsic structural or electrical cardiovascular disorders that predispose an athlete to SCD. Considerable evidence exists suggesting that screening athletes with only a history and physical examination leaves most athletes with a serious underlying cardiovascular disease undetected and, thus, cannot adequately achieve the primary objective of screening. Preparticipating cardiovascular screening inclusive of an electrocardiogram (ECG) greatly enhances the ability to identify athletes at risk and is the only model shown to be cost-effective and may reduce the rate of SCD. The major obstacle to ECG screening in the United States is the lack of a physician workforce skilled in interpretation of an athlete's ECG. However, recent studies have demonstrated a capacity to distinguish physiologic ECG alterations in athletes from findings suggestive of underlying pathology that is both feasible and has a low false-positive rate. Efforts are underway to increase physician education in ECG interpretation. After 2 decades debating the proper screening strategy to identify athletes at risk, the weight of scientific evidence suggests that a screening program inclusive of ECG is the only strategy that merits promotion. Copyright © 2012 Elsevier Inc. All rights reserved.
Shadows, signals, and stability in Einsteinian cubic gravity
NASA Astrophysics Data System (ADS)
Hennigar, Robie A.; Jahani Poshteh, Mohammad Bagher; Mann, Robert B.
2018-03-01
We conduct a preliminary investigation into the phenomenological implications of Einsteinian cubic gravity (ECG), a four-dimensional theory of gravity cubic in curvature of interest for its unique formulation and properties. We find an analytic approximation for a spherically symmetric black hole solution to this theory using a continued fraction ansatz. This approximate solution is valid everywhere outside of the horizon and we use it to study the orbit of massive test bodies near a black hole, specifically computing the innermost stable circular orbit. We compute constraints on the ECG coupling parameter imposed by Shapiro time delay. We then compute the shadow of an ECG black hole and find it to be larger than its Einsteinian counterpart in general relativity for the same value of the mass. Applying our results to Sgr A*, we find that departures from general relativity are small but in principle distinguishable.
de Sousa, Jorge Murilo Barbosa; Fialho, Guilherme Loureiro; Wolf, Peter; Walz, Roger; Lin, Katia
2017-01-01
Sudden unexpected death in epilepsy (SUDEP) is a major cause of mortality in young patients with epilepsy (PWE). Although its mechanisms are still poorly understood, they may include cardiorespiratory dysfunction. Standard 12-lead electrocardiograms (ECGs) were obtained from 62 consecutive patients (aged 18-66y) with a definite diagnosis of epilepsy, without seizures at the day of ECG, and 57 healthy controls matched for sex, age and body mass index (BMI). All ECGs were evaluated by a blinded board-certified cardiologist. Patients with symptomatic focal epilepsy represented 90.3% (N=56), of whom 56.4% (N=35) had temporal lobe epilepsy, with a mean duration of 22.02±14.96years of epilepsy. We observed more prolonged P-wave (p<0.0001) and PR interval (p=0.01) in patients than in controls. Additionally, longer QT intervals (p<0.01), pathologic QT dispersion (p<0.01) and left atrial overload (p<0.01) were more common in PWE. Multiple linear regression analysis evidenced age, gender and polytherapy as factors associated with altered ECG. Therefore, routine ECG should be requested in PWE, especially for males, increasing age and in polytherapy. Findings such as longer PR and QT interval, and pathologic QT dispersion, may reflect cardiac structural changes and/or autonomic nervous system dysfunction and indicate a risk for SUDEP. Copyright © 2016 Elsevier B.V. All rights reserved.
Binary optimization for source localization in the inverse problem of ECG.
Potyagaylo, Danila; Cortés, Elisenda Gil; Schulze, Walther H W; Dössel, Olaf
2014-09-01
The goal of ECG-imaging (ECGI) is to reconstruct heart electrical activity from body surface potential maps. The problem is ill-posed, which means that it is extremely sensitive to measurement and modeling errors. The most commonly used method to tackle this obstacle is Tikhonov regularization, which consists in converting the original problem into a well-posed one by adding a penalty term. The method, despite all its practical advantages, has however a serious drawback: The obtained solution is often over-smoothed, which can hinder precise clinical diagnosis and treatment planning. In this paper, we apply a binary optimization approach to the transmembrane voltage (TMV)-based problem. For this, we assume the TMV to take two possible values according to a heart abnormality under consideration. In this work, we investigate the localization of simulated ischemic areas and ectopic foci and one clinical infarction case. This affects only the choice of the binary values, while the core of the algorithms remains the same, making the approximation easily adjustable to the application needs. Two methods, a hybrid metaheuristic approach and the difference of convex functions (DC), algorithm were tested. For this purpose, we performed realistic heart simulations for a complex thorax model and applied the proposed techniques to the obtained ECG signals. Both methods enabled localization of the areas of interest, hence showing their potential for application in ECGI. For the metaheuristic algorithm, it was necessary to subdivide the heart into regions in order to obtain a stable solution unsusceptible to the errors, while the analytical DC scheme can be efficiently applied for higher dimensional problems. With the DC method, we also successfully reconstructed the activation pattern and origin of a simulated extrasystole. In addition, the DC algorithm enables iterative adjustment of binary values ensuring robust performance.
Skin aging parameters: A window to heart block.
Roshdy, Hisham Samir; Soliman, Mohammad Hassan; El-Dosouky, Ibtesam Ibrahim; Ghonemy, Soheir
2018-01-01
Skin acts as a mirror to the internal state of the body. We tried to find the relation between skin aging parameters and the incidence of degenerative AV block. This study included 97 patients divided into 2 groups; group D comprised 49 patients with advanced-degree AV block, and group C comprised the 48 matched control group. All were subjected to full history taking, thorough clinical examination, calculation of intrinsic skin aging score, and resting 12-lead surface electrocardiography (ECG). ECG for all patients assessed left ventricular end-systolic diameter, left ventricular end-diastolic diameter, ejection fraction, left atrium (LA) diameter, aortic root diameter, mitral annular calcification, aortic sclerosis. Coronary angiography was also performed when indicated for patients in group D. Patients in group D had a higher percentages of uneven pigmentation, fine skin wrinkles, lax appearance, seborrheic keratosis, total score > 7 (38 [77.55%] vs 10 [20.83%]), mitral annular calcification score of 33 (67.34%) vs 5 (10.41%), aortic sclerosis score of 21 (42.85%) vs 4 (8.33%), and mean LA diameter of 39.98 ± 5.52 vs 36.21 ± 3 mm (P < 0.001). Total score > 6 is the best cutoff value to predict advanced-degree heart block with 89.79% sensitivity and 64.58% specificity. Seborrheic keratosis was the strongest independent predictor. Any population with a total intrinsic skin aging score of >6 is at high risk for developing advanced-degree AV block and should undergo periodic ECG follow-up for early detection of any conduction disturbance in the early asymptomatic stages to minimize sudden cardiac death. © 2017 Wiley Periodicals, Inc.
Effects of Astrocaryum aculeatum Meyer (Tucumã) on Diet-Induced Dyslipidemic Rats
Craveiro Holanda Malveira Maia, Geórgia; da Silva Campos, Mozer; Barros-Monteiro, Janice; Eduardo Lucas Castillo, Juan; Soares Faleiros, Murilo; Souza de Aquino Sales, Rejane; Moraes Lopes Galeno, Denise; Lira, Edson; das Chagas do Amaral Souza, Francisca; Ortiz, Carmen
2014-01-01
An in vivo study was conducted to assess the effects of the consumption of Astrocaryum aculeatum Amazon Meyer (tucumã) in the treatment of diet-induced dyslipidemia in sedentary and exercised Wistar rats. With an average weight of 350 grams, 40 male rats were divided into 4 subgroups of 10. The sedentary control group (SCG) was fed with commercial feed, while the sedentary treatment group (STG) was fed with a ration of tucumã. In addition to the sedentary groups, two exercise groups were formed. The Exercised control group (ECG) was fed with commercial food and the exercised treatment group (ETG) was fed with a ration of tucumã. Body weight gain and food intake were monitored during the experiment. Plasma was analyzed for cholesterol, triglycerides, HDL-C, LDL-C, VLDL, total protein, glucose, insulin, and leptin concentrations. Our results show that the ECG group tended to consume more food, while the groups that were fed with tucumã pulp (STG and ETG) presented a greater tendency to gain body mass. ECG group showed a tendency towards a higher concentration of cholesterol in plasma, while STG and ETG presented higher absolute values for triglycerides and VLDL. No hypolipiemic effect was observed related to tucuma ingestion. PMID:25165578
Electrocardiographic Findings in National Basketball Association Athletes.
Waase, Marc P; Mutharasan, R Kannan; Whang, William; DiTullio, Marco R; DiFiori, John P; Callahan, Lisa; Mancell, Jimmie; Phelan, Dermot; Schwartz, Allan; Homma, Shunichi; Engel, David J
2018-01-01
While it is known that long-term intensive athletic training is associated with cardiac structural changes that can be reflected on surface electrocardiograms (ECGs), there is a paucity of sport-specific ECG data. This study seeks to clarify the applicability of existing athlete ECG interpretation criteria to elite basketball players, an athlete group shown to develop significant athletic cardiac remodeling. To generate normative ECG data for National Basketball Association (NBA) athletes and to assess the accuracy of athlete ECG interpretation criteria in this population. The NBA has partnered with Columbia University Medical Center to annually perform a review of policy-mandated annual preseason ECGs and stress echocardiograms for all players and predraft participants. This observational study includes the preseason ECG examinations of NBA athletes who participated in the 2013-2014 and 2014-2015 seasons, plus all participants in the 2014 and 2015 NBA predraft combines. Examinations were performed from July 2013 to May 2015. Data analysis was performed between December 2015 and March 2017. Active roster or draft status in the NBA and routine preseason ECGs and echocardiograms. Baseline quantitative ECG variables were measured and ECG data qualitatively analyzed using 3 existing, athlete-specific interpretation criteria: Seattle (2012), refined (2014), and international (2017). Abnormal ECG findings were compared with matched echocardiographic data. Of 519 male athletes, 409 (78.8%) were African American, 96 (18.5%) were white, and the remaining 14 (2.7%) were of other races/ethnicities; 115 were predraft combine participants, and the remaining 404 were on active rosters of NBA teams. The mean (SD) age was 24.8 (4.3) years. Physiologic, training-related changes were present in 462 (89.0%) athletes in the study. Under Seattle criteria, 131 (25.2%) had abnormal findings, compared with 108 (20.8%) and 81 (15.6%) under refined and international criteria, respectively. Increased age and increased left ventricular relative wall thickness (RWT) on echocardiogram were highly associated with abnormal ECG classifications; 17 of 186 athletes (9.1%) in the youngest age group (age 18-22 years) had abnormal ECGs compared with 36 of the 159 athletes (22.6%) in the oldest age group (age 27-39 years) (odds ratio, 2.9; 95% CI, 1.6-5.4; P < .001). Abnormal T-wave inversions (TWI) were present in 32 athletes (6.2%), and this was associated with smaller left ventricular cavity size and increased RWT. One of the 172 athletes (0.6%) in the lowest RWT group (range, 0.24-0.35) had TWIs compared with 24 of the 163 athletes (14.7%) in the highest RWT group (range, 0.41-0.57) (odds ratio, 29.5; 95% CI, 3.9-221.0; P < .001). Despite the improved specificity of the international recommendations over previous athlete-specific ECG criteria, abnormal ECG classification rates remain high in NBA athletes. The development of left ventricular concentric remodeling appears to have a significant influence on the prevalence of abnormal ECG classification and repolarization abnormalities in this athlete group.
Lancia, Loreto; Toccaceli, Andrea; Petrucci, Cristina; Romano, Silvio; Penco, Maria
2018-05-01
The purpose of the study was to compare the EASI system with the standard 12-lead surface electrocardiogram (ECG) for the accuracy in detecting the main electrocardiographic parameters (J point, PR, QT, and QRS) commonly monitored in patients with acute coronary syndromes or heart failure. In this observational comparative study, 253 patients who were consecutively admitted to the coronary care unit with acute coronary syndrome or heart failure were evaluated. In all patients, two complete 12-lead ECGs were acquired simultaneously. A total of 6,072 electrocardiographic leads were compared (3,036 standard and 3,036 EASI). No significant differences were found between the investigate parameters of the two measurement methods, either in patients with acute coronary syndrome or in those with heart failure. This study confirmed the accuracy of the EASI system in monitoring the main ECG parameters in patients admitted to the coronary care unit with acute coronary syndrome or heart failure.
Uokawa, Y; Yonezawa, Y; Caldwell, W M; Hahn, A W
2000-01-01
A data acquisition system employing a low power 8 bit microcomputer has been developed for heart rate variability monitoring before, during and after bathing. The system consists of three integral chest electrodes, two temperature sensors, an instrumentation amplifier, a low power 8-bit single chip microcomputer (SMC) and a 4 MB compact flash memory (CFM). The ECG from the electrodes is converted to an 8-bit digital format at a 1 ms rate by an A/D converter in the SMC. Both signals from the body and ambient temperature sensors are converted to an 8-bit digital format every 1 second. These data are stored by the CFM. The system is powered by a rechargeable 3.6 V lithium battery. The 4 x 11 x 1 cm system is encapsulated in epoxy and silicone, yielding a total volume of 44 cc. The weight is 100 g.
A 0.7-V 17.4- μ W 3-lead wireless ECG SoC.
Khayatzadeh, Mahmood; Zhang, Xiaoyang; Tan, Jun; Liew, Wen-Sin; Lian, Yong
2013-10-01
This paper presents a fully integrated sub-1 V 3-lead wireless ECG System-on-Chip (SoC) for wireless body sensor network applications. The SoC includes a two-channel ECG front-end with a driven-right-leg circuit, an 8-bit SAR ADC, a custom-designed 16-bit microcontroller, two banks of 16 kb SRAM, and a MICS band transceiver. The microcontroller and SRAM blocks are able to operate at sub-/near-threshold regime for the best energy consumption. The proposed SoC has been implemented in a standard 0.13- μ m CMOS process. Measurement results show the microcontroller consumes only 2.62 pJ per instruction at 0.35 V . Both microcontroller and memory blocks are functional down to 0.25 V. The entire SoC is capable of working at single 0.7-V supply. At the best case, it consumes 17.4 μ W in heart rate detection mode and 74.8 μW in raw data acquisition mode under sampling rate of 500 Hz. This makes it one of the best ECG SoCs among state-of-the-art biomedical chips.
Patient-Specific Deep Architectural Model for ECG Classification
Luo, Kan; Cuschieri, Alfred
2017-01-01
Heartbeat classification is a crucial step for arrhythmia diagnosis during electrocardiographic (ECG) analysis. The new scenario of wireless body sensor network- (WBSN-) enabled ECG monitoring puts forward a higher-level demand for this traditional ECG analysis task. Previously reported methods mainly addressed this requirement with the applications of a shallow structured classifier and expert-designed features. In this study, modified frequency slice wavelet transform (MFSWT) was firstly employed to produce the time-frequency image for heartbeat signal. Then the deep learning (DL) method was performed for the heartbeat classification. Here, we proposed a novel model incorporating automatic feature abstraction and a deep neural network (DNN) classifier. Features were automatically abstracted by the stacked denoising auto-encoder (SDA) from the transferred time-frequency image. DNN classifier was constructed by an encoder layer of SDA and a softmax layer. In addition, a deterministic patient-specific heartbeat classifier was achieved by fine-tuning on heartbeat samples, which included a small subset of individual samples. The performance of the proposed model was evaluated on the MIT-BIH arrhythmia database. Results showed that an overall accuracy of 97.5% was achieved using the proposed model, confirming that the proposed DNN model is a powerful tool for heartbeat pattern recognition. PMID:29065597
Design, fabrication and skin-electrode contact analysis of polymer microneedle-based ECG electrodes
NASA Astrophysics Data System (ADS)
O'Mahony, Conor; Grygoryev, Konstantin; Ciarlone, Antonio; Giannoni, Giuseppe; Kenthao, Anan; Galvin, Paul
2016-08-01
Microneedle-based ‘dry’ electrodes have immense potential for use in diagnostic procedures such as electrocardiography (ECG) analysis, as they eliminate several of the drawbacks associated with the conventional ‘wet’ electrodes currently used for physiological signal recording. To be commercially successful in such a competitive market, it is essential that dry electrodes are manufacturable in high volumes and at low cost. In addition, the topographical nature of these emerging devices means that electrode performance is likely to be highly dependent on the quality of the skin-electrode contact. This paper presents a low-cost, wafer-level micromoulding technology for the fabrication of polymeric ECG electrodes that use microneedle structures to make a direct electrical contact to the body. The double-sided moulding process can be used to eliminate post-process via creation and wafer dicing steps. In addition, measurement techniques have been developed to characterize the skin-electrode contact force. We perform the first analysis of signal-to-noise ratio dependency on contact force, and show that although microneedle-based electrodes can outperform conventional gel electrodes, the quality of ECG recordings is significantly dependent on temporal and mechanical aspects of the skin-electrode interface.
[Diagnostic performance of surface electrocardiogram in early detection of chagasic cardiomyopathy].
Bochard-Villanueva, Bruno; Estornell-Erill, Jordi; Fabregat-Andrés, Óscar; García-González, Pilar; Morell-Cabedo, Salvador; Ridocci-Soriano, Francisco
2015-03-15
Contrast-enhanced cardiac magnetic resonance imaging (CMR) allows early detection of myocardial involvement by Trypanosoma cruzi infection. The aim of our study was to assess the diagnostic performance of the surface electrocardiogram (ECG) in the early detection of Chagas' cardiomyopathy (CCM) compared with CMR. We included 43 asymptomatic patients (30 women, 42 ± 9.8 years), diagnosed of Chagas disease. The sample was divided into 2 groups according to the presence (n=17) or absence (n=26) of electrocardiographic abnormalities. All patients underwent CMR and late gadolinium enhancement (LGE) was used as a marker of early myocardial involvement. Six (14%) patients had a LGE significantly higher in the group who had electrocardiographic abnormalities (29 vs. 4%, P<.05). With CMR as the method of reference, the ECG had a sensitivity of 83% and a negative predictive value of 96% to detect CCM. ECG is a useful, inexpensive and globally available tool for the screening of CCM in asymptomatic patients but with proven myocardial involvement in CMR. Copyright © 2013 Elsevier España, S.L.U. All rights reserved.
Zużewicz, Krystyna; Roman-Liu, Danuta; Konarska, Maria; Bartuzi, Paweł; Matusiak, Krzysztof; Korczak, Dariusz; Lozia, Zbigniew; Guzek, Marek
2013-10-01
The aim of the study was to verify whether simultaneous responses from the muscular and circulatory system occur in the driver's body under simulated conditions of a crash threat. The study was carried out in a passenger car driving simulator. The crash was included in the driving test scenario developed in an urban setting. In the group of 22 young male subjects, two physiological signals - ECG and EMG were continuously recorded. The length of the RR interval in the ECG signal was assessed. A HRV analysis was performed in the time and frequency domains for 1-minute record segments at rest (seated position), during undisturbed driving as well as during and several minutes after the crash. For the left and right side muscles: m. trapezius (TR) and m. flexor digitorum superficialis (FDS), the EMG signal amplitude was determined. The percentage of maximal voluntary contraction (MVC) was compared during driving and during the crash. As for the ECG signal, it was found that in most of the drivers changes occurred in the parameter values reflecting HRV in the time domain. Significant changes were noted in the mean length of RR intervals (mRR). As for the EMG signal, the changes in the amplitude concerned the signal recorded from the FDS muscle. The changes in ECG and EMG were simultaneous in half of the cases. Such parameters as mRR (ECG signal) and FDS-L amplitude (EMG signal) were the responses to accident risk. Under simulated conditions, responses from the circulatory and musculoskeletal systems are not always simultaneous. The results indicate that a more complete driver's response to a crash in road traffic is obtained based on parallel recording of two physiological signals (ECG and EMG).
Sharma, Shilpa; Mehta, Puja K; Arsanjani, Reza; Sedlak, Tara; Hobel, Zachary; Shufelt, Chrisandra; Jones, Erika; Kligfield, Paul; Mortara, David; Laks, Michael; Diniz, Marcio; Bairey Merz, C Noel
2018-06-19
The utility of exercise-induced ST-segment depression for diagnosing ischemic heart disease (IHD) in women is unclear. Based on evidence that IHD pathophysiology in women involves coronary vascular dysfunction, we hypothesized that coronary vascular dysfunction contributes to exercise electrocardiography (Ex-ECG) ST-depression in the absence of obstructive CAD, so-called "false positive" results. We tested our hypothesis in a pilot study evaluating the relationship between peripheral vascular endothelial function and Ex-ECG. Twenty-nine asymptomatic women without cardiac risk factors underwent maximal Bruce protocol exercise treadmill testing and peripheral endothelial function assessment using peripheral arterial tonometry (Itamar EndoPAT 2000) to measure reactive hyperemia index (RHI). The relationship between RHI and Ex-ECG ST-segment depression was evaluated using logistic regression and differences in subgroups using two-tailed t-tests. Mean age was 54 ± 7 years, body mass index 25 ± 4 kg/m 2 , and RHI 2.51 ± 0.66. Three women (10%) had RHI less than 1.68, consistent with abnormal peripheral endothelial function, while 18 women (62%) met criteria for a positive Ex-ECG based on ST-segment depression in contiguous leads. Women with and without ST-segment depression had similar baseline and exercise vital signs, metabolic equivalents (METS) achieved, and RHI (all p>0.05). RHI did not predict ST-segment depression. Our pilot study demonstrates a high prevalence of exercise-induced ST-segment depression in asymptomatic, middle-aged, overweight women. Peripheral vascular endothelial dysfunction did not predict Ex-ECG ST-segment depression. Further work is needed to investigate the utility of vascular endothelial testing and Ex-ECG for IHD diagnostic and management purposes in women. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Oxygen cost during exercise in simulated subgravity environments
NASA Technical Reports Server (NTRS)
Fox, E. L.; Bartels, R. L.; Chaloupka, E. C.; Klinzing, J. E.; Hoche, J.
1975-01-01
Oxygen cost (VO2) and heart rate (HR) were determined during treadmill walking in simulated subgravity environments. The long axis of the subject's body was suspended parallel to the floor in a slow rotation room with feet aligned on the surface of a treadmill mounted 90 deg on the wall. Without rotation, the subjects were virtually weightless against the treadmill; with centrifugation, environments of 0.25, 0.5 and 1 G were simulated. Oxygen cost (open circuit) and HR (ECG) were measured during the 5th minute of walking at 3.2, 4.7 and 6.1 km/h. Similar measurements were also determined during walking at 1/2-G using the inclined plane technique. Oxygen cost per unit mass and HR were significantly reduced in all subgravity environments. However, net oxygen cost per unit weight carried and, therefore, mechanical efficiency was found to be independent of gravity. This supports the idea that the most probable cause for the decreased oxygen cost with reduced gravity is less body weight carried.
Liu, Enzhao; Shehata, Michael; Swerdlow, Charles; Amorn, Allen; Cingolani, Eugenio; Kannarkat, Vinod; Chugh, Sumeet S; Wang, Xunzhang
2012-06-01
Ablation of accessory tracts in the posteroseptal region can be challenging, as illustrated by these 2 cases. Familiarity of the anatomy of this region and recognition of the ECG patterns can help identify the AP origin and potentially improve success rates of ablation. The isoelectric initial preexcited QRS complex with rSR’ pattern in lead V1 of the surface ECG but not the relatively earlier local ventricular activation at PSMA region may indicate a left-sided ablation approach for these APs.
Novella, John; DeBiasi, Ralph M; Coplan, Neil L; Suri, Ranji; Keller, Seth
2014-01-01
Sudden cardiac death (SCD) as the first clinical manifestation of Wolff-Parkinson-White (WPW) syndrome is a well-documented, although rare occurrence. The incidence of SCD in patients with WPW ranges from 0% to 0.39% annually. Controversy exists regarding risk stratification for patients with preexcitation on surface electrocardiogram (ECG), particularly in those who are asymptomatic. This article focuses on the role of risk stratification using exercise and pharmacologic testing in patients with WPW pattern on ECG.
Klug, D; Lacroix, D; Marquié, C; Mairesse, G; Alix, D; Dennetière, S; d'Hautefeuille, B; Zghal, N; Kacet, S
2001-07-01
Intra-atrial conduction block within the inferior vena cava-tricuspid annulus isthmus (IVCT) has been shown to predict successful common atrial flutter ablation. However, its demonstration requires the use of several electrode catheters and mapping of the line of block. The aim of this study was prospectively to test the feasibility of a simplified ablation procedure using only two catheters. Radio frequency (RF) ablation of common atrial flutter was performed in 30 patients with the sole use of a catheter for atrial pacing and a RF catheter. RF ablation lesions were created in the IVCT. Surface ECG criteria were used to monitor the conduction within the IVCT. The end point during low lateral atrial pacing was an increment in the interval between the pacing artefact and the peak of the R wave in surface lead II >50 ms and clockwise rotation of the P wave axis beyond -30 degrees and inferiorly. Then, the line of lesions was mapped during atrial pacing with the RF catheter. Additional RF lesions were applied if mapping disclosed a zone of residual conduction. Otherwise the procedure was stopped if mapping showed parallel double potentials all along the line. Finally, the block was reassessed with a 'Halo' catheter. Surface ECG criteria were met in 26 patients. Mapping the line of lesions showed a complete corridor of parallel double potentials in these 26 cases and in 3 of the 4 patients in whom ECG criteria were not met. Conduction evaluated with the Halo catheter showed bi-directional complete block in these 29 patients. After a follow-up of 16 +/- 4 months there was no recurrence of atrial flutter. Surface ECG criteria combined with mapping of the line of block demonstrate evidence of bi-directional IVCT block. This simplified RF ablation of common atrial flutter is feasible with a low recurrence rate.
Fermi-Pasta-Ulam auto recurrence in the description of the electrical activity of the heart.
Novopashin, M A; Shmid, A V; Berezin, A A
2017-04-01
The authors proposed and mathematically described model of a new type of the Fermi-Pasta-Ulam recurrence (the FPU auto recurrence) and hypothesized an adequate description of the heart's electrical dynamics within the observed phenomenon. The dynamics of the FPU auto recurrence making appropriate electrical dynamics of the normal functioning of the heart in the form of an electrocardiogram (ECG) was obtained by a computer model study. The model solutions in the form of the FPU auto recurrence - ECG Fourier spectrum were evaluated for resistance to external disturbances in the form of random effects, as well as periodic perturbation at a frequency close to the heart beating rate of about 1Hz. In addition, in order to simulate the dynamics of myocardial infarction model, studied the effect of the surface area of the myocardium on the stability and shape of the auto recurrence - ECG spectrum. It has been found that the intense external disturbing periodic impacts at a frequency of about 1Hz lead to a sharp disturbance spectrum shape FPU auto recurrence - ECG structure. In addition, the decrease in the surface of the myocardium by 50% in the model led to the destruction of structures of the auto recurrence - ECG, which corresponds to the state of atrial myocardium. Research models have revealed a hypothetical basis of coronary heart disease in the form of increasing the energy of high-frequency harmonics spectrum of the auto recurrence by reducing the energy of low-frequency harmonic spectrum of the auto recurrence, which ultimately leads to a sharp decrease in myocardial contractility. In order to test the hypothesis has been studied more than 20,000 ECGs both healthy people and patients with cardiovascular disease. As a result of these studies, it was found that the dynamics of the electrical activity of normal functioning of the heart can be interpreted by the display of the detected by authors the FPU auto recurrence, and coronary heart disease is a violation of the energy ratio between the low and high frequency harmonics of the FPU auto recurrence Fourier spectrum equal to the ECG spectrum. Thus, the hypothesis has been confirmed. Copyright © 2017 Elsevier Ltd. All rights reserved.
Stanke, Monika; Palikot, Ewa; Kȩdziera, Dariusz; Adamowicz, Ludwik
2016-12-14
An algorithm for calculating the first-order electronic orbit-orbit magnetic interaction correction for an electronic wave function expanded in terms of all-electron explicitly correlated molecular Gaussian (ECG) functions with shifted centers is derived and implemented. The algorithm is tested in calculations concerning the H 2 molecule. It is also applied in calculations for LiH and H 3 + molecular systems. The implementation completes our work on the leading relativistic correction for ECGs and paves the way for very accurate ECG calculations of ground and excited potential energy surfaces (PESs) of small molecules with two and more nuclei and two and more electrons, such as HeH - , H 3 + , HeH 2 + , and LiH 2 + . The PESs will be used to determine rovibrational spectra of the systems.
Singularity detection by wavelet approach: application to electrocardiogram signal
NASA Astrophysics Data System (ADS)
Jalil, Bushra; Beya, Ouadi; Fauvet, Eric; Laligant, Olivier
2010-01-01
In signal processing, the region of abrupt changes contains the most of the useful information about the nature of the signal. The region or the points where these changes occurred are often termed as singular point or singular region. The singularity is considered to be an important character of the signal, as it refers to the discontinuity and interruption present in the signal and the main purpose of the detection of such singular point is to identify the existence, location and size of those singularities. Electrocardiogram (ECG) signal is used to analyze the cardiovascular activity in the human body. However the presence of noise due to several reasons limits the doctor's decision and prevents accurate identification of different pathologies. In this work we attempt to analyze the ECG signal with energy based approach and some heuristic methods to segment and identify different signatures inside the signal. ECG signal has been initially denoised by empirical wavelet shrinkage approach based on Steins Unbiased Risk Estimate (SURE). At the second stage, the ECG signal has been analyzed by Mallat approach based on modulus maximas and Lipschitz exponent computation. The results from both approaches has been discussed and important aspects has been highlighted. In order to evaluate the algorithm, the analysis has been done on MIT-BIH Arrhythmia database; a set of ECG data records sampled at a rate of 360 Hz with 11 bit resolution over a 10mv range. The results have been examined and approved by medical doctors.
T-wave morphology can distinguish healthy controls from LQTS patients.
Immanuel, S A; Sadrieh, A; Baumert, M; Couderc, J P; Zareba, W; Hill, A P; Vandenberg, J I
2016-09-01
Long QT syndrome (LQTS) is an inherited disorder associated with prolongation of the QT/QTc interval on the surface electrocardiogram (ECG) and a markedly increased risk of sudden cardiac death due to cardiac arrhythmias. Up to 25% of genotype-positive LQTS patients have QT/QTc intervals in the normal range. These patients are, however, still at increased risk of life-threatening events compared to their genotype-negative siblings. Previous studies have shown that analysis of T-wave morphology may enhance discrimination between control and LQTS patients. In this study we tested the hypothesis that automated analysis of T-wave morphology from Holter ECG recordings could distinguish between control and LQTS patients with QTc values in the range 400-450 ms. Holter ECGs were obtained from the Telemetric and Holter ECG Warehouse (THEW) database. Frequency binned averaged ECG waveforms were obtained and extracted T-waves were fitted with a combination of 3 sigmoid functions (upslope, downslope and switch) or two 9th order polynomial functions (upslope and downslope). Neural network classifiers, based on parameters obtained from the sigmoid or polynomial fits to the 1 Hz and 1.3 Hz ECG waveforms, were able to achieve up to 92% discrimination between control and LQTS patients and 88% discrimination between LQTS1 and LQTS2 patients. When we analysed a subgroup of subjects with normal QT intervals (400-450 ms, 67 controls and 61 LQTS), T-wave morphology based parameters enabled 90% discrimination between control and LQTS patients, compared to only 71% when the groups were classified based on QTc alone. In summary, our Holter ECG analysis algorithms demonstrate the feasibility of using automated analysis of T-wave morphology to distinguish LQTS patients, even those with normal QTc, from healthy controls.
Detection of ventricular fibrillation in the presence of cardiopulmonary resuscitation artefacts.
Aramendi, Elisabete; de Gauna, Sofia Ruiz; Irusta, Unai; Ruiz, Jesus; Arcocha, M Fe; Ormaetxe, Jose Miguel
2007-01-01
Providing cardiopulmonary resuscitation (CPR) to a patient in cardiac arrest introduces artefacts into the electrocardiogram (ECG), corrupting the diagnosis of the underlying heart rhythm. CPR must therefore be discontinued for reliable shock advice analysis by an automated external defibrillator (AED). Detection of ventricular fibrillation (VF) during CPR would enable CPR to continue during AED rhythm analysis, thereby increasing the likelihood of resuscitation success. This study presents a new adaptive filtering method to clean the ECG. The approach consists of a filter that adapts its characteristics to the spectral content of the signal exclusively using the surface ECG that commercial AEDs capture through standard patches. A set of 200 VF and 25 CPR artefact samples collected from real out-of-hospital interventions were used to test the method. The performance of a shock advice algorithm was evaluated before and after artefact removal. CPR artefacts were added to the ECG signals and four degrees of corruption were tested. Mean sensitivities of 97.83%, 98.27%, 98.32% and 98.02% were achieved, producing sensitivity increases of 28.44%, 49.75%, 59.10% and 64.25%, respectively, sufficient for ECG analysis during CPR. Although satisfactory and encouraging sensitivity values have been obtained, further clinical and experimental investigation is required in order to integrate this type of artefact suppressing algorithm in current AEDs.
Cesarovic, Nikola; Jirkof, Paulin; Rettich, Andreas; Arras, Margarete
2011-11-21
The laboratory mouse is the animal species of choice for most biomedical research, in both the academic sphere and the pharmaceutical industry. Mice are a manageable size and relatively easy to house. These factors, together with the availability of a wealth of spontaneous and experimentally induced mutants, make laboratory mice ideally suited to a wide variety of research areas. In cardiovascular, pharmacological and toxicological research, accurate measurement of parameters relating to the circulatory system of laboratory animals is often required. Determination of heart rate, heart rate variability, and duration of PQ and QT intervals are based on electrocardiogram (ECG) recordings. However, obtaining reliable ECG curves as well as physiological data such as core body temperature in mice can be difficult using conventional measurement techniques, which require connecting sensors and lead wires to a restrained, tethered, or even anaesthetized animal. Data obtained in this fashion must be interpreted with caution, as it is well known that restraining and anesthesia can have a major artifactual influence on physiological parameters. Radiotelemetry enables data to be collected from conscious and untethered animals. Measurements can be conducted even in freely moving animals, and without requiring the investigator to be in the proximity of the animal. Thus, known sources of artifacts are avoided, and accurate and reliable measurements are assured. This methodology also reduces interanimal variability, thus reducing the number of animals used, rendering this technology the most humane method of monitoring physiological parameters in laboratory animals. Constant advancements in data acquisition technology and implant miniaturization mean that it is now possible to record physiological parameters and locomotor activity continuously and in realtime over longer periods such as hours, days or even weeks. Here, we describe a surgical technique for implantation of a commercially available telemetry transmitter used for continuous measurements of core body temperature, locomotor activity and biopotential (i.e. onelead ECG), from which heart rate, heart rate variability, and PQ and QT intervals can be established in freeroaming, untethered mice. We also present pre-operative procedures and protocols for post-operative intensive care and pain treatment that improve recovery, well-being and survival rates in implanted mice.
Mobile messaging services-based personal electrocardiogram monitoring system.
Tahat, Ashraf A
2009-01-01
A mobile monitoring system utilizing Bluetooth and mobile messaging services (MMS/SMSs) with low-cost hardware equipment is proposed. A proof of concept prototype has been developed and implemented to enable transmission of an Electrocardiogram (ECG) signal and body temperature of a patient, which can be expanded to include other vital signs. Communication between a mobile smart-phone and the ECG and temperature acquisition apparatus is implemented using the popular personal area network standard specification Bluetooth. When utilizing MMS for transmission, the mobile phone plots the received ECG signal and displays the temperature using special application software running on the client mobile phone itself, where the plot can be captured and saved as an image before transmission. Alternatively, SMS can be selected as a transmission means, where in this scenario, dedicated application software is required at the receiving device. The experimental setup can be operated for monitoring from anywhere in the globe covered by a cellular network that offers data services.
Mobile Messaging Services-Based Personal Electrocardiogram Monitoring System
Tahat, Ashraf A.
2009-01-01
A mobile monitoring system utilizing Bluetooth and mobile messaging services (MMS/SMSs) with low-cost hardware equipment is proposed. A proof of concept prototype has been developed and implemented to enable transmission of an Electrocardiogram (ECG) signal and body temperature of a patient, which can be expanded to include other vital signs. Communication between a mobile smart-phone and the ECG and temperature acquisition apparatus is implemented using the popular personal area network standard specification Bluetooth. When utilizing MMS for transmission, the mobile phone plots the received ECG signal and displays the temperature using special application software running on the client mobile phone itself, where the plot can be captured and saved as an image before transmission. Alternatively, SMS can be selected as a transmission means, where in this scenario, dedicated application software is required at the receiving device. The experimental setup can be operated for monitoring from anywhere in the globe covered by a cellular network that offers data services. PMID:19707531
Block sparsity-based joint compressed sensing recovery of multi-channel ECG signals.
Singh, Anurag; Dandapat, Samarendra
2017-04-01
In recent years, compressed sensing (CS) has emerged as an effective alternative to conventional wavelet based data compression techniques. This is due to its simple and energy-efficient data reduction procedure, which makes it suitable for resource-constrained wireless body area network (WBAN)-enabled electrocardiogram (ECG) telemonitoring applications. Both spatial and temporal correlations exist simultaneously in multi-channel ECG (MECG) signals. Exploitation of both types of correlations is very important in CS-based ECG telemonitoring systems for better performance. However, most of the existing CS-based works exploit either of the correlations, which results in a suboptimal performance. In this work, within a CS framework, the authors propose to exploit both types of correlations simultaneously using a sparse Bayesian learning-based approach. A spatiotemporal sparse model is employed for joint compression/reconstruction of MECG signals. Discrete wavelets transform domain block sparsity of MECG signals is exploited for simultaneous reconstruction of all the channels. Performance evaluations using Physikalisch-Technische Bundesanstalt MECG diagnostic database show a significant gain in the diagnostic reconstruction quality of the MECG signals compared with the state-of-the art techniques at reduced number of measurements. Low measurement requirement may lead to significant savings in the energy-cost of the existing CS-based WBAN systems.
ECG-ViEW II, a freely accessible electrocardiogram database
Park, Man Young; Lee, Sukhoon; Jeon, Min Seok; Yoon, Dukyong; Park, Rae Woong
2017-01-01
The Electrocardiogram Vigilance with Electronic data Warehouse II (ECG-ViEW II) is a large, single-center database comprising numeric parameter data of the surface electrocardiograms of all patients who underwent testing from 1 June 1994 to 31 July 2013. The electrocardiographic data include the test date, clinical department, RR interval, PR interval, QRS duration, QT interval, QTc interval, P axis, QRS axis, and T axis. These data are connected with patient age, sex, ethnicity, comorbidities, age-adjusted Charlson comorbidity index, prescribed drugs, and electrolyte levels. This longitudinal observational database contains 979,273 electrocardiograms from 461,178 patients over a 19-year study period. This database can provide an opportunity to study electrocardiographic changes caused by medications, disease, or other demographic variables. ECG-ViEW II is freely available at http://www.ecgview.org. PMID:28437484
Evaluation of Heart Rate Variability by means of Laser Doppler Vibrometry measurements
NASA Astrophysics Data System (ADS)
Cosoli, G.; Casacanditella, L.; Tomasini, EP; Scalise, L.
2015-11-01
Heart Rate Variability (HRV) analysis aims to study the physiological variability of the Heart Rate (HR), which is related to the health conditions of the subject. HRV is assessed measuring heart periods (HP) on a time window of >5 minutes (1)-(2). HPs are determined from signals of different nature: electrocardiogram (ECG), photoplethysmogram (PPG), phonocardiogram (PCG) or vibrocardiogram (VCG) (3)-(4)-(5). The fundamental aspect is the identification of a feature in each heartbeat that allows to accurately compute cardiac periods (such as R peaks in ECG), in order to make possible the measurement of all the typical HRV evaluations on those intervals. VCG is a non-contact technique (4), very favourable in medicine, which detects the vibrations on the skin surface (e.g. on the carotid artery) resulting from vascular blood motion consequent to electrical signal (ECG). In this paper, we propose the use of VCG for the measurement of a signal related to HRV and the use of a novel algorithm based on signal geometry (7) to detect signal peaks, in order to accurately determine cardiac periods and the Poincare plot (9)-(10). The results reported are comparable to the ones reached with the gold standard (ECG) and in literature (3)-(5). We report mean values of HP of 832±54 ms and 832±55 ms by means of ECG and VCG, respectively. Moreover, this algorithm allow us to identify particular features of ECG and VCG signals, so that in the future we will be able to evaluate specific correlations between the two.
Coll-Font, Jaume; Burton, Brett M; Tate, Jess D; Erem, Burak; Swenson, Darrel J; Wang, Dafang; Brooks, Dana H; van Dam, Peter; Macleod, Rob S
2014-09-01
Cardiac electrical imaging often requires the examination of different forward and inverse problem formulations based on mathematical and numerical approximations of the underlying source and the intervening volume conductor that can generate the associated voltages on the surface of the body. If the goal is to recover the source on the heart from body surface potentials, the solution strategy must include numerical techniques that can incorporate appropriate constraints and recover useful solutions, even though the problem is badly posed. Creating complete software solutions to such problems is a daunting undertaking. In order to make such tools more accessible to a broad array of researchers, the Center for Integrative Biomedical Computing (CIBC) has made an ECG forward/inverse toolkit available within the open source SCIRun system. Here we report on three new methods added to the inverse suite of the toolkit. These new algorithms, namely a Total Variation method, a non-decreasing TMP inverse and a spline-based inverse, consist of two inverse methods that take advantage of the temporal structure of the heart potentials and one that leverages the spatial characteristics of the transmembrane potentials. These three methods further expand the possibilities of researchers in cardiology to explore and compare solutions to their particular imaging problem.
Biomedical Implementation of Liquid Metal Ink as Drawable ECG Electrode and Skin Circuit
Yu, Yang; Zhang, Jie; Liu, Jing
2013-01-01
Background Conventional ways of making bio-electrodes are generally complicated, expensive and unconformable. Here we describe for the first time the method of applying Ga-based liquid metal ink as drawable electrocardiogram (ECG) electrodes. Such material owns unique merits in both liquid phase conformability and high electrical conductivity, which provides flexible ways for making electrical circuits on skin surface and a prospective substitution of conventional rigid printed circuit boards (PCBs). Methods Fundamental measurements of impedance and polarization voltage of the liquid metal ink were carried out to evaluate its basic electrical properties. Conceptual experiments were performed to draw the alloy as bio-electrodes to acquire ECG signals from both rabbit and human via a wireless module developed on the mobile phone. Further, a typical electrical circuit was drawn in the palm with the ink to demonstrate its potential of implementing more sophisticated skin circuits. Results With an oxide concentration of 0.34%, the resistivity of the liquid metal ink was measured as 44.1 µΩ·cm with quite low reactance in the form of straight line. Its peak polarization voltage with the physiological saline was detected as −0.73 V. The quality of ECG wave detected from the liquid metal electrodes was found as good as that of conventional electrodes, from both rabbit and human experiments. In addition, the circuit drawn with the liquid metal ink in the palm also runs efficiently. When the loop was switched on, all the light emitting diodes (LEDs) were lit and emitted colorful lights. Conclusions The liquid metal ink promises unique printable electrical properties as both bio-electrodes and electrical wires. The implemented ECG measurement on biological surface and the successfully run skin circuit demonstrated the conformability and attachment of the liquid metal. The present method is expected to innovate future physiological measurement and biological circuit manufacturing technique in a large extent. PMID:23472220
Biomedical implementation of liquid metal ink as drawable ECG electrode and skin circuit.
Yu, Yang; Zhang, Jie; Liu, Jing
2013-01-01
Conventional ways of making bio-electrodes are generally complicated, expensive and unconformable. Here we describe for the first time the method of applying Ga-based liquid metal ink as drawable electrocardiogram (ECG) electrodes. Such material owns unique merits in both liquid phase conformability and high electrical conductivity, which provides flexible ways for making electrical circuits on skin surface and a prospective substitution of conventional rigid printed circuit boards (PCBs). Fundamental measurements of impedance and polarization voltage of the liquid metal ink were carried out to evaluate its basic electrical properties. Conceptual experiments were performed to draw the alloy as bio-electrodes to acquire ECG signals from both rabbit and human via a wireless module developed on the mobile phone. Further, a typical electrical circuit was drawn in the palm with the ink to demonstrate its potential of implementing more sophisticated skin circuits. With an oxide concentration of 0.34%, the resistivity of the liquid metal ink was measured as 44.1 µΩ·cm with quite low reactance in the form of straight line. Its peak polarization voltage with the physiological saline was detected as -0.73 V. The quality of ECG wave detected from the liquid metal electrodes was found as good as that of conventional electrodes, from both rabbit and human experiments. In addition, the circuit drawn with the liquid metal ink in the palm also runs efficiently. When the loop was switched on, all the light emitting diodes (LEDs) were lit and emitted colorful lights. The liquid metal ink promises unique printable electrical properties as both bio-electrodes and electrical wires. The implemented ECG measurement on biological surface and the successfully run skin circuit demonstrated the conformability and attachment of the liquid metal. The present method is expected to innovate future physiological measurement and biological circuit manufacturing technique in a large extent.
Estimating actigraphy from motion artifacts in ECG and respiratory effort signals.
Fonseca, Pedro; Aarts, Ronald M; Long, Xi; Rolink, Jérôme; Leonhardt, Steffen
2016-01-01
Recent work in unobtrusive sleep/wake classification has shown that cardiac and respiratory features can help improve classification performance. Nevertheless, actigraphy remains the single most discriminative modality for this task. Unfortunately, it requires the use of dedicated devices in addition to the sensors used to measure electrocardiogram (ECG) or respiratory effort. This paper proposes a method to estimate actigraphy from the body movement artifacts present in the ECG and respiratory inductance plethysmography (RIP) based on the time-frequency analysis of those signals. Using a continuous wavelet transform to analyze RIP, and ECG and RIP combined, it provides a surrogate measure of actigraphy with moderate correlation (for ECG+RIP, ρ = 0.74, p < 0.001) and agreement (mean bias ratio of 0.94 and 95% agreement ratios of 0.11 and 8.45) with reference actigraphy. More important, it can be used as a replacement of actigraphy in sleep/wake classification: after cross-validation with a data set comprising polysomnographic (PSG) recordings of 15 healthy subjects and 25 insomniacs annotated by an external sleep technician, it achieves a statistically non-inferior classification performance when used together with respiratory features (average κ of 0.64 for 15 healthy subjects, and 0.50 for a dataset with 40 healthy and insomniac subjects), and when used together with respiratory and cardiac features (average κ of 0.66 for 15 healthy subjects, and 0.56 for 40 healthy and insomniac subjects). Since this method eliminates the need for a dedicated actigraphy device, it reduces the number of sensors needed for sleep/wake classification to a single sensor when using respiratory features, and to two sensors when using respiratory and cardiac features without any loss in performance. It offers a major benefit in terms of comfort for long-term home monitoring and is immediately applicable for legacy ECG and RIP monitoring devices already used in clinical practice and which do not have an accelerometer built-in.
CT cardiac imaging: evolution from 2D to 3D backprojection
NASA Astrophysics Data System (ADS)
Tang, Xiangyang; Pan, Tinsu; Sasaki, Kosuke
2004-04-01
The state-of-the-art multiple detector-row CT, which usually employs fan beam reconstruction algorithms by approximating a cone beam geometry into a fan beam geometry, has been well recognized as an important modality for cardiac imaging. At present, the multiple detector-row CT is evolving into volumetric CT, in which cone beam reconstruction algorithms are needed to combat cone beam artifacts caused by large cone angle. An ECG-gated cardiac cone beam reconstruction algorithm based upon the so-called semi-CB geometry is implemented in this study. To get the highest temporal resolution, only the projection data corresponding to 180° plus the cone angle are row-wise rebinned into the semi-CB geometry for three-dimensional reconstruction. Data extrapolation is utilized to extend the z-coverage of the ECG-gated cardiac cone beam reconstruction algorithm approaching the edge of a CT detector. A helical body phantom is used to evaluate the ECG-gated cone beam reconstruction algorithm"s z-coverage and capability of suppressing cone beam artifacts. Furthermore, two sets of cardiac data scanned by a multiple detector-row CT scanner at 16 x 1.25 (mm) and normalized pitch 0.275 and 0.3 respectively are used to evaluate the ECG-gated CB reconstruction algorithm"s imaging performance. As a reference, the images reconstructed by a fan beam reconstruction algorithm for multiple detector-row CT are also presented. The qualitative evaluation shows that, the ECG-gated cone beam reconstruction algorithm outperforms its fan beam counterpart from the perspective of cone beam artifact suppression and z-coverage while the temporal resolution is well maintained. Consequently, the scan speed can be increased to reduce the contrast agent amount and injection time, improve the patient comfort and x-ray dose efficiency. Based up on the comparison, it is believed that, with the transition of multiple detector-row CT into volumetric CT, ECG-gated cone beam reconstruction algorithms will provide better image quality for CT cardiac applications.
Bradycardia as a Marker of Chronic Cocaine Use: A Novel Cardiovascular Finding.
Sharma, Jyoti; Rathnayaka, Nuvan; Green, Charles; Moeller, F Gerard; Schmitz, Joy M; Shoham, Daniel; Dougherty, Anne Hamilton
2016-01-01
Few studies have examined the effects of chronic cocaine use on the resting surface electrocardiogram (ECG) between exposures to cocaine. Researchers compared 12-lead ECGs from 97 treatment-seeking cocaine-dependent patients, with ECG parameters from 8,513 non-cocaine-using control patients from the Atherosclerosis Risk in Communities study. After matching and adjusting for relevant covariates, cocaine use demonstrated large and statistically reliable effects on early repolarization, bradycardia, severe bradycardia, and heart rate. Current cocaine dependence corresponds to an increased odds of demonstrating early repolarization by a factor of 4.92 and increased odds of bradycardia and severe bradycardia by factors 3.02 and 5.11, respectively. This study demonstrates the novel finding that long-lasting effects of cocaine use on both the cardiac conduction and the autonomic nervous system pose a risk of adverse cardiovascular events between episodes of cocaine use, and that bradycardia is a marker of chronic cocaine use.
Arai, Kaori; Nakagawa, Yui; Iwata, Toyoto; Horiguchi, Hyogo; Murata, Katsuyuki
2013-01-01
To clarify the links between ECG QT-related parameters and heart rate variability (HRV) and the covariates possibly distorting them, the averaged RR and QT intervals in a single lead ECG were measured for 64 male and 86 female subjects aged 18-26. The QT index, defined by Rautaharju et al., in the young adults was not significantly related to any HRV parameters nor heart rate, but the Bazett's corrected QT (QTc) interval was associated negatively with the parasympathetic activity and positively with heart rate. No significant differences in the QTc interval, QT index or heart rate were seen between the men and women, but they significantly differed between both sexes after adjustment for possible covariates such as age and body mass index (BMI). Significant sex differences in parasympathetic parameters of the HRV were unchanged before and after the adjustment, but significant differences observed in the unadjusted sympathetic parameters disappeared after adjusting for covariates. Age, BMI and body fat percentage also were significant covariates affecting these ECG parameters. Consequently, QT index, unaffected by heart rate and HRV parameters, appears to be a more useful indicator than the QTc interval. Instead, the QT index and HRV parameters are recommended to be simultaneously measured in epidemiological research because they are probably complementary in assessing autonomic nervous function. Also, these parameters should be analyzed in men and women separately. Copyright © 2012 Elsevier B.V. All rights reserved.
Shuai, Wei; Wang, Xi-Xing; Hong, Kui; Peng, Qiang; Li, Ju-Xiang; Li, Ping; Chen, Jing; Cheng, Xiao-Shu; Su, Hai
2016-07-15
At present, the estimation of rest heart rate (HR) in atrial fibrillation (AF) is obtained by apical auscultation for 1min or on the surface electrocardiogram (ECG) by multiplying the number of RR intervals on the 10second recording by six. But the reasonability of 10second ECG recording is controversial. ECG was continuously recorded at rest for 60s to calculate the real rest HR (HR60s). Meanwhile, the first 10s and 30s ECG recordings were used for calculating HR10s (sixfold) and HR30s (twofold). The differences of HR10s or HR30s with the HR60s were compared. The patients were divided into three sub-groups on the HR60s <80, 80-100 and >100bpm. No significant difference among the mean HR10s, HR30s and HR60s was found. A positive correlation existed between HR10s and HR60s or HR30s and HR60s. Bland-Altman plot showed that the 95% reference limits were high as -11.0 to 16.0bpm for HR10s, but for HR30s these values were only -4.5 to 5.2bpm. Among the three subgroups with HR60s <80, 80-100 and >100bpm, the 95% reference limits with HR60s were -8.9 to 10.6, -10.5 to 14.0 and -11.3 to 21.7bpm for HR10s, but these values were -3.9 to 4.3, -4.1 to 4.6 and -5.3 to 6.7bpm for HR30s. As 10s ECG recording could not provide clinically accepted estimation HR, ECG should be recorded at least for 30s in the patients with AF. It is better to record ECG for 60s when the HR is rapid. Copyright © 2016. Published by Elsevier Ireland Ltd.
Graphene oxide based contacts as probes of biomedical signals
NASA Astrophysics Data System (ADS)
Hallfors, N. G.; Devarajan, A.; Farhat, I. A. H.; Abdurahman, A.; Liao, K.; Gater, D. L.; Elnaggar, M. I.; Isakovic, A. F.
We have developed a series of graphene oxide (GOx) on polymer contacts and have demonstrated these to be useful for collection of standard biomedically relevant signals, such as electrocardiogram (ECG). The process is wet solution-based and allows for control and tuning of the basic physical parameters of GOx, such as electrical and optical properties, simply by choosing the number of GOx layers. Our GOx characterization measurements show spectral (FTIR, XPS, IR absorbance) features most relevant to such performance, and point towards the likely explanations about the mechanisms for controlling the physical properties relevant for the contact performance. Structural (X-ray topography) and surface characterization (AFM, SEM) indicates to what degree these contacts can be considered homogeneous and therefore provide information on yield and repeatability. We compare the ECG signals recorded by standard commercial probes (Ag/AgCl) and GOx probes, displaying minor differences the solution to which may lead to a whole new way we perform ECG data collection, including wearable electronics and IoT friendly ECG monitoring. We acknowledge support from Mubadala-SRC AC4ES and from SRC 2011-KJ-2190. We thank J. B. Warren and G. L. Carr (BNL) for assistance.
Ortigosa, Nuria; Pérez-Roselló, Víctor; Donoso, Víctor; Osca, Joaquín; Martínez-Dolz, Luis; Fernández, Carmen; Galbis, Antonio
2018-04-01
Cardiac resynchronization therapy (CRT) is an effective treatment for those patients with severe heart failure. Regrettably, there are about one third of CRT "non-responders", i.e. patients who have undergone this form of device therapy but do not respond to it, which adversely affects the utility and cost-effectiveness of CRT. In this paper, we assess the ability of a novel surface ECG marker to predict CRT response. We performed a retrospective exploratory study of the ECG previous to CRT implantation in 43 consecutive patients with ischemic (17) or non-ischemic (26) cardiomyopathy. We extracted the QRST complexes (consisting of the QRS complex, the S-T segment, and the T wave) and obtained a measure of their energy by means of spectral analysis. This ECG marker showed statistically significant lower values for non-responder patients and, joint with the duration of QRS complexes (the current gold-standard to predict CRT response), the following performances: 86% accuracy, 88% sensitivity, and 80% specificity. In this manner, the proposed ECG marker may help clinicians to predict positive response to CRT in a non-invasive way, in order to minimize unsuccessful procedures.
Towards Photoplethysmography-Based Estimation of Instantaneous Heart Rate During Physical Activity.
Jarchi, Delaram; Casson, Alexander J
2017-09-01
Recently numerous methods have been proposed for estimating average heart rate using photoplethysmography (PPG) during physical activity, overcoming the significant interference that motion causes in PPG traces. We propose a new algorithm framework for extracting instantaneous heart rate from wearable PPG and Electrocardiogram (ECG) signals to provide an estimate of heart rate variability during exercise. For ECG signals, we propose a new spectral masking approach which modifies a particle filter tracking algorithm, and for PPG signals constrains the instantaneous frequency obtained from the Hilbert transform to a region of interest around a candidate heart rate measure. Performance is verified using accelerometry and wearable ECG and PPG data from subjects while biking and running on a treadmill. Instantaneous heart rate provides more information than average heart rate alone. The instantaneous heart rate can be extracted during motion to an accuracy of 1.75 beats per min (bpm) from PPG signals and 0.27 bpm from ECG signals. Estimates of instantaneous heart rate can now be generated from PPG signals during motion. These estimates can provide more information on the human body during exercise. Instantaneous heart rate provides a direct measure of vagal nerve and sympathetic nervous system activity and is of substantial use in a number of analyzes and applications. Previously it has not been possible to estimate instantaneous heart rate from wrist wearable PPG signals.
Wang, Yishan; Doleschel, Sammy; Wunderlich, Ralf; Heinen, Stefan
2015-03-01
This paper presents a wearable wireless ECG monitoring system based on novel 3-Lead electrode placements for long-term homecare. The experiment for novel 3-Lead electrode placements is carried out, and the results show that the distance between limb electrodes can be significantly reduced. Based on the new electrode position, a small size sensor node, which is powered by a rechargeable battery, is designed to detect, amplify, filter and transmit the ECG signals. The coordinator receives the data and sends it to PC. Finally the signals are displayed on the GUI. In order to control the power consumption of sensor node, a dynamic power adjustment method is applied to automatically adjust the transmission power of the sensor node according to the received signal strength indicator (RSSI), which is related to the distance and obstacle between sensor node and coordinator. The system is evaluated when the user, who wears the sensor, is walking and running. A promising performance is achieved even under body motion. The power consumption can be significantly reduced with this dynamic power adjustment method.
Feature Selection for Nonstationary Data: Application to Human Recognition Using Medical Biometrics.
Komeili, Majid; Louis, Wael; Armanfard, Narges; Hatzinakos, Dimitrios
2018-05-01
Electrocardiogram (ECG) and transient evoked otoacoustic emission (TEOAE) are among the physiological signals that have attracted significant interest in biometric community due to their inherent robustness to replay and falsification attacks. However, they are time-dependent signals and this makes them hard to deal with in across-session human recognition scenario where only one session is available for enrollment. This paper presents a novel feature selection method to address this issue. It is based on an auxiliary dataset with multiple sessions where it selects a subset of features that are more persistent across different sessions. It uses local information in terms of sample margins while enforcing an across-session measure. This makes it a perfect fit for aforementioned biometric recognition problem. Comprehensive experiments on ECG and TEOAE variability due to time lapse and body posture are done. Performance of the proposed method is compared against seven state-of-the-art feature selection algorithms as well as another six approaches in the area of ECG and TEOAE biometric recognition. Experimental results demonstrate that the proposed method performs noticeably better than other algorithms.
Study of heart-brain interactions through EEG, ECG, and emotions
NASA Astrophysics Data System (ADS)
Ramasamy, Mouli; Varadan, Vijay K.
2017-04-01
Neurocardiology is the exploration of neurophysiological, neurological and neuroanatomical facets of neuroscience's influence in cardiology. The paraphernalia of emotions on the heart and brain are premeditated because of the interaction between the central and peripheral nervous system. This is an investigative attempt to study emotion based neurocardiology and the factors that influence this phenomenon. The factors include: interaction between sleep EEG (electroencephalogram) and ECG (electrocardiogram), relationship between emotion and music, psychophysiological coherence between the heart and brain, emotion recognition techniques, and biofeedback mechanisms. Emotions contribute vitally to the mundane life and are quintessential to a numerous biological and everyday-functional modality of a human being. Emotions are best represented through EEG signals, and to a certain extent, can be observed through ECG and body temperature. Confluence of medical and engineering science has enabled the monitoring and discrimination of emotions influenced by happiness, anxiety, distress, excitement and several other factors that influence the thinking patterns and the electrical activity of the brain. Similarly, HRV (Heart Rate Variability) widely investigated for its provision and discerning characteristics towards EEG and the perception in neurocardiology.
The non-contact heart rate measurement system for monitoring HRV.
Huang, Ji-Jer; Yu, Sheng-I; Syu, Hao-Yi; See, Aaron Raymond
2013-01-01
A noncontact ECG monitoring and analysis system was developed using capacitive-coupled device integrated to a home sofa. Electrodes were placed on the backrest of a sofa separated from the body with only the chair covering and the user's clothing. The study also incorporates measurements using different fabric materials, and a pure cotton material was chosen to cover the chair's backrest. The material was chosen to improve the signal to noise ratio. The system is initially implemented on a home sofa and is able to measure non-contact ECG through thin cotton clothing and perform heart rate analysis to calculate the heart rate variability (HRV) parameters. It was also tested under different conditions and results from reading and sleeping exhibited a stable ECG. Subsequently, results from our calculated HRV were found to be identical to those of a commercially available HRV analyzer. However, HRV parameters are easily affected by motion artifacts generated during drinking or eating with the latter producing a more severe disturbance. Lastly, parameters measured are saved on a cloud database, providing users with a long-term monitoring and recording for physiological information.
Advanced computer techniques for inverse modeling of electric current in cardiac tissue
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hutchinson, S.A.; Romero, L.A.; Diegert, C.F.
1996-08-01
For many years, ECG`s and vector cardiograms have been the tools of choice for non-invasive diagnosis of cardiac conduction problems, such as found in reentrant tachycardia or Wolff-Parkinson-White (WPW) syndrome. Through skillful analysis of these skin-surface measurements of cardiac generated electric currents, a physician can deduce the general location of heart conduction irregularities. Using a combination of high-fidelity geometry modeling, advanced mathematical algorithms and massively parallel computing, Sandia`s approach would provide much more accurate information and thus allow the physician to pinpoint the source of an arrhythmia or abnormal conduction pathway.
Panigrahy, D; Sahu, P K
2017-03-01
This paper proposes a five-stage based methodology to extract the fetal electrocardiogram (FECG) from the single channel abdominal ECG using differential evolution (DE) algorithm, extended Kalman smoother (EKS) and adaptive neuro fuzzy inference system (ANFIS) framework. The heart rate of the fetus can easily be detected after estimation of the fetal ECG signal. The abdominal ECG signal contains fetal ECG signal, maternal ECG component, and noise. To estimate the fetal ECG signal from the abdominal ECG signal, removal of the noise and the maternal ECG component presented in it is necessary. The pre-processing stage is used to remove the noise from the abdominal ECG signal. The EKS framework is used to estimate the maternal ECG signal from the abdominal ECG signal. The optimized parameters of the maternal ECG components are required to develop the state and measurement equation of the EKS framework. These optimized maternal ECG parameters are selected by the differential evolution algorithm. The relationship between the maternal ECG signal and the available maternal ECG component in the abdominal ECG signal is nonlinear. To estimate the actual maternal ECG component present in the abdominal ECG signal and also to recognize this nonlinear relationship the ANFIS is used. Inputs to the ANFIS framework are the output of EKS and the pre-processed abdominal ECG signal. The fetal ECG signal is computed by subtracting the output of ANFIS from the pre-processed abdominal ECG signal. Non-invasive fetal ECG database and set A of 2013 physionet/computing in cardiology challenge database (PCDB) are used for validation of the proposed methodology. The proposed methodology shows a sensitivity of 94.21%, accuracy of 90.66%, and positive predictive value of 96.05% from the non-invasive fetal ECG database. The proposed methodology also shows a sensitivity of 91.47%, accuracy of 84.89%, and positive predictive value of 92.18% from the set A of PCDB.
Shirouzu, Shigenori; Seno, Yumeka; Tobioka, Ken; Masaki, Takeo; Yasumatsu, Kiyotaka; Mishima, Norio; Sugano, Hisanobu
2015-01-01
In 2014 school year, four female teachers of Nazareth Kindergarten decided to resign (DRT) due to workplace stress caused by human relationships between themselves. Our preliminary interview investigation revealed there was a stressor (STR), a certain elder female teacher and her less polite words and attitude. Using small and wearable ECG and acceleration measuring device, we measured 24 hour's autonomic nervous system's activity (ASNA) and sleep behavior of the STR and surrounding teachers, and tried to evaluate their stress objectively and to understand the reason of STR's less polite behaviors. For comparison, we also measured female Mind-Body Medicine (MBM) patients suffering adjustment disorder and clinical depression.
Czekajska-Chehab, Elżbieta; Tomaszewska, Monika; Olchowik, Grażyna; Tomaszewski, Marek; Adamczyk, Piotr; Drop, Andrzej
2012-07-01
Lipomatous hypertrophy of the interatrial septum (LHIS) is a benign disorder characterized by fat accumulation in the interatrial septum (IAS). The purpose of the study was to analyze the incidental detection of LHIS in patients with various clinical conditions, referred to ECG-gated multislice computed tomography (ECG-MSCT) examinations of the heart. The ECG-MSCT examinations of 5786 patients (2839 women; 2947 men), were analyzed. The examinations were performed using 8-row (1015 patients) and 64-row (4771 patients) MSCT, in pre- and postcontrast scanning. We analyzed the shape of the IAS, density and maximal thickness of IAS, the thickness of the epicardial adipose tissue, and the degree of contact of IAS with the ascending aorta and superior vena cava. We also determined body mass index (BMI) in patients with LHIS. LHIS was detected in 56 (0.96%) patients, with an average age of 61.5±9.8 years. The mean BMI in the analyzed group was 30.1±4.86. During the end-diastolic phase the thickness of IAS was significantly higher (p<0.0001), and on average equaled 18.3 mm. The mean optical density of the IAS was conspicuously higher (p<0.0001) in post-contrast phase than in pre-contrast phase. The thickness of the epicardial adipose tissue in the region of the left atrioventricular groove was on average 15 mm. In all cases the dumbbell shape of IAS was observed. The incidental frequency of LHIS occurrence in patients diagnosed with the ECG-MSCT examinations is about 1%. In most subjects it is linked with a higher BMI and increased thickness of the epicardial adipose tissue.
Variations of intrathoracic amount of blood as a reason of ECG voltage changes.
Saltykova, Marina; Capderou, Andre; Atkov, Oleg; Gusakov, Victor; Konovalov, Gennagiy; Voronin, Leonid; Kaspranskiy, Rustem; Morgun, Valeriy; Bailliart, Olivier; Cermack, Milan; Vaïda, Pierre
2003-10-01
It is known that electroconduction of intrathoracic organs and tissues significantly influences the ECG voltage. It changes during therapy or exercise test due to redistribution and/or volume variations of blood and body fluids and their electroconductivity variations. This fact must be taken into consideration during interpretation of corresponding ECG. But there are no quantitative estimations of this influence on human ECG. The goals of this study were to estimate the influence of variations of thoracic electroconduction, and heart volume on QRS voltage in humans, due to gravity change. ECGs of 26 healthy volunteers were analyzed in upright and supine position. Experimental conditions-acute change of gravity--are created in a special aircraft flying on Kepler's parabola trajectory. Each parabola includes phases of normo-, hypergravity (blood shifts in caudal direction), and microgravity (blood redistributes in cranial direction). Amplitude of QRS in Frank leads in all phases has been analyzed. 2-D echo studies for six subjects were used for estimation of heart volume change. In an upright position during hypergravity the amplitude of R wave in Z increases in 95% of cases (mean 0.19 mV). During microgravity amplitude of R wave in Z decreases in 95% (mean 0.24 mV). In supine position changes of QRS voltage are not significantly. Blood redistribution during gravity change leads to changes of QRS voltage, which is more expressed and steady on R in Z lead: an average near 0.2 mV. It is due to the balance between two factors: (a). changes of degree of short circuiting by variations in the amount of blood in thorax (b). changes of distance between heart and electrodes as a result of change in the position, form, and volume of the heart.
Electrocardiographic features of patients with earthquake related posttraumatic stress disorder
İlhan, Erkan; Kaplan, Abdullah; Güvenç, Tolga Sinan; Biteker, Murat; Karabulut, Evindar; Işıklı, Serhan
2013-01-01
AIM: To analyze electrocardiographic features of patients diagnosed with posttraumatic stress disorder (PTSD) after the Van-Erciş earthquake, with a shock measuring 7.2 on the Richter scale that took place in Turkey in October 2011. METHODS: Surface electrocardiograms of 12 patients with PTSD admitted to Van Erciş State Hospital (Van, Turkey) from February 2012 to May 2012 were examined. Psychiatric interviews of the sex and age matched control subjects, who had experienced the earthquake, confirmed the absence of any known diagnosable psychiatric conditions in the control group. RESULTS: A wide range of electrocardiogram (ECG) parameters, such as P-wave dispersion, QT dispersion, QT interval, Tpeak to Tend interval, intrinsicoid deflection durations and other traditional parameters were similar in both groups. There was no one with an abnormal P wave axis, short or long PR interval, long or short QT interval, negative T wave in lateral leads, abnormal T wave axis, abnormal left or right intrinsicoid deflection duration, low voltage, left bundle branch block, right bundle branch block, left posterior hemiblock, left or right axis deviation, left ventricular hypertrophy, right or left atrial enlargement and pathological q(Q) wave in either group. CONCLUSION: The study showed no direct effect of earthquake related PTSD on surface ECG in young patients. So, we propose that PTSD has no direct effect on surface ECG but may cause electrocardiographic changes indirectly by triggering atherosclerosis and/or contributing to the ongoing atherosclerotic process. PMID:23538549
Wavelet-promoted sparsity for non-invasive reconstruction of electrical activity of the heart.
Cluitmans, Matthijs; Karel, Joël; Bonizzi, Pietro; Volders, Paul; Westra, Ronald; Peeters, Ralf
2018-05-12
We investigated a novel sparsity-based regularization method in the wavelet domain of the inverse problem of electrocardiography that aims at preserving the spatiotemporal characteristics of heart-surface potentials. In three normal, anesthetized dogs, electrodes were implanted around the epicardium and body-surface electrodes were attached to the torso. Potential recordings were obtained simultaneously on the body surface and on the epicardium. A CT scan was used to digitize a homogeneous geometry which consisted of the body-surface electrodes and the epicardial surface. A novel multitask elastic-net-based method was introduced to regularize the ill-posed inverse problem. The method simultaneously pursues a sparse wavelet representation in time-frequency and exploits correlations in space. Performance was assessed in terms of quality of reconstructed epicardial potentials, estimated activation and recovery time, and estimated locations of pacing, and compared with performance of Tikhonov zeroth-order regularization. Results in the wavelet domain obtained higher sparsity than those in the time domain. Epicardial potentials were non-invasively reconstructed with higher accuracy than with Tikhonov zeroth-order regularization (p < 0.05), and recovery times were improved (p < 0.05). No significant improvement was found in terms of activation times and localization of origin of pacing. Next to improved estimation of recovery isochrones, which is important when assessing substrate for cardiac arrhythmias, this novel technique opens potentially powerful opportunities for clinical application, by allowing to choose wavelet bases that are optimized for specific clinical questions. Graphical Abstract The inverse problem of electrocardiography is to reconstruct heart-surface potentials from recorded bodysurface electrocardiograms (ECGs) and a torso-heart geometry. However, it is ill-posed and solving it requires additional constraints for regularization. We introduce a regularization method that simultaneously pursues a sparse wavelet representation in time-frequency and exploits correlations in space. Our approach reconstructs epicardial (heart-surface) potentials with higher accuracy than common methods. It also improves the reconstruction of recovery isochrones, which is important when assessing substrate for cardiac arrhythmias. This novel technique opens potentially powerful opportunities for clinical application, by allowing to choose wavelet bases that are optimized for specific clinical questions.
Electrocardiographic parameters predict super-response in cardiac resynchronization therapy.
Cvijić, Marta; Žižek, David; Antolič, Bor; Zupan, Igor
2015-01-01
Cardiac resynchronization therapy (CRT) is an established treatment for heart failure patients. However, determinants of response to CRT remain elusive. The aim of the study was to assess the value of ECG parameters to predict super-response in CRT patients. A 12-lead surface ECG was recorded at baseline and immediately after CRT-device implantation. Baseline ECG parameters (QRS duration, bundle branch morphology, axis, PR interval, QTc, intrinsicoid deflection) and post-implant paced QRS duration were analyzed; relative change in QRS duration was calculated. Decrease of left ventricular end-systolic volume ≥30% after 12 months was classified as super-response. In group of 101 patients, 32 (31.7%) were super-responders. There were no significant differences in baseline ECG parameters between super-responders and other patients. Post-implant QRS duration was shorter in super-responders (148 ± 22 ms vs. 162 ± 28 ms; P=0.010). Only in super-responders was significant QRS reduction observed after implantation. Relative QRS shortening was higher in super-responders (12.1% (6.8 to 22.2) vs. 1.7% (-11.9 to 11.8); P=0.005). In a multivariable analysis post-implant QRS duration and relative QRS shortening remained independent predictor of super-response. Absolute post-implant QRS duration and relative QRS shortening are the only ECG parameters associated with super-response in CRT. Further prospective studies on larger population are warranted to determine our findings. Copyright © 2015 Elsevier Inc. All rights reserved.
Bryan, M A; Bó, G; Mapletoft, R J; Emslie, F R
2013-01-01
In seasonally calving, pasture-based dairy farm systems, the interval from calving to first estrus is a critical factor affecting reproductive efficiency. This study evaluated the effects of equine chorionic gonadotropin (eCG) on the reproductive response of lactating, seasonally calving dairy cows diagnosed with anovulatory anestrus by rectal palpation. Cows on 15 commercial dairy farms were selected for initial inclusion based on nonobserved estrus by 7 d before the planned start of mating. All cows were palpated rectally and evaluated for body condition score and ovary score, and were included for treatment according to the trial protocol if diagnosed with anovulatory anestrus. All cows received a standard anestrous treatment protocol consisting of insertion of a progesterone device, injection of 100 µg of GnRH at the time of device insertion, and injection of PGF(2α) at device removal (GPG/P4). Cows were randomly assigned to 1 of 2 groups (6 d or 7 d) for duration of progesterone device insertion. Within each of these groups, cows were further randomly assigned to receive either 400 IU of eCG at device removal or to remain untreated as controls, resulting in a 2×2 arrangement of treatment groups: (1) 6-d device and no eCG (n=484); (2) 6-d device and eCG (n=462); (3) 7-d device and no eCG (n=546); and (4) 7-d device and eCG (n=499). Cows were detected for estrus from the time of progesterone device removal and were inseminated; those not detected in estrus within 60 h after progesterone device removal received 100 µg of GnRH and were inseminated at 72 h. The primary outcomes considered were proportion of cows conceiving within 7 d of the beginning of breeding (7-d conception rate; 7-d CR), proportion pregnant within 28 d (28-d in calf rate; 28-d ICR), and days to conception (DTC). We found no significant differences between the 6- and 7-d insertion periods and found no 6- or 7-d insertion period × eCG treatment interactions. Inclusion of eCG into either length of GPG/P4 protocol increased 7-d CR (36.0 vs. 30.6%) and 28-d ICR (58.6 vs. 52.3%) and decreased median days to conception. The use of eCG in GPG/P4 breeding protocols will improve reproductive efficiency in seasonally calving, anestrous dairy cattle. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Electrocardiographic findings in patients with polycythemia vera.
Kayrak, Mehmet; Acar, Kadir; Gul, Enes Elvin; Abdulhalikov, Turyan; Bağlıcaklıoğlu, Murat; Sonmez, Osman; Kaya, Zeynettin; Arı, Hatem
2012-01-01
The 12-lead surface electrocardiogram (ECG) is a useful tool to predict both atrial and ventricular arrhythmias via P-wave and QT measurements and its derivatives. Polycythemia vera (PV) is a chronic myeloproliferative disorder associated with cardiovascular events. The aim of this study was to assess ECG findings of patients with PV. Sixty patients with PV (34 male, mean age 58±11 years) and 60 age and gender-matched healthy volunteers were enrolled into the study. From the 12-lead surface ECG, P-wave and both conventional QT measurements and transmyocardial repolarization parameters (T(peak)-T(end) interval (T(p)-T(e)) and derivatives) were evaluated digitally by two experienced cardiologists. In addition, a novel parameter, Pi was calculated digitally as the standard deviation of the P-wave duration across the 12 ECG leads. QT duration and corrected QT interval were significantly longer in the PV group compared to healthy controls (p<0.01 and p<0.01, respectively). The T(p)-T(e) was longer and the T(p)-T(e)/QT ratio was significantly higher in the PV group compared to the controls. P-wave analyses showed that all P-wave parameters including Pmax, Pmin, P dispersion, and Pi were significantly prolonged in PV patients compared to the controls. The increase of both T(p)-T(e )and P max in the PV group was independent of age, BMI, diabetes and hypertension, gender, systolic blood pressure, hemoglobin, hematocrit, left atrial dimension, left ventricular end-diastolic diameter and early deceleration time in a univariate analysis of co-variance model (F=11.097, p=0.001 and F=31.537, p=0.0001, respectively). The present study demonstrated that PV may be associated with electrocardiographic abnormalities of both atrium and ventricle.
Sensium: an ultra-low-power wireless body sensor network platform: design & application challenges.
Wong, A W; McDonagh, D; Omeni, O; Nunn, C; Hernandez-Silveira, M; Burdett, A J
2009-01-01
In this paper we present a system-on-chip for wireless body sensor networks, which integrates a transceiver, hardware MAC protocol, microprocessor, IO peripherals, memories, ADC and custom sensor interfaces. Addressing the challenges in the design, this paper will continue to discuss the issues in the applications of this technology to body worn monitoring for real-time measurement of ECG, heart rate, physical activity, respiration and/or skin temperature. Two application challenges are described; the real-time measurement of energy expenditure using the LifePebble, and; the development issues surrounding the 'Digital Patch'.
Neic, Aurel; Campos, Fernando O; Prassl, Anton J; Niederer, Steven A; Bishop, Martin J; Vigmond, Edward J; Plank, Gernot
2017-10-01
Anatomically accurate and biophysically detailed bidomain models of the human heart have proven a powerful tool for gaining quantitative insight into the links between electrical sources in the myocardium and the concomitant current flow in the surrounding medium as they represent their relationship mechanistically based on first principles. Such models are increasingly considered as a clinical research tool with the perspective of being used, ultimately, as a complementary diagnostic modality. An important prerequisite in many clinical modeling applications is the ability of models to faithfully replicate potential maps and electrograms recorded from a given patient. However, while the personalization of electrophysiology models based on the gold standard bidomain formulation is in principle feasible, the associated computational expenses are significant, rendering their use incompatible with clinical time frames. In this study we report on the development of a novel computationally efficient reaction-eikonal (R-E) model for modeling extracellular potential maps and electrograms. Using a biventricular human electrophysiology model, which incorporates a topologically realistic His-Purkinje system (HPS), we demonstrate by comparing against a high-resolution reaction-diffusion (R-D) bidomain model that the R-E model predicts extracellular potential fields, electrograms as well as ECGs at the body surface with high fidelity and offers vast computational savings greater than three orders of magnitude. Due to their efficiency R-E models are ideally suitable for forward simulations in clinical modeling studies which attempt to personalize electrophysiological model features.
NASA Astrophysics Data System (ADS)
Neic, Aurel; Campos, Fernando O.; Prassl, Anton J.; Niederer, Steven A.; Bishop, Martin J.; Vigmond, Edward J.; Plank, Gernot
2017-10-01
Anatomically accurate and biophysically detailed bidomain models of the human heart have proven a powerful tool for gaining quantitative insight into the links between electrical sources in the myocardium and the concomitant current flow in the surrounding medium as they represent their relationship mechanistically based on first principles. Such models are increasingly considered as a clinical research tool with the perspective of being used, ultimately, as a complementary diagnostic modality. An important prerequisite in many clinical modeling applications is the ability of models to faithfully replicate potential maps and electrograms recorded from a given patient. However, while the personalization of electrophysiology models based on the gold standard bidomain formulation is in principle feasible, the associated computational expenses are significant, rendering their use incompatible with clinical time frames. In this study we report on the development of a novel computationally efficient reaction-eikonal (R-E) model for modeling extracellular potential maps and electrograms. Using a biventricular human electrophysiology model, which incorporates a topologically realistic His-Purkinje system (HPS), we demonstrate by comparing against a high-resolution reaction-diffusion (R-D) bidomain model that the R-E model predicts extracellular potential fields, electrograms as well as ECGs at the body surface with high fidelity and offers vast computational savings greater than three orders of magnitude. Due to their efficiency R-E models are ideally suitable for forward simulations in clinical modeling studies which attempt to personalize electrophysiological model features.
Robitaille, Arnaud; Perron, Roger; Germain, Jean-François; Tanoubi, Issam; Georgescu, Mihai
2015-04-01
Transcutaneous cardiac pacing (TCP) is a potentially lifesaving technique that is part of the recommended treatment for symptomatic bradycardia. Transcutaneous cardiac pacing however is used uncommonly, and its successful application is not straightforward. Simulation could, therefore, play an important role in the teaching and assessment of TCP competence. However, even the highest-fidelity mannequins available on the market have important shortcomings, which limit the potential of simulation. Six criteria defining clinical competency in TCP were established and used as a starting point in the creation of an improved TCP simulator. The goal was a model that could be used to assess experienced clinicians, an objective that justifies the additional effort required by the increased fidelity. The proposed 2-mannequin model (TMM) combines a highly modified Human Patient Simulator with a SimMan 3G, the latter being used solely to provide the electrocardiography (ECG) tracing. The TMM improves the potential of simulation to assess experienced clinicians (1) by reproducing key features of TCP, like using the same multifunctional pacing electrodes used clinically, allowing dual ECG monitoring, and responding with upper body twitching when stimulated, but equally importantly (2) by reproducing key pitfalls of the technique, like allowing pacing electrode misplacement and reproducing false signs of ventricular capture, commonly, but erroneously, used clinically to establish that effective pacing has been achieved (like body twitching, electrical artifact on the ECG, and electrical capture without ventricular capture). The proposed TMM uses a novel combination of 2 high-fidelity mannequins to improve TCP simulation until upgraded mannequins become commercially available.
Repeated sub-chronic oral toxicity study of xylooligosaccharides (XOS) in dogs.
Gao, Yonglin; Wang, Yunzhi; Li, Yanshen; Han, Rui; Li, Chunmei; Xiao, Lin; Cho, Susan; Ma, Yukui; Fang, Chao; Lee, Albert W
2017-06-01
In this study, Beagle dogs were administered xylooligosaccharide (XOS, CAS # 87099-0) at doses of 0, 1250, 2500, and 5000 mg/kg/day by oral gavage for 26 weeks. A 4-week recovery period was added to observe delayed or reversible toxicity. Measurements included body weight, food consumption, clinical observations, temperature, electrocardiogram (ECG), urinalysis, blood chemistry, hematology, organ weight, gross necropsy, and histopathological examination. Except for transient diarrhea or vomiting, no treatment-related adverse effects were noted. In the mid-dose groups, transitional diarrhea was observed in the initial 1-2 weeks. In the high-dose groups, diarrhea and/or vomiting were observed episodically over the duration of treatment. However, they disappeared after XOS was withdrawn in the recovery period. Although there was a tendency toward less weight gain in the high-dose group animal group, this is typical in animals and humans fed non-digestible carbohydrates. This chronic toxicity study demonstrated that the no observed adverse effect level (NOAEL) of XOS is 2500 mg/kg body weight (BW)/day. Based on body surface area (conversion factor of 0.54 for dogs to human), this corresponds to daily doses of 1350 mg/kg BW or 81-108 g XOS in human adults weighing 60-80 kg. Copyright © 2017. Published by Elsevier Inc.
Toyama, J; Tabata, O
1981-10-01
The epicardial breakthrough can be recognized from the localized depression of the body surface potential, which is characterized by a localized bend of the equipotential lines or a send-minimum on isopotential maps. Recognition of epicardial breakthrough with isopotential maps enables us to diagnose location of the block site of the bundle branch blocks more precisely than by ECG or VCG. However, the optimum inter-electrode distance for detection of such a localized potential has not been determined. In the present study, influence of the inter-electrode distance on the characteristic patterns reflecting the epicardial breakthrough was studied on 16 healthy persons using 9 x 9 electrode arrays with inter-electrode distance of 1.25 cm, 5 x 5 with 2.5 cm, and 3 x 3 with 5 cm. Breakthrough was recognized in 15 out of 16 cases (94%) on maps recorded with electrode arrays with inter-electrode distance of 1.25 and 2.5 cm. However, detectability of the breakthrough was reduced to 10 out of 16 cases (63%) with electrode array having inter-electrode distance of 5 cm. In conclusion, it is preferable to use an electrode array with an inter-electrode distance of no more than 2.5 cm for the purpose of breakthrough recognition.
QRS peak detection for heart rate monitoring on Android smartphone
NASA Astrophysics Data System (ADS)
Pambudi Utomo, Trio; Nuryani, Nuryani; Darmanto
2017-11-01
In this study, Android smartphone is used for heart rate monitoring and displaying electrocardiogram (ECG) graph. Heart rate determination is based on QRS peak detection. Two methods are studied to detect the QRS complex peak; they are Peak Threshold and Peak Filter. The acquisition of ECG data is utilized by AD8232 module from Analog Devices, three electrodes, and Microcontroller Arduino UNO R3. To record the ECG data from a patient, three electrodes are attached to particular body’s surface of a patient. Patient’s heart activity which is recorded by AD8232 module is decoded by Arduino UNO R3 into analog data. Then, the analog data is converted into a voltage value (mV) and is processed to get the QRS complex peak. Heart rate value is calculated by Microcontroller Arduino UNO R3 uses the QRS complex peak. Voltage, heart rate, and the QRS complex peak are sent to Android smartphone by Bluetooth HC-05. ECG data is displayed as the graph by Android smartphone. To evaluate the performance of QRS complex peak detection method, three parameters are used; they are positive predictive, accuracy and sensitivity. Positive predictive, accuracy, and sensitivity of Peak Threshold method is 92.39%, 70.30%, 74.62% and for Peak Filter method are 98.38%, 82.47%, 83.61%, respectively.
Pilia, Nicolas; Schulze, Walther H. W.; Dössel, Olaf
2017-01-01
The most important ECG marker for the diagnosis of ischemia or infarction is a change in the ST segment. Baseline wander is a typical artifact that corrupts the recorded ECG and can hinder the correct diagnosis of such diseases. For the purpose of finding the best suited filter for the removal of baseline wander, the ground truth about the ST change prior to the corrupting artifact and the subsequent filtering process is needed. In order to create the desired reference, we used a large simulation study that allowed us to represent the ischemic heart at a multiscale level from the cardiac myocyte to the surface ECG. We also created a realistic model of baseline wander to evaluate five filtering techniques commonly used in literature. In the simulation study, we included a total of 5.5 million signals coming from 765 electrophysiological setups. We found that the best performing method was the wavelet-based baseline cancellation. However, for medical applications, the Butterworth high-pass filter is the better choice because it is computationally cheap and almost as accurate. Even though all methods modify the ST segment up to some extent, they were all proved to be better than leaving baseline wander unfiltered. PMID:28373893
[Practical experience about the compatibility of PDF converter in ECG information system].
Yang, Gang; Lu, Weishi; Zhou, Jiacheng
2009-11-01
To find a way to view ECG from different manufacturers in electrocardiogram information system. Different format ECG data were transmitted to ECG center by different ways. Corresponding analysis software was used to make the diagnosis reports in the center. Then we use PDF convert to change all ECG reports into PDF format. The electrocardiogram information system manage these PDF format ECG data for clinic user. The ECG reports form several major ECG manufacturers were transformed to PDF format successfully. In the electrocardiogram information system it is freely to view the ECG figure. PDF format ECG report is a practicable way to solve the compatibility problem in electrocardiogram information system.
PDF-ECG in clinical practice: A model for long-term preservation of digital 12-lead ECG data.
Sassi, Roberto; Bond, Raymond R; Cairns, Andrew; Finlay, Dewar D; Guldenring, Daniel; Libretti, Guido; Isola, Lamberto; Vaglio, Martino; Poeta, Roberto; Campana, Marco; Cuccia, Claudio; Badilini, Fabio
In clinical practice, data archiving of resting 12-lead electrocardiograms (ECGs) is mainly achieved by storing a PDF report in the hospital electronic health record (EHR). When available, digital ECG source data (raw samples) are only retained within the ECG management system. The widespread availability of the ECG source data would undoubtedly permit successive analysis and facilitate longitudinal studies, with both scientific and diagnostic benefits. PDF-ECG is a hybrid archival format which allows to store in the same file both the standard graphical report of an ECG together with its source ECG data (waveforms). Using PDF-ECG as a model to address the challenge of ECG data portability, long-term archiving and documentation, a real-world proof-of-concept test was conducted in a northern Italy hospital. A set of volunteers undertook a basic ECG using routine hospital equipment and the source data captured. Using dedicated web services, PDF-ECG documents were then generated and seamlessly uploaded in the hospital EHR, replacing the standard PDF reports automatically generated at the time of acquisition. Finally, the PDF-ECG files could be successfully retrieved and re-analyzed. Adding PDF-ECG to an existing EHR had a minimal impact on the hospital's workflow, while preserving the ECG digital data. Copyright © 2017 Elsevier Inc. All rights reserved.
Bradycardia as a Marker of Chronic Cocaine Use: A Novel Cardiovascular Finding
Sharma, Jyoti; Rathnayaka, Nuvan; Green, Charles; Moeller, F. Gerard; Schmitz, Joy M.; Shoham, Daniel; Dougherty, Anne Hamilton
2014-01-01
Background Few studies have examined the effects of chronic cocaine use on the resting surface electrocardiogram (ECG) between exposures to cocaine. Methods 12-lead ECGs from 97 treatment-seeking cocaine-dependent subjects were compared to ECG parameters from 8513 non-cocaine-using control subjects from the Atherosclerosis Risk in Communities study. Results After matching and adjusting for relevant covariates, cocaine use demonstrated large and statistically reliable effects on early repolarization, bradycardia, severe bradycardia, and heart rate. Current cocaine dependence corresponds to an increased odds of demonstrating early repolarization by a factor of 4.92 and increased odds of bradycardia and severe bradycardia by factors 3.02 and 5.11, respectively. Conclusion This study demonstrates the novel finding that long-lasting effects of cocaine use on both the cardiac conduction and the autonomic nervous system pose a risk of adverse cardiovascular events between episodes of cocaine use, and that bradycardia is a marker of chronic cocaine use. PMID:24621090
Panoramic ECG display versus conventional ECG: ischaemia detection by critical care nurses.
Wilson, Nick; Hassani, Aimen; Gibson, Vanessa; Lightfoot, Timothy; Zizzo, Claudio
2012-01-01
To compare accuracy and certainty of diagnosis of cardiac ischaemia using the Panoramic ECG display tool plus conventional 12-lead electrocardiogram (ECG) versus 12-lead ECG alone by UK critical care nurses who were members of the British Association of Critical Care Nurses (BACCN). Critically ill patients are prone to myocardial ischaemia. Symptoms may be masked by sedation or analgesia, and ECG changes may be the only sign. Critical care nurses have an essential role in detecting ECG changes promptly. Despite this, critical care nurses may lack expertise in interpreting ECGs and myocardial ischaemia often goes undetected by critical care staff. British Association of Critical Care Nurses (BACCN) members were invited to complete an online survey to evaluate the analysis of two sets of eight ECGs displayed alone and with the new display device. Data from 82 participants showed diagnostic accuracy improved from 67·1% reading ECG traces alone, to 96·0% reading ECG plus Panoramic ECG display tool (P < 0·01, significance level α = 0·05). Participants' diagnostic certainty score rose from 41·7% reading ECG alone to 66·8% reading ECG plus Panoramic ECG display tool (P < 0·01, α = 0·05). The Panoramic ECG display tool improves both accuracy and certainty of detecting ST segment changes among critical care nurses, when compared to conventional 12-lead ECG alone. This benefit was greatest with early ischaemic changes. Critical care nurses who are least confident in reading conventional ECGs benefit the most from the new display. Critical care nurses have an essential role in the monitoring of critically ill patients. However, nurses do not always have the expertise to detect subtle ischaemic ECG changes promptly. Introduction of the Panoramic ECG display tool into clinical practice could lead to patients receiving treatment for myocardial ischaemia sooner with the potential for reduction in morbidity and mortality. © 2012 The Authors. Nursing in Critical Care © 2012 British Association of Critical Care Nurses.
Daluwatte, C; Johannesen, L; Galeotti, L; Vicente, J; Strauss, D G; Scully, C G
2016-08-01
False and non-actionable alarms in critical care can be reduced by developing algorithms which assess the trueness of an arrhythmia alarm from a bedside monitor. Computational approaches that automatically identify artefacts in ECG signals are an important branch of physiological signal processing which tries to address this issue. Signal quality indices (SQIs) derived considering differences between artefacts which occur in ECG signals and normal QRS morphology have the potential to discriminate pathologically different arrhythmic ECG segments as artefacts. Using ECG signals from the PhysioNet/Computing in Cardiology Challenge 2015 training set, we studied previously reported ECG SQIs in the scientific literature to differentiate ECG segments with artefacts from arrhythmic ECG segments. We found that the ability of SQIs to discriminate between ECG artefacts and arrhythmic ECG varies based on arrhythmia type since the pathology of each arrhythmic ECG waveform is different. Therefore, to reduce the risk of SQIs classifying arrhythmic events as noise it is important to validate and test SQIs with databases that include arrhythmias. Arrhythmia specific SQIs may also minimize the risk of misclassifying arrhythmic events as noise.
Accuracy of ECG interpretation in competitive athletes: the impact of using standised ECG criteria.
Drezner, Jonathan A; Asif, Irfan M; Owens, David S; Prutkin, Jordan M; Salerno, Jack C; Fean, Robyn; Rao, Ashwin L; Stout, Karen; Harmon, Kimberly G
2012-04-01
Interpretation of ECGs in athletes is complicated by physiological changes related to training. The purpose of this study was to determine the accuracy of ECG interpretation in athletes among different physician specialties, with and without use of a standised ECG criteria tool. Physicians were asked to interpret 40 ECGs (28 normal ECGs from college athletes randomised with 12 abnormal ECGs from individuals with known ciovascular pathology) and classify each ECG as (1) 'normal or variant--no further evaluation and testing needed' or (2) 'abnormal--further evaluation and testing needed.' After reading the ECGs, participants received a two-page ECG criteria tool to guide interpretation of the ECGs again. A total of 60 physicians participated: 22 primary care (PC) residents, 16 PC attending physicians, 12 sports medicine (SM) physicians and 10 ciologists. At baseline, the total number of ECGs correctly interpreted was PC residents 73%, PC attendings 73%, SM physicians 78% and ciologists 85%. With use of the ECG criteria tool, all physician groups significantly improved their accuracy (p<0.0001): PC residents 92%, PC attendings 90%, SM physicians 91% and ciologists 96%. With use of the ECG criteria tool, specificity improved from 70% to 91%, sensitivity improved from 89% to 94% and there was no difference comparing ciologists versus all other physicians (p=0.053). Providing standised criteria to assist ECG interpretation in athletes significantly improves the ability to accurately distinguish normal from abnormal findings across physician specialties, even in physicians with little or no experience.
Vezzosi, T; Buralli, C; Marchesotti, F; Porporato, F; Tognetti, R; Zini, E; Domenech, O
2016-10-01
The diagnostic accuracy of a smartphone electrocardiograph (ECG) in evaluating heart rhythm and ECG measurements was evaluated in 166 dogs. A standard 6-lead ECG was acquired for 1 min in each dog. A smartphone ECG tracing was simultaneously recorded using a single-lead bipolar ECG recorder. All ECGs were reviewed by one blinded operator, who judged if tracings were acceptable for interpretation and assigned an electrocardiographic diagnosis. Agreement between smartphone and standard ECG in the interpretation of tracings was evaluated. Sensitivity and specificity for the detection of arrhythmia were calculated for the smartphone ECG. Smartphone ECG tracings were interpretable in 162/166 (97.6%) tracings. A perfect agreement between the smartphone and standard ECG was found in detecting bradycardia, tachycardia, ectopic beats and atrioventricular blocks. A very good agreement was found in detecting sinus rhythm versus non-sinus rhythm (100% sensitivity and 97.9% specificity). The smartphone ECG provided tracings that were adequate for analysis in most dogs, with an accurate assessment of heart rate, rhythm and common arrhythmias. The smartphone ECG represents an additional tool in the diagnosis of arrhythmias in dogs, but is not a substitute for a 6-lead ECG. Arrhythmias identified by the smartphone ECG should be followed up with a standard ECG before making clinical decisions. Copyright © 2016 Elsevier Ltd. All rights reserved.
Smirnova, L P; Parshukova, D A; Borodyuk, Yu N; Kornetova, E G; Tkacheva, G D; Seregin, A A; Burdovitsina, T G; Semke, A V
2015-01-01
To study correlations between parameters of lipid metabolism and ECG in patients with schizophrenia in light of therapy with atypical antipsychotics. We examined 42 patients with paranoid schizophrenia. All patients received atypical neuroleptics - seroquel, zyprexa, and rispolept. A group of controls included 25 healthy people. There was a significant increase (p=0.0002) in body mass (in average by 1.5 kg) in 88% patients. A significant increase in the concentration of serum triglycerides was identified as well. The concentration of VLDL in the patients with schizophrenia was 2 times higher compared to controls. After treatment, VLDL concentration increased even more considerably An increase in atherogenic index (AI) was up to 3.1 in patients with schizophrenia compared to 2.2 in controls. After treatment, Al increased up to 4 that demonstrated the high risk of development of atherosclerosis. A significant increase in QT interval in the ECG and heart rate (p=0.03) was revealed only in patients receiving rispolept. In patients receiving zyprexa and seroquel only heart rate was increased. The antipsychotics studied increase the risk of development of cardiovascular pathology.
Novel Tool for Complete Digitization of Paper Electrocardiography Data.
Ravichandran, Lakshminarayan; Harless, Chris; Shah, Amit J; Wick, Carson A; Mcclellan, James H; Tridandapani, Srini
We present a Matlab-based tool to convert electrocardiography (ECG) information from paper charts into digital ECG signals. The tool can be used for long-term retrospective studies of cardiac patients to study the evolving features with prognostic value. To perform the conversion, we: 1) detect the graphical grid on ECG charts using grayscale thresholding; 2) digitize the ECG signal based on its contour using a column-wise pixel scan; and 3) use template-based optical character recognition to extract patient demographic information from the paper ECG in order to interface the data with the patients' medical record. To validate the digitization technique: 1) correlation between the digital signals and signals digitized from paper ECG are performed and 2) clinically significant ECG parameters are measured and compared from both the paper-based ECG signals and the digitized ECG. The validation demonstrates a correlation value of 0.85-0.9 between the digital ECG signal and the signal digitized from the paper ECG. There is a high correlation in the clinical parameters between the ECG information from the paper charts and digitized signal, with intra-observer and inter-observer correlations of 0.8-0.9 (p < 0.05), and kappa statistics ranging from 0.85 (inter-observer) to 1.00 (intra-observer). The important features of the ECG signal, especially the QRST complex and the associated intervals, are preserved by obtaining the contour from the paper ECG. The differences between the measures of clinically important features extracted from the original signal and the reconstructed signal are insignificant, thus highlighting the accuracy of this technique. Using this type of ECG digitization tool to carry out retrospective studies on large databases, which rely on paper ECG records, studies of emerging ECG features can be performed. In addition, this tool can be used to potentially integrate digitized ECG information with digital ECG analysis programs and with the patient's electronic medical record.
Tele-electrocardiography in the epidemiological 'Study of Health in Pomerania' (SHIP).
Alte, Dietrich; Völzke, Henry; Robinson, Daniel M; Kleine, Volker; Grabe, Hans Jörgen; John, Ulrich; Felix, Stephan B
2006-01-01
We have evaluated a portable electrocardiogram (ECG) card in the large population-based epidemiological 'Study of Health in Pomerania' (SHIP). In all, 7008 men and women (20-79 years) were randomly selected from population registries and 4310 subjects participated. Participants used an ECG card for four weeks and recorded two ECGs daily. The participants were also encouraged to record additional ECGs in the case of symptomatic arrhythmias, chest pain or dizziness. The ECGs were sent via telephone. Acrobat (.pdf) files arrived at the study centre via email. Arrhythmias were analysed by visual ECG inspection. Seventy-one per cent of the participants sent at least 80% of the requested ECGs for four weeks. There were few problems (about 70) in the total of 38,162 ECGs transmitted. Overall, 94% of all ECGs were rated as 'good'. Physicians required about 1.5 h to read approximately 100 ECGs daily. The functionality and ergonomics of ECG cards appear to be sufficiently developed for large-scale use in epidemiological studies.
WaveformECG: A Platform for Visualizing, Annotating, and Analyzing ECG Data
Winslow, Raimond L.; Granite, Stephen; Jurado, Christian
2017-01-01
The electrocardiogram (ECG) is the most commonly collected data in cardiovascular research because of the ease with which it can be measured and because changes in ECG waveforms reflect underlying aspects of heart disease. Accessed through a browser, WaveformECG is an open source platform supporting interactive analysis, visualization, and annotation of ECGs. PMID:28642673
Novel Tool for Complete Digitization of Paper Electrocardiography Data
Harless, Chris; Shah, Amit J.; Wick, Carson A.; Mcclellan, James H.
2013-01-01
Objective: We present a Matlab-based tool to convert electrocardiography (ECG) information from paper charts into digital ECG signals. The tool can be used for long-term retrospective studies of cardiac patients to study the evolving features with prognostic value. Methods and procedures: To perform the conversion, we: 1) detect the graphical grid on ECG charts using grayscale thresholding; 2) digitize the ECG signal based on its contour using a column-wise pixel scan; and 3) use template-based optical character recognition to extract patient demographic information from the paper ECG in order to interface the data with the patients' medical record. To validate the digitization technique: 1) correlation between the digital signals and signals digitized from paper ECG are performed and 2) clinically significant ECG parameters are measured and compared from both the paper-based ECG signals and the digitized ECG. Results: The validation demonstrates a correlation value of 0.85–0.9 between the digital ECG signal and the signal digitized from the paper ECG. There is a high correlation in the clinical parameters between the ECG information from the paper charts and digitized signal, with intra-observer and inter-observer correlations of 0.8–0.9 \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}$({\\rm p}<{0.05})$\\end{document}, and kappa statistics ranging from 0.85 (inter-observer) to 1.00 (intra-observer). Conclusion: The important features of the ECG signal, especially the QRST complex and the associated intervals, are preserved by obtaining the contour from the paper ECG. The differences between the measures of clinically important features extracted from the original signal and the reconstructed signal are insignificant, thus highlighting the accuracy of this technique. Clinical impact: Using this type of ECG digitization tool to carry out retrospective studies on large databases, which rely on paper ECG records, studies of emerging ECG features can be performed. In addition, this tool can be used to potentially integrate digitized ECG information with digital ECG analysis programs and with the patient's electronic medical record. PMID:26594601
Pourier, Milanthy S; Mavinkurve-Groothuis, Annelies M C; Loonen, Jacqueline; Bökkerink, Jos P M; Roeleveld, Nel; Beer, Gil; Bellersen, Louise; Kapusta, Livia
2017-03-01
ECG and echocardiography are noninvasive screening tools to detect subclinical cardiotoxicity in childhood cancer survivors (CCSs). Our aims were as follows: (1) assess the prevalence of abnormal ECG patterns, (2) determine the agreement between abnormal ECG patterns and echocardiographic abnormalities; and (3) determine whether ECG screening for subclinical cardiotoxicity in CCSs is justified. We retrospectively studied ECG and echocardiography in asymptomatic CCSs more than 5 years after anthracycline treatment. Exclusion criteria were abnormal ECG and/or echocardiogram at the start of therapy, incomplete follow-up data, clinical heart failure, cardiac medication, and congenital heart disease. ECG abnormalities were classified using the Minnesota Code. Level of agreement between ECG and echocardiography was calculated with Cohen kappa. We included 340 survivors with a mean follow-up of 14.5 years (range 5-32). ECG was abnormal in 73 survivors (21.5%), with ventricular conduction disorders, sinus bradycardia, and high-amplitude R waves being most common. Prolonged QTc (>0.45 msec) was found in two survivors, both with a cumulative anthracycline dose of 300 mg/m 2 or higher. Echocardiography showed abnormalities in 44 survivors (12.9%), mostly mild valvular abnormalities. The level of agreement between ECG and echocardiography was low (kappa 0.09). Male survivors more often had an abnormal ECG (corrected odds ratio: 3.00, 95% confidence interval: 1.68-5.37). Abnormal ECG patterns were present in 21% of asymptomatic long-term CCSs. Lack of agreement between abnormal ECG patterns and echocardiographic abnormalities may suggest that ECG is valuable in long-term follow-up of CCSs. However, it is not clear whether these abnormal ECG patterns will be clinically relevant. © 2016 Wiley Periodicals, Inc.
Robust and Accurate Anomaly Detection in ECG Artifacts Using Time Series Motif Discovery
Sivaraks, Haemwaan
2015-01-01
Electrocardiogram (ECG) anomaly detection is an important technique for detecting dissimilar heartbeats which helps identify abnormal ECGs before the diagnosis process. Currently available ECG anomaly detection methods, ranging from academic research to commercial ECG machines, still suffer from a high false alarm rate because these methods are not able to differentiate ECG artifacts from real ECG signal, especially, in ECG artifacts that are similar to ECG signals in terms of shape and/or frequency. The problem leads to high vigilance for physicians and misinterpretation risk for nonspecialists. Therefore, this work proposes a novel anomaly detection technique that is highly robust and accurate in the presence of ECG artifacts which can effectively reduce the false alarm rate. Expert knowledge from cardiologists and motif discovery technique is utilized in our design. In addition, every step of the algorithm conforms to the interpretation of cardiologists. Our method can be utilized to both single-lead ECGs and multilead ECGs. Our experiment results on real ECG datasets are interpreted and evaluated by cardiologists. Our proposed algorithm can mostly achieve 100% of accuracy on detection (AoD), sensitivity, specificity, and positive predictive value with 0% false alarm rate. The results demonstrate that our proposed method is highly accurate and robust to artifacts, compared with competitive anomaly detection methods. PMID:25688284
Evaluation of an electrocardiogram on QR code.
Nakayama, Masaharu; Shimokawa, Hiroaki
2013-01-01
An electrocardiogram (ECG) is an indispensable tool to diagnose cardiac diseases, such as ischemic heart disease, myocarditis, arrhythmia, and cardiomyopathy. Since ECG patterns vary depend on patient status, it is also used to monitor patients during treatment and comparison with ECGs with previous results is important for accurate diagnosis. However, the comparison requires connection to ECG data server in a hospital and the availability of data connection among hospitals is limited. To improve the portability and availability of ECG data regardless of server connection, we here introduce conversion of ECG data into 2D barcodes as text data and decode of the QR code for drawing ECG with Google Chart API. Fourteen cardiologists and six general physicians evaluated the system using iPhone and iPad. Overall, they were satisfied with the system in usability and accuracy of decoded ECG compared to the original ECG. This new coding system may be useful in utilizing ECG data irrespective of server connections.
The future of remote ECG monitoring systems.
Guo, Shu-Li; Han, Li-Na; Liu, Hong-Wei; Si, Quan-Jin; Kong, De-Feng; Guo, Fu-Su
2016-09-01
Remote ECG monitoring systems are becoming commonplace medical devices for remote heart monitoring. In recent years, remote ECG monitoring systems have been applied in the monitoring of various kinds of heart diseases, and the quality of the transmission and reception of the ECG signals during remote process kept advancing. However, there remains accompanying challenges. This report focuses on the three components of the remote ECG monitoring system: patient (the end user), the doctor workstation, and the remote server, reviewing and evaluating the imminent challenges on the wearable systems, packet loss in remote transmission, portable ECG monitoring system, patient ECG data collection system, and ECG signals transmission including real-time processing ST segment, R wave, RR interval and QRS wave, etc. This paper tries to clarify the future developmental strategies of the ECG remote monitoring, which can be helpful in guiding the research and development of remote ECG monitoring.
Induction of ovarian cystic follicles in sheep.
Christman, S A; Bailey, M T; Head, W A; Wheaton, J E
2000-10-01
Cystic follicles are a significant cause of infertility in women, dairy cattle and sheep. Sheep were used as a model to identify factors that may elicit formation of cystic follicles. Insulin resistance and elevated LH activity were tested in overweight ewes because of associations among these factors and the formation of cystic follicles. Sheep were synchronized using a progesterone-releasing pessary and insulin resistance was induced during the synchronization period through administration of bovine somatotropin. Following removal of pessaries follicular growth was stimulated by treatment with eCG or eCG and hCG (PG-600). Follicular growth was monitored via daily transrectal ultrasonography and blood samples were collected for hormonal analyses. Six of 18 ewes had a subnormal or absent preovulatory gonadotropin surge and developed cystic follicles. Neither insulin resistance nor elevated LH activity were associated with formation of cystic follicles. Ewes that developed cystic follicles were heavier (93 +/- 4 kg) than ewes that ovulated (81 +/- 3 kg; P = 0.02). Furthermore, following pessary removal and initiation of daily ultrasonography, ewes that developed cystic follicles lost body weight (-3 +/- 1%), while ovulatory ewes continued to gain body weight (1 +/- 1%; P = 0.005). It is speculated that in heavy ewes metabolic factors associated with acute body weight loss inhibit the positive feedback of estradiol and thereby suppress the preovulatory gonadotropin surge leading to formation of cystic follicles.
2011-01-01
Background P-wave dispersion (Pd) is a new ECG index used in human cardiology and veterinary medicine. It is defined as the difference between the maximum and the minimum P-wave duration recorded from multiple different ECG leads. So far no studies were performed assessing the importance of P-wave dispersion in dogs. Methods The current study was aimed at determining proper value of Pd in healthy dogs (group I), dogs with chronic valvular disease (group II) and dogs with disturbances of supraventricular conduction (group III). The tests were carried out in 53 healthy dogs, 23 dogs with chronic valvular disease and 12 dogs with disturbances of supraventricular conduction of various breeds, sexes and body weight from 1,5 to 80 kg, aged between 0,5 and 17 years, submitted to the ECG examination. ECG was acquired in dogs in a standing position with BTL SD-8 electrocardiographic device and analyzed once the recording was enlarged. P-wave duration was calculated in 9 ECG leads (I, II, III, aVR, aVL, aVF, V1, V2, V4) from 5 cardiac cycles. Results The proper P-wave dispersion in healthy dogs was determined at up to 24 ms. P-wave dispersion was statistically significant increased (p < 0.01) in dogs with chronic valvular disease and dogs with disturbances of supraventricular conduction. In dogs with the atrial enlargement the P-wave dispersion is also higher than in healthy dogs, although no significant correlation between the size of left atria and Pd was noticed (p = 0.1, r = 0,17). Conclusions The P-wave dispersion is a constant index in healthy dogs, that is why it can be used for evaluating P wave change in dogs with chronic valvular disease and in dogs with disturbances of supraventricular conduction. PMID:21396110
Rautaharju, Pentti M; Menotti, Alessandro; Blackburn, Henry; Parapid, Biljana; Kircanski, Bratislav
2012-01-01
Isolated T-wave findings are generally considered of little importance in clinical electrocardiogram (ECG) interpretation, although a few studies have associated them with excess mortality risk. We used Cox regression models to evaluate coronary heart disease (CHD) mortality risk for isolated inverted T waves in 8713 men in the Seven Countries Study with no manifest cardiac diseases at baseline. The study population was stratified into 3 mutually exclusive groups: (1) isolated inverted T waves in the absence of other codable ECG findings according to the Minnesota Code; (2) other ECG findings with or without negative T waves; and (3) no codable ECG findings, used as the reference group. Mortality follow-up of the entire cohort was performed at 5, 10, 20, 30, and 40 years. The prevalence of isolated negative T waves at baseline was low, 1.6%, in these men from working populations. The hazard ratio (HR) for CHD mortality risk after 5 years in the isolated T-wave inversion group was more than 3 times greater than that in the reference group after adjusting for age, body mass index, cigarette smoking, systolic blood pressure, serum cholesterol and cohort (HR 3.68, 95% confidence interval [1.44-9.37]). Hazard ratio declined gradually with the length of follow-up but was still at 50% excess risk at 40-year follow-up (HR 1.51, 95% confidence interval [1.12-2.05]). T waves in the isolated T-wave inversion group were "flat" or less negative than 1mm (-100 μV) in the majority (86%) of inverted T waves. We conclude that inverted T waves with even a minor degree of negativity as an isolated ECG finding in men with no evidence of heart disease predict an excess short-term and long-term risk of CHD death. Copyright © 2012 Elsevier Inc. All rights reserved.
Noszczyk-Nowak, Agnieszka; Szałas, Anna; Pasławska, Urszula; Nicpoń, Józef
2011-03-11
P-wave dispersion (Pd) is a new ECG index used in human cardiology and veterinary medicine. It is defined as the difference between the maximum and the minimum P-wave duration recorded from multiple different ECG leads. So far no studies were performed assessing the importance of P-wave dispersion in dogs. The current study was aimed at determining proper value of Pd in healthy dogs (group I), dogs with chronic valvular disease (group II) and dogs with disturbances of supraventricular conduction (group III). The tests were carried out in 53 healthy dogs, 23 dogs with chronic valvular disease and 12 dogs with disturbances of supraventricular conduction of various breeds, sexes and body weight from 1,5 to 80 kg, aged between 0,5 and 17 years, submitted to the ECG examination. ECG was acquired in dogs in a standing position with BTL SD-8 electrocardiographic device and analyzed once the recording was enlarged. P-wave duration was calculated in 9 ECG leads (I, II, III, aVR, aVL, aVF, V1, V2, V4) from 5 cardiac cycles. The proper P-wave dispersion in healthy dogs was determined at up to 24 ms. P-wave dispersion was statistically significant increased (p<0.01) in dogs with chronic valvular disease and dogs with disturbances of supraventricular conduction. In dogs with the atrial enlargement the P-wave dispersion is also higher than in healthy dogs, although no significant correlation between the size of left atria and Pd was noticed (p=0.1, r=0,17). The P-wave dispersion is a constant index in healthy dogs, that is why it can be used for evaluating P wave change in dogs with chronic valvular disease and in dogs with disturbances of supraventricular conduction.
Ng, Choon Ta; Chee, Tek Siong; Ling, Lee Fong; Lee, Yian Ping; Ching, Chi Keong; Chua, Terrance S J; Cheok, Christopher; Ong, Hean Yee
2011-06-01
Hypertrophic cardiomyopathy is a leading cause of sudden cardiac death (SCD) in young people in the USA. Pre-participation screening for athletes might reduce the incidence of SCD. In Singapore, military service is compulsory for all young able-bodied male citizens. The Singapore Armed Forces Electrocardiogram and Echocardiogram (SAFE) pre-participation screening protocol based on the Italian programme was introduced. This study evaluates the prevalence of hypertrophic cardiomyopathy (HCM) in a young male South-East Asian population. From October 2008 to May 2009, all male military conscripts underwent pre-participation screening. For all conscripts whose electrocardiogram (ECG) findings fulfilled any of these pre-specified criteria (Group A), direct referral for a transthoracic echocardiogram was mandatory. Conscripts with ECG findings other than pre-specified criteria (e.g. T-wave inversions, repolarization abnormalities) were referred for secondary screening by cardiologists (Group B), which could include echocardiography. Out of 18 476 subjects screened during the study period, 988 (5.3%) subjects were fast tracked for echocardiogram (Group A). Of them, there were three (0.3%) cases with severe abnormalities; there was one case each of HCM, bicuspid aortic valve with significant aortic valve regurgitation, and atrial septal defect with right ventricular systolic dysfunction. The patient with HCM had left axis deviation on ECG. None of the 215 patients who underwent echocardiography following cardiology consult (Group B) had HCM. The prevalence of HCM in our young male population (mean age 19.5, range 16-27) using an ECG-based screening protocol was 0.005%; this appeared lower than published data from other geographical cohorts. Possible explanations include a later age of phenotypic manifestation in our population, limitations of the ECG criteria for screening, or a truly lower prevalence of HCM. More population-based longitudinal studies would be needed to ascertain the true prevalence of HCM in our South-East Asian population.
NASA Technical Reports Server (NTRS)
Montogomery, Leslie D.; Ku, Yu-Tsuan E.; Webbon, Bruce W. (Technical Monitor)
1995-01-01
We have prepared a computer program (RHEOSYS:RHEOencephalographic impedance trace scanning SyStem) that can be used to automate the analysis of segmental impedance blood flow waveforms. This program was developed to assist in the post test analysis of recorded impedance traces from multiple segments of the body. It incorporates many of the blood flow, segmental volume, and vascular state indices reported in the world literature. As it is currently programmed, seven points are selected from each blood flow pulse and associated ECG waveforrn: 1. peak of the first ECG QRS complex, 2. start of systolic slope on the blood flow trace, 3. maximum amplitude of the impedance pulse, 4. position of the dicrotic notch, 5. maximum amplitude of the postdicrotic segment, 6. peak of the second ECG QRS complex, and 7. start of the next blood flow pulse. These points we used to calculate various geometric, area, and time-related values associated with the impedance pulse morphology. RHEOSYS then calculates a series of 34 impedance and cardiac cycle parameters which include pulse amplitudes; areas; pulse propagation times; cardiac cycle times; and various measures of arterial and various tone, contractility, and pulse volume. We used this program to calculate the scalp and intracranial blood flow responses to head and neck cooling as it may be applied to lower the body temperatures of multiple sclerosis patients. Twelve women and twelve men were tested using a commercially available head and neck cooling system operated at its maximum cooling capacity for a period of 30 minutes. Head and neck cooling produced a transient change in scalp blood flow and a significant, (P<0.05) decrease of approx. 30% in intracranial blood flow. Results of this experiment will illustrate how REG and RHEOSYS can be used in biomedical applications.
Wang, Duolao; Bakhai, Ameet; Arezina, Radivoj; Täubel, Jörg
2016-11-01
Electrocardiogram (ECG) variability is greatly affected by the ECG recording method. This study aims to compare Holter and standard ECG recording methods in terms of central locations and variations of ECG data. We used the ECG data from a double-blinded, placebo-controlled, randomized clinical trial and used a mixed model approach to assess the agreement between two methods in central locations and variations of eight ECG parameters (Heart Rate, PR, QRS, QT, RR, QTcB, QTcF, and QTcI intervals). A total of 34 heathy male subjects with mean age of 25.7 ± 4.78 years were randomized to receive either active drug or placebo. Digital 12-lead ECG and digital 12-lead Holter ECG recordings were performed to assess ECG variability. There are no significant differences in least square mean between the Holter and the standard method for all ECG parameters. The total variance is consistently higher for the Holter method than the standard method for all ECG parameters except for QRS. The intraclass correlation coefficient (ICC) values for the Holter method are consistently lower than those for the standard method for all ECG parameters except for QRS, in particular, the ICC for QTcF is reduced from 0.86 for the standard method to 0.67 for the Holter method. This study suggests that Holter ECGs recorded in a controlled environment are not significantly different but more variable than those from the standard method. © 2016 Wiley Periodicals, Inc.
Prevalence of Cardiovascular Disorders Among Iranian Elite Athletes.
Salehi, Shahin; Moradi Shahpar, Farhad; Norouzi, Gholamreza; Ghazalian, Farshad; Poursaid Esfehani, Mehrshad; Abedi Yekta, Amir Hosein
2016-06-01
Athletes' health is an important issue and for promoting it, pre-participation examination (PPE) is widely performed by responsible bodies around the world. This study was to determine prevalence of cardiovascular disorders among athletes participating in the Asian games and answering the question whether the electrocardiogram (ECG) is a necessary part of pre-participation examination (PPE) for prevention of sudden cardiac death. All athletes participated at Asian games came to sports medicine federation for a PPE including a comprehensive questionnaire, physical examination and ECG. In this retrospective study all profiles of 338 athletes have been studied as well as their electrocardiograms. Multiple logistic regressions as well as Firth's bias reduction were used with R statistical software and SPSS. For predicting the changes in ECG, receiver operating characteristic (ROC) curve has done. Among 388 athletes, 80 (20.6%) were female and 308 (79.4%) male with mean age of 23.2 + 8 years. Nine athletes (2.3%) were smokers, 28 of them (7.2%) experienced chest pain and discomfort, 45 of them (13.3%) had palpitations and 28 (7.2%) had history of anemia. Study of their electrocardiograms showed that long Q-T interval was not seen for anyone, but evidence of left ventricular hypertrophy was seen in 12 (3.1%), inverted T wave in 6 (1.5%), and right bundle branch block in 45 (13.3%). PPE provides very important information of athletes' health. This study has shown that there was not any significant relation between current examination and electrocardiogram changes but regarding the ECG changes we recommend it as a routine part of PPE.
Nakamura, Sachiko; Adachi, Hisashi; Enomoto, Mika; Fukami, Ako; Kumagai, Eita; Nohara, Yume; Kono, Shoko; Nakao, Erika; Sakaue, Akiko; Tsuru, Tomoko; Morikawa, Nagisa; Fukumoto, Yoshihiro
2017-10-01
An understanding of the trends in regard to coronary risk factors and electrocardiogram (ECG) findings has an important role in public health. We investigated the trends in coronary risk factors and main ECG findings in 1977, 1989, 1999, and 2009 in the Japanese cohort of the Seven Countries Study, in Tanushimaru, a typical farming town on Kyushu Island. A total of 1397 subjects (231 in 1977, 332 in 1989, 389 in 1999, and 445 in 2009) were enrolled in this study, and all of them were males aged over 65 years. In coronary risk factors, total cholesterol levels, diastolic blood pressure, body mass index, and uric acid significantly increased during these 3 decades. The prevalence of smokers markedly decreased from 56.7% in 1977 to 16.8% in 2009. ECG changes during 3 decades were wider QRS interval, increased prevalence of major abnormality, reduced heart rate, shortened PR interval and corrected QT, and decreased prevalence of left ventricular hypertrophy. Age, smoking habits, major and minor abnormalities in ECG were associated with mortality in 1977-1987. Age, total cholesterol levels (inversely) and corrected QT were associated with mortality in 1989-1999. Age, smoking habits, heart rate, and systolic blood pressure were associated with mortality in 1999-2009. Predictors of mortality have changed with the times. Coronary risk factors such as smoking, increased heart rate, and elevated blood pressure have been recently associated with mortalities in elderly male Japanese general population. Copyright © 2016 Japanese College of Cardiology. Published by Elsevier Ltd. All rights reserved.
Maheshkumar, K; Dilara, K; Maruthy, K N; Sundareswaren, L
2016-07-01
Heart rate variability (HRV) analysis is a simple and noninvasive technique capable of assessing autonomic nervous system modulation on heart rate (HR) in healthy as well as disease conditions. The aim of the present study was to compare (validate) the HRV using a temporal series of electrocardiograms (ECG) obtained by simple analog amplifier with PC-based sound card (audacity) and Biopac MP36 module. Based on the inclusion criteria, 120 healthy participants, including 72 males and 48 females, participated in the present study. Following standard protocol, 5-min ECG was recorded after 10 min of supine rest by Portable simple analog amplifier PC-based sound card as well as by Biopac module with surface electrodes in Leads II position simultaneously. All the ECG data was visually screened and was found to be free of ectopic beats and noise. RR intervals from both ECG recordings were analyzed separately in Kubios software. Short-term HRV indexes in both time and frequency domain were used. The unpaired Student's t-test and Pearson correlation coefficient test were used for the analysis using the R statistical software. No statistically significant differences were observed when comparing the values analyzed by means of the two devices for HRV. Correlation analysis revealed perfect positive correlation (r = 0.99, P < 0.001) between the values in time and frequency domain obtained by the devices. On the basis of the results of the present study, we suggest that the calculation of HRV values in the time and frequency domains by RR series obtained from the PC-based sound card is probably as reliable as those obtained by the gold standard Biopac MP36.
Krummen, David E; Patel, Mitul; Nguyen, Hong; Ho, Gordon; Kazi, Dhruv S; Clopton, Paul; Holland, Marian C; Greenberg, Scott L; Feld, Gregory K; Faddis, Mitchell N; Narayan, Sanjiv M
2010-11-01
Quantitative ECG Analysis. Optimal atrial tachyarrhythmia management is facilitated by accurate electrocardiogram interpretation, yet typical atrial flutter (AFl) may present without sawtooth F-waves or RR regularity, and atrial fibrillation (AF) may be difficult to separate from atypical AFl or rapid focal atrial tachycardia (AT). We analyzed whether improved diagnostic accuracy using a validated analysis tool significantly impacts costs and patient care. We performed a prospective, blinded, multicenter study using a novel quantitative computerized algorithm to identify atrial tachyarrhythmia mechanism from the surface ECG in patients referred for electrophysiology study (EPS). In 122 consecutive patients (age 60 ± 12 years) referred for EPS, 91 sustained atrial tachyarrhythmias were studied. ECGs were also interpreted by 9 physicians from 3 specialties for comparison and to allow healthcare system modeling. Diagnostic accuracy was compared to the diagnosis at EPS. A Markov model was used to estimate the impact of improved arrhythmia diagnosis. We found 13% of typical AFl ECGs had neither sawtooth flutter waves nor RR regularity, and were misdiagnosed by the majority of clinicians (0/6 correctly diagnosed by consensus visual interpretation) but correctly by quantitative analysis in 83% (5/6, P = 0.03). AF diagnosis was also improved through use of the algorithm (92%) versus visual interpretation (primary care: 76%, P < 0.01). Economically, we found that these improvements in diagnostic accuracy resulted in an average cost-savings of $1,303 and 0.007 quality-adjusted-life-years per patient. Typical AFl and AF are frequently misdiagnosed using visual criteria. Quantitative analysis improves diagnostic accuracy and results in improved healthcare costs and patient outcomes. © 2010 Wiley Periodicals, Inc.
Localizing Circuits of Atrial Macro-Reentry Using ECG Planes of Coherent Atrial Activation
Kahn, Andrew M.; Krummen, David E.; Feld, Gregory K.; Narayan, Sanjiv M.
2007-01-01
Background The complexity of ablation for atrial macro-reentry (AFL) varies significantly depending upon the circuit location. Presently, surface ECG analysis poorly separates left from right atypical AFL and from some cases of typical AFL, delaying diagnosis until invasive study. Objective To differentiate and localize the intra-atrial circuits of left atypical AFL, right atypical, and typical AFL using quantitative ECG analysis. Methods We studied 66 patients (54 M, age 59±14 years) with typical (n=35), reverse typical (n=4) and atypical (n=27) AFL. For each, we generated filtered atrial waveforms from ECG leads V5 (X-axis), aVF (Y) and V1 (Z) by correlating a 120 ms F-wave sample to successive ECG regions. Atrial spatial loops were plotted for 3 orthogonal planes (frontal, XY=V5/aVF; sagittal, YZ=aVF/V1; axial, XZ=V5/V1), then cross-correlated to measure spatial regularity (‘coherence’: range −1 to 1). Results Mean coherence was greatest in the XY plane (p<10−3 vs XZ or YZ). Atypical AFL showed lower coherence than typical AFL in XY (p<10−3), YZ (p<10−6) and XZ (p<10−5) planes. Atypical left AFL could be separated from atypical right AFL by lower XY coherence (p=0.02); for this plane coherence < 0.69 detected atypical left AFL with 84% specificity and 75% sensitivity. F-wave amplitude did not separate typical, atypical right or atypical left AFL (p=NS). Conclusions Atypical AFL shows lower spatial coherence than typical AFL, particularly in sagittal and axial planes. Coherence in the Cartesian frontal plane separated left and right atypical AFL. Such analyses may be used to plan ablation strategy from the bedside. PMID:17399632
Howarth, F C; Jacobson, M; Shafiullah, M; Adeghate, E
2005-11-01
In vivo biotelemetry studies have demonstrated that short-term streptozotocin (STZ)-induced diabetes is associated with a reduction in heart rate (HR) and heart rate variability (HRV) and prolongation of QT and QRS intervals. This study investigates the long-term effects of STZ-induced diabetes on the electrocardiogram (ECG), physical activity and body temperature. Transmitter devices were surgically implanted in the peritoneal cavity of young adult male Wistar rats. Electrodes from the transmitter were arranged in Einthoven bipolar lead II configuration. ECG, physical activity and body temperature data were continuously recorded with a telemetry system before and following the administration of STZ (60 mg kg(-1)) for a period of 22 weeks. HR, physical activity and body temperature declined rapidly 3-5 days after the administration of STZ. The effects became conspicuous with time reaching a new steady state approximately 1-2 weeks after STZ treatment. HR at 4 weeks was 268 +/- 5 beats min(-1) in diabetic rats compared to 347 +/- 12 beats min(-1) in age-matched controls. HRV at 4 weeks was also significantly reduced after STZ treatment (18 +/- 3 beats min(-1)) compared to controls (33 +/- 3 beats min(-1)). HR and HRV were not additionally altered in either diabetic rats (266 +/- 5 and 20 +/- 4 beats min(-1)) or age-matched controls (316 +/- 6 and 25 +/- 4 beats min(-1)) at 22 weeks. Reduced physical activity and/or body temperature may partly underlie the reductions in HR and HRV. In addition, the increased power spectral low frequency/high frequency ratio from 4 weeks after STZ treatment may indicate an accompanying disturbance in sympathovagal balance.
Design of portable electrocardiogram device using DSO138
NASA Astrophysics Data System (ADS)
Abuzairi, Tomy; Matondang, Josef Stevanus; Purnamaningsih, Retno Wigajatri; Basari, Ratnasari, Anita
2018-02-01
Cardiovascular disease has been one of the leading causes of sudden cardiac deaths in many countries, covering Indonesia. Electrocardiogram (ECG) is a medical test to detect cardiac abnormalities by measuring the electrical activity generated by the heart, as the heart contracts. By using ECG, we can observe anomaly at the time of heart abnormalities. In this paper, design of portable ECG device is presented. The portable ECG device was designed to easily use in the village clinic or houses, due to the small size device and other benefits. The device was designed by using four units: (1) ECG electrode; (2) ECG analog front-end; (3) DSO138; and (4) battery. To create a simple electrode system in the portable ECG, 1-lead ECG with two electrodes were applied. The analog front-end circuitry consists of three integrated circuits, an instrumentation amplifier AD820AN, a low noise operational amplifier OPA134, and a low offset operational amplifier TL082. Digital ECG data were transformed to graphical data on DSO138. The results show that the portable ECG is successfully read the signal from 1-lead ECG system.
ECG Sensor Card with Evolving RBP Algorithms for Human Verification.
Tseng, Kuo-Kun; Huang, Huang-Nan; Zeng, Fufu; Tu, Shu-Yi
2015-08-21
It is known that cardiac and respiratory rhythms in electrocardiograms (ECGs) are highly nonlinear and non-stationary. As a result, most traditional time-domain algorithms are inadequate for characterizing the complex dynamics of the ECG. This paper proposes a new ECG sensor card and a statistical-based ECG algorithm, with the aid of a reduced binary pattern (RBP), with the aim of achieving faster ECG human identity recognition with high accuracy. The proposed algorithm has one advantage that previous ECG algorithms lack-the waveform complex information and de-noising preprocessing can be bypassed; therefore, it is more suitable for non-stationary ECG signals. Experimental results tested on two public ECG databases (MIT-BIH) from MIT University confirm that the proposed scheme is feasible with excellent accuracy, low complexity, and speedy processing. To be more specific, the advanced RBP algorithm achieves high accuracy in human identity recognition and is executed at least nine times faster than previous algorithms. Moreover, based on the test results from a long-term ECG database, the evolving RBP algorithm also demonstrates superior capability in handling long-term and non-stationary ECG signals.
Bivariate empirical mode decomposition for ECG-based biometric identification with emotional data.
Ferdinando, Hany; Seppanen, Tapio; Alasaarela, Esko
2017-07-01
Emotions modulate ECG signals such that they might affect ECG-based biometric identification in real life application. It motivated in finding good feature extraction methods where the emotional state of the subjects has minimum impacts. This paper evaluates feature extraction based on bivariate empirical mode decomposition (BEMD) for biometric identification when emotion is considered. Using the ECG signal from the Mahnob-HCI database for affect recognition, the features were statistical distributions of dominant frequency after applying BEMD analysis to ECG signals. The achieved accuracy was 99.5% with high consistency using kNN classifier in 10-fold cross validation to identify 26 subjects when the emotional states of the subjects were ignored. When the emotional states of the subject were considered, the proposed method also delivered high accuracy, around 99.4%. We concluded that the proposed method offers emotion-independent features for ECG-based biometric identification. The proposed method needs more evaluation related to testing with other classifier and variation in ECG signals, e.g. normal ECG vs. ECG with arrhythmias, ECG from various ages, and ECG from other affective databases.
Huebner, Thomas; Goernig, Matthias; Schuepbach, Michael; Sanz, Ernst; Pilgram, Roland; Seeck, Andrea; Voss, Andreas
2010-01-01
Background: Electrocardiographic methods still provide the bulk of cardiovascular diagnostics. Cardiac ischemia is associated with typical alterations in cardiac biosignals that have to be measured, analyzed by mathematical algorithms and allegorized for further clinical diagnostics. The fast growing fields of biomedical engineering and applied sciences are intensely focused on generating new approaches to cardiac biosignal analysis for diagnosis and risk stratification in myocardial ischemia. Objectives: To present and review the state of the art in and new approaches to electrocardiologic methods for non-invasive detection and risk stratification in coronary artery disease (CAD) and myocardial ischemia; secondarily, to explore the future perspectives of these methods. Methods: In follow-up to the Expert Discussion at the 2008 Workshop on "Biosignal Analysis" of the German Society of Biomedical Engineering in Potsdam, Germany, we comprehensively searched the pertinent literature and databases and compiled the results into this review. Then, we categorized the state-of-the-art methods and selected new approaches based on their applications in detection and risk stratification of myocardial ischemia. Finally, we compared the pros and cons of the methods and explored their future potentials for cardiology. Results: Resting ECG, particularly suited for detecting ST-elevation myocardial infarctions, and exercise ECG, for the diagnosis of stable CAD, are state-of-the-art methods. New exercise-free methods for detecting stable CAD include cardiogoniometry (CGM); methods for detecting acute coronary syndrome without ST elevation are Body Surface Potential Mapping, functional imaging and CGM. Heart rate variability and blood pressure variability analyses, microvolt T-wave alternans and signal-averaged ECG mainly serve in detecting and stratifying the risk for lethal arrythmias in patients with myocardial ischemia or previous myocardial infarctions. Telemedicine and ambient-assisted living support the electrocardiological monitoring of at-risk patients. Conclusions: There are many promising methods for the exercise-free, non-invasive detection of CAD and myocardial ischemia in the stable and acute phases. In the coming years, these new methods will help enhance state-of-the-art procedures in routine diagnostics. The future can expect that equally novel methods for risk stratification and telemedicine will transition into clinical routine. PMID:21063467
Competency in ECG Interpretation Among Medical Students
Kopeć, Grzegorz; Magoń, Wojciech; Hołda, Mateusz; Podolec, Piotr
2015-01-01
Background Electrocardiogram (ECG) is commonly used in diagnosis of heart diseases, including many life-threatening disorders. We aimed to assess skills in ECG interpretation among Polish medical students and to analyze the determinants of these skills. Material/Methods Undergraduates from all Polish medical schools were asked to complete a web-based survey containing 18 ECG strips. Questions concerned primary ECG parameters (rate, rhythm, and axis), emergencies, and common ECG abnormalities. Analysis was restricted to students in their clinical years (4th–6th), and students in their preclinical years (1st–3rd) were used as controls. Results We enrolled 536 medical students (females: n=299; 55.8%), aged 19 to 31 (23±1.6) years from all Polish medical schools. Most (72%) were in their clinical years. The overall rate of good response was better in students in years 4th–5th than those in years 1st–3rd (66% vs. 56%; p<0.0001). Competency in ECG interpretation was higher in students who reported ECG self-learning (69% vs. 62%; p<0.0001) but no difference was found between students who attended or did not attend regular ECG classes (66% vs. 66%; p=0.99). On multivariable analysis (p<0.0001), being in clinical years (OR: 2.45 [1.35–4.46] and self-learning (OR: 2.44 [1.46–4.08]) determined competency in ECG interpretation. Conclusions Polish medical students in their clinical years have a good level of competency in interpreting the primary ECG parameters, but their ability to recognize ECG signs of emergencies and common heart abnormalities is low. ECG interpretation skills are determined by self-education but not by attendance at regular ECG classes. Our results indicate qualitative and quantitative deficiencies in teaching ECG interpretation at medical schools. PMID:26541993
Wireless Self-Acquistion of 12-Lead ECG via Android Smart Phone
NASA Technical Reports Server (NTRS)
Schlegel, Todd T.
2012-01-01
Researchers at NASA s Johnson Space Center and at Orbital Research, Inc. (a NASA SBIR grant recipient) have recently developed a dry-electrode harness that allows for self-acquisition of resting 12-lead ECGs by minimally trained laypersons. When used in conjunction with commercial wireless (e.g., Bluetooth(TM) or 802.11-enabled) 12-lead ECG devices and custom smart phone-based software, the collected 12-lead ECG data can also immediately be forwarded from any geographic location within cellular range to the user s physician(s) of choice. The system can also be used to immediately forward to central receiving stations 12-lead ECG data collected during space flight or during activities in any remote terrestrial location supported by an internet or cellular phone infrastructure. The main novel aspects of the system are first, the dry-electrode 12-lead ECG harness itself, and second, an accompanying Android(TM) smart phone-based wireless 12-lead ECG capability. The ECG harness nominally employs dry electrodes manufactured by Orbital Research, Inc, recently cleared through the Food and Drug Administration (FDA). However, other dry electrodes that are not yet FDA cleared, for example those recently developed by Nanosonic, Inc as part of another NASA SBIR grant, can also be used. The various advantageous features of the harness include: 1) laypersons can be quickly instructed on its correct use, remotely if necessary; 2) all tangled "leadwire spaghetti" is eliminated, as is the common clinical problem of "leadwire reversal"; 3) all adhesives and disposables are also eliminated, the harness being fully reusable; if multiple individuals intend to use use the same harness, then standard antimicrobial wipes can be employed to sterilize the dry electrodes (and harness surface if needed) between users; 5) padded cushions at the lateral sides of the torso function to press the left arm (LA) and right arm (RA) dry electrodes mounted on the cushions against sideward or downward-rested arms of the subject; 6) sufficient distal placement of the arm electrodes achieves good electrode abutment to the arms without the need for adhesives, straps, bands, bracelets, or gloves; 7) padding over the sternum avoids "tenting" in the V1 through V3 (and, when present, the V3R) electrode positions; 8) easy-to-don, one-piece design with an adjustable, front-side single point of connection and an adjustable shoulder strap; and 9) Lund or "modified Lund" placement of the dry electrodes, the results of which more effectively reproduce results from "standard" 12-lead ECG placements than do results from Mason-Likar placements. The main limitation of the harness is that "one size does not fit all", meaning that an appropriately sized harness (small, medium, large, etc) must be chosen on the basis of an individual's size. To facilitate the use of the harness with inexpensive, commodity-grade cell phones and tablet devices, 12-lead ECG software is also being developed to accompany the harness for wireless use with Android. For this part of the project, NASA has teamed with TopCoder, Inc and the Harvard-affiliated NASA Tournament Lab in sponsoring java-based software programming contests through TopCoder. While ECG signals from the harness can already be wirelessly received and thoroughly processed (locally or remotely) by commercial-grade conventional (as well as advanced) 12-lead ECG software running on Microsoft Windows(TM), the Android-based software, once completed, will "cast a wider net" by allowing for a greater percentage of cell phone owners to participate in inexpensive, store-and-forward recordings of 12-lead ECGs worldwide, including for example Android cell phone users in many remote, third-world locations. At the time of writing, the Android 12-lead ECG software platform consists of a basic but expanding graphical user interface and accompanying software that: 1) wirelessly receives the 12-lead ECG data stream from a Bluetooth-based, FDA-cleared 12-leaCG device attached to the harness; 2) locally stores the same data in binary format to the SD card on the Android cell phone; and 3) makes the data stream in available in real time, for now to TopCoder's java programming contestants.
The effects of metronome breathing on the variability of autonomic activity measurements.
Driscoll, D; Dicicco, G
2000-01-01
Many chiropractors hypothesize that spinal manipulation affects the autonomic nervous system (ANS). However, the ANS responses to chiropractic manipulative therapy are not well documented, and more research is needed to support this hypothesis. This study represents a step toward the development of a reliable method by which to document that chiropractic manipulative therapy does affect the ANS by exploring the use of paced breathing as a way to reduce the inherent variability in ANS measurements. To examine the hypothesis that the variability of ANS measurements would be reduced if breathing were paced to a metronome at 12 breaths/min. The study was performed at Parker College Research Institute. Eight normotensive subjects were recruited from the student body and staff. Respiration frequency was measured through a strain gauge. A 3-lead electrocardiogram (ECG) was used to register the electric activity of the heart, and arterial tonometry monitors were used to record the left and right radial artery blood pressures. Signals were recorded on an IBM-compatible computer with a sampling frequency of 100 Hz. Normal breathing was used for the first 3 recordings, and breathing was paced to a metronome for the final 3 recordings at 12 breaths/min. Fourier analysis was performed on the beat-by-beat fluctuations of the ECG-determined R-R interval and systolic arterial pressure (SBP). Low-frequency fluctuations (LF; 0.04-0.15 Hz) reflected sympathetic activity, whereas high-frequency fluctuations (HF; 0.15-0.4 Hz) represented parasympathetic activity. Sympathovagal indices were determined from the ratio of the two bandwidths (LF/HF). The coefficient of variation (CV%) for autonomic parameters was calculated ([average/SD] x 100%) to compare breathing normally and breathing to a metronome with respect to variability. One-way analysis of variance was used to detect differences. A value of P < 0.05 was considered statistically significant; all results are presented as average +/- SD. Three male and 5 female normotensive subjects were studied. Metronome breathing did not produce any significant changes in blood pressure for the left and right radial arteries, heart rate, or pressure pulse transmission time. Breathing to a metronome increased ECG-HF power (0.25 +/- 0.07 vs 0.35 +/- 0.09, P < 0.04), decreased ECG-LF/HF (1.08 +/- 0.55 vs 0.57 +/- 0.35, P < 0.05), and reduced the CV% for ECG-LF (47.6% +/- 23.4% vs 23.8% +/- 14.6%, P < 0.03), ECG-HF (46.2% +/- 14.2% vs 25.8% +/- 17.0%, P < 0.03) and ECG-LF/HF (50.1% +/- 27.6% vs 23.4% +/- 12.3%, P < 0.03) in comparison with normal breathing. Metronome breathing increased the left and right radial artery SBP-HF fluctuations (left, 0.11 +/- 0.05 vs 0.30 +/- 0.16, P < 0.007; right, 0.09 +/- 0.05 vs 0.27 +/- 0.15, P < 0.008) and decreased the SBP-LF/HF components (left, 3.42 +/- 2.36 vs 1.14 +/- 0.88, P > 0.03; right, 3.08 +/- 1.77 vs 1.20 +/- 0.93, P < 0.02). Metronome breathing did not significantly alter the CV% for SBP-HF, SBP-LF, and SBP-LF/HF. Metronome breathing increased parasympathetic activity, as evidenced by augmented HF power in the ECG and SBP data. The variability (CV%) of ECG-determined ANS measurements was significantly reduced with paced breathing at 12 breaths/min, but no significant reductions were observed for the SBP-determined ANS measurements. These findings indicate that ECG data are more sensitive than SBP data for future clinical trials.
O'Donnell, Daniel; Mancera, Mike; Savory, Eric; Christopher, Shawn; Schaffer, Jason; Roumpf, Steve
2015-01-01
Early and accurate identification of ST-elevation myocardial infarction (STEMI) by prehospital providers has been shown to significantly improve door to balloon times and improve patient outcomes. Previous studies have shown that paramedic accuracy in reading 12 lead ECGs can range from 86% to 94%. However, recent studies have demonstrated that accuracy diminishes for the more uncommon STEMI presentations (e.g. lateral). Unlike hospital physicians, paramedics rarely have the ability to review previous ECGs for comparison. Whether or not a prior ECG can improve paramedic accuracy is not known. The availability of prior ECGs improves paramedic accuracy in ECG interpretation. 130 paramedics were given a single clinical scenario. Then they were randomly assigned 12 computerized prehospital ECGs, 6 with and 6 without an accompanying prior ECG. All ECGs were obtained from a local STEMI registry. For each ECG paramedics were asked to determine whether or not there was a STEMI and to rate their confidence in their interpretation. To determine if the old ECGs improved accuracy we used a mixed effects logistic regression model to calculate p-values between the control and intervention. The addition of a previous ECG improved the accuracy of identifying STEMIs from 75.5% to 80.5% (p=0.015). A previous ECG also increased paramedic confidence in their interpretation (p=0.011). The availability of previous ECGs improves paramedic accuracy and enhances their confidence in interpreting STEMIs. Further studies are needed to evaluate this impact in a clinical setting. Copyright © 2015 Elsevier Inc. All rights reserved.
O'Neal, Wesley T; Lee, Kristine E; Soliman, Elsayed Z; Klein, Ronald; Klein, Barbara E K
2017-03-01
To determine the incidence and determinants of developing abnormalities on the 12-lead electrocardiogram (ECG) in persons with type 1 diabetes. We evaluated the distribution of ECG abnormalities and risk factors for developing new abnormalities in 266 (mean age = 44 years ± 9.0; 50 % female) people with type 1 diabetes from the Wisconsin Epidemiologic Study of Diabetic Retinopathy. This analysis included participants with complete ECG data from study visit 5 (2000-2001) and follow-up ECGs from study visit 7 (2012-2014). ECG abnormalities were classified as major and minor according to Minnesota Code Classification. At baseline, 94 (35 %) participants had at least one ECG abnormality, including 13 major ECG abnormalities. At follow-up, 117 (44 %) participants developed at least one new ECG abnormality, including 35 new major ECG abnormalities. In a multivariable logistic regression model, older age (per 5-year increase: OR = 1.31, 95 % CI = 1.08, 1.60) was associated with the development of at least one new ECG abnormality, while serum HDL cholesterol (per 10-unit increase: OR = 0.98, 95 % CI = 0.96, 1.00) was protective against developing new ECG abnormalities. The development of new ECG abnormalities is common in type 1 diabetes. Older age and HDL cholesterol are independent risk factors for developing new ECG abnormalities. Further research is needed to determine whether routine ECG screening is indicated in people with type 1 diabetes to identify those with underlying subclinical coronary heart disease.
Iribarren, Carlos; Round, Alfred D; Lu, Meng; Okin, Peter M; McNulty, Edward J
2017-10-05
ECG left ventricular hypertrophy (LVH) is a well-known predictor of cardiovascular disease. However, no prior study has characterized patterns of presence/absence of ECG LVH ("ECG LVH trajectories") across the adult lifespan in both sexes and across ethnicities. We examined: (1) correlates of ECG LVH trajectories; (2) the association of ECG LVH trajectories with incident coronary heart disease, transient ischemic attack, ischemic stroke, hemorrhagic stroke, and heart failure; and (3) reclassification of cardiovascular disease risk using ECG LVH trajectories. We performed a cohort study among 75 412 men and 107 954 women in the Northern California Kaiser Permanente Medical Care Program who had available longitudinal exposures of ECG LVH and covariates, followed for a median of 4.8 (range <1-9.3) years. ECG LVH was measured by Cornell voltage-duration product. Adverse trajectories of ECG LVH (persistent, new development, or variable pattern) were more common among blacks and Native American men and were independently related to incident cardiovascular disease with hazard ratios ranging from 1.2 for ECG LVH variable pattern and transient ischemic attack in women to 2.8 for persistent ECG LVH and heart failure in men. ECG LVH trajectories reclassified 4% and 7% of men and women with intermediate coronary heart disease risk, respectively. ECG LVH trajectories were significant indicators of coronary heart disease, stroke, and heart failure risk, independently of level and change in cardiovascular disease risk factors, and may have clinical utility. © 2017 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.
Ker, James
2012-07-12
During the past century the electrocardiogram (ECG) has established itself as an integral part of the cardiovascular examination. Since the first direct recordings of cardiac potentials by Waller in 1887, to the invention of the string galvanometer by Willem Einthoven in 1901, to use in the clinic by 1910, the electrocardiogram has become the most widely used clinical tool in the diagnosis of virtually every type of heart disease. Currently up to 20 million ECGs are performed annually in the United States alone. However, in this era of readily available echocardiography, an important caveat in the interpretation of the electrocardiogram has emerged: variants of intracardiac structures which might mimic disease on the ECG. In this perspective various structural variants of intracardiac structures, specifically variants of papillary muscles and subaortic muscular bands, will be shown, together with their associated electrocardiographic changes, mimicking disease. It is concluded that in this era of readily available echocardiography, the electrocardiogram should be interpreted echocardiographically in instances where intricate variations are seen on the surface electrocardiogram. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
A remote access ecg monitoring system - biomed 2009.
Ogawa, Hidekuni; Yonezawa, Yoshiharu; Maki, Hiromichi; Iwamoto, Junichi; Hahn, Allen W; Caldwell, W Morton
2009-01-01
We have developed a remotely accessible telemedicine system for monitoring a patient's electrocardiogram (ECG). The system consists of an ECG recorder mounted on chest electrodes and a physician's laptop personal computer. This ECG recorder is designed with a variable gain instrumentation amplifier; a low power 8-bit single-chip microcomputer; two 128KB EEPROMs and 2.4 GHz low transmit power mobile telephone. When the physician wants to monitor the patient's ECG, he/she calls directly from the laptop PC to the ECG recorder's phone and the recorder sends the ECG to the computer. The electrode-mounted recorder continuously samples the ECG. Additionally, when the patient feels a heart discomfort, he/she pushes a data transmission switch on the recorder and the recorder sends the recorded ECG waveforms of the two prior minutes, and for two minutes after the switch is pressed. The physician can display and monitor the data on the computer's liquid crystal display.
Zhu, Bohui; Ding, Yongsheng; Hao, Kuangrong
2013-01-01
This paper presents a novel maximum margin clustering method with immune evolution (IEMMC) for automatic diagnosis of electrocardiogram (ECG) arrhythmias. This diagnostic system consists of signal processing, feature extraction, and the IEMMC algorithm for clustering of ECG arrhythmias. First, raw ECG signal is processed by an adaptive ECG filter based on wavelet transforms, and waveform of the ECG signal is detected; then, features are extracted from ECG signal to cluster different types of arrhythmias by the IEMMC algorithm. Three types of performance evaluation indicators are used to assess the effect of the IEMMC method for ECG arrhythmias, such as sensitivity, specificity, and accuracy. Compared with K-means and iterSVR algorithms, the IEMMC algorithm reflects better performance not only in clustering result but also in terms of global search ability and convergence ability, which proves its effectiveness for the detection of ECG arrhythmias. PMID:23690875
Kwonjoon Lee; Kiseok Song; Taehwan Roh; Hoi-Jun Yoo
2016-08-01
The wrist patch-type ECG/APW sensor system is proposed for continuous and comprehensive monitoring of the patient's cardiovascular system. The wrist patch-type ECG/APW sensor system is consists of ECG/APW sensor, ECG/APW electrodes, and base station for real-time monitoring of the patient's status. The ECG/APW sensor and electrodes are composed of wrist patch, bandage-type ECG electrode and fabric APW electrode, respectively so that the patient's cardiovascular system can be continuously monitored in daily life with free hand-movement. Since the proposed wrist patchtype ECG/APW sensor simultaneously measures ECG/APW, the cardiac indicators, such as HR and PAT, can be extracted for comprehensive and accurate monitoring of the patient's cardiovascular system. The proposed wrist patch-type ECG/APW sensor system is successfully verified using the commercial PPG sensor (RP520) and demonstrated with the customized Android application on the smart phone.
Kim, Hanvit; Minh Phuong Nguyen; Se Young Chun
2017-07-01
Biometrics such as ECG provides a convenient and powerful security tool to verify or identify an individual. However, one important drawback of biometrics is that it is irrevocable. In other words, biometrics cannot be re-used practically once it is compromised. Cancelable biometrics has been investigated to overcome this drawback. In this paper, we propose a cancelable ECG biometrics by deriving a generalized likelihood ratio test (GLRT) detector from a composite hypothesis testing in randomly projected domain. Since it is common to observe performance degradation for cancelable biometrics, we also propose a guided filtering (GF) with irreversible guide signal that is a non-invertibly transformed signal of ECG authentication template. We evaluated our proposed method using ECG-ID database with 89 subjects. Conventional Euclidean detector with original ECG template yielded 93.9% PD1 (detection probability at 1% FAR) while Euclidean detector with 10% compressed ECG (1/10 of the original data size) yielded 90.8% PD1. Our proposed GLRT detector with 10% compressed ECG yielded 91.4%, which is better than Euclidean with the same compressed ECG. GF with our proposed irreversible ECG template further improved the performance of our GLRT with 10% compressed ECG up to 94.3%, which is higher than Euclidean detector with original ECG. Lastly, we showed that our proposed cancelable ECG biometrics practically met cancelable biometrics criteria such as efficiency, re-usability, diversity and non-invertibility.
Sufi, Fahim; Khalil, Ibrahim
2009-04-01
With cardiovascular disease as the number one killer of modern era, Electrocardiogram (ECG) is collected, stored and transmitted in greater frequency than ever before. However, in reality, ECG is rarely transmitted and stored in a secured manner. Recent research shows that eavesdropper can reveal the identity and cardiovascular condition from an intercepted ECG. Therefore, ECG data must be anonymized before transmission over the network and also stored as such in medical repositories. To achieve this, first of all, this paper presents a new ECG feature detection mechanism, which was compared against existing cross correlation (CC) based template matching algorithms. Two types of CC methods were used for comparison. Compared to the CC based approaches, which had 40% and 53% misclassification rates, the proposed detection algorithm did not perform any single misclassification. Secondly, a new ECG obfuscation method was designed and implemented on 15 subjects using added noises corresponding to each of the ECG features. This obfuscated ECG can be freely distributed over the internet without the necessity of encryption, since the original features needed to identify personal information of the patient remain concealed. Only authorized personnel possessing a secret key will be able to reconstruct the original ECG from the obfuscated ECG. Distribution of the would appear as regular ECG without encryption. Therefore, traditional decryption techniques including powerful brute force attack are useless against this obfuscation.
Cheng, Yih-Chun; Tsai, Pei-Yun; Huang, Ming-Hao
2016-05-19
Low-complexity compressed sensing (CS) techniques for monitoring electrocardiogram (ECG) signals in wireless body sensor network (WBSN) are presented. The prior probability of ECG sparsity in the wavelet domain is first exploited. Then, variable orthogonal multi-matching pursuit (vOMMP) algorithm that consists of two phases is proposed. In the first phase, orthogonal matching pursuit (OMP) algorithm is adopted to effectively augment the support set with reliable indices and in the second phase, the orthogonal multi-matching pursuit (OMMP) is employed to rescue the missing indices. The reconstruction performance is thus enhanced with the prior information and the vOMMP algorithm. Furthermore, the computation-intensive pseudo-inverse operation is simplified by the matrix-inversion-free (MIF) technique based on QR decomposition. The vOMMP-MIF CS decoder is then implemented in 90 nm CMOS technology. The QR decomposition is accomplished by two systolic arrays working in parallel. The implementation supports three settings for obtaining 40, 44, and 48 coefficients in the sparse vector. From the measurement result, the power consumption is 11.7 mW at 0.9 V and 12 MHz. Compared to prior chip implementations, our design shows good hardware efficiency and is suitable for low-energy applications.
Doppler radar sensing of fish physiological motion
NASA Astrophysics Data System (ADS)
Hafner, Noah
The monitoring vital of signs for fish is critical for advancing the study of trophic and energetic strategies, distributions and behavior, environmental impact, and aquaculture approaches. Presented here is a new approach for monitoring fish metabolic state without the trauma and stress associated with capture, surgical ECG, or other implanted sensing systems. Original research contributions include analysis for radar operation under water, development of radar systems for aquatic operation, and application of these systems to non invasively sense the heart and gill motion of fish. Tilapia and Sturgeon were studied to test the efficacy across varied fish body shapes and sizes, ranging from 0.1 to 1.3m in snout to tail length. Monitoring experiments were conducted with eleven tilapia and three sturgeons to assess activity level participated in these experiments, the results from which include activity level monitoring (tilapia: still or fidgeting 94% of time observed), ventilation rate (tilapia: 42 bpm, sturgeon: 145 bpm), and heart rate (tilapia: 41 bpm, sturgeon: 35 bpm). Bland-Altman analysis of radar and ECG measured heart rate indicate agreement between the two measurement techniques and the suitability of radar as an alternative to ECG. The initial steps for developing a system for practical application is also presented including designs for radar system miniaturization and discussion on further characterization steps with less constrained environments.
An innovative nonintrusive driver assistance system for vital signal monitoring.
Sun, Ye; Yu, Xiong Bill
2014-11-01
This paper describes an in-vehicle nonintrusive biopotential measurement system for driver health monitoring and fatigue detection. Previous research has found that the physiological signals including eye features, electrocardiography (ECG), electroencephalography (EEG) and their secondary parameters such as heart rate and HR variability are good indicators of health state as well as driver fatigue. A conventional biopotential measurement system requires the electrodes to be in contact with human body. This not only interferes with the driver operation, but also is not feasible for long-term monitoring purpose. The driver assistance system in this paper can remotely detect the biopotential signals with no physical contact with human skin. With delicate sensor and electronic design, ECG, EEG, and eye blinking can be measured. Experiments were conducted on a high fidelity driving simulator to validate the system performance. The system was found to be able to detect the ECG/EEG signals through cloth or hair with no contact with skin. Eye blinking activities can also be detected at a distance of 10 cm. Digital signal processing algorithms were developed to decimate the signal noise and extract the physiological features. The extracted features from the vital signals were further analyzed to assess the potential criterion for alertness and drowsiness determination.
Demonstration of a fully differential VGA chip with small THD for ECG acquisition system
NASA Astrophysics Data System (ADS)
Gongli, Xiao; Yuliang, Qin; Weilin, Xu; Baolin, Wei; Jihai, Duan; Xueming, Wei
2015-10-01
We present both a theoretical and experimental demonstration of a fully differential variable gain amplifier (VGA) with small total harmonic distortion (THD) for an electrocardiogram (ECG) acquisition system. Capacitive feedback technology is adopted to reduce the nonlinearity of VGA. The fully differential VGA has been fabricated in SMIC 0.18-μm CMOS process, and it only occupies 0.11 mm2. The measurements are in good agreement with simulation results. Experimental results show that the gain of VGA changes from 6.17 to 43.75 dB with a gain step of 3 dB. The high-pass corner frequency and low-pass corner frequency are around 0.22 Hz and 7.9 kHz, respectively. For each gain configuration, a maximal THD of 0.13% is obtained. The fully differential VGA has a low THD and its key performance parameters are well satisfied with the demands of ECG acquisition system application in the UWB wireless body area network. Project supported by the National Natural Science Foundation of China (Nos. 61264001, 61465004, 61161003, 61166004), the Guangxi Natural Science Foundation (Nos. 2013GXNSFAA019333, 2013GXNSFAA019338), the Science and Technology Research Key Project of Guangxi Department of Education (No. 2013ZD026), and the Innovation Project of GUET Graduate Education (No. GDYCSZ201457).
Explicitly-correlated Gaussian geminals in electronic structure calculations
NASA Astrophysics Data System (ADS)
Szalewicz, Krzysztof; Jeziorski, Bogumił
2010-11-01
Explicitly correlated functions have been used since 1929, but initially only for two-electron systems. In 1960, Boys and Singer showed that if the correlating factor is of Gaussian form, many-electron integrals can be computed for general molecules. The capability of explicitly correlated Gaussian (ECG) functions to accurately describe many-electron atoms and molecules was demonstrated only in the early 1980s when Monkhorst, Zabolitzky and the present authors cast the many-body perturbation theory (MBPT) and coupled cluster (CC) equations as a system of integro-differential equations and developed techniques of solving these equations with two-electron ECG functions (Gaussian-type geminals, GTG). This work brought a new accuracy standard to MBPT/CC calculations. In 1985, Kutzelnigg suggested that the linear r 12 correlating factor can also be employed if n-electron integrals, n > 2, are factorised with the resolution of identity. Later, this factor was replaced by more general functions f (r 12), most often by ? , usually represented as linear combinations of Gaussian functions which makes the resulting approach (called F12) a special case of the original GTG expansion. The current state-of-art is that, for few-electron molecules, ECGs provide more accurate results than any other basis available, but for larger systems the F12 approach is the method of choice, giving significant improvements over orbital calculations.
Arrhythmia Classification Based on Multi-Domain Feature Extraction for an ECG Recognition System.
Li, Hongqiang; Yuan, Danyang; Wang, Youxi; Cui, Dianyin; Cao, Lu
2016-10-20
Automatic recognition of arrhythmias is particularly important in the diagnosis of heart diseases. This study presents an electrocardiogram (ECG) recognition system based on multi-domain feature extraction to classify ECG beats. An improved wavelet threshold method for ECG signal pre-processing is applied to remove noise interference. A novel multi-domain feature extraction method is proposed; this method employs kernel-independent component analysis in nonlinear feature extraction and uses discrete wavelet transform to extract frequency domain features. The proposed system utilises a support vector machine classifier optimized with a genetic algorithm to recognize different types of heartbeats. An ECG acquisition experimental platform, in which ECG beats are collected as ECG data for classification, is constructed to demonstrate the effectiveness of the system in ECG beat classification. The presented system, when applied to the MIT-BIH arrhythmia database, achieves a high classification accuracy of 98.8%. Experimental results based on the ECG acquisition experimental platform show that the system obtains a satisfactory classification accuracy of 97.3% and is able to classify ECG beats efficiently for the automatic identification of cardiac arrhythmias.
Lee, Kwang Jin; Lee, Boreom
2016-01-01
Fetal heart rate (FHR) is an important determinant of fetal health. Cardiotocography (CTG) is widely used for measuring the FHR in the clinical field. However, fetal movement and blood flow through the maternal blood vessels can critically influence Doppler ultrasound signals. Moreover, CTG is not suitable for long-term monitoring. Therefore, researchers have been developing algorithms to estimate the FHR using electrocardiograms (ECGs) from the abdomen of pregnant women. However, separating the weak fetal ECG signal from the abdominal ECG signal is a challenging problem. In this paper, we propose a method for estimating the FHR using sequential total variation denoising and compare its performance with that of other single-channel fetal ECG extraction methods via simulation using the Fetal ECG Synthetic Database (FECGSYNDB). Moreover, we used real data from PhysioNet fetal ECG databases for the evaluation of the algorithm performance. The R-peak detection rate is calculated to evaluate the performance of our algorithm. Our approach could not only separate the fetal ECG signals from the abdominal ECG signals but also accurately estimate the FHR. PMID:27376296
Arrhythmia Classification Based on Multi-Domain Feature Extraction for an ECG Recognition System
Li, Hongqiang; Yuan, Danyang; Wang, Youxi; Cui, Dianyin; Cao, Lu
2016-01-01
Automatic recognition of arrhythmias is particularly important in the diagnosis of heart diseases. This study presents an electrocardiogram (ECG) recognition system based on multi-domain feature extraction to classify ECG beats. An improved wavelet threshold method for ECG signal pre-processing is applied to remove noise interference. A novel multi-domain feature extraction method is proposed; this method employs kernel-independent component analysis in nonlinear feature extraction and uses discrete wavelet transform to extract frequency domain features. The proposed system utilises a support vector machine classifier optimized with a genetic algorithm to recognize different types of heartbeats. An ECG acquisition experimental platform, in which ECG beats are collected as ECG data for classification, is constructed to demonstrate the effectiveness of the system in ECG beat classification. The presented system, when applied to the MIT-BIH arrhythmia database, achieves a high classification accuracy of 98.8%. Experimental results based on the ECG acquisition experimental platform show that the system obtains a satisfactory classification accuracy of 97.3% and is able to classify ECG beats efficiently for the automatic identification of cardiac arrhythmias. PMID:27775596
Lee, Kwang Jin; Lee, Boreom
2016-07-01
Fetal heart rate (FHR) is an important determinant of fetal health. Cardiotocography (CTG) is widely used for measuring the FHR in the clinical field. However, fetal movement and blood flow through the maternal blood vessels can critically influence Doppler ultrasound signals. Moreover, CTG is not suitable for long-term monitoring. Therefore, researchers have been developing algorithms to estimate the FHR using electrocardiograms (ECGs) from the abdomen of pregnant women. However, separating the weak fetal ECG signal from the abdominal ECG signal is a challenging problem. In this paper, we propose a method for estimating the FHR using sequential total variation denoising and compare its performance with that of other single-channel fetal ECG extraction methods via simulation using the Fetal ECG Synthetic Database (FECGSYNDB). Moreover, we used real data from PhysioNet fetal ECG databases for the evaluation of the algorithm performance. The R-peak detection rate is calculated to evaluate the performance of our algorithm. Our approach could not only separate the fetal ECG signals from the abdominal ECG signals but also accurately estimate the FHR.
A 300-mV 220-nW event-driven ADC with real-time QRS detection for wearable ECG sensors.
Zhang, Xiaoyang; Lian, Yong
2014-12-01
This paper presents an ultra-low-power event-driven analog-to-digital converter (ADC) with real-time QRS detection for wearable electrocardiogram (ECG) sensors in wireless body sensor network (WBSN) applications. Two QRS detection algorithms, pulse-triggered (PUT) and time-assisted PUT (t-PUT), are proposed based on the level-crossing events generated from the ADC. The PUT detector achieves 97.63% sensitivity and 97.33% positive prediction in simulation on the MIT-BIH Arrhythmia Database. The t-PUT improves the sensitivity and positive prediction to 97.76% and 98.59% respectively. Fabricated in 0.13 μm CMOS technology, the ADC with QRS detector consumes only 220 nW measured under 300 mV power supply, making it the first nanoWatt compact analog-to-information (A2I) converter with embedded QRS detector.
Tague, Lauren; Wiggs, Justin; Li, Qianxi; McCarter, Robert; Sherwin, Elizabeth; Weinberg, Jacqueline; Sable, Craig
2018-05-17
Left ventricular hypertrophy (LVH) is a common finding on pediatric electrocardiography (ECG) leading to many referrals for echocardiography (echo). This study utilizes a novel analytics tool that combines ECG and echo databases to evaluate ECG as a screening tool for LVH. SQL Server 2012 data warehouse incorporated ECG and echo databases for all patients from a single institution from 2006 to 2016. Customized queries identified patients 0-18 years old with LVH on ECG and an echo performed within 24 h. Using data visualization (Tableau) and analytic (Stata 14) software, ECG and echo findings were compared. Of 437,699 encounters, 4637 met inclusion criteria. ECG had high sensitivity (≥ 90%) but poor specificity (43%), and low positive predictive value (< 20%) for echo abnormalities. ECG performed only 11-22% better than chance (AROC = 0.50). 83% of subjects with LVH on ECG had normal left ventricle (LV) structure and size on echo. African-Americans with LVH were least likely to have an abnormal echo. There was a low correlation between V 6 R on ECG and echo-derived Z score of left ventricle diastolic diameter (r = 0.14) and LV mass index (r = 0.24). The data analytics client was able to mine a database of ECG and echo reports, comparing LVH by ECG and LV measurements and qualitative findings by echo, identifying an abnormal LV by echo in only 17% of cases with LVH on ECG. This novel tool is useful for rapid data mining for both clinical and research endeavors.
Resting ECG findings in elite football players.
Bohm, Philipp; Ditzel, Roman; Ditzel, Heribert; Urhausen, Axel; Meyer, Tim
2013-01-01
The purpose of the study was to evaluate ECG abnormalities in a large sample of elite football players. Data from 566 elite male football players (57 of them of African origin) above 16 years of age were screened retrospectively (age: 20.9 ± 5.3 years; BMI: 22.9 ± 1.7 kg · m(-2), training history: 13.8 ± 4.7 years). The resting ECGs were analysed and classified according to the most current ECG categorisation of the European Society of Cardiology (ESC) (2010) and a classification of Pelliccia et al. (2000) in order to assess the impact of the new ESC-approach. According to the classification of Pelliccia, 52.5% showed mildly abnormal ECG patterns and 12% were classified as distinctly abnormal ECG patterns. According to the classification of the ESC, 33.7% showed 'uncommon ECG patterns'. Short-QT interval was the most frequent ECG pattern in this group (41.9%), followed by a shortened PR-interval (19.9%). When assessed with a QTc cut-off-point of 340 ms (instead of 360 ms), only 22.2% would have had 'uncommon ECG patterns'. Resting ECG changes amongst elite football players are common. Adjustment of the ESC criteria by adapting proposed time limits for the ECG (e.g. QTc, PR) should further reduce the rate of false-positive results.
Extended Kalman smoother with differential evolution technique for denoising of ECG signal.
Panigrahy, D; Sahu, P K
2016-09-01
Electrocardiogram (ECG) signal gives a lot of information on the physiology of heart. In reality, noise from various sources interfere with the ECG signal. To get the correct information on physiology of the heart, noise cancellation of the ECG signal is required. In this paper, the effectiveness of extended Kalman smoother (EKS) with the differential evolution (DE) technique for noise cancellation of the ECG signal is investigated. DE is used as an automatic parameter selection method for the selection of ten optimized components of the ECG signal, and those are used to create the ECG signal according to the real ECG signal. These parameters are used by the EKS for the development of the state equation and also for initialization of the parameters of EKS. EKS framework is used for denoising the ECG signal from the single channel. The effectiveness of proposed noise cancellation technique has been evaluated by adding white, colored Gaussian noise and real muscle artifact noise at different SNR to some visually clean ECG signals from the MIT-BIH arrhythmia database. The proposed noise cancellation technique of ECG signal shows better signal to noise ratio (SNR) improvement, lesser mean square error (MSE) and percent of distortion (PRD) compared to other well-known methods.
Advanced Electrocardiography Can Identify Occult Cardiomyopathy in Doberman Pinschers
NASA Technical Reports Server (NTRS)
Spiljak, M.; Petric, A. Domanjko; Wilberg, M.; Olsen, L. H.; Stepancic, A.; Schlegel, T. T.; Starc, V.
2011-01-01
Recently, multiple advanced resting electrocardiographic (A-ECG) techniques have improved the diagnostic value of short-duration ECG in detection of dilated cardiomyopathy (DCM) in humans. This study investigated whether 12-lead A-ECG recordings could accurately identify the occult phase of DCM in dogs. Short-duration (3-5 min) high-fidelity 12-lead ECG recordings were obtained from 31 privately-owned, clinically healthy Doberman Pinschers (5.4 +/- 1.7 years, 11/20 males/females). Dogs were divided into 2 groups: 1) 19 healthy dogs with normal echocardiographic M-mode measurements: left ventricular internal diameter in diastole (LVIDd . 47mm) and in systole (LVIDs . 38mm) and normal 24-hour ECG recordings (<50 ventricular premature complexes, VPCs); and 2) 12 dogs with occult DCM: 11/12 dogs had increased M-mode measurements (LVIDd . 49mm and/or LVIDs . 40mm) and 5/11 dogs had also >100 VPCs/24h; 1/12 dogs had only abnormal 24-hour ECG recordings (>100 VPCs/24h). ECG recordings were evaluated via custom software programs to calculate multiple parameters of high-frequency (HF) QRS ECG, heart rate variability, QT variability, waveform complexity and 3-D ECG. Student's t-tests determined 19 ECG parameters that were significantly different (P < 0.05) between groups. Principal component factor analysis identified a 5-factor model with 81.4% explained variance. QRS dipolar and non-dipolar voltages, Cornell voltage criteria and QRS waveform residuum were increased significantly (P < 0.05), whereas mean HF QRS amplitude was decreased significantly (P < 0.05) in dogs with occult DCM. For the 5 selected parameters the prediction of occult DCM was performed using a binary logistic regression model with Chi-square tested significance (P < 0.01). ROC analyses showed that the five selected ECG parameters could identify occult ECG with sensitivity 89% and specificity 83%. Results suggest that 12-lead A-ECG might improve diagnostic value of short-duration ECG in earlier detection of canine DCM as five selected ECG parameters can with reasonable accuracy identify occult DCM in Doberman Pinschers. Future extensive clinical studies need to clarify if 12-lead A-ECG could be useful as an additional screening test for canine DCM.
Omura, Yoshiaki; Lu, Dominic; Jones, Marilyn K; Nihrane, Abdallah; Duvvi, Harsha; Yapor, Dario; Shimotsuura, Yasuhiro; Ohki, Motomu
2015-01-01
Lyme disease is found in a majority of people we tested. Once Borrelia Burgdorferi (B.B.) spirochete enters human body, it not only causes pain by infecting joints, but it also often enters the brain and the heart. Infection of brain can be quickly detected from the pupil and infection of the heart by ECGs non-invasively. By evaluating recorded ECGs of atrial fibrillation (AF), using U.S. patented non-invasive highly sensitive electromagnetic field (EMF) resonance phenomenon between 2 identical molecules or between a molecule and its antibody, we examined 25 different AF patients' ECGs and found the majority of them suffer from various degrees of B.B. spirochete infection in SA node areas, also in the right & left atria, and pulmonary vein near and around its junction at left atrium & lesser degrees of infection at the AV node & His Bundle. When B.B. infection reaches over 224-600ng or higher at these areas, AF often appears in the majority of all AF analyzed. In order to develop AF, the 4 abnormal factors must be present simultaneously: 1) B.B. infection must be increased to 224-600ng or higher, 2) Atrial Natriuretic Peptide (ANP) must be markedly reduced from normal value of less than 4ng to over 100-400ng, 3) A significant increase of Cardiac Troponin I from normal value of less than 3ng to over 12ng and 4) Taurine must also be markedly reduced from normal value of 4-6ng to 0.25ng. These 4 changes were mainly found only at infected sites of the SA node area, both atria and between the end of the T wave & the beginning of the SA node area, which corresponds to U waves at recorded ECG. Origin of the U wave is mainly due to abnormal electrical potential of pulmonary vein at L-atrium. If all 4 factors do not occur at the infection site, no AF will develop. In seemingly normal ECGs, if using this method, one can detect invisible B.B. infection in early stages. Long before AF appears, AF can be prevented by improved treatment with Amoxicillin 500ng 3 times/day + Taurine 175mg x 3 times/day, with or without EPA 180 mg & DHA 120 mg, to avoid serious current limitations in the use of Doxycycline 100 mg 2 times/day, for 4 weeks.
Empirical mode decomposition of the ECG signal for noise removal
NASA Astrophysics Data System (ADS)
Khan, Jesmin; Bhuiyan, Sharif; Murphy, Gregory; Alam, Mohammad
2011-04-01
Electrocardiography is a diagnostic procedure for the detection and diagnosis of heart abnormalities. The electrocardiogram (ECG) signal contains important information that is utilized by physicians for the diagnosis and analysis of heart diseases. So good quality ECG signal plays a vital role for the interpretation and identification of pathological, anatomical and physiological aspects of the whole cardiac muscle. However, the ECG signals are corrupted by noise which severely limit the utility of the recorded ECG signal for medical evaluation. The most common noise presents in the ECG signal is the high frequency noise caused by the forces acting on the electrodes. In this paper, we propose a new ECG denoising method based on the empirical mode decomposition (EMD). The proposed method is able to enhance the ECG signal upon removing the noise with minimum signal distortion. Simulation is done on the MIT-BIH database to verify the efficacy of the proposed algorithm. Experiments show that the presented method offers very good results to remove noise from the ECG signal.
Liang, Lijun; Hu, Yao; Liu, Hao; Li, Xiaojiu; Li, Jin; He, Yin
2017-04-01
In order to reduce the mortality rate of cardiovascular disease patients effectively, improve the electrocardiogram (ECG) accuracy of signal acquisition, and reduce the influence of motion artifacts caused by the electrodes in inappropriate location in the clothing for ECG measurement, we in this article present a research on the optimum place of ECG electrodes in male clothing using three-lead monitoring methods. In the 3-lead ECG monitoring clothing for men we selected test points. Comparing the ECG and power spectrum analysis of the acquired ECG signal quality of each group of points, we determined the best location of ECG electrodes in the male monitoring clothing. The electrode motion artifacts caused by improper location had been significantly improved when electrodes were put in the best position of the clothing for men. The position of electrodes is crucial for ECG monitoring clothing. The stability of the acquired ECG signal could be improved significantly when electrodes are put at optimal locations.
Artifacts and noise removal in electrocardiograms using independent component analysis.
Chawla, M P S; Verma, H K; Kumar, Vinod
2008-09-26
Independent component analysis (ICA) is a novel technique capable of separating independent components from electrocardiogram (ECG) complex signals. The purpose of this analysis is to evaluate the effectiveness of ICA in removing artifacts and noise from ECG recordings. ICA is applied to remove artifacts and noise in ECG segments of either an individual ECG CSE data base file or all files. The reconstructed ECGs are compared with the original ECG signal. For the four special cases discussed, the R-Peak magnitudes of the CSE data base ECG waveforms before and after applying ICA are also found. In the results, it is shown that in most of the cases, the percentage error in reconstruction is very small. The results show that there is a significant improvement in signal quality, i.e. SNR. All the ECG recording cases dealt showed an improved ECG appearance after the use of ICA. This establishes the efficacy of ICA in elimination of noise and artifacts in electrocardiograms.
Challenges of ECG monitoring and ECG interpretation in dialysis units.
Poulikakos, Dimitrios; Malik, Marek
Patients on hemodialysis (HD) suffer from high cardiovascular morbidity and mortality due to high rates of coronary artery disease and arrhythmias. Electrocardiography (ECG) is often performed in the dialysis units as part of routine clinical assessment. However, fluid and electrolyte changes have been shown to affect all ECG morphologies and intervals. ECG interpretation thus depends on the time of the recording in relation to the HD session. In addition, arrhythmias during HD are common, and dialysis-related ECG artifacts mimicking arrhythmias have been reported. Studies using advanced ECG analyses have examined the impact of the HD procedure on selected repolarization descriptors and heart rate variability indices. Despite the challenges related to the impact of the fluctuant fluid and electrolyte status on conventional and advanced ECG parameters, further research in ECG monitoring during dialysis has the potential to provide clinically meaningful and practically useful information for diagnostic and risk stratification purposes. Crown Copyright © 2016. Published by Elsevier Inc. All rights reserved.
Fernlund, E; Liuba, P; Carlson, J; Platonov, P G; Schlegel, T T
2016-01-01
The conventional ECG is commonly used to screen for hypertrophic cardiomyopathy (HCM), but up to 25% of adults and possibly larger percentages of children with HCM have no distinctive abnormalities on the conventional ECG, whereas 5 to 15% of healthy young athletes do. Recently, a 5-min resting advanced 12-lead ECG test ("A-ECG score") showed superiority to pooled criteria from the strictly conventional ECG in correctly identifying adult HCM. The purpose of this study was to evaluate whether in children and young adults, A-ECG scoring could detect echocardiographic HCM associated with the MYBPC3 genetic mutation with greater sensitivity than conventional ECG criteria and distinguish healthy young controls and athletes from persons with MYBPC3 HCM with greater specificity. Five-minute 12-lead ECGs were obtained from 15 young patients (mean age 13.2years, range 0-30years) with MYBPC3 mutation and phenotypic HCM. The conventional and A-ECG results of these patients were compared to those of 198 healthy children and young adults (mean age 13.2, range 1month-30years) with unremarkable echocardiograms, and to those of 36 young endurance-trained athletes, 20 of whom had athletic (physiologic) left ventricular hypertrophy. Compared with commonly used, age-specific pooled criteria from the conventional ECG, a retrospectively generated A-ECG score incorporating results from just 2 derived vectorcardiographic parameters (spatial QRS-T angle and the change in the vectorcardiographic QRS azimuth angle from the second to the third eighth of the QRS interval) increased the sensitivity of ECG for identifying MYBPC3 HCM from 46% to 87% (p<0.05). Use of the same score also demonstrated superior specificity in a set of 198 healthy controls (94% vs. 87% for conventional ECG criteria; p<0.01) including in a subset of 36 healthy, young endurance-trained athletes (100% vs. 69% for conventional ECG criteria, p<0.001). In children and young adults, a 2-parameter 12-lead A-ECG score is retrospectively significantly more sensitive and specific than pooled, age-specific conventional ECG criteria for detecting MYBPC3-HCM and in distinguishing such patients from healthy controls, including endurance-trained athletes. Copyright © 2016 Elsevier Inc. All rights reserved.
Monitoring cardiac motion in CT using a continuous wave radar embedded in the patient table.
Pfanner, Florian; Allmendinger, Thomas; Bohn, Birgit; Flohr, Thomas; Kachelrieß, Marc
2014-08-01
To avoid motion artifacts, medical imaging devices are often synchronized with the patient's cardiac motion. Today, the ECG is used to determine the heartbeat and therewith trigger the imaging device. However, the ECG requires additional effort to prepare the patient, e.g., mount and wire electrodes and it is not able to determine the motion of the heart. An interesting alternative to assess the cardiac motion is continuous wave radar. The aim of this work is to evaluate such a radar system focusing on measuring the cardiac motion. A radar system operating in the 860 MHz band is used. In the intended application of the radar system, the antennas are located close to the patient's body, for example, inside the table of a CT system. The radar waves propagate into the patient's body and are reflected at tissue boundaries, for example, at the borderline between muscle and adipose tissue, or at the boundaries of organs. Here, the authors focus on the detection of cardiac motion. The radar system consists of hardware as well as of dedicated signal processing software to extract the desired information from the radar signals. The radar system hardware and the signal processing algorithms were tested with data from ten volunteers. As a reference, the ECG was recorded simultaneously with the radar measurements. Additionally, ultrasound measurements are performed and compared with the motion information from the radar data. According to the authors' measurements on volunteers (test persons), the heartbeat and heart rate can be detected well using the proposed radar system. The authors were further able to extract the amplitude and phase of the heart motion itself from the radar data. This was confirmed by the ultrasound measurements. However, this motion assessment is dependent on the antenna position and it remains unclear which antenna sees the motion that is the most relevant to CT imaging. A continuous wave radar operating in the near field of the antennas can be used to determine the heartbeat and the cardiac motion of humans without special patient preparation. The authors' radar system is very close to the patient because it is embedded in the patient table, but it has no direct contact to the patient or to the patient skin (as it would be necessary to acquire the ECG of the patient). Therefore, radar motion monitoring does not require special patient preparation. In contrast to other methods used today, this is a significant improvement. The authors' radar system may allow to trigger a CT scan in dependency of the cardiac phase, without requiring an ECG, and it allows to determine quiet, and thus favorable, heart phases prior to the scan start.
The Effect of Atrial Fibrillation Ablation Techniques on P Wave Duration and P Wave Dispersion.
Furniss, Guy O; Panagopoulos, Dimitrios; Kanoun, Sadeek; Davies, Edward J; Tomlinson, David R; Haywood, Guy A
2018-02-14
A reduction in surface electrocardiogram (ECG) P wave duration and dispersion is associated with improved outcomes in atrial fibrillation ablation. We investigated the effects of different ablation strategies on P wave duration and dispersion, hypothesising that extensive left atrial (LA) ablation with left atrial posterior wall isolation would give a greater reduction in P wave duration than more limited ablation techniques. A retrospective analysis of ECGs from patients who have undergone atrial fibrillation (AF) ablation was performed and pre-procedural sinus rhythm ECGs were compared with the post procedure ECGs. Maximal P wave duration was measured in leads I or II, minimum P wave duration in any lead and values were calculated for P wave duration and dispersion. Left atrial dimensions and medications at the time of ECG were documented. Ablation strategies compared were; pulmonary vein isolation (PVI) for paroxysmal atrial fibrillation (PAF) and the persistent AF (PsAF) ablation strategies of pulmonary vein isolation plus additional linear lesions (Lines), left atrial posterior wall isolation via catheter (PWI) and left atrial posterior wall isolation via staged surgical and catheter ablation (Hybrid). Sixty-nine patients' ECGs were analysed: 19 PVI, 21 Lines, 14 PWI, 15 Hybrid. Little correlation was seen between pre-procedure left atrial size and P wave duration (r=0.24) but LA size and P wave duration was larger in PsAF patients. A significant difference was seen in P wave reduction driven by Hybrid AF ablation (p<0.005) and Lines (<0.02). There was no difference amongst P wave dispersion between groups but the largest reduction was seen in the Hybrid ablation group. P wave duration increased with duration of continuous atrial fibrillation. Hybrid AF ablation significantly reduced P wave duration and dispersion compared to other ablation strategies including posterior wall isolation via catheter despite this being the same lesion set. Copyright © 2018 Australian and New Zealand Society of Cardiac and Thoracic Surgeons (ANZSCTS) and the Cardiac Society of Australia and New Zealand (CSANZ). Published by Elsevier B.V. All rights reserved.
State of the art techniques for preservation and reuse of hard copy electrocardiograms.
Lobodzinski, Suave M; Teppner, Ulrich; Laks, Michael
2003-01-01
Baseline examinations and periodic reexaminations in longitudinal population studies, together with ongoing surveillance for morbidity and mortality, provide unique opportunities for seeking ways to enhance the value of electrocardiography (ECG) as an inexpensive and noninvasive tool for prognosis and diagnosis. We used newly developed optical ECG waveform recognition (OEWR) technique capable of extracting raw waveform data from legacy hard copy ECG recording. Hardcopy ECG recordings were scanned and processed by the OEWR algorithm. The extracted ECG datasets were formatted into a newly proposed, vendor-neutral, ECG XML data format. Oracle database was used as a repository for ECG records in XML format. The proposed technique for XML encapsulation of OEWR processed hard copy records resulted in an efficient method for inclusion of paper ECG records into research databases, thus providing their preservation, reuse and accession.
Kim, Chul-Hee; Ko, Kwan-Ho; Park, Seong-Wook; Park, Joong-Yeol; Lee, Ki-Up
2010-01-01
Background/Aims Resting electrocardiogram (ECG) abnormalities have been strongly associated with cardiovascular disease mortality. Little is known, however, about the association between individual components of metabolic syndrome and ECG abnormalities, especially in Asian populations. Methods We examined clinical and laboratory data from 31,399 subjects (age 20 to 89 years) who underwent medical check-ups. ECG abnormalities were divided into minor and major abnormalities based on Novacode criteria. Ischemic ECG findings were separately identified and analyzed. Results The overall prevalence rates of ECG abnormalities were significantly higher in subjects with than in those without metabolic syndrome (p < 0.01). Ischemic ECG was strongly associated with metabolic syndrome in all age groups of both sexes, except for younger women. In multiple logistic regression analysis, metabolic syndrome was independently associated with ischemic ECG (odds ratio, 2.30 [2.04 to 2.62]; p < 0.01), after adjusting for sex, age, smoking, and family history of cardiovascular disease. Of the metabolic syndrome components, hyperglycemia in younger subjects and hypertension in elderly subjects were major factors for ischemic ECG changes, whereas hypertriglyceridemia was not an independent risk factor in any age group. The association between ischemic ECG findings and central obesity was weaker in women than in men. Conclusions Metabolic syndrome was strongly associated with ECG abnormalities, especially ischemic ECG findings, in Koreans. The association between each component of metabolic syndrome and ECG abnormalities varied according to age and sex. PMID:20526391
Are ECG abnormalities in Noonan syndrome characteristic for the syndrome?
Raaijmakers, R; Noordam, C; Noonan, J A; Croonen, E A; van der Burgt, C J A M; Draaisma, J M T
2008-12-01
Of all patients with Noonan syndrome, 50-90% have one or more congenital heart defects. The most frequent occurring are pulmonary stenosis (PS) and hypertrophic cardiomyopathy. The electrocardiogram (ECG) of a patient with Noonan syndrome often shows a characteristic pattern, with a left axis deviation, abnormal R/S ratio over the left precordium, and an abnormal Q wave. The objective of this study was to determine if these ECG characteristics are an independent feature of the Noonan syndrome or if they are related to the congenital heart defect. A cohort study was performed with 118 patients from two university hospitals in the United States and in The Netherlands. All patients were diagnosed with definite Noonan syndrome and had had an ECG and echocardiography. Sixty-nine patients (58%) had characteristic abnormalities of the ECG. In the patient group without a cardiac defect (n = 21), ten patients had a characteristic ECG abnormality. There was no statistical relationship between the presence of a characteristic ECG abnormality and the presence of a cardiac defect (p = 0.33). Patients with hypertrophic cardiomyopathy had more ECG abnormalities in total (p = 0.05), without correlation with a specific ECG abnormality. We conclude that the ECG features in patients with Noonan syndrome are characteristic for the syndrome and are not related to a specific cardiac defect. An ECG is very useful in the diagnosis of Noonan syndrome; every child with a Noonan phenotype should have an ECG and echocardiogram for evaluation.
Methods for Improving the Diagnosis of a Brugada ECG Pattern.
Gottschalk, Byron H; Garcia-Niebla, Javier; Anselm, Daniel D; Glover, Benedict; Baranchuk, Adrian
2016-03-01
Brugada syndrome (BrS) is an inherited channelopathy that predisposes individuals to malignant arrhythmias and can lead to sudden cardiac death. The condition is characterized by two electrocardiography (ECG) patterns: the type-1 or "coved" ECG and the type-2 or "saddleback" ECG. Although the type-1 Brugada ECG pattern is diagnostic for the condition, the type-2 Brugada ECG pattern requires differential diagnosis from conditions that produce a similar morphology. In this article, we present a case that is suspicious but not diagnostic for BrS and discuss the application of ECG methodologies for increasing or decreasing suspicion for a diagnosis of BrS. © 2015 Wiley Periodicals, Inc.
Ashcroft, M. T.; Beadnell, H. M. S. G.; Bell, R.; Miller, G. J.
1970-01-01
Characteristics relevant to cardiovascular disease, including anthropometry, arterial blood pressure, serum cholesterol levels, chest radiography and electrocardiography, were investigated in a survey of 843 men and women aged 35-54 years of African and Indian origin living in 2 communities in Guyana. Clinical experience suggested a high incidence of hypertension and a low incidence of ischaemic heart disease. Africans were taller and heavier than Indians but their other characteristics were, in general, similar except that their mean blood pressure levels and R amplitudes in certain ECG leads were consistently higher. Hypertension was common and was significantly correlated with obesity and, probably independently, with body size. Serum cholesterol levels, with mean values of about 200 mg/100 ml, were strongly correlated with factors associated with obesity in men but not in women. Cardiothoracic ratios, measured from chest films, were greater than values regarded as normal for Europeans because of a relative narrowness of thoracic diameters. Prevalence of S-T-segment and T-wave defects in ECGs classified by the Minnesota Code was as high as reported from communities where ischaemic heart disease is clinically more frequent. Hypertension, cardiac enlargement, obesity and cholesteraemia were more prevalent when defects involved lateral leads (I, aVL, V5 and V6) than in subjects with normal ECGs, suggesting that the majority of important abnormalities occurred primarily in the left ventricle and were probably related to hypertension rather than to coronary insufficiency without hypertension. Analysis of S-T and T-wave defects, both by blood pressure and by lead position, might show meaningful differences between populations which, by present methods of presentation, appear to have surprisingly similar prevalences of ECG abnormalities. PMID:4246109
Sato, Shinichi; Ishida-Nakajima, Wako; Ishida, Akira; Kawamura, Masanari; Miura, Shinobu; Ono, Kyoichi; Inagaki, Nobuya; Takada, Goro; Takahashi, Tsutomu
2010-01-01
Electrocardiogram (ECG) and impedance pneumography (IPG), the most widely used techniques for cardiorespiratory monitoring in the neonatal intensive care unit (NICU), have the disadvantage of causing skin damage when used for very premature newborn infants. To prevent skin damage, we designed a new piezoelectric transducer (PZT) sensor. To assess the potential of the PZT sensor for cardiorespiratory monitoring in the NICU. The PZT sensor was placed under a folded towel under a neonate to detect an acoustic cardiorespiratory signal, from which heart rate (HR) and breathing rate (BR) were calculated, together with simultaneous ECG/IPG recording for 1-9 days for long and brief (1-min) assessment. The brief assessment showed average correlation coefficients of 0.92 +/- 0.12 and 0.95 +/- 0.02 between instantaneous HRs/BRs detected by the PZT sensor and ECG/IPG in 27 and 11 neonates examined. During the long assessment, the HR detection rate by the PZT sensor was approximately 10% lower than that by ECG (82.6 +/- 12.9 vs. 91.8 +/- 4.1%; p = 0.001, n = 27), although comparable (90.3 +/- 4.1 vs. 92.5 +/- 3.4%, p = 0.081) in approximately 70% (18/27) of neonates examined; BR detection rate was comparable between the PZT sensor and IPG during relatively stable signal conditions (95.9 +/- 4.0 vs. 95.3 +/- 3.5%; p = 0.38, n = 11). The PZT sensor caused neither skin damage nor body movement increase in all neonates examined. The PZT sensor is noninvasive and does not cause skin irritation, and we believe it does provide a reliable, accurate cardiorespiratory monitoring tool for use in the NICU, although the issue of mechanical-ventilation noise remains to be solved. Copyright 2010 S. Karger AG, Basel.
Tsai, Wei-Chung; Lee, Kun-Tai; Wu, Ming-Tsang; Chu, Chih-Sheng; Lin, Tsung-Hsien; Hsu, Po-Chao; Su, Ho-Ming; Voon, Wen-Chol; Lai, Wen-Ter; Sheu, Sheng-Hsiung
2013-07-01
The 12-lead electrocardiogram (ECG) is a commonly used tool to access left atrial enlargement, which is a marker of left ventricular diastolic dysfunction (LVDD). The aim of this study was to evaluate any association of the P-wave measurements in ECG with left atrial volume (LAV) index and LVDD. This study enrolled 270 patients. In this study, 4 ECG P-wave parameters corrected by heart rate, that is, corrected P-wave maximum duration (PWdurMaxC), corrected P-wave dispersion (PWdisperC), corrected P-wave area (PWareaC) and corrected mean P-wave duration (meanPWdurC), were measured. LAV and left ventricular diastolic parameters were measured from echocardiography. LVDD was defined as a pseudonormal or restrictive mitral inflow pattern. The 4 P-wave parameters were significantly correlated with the LAV index after adjusting for age, sex, diabetes, hypertension, coronary artery disease, body mass index and diastolic blood pressure in multivariate analysis. The standardized β coefficients of PWdurMaxC, PWdisperC, meanPWdurC and PWareaC were 0.338, 0.298, 0.215 and 0.296, respectively. The 4 P-wave parameters were also significantly correlated with LVDD after multivariate logistic regression analysis. The odds ratios (95% confidence intervals) of PWdurMaxC, PWdisperC, meanPWdurC and PWareaC were 1.03 (1.01-1.04), 1.02 (1.04-1.04), 1.04 (1.02-1.07) and 1.01 (1.00-1.02), respectively. This study demonstrated that PWdurMaxC, PWdisperC, meanPWdurC and PWareaC were important determinants of the LAV index and LVDD. Therefore, screening patients by means of the 12-lead ECG may be helpful in identifying a high-risk group of increased LAV index and LVDD.
Rosario, Pedro Weslley; Carvalho, Marina; Calsolari, Maria Regina
2016-07-01
The objective of this study was to evaluate symptoms of thyrotoxicosis, bone turnover, bone mineral density (BMD) and occult atrial fibrillation (AF) in women ≥65 years with mild endogenous subclinical hyperthyroidism (SCH). Cross-sectional and case-control study. Signs and symptoms of thyrotoxicosis, serum carboxyterminal telopeptide (CTx) and procollagen type I N-terminal propeptide (PINP), BMD, resting electrocardiogram (ECG) and 72-h ECG monitoring were evaluated in 180 women ≥65 years, including 90 with mild SCH (TSH between 0·1 and 0·4 mIU/l) and 90 euthyroid controls matched for age and body mass index. Symptom Rating Scale scores did not differ between patients and controls. None of the patients with SCH scored 20 points, a score compatible with clinical thyrotoxicosis. Eighty patients with SCH (89%) obtained seven or fewer points, a score compatible with euthyroidism. No difference in serum CTx or PINP concentrations was observed between patients and controls. There was also no correlation between these markers and TSH, free T4 or total T3 levels. Finally, no difference in femoral neck or lumbar spine BMD was observed between patients with SCH and controls. Three patients with SCH (3·3%) and two euthyroid women (2·2%) had known AF or AF in the resting ECG. ECG monitoring for 72 h revealed episodes of occult AF in 1/87 patients with SCH and in 1/88 euthyroid women (1·1%). Mild endogenous SCH (TSH between 0·1 and 0·4 mIU/l) was not associated with symptoms of thyrotoxicosis, altered bone metabolism or a higher prevalence of occult AF in women ≥65 years. © 2015 John Wiley & Sons Ltd.
Trigo, Jesús Daniel; Martínez, Ignacio; Alesanco, Alvaro; Kollmann, Alexander; Escayola, Javier; Hayn, Dieter; Schreier, Günter; García, José
2012-07-01
This paper investigates the application of the enterprise information system (EIS) paradigm to standardized cardiovascular condition monitoring. There are many specifications in cardiology, particularly in the ECG standardization arena. The existence of ECG formats, however, does not guarantee the implementation of homogeneous, standardized solutions for ECG management. In fact, hospital management services need to cope with various ECG formats and, moreover, several different visualization applications. This heterogeneity hampers the normalization of integrated, standardized healthcare information systems, hence the need for finding an appropriate combination of ECG formats and a suitable EIS-based software architecture that enables standardized exchange and homogeneous management of ECG formats. Determining such a combination is one objective of this paper. The second aim is to design and develop the integrated healthcare information system that satisfies the requirements posed by the previous determination. The ECG formats selected include ISO/IEEE11073, Standard Communications Protocol for Computer-Assisted Electrocardiography, and an ECG ontology. The EIS-enabling techniques and technologies selected include web services, simple object access protocol, extensible markup language, or business process execution language. Such a selection ensures the standardized exchange of ECGs within, or across, healthcare information systems while providing modularity and accessibility.
Feasibility of in utero telemetric fetal ECG monitoring in a lamb model.
Hermans, Bart; Lewi, Liesbeth; Jani, Jacques; De Buck, Frederik; Deprest, Jan; Puers, Robert
2008-01-01
If fetal ECG (fECG) devices could be miniaturized sufficiently, one could consider their implantation at the time of fetal surgery to allow permanent monitoring of the fetus and timely intervention in the viable period. We set up an experiment to evaluate the feasibility of in utero direct fECG monitoring and telemetric transmission using a small implantable device in a lamb model. A 2-lead miniature ECG sensor (volume 1.9 cm(3); weight 3.9 g) was subcutaneously implanted in 2 fetal lambs at 122 days gestation (range 119-125; term 145 days). The ECG sensor can continuously register and transmit fECG. The signal is captured by an external receiving antenna taped to the maternal abdominal wall. We developed dedicated software running on a commercial laptop for on-line analysis of the transmitted fECG signal. This was a noninterventional study, i.e. daily readings of the fECG signal were done without clinical consequences to the observations. fECG could be successfully registered, transmitted by telemetry and analyzed from the moment of implantation till term birth in one case (24 days). In the second case, unexplained in utero fetal death occurred 12 days after implantation. In this subject, agonal fECG changes were recorded. An implanted miniature (<2 ml) ECG sensor can be used to retrieve, process and transmit continuously a qualitative fECG signal in third-trimester fetal lambs. The telemetric signal could be picked up by an external antenna located within a 20-cm range. In this experiment, this was achieved through taping the external receiver to the maternal abdomen. Any acquired signal could be transmitted to a commercially available laptop that could perform on-line analysis of the signal. (c) 2008 S. Karger AG, Basel.
Female False Positive Exercise Stress ECG Testing - Fact Verses Fiction.
Fitzgerald, Benjamin T; Scalia, William M; Scalia, Gregory M
2018-03-07
Exercise stress testing is a well validated cardiovascular investigation. Accuracy for treadmill stress electrocardiograph (ECG) testing has been documented at 60%. False positive stress ECGs (exercise ECG changes with non-obstructive disease on anatomical testing) are common, especially in women, limiting the effectiveness of the test. This study investigates the incidence and predictors of false positive stress ECG findings, referenced against stress echocardiography (SE) as a standard. Stress echocardiography was performed using the Bruce treadmill protocol. False positive stress ECG tests were defined as greater than 1mm of ST depression on ECG during exertion, without pain, with a normal SE. Potential causes for false positive tests were recorded before the test. Three thousand consecutive negative stress echocardiograms (1036 females, 34.5%) were analysed (age 59+/-14 years. False positive (F+) stress ECGs were documented in 565/3000 tests (18.8%). F+ stress ECGs were equally prevalent in females (194/1036, 18.7%) and males (371/1964, 18.9%, p=0.85 for the difference). Potential causes (hypertension, left ventricular hypertrophy, known coronary disease, arrhythmia, diabetes mellitus, valvular heart disease) were recorded in 36/194 (18.6%) of the female F+ ECG tests and 249/371 (68.2%) of the male F+ ECG tests (p<0.0001 for the difference). These data suggest that F+ stress ECG tests are frequent and equally common in women and men. However, most F+ stress ECGs in men can be predicted before the test, while most in women cannot. Being female may be a risk factor in itself. These data reinforce the value of stress imaging, particularly in women. Copyright © 2018 Australian and New Zealand Society of Cardiac and Thoracic Surgeons (ANZSCTS) and the Cardiac Society of Australia and New Zealand (CSANZ). All rights reserved.
Amer, Hamid; Niaz, Khalid; Hatazawa, Jun; Gasmelseed, Ahmed; Samiri, Hussain Al; Al Othman, Maram; Hammad, Mai Al
2017-11-01
We sought to determine the prognostic importance of adenosine-induced ischemic ECG changes in patients with normal single-photon emission computed tomography myocardial perfusion images (MPI). We carried out a retrospective analysis of 765 patients undergoing adenosine MPI between January 2013 and January 2015. Patients with baseline ECG abnormalities and/or abnormal scan were excluded. Overall, 67 (8.7%) patients had ischemic ECG changes during adenosine infusion in the form of ST depression of 1 mm or more. Of these, 29 [43% (3.8% of all patients)] had normal MPI (positive ECG group). An age-matched and sex-matched group of 108 patients with normal MPI without ECG changes served as control participants (negative ECG group). During a mean follow-up duration of 33.3±6.1 months, patients in the positive ECG group did not have significantly more adverse cardiac events than those in the negative ECG group. One (0.9%) patient in the negative ECG group had a nonfatal myocardial infarction (0.7% annual event rate after a negative MPI). Also in this group, two (1.8%) patients admitted with a diagnosis of CAD where they have been ruled out by angiography. A fourth case in this, in the negative ECG group, was admitted because of heart failure that proved to be secondary to a pulmonary cause and not CAD. A case only in the positive ECG group was admitted as a CAD that was ruled out by coronary angiography. Patients with normal myocardial perfusion scintigraphy in whom ST-segment depression develops during adenosine stress test appear to have no increased risk for future cardiac events compared with similar patients without ECG evidence of ischemia.
Bedside identification of patients at risk for PVC-induced cardiomyopathy: Is ECG useful?
Garster, Noelle C; Henrikson, Charles A
2017-07-01
Premature ventricular complexes (PVCs) are an underrecognized cause of cardiomyopathy. Standard 12-lead electrocardiogram (ECG) has potential to direct attention toward at-risk patients. We performed a single-center, retrospective chart review of 1,240 patients who completed ECG and Holter monitoring at Oregon Health and Science University Hospital between January 1, 2011 and December 31, 2013 to investigate the relationship of PVC frequency on ECG with burden on Holter. Primary outcome measures included PVC quantity on ECG, mean PVC quantity on Holter, and percentage of total beats on Holter recorded as PVCs. High PVC burden was defined as ≥10% of total beats. Weighted mean percentages of total beats on Holter monitor recorded as PVCs were calculated for 0, 1, 2, and ≥3 PVCs on ECG and found to be 1.4% (n = 1,128), 3.5% (n = 32), 4.3% (n = 25), and 16.6% (n = 55), respectively, which represent statistically significant differences (P < 0.001). The positive predictive value of at least three PVCs on ECG for ≥10% PVC Holter burden was 58%. Negative predictive value for 0 PVCs on ECG was 98%. The sensitivity and specificity of ECG to identify high PVC burden on Holter was 72% and 93.6%, respectively, when utilizing a positive ECG result as one PVC or more, and 44% and 98.9%, respectively, with ≥3 PVCs on ECG. The positive likelihood ratio corresponding to ≥3 PVCs on ECG was 40. These findings demonstrate that the number of PVCs on ECG can be utilized for quick bedside estimation of high PVC burden. © 2017 Wiley Periodicals, Inc.
Pilot study analyzing automated ECG screening of hypertrophic cardiomyopathy.
Campbell, Matthew J; Zhou, Xuefu; Han, Chia; Abrishami, Hedayat; Webster, Gregory; Miyake, Christina Y; Sower, Christopher T; Anderson, Jeffrey B; Knilans, Timothy K; Czosek, Richard J
2017-06-01
Hypertrophic cardiomyopathy (HCM) is one of the leading causes of sudden cardiac death in athletes. However, preparticipation ECG screening has often been criticized for failing to meet cost-effectiveness thresholds, in part because of high false-positive rates and the cost of ECG screening itself. The purpose of this study was to assess the testing characteristics of an automated ECG algorithm designed to screen for HCM in a multi-institutional pediatric cohort. ECGs from patients with HCM aged 12 to 20 years from 3 pediatric institutions were screened for ECG criteria for HCM using a previously described automated computer algorithm developed specifically for HCM ECG screening. The results were compared to a known healthy pediatric cohort. The studies then were read by trained electrophysiologists using standard ECG criteria and compared to the results of automated screening. One hundred twenty-eight ECGs from unique patients with phenotypic HCM were obtained and compared with 256 studies from healthy control patients matched in 2:1 fashion. When presented with the ECGs, the non-voltage-based algorithm resulted in 81.2% sensitivity and 90.7% specificity. A trained electrophysiologist read the same data according to the Seattle Criteria, with 71% sensitivity with 95.7% specificity. The sensitivity of screening as well as the components of the ECG screening itself varied by institution. This pilot study demonstrates a potential for automated ECG screening algorithms to detect HCM with testing characteristics similar to that of a trained electrophysiologist. In addition, there appear to be differences in ECG characteristics between patient populations, which may account for the difficulties in universal screening. Copyright © 2017 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.
Rawshani, Nina; Rawshani, Araz; Gelang, Carita; Herlitz, Johan; Bång, Angela; Andersson, Jan-Otto; Gellerstedt, Martin
2017-12-01
In the assessment of patients with chest pain, there is support for the use of pre-hospital ECG in the literature and in the care guidelines. Using propensity score methods, we aim to examine whether the mere acquisition of a pre-hospital ECG among patients with chest pain affects the outcome (30-day mortality). The association between pre-hospital ECG and 30-day mortality was studied in the overall cohort (n=13151), as well as in the one-to-one matched cohort with 2524 patients not examined with pre-hospital ECG and 2524 patients examined with pre-hospital ECG. In the overall cohort, 21% (n=2809) did not undergo an ECG tracing in the pre-hospital setting. Among those who had pain during transport, 14% (n=1159) did not undergo a pre-hospital ECG while 32% (n=1135) of those who did not have pain underwent an ECG tracing. In the overall cohort, the OR for 30-day mortality in patients who had a pre-hospital ECG, as compared with those who did not, was 0.63 (95% CI 0.05-0.79; p<0.001). In the matched cohort, the OR was 0.65 (95% CI 0.49-0.85; p<0.001). Using the propensity score, in the overall cohort, the corresponding HR was 0.65 (95% CI 0.58-0.74). Using propensity score methods, we provide real-world data demonstrating that the adjusted risk of death was considerably lower among the cases in whoma pre-hospital ECG was used. The PH-ECG is underused among patients with chest discomfort and the mere acquisition of a pre-hospital ECG may reduce mortality. Copyright © 2017 Elsevier B.V. All rights reserved.
Physician attitudes about prehospital 12-lead ECGs in chest pain patients.
Brainard, Andrew H; Froman, Philip; Alarcon, Maria E; Raynovich, Bill; Tandberg, Dan
2002-01-01
The prehospital 12-lead electrocardiogram (ECG) has become a standard of care. For the prehospital 12-lead ECG to be useful clinically, however, cardiologists and emergency physicians (EP) must view the test as useful. This study measured physician attitudes about the prehospital 12-lead ECG. This study tested the hypothesis that physicians had "no opinion" regarding the prehospital 12-lead ECG. An anonymous survey was conducted to measure EP and cardiologist attitudes toward prehospital 12-lead ECGs. Hypothesis tests against "no opinion" (VAS = 50 mm) were made with 95% confidence intervals (CIs), and intergroup comparisons were made with the Student's t-test. Seventy-one of 87 (81.6%) surveys were returned. Twenty-five (67.6%) cardiologists responded and 45 (90%) EPs responded. Both groups of physicians viewed prehospital 12-lead ECGs as beneficial (mean = 69 mm; 95% CI = 65-74 mm). All physicians perceived that ECGs positively influence preparation of staff (mean = 63 mm; 95% CI = 60-72 mm) and that ECGs transmitted to hospitals would be beneficial (mean = 66 mm; 95% CI = 60-72 mm). Cardiologists had more favorable opinions than did EPs. The ability of paramedics to interpret ECGs was not seen as important (mean = 50 mm; 95% CI = 43-56 mm). The justifiable increase in field time was perceived to be 3.2 minutes (95% CI = 2.7-3.8 minutes), with 23 (32.8%) preferring that it be done on scene, 46 (65.7%) during transport, and one (1.4%) not at all. Prehospital 12-lead ECGs generally are perceived as worthwhile by cardiologists and EPs. Cardiologists have a higher opinion of the value and utility of field ECGs. Since the reduction in mortality from the 12-lead ECG is small, it is likely that positive physician attitudes are attributable to other factors.
Sparse Matrix for ECG Identification with Two-Lead Features.
Tseng, Kuo-Kun; Luo, Jiao; Hegarty, Robert; Wang, Wenmin; Haiting, Dong
2015-01-01
Electrocardiograph (ECG) human identification has the potential to improve biometric security. However, improvements in ECG identification and feature extraction are required. Previous work has focused on single lead ECG signals. Our work proposes a new algorithm for human identification by mapping two-lead ECG signals onto a two-dimensional matrix then employing a sparse matrix method to process the matrix. And that is the first application of sparse matrix techniques for ECG identification. Moreover, the results of our experiments demonstrate the benefits of our approach over existing methods.
New ideas for teaching electrocardiogram interpretation and improving classroom teaching content.
Zeng, Rui; Yue, Rong-Zheng; Tan, Chun-Yu; Wang, Qin; Kuang, Pu; Tian, Pan-Wen; Zuo, Chuan
2015-01-01
Interpreting an electrocardiogram (ECG) is not only one of the most important parts of diagnostics but also one of the most difficult areas to teach. Owing to the abstract nature of the basic theoretical knowledge of the ECG, its scattered characteristics, and tedious and difficult-to-remember subject matter, teaching how to interpret ECGs is as difficult for teachers to teach as it is for students to learn. In order to enable medical students to master basic knowledge of ECG interpretation skills in a limited teaching time, we modified the content used for traditional ECG teaching and now propose a new ECG teaching method called the "graphics-sequence memory method." A prospective randomized controlled study was designed to measure the actual effectiveness of ECG learning by students. Two hundred students were randomly placed under a traditional teaching group and an innovative teaching group, with 100 participants in each group. The teachers in the traditional teaching group utilized the traditional teaching outline, whereas the teachers in the innovative teaching group received training in line with the proposed teaching method and syllabus. All the students took an examination in the final semester by analyzing 20 ECGs from real clinical cases and submitted their ECG reports. The average ECG reading time was 32 minutes for the traditional teaching group and 18 minutes for the innovative teaching group. The average ECG accuracy results were 43% for the traditional teaching group and 77% for the innovative teaching group. Learning to accurately interpret ECGs is an important skill in the cardiac discipline, but the ECG's mechanisms are intricate and the content is scattered. Textbooks tend to make the students feel confused owing to the restrictions of the length and the format of the syllabi, apart from many other limitations. The graphics-sequence memory method was found to be a useful method for ECG teaching.
... A telltale abnormality — called a type 1 Brugada ECG pattern — is detected by an electrocardiogram (ECG) test. Brugada syndrome is much more common in ... syndrome is an abnormal pattern on an electrocardiogram (ECG) called a type 1 Brugada ECG pattern. You ...
Identifying UMLS concepts from ECG Impressions using KnowledgeMap
Denny, Joshua C.; Spickard, Anderson; Miller, Randolph A; Schildcrout, Jonathan; Darbar, Dawood; Rosenbloom, S. Trent; Peterson, Josh F.
2005-01-01
Electrocardiogram (ECG) impressions represent a wealth of medical information for potential decision support and drug-effect discovery. Much of this information is inaccessible to automated methods in the free-text portion of the ECG report. We studied the application of the KnowledgeMap concept identifier (KMCI) to map Unified Medical Language System (UMLS) concepts from ECG impressions. ECGs were processed by KMCI and the results scored for accuracy by multiple raters. Reviewers also recorded unidentified concepts through the scoring interface. Overall, KMCI correctly identified 1059 out of 1171 concepts for a recall of 0.90. Precision, indicating the proportion of ECG concepts correctly identified, was 0.94. KMCI was particularly effective at identifying ECG rhythms (330/333), perfusion changes (65/66), and noncardiac medical concepts (11/11). In conclusion, KMCI is an effective method for mapping ECG impressions to UMLS concepts. PMID:16779029
Multiscale permutation entropy analysis of electrocardiogram
NASA Astrophysics Data System (ADS)
Liu, Tiebing; Yao, Wenpo; Wu, Min; Shi, Zhaorong; Wang, Jun; Ning, Xinbao
2017-04-01
To make a comprehensive nonlinear analysis to ECG, multiscale permutation entropy (MPE) was applied to ECG characteristics extraction to make a comprehensive nonlinear analysis of ECG. Three kinds of ECG from PhysioNet database, congestive heart failure (CHF) patients, healthy young and elderly subjects, are applied in this paper. We set embedding dimension to 4 and adjust scale factor from 2 to 100 with a step size of 2, and compare MPE with multiscale entropy (MSE). As increase of scale factor, MPE complexity of the three ECG signals are showing first-decrease and last-increase trends. When scale factor is between 10 and 32, complexities of the three ECG had biggest difference, entropy of the elderly is 0.146 less than the CHF patients and 0.025 larger than the healthy young in average, in line with normal physiological characteristics. Test results showed that MPE can effectively apply in ECG nonlinear analysis, and can effectively distinguish different ECG signals.
Multi-purpose ECG telemetry system.
Marouf, Mohamed; Vukomanovic, Goran; Saranovac, Lazar; Bozic, Miroslav
2017-06-19
The Electrocardiogram ECG is one of the most important non-invasive tools for cardiac diseases diagnosis. Taking advantage of the developed telecommunication infrastructure, several approaches that address the development of telemetry cardiac devices were introduced recently. Telemetry ECG devices allow easy and fast ECG monitoring of patients with suspected cardiac issues. Choosing the right device with the desired working mode, signal quality, and the device cost are still the main obstacles to massive usage of these devices. In this paper, we introduce design, implementation, and validation of a multi-purpose telemetry system for recording, transmission, and interpretation of ECG signals in different recording modes. The system consists of an ECG device, a cloud-based analysis pipeline, and accompanied mobile applications for physicians and patients. The proposed ECG device's mechanical design allows laypersons to easily record post-event short-term ECG signals, using dry electrodes without any preparation. Moreover, patients can use the device to record long-term signals in loop and holter modes, using wet electrodes. In order to overcome the problem of signal quality fluctuation due to using different electrodes types and different placements on subject's chest, customized ECG signal processing and interpretation pipeline is presented for each working mode. We present the evaluation of the novel short-term recorder design. Recording of an ECG signal was performed for 391 patients using a standard 12-leads golden standard ECG and the proposed patient-activated short-term post-event recorder. In the validation phase, a sample of validation signals followed peer review process wherein two experts annotated the signals in terms of signal acceptability for diagnosis.We found that 96% of signals allow detecting arrhythmia and other signal's abnormal changes. Additionally, we compared and presented the correlation coefficient and the automatic QRS delineation results of both short-term post-event recorder and 12-leads golden standard ECG recorder. The proposed multi-purpose ECG device allows physicians to choose the working mode of the same device according to the patient status. The proposed device was designed to allow patients to manage the technical requirements of both working modes. Post-event short-term ECG recording using the proposed design provide physicians reliable three ECG leads with direct symptom-rhythm correlation.
A novel biometric authentication approach using ECG and EMG signals.
Belgacem, Noureddine; Fournier, Régis; Nait-Ali, Amine; Bereksi-Reguig, Fethi
2015-05-01
Security biometrics is a secure alternative to traditional methods of identity verification of individuals, such as authentication systems based on user name and password. Recently, it has been found that the electrocardiogram (ECG) signal formed by five successive waves (P, Q, R, S and T) is unique to each individual. In fact, better than any other biometrics' measures, it delivers proof of subject's being alive as extra information which other biometrics cannot deliver. The main purpose of this work is to present a low-cost method for online acquisition and processing of ECG signals for person authentication and to study the possibility of providing additional information and retrieve personal data from an electrocardiogram signal to yield a reliable decision. This study explores the effectiveness of a novel biometric system resulting from the fusion of information and knowledge provided by ECG and EMG (Electromyogram) physiological recordings. It is shown that biometrics based on these ECG/EMG signals offers a novel way to robustly authenticate subjects. Five ECG databases (MIT-BIH, ST-T, NSR, PTB and ECG-ID) and several ECG signals collected in-house from volunteers were exploited. A palm-based ECG biometric system was developed where the signals are collected from the palm of the subject through a minimally intrusive one-lead ECG set-up. A total of 3750 ECG beats were used in this work. Feature extraction was performed on ECG signals using Fourier descriptors (spectral coefficients). Optimum-Path Forest classifier was used to calculate the degree of similarity between individuals. The obtained results from the proposed approach look promising for individuals' authentication.
Digitization of Electrocardiogram From Telemetry Prior to In-hospital Cardiac Arrest: A Pilot Study.
Attin, Mina; Wang, Lu; Soroushmehr, S M Reza; Lin, Chii-Dean; Lemus, Hector; Spadafore, Maxwell; Najarian, Kayvan
2016-03-01
Analyzing telemetry electrocardiogram (ECG) data over an extended period is often time-consuming because digital records are not widely available at hospitals. Investigating trends and patterns in the ECG data could lead to establishing predictors that would shorten response time to in-hospital cardiac arrest (I-HCA). This study was conducted to validate a novel method of digitizing paper ECG tracings from telemetry systems in order to facilitate the use of heart rate as a diagnostic feature prior to I-HCA. This multicenter study used telemetry to investigate full-disclosure ECG papers of 44 cardiovascular patients obtained within 1 hr of I-HCA with initial rhythms of pulseless electrical activity and asystole. Digital ECGs were available for seven of these patients. An algorithm to digitize the full-disclosure ECG papers was developed using the shortest path method. The heart rate was measured manually (averaging R-R intervals) for ECG papers and automatically for digitized and digital ECGs. Significant correlations were found between manual and automated measurements of digitized ECGs (p < .001) and between digitized and digital ECGs (p < .001). Bland-Altman methods showed bias = .001 s, SD = .0276 s, lower and upper 95% limits of agreement for digitized and digital ECGs = .055 and -.053 s, and percentage error = 0.22%. Root mean square (rms), percentage rms difference, and signal to noise ratio values were in acceptable ranges. The digitization method was validated. Digitized ECG provides an efficient and accurate way of measuring heart rate over an extended period of time. © The Author(s) 2015.
Barthelemy, Francois X; Segard, Julien; Fradin, Philippe; Hourdin, Nicolas; Batard, Eric; Pottier, Pierre; Potel, Gilles; Montassier, Emmanuel
2017-04-01
ECG interpretation is a pivotal skill to acquire during residency, especially for Emergency Department (ED) residents. Previous studies reported that ECG interpretation competency among residents was rather low. However, the optimal resource to improve ECG interpretation skills remains unclear. The aim of our study was to compare two teaching modalities to improve the ECG interpretation skills of ED residents: e-learning and lecture-based courses. The participants were first-year and second-year ED residents, assigned randomly to the two groups. The ED residents were evaluated by means of a precourse test at the beginning of the study and a postcourse test after the e-learning and lecture-based courses. These evaluations consisted of the interpretation of 10 different ECGs. We included 39 ED residents from four different hospitals. The precourse test showed that the overall average score of ECG interpretation was 40%. Nineteen participants were then assigned to the e-learning course and 20 to the lecture-based course. Globally, there was a significant improvement in ECG interpretation skills (accuracy score=55%, P=0.0002). However, this difference was not significant between the two groups (P=0.14). Our findings showed that the ECG interpretation was not optimal and that our e-learning program may be an effective tool for enhancing ECG interpretation skills among ED residents. A large European study should be carried out to evaluate ECG interpretation skills among ED residents before the implementation of ECG learning, including e-learning strategies, during ED residency.
Ishikawa, Joji; Ishikawa, Shizukiyo; Kario, Kazuomi
2015-03-01
We attempted to evaluate whether subjects who exhibit prolonged corrected QT (QTc) interval (≥440 ms in men and ≥460 ms in women) on ECG, with and without ECG-diagnosed left ventricular hypertrophy (ECG-LVH; Cornell product, ≥244 mV×ms), are at increased risk of stroke. Among the 10 643 subjects, there were a total of 375 stroke events during the follow-up period (128.7±28.1 months; 114 142 person-years). The subjects with prolonged QTc interval (hazard ratio, 2.13; 95% confidence interval, 1.22-3.73) had an increased risk of stroke even after adjustment for ECG-LVH (hazard ratio, 1.71; 95% confidence interval, 1.22-2.40). When we stratified the subjects into those with neither a prolonged QTc interval nor ECG-LVH, those with a prolonged QTc interval but without ECG-LVH, and those with ECG-LVH, multivariate-adjusted Cox proportional hazards analysis demonstrated that the subjects with prolonged QTc intervals but not ECG-LVH (1.2% of all subjects; incidence, 10.7%; hazard ratio, 2.70, 95% confidence interval, 1.48-4.94) and those with ECG-LVH (incidence, 7.9%; hazard ratio, 1.83; 95% confidence interval, 1.31-2.57) had an increased risk of stroke events, compared with those with neither a prolonged QTc interval nor ECG-LVH. In conclusion, prolonged QTc interval was associated with stroke risk even among patients without ECG-LVH in the general population. © 2014 American Heart Association, Inc.
Extraction of ECG signal with adaptive filter for hearth abnormalities detection
NASA Astrophysics Data System (ADS)
Turnip, Mardi; Saragih, Rijois. I. E.; Dharma, Abdi; Esti Kusumandari, Dwi; Turnip, Arjon; Sitanggang, Delima; Aisyah, Siti
2018-04-01
This paper demonstrates an adaptive filter method for extraction ofelectrocardiogram (ECG) feature in hearth abnormalities detection. In particular, electrocardiogram (ECG) is a recording of the heart's electrical activity by capturing a tracingof cardiac electrical impulse as it moves from the atrium to the ventricles. The applied algorithm is to evaluate and analyze ECG signals for abnormalities detection based on P, Q, R and S peaks. In the first phase, the real-time ECG data is acquired and pre-processed. In the second phase, the procured ECG signal is subjected to feature extraction process. The extracted features detect abnormal peaks present in the waveform. Thus the normal and abnormal ECG signal could be differentiated based on the features extracted.
Electrocardiogram findings in emergency department patients with syncope.
Quinn, James; McDermott, Daniel
2011-07-01
To determine the sensitivity and specificity of the San Francisco Syncope Rule (SFSR) electrocardiogram (ECG) criteria for determining cardiac outcomes and to define the specific ECG findings that are the most important in patients with syncope. A consecutive cohort of emergency department (ED) patients with syncope or near syncope was considered. The treating emergency physicians assessed 50 predictor variables, including an ECG and rhythm assessment. For the ECG assessment, the physicians were asked to categorize the ECG as normal or abnormal based on any changes that were old or new. They also did a separate rhythm assessment and could use any of the ECGs or available monitoring strips, including prehospital strips, when making this assessment. All patients were followed up to determine a broad composite study outcome. The final ECG criterion for the SFSR was any nonsinus rhythm or new ECG changes. In this specific study, the initial assessments in the database were used to determine only cardiac-related outcomes (arrhythmia, myocardial infarction, structural, sudden death) based on set criteria, and the authors determined the sensitivity and specificity of the ECG criteria for cardiac outcomes only. All ECGs classified as "abnormal" by the study criteria were compared to the official cardiology reading to determine specific findings on the ECG. Univariate and multivariate analysis were used to determine important specific ECG and rhythm findings. A total of 684 consecutive patients were considered, with 218 having positive ECG criteria and 42 (6%) having important cardiac outcomes. ECG criteria predicted 36 of 42 patients with cardiac outcomes, with a sensitivity of 86% (95% confidence interval [CI] = 71% to 94%), a specificity of 70% (95% CI = 66% to 74%), and a negative predictive value of 99% (95% CI = 97% to 99%). Regarding specific ECG findings, any nonsinus rhythm from any source and any left bundle conduction problem (i.e., any left bundle branch block, left anterior fascicular block, left posterior fascicular block, or QRS widening) were 2.5 and 3.5 times more likely associated with significant cardiac outcomes. The ECG criteria from the SFSR are relatively simple, and if used correctly can help predict which patients are at risk of cardiac outcomes. Furthermore, any left bundle branch block conduction problems or any nonsinus rhythms found during the ED stay should be especially concerning for physicians caring for patients presenting with syncope. © 2011 by the Society for Academic Emergency Medicine.
Electrocardiogram interpretation and arrhythmia management: a primary and secondary care survey.
Begg, Gordon; Willan, Kathryn; Tyndall, Keith; Pepper, Chris; Tayebjee, Muzahir
2016-05-01
There is increasing desire among service commissioners to treat arrhythmia in primary care. Accurate interpretation of the electrocardiogram (ECG) is fundamental to this. ECG interpretation has previously been shown to vary widely but there is little recent data. To examine the interpretation of ECGs in primary and secondary care. A cross-sectional survey of participants' interpretation of six ECGs and hypothetical management of patients based on those ECGs, at primary care educational events, and a cardiology department in Leeds. A total of 262 primary care clinicians and 20 cardiology clinicians were surveyed via questionnaire. Answers were compared with expert electrophysiologist opinion. In primary care, abnormal ECGs were interpreted as normal by 23% of responders. ST elevation and prolonged QT were incorrectly interpreted as normal by 1% and 22%, respectively. In cardiology, abnormal ECGs were interpreted as normal by 3%. ECG provision and interpretation remains inconsistent in both primary and secondary care. Primary care practitioners are less experienced and less confident with ECG interpretation than cardiologists, and require support in this area. © British Journal of General Practice 2016.
2010-10-27
This practical, pocket-book approach to ECG interpretation accompanies the well-known text Making Sense of the ECG, by the same authors. It is also designed to be used alone to test knowledge of ECG interpretation and to make clinical decisions based on presented scenarios.
2011-02-10
This practical pocket-book approach to electrocardiogram (ECG) interpretation accompanies Making sense of the eCg by the same authors. it is also designed to be used alone to test knowledge of ECG interpretation and to make clinical decisions based on presented scenarios.
The Development of a Portable ECG Monitor Based on DSP
NASA Astrophysics Data System (ADS)
Nan, CHI Jian; Tao, YAN Yan; Meng Chen, LIU; Li, YANG
With the advent of global information, researches of Smart Home system are in the ascendant, the ECG real-time detection, and wireless transmission of ECG become more useful. In order to achieve the purpose we developed a portable ECG monitor which achieves the purpose of cardiac disease remote monitoring, and will be used in the physical and psychological disease surveillance in smart home system, we developed this portable ECG Monitor, based on the analysis of existing ECG Monitor, using TMS320F2812 as the core controller, which complete the signal collection, storage, processing, waveform display and transmission.
Ramkumar, Barathram; Sabarimalai Manikandan, M.
2017-01-01
Automatic electrocardiogram (ECG) signal enhancement has become a crucial pre-processing step in most ECG signal analysis applications. In this Letter, the authors propose an automated noise-aware dictionary learning-based generalised ECG signal enhancement framework which can automatically learn the dictionaries based on the ECG noise type for effective representation of ECG signal and noises, and can reduce the computational load of sparse representation-based ECG enhancement system. The proposed framework consists of noise detection and identification, noise-aware dictionary learning, sparse signal decomposition and reconstruction. The noise detection and identification is performed based on the moving average filter, first-order difference, and temporal features such as number of turning points, maximum absolute amplitude, zerocrossings, and autocorrelation features. The representation dictionary is learned based on the type of noise identified in the previous stage. The proposed framework is evaluated using noise-free and noisy ECG signals. Results demonstrate that the proposed method can significantly reduce computational load as compared with conventional dictionary learning-based ECG denoising approaches. Further, comparative results show that the method outperforms existing methods in automatically removing noises such as baseline wanders, power-line interference, muscle artefacts and their combinations without distorting the morphological content of local waves of ECG signal. PMID:28529758
Satija, Udit; Ramkumar, Barathram; Sabarimalai Manikandan, M
2017-02-01
Automatic electrocardiogram (ECG) signal enhancement has become a crucial pre-processing step in most ECG signal analysis applications. In this Letter, the authors propose an automated noise-aware dictionary learning-based generalised ECG signal enhancement framework which can automatically learn the dictionaries based on the ECG noise type for effective representation of ECG signal and noises, and can reduce the computational load of sparse representation-based ECG enhancement system. The proposed framework consists of noise detection and identification, noise-aware dictionary learning, sparse signal decomposition and reconstruction. The noise detection and identification is performed based on the moving average filter, first-order difference, and temporal features such as number of turning points, maximum absolute amplitude, zerocrossings, and autocorrelation features. The representation dictionary is learned based on the type of noise identified in the previous stage. The proposed framework is evaluated using noise-free and noisy ECG signals. Results demonstrate that the proposed method can significantly reduce computational load as compared with conventional dictionary learning-based ECG denoising approaches. Further, comparative results show that the method outperforms existing methods in automatically removing noises such as baseline wanders, power-line interference, muscle artefacts and their combinations without distorting the morphological content of local waves of ECG signal.
Miller, Douglas L.; Dou, Chunyan; Lucchesi, Benedict R.
2009-01-01
Objective Premature complexes (PCs) in the electrocardiogram (ECG) signal have been reported for myocardial contrast echocardiography and also for burst mode (physical therapy) ultrasound with gas body contrast agent at lower peak rarefactional pressure amplitudes (PRPAs). For contrast echocardiography, irreversibly injured cardiomyocytes have been associated with the arrhythmia. The objective was to determine if cardiomyocyte injury is associated with the PCs induced by the burst mode at lower PRPAs. Methods Anesthetized rats were exposed to focused 1.5 MHz ultrasound in a water bath. Evans blue dye was injected IP to stain injured cardiomyocytes and Definity ultrasound contrast agent was infused IV. Continuous burst mode simulated physical therapy ultrasound. Intermittent 2 ms bursts, or envelopes of pulses simulating diagnostic ultrasound, were triggered 1:4 at end systole. PCs were observed on ECG recordings and stained cardiomyocytes were counted in frozen sections. Results The continuous burst mode produced variable PCs and stained cells above 0.3 MPa PRPA. The triggered bursts above 0.3 MPa and pulse envelopes above 1.2 MPa produced statistically significant (P<0.01) PCs and stained cardiomyocytes. Conclusion Irreversible cardiomyocyte injury was associated with the development of PCs for burst mode and occurred at substantially lower PRPAs than for pulsed ultrasound. PMID:19854967
Govindan, R B; Kota, Srinivas; Al-Shargabi, Tareq; Massaro, An N; Chang, Taeun; du Plessis, Adre
2016-09-01
Electroencephalogram (EEG) signals are often contaminated by the electrocardiogram (ECG) interference, which affects quantitative characterization of EEG. We propose null-coherence, a frequency-based approach, to attenuate the ECG interference in EEG using simultaneously recorded ECG as a reference signal. After validating the proposed approach using numerically simulated data, we apply this approach to EEG recorded from six newborns receiving therapeutic hypothermia for neonatal encephalopathy. We compare our approach with an independent component analysis (ICA), a previously proposed approach to attenuate ECG artifacts in the EEG signal. The power spectrum and the cortico-cortical connectivity of the ECG attenuated EEG was compared against the power spectrum and the cortico-cortical connectivity of the raw EEG. The null-coherence approach attenuated the ECG contamination without leaving any residual of the ECG in the EEG. We show that the null-coherence approach performs better than ICA in attenuating the ECG contamination without enhancing cortico-cortical connectivity. Our analysis suggests that using ICA to remove ECG contamination from the EEG suffers from redistribution problems, whereas the null-coherence approach does not. We show that both the null-coherence and ICA approaches attenuate the ECG contamination. However, the EEG obtained after ICA cleaning displayed higher cortico-cortical connectivity compared with that obtained using the null-coherence approach. This suggests that null-coherence is superior to ICA in attenuating the ECG interference in EEG for cortico-cortical connectivity analysis. Copyright © 2016 Elsevier B.V. All rights reserved.
[ECG for non-competitive sports in childhood: strengths and disputes].
Poggi, Elena; Giannattasio, Alessandro; Bolloli, Sara; Beccaria, Andrea; Mezzano, Paola; Rocca, Paola; Del Vecchio, Cecilia
2016-11-01
Sport is very important for health promotion and conservation. Active lifestyle and regular exercise reduce cardiovascular disease incidence. The Italian Ministry of Health issued the Law Decree no. 243 (10/18/2014) concerning "guidelines for certification about non-competitive sports" to promote safety in sports. This regulation defines the activities for which a certificate is required, the professional actors involved and the clinical exams to be performed according to the patient's health status. In particular, the Law Decree recommends to perform an electrocardiogram (ECG) "at least once in a lifetime", introducing much greater news into pediatric practice. We proposed a survey evaluating frequency of ECG implementation for non-competitive sports and cardiovascular diseases incidence was administered to 7 Ligurian pediatricians. The number of ECG/year for pediatrician increased from 10 ECG/year to 50 ECG/year with an indication of suitability to non-competitive sports. One case of QT prolongation and 2 cases of type 1 Brugada ECG pattern were diagnosed. In addition, 3 patients had an atrial septal defect and 3 children had a ventricular septal defect. Forty-three percent of the pediatricians considered useful performing the ECG. ECG in children has enhanced the positive effects on the community health. However, it remains to be defined in agreement with scientific societies the age at which to perform ECG, the sports for which ECG is required and the cost-benefit ratio for the National Health System and families.
Ozawa, Yoshiyuki; Hara, Masaki; Nakagawa, Motoo; Shibamoto, Yuta
2016-01-01
Preoperative evaluation of invasion to the adjacent organs is important for the thymic epithelial tumors on CT. The purpose of our study was to evaluate the utility of electrocardiography (ECG)-gated CT for assessing thymic epithelial tumors with regard to the motion artifacts produced and the preoperative diagnostic accuracy of the technique. Forty thymic epithelial tumors (36 thymomas and 4 thymic carcinomas) were examined with ECG-gated contrast-enhanced CT using a dual source scanner. The scan delay after the contrast media injection was 30 s for the non-ECG-gated CT and 100 s for the ECG-gated CT. Two radiologists blindly evaluated both the non-ECG-gated and ECG-gated CT images for motion artifacts and determined whether the tumors had invaded adjacent structures (mediastinal fat, superior vena cava, brachiocephalic veins, aorta, pulmonary artery, pericardium, or lungs) on each image. Motion artifacts were evaluated using a 3-grade scale. Surgical and pathological findings were used as a reference standard for tumor invasion. Motion artifacts were significantly reduced for all structures by ECG gating ( p =0.0089 for the lungs and p <0.0001 for the other structures). Non-ECG-gated CT and ECG-gated CT demonstrated 79% and 95% accuracy, respectively, during assessments of pericardial invasion ( p =0.03). ECG-gated CT reduced the severity of motion artifacts and might be useful for preoperative assessment whether thymic epithelial tumors have invaded adjacent structures.
Ozawa, Yoshiyuki; Hara, Masaki; Nakagawa, Motoo; Shibamoto, Yuta
2016-01-01
Summary Background Preoperative evaluation of invasion to the adjacent organs is important for the thymic epithelial tumors on CT. The purpose of our study was to evaluate the utility of electrocardiography (ECG)-gated CT for assessing thymic epithelial tumors with regard to the motion artifacts produced and the preoperative diagnostic accuracy of the technique. Material/Methods Forty thymic epithelial tumors (36 thymomas and 4 thymic carcinomas) were examined with ECG-gated contrast-enhanced CT using a dual source scanner. The scan delay after the contrast media injection was 30 s for the non-ECG-gated CT and 100 s for the ECG-gated CT. Two radiologists blindly evaluated both the non-ECG-gated and ECG-gated CT images for motion artifacts and determined whether the tumors had invaded adjacent structures (mediastinal fat, superior vena cava, brachiocephalic veins, aorta, pulmonary artery, pericardium, or lungs) on each image. Motion artifacts were evaluated using a 3-grade scale. Surgical and pathological findings were used as a reference standard for tumor invasion. Results Motion artifacts were significantly reduced for all structures by ECG gating (p=0.0089 for the lungs and p<0.0001 for the other structures). Non-ECG-gated CT and ECG-gated CT demonstrated 79% and 95% accuracy, respectively, during assessments of pericardial invasion (p=0.03). Conclusions ECG-gated CT reduced the severity of motion artifacts and might be useful for preoperative assessment whether thymic epithelial tumors have invaded adjacent structures. PMID:27920842
Fetal ECG extraction via Type-2 adaptive neuro-fuzzy inference systems.
Ahmadieh, Hajar; Asl, Babak Mohammadzadeh
2017-04-01
We proposed a noninvasive method for separating the fetal ECG (FECG) from maternal ECG (MECG) by using Type-2 adaptive neuro-fuzzy inference systems. The method can extract FECG components from abdominal signal by using one abdominal channel, including maternal and fetal cardiac signals and other environmental noise signals, and one chest channel. The proposed algorithm detects the nonlinear dynamics of the mother's body. So, the components of the MECG are estimated from the abdominal signal. By subtracting estimated mother cardiac signal from abdominal signal, fetal cardiac signal can be extracted. This algorithm was applied on synthetic ECG signals generated based on the models developed by McSharry et al. and Behar et al. and also on DaISy real database. In environments with high uncertainty, our method performs better than the Type-1 fuzzy method. Specifically, in evaluation of the algorithm with the synthetic data based on McSharry model, for input signals with SNR of -5dB, the SNR of the extracted FECG was improved by 38.38% in comparison with the Type-1 fuzzy method. Also, the results show that increasing the uncertainty or decreasing the input SNR leads to increasing the percentage of the improvement in SNR of the extracted FECG. For instance, when the SNR of the input signal decreases to -30dB, our proposed algorithm improves the SNR of the extracted FECG by 71.06% with respect to the Type-1 fuzzy method. The same results were obtained on synthetic data based on Behar model. Our results on real database reflect the success of the proposed method to separate the maternal and fetal heart signals even if their waves overlap in time. Moreover, the proposed algorithm was applied to the simulated fetal ECG with ectopic beats and achieved good results in separating FECG from MECG. The results show the superiority of the proposed Type-2 neuro-fuzzy inference method over the Type-1 neuro-fuzzy inference and the polynomial networks methods, which is due to its capability to capture the nonlinearities of the model better. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Tragardh, Elin; Schlegel, Todd T.
2006-01-01
The standard ECG is by convention limited to 0.05-150 Hz, but higher frequencies are also present in the ECG signal. With high-resolution technology, it is possible to record and analyze these higher frequencies. The highest amplitudes of the high-frequency components are found within the QRS complex. In past years, the term "high frequency", "high fidelity", and "wideband electrocardiography" have been used by several investigators to refer to the process of recording ECGs with an extended bandwidth of up to 1000 Hz. Several investigators have tried to analyze HF-QRS with the hope that additional features seen in the QRS complex would provide information enhancing the diagnostic value of the ECG. The development of computerized ECG-recording devices that made it possible to record ECG signals with high resolution in both time and amplitude, as well as better possibilities to store and process the signals digitally, offered new methods for analysis. Different techniques to extract the HF-QRS have been described. Several bandwidths and filter types have been applied for the extraction as well as different signal-averaging techniques for noise reduction. There is no standard method for acquiring and quantifying HF-QRS. The physiological mechanisms underlying HF-QRS are still not fully understood. One theory is that HF-QRS are related to the conduction velocity and the fragmentation of the depolarization wave in the myocardium. In a three-dimensional model of the ventricles with a fractal conduction system it was shown that high numbers of splitting branches are associated with HF-QRS. In this experiment, it was also shown that the changes seen in HF-QRS in patients with myocardial ischemia might be due to the slowing of the conduction velocity in the region of ischemia. This mechanism has been tested by Watanabe et al by infusing sodium channel blockers into the left anterior descending artery in dogs. In their study, 60 unipolar ECGs were recorded from the entire ventricular surface and were signal-averaged and filtered in the 30-250 Hz frequency range. The results showed that the decrease noted in the HF-QRS correlated linearly with the local conduction delay. The results suggest that HF-QRS is a potent indicator of disturbed local conduction. An alternative theory is that HF-QRS reflect the shape of the original electrocardiographic signal. Bennhagen et al showed that root mean square (RMS) voltage values of the depolarization signal correlate poorly with the signal amplitude but highly with the first and second derivatives, i.e. the velocity and the acceleration of the signal. It has also been suggested that the autonomic nervous system affects HF-QRS. For example, sitting up causes significant changes in HF-QRS in some leads compared to the supine position [Douglas et al., 2006]. Unpublished results indicate that familial dysautonomic patients (both vagal and sympathetic degeneration) have very little Reduced Amplitude Zones (RAZ) formation . Athletic individuals, especially elite athletes, who have vagally-mediated changes on the conventional ECG (i.e. early repolarization, bradycardia) have increased RAZ formation. Further electrophysiological studies are needed, however, to better understand the underlying mechanisms of HF-QRS. Several investigators have studied HF-QRS in different cardiac conditions, including acute myocardial ischemia and myocardial infarction (MI). However, in order for clinicians to confidently use HF-QRS as an adjunct to standard ECG, more knowledge about the characteristics of HF-QRS is needed.
One-Dimensional Signal Extraction Of Paper-Written ECG Image And Its Archiving
NASA Astrophysics Data System (ADS)
Zhang, Zhi-ni; Zhang, Hong; Zhuang, Tian-ge
1987-10-01
A method for converting paper-written electrocardiograms to one dimensional (1-D) signals for archival storage on floppy disk is presented here. Appropriate image processing techniques were employed to remove the back-ground noise inherent to ECG recorder charts and to reconstruct the ECG waveform. The entire process consists of (1) digitization of paper-written ECGs with an image processing system via a TV camera; (2) image preprocessing, including histogram filtering and binary image generation; (3) ECG feature extraction and ECG wave tracing, and (4) transmission of the processed ECG data to IBM-PC compatible floppy disks for storage and retrieval. The algorithms employed here may also be used in the recognition of paper-written EEG or EMG and may be useful in robotic vision.
Cai, Zhipeng; Luo, Kan; Liu, Chengyu; Li, Jianqing
2017-08-09
A smart electrocardiogram (ECG) garment system was designed for continuous, non-invasive and comfortable ECG monitoring, which mainly consists of four components: Conductive textile electrode, garment, flexible printed circuit board (FPCB)-based ECG processing module and android application program. Conductive textile electrode and FPCB-based ECG processing module (6.8 g, 55 mm × 53 mm × 5 mm) are identified as two key techniques to improve the system's comfort and flexibility. Preliminary experimental results verified that the textile electrodes with circle shape, 40 mm size in diameter, and 5 mm thickness sponge are best suited for the long-term ECG monitoring application. The tests on the whole system confirmed that the designed smart garment can obtain long-term ECG recordings with high signal quality.
Pit-a-Pat: A Smart Electrocardiogram System for Detecting Arrhythmia.
Park, Juyoung; Lee, Kuyeon; Kang, Kyungtae
2015-10-01
Electrocardiogram (ECG) telemonitoring is one of the most promising applications of medical telemetry. However, previous approaches to ECG telemonitoring have largely relied on public databases of ECG results. In this article we propose a smart ECG system called Pit-a-Pat, which extracts features from ECG signals and detects arrhythmia. It is designed to run on an Android™ (Google, Mountain View, CA) device, without requiring modifications to other software. We implemented the Pit-a-Pat system using a commercial ECG device, and the experimental results demonstrate the effectiveness and accuracy of Pit-a-Pat for monitoring the ECG signal and analyzing the cardiac activity of a mobile patient. The proposed system allows monitoring of cardiac activity with automatic analysis, thereby providing a convenient, inexpensive, and ubiquitous adjunct to personal healthcare.
Differences in alarm events between disposable and reusable electrocardiography lead wires.
Albert, Nancy M; Murray, Terri; Bena, James F; Slifcak, Ellen; Roach, Joel D; Spence, Jackie; Burkle, Alicia
2015-01-01
Disposable electrocardiographic lead wires (ECG-LWs) may not be as durable as reusable ones. To examine differences in alarm events between disposable and reusable ECG-LWs. Two cardiac telemetry units were randomized to reusable ECG-LWs, and 2 units alternated between disposable and reusable ECG-LWs for 4 months. A remote monitoring team, blinded to ECG-LW type, assessed frequency and type of alarm events by using total counts and rates per 100 patient days. Event rates were compared by using generalized linear mixed-effect models for differences and noninferiority between wire types. In 1611 patients and 9385.5 patient days of ECG monitoring, patient characteristics were similar between groups. Rates of alarms for no telemetry, leads fail, or leads off were lower in disposable ECG-LWs (adjusted relative risk [95% CI], 0.71 [0.53-0.96]; noninferiority P < .001; superiority P = .03) and monitoring (artifact) alarms were significantly noninferior (adjusted relative risk [95% CI]: 0.88, [0.62-1.24], P = .02; superiority P = .44). No between-group differences existed in false or true crisis alarms. Disposable ECG-LWs were noninferior to reusable ECG-LWs for all false-alarm events (N [rate per 100 patient days], disposable 2029 [79.1] vs reusable 6673 [97.9]; adjusted relative risk [95% CI]: 0.81 [0.63-1.06], P = .002; superiority P = .12.) Disposable ECG-LWs with patented push-button design had superior performance in reducing alarms created by no telemetry, leads fail, or leads off and significant noninferiority in all false-alarm rates compared with reusable ECG-LWs. Fewer ECG alarms may save nurses time, decrease alarm fatigue, and improve patient safety. ©2015 American Association of Critical-Care Nurses.
Punn, Rajesh; Hanisch, Debra; Motonaga, Kara S; Rosenthal, David N; Ceresnak, Scott R; Dubin, Anne M
2016-02-01
Cardiac resynchronization therapy indications and management are well described in adults. Echocardiography (ECHO) has been used to optimize mechanical synchrony in these patients; however, there are issues with reproducibility and time intensity. Pediatric patients add challenges, with diverse substrates and limited capacity for cooperation. Electrocardiographic (ECG) methods to assess electrical synchrony are expeditious but have not been extensively studied in children. We sought to compare ECHO and ECG CRT optimization in children. Prospective, pediatric, single-center cross-over trial comparing ECHO and ECG optimization with CRT. Patients were assigned to undergo either ECHO or ECG optimization, followed for 6 months, and crossed-over to the other assignment for another 6 months. ECHO pulsed-wave tissue Doppler and 12-lead ECG were obtained for 5 VV delays. ECG optimization was defined as the shortest QRSD and ECHO optimization as the lowest dyssynchrony index. ECHOs/ECGs were interpreted by readers blinded to optimization technique. After each 6 month period, these data were collected: ejection fraction, velocimetry-derived cardiac index, quality of life, ECHO-derived stroke distance, M-mode dyssynchrony, study cost, and time. Outcomes for each optimization method were compared. From June 2012 to December 2013, 19 patients enrolled. Mean age was 9.1 ± 4.3 years; 14 (74%) had structural heart disease. The mean time for optimization was shorter using ECG than ECHO (9 ± 1 min vs. 68 ± 13 min, P < 0.01). Mean cost for charges was $4,400 ± 700 less for ECG. No other outcome differed between groups. ECHO optimization of synchrony was not superior to ECG optimization in this pilot study. ECG optimization required less time and cost than ECHO optimization. © 2015 Wiley Periodicals, Inc.
Fabric-based active electrode design and fabrication for health monitoring clothing.
Merritt, Carey R; Nagle, H Troy; Grant, Edward
2009-03-01
In this paper, two versions of fabric-based active electrodes are presented to provide a wearable solution for ECG monitoring clothing. The first version of active electrode involved direct attachment of surface-mountable components to a textile screen-printed circuit using polymer thick film techniques. The second version involved attaching a much smaller, thinner, and less obtrusive interposer containing the active electrode circuitry to a simplified textile circuit. These designs explored techniques for electronic textile interconnection, chip attachment to textiles, and packaging of circuits on textiles for durability. The results from ECG tests indicate that the performance of each active electrode is comparable to commercial Ag/AgCl electrodes. The interposer-based active electrodes survived a five-cycle washing test while maintaining good signal integrity.
Kon, Nobuaki; Abe, Nozomu; Miyazaki, Masahiro; Mushiake, Hajime; Kazama, Itsuro
2018-04-18
By simply inducing burn injuries on the bullfrog heart, we previously reported a simple model of abnormal ST segment changes observed in human ischemic heart disease. In the present study, instead of inducing burn injuries, we partially exposed the surface of the frog heart to high-potassium (K + ) solution to create a concentration gradient of the extracellular K + within the myocardium. Dual recordings of ECG and the cardiac action potential demonstrated significant elevation of the ST segment and the resting membrane potential, indicating its usefulness as a simple model of heart injury. Additionally, from our results, Na + /K + -ATPase activity was thought to be primarily responsible for generating the K + concentration gradient and inducing the ST segment changes in ECG.
[Experience in the use of equipment for ECG system analysis in municipal polyclinics].
Bondarenko, A A
2006-01-01
Two electrocardiographs, an analog-digital electrocardiograph with preliminary analog filtering of signal and a smart cardiograph implemented as a PC-compatible device without preliminary analog filtering, are considered. Advantages and disadvantages of ECG systems based on artificial intelligence are discussed. ECG interpretation modes provided by the two electrocardiographs are considered. The reliability of automatic ECG interpretation is assessed. Problems of rational use of automated ECG processing systems are discussed.
Gil, Yeongjoon; Wu, Wanqing; Lee, Jungtae
2012-01-01
Background Human life can be further improved if diseases and disorders can be predicted before they become dangerous, by correctly recognizing signals from the human body, so in order to make disease detection more precise, various body-signals need to be measured simultaneously in a synchronized manner. Object This research aims at developing an integrated system for measuring four signals (EEG, ECG, respiration, and PPG) and simultaneously producing synchronous signals on a Wireless Body Sensor Network. Design We designed and implemented a platform for multiple bio-signals using Bluetooth communication. Results First, we developed a prototype board and verified the signals from the sensor platform using frequency responses and quantities. Next, we designed and implemented a lightweight, ultra-compact, low cost, low power-consumption Printed Circuit Board. Conclusion A synchronous multi-body sensor platform is expected to be very useful in telemedicine and emergency rescue scenarios. Furthermore, this system is expected to be able to analyze the mutual effects among body signals. PMID:23112605
Textile Concentric Ring Electrodes for ECG Recording Based on Screen-Printing Technology
Ye-Lin, Yiyao; Garcia-Casado, Javier
2018-01-01
Among many of the electrode designs used in electrocardiography (ECG), concentric ring electrodes (CREs) are one of the most promising due to their enhanced spatial resolution. Their development has undergone a great push due to their use in recent years; however, they are not yet widely used in clinical practice. CRE implementation in textiles will lead to a low cost, flexible, comfortable, and robust electrode capable of detecting high spatial resolution ECG signals. A textile CRE set has been designed and developed using screen-printing technology. This is a mature technology in the textile industry and, therefore, does not require heavy investments. Inks employed as conductive elements have been silver and a conducting polymer (poly (3,4-ethylenedioxythiophene) polystyrene sulfonate; PEDOT:PSS). Conducting polymers have biocompatibility advantages, they can be used with flexible substrates, and they are available for several printing technologies. CREs implemented with both inks have been compared by analyzing their electric features and their performance in detecting ECG signals. The results reveal that silver CREs present a higher average thickness and slightly lower skin-electrode impedance than PEDOT:PSS CREs. As for ECG recordings with subjects at rest, both CREs allowed the uptake of bipolar concentric ECG signals (BC-ECG) with signal-to-noise ratios similar to that of conventional ECG recordings. Regarding the saturation and alterations of ECGs captured with textile CREs caused by intentional subject movements, silver CREs presented a more stable response (fewer saturations and alterations) than those of PEDOT:PSS. Moreover, BC-ECG signals provided higher spatial resolution compared to conventional ECG. This improved spatial resolution was manifested in the identification of P1 and P2 waves of atrial activity in most of the BC-ECG signals. It can be concluded that textile silver CREs are more suitable than those of PEDOT:PSS for obtaining BC-ECG records. These developed textile electrodes bring the use of CREs closer to the clinical environment. PMID:29361722
Textile Concentric Ring Electrodes for ECG Recording Based on Screen-Printing Technology.
Lidón-Roger, José Vicente; Prats-Boluda, Gema; Ye-Lin, Yiyao; Garcia-Casado, Javier; Garcia-Breijo, Eduardo
2018-01-21
Among many of the electrode designs used in electrocardiography (ECG), concentric ring electrodes (CREs) are one of the most promising due to their enhanced spatial resolution. Their development has undergone a great push due to their use in recent years; however, they are not yet widely used in clinical practice. CRE implementation in textiles will lead to a low cost, flexible, comfortable, and robust electrode capable of detecting high spatial resolution ECG signals. A textile CRE set has been designed and developed using screen-printing technology. This is a mature technology in the textile industry and, therefore, does not require heavy investments. Inks employed as conductive elements have been silver and a conducting polymer (poly (3,4-ethylenedioxythiophene) polystyrene sulfonate; PEDOT:PSS). Conducting polymers have biocompatibility advantages, they can be used with flexible substrates, and they are available for several printing technologies. CREs implemented with both inks have been compared by analyzing their electric features and their performance in detecting ECG signals. The results reveal that silver CREs present a higher average thickness and slightly lower skin-electrode impedance than PEDOT:PSS CREs. As for ECG recordings with subjects at rest, both CREs allowed the uptake of bipolar concentric ECG signals (BC-ECG) with signal-to-noise ratios similar to that of conventional ECG recordings. Regarding the saturation and alterations of ECGs captured with textile CREs caused by intentional subject movements, silver CREs presented a more stable response (fewer saturations and alterations) than those of PEDOT:PSS. Moreover, BC-ECG signals provided higher spatial resolution compared to conventional ECG. This improved spatial resolution was manifested in the identification of P1 and P2 waves of atrial activity in most of the BC-ECG signals. It can be concluded that textile silver CREs are more suitable than those of PEDOT:PSS for obtaining BC-ECG records. These developed textile electrodes bring the use of CREs closer to the clinical environment.
Rossetti, Francesca; Pittiruti, Mauro; Lamperti, Massimo; Graziano, Ugo; Celentano, Davide; Capozzoli, Giuseppe
2015-01-01
The Italian Group for Venous Access Devices (GAVeCeLT) has carried out a multicenter study investigating the safety and accuracy of intracavitary electrocardiography (IC-ECG) in pediatric patients. We enrolled 309 patients (age 1 month-18 years) candidate to different central venous access devices (VAD) - 56 peripherally inserted central catheters (PICC), 178 short term centrally inserted central catheters (CICC), 65 long term VADs, 10 VADs for dialysis - in five Italian Hospitals. Three age groups were considered: A (<4 years, n = 157), B (4-11 years, n = 119), and C (12-18 years, n = 31). IC-ECG was applicable in 307 cases. The increase of the P wave on IC-ECG was detected in all cases but two. The tip of the catheter was positioned at the cavo-atrial junction (CAJ) (i.e., at the maximal height of the P wave on IC-ECG) and the position was checked during the procedure by fluoroscopy or chest x-ray, considering the CAJ at 1-2 cm (group A), 1.5-3 cm (group B), or 2-4 cm (group C) below the carina. There were no complications related to IC-ECG. The overall match between IC-ECG and x-ray was 95.8% (96.2% in group A, 95% in group B, and 96.8% in group C). In 95 cases, the IC-ECG was performed with a dedicated ECG monitor, specifically designed for IC-ECG (Nautilus, Romedex): in this group, the match between IC-ECG and x-ray was 98.8%. We conclude that the IC-ECG method is safe and accurate in the pediatric patients. The applicability of the method is 99.4% and its feasibility is 99.4%. The accuracy is 95.8% and even higher (98.8%) when using a dedicated ECG monitor.
A novel low-complexity digital filter design for wearable ECG devices
Mehrnia, Alireza
2017-01-01
Wearable and implantable Electrocardiograph (ECG) devices are becoming prevailing tools for continuous real-time personal health monitoring. The ECG signal can be contaminated by various types of noise and artifacts (e.g., powerline interference, baseline wandering) that must be removed or suppressed for accurate ECG signal processing. Limited device size, power consumption and cost are critical issues that need to be carefully considered when designing any portable health monitoring device, including a battery-powered ECG device. This work presents a novel low-complexity noise suppression reconfigurable finite impulse response (FIR) filter structure for wearable ECG and heart monitoring devices. The design relies on a recently introduced optimally-factored FIR filter method. The new filter structure and several of its useful features are presented in detail. We also studied the hardware complexity of the proposed structure and compared it with the state-of-the-art. The results showed that the new ECG filter has a lower hardware complexity relative to the state-of-the-art ECG filters. PMID:28384272
A cloud computing based 12-lead ECG telemedicine service
2012-01-01
Background Due to the great variability of 12-lead ECG instruments and medical specialists’ interpretation skills, it remains a challenge to deliver rapid and accurate 12-lead ECG reports with senior cardiologists’ decision making support in emergency telecardiology. Methods We create a new cloud and pervasive computing based 12-lead Electrocardiography (ECG) service to realize ubiquitous 12-lead ECG tele-diagnosis. Results This developed service enables ECG to be transmitted and interpreted via mobile phones. That is, tele-consultation can take place while the patient is on the ambulance, between the onsite clinicians and the off-site senior cardiologists, or among hospitals. Most importantly, this developed service is convenient, efficient, and inexpensive. Conclusions This cloud computing based ECG tele-consultation service expands the traditional 12-lead ECG applications onto the collaboration of clinicians at different locations or among hospitals. In short, this service can greatly improve medical service quality and efficiency, especially for patients in rural areas. This service has been evaluated and proved to be useful by cardiologists in Taiwan. PMID:22838382
Designing ECG-based physical unclonable function for security of wearable devices.
Shihui Yin; Chisung Bae; Sang Joon Kim; Jae-Sun Seo
2017-07-01
As a plethora of wearable devices are being introduced, significant concerns exist on the privacy and security of personal data stored on these devices. Expanding on recent works of using electrocardiogram (ECG) as a modality for biometric authentication, in this work, we investigate the possibility of using personal ECG signals as the individually unique source for physical unclonable function (PUF), which eventually can be used as the key for encryption and decryption engines. We present new signal processing and machine learning algorithms that learn and extract maximally different ECG features for different individuals and minimally different ECG features for the same individual over time. Experimental results with a large 741-subject in-house ECG database show that the distributions of the intra-subject (same person) Hamming distance of extracted ECG features and the inter-subject Hamming distance have minimal overlap. 256-b random numbers generated from the ECG features of 648 (out of 741) subjects pass the NIST randomness tests.
Variable threshold method for ECG R-peak detection.
Kew, Hsein-Ping; Jeong, Do-Un
2011-10-01
In this paper, a wearable belt-type ECG electrode worn around the chest by measuring the real-time ECG is produced in order to minimize the inconvenient in wearing. ECG signal is detected using a potential instrument system. The measured ECG signal is transmits via an ultra low power consumption wireless data communications unit to personal computer using Zigbee-compatible wireless sensor node. ECG signals carry a lot of clinical information for a cardiologist especially the R-peak detection in ECG. R-peak detection generally uses the threshold value which is fixed. There will be errors in peak detection when the baseline changes due to motion artifacts and signal size changes. Preprocessing process which includes differentiation process and Hilbert transform is used as signal preprocessing algorithm. Thereafter, variable threshold method is used to detect the R-peak which is more accurate and efficient than fixed threshold value method. R-peak detection using MIT-BIH databases and Long Term Real-Time ECG is performed in this research in order to evaluate the performance analysis.
Eyewitness to history: Landmarks in the development of computerized electrocardiography.
Rautaharju, Pentti M
2016-01-01
The use of digital computers for ECG processing was pioneered in the early 1960s by two immigrants to the US, Hubert Pipberger, who initiated a collaborative VA project to collect an ECG-independent Frank lead data base, and Cesar Caceres at NIH who selected for his ECAN program standard 12-lead ECGs processed as single leads. Ray Bonner in the early 1970s placed his IBM 5880 program in a cart to print ECGs with interpretation, and computer-ECG programs were developed by Telemed, Marquette, HP-Philips and Mortara. The "Common Standards for quantitative Electrocardiography (CSE)" directed by Jos Willems evaluated nine ECG programs and eight cardiologists in clinically-defined categories. The total accuracy by a representative "average" cardiologist (75.5%) was 5.8% higher than that of the average program (69.7, p<0.001). Future comparisons of computer-based and expert reader performance are likely to show evolving results with continuing improvement of computer-ECG algorithms and changing expertise of ECG interpreters. Copyright © 2016 Elsevier Inc. All rights reserved.
A cloud computing based 12-lead ECG telemedicine service.
Hsieh, Jui-Chien; Hsu, Meng-Wei
2012-07-28
Due to the great variability of 12-lead ECG instruments and medical specialists' interpretation skills, it remains a challenge to deliver rapid and accurate 12-lead ECG reports with senior cardiologists' decision making support in emergency telecardiology. We create a new cloud and pervasive computing based 12-lead Electrocardiography (ECG) service to realize ubiquitous 12-lead ECG tele-diagnosis. This developed service enables ECG to be transmitted and interpreted via mobile phones. That is, tele-consultation can take place while the patient is on the ambulance, between the onsite clinicians and the off-site senior cardiologists, or among hospitals. Most importantly, this developed service is convenient, efficient, and inexpensive. This cloud computing based ECG tele-consultation service expands the traditional 12-lead ECG applications onto the collaboration of clinicians at different locations or among hospitals. In short, this service can greatly improve medical service quality and efficiency, especially for patients in rural areas. This service has been evaluated and proved to be useful by cardiologists in Taiwan.
A novel low-complexity digital filter design for wearable ECG devices.
Asgari, Shadnaz; Mehrnia, Alireza
2017-01-01
Wearable and implantable Electrocardiograph (ECG) devices are becoming prevailing tools for continuous real-time personal health monitoring. The ECG signal can be contaminated by various types of noise and artifacts (e.g., powerline interference, baseline wandering) that must be removed or suppressed for accurate ECG signal processing. Limited device size, power consumption and cost are critical issues that need to be carefully considered when designing any portable health monitoring device, including a battery-powered ECG device. This work presents a novel low-complexity noise suppression reconfigurable finite impulse response (FIR) filter structure for wearable ECG and heart monitoring devices. The design relies on a recently introduced optimally-factored FIR filter method. The new filter structure and several of its useful features are presented in detail. We also studied the hardware complexity of the proposed structure and compared it with the state-of-the-art. The results showed that the new ECG filter has a lower hardware complexity relative to the state-of-the-art ECG filters.
Nilsson, Ulf; Blomberg, Anders; Johansson, Bengt; Backman, Helena; Eriksson, Berne; Lindberg, Anne
2017-01-01
An abstract, including parts of the results, has been presented at an oral session at the European Respiratory Society International Conference, London, UK, September 2016. Cardiovascular comorbidity contributes to increased mortality among subjects with COPD. However, the prognostic value of ECG abnormalities in COPD has rarely been studied in population-based surveys. To assess the impact of ischemic ECG abnormalities (I-ECG) on mortality among individuals with COPD, compared to subjects with normal lung function (NLF), in a population-based study. During 2002-2004, all subjects with FEV 1 /VC <0.70 (COPD, n=993) were identified from population-based cohorts, together with age- and sex-matched referents without COPD. Re-examination in 2005 included interview, spirometry, and 12-lead ECG in COPD (n=635) and referents [n=991, whereof 786 had NLF]. All ECGs were Minnesota-coded. Mortality data were collected until December 31, 2010. I-ECG was equally common in COPD and NLF. The 5-year cumulative mortality was higher among subjects with I-ECG in both groups (29.6% vs 10.6%, P <0.001 and 17.1% vs 6.6%, P <0.001). COPD, but not NLF, with I-ECG had increased risk for death assessed as the mortality risk ratio [95% confidence interval (CI)] when compared with NLF without I-ECG, 2.36 (1.45-3.85) and 1.65 (0.94-2.90) when adjusted for common confounders. When analyzed separately among the COPD cohort, the increased risk for death associated with I-ECG persisted after adjustment for FEV 1 % predicted, 1.89 (1.20-2.99). A majority of those with I-ECG had no previously reported heart disease (74.2% in NLF and 67.3% in COPD) and the pattern was similar among them. I-ECG was associated with an increased risk for death in COPD, independent of common confounders and disease severity. I-ECG was of prognostic value also among those without previously known heart disease.
Benchimol-Barbosa, P.R.; Tura, B.R.; Barbosa, E.C.; Kantharia, B.K.
2013-01-01
The SEARCH-RIO study prospectively investigated electrocardiogram (ECG)-derived variables in chronic Chagas disease (CCD) as predictors of cardiac death and new onset ventricular tachycardia (VT). Cardiac arrhythmia is a major cause of death in CCD, and electrical markers may play a significant role in risk stratification. One hundred clinically stable outpatients with CCD were enrolled in this study. They initially underwent a 12-lead resting ECG, signal-averaged ECG, and 24-h ambulatory ECG. Abnormal Q-waves, filtered QRS duration, intraventricular electrical transients (IVET), 24-h standard deviation of normal RR intervals (SDNN), and VT were assessed. Echocardiograms assessed left ventricular ejection fraction. Predictors of cardiac death and new onset VT were identified in a Cox proportional hazard model. During a mean follow-up of 95.3 months, 36 patients had adverse events: 22 new onset VT (mean±SD, 18.4±4‰/year) and 20 deaths (26.4±1.8‰/year). In multivariate analysis, only Q-wave (hazard ratio, HR=6.7; P<0.001), VT (HR=5.3; P<0.001), SDNN<100 ms (HR=4.0; P=0.006), and IVET+ (HR=3.0; P=0.04) were independent predictors of the composite endpoint of cardiac death and new onset VT. A prognostic score was developed by weighting points proportional to beta coefficients and summing-up: Q-wave=2; VT=2; SDNN<100 ms=1; IVET+=1. Receiver operating characteristic curve analysis optimized the cutoff value at >1. In 10,000 bootstraps, the C-statistic of this novel score was non-inferior to a previously validated (Rassi) score (0.89±0.03 and 0.80±0.05, respectively; test for non-inferiority: P<0.001). In CCD, surface ECG-derived variables are predictors of cardiac death and new onset VT. PMID:24270912
Aktas, I; Nazikoglu, C; Kepez, A; Ozkan, F U; Kaysin, M Y; Akpinar, P; Dogan, Z; Ileri, C; Saymaz, S; Erdogan, O
2016-12-01
We evaluated the effects of zoledronic acid (ZA) therapy on electrocardiographic (ECG) parameters for the first time in the literature. Measurements were performed on ECGs obtained before and after ZA infusion on the same day as well as 1 month after the infusion. ZA infusion did not have any short- or long-term effect on any parameter that might be associated with the tendency for atrial fibrillation or ventricular arrhythmias. The aim of the present study was to evaluate the early and late effects of ZA therapy on ECG parameters which might be associated with the tendency for atrial and ventricular arrhythmias. Consecutive patients with osteoporosis who were admitted to our clinic between December 2013 and December 2014 and who were scheduled to receive ZA infusion constituted our study population. Twelve-lead surface ECGs were obtained from all patients before and after ZA infusion on the same day as well as 1 month after the infusion. All ECG parameters were measured and compared with each other for each patient. Data of 100 patients were used in the analysis (9 male; 70.5 ± 11.6 years of age). There were no significant differences between repeated measurements regarding pmax, pmin, and p dispersion values. QT max and QT min values were significantly increased after infusion; however, there were no significant changes in QT dispersion, Tp-e interval, and Tp-e dispersion values. ZA infusion did not affect P wave dispersion both at the immediate post-infusion period and 1 month after infusion. QT values were significantly increased early after ZA infusion; however, there were no significant differences in parameters reflecting disparity of ventricular recovery times and transmural dispersion of ventricular repolarization. Based on these observations, it may be suggested that ZA infusion did not have any short- or long-term effect on any parameter that might be associated with the tendency for atrial fibrillation or ventricular arrhythmias.
Weinstock, Jonathan; Bader, Yousef H; Maron, Martin S; Rowin, Ethan J; Link, Mark S
2016-02-12
The subcutaneous implantable cardioverter defibrillator (S-ICD) has been developed to avert risks associated with transvenous defibrillator leads. The technology is attractive for younger patients, such as those with hypertrophic cardiomyopathy (HCM). However, there are limited data on S-ICD use in HCM. HCM patients identified at risk for sudden death were considered for S-ICD implantation. Patients were screened for potential oversensing by surface electrocardiography (ECG). At implant, defibrillation threshold (DFT) testing was performed at 65, 50, and 35 joules (J). Twenty-seven patients were considered for S-ICD implantation, and after screening, 23 (85%) remained eligible. The presence of a bundle branch block was associated with screening failure, whereas elevated body mass index (BMI) showed a trend toward association. One patient passed screening at rest, but failed with an ECG obtained after exercise. At implant, the S-ICD terminated ventricular fibrillation (VF) with a 65J shock in all 15 implanted patients and a 50J shock was successful in 12 of 15. A 35J shock terminated VF in 10 of 12 patients. DFT failure at 50 J was associated with a higher BMI. There were no appropriate shocks after a median follow-up of 17.5 (3-35) months, and 1 patient received an inappropriate shock attributable to a temporary reduction in QRS amplitude while bending forward, resulting in oversensing, despite successful screening. In a high-risk HCM cohort without a pacing indication referred for consideration of an ICD, the majority were eligible for S-ICD. The S-ICD is effective at recognizing and terminating VF at implant with a wide safety margin. © 2016 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.
On epicardial potential reconstruction using regularization schemes with the L1-norm data term.
Shou, Guofa; Xia, Ling; Liu, Feng; Jiang, Mingfeng; Crozier, Stuart
2011-01-07
The electrocardiographic (ECG) inverse problem is ill-posed and usually solved by regularization schemes. These regularization methods, such as the Tikhonov method, are often based on the L2-norm data and constraint terms. However, L2-norm-based methods inherently provide smoothed inverse solutions that are sensitive to measurement errors, and also lack the capability of localizing and distinguishing multiple proximal cardiac electrical sources. This paper presents alternative regularization schemes employing the L1-norm data term for the reconstruction of epicardial potentials (EPs) from measured body surface potentials (BSPs). During numerical implementation, the iteratively reweighted norm algorithm was applied to solve the L1-norm-related schemes, and measurement noises were considered in the BSP data. The proposed L1-norm data term-based regularization schemes (with L1 and L2 penalty terms of the normal derivative constraint (labelled as L1TV and L1L2)) were compared with the L2-norm data terms (Tikhonov with zero-order and normal derivative constraints, labelled as ZOT and FOT, and the total variation method labelled as L2TV). The studies demonstrated that, with averaged measurement noise, the inverse solutions provided by the L1L2 and FOT algorithms have less relative error values. However, when larger noise occurred in some electrodes (for example, signal lost during measurement), the L1TV and L1L2 methods can obtain more accurate EPs in a robust manner. Therefore the L1-norm data term-based solutions are generally less perturbed by measurement noises, suggesting that the new regularization scheme is promising for providing practical ECG inverse solutions.
Blackshear, J L; Safford, R E; Pearce, L A
1996-04-01
Reduced left atrial appendage velocity (LAAV) has been identified as a marker for thromboembolism in patients with atrial fibrillation. It was postulated that electrocardiographic (ECG) F-wave amplitude would correlate with LAAV, and inversely with the risk of thromboembolism in patients with atrial fibrillation. In all, 53 patients with nonrheumatic (NRAF) and 7 patients with rheumatic (RAF) atrial fibrillation underwent assessment of maximum LAAV, which was correlated to the maximum ECG F-wave voltage from lead V1 (F(max)). In 450 NRAF patients on neither aspirin nor warfarin, the relationship between F(max) and thromboembolic risk was assessed over an average follow-up of 1.3 years. F(max) did not correlate with LAAV (r = 0.2, p = 0.07). Patients with intermittent atrial fibrillation (n = 123) had smaller F(max) amplitude than patients with constant atrial fibrillation (n = 327) (mean 0.73 vs. 0.88 mV-1, p = 0.001). F(max) amplitude was not related to a history of hypertension, systolic blood pressure, duration of NRAF, abnormal transthoracic echocardiographic left ventricular (LV) systolic function or left atrial (LA) diameter. There was a strong trend for increased LV mass being related to smaller F(max) amplitude after adjusting for body surface area (p = 0.06). F(max) amplitude was not correlated with risk of embolic events, including only those events presumed by a panel of case-blinded neurologists to be cardioembolic. F(max) amplitude in NRAF is smaller in patients with intermittent versus constant AF. It does not correlate with LAAV, LA size, increased LV mass, or systolic dysfunction, hypertension, or risk of embolism. Therefore, F(max) amplitude may not be used as a surrogate for LAAV, or as a measure of thromboembolic risk in NRAF.
The history, hotspots, and trends of electrocardiogram.
Yang, Xiang-Lin; Liu, Guo-Zhen; Tong, Yun-Hai; Yan, Hong; Xu, Zhi; Chen, Qi; Liu, Xiang; Zhang, Hong-Hao; Wang, Hong-Bo; Tan, Shao-Hua
2015-07-01
The electrocardiogram (ECG) has broad applications in clinical diagnosis and prognosis of cardiovascular disease. Many researchers have contributed to its progressive development. To commemorate those pioneers, and to better study and promote the use of ECG, we reviewed and present here a systematic introduction about the history, hotspots, and trends of ECG. In the historical part, information including the invention, improvement, and extensive applications of ECG, such as in long QT syndrome (LQTS), angina, and myocardial infarction (MI), are chronologically presented. New technologies and applications from the 1990s are also introduced. In the second part, we use the bibliometric analysis method to analyze the hotspots in the field of ECG-related research. By using total citations and year-specific total citations as our main criteria, four key hotspots in ECG-related research were identified from 11 articles, including atrial fibrillation, LQTS, angina and MI, and heart rate variability. Recent studies in those four areas are also reported. In the final part, we discuss the future trends concerning ECG-related research. The authors believe that improvement of the ECG instrumentation, big data mining for ECG, and the accuracy of diagnosis and application will be areas of continuous concern.
Case report: an electrocardiogram of spontaneous pneumothorax mimicking arm lead reversal.
Wieters, J Scott; Carlin, Joseph P; Morris, Andrew
2014-05-01
There are several previously documented findings for electrocardiograms (ECGs) of spontaneous pneumothorax. These findings include axis deviation, T-wave inversion, and right bundle branch block. When an ECG has the arm leads incorrectly placed, the ECG will display right axis deviation and inversion of the P waves in lead I. There have been no previously published ECGs of spontaneous pneumothorax that have shown the same findings as reversal of the limb leads of an ECG. A possible finding of spontaneous pneumothorax is an identical finding to that of an ECG that has been flagged for limb lead reversal. A patient presented in the emergency setting with acute chest pain and shortness of breath caused by a tension pneumothorax. An ECG was administered; findings indicated reversal of the arm leads (right axis deviation and inverted P waves in lead I), but there was no actual limb lead reversal present. ECG findings resolved upon resolution of the pneumothorax. If a patient presents with chest pain and shortness of breath, and the patient's ECG is flagged for limb lead reversal despite being set up correctly, the physician should raise clinical suspicion for a possible spontaneous pneumothorax. Copyright © 2014 Elsevier Inc. All rights reserved.
The history, hotspots, and trends of electrocardiogram
Yang, Xiang-Lin; Liu, Guo-Zhen; Tong, Yun-Hai; Yan, Hong; Xu, Zhi; Chen, Qi; Liu, Xiang; Zhang, Hong-Hao; Wang, Hong-Bo; Tan, Shao-Hua
2015-01-01
The electrocardiogram (ECG) has broad applications in clinical diagnosis and prognosis of cardiovascular disease. Many researchers have contributed to its progressive development. To commemorate those pioneers, and to better study and promote the use of ECG, we reviewed and present here a systematic introduction about the history, hotspots, and trends of ECG. In the historical part, information including the invention, improvement, and extensive applications of ECG, such as in long QT syndrome (LQTS), angina, and myocardial infarction (MI), are chronologically presented. New technologies and applications from the 1990s are also introduced. In the second part, we use the bibliometric analysis method to analyze the hotspots in the field of ECG-related research. By using total citations and year-specific total citations as our main criteria, four key hotspots in ECG-related research were identified from 11 articles, including atrial fibrillation, LQTS, angina and MI, and heart rate variability. Recent studies in those four areas are also reported. In the final part, we discuss the future trends concerning ECG-related research. The authors believe that improvement of the ECG instrumentation, big data mining for ECG, and the accuracy of diagnosis and application will be areas of continuous concern. PMID:26345622
Exploring the Relationship Between Eye Movements and Electrocardiogram Interpretation Accuracy
NASA Astrophysics Data System (ADS)
Davies, Alan; Brown, Gavin; Vigo, Markel; Harper, Simon; Horseman, Laura; Splendiani, Bruno; Hill, Elspeth; Jay, Caroline
2016-12-01
Interpretation of electrocardiograms (ECGs) is a complex task involving visual inspection. This paper aims to improve understanding of how practitioners perceive ECGs, and determine whether visual behaviour can indicate differences in interpretation accuracy. A group of healthcare practitioners (n = 31) who interpret ECGs as part of their clinical role were shown 11 commonly encountered ECGs on a computer screen. The participants’ eye movement data were recorded as they viewed the ECGs and attempted interpretation. The Jensen-Shannon distance was computed for the distance between two Markov chains, constructed from the transition matrices (visual shifts from and to ECG leads) of the correct and incorrect interpretation groups for each ECG. A permutation test was then used to compare this distance against 10,000 randomly shuffled groups made up of the same participants. The results demonstrated a statistically significant (α 0.05) result in 5 of the 11 stimuli demonstrating that the gaze shift between the ECG leads is different between the groups making correct and incorrect interpretations and therefore a factor in interpretation accuracy. The results shed further light on the relationship between visual behaviour and ECG interpretation accuracy, providing information that can be used to improve both human and automated interpretation approaches.
A wearable 12-lead ECG acquisition system with fabric electrodes.
Haoshi Zhang; Lan Tian; Huiyang Lu; Ming Zhou; Haiqing Zou; Peng Fang; Fuan Yao; Guanglin Li
2017-07-01
Continuous electrocardiogram (ECG) monitoring is significant for prevention of heart disease and is becoming an important part of personal and family health care. In most of the existing wearable solutions, conventional metal sensors and corresponding chips are simply integrated into clothes and usually could only collect few leads of ECG signals that could not provide enough information for diagnosis of cardiac diseases such as arrhythmia and myocardial ischemia. In this study, a wearable 12-lead ECG acquisition system with fabric electrodes was developed and could simultaneously process 12 leads of ECG signals. By integrating the fabric electrodes into a T-shirt, the wearable system would provide a comfortable and convenient user interface for ECG recording. For comparison, the proposed fabric electrode and the gelled traditional metal electrodes were used to collect ECG signals on a subject, respectively. The approximate entropy (ApEn) of ECG signals from both types of electrodes were calculated. The experimental results show that the fabric electrodes could achieve similar performance as the gelled metal electrodes. This preliminary work has demonstrated that the developed ECG system with fabric electrodes could be utilized for wearable health management and telemedicine applications.
Moustafa, Abdelmoniem; Abi-Saleh, Bernard; El-Baba, Mohammad; Hamoui, Omar; AlJaroudi, Wael
2016-02-01
In patients presenting with non-ST-elevation myocardial infarction (NSTEMI), left anterior descending (LAD) coronary artery and three-vessel disease are the most commonly encountered culprit lesions in the presence of ST depression, while one third of patients with left circumflex (LCX) artery related infarction have normal ECG. We sought to determine the predictors of presence of culprit lesion in NSTEMI patients based on ECG, echocardiographic, and clinical characteristics. Patients admitted to the coronary care unit with the diagnosis of NSTEMI between June 2012 and December 2013 were retrospectively identified. Admission ECG was interpreted by an electrophysiologist that was blinded to the result of the coronary angiogram. Patients were dichotomized into either normal or abnormal ECG group. The primary endpoint was presence of culprit lesion. Secondary endpoints included length of stay, re-hospitalization within 60 days, and in-hospital mortality. A total of 118 patients that were identified; 47 with normal and 71 with abnormal ECG. At least one culprit lesion was identified in 101 patients (86%), and significantly more among those with abnormal ECG (91.5% vs. 76.6%, P=0.041).The LAD was the most frequently detected culprit lesion in both groups. There was a higher incidence of two and three-vessel disease in the abnormal ECG group (P=0.041).On the other hand, there was a trend of higher LCX involvement (25% vs. 13.8%, P=0.18) and more normal coronary arteries in the normal ECG group (23.4% vs. 8.5%, P=0.041). On multivariate analysis, prior history of coronary artery disease (CAD) [odds ratio (OR) 6.4 (0.8-52)], male gender [OR 5.0 (1.5-17)], and abnormal admission ECG [OR 3.6 (1.12-12)], were independent predictors of a culprit lesion. There was no difference in secondary endpoints between those with normal and abnormal ECG. Among patients presenting with NSTEMI, prior history of CAD, male gender and abnormal admission ECG were independent predictors of a culprit lesion. An abnormal ECG was significantly associated with two and three-vessel disease, while normal ECG was more associated with LCX involvement or normal angiogram. Admission ECG did not impact secondary outcomes.
Experimental evaluations of wearable ECG monitor.
Ha, Kiryong; Kim, Youngsung; Jung, Junyoung; Lee, Jeunwoo
2008-01-01
Healthcare industry is changing with ubiquitous computing environment and wearable ECG measurement is one of the most popular approaches in this healthcare industry. Reliability and performance of healthcare device is fundamental issue for widespread adoptions, and interdisciplinary perspectives of wearable ECG monitor make this more difficult. In this paper, we propose evaluation criteria considering characteristic of both ECG measurement and ubiquitous computing. With our wearable ECG monitors, various levels of experimental analysis are performed based on evaluation strategy.
Electrocardiographic interpretation skills of cardiology residents: are they competent?
Sibbald, Matthew; Davies, Edward G; Dorian, Paul; Yu, Eric H C
2014-12-01
Achieving competency at electrocardiogram (ECG) interpretation among cardiology subspecialty residents has traditionally focused on interpreting a target number of ECGs during training. However, there is little evidence to support this approach. Further, there are no data documenting the competency of ECG interpretation skills among cardiology residents, who become de facto the gold standard in their practice communities. We tested 29 Cardiology residents from all 3 years in a large training program using a set of 20 ECGs collected from a community cardiology practice over a 1-month period. Residents interpreted half of the ECGs using a standard analytic framework, and half using their own approach. Residents were scored on the number of correct and incorrect diagnoses listed. Overall diagnostic accuracy was 58%. Of 6 potentially life-threatening diagnoses, residents missed 36% (123 of 348) including hyperkalemia (81%), long QT (52%), complete heart block (35%), and ventricular tachycardia (19%). Residents provided additional inappropriate diagnoses on 238 ECGs (41%). Diagnostic accuracy was similar between ECGs interpreted using an analytic framework vs ECGs interpreted without an analytic framework (59% vs 58%; F(1,1333) = 0.26; P = 0.61). Cardiology resident proficiency at ECG interpretation is suboptimal. Despite the use of an analytic framework, there remain significant deficiencies in ECG interpretation among Cardiology residents. A more systematic method of addressing these important learning gaps is urgently needed. Copyright © 2014 Canadian Cardiovascular Society. Published by Elsevier Inc. All rights reserved.
A survey of paediatricians on the use of electrocardiogram for pre-participation sports screening.
Patel, Angira; Webster, Gregory; Ward, Kendra; Lantos, John
2017-07-01
Aim The aim of the present study was to determine general paediatrician knowledge, practices, and attitudes towards electrocardiogram (ECG) screening in school athletes during pre-participation screening exam (PPSE). Paediatricians affiliated with a tertiary children's hospital completed a survey about ECGs for PPSE. In total, 205/498 (41%) responded; 92% of the paediatricians did not include an ECG as part of PPSE; 56% were aware of a case in which a student athlete in their own community had died of sudden unexplained death; 4% had an athlete in their practice die. Only 16% of paediatricians perform all 12 American Heart Association recommended elements of the PPSE. If any of these screening elements are abnormal, 69% obtain an ECG, 36% an echocardiogram, and 30% restrict patients from sports activity; 73% of them refer the patient to a cardiologist. Most of the general paediatricians surveyed did not currently perform ECGs for PPSE. In addition, there was a low rate of adherence to performing the 12 screening elements recommended by the American Heart Association. They have trouble obtaining timely, accurate ECG interpretations, worry about potential unnecessary exercise restrictions, and cost-effectiveness. The practical hurdles to ECG implementation emphasise the need for a fresh look at PPSE, and not just ECG screening. Improvements in ECG performance/interpretation would be necessary for ECGs to be a useful part of PPSE.
MS-QI: A Modulation Spectrum-Based ECG Quality Index for Telehealth Applications.
Tobon V, Diana P; Falk, Tiago H; Maier, Martin
2016-08-01
As telehealth applications emerge, the need for accurate and reliable biosignal quality indices has increased. One typical modality used in remote patient monitoring is the electrocardiogram (ECG), which is inherently susceptible to several different noise sources, including environmental (e.g., powerline interference), experimental (e.g., movement artifacts), and physiological (e.g., muscle and breathing artifacts). Accurate measurement of ECG quality can allow for automated decision support systems to make intelligent decisions about patient conditions. This is particularly true for in-home monitoring applications, where the patient is mobile and the ECG signal can be severely corrupted by movement artifacts. In this paper, we propose an innovative ECG quality index based on the so-called modulation spectral signal representation. The representation quantifies the rate of change of ECG spectral components, which are shown to be different from the rate of change of typical ECG noise sources. The proposed modulation spectral-based quality index, MS-QI, was tested on 1) synthetic ECG signals corrupted by varying levels of noise, 2) single-lead recorded data using the Hexoskin garment during three activity levels (sitting, walking, running), 3) 12-lead recorded data using conventional ECG machines (Computing in Cardiology 2011 dataset), and 4) two-lead ambulatory ECG recorded from arrhythmia patients (MIT-BIH Arrhythmia Database). Experimental results showed the proposed index outperforming two conventional benchmark quality measures, particularly in the scenarios involving recorded data in real-world environments.
Individual Biometric Identification Using Multi-Cycle Electrocardiographic Waveform Patterns.
Lee, Wonki; Kim, Seulgee; Kim, Daeeun
2018-03-28
The electrocardiogram (ECG) waveform conveys information regarding the electrical property of the heart. The patterns vary depending on the individual heart characteristics. ECG features can be potentially used for biometric recognition. This study presents a new method using the entire ECG waveform pattern for matching and demonstrates that the approach can potentially be employed for individual biometric identification. Multi-cycle ECG signals were assessed using an ECG measuring circuit, and three electrodes can be patched on the wrists or fingers for considering various measurements. For biometric identification, our-fold cross validation was used in the experiments for assessing how the results of a statistical analysis will generalize to an independent data set. Four different pattern matching algorithms, i.e., cosine similarity, cross correlation, city block distance, and Euclidean distances, were tested to compare the individual identification performances with a single channel of ECG signal (3-wire ECG). To evaluate the pattern matching for biometric identification, the ECG recordings for each subject were partitioned into training and test set. The suggested method obtained a maximum performance of 89.9% accuracy with two heartbeats of ECG signals measured on the wrist and 93.3% accuracy with three heartbeats for 55 subjects. The performance rate with ECG signals measured on the fingers improved up to 99.3% with two heartbeats and 100% with three heartbeats of signals for 20 subjects.
Smartphone ECG for evaluation of STEMI: results of the ST LEUIS Pilot Study.
Muhlestein, Joseph Boone; Le, Viet; Albert, David; Moreno, Fidela Ll; Anderson, Jeffrey L; Yanowitz, Frank; Vranian, Robert B; Barsness, Gregory W; Bethea, Charles F; Severance, Harry W; Ramo, Barry; Pierce, John; Barbagelata, Alejandro; Muhlestein, Joseph Brent
2015-01-01
12-lead ECG is a critical component of initial evaluation of cardiac ischemia, but has traditionally been limited to large, dedicated equipment in medical care environments. Smartphones provide a potential alternative platform for the extension of ECG to new care settings and to improve timeliness of care. To gain experience with smartphone electrocardiography prior to designing a larger multicenter study evaluating standard 12-lead ECG compared to smartphone ECG. 6 patients for whom the hospital STEMI protocol was activated were evaluated with traditional 12-lead ECG followed immediately by a smartphone ECG using right (VnR) and left (VnL) limb leads for precordial grounding. The AliveCor™ Heart Monitor was utilized for this study. All tracings were taken prior to catheterization or immediately after revascularization while still in the catheterization laboratory. The smartphone ECG had excellent correlation with the gold standard 12-lead ECG in all patients. Four out of six tracings were judged to meet STEMI criteria on both modalities as determined by three experienced cardiologists, and in the remaining two, consensus indicated a non-STEMI ECG diagnosis. No significant difference was noted between VnR and VnL. Smartphone based electrocardiography is a promising, developing technology intended to increase availability and speed of electrocardiographic evaluation. This study confirmed the potential of a smartphone ECG for evaluation of acute ischemia and the feasibility of studying this technology further to define the diagnostic accuracy, limitations and appropriate use of this new technology. Copyright © 2015 Elsevier Inc. All rights reserved.
Wess, G; Schulze, A; Geraghty, N; Hartmann, K
2010-01-01
Ventricular premature contractions (VPCs) are common in the occult stage of cardiomyopathy in Doberman Pinschers. Although the gold standard for detecting arrhythmia is the 24-hour ambulatory electrocardiography (ECG) (Holter), this method is more expensive, time-consuming and often not as readily available as common ECG. Comparison of 5-minute ECGs with Holter examinations. Eight hundred and seventy-five 5-minute ECGs and Holter examinations of 431 Doberman Pinschers. Each examination included a 5-minute ECG and Holter examination. A cut-off value of > 100 VPCs/24 hours using Holter was considered diagnostic for the presence of cardiomyopathy. Statistical evaluation included calculation of sensitivity, specificity, positive predictive value, and negative predictive value. Holter examinations revealed > 100 VPCs/24 hours in 204/875 examinations. At least 1 VPC during a 5-minute ECG was detected in 131 (64.2%) of these 204 examinations. No VPCs were found in the 5-minute ECG in 73 (35.8%) examinations of affected Doberman Pinschers. A 5-minute ECG with at least 1 VPC as cut-off had a sensitivity of 64.2%, a specificity of 96.7%, a positive predictive value of 85.6% and a negative predictive value of 89.9% for the presence of > 100 VPCs/24 hours. A 5-minute ECG is a rather insensitive method for detecting arrhythmias in Doberman Pinschers. However, the occurrence of at least 1 VPC in 5 minutes strongly warrants further examination of the dog, because specificity (96.7%) and positive predictive value (85.6%) are high and could suggest occult cardiomyopathy.
Tang, Pei-Hua; Du, Ben-Jun; Fang, Xiang-Ming; Hu, Xiao-Yun; Qian, Ping-Yan; Gao, Quan-Sheng
2016-11-22
To assess the application value of submillisievert coronary CT angiography (CCTA) in patients with a high heart rate (HR) acquired with adaptive prospective ECG-triggered sequence acquisition and iterative reconstruction on the secondary generation dual-source CT. A total of 120 consecutive high-HR patients suspected with coronary artery disease underwent CCTA and invasive coronary angiography (ICA) within two weeks. Patients were randomly assigned into three groups: group A (n = 40), where the patients underwent retrospectively ECG-triggered acquisition CCTA at 100 kVp; group B (n = 40), where the patients received adaptive prospective ECG-triggered sequence acquisition at 100 kVp; and group C (n = 40), where the patients performed adaptive prospective ECG-triggered sequence acquisition at 80 kVp with iterative reconstruction. The mean CT values, signal noise ratios (SNR) and contrast noise ratios (CNR) in the ascending aorta and coronary arteries of the three groups were measured and compared. The image quality and radiation dose among the three groups were compared. The consistency of displaying the coronary stenosis of each group was assessed compared with the results of ICA as the gold standard. There was no significant difference in gender, age and body mass index (BMI) (all P > 0.05). The mean attenuations, SNRs and CNRs in the ascending aorta and coronary artery were not significantly different between group A and group B (P > 0.05). The mean attenuations of group C were significantly higher than group A and group B (P < 0.01), but the image noise and CNR were significantly lower in group C (P < 0.01). The number of appreciable segments among the three groups was not significantly different on a per-segment and per-vessel basis (P > 0.05). The subjective image quality among the three groups was not significantly different (P > 0.05). With the ICA result as a reference standard, there was good consistency in the evaluation of the coronary stenosis degree between CCTA and ICA (r > 0.75), as well as in the assessment of the coronary stenosis rate using the Bland- Altman analysis. The mean radiation dose in group B was half of that in group A. Moreover, the mean radiation dose in group C was less than one sixth of that in group A and less than 1 mSv (0.7±0.2 mSv). For patients with high HR, adaptive prospective ECG-triggered sequence acquisition on the FLASH dual-source CT results in equal image quality and half of the radiation dose reduction compared with retrospectively ECG-triggered spiral acquisition at the same tube voltage (100 kVp) and same R-R interval of exposure. In addition, adaptive prospective ECG-triggered sequence acquisition combined with low tube voltage and iterative reconstruction can further reduce the radiation dose to the submillisievert level without compromising image quality and the accuracy of assessing the coronary stenosis degree, and can be popularized as a routine technique.
ECG Identification System Using Neural Network with Global and Local Features
ERIC Educational Resources Information Center
Tseng, Kuo-Kun; Lee, Dachao; Chen, Charles
2016-01-01
This paper proposes a human identification system via extracted electrocardiogram (ECG) signals. Two hierarchical classification structures based on global shape feature and local statistical feature is used to extract ECG signals. Global shape feature represents the outline information of ECG signals and local statistical feature extracts the…
Kim, Se-Chan; Heinze, Ingo; Schmiedel, Alexandra; Baumgarten, Georg; Knuefermann, Pascal; Hoeft, Andreas; Weber, Stefan
2015-01-01
Visualisation of a central venous catheter (CVC) with ultrasound is restricted to the internal jugular vein (IJV). CVC tip position is confirmed by chest radiography, intracardiac ECG or transoesophageal/transthoracic echocardiography (TEE/TTE). We explored the feasibility, safety and accuracy of a right supraclavicular view for visualisation of the lower superior vena cava (SVC) and the right pulmonary artery (RPA) as an ultrasound landmark for real-time ultrasound-guided CVC tip positioning via the right IJV. Ultrasound was then compared with chest radiography. An observational pilot study. Bonn, University Hospital, Germany. From July to October 2012. Fifty-one patients scheduled for elective surgery. Reasons for exclusion were emergency procedure, thrombosis or small IJV lumen and mechanical obstacle to guidewire advancement. In 48 patients, CVC insertion via the right IJV and progress of the guidewire into the lower SVC were continuously guided by an ultrasound transducer in the right supraclavicular fossa. CVC tip position in lower SVC and tip-to-carina distance were assessed with chest radiography as a reference method and additionally with TEE in cardiothoracic patients. Insertion depth was compared with intracardiac ECG and body-height formula. The guidewire tip was seen in the SVC of all patients. In four patients, the tip was not visible in proximity of the RPA. Chest radiography and TEE confirmed CVC tip position in the lower SVC (zone A). Bland-Altman analysis revealed an average of difference of 1.6 cm for ultrasound versus ECG (95% limit of agreement -2 to 5 cm) and an average of difference of 1 cm for ultrasound versus body-height formula (95% limit of agreement -2 to 4 cm). Ultrasound via a right supraclavicular view is a feasible, well tolerated and accurate approach and should be further explored. Chest radiography confirmed CVC position in the lower SVC.
An implantable instrument for studying the long-term flight biology of migratory birds
NASA Astrophysics Data System (ADS)
Spivey, Robin J.; Bishop, Charles M.
2014-01-01
The design of an instrument deployed in a project studying the high altitude Himalayan migrations of bar-headed geese (Anser indicus) is described. The electronics of this archival datalogger measured 22 × 14 × 6.5 mm, weighed 3 g, was powered by a ½AA-sized battery weighing 10 g and housed in a transparent biocompatible tube sealed with titanium electrodes for electrocardiography (ECG). The combined weight of 32 g represented less than 2% of the typical bodyweight of the geese. The primary tasks of the instrument were to continuously record a digitised ECG signal for heart-rate determination and store 12-bit triaxial accelerations sampled at 100 Hz with 15% coverage over each 2 min period. Measurement of atmospheric pressure provided an indication of altitude and rate of ascent or descent during flight. Geomagnetic field readings allowed for latitude estimation. These parameters were logged twice per minute along with body temperature. Data were stored to a memory card of 8 GB capacity. Instruments were implanted in geese captured on Mongolian lakes during the breeding season when the birds are temporarily flightless due to moulting. The goal was to collect data over a ten month period, covering both southward and northward migrations. This imposed extreme constraints on the design's power consumption. Raw ECG can be post-processed to obtain heart-rate, allowing improved rejection of signal interference due to strenuous activity of locomotory muscles during flight. Accelerometry can be used to monitor wing-beat frequency and body kinematics, and since the geese continued to flap their wings continuously even during rather steep descents, act as a proxy for biomechanical power. The instrument enables detailed investigation of the challenges faced by the geese during these arduous migrations which typically involve flying at extreme altitudes through cold, low density air where oxygen availability is significantly reduced compared to sea level.
[Implementation of ECG Monitoring System Based on Internet of Things].
Lu, Liangliang; Chen, Minya
2015-11-01
In order to expand the capabilities of hospital's traditional ECG device and enhance medical staff's work efficiency, an ECG monitoring system based on internet of things is introduced. The system can monitor ECG signals in real time and analyze data using ECG sensor, PDA, Web servers, which embeds C language, Android systems, .NET, wireless network and other technologies. After experiments, it can be showed that the system has high reliability and stability and can bring the convenience to medical staffs.
Gialafos, Elias J; Dilaveris, Polychronis E; Synetos, Andreas G; Tsolakidis, George F; Papaioannou, Theodoros G; Andrikopoulos, George K; Richter, Dimitris J; Triposkiadis, Filippos; Gialafos, John E
2003-01-01
P wave analysis from the 12-lead ECG is a recent contribution of noninvasive electrocardiology. P wave analysis indices (maximum and minimum P wave duration, P wave dispersion [Pdis = Pmax-Pmin], adjusted P wave dispersion [APdis = Pdis/square root of measured leads], summated P wave duration [Psum], standard deviation of P wave duration [Psd], mean P wave duration [Pmean]) can predict atrial arrhythmias. However, the definitions of all these indices are based on few studies. The aim of this analysis was to define normal values of these indices and the examine possible associations between P wave indices and clinical variables. The study included 1,353 healthy men, 24 +/- 3 years of age, who answered a questionnaire and underwent a detailed physical examination and a digitized 12-lead surface ECG. All P wave indices were analyzed by two independent investigators. Mean values of the ECG indices were: Pmax: 96 +/- 11 ms, Pmin: 57 +/- 9 ms, Pdis: 38 +/- 10 ms, Psum: 924 +/- 96 ms, Psd: 12 +/- 3, APdis: 11 +/- 3 ms, and Pmean: 77 +/- 8 ms. Age was significantly related with Pmax (r = 0.277, P < 0.01), Pmin (r = 0.255, P < 0.001), Psum (r = 0.074, P < 0.01), and Pmean (r = 0.074, P < 0.01). All ECG indices were significantly associated with the R-R interval, and among each other. This study defined normal indices of wave duration and correlations among them. These markers may play an important predictive role in patients with atrial conduction abnormalities.
Inoue, Yuko Y.; Ambale-Venkatesh, Bharath; Mewton, Nathan; Volpe, Gustavo J.; Ohyama, Yoshiaki; Sharma, Ravi K.; Wu, Colin O.; Liu, Chia-Ying; Bluemke, David A.; Soliman, Elsayed Z.; Lima, João A. C.
2017-01-01
Purpose To examine the associations of myocardial diffuse fibrosis and scar with surface electrocardiographic (ECG) parameters in individuals free of prior coronary heart disease in four different ethnicities. Materials and Methods This prospective cross-sectional study was approved by the institutional review boards, and all participants gave informed consent. A total of 1669 participants in the Multi-Ethnic Study of Atherosclerosis, or MESA, who were free of prior myocardial infarction underwent both ECG and cardiac magnetic resonance imaging. In individuals without a late gadolinium enhancement–defined myocardial scar (n = 1131), T1 mapping was used to assess left ventricular (LV) interstitial diffuse fibrosis. The associations of LV diffuse fibrosis or myocardial scar with ECG parameters (QRS voltage, QRS duration, and corrected QT interval [QTc]) were evaluated by using multivariable regression analyses adjusted for demographic data, risk factors for scar, LV end-diastolic volume, and LV mass. Results The mean age of the 1669 participants was 67.4 years ± 8.7 (standard deviation); 49.8% were women. Lower postcontrast T1 time at 12 minutes was significantly associated with lower QRS Sokolow-Lyon voltage (β = 15.1 µV/10 msec, P = .004), lower QRS Cornell voltage (β = 9.2 µV/10 msec, P = .031), and shorter QRS duration (β = 0.16 msec/10 msec, P = .049). Greater extracellular volume (ECV) fraction was also significantly associated with lower QRS Sokolow-Lyon voltage (β = −35.2 µV/1% ECV increase, P < .001) and Cornell voltage (β = −23.7 µV/1% ECV increase, P < .001), independent of LV structural indexes. In contrast, the presence of LV scar (n = 106) was associated with longer QTc (β = 4.3 msec, P = .031). Conclusion In older adults without prior coronary heart disease, underlying greater LV diffuse fibrosis is associated with lower QRS voltage and shorter QRS duration at surface ECG, whereas clinically unrecognized myocardial scar is associated with a longer QT interval. © RSNA, 2016 Online supplemental material is available for this article. PMID:27740904
Warmerdam, G; Vullings, R; Van Pul, C; Andriessen, P; Oei, S G; Wijn, P
2013-01-01
Non-invasive fetal electrocardiography (ECG) can be used for prolonged monitoring of the fetal heart rate (FHR). However, the signal-to-noise-ratio (SNR) of non-invasive ECG recordings is often insufficient for reliable detection of the FHR. To overcome this problem, source separation techniques can be used to enhance the fetal ECG. This study uses a physiology-based source separation (PBSS) technique that has already been demonstrated to outperform widely used blind source separation techniques. Despite the relatively good performance of PBSS in enhancing the fetal ECG, PBSS is still susceptible to artifacts. In this study an augmented PBSS technique is developed to reduce the influence of artifacts. The performance of the developed method is compared to PBSS on multi-channel non-invasive fetal ECG recordings. Based on this comparison, the developed method is shown to outperform PBSS for the enhancement of the fetal ECG.
Application of exercise ECG stress test in the current high cost modern-era healthcare system.
Vaidya, Gaurang Nandkishor
Exercise electrocardiogram (ECG) tests boasts of being more widely available, less resource intensive, lower cost and absence of radiation. In the presence of a normal baseline ECG, an exercise ECG test is able to generate a reliable and reproducible result almost comparable to Technitium-99m sestamibi perfusion imaging. Exercise ECG changes when combined with other clinical parameters obtained during the test has the potential to allow effective redistribution of scarce resources by excluding low risk patients with significant accuracy. As we look towards a future of rising healthcare costs, increased prevalence of cardiovascular disease and the need for proper allocation of limited resources; exercise ECG test offers low cost, vital and reliable disease interpretation. This article highlights the physiology of the exercise ECG test, patient selection, effective interpretation, describe previously reported scores and their clinical application in today's clinical practice. Copyright © 2017. Published by Elsevier B.V.
Cloud-ECG for real time ECG monitoring and analysis.
Xia, Henian; Asif, Irfan; Zhao, Xiaopeng
2013-06-01
Recent advances in mobile technology and cloud computing have inspired numerous designs of cloud-based health care services and devices. Within the cloud system, medical data can be collected and transmitted automatically to medical professionals from anywhere and feedback can be returned to patients through the network. In this article, we developed a cloud-based system for clients with mobile devices or web browsers. Specially, we aim to address the issues regarding the usefulness of the ECG data collected from patients themselves. Algorithms for ECG enhancement, ECG quality evaluation and ECG parameters extraction were implemented in the system. The system was demonstrated by a use case, in which ECG data was uploaded to the web server from a mobile phone at a certain frequency and analysis was performed in real time using the server. The system has been proven to be functional, accurate and efficient. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Left arm/left leg lead reversals at the cable junction box: A cause for an epidemic of errors.
Velagapudi, Poonam; Turagam, Mohit K; Ritter, Sherry; Dohrmann, Mary L
Medical errors, especially due to misinterpretation of electrocardiograms (ECG), are extremely common in patients admitted to the hospital and significantly account for increased morbidity, mortality and health care costs in the United States. Inaccurate performance of an ECG can lead to invalid interpretation and in turn may lead to costly cardiovascular evaluation. We report a retrospective series of 58 sequential cases of ECG limb lead reversals in the ER due to inadvertent interchange in the lead cables at the point where they insert into the cable junction box of one ECG machine. This case series highlights recognition of ECG lead reversal originating in the ECG machine itself. This case series also demonstrates an ongoing need for education regarding standardization of ECG testing and for recognizing technical anomalies to deliver appropriate care for the patient. Copyright © 2016. Published by Elsevier Inc.
Computer-Interpreted Electrocardiograms: Benefits and Limitations.
Schläpfer, Jürg; Wellens, Hein J
2017-08-29
Computerized interpretation of the electrocardiogram (CIE) was introduced to improve the correct interpretation of the electrocardiogram (ECG), facilitating health care decision making and reducing costs. Worldwide, millions of ECGs are recorded annually, with the majority automatically analyzed, followed by an immediate interpretation. Limitations in the diagnostic accuracy of CIE were soon recognized and still persist, despite ongoing improvement in ECG algorithms. Unfortunately, inexperienced physicians ordering the ECG may fail to recognize interpretation mistakes and accept the automated diagnosis without criticism. Clinical mismanagement may result, with the risk of exposing patients to useless investigations or potentially dangerous treatment. Consequently, CIE over-reading and confirmation by an experienced ECG reader are essential and are repeatedly recommended in published reports. Implementation of new ECG knowledge is also important. The current status of automated ECG interpretation is reviewed, with suggestions for improvement. Copyright © 2017 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.
Performance study of the wearable one-lead wireless electrocardiographic monitoring system.
Hong, Sungyoup; Yang, Yougmo; Kim, Seunghwan; Shin, Seungcheol; Lee, Inbum; Jang, Yongwon; Kim, Kiseong; Yi, Hwayeon
2009-03-01
This study attempts to compare and assess the performance of a wearable electrocardiogram (ECG) using a sensing fabric electrode and a Bluetooth network with a conventional ECG. A one-lead ECG examination was performed using Bioshirt and an iWorx 214 while walking or running at 3, 6, and 9 km per hour. A correlation coefficient of a heart rate variability (HRV) between these two devices was higher than 0.96 and power spectral density of HRV measured also showed an excellent agreement. Thus, both of these two ECG devices showed similar detection capability for R peaks. The measured values for wave duration and intervals of both devices concur with each other. The intensity of noise is controversial. The ECG device using a sensing fabric electrode and a wireless network showed an ECG signal detection and transmission capability similar to that of a conventional ECG device.
Adaptive Fourier decomposition based ECG denoising.
Wang, Ze; Wan, Feng; Wong, Chi Man; Zhang, Liming
2016-10-01
A novel ECG denoising method is proposed based on the adaptive Fourier decomposition (AFD). The AFD decomposes a signal according to its energy distribution, thereby making this algorithm suitable for separating pure ECG signal and noise with overlapping frequency ranges but different energy distributions. A stop criterion for the iterative decomposition process in the AFD is calculated on the basis of the estimated signal-to-noise ratio (SNR) of the noisy signal. The proposed AFD-based method is validated by the synthetic ECG signal using an ECG model and also real ECG signals from the MIT-BIH Arrhythmia Database both with additive Gaussian white noise. Simulation results of the proposed method show better performance on the denoising and the QRS detection in comparing with major ECG denoising schemes based on the wavelet transform, the Stockwell transform, the empirical mode decomposition, and the ensemble empirical mode decomposition. Copyright © 2016 Elsevier Ltd. All rights reserved.
Software design of a remote real-time ECG monitoring system
NASA Astrophysics Data System (ADS)
Yu, Chengbo; Tao, Hongyan
2005-12-01
Heart disease is one of the main diseases that threaten the health and lives of human beings. At present, the normal remote ECG monitoring system has the disadvantages of a short testing distance and limitation of monitoring lines. Because of accident and paroxysmal disease, ECG monitoring has extended from the hospital to the family. Therefore, remote ECG monitoring through the Internet has the actual value and significance. The principle and design method of software of the remote dynamic ECG monitor was presented and discussed. The monitoring software is programmed with Delphi software based on client-sever interactive mode. The application program of the system, which makes use of multithreading technology, is shown to perform in an excellent manner. The program includes remote link users and ECG processing, i.e. ECG data's receiving, real-time displaying, recording and replaying. The system can connect many clients simultaneously and perform real-time monitoring to patients.
Edla, Shwetha; Kovvali, Narayan; Papandreou-Suppappola, Antonia
2012-01-01
Constructing statistical models of electrocardiogram (ECG) signals, whose parameters can be used for automated disease classification, is of great importance in precluding manual annotation and providing prompt diagnosis of cardiac diseases. ECG signals consist of several segments with different morphologies (namely the P wave, QRS complex and the T wave) in a single heart beat, which can vary across individuals and diseases. Also, existing statistical ECG models exhibit a reliance upon obtaining a priori information from the ECG data by using preprocessing algorithms to initialize the filter parameters, or to define the user-specified model parameters. In this paper, we propose an ECG modeling technique using the sequential Markov chain Monte Carlo (SMCMC) filter that can perform simultaneous model selection, by adaptively choosing from different representations depending upon the nature of the data. Our results demonstrate the ability of the algorithm to track various types of ECG morphologies, including intermittently occurring ECG beats. In addition, we use the estimated model parameters as the feature set to classify between ECG signals with normal sinus rhythm and four different types of arrhythmia.
Teaching crucial skills: An electrocardiogram teaching module for medical students.
Chudgar, Saumil M; Engle, Deborah L; Grochowski, Colleen O'Connor; Gagliardi, Jane P
2016-01-01
Medical student performance in electrocardiogram (ECG) interpretation at our institution could be improved. Varied resources exist to teach students this essential skill. We created an ECG teaching module (ECGTM) of 75 cases representing 15 diagnoses to improve medical students' performance and confidence in ECG interpretation. Students underwent pre- and post-clerkship testing to assess ECG interpretation skills and confidence and also end-of-clinical-year testing in ECG and laboratory interpretation. Performance was compared for the years before and during ECGTM availability. Eighty-four percent of students (total n=101) reported using the ECGTM; 98% of those who used it reported it was useful. Students' performance and confidence were higher on the post-test. Students with access to the ECGTM (n=101) performed significantly better than students from the previous year (n=90) on the end-of-year ECG test. The continuous availability of an ECGTM was associated with improved confidence and ability in ECG interpretation. The ECGTM may be another available tool to help students as they learn to read ECGs. Copyright © 2016 Elsevier Inc. All rights reserved.
Electrocardiogram signal denoising based on empirical mode decomposition technique: an overview
NASA Astrophysics Data System (ADS)
Han, G.; Lin, B.; Xu, Z.
2017-03-01
Electrocardiogram (ECG) signal is nonlinear and non-stationary weak signal which reflects whether the heart is functioning normally or abnormally. ECG signal is susceptible to various kinds of noises such as high/low frequency noises, powerline interference and baseline wander. Hence, the removal of noises from ECG signal becomes a vital link in the ECG signal processing and plays a significant role in the detection and diagnosis of heart diseases. The review will describe the recent developments of ECG signal denoising based on Empirical Mode Decomposition (EMD) technique including high frequency noise removal, powerline interference separation, baseline wander correction, the combining of EMD and Other Methods, EEMD technique. EMD technique is a quite potential and prospective but not perfect method in the application of processing nonlinear and non-stationary signal like ECG signal. The EMD combined with other algorithms is a good solution to improve the performance of noise cancellation. The pros and cons of EMD technique in ECG signal denoising are discussed in detail. Finally, the future work and challenges in ECG signal denoising based on EMD technique are clarified.
Standard-compliant real-time transmission of ECGs: harmonization of ISO/IEEE 11073-PHD and SCP-ECG.
Trigo, Jesús D; Chiarugi, Franco; Alesanco, Alvaro; Martínez-Espronceda, Miguel; Chronaki, Catherine E; Escayola, Javier; Martínez, Ignacio; García, José
2009-01-01
Ambient assisted living and integrated care in an aging society is based on the vision of the lifelong Electronic Health Record calling for HealthCare Information Systems and medical device interoperability. For medical devices this aim can be achieved by the consistent implementation of harmonized international interoperability standards. The ISO/IEEE 11073 (x73) family of standards is a reference standard for medical device interoperability. In its Personal Health Device (PHD) version several devices have been included, but an ECG device specialization is not yet available. On the other hand, the SCP-ECG standard for short-term diagnostic ECGs (EN1064) has been recently approved as an international standard ISO/IEEE 11073-91064:2009. In this paper, the relationships between a proposed x73-PHD model for an ECG device and the fields of the SCP-ECG standard are investigated. A proof-of-concept implementation of the proposed x73-PHD ECG model is also presented, identifying open issues to be addressed by standards development for the wider interoperability adoption of x73-PHD standards.
Influence of ECG measurement accuracy on ECG diagnostic statements.
Zywietz, C; Celikag, D; Joseph, G
1996-01-01
Computer analysis of electrocardiograms (ECGs) provides a large amount of ECG measurement data, which may be used for diagnostic classification and storage in ECG databases. Until now, neither error limits for ECG measurements have been specified nor has their influence on diagnostic statements been systematically investigated. An analytical method is presented to estimate the influence of measurement errors on the accuracy of diagnostic ECG statements. Systematic (offset) errors will usually result in an increase of false positive or false negative statements since they cause a shift of the working point on the receiver operating characteristics curve. Measurement error dispersion broadens the distribution function of discriminative measurement parameters and, therefore, usually increases the overlap between discriminative parameters. This results in a flattening of the receiver operating characteristics curve and an increase of false positive and false negative classifications. The method developed has been applied to ECG conduction defect diagnoses by using the proposed International Electrotechnical Commission's interval measurement tolerance limits. These limits appear too large because more than 30% of false positive atrial conduction defect statements and 10-18% of false intraventricular conduction defect statements could be expected due to tolerated measurement errors. To assure long-term usability of ECG measurement databases, it is recommended that systems provide its error tolerance limits obtained on a defined test set.
A novel algorithm for Bluetooth ECG.
Pandya, Utpal T; Desai, Uday B
2012-11-01
In wireless transmission of ECG, data latency will be significant when battery power level and data transmission distance are not maintained. In applications like home monitoring or personalized care, to overcome the joint effect of previous issues of wireless transmission and other ECG measurement noises, a novel filtering strategy is required. Here, a novel algorithm, identified as peak rejection adaptive sampling modified moving average (PRASMMA) algorithm for wireless ECG is introduced. This algorithm first removes error in bit pattern of received data if occurred in wireless transmission and then removes baseline drift. Afterward, a modified moving average is implemented except in the region of each QRS complexes. The algorithm also sets its filtering parameters according to different sampling rate selected for acquisition of signals. To demonstrate the work, a prototyped Bluetooth-based ECG module is used to capture ECG with different sampling rate and in different position of patient. This module transmits ECG wirelessly to Bluetooth-enabled devices where the PRASMMA algorithm is applied on captured ECG. The performance of PRASMMA algorithm is compared with moving average and S-Golay algorithms visually as well as numerically. The results show that the PRASMMA algorithm can significantly improve the ECG reconstruction by efficiently removing the noise and its use can be extended to any parameters where peaks are importance for diagnostic purpose.
Marker, Ryan J; Maluf, Katrina S
2014-12-01
Electromyography (EMG) recordings from the trapezius are often contaminated by the electrocardiography (ECG) signal, making it difficult to distinguish low-level muscle activity from muscular rest. This study investigates the influence of ECG contamination on EMG amplitude and frequency estimations in the upper trapezius during muscular rest and low-level contractions. A new method of ECG contamination removal, filtered template subtraction (FTS), is described and compared to 30 Hz high-pass filter (HPF) and averaged template subtraction (ATS) methods. FTS creates a unique template of each ECG artifact using a low-pass filtered copy of the contaminated signal, which is subtracted from contaminated periods in the original signal. ECG contamination results in an over-estimation of EMG amplitude during rest in the upper trapezius, with negligible effects on amplitude and frequency estimations during low-intensity isometric contractions. FTS and HPF successfully removed ECG contamination from periods of muscular rest, yet introduced errors during muscle contraction. Conversely, ATS failed to fully remove ECG contamination during muscular rest, yet did not introduce errors during muscle contraction. The relative advantages and disadvantages of different ECG contamination removal methods should be considered in the context of the specific motor tasks that require analysis. Copyright © 2014 Elsevier Ltd. All rights reserved.
QRS Detection Algorithm for Telehealth Electrocardiogram Recordings.
Khamis, Heba; Weiss, Robert; Xie, Yang; Chang, Chan-Wei; Lovell, Nigel H; Redmond, Stephen J
2016-07-01
QRS detection algorithms are needed to analyze electrocardiogram (ECG) recordings generated in telehealth environments. However, the numerous published QRS detectors focus on clean clinical data. Here, a "UNSW" QRS detection algorithm is described that is suitable for clinical ECG and also poorer quality telehealth ECG. The UNSW algorithm generates a feature signal containing information about ECG amplitude and derivative, which is filtered according to its frequency content and an adaptive threshold is applied. The algorithm was tested on clinical and telehealth ECG and the QRS detection performance is compared to the Pan-Tompkins (PT) and Gutiérrez-Rivas (GR) algorithm. For the MIT-BIH Arrhythmia database (virtually artifact free, clinical ECG), the overall sensitivity (Se) and positive predictivity (+P) of the UNSW algorithm was >99%, which was comparable to PT and GR. When applied to the MIT-BIH noise stress test database (clinical ECG with added calibrated noise) after artifact masking, all three algorithms had overall Se >99%, and the UNSW algorithm had higher +P (98%, p < 0.05) than PT and GR. For 250 telehealth ECG records (unsupervised recordings; dry metal electrodes), the UNSW algorithm had 98% Se and 95% +P which was superior to PT (+P: p < 0.001) and GR (Se and +P: p < 0.001). This is the first study to describe a QRS detection algorithm for telehealth data and evaluate it on clinical and telehealth ECG with superior results to published algorithms. The UNSW algorithm could be used to manage increasing telehealth ECG analysis workloads.
Miao, Fen; Cheng, Yayu; He, Yi; He, Qingyun; Li, Ye
2015-05-19
Continuously monitoring the ECG signals over hours combined with activity status is very important for preventing cardiovascular diseases. A traditional ECG holter is often inconvenient to carry because it has many electrodes attached to the chest and because it is heavy. This work proposes a wearable, low power context-aware ECG monitoring system integrated built-in kinetic sensors of the smartphone with a self-designed ECG sensor. The wearable ECG sensor is comprised of a fully integrated analog front-end (AFE), a commercial micro control unit (MCU), a secure digital (SD) card, and a Bluetooth module. The whole sensor is very small with a size of only 58 × 50 × 10 mm for wearable monitoring application due to the AFE design, and the total power dissipation in a full round of ECG acquisition is only 12.5 mW. With the help of built-in kinetic sensors of the smartphone, the proposed system can compute and recognize user's physical activity, and thus provide context-aware information for the continuous ECG monitoring. The experimental results demonstrated the performance of proposed system in improving diagnosis accuracy for arrhythmias and identifying the most common abnormal ECG patterns in different activities. In conclusion, we provide a wearable, accurate and energy-efficient system for long-term and context-aware ECG monitoring without any extra cost on kinetic sensor design but with the help of the widespread smartphone.
ECG findings in comparison to cardiovascular MR imaging in viral myocarditis.
Deluigi, Claudia C; Ong, Peter; Hill, Stephan; Wagner, Anja; Kispert, Eva; Klingel, Karin; Kandolf, Reinhard; Sechtem, Udo; Mahrholdt, Heiko
2013-04-30
We sought (1) to assess prevalence and type of ECG abnormalities in patients with biopsy proven myocarditis and signs of myocardial damage indicated by LGE, and (2) to evaluate whether ECG abnormalities are related to the pattern of myocardial damage. Prevalence and type of ECG abnormalities in patients presenting biopsy proven myocarditis, as well as any relation between ECG abnormalities and the in vivo pattern of myocardial damage are unknown. Eighty-four consecutive patients fulfilled the following criteria: (1) newly diagnosed biopsy proven viral myocarditis, and (2) non-ischemic LGE, and (3) standard 12-lead-ECG upon admission. Sixty-five patients with biopsy proven myocarditis had abnormal ECGs upon admission (77%). In this group, ST-abnormalities were detected most frequently (69%), followed by bundle-branch-block in 26%, and Q-waves in 8%. Atrial fibrillation was present in 6%, and AV-Block in two patients. In patients with septal LGE ST-abnormalities were more frequently located in anterolateral leads compared to patients with lateral LGE, in whom ST-abnormalities were most frequently observed in inferolateral leads. Bundle-branch-block occurred more often in patients with septal LGE (11/17). Four of five patients with Q-waves had severe and almost transmural LGE in the lateral wall. ECG abnormalities can be found in most patients with biopsy proven viral myocarditis at initial presentation. However, similar to suspected acute myocardial infarction, a normal ECG does not rule out myocarditis. ECG findings are related to the amount and area of damage as indicated by LGE, which confirms the important clinical role of ECG. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Contreras-Villarreal, Viridiana; Meza-Herrera, César A; Rivas-Muñoz, Raymundo; Angel-Garcia, Oscar; Luna-Orozco, Juan R; Carrillo, Evaristo; Mellado, Miguel; Véliz-Deras, Francisco G
2016-06-01
Adult goats (n = 32) were randomly assigned to one of four treatments (n = 8, each): (i) progesterone (P4 ) + equine chorionic gonadotropin (eCG), treated with 25 mg progesterone intramuscularly (i.m.) + 250 IU eCG 24 h later; (ii) cronolone + eCG, treated with vaginal sponges - 20 mg cronolone × 7 days + 250 IU eCG at pessary removal; (ii) P4 + estradiol (E2 ), treated with 25 mg progesterone i.m. + 1 mg estradiol 24 h later; (iv) cronolone + E2 , treated with vaginal sponges - 20 mg cronolone × 7 days + 1 mg of estradiol i.m. at pessary removal. Goats were tested for estrus throughout the presence of a buck. Seven days prior and after treatment, an ovarian ultrasonographic scanning was performed to determine ovarian function and structures. An ultrasonographic pregnancy diagnosis was performed on day 30 post-service. In all groups, 100% estrus response was observed within 96 h post-treatment. While ovulation occurred in 100% of P4 + eCG and cronolone + eCG treated goats, the other groups only depicted 50% ovulatory activity (P < 0.05). Pregnancy rate was higher (P <0.05) in the P4 + eCG and cronolone + eCG groups (88 and 100%, respectively), compared with 38% in P4 + E2 and cronolone + E2 groups. The best treatments were those in which eCG was applied. The P4 + eCG treatment was a pessary-free, cheaper and effective protocol to induce ovulation in goats during the seasonal anovulatory period. © 2015 Japanese Society of Animal Science.
Enhancement of low sampling frequency recordings for ECG biometric matching using interpolation.
Sidek, Khairul Azami; Khalil, Ibrahim
2013-01-01
Electrocardiogram (ECG) based biometric matching suffers from high misclassification error with lower sampling frequency data. This situation may lead to an unreliable and vulnerable identity authentication process in high security applications. In this paper, quality enhancement techniques for ECG data with low sampling frequency has been proposed for person identification based on piecewise cubic Hermite interpolation (PCHIP) and piecewise cubic spline interpolation (SPLINE). A total of 70 ECG recordings from 4 different public ECG databases with 2 different sampling frequencies were applied for development and performance comparison purposes. An analytical method was used for feature extraction. The ECG recordings were segmented into two parts: the enrolment and recognition datasets. Three biometric matching methods, namely, Cross Correlation (CC), Percent Root-Mean-Square Deviation (PRD) and Wavelet Distance Measurement (WDM) were used for performance evaluation before and after applying interpolation techniques. Results of the experiments suggest that biometric matching with interpolated ECG data on average achieved higher matching percentage value of up to 4% for CC, 3% for PRD and 94% for WDM. These results are compared with the existing method when using ECG recordings with lower sampling frequency. Moreover, increasing the sample size from 56 to 70 subjects improves the results of the experiment by 4% for CC, 14.6% for PRD and 0.3% for WDM. Furthermore, higher classification accuracy of up to 99.1% for PCHIP and 99.2% for SPLINE with interpolated ECG data as compared of up to 97.2% without interpolation ECG data verifies the study claim that applying interpolation techniques enhances the quality of the ECG data. Crown Copyright © 2012. Published by Elsevier Ireland Ltd. All rights reserved.
Subcutaneous ICD screening with the Boston Scientific ZOOM programmer versus a 12-lead ECG machine.
Chang, Shu C; Patton, Kristen K; Robinson, Melissa R; Poole, Jeanne E; Prutkin, Jordan M
2018-02-24
The subcutaneous implantable cardioverter-defibrillator (S-ICD) requires preimplant screening to ensure appropriate sensing and reduce risk of inappropriate shocks. Screening can be performed using either an ICD programmer or a 12-lead electrocardiogram (ECG) machine. It is unclear whether differences in signal filtering and digital sampling change the screening success rate. Subjects were recruited if they had a transvenous single-lead ICD without pacing requirements or were candidates for a new ICD. Screening was performed using both a Boston Scientific ZOOM programmer (Marlborough, MA, USA) and General Electric MAC 5000 ECG machine (Fairfield, CT, USA). A pass was defined as having at least one lead that fit within the screening template in both supine and sitting positions. A total of 69 subjects were included and 27 sets of ECG leads had differing screening results between the two machines (7%). Of these sets, 22 (81%) passed using the ECG machine but failed using the programmer and five (19%) passed using the ECG machine but failed using the programmer (P < 0.001). Four subjects (6%) passed screening using the ECG machine but failed using the programmer. No subject passed screening with the programmer but failed with the ECG machine. There can be occasional disagreement in S-ICD patient screening between an ICD programmer and ECG machine, all of whom passed with the ECG machine but failed using the programmer. On a per lead basis, the ECG machine passes more subjects. It is unknown what the inappropriate shock rate would be if an S-ICD was implanted. Clinical judgment should be used in borderline cases. © 2018 Wiley Periodicals, Inc.
Usefulness of Maintaining a Normal Electrocardiogram Over Time for Predicting Cardiovascular Health.
Soliman, Elsayed Z; Zhang, Zhu-Ming; Chen, Lin Y; Tereshchenko, Larisa G; Arking, Dan; Alonso, Alvaro
2017-01-15
We hypothesized that maintaining a normal electrocardiogram (ECG) status over time is associated with low cardiovascular (CV) disease in a dose-response fashion and subsequently could be used to monitor programs aimed at promoting CV health. This analysis included 4,856 CV disease-free participants from the Atherosclerosis Risk in Communities study who had a normal ECG at baseline (1987 to 1989) and complete electrocardiographic data in subsequent 3 visits (1990 to 1992, 1993 to 1995, and 1996 to 1998). Participants were classified based on maintaining their normal ECG status during these 4 visits into "maintained," "not maintained," or "inconsistent" normal ECG status as defined by the Minnesota ECG classification. CV disease events (coronary heart disease, heart failure, and stroke) were adjudicated from Atherosclerosis Risk in Communities visit-4 through 2010. Over a median follow-up of 13.2 years, 885 CV disease events occurred. The incidence rate of CV disease events was lowest among study participants who maintained a normal ECG status, followed by those with an inconsistent pattern, and then those who did not maintain their normal ECG status (trend p value <0.001). Similarly, the greater the number of visits with a normal ECG status, the lower was the incidence rate of CV disease events (trend p value <0.001). Maintaining (vs not maintaining) a normal ECG status was associated with a lower risk of CV disease, which was lower than that observed in those with inconsistent normal ECG pattern (trend p value <0.01). In conclusion, maintaining a normal ECG status over time is associated with low risk of CV disease in a dose-response fashion, suggesting its potential use as a monitoring tool for programs promoting CV health. Copyright © 2016 Elsevier Inc. All rights reserved.
Potential Cost-Effectiveness of Ambulatory Cardiac Rhythm Monitoring After Cryptogenic Stroke.
Yong, Jean Hai Ein; Thavorn, Kednapa; Hoch, Jeffrey S; Mamdani, Muhammad; Thorpe, Kevin E; Dorian, Paul; Sharma, Mike; Laupacis, Andreas; Gladstone, David J
2016-09-01
Prolonged ambulatory ECG monitoring after cryptogenic stroke improves detection of covert atrial fibrillation, but its long-term cost-effectiveness is uncertain. We estimated the cost-effectiveness of noninvasive ECG monitoring in patients aged ≥55 years after a recent cryptogenic stroke and negative 24-hour ECG. A Markov model used observed rates of atrial fibrillation detection and anticoagulation from a randomized controlled trial (EMBRACE) and the published literature to predict lifetime costs and effectiveness (ischemic strokes, hemorrhages, life-years, and quality-adjusted life-years [QALYs]) for 30-day ECG (primary analysis) and 7-day or 14-day ECG (secondary analysis), when compared with a repeat 24-hour ECG. Prolonged ECG monitoring (7, 14, or 30 days) was predicted to prevent more ischemic strokes, decrease mortality, and improve QALYs. If anticoagulation reduced stroke risk by 50%, 30-day ECG (at a cost of USD $447) would be highly cost-effective ($2000 per QALY gained) for patients with a 4.5% annual ischemic stroke recurrence risk. Cost-effectiveness was sensitive to stroke recurrence risk and anticoagulant effectiveness, which remain uncertain, especially at higher costs of monitoring. Shorter duration (7 or 14 days) monitoring was cost saving and more effective than an additional 24-hour ECG; its cost-effectiveness was less sensitive to changes in ischemic stroke risk and treatment effect. After a cryptogenic stroke, 30-day ECG monitoring is likely cost-effective for preventing recurrent strokes; 14-day monitoring is an attractive value alternative, especially for lower risk patients. These results strengthen emerging recommendations for prolonged ECG monitoring in secondary stroke prevention. Cost-effectiveness in practice will depend on careful patient selection. © 2016 American Heart Association, Inc.
Wang, Jing; Yang, Bing; Chen, Hongwu; Ju, Weizhu; Chen, Kai; Zhang, Fengxiang; Cao, Kejiang; Chen, Minglong
2010-01-01
We analyzed the shape and distribution of epsilon waves by 3 various methods of electrocardiographic recording in patients with arrhythmogenic right ventricular cardiomyopathy. Thirty-two patients who met recognized diagnostic criteria for arrhythmogenic right ventricular cardiomyopathy were included in this study (24 men and 8 women; mean age, 42.3 ± 12.9 yr). Epsilon waves were detected by standard 12-lead electrocardiography (S-ECG), right-sided precordial lead electrocardiography (R-ECG), and Fontaine bipolar precordial lead electrocardiography (F-ECG). We found 3 types of epsilon waves: wiggle waves, small spike waves, and smooth potential waves that formed an atypical prolonged R' wave. The most common configuration was small spiked waves. In some circumstances, epsilon waves were evident in some leads (especially in leads V1 through V3), but notches were recorded in the other leads during the corresponding phase. These waves could be detected only by S-ECG in 1 patient, R-ECG in 3 patients, and F-ECG in 5 patients; the rates of epsilon-wave detection by these 3 methods were 38% (12/32), 38% (12/32), and 50% (16/32), respectively. However, the detection rate using combined methods was significantly higher than that by S-ECG alone (SF-ECG 56% vs S-ECG 38%, P = 0.0312; and SRF-ECG 66% vs S-ECG 38%, P = 0.0039). In addition, the rate of widespread T-wave inversion (exceeding V3) was significantly higher in patients with epsilon waves than in those without (48% vs 9%, P = 0.029), as was ventricular tachycardia (95% vs 64%, P = 0.019). These 3 electrocardiographic recording methods should be used in combination to improve the detection rate of epsilon waves. PMID:20844612
Orphanidou, Christina
2017-02-01
A new method for extracting the respiratory rate from ECG and PPG obtained via wearable sensors is presented. The proposed technique employs Ensemble Empirical Mode Decomposition in order to identify the respiration "mode" from the noise-corrupted Heart Rate Variability/Pulse Rate Variability and Amplitude Modulation signals extracted from ECG and PPG signals. The technique was validated with respect to a Respiratory Impedance Pneumography (RIP) signal using the mean absolute and the average relative errors for a group ambulatory hospital patients. We compared approaches using single respiration-induced modulations on the ECG and PPG signals with approaches fusing the different modulations. Additionally, we investigated whether the presence of both the simultaneously recorded ECG and PPG signals provided a benefit in the overall system performance. Our method outperformed state-of-the-art ECG- and PPG-based algorithms and gave the best results over the whole database with a mean error of 1.8bpm for 1min estimates when using the fused ECG modulations, which was a relative error of 10.3%. No statistically significant differences were found when comparing the ECG-, PPG- and ECG/PPG-based approaches, indicating that the PPG can be used as a valid alternative to the ECG for applications using wearable sensors. While the presence of both the ECG and PPG signals did not provide an improvement in the estimation error, it increased the proportion of windows for which an estimate was obtained by at least 9%, indicating that the use of two simultaneously recorded signals might be desirable in high-acuity cases where an RR estimate is required more frequently. Copyright © 2016 Elsevier Ltd. All rights reserved.
Jangra, Kiran; Grover, Vinod K; Bhagat, Hemant; Bhardwaj, Avanish; Tewari, Manoj K; Kumar, Bhupesh; Panda, Nidhi B; Sahu, Seelora
2017-07-01
Electrocardiographic (ECG) and echocardiographic changes that are subsequent to aneurysmal subarachnoid hemorrhage (a-SAH) are commonly observed with a prevalence varying from 27% to 100% and 13% to 18%, respectively. There are sparse data in the literature about the pattern of ECG and echocardiographic changes in patients with SAH after clipping of the aneurysm. Hence, we observed the effect of aneurysmal clipping on ECG and echocardiographic changes during the first week after surgery, and the impact of these changes on outcome at the end of 1 year. This prospective, observational study was conducted in 100 consecutive patients with a-SAH undergoing clipping of ruptured aneurysm. ECG and echocardiographic changes were recorded preoperatively and every day after surgery until 7 days. Outcome was evaluated using the Glasgow outcome scale at the end of 1 year. Of 100 patients, 75 had ECG changes and 17 had echocardiographic changes preoperatively. The ECG changes observed were QTc prolongation, conduction defects, ST-wave and T-wave abnormalities, tachyarrhythmias, and bradyarrhythmias. The echocardiography changes included global hypokinesia and regional wall motion abnormalities. Both echocardiographic and ECG changes showed significant recovery on the first postoperative day. Patients presenting with both echocardiographic and ECG changes were found to require higher ionotropic support to maintain the desired blood pressure, and were associated with poor outcome (Glasgow outcome scale, 1 to 2) at 1 year after surgery. There was no association of ECG and echocardiographic changes with mortality (both in-hospital or at 1 year). The ECG changes, such as QTc prolongation, bradycardia, conduction abnormality, and echocardiographic changes, recover on postoperative day-1, in most of the cases after clipping. Patients with combined ECG and echocardiographic changes tend to have poor neurological outcome at the end of 1 year.
Exercise ECG; ECG - exercise treadmill; EKG - exercise treadmill; Stress ECG; Exercise electrocardiography; Stress test - exercise treadmill; CAD - treadmill; Coronary artery disease - treadmill; Chest pain - treadmill; Angina - treadmill; ...
Automated J wave detection from digital 12-lead electrocardiogram.
Wang, Yi Grace; Wu, Hau-Tieng; Daubechies, Ingrid; Li, Yabing; Estes, E Harvey; Soliman, Elsayed Z
2015-01-01
In this report we provide a method for automated detection of J wave, defined as a notch or slur in the descending slope of the terminal positive wave of the QRS complex, using signal processing and functional data analysis techniques. Two different sets of ECG tracings were selected from the EPICARE ECG core laboratory, Wake Forest School of Medicine, Winston Salem, NC. The first set was a training set comprised of 100 ECGs of which 50 ECGs had J-wave and the other 50 did not. The second set was a test set (n=116 ECGs) in which the J-wave status (present/absent) was only known by the ECG Center staff. All ECGs were recorded using GE MAC 1200 (GE Marquette, Milwaukee, Wisconsin) at 10mm/mV calibration, speed of 25mm/s and 500HZ sampling rate. All ECGs were initially inspected visually for technical errors and inadequate quality, and then automatically processed with the GE Marquette 12-SL program 2001 version (GE Marquette, Milwaukee, WI). We excluded ECG tracings with major abnormalities or rhythm disorder. Confirmation of the presence or absence of a J wave was done visually by the ECG Center staff and verified once again by three of the coauthors. There was no disagreement in the identification of the J wave state. The signal processing and functional data analysis techniques applied to the ECGs were conducted at Duke University and the University of Toronto. In the training set, the automated detection had sensitivity of 100% and specificity of 94%. For the test set, sensitivity was 89% and specificity was 86%. In conclusion, test results of the automated method we developed show a good J wave detection accuracy, suggesting possible utility of this approach for defining and detection of other complex ECG waveforms. Copyright © 2015 Elsevier Inc. All rights reserved.
Self-gated golden angle spiral cine MRI for coronary endothelial function assessment.
Bonanno, Gabriele; Hays, Allison G; Weiss, Robert G; Schär, Michael
2018-08-01
Depressed coronary endothelial function (CEF) is a marker for atherosclerotic disease, an independent predictor of cardiovascular events, and can be quantified non-invasively with ECG-triggered spiral cine MRI combined with isometric handgrip exercise (IHE). However, MRI-CEF measures can be hindered by faulty ECG-triggering, leading to prolonged breath-holds and degraded image quality. Here, a self-gated golden angle spiral method (SG-GA) is proposed to eliminate the need for ECG during cine MRI. SG-GA was tested against retrospectively ECG-gated golden angle spiral MRI (ECG-GA) and gold-standard ECG-triggered spiral cine MRI (ECG-STD) in 10 healthy volunteers. CEF data were obtained from cross-sectional images of the proximal right and left coronary arteries in a 3T scanner. Self-gating heart rates were compared to those from simultaneous ECG-gating. Coronary vessel sharpness and cross-sectional area (CSA) change with IHE were compared among the 3 methods. Self-gating precision, accuracy, and correlation-coefficient were 7.7 ± 0.5 ms, 9.1 ± 0.7 ms, and 0.93 ± 0.01, respectively (mean ± standard error). Vessel sharpness by SG-GA was equal or higher than ECG-STD (rest: 63.0 ± 1.7% vs. 61.3 ± 1.3%; exercise: 62.6 ± 1.3% vs. 56.7 ± 1.6%, P < 0.05). CSA changes were in agreement among the 3 methods (ECG-STD = 8.7 ± 4.0%, ECG-GA = 9.6 ± 3.1%, SG-GA = 9.1 ± 3.5%, P = not significant). CEF measures can be obtained with the proposed self-gated high-quality cine MRI method even when ECG is faulty or not available. Magn Reson Med 80:560-570, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.
Identifying QT prolongation from ECG impressions using a general-purpose Natural Language Processor
Denny, Joshua C.; Miller, Randolph A.; Waitman, Lemuel Russell; Arrieta, Mark; Peterson, Joshua F.
2009-01-01
Objective Typically detected via electrocardiograms (ECGs), QT interval prolongation is a known risk factor for sudden cardiac death. Since medications can promote or exacerbate the condition, detection of QT interval prolongation is important for clinical decision support. We investigated the accuracy of natural language processing (NLP) for identifying QT prolongation from cardiologist-generated, free-text ECG impressions compared to corrected QT (QTc) thresholds reported by ECG machines. Methods After integrating negation detection to a locally-developed natural language processor, the KnowledgeMap concept identifier, we evaluated NLP-based detection of QT prolongation compared to the calculated QTc on a set of 44,318 ECGs obtained from hospitalized patients. We also created a string query using regular expressions to identify QT prolongation. We calculated sensitivity and specificity of the methods using manual physician review of the cardiologist-generated reports as the gold standard. To investigate causes of “false positive” calculated QTc, we manually reviewed randomly selected ECGs with a long calculated QTc but no mention of QT prolongation. Separately, we validated the performance of the negation detection algorithm on 5,000 manually-categorized ECG phrases for any medical concept (not limited to QT prolongation) prior to developing the NLP query for QT prolongation. Results The NLP query for QT prolongation correctly identified 2,364 of 2,373 ECGs with QT prolongation with a sensitivity of 0.996 and a positive predictive value of 1.000. There were no false positives. The regular expression query had a sensitivity of 0.999 and positive predictive value of 0.982. In contrast, the positive predictive value of common QTc thresholds derived from ECG machines was 0.07–0.25 with corresponding sensitivities of 0.994–0.046. The negation detection algorithm had a recall of 0.973 and precision of 0.982 for 10,490 concepts found within ECG impressions. Conclusions NLP and regular expression queries of cardiologists’ ECG interpretations can more effectively identify QT prolongation than the automated QTc intervals reported by ECG machines. Future clinical decision support could employ NLP queries to detect QTc prolongation and other reported ECG abnormalities. PMID:18938105
Jørgensen, Peter G; Jensen, Jan S; Appleyard, Merete; Jensen, Gorm B; Mogelvang, Rasmus
2015-12-15
Though the electrocardiogram(ECG) and plasma pro-brain-natriuretic-peptide (pro-BNP) are widely used markers of subclinical cardiac injury and can be used to predict future cardiovascular disease(CVD), they could merely be markers of the same underlying pathology. We aimed to determine if ECG changes and pro-BNP are independent predictors of CVD and if the combination improves risk prediction in persons without known heart disease. Pro-BNP and ECG were obtained on 5454 persons without known heart disease from the 4th round of the Copenhagen City Heart Study, a prospective cohort study. Median follow-up was 10.4 years. High pro-BNP was defined as above 90th percentile of age and sex adjusted levels. The end-points were all-cause mortality and the combination of admission with ischemic heart disease, heart failure or CVD death. ECG changes were present in 907 persons and were associated with high levels of pro-BNP. In a fully adjusted model both high pro-BNP and ECG changes remained significant predictors: all-cause mortality(high pro-BNP, no ECG changes: HR: 1.43(1.12-1.82);P=0.005, low pro-BNP, ECG changes: HR: 1.22(1.05-1.42);P=0.009, and both high pro-BNP and ECG changes: HR: 1.99(1.54-2.59);P<0.001), CVD event(high pro-BNP, no ECG changes: HR: 1.94(1.45-2.58);P<0.001, low pro-BNP, ECG changes: HR: 1.55(1.29-1.87);P<0.001, and both high pro-BNP and ECG changes: HR: 3.86(2.94-5.08);P<0.001). Adding the combination of pro-BNP and ECG changes to a fully adjusted model correctly reclassified 33.9%(26.5-41.3);P<0.001 on the continuous net reclassification scale for all-cause mortality and 49.7%(41.1-58.4);P<0.001 for CVD event. Combining ECG changes and pro-BNP improves risk prediction in persons without known heart disease. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Bilbao, M G; Massara, N; Ramos, S; Zapata, L O; Farcey, M F; Pesoa, J; Turic, E; Vázquez, M I; Bartolome, J A
2016-07-15
The objective of this study was to evaluate the effect of an extended progesterone treatment on follicular development and fertility in postpartum, suckled beef cows subjected to timed artificial insemination (TAI). In experiment 1, cows (n = 24) with body condition score (BCS) ≥4.5 received either a 2-g progesterone intravaginal device on Day -23 or a 0.558-g progesterone intravaginal device on Day -9. Then, all cows received 2 mg of estradiol benzoate on Day -9; removal of the device, 1-mg estradiol cypionate, and PGF2α on Day -2; and TAI on Day 0. Metabolic status was assessed between Days -9 and -2. Ovarian structures and plasma progesterone were determined weekly from Day -23 to -9, daily from Day -9 to 0, and weekly until Day 28. In experiment 2, cows (n = 302) with BCS ≥4.5 received identical treatment to cows in experiment 1, but on Day -2, cows received 400 IU of two different commercial preparations of equine chorionic gonadotropin (eCG). Ovarian structures were determined on Days -23 and -9 on a subset of cows (n = 40). Pregnancy was determined 39 days after TAI. In experiment 3, multiparous cows (n = 244) with BCS <5.0 received identical treatment as cows in experiment 1 initiated on Day -18, and on Day -2, cows received 400 IU of eCG or no treatment. Ovarian structures were determined in a subset of cows (n = 31) on Days -3, -2, -1, 0, 1, and on Day 10. Pregnancy was determined 39 days after TAI. The results indicated that in experiment 1, plasma progesterone was higher in treated than nontreated (control cows) during the first 14 days (P = 0.0001). The extended progesterone treatment increased the size of the largest follicle between Days -23 and Day -5 (Group by Day, P = 0.04) and tended to increase the size of the dominant follicle from Day -5 to Day -1 (Group by Day, P = 0.06). There was no effect of metabolic status or interaction between metabolic status and day on follicular growth. In experiment 2, extended progesterone treatment tended to increase the size of the largest follicle between Day -23 and -9 (P = 0.06). There was no effect of Group, eCG, BCS, and parity on pregnancy per AI. In experiment 3, extended progesterone treatment combined with eCG increased the size of the dominant follicle (P = 0.01). Both extended progesterone treatment (P = 0.02) and eCG (P = 0.03) increased pregnancy per AI. In conclusion, an extended progesterone treatment stimulated follicular growth postpartum and improved fertility only in cows with low BCS. Copyright © 2016 Elsevier Inc. All rights reserved.
Nabeshima, Yuji; Kimura, Yoshitaka; Ito, Takuro; Ohwada, Kazunari; Karashima, Akihiro; Katayama, Norihiro; Nakao, Mitsuyuki
2013-01-01
Fetal electrocardiogram (fECG) and its vector form (fVECG) could provide significant clinical information concerning physiological conditions of a fetus. So far various independent component analysis (ICA)-based methods for extracting fECG from maternal abdominal signals have been proposed. Because full extraction of component waves such as P, Q, R, S, and T, is difficult to be realized under noisy and nonstationary situations, the fVECG is further hard to be reconstructed, where different projections of the fetal heart vector are required. In order to reconstruct fVECG, we proposed a novel method for synthesizing different projections of the heart vector, making good use of the fetus movement. This method consists of ICA, estimation of rotation angles of fetus, and synthesis of projections of the heart vector. Through applications to the synthetic and actual data, our method is shown to precisely estimate rotation angle of the fetus and to successfully reconstruct the fVECG.
An Electronic System for the Contactless Reading of ECG Signals.
Parente, Francesca Romana; Santonico, Marco; Zompanti, Alessandro; Benassai, Mario; Ferri, Giuseppe; D'Amico, Arnaldo; Pennazza, Giorgio
2017-10-28
The aim of this work is the development of a contactless capacitive sensory system for the detection of (Electrocardiographic) ECG-like signals. The acquisition approach is based on a capacitive coupling with the patient body performed by electrodes integrated in a front-end circuit. The proposed system is able to detect changes in the electric charge related to the heart activity. Due to the target signal weakness and to the presence of other undesired signals, suitable amplification stages and analogue filters are required. Simulated results allowed us to evaluate the effectiveness of the approach, whereas experimental measurements, recorded without contact to the skin, have validated the practical effectiveness of the proposed architecture. The system operates with a supply voltage of ±9 V with an overall power consumption of about 10 mW. The analogue output of the electronic interface is connected to an ATmega328 microcontroller implementing the A/D conversion and the data acquisition. The collected data can be displayed on any multimedia support for real-time tracking applications.
Seamless personal health information system in cloud computing.
Chung, Wan-Young; Fong, Ee May
2014-01-01
Noncontact ECG measurement has gained popularity these days due to its noninvasive and conveniences to be applied on daily life. This approach does not require any direct contact between patient's skin and sensor for physiological signal measurement. The noncontact ECG measurement is integrated with mobile healthcare system for health status monitoring. Mobile phone acts as the personal health information system displaying health status and body mass index (BMI) tracking. Besides that, it plays an important role being the medical guidance providing medical knowledge database including symptom checker and health fitness guidance. At the same time, the system also features some unique medical functions that cater to the living demand of the patients or users, including regular medication reminders, alert alarm, medical guidance, appointment scheduling. Lastly, we demonstrate mobile healthcare system with web application for extended uses, thus health data are clouded into web server system and web database storage. This allows remote health status monitoring easily and so forth it promotes a cost effective personal healthcare system.
Accurate Interpretation of the 12-Lead ECG Electrode Placement: A Systematic Review
ERIC Educational Resources Information Center
Khunti, Kirti
2014-01-01
Background: Coronary heart disease (CHD) patients require monitoring through ECGs; the 12-lead electrocardiogram (ECG) is considered to be the non-invasive gold standard. Examples of incorrect treatment because of inaccurate or poor ECG monitoring techniques have been reported in the literature. The findings that only 50% of nurses and less than…
Kim, Hyejung; Van Hoof, Chris; Yazicioglu, Refet Firat
2011-01-01
This paper describes a mixed-signal ECG processing platform with an 12-bit ADC architecture that can adapt its sampling rate according to the input signals rate of change. This enables the sampling of ECG signals with significantly reduced data rate without loss of information. The presented adaptive sampling scheme reduces the ADC power consumption, enables the processing of ECG signals with lower power consumption, and reduces the power consumption of the radio while streaming the ECG signals. The test results show that running a CWT-based R peak detection algorithm using the adaptively sampled ECG signals consumes only 45.6 μW and it leads to 36% less overall system power consumption.
The Abnormal vs. Normal ECG Classification Based on Key Features and Statistical Learning
NASA Astrophysics Data System (ADS)
Dong, Jun; Tong, Jia-Fei; Liu, Xia
As cardiovascular diseases appear frequently in modern society, the medicine and health system should be adjusted to meet the new requirements. Chinese government has planned to establish basic community medical insurance system (BCMIS) before 2020, where remote medical service is one of core issues. Therefore, we have developed the "remote network hospital system" which includes data server and diagnosis terminal by the aid of wireless detector to sample ECG. To improve the efficiency of ECG processing, in this paper, abnormal vs. normal ECG classification approach based on key features and statistical learning is presented, and the results are analyzed. Large amount of normal ECG could be filtered by computer automatically and abnormal ECG is left to be diagnosed specially by physicians.
ECG Signal Analysis and Arrhythmia Detection using Wavelet Transform
NASA Astrophysics Data System (ADS)
Kaur, Inderbir; Rajni, Rajni; Marwaha, Anupma
2016-12-01
Electrocardiogram (ECG) is used to record the electrical activity of the heart. The ECG signal being non-stationary in nature, makes the analysis and interpretation of the signal very difficult. Hence accurate analysis of ECG signal with a powerful tool like discrete wavelet transform (DWT) becomes imperative. In this paper, ECG signal is denoised to remove the artifacts and analyzed using Wavelet Transform to detect the QRS complex and arrhythmia. This work is implemented in MATLAB software for MIT/BIH Arrhythmia database and yields the sensitivity of 99.85 %, positive predictivity of 99.92 % and detection error rate of 0.221 % with wavelet transform. It is also inferred that DWT outperforms principle component analysis technique in detection of ECG signal.
Second-Degree Interatrial Block in Hemodialysis Patients
Enriquez, Andres; D'Amato, Anna; de Luna, Antoni Bayes; Baranchuk, Adrian
2015-01-01
Interatrial conduction delays manifest as a prolonged P-wave duration on surface ECG and the term interatrial block (IAB) has been coined. They are usually fixed, but cases of intermittent IAB have been described, suggesting functional conduction block at the Bachmann bundle region. We report 2 cases of patients on chronic hemodialysis therapy presenting with intermittent IAB. PMID:25755895
NASA Astrophysics Data System (ADS)
Ironi, Liliana; Tentoni, Stefania
2009-08-01
The last decade has witnessed major advancements in the direct application of functional imaging techniques to several clinical contexts. Unfortunately, this is not the case of Electrocardiology. As a matter of fact, epicardial maps, which can hit electrical conduction pathologies that routine surface ECG's analysis may miss, can be obtained non invasively from body surface data through mathematical model-based reconstruction methods. But, their interpretation still requires highly specialized skills that belong to few experts. The automated detection of salient patterns in the map, grounded on the existing interpretation rationale, would therefore represent a major contribution towards the clinical use of such valuable tools, whose diagnostic potential is still largely unexploited. We focus on epicardial activation isochronal maps, which convey information about the heart electric function in terms of the depolarization wavefront kinematics. An approach grounded on the integration of a Spatial Aggregation (SA) method with concepts borrowed from Computational Geometry provides a computational framework to extract, from the given activation data, a few basic features that characterize the wavefront propagation, as well as a more specific set of features that identify an important class of heart rhythm pathologies, namely reentry arrhythmias due to block of conduction.
Pavletic, A J; Pao, M; Pine, D S; Luckenbaugh, D A; Rosing, D R
2014-01-01
While there is controversy regarding utility of screening electrocardiograms (ECGs) in competitive athletes and children exposed to psychostimulants, there is no data on the use of screening ECGs in psychiatric research. We aimed to examine the prevalence and clinical significance of ECG abnormalities and their impact on eligibility for studies. We analysed 500 consecutive ECG reports from physically healthy volunteers who had a negative cardiac history, normal cardiovascular examination and no other significant medical illnesses. For the purpose of this report, all ECGs were over-read by one cardiologist. The mean age of our cohort was 28.3 ± 8.0 years. A total of 112 (22.4%) ECGs were reported as abnormal (14.2%) or borderline (8.2%). These abnormalities were considered clinically insignificant in all but eight subjects (1.6%) who underwent evaluation with an echocardiogram. All echocardiograms were normal. No subject was excluded from studies. After the over-reading, no abnormalities or isolated bradycardia were present in 37 of 112 (33%) ECGs that were initially reported as abnormal or borderline, while minor abnormalities were found in 7 of 204 (3.4%) ECGs that were reported as normal. Although screening ECGs did not detect significant cardiac pathology or affect eligibility for our studies, over 20% of subjects were labelled as having an abnormal or borderline ECG which was incorrect in one-third of cases. Strategies to minimise unintended consequences of screening are discussed. Published 2013. This article is a U.S. Government work and is in the public domain in the USA.
Validity of a heart rate monitor during work in the laboratory and on the Space Shuttle
NASA Technical Reports Server (NTRS)
Moore, A. D. Jr; Lee, S. M.; Greenisen, M. C.; Bishop, P.
1997-01-01
Accurate heart rate measurement during work is required for many industrial hygiene and ergonomics situations. The purpose of this investigation was to determine the validity of heart rate measurements obtained by a simple, lightweight, commercially available wrist-worn heart rate monitor (HRM) during work (cycle exercise) sessions conducted in the laboratory and also during the particularly challenging work environment of space flight. Three different comparisons were made. The first compared HRM data to simultaneous electrocardiogram (ECG) recordings of varying heart rates that were generated by an ECG simulator. The second compared HRM data to ECG recordings collected during work sessions of 14 subjects in the laboratory. Finally, ECG downlink and HRM data were compared in four astronauts who performed cycle exercise during space flight. The data were analyzed using regression techniques. The results were that the HRM recorded virtually identical heart rates compared with ECG recordings for the data set generated by an ECG simulator. The regression equation for the relationship between ECG versus HRM heart rate data during work in the laboratory was: ECG HR = 0.99 x (HRM) + 0.82 (r2 = 0.99). Finally, the agreement between ECG downlink data and HRM data during space flight was also very high, with the regression equation being: Downlink ECG HR = 1.05 x (HRM) -5.71 (r2 = 0.99). The results of this study indicate that the HRM provides accurate data and may be used to reliably obtain valid data regarding heart rate responses during work.
Brunetti, Natale Daniele; De Gennaro, Luisa; Dellegrottaglie, Giulia; Amoruso, Daniele; Antonelli, Gianfranco; Di Biase, Matteo
2011-11-01
In patients with a major cardiac event, the first priority is to minimize time-to-treatment. For many patients, the first and fastest contact with the health system is through emergency medical services (EMS). However, delay to treatment is still significant in developed countries, and international guidelines therefore recommend that EMS use prehospital electrocardiogram (ECG). Many communities are implementing prehospital ECG programs, with different technical solutions. We report on a region-wide prehospital ECG telecardiology program that involved 233,657 patients from all over Apulia (4 million inhabitants), Italy, who called the public regional free EMS telephone number "118." Prehospital ECG was transmitted by mobile phone to a single regional telecardiology "hub" where a cardiologist available 24/7 promptly reported the ECG, having a briefing with on-scene EMS personnel and EMS district central; patients were then directed to fibrinolysis or primary percutaneous coronary intervention (PCI) as appropriate. Patients were >70 years in 51% of cases, and 55% of prehospital ECGs were unremarkable; the remaining 45% showed signs suggesting acute coronary syndrome (ACS) in 18%, arrhythmias in 20%, and minor findings in 62%. In cases of suspected ACS (chest pain), ECG findings were normal in 77% of patients; 74% of subjects with suspected ACS were screened within 30' from the onset of symptoms. A regional single telecardiology hub providing prehospital ECG for a sole regional public EMS provides an example of a prehospital ECG network optimizing quality of ECG report and uniformity of EMS assistance in a large region-wide network.
Kim, Dae-Weung; Kim, Myoung Hyoun; Kim, Chang Guhn
2016-03-01
Domain 5 of kinin-free high molecular weight kininogen inhibits the adhesion of many tumor cell lines, and it has been reported that the histidine-glycine-lysine (HGK)-rich region might be responsible for inhibition of cell adhesion. The authors developed HGK-containing hexapeptide, glutamic acid-cysteine-glycine (ECG)-HGK, and evaluated the utility of Tc-99m ECG-HGK for tumor imaging. Hexapeptide, ECG-HGK was synthesized using Fmoc solid-phase peptide synthesis. Radiolabeling efficiency was evaluated. The uptake of Tc-99m ECG-HGK within HT-1080 cells was evaluated in vitro. In HT-1080 tumor-bearing mice, gamma imaging and biodistribution studies were performed. The complexes Tc-99m ECG-HGK was prepared in high yield. The uptake of Tc-99m ECG-HGK within the HT-1080 tumor cells had been demonstrated by in vitro studies. The gamma camera imaging in the murine model showed that Tc-99m ECG-HGK was accumulated substantially in the HT-1080 tumor (tumor-to-muscle ratio = 5.7 ± 1.4 at 4 h), and the tumoral uptake was blocked by the co-injection of excess HGK (tumor-to-muscle ratio = 2.8 ± 0.6 at 4 h). In the present study, Tc-99m ECG-HGK was developed as a new tumor imaging agents. Our in vitro and in vivo studies revealed specific function of Tc-99m ECG-HGK for tumor imaging. Copyright © 2016 John Wiley & Sons, Ltd.
Diagnostic value of prehospital ECG in acute stroke patients.
Bobinger, Tobias; Kallmünzer, Bernd; Kopp, Markus; Kurka, Natalia; Arnold, Martin; Heider, Stefan; Schwab, Stefan; Köhrmann, Martin
2017-05-16
To investigate the diagnostic yield of prehospital ECG monitoring provided by emergency medical services in the case of suspected stroke. Consecutive patients with acute stroke admitted to our tertiary stroke center via emergency medical services and with available prehospital ECG were prospectively included during a 12-month study period. We assessed prehospital ECG recordings and compared the results to regular 12-lead ECG on admission and after continuous ECG monitoring at the stroke unit. Overall, 259 patients with prehospital ECG recording were included in the study (90.3% ischemic stroke, 9.7% intracerebral hemorrhage). Atrial fibrillation (AF) was detected in 25.1% of patients, second-degree or greater atrioventricular block in 5.4%, significant ST-segment elevation in 5.0%, and ventricular ectopy in 9.7%. In 18 patients, a diagnosis of new-onset AF with direct clinical consequences for the evaluation and secondary prevention of stroke was established by the prehospital recordings. In 2 patients, the AF episodes were limited to the prehospital period and were not detected by ECG on admission or during subsequent monitoring at the stroke unit. Of 126 patients (48.6%) with relevant abnormalities in the prehospital ECG, 16.7% received medical antiarrhythmic therapy during transport to the hospital, and 6.4% were transferred to a cardiology unit within the first 24 hours in the hospital. In a selected cohort of patients with stroke, the in-field recordings of the ECG detected a relevant rate of cardiac arrhythmia. The results can add to the in-hospital evaluation and should be considered in prehospital care of acute stroke. © 2017 American Academy of Neurology.
Detection of Cardiac Abnormalities from Multilead ECG using Multiscale Phase Alternation Features.
Tripathy, R K; Dandapat, S
2016-06-01
The cardiac activities such as the depolarization and the relaxation of atria and ventricles are observed in electrocardiogram (ECG). The changes in the morphological features of ECG are the symptoms of particular heart pathology. It is a cumbersome task for medical experts to visually identify any subtle changes in the morphological features during 24 hours of ECG recording. Therefore, the automated analysis of ECG signal is a need for accurate detection of cardiac abnormalities. In this paper, a novel method for automated detection of cardiac abnormalities from multilead ECG is proposed. The method uses multiscale phase alternation (PA) features of multilead ECG and two classifiers, k-nearest neighbor (KNN) and fuzzy KNN for classification of bundle branch block (BBB), myocardial infarction (MI), heart muscle defect (HMD) and healthy control (HC). The dual tree complex wavelet transform (DTCWT) is used to decompose the ECG signal of each lead into complex wavelet coefficients at different scales. The phase of the complex wavelet coefficients is computed and the PA values at each wavelet scale are used as features for detection and classification of cardiac abnormalities. A publicly available multilead ECG database (PTB database) is used for testing of the proposed method. The experimental results show that, the proposed multiscale PA features and the fuzzy KNN classifier have better performance for detection of cardiac abnormalities with sensitivity values of 78.12 %, 80.90 % and 94.31 % for BBB, HMD and MI classes. The sensitivity value of proposed method for MI class is compared with the state-of-art techniques from multilead ECG.
El B'charri, Oussama; Latif, Rachid; Elmansouri, Khalifa; Abenaou, Abdenbi; Jenkal, Wissam
2017-02-07
Since the electrocardiogram (ECG) signal has a low frequency and a weak amplitude, it is sensitive to miscellaneous mixed noises, which may reduce the diagnostic accuracy and hinder the physician's correct decision on patients. The dual tree wavelet transform (DT-WT) is one of the most recent enhanced versions of discrete wavelet transform. However, threshold tuning on this method for noise removal from ECG signal has not been investigated yet. In this work, we shall provide a comprehensive study on the impact of the choice of threshold algorithm, threshold value, and the appropriate wavelet decomposition level to evaluate the ECG signal de-noising performance. A set of simulations is performed on both synthetic and real ECG signals to achieve the promised results. First, the synthetic ECG signal is used to observe the algorithm response. The evaluation results of synthetic ECG signal corrupted by various types of noise has showed that the modified unified threshold and wavelet hyperbolic threshold de-noising method is better in realistic and colored noises. The tuned threshold is then used on real ECG signals from the MIT-BIH database. The results has shown that the proposed method achieves higher performance than the ordinary dual tree wavelet transform into all kinds of noise removal from ECG signal. The simulation results indicate that the algorithm is robust for all kinds of noises with varying degrees of input noise, providing a high quality clean signal. Moreover, the algorithm is quite simple and can be used in real time ECG monitoring.
Khush, Kiran K.; Menza, Rebecca; Nguyen, John; Goldstein, Benjamin A.; Zaroff, Jonathan G.; Drew, Barbara J.
2012-01-01
Background Current regulations require that all cardiac allograft offers for transplantation must include an interpreted 12-lead electrocardiogram (ECG). However, little is known about the expected ECG findings in potential organ donors, or the clinical significance of any identified abnormalities in terms of cardiac allograft function and suitability for transplantation. Methods and Results A single experienced reviewer interpreted the first ECG obtained after brainstem herniation in 980 potential organ donors managed by the California Transplant Donor Network from 2002-2007. ECG abnormalities were summarized, and associations between specific ECG findings and cardiac allograft utilization for transplantation were studied. ECG abnormalities were present in 51% of all cases reviewed. The most common abnormalities included voltage criteria for left ventricular hypertrophy (LVH), prolongation of the corrected QT interval (QTc), and repolarization changes (ST/T wave abnormalities). Fifty seven percent of potential cardiac allografts in this cohort were accepted for transplantation. LVH on ECG was a strong predictor of allograft non-utilization. No significant associations were seen between QTc prolongation, repolarization changes and allograft utilization for transplantation, after adjusting for donor clinical variables and echocardiographic findings. Conclusions We have performed the first comprehensive study of ECG findings in potential donors for cardiac transplantation. Many of the common ECG abnormalities seen in organ donors may result from the heightened state of sympathetic activation that occurs after brainstem herniation, and are not associated with allograft utilization for transplantation. PMID:22615333
Accuracy of pulse oximetry measurement of heart rate of newborn infants in the delivery room.
Kamlin, C Omar F; Dawson, Jennifer A; O'Donnell, Colm P F; Morley, Colin J; Donath, Susan M; Sekhon, Jasbir; Davis, Peter G
2008-06-01
To determine the accuracy of heart rate obtained by pulse oximetry (HR(PO)) relative to HR obtained by 3-lead electrocardiography (HR(ECG)) in newborn infants in the delivery room. Immediately after birth, a preductal PO sensor and ECG leads were applied. PO and ECG monitor displays were recorded by a video camera. Two investigators reviewed the videos. Every two seconds, 1 of the investigators recorded HR(PO) and indicators of signal quality from the oximeter while masked to ECG, whereas the other recorded HR(ECG) and ECG signal quality while masked to PO. HR(PO) and HR(ECG) measurements were compared using Bland-Altman analysis. We attended 92 deliveries; 37 infants were excluded due to equipment malfunction. The 55 infants studied had a mean (+/-standard deviation [SD]) gestational age of 35 (+/-3.7) weeks, and birth weight 2399 (+/-869) g. In total, we analyzed 5877 data pairs. The mean difference (+/-2 SD) between HR(ECG) and HR(PO) was -2 (+/-26) beats per minute (bpm) overall and -0.5 (+/-16) bpm in those infants who received positive-pressure ventilation and/or cardiac massage. The sensitivity and specificity of PO for detecting HR(ECG) <100 bpm was 89% and 99%, respectively. PO provided an accurate display of newborn infants' HR in the delivery room, including those infants receiving advanced resuscitation.
An effective and efficient compression algorithm for ECG signals with irregular periods.
Chou, Hsiao-Hsuan; Chen, Ying-Jui; Shiau, Yu-Chien; Kuo, Te-Son
2006-06-01
This paper presents an effective and efficient preprocessing algorithm for two-dimensional (2-D) electrocardiogram (ECG) compression to better compress irregular ECG signals by exploiting their inter- and intra-beat correlations. To better reveal the correlation structure, we first convert the ECG signal into a proper 2-D representation, or image. This involves a few steps including QRS detection and alignment, period sorting, and length equalization. The resulting 2-D ECG representation is then ready to be compressed by an appropriate image compression algorithm. We choose the state-of-the-art JPEG2000 for its high efficiency and flexibility. In this way, the proposed algorithm is shown to outperform some existing arts in the literature by simultaneously achieving high compression ratio (CR), low percent root mean squared difference (PRD), low maximum error (MaxErr), and low standard derivation of errors (StdErr). In particular, because the proposed period sorting method rearranges the detected heartbeats into a smoother image that is easier to compress, this algorithm is insensitive to irregular ECG periods. Thus either the irregular ECG signals or the QRS false-detection cases can be better compressed. This is a significant improvement over existing 2-D ECG compression methods. Moreover, this algorithm is not tied exclusively to JPEG2000. It can also be combined with other 2-D preprocessing methods or appropriate codecs to enhance the compression performance in irregular ECG cases.
Biometric and Emotion Identification: An ECG Compression Based Method.
Brás, Susana; Ferreira, Jacqueline H T; Soares, Sandra C; Pinho, Armando J
2018-01-01
We present an innovative and robust solution to both biometric and emotion identification using the electrocardiogram (ECG). The ECG represents the electrical signal that comes from the contraction of the heart muscles, indirectly representing the flow of blood inside the heart, it is known to convey a key that allows biometric identification. Moreover, due to its relationship with the nervous system, it also varies as a function of the emotional state. The use of information-theoretic data models, associated with data compression algorithms, allowed to effectively compare ECG records and infer the person identity, as well as emotional state at the time of data collection. The proposed method does not require ECG wave delineation or alignment, which reduces preprocessing error. The method is divided into three steps: (1) conversion of the real-valued ECG record into a symbolic time-series, using a quantization process; (2) conditional compression of the symbolic representation of the ECG, using the symbolic ECG records stored in the database as reference; (3) identification of the ECG record class, using a 1-NN (nearest neighbor) classifier. We obtained over 98% of accuracy in biometric identification, whereas in emotion recognition we attained over 90%. Therefore, the method adequately identify the person, and his/her emotion. Also, the proposed method is flexible and may be adapted to different problems, by the alteration of the templates for training the model.
Biometric and Emotion Identification: An ECG Compression Based Method
Brás, Susana; Ferreira, Jacqueline H. T.; Soares, Sandra C.; Pinho, Armando J.
2018-01-01
We present an innovative and robust solution to both biometric and emotion identification using the electrocardiogram (ECG). The ECG represents the electrical signal that comes from the contraction of the heart muscles, indirectly representing the flow of blood inside the heart, it is known to convey a key that allows biometric identification. Moreover, due to its relationship with the nervous system, it also varies as a function of the emotional state. The use of information-theoretic data models, associated with data compression algorithms, allowed to effectively compare ECG records and infer the person identity, as well as emotional state at the time of data collection. The proposed method does not require ECG wave delineation or alignment, which reduces preprocessing error. The method is divided into three steps: (1) conversion of the real-valued ECG record into a symbolic time-series, using a quantization process; (2) conditional compression of the symbolic representation of the ECG, using the symbolic ECG records stored in the database as reference; (3) identification of the ECG record class, using a 1-NN (nearest neighbor) classifier. We obtained over 98% of accuracy in biometric identification, whereas in emotion recognition we attained over 90%. Therefore, the method adequately identify the person, and his/her emotion. Also, the proposed method is flexible and may be adapted to different problems, by the alteration of the templates for training the model. PMID:29670564
[An Algorithm to Eliminate Power Frequency Interference in ECG Using Template].
Shi, Guohua; Li, Jiang; Xu, Yan; Feng, Liang
2017-01-01
Researching an algorithm to eliminate power frequency interference in ECG. The algorithm first creates power frequency interference template, then, subtracts the template from the original ECG signals, final y, the algorithm gets the ECG signals without interference. Experiment shows the algorithm can eliminate interference effectively and has none side effect to normal signal. It’s efficient and suitable for practice.
[Lossless ECG compression algorithm with anti- electromagnetic interference].
Guan, Shu-An
2005-03-01
Based on the study of ECG signal features, a new lossless ECG compression algorithm is put forward here. We apply second-order difference operation with anti- electromagnetic interference to original ECG signals and then, compress the result by the escape-based coding model. In spite of serious 50Hz-interference, the algorithm is still capable of obtaining a high compression ratio.
Cleal, J K; Thomas, M; Hanson, M A; Paterson-Brown, S; Gardiner, H M; Green, L R
2010-03-01
To investigate whether a noninvasive fetal electrocardiography (fECG) system can identify cardiovascular responses to fetal hypoxaemia and validate the results using standard invasive fECG monitoring techniques. Prospective cohort study. Biological research facilities at The University of Southampton. Late gestation ovine fetuses; n = 5. Five fetal lambs underwent implantation of vascular catheters, umbilical cord occluder and invasive ECG chest electrodes under general anaesthesia (3% halothane/O(2)) at 119 days of gestation (term approximately 147 days of gestation). After 5 days of recovery blood pressure, blood gases, glucose and pH were monitored. At 124 and 125 days of gestation following a 10-minute baseline period a 90-second cord occlusion was applied. Noninvasive fetal ECG was recorded from maternal transabdominal electrodes using advanced signal-processing techniques, concurrently with invasive fECG recordings. Comparison of T:QRS ratios of the ECG waveform from noninvasive and invasive fECG monitoring systems. Our fECG monitoring system is able to demonstrate changes in waveforms during periods of hypoxaemia similar to those obtained invasively, which could indicate fetal distress. These findings may indicate a future use for noninvasive electrocardiography during human fetal monitoring both before and during labour in term and preterm pregnancies.
Novel technical solutions for wireless ECG transmission & analysis in the age of the internet cloud.
Al-Zaiti, Salah S; Shusterman, Vladimir; Carey, Mary G
2013-01-01
Current guidelines recommend early reperfusion therapy for ST-elevation myocardial infarction (STEMI) within 90 min of first medical encounter. Telecardiology entails the use of advanced communication technologies to transmit the prehospital 12-lead electrocardiogram (ECG) to offsite cardiologists for early triage to the cath lab; which has been shown to dramatically reduce door-to-balloon time and total mortality. However, hospitals often find adopting ECG transmission technologies very challenging. The current review identifies seven major technical challenges of prehospital ECG transmission, including: paramedics inconvenience and transport delay; signal noise and interpretation errors; equipment malfunction and transmission failure; reliability of mobile phone networks; lack of compliance with the standards of digital ECG formats; poor integration with electronic medical records; and costly hardware and software pre-requisite installation. Current and potential solutions to address each of these technical challenges are discussed in details and include: automated ECG transmission protocols; annotatable waveform-based ECGs; optimal routing solutions; and the use of cloud computing systems rather than vendor-specific processing stations. Nevertheless, strategies to monitor transmission effectiveness and patient outcomes are essential to sustain initial gains of implementing ECG transmission technologies. © 2013.
Flexible Graphene Electrodes for Prolonged Dynamic ECG Monitoring
Lou, Cunguang; Li, Ruikai; Li, Zhaopeng; Liang, Tie; Wei, Zihui; Run, Mingtao; Yan, Xiaobing; Liu, Xiuling
2016-01-01
This paper describes the development of a graphene-based dry flexible electrocardiography (ECG) electrode and a portable wireless ECG measurement system. First, graphene films on polyethylene terephthalate (PET) substrates and graphene paper were used to construct the ECG electrode. Then, a graphene textile was synthesized for the fabrication of a wearable ECG monitoring system. The structure and the electrical properties of the graphene electrodes were evaluated using Raman spectroscopy, scanning electron microscopy (SEM), and alternating current impedance spectroscopy. ECG signals were then collected from healthy subjects using the developed graphene electrode and portable measurement system. The results show that the graphene electrode was able to acquire the typical characteristics and features of human ECG signals with a high signal-to-noise (SNR) ratio in different states of motion. A week-long continuous wearability test showed no degradation in the ECG signal quality over time. The graphene-based flexible electrode demonstrates comfortability, good biocompatibility, and high electrophysiological detection sensitivity. The graphene electrode also combines the potential for use in long-term wearable dynamic cardiac activity monitoring systems with convenience and comfort for use in home health care of elderly and high-risk adults. PMID:27809270
A Precise Drunk Driving Detection Using Weighted Kernel Based on Electrocardiogram.
Wu, Chung Kit; Tsang, Kim Fung; Chi, Hao Ran; Hung, Faan Hei
2016-05-09
Globally, 1.2 million people die and 50 million people are injured annually due to traffic accidents. These traffic accidents cost $500 billion dollars. Drunk drivers are found in 40% of the traffic crashes. Existing drunk driving detection (DDD) systems do not provide accurate detection and pre-warning concurrently. Electrocardiogram (ECG) is a proven biosignal that accurately and simultaneously reflects human's biological status. In this letter, a classifier for DDD based on ECG is investigated in an attempt to reduce traffic accidents caused by drunk drivers. At this point, it appears that there is no known research or literature found on ECG classifier for DDD. To identify drunk syndromes, the ECG signals from drunk drivers are studied and analyzed. As such, a precise ECG-based DDD (ECG-DDD) using a weighted kernel is developed. From the measurements, 10 key features of ECG signals were identified. To incorporate the important features, the feature vectors are weighted in the customization of kernel functions. Four commonly adopted kernel functions are studied. Results reveal that weighted feature vectors improve the accuracy by 11% compared to the computation using the prime kernel. Evaluation shows that ECG-DDD improved the accuracy by 8% to 18% compared to prevailing methods.
Tjolleng, Amir; Jung, Kihyo; Hong, Wongi; Lee, Wonsup; Lee, Baekhee; You, Heecheon; Son, Joonwoo; Park, Seikwon
2017-03-01
An artificial neural network (ANN) model was developed in the present study to classify the level of a driver's cognitive workload based on electrocardiography (ECG). ECG signals were measured on 15 male participants while they performed a simulated driving task as a primary task with/without an N-back task as a secondary task. Three time-domain ECG measures (mean inter-beat interval (IBI), standard deviation of IBIs, and root mean squared difference of adjacent IBIs) and three frequencydomain ECG measures (power in low frequency, power in high frequency, and ratio of power in low and high frequencies) were calculated. To compensate for individual differences in heart response during the driving tasks, a three-step data processing procedure was performed to ECG signals of each participant: (1) selection of two most sensitive ECG measures, (2) definition of three (low, medium, and high) cognitive workload levels, and (3) normalization of the selected ECG measures. An ANN model was constructed using a feed-forward network and scaled conjugate gradient as a back-propagation learning rule. The accuracy of the ANN classification model was found satisfactory for learning data (95%) and testing data (82%). Copyright © 2016 Elsevier Ltd. All rights reserved.
Electrocardiogram signal denoising based on a new improved wavelet thresholding
NASA Astrophysics Data System (ADS)
Han, Guoqiang; Xu, Zhijun
2016-08-01
Good quality electrocardiogram (ECG) is utilized by physicians for the interpretation and identification of physiological and pathological phenomena. In general, ECG signals may mix various noises such as baseline wander, power line interference, and electromagnetic interference in gathering and recording process. As ECG signals are non-stationary physiological signals, wavelet transform is investigated to be an effective tool to discard noises from corrupted signals. A new compromising threshold function called sigmoid function-based thresholding scheme is adopted in processing ECG signals. Compared with other methods such as hard/soft thresholding or other existing thresholding functions, the new algorithm has many advantages in the noise reduction of ECG signals. It perfectly overcomes the discontinuity at ±T of hard thresholding and reduces the fixed deviation of soft thresholding. The improved wavelet thresholding denoising can be proved to be more efficient than existing algorithms in ECG signal denoising. The signal to noise ratio, mean square error, and percent root mean square difference are calculated to verify the denoising performance as quantitative tools. The experimental results reveal that the waves including P, Q, R, and S waves of ECG signals after denoising coincide with the original ECG signals by employing the new proposed method.
NASA Astrophysics Data System (ADS)
Mishra, Puneet; Singla, Sunil Kumar
2013-01-01
In the modern world of automation, biological signals, especially Electroencephalogram (EEG) and Electrocardiogram (ECG), are gaining wide attention as a source of biometric information. Earlier studies have shown that EEG and ECG show versatility with individuals and every individual has distinct EEG and ECG spectrum. EEG (which can be recorded from the scalp due to the effect of millions of neurons) may contain noise signals such as eye blink, eye movement, muscular movement, line noise, etc. Similarly, ECG may contain artifact like line noise, tremor artifacts, baseline wandering, etc. These noise signals are required to be separated from the EEG and ECG signals to obtain the accurate results. This paper proposes a technique for the removal of eye blink artifact from EEG and ECG signal using fixed point or FastICA algorithm of Independent Component Analysis (ICA). For validation, FastICA algorithm has been applied to synthetic signal prepared by adding random noise to the Electrocardiogram (ECG) signal. FastICA algorithm separates the signal into two independent components, i.e. ECG pure and artifact signal. Similarly, the same algorithm has been applied to remove the artifacts (Electrooculogram or eye blink) from the EEG signal.
Unveiling the Biometric Potential of Finger-Based ECG Signals
Lourenço, André; Silva, Hugo; Fred, Ana
2011-01-01
The ECG signal has been shown to contain relevant information for human identification. Even though results validate the potential of these signals, data acquisition methods and apparatus explored so far compromise user acceptability, requiring the acquisition of ECG at the chest. In this paper, we propose a finger-based ECG biometric system, that uses signals collected at the fingers, through a minimally intrusive 1-lead ECG setup recurring to Ag/AgCl electrodes without gel as interface with the skin. The collected signal is significantly more noisy than the ECG acquired at the chest, motivating the application of feature extraction and signal processing techniques to the problem. Time domain ECG signal processing is performed, which comprises the usual steps of filtering, peak detection, heartbeat waveform segmentation, and amplitude normalization, plus an additional step of time normalization. Through a simple minimum distance criterion between the test patterns and the enrollment database, results have revealed this to be a promising technique for biometric applications. PMID:21837235
Research of the Heart Information Monitoring Robert Based on the 3G Wireless Communication Platform
NASA Astrophysics Data System (ADS)
Zhang, Fuli; Yang, Huazhe; Li, Gensong; Hong, Yang; Hu, Qingzhe
Electrocardiogram (ECG) of a person can be recorded and the diagnostic results can be displayed through touching the heart information monitoring Robert. In addition, the heart rate, phonocardiogram (PCG) and the dynamic three-dimensional echocardiography can also be displayed synchronously. Then the difficult ECG can be transmitted to the service center through 3G wireless communication center, followed by diagnosing the ECG by doctors and transmitting the feedback diagnostic results. I-lead ECG of the person can be recorded by the amplification circuit with high gain and low noise. Then, the heart rate and output phonocardiogram are displayed and the model of heart beat are started to trace through the recognition of R wave. Finally, the difficult ECG is transmitted to the service center via 3G communication chips. The displayed ECG is clear, and the stimulated heart beat is synchronous with that of the person. Furthermore, ECG received by the service center is in accordance with the one recorded by the Robert.
A Real-Time Cardiac Arrhythmia Classification System with Wearable Sensor Networks
Hu, Sheng; Wei, Hongxing; Chen, Youdong; Tan, Jindong
2012-01-01
Long term continuous monitoring of electrocardiogram (ECG) in a free living environment provides valuable information for prevention on the heart attack and other high risk diseases. This paper presents the design of a real-time wearable ECG monitoring system with associated cardiac arrhythmia classification algorithms. One of the striking advantages is that ECG analog front-end and on-node digital processing are designed to remove most of the noise and bias. In addition, the wearable sensor node is able to monitor the patient's ECG and motion signal in an unobstructive way. To realize the real-time medical analysis, the ECG is digitalized and transmitted to a smart phone via Bluetooth. On the smart phone, the ECG waveform is visualized and a novel layered hidden Markov model is seamlessly integrated to classify multiple cardiac arrhythmias in real time. Experimental results demonstrate that the clean and reliable ECG waveform can be captured in multiple stressed conditions and the real-time classification on cardiac arrhythmia is competent to other workbenches. PMID:23112746
Computer analysis of Holter electrocardiogram.
Yanaga, T; Adachi, M; Sato, Y; Ichimaru, Y; Otsuka, K
1994-10-01
Computer analysis is indispensable for the interpretation of Holter ECG, because it includes a large quantity of data. Computer analysis of Holter ECG is similar to that of conventional ECG, however, in computer analysis of Holter ECG, there are some difficulties such as many noise, limited analyzing time and voluminous data. The main topics in computer analysis of Holter ECG will be arrhythmias, ST-T changes, heart rate variability, QT interval, late potential and construction of database. Although many papers have been published on the computer analysis of Holter ECG, some of the papers was reviewed briefly in the present paper. We have studied on computer analysis of VPCs, ST-T changes, heart rate variability, QT interval and Cheyne-Stokes respiration during 24-hour ambulatory ECG monitoring. Further, we have studied on ambulatory palmar sweating for the evaluation of mental stress during a day. In future, the development of "the integrated Holter system", which enables the evaluation of ventricular vulnerability and modulating factor such as psychoneural hypersensitivity may be important.
Effect of ECG filter settings on J-waves.
Nakagawa, Mikiko; Tsunemitsu, Chie; Katoh, Sayo; Kamiyama, Yukari; Sano, Nario; Ezaki, Kaori; Miyazaki, Hiroko; Teshima, Yasushi; Yufu, Kunio; Takahashi, Naohiko; Saikawa, Tetsunori
2014-01-01
While J-waves were observed in healthy populations, variations in their reported incidence may be partly explicable by the ECG filter setting. We obtained resting 12-lead ECG recordings in 665 consecutive patients and enrolled 112 (56 men, 56 women, mean age 59.3±16.1years) who manifested J-waves on ECGs acquired with a 150-Hz low-pass filter. We then studied the J-waves on individual ECGs to look for morphological changes when 25-, 35-, 75-, 100-, and 150Hz filters were used. The notching observed with the 150-Hz filter changed to slurring (42%) or was eliminated (28%) with the 25-Hz filter. Similarly, the slurring seen with the 150-Hz filter was eliminated on 71% of ECGs recorded with the 25-Hz filter. The amplitude of J-waves was significantly lower with 25- and 35-Hz than 75-, 100-, and 150-Hz filters (p<0.0001). The ECG filter setting significantly affects the J-wave morphology. © 2013.
Wiklund, Urban; Karlsson, Marcus; Ostlund, Nils; Berglin, Lena; Lindecrantz, Kaj; Karlsson, Stefan; Sandsjö, Leif
2007-06-01
Intermittent disturbances are common in ECG signals recorded with smart clothing: this is mainly because of displacement of the electrodes over the skin. We evaluated a novel adaptive method for spatio-temporal filtering for heartbeat detection in noisy multi-channel ECGs including short signal interruptions in single channels. Using multi-channel database recordings (12-channel ECGs from 10 healthy subjects), the results showed that multi-channel spatio-temporal filtering outperformed regular independent component analysis. We also recorded seven channels of ECG using a T-shirt with textile electrodes. Ten healthy subjects performed different sequences during a 10-min recording: resting, standing, flexing breast muscles, walking and pushups. Using adaptive multi-channel filtering, the sensitivity and precision was above 97% in nine subjects. Adaptive multi-channel spatio-temporal filtering can be used to detect heartbeats in ECGs with high noise levels. One application is heartbeat detection in noisy ECG recordings obtained by integrated textile electrodes in smart clothing.
Low-cost compact ECG with graphic LCD and phonocardiogram system design.
Kara, Sadik; Kemaloğlu, Semra; Kirbaş, Samil
2006-06-01
Till today, many different ECG devices are made in developing countries. In this study, low cost, small size, portable LCD screen ECG device, and phonocardiograph were designed. With designed system, heart sounds that take synchronously with ECG signal are heard as sensitive. Improved system consist three units; Unit 1, ECG circuit, filter and amplifier structure. Unit 2, heart sound acquisition circuit. Unit 3, microcontroller, graphic LCD and ECG signal sending unit to computer. Our system can be used easily in different departments of the hospital, health institution and clinics, village clinic and also in houses because of its small size structure and other benefits. In this way, it is possible that to see ECG signal and hear heart sounds as synchronously and sensitively. In conclusion, heart sounds are heard on the part of both doctor and patient because sounds are given to environment with a tiny speaker. Thus, the patient knows and hears heart sounds him/herself and is acquainted by doctor about healthy condition.
Unveiling the biometric potential of finger-based ECG signals.
Lourenço, André; Silva, Hugo; Fred, Ana
2011-01-01
The ECG signal has been shown to contain relevant information for human identification. Even though results validate the potential of these signals, data acquisition methods and apparatus explored so far compromise user acceptability, requiring the acquisition of ECG at the chest. In this paper, we propose a finger-based ECG biometric system, that uses signals collected at the fingers, through a minimally intrusive 1-lead ECG setup recurring to Ag/AgCl electrodes without gel as interface with the skin. The collected signal is significantly more noisy than the ECG acquired at the chest, motivating the application of feature extraction and signal processing techniques to the problem. Time domain ECG signal processing is performed, which comprises the usual steps of filtering, peak detection, heartbeat waveform segmentation, and amplitude normalization, plus an additional step of time normalization. Through a simple minimum distance criterion between the test patterns and the enrollment database, results have revealed this to be a promising technique for biometric applications.
Raine, Dan; Langley, Philip; Murray, Alan; Dunuwille, Asunga; Bourke, John P
2004-09-01
The aims of this study were to evaluate (1) principal component analysis as a technique for extracting the atrial signal waveform from the standard 12-lead ECG and (2) its ability to distinguish changes in atrial fibrillation (AF) frequency parameters over time and in response to pharmacologic manipulation using drugs with different effects on atrial electrophysiology. Twenty patients with persistent AF were studied. Continuous 12-lead Holter ECGs were recorded for 60 minutes, first, in the drug-free state. Mean and variability of atrial waveform frequency were measured using an automated computer technique. This extracted the atrial signal by principal component analysis and identified the main frequency component using Fourier analysis. Patients were then allotted sequentially to receive 1 of 4 drugs intravenously (amiodarone, flecainide, sotalol, or metoprolol), and changes induced in mean and variability of atrial waveform frequency measured. Mean and variability of atrial waveform frequency did not differ within patients between the two 30-minute sections of the drug-free state. As hypothesized, significant changes in mean and variability of atrial waveform frequency were detected after manipulation with amiodarone (mean: 5.77 vs 4.86 Hz; variability: 0.55 vs 0.31 Hz), flecainide (mean: 5.33 vs 4.72 Hz; variability: 0.71 vs 0.31 Hz), and sotalol (mean: 5.94 vs 4.90 Hz; variability: 0.73 vs 0.40 Hz) but not with metoprolol (mean: 5.41 vs 5.17 Hz; variability: 0.81 vs 0.82 Hz). A technique for continuously analyzing atrial frequency characteristics of AF from the surface ECG has been developed and validated.
Physiologic effects of rhythmical massage: a prospective exploratory cohort study.
Wälchli, Chantal; Saltzwedel, Georg; Krüerke, Daniel; Kaufmann, Christoph; Schnorr, Bettina; Rist, Lukas; Eberhard, Jutta; Decker, Michael; Simões-Wüst, Ana Paula
2014-06-01
This study was performed to characterize the physiologic effects of rhythmical massage (RM), an anthroposophic therapy whose effectiveness is supported by empirical observations and a prospective observational study. Patients referred to RM at the Paracelsus Hospital Richterswil for any indication were continuously enrolled. They received an average of 10 RM sessions, which included not only the massage but also therapeutic rest in the supine position immediately thereafter. Effects of RM on surface temperature and on heart rate variability (HRV) were determined with infrared imaging (IRI) and electrocardiography (ECG), respectively. IRI of the patients' dorsal region was performed without clothes, in standing position, at the start and at the end of two waiting periods before and after RM. ECG was performed from the beginning of the first waiting period until the end of the second one. Results on IRI from 9 and ECG from 11 patients could be analyzed. RM led to an immediate increase in dorsal temperature. Furthermore, comparison of the IRI images for consecutive RM sessions showed a tendency toward improved warmth distribution as a progressive therapy effect. Analysis of the EGC results recorded during the waiting periods-in the sitting position--showed a significant increase of HRV after RM, as detected by the standard deviation of the beat-to-beat periods and a relative increase of low-frequency power. During the course of the RM sessions, the change in HRV during the therapeutic rest period depended on the initial value: Low initial values were enhanced, whereas high ones were reduced. RM led to an immediate increase in the patient's dorsal surface temperature, as well as increased HRV and sympathetic stimulation. In the long term, RM resulted in a progressive improvement of warmth distribution and regulation of the resting HRV.
Güler, N; Bilge, M; Eryonucu, B; Cirak, B
2000-10-01
We report two cases of acute cervical angina and ECG changes induced by anteflexion of the head. Cervical angina is defined as chest pain that resembles true cardiac angina but originates from cervical discopathy with nerve root compression. In these patients, Prinzmetal's angina, valvular heart disease, congenital heart disease, left ventricular aneurysm, and cardiomyopathy were excluded. After all, the patient's chest pain was reproduced by anteflexion of head, at this time, their ECGs showed nonspecific ST-T changes in the inferior and anterior leads different from the basal ECG. ECG changes returned to normal when the patient's neck moved to the neutral position. To our knowledge, these are the first cases of cervical angina associated with acute ECG changes by neck motion.
[Development of a portable ambulatory ECG monitor based on embedded microprocessor unit].
Wang, Da-xiong; Wang, Guo-jun
2005-06-01
To develop a new kind of portable ambulatory ECG monitor. The hardware and software were designed based on RCA-CDP1802. New methods of ECG data compression and feature extraction of QRS complexes were applied to software design. A model for automatic arrhythmia analysis was established for real-time ambulatory ECG Data analysis. Compact, low power consumption and low cost were emphasized in the hardware design. This compact and light-weight monitor with low power consumption and high intelligence was capable of real-time monitoring arrhythmia for more than 48 h. More than ten types of arrhythmia could be detected, only the compressed abnormal ECG data was recorded and could be transmitted to the host if required. The monitor meets the design requirements and can be used for ambulatory ECG monitoring.
Internet based ECG medical information system.
James, D A; Rowlands, D; Mahnovetski, R; Channells, J; Cutmore, T
2003-03-01
Physiological monitoring of humans for medical applications is well established and ready to be adapted to the Internet. This paper describes the implementation of a Medical Information System (MIS-ECG system) incorporating an Internet based ECG acquisition device. Traditionally clinical monitoring of ECG is largely a labour intensive process with data being typically stored on paper. Until recently, ECG monitoring applications have also been constrained somewhat by the size of the equipment required. Today's technology enables large and fixed hospital monitoring systems to be replaced by small portable devices. With an increasing emphasis on health management a truly integrated information system for the acquisition, analysis, patient particulars and archiving is now a realistic possibility. This paper describes recent Internet and technological advances and presents the design and testing of the MIS-ECG system that utilises those advances.
Freeware eLearning Flash-ECG for learning electrocardiography.
Romanov, Kalle; Kuusi, Timo
2009-06-01
Electrocardiographic (ECG) analysis can be taught in eLearning programmes with suitable software that permits the effective use of basic tools such as a ruler and a magnifier, required for measurements. The Flash-ECG (Research & Development Unit for Medical Education, University of Helsinki, Finland) was developed to enable teachers and students to use scanned and archived ECGs on computer screens and classroom projectors. The software requires only a standard web browser with a Flash plug-in and can be integrated with learning environments (Blackboard/WebCT, Moodle). The Flash-ECG is freeware and is available to medical teachers worldwide.
Chung, Seungmin; Yi, Joohee
2013-01-01
Electromagnetic interference (EMI) can affect various medical devices. Herein, we report the case of EMI from wireless local area network (WLAN) on an electrocardiogram (ECG) monitoring system. A patient who had a prior myocardial infarction participated in the cardiac rehabilitation program in the sports medicine center of our hospital under the wireless ECG monitoring system. After WLAN was installed, wireless ECG monitoring system failed to show a proper ECG signal. ECG signal was distorted when WLAN was turned on, but it was normalized after turning off the WLAN. PMID:23613696
Castroflorio, Tommaso; Mesin, Luca; Tartaglia, Gianluca Martino; Sforza, Chiarella; Farina, Dario
2013-11-01
Diagnosis of bruxism is difficult since not all contractions of masticatory muscles during sleeping are bruxism episodes. In this paper, we propose the use of both EMG and ECG signals for the detection of sleep bruxism. Data have been acquired from 21 healthy volunteers and 21 sleep bruxers. The masseter surface EMGs were detected with bipolar concentric electrodes and the ECG with monopolar electrodes located on the clavicular regions. Recordings were made at the subjects' homes during sleeping. Bruxism episodes were automatically detected as characterized by masseter EMG amplitude greater than 10% of the maximum and heart rate increasing by more than 25% with respect to baseline within 1 s before the increase in EMG amplitude above the 10% threshold. Furthermore, the subjects were classified as bruxers and nonbruxers by a neural network. The number of bruxism episodes per night was 24.6 ± 8.4 for bruxers and 4.3 ± 4.5 for controls ( P < 0.0001). The classification error between bruxers and nonbruxers was 1% which was substantially lower than when using EMG only for the classification. These results show that the proposed system, based on the joint analysis of EMG and ECG, can provide support for the clinical diagnosis of bruxism.
Integrated Flexible Electronic Devices Based on Passive Alignment for Physiological Measurement
Ryu, Jin Hwa; Byun, Sangwon; Baek, In-Bok; Lee, Bong Kuk; Jang, Won Ick; Jang, Eun-Hye; Kim, Ah-Yung; Yu, Han Yung
2017-01-01
This study proposes a simple method of fabricating flexible electronic devices using a metal template for passive alignment between chip components and an interconnect layer, which enabled efficient alignment with high accuracy. An electrocardiogram (ECG) sensor was fabricated using 20 µm thick polyimide (PI) film as a flexible substrate to demonstrate the feasibility of the proposed method. The interconnect layer was fabricated by a two-step photolithography process and evaporation. After applying solder paste, the metal template was placed on top of the interconnect layer. The metal template had rectangular holes at the same position as the chip components on the interconnect layer. Rectangular hole sizes were designed to account for alignment tolerance of the chips. Passive alignment was performed by simply inserting the components in the holes of the template, which resulted in accurate alignment with positional tolerance of less than 10 µm based on the structural design, suggesting that our method can efficiently perform chip mounting with precision. Furthermore, a fabricated flexible ECG sensor was easily attachable to the curved skin surface and able to measure ECG signals from a human subject. These results suggest that the proposed method can be used to fabricate epidermal sensors, which are mounted on the skin to measure various physiological signals. PMID:28420219
Influence of Mobile Phones on the Quality of ECG Signal Acquired by Medical Devices
NASA Astrophysics Data System (ADS)
Buczkowski, T.; Janusek, D.; Zavala-Fernandez, H.; Skrok, M.; Kania, M.; Liebert, A.
2013-10-01
Health aspects of the use of radiating devices, like mobile phones, are still a public concern. Stand-alone electrocardiographic systems and those built-in, more sophisticated, medical devices have become a standard tool used in everyday medical practice. GSM mobile phones might be a potential source of electromagnetic interference (EMI) which may affect reliability of medical appliances. Risk of such event is particularly high in places remote from GSM base stations in which the signal received by GSM mobile phone is weak. In such locations an increase in power of transmitted radio signal is necessary to enhance quality of the communication. In consequence, the risk of interference of electronic devices increases because of the high level of EMI. In the present paper the spatial, temporal, and spectral characteristics of the interference have been examined. The influence of GSM mobile phone on multilead ECG recordings was studied. It was observed that the electrocardiographic system was vulnerable to the interference generated by the GSM mobile phone working with maximum transmit power and in DTX mode when the device was placed in a distance shorter than 7.5 cm from the ECG electrode located on the surface of the chest. Negligible EMI was encountered at any longer distance.
Chen, Keyun; Ren, Lei; Chen, Zhipeng; Pan, Chengfeng; Zhou, Wei; Jiang, Lelun
2016-01-01
Micro-needle electrodes (MEs) have attracted more and more attention for monitoring physiological electrical signals, including electrode-skin interface impedance (EII), electromyography (EMG) and electrocardiography (ECG) recording. A magnetization-induced self-assembling method (MSM) was developed to fabricate a microneedle array (MA). A MA coated with Ti/Au film was assembled as a ME. The fracture and insertion properties of ME were tested by experiments. The bio-signal recording performance of the ME was measured and compared with a typical commercial wet electrode (Ag/AgCl electrode). The results show that the MA self-assembled from the magnetic droplet array under the sum of gravitational surface tension and magnetic potential energies. The ME had good toughness and could easily pierce rabbit skin without being broken or buckling. When the compression force applied on the ME was larger than 2 N, ME could stably record EII, which was a lower value than that measured by Ag/AgCl electrodes. EMG signals collected by ME varied along with the contraction of biceps brachii muscle. ME could record static ECG signals with a larger amplitude and dynamic ECG signals with more distinguishable features in comparison with a Ag/AgCl electrode, therefore, ME is an alternative electrode for bio-signal monitoring in some specific situations. PMID:27657072
Wearable Sensing of In-Ear Pressure for Heart Rate Monitoring with a Piezoelectric Sensor
Park, Jang-Ho; Jang, Dae-Geun; Park, Jung Wook; Youm, Se-Kyoung
2015-01-01
In this study, we developed a novel heart rate (HR) monitoring approach in which we measure the pressure variance of the surface of the ear canal. A scissor-shaped apparatus equipped with a piezoelectric film sensor and a hardware circuit module was designed for high wearability and to obtain stable measurement. In the proposed device, the film sensor converts in-ear pulse waves (EPW) into electrical current, and the circuit module enhances the EPW and suppresses noise. A real-time algorithm embedded in the circuit module performs morphological conversions to make the EPW more distinct and knowledge-based rules are used to detect EPW peaks. In a clinical experiment conducted using a reference electrocardiogram (ECG) device, EPW and ECG were concurrently recorded from 58 healthy subjects. The EPW intervals between successive peaks and their corresponding ECG intervals were then compared to each other. Promising results were obtained from the samples, specifically, a sensitivity of 97.25%, positive predictive value of 97.17%, and mean absolute difference of 0.62. Thus, highly accurate HR was obtained from in-ear pressure variance. Consequently, we believe that our proposed approach could be used to monitor vital signs and also utilized in diverse applications in the near future. PMID:26389912
Revolutionary optical sensor for physiological monitoring in the battlefield
NASA Astrophysics Data System (ADS)
Kingsley, Stuart A.; Sriram, Sriram; Pollick, Andrea; Marsh, John
2004-09-01
SRICO has developed a revolutionary approach to physiological status monitoring using state-of-the-art optical chip technology. The company"s patent pending Photrode is a photonic electrode that uses unique optical voltage sensing technology to measure and monitor electrophysiological parameters. The optical-based monitoring system enables dry-contact measurements of EEG and ECG signals that require no surface preparation or conductive gel and non-contact measurements of ECG signals through the clothing. The Photrode applies high performance optical integrated circuit technology, that has been successfully implemented in military & commercial aerospace, missile, and communications applications for sensing and signal transmission. SRICO"s award winning Photrode represents a new paradigm for the measurement of biopotentials in a reliable, convenient, and non-intrusive manner. Photrode technology has significant applications on the battlefield for rapid triage to determine the brain dead from those with viable brain function. An ECG may be obtained over the clothing without any direct skin contact. Such applications would enable the combat medic to receive timely medical information and to make important decisions regarding identification, location, triage priority and treatment of casualties. Other applications for the Photrode include anesthesia awareness monitoring, sleep medicine, mobile medical monitoring for space flight, emergency patient care, functional magnetic resonance imaging, various biopotential signal acquisition (EMG, EOG), and routine neuro and cardio diagnostics.
Electrocardiograms in Low-Risk Patients Undergoing an Annual Health Examination.
Bhatia, R Sacha; Bouck, Zachary; Ivers, Noah M; Mecredy, Graham; Singh, Jasjit; Pendrith, Ciara; Ko, Dennis T; Martin, Danielle; Wijeysundera, Harindra C; Tu, Jack V; Wilson, Lynn; Wintemute, Kimberly; Dorian, Paul; Tepper, Joshua; Austin, Peter C; Glazier, Richard H; Levinson, Wendy
2017-09-01
Clinical guidelines advise against routine electrocardiograms (ECG) in low-risk, asymptomatic patients, but the frequency and impact of such ECGs are unknown. To assess the frequency of ECGs following an annual health examination (AHE) with a primary care physician among patients with no known cardiac conditions or risk factors, to explore factors predictive of receiving an ECG in this clinical scenario, and to compare downstream cardiac testing and clinical outcomes in low-risk patients who did and did not receive an ECG after their AHE. A population-based retrospective cohort study using administrative health care databases from Ontario, Canada, between 2010/2011 and 2014/2015 to identify low-risk primary care patients and to assess the subsequent outcomes of interest in this time frame. All patients 18 years or older who had no prior cardiac medical history or risk factors who received an AHE. Receipt of an ECG within 30 days of an AHE. Primary outcome was receipt of downstream cardiac testing or consultation with a cardiologist. Secondary outcomes were death, hospitalization, and revascularization at 12 months. A total of 3 629 859 adult patients had at least 1 AHE between fiscal years 2010/2011 and 2014/2015. Of these patients, 21.5% had an ECG within 30 days after an AHE. The proportion of patients receiving an ECG after an AHE varied from 1.8% to 76.1% among 679 primary care practices (coefficient of quartile dispersion [CQD], 0.50) and from 1.1% to 94.9% among 8036 primary care physicians (CQD, 0.54). Patients who had an ECG were significantly more likely to receive additional cardiac tests, visits, or procedures than those who did not (odds ratio [OR], 5.14; 95% CI, 5.07-5.21; P < .001). The rates of death (0.19% vs 0.16%), cardiac-related hospitalizations (0.46% vs 0.12%), and coronary revascularizations (0.20% vs 0.04%) were low in both the ECG and non-ECG cohorts. Despite recommendations to the contrary, ECG testing after an AHE is relatively common, with significant variation among primary care physicians. Routine ECG testing seems to increase risk for a subsequent cardiology testing and consultation cascade, even though the overall cardiac event rate in both groups was very low.
Development of three methods for extracting respiration from the surface ECG: a review.
Helfenbein, Eric; Firoozabadi, Reza; Chien, Simon; Carlson, Eric; Babaeizadeh, Saeed
2014-01-01
Respiration rate (RR) is a critical vital sign that can be monitored to detect acute changes in patient condition (e.g., apnea) and potentially provide an early warning of impending life-threatening deterioration. Monitoring respiration signals is also critical for detecting sleep disordered breathing such as sleep apnea. Additionally, analyzing a respiration signal can enhance the quality of medical images by gating image acquisition based on the same phase of the patient's respiratory cycle. Although many methods exist for measuring respiration, in this review we focus on three ECG-derived respiration techniques we developed to obtain respiration from an ECG signal. The first step in all three techniques is to analyze the ECG to detect beat locations and classify them. 1) The EDR method is based on analyzing the heart axis shift due to respiration. In our method, one respiration waveform value is calculated for each normal QRS complex by measuring the peak to QRS trough amplitude. Compared to other similar EDR techniques, this method does not need removal of baseline wander from the ECG signal. 2) The RSA method uses instantaneous heart rate variability to derive a respiratory signal. It is based on the observed respiratory sinus arrhythmia governed by baroreflex sensitivity. 3) Our EMGDR method for computing a respiratory waveform uses measurement of electromyogram (EMG) activity created by respiratory effort of the intercostal muscles and diaphragm. The ECG signal is high-pass filtered and processed to reduce ECG components and accentuate the EMG signal before applying RMS and smoothing. Over the last five years, we have performed six studies using the above methods: 1) In 1907 sleep lab patients with >1.5M 30-second epochs, EDR achieved an apnea detection accuracy of 79%. 2) In 24 adult polysomnograms, use of EDR and chest belts for RR computation was compared to airflow RR; mean RR error was EDR: 1.8±2.7 and belts: 0.8±2.1. 3) During cardiac MRI, a comparison of EMGDR breath locations to the reference abdominal belt signal yielded sensitivity/PPV of 94/95%. 4) Another comparison study for breath detection during MRI yielded sensitivity/PPV pairs of EDR: 99/97, RSA: 79/78, and EMGDR: 89/86%. 5) We tested EMGDR performance in the presence of simulated respiratory disease using CPAP to produce PEEP. For 10 patients, no false breath waveforms were generated with mild PEEP, but they appeared in 2 subjects at high PEEP. 6) A patient monitoring study compared RR computation from EDR to impedance-derived RR, and showed that EDR provides a near equivalent RR measurement with reduced hardware circuitry requirements. Copyright © 2014 Elsevier Inc. All rights reserved.
Rodrigues, Jonathan C.L.; Amadu, Antonio Matteo; Ghosh Dastidar, Amardeep; McIntyre, Bethannie; Szantho, Gergley V.; Lyen, Stephen; Godsave, Cattleya; Ratcliffe, Laura E.K.; Burchell, Amy E.; Hart, Emma C.; Hamilton, Mark C.K.; Nightingale, Angus K.; Paton, Julian F.R.; Manghat, Nathan E.; Bucciarelli-Ducci, Chiara
2017-01-01
Aims In hypertension, the presence of left ventricular (LV) strain pattern on 12-lead electrocardiogram (ECG) carries adverse cardiovascular prognosis. The underlying mechanisms are poorly understood. We investigated whether hypertensive ECG strain is associated with myocardial interstitial fibrosis and impaired myocardial strain, assessed by multi-parametric cardiac magnetic resonance (CMR). Methods and results A total of 100 hypertensive patients [50 ± 14 years, male: 58%, office systolic blood pressure (SBP): 170 ± 30 mmHg, office diastolic blood pressure (DBP): 97 ± 14 mmHg) underwent ECG and 1.5T CMR and were compared with 25 normotensive controls (46 ± 14 years, 60% male, SBP: 124 ± 8 mmHg, DBP: 76 ± 7 mmHg). Native T1 and extracellular volume fraction (ECV) were calculated with the modified look-locker inversion-recovery sequence. Myocardial strain values were estimated with voxel-tracking software. ECG strain (n = 20) was associated with significantly higher indexed LV mass (LVM) (119 ± 32 vs. 80 ± 17 g/m2, P < 0.05) and ECV (30 ± 4 vs. 27 ± 3%, P < 0.05) compared with hypertensive subjects without ECG strain (n = 80). ECG strain subjects had significantly impaired circumferential strain compared with hypertensive subjects without ECG strain and controls (−15.2 ± 4.7 vs. −17.0 ± 3.3 vs. −17.3 ± 2.4%, P < 0.05, respectively). In subgroup analysis, comparing ECG strain subjects to hypertensive subjects with elevated LVM but no ECG strain, a significantly higher ECV (30 ± 4 vs. 28 ± 3%, P < 0.05) was still observed. Indexed LVM was the only variable independently associated with ECG strain in multivariate logistic regression analysis [odds ratio (95th confidence interval): 1.07 (1.02–1.12), P < 0.05). Conclusion In hypertension, ECG strain is a marker of advanced LVH associated with increased interstitial fibrosis and associated with significant myocardial circumferential strain impairment. PMID:27334442
Rodrigues, Jonathan C L; Amadu, Antonio Matteo; Ghosh Dastidar, Amardeep; McIntyre, Bethannie; Szantho, Gergley V; Lyen, Stephen; Godsave, Cattleya; Ratcliffe, Laura E K; Burchell, Amy E; Hart, Emma C; Hamilton, Mark C K; Nightingale, Angus K; Paton, Julian F R; Manghat, Nathan E; Bucciarelli-Ducci, Chiara
2017-04-01
In hypertension, the presence of left ventricular (LV) strain pattern on 12-lead electrocardiogram (ECG) carries adverse cardiovascular prognosis. The underlying mechanisms are poorly understood. We investigated whether hypertensive ECG strain is associated with myocardial interstitial fibrosis and impaired myocardial strain, assessed by multi-parametric cardiac magnetic resonance (CMR). A total of 100 hypertensive patients [50 ± 14 years, male: 58%, office systolic blood pressure (SBP): 170 ± 30 mmHg, office diastolic blood pressure (DBP): 97 ± 14 mmHg) underwent ECG and 1.5T CMR and were compared with 25 normotensive controls (46 ± 14 years, 60% male, SBP: 124 ± 8 mmHg, DBP: 76 ± 7 mmHg). Native T1 and extracellular volume fraction (ECV) were calculated with the modified look-locker inversion-recovery sequence. Myocardial strain values were estimated with voxel-tracking software. ECG strain (n = 20) was associated with significantly higher indexed LV mass (LVM) (119 ± 32 vs. 80 ± 17 g/m2, P < 0.05) and ECV (30 ± 4 vs. 27 ± 3%, P < 0.05) compared with hypertensive subjects without ECG strain (n = 80). ECG strain subjects had significantly impaired circumferential strain compared with hypertensive subjects without ECG strain and controls (-15.2 ± 4.7 vs. -17.0 ± 3.3 vs. -17.3 ± 2.4%, P < 0.05, respectively). In subgroup analysis, comparing ECG strain subjects to hypertensive subjects with elevated LVM but no ECG strain, a significantly higher ECV (30 ± 4 vs. 28 ± 3%, P < 0.05) was still observed. Indexed LVM was the only variable independently associated with ECG strain in multivariate logistic regression analysis [odds ratio (95th confidence interval): 1.07 (1.02-1.12), P < 0.05). In hypertension, ECG strain is a marker of advanced LVH associated with increased interstitial fibrosis and associated with significant myocardial circumferential strain impairment. © The Author 2016. Published by Oxford University Press on behalf of the European Society of Cardiology.
Left ventricular hypertrophy by ECG versus cardiac MRI as a predictor for heart failure.
Oseni, Abdullahi O; Qureshi, Waqas T; Almahmoud, Mohamed F; Bertoni, Alain G; Bluemke, David A; Hundley, William G; Lima, Joao A C; Herrington, David M; Soliman, Elsayed Z
2017-01-01
To determine if there is a significant difference in the predictive abilities of left ventricular hypertrophy (LVH) detected by ECG-LVH versus LVH ascertained by cardiac MRI-LVH in a model similar to the Framingham Heart Failure Risk Score (FHFRS). This study included 4745 (mean age 61±10 years, 53.5% women, 61.7% non-whites) participants in the Multi-Ethnic Study of Atherosclerosis. ECG-LVH was defined using Cornell voltage product while MRI-LVH was derived from left ventricular mass. Cox proportional hazard regression was used to examine the association between ECG-LVH and MRI-LVH with incident heart failure (HF). Harrell's concordance C-index was used to estimate the predictive ability of the model when either ECG-LVH or MRI-LVH was included as one of its components. ECG-LVH was present in 291 (6.1%), while MRI-LVH was present in 499 (10.5%) of the participants. Both ECG-LVH (HR 2.25, 95% CI 1.38 to 3.69) and MRI-LVH (HR 3.80, 95% CI 1.56 to 5.63) were predictive of HF. The absolute risk of developing HF was 8.81% for MRI-LVH versus 2.26% for absence of MRI-LVH with a relative risk of 3.9. With ECG-LVH, the absolute risk of developing HF 6.87% compared with 2.69% for absence of ECG-LVH with a relative risk of 2.55. The ability of the model to predict HF was better with MRI-LVH (C-index 0.871, 95% CI 0.842 to 0.899) than with ECG-LVH (C-index 0.860, 95% CI 0.833 to 0.888) (p<0.0001). ECG-LVH and MRI-LVH are predictive of HF. Substituting MRI-LVH for ECG-LVH improves the predictive ability of a model similar to the FHFRS. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
Barbagelata, Alejandro; Di Carli, Marcelo F; Califf, Robert M; Garg, Jyotsna; Birnbaum, Yochai; Grinfeld, Liliana; Gibbons, Raymond J; Granger, Christopher B; Goodman, Shaun G; Wagner, Galen S; Mahaffey, Kenneth W
2005-10-01
Noninvasive methods are needed to evaluate reperfusion success in patients with acute myocardial infarction (MI). The AMISTAD trial was analyzed to compare MI size and myocardial salvage determined by electrocardiogram (ECG) with technetium Tc 99m sestamibi single-photon emission computerized tomography (SPECT) imaging. Of 236 patients enrolled in AMISTAD, 166 (70 %) with no ECG confounding factors and no prior MI were included in this analysis. Of these, group 1 (126 patients, 53%) had final infarct size (FIS) available by both ECG and SPECT. Group 2 (56 patients, 24%) had myocardium at risk, FIS, and salvage index (SI) assessed by both SPECT and ECG techniques. Aldrich/Clemmensen scores for myocardium at risk and the Selvester QRS score for final MI size were used. Salvage index was calculated as follows: SI = (myocardium at risk-FIS)/(myocardium at risk). In group 1, FIS was 15% (6, 24) as measured by ECG and 11% (2, 27) as measured by SPECT. In the adenosine group, FIS was 12% (6, 21) and 11% (2, 22). In the placebo group, FIS was 16.5% (7.5, 24) and 11.5% (3.0, 38.5) by ECG and SPECT, respectively. The overall correlation between SPECT and ECG for FIS was 0.58 (P = .0001): 0.60 in the placebo group (P = .0001) and 0.54 (P = .0001) in the adenosine group. In group 2, myocardium at risk was 23% (17, 30) and 26% (10, 50) with ECG and SPECT, respectively (P = .0066). Final infarct size was 17% (6, 21) and 12% (1, 24) (P < .0001). The SI was 29% (-7, 57) and 46% (15, 79) with ECG and SPECT, respectively (P = .0510). The ECG measurement of infarct size has a moderate relationship with SPECT infarct size measurements in the population with available assessments. This ECG algorithm must further be validated on clinical outcomes.
Knol, Remco J J; Kan, Huub; Wondergem, Maurits; Cornel, Jan H; Umans, Victor A W M; van der Ploeg, Tjeerd; van der Zant, Friso M
2018-04-01
The value of exercise electrocardiogram (ExECG) in symptomatic female patients with low to intermediate risk for significant coronary artery disease (CAD) has been under debate for many years, and nondiagnostic or even erroneous test results are frequently encountered. Cardiac-CT may be more appropriate to exclude CAD in women. This study compares the results of ExECGs with those of cardiac-CTs, performed within a time frame of 1 month in an all-comers female chest pain population. Five hundred fifty-one consecutive female patients from a patient registry were included. ExECGs were negative in 324 (59%), positive in 14 (3%), and nondiagnostic in 213 (39%) patients. CAD was revealed by cardiac-CT in 57% of the women with negative ExECG. No signs of CAD were present on cardiac-CT in 64% of the women with a positive ExECG. Cardiac-CT showed presence of CAD in 268/551 (49%) patients, of whom 56/268 (21%) was diagnosed with ≥50% stenosis. The ExECG of the latter group was negative in 26 (46%), inconclusive in 29 (52%), and positive in 1 (2%). Considering ≥50% stenosis at cardiac-CT as the reference, sensitivity, specificity, PPV, and NPV of ExECG for the present population were 3.7%, 95.7%, 7.1%, and 91.7%, respectively. Similar diagnostic performance was calculated when considering ≥70% stenosis at cardiac-CT as the reference. ExECG failed to detect CAD in more than half of this cohort and in almost half of women with >50% stenosis at cardiac-CT. Importantly, no CAD was detected by cardiac-CT in 64% of women with a positive ExECG. ExECG is therefore questionable as a diagnostic strategy in women with low-to-intermediate risk of CAD, although prospective studies are warranted to determine whether replacing ExECG by cardiac-CT provides better prognoses.
Implementation of a portable device for real-time ECG signal analysis.
Jeon, Taegyun; Kim, Byoungho; Jeon, Moongu; Lee, Byung-Geun
2014-12-10
Cardiac disease is one of the main causes of catastrophic mortality. Therefore, detecting the symptoms of cardiac disease as early as possible is important for increasing the patient's survival. In this study, a compact and effective architecture for detecting atrial fibrillation (AFib) and myocardial ischemia is proposed. We developed a portable device using this architecture, which allows real-time electrocardiogram (ECG) signal acquisition and analysis for cardiac diseases. A noisy ECG signal was preprocessed by an analog front-end consisting of analog filters and amplifiers before it was converted into digital data. The analog front-end was minimized to reduce the size of the device and power consumption by implementing some of its functions with digital filters realized in software. With the ECG data, we detected QRS complexes based on wavelet analysis and feature extraction for morphological shape and regularity using an ARM processor. A classifier for cardiac disease was constructed based on features extracted from a training dataset using support vector machines. The classifier then categorized the ECG data into normal beats, AFib, and myocardial ischemia. A portable ECG device was implemented, and successfully acquired and processed ECG signals. The performance of this device was also verified by comparing the processed ECG data with high-quality ECG data from a public cardiac database. Because of reduced computational complexity, the ARM processor was able to process up to a thousand samples per second, and this allowed real-time acquisition and diagnosis of heart disease. Experimental results for detection of heart disease showed that the device classified AFib and ischemia with a sensitivity of 95.1% and a specificity of 95.9%. Current home care and telemedicine systems have a separate device and diagnostic service system, which results in additional time and cost. Our proposed portable ECG device provides captured ECG data and suspected waveform to identify sporadic and chronic events of heart diseases. This device has been built and evaluated for high quality of signals, low computational complexity, and accurate detection.
Lowres, Nicole; Neubeck, Lis; Salkeld, Glenn; Krass, Ines; McLachlan, Andrew J; Redfern, Julie; Bennett, Alexandra A; Briffa, Tom; Bauman, Adrian; Martinez, Carlos; Wallenhorst, Christopher; Lau, Jerrett K; Brieger, David B; Sy, Raymond W; Freedman, S Ben
2014-06-01
Atrial fibrillation (AF) causes a third of all strokes, but often goes undetected before stroke. Identification of unknown AF in the community and subsequent anti-thrombotic treatment could reduce stroke burden. We investigated community screening for unknown AF using an iPhone electrocardiogram (iECG) in pharmacies, and determined the cost-effectiveness of this strategy.Pharmacists performedpulse palpation and iECG recordings, with cardiologist iECG over-reading. General practitioner review/12-lead ECG was facilitated for suspected new AF. An automated AF algorithm was retrospectively applied to collected iECGs. Cost-effectiveness analysis incorporated costs of iECG screening, and treatment/outcome data from a United Kingdom cohort of 5,555 patients with incidentally detected asymptomatic AF. A total of 1,000 pharmacy customers aged ≥65 years (mean 76 ± 7 years; 44% male) were screened. Newly identified AF was found in 1.5% (95% CI, 0.8-2.5%); mean age 79 ± 6 years; all had CHA2DS2-VASc score ≥2. AF prevalence was 6.7% (67/1,000). The automated iECG algorithm showed 98.5% (CI, 92-100%) sensitivity for AF detection and 91.4% (CI, 89-93%) specificity. The incremental cost-effectiveness ratio of extending iECG screening into the community, based on 55% warfarin prescription adherence, would be $AUD5,988 (€3,142; $USD4,066) per Quality Adjusted Life Year gained and $AUD30,481 (€15,993; $USD20,695) for preventing one stroke. Sensitivity analysis indicated cost-effectiveness improved with increased treatment adherence.Screening with iECG in pharmacies with an automated algorithm is both feasible and cost-effective. The high and largely preventable stroke/thromboembolism risk of those with newly identified AF highlights the likely benefits of community AF screening. Guideline recommendation of community iECG AF screening should be considered.
Green, Cynthia L.; Kligfield, Paul; George, Samuel; Gussak, Ihor; Vajdic, Branislav; Sager, Philip; Krucoff, Mitchell W.
2013-01-01
Background The Cardiac Safety Research Consortium (CSRC) provides both “learning” and blinded “testing” digital ECG datasets from thorough QT (TQT) studies annotated for submission to the US Food and Drug Administration (FDA) to developers of ECG analysis technologies. This manuscript reports the first results from a blinded “testing” dataset that examines Developer re-analysis of original Sponsor-reported core laboratory data. Methods 11,925 anonymized ECGs including both moxifloxacin and placebo arms of a parallel-group TQT in 191 subjects were blindly analyzed using a novel ECG analysis algorithm applying intelligent automation. Developer measured ECG intervals were submitted to CSRC for unblinding, temporal reconstruction of the TQT exposures, and statistical comparison to core laboratory findings previously submitted to FDA by the pharmaceutical sponsor. Primary comparisons included baseline-adjusted interval measurements, baseline- and placebo-adjusted moxifloxacin QTcF changes (ddQTcF), and associated variability measures. Results Developer and Sponsor-reported baseline-adjusted data were similar with average differences less than 1 millisecond (ms) for all intervals. Both Developer and Sponsor-reported data demonstrated assay sensitivity with similar ddQTcF changes. Average within-subject standard deviation for triplicate QTcF measurements was significantly lower for Developer than Sponsor-reported data (5.4 ms and 7.2 ms, respectively; p<0.001). Conclusion The virtually automated ECG algorithm used for this analysis produced similar yet less variable TQT results compared to the Sponsor-reported study, without the use of a manual core laboratory. These findings indicate CSRC ECG datasets can be useful for evaluating novel methods and algorithms for determining QT/QTc prolongation by drugs. While the results should not constitute endorsement of specific algorithms by either CSRC or FDA, the value of a public domain digital ECG warehouse to provide prospective, blinded comparisons of ECG technologies applied for QT/QTc measurement is illustrated. PMID:22424006
Dores, Hélder; Malhotra, Aneil; Sheikh, Nabeel; Millar, Lynne; Dhutia, Harshil; Narain, Rajay; Merghani, Ahmed; Papadakis, Michael; Sharma, Sanjay
2016-11-01
Athletes can exhibit abnormal electrocardiogram (ECG) phenotypes that require further evaluation prior to competition. These are apparently more prevalent in high-intensity endurance sports. The purpose of this study was to assess the association between ECG findings in athletes and intensity of sport and level of competition. A cohort of 3423 competitive athletes had their ECGs assessed according to the Seattle criteria (SC). The presence of abnormal ECGs was correlated with: (1) intensity of sport (low/moderate vs. at least one high static or dynamic component); (2) competitive level (regional vs. national/international); (3) training volume (≤20 vs. >20 hours/week); (4) type of sport (high dynamic vs. high static component). The same endpoints were studied according to the 'Refined Criteria' (RC). Abnormal ECGs according to the SC were present in 225 (6.6%) athletes, more frequently in those involved in high-intensity sports (8.0% vs. 5.4%; p=0.002), particularly in dynamic sports, and competing at national/international level (7.1% vs. 4.9%; p=0.028). Training volume was not significantly associated with abnormal ECGs. By multivariate analysis, high-intensity sport (OR 1.55, 1.18-2.03; p=0.002) and national/international level (OR 1.50, 95% CI 1.04-2.14; p=0.027) were independent predictors of abnormal ECGs, and these variables, when combined, doubled the prevalence of this finding. According to the RC, abnormal ECGs decreased to 103 (3.0%), but were also more frequent in high-intensity sports (4.2% vs. 2.0%; p<0.001). There is a positive correlation between higher intensity of sports and increased prevalence of ECG abnormalities. This relationship persists with the use of more restrictive criteria for ECG interpretation, although the number of abnormal ECGs is lower. Copyright © 2016 Sociedade Portuguesa de Cardiologia. Publicado por Elsevier España, S.L.U. All rights reserved.
Hood, Michael L
2018-05-01
The 12-lead electrocardiogram (ECG) is an integral part of the diagnostic tools available for recognising a patient who is experiencing an ST-segment elevated myocardial infarction (STEMI). Consequently, a great emphasis is placed on the rapid acquisition and expert interpretation of the 12-lead ECG so that the appropriate reperfusion management might be commenced to optimise patient outcomes by preventing further damage to the myocardium. With the advancement of telemetric and diagnostic abilities of the modern ECG machine, the role of frontline rural emergency clinicians is as important as ever. This clinical case report describes the presentation and management of a person experiencing a STEMI in a rural Australian hospital emergency department setting. The emanating point of interest from this case report is the early clinician recognition of significant ST-segment elevation in multiple leads of the initial ECG trace, indicating a STEMI. Despite the presence of significant acute ST-segment changes throughout the trace, the ECG's diagnostic analysis of the 12-lead ECG did not identify it as meeting STEMI criteria. Subsequently, the ECG was not recommended by the ECG machine for telemetric transmission to the remote on-call cardiologist for immediate STEMI management guidance. This article focuses on the telemetric technology utilised in the management of STEMIs in the rural emergency department, the diagnostic ability of the modern ECG and the role of the frontline rural emergency clinician in the utilisation of such technology. Competent utilisation of key technologies applied to the ECG machine require the clinician to be well trained in the technical use of the equipment, have a thorough understanding of how the technology interacts within the established clinical pathway and be ready to apply its use in a timely manner in order to prevent delays in treatment. Furthermore, an over-reliance on the diagnostic ability of the modern ECG machine in the rural or remote context may potentially lead to poor patient outcomes.
Sahoo, Prasan Kumar; Thakkar, Hiren Kumar; Lin, Wen-Yen; Chang, Po-Cheng; Lee, Ming-Yih
2018-01-28
Cardiovascular disease (CVD) is a major public concern and socioeconomic problem across the globe. The popular high-end cardiac health monitoring systems such as magnetic resonance imaging (MRI), computerized tomography scan (CT scan), and echocardiography (Echo) are highly expensive and do not support long-term continuous monitoring of patients without disrupting their activities of daily living (ADL). In this paper, the continuous and non-invasive cardiac health monitoring using unobtrusive sensors is explored aiming to provide a feasible and low-cost alternative to foresee possible cardiac anomalies in an early stage. It is learned that cardiac health monitoring based on sole usage of electrocardiogram (ECG) signals may not provide powerful insights as ECG provides shallow information on various cardiac activities in the form of electrical impulses only. Hence, a novel low-cost, non-invasive seismocardiogram (SCG) signal along with ECG signals are jointly investigated for the robust cardiac health monitoring. For this purpose, the in-laboratory data collection model is designed for simultaneous acquisition of ECG and SCG signals followed by mechanisms for the automatic delineation of relevant feature points in acquired ECG and SCG signals. In addition, separate feature points based novel approach is adopted to distinguish between normal and abnormal morphology in each ECG and SCG cardiac cycle. Finally, a combined analysis of ECG and SCG is carried out by designing a Naïve Bayes conditional probability model. Experiments on Institutional Review Board (IRB) approved licensed ECG/SCG signals acquired from real subjects containing 12,000 cardiac cycles show that the proposed feature point delineation mechanisms and abnormal morphology detection methods consistently perform well and give promising results. In addition, experimental results show that the combined analysis of ECG and SCG signals provide more reliable cardiac health monitoring compared to the standalone use of ECG and SCG.
Lin, Wen-Yen; Chang, Po-Cheng
2018-01-01
Cardiovascular disease (CVD) is a major public concern and socioeconomic problem across the globe. The popular high-end cardiac health monitoring systems such as magnetic resonance imaging (MRI), computerized tomography scan (CT scan), and echocardiography (Echo) are highly expensive and do not support long-term continuous monitoring of patients without disrupting their activities of daily living (ADL). In this paper, the continuous and non-invasive cardiac health monitoring using unobtrusive sensors is explored aiming to provide a feasible and low-cost alternative to foresee possible cardiac anomalies in an early stage. It is learned that cardiac health monitoring based on sole usage of electrocardiogram (ECG) signals may not provide powerful insights as ECG provides shallow information on various cardiac activities in the form of electrical impulses only. Hence, a novel low-cost, non-invasive seismocardiogram (SCG) signal along with ECG signals are jointly investigated for the robust cardiac health monitoring. For this purpose, the in-laboratory data collection model is designed for simultaneous acquisition of ECG and SCG signals followed by mechanisms for the automatic delineation of relevant feature points in acquired ECG and SCG signals. In addition, separate feature points based novel approach is adopted to distinguish between normal and abnormal morphology in each ECG and SCG cardiac cycle. Finally, a combined analysis of ECG and SCG is carried out by designing a Naïve Bayes conditional probability model. Experiments on Institutional Review Board (IRB) approved licensed ECG/SCG signals acquired from real subjects containing 12,000 cardiac cycles show that the proposed feature point delineation mechanisms and abnormal morphology detection methods consistently perform well and give promising results. In addition, experimental results show that the combined analysis of ECG and SCG signals provide more reliable cardiac health monitoring compared to the standalone use of ECG and SCG. PMID:29382098
Hysing, Per; Jonason, Tommy; Leppert, Jerzy; Hedberg, Pär
2017-11-24
Identifying cardiac disease in patients with extracardiac artery disease (ECAD) is essential for clinical decision-making. Electrocardiography (ECG) is an easily accessible tool to unmask subclinical cardiac disease and to risk stratify patient with or without manifest cardiovascular disease (CV). We aimed to examine the prevalence and prognostic impact of ECG changes in outpatients with ECAD. Outpatients with carotid or lower extremity artery disease (n = 435) and community-based controls (n = 397) underwent resting ECG. The patients were followed during a median of 4·8 years for CV events (hospitalization or death caused by ischaemic heart disease, cardiac arrest, heart failure, or stroke). ECG abnormalities were classified according to the Minnesota Code. Major (33% versus 15%, P<0·001) but not minor ECG abnormalities (23% versus 26%, P = 0·42) were significantly more common in patients versus controls. During the follow-up, 141 patients experienced CV events. Both major ECG abnormalities [hazard ratio (HR) 1·58, 95% confidence interval (CI) 1·11-2·25, P = 0·012] and any ECG abnormalities (HR 1·57, 95% CI 1·06-2·33, P = 0·024) were significantly associated with CV events after adjustment for potential risk factors. In conclusion, ECG abnormalities were common in these outpatients with ECAD. Major and any ECG abnormalities were independent predictors of CV events. Addition of easily accessible ECG information might be useful in risk stratification for such patients. © 2017 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.
Kraus, Marc S; Gelzer, Anna R; Rishniw, Mark
2016-07-15
OBJECTIVE To evaluate the diagnostic utility of ECGs acquired with a smartphone-based device, compared with reference 6-lead ECGs, for identification of heart rate and rhythm in dogs and cats. DESIGN Prospective study. ANIMALS 51 client-owned dogs and 27 client-owned cats. PROCEDURES Patients examined by a small animal referral cardiology service between April 2012 and January 2013 were enrolled consecutively. In each patient, a 30-second ECG was simultaneously acquired with a smartphone-based device (a bipolar, single-lead recorder coupled to a smartphone with an ECG application) and a standard 6-lead ECG machine. Recordings were evaluated by 3 board-certified cardiologists, and intra- and interobserver agreement were evaluated for both rhythm diagnosis and QRS polarity identification. RESULTS Values for instantaneous and mean heart rates for the smartphone-acquired and reference ECGs were within 1 beat of each other when mean heart rates were calculated. Intraobserver agreement for rhythm assessment was very high, with maximum disagreement for any observer for only 2 of 51 dogs and only 4 of 27 cats. There was minimal disagreement in the polarity of depolarization between the smartphone-acquired and reference ECGs in dogs but frequent disagreement in cats. Interobserver agreement for smartphone-acquired ECGs was similar to that for reference ECGs. with all 3 observers agreeing on the rhythm analysis and minimal disagreement on polarity. CONCLUSIONS AND CLINICAL RELEVANCE Results suggested that ECGs acquired with the smartphone-based device accurately identified heart rate and rhythm in dogs and cats. Thus, the device may allow veterinarians to evaluate and manage cardiac arrhythmias relatively inexpensively at the cage side and could also allow clinicians to rapidly share information via email for further consultation, potentially enhancing patient care.
Dong, Ruimin; Yang, Xiaoyan; Xing, Bangrong; Zou, Zihao; Zheng, Zhenda; Xie, Xujing; Zhu, Jieming; Chen, Lin; Zhou, Hanjian
2015-01-01
Concept mapping is an effective method in teaching and learning, however this strategy has not been evaluated among electrocardiogram (ECG) diagnosis learning. This study explored the use of concept maps to assist ECG study, and sought to analyze whether this method could improve undergraduate students’ ECG interpretation skills. There were 126 undergraduate medical students who were randomly selected and assigned to two groups, group A (n = 63) and group B (n = 63). Group A was taught to use concept maps to learn ECG diagnosis, while group B was taught by traditional methods. After the course, all of the students were assessed by having an ECG diagnostic test. Quantitative data which comprised test score and ECG features completion index was compared by using the unpaired Student’s t-test between the two groups. Further, a feedback questionnaire on concept maps used was also completed by group A, comments were evaluated by a five-point Likert scale. The test scores of ECGs interpretation was 7.36 ± 1.23 in Group A and 6.12 ± 1.39 in Group B. A significant advantage (P = 0.018) of concept maps was observed in ECG interpretation accuracy. No difference in the average ECG features completion index was observed between Group A (66.75 ± 15.35%) and Group B (62.93 ± 13.17%). According qualitative analysis, majority of students accepted concept maps as a helpful tool. Difficult to learn at the beginning and time consuming are the two problems in using this method, nevertheless most of the students indicated to continue using it. Concept maps could be a useful pedagogical tool in enhancing undergraduate medical students’ ECG interpretation skills. Furthermore, students indicated a positive attitude to it, and perceived it as a resource for learning. PMID:26221331
Kim, Myoung Hyoun; Kim, Seul-Gi; Kim, Dae-Weung
2018-06-15
We developed a Tc-99m and TAMRA-labeled peptide, Tc-99m arginine-arginine-leucine (RRL) peptide (TAMRA-GHEG-ECG-RRL), to target tumor cells and evaluated the diagnostic performance of Tc-99m TAMRA-GHEG-ECG-RRL as a dual-modality imaging agent for tumor in a murine model. TAMRA-GHEG-ECG-RRL was synthesized using Fmoc solid-phase peptide synthesis. Binding affinity and in vitro cellular uptake studies were performed. Gamma camera imaging, biodistribution, and ex vivo imaging studies were performed in murine models with PC-3 tumors. Tumor tissue slides were prepared and analyzed with immunohistochemistry using confocal microscopy. After radiolabeling procedures with Tc-99m, Tc-99m TAMRA-GHEG-ECG-RRL complexes were prepared in high yield (>96%). The K d of Tc-99m TAMRA-GHEG-ECG-RRL determined by saturation binding was 41.7 ± 7.8 nM. Confocal microscopy images of PC-3 cells incubated with TAMRA-GHEG-ECG-RRL showed strong fluorescence in the cytoplasm. Gamma camera imaging revealed substantial uptake of Tc-99m TAMRA-GHEG-ECG-RRL in tumors. Tumor uptake was effectively blocked by the coinjection of an excess concentration of RRL. Specific uptake of Tc-99m TAMRA-GHEG-ECG-RRL was confirmed by biodistribution, ex vivo imaging, and immunohistochemistry stain studies. In conclusion, in vivo and in vitro studies revealed substantial uptake of Tc-99m TAMRA-GHEG-ECG-RRL in tumors. Tc-99m TAMRA-GHEG-ECG-RRL has potential as a dual-modality tumor imaging agent. Copyright © 2018 John Wiley & Sons, Ltd.
Kim, Myoung Hyoun; Kim, Chang Guhn; Kim, Seul-Gi; Kim, Dae-Weung
2017-12-01
We developed a Tc-99m and fluorescence-labeled peptide, Tc-99m TAMRA-GHEG-ECG-VAPG to target tumor cells and evaluated the diagnostic performance as a dual-modality imaging agent for tumor in a murine model. TAMRA-GHEG-ECG-VAPG was synthesized by using Fmoc solid-phase peptide synthesis. Radiolabeling of TAMRA-GHEG-ECG-VAPG with Tc-99m was done by using ligand exchange via tartrate. Binding affinity and in vitro cellular uptake studies were performed. Gamma camera imaging, biodistribution, and ex vivo imaging studies were performed in murine models with SW620 tumors. Tumor tissue slides were prepared and analyzed with immunohistochemistry by using confocal microscopy. After radiolabeling procedures with Tc-99m, Tc-99m TAMRA-GHEG-ECG-VAPG complexes were prepared in high yield (>96%). The K d of Tc-99m TAMRA-GHEG-ECG-VAPG determined by saturation binding was 16.8 ± 3.6 nM. Confocal microscopy images of SW620 cells incubated with TAMRA-GHEG-ECG-VAPG showed strong fluorescence in the cytoplasm. Gamma camera imaging revealed substantial uptake of Tc-99m TAMRA-GHEG-ECG-VAPG in tumors. Tumor uptake was effectively blocked by the coinjection of an excess concentration of VAPG. Specific uptake of Tc-99m TAMRA-GHEG-ECG-VAPG was confirmed by biodistribution, ex vivo imaging, and immunohistochemistry stain studies. In vivo and in vitro studies revealed substantial uptake of Tc-99m TAMRA-GHEG-ECG-VAPG in tumor cells. Tc-99m TAMRA-GHEG-ECG-VAPG has potential as a dual-modality tumor imaging agent. Copyright © 2017 John Wiley & Sons, Ltd.
Pulseless electrical activity: a misdiagnosed entity during asphyxia in newborn infants?
Patel, Sparsh; Cheung, Po-Yin; Solevåg, Anne Lee; Barrington, Keith J; Kamlin, C Omar Farouk; Davis, Peter G; Schmölzer, Georg M
2018-06-12
The 2015 neonatal resuscitation guidelines added ECG as a recommended method of assessment of an infant's heart rate (HR) when determining the need for resuscitation at birth. However, a recent case report raised concerns about this technique in the delivery room. To compare accuracy of ECG with auscultation to assess asystole in asphyxiated piglets. Neonatal piglets had the right common carotid artery exposed and enclosed with a real-time ultrasonic flow probe and HR was continuously measured and recorded using ECG. This set-up allowed simultaneous monitoring of HR via ECG and carotid blood flow (CBF). The piglets were exposed to 30 min normocapnic alveolar hypoxia followed by asphyxia until asystole, achieved by disconnecting the ventilator and clamping the endotracheal tube. Asystole was defined as zero carotid blood flow and was compared with ECG traces and auscultation for heart sounds using a neonatal/infant stethoscope. Overall, 54 piglets were studied with a median (IQR) duration of asphyxia of 325 (200-491) s. In 14 (26%) piglets, CBF, ECG and auscultation identified asystole. In 23 (43%) piglets, we observed no CBF and no audible heart sounds, while ECG displayed an HR ranging from 15 to 80/min. Sixteen (30%) piglets remained bradycardic (defined as HR of <100/min) after 10 min of asphyxia, identified by CBF, ECG and auscultation. Clinicians should be aware of the potential inaccuracy of ECG assessment during asphyxia in newborn infants and should rather rely on assessment using a combination of auscultation, palpation, pulse oximetry and ECG. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Sabarudin, Akmal; Sun, Zhonghua; Yusof, Ahmad Khairuddin Md
2013-09-30
This study is conducted to investigate and compare image quality and radiation dose between prospective ECG-triggered and retrospective ECG-gated coronary CT angiography (CCTA) with the use of single-source CT (SSCT) and dual-source CT (DSCT). A total of 209 patients who underwent CCTA with suspected coronary artery disease scanned with SSCT (n=95) and DSCT (n=114) scanners using prospective ECG-triggered and retrospective ECG-gated protocols were recruited from two institutions. The image was assessed by two experienced observers, while quantitative assessment was performed by measuring the image noise, the signal-to-noise ratio (SNR) and the contrast-to-noise ratio (CNR). Effective dose was calculated using the latest published conversion coefficient factor. A total of 2087 out of 2880 coronary artery segments were assessable, with 98.0% classified as of sufficient and 2.0% as of insufficient image quality for clinical diagnosis. There was no significant difference in overall image quality between prospective ECG-triggered and retrospective gated protocols, whether it was performed with DSCT or SSCT scanners. Prospective ECG-triggered protocol was compared in terms of radiation dose calculation between DSCT (6.5 ± 2.9 mSv) and SSCT (6.2 ± 1.0 mSv) scanners and no significant difference was noted (p=0.99). However, the effective dose was significantly lower with DSCT (18.2 ± 8.3 mSv) than with SSCT (28.3 ± 7.0 mSv) in the retrospective gated protocol. Prospective ECG-triggered CCTA reduces radiation dose significantly compared to retrospective ECG-gated CCTA, while maintaining good image quality. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
van Kleef, Monique E A M; Visseren, Frank L J; Vernooij, Joris W P; Nathoe, Hendrik M; Cramer, Maarten-Jan M; Bemelmans, Remy H H; van der Graaf, Yolanda; Spiering, Wilko
2018-06-06
The relation between different electrocardiographic left ventricular hypertrophy (ECG-LVH) criteria and cardiovascular risk in patients with clinical manifest arterial disease is unclear. Therefore, we determined the association between four ECG-LVH criteria: Sokolow-Lyon, Cornell product, Cornell/strain index and Framingham criterion; and risk of cardiovascular events and mortality in this population. Risk of cardiovascular events was estimated in 6913 adult patients with clinical manifest arterial disease originating from the Secondary Manifestations of ARTerial disease (SMART) cohort. Cox proportional regression analysis was used to estimate the risk of the four ECG-LVH criteria and the primary composite outcome: myocardial infarction (MI), stroke or cardiovascular death; and secondary outcomes: MI, stroke and all-cause mortality; adjusted for confounders. The highest prevalence of ECG-LVH was observed for Cornell product (10%) and Cornell/strain index (9%). All four ECG-LVH criteria were associated with an increased risk of the primary composite endpoint: Sokolow-Lyon (hazard ratio 1.37, 95% CI 1.13-1.66), Cornell product (hazard ratio 1.54, 95% CI 1.30-1.82), Cornell/strain index (hazard ratio 1.70, 95% CI 1.44-2.00) and Framingham criterion (hazard ratio 1.78, 95% CI 1.21-2.62). Cornell product, Cornell/strain index and Framingham criterion ECG-LVH were additionally associated with an elevated risk of secondary outcomes. Cardiovascular risk increased whenever two, or three or more ECG-LVH criteria were present concurrently. All four ECG-LVH criteria are associated with an increased risk of cardiovascular events. As Cornell/strain index is both highly prevalent and carries a high cardiovascular risk, this is likely the most relevant ECG-LVH criterion for clinical practice.
Shao, Hong; Zhang, Yanmin; Liu, Liwen; Ma, Zhiling; Zuo, Lei; Ye, Chuang; Wei, Xiaomei; Sun, Chao; Tao, Ling
2016-01-01
To explore the relationship between electrocardiographic (ECG) and genetic mutations of patients with hypertrophic cardiomyopathy (HCM), and early ECG changes in HCM patients. Clinical, 12-lead ECG and echocardiographic examination as well as genetic examinations were made in a three-generation Chinses HCM pedigree with 8 family members (4 males). The clinical characterization and ECG parameters were analyzed and their relationship with genotypes in the family was explored. Four missense mutations (MYH7-H1717Q, MYLK2-K324E, KCNQ1-R190W, TMEM70-I147T) were detected in this pedigree. The proband carried all 4 mutations and 5 members carried 2 mutations. Corrected QTc interval of KCNQ1-H1717Q carriers was significantly prolonged and was consistent with the ECG characterization of long QT syndrome. MYLK2-K324E and KCNQ1-R190W carriers presented with Q wave and(or) depressed ST segment, as well as flatted or reversed T waves in leads from anterolateral and inferior ventricular walls. ECG results showed ST segment depression, flat and inverted T wave in the gene mutation carriers with normal echocardiographic examination results. ECG and echocardiographic results were normal in TMEM70-I147T mutation carrier. The combined mutations of the genes associated with cardiac ion channels and HCM are linked with the ECG phenotype changes in this HCM pedigree. The variations in ECG parameters due to the genetic mutation appear earlier than the echocardiography and clinical manifestations. Variation in ECG may become one of the indexes for early diagnostic screening and disease progression of the HCM gene mutation carriers.
Correlation between ECG changes and early left ventricular remodeling in preadolescent footballers.
Zdravkovic, M; Milovanovic, B; Hinic, S; Soldatovic, I; Durmic, T; Koracevic, G; Prijic, S; Markovic, O; Filipovic, B; Lovic, D
2017-03-01
The aim of this study was to assess the early electrocardiogram (ECG) changes induced by physical training in preadolescent elite footballers. This study included 94 preadolescent highly trained male footballers (FG) competing in Serbian Football League (minimum of 7 training hours/week) and 47 age-matched healthy male controls (less than 2 training hours/week) (CG). They were screened by ECG and echocardiography at a tertiary referral cardio center. Sokolow-Lyon index was used as a voltage electrocardiographic criterion for left ventricular hypertrophy diagnosis. Characteristic ECG intervals and voltage were compared and reference range was given for preadolescent footballers. Highly significant differences between FG and CG were registered in all ECG parameters: P-wave voltage (p < 0.001), S-wave (V1 or V2 lead) voltage (p < 0.001), R-wave (V5 and V6 lead) voltage (p < 0.001), ECG sum of S V 1-2 + R V 5-6 (p < 0.001), T-wave voltage (p < 0.001), QRS complex duration (p < 0.001), T-wave duration (p < 0.001), QTc interval duration (p < 0.001), and R/T ratio (p < 0.001). No differences were found in PQ interval duration between these two groups (p > 0.05). During 6-year follow-up period, there was no adverse cardiac event in these footballers. None of them expressed pathological ECG changes. Benign ECG changes are presented in the early stage of athlete's heart remodeling, but they are not related to pathological ECG changes and they should be regarded as ECG pattern of LV remodeling.
Bush, Montika; Glickman, Lawrence T.; Fernandez, Antonio R.; Garvey, J. L.; Glickman, Seth W.
2013-01-01
Background Prehospital 12‐lead electrocardiography (ECG) is critical to timely STEMI care although its use remains inconsistent. Previous studies to identify reasons for failure to obtain a prehospital ECG have generally only focused on individual emergency medical service (EMS) systems in urban areas. Our study objective was to identify patient, geographic, and EMS agency‐related factors associated with failure to perform a prehospital ECG across a statewide geography. Methods and Results We analyzed data from the Prehospital Medical Information System (PreMIS) in North Carolina from January 2008 to November 2010 for patients >30 years of age who used EMS and had a prehospital chief complaint of chest pain. Among 3.1 million EMS encounters, 134 350 patients met study criteria. From 2008–2010, 82 311 (61%) persons with chest pain received a prehospital ECG; utilization increased from 55% in 2008 to 65% in 2010 (trend P<0.001). Utilization by health referral region ranged from 22.9% to 74.2% and was lowest in rural areas. Men were more likely than women to have an ECG performed (63.0% vs 61.3%, adjusted RR 1.02, 95% CI 1.01 to 1.04). The certification‐level of the EMS provider (paramedic vsbasic/intermediate) and system‐level ECG equipment availability were the strongest predictors of ECG utilization. Persons in an ambulance with a certified paramedic were significantly more likely to receive a prehospital ECG than nonparamedics (RR 2.15, 95% CI 1.55, 2.99). Conclusions Across a large geographic area prehospital ECG use increased significantly, although important quality improvement opportunities remain. Increasing ECG availability and improving EMS certification and training levels are needed to improve overall care and reduce rural‐urban treatment differences. PMID:23920232
Checking physical care of people on risperidone long term injectable depot.
Najim, Hellme; Islam, Nazrul
2013-09-01
To assess the existing physical care of patients with severe mental illness and whether it has complied with national protocols and guidelines. Medical notes of patients who has been on risperidone long acting injectable depot for a year were reviewed and a form was filled with the information of each patient including weight, physical examination, fasting blood sugar (FBS), Serum lipid (S.L.), pulse, blood pressure and ECG liver function tests (LFT). 50% had comorbidity with other physical illness, at the start of treatment, at three months and six months intervals. 65 notes were reviewed. 70% males. 70% between 18-50 years. 80% had the illness more than 5 years and 50% more than 10 years. The following was done baseline: 50% had physical examination. 25% had pulse, blood pressure and ECG. Body weight 10%. Triglycerides 20%. Urea and electrolytes (U&E) 15%. 40% had their liver function tests (LFT). 50% had comorbidity with other physical illness. The following were done on six monthly maintenance measures: Only 5% had maintenance ECG. LFT 10%. U&E 30%. Triglycerides 5%. Physical illnesses are neglected areas in the care of the severely mentally ill patients. It is an important area in the management of severe mental illness. Proper physical assessment and regular follow up should be adopted. Promotion of healthy living and eating, exercise and monitoring weight should be recommended. All these measures may improve the physical health of severely mentally ill patients and improve the total outcome of these illnesses.
The effect of childhood obesity on cardiac functions.
Üner, Abdurrahman; Doğan, Murat; Epcacan, Zerrin; Epçaçan, Serdar
2014-03-01
Obesity is a metabolic disorder defined as excessive accumulation of body fat, which is made up of genetic, environmental, and hormonal factors and has various social, psychological, and medical complications. Childhood obesity is a major indicator of adult obesity. The aim of this study is to evaluate the cardiac functions via electrocardiography (ECG), echocardiography (ECHO), and treadmill test in childhood obesity. A patient group consisting of 30 obese children and a control group consisting of 30 non-obese children were included in the study. The age range was between 8 and 17 years. Anthropometric measurements, physical examination, ECG, ECHO, and treadmill test were done in all patients. P-wave dispersion (PD) was found to be statistically significantly high in obese patients. In ECHO analysis, we found that end-diastolic diameter, end-systolic diameter, left ventricle posterior wall thickness, and interventricular septum were significantly greater in obese children. In treadmill test, exercise capacity was found to be significantly lower and the hemodynamic response to exercise was found to be defective in obese children. Various cardiac structural and functional changes occur in childhood obesity and this condition includes important cardiovascular risks. PD, left ventricle end-systolic and end-diastolic diameter, left ventricle posterior wall thickness, interventricular septum thickness, exercise capacity, and hemodynamic and ECG measurements during exercise testing are useful tests to determine cardiac dysfunctions and potential arrhythmias even in early stages of childhood obesity. Early recognition and taking precautions for obesity during childhood is very important to intercept complications that will occur in adulthood.
Cardiac Computed Tomography (Multidetector CT, or MDCT)
... other tests, such as chest X-rays , electrocardiograms (ECG) , echocardiograms (echocardiography) , or stress tests , don’t give ... be attached to your chest to monitor your ECG. The ECG is also needed to help the ...
A method of ECG template extraction for biometrics applications.
Zhou, Xiang; Lu, Yang; Chen, Meng; Bao, Shu-Di; Miao, Fen
2014-01-01
ECG has attracted widespread attention as one of the most important non-invasive physiological signals in healthcare-system related biometrics for its characteristics like ease-of-monitoring, individual uniqueness as well as important clinical value. This study proposes a method of dynamic threshold setting to extract the most stable ECG waveform as the template for the consequent ECG identification process. With the proposed method, the accuracy of ECG biometrics using the dynamic time wraping for difference measures has been significantly improved. Analysis results with the self-built electrocardiogram database show that the deployment of the proposed method was able to reduce the half total error rate of the ECG biometric system from 3.35% to 1.45%. Its average running time on the platform of android mobile terminal was around 0.06 seconds, and thus demonstrates acceptable real-time performance.
Left Ventricular Hypertrophy: An allometric comparative analysis of different ECG markers
NASA Astrophysics Data System (ADS)
Bonomini, M. P.; Ingallina, F.; Barone, V.; Valentinuzzi, M. E.; Arini, P. D.
2011-12-01
Allometry, in general biology, measures the relative growth of a part in relation to the whole living organism. Left ventricular hypertrophy (LVH) is the heart adaptation to excessive load (systolic or diastolic). The increase in left ventricular mass leads to an increase in the electrocardiographic voltages. Based on clinical data, we compared the allometric behavior of three different ECG markers of LVH. To do this, the allometric fit AECG = δ + β (VM) relating left ventricular mass (estimated from ecocardiographic data) and ECG amplitudes (expressed as the Cornell-Voltage, Sokolow and the ECG overall voltage indexes) were compared. Besides, sensitivity and specifity for each index were analyzed. The more sensitive the ECG criteria, the better the allometric fit. In conclusion: The allometric paradigm should be regarded as the way to design new and more sensitive ECG-based LVH markers.
Katheria, Anup; Rich, Wade; Finer, Neil
2012-11-01
To compare the time required to obtain a continuous audible heart rate signal from an electrocardiogram (ECG) monitor and pulse oximeter (PO) in infants requiring resuscitation. Infants who had both ECG and PO placed during resuscitation were analyzed using video and analog recordings. The median times from arrival until the ECG electrodes and PO sensor were placed, and the time to achieve audible tones from the devices, were compared. Forty-six infants had ECG and PO data. Thirty infants were very low birth weight (23-30 weeks). There was a difference in the median total time to place either device (26 vs 38 seconds; P = .04), and a difference (P < .001) in the time to achieve an audible heart rate signal after ECG lead (2 seconds) versus PO probe (24 seconds) placement. In infants weighing >1500 g (n = 16), the median time (interquartile range) to place the ECG was 20 seconds (14-43) whereas the time to place the PO was 36 seconds (28-56) (P = .74). The median times (interquartile range) to acquire a signal from the ECG and PO were 4 seconds (1-6) and 32 seconds (15-40, P = .001), respectively. During the first minutes of resuscitation, 93% of infants had an ECG heart rate compared with only 56% for PO. Early application of ECG electrodes during infant resuscitation can provide the resuscitation team with a continuous audible heart rate, and its use may improve the timeliness of appropriate critical interventions.
Electrocardiogram interpretation skills among ambulance nurses.
Werner, Kristoffer; Kander, Kristofer; Axelsson, Christer
2016-06-01
To describe ambulance nurses' practical electrocardiogram (ECG) interpretation skills and to measure the correlation between these skills and factors that may impact on the level of knowledge. This study was conducted using a prospective quantitative survey with questionnaires and a knowledge test. A convenience sample collection was conducted among ambulance nurses in three different districts in western Sweden. The knowledge test consisted of nine different ECGs. The score of the ECG test were correlated against the questions in the questionnaire regarding both general ECG interpretation skill and ability to identify acute myocardial infarction using Mann-Whitney U test, Kruskal-Wallis test and Spearman's rank correlation. On average, the respondents had 54% correct answers on the test and identified 46% of the ECGs indicating acute myocardial infarction. The median total score was 9 of 16 (interquartile range 7-11) and 1 of 3 (IQR 1-2) in infarction points. No correlation between ECG interpretation skill and factors such as education and professional experience was found, except that coronary care unit experience was associated with better results on the ECG test. Ambulance nurses have deficiencies in their ECG interpretation skills. This also applies to conditions where the ambulance crew has great potential to improve the outcome of the patient's health, such as myocardial infarction and cardiac arrest. Neither education, extensive experience in ambulance service nor in nursing contributed to an improved result. The only factor of importance for higher ECG interpretation knowledge was prior experience of working in a coronary care unit. © The European Society of Cardiology 2014.
Gorodeski, Eiran Z.; Ishwaran, Hemant; Kogalur, Udaya B.; Blackstone, Eugene H.; Hsich, Eileen; Zhang, Zhu-ming; Vitolins, Mara Z.; Manson, JoAnn E.; Curb, J. David; Martin, Lisa W.; Prineas, Ronald J.; Lauer, Michael S.
2013-01-01
Background Simultaneous contribution of hundreds of electrocardiographic biomarkers to prediction of long-term mortality in post-menopausal women with clinically normal resting electrocardiograms (ECGs) is unknown. Methods and Results We analyzed ECGs and all-cause mortality in 33,144 women enrolled in Women’s Health Initiative trials, who were without baseline cardiovascular disease or cancer, and had normal ECGs by Minnesota and Novacode criteria. Four hundred and seventy seven ECG biomarkers, encompassing global and individual ECG findings, were measured using computer algorithms. During a median follow-up of 8.1 years (range for survivors 0.5–11.2 years), 1,229 women died. For analyses cohort was randomly split into derivation (n=22,096, deaths=819) and validation (n=11,048, deaths=410) subsets. ECG biomarkers, demographic, and clinical characteristics were simultaneously analyzed using both traditional Cox regression and Random Survival Forest (RSF), a novel algorithmic machine-learning approach. Regression modeling failed to converge. RSF variable selection yielded 20 variables that were independently predictive of long-term mortality, 14 of which were ECG biomarkers related to autonomic tone, atrial conduction, and ventricular depolarization and repolarization. Conclusions We identified 14 ECG biomarkers from amongst hundreds that were associated with long-term prognosis using a novel random forest variable selection methodology. These were related to autonomic tone, atrial conduction, ventricular depolarization, and ventricular repolarization. Quantitative ECG biomarkers have prognostic importance, and may be markers of subclinical disease in apparently healthy post-menopausal women. PMID:21862719
Li, Song-Nan; Wang, Lu; Dong, Jian-Zeng; Yu, Rong-Hui; Long, De-Yong; Tang, Ri-Bo; Sang, Cai-Hua; Jiang, Chen-Xi; Liu, Nian; Bai, Rong; Du, Xin; Ma, Chang-Sheng
2018-06-01
Left ventricular hypertrophy (LVH) is an independent predictor of new-onset atrial fibrillation. Whether LVH can predict the recurrence of arrhythmia after radiofrequency catheter ablation (RFCA) in patients with paroxysmal atrial fibrillation (PAF) remains unclear. PAF patients with baseline-electrocardiographic LVH has a higher recurrence rate after RFCA procedure compared with those without LVH. A total of 436 patients with PAF undergoing first RFCA were consecutively enrolled and clustered into 2 groups based on electrocardiogram (ECG) findings: non-ECG LVH (218 patients) and ECG LVH (218 patients). LVH was characterized by the Romhilt-Estes point score system; the score ≥5points were defined as LVH. At 42 months' (interquartile range, 18.0-60.0 months) follow-up after RFCA, 151 (69.3%) patients in the non-ECG LVH group and 108 (49.5%) patients in the ECG LVH group maintained sinus rhythm without using antiarrhythmic drugs (P < 0.001). Patients with ECG LVH tended to experience a much higher prevalence of stroke and recurrence of atrial arrhythmia episodes compared with those without ECG LVH (log-rank P < 0.001). Multivariate analysis found the presence of ECG LVH and left atrial diameter to be independent risk factors for recurrence after adjusting for confounding factors. The presence of ECG LVH was a strong and independent predictor of recurrence in patients with PAF following RFCA. © 2018 Wiley Periodicals, Inc.
Interoperability in digital electrocardiography: harmonization of ISO/IEEE x73-PHD and SCP-ECG.
Trigo, Jesús D; Chiarugi, Franco; Alesanco, Alvaro; Martínez-Espronceda, Miguel; Serrano, Luis; Chronaki, Catherine E; Escayola, Javier; Martínez, Ignacio; García, José
2010-11-01
The ISO/IEEE 11073 (x73) family of standards is a reference frame for medical device interoperability. A draft for an ECG device specialization (ISO/IEEE 11073-10406-d02) has already been presented to the Personal Health Device (PHD) Working Group, and the Standard Communications Protocol for Computer-Assisted ElectroCardioGraphy (SCP-ECG) Standard for short-term diagnostic ECGs (EN1064:2005+A1:2007) has recently been approved as part of the x73 family (ISO 11073-91064:2009). These factors suggest the coordinated use of these two standards in foreseeable telecardiology environments, and hence the need to harmonize them. Such harmonization is the subject of this paper. Thus, a mapping of the mandatory attributes defined in the second draft of the ISO/IEEE 11073-10406-d02 and the minimum SCP-ECG fields is presented, and various other capabilities of the SCP-ECG Standard (such as the messaging part) are also analyzed from an x73-PHD point of view. As a result, this paper addresses and analyzes the implications of some inconsistencies in the coordinated use of these two standards. Finally, a proof-of-concept implementation of the draft x73-PHD ECG device specialization is presented, along with the conversion from x73-PHD to SCP-ECG. This paper, therefore, provides recommendations for future implementations of telecardiology systems that are compliant with both x73-PHD and SCP-ECG.
Campo Dell' Orto, Marco; Hamm, Christian; Liebetrau, Christoph; Hempel, Dorothea; Merbs, Reinhold; Cuca, Colleen; Breitkreutz, Raoul
2017-08-01
ECG is an essential diagnostic tool in patients with acute coronary syndrome. We aimed to determine how many patients presenting with atypical symptoms for an acute myocardial infarction show ST-segment elevations on prehospital ECG. We also aimed to study the feasibility of telemetric-assisted prehospital ECG analysis. Between April 2010 and February 2011, consecutive emergency patients presenting with atypical symptoms such as nausea, vomiting, atypical chest pain, palpitations, hypertension, syncope, or dizziness were included in the study. After basic measures were completed, a 12-lead ECG was written and telemetrically transmitted to the cardiac center, where it was analyzed by attending physicians. Any identification of an ST-elevation myocardial infarction resulted in patient admission at the closest coronary angiography facility. A total of 313 emergency patients presented with the following symptoms: dyspnea, nausea, vomiting, dizziness/collapse, or acute hypertension. Thirty-four (11%) patients of this cohort were found to show ST-segment elevations on the 12-lead ECG. These patients were directly admitted to the closest coronary catheterization facility rather than the closest hospital. The time required for transmission and analysis of the ECG was 3.6±1.2 min. Telemetry-assisted 12-lead ECG analysis in a prehospital setting may lead to earlier detection of ST-elevation myocardial infarction in patients with atypical symptoms. Thus, a 12-lead ECG should be considered in all prehospital patients both with typical and atypical symptoms.
Aksu, Uğur; Kalkan, Kamuran; Gülcü, Oktay; Topcu, Selim; Sevimli, Serdar; Aksakal, Enbiya; Ipek, Emrah; Açıkel, Mahmut; Tanboğa, Ibrahim Halil
2016-12-15
The atrioventricular (AV) dissociation, which is frequently used in differential diagnosis of wide QRS complex tachycardia (WQCT), is the most specific finding of ventricular tachycardia (VT) with lower sensitivity. Herein, we aimed to show the importance of Lewis lead ECG records to detect 'visible p waves' during WQCT. A total of 21 consecutive patients who underwent electrophysiologic study (EPS) were included in the study. During EPS, by using a quadripolar diagnostic catheter directed to the right ventricular apex, a fixed stimulus was given and the ventriculoatrial (VA) Wenkebach point was found, and a VT was simulated by a RV apical stimulus at 300ms. The standard and Lewis lead ECG records were taken during this procedure. We detected 'visible p waves' in 7 (33.3%) and 14 (66.7%) patients in the standard and Lewis lead ECG groups, respectively. In terms of the 'visible p waves', there was a statistically significant difference between groups (p=0.022). The sensitivity of standard and Lewis lead ECG in determination of the visible p waves was 33.3% and 66.7%, respectively. The Lewis lead ECG can be more informative about AV dissociation than the standard 12 lead ECG. As a result, we could suggest the assessment of the Lewis lead ECG recording in addition to the standard 12 lead ECG in differential diagnosis of VT in patients with WQCT. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
CAVIAR: a tool to improve serial analysis of the 12-lead electrocardiogram.
Berg, J; Fayn, J; Edenbrandt, L; Lundh, B; Malmström, P; Rubel, P
1995-09-01
An important part of an electrocardiogram (ECG) interpretation is the comparison between the present ECG and earlier recordings. The purpose of the present study was to evaluate a combination of two computer-based methods, synthesized vectorcardiogram (VCG) and CAVIAR, in this comparison. The methods were applied to a group of 38 normal subjects and to a group of 36 patients treated with anthracyclines. A fraction of these patients are likely to develop cardiac injury during or after the treatment, since anthracyclines are known to cause heart failure and cardiomyopathy. Two ECGs were recorded on each patient, one before and one after the treatment. On each normal subject, two ECGs were recorded with an interval of 8-9 years. A synthesized VCG was calculated from each ECG and the two synthesized VCGs from each subject were analysed with the CAVIAR method. The CAVIAR analysis is a quantitative method and normal limits for four measurements were established using the normal group. Values above these limits were more frequent in the patient group than in the normal group. The conventional ECGs were also analysed visually by an experience ECG interpreter without knowledge of the result of the CAVIAR analysis. No significant serial changes were found in 10 of the patients with high CAVIAR values. Changes in the ECGs were found in two patients with normal CAVIAR values. In summary, synthesized VCG and CAVIAR could be used to highlight small serial changes that are difficult to find in a visual analysis of ECGs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Mi-Hyeong; Park, Won Sun; Jo, Su-Hyun, E-mail: suhyunjo@kangwon.ac.kr
2012-07-01
Polychlorinated biphenyls (PCBs) have been known as serious persistent organic pollutants (POPs), causing developmental delays and motor dysfunction. We have investigated the effects of two PCB congeners, 3,3′,4,4′-tetrachlorobiphenyl (PCB 77) and 3,3′,4,4′,5-pentachlorobiphenyl (PCB 126) on ECG, action potential, and the rapidly activating delayed rectifier K{sup +} current (I{sub Kr}) of guinea pigs' hearts, and hERG K{sup +} current expressed in Xenopus oocytes. PCB 126 shortened the corrected QT interval (QTc) of ECG and decreased the action potential duration at 90% (APD{sub 90}), and 50% of repolarization (APD{sub 50}) (P < 0.05) without changing the action potential duration at 20% (APD{submore » 20}). PCB 77 decreased APD{sub 20} (P < 0.05) without affecting QTc, APD{sub 90}, and APD{sub 50}. The PCB 126 increased the I{sub Kr} in guinea-pig ventricular myocytes held at 36 °C and hERG K{sup +} current amplitude at the end of the voltage steps in voltage-dependent mode (P < 0.05); however, PCB 77 did not change the hERG K{sup +} current amplitude. The PCB 77 increased the diastolic Ca{sup 2+} and decreased Ca{sup 2+} transient amplitude (P < 0.05), however PCB 126 did not change. The results suggest that PCB 126 shortened the QTc and decreased the APD{sub 90} possibly by increasing I{sub Kr}, while PCB 77 decreased the APD{sub 20} possibly by other modulation related with intracellular Ca{sup 2+}. The present data indicate that the environmental toxicants, PCBs, can acutely affect cardiac electrophysiology including ECG, action potential, intracellular Ca{sup 2+}, and channel activity, resulting in toxic effects on the cardiac function in view of the possible accumulation of the PCBs in human body. -- Highlights: ► PCBs are known as serious environmental pollutants and developmental disruptors. ► PCB 126 shortened QT interval of ECG and action potential duration. ► PCB 126 increased human ether-a-go-go-related K{sup +} current and I{sub Kr}. ► PCB 77 decreased action potential duration and increased intracellular Ca{sup 2+} content. ► PCBs acutely change cardiac electrophysiology and rhythmicity.« less
Relationship of Coronary Calcium on Standard Chest CT Scans With Mortality.
Hughes-Austin, Jan M; Dominguez, Arturo; Allison, Matthew A; Wassel, Christina L; Rifkin, Dena E; Morgan, Cindy G; Daniels, Michael R; Ikram, Umaira; Knox, Jessica B; Wright, C Michael; Criqui, Michael H; Ix, Joachim H
2016-02-01
The aim of this study was to determine the correlation between coronary artery calcium (CAC) scores on 3 mm electrocardiography (ECG)-gated computed tomography (CT) scans and standard 6 mm chest CT scans, and to compare relative strength of associations of CAC on each scan type with mortality risk. Coronary artery calcification predicts cardiovascular disease (CVD) and all-cause mortality, and is typically measured on ECG-gated 3 mm CT scans. Patients undergo standard 6 mm chest CTs for various clinical indications much more frequently, but CAC is not usually quantified. To better understand the usefulness of standard chest CTs to quantify CAC, we conducted a case-control study among persons who had both scan types. Between 2000 and 2003, 4,544 community-living individuals self- or physician-referred for "whole-body" CT scans, had 3 mm ECG-gated CTs and standard 6 mm chest CTs, and were followed for mortality through 2009. In this nested case-control study, we identified 157 deaths and 494 controls frequency matched (1:3) on age and sex. The Agatston method quantified CAC on both scan types. Unconditional logistic regression determined associations with mortality, accounting for CVD risk factors. Participants were 68 ± 11 years of age and 63% male. The Spearman correlation of CAC scores between the 2 scan types was 0.93 (p < 0.001); median CAC scores were lower on 6 mm CTs compared to 3 mm CTs (22 vs.104 Agatston units, p < 0.001). Adjusted for traditional CVD risk factors, each standard deviation higher CAC score on 6 mm CTs was associated with 50% higher odds of death (odds ratio: 1.5; 95% confidence interval: 1.2 to 1.9), similar to 50% higher odds on the 3 mm ECG-gated CTs (odds ratio: 1.5; 95% confidence interval: 1.1 to 1.9). CAC scores on standard 6 mm chest CTs are strongly correlated with 3 mm ECG-gated CTs and similarly predict mortality in community-living individuals. Chest CTs performed for other clinical indications may provide an untapped resource to garner CVD risk information without additional radiation exposure or expense. Copyright © 2016 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.
Sá Filho, O G; Meneghetti, M; Peres, R F G; Lamb, G C; Vasconcelos, J L M
2009-07-15
In Experiments 1, 2, and 3, we evaluated the effects of temporary weaning (TW), equine chorionic gonadotropin (eCG), and follicle-stimulating hormone (FSH) treatments on results of a fixed-time artificial insemination (TAI) protocol in postpartum Bos indicus cows. In Experiment 1, treatment with 400 IU eCG or with TW for 48 h consistently improved pregnancy rates (PRs) at TAI, but, in Experiment 2, FSH treatment was less effective than eCG or TW. In Experiment 3, the inclusion of eCG treatment in cows subjected to TW did not improve PRs. We concluded that TW or 400 IU eCG should be included in the TAI protocol in postpartum Bos indicus cows to enhance fertility. In Experiment 4, we used records from heifers and cows treated with the proposed protocol during the 2006-2007 (n=27,195) and 2007-2008 (n=36,838) breeding seasons from multiple locations in Brazil to evaluate factors potentially affecting PRs. Overall PR at TAI was 49.6% (31,786 of 64,033). Pregnancy rate differed (P<0.01) among farm within location (results ranging between 26.8% and 68.0%; P<0.01), cow group within farm, by breed (Bos indicus, 48.3% [26,123 of 54,145]; Bos taurus, 61.7% [3652 of 5922]; and crossbred Bos indicus x Bos taurus, 50.7% [2011 of 3966]), category (nulliparous, 39.6% [2095 of 5290]; suckled primiparous, 45.2% [3924 of 8677]; suckled multiparous, 51.8% [24,245 of 46,767]; and nonsuckled multiparous, 46.1% [1522 of 3299]), body condition score at TAI (< or =2.5, 43.0% [3409 of 7923]; 3.0, 49.6% [18,958 of 38,229]; and > or =3.5, 52.7% [9419 of 17,881]). Days postpartum at beginning of protocol did not affect PR (30 to 60 d, 47.6% [4228 of 8881]; 61 to 90 d, 51.7% [16,325 to 31,572]; and 91 to 150 d, 50.8% [7616 to 14,991]; P>0.1). Pregnancy rate was also consistently affected (P<0.01) by sire (results ranging from 7.2% to 77.3%) and artificial insemination technician (results ranging from 15.1% to 81.8%).
An IoT-cloud Based Wearable ECG Monitoring System for Smart Healthcare.
Yang, Zhe; Zhou, Qihao; Lei, Lei; Zheng, Kan; Xiang, Wei
2016-12-01
Public healthcare has been paid an increasing attention given the exponential growth human population and medical expenses. It is well known that an effective health monitoring system can detect abnormalities of health conditions in time and make diagnoses according to the gleaned data. As a vital approach to diagnose heart diseases, ECG monitoring is widely studied and applied. However, nearly all existing portable ECG monitoring systems cannot work without a mobile application, which is responsible for data collection and display. In this paper, we propose a new method for ECG monitoring based on Internet-of-Things (IoT) techniques. ECG data are gathered using a wearable monitoring node and are transmitted directly to the IoT cloud using Wi-Fi. Both the HTTP and MQTT protocols are employed in the IoT cloud in order to provide visual and timely ECG data to users. Nearly all smart terminals with a web browser can acquire ECG data conveniently, which has greatly alleviated the cross-platform issue. Experiments are carried out on healthy volunteers in order to verify the reliability of the entire system. Experimental results reveal that the proposed system is reliable in collecting and displaying real-time ECG data, which can aid in the primary diagnosis of certain heart diseases.
Desideri, A; Fioretti, P M; Cortigiani, L; Trocino, G; Astarita, C; Gregori, D; Bax, J; Velasco, J; Celegon, L; Bigi, R; Pirelli, S; Picano, E
2005-02-01
To compare in a prospective, randomised, multicentre trial the relative merits of pre-discharge exercise ECG and early pharmacological stress echocardiography concerning risk stratification and costs of treating patients with uncomplicated acute myocardial infarction. 262 patients from six participating centres with a recent uncomplicated myocardial infarction were randomly assigned to early (day 3-5) pharmacological stress echocardiography (n = 132) or conventional pre-discharge (day 7-9) maximum symptom limited exercise ECG (n = 130). No complication occurred during either stress echocardiography or exercise ECG. At one year follow up there were 26 events (1 death, 5 non-fatal reinfarctions, 20 patients with unstable angina requiring hospitalisation) in patients randomly assigned to early stress echocardiography and 18 events (2 reinfarctions, 16 unstable angina requiring hospitalisation) in the group randomly assigned to exercise ECG (not significant). The negative predictive value was 92% for stress echocardiography and 88% for exercise ECG (not significant). Total costs of the two strategies were similar (not significant). Early pharmacological stress echocardiography and conventional pre-discharge symptom limited exercise ECG have similar clinical outcome and costs after uncomplicated infarction. Early pharmacological stress echocardiography should be considered a valid alternative even for patients with interpretable baseline ECG who can exercise.
A Fixed-Lag Kalman Smoother to Filter Power Line Interference in Electrocardiogram Recordings.
Warmerdam, G J J; Vullings, R; Schmitt, L; Van Laar, J O E H; Bergmans, J W M
2017-08-01
Filtering power line interference (PLI) from electrocardiogram (ECG) recordings can lead to significant distortions of the ECG and mask clinically relevant features in ECG waveform morphology. The objective of this study is to filter PLI from ECG recordings with minimal distortion of the ECG waveform. In this paper, we propose a fixed-lag Kalman smoother with adaptive noise estimation. The performance of this Kalman smoother in filtering PLI is compared to that of a fixed-bandwidth notch filter and several adaptive PLI filters that have been proposed in the literature. To evaluate the performance, we corrupted clean neonatal ECG recordings with various simulated PLI. Furthermore, examples are shown of filtering real PLI from an adult and a fetal ECG recording. The fixed-lag Kalman smoother outperforms other PLI filters in terms of step response settling time (improvements that range from 0.1 to 1 s) and signal-to-noise ratio (improvements that range from 17 to 23 dB). Our fixed-lag Kalman smoother can be used for semi real-time applications with a limited delay of 0.4 s. The fixed-lag Kalman smoother presented in this study outperforms other methods for filtering PLI and leads to minimal distortion of the ECG waveform.
A Hygroscopic Sensor Electrode for Fast Stabilized Non-Contact ECG Signal Acquisition
Fong, Ee-May; Chung, Wan-Young
2015-01-01
A capacitive electrocardiography (cECG) technique using a non-invasive ECG measuring technology that does not require direct contact between the sensor and the skin has attracted much interest. The system encounters several challenges when the sensor electrode and subject’s skin are weakly coupled. Because there is no direct physical contact between the subject and any grounding point, there is no discharge path for the built-up electrostatic charge. Subsequently, the electrostatic charge build-up can temporarily contaminate the ECG signal from being clearly visible; a stabilization period (3–15 min) is required for the measurement of a clean, stable ECG signal at low humidity levels (below 55% relative humidity). Therefore, to obtain a clear ECG signal without noise and to reduce the ECG signal stabilization time to within 2 min in a dry ambient environment, we have developed a fabric electrode with embedded polymer (FEEP). The designed hygroscopic FEEP has an embedded superabsorbent polymer layer. The principle of FEEP as a conductive electrode is to provide humidity to the capacitive coupling to ensure strong coupling and to allow for the measurement of a stable, clear biomedical signal. The evaluation results show that hygroscopic FEEP is capable of rapidly measuring high-accuracy ECG signals with a higher SNR ratio. PMID:26251913
Hayashi, Risa; Nakai, Kenji; Fukushima, Akimune; Itoh, Manabu; Sugiyama, Toru
2009-03-01
Although ultrasonic diagnostic imaging and fetal heart monitors have undergone great technological improvements, the development and use of fetal electrocardiograms to evaluate fetal arrhythmias and autonomic nervous activity have not been fully established. We verified the clinical significance of the novel signal-averaged vector-projected high amplification ECG (SAVP-ECG) method in fetuses from 48 gravidas at 32-41 weeks of gestation and in 34 neonates. SAVP-ECGs from fetuses and newborns were recorded using a modified XYZ-leads system. Once noise and maternal QRS waves were removed, the P, QRS, and T wave intervals were measured from the signal-averaged fetal ECGs. We also compared fetal and neonatal heart rates (HRs), coefficients of variation of heart rate variability (CV) as a parasympathetic nervous activity, and the ratio of low to high frequency (LF/HF ratio) as a sympathetic nervous activity. The rate of detection of a fetal ECG by SAVP-ECG was 72.9%, and the fetal and neonatal QRS and QTc intervals were not significantly different. The neonatal CVs and LF/HF ratios were significantly increased compared with those in the fetus. In conclusion, we have developed a fetal ECG recording method using the SAVP-ECG system, which we used to evaluate autonomic nervous system development.
A Hygroscopic Sensor Electrode for Fast Stabilized Non-Contact ECG Signal Acquisition.
Fong, Ee-May; Chung, Wan-Young
2015-08-05
A capacitive electrocardiography (cECG) technique using a non-invasive ECG measuring technology that does not require direct contact between the sensor and the skin has attracted much interest. The system encounters several challenges when the sensor electrode and subject's skin are weakly coupled. Because there is no direct physical contact between the subject and any grounding point, there is no discharge path for the built-up electrostatic charge. Subsequently, the electrostatic charge build-up can temporarily contaminate the ECG signal from being clearly visible; a stabilization period (3-15 min) is required for the measurement of a clean, stable ECG signal at low humidity levels (below 55% relative humidity). Therefore, to obtain a clear ECG signal without noise and to reduce the ECG signal stabilization time to within 2 min in a dry ambient environment, we have developed a fabric electrode with embedded polymer (FEEP). The designed hygroscopic FEEP has an embedded superabsorbent polymer layer. The principle of FEEP as a conductive electrode is to provide humidity to the capacitive coupling to ensure strong coupling and to allow for the measurement of a stable, clear biomedical signal. The evaluation results show that hygroscopic FEEP is capable of rapidly measuring high-accuracy ECG signals with a higher SNR ratio.
Al-Busaidi, Asiya M; Khriji, Lazhar; Touati, Farid; Rasid, Mohd Fadlee; Mnaouer, Adel Ben
2017-09-12
One of the major issues in time-critical medical applications using wireless technology is the size of the payload packet, which is generally designed to be very small to improve the transmission process. Using small packets to transmit continuous ECG data is still costly. Thus, data compression is commonly used to reduce the huge amount of ECG data transmitted through telecardiology devices. In this paper, a new ECG compression scheme is introduced to ensure that the compressed ECG segments fit into the available limited payload packets, while maintaining a fixed CR to preserve the diagnostic information. The scheme automatically divides the ECG block into segments, while maintaining other compression parameters fixed. This scheme adopts discrete wavelet transform (DWT) method to decompose the ECG data, bit-field preserving (BFP) method to preserve the quality of the DWT coefficients, and a modified running-length encoding (RLE) scheme to encode the coefficients. The proposed dynamic compression scheme showed promising results with a percentage packet reduction (PR) of about 85.39% at low percentage root-mean square difference (PRD) values, less than 1%. ECG records from MIT-BIH Arrhythmia Database were used to test the proposed method. The simulation results showed promising performance that satisfies the needs of portable telecardiology systems, like the limited payload size and low power consumption.
Using the 12-Lead Electrocardiogram in the Care of Athletic Patients.
Yeo, Tee Joo; Sharma, Sanjay
2016-11-01
This article summarizes the role of the 12-lead electrocardiogram (ECG) for the clinical care of athletes, with particular reference to the influence of age, gender, ethnicity, and type of sport on the appearance of the ECG, and its role in differentiating physiologic exercise-related changes from pathologic conditions implicated in sudden cardiac death (SCD). The article also explores the potential role of the ECG in detecting athletes at risk of SCD. In addition, the article reviews the evolution of ECG interpretation criteria and emphasizes the limitations of the ECG as well as the potential for future research. Copyright © 2016 Elsevier Inc. All rights reserved.
Development of a portable Linux-based ECG measurement and monitoring system.
Tan, Tan-Hsu; Chang, Ching-Su; Huang, Yung-Fa; Chen, Yung-Fu; Lee, Cheng
2011-08-01
This work presents a portable Linux-based electrocardiogram (ECG) signals measurement and monitoring system. The proposed system consists of an ECG front end and an embedded Linux platform (ELP). The ECG front end digitizes 12-lead ECG signals acquired from electrodes and then delivers them to the ELP via a universal serial bus (USB) interface for storage, signal processing, and graphic display. The proposed system can be installed anywhere (e.g., offices, homes, healthcare centers and ambulances) to allow people to self-monitor their health conditions at any time. The proposed system also enables remote diagnosis via Internet. Additionally, the system has a 7-in. interactive TFT-LCD touch screen that enables users to execute various functions, such as scaling a single-lead or multiple-lead ECG waveforms. The effectiveness of the proposed system was verified by using a commercial 12-lead ECG signal simulator and in vivo experiments. In addition to its portability, the proposed system is license-free as Linux, an open-source code, is utilized during software development. The cost-effectiveness of the system significantly enhances its practical application for personal healthcare.
The T wave in the V10 precordial electrocardiographic lead is negative in healthy Chihuahua dogs.
Dijkstra, Marieke; Szatmári, Viktor
2009-12-01
The T wave polarity in the V10 precordial electrocardiographic (ECG) lead in Chihuahuas is described as positive in the veterinary literature. The aim of this study was to investigate the polarity of the T wave in the V10 precordial ECG lead in clinically healthy Chihuahuas. Our null hypothesis was that healthy Chihuahuas have a negative T wave in V10. In this prospective study, 67 healthy breeder-owned Chihuahuas were used. A physical examination, 10-lead ECG and an echocardiogram were performed on each dog. No cardio-respiratory abnormalities were revealed in any of the otherwise healthy dogs. Three out of 67 ECGs were of insufficient quality because of baseline artifacts due to movement of the animal. Two other ECGs showed a nearly iso-electric T wave in the V10 lead. The remaining 62 ECGs showed negative T waves in the V10 lead. Right ventricular hypertrophy was excluded with echocardiography in all dogs. In contrast to previous reports, we found that healthy Chihuahuas have negative T wave in the V10 precordial ECG lead.
Noninvasive recording of electrocardiogram in conscious rat: A new device.
Kumar, Pradeep; Srivastava, Pooja; Gupta, Ankit; Bajpai, Manish
2017-01-01
Electrocardiogram (ECG) is an important tool for the study of cardiac electrophysiology both in human beings and experimental animals. Existing methods of ECG recording in small animals like rat have several limitations and ECG recordings of the anesthetized rat lack validity for heart rate (HR) variability analysis. The aim of the present study was to validate the ECG data from new device with ECG of anesthetized rat. The ECG was recorded on student's physiograph (BioDevice, Ambala) and suitable coupler and electrodes in six animals first by the newly developed device in conscious state and second in anesthetized state (stabilized technique). The data obtained were analyzed using unpaired t -test showed no significant difference ( P < 0.05) in QTc, QRS, and HR recorded by new device and established device in rats. No previous study describes a similar ECG recording in conscious state of rats. Thus, the present method may be a most physiological and inexpensive alternative to other methods. In this study, the animals were not restrained; they were just secured and represent a potential strength of the study.
Erdoğan, Turan; Durakoğlugil, Murtaza Emre; Çiçek, Yüksel; Çetin, Mustafa; Duman, Hakan; Şatiroğlu, Ömer; Çelik, Şükrü
2017-03-01
Prolonged QRS duration is associated with decreased left ventricular (LV) systolic function. However, the relation between LV restrictive filling pattern (RFP) and QRS duration has not been investigated yet. The purpose of our study was to assess this relationship. We analyzed standard 12-lead surface electrocardiogram (ECG) of 155 consecutive patients. Mitral inflow and septal tissue velocities were obtained using the apical 4-chamber view with pulsed Doppler echocardiography. Patients were divided into 2 groups according to measured deceleration time (DT): restrictive (with DT ≤130 ms) or non-restrictive (with DT >130 ms). QRS duration was significantly longer in the restrictive group than in the non-restrictive group (0.101 vs. 0.090 s, p < 0.0001). QRS duration of >0.10 s was highly specific (82.6%), but modestly sensitive (64.7%), for the prediction of LV RFP. Multivariate analyses demonstrated that E/A ratio, peak E, peak A, septal e', and a' velocities were significantly associated with RFP. Prolonged QRS duration (>0.10 s) obtained from a standard resting 12-lead ECG is associated with LV RFP. However, the relationship of QRS duration with RFP was not independent of echocardiographic parameters.
Janusek, D; Kania, M; Zaczek, R; Zavala-Fernandez, H; Maniewski, R
2014-04-01
The presence of T wave alternans (TWA) in the surface ECG signals has been recognized as a marker of electrical instability, and is hypothesized to be related to patients at increased risk for ventricular arrhythmias. In this paper we present a TWA simulation study. The TWA phenomenon was simulated by changing the duration of the ventricular heart cells action potential. The magnitude was calculated in the surface ECG with the use of the time domain method. The spatially concordant TWA, where during one heart beat all ventricular cells display a short-duration action potential and during the next beat they exhibit a long-duration action potential, as well as the discordant TWA, where at least one region is out of phase, was simulated. The vectocardiographic representation was employed. The obtained results showed a high level of T-loop pattern and location disturbances connected to the discordant TWA simulation in contrast to the concordant one. This result may be explained by the spatial heterogeneity of the ventricular repolarization process, which could be higher for the discordant TWA than for the concordant TWA. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.