Three-dimensional surface imaging system for assessing human obesity
NASA Astrophysics Data System (ADS)
Xu, Bugao; Yu, Wurong; Yao, Ming; Pepper, M. Reese; Freeland-Graves, Jeanne H.
2009-10-01
The increasing prevalence of obesity suggests a need to develop a convenient, reliable, and economical tool for assessment of this condition. Three-dimensional (3-D) body surface imaging has emerged as an exciting technology for the estimation of body composition. We present a new 3-D body imaging system, which is designed for enhanced portability, affordability, and functionality. In this system, stereo vision technology is used to satisfy the requirement for a simple hardware setup and fast image acquisition. The portability of the system is created via a two-stand configuration, and the accuracy of body volume measurements is improved by customizing stereo matching and surface reconstruction algorithms that target specific problems in 3-D body imaging. Body measurement functions dedicated to body composition assessment also are developed. The overall performance of the system is evaluated in human subjects by comparison to other conventional anthropometric methods, as well as air displacement plethysmography, for body fat assessment.
A 3D surface imaging system for assessing human obesity
NASA Astrophysics Data System (ADS)
Xu, B.; Yu, W.; Yao, M.; Yao, X.; Li, Q.; Pepper, M. R.; Freeland-Graves, J. H.
2009-08-01
The increasing prevalence of obesity suggests a need to develop a convenient, reliable and economical tool for assessment of this condition. Three-dimensional (3D) body surface imaging has emerged as an exciting technology for estimation of body composition. This paper presents a new 3D body imaging system, which was designed for enhanced portability, affordability, and functionality. In this system, stereo vision technology was used to satisfy the requirements for a simple hardware setup and fast image acquisitions. The portability of the system was created via a two-stand configuration, and the accuracy of body volume measurements was improved by customizing stereo matching and surface reconstruction algorithms that target specific problems in 3D body imaging. Body measurement functions dedicated to body composition assessment also were developed. The overall performance of the system was evaluated in human subjects by comparison to other conventional anthropometric methods, as well as air displacement plethysmography, for body fat assessment.
Enclosure for small animals during awake animal imaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goddard, Jr., James S
An enclosure or burrow restrains an awake animal during an imaging procedure. A tubular body, made from a radiolucent material that does not attenuate x-rays or gamma rays, accepts an awake animal. A proximal end of the body includes an attachment surface that corresponds to an attachment surface of an optically transparent and optically uniform window. An anti-reflective coating may be applied to an inner surface, an outer surface, or both surfaces of the window. Since the window is a separate element of the enclosure and it is not integrally formed as part of the body, it can be mademore » with optically uniform thickness properties for improved motion tracking of markers on the animal with a camera during the imaging procedure. The motion tracking information is then used to compensate for animal movement in the image.« less
ERIC Educational Resources Information Center
Kotze, Sanet Henriet; Mole, Calvin Gerald; Greyling, Linda Magdalena
2012-01-01
It has been noted by staff at the Faculty of Health Sciences, Stellenbosch University that medical students neglect the study of surface anatomy during dissection. This study reports on the novel use of Lodox[R] Statscan[R] images in anatomical education, particularly the teaching of surface anatomy. Full body digital X-ray images (Lodox Statscan)…
Sugimoto, Maki; Yasuda, Hideki; Koda, Keiji; Suzuki, Masato; Yamazaki, Masato; Tezuka, Tohru; Kosugi, Chihiro; Higuchi, Ryota; Watayo, Yoshihisa; Yagawa, Yohsuke; Uemura, Shuichiro; Tsuchiya, Hironori; Azuma, Takeshi
2010-09-01
We applied a new concept of "image overlay surgery" consisting of the integration of virtual reality (VR) and augmented reality (AR) technology, in which dynamic 3D images were superimposed on the patient's actual body surface and evaluated as a reference for surgical navigation in gastrointestinal, hepatobiliary and pancreatic surgery. We carried out seven surgeries, including three cholecystectomies, two gastrectomies and two colectomies. A Macintosh and a DICOM workstation OsiriX were used in the operating room for image analysis. Raw data of the preoperative patient information obtained via MDCT were reconstructed to volume rendering and projected onto the patient's body surface during the surgeries. For accurate registration, OsiriX was first set to reproduce the patient body surface, and the positional coordinates of the umbilicus, left and right nipples, and the inguinal region were fixed as physiological markers on the body surface to reduce the positional error. The registration process was non-invasive and markerlesss, and was completed within 5 min. Image overlay navigation was helpful for 3D anatomical understanding of the surgical target in the gastrointestinal, hepatobiliary and pancreatic anatomies. The surgeon was able to minimize movement of the gaze and could utilize the image assistance without interfering with the forceps operation, reducing the gap from the VR. Unexpected organ injury could be avoided in all procedures. In biliary surgery, the projected virtual cholangiogram on the abdominal wall could advance safely with identification of the bile duct. For early gastric and colorectal cancer, the small tumors and blood vessels, which usually could not be found on the gastric serosa by laparoscopic view, were simultaneously detected on the body surface by carbon dioxide-enhanced MDCT. This provided accurate reconstructions of the tumor and involved lymph node, directly linked with optimization of the surgical procedures. Our non-invasive markerless registration using physiological markers on the body surface reduced logistical efforts. The image overlay technique is a useful tool when highlighting hidden structures, giving more information.
Automated 3D closed surface segmentation: application to vertebral body segmentation in CT images.
Liu, Shuang; Xie, Yiting; Reeves, Anthony P
2016-05-01
A fully automated segmentation algorithm, progressive surface resolution (PSR), is presented in this paper to determine the closed surface of approximately convex blob-like structures that are common in biomedical imaging. The PSR algorithm was applied to the cortical surface segmentation of 460 vertebral bodies on 46 low-dose chest CT images, which can be potentially used for automated bone mineral density measurement and compression fracture detection. The target surface is realized by a closed triangular mesh, which thereby guarantees the enclosure. The surface vertices of the triangular mesh representation are constrained along radial trajectories that are uniformly distributed in 3D angle space. The segmentation is accomplished by determining for each radial trajectory the location of its intersection with the target surface. The surface is first initialized based on an input high confidence boundary image and then resolved progressively based on a dynamic attraction map in an order of decreasing degree of evidence regarding the target surface location. For the visual evaluation, the algorithm achieved acceptable segmentation for 99.35 % vertebral bodies. Quantitative evaluation was performed on 46 vertebral bodies and achieved overall mean Dice coefficient of 0.939 (with max [Formula: see text] 0.957, min [Formula: see text] 0.906 and standard deviation [Formula: see text] 0.011) using manual annotations as the ground truth. Both visual and quantitative evaluations demonstrate encouraging performance of the PSR algorithm. This novel surface resolution strategy provides uniform angular resolution for the segmented surface with computation complexity and runtime that are linearly constrained by the total number of vertices of the triangular mesh representation.
Geometric, Kinematic and Radiometric Aspects of Image-Based Measurements
NASA Technical Reports Server (NTRS)
Liu, Tianshu
2002-01-01
This paper discusses theoretical foundations of quantitative image-based measurements for extracting and reconstructing geometric, kinematic and dynamic properties of observed objects. New results are obtained by using a combination of methods in perspective geometry, differential geometry. radiometry, kinematics and dynamics. Specific topics include perspective projection transformation. perspective developable conical surface, perspective projection under surface constraint, perspective invariants, the point correspondence problem. motion fields of curves and surfaces. and motion equations of image intensity. The methods given in this paper arc useful for determining morphology and motion fields of deformable bodies such as elastic bodies. viscoelastic mediums and fluids.
Image defects from surface and alignment errors in grazing incidence telescopes
NASA Technical Reports Server (NTRS)
Saha, Timo T.
1989-01-01
The rigid body motions and low frequency surface errors of grazing incidence Wolter telescopes are studied. The analysis is based on surface error descriptors proposed by Paul Glenn. In his analysis, the alignment and surface errors are expressed in terms of Legendre-Fourier polynomials. Individual terms in the expression correspond to rigid body motions (decenter and tilt) and low spatial frequency surface errors of mirrors. With the help of the Legendre-Fourier polynomials and the geometry of grazing incidence telescopes, exact and approximated first order equations are derived in this paper for the components of the ray intercepts at the image plane. These equations are then used to calculate the sensitivities of Wolter type I and II telescopes for the rigid body motions and surface deformations. The rms spot diameters calculated from this theory and OSAC ray tracing code agree very well. This theory also provides a tool to predict how rigid body motions and surface errors of the mirrors compensate each other.
Anthropometric body measurements based on multi-view stereo image reconstruction.
Li, Zhaoxin; Jia, Wenyan; Mao, Zhi-Hong; Li, Jie; Chen, Hsin-Chen; Zuo, Wangmeng; Wang, Kuanquan; Sun, Mingui
2013-01-01
Anthropometric measurements, such as the circumferences of the hip, arm, leg and waist, waist-to-hip ratio, and body mass index, are of high significance in obesity and fitness evaluation. In this paper, we present a home based imaging system capable of conducting anthropometric measurements. Body images are acquired at different angles using a home camera and a simple rotating disk. Advanced image processing algorithms are utilized for 3D body surface reconstruction. A coarse body shape model is first established from segmented body silhouettes. Then, this model is refined through an inter-image consistency maximization process based on an energy function. Our experimental results using both a mannequin surrogate and a real human body validate the feasibility of the proposed system.
Anthropometric Body Measurements Based on Multi-View Stereo Image Reconstruction*
Li, Zhaoxin; Jia, Wenyan; Mao, Zhi-Hong; Li, Jie; Chen, Hsin-Chen; Zuo, Wangmeng; Wang, Kuanquan; Sun, Mingui
2013-01-01
Anthropometric measurements, such as the circumferences of the hip, arm, leg and waist, waist-to-hip ratio, and body mass index, are of high significance in obesity and fitness evaluation. In this paper, we present a home based imaging system capable of conducting automatic anthropometric measurements. Body images are acquired at different angles using a home camera and a simple rotating disk. Advanced image processing algorithms are utilized for 3D body surface reconstruction. A coarse body shape model is first established from segmented body silhouettes. Then, this model is refined through an inter-image consistency maximization process based on an energy function. Our experimental results using both a mannequin surrogate and a real human body validate the feasibility of proposed system. PMID:24109700
NASA Astrophysics Data System (ADS)
Zou, Z.; Xiao, X.; Menarguez, M.; Dong, J.; Qin, Y.
2016-12-01
Open surface water bodies are important water resource for public supply, irrigation, livestock, and wildlife in Oklahoma. The inter-annual variation of Oklahoma water bodies directly affect the water availability for public supply, irrigation and cattle industry. In this study, tens of thousands of Landsat TM/ETM+ images from 1984 to 2015 were used to track the dynamics of open surface water bodies. Both water-related spectral indices and vegetation indices were used to map water bodies for individual images. The resultant maps show that Oklahoma year-long open surface water bodies varied significantly over the last 32 years, with an average annual water body area equals to 2300 km2, accounting for 1.27 % of the Oklahoma state area (181,037 km2). 4.3 million year-long water body pixels were detected in the 32-year accumulated water frequency map, corresponding to 3100 km2. Only 45% ( 1400 km2) of the those pixels had water throughout the 32 years, while the rest 55% pixels had a dry-up period. The smaller water bodies have a higher risk to dry up and a lower probability to have water throughout the years. Drought years could significantly decrease the number of small water bodies and shrink the area of large water bodies, while pluvial years could create large number of small seasonal water bodies. The significant influencing factors of current year water bodies include the precipitation and temperature of current year and the water body condition of the previous year. This water body dynamics study could be used to support water resource management, crop and livestock production, and biodiversity conservation in Oklahoma.
Perez-Alday, Erick A; Thomas, Jason A; Kabir, Muammar; Sedaghat, Golriz; Rogovoy, Nichole; van Dam, Eelco; van Dam, Peter; Woodward, William; Fuss, Cristina; Ferencik, Maros; Tereshchenko, Larisa G
We conducted a prospective clinical study (n=14; 29% female) to assess the accuracy of a three-dimensional (3D) photography-based method of torso geometry reconstruction and body surface electrodes localization. The position of 74 body surface electrocardiographic (ECG) electrodes (diameter 5mm) was defined by two methods: 3D photography, and CT (marker diameter 2mm) or MRI (marker size 10×20mm) imaging. Bland-Altman analysis showed good agreement in X (bias -2.5 [95% limits of agreement (LoA) -19.5 to 14.3] mm), Y (bias -0.1 [95% LoA -14.1 to 13.9] mm), and Z coordinates (bias -0.8 [95% LoA -15.6 to 14.2] mm), as defined by the CT/MRI imaging, and 3D photography. The average Hausdorff distance between the two torso geometry reconstructions was 11.17±3.05mm. Thus, accurate torso geometry reconstruction using 3D photography is feasible. Body surface ECG electrodes coordinates as defined by the CT/MRI imaging, and 3D photography, are in good agreement. Copyright © 2017 Elsevier Inc. All rights reserved.
A design of endoscopic imaging system for hyper long pipeline based on wheeled pipe robot
NASA Astrophysics Data System (ADS)
Zheng, Dongtian; Tan, Haishu; Zhou, Fuqiang
2017-03-01
An endoscopic imaging system of hyper long pipeline is designed to acquire the inner surface image in advance for the hyper long pipeline detects measurement. The system consists of structured light sensors, pipe robots and control system. The pipe robot is in the form of wheel structure, with the sensor which is at the front of the vehicle body. The control system is at the tail of the vehicle body in the form of upper and lower computer. The sensor can be translated and scanned in three steps: walking, lifting and scanning, then the inner surface image can be acquired at a plurality of positions and different angles. The results of imaging experiments show that the system's transmission distance is longer, the acquisition angle is more diverse and the result is more comprehensive than the traditional imaging system, which lays an important foundation for later inner surface vision measurement.
Infrared thermal imaging as a method to evaluate heat loss in newborn lambs.
Labeur, L; Villiers, G; Small, A H; Hinch, G N; Schmoelzl, S
2017-12-01
Thermal imaging technology has been identified as a potential method for non-invasive study of thermogenesis in the neonatal lamb. In comparison to measurement of the core body temperature, infrared thermography may observe thermal loss and thermogenesis linked to subcutaneous brown fat depots. This study aimed to identify a suitable method to measure heat loss in the neonatal lamb under a cold challenge. During late pregnancy (day 125), ewes were subjected to either shearing (n=15) or mock handling (sham-shorn for 2min mimicking the shearing movements) (n=15). Previous studies have shown an increase in brown adipose tissue deposition in lambs born to ewes shorn during pregnancy and we hypothesized that the shearing treatment would impact thermoregulatory capacities in newborn lambs. Lambs born to control ewes (n=14; CONTROL) and shorn ewes (n=13; SHORN) were subjected to a cold challenge of 1h duration at 4h after birth. During the cold challenge, thermography images were taken every 10min, from above, at a fixed distance from the dorsal midline. On each image, four fixed-size areas were identified (shoulder, mid loin, hips and rump) and the average and maximum temperatures of each recorded. In all lambs, body surface temperature decreased over time. Overall the SHORN lambs appeared to maintain body surface temperature better than CONTROL lambs, while CONTROL lambs appeared to have higher core temperature. At 30min post cold challenge SHORN lambs tended to have higher body surface temperatures than lambs (P=0.0474). Both average and maximum temperatures were highest at the hips. Average temperature was lowest at the shoulder (P<0.05), while maximum temperatures were lowest at both shoulder and rump (P<0.005). These results indicate that lambs born to shorn ewes maintained their radiated body surface temperature better than CONTROL lambs. In conjunction with core temperature changes under cold challenge, this insight will allow us to understand whether increased body surface temperature contributes to increased overall heat loss or whether increased body surface temperature is indeed a mechanism contributing to maintenance of core body temperature under cold challenge conditions. This study has confirmed the utility of infrared thermography images to capture and identify different levels of thermoregulatory capacity in newborn lambs. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Mohammad Sadeghi, Majid; Kececi, Emin Faruk; Bilsel, Kerem; Aralasmak, Ayse
2017-03-01
Medical imaging has great importance in earlier detection, better treatment and follow-up of diseases. 3D Medical image analysis with CT Scan and MRI images has also been used to aid surgeries by enabling patient specific implant fabrication, where having a precise three dimensional model of associated body parts is essential. In this paper, a 3D image processing methodology for finding the plane on which the glenoid surface has a maximum surface area is proposed. Finding this surface is the first step in designing patient specific shoulder joint implant.
Computer-assisted image analysis to quantify daily growth rates of broiler chickens.
De Wet, L; Vranken, E; Chedad, A; Aerts, J M; Ceunen, J; Berckmans, D
2003-09-01
1. The objective was to investigate the possibility of detecting daily body weight changes of broiler chickens with computer-assisted image analysis. 2. The experiment included 50 broiler chickens reared under commercial conditions. Ten out of 50 chickens were randomly selected and video recorded (upper view) 18 times during the 42-d growing period. The number of surface and periphery pixels from the images was used to derive a relationship between body dimension and live weight. 3. The relative error in weight estimation, expressed in terms of the standard deviation of the residuals from image surface data was 10%, while it was found to be 15% for the image periphery data. 4. Image-processing systems could be developed to assist the farmer in making important management and marketing decisions.
NASA Astrophysics Data System (ADS)
Xu, Xiaojiang; Rioux, Timothy P.; MacLeod, Tynan; Patel, Tejash; Rome, Maxwell N.; Potter, Adam W.
2017-03-01
The purpose of this paper is to develop a database of tissue composition, distribution, volume, surface area, and skin thickness from anatomically correct human models, the virtual family. These models were based on high-resolution magnetic resonance imaging (MRI) of human volunteers, including two adults (male and female) and two children (boy and girl). In the segmented image dataset, each voxel is associated with a label which refers to a tissue type that occupies up that specific cubic millimeter of the body. The tissue volume was calculated from the number of the voxels with the same label. Volumes of 24 organs in body and volumes of 7 tissues in 10 specific body regions were calculated. Surface area was calculated from the collection of voxels that are touching the exterior air. Skin thicknesses were estimated from its volume and surface area. The differences between the calculated and original masses were about 3 % or less for tissues or organs that are important to thermoregulatory modeling, e.g., muscle, skin, and fat. This accurate database of body tissue distributions and geometry is essential for the development of human thermoregulatory models. Data derived from medical imaging provide new effective tools to enhance thermal physiology research and gain deeper insight into the mechanisms of how the human body maintains heat balance.
Paul Segars, W; Tsui, Benjamin M W
2009-12-01
Recent work in the development of computerized phantoms has focused on the creation of ideal "hybrid" models that seek to combine the realism of a patient-based voxelized phantom with the flexibility of a mathematical or stylized phantom. We have been leading the development of such computerized phantoms for use in medical imaging research. This paper will summarize our developments dating from the original four-dimensional (4-D) Mathematical Cardiac-Torso (MCAT) phantom, a stylized model based on geometric primitives, to the current 4-D extended Cardiac-Torso (XCAT) and Mouse Whole-Body (MOBY) phantoms, hybrid models of the human and laboratory mouse based on state-of-the-art computer graphics techniques. This paper illustrates the evolution of computerized phantoms toward more accurate models of anatomy and physiology. This evolution was catalyzed through the introduction of nonuniform rational b-spline (NURBS) and subdivision (SD) surfaces, tools widely used in computer graphics, as modeling primitives to define a more ideal hybrid phantom. With NURBS and SD surfaces as a basis, we progressed from a simple geometrically based model of the male torso (MCAT) containing only a handful of structures to detailed, whole-body models of the male and female (XCAT) anatomies (at different ages from newborn to adult), each containing more than 9000 structures. The techniques we applied for modeling the human body were similarly used in the creation of the 4-D MOBY phantom, a whole-body model for the mouse designed for small animal imaging research. From our work, we have found the NURBS and SD surface modeling techniques to be an efficient and flexible way to describe the anatomy and physiology for realistic phantoms. Based on imaging data, the surfaces can accurately model the complex organs and structures in the body, providing a level of realism comparable to that of a voxelized phantom. In addition, they are very flexible. Like stylized models, they can easily be manipulated to model anatomical variations and patient motion. With the vast improvement in realism, the phantoms developed in our lab can be combined with accurate models of the imaging process (SPECT, PET, CT, magnetic resonance imaging, and ultrasound) to generate simulated imaging data close to that from actual human or animal subjects. As such, they can provide vital tools to generate predictive imaging data from many different subjects under various scanning parameters from which to quantitatively evaluate and improve imaging devices and techniques. From the MCAT to XCAT, we will demonstrate how NURBS and SD surface modeling have resulted in a major evolutionary advance in the development of computerized phantoms for imaging research.
Cost-effective system for facial imaging and three-dimensional reconstruction
NASA Astrophysics Data System (ADS)
Shokouhi, S. B.; Monro, D. M.; Sherlock, Barry G.
1998-06-01
Three dimensional (3-D) images have recently received wide attention in applications involving medical treatment. Most current 3-D imaging methods focus on the internal organs of the body. However, several medical image applications such as plastic surgery, body deformities, rehabilitation, dental surgery and orthodontics, make use of the surface contours of the body. Several techniques are currently available for producing 3-D images of the body surface and most of the systems which implement these techniques are expensive, requiring complex equipment with highly trained operators. The research involves the development of a simple, low cost and non-invasive contour capturing method for facial surfaces. This is achieved using the structured light technique, employing a standard commercial slide projector, CCD camera and a frame-grabber card linked to a PC. Structured light has already been used for many applications, but only to a limited extent in the clinical environment. All current implementations involve extensive manual intervention by highly skilled operators and this has proven to be a serious hindrance to clinical acceptance of 3-D imaging. A primary objective of this work is to minimize the amount of manual intervention required, so that the system can be used by clinicians who do not have specialist training in the use of this equipment. The eventual aim is to provide a software assisted surgical procedure, which by merging the facial data, allows the manipulation of soft tissue and gives the facility to predict and monitor post-surgical appearance. The research focuses on how the images are obtained using the structured light optic system and the subsequent image processing of data to give a realistic 3-D image.
Body surface detection method for photoacoustic image data using cloth-simulation technique
NASA Astrophysics Data System (ADS)
Sekiguchi, H.; Yoshikawa, A.; Matsumoto, Y.; Asao, Y.; Yagi, T.; Togashi, K.; Toi, M.
2018-02-01
Photoacoustic tomography (PAT) is a novel modality that can visualize blood vessels without contrast agents. It clearly shows blood vessels near the body surface. However, these vessels obstruct the observation of deep blood vessels. As the existence range of each vessel is determined by the distance from the body surface, they can be separated if the position of the skin is known. However, skin tissue, which does not contain hemoglobin, does not appear in PAT results, therefore, manual estimation is required. As this task is very labor-intensive, its automation is highly desirable. Therefore, we developed a method to estimate the body surface using the cloth-simulation technique, which is a commonly used method to create computer graphics (CG) animations; however, it has not yet been employed for medical image processing. In cloth simulations, the virtual cloth is represented by a two-dimensional array of mass nodes. The nodes are connected with each other by springs. Once the cloth is released from a position away from the body, each node begins to move downwards under the effect of gravity, spring, and other forces; some of the nodes hit the superficial vessels and stop. The cloth position in the stationary state represents the body surface. The body surface estimation, which required approximately 1 h with the manual method, is automated and it takes only approximately 10 s with the proposed method. The proposed method could facilitate the practical use of PAT.
Cherenkov imaging for Total Skin Electron Therapy (TSET)
NASA Astrophysics Data System (ADS)
Xie, Yunhe; Petroccia, Heather; Maity, Amit; Miao, Tianshun; Zhu, Yihua; Bruza, Petr; Pogue, Brian W.; Andreozzi, Jacqueline M.; Plastaras, John P.; Dong, Lei; Zhu, Timothy C.
2018-03-01
Total Skin Electron Therapy (TSET) utilizes high-energy electrons to treat cancers on the entire body surface. The otherwise invisible radiation beam can be observed via the optical Cherenkov photons emitted from interaction between the high-energy electron beam and tissue. Using a specialized camera-system, the Cherenkov emission can thus be used to evaluate the dose uniformity on the surface of the patient in real-time. Each patient was also monitored during TSET via in-vivo detectors (IVD) in nine locations. Patients undergoing TSET in various conditions (whole body and half body) were imaged and analyzed, and the viability of the system to provide clinical feedback was established.
Manzano-Szalai, Krisztina; Pali-Schöll, Isabella; Krishnamurthy, Durga; Stremnitzer, Caroline; Flaschberger, Ingo; Jensen-Jarolim, Erika
2016-01-01
In highly sensitized patients, the encounter with a specific allergen from food, insect stings or medications may rapidly induce systemic anaphylaxis with potentially lethal symptoms. Countless animal models of anaphylaxis, most often in BALB/c mice, were established to understand the pathophysiology and to prove the safety of different treatments. The most common symptoms during anaphylactic shock are drop of body temperature and reduced physical activity. To refine, improve and objectify the currently applied manual monitoring methods, we developed an imaging method for the automated, non-invasive measurement of the whole-body surface temperature and, at the same time, of the horizontal and vertical movement activity of small animals. We tested the anaphylaxis imaging in three in vivo allergy mouse models for i) milk allergy, ii) peanut allergy and iii) egg allergy. These proof-of-principle experiments suggest that the imaging technology represents a reliable non-invasive method for the objective monitoring of small animals during anaphylaxis over time. We propose that the method will be useful for monitoring diseases associated with both, changes in body temperature and in physical behaviour. PMID:26963393
Electronic imaging of the human body
NASA Astrophysics Data System (ADS)
Vannier, Michael W.; Yates, Randall E.; Whitestone, Jennifer J.
1992-09-01
The Human Engineering Division of the Armstrong Laboratory (USAF); the Mallinckrodt Institute of Radiology; the Washington University School of Medicine; and the Lister-Hill National Center for Biomedical Communication, National Library of Medicine are sponsoring a working group on electronic imaging of the human body. Electronic imaging of the surface of the human body has been pursued and developed by a number of disciplines including radiology, forensics, surgery, engineering, medical education, and anthropometry. The applications range from reconstructive surgery to computer-aided design (CAD) of protective equipment. Although these areas appear unrelated, they have a great deal of commonality. All the organizations working in this area are faced with the challenges of collecting, reducing, and formatting the data in an efficient and standard manner; storing this data in a computerized database to make it readily accessible; and developing software applications that can visualize, manipulate, and analyze the data. This working group is being established to encourage effective use of the resources of all the various groups and disciplines involved in electronic imaging of the human body surface by providing a forum for discussing progress and challenges with these types of data.
Method For Identifying Sedimentary Bodies From Images And Its Application To Mineral Exploration
NASA Technical Reports Server (NTRS)
Wilkinson, Murray Justin (Inventor)
2006-01-01
A method is disclosed for identifying a sediment accumulation from an image of a part of the earth's surface. The method includes identifying a topographic discontinuity from the image. A river which crosses the discontinuity is identified from the image. From the image, paleocourses of the river are identified which diverge from a point where the river crosses the discontinuity. The paleocourses are disposed on a topographically low side of the discontinuity. A smooth surface which emanates from the point is identified. The smooth surface is also disposed on the topographically low side of the point.
NASA Technical Reports Server (NTRS)
Liu, Boyang (Inventor); Ho, Seng-Tiong (Inventor)
2010-01-01
An imaging device. In one embodiment, the imaging device includes a plurality of first electrode strips in parallel to each other along a first direction x, wherein each first electrode strip has an elongated body with a first surface and an opposite, second surface and a thickness n.sub.1. The imaging device also includes a plurality of second electrode strips in parallel to each other along a second direction y that is substantially perpendicular to the first direction x, wherein each second electrode strip has an elongated body with a first surface and an opposite, second surface and a thickness n.sub.2. The plurality of second electrode strips are positioned apart from the plurality of first electrode strips along a third direction z that is substantially perpendicular to the first direction x and the second direction y such that the plurality of first electrode strips and the plurality of second electrode strips are crossing each other accordingly to form a corresponding number of crossing points. And at each crossing point, a semiconductor component is filled between the second surface of a corresponding first electrode strip and the first surface of a corresponding second electrode strip to form an addressable pixel.
Cheng, Victor S; Bai, Jinfen; Chen, Yazhu
2009-11-01
As the needs for various kinds of body surface information are wide-ranging, we developed an imaging-sensor integrated system that can synchronously acquire high-resolution three-dimensional (3D) far-infrared (FIR) thermal and true-color images of the body surface. The proposed system integrates one FIR camera and one color camera with a 3D structured light binocular profilometer. To eliminate the emotion disturbance of the inspector caused by the intensive light projection directly into the eye from the LCD projector, we have developed a gray encoding strategy based on the optimum fringe projection layout. A self-heated checkerboard has been employed to perform the calibration of different types of cameras. Then, we have calibrated the structured light emitted by the LCD projector, which is based on the stereo-vision idea and the least-squares quadric surface-fitting algorithm. Afterwards, the precise 3D surface can fuse with undistorted thermal and color images. To enhance medical applications, the region-of-interest (ROI) in the temperature or color image representing the surface area of clinical interest can be located in the corresponding position in the other images through coordinate system transformation. System evaluation demonstrated a mapping error between FIR and visual images of three pixels or less. Experiments show that this work is significantly useful in certain disease diagnoses.
Development of a Mars Surface Imager
NASA Technical Reports Server (NTRS)
Squyres, Steve W.
1994-01-01
The Mars Surface Imager (MSI) is a multispectral, stereoscopic, panoramic imager that allows imaging of the full scene around a Mars lander from the lander body to the zenith. It has two functional components: panoramic imaging and sky imaging. In the most recent version of the MSI, called PIDDP-cam, a very long multi-line color CCD, an innovative high-performance drive system, and a state-of-the-art wavelet image compression code have been integrated into a single package. The requirements for the flight version of the MSI and the current design are presented.
Stardust Imaging of Comet Wild 2: First Look
NASA Technical Reports Server (NTRS)
Newburn, R.; Acton, C.; Bhaskaran, S.; Brownlee, D.; Cheuvront, A.; Duxbury, T.; Hanner, M.; Semenov, B.; Sandford, S.; Tsou, P.
2004-01-01
On 2 January 2004 during its historic flight to return cometary dust samples to earth, the STARDUST spacecraft flew within the coma of comet Wild 2 and also took 72 images where the surface was resolved during the flyby. A combination of long and short exposures was used to observe the jets and the surface. Comet Surface: The images revealed a planetary body, one not having a significant atmosphere, quite different from any other such body seen from other spacecraft. Surface depressions, potentially a combination of craters and vents, were not bowl-shaped but typically had steep walls and flattened floors. One depression considered to be a vent, the source of a jet, had a depth to diameter ratio of approx.0.4, with near vertical walls. Jets: At least 10 to possibly 20 jets were active during the flyby. Some were traced back to the surface where they seem to originate from the near vertical walls of depressions (vents) that were facing the sun, having the highest solar insolation.
Multi-Objective Optimization of Spacecraft Trajectories for Small-Body Coverage Missions
NASA Technical Reports Server (NTRS)
Hinckley, David, Jr.; Englander, Jacob; Hitt, Darren
2017-01-01
Visual coverage of surface elements of a small-body object requires multiple images to be taken that meet many requirements on their viewing angles, illumination angles, times of day, and combinations thereof. Designing trajectories capable of maximizing total possible coverage may not be useful since the image target sequence and the feasibility of said sequence given the rotation-rate limitations of the spacecraft are not taken into account. This work presents a means of optimizing, in a multi-objective manner, surface target sequences that account for such limitations.
Kato, Hideki; Sawada, Michito
2015-12-01
When an inhomogeneous medium such as bone, whose composition or density are clearly different from that of soft tissue of human body, exist in irradiated body, a subjective contrast of X-ray image changes by the location of these inhomogeneous medium. This cause due to the change of behavior of scattered photons in the body depends on the location of inhomogeneous medium besides due to the influence of a penumbra. But this mechanism is not explained clearly yet. In this paper, it was analyzed by means of the Monte Carlo simulation that what kind of difference occurs to a subjective contrast by the difference in location of inhomogeneous medium in water phantom and that a change in behavior of scattered photons in the phantom influences a subjective contrast by what kind of mechanism. In this case the inhomogeneous medium is bone, whose effective atomic number and density are higher than that of water, the subjective contrast of X-ray image degrades when bone is located near the entrance surface (upper position) than located near the exit surface (lower position). This is caused by the number of scattered photons, originated in primary photons incident upon the zone besides the region from entrance surface to exit surface including inhomogeneous medium and incident on the area of shadow of inhomogeneous medium on the image detector, is greater in case of the upper position than in case of the lower position. In the lower position, many of these scattered photons are interacted in bone located near the exit surface by the photo-electric absorption and only a small amount is incident on the image detector.
Assunção, Flávia Fernanda Oliveira; Dantas, Rosana Aparecida Spadoti; Ciol, Márcia Aparecida; Gonçalves, Natália; Farina, Jayme Adriano; Rossi, Lidia Aparecida
2013-06-01
The aims of this study were to adapt the Body Image Quality of Life Inventory (BIQLI) into Brazilian Portuguese (BP) and to assess the psychometric properties of the adapted version. Construct validity was assessed by correlating the BIQLI-BP scores with the Rosenberg's Self-Esteem Scale, with Burns Specific Health Scale-Revised (BSHS-R), and with gender, total body surface area burned, and visibility of the scars. Participants were 77 adult burn patients. Cronbach's alpha for the adapted version was .90 and moderate linear correlations were found between body image and self-esteem and between BIQLI-BP scores and two domains of the BSHS-R: affect and body image and interpersonal relationships. The BIQLI-BP showed acceptable levels of reliability and validity for Brazilian burn patients. Copyright © 2013 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Schroeder, Walter; Schulze, Wolfram; Wetter, Thomas; Chen, Chi-Hsien
2008-08-01
Three-dimensional (3D) body surface reconstruction is an important field in health care. A popular method for this purpose is laser scanning. However, using Photometric Stereo (PS) to record lumbar lordosis and the surface contour of the back poses a viable alternative due to its lower costs and higher flexibility compared to laser techniques and other methods of three-dimensional body surface reconstruction. In this work, we extended the traditional PS method and proposed a new method for obtaining surface and volume data of a moving object. The principle of traditional Photometric Stereo uses at least three images of a static object taken under different light sources to obtain 3D information of the object. Instead of using normal light, the light sources in the proposed method consist of the RGB-Color-Model's three colors: red, green and blue. A series of pictures taken with a video camera can now be separated into the different color channels. Each set of the three images can then be used to calculate the surface normals as a traditional PS. This method waives the requirement that the object imaged must be kept still as in almost all the other body surface reconstruction methods. By putting two cameras opposite to a moving object and lighting the object with the colored light, the time-varying surface (4D) data can easily be calculated. The obtained information can be used in many medical fields such as rehabilitation, diabetes screening or orthopedics.
Satellite monitoring at high spatial resolution of water bodies used for irrigation purposes
NASA Astrophysics Data System (ADS)
Baup, F.; Flanquart, S.; Marais-Sicre, C.; Fieuzal, R.
2012-04-01
In a changing climate context, with an increase of the need for food, it becomes increasingly important to improve our knowledge for monitoring agricultural surfaces by satellite for a better food management and to reduce the waste of natural resources (water storages and shortages, irrigation management, increase of soil and water salinity, soil erosion, threats on biodiversity). The main objective of this study is to evaluate the potentialities of multi-spectral and multi-resolution satellites for monitoring the temporal evolution of water bodies surfaces (mainly used for irrigation purposes). This analysis is based on the use of a series of images acquired between the years 2003 and 2011. The year 2010 is considered as a reference, with 110 acquisitions performed during the MCM'10 campaign (Multispectral Crop Monitoring 2010, http://www.cesbio.ups-tlse.fr/us/mcm.html). Those images are provided by 8 satellites (optical, thermal and RADAR) such as ALOS, TERRASAR-X, RADARSAT-2, FORMOSAT-2, SPOT-2, SPOT-4, SPOT-5, LANDSAT-5. The studied area is situated in the South-West of Toulouse in France; in a region governed by a temperate climate. The irrigated cultures represent almost 12% of the cultivated surface in 2009. The method consists in estimating the water bodies surfaces by using a generic approach suitable for all images, whatever the wavelength (optical, infrared, RADAR). The supervised parallelepiped classification allows discriminating four types of surfaces coverage: forests, water expanses, crops and bare soils. All RADAR images are filtered (Gamma) to reduce speckle effects and false detections of water bodies. In the context if the "South-West" project of the CESBIO laboratory, two spatial coverages are analyzed: SPOT 4 (4800km2) and FORMOSAT 2 (576km2). At these scales, 154 and 38 water bodies are identify. They respectively represent 4.85 km2 (0.10% of the image cover) and 2.06 km2 (0.36% of the image cover). Statistical analyses show that 8% of lakes have a surface inferior to 10 ha (0.1 km2). Temporal analyses, over the year 2010, show that only five lakes offer a strong surface dynamic (from 21% to 125% of evolution). The weak signal observed over all the other lakes are due to the banks of lakes (steep slope). The long term analyses, from 2003 to middle of 2011, show alternation of wet and dry years due to rainfalls variations. Annual cycle are also well marked showing filling and emptying phases respectively occurring in spring and at the end of summer. Filling phase is both attributed to runoff contributions over the watershed and to pumping effects. Irrigation and evaporation are the main factors during emptying phases. Two examples of water storages estimates are presented over one specific watershed. To conclude, high spatial resolution images appear suitable for mapping water bodies at fine scale. Limitations come from the form of the edge of the lake (steep or slight slope) and only 3% of lakes can be monitored over the studied area. In the following, interferometric approaches will be evaluated to estimate the height of water bodies, improving the estimate of water storage.
Human body motion capture from multi-image video sequences
NASA Astrophysics Data System (ADS)
D'Apuzzo, Nicola
2003-01-01
In this paper is presented a method to capture the motion of the human body from multi image video sequences without using markers. The process is composed of five steps: acquisition of video sequences, calibration of the system, surface measurement of the human body for each frame, 3-D surface tracking and tracking of key points. The image acquisition system is currently composed of three synchronized progressive scan CCD cameras and a frame grabber which acquires a sequence of triplet images. Self calibration methods are applied to gain exterior orientation of the cameras, the parameters of internal orientation and the parameters modeling the lens distortion. From the video sequences, two kinds of 3-D information are extracted: a three-dimensional surface measurement of the visible parts of the body for each triplet and 3-D trajectories of points on the body. The approach for surface measurement is based on multi-image matching, using the adaptive least squares method. A full automatic matching process determines a dense set of corresponding points in the triplets. The 3-D coordinates of the matched points are then computed by forward ray intersection using the orientation and calibration data of the cameras. The tracking process is also based on least squares matching techniques. Its basic idea is to track triplets of corresponding points in the three images through the sequence and compute their 3-D trajectories. The spatial correspondences between the three images at the same time and the temporal correspondences between subsequent frames are determined with a least squares matching algorithm. The results of the tracking process are the coordinates of a point in the three images through the sequence, thus the 3-D trajectory is determined by computing the 3-D coordinates of the point at each time step by forward ray intersection. Velocities and accelerations are also computed. The advantage of this tracking process is twofold: it can track natural points, without using markers; and it can track local surfaces on the human body. In the last case, the tracking process is applied to all the points matched in the region of interest. The result can be seen as a vector field of trajectories (position, velocity and acceleration). The last step of the process is the definition of selected key points of the human body. A key point is a 3-D region defined in the vector field of trajectories, whose size can vary and whose position is defined by its center of gravity. The key points are tracked in a simple way: the position at the next time step is established by the mean value of the displacement of all the trajectories inside its region. The tracked key points lead to a final result comparable to the conventional motion capture systems: 3-D trajectories of key points which can be afterwards analyzed and used for animation or medical purposes.
Wheat, J S; Clarkson, S; Flint, S W; Simpson, C; Broom, D R
2018-05-21
Three dimensional (3D) surface imaging is a viable alternative to traditional body morphology measures, but the feasibility of using this technique with people with obesity has not been fully established. Therefore, the aim of this study was to investigate the validity, repeatability and acceptability of a consumer depth camera 3D surface imaging system in imaging people with obesity. The concurrent validity of the depth camera based system was investigated by comparing measures of mid-trunk volume to a gold-standard. The repeatability and acceptability of the depth camera system was assessed in people with obesity at a clinic. There was evidence of a fixed systematic difference between the depth camera system and the gold standard but excellent correlation between volume estimates (r 2 =0.997), with little evidence of proportional bias. The depth camera system was highly repeatable - low typical error (0.192L), high intraclass correlation coefficient (>0.999) and low technical error of measurement (0.64%). Depth camera based 3D surface imaging was also acceptable to people with obesity. It is feasible (valid, repeatable and acceptable) to use a low cost, flexible 3D surface imaging system to monitor the body size and shape of people with obesity in a clinical setting. Copyright © 2018 Asia Oceania Association for the Study of Obesity. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Chen, Zhenning; Shao, Xinxing; He, Xiaoyuan; Wu, Jialin; Xu, Xiangyang; Zhang, Jinlin
2017-09-01
Noninvasive, three-dimensional (3-D), full-field surface deformation measurements of the human body are important for biomedical investigations. We proposed a 3-D noninvasive, full-field body sensor based on stereo digital image correlation (stereo-DIC) for surface deformation monitoring of the human body in vivo. First, by applying an improved water-transfer printing (WTP) technique to transfer optimized speckle patterns onto the skin, the body sensor was conveniently and harmlessly fabricated directly onto the human body. Then, stereo-DIC was used to achieve 3-D noncontact and noninvasive surface deformation measurements. The accuracy and efficiency of the proposed body sensor were verified and discussed by considering different complexions. Moreover, the fabrication of speckle patterns on human skin, which has always been considered a challenging problem, was shown to be feasible, effective, and harmless as a result of the improved WTP technique. An application of the proposed stereo-DIC-based body sensor was demonstrated by measuring the pulse wave velocity of human carotid artery.
Portable document format file showing the surface models of cadaver whole body.
Shin, Dong Sun; Chung, Min Suk; Park, Jin Seo; Park, Hyung Seon; Lee, Sangho; Moon, Young Lae; Jang, Hae Gwon
2012-08-01
In the Visible Korean project, 642 three-dimensional (3D) surface models have been built from the sectioned images of a male cadaver. It was recently discovered that popular PDF file enables users to approach the numerous surface models conveniently on Adobe Reader. Purpose of this study was to present a PDF file including systematized surface models of human body as the beneficial contents. To achieve the purpose, fitting software packages were employed in accordance with the procedures. Two-dimensional (2D) surface models including the original sectioned images were embedded into the 3D surface models. The surface models were categorized into systems and then groups. The adjusted surface models were inserted to a PDF file, where relevant multimedia data were added. The finalized PDF file containing comprehensive data of a whole body could be explored in varying manners. The PDF file, downloadable freely from the homepage (http://anatomy.co.kr), is expected to be used as a satisfactory self-learning tool of anatomy. Raw data of the surface models can be extracted from the PDF file and employed for various simulations for clinical practice. The technique to organize the surface models will be applied to manufacture of other PDF files containing various multimedia contents.
MCAT to XCAT: The Evolution of 4-D Computerized Phantoms for Imaging Research
Paul Segars, W.; Tsui, Benjamin M. W.
2012-01-01
Recent work in the development of computerized phantoms has focused on the creation of ideal “hybrid” models that seek to combine the realism of a patient-based voxelized phantom with the flexibility of a mathematical or stylized phantom. We have been leading the development of such computerized phantoms for use in medical imaging research. This paper will summarize our developments dating from the original four-dimensional (4-D) Mathematical Cardiac-Torso (MCAT) phantom, a stylized model based on geometric primitives, to the current 4-D extended Cardiac-Torso (XCAT) and Mouse Whole-Body (MOBY) phantoms, hybrid models of the human and laboratory mouse based on state-of-the-art computer graphics techniques. This paper illustrates the evolution of computerized phantoms toward more accurate models of anatomy and physiology. This evolution was catalyzed through the introduction of nonuniform rational b-spline (NURBS) and subdivision (SD) surfaces, tools widely used in computer graphics, as modeling primitives to define a more ideal hybrid phantom. With NURBS and SD surfaces as a basis, we progressed from a simple geometrically based model of the male torso (MCAT) containing only a handful of structures to detailed, whole-body models of the male and female (XCAT) anatomies (at different ages from newborn to adult), each containing more than 9000 structures. The techniques we applied for modeling the human body were similarly used in the creation of the 4-D MOBY phantom, a whole-body model for the mouse designed for small animal imaging research. From our work, we have found the NURBS and SD surface modeling techniques to be an efficient and flexible way to describe the anatomy and physiology for realistic phantoms. Based on imaging data, the surfaces can accurately model the complex organs and structures in the body, providing a level of realism comparable to that of a voxelized phantom. In addition, they are very flexible. Like stylized models, they can easily be manipulated to model anatomical variations and patient motion. With the vast improvement in realism, the phantoms developed in our lab can be combined with accurate models of the imaging process (SPECT, PET, CT, magnetic resonance imaging, and ultrasound) to generate simulated imaging data close to that from actual human or animal subjects. As such, they can provide vital tools to generate predictive imaging data from many different subjects under various scanning parameters from which to quantitatively evaluate and improve imaging devices and techniques. From the MCAT to XCAT, we will demonstrate how NURBS and SD surface modeling have resulted in a major evolutionary advance in the development of computerized phantoms for imaging research. PMID:26472880
Samosky, Joseph T; Baillargeon, Emma; Bregman, Russell; Brown, Andrew; Chaya, Amy; Enders, Leah; Nelson, Douglas A; Robinson, Evan; Sukits, Alison L; Weaver, Robert A
2011-01-01
We have developed a prototype of a real-time, interactive projective overlay (IPO) system that creates augmented reality display of a medical procedure directly on the surface of a full-body mannequin human simulator. These images approximate the appearance of both anatomic structures and instrument activity occurring within the body. The key innovation of the current work is sensing the position and motion of an actual device (such as an endotracheal tube) inserted into the mannequin and using the sensed position to control projected video images portraying the internal appearance of the same devices and relevant anatomic structures. The images are projected in correct registration onto the surface of the simulated body. As an initial practical prototype to test this technique we have developed a system permitting real-time visualization of the intra-airway position of an endotracheal tube during simulated intubation training.
A new imaging technique based on resonance for arterial vessels
NASA Astrophysics Data System (ADS)
Zhang, Xiaoming; Fatemi, Mostafa; Greenleaf, James F.
2003-04-01
Vibro-acoustography is a new noncontact imaging method based on the radiation force of ultrasound. We extend this technique for imaging of arterial vessels based on vibration resonance. The arterial vessel is excited remotely by ultrasound at a resonant frequency, at which the vibration of the vessel as well as its transmission to the body surface are large enough to be measured. By scanning the ultrasound beam across the vessel plane and measuring the vibration at one single point on the body or vessel surface, an image of the interior artery can be mapped. Theory is developed that predicts the measured velocity is proportional to the value of the mode shape at resonance. Experimental studies were carried out on a silicone tube embedded in a cylindrical gel phantom of large radius, which simulates a large artery and the surrounding body. The fundamental frequency was measured at which the ultrasound transducer scanned across the tube plane with velocity measurement at one single point on the tube or on the phantom by laser. The images obtained show clearly the interior tube and the modal shape of the tube. The present technique offers a new imaging method for arterial vessels.
New technology of functional infrared imaging and its clinical applications
NASA Astrophysics Data System (ADS)
Yang, Hongqin; Xie, Shusen; Lu, Zukang; Liu, Zhongqi
2006-01-01
With improvements in infrared camera technology, the promise of reduced costs and noninvasive character, infrared thermal imaging resurges in medicine. The paper introduces a new technology of functional infrared imaging, thermal texture maps (TTM), which is not only an apparatus for thermal radiation imaging but also a new method for revealing the relationship between the temperature distribution of the skin surface and the emission field inside body. The skin temperature distribution of a healthy human body exhibits a contralateral symmetry. Any disease in the body is associated with an alteration of the thermal distribution of human body. Infrared thermography is noninvasive, so it is the best choice for studying the physiology of thermoregulation and the thermal dysfunction associated with diseases. Reading and extracting information from the thermograms is a complex and subjective task that can be greatly facilitated by computerized techniques. Through image processing and measurement technology, surface or internal radiation sources can be non-invasively distinguished through extrapolation. We discuss the principle, the evaluation procedure and the effectiveness of TTM technology in the clinical detection and diagnosis of cancers, especially in their early stages and other diseases by comparing with other imaging technologies, such as ultrasound. Several study cases are given to show the effectiveness of this method. At last, we point out the applications of TTM technology in the research field of traditional medicine.
Imaging Strong Lateral Heterogeneities with USArray using Body-to-Surface Wave Scattering
NASA Astrophysics Data System (ADS)
Yu, C.; Zhan, Z.; Hauksson, E.; Cochran, E. S.
2017-12-01
Seismic scattering is commonly observed and results from wave propagation in heterogeneous medium. Yet, deterministic characterization of scatterers remains challenging. In this study, we analyze broadband waveforms recorded by the USArray across the entire conterminous US. With array analysis, we observe strong scattered surface waves following the arrival of teleseismic body waves over several hundreds of kilometers. We use back-projection to locate the body-to-surface scattering sources, and detect strong scatterers both around and within the conterminous US. For the former, strong scattering is associated with pronounced bathymetric relief, such as the Patton Escarpment in the Southern California Continental Borderland. For the latter, scatterers are consistent with sharp lateral heterogeneities, such as near the Yellowstone hotspot and Southern California fault zones. We further model the body-to-surface wave scattering using finite-difference simulations. As an example, in the Southern California Continental Borderland a simplified 2-D bathymetric and crustal model are able to predict the arrival times and amplitudes of major scatterers. The modeling also suggests a relatively low shear wave velocity in the Continental Borderland. These observation of strong body-to-surface wave scattering and waveform modeling not only helps us image sharp heterogeneities but also are useful for assessing seismic hazard, including the calibration and refinement of seismic velocity models used to locate earthquakes and simulate strong ground motions.
Image method for induced surface charge from many-body system of dielectric spheres
NASA Astrophysics Data System (ADS)
Qin, Jian; de Pablo, Juan J.; Freed, Karl F.
2016-09-01
Charged dielectric spheres embedded in a dielectric medium provide the simplest model for many-body systems of polarizable ions and charged colloidal particles. We provide a multiple scattering formulation for the total electrostatic energy for such systems and demonstrate that the polarization energy can be rapidly evaluated by an image method that generalizes the image methods for conducting spheres. Individual contributions to the total electrostatic energy are ordered according to the number of polarized surfaces involved, and each additional surface polarization reduces the energy by a factor of (a/R)3ɛ, where a is the sphere radius, R the average inter-sphere separation, and ɛ the relevant dielectric mismatch at the interface. Explicit expressions are provided for both the energy and the forces acting on individual spheres, which can be readily implemented in Monte Carlo and molecular dynamics simulations of polarizable charged spheres, thereby avoiding costly computational techniques that introduce a surface charge distribution that requires numerical solution.
Mapping gray-scale image to 3D surface scanning data by ray tracing
NASA Astrophysics Data System (ADS)
Li, Peng; Jones, Peter R. M.
1997-03-01
The extraction and location of feature points from range imaging is an important but difficult task in machine vision based measurement systems. There exist some feature points which are not able to be detected from pure geometric characteristics, particularly in those measurement tasks related to the human body. The Loughborough Anthropometric Shadow Scanner (LASS) is a whole body surface scanner based on structured light technique. Certain applications of LASS require accurate location of anthropometric landmarks from the scanned data. This is sometimes impossible from existing raw data because some landmarks do not appear in the scanned data. Identification of these landmarks has to resort to surface texture of the scanned object. Modifications to LASS were made to allow gray-scale images to be captured before or after the object was scanned. Two-dimensional gray-scale image must be mapped to the scanned data to acquire the 3D coordinates of a landmark. The method to map 2D images to the scanned data is based on the colinearity conditions and ray-tracing method. If the camera center and image coordinates are known, the corresponding object point must lie on a ray starting from the camera center and connecting to the image coordinate. By intersecting the ray with the scanned surface of the object, the 3D coordinates of a point can be solved. Experimentation has demonstrated the feasibility of the method.
Thermal maps of young women and men
NASA Astrophysics Data System (ADS)
Chudecka, Monika; Lubkowska, Anna
2015-03-01
The objective was to use thermal imaging (ThermaCAM SC500) as an effective tool in establishing a thermal map of young participants, with a high diagnostic value for medicine, physiotherapy and sport. A further aim was to establish temperature distributions and ranges on the body surface of the young women and men as standard temperatures for the examined age group, taking into account BMI, body surface area and selected parameters of body fat distribution. The participants included young, healthy and physically active women (n = 100) and men (n = 100). In the women and men, the highest Tmean temperatures were found on the trunk. The warmest were the chest and upper back, then the lower back and abdomen. The lowest Tmean were found in the distal parts of the body, especially on the lower limbs. The results showed that only in the area of the chest was Tmean significantly higher in women than in men. In the areas of the hands (front and back) Tmean were similar for women and men. In the other analyzed body surface areas, Tmean were significantly lower in women. Research showed significant differences in body surface temperature between the women and men. Among the analyzed characteristics, Tmean in the chest, upper back, abdomen, lower back (both in women and men) were mainly correlated with BMI and PBF; the correlations were negative. Difficulties in interpreting changes in temperature in selected body areas in people with various conditions can be associated with the lack of studies on large and representative populations of healthy individuals with normal weight/height parameters. Therefore, it seems that this presented research is a significant practical and cognitive contribution to knowledge on thermoregulation, and may therefore be used as a reference for other studies using thermal imaging in the evaluation of changes in body surface temperatures.
Ankhelyi, Madeleine V; Wainwright, Dylan K; Lauder, George V
2018-05-29
Shark skin is covered with numerous placoid scales or dermal denticles. While previous research has used scanning electron microscopy and histology to demonstrate that denticles vary both around the body of a shark and among species, no previous study has quantified three-dimensional (3D) denticle structure and surface roughness to provide a quantitative analysis of skin surface texture. We quantified differences in denticle shape and size on the skin of three individual smooth dogfish sharks (Mustelus canis) using micro-CT scanning, gel-based surface profilometry, and histology. On each smooth dogfish, we imaged between 8 and 20 distinct areas on the body and fins, and obtained further comparative skin surface data from leopard, Atlantic sharpnose, shortfin mako, spiny dogfish, gulper, angel, and white sharks. We generated 3D images of individual denticles and measured denticle volume, surface area, and crown angle from the micro-CT scans. Surface profilometry was used to quantify metrology variables such as roughness, skew, kurtosis, and the height and spacing of surface features. These measurements confirmed that denticles on different body areas of smooth dogfish varied widely in size, shape, and spacing. Denticles near the snout are smooth, paver-like, and large relative to denticles on the body. Body denticles on smooth dogfish generally have between one and three distinct ridges, a diamond-like surface shape, and a dorsoventral gradient in spacing and roughness. Ridges were spaced on average 56 µm apart, and had a mean height of 6.5 µm, comparable to denticles from shortfin mako sharks, and with narrower spacing and lower heights than other species measured. We observed considerable variation in denticle structure among regions on the pectoral, dorsal, and caudal fins, including a leading-to-trailing edge gradient in roughness for each region. Surface roughness in smooth dogfish varied around the body from 3 to 42 microns. © 2018 Wiley Periodicals, Inc.
Surface stress mediated image force and torque on an edge dislocation
NASA Astrophysics Data System (ADS)
Raghavendra, R. M.; Divya, Iyer, Ganesh; Kumar, Arun; Subramaniam, Anandh
2018-07-01
The proximity of interfaces gives prominence to image forces experienced by dislocations. The presence of surface stress alters the traction-free boundary conditions existing on free-surfaces and hence is expected to alter the magnitude of the image force. In the current work, using a combined simulation of surface stress and an edge dislocation in a semi-infinite body, we evaluate the configurational effects on the system. We demonstrate that if the extra half-plane of the edge dislocation is parallel to the surface, the image force (glide) is not altered due to surface stress; however, the dislocation experiences a torque. The surface stress breaks the 'climb image force' symmetry, thus leading to non-equivalence between positive and negative climb. We discover an equilibrium position for the edge dislocation in the positive 'climb geometry', arising due to a competition between the interaction of the dislocation stress fields with the surface stress and the image dislocation. Torque in the climb configuration is not affected by surface stress (remains zero). Surface stress is computed using a recently developed two-scale model based on Shuttleworth's idea and image forces using a finite element model developed earlier. The effect of surface stress on the image force and torque experienced by the dislocation monopole is analysed using illustrative 3D models.
OCAMS: The OSIRIS-REx Camera Suite
NASA Astrophysics Data System (ADS)
Rizk, B.; Drouet d'Aubigny, C.; Golish, D.; Fellows, C.; Merrill, C.; Smith, P.; Walker, M. S.; Hendershot, J. E.; Hancock, J.; Bailey, S. H.; DellaGiustina, D. N.; Lauretta, D. S.; Tanner, R.; Williams, M.; Harshman, K.; Fitzgibbon, M.; Verts, W.; Chen, J.; Connors, T.; Hamara, D.; Dowd, A.; Lowman, A.; Dubin, M.; Burt, R.; Whiteley, M.; Watson, M.; McMahon, T.; Ward, M.; Booher, D.; Read, M.; Williams, B.; Hunten, M.; Little, E.; Saltzman, T.; Alfred, D.; O'Dougherty, S.; Walthall, M.; Kenagy, K.; Peterson, S.; Crowther, B.; Perry, M. L.; See, C.; Selznick, S.; Sauve, C.; Beiser, M.; Black, W.; Pfisterer, R. N.; Lancaster, A.; Oliver, S.; Oquest, C.; Crowley, D.; Morgan, C.; Castle, C.; Dominguez, R.; Sullivan, M.
2018-02-01
The OSIRIS-REx Camera Suite (OCAMS) will acquire images essential to collecting a sample from the surface of Bennu. During proximity operations, these images will document the presence of satellites and plumes, record spin state, enable an accurate model of the asteroid's shape, and identify any surface hazards. They will confirm the presence of sampleable regolith on the surface, observe the sampling event itself, and image the sample head in order to verify its readiness to be stowed. They will document Bennu's history as an example of early solar system material, as a microgravity body with a planetesimal size-scale, and as a carbonaceous object. OCAMS is fitted with three cameras. The MapCam will record color images of Bennu as a point source on approach to the asteroid in order to connect Bennu's ground-based point-source observational record to later higher-resolution surface spectral imaging. The SamCam will document the sample site before, during, and after it is disturbed by the sample mechanism. The PolyCam, using its focus mechanism, will observe the sample site at sub-centimeter resolutions, revealing surface texture and morphology. While their imaging requirements divide naturally between the three cameras, they preserve a strong degree of functional overlap. OCAMS and the other spacecraft instruments will allow the OSIRIS-REx mission to collect a sample from a microgravity body on the same visit during which it was first optically acquired from long range, a useful capability as humanity reaches out to explore near-Earth, Main-Belt and Jupiter Trojan asteroids.
MOM3D method of moments code theory manual
NASA Technical Reports Server (NTRS)
Shaeffer, John F.
1992-01-01
MOM3D is a FORTRAN algorithm that solves Maxwell's equations as expressed via the electric field integral equation for the electromagnetic response of open or closed three dimensional surfaces modeled with triangle patches. Two joined triangles (couples) form the vector current unknowns for the surface. Boundary conditions are for perfectly conducting or resistive surfaces. The impedance matrix represents the fundamental electromagnetic interaction of the body with itself. A variety of electromagnetic analysis options are possible once the impedance matrix is computed including backscatter radar cross section (RCS), bistatic RCS, antenna pattern prediction for user specified body voltage excitation ports, RCS image projection showing RCS scattering center locations, surface currents excited on the body as induced by specified plane wave excitation, and near field computation for the electric field on or near the body.
Chen, Zhenning; Shao, Xinxing; He, Xiaoyuan; Wu, Jialin; Xu, Xiangyang; Zhang, Jinlin
2017-09-01
Noninvasive, three-dimensional (3-D), full-field surface deformation measurements of the human body are important for biomedical investigations. We proposed a 3-D noninvasive, full-field body sensor based on stereo digital image correlation (stereo-DIC) for surface deformation monitoring of the human body in vivo. First, by applying an improved water-transfer printing (WTP) technique to transfer optimized speckle patterns onto the skin, the body sensor was conveniently and harmlessly fabricated directly onto the human body. Then, stereo-DIC was used to achieve 3-D noncontact and noninvasive surface deformation measurements. The accuracy and efficiency of the proposed body sensor were verified and discussed by considering different complexions. Moreover, the fabrication of speckle patterns on human skin, which has always been considered a challenging problem, was shown to be feasible, effective, and harmless as a result of the improved WTP technique. An application of the proposed stereo-DIC-based body sensor was demonstrated by measuring the pulse wave velocity of human carotid artery. (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jenkins, C; Xing, L; Yu, S
Purpose: A correct body contour is essential for the accuracy of dose calculation in radiation therapy. While modern medical imaging technologies provide highly accurate representations of body contours, there are times when a patient’s anatomy cannot be fully captured or there is a lack of easy access to CT/MRI scanning. Recently, handheld cameras have emerged that are capable of performing three dimensional (3D) scans of patient surface anatomy. By combining 3D camera and medical imaging data, the patient’s surface contour can be fully captured. Methods: A proof-of-concept system matches a patient surface model, created using a handheld stereo depth cameramore » (DC), to the available areas of a body contour segmented from a CT scan. The matched surface contour is then converted to a DICOM structure and added to the CT dataset to provide additional contour information. In order to evaluate the system, a 3D model of a patient was created by segmenting the body contour with a treatment planning system (TPS) and fabricated with a 3D printer. A DC and associated software were used to create a 3D scan of the printed phantom. The surface created by the camera was then registered to a CT model that had been cropped to simulate missing scan data. The aligned surface was then imported into the TPS and compared with the originally segmented contour. Results: The RMS error for the alignment between the camera and cropped CT models was 2.26 mm. Mean distance between the aligned camera surface and ground truth model was −1.23 +/−2.47 mm. Maximum deviations were < 1 cm and occurred in areas of high concavity or where anatomy was close to the couch. Conclusion: The proof-of-concept study shows an accurate, easy and affordable method to extend medical imaging for radiation therapy planning using 3D cameras without additional radiation. Intel provided the camera hardware used in this study.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, D; Gach, H; Li, H
Purpose: The daily treatment MRIs acquired on MR-IGRT systems, like diagnostic MRIs, suffer from intensity inhomogeneity issue, associated with B1 and B0 inhomogeneities. An improved homomorphic unsharp mask (HUM) filtering method, automatic and robust body segmentation, and imaging field-of-view (FOV) detection methods were developed to compute the multiplicative slow-varying correction field and correct the intensity inhomogeneity. The goal is to improve and normalize the voxel intensity so that the images could be processed more accurately by quantitative methods (e.g., segmentation and registration) that require consistent image voxel intensity values. Methods: HUM methods have been widely used for years. A bodymore » mask is required, otherwise the body surface in the corrected image would be incorrectly bright due to the sudden intensity transition at the body surface. In this study, we developed an improved HUM-based correction method that includes three main components: 1) Robust body segmentation on the normalized image gradient map, 2) Robust FOV detection (needed for body segmentation) using region growing and morphologic filters, and 3) An effective implementation of HUM using repeated Gaussian convolution. Results: The proposed method was successfully tested on patient images of common anatomical sites (H/N, lung, abdomen and pelvis). Initial qualitative comparisons showed that this improved HUM method outperformed three recently published algorithms (FCM, LEMS, MICO) in both computation speed (by 50+ times) and robustness (in intermediate to severe inhomogeneity situations). Currently implemented in MATLAB, it takes 20 to 25 seconds to process a 3D MRI volume. Conclusion: Compared to more sophisticated MRI inhomogeneity correction algorithms, the improved HUM method is simple and effective. The inhomogeneity correction, body mask, and FOV detection methods developed in this study would be useful as preprocessing tools for many MRI-related research and clinical applications in radiotherapy. Authors have received research grants from ViewRay and Varian.« less
3D high-resolution radar imaging of small body interiors
NASA Astrophysics Data System (ADS)
Sava, Paul; Asphaug, Erik
2017-10-01
Answering fundamental questions about the origin and evolution of small planetary bodies hinges on our ability to image their interior structure in detail and at high resolution (Asphaug, 2009). We often infer internal structure from surface observations, e.g. that comet 67P/Churyumov-Gerasimenko is a primordial agglomeration of cometesimals (Massironi et al., 2015). However, the interior structure is not easily accessible without systematic imaging using, e.g., radar transmission and reflection data, as suggested by the CONSERT experiment on Rosetta. Interior imaging depends on observations from multiple viewpoints, as in medical tomography.We discuss radar imaging using methodology adapted from terrestrial exploration seismology (Sava et al., 2015). We primarily focus on full wavefield methods that facilitate high quality imaging of small body interiors characterized by complex structure and large contrasts of physical properties. We consider the case of a monostatic system (co-located transmitters and receivers) operated at two frequency bands, centered around 5 and 15 MHz, from a spacecraft in slow polar orbit around a spinning comet nucleus. Assuming that the spin period is significantly (e.g. 5x) faster than the orbital period, this configuration allows repeated views from multiple directions (Safaeinili et al., 2002)Using realistic numerical experiments, we argue that (1) the comet/asteroid imaging problem is intrinsically 3D and conventional SAR methodology does not satisfy imaging, sampling and resolution requirements; (2) imaging at different frequency bands can provide information about internal surfaces (through migration) and internal volumes (through tomography); (3) interior imaging can be accomplished progressively as data are being acquired through successive orbits around the studied object; (4) imaging resolution can go beyond the apparent radar frequency band by deconvolution of the point-spread-function characterizing the imaging system; and (5) exploiting the known (and complex) exterior shape of the studied body facilitates high-resolution imaging and tomography comparable with what could be accomplished by bi/multi-static systems.
Samara Probe For Remote Imaging
NASA Technical Reports Server (NTRS)
Burke, James D.
1989-01-01
Imaging probe descends through atmosphere of planet, obtaining images of ground surface as it travels. Released from aircraft over Earth or from spacecraft over another planet. Body and single wing shaped like samara - winged seed like those of maple trees. Rotates as descends, providing panoramic view of terrain below. Radio image obtained by video camera to aircraft or spacecraft overhead.
Deformable torso phantoms of Chinese adults for personalized anatomy modelling.
Wang, Hongkai; Sun, Xiaobang; Wu, Tongning; Li, Congsheng; Chen, Zhonghua; Liao, Meiying; Li, Mengci; Yan, Wen; Huang, Hui; Yang, Jia; Tan, Ziyu; Hui, Libo; Liu, Yue; Pan, Hang; Qu, Yue; Chen, Zhaofeng; Tan, Liwen; Yu, Lijuan; Shi, Hongcheng; Huo, Li; Zhang, Yanjun; Tang, Xin; Zhang, Shaoxiang; Liu, Changjian
2018-04-16
In recent years, there has been increasing demand for personalized anatomy modelling for medical and industrial applications, such as ergonomics device development, clinical radiological exposure simulation, biomechanics analysis, and 3D animation character design. In this study, we constructed deformable torso phantoms that can be deformed to match the personal anatomy of Chinese male and female adults. The phantoms were created based on a training set of 79 trunk computed tomography (CT) images (41 males and 38 females) from normal Chinese subjects. Major torso organs were segmented from the CT images, and the statistical shape model (SSM) approach was used to learn the inter-subject anatomical variations. To match the personal anatomy, the phantoms were registered to individual body surface scans or medical images using the active shape model method. The constructed SSM demonstrated anatomical variations in body height, fat quantity, respiratory status, organ geometry, male muscle size, and female breast size. The masses of the deformed phantom organs were consistent with Chinese population organ mass ranges. To validate the performance of personal anatomy modelling, the phantoms were registered to the body surface scan and CT images. The registration accuracy measured from 22 test CT images showed a median Dice coefficient over 0.85, a median volume recovery coefficient (RC vlm ) between 0.85 and 1.1, and a median averaged surface distance (ASD) < 1.5 mm. We hope these phantoms can serve as computational tools for personalized anatomy modelling for the research community. © 2018 Anatomical Society.
Structured light: theory and practice and practice and practice...
NASA Astrophysics Data System (ADS)
Keizer, Richard L.; Jun, Heesung; Dunn, Stanley M.
1991-04-01
We have developed a structured light system for noncontact 3-D measurement of human body surface areas and volumes. We illustrate the image processing steps and algorithms used to recover range data from a single camera image, reconstruct a complete surface from one or more sets of range data, and measure areas and volumes. The development of a working system required the solution to a number of practical problems in image processing and grid labeling (the stereo correspondence problem for structured light). In many instances we found that the standard cookbook techniques for image processing failed. This was due in part to the domain (human body), the restrictive assumptions of the models underlying the cookbook techniques, and the inability to consistently predict the outcome of the image processing operations. In this paper, we will discuss some of our successes and failures in two key steps in acquiring range data using structured light: First, the problem of detecting intersections in the structured light grid, and secondly, the problem of establishing correspondence between projected and detected intersections. We will outline the problems and solutions we have arrived at after several years of trial and error. We can now measure range data with an r.m.s. relative error of 0.3% and measure areas on the human body surface within 3% and volumes within 10%. We have found that the solution to building a working vision system requires the right combination of theory and experimental verification.
A global, 30-m resolution land-surface water body dataset for 2000
NASA Astrophysics Data System (ADS)
Feng, M.; Sexton, J. O.; Huang, C.; Song, D. X.; Song, X. P.; Channan, S.; Townshend, J. R.
2014-12-01
Inland surface water is essential to terrestrial ecosystems and human civilization. The distribution of surface water in space and its change over time are related to many agricultural, environmental and ecological issues, and are important factors that must be considered in human socioeconomic development. Accurate mapping of surface water is essential for both scientific research and policy-driven applications. Satellite-based remote sensing provides snapshots of Earth's surface and can be used as the main input for water mapping, especially in large areas. Global water areas have been mapped with coarse resolution remotely sensed data (e.g., the Moderate Resolution Imaging Spectroradiometer (MODIS)). However, most inland rivers and water bodies, as well as their changes, are too small to map at such coarse resolutions. Landsat TM (Thematic Mapper) and ETM+ (Enhanced Thematic Mapper Plus) imagery has a 30m spatial resolution and provides decades of records (~40 years). Since 2008, the opening of the Landsat archive, coupled with relatively lower costs associated with computing and data storage, has made comprehensive study of the dynamic changes of surface water over large even global areas more feasible. Although Landsat images have been used for regional and even global water mapping, the method can hardly be automated due to the difficulties on distinguishing inland surface water with variant degrees of impurities and mixing of soil background with only Landsat data. The spectral similarities to other land cover types, e.g., shadow and glacier remnants, also cause misidentification. We have developed a probabilistic based automatic approach for mapping inland surface water bodies. Landsat surface reflectance in multiple bands, derived water indices, and data from other sources are integrated to maximize the ability of identifying water without human interference. The approach has been implemented with open-source libraries to facilitate processing large amounts of Landsat images on high-performance computing machines. It has been applied to the ~9,000 Landsat scenes of the Global Land Survey (GLS) 2000 data collection to produce a global, 30m resolution inland surface water body data set, which will be made available on the Global Land Cover Facility (GLCF) website (http://www.landcover.org).
Special Software for Planetary Image Processing and Research
NASA Astrophysics Data System (ADS)
Zubarev, A. E.; Nadezhdina, I. E.; Kozlova, N. A.; Brusnikin, E. S.; Karachevtseva, I. P.
2016-06-01
The special modules of photogrammetric processing of remote sensing data that provide the opportunity to effectively organize and optimize the planetary studies were developed. As basic application the commercial software package PHOTOMOD™ is used. Special modules were created to perform various types of data processing: calculation of preliminary navigation parameters, calculation of shape parameters of celestial body, global view image orthorectification, estimation of Sun illumination and Earth visibilities from planetary surface. For photogrammetric processing the different types of data have been used, including images of the Moon, Mars, Mercury, Phobos, Galilean satellites and Enceladus obtained by frame or push-broom cameras. We used modern planetary data and images that were taken over the years, shooting from orbit flight path with various illumination and resolution as well as obtained by planetary rovers from surface. Planetary data image processing is a complex task, and as usual it can take from few months to years. We present our efficient pipeline procedure that provides the possibilities to obtain different data products and supports a long way from planetary images to celestial body maps. The obtained data - new three-dimensional control point networks, elevation models, orthomosaics - provided accurate maps production: a new Phobos atlas (Karachevtseva et al., 2015) and various thematic maps that derived from studies of planetary surface (Karachevtseva et al., 2016a).
NASA Astrophysics Data System (ADS)
Thomas, N.; Barbieri, C.; Keller, H. U.; Lamy, P.; Rickman, H.; Rodrigo, R.; Sierks, H.; Wenzel, K. P.; Cremonese, G.; Jorda, L.; Küppers, M.; Marchi, S.; Marzari, F.; Massironi, M.; Preusker, F.; Scholten, F.; Stephan, K.; Barucci, M. A.; Besse, S.; El-Maarry, M. R.; Fornasier, S.; Groussin, O.; Hviid, S. F.; Koschny, D.; Kührt, E.; Martellato, E.; Moissl, R.; Snodgrass, C.; Tubiana, C.; Vincent, J.-B.
2012-06-01
The surface of (21) Lutetia is highly complex with significant interactions between ancient and more recent structures. This work attempts to summarize the surface geomorphology observed using the high resolution images from OSIRIS, the imaging system onboard the European Space Agency's Rosetta spacecraft. A wide range of surface morphologies are seen including heavily cratered terrain, extensive sets of lineaments, young impact craters, and a ridge, the height of which is more than 1/5th of the mean radius of the body. Very young and very old terrains (as inferred from crater densities) are seen in close proximity. The longest continuous lineament is over 80 km long. The lineaments show regional-dependent organization and structure. Several categories of lineament can be described. Lineaments radial to impact craters as seen on other asteroidal bodies are mostly absent. Although the lineaments may be of seismic origin (and possibly the result of several impact-induced events), impacts producing recent large craters place constraints on seismic phenomena. In particular, stronger attenuation of shocks than seen on other asteroidal bodies seems to be required. Inhomogeneous energy transport, possibly matching observed inhomogeneous ejecta deposition may offer explanations for some of the observed phenomena. Some impact craters show unusual forms, which are probably the result of impact into a surface with relief comparable to the resultant crater diameter and/or oblique impact. There is evidence that re-surfacing through landslides has occurred at several places on the object.
NASA Technical Reports Server (NTRS)
Squyres, S. W.
1993-01-01
The MESUR mission will place a network of small, robust landers on the Martian surface, making a coordinated set of observations for at least one Martian year. MESUR presents some major challenges for development of instruments, instrument deployment systems, and on board data processing techniques. The instrument payload has not yet been selected, but the straw man payload is (1) a three-axis seismometer; (2) a meteorology package that senses pressure, temperature, wind speed and direction, humidity, and sky brightness; (3) an alphaproton-X-ray spectrometer (APXS); (4) a thermal analysis/evolved gas analysis (TA/EGA) instrument; (5) a descent imager, (6) a panoramic surface imager; (7) an atmospheric structure instrument (ASI) that senses pressure, temperature, and acceleration during descent to the surface; and (8) radio science. Because of the large number of landers to be sent (about 16), all these instruments must be very lightweight. All but the descent imager and the ASI must survive landing loads that may approach 100 g. The meteorology package, seismometer, and surface imager must be able to survive on the surface for at least one Martian year. The seismometer requires deployment off the lander body. The panoramic imager and some components of the meteorology package require deployment above the lander body. The APXS must be placed directly against one or more rocks near the lander, prompting consideration of a micro rover for deployment of this instrument. The TA/EGA requires a system to acquire, contain, and heat a soil sample. Both the imagers and, especially, the seismometer will be capable of producing large volumes of data, and will require use of sophisticated data compression techniques.
Giloh, M; Shinder, D; Yahav, S
2012-01-01
Extreme thermal conditions may dramatically affect the performance of broilers and other domestic animals, thereby impairing animal welfare and causing economic losses. Although body core temperature is the parameter that best reflects a bird's thermal status, practical and physiological obstacles make it irrelevant as a source of information on the thermal status of commercial flocks. Advances in the technology of infrared thermal imaging have enabled highly accurate, noncontact, and noninvasive measurements of skin surface temperature. Providing that skin surface temperature correlates with body temperature, this technology could enable acquisition of reliable information on the thermal status of animals, thereby improving diagnoses of environmental stress in a flock. This study of broiler chickens found a strong positive correlation between body core temperature and facial surface temperature, as recorded by infrared thermal imaging. The correlation was equally strong at all ages from 8 to 36 d during exposure to acute heat stress with or without proper ventilation and after acclimation to chronic heat exposure. A similar correlation was found by measurements in commercial flocks of broilers. Measurements of blood plasma concentrations of corticosterone, thyroid hormones, and arginine vasotocin confirmed that metabolic activity was low after acclimation to chronic exposure to heat, whereas ventilation was at least as efficient as acclimation in reducing thermal stress but did not impair metabolism. In light of these novel results, commercial benefits of infrared thermal imaging technology are suggested, especially in climate control for commercial poultry flocks. The application of this technique to other domestic animals should be investigated in future experiments.
Lee, Minhee
2002-04-01
Oxygen concentration fields in a water body were visualized by the fluorescence oxygen visualization (FOV) method. Pyrenebutyric acid (PBA) was used as a fluorescent indicator of oxygen, and an intensive charge coupled-device (ICCD) camera as an image detector. Sequential images (over 2000 images) of the oxygen concentration field around the surface water of the tank (1 x 1 x 0.75 m3) were produced during the 3 h experiment. From image processing, the accurate pathway of oxygen-rich, cold water at the water surface was also visualized. The amount of oxygen transferred through the air-water interface during the experiment was measured and the oxygen transfer coefficient (K(L)) was determined as 0.22 m/d, which was much higher than that is expected in molecular diffusion. Results suggest that vertical penetration of cold water was the main pathway of oxygen in the water body in the tank. The average velocity of cold water penetrating downward in water body was also measured from consecutive images and the value was 0.3-0.6 mm/s. The FOV method used in this research should have wide application in experimental fluid mechanics and can also provide a phenomenological description of oxygen transfer under physically realizable natural conditions in lakes and reservoirs.
NASA Astrophysics Data System (ADS)
Takahashi, Kazuki; Taki, Hirofumi; Onishi, Eiko; Yamauchi, Masanori; Kanai, Hiroshi
2017-07-01
Epidural anesthesia is a common technique for perioperative analgesia and chronic pain treatment. Since ultrasonography is insufficient for depicting the human vertebral surface, most examiners apply epidural puncture by body surface landmarks on the back such as the spinous process and scapulae without any imaging, including ultrasonography. The puncture route to the epidural space at thoracic vertebrae is much narrower than that at lumber vertebrae, and therefore, epidural anesthesia at thoracic vertebrae is difficult, especially for a beginner. Herein, a novel imaging method is proposed based on a bi-static imaging technique by making use of the transmit beam width and direction. In an in vivo experimental study on human thoracic vertebrae, the proposed method succeeded in depicting the vertebral surface clearly as compared with conventional B-mode imaging and the conventional envelope method. This indicates the potential of the proposed method in visualizing the vertebral surface for the proper and safe execution of epidural anesthesia.
Song, Yun-Gyu; Won, Yu Hui; Park, Sung-Hee; Ko, Myoung-Hwan
2015-01-01
Objective To investigate changes in the core temperature and body surface temperature in patients with incomplete spinal cord injuries (SCI). In incomplete SCI, the temperature change is difficult to see compared with complete spinal cord injuries. The goal of this study was to better understand thermal regulation in patients with incomplete SCI. Methods Fifty-six SCI patients were enrolled, and the control group consisted of 20 healthy persons. The spinal cord injuries were classified according to International Standards for Neurological Classification of Spinal Cord Injury. The patients were classified into two groups: upper (neurological injury level T6 or above) and lower (neurological injury level T7 or below) SCIs. Body core temperature was measured using an oral thermometer, and body surface temperature was measured using digital infrared thermographic imaging. Results Twenty-nine patients had upper spinal cord injuries, 27 patients had lower SCIs, and 20 persons served as the normal healthy persons. Comparing the skin temperatures of the three groups, the temperatures at the lower abdomen, anterior thigh and anterior tibia in the patients with upper SCIs were lower than those of the normal healthy persons and the patients with lower SCIs. No significant temperature differences were observed between the normal healthy persons and the patients with lower SCIs. Conclusion In our study, we found thermal dysregulation in patients with incomplete SCI. In particular, body surface temperature regulation was worse in upper SCIs than in lower injuries. Moreover, cord injury severity affected body surface temperature regulation in SCI patients. PMID:26605167
Surface coil proton MR imaging at 2 T.
Röschmann, P; Tischler, R
1986-10-01
We describe the design and application of surface coils for magnetic resonance (MR) imaging at high resonance frequencies (85 MHz). Circular, rectangular-frame, and reflector-type surface coils were used in the transmit-and-receive mode. With these coils, the required radio frequency power is reduced by factors of two up to 100 with respect to head and body coils. With the small, circular coils, high-resolution images of a small region of interest can be obtained that are free of foldback and motion artifacts originating outside the field of interest. With the rectangular-frame and reflector coils, large fields of view are also accessible. As examples of applications, single- and multiple-section images of the eye, knee, head and shoulder, and spinal cord are provided.
Bibring, J-P; Langevin, Y; Carter, J; Eng, P; Gondet, B; Jorda, L; Le Mouélic, S; Mottola, S; Pilorget, C; Poulet, F; Vincendon, M
2015-07-31
The structure and composition of cometary constituents, down to their microscopic scale, are critical witnesses of the processes and ingredients that drove the formation and evolution of planetary bodies toward their present diversity. On board Rosetta's lander Philae, the Comet Infrared and Visible Analyser (CIVA) experiment took a series of images to characterize the surface materials surrounding the lander on comet 67P/Churyumov-Gerasimenko. Images were collected twice: just after touchdown, and after Philae finally came to rest, where it acquired a full panorama. These images reveal a fractured surface with complex structure and a variety of grain scales and albedos, possibly constituting pristine cometary material. Copyright © 2015, American Association for the Advancement of Science.
Performance Analysis and Experimental Validation of the Direct Strain Imaging Method
Athanasios Iliopoulos; John G. Michopoulos; John C. Hermanson
2013-01-01
Direct Strain Imaging accomplishes full field measurement of the strain tensor on the surface of a deforming body, by utilizing arbitrarily oriented engineering strain measurements originating from digital imaging. In this paper an evaluation of the methodâs performance with respect to its operating parameter space is presented along with a preliminary...
NASA Technical Reports Server (NTRS)
Blackwell, R. J.
1982-01-01
Remote sensing data analysis of water quality monitoring is evaluated. Data anaysis and image processing techniques are applied to LANDSAT remote sensing data to produce an effective operational tool for lake water quality surveying and monitoring. Digital image processing and analysis techniques were designed, developed, tested, and applied to LANDSAT multispectral scanner (MSS) data and conventional surface acquired data. Utilization of these techniques facilitates the surveying and monitoring of large numbers of lakes in an operational manner. Supervised multispectral classification, when used in conjunction with surface acquired water quality indicators, is used to characterize water body trophic status. Unsupervised multispectral classification, when interpreted by lake scientists familiar with a specific water body, yields classifications of equal validity with supervised methods and in a more cost effective manner. Image data base technology is used to great advantage in characterizing other contributing effects to water quality. These effects include drainage basin configuration, terrain slope, soil, precipitation and land cover characteristics.
Evaluation Experiment of Ultrasound Computed Tomography for the Abdominal Sound Speed Imaging
NASA Astrophysics Data System (ADS)
Nogami, Keisuke; Yamada, Akira
2007-07-01
Abdominal sound speed tomographic imaging using through-transmission travel time data on the body surface was investigated. To this end, a hundred kHz range low-frequency wave was used to reduce the wave attenuation within an inner body medium. A method was investigated for the reconstruction of the image with the smallest possible number of path data around the abdominal surface. Specifically, the data from a strong scattering spinal cord should be avoided. To fulfill the requirement, the smoothed path algebraic reconstruction technique was introduced. The validity of this method was examined both on the numerically synthesized data and the experimentally measured data for the phantom specimen and actual human subject. It was shown that an abdominal tomographic sound speed image could be successfully obtained by preparing only 32 transducer locations at the circumference around the abdominal surface and their combination of less than 100 number of observation path data as well as by avoiding the data intersecting the spinal cord. In addition, fat regions were extracted having a sound speed lower than the threshold value to demonstrate the possibility of this method for metabolic syndrome diagnosis.
Bolliger, Stephan A; Thali, Michael J; Ross, Steffen; Buck, Ursula; Naether, Silvio; Vock, Peter
2008-02-01
The transdisciplinary research project Virtopsy is dedicated to implementing modern imaging techniques into forensic medicine and pathology in order to augment current examination techniques or even to offer alternative methods. Our project relies on three pillars: three-dimensional (3D) surface scanning for the documentation of body surfaces, and both multislice computed tomography (MSCT) and magnetic resonance imaging (MRI) to visualise the internal body. Three-dimensional surface scanning has delivered remarkable results in the past in the 3D documentation of patterned injuries and of objects of forensic interest as well as whole crime scenes. Imaging of the interior of corpses is performed using MSCT and/or MRI. MRI, in addition, is also well suited to the examination of surviving victims of assault, especially choking, and helps visualise internal injuries not seen at external examination of the victim. Apart from the accuracy and three-dimensionality that conventional documentations lack, these techniques allow for the re-examination of the corpse and the crime scene even decades later, after burial of the corpse and liberation of the crime scene. We believe that this virtual, non-invasive or minimally invasive approach will improve forensic medicine in the near future.
Erem, Burak; Coll-Font, Jaume; Orellana, Ramon Martinez; Štóvíček, Petr; Brooks, Dana H.
2014-01-01
Cardiac electrical imaging from body surface potential measurements is increasingly being seen as a technology with the potential for use in the clinic, for example for pre-procedure planning or during-treatment guidance for ventricular arrhythmia ablation procedures. However several important impediments to widespread adoption of this technology remain to be effectively overcome. Here we address two of these impediments: the difficulty of reconstructing electric potentials on the inner (endocardial) as well as outer (epicardial) surfaces of the ventricles, and the need for full anatomical imaging of the subject’s thorax to build an accurate subject-specific geometry. We introduce two new features in our reconstruction algorithm: a non-linear low-order dynamic parameterization derived from the measured body surface signals, and a technique to jointly regularize both surfaces. With these methodological innovations in combination, it is possible to reconstruct endocardial activation from clinically acquired measurements with an imprecise thorax geometry. In particular we test the method using body surface potentials acquired from three subjects during clinical procedures where the subjects’ hearts were paced on their endocardia using a catheter device. Our geometric models were constructed using a set of CT scans limited in axial extent to the immediate region near the heart. The catheter system provides a reference location to which we compare our results. We compare our estimates of pacing site localization, in terms of both accuracy and stability, to those reported in a recent clinical publication [1], where a full set of CT scans were available and only epicardial potentials were reconstructed. PMID:24595345
NASA Astrophysics Data System (ADS)
Yılmaz, Erkan
2016-04-01
In this study, the seasonal variation of the surface temperature of Ankara urban area and its enviroment have been analyzed by using Landsat 7 image. The Landsat 7 images of each month from 2007 to 2011 have been used to analyze the annually changes of the surface temperature. The land cover of the research area was defined with supervised classification method on the basis of the satellite image belonging to 2008 July. After determining the surface temperatures from 6-1 bands of satellite images, the monthly mean surface temperatures were calculated for land cover classification for the period between 2007 and 2011. According to the results obtained, the surface temperatures are high in summer and low in winter from the airtemperatures. all satellite images were taken at 10:00 am, it is found that urban areas are cooler than rural areas at 10:00 am. Regarding the land cover classification, the water surfaces are the coolest surfaces during the whole year.The warmest areas are the grasslands and dry farming areas. While the parks are warmer than the urban areas during the winter, during the summer they are cooler than artificial land covers. The urban areas with higher building density are the cooler surfaces after water bodies.
Automatic crack detection method for loaded coal in vibration failure process
Li, Chengwu
2017-01-01
In the coal mining process, the destabilization of loaded coal mass is a prerequisite for coal and rock dynamic disaster, and surface cracks of the coal and rock mass are important indicators, reflecting the current state of the coal body. The detection of surface cracks in the coal body plays an important role in coal mine safety monitoring. In this paper, a method for detecting the surface cracks of loaded coal by a vibration failure process is proposed based on the characteristics of the surface cracks of coal and support vector machine (SVM). A large number of cracked images are obtained by establishing a vibration-induced failure test system and industrial camera. Histogram equalization and a hysteresis threshold algorithm were used to reduce the noise and emphasize the crack; then, 600 images and regions, including cracks and non-cracks, were manually labelled. In the crack feature extraction stage, eight features of the cracks are extracted to distinguish cracks from other objects. Finally, a crack identification model with an accuracy over 95% was trained by inputting the labelled sample images into the SVM classifier. The experimental results show that the proposed algorithm has a higher accuracy than the conventional algorithm and can effectively identify cracks on the surface of the coal and rock mass automatically. PMID:28973032
Automatic crack detection method for loaded coal in vibration failure process.
Li, Chengwu; Ai, Dihao
2017-01-01
In the coal mining process, the destabilization of loaded coal mass is a prerequisite for coal and rock dynamic disaster, and surface cracks of the coal and rock mass are important indicators, reflecting the current state of the coal body. The detection of surface cracks in the coal body plays an important role in coal mine safety monitoring. In this paper, a method for detecting the surface cracks of loaded coal by a vibration failure process is proposed based on the characteristics of the surface cracks of coal and support vector machine (SVM). A large number of cracked images are obtained by establishing a vibration-induced failure test system and industrial camera. Histogram equalization and a hysteresis threshold algorithm were used to reduce the noise and emphasize the crack; then, 600 images and regions, including cracks and non-cracks, were manually labelled. In the crack feature extraction stage, eight features of the cracks are extracted to distinguish cracks from other objects. Finally, a crack identification model with an accuracy over 95% was trained by inputting the labelled sample images into the SVM classifier. The experimental results show that the proposed algorithm has a higher accuracy than the conventional algorithm and can effectively identify cracks on the surface of the coal and rock mass automatically.
NASA Astrophysics Data System (ADS)
Wetterling, Friedrich; Corteville, Dominique M.; Kalayciyan, Raffi; Rennings, Andreas; Konstandin, Simon; Nagel, Armin M.; Stark, Helmut; Schad, Lothar R.
2012-07-01
Sodium magnetic resonance imaging (23Na MRI) is a non-invasive technique which allows spatial resolution of the tissue sodium concentration (TSC) in the human body. TSC measurements could potentially serve to monitor early treatment success of chemotherapy on patients who suffer from whole body metastases. Yet, the acquisition of whole body sodium (23Na) images has been hampered so far by the lack of large resonators and the extremely low signal-to-noise ratio (SNR) achieved with existing resonator systems. In this study, a 23Na resonator was constructed for whole body 23Na MRI at 3T comprising of a 16-leg, asymmetrical birdcage structure with 34 cm height, 47.5 cm width and 50 cm length. The resonator was driven in quadrature mode and could be used either as a transceiver resonator or, since active decoupling was included, as a transmit-only resonator in conjunction with a receive-only (RO) surface resonator. The relative B1-field profile was simulated and measured on phantoms, and 3D whole body 23Na MRI data of a healthy male volunteer were acquired in five segments with a nominal isotropic resolution of (6 × 6 × 6) mm3 and a 10 min acquisition time per scan. The measured SNR values in the 23Na-MR images varied from 9 ± 2 in calf muscle, 15 ± 2 in brain tissue, 23 ± 2 in the prostate and up to 42 ± 5 in the vertebral discs. Arms, legs, knees and hands could also be resolved with applied resonator and short time-to-echo (TE) (0.5 ms) radial sequence. Up to fivefold SNR improvement was achieved through combining the birdcage with local RO surface coil. In conclusion, 23Na MRI of the entire human body provides sub-cm spatial resolution, which allows resolution of all major human body parts with a scan time of less than 60 min.
Applications for Electrical Impedance Tomography (EIT) and Electrical Properties of the Human Body.
Lymperopoulos, Georgios; Lymperopoulos, Panagiotis; Alikari, Victoria; Dafogianni, Chrisoula; Zyga, Sofia; Margari, Nikoletta
2017-01-01
Electrical Impedance Tomography (EIT) is a promising application that displays changes in conductivity within a body. The basic principle of the method is the repeated measurement of surface voltages of a body, which are a result of rolling injection of known and small-volume sinusoidal AC current to the body through the electrodes attached to its surface. This method finds application in biomedicine, biology and geology. The objective of this paper is to present the applications of Electrical Impedance Tomography, along with the method's capabilities and limitations due to the electrical properties of the human body. For this purpose, investigation of existing literature has been conducted, using electronic databases, PubMed, Google Scholar and IEEE Xplore. In addition, there was a secondary research phase, using paper citations found during the first research phase. It should be noted that Electrical Impedance Tomography finds use in a plethora of medical applications, as the different tissues of the body have different conductivities and dielectric constants. Main applications of EIT include imaging of lung function, diagnosis of pulmonary embolism, detection of tumors in the chest area and diagnosis and distinction of ischemic and hemorrhagic stroke. EIT advantages include portability, low cost and safety, which the method provide, since it is a noninvasive imaging method that does not cause damage to the body. The main disadvantage of the method, which blocks its wider spread, appears in the image composition from the voltage measurements, which are conducted by electrodes placed on the periphery of the body, because the injected currents are affected nonlinearly by the general distribution of the electrical properties of the body. Furthermore, the complex impedance of the skin-electrode interface can be modelled by using a capacitor and two resistor, as a result of skin properties. In conclusion, Electrical Impedance Tomography is a promising method for the development of noninvasive diagnostic medicine, since it is able to provide imaging of the interior of the human body in real time without causing harm or putting the human body in risk.
IImage method for induced surface charge from many-body system of dielectric spheres
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qin, Jian; de Pablo, Juan J.; Freed, Karl F.
2016-09-28
Charged dielectric spheres embedded in a dielectric medium provide the simplest model for many-body systems of polarizable ions and charged colloidal particles. We provide a multiple scattering formulation for the total electrostatic energy for such systems and demonstrate that the polarization energy can be rapidly evaluated by an image method that generalizes the image methods for conducting spheres. Individual contributions to the total electrostatic energy are ordered according to the number of polarized surfaces involved, and each additional surface polarization reduces the energy by a factor of (a/R)(3) epsilon, where a is the sphere radius, R the average inter-sphere separation,more » and. the relevant dielectric mismatch at the interface. Explicit expressions are provided for both the energy and the forces acting on individual spheres, which can be readily implemented in Monte Carlo and molecular dynamics simulations of polarizable charged spheres, thereby avoiding costly computational techniques that introduce a surface charge distribution that requires numerical solution.« less
Urbanová, Petra; Hejna, Petr; Jurda, Mikoláš
2015-05-01
Three-dimensional surface technologies particularly close range photogrammetry and optical surface scanning have recently advanced into affordable, flexible and accurate techniques. Forensic postmortem investigation as performed on a daily basis, however, has not yet fully benefited from their potentials. In the present paper, we tested two approaches to 3D external body documentation - digital camera-based photogrammetry combined with commercial Agisoft PhotoScan(®) software and stereophotogrammetry-based Vectra H1(®), a portable handheld surface scanner. In order to conduct the study three human subjects were selected, a living person, a 25-year-old female, and two forensic cases admitted for postmortem examination at the Department of Forensic Medicine, Hradec Králové, Czech Republic (both 63-year-old males), one dead to traumatic, self-inflicted, injuries (suicide by hanging), the other diagnosed with the heart failure. All three cases were photographed in 360° manner with a Nikon 7000 digital camera and simultaneously documented with the handheld scanner. In addition to having recorded the pre-autopsy phase of the forensic cases, both techniques were employed in various stages of autopsy. The sets of collected digital images (approximately 100 per case) were further processed to generate point clouds and 3D meshes. Final 3D models (a pair per individual) were counted for numbers of points and polygons, then assessed visually and compared quantitatively using ICP alignment algorithm and a cloud point comparison technique based on closest point to point distances. Both techniques were proven to be easy to handle and equally laborious. While collecting the images at autopsy took around 20min, the post-processing was much more time-demanding and required up to 10h of computation time. Moreover, for the full-body scanning the post-processing of the handheld scanner required rather time-consuming manual image alignment. In all instances the applied approaches produced high-resolution photorealistic, real sized or easy to calibrate 3D surface models. Both methods equally failed when the scanned body surface was covered with body hair or reflective moist areas. Still, it can be concluded that single camera close range photogrammetry and optical surface scanning using Vectra H1 scanner represent relatively low-cost solutions which were shown to be beneficial for postmortem body documentation in forensic pathology. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Healey, N.; Hook, S. J.
2016-12-01
Due to water's high heat capacity, temperature fluctuations in lacustrine systems are a reflection of long-term ambient climate conditions rather than short-term meteorological forcing. There are many atmospheric phenomena (i.e. teleconnections) that influence the regional climatology of the Pacific basin, and one of the most influential is the Pacific Decadal Oscillation (PDO). This study examines spaceborne observations by the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Visible Infrared Imaging Radiometer Suite (VIIRS) from 2000-2015 of 15 inland water bodies in Alaska and Canada using the Inland Waterbody Surface Temperature (IWbST) version 1.0 algorithm. We analyze surface temperature trends in comparison to the variation of the PDO, and our findings suggest that the PDO is influencing summertime (July-September) inland water bodies in southern Alaska and northwestern Canada. The strongest influence is prevalent in the water bodies experiencing a maritime climate and situated closest to the Aleutian Peninsula/Gulf of Alaska. The second largest influence occurs in the northwestern Canadian water bodies that experience a weakened maritime climate, or a transitional regime between maritime and continental classifications. The weakest relationship with the PDO are water bodies located in the western, northwestern, and interior Alaska regions that experience more of a continental climate regime which are likely controlled by other large-scale teleconnections such as the Arctic Oscillation, the Pacific North American Index, or the North Pacific Index.
NASA Astrophysics Data System (ADS)
Al-Mayah, Adil; Moseley, Joanne; Hunter, Shannon; Brock, Kristy
2015-11-01
Biomechanical-based deformable image registration is conducted on the head and neck region. Patient specific 3D finite element models consisting of parotid glands (PG), submandibular glands (SG), tumor, vertebrae (VB), mandible, and external body are used to register pre-treatment MRI to post-treatment MR images to model the dose response using image data of five patients. The images are registered using combinations of vertebrae and mandible alignments, and surface projection of the external body as boundary conditions. In addition, the dose response is simulated by applying a new loading technique in the form of a dose-induced shrinkage using the dose-volume relationship. The dose-induced load is applied as dose-induced shrinkage of the tumor and four salivary glands. The Dice Similarity Coefficient (DSC) is calculated for the four salivary glands, and tumor to calculate the volume overlap of the structures after deformable registration. A substantial improvement in the registration is found by including the dose-induced shrinkage. The greatest registration improvement is found in the four glands where the average DSC increases from 0.53, 0.55, 0.32, and 0.37 to 0.68, 0.68, 0.51, and 0.49 in the left PG, right PG, left SG, and right SG, respectively by using bony alignment of vertebrae and mandible (M), body (B) surface projection and dose (D) (VB+M+B+D).
The spatial-temporal dynamics of open surface water bodies in CONUS during 1984-2016
NASA Astrophysics Data System (ADS)
Zou, Z.; Xiao, X.; Dong, J.; Qin, Y.; Doughty, R.; Menarguez, M.; Wang, J.
2017-12-01
Open surface water bodies provided 80% of the total water withdrawals in the Contiguous United States (CONUS) in 1985-2010. The inter-annual variability and changing trends of surface water body areas have various impacts on the human society and ecosystems. This study made use of all Landsat 5, 7, and 8 surface reflectance archives ( 370,000 images) during 1984-2016 and a water index- and pixel-based approach to detect and map open surface water bodies in the cloud-based platform of Google Earth Engine. The year-long water body area and annual average water body area were calculated for each of the last 33 years and their inter-annual variations during 1984-2016 were analyzed through anomaly analysis while their changing trends were analyzed through linear regressions. The national annual average water body areas varied from 265,000 to 281,000 km2 during 1984-2016, which is 3% below to 3% above the mean value 274,000 km2. In state level, significant decreasing trends were found in both year-long and annual average water body areas in some states of dry climates in west and southwest U.S., including Oregon, Nevada, Utah, Arizona, New Mexico, and Oklahoma. In comparison, significant increasing trends were found in some states of wet climates in the southeast and north U.S., including Indiana, Ohio, New Jersey, Delaware, Virginia, Tennessee, North Carolina, South Carolina, Louisiana, Alabama, Georgia, North Dakota and South Dakota. Open surface water body areas in CONUS decreased in relatively dry areas but increased in relatively wet areas. The relationships between open surface water body area variability and climate factors (precipitation, temperature) and human impacts (water exploitation) were also analyzed.
NASA Technical Reports Server (NTRS)
Rockwell, Donald
1999-01-01
This program has involved, first of all, a critical state-of-the-art assessment of vortex-body interactions. Then, efforts were focused on experimental investigation on coupled-wake instabilities and turbulence occurring in a two-cylinder system. An extensive review was undertaken on the effect of incident vortices on various types of bodies. These incident vortices have a length scale of the same order of magnitude as the scale of the body. The body can take on various forms, including, for example, a circular cylinder, a blade or a wing. The classes of vortex-body interaction that were critically assessed include: (1) Periodic distortion of the incident (primary) vortex and shedding of secondary vorticity from the surface of the body. (2) Modulated vortex distortion and shedding at a leading-edge or surface due to incidence of a complex system of vortices. (3) Vortex distortion and shedding in presence of body oscillation. (4) Three-dimensional vortex interaction and shedding. For all of these classes of vortex-body interaction, quantitative topologies of the vorticity distributions and streamline patterns were found to be central to a unified description of mechanisms of vortex distortion and shedding. In most cases, it was possible to define relationships between vortex interactions and unsteady loading at the body surface. This phase of the program was an experimental investigation of a two-cylinder system, which simulated a central aspect of a four-wheel bogie on a large-scale commercial aircraft. The overall aim of this experimental research program was to determine the crucial elements of the unsteadiness in the gap and near-wake regions as a function of time using cinema-based techniques. During the research program, various image evaluation techniques were employed. They involved assessment of instantaneous velocity fields, streamline topology and patterns of vorticity. Experiments were performed in a large-scale water channel using a high-resolution version of digital particle image velocimetry. The program has focused on acquisition of images of velocity and vorticity for varying gap widths between the two-cylinder system. As a result of analysis of a relatively large number of images, it is demonstrated that low frequency instabilities can occur in the gap region between the cylinder. These low frequency instabilities are hypothesized to influence the near-wake structure of the entire two-cylinder system. The nature of the unstable shear layers in the gap region involves generation of small-scale Kelvin-Helmholtz instabilities. These unsteady shear layers then impinge upon the upper and lower surfaces of the cylinders, thereby influencing both the unsteady structure and the time-averaged patterns of the near-wake. Initial efforts have focused on characterization of the patterns of instantaneous and averaged streamlines using topological concepts. The end result of this investigation is a series of documented instantaneous images. They will serve as a basis for various types of post-processing, which will lead to a fuller understanding of the instantaneous and time-averaged unstable-turbulent fields in the gap region and downstream of the two-cylinder system. This further assessment is the focus of a subsequent program.
Planetary surface photometry and imaging: progress and perspectives.
Goguen, Jay D
2014-10-01
Spacecraft have visited and returned many thousands of images and spectra of all of the planets, many of their moons, several asteroids, and a few comet nuclei during the golden age of planetary exploration. The signal in each pixel of each image or spectral channel is a measurement of the radiance of scattered sunlight into a specific direction. The information on the structure and composition of the surface that is contained in variation of the radiance with scattering geometry and wavelength, including polarization state, has only just begun to be exploited and is the topic of this review. The uppermost surfaces of these bodies are mainly composed of particles that are continuously generated by impacts of micrometeoroids and larger impactors. Models of light scattering by distributions of sizes and irregular shapes of particles and by closely packed particles within a surface are challenging. These are active topics of research where considerable progress has recently been made. We focus on the surfaces of bodies lacking atmospheres.These surfaces are diverse and their morphologies give evidence of their evolution by impacts and resurfacing by a variety of processes including down slope movement and electrostatic transport of particles, gravitational accumulation of debris, volatile outgassing and migration, and magnetospheric interactions. Sampling of scattering geometries and spatial resolution is constrained by spacecraft trajectories. However, the large number of archived images and spectra demand more quantitative interpretation. The scattering geometry dependence of the radiance is underutilized and promises constraints on the compositions and structure of the surface for materials that lack diagnostic wavelength dependence. The general problem is considered in terms of the lunar regolith for which samples have been returned to Earth.
Water entry of cylindrical bodies with various aspect ratios
NASA Astrophysics Data System (ADS)
Kim, Nayoung; Park, Hyungmin
2017-11-01
We experimentally investigate the water entry of cylindrical bodies with different aspect ratio (1.0-8.0), focusing on the deformation of free surface and resulting phenomena over and under the surface. The experiment is performed using a high-speed imaging (upto 10000 fps) and PIV. The head and tail of bodies are hemispherical and the nose part is additionally roughened with a sandpaper to see the effect of roughness as well. The release height is also adjusted to change the impact velocity at the free surface (Reynolds number is order of 105). For smooth surface (without cavity formation), a thin liquid film rises up the body after impacting, gathers at the pole and forms a jet over the free surfaces. The jet is created in the form of a thick and thin jet. The thin jet is produced by a water film riding up the surface of an object, and a thick jet is produced by rising water from underwater as the object sinks. However, as the aspect ratio increases, the liquid film does not fully ride up the body and cannot close, so there is an empty space below the free surface. With roughness (with cavity), the liquid film is detached from the body and splash/dome is formed above the free surface. The splash height and its collapsing time decrease with increasing the aspect ratio. Supported by Grants (MPSS-CG-2016-02, NRF-2017R1A4A1015523) of the Korea government.
Creation of 3D Multi-Body Orthodontic Models by Using Independent Imaging Sensors
Barone, Sandro; Paoli, Alessandro; Razionale, Armando Viviano
2013-01-01
In the field of dental health care, plaster models combined with 2D radiographs are widely used in clinical practice for orthodontic diagnoses. However, complex malocclusions can be better analyzed by exploiting 3D digital dental models, which allow virtual simulations and treatment planning processes. In this paper, dental data captured by independent imaging sensors are fused to create multi-body orthodontic models composed of teeth, oral soft tissues and alveolar bone structures. The methodology is based on integrating Cone-Beam Computed Tomography (CBCT) and surface structured light scanning. The optical scanner is used to reconstruct tooth crowns and soft tissues (visible surfaces) through the digitalization of both patients' mouth impressions and plaster casts. These data are also used to guide the segmentation of internal dental tissues by processing CBCT data sets. The 3D individual dental tissues obtained by the optical scanner and the CBCT sensor are fused within multi-body orthodontic models without human supervisions to identify target anatomical structures. The final multi-body models represent valuable virtual platforms to clinical diagnostic and treatment planning. PMID:23385416
Creation of 3D multi-body orthodontic models by using independent imaging sensors.
Barone, Sandro; Paoli, Alessandro; Razionale, Armando Viviano
2013-02-05
In the field of dental health care, plaster models combined with 2D radiographs are widely used in clinical practice for orthodontic diagnoses. However, complex malocclusions can be better analyzed by exploiting 3D digital dental models, which allow virtual simulations and treatment planning processes. In this paper, dental data captured by independent imaging sensors are fused to create multi-body orthodontic models composed of teeth, oral soft tissues and alveolar bone structures. The methodology is based on integrating Cone-Beam Computed Tomography (CBCT) and surface structured light scanning. The optical scanner is used to reconstruct tooth crowns and soft tissues (visible surfaces) through the digitalization of both patients' mouth impressions and plaster casts. These data are also used to guide the segmentation of internal dental tissues by processing CBCT data sets. The 3D individual dental tissues obtained by the optical scanner and the CBCT sensor are fused within multi-body orthodontic models without human supervisions to identify target anatomical structures. The final multi-body models represent valuable virtual platforms to clinical diagnostic and treatment planning.
Image Analysis Based Estimates of Regolith Erosion Due to Plume Impingement Effects
NASA Technical Reports Server (NTRS)
Lane, John E.; Metzger, Philip T.
2014-01-01
Characterizing dust plumes on the moon's surface during a rocket landing is imperative to the success of future operations on the moon or any other celestial body with a dusty or soil surface (including cold surfaces covered by frozen gas ice crystals, such as the moons of the outer planets). The most practical method of characterizing the dust clouds is to analyze video or still camera images of the dust illuminated by the sun or on-board light sources (such as lasers). The method described below was used to characterize the dust plumes from the Apollo 12 landing.
Automated Processing Workflow for Ambient Seismic Recordings
NASA Astrophysics Data System (ADS)
Girard, A. J.; Shragge, J.
2017-12-01
Structural imaging using body-wave energy present in ambient seismic data remains a challenging task, largely because these wave modes are commonly much weaker than surface wave energy. In a number of situations body-wave energy has been extracted successfully; however, (nearly) all successful body-wave extraction and imaging approaches have focused on cross-correlation processing. While this is useful for interferometric purposes, it can also lead to the inclusion of unwanted noise events that dominate the resulting stack, leaving body-wave energy overpowered by the coherent noise. Conversely, wave-equation imaging can be applied directly on non-correlated ambient data that has been preprocessed to mitigate unwanted energy (i.e., surface waves, burst-like and electromechanical noise) to enhance body-wave arrivals. Following this approach, though, requires a significant preprocessing effort on often Terabytes of ambient seismic data, which is expensive and requires automation to be a feasible approach. In this work we outline an automated processing workflow designed to optimize body wave energy from an ambient seismic data set acquired on a large-N array at a mine site near Lalor Lake, Manitoba, Canada. We show that processing ambient seismic data in the recording domain, rather than the cross-correlation domain, allows us to mitigate energy that is inappropriate for body-wave imaging. We first develop a method for window selection that automatically identifies and removes data contaminated by coherent high-energy bursts. We then apply time- and frequency-domain debursting techniques to mitigate the effects of remaining strong amplitude and/or monochromatic energy without severely degrading the overall waveforms. After each processing step we implement a QC check to investigate improvements in the convergence rates - and the emergence of reflection events - in the cross-correlation plus stack waveforms over hour-long windows. Overall, the QC analyses suggest that automated preprocessing of ambient seismic recordings in the recording domain successfully mitigates unwanted coherent noise events in both the time and frequency domain. Accordingly, we assert that this method is beneficial for direct wave-equation imaging with ambient seismic recordings.
Enhancement of the visibility of objects located below the surface of a scattering medium
Demos, Stavros
2013-11-19
Techniques are provided for enhancing the visibility of objects located below the surface of a scattering medium such as tissue, water and smoke. Examples of such an object include a vein located below the skin, a mine located below the surface of the sea and a human in a location covered by smoke. The enhancement of the image contrast of a subsurface structure is based on the utilization of structured illumination. In the specific application of this invention to image the veins in the arm or other part of the body, the issue of how to control the intensity of the image of a metal object (such as a needle) that must be inserted into the vein is also addressed.
Gondim Teixeira, P A; Bravetti, M; Hossu, G; Lecocq, S; Petit, D; Loeuille, D; Blum, A
2017-12-01
To evaluate the impact of coil design and motion-resistant sequences on the quality of sacroiliac magnetic resonance imaging (MRI) examination in patients with spondyloarthropathy. One hundred and twenty-one patients with suspected sacroiliitis and referred for MRI of the sacroiliac joints were retrospectively evaluated with MRI at 3-Tesla. There were 78 women and 43 men with a mean age of 36.7±11.5 (SD) years (range: 15.8-78.4 years). Conventional and motion-resistant fat-saturated fast-spin echo T2-weighted sequences were performed with two different coils. Image quality was subjectively evaluated by two independent readers (R1 and R2) using a four-point scale. Confidence in the identification of bone marrow edema pattern (BMEP) was also evaluated subjectively using a three-point scale. Phased array body coil yielded improved image quality compared to surface coil (14.1 to 30.4% for R1 and 14.6 to 25.7% for R2; P<0.0001). The impact of the sequence type on quality was also statistically significant (P=0.0046). BMEP was identified in 40 patients and best inter-reader agreement was obtained using the combination of phased-array body coil with motion-resistant T2-weighted sequence (kappa 0.990). The smallest number of indeterminate BMEP zones was seen on MRI set acquired with the phased-array body coil and motion-resistant T2-weighted sequence. Phased array body coil and motion-resistant T2-weighted sequences perform better than surface coil and conventional T2-weighted sequences for the evaluation of sacroiliac joints, increasing confidence in the identification of BMEP. Copyright © 2017 Editions françaises de radiologie. Published by Elsevier Masson SAS. All rights reserved.
Combined use of backscattered and transmitted images in x-ray personnel screening systems
NASA Astrophysics Data System (ADS)
Tracey, B.; Schiefele, Markus; Alvino, Christopher; Miller, Eric; Al-Kofani, Omar
2012-06-01
Current aviation security relies heavily on personnel screening using X-ray backscatter systems or other advanced imaging technologies. Passenger privacy concerns and screening times can be reduced through the use of low-dose twosided X-ray backscatter (Bx) systems, which also have the ability to collect transmission (Tx) X-ray. Bx images reveal objects placed on the body, such as contraband and security threats, as well as anatomical features at or close to the surface, such as lungs cavities and bones. While the quality of the transmission images is lower than medical imagery due to the low X-ray dose, Tx images can be of significant value in interpreting features in the Bx images, such as lung cavities, which can cause false alarms in automated threat detection (ATD) algorithms. Here we demonstrate an ATD processing chain fusing both Tx and BX images. The approach employs automatically extracted fiducial points on the body and localized active contour methods to segments lungs in acquired Tx and Bx images. Additionally, we derive metrics from the Tx image can be related to the probability of observing internal body structure in the Bx image. The combined use of Tx and Bx data can enable improved overall system performance.
Multi-camera volumetric PIV for the study of jumping fish
NASA Astrophysics Data System (ADS)
Mendelson, Leah; Techet, Alexandra H.
2018-01-01
Archer fish accurately jump multiple body lengths for aerial prey from directly below the free surface. Multiple fins provide combinations of propulsion and stabilization, enabling prey capture success. Volumetric flow field measurements are crucial to characterizing multi-propulsor interactions during this highly three-dimensional maneuver; however, the fish's behavior also drives unique experimental constraints. Measurements must be obtained in close proximity to the water's surface and in regions of the flow field which are partially-occluded by the fish body. Aerial jump trajectories must also be known to assess performance. This article describes experiment setup and processing modifications to the three-dimensional synthetic aperture particle image velocimetry (SAPIV) technique to address these challenges and facilitate experimental measurements on live jumping fish. The performance of traditional SAPIV algorithms in partially-occluded regions is characterized, and an improved non-iterative reconstruction routine for SAPIV around bodies is introduced. This reconstruction procedure is combined with three-dimensional imaging on both sides of the free surface to reveal the fish's three-dimensional wake, including a series of propulsive vortex rings generated by the tail. In addition, wake measurements from the anal and dorsal fins indicate their stabilizing and thrust-producing contributions as the archer fish jumps.
Automatic specular reflections removal for endoscopic images
NASA Astrophysics Data System (ADS)
Tan, Ke; Wang, Bin; Gao, Yuan
2017-07-01
Endoscopy imaging is utilized to provide a realistic view about the surfaces of organs inside the human body. Owing to the damp internal environment, these surfaces usually have a glossy appearance showing specular reflections. For many computer vision algorithms, the highlights created by specular reflections may become a significant source of error. In this paper, we present a novel method for restoration of the specular reflection regions from a single image. Specular restoration process starts with generating a substitute specular-free image with RPCA method. Then the specular removed image was obtained by taking the binary weighting template of highlight regions as the weighting for merging the original specular image and the substitute image. The modified template was furthermore discussed for the concealment of artificial effects in the edge of specular regions. Experimental results on the removal of the endoscopic image with specular reflections demonstrate the efficiency of the proposed method comparing to the existing methods.
ERIC Educational Resources Information Center
Nowinski, Wieslaw L.; Thirunavuukarasuu, Arumugam; Volkau, Ihar; Marchenko, Yevgen; Aminah, Bivi; Gelas, Arnaud; Huang, Su; Lee, Looi Chow; Liu, Jimin; Ng, Ting Ting; Nowinska, Natalia G.; Qian, Guoyu Yu; Puspitasari, Fiftarina; Runge, Val M.
2009-01-01
The increasing complexity of human body models enabled by advances in diagnostic imaging, computing, and growing knowledge calls for the development of a new generation of systems for intelligent exploration of these models. Here, we introduce a novel paradigm for the exploration of digital body models illustrating cerebral vasculature. It enables…
2012-05-10
Basin, China , the crust and subduction zone beneath western Colombia, and a thermally active region within Utah in the central United States...Burlacu, R., Rowe, C., and Y. Yang (2009). Joint geophysical imaging of the geothermal sites in the Utah area using seismic body waves, surface waves and
Fusion of radar and optical data for mapping and monitoring of water bodies
NASA Astrophysics Data System (ADS)
Jenerowicz, Agnieszka; Siok, Katarzyn
2017-10-01
Remote sensing techniques owe their great popularity to the possibility to obtain of rapid, accurate and information over large areas with optimal time, spatial and spectral resolutions. The main areas of interest for remote sensing research had always been concerned with environmental studies, especially water bodies monitoring. Many methods that are using visible and near- an infrared band of the electromagnetic spectrum had been already developed to detect surface water reservoirs. Moreover, the usage of an image obtained in visible and infrared spectrum allows quality monitoring of water bodies. Nevertheless, retrieval of water boundaries and mapping surface water reservoirs with optical sensors is still quite demanding. Therefore, the microwave data could be the perfect complement to data obtained with passive optical sensors to detect and monitor aquatic environment especially surface water bodies. This research presents the methodology to detect water bodies with open- source satellite imagery acquired with both optical and microwave sensors. The SAR Sentinel- 1 and multispectral Sentinel- 2 imagery were used to detect and monitor chosen reservoirs in Poland. In the research Level, 1 Sentinel- 2 data and Level 1 SAR images were used. SAR data were mainly used for mapping water bodies. Next, the results of water boundaries extraction with Sentinel-1 data were compared to results obtained after application of modified spectral indices for Sentinel- 2 data. The multispectral optical data can be used in the future for the evaluation of the quality of the reservoirs. Preliminary results obtained in the research had shown, that the fusion of data obtained with optical and microwave sensors allow for the complex detection of water bodies and could be used in the future quality monitoring of water reservoirs.
Quantification of left ventricular myocardial mass in humans by nuclear magnetic resonance imaging.
Ostrzega, E; Maddahi, J; Honma, H; Crues, J V; Resser, K J; Charuzi, Y; Berman, D S
1989-02-01
The ability of NMRI to assess LV mass was studied in 20 normal males. By means of a 1.5 Tesla GE superconducting magnet and a standard spin-echo pulse sequence, multiple gated short-axis and axial slices of the entire left ventricle were obtained. LV mass was determined by Simpson's rule with the use of a previous experimentally validated method. The weight of the LV apex (subject to partial volume effect in the short-axis images) was derived from axial slices and that of the remaining left ventricle from short-axis slices. The weight of each slice was calculated by multiplying the planimetered surface area of the LV myocardium by slice thickness and by myocardial specific gravity (1.05). Mean +/- standard deviation of LV mass and LV mass index were 146 +/- 23.1 gm (range 92.3 to 190.4 gm) and 78.4 +/- 7.8 gm/m2 (range 57.7 to 89.4 gm/m2), respectively. Interobserver agreement as assessed by ICC was high for determining 161 individual slice masses (ICC = 0.99) and for total LV mass (ICC = 0.97). Intraobserver agreement for total LV mass was also high (ICC = 0.96). NMRI-determined LV mass correlated with body surface area: LV mass = 55 + 108 body surface area, r = 0.83; with body weight: LV mass = 26 + 0.77 body weight, r = 0.82; and with body height: LV mass = 262 +/- 5.9 body height, r = 0.75. Normal limits were developed for these relationships. NMRI-determined LV mass as related to body weight was in agreement with normal limits derived from autopsy literature data.(ABSTRACT TRUNCATED AT 250 WORDS)
NASA Technical Reports Server (NTRS)
Lockwood, H. E.
1973-01-01
Nine film-filter combinations have been tested for effectiveness in recording water subsurface detail when exposed from an aerial platform over a typical water body. An experimental 2-layer positive color film, a 2-layer (minus blue layer) film, a normal 3-layer color film, a panchromatic black-and-white film, and an infrared film with selected filters were tested. Results have been tabulated to show the relative capability of each film-filter combination for: (1) image contrast in shallow water (0 to 5 feet); (2) image contrast at medium depth (5 to 10 feet); (3) image contrast in deep water (10 feet plus); (4) water penetration; maximum depth where detail was discriminated; (5) image color (the spectral range of the image); (6) vegetation visible above a water background; (7) specular reflections visible from the water surface; and (8) visual compatibility; ease of discriminating image detail. Recommendations for future recording over water bodies are included.
Röschmann, P
1987-01-01
This study presents experimental results about the effective depth of penetration and about the radiofrequency (rf) power absorption in humans as a function of frequency. The frequency range investigated covers 10 up to 220 MHz. For the main part, the results were derived from bench measurements of the quality factor Q, and of the resonance frequency shift due to the loading of the coil. Different types of head-, body-, and surface coils were investigated loaded with volunteers or metallic phantoms. For spin-echo imaging at 2 T (85 MHz), the local specific absorption rate (SAR) was found to be approximately equal to 0.05 W/kg using a pi pulse of 1-ms duration and pulse repetition time TR = 1 s. Measurements of the quality factor Q as a function of frequency show that the SAR depends upon the frequency f according to approximately f2.15. The effective depth of rf penetration as derived drops from 17 cm at 85 MHz to 7 cm at 220 MHz. Head imaging with B1 penetrating from practically all sides into the object should be possible up to 220 MHz (5 T) with SAR values staying within the local limit of 2 W/kg as set by the FDA. Whole-body imaging of large subjects as well as surface coil imaging is depth limited above 100-MHz frequency. Perturbation methods are applied in order to separate the total rf power deposition in the patient into dielectric and magnetic contributions. The observed effects due to interactions of rf magnetic fields with biological tissue contradict predictions based on homogeneous tissue models. A refined tissue model with regions of high electrical conductivity, subdivided by quasi-insulating adipose layers, provides a rationale for a better understanding of the underlying processes. At frequencies below 100 MHz, the rf power deposition in patients is apparently more evenly distributed over the exposed body volume than currently assumed.
Hierarchical human action recognition around sleeping using obscured posture information
NASA Astrophysics Data System (ADS)
Kudo, Yuta; Sashida, Takehiko; Aoki, Yoshimitsu
2015-04-01
This paper presents a new approach for human action recognition around sleeping with the human body parts locations and the positional relationship between human and sleeping environment. Body parts are estimated from the depth image obtained by a time-of-flight (TOF) sensor using oriented 3D normal vector. Issues in action recognition of sleeping situation are the demand of availability in darkness, and hiding of the human body by duvets. Therefore, the extraction of image features is difficult since color and edge features are obscured by covers. Thus, first in our method, positions of four parts of the body (head, torso, thigh, and lower leg) are estimated by using the shape model of bodily surface constructed by oriented 3D normal vector. This shape model can represent the surface shape of rough body, and is effective in robust posture estimation of the body hidden with duvets. Then, action descriptor is extracted from the position of each body part. The descriptor includes temporal variation of each part of the body and spatial vector of position of the parts and the bed. Furthermore, this paper proposes hierarchical action classes and classifiers to improve the indistinct action classification. Classifiers are composed of two layers, and recognize human action by using the action descriptor. First layer focuses on spatial descriptor and classifies action roughly. Second layer focuses on temporal descriptor and classifies action finely. This approach achieves a robust recognition of obscured human by using the posture information and the hierarchical action recognition.
Photometric Modeling of Simulated Surace-Resolved Bennu Images
NASA Astrophysics Data System (ADS)
Golish, D.; DellaGiustina, D. N.; Clark, B.; Li, J. Y.; Zou, X. D.; Bennett, C. A.; Lauretta, D. S.
2017-12-01
The Origins, Spectral Interpretation, Resource Identification, Security, Regolith Explorer (OSIRIS-REx) is a NASA mission to study and return a sample of asteroid (101955) Bennu. Imaging data from the mission will be used to develop empirical surface-resolved photometric models of Bennu at a series of wavelengths. These models will be used to photometrically correct panchromatic and color base maps of Bennu, compensating for variations due to shadows and photometric angle differences, thereby minimizing seams in mosaicked images. Well-corrected mosaics are critical to the generation of a global hazard map and a global 1064-nm reflectance map which predicts LIDAR response. These data products directly feed into the selection of a site from which to safely acquire a sample. We also require photometric correction for the creation of color ratio maps of Bennu. Color ratios maps provide insight into the composition and geological history of the surface and allow for comparison to other Solar System small bodies. In advance of OSIRIS-REx's arrival at Bennu, we use simulated images to judge the efficacy of both the photometric modeling software and the mission observation plan. Our simulation software is based on USGS's Integrated Software for Imagers and Spectrometers (ISIS) and uses a synthetic shape model, a camera model, and an empirical photometric model to generate simulated images. This approach gives us the flexibility to create simulated images of Bennu based on analog surfaces from other small Solar System bodies and to test our modeling software under those conditions. Our photometric modeling software fits image data to several conventional empirical photometric models and produces the best fit model parameters. The process is largely automated, which is crucial to the efficient production of data products during proximity operations. The software also produces several metrics on the quality of the observations themselves, such as surface coverage and the completeness of the data set for evaluating the phase and disk functions of the surface. Application of this software to simulated mission data has revealed limitations in the initial mission design, which has fed back into the planning process. The entire photometric pipeline further serves as an exercise of planned activities for proximity operations.
The Comet Radar Explorer Mission
NASA Astrophysics Data System (ADS)
Asphaug, Erik; Belton, Mike; Bockelee-Morvan, Dominique; Chesley, Steve; Delbo, Marco; Farnham, Tony; Gim, Yonggyu; Grimm, Robert; Herique, Alain; Kofman, Wlodek; Oberst, Juergen; Orosei, Roberto; Piqueux, Sylvain; Plaut, Jeff; Robinson, Mark; Sava, Paul; Heggy, Essam; Kurth, William; Scheeres, Dan; Denevi, Brett; Turtle, Elizabeth; Weissman, Paul
2014-11-01
Missions to cometary nuclei have revealed major geological surprises: (1) Global scale layers - do these persist through to the interior? Are they a record of primary accretion? (2) Smooth regions - are they landslides originating on the surface? Are they cryovolcanic? (3) Pits - are they impact craters or sublimation pits, or rooted in the interior? Unambiguous answers to these and other questions can be obtained by high definition 3D radar reflection imaging (RRI) of internal structure. RRI can answer many of the great unknowns in planetary science: How do primitive bodies accrete? Are cometary nuclei mostly ice? What drives their spectacular activity and evolution? The Comet Radar Explorer (CORE) mission will image the detailed internal structure of the nucleus of 10P/Tempel 2. This ~16 x 8 x 7 km Jupiter Family Comet (JFC), or its parent body, originated in the outer planets region possibly millions of years before planet formation. CORE arrives post-perihelion and observes the comet’s waning activity from safe distance. Once the nucleus is largely dormant, the spacecraft enters a ~20-km dedicated Radar Mapping Orbit (RMO). The exacting design of the RRI experiment and the precise navigation of RMO will achieve a highly focused 3D radar reflection image of internal structure, to tens of meters resolution, and tomographic images of velocity and attenuation to hundreds of meters resolution, tied to the gravity model and shape. Visible imagers will produce maps of the surface morphology, albedo, color, texture, and photometric response, and images for navigation and shape determination. The cameras will also monitor the structure and dynamics of the coma, and its dusty jets, allowing their correlation in 3D with deep interior structures and surface features. Repeated global high-resolution thermal images will probe the near-surface layers heated by the Sun. Derived maps of thermal inertia will be correlated with the radar boundary response, and photometry and texture, probing surface materials attainable by future robotic excavation missions. Thermal images will reveal areas of sublimation cooling around vents and pits, and the secular response of the outer meters as the nucleus moves farther from the Sun.
Boulders on asteroid Toutatis as observed by Chang’e-2
Jiang, Yun; Ji, Jianghui; Huang, Jiangchuan; Marchi, Simone; Li, Yuan; Ip, Wing-Huen
2015-01-01
Boulders are ubiquitously found on the surfaces of small rocky bodies in the inner solar system and their spatial and size distributions give insight into the geological evolution and collisional history of the parent bodies. Using images acquired by the Chang’e-2 spacecraft, more than 200 boulders have been identified over the imaged area of the near-Earth asteroid Toutatis. The cumulative boulder size frequency distribution (SFD) shows a steep slope of −4.4 ± 0.1, which is indicative of a high degree of fragmentation. Similar to Itokawa, Toutatis probably has a rubble-pile structure, as most boulders on its surface cannot solely be explained by impact cratering. The significantly steeper slope for Toutatis’ boulder SFD compared to Itokawa may imply a different preservation state or diverse formation scenarios. In addition, the cumulative crater SFD has been used to estimate a surface crater retention age of approximately 1.6 ± 0.3 Gyr. PMID:26522880
From video to computation of biological fluid-structure interaction problems
NASA Astrophysics Data System (ADS)
Dillard, Seth I.; Buchholz, James H. J.; Udaykumar, H. S.
2016-04-01
This work deals with the techniques necessary to obtain a purely Eulerian procedure to conduct CFD simulations of biological systems with moving boundary flow phenomena. Eulerian approaches obviate difficulties associated with mesh generation to describe or fit flow meshes to body surfaces. The challenges associated with constructing embedded boundary information, body motions and applying boundary conditions on the moving bodies for flow computation are addressed in the work. The overall approach is applied to the study of a fluid-structure interaction problem, i.e., the hydrodynamics of swimming of an American eel, where the motion of the eel is derived from video imaging. It is shown that some first-blush approaches do not work, and therefore, careful consideration of appropriate techniques to connect moving images to flow simulations is necessary and forms the main contribution of the paper. A combination of level set-based active contour segmentation with optical flow and image morphing is shown to enable the image-to-computation process.
Wetterling, Friedrich; Corteville, Dominique M; Kalayciyan, Raffi; Rennings, Andreas; Konstandin, Simon; Nagel, Armin M; Stark, Helmut; Schad, Lothar R
2012-07-21
Sodium magnetic resonance imaging (²³Na MRI) is a non-invasive technique which allows spatial resolution of the tissue sodium concentration (TSC) in the human body. TSC measurements could potentially serve to monitor early treatment success of chemotherapy on patients who suffer from whole body metastases. Yet, the acquisition of whole body sodium (²³Na) images has been hampered so far by the lack of large resonators and the extremely low signal-to-noise ratio (SNR) achieved with existing resonator systems. In this study, a ²³Na resonator was constructed for whole body ²³Na MRI at 3T comprising of a 16-leg, asymmetrical birdcage structure with 34 cm height, 47.5 cm width and 50 cm length. The resonator was driven in quadrature mode and could be used either as a transceiver resonator or, since active decoupling was included, as a transmit-only resonator in conjunction with a receive-only (RO) surface resonator. The relative B₁-field profile was simulated and measured on phantoms, and 3D whole body ²³Na MRI data of a healthy male volunteer were acquired in five segments with a nominal isotropic resolution of (6 × 6 × 6) mm³ and a 10 min acquisition time per scan. The measured SNR values in the ²³Na-MR images varied from 9 ± 2 in calf muscle, 15 ± 2 in brain tissue, 23 ± 2 in the prostate and up to 42 ± 5 in the vertebral discs. Arms, legs, knees and hands could also be resolved with applied resonator and short time-to-echo (TE) (0.5 ms) radial sequence. Up to fivefold SNR improvement was achieved through combining the birdcage with local RO surface coil. In conclusion, ²³Na MRI of the entire human body provides sub-cm spatial resolution, which allows resolution of all major human body parts with a scan time of less than 60 min.
Noise-based body-wave seismic tomography in an active underground mine.
NASA Astrophysics Data System (ADS)
Olivier, G.; Brenguier, F.; Campillo, M.; Lynch, R.; Roux, P.
2014-12-01
Over the last decade, ambient noise tomography has become increasingly popular to image the earth's upper crust. The seismic noise recorded in the earth's crust is dominated by surface waves emanating from the interaction of the ocean with the solid earth. These surface waves are low frequency in nature ( < 1 Hz) and not usable for imaging smaller structures associated with mining or oil and gas applications. The seismic noise recorded at higher frequencies are typically from anthropogenic sources, which are short lived, spatially unstable and not well suited for constructing seismic Green's functions between sensors with conventional cross-correlation methods. To examine the use of ambient noise tomography for smaller scale applications, continuous data were recorded for 5 months in an active underground mine in Sweden located more than 1km below surface with 18 high frequency seismic sensors. A wide variety of broadband (10 - 3000 Hz) seismic noise sources are present in an active underground mine ranging from drilling, scraping, trucks, ore crushers and ventilation fans. Some of these sources generate favorable seismic noise, while others are peaked in frequency and not usable. In this presentation, I will show that the noise generated by mining activity can be useful if periods of seismic noise are carefully selected. Although noise sources are not temporally stable and not evenly distributed around the sensor array, good estimates of the seismic Green's functions between sensors can be retrieved for a broad frequency range (20 - 400 Hz) when a selective stacking scheme is used. For frequencies below 100 Hz, the reconstructed Green's functions show clear body-wave arrivals for almost all of the 153 sensor pairs. The arrival times of these body-waves are picked and used to image the local velocity structure. The resulting 3-dimensional image shows a high velocity structure that overlaps with a known ore-body. The material properties of the ore-body differ from the host rock and is likely the cause of the observed high velocity structure. For frequencies above 200 Hz, the seismic waves are multiply scattered by the tunnels and excavations and used to determine the scattering properties of the medium. The results of this study should be useful for future imaging and exploration projects in mining and oil and gas industries.
Water Detection Based on Color Variation
NASA Technical Reports Server (NTRS)
Rankin, Arturo L.
2012-01-01
This software has been designed to detect water bodies that are out in the open on cross-country terrain at close range (out to 30 meters), using imagery acquired from a stereo pair of color cameras mounted on a terrestrial, unmanned ground vehicle (UGV). This detector exploits the fact that the color variation across water bodies is generally larger and more uniform than that of other naturally occurring types of terrain, such as soil and vegetation. Non-traversable water bodies, such as large puddles, ponds, and lakes, are detected based on color variation, image intensity variance, image intensity gradient, size, and shape. At ranges beyond 20 meters, water bodies out in the open can be indirectly detected by detecting reflections of the sky below the horizon in color imagery. But at closer range, the color coming out of a water body dominates sky reflections, and the water cue from sky reflections is of marginal use. Since there may be times during UGV autonomous navigation when a water body does not come into a perception system s field of view until it is at close range, the ability to detect water bodies at close range is critical. Factors that influence the perceived color of a water body at close range are the amount and type of sediment in the water, the water s depth, and the angle of incidence to the water body. Developing a single model of the mixture ratio of light reflected off the water surface (to the camera) to light coming out of the water body (to the camera) for all water bodies would be fairly difficult. Instead, this software detects close water bodies based on local terrain features and the natural, uniform change in color that occurs across the surface from the leading edge to the trailing edge.
Exploring Asteroid Interiors: The Deep Interior Mission Concept
NASA Technical Reports Server (NTRS)
Asphaug, E.; Belton, M. J. S.; Cangahuala, A.; Keith, L.; Klaasen, K.; McFadden, L.; Neumann, G.; Ostro, S. J.; Reinert, R.; Safaeinili, A.
2003-01-01
Deep Interior is a mission to determine the geophysical properties of near-Earth objects, including the first volumetric image of the interior of an asteroid. Radio reflection tomography will image the 3D distribution of complex dielectric properties within the 1 km rendezvous target and hence map structural, density or compositional variations. Laser altimetry and visible imaging will provide high-resolution surface topography. Smart surface pods culminating in blast experiments, imaged by the high frame rate camera and scanned by lidar, will characterize active mechanical behavior and structure of surface materials, expose unweathered surface for NIR analysis, and may enable some characterization of bulk seismic response. Multiple flybys en route to this target will characterize a diversity of asteroids, probing their interiors with non-tomographic radar reflectance experiments. Deep Interior is a natural follow-up to the NEARShoemaker mission and will provide essential guidance for future in situ asteroid and comet exploration. While our goal is to learn the interior geology of small bodies and how their surfaces behave, the resulting science will enable pragmatic technologies required of hazard mitigation and resource utilization.
The ulnar nerve originates from the brachial plexus and travels down arm. The nerve is commonly injured at the elbow because of elbow fracture or dislocation. The ulnar nerve is near the surface of the body where ...
NASA Astrophysics Data System (ADS)
Bai, Bing; Joshi, Anand; Brandhorst, Sebastian; Longo, Valter D.; Conti, Peter S.; Leahy, Richard M.
2014-04-01
Obesity is a global health problem, particularly in the U.S. where one third of adults are obese. A reliable and accurate method of quantifying obesity is necessary. Visceral adipose tissue (VAT) and subcutaneous adipose tissue (SAT) are two measures of obesity that reflect different associated health risks, but accurate measurements in humans or rodent models are difficult. In this paper we present an automatic, registration-based segmentation method for mouse adiposity studies using microCT images. We co-register the subject CT image and a mouse CT atlas. Our method is based on surface matching of the microCT image and an atlas. Surface-based elastic volume warping is used to match the internal anatomy. We acquired a whole body scan of a C57BL6/J mouse injected with contrast agent using microCT and created a whole body mouse atlas by manually delineate the boundaries of the mouse and major organs. For method verification we scanned a C57BL6/J mouse from the base of the skull to the distal tibia. We registered the obtained mouse CT image to our atlas. Preliminary results show that we can warp the atlas image to match the posture and shape of the subject CT image, which has significant differences from the atlas. We plan to use this software tool in longitudinal obesity studies using mouse models.
4D XCAT phantom for multimodality imaging research
Segars, W. P.; Sturgeon, G.; Mendonca, S.; Grimes, Jason; Tsui, B. M. W.
2010-01-01
Purpose: The authors develop the 4D extended cardiac-torso (XCAT) phantom for multimodality imaging research. Methods: Highly detailed whole-body anatomies for the adult male and female were defined in the XCAT using nonuniform rational B-spline (NURBS) and subdivision surfaces based on segmentation of the Visible Male and Female anatomical datasets from the National Library of Medicine as well as patient datasets. Using the flexibility of these surfaces, the Visible Human anatomies were transformed to match body measurements and organ volumes for a 50th percentile (height and weight) male and female. The desired body measurements for the models were obtained using the PEOPLESIZE program that contains anthropometric dimensions categorized from 1st to the 99th percentile for US adults. The desired organ volumes were determined from ICRP Publication 89 [ICRP, ‘‘Basic anatomical and physiological data for use in radiological protection: reference values,” ICRP Publication 89 (International Commission on Radiological Protection, New York, NY, 2002)]. The male and female anatomies serve as standard templates upon which anatomical variations may be modeled in the XCAT through user-defined parameters. Parametrized models for the cardiac and respiratory motions were also incorporated into the XCAT based on high-resolution cardiac- and respiratory-gated multislice CT data. To demonstrate the usefulness of the phantom, the authors show example simulation studies in PET, SPECT, and CT using publicly available simulation packages. Results: As demonstrated in the pilot studies, the 4D XCAT (which includes thousands of anatomical structures) can produce realistic imaging data when combined with accurate models of the imaging process. With the flexibility of the NURBS surface primitives, any number of different anatomies, cardiac or respiratory motions or patterns, and spatial resolutions can be simulated to perform imaging research. Conclusions: With the ability to produce realistic, predictive 3D and 4D imaging data from populations of normal and abnormal patients under various imaging parameters, the authors conclude that the XCAT provides an important tool in imaging research to evaluate and improve imaging devices and techniques. In the field of x-ray CT, the phantom may also provide the necessary foundation with which to optimize clinical CT applications in terms of image quality versus radiation dose, an area of research that is becoming more significant with the growing use of CT. PMID:20964209
Biosonar navigation above water II: exploiting mirror images.
Genzel, Daria; Hoffmann, Susanne; Prosch, Selina; Firzlaff, Uwe; Wiegrebe, Lutz
2015-02-15
As in vision, acoustic signals can be reflected by a smooth surface creating an acoustic mirror image. Water bodies represent the only naturally occurring horizontal and acoustically smooth surfaces. Echolocating bats flying over smooth water bodies encounter echo-acoustic mirror images of objects above the surface. Here, we combined an electrophysiological approach with a behavioral experimental paradigm to investigate whether bats can exploit echo-acoustic mirror images for navigation and how these mirrorlike echo-acoustic cues are encoded in their auditory cortex. In an obstacle-avoidance task where the obstacles could only be detected via their echo-acoustic mirror images, most bats spontaneously exploited these cues for navigation. Sonar ensonifications along the bats' flight path revealed conspicuous changes of the reflection patterns with slightly increased target strengths at relatively long echo delays corresponding to the longer acoustic paths from the mirrored obstacles. Recordings of cortical spatiotemporal response maps (STRMs) describe the tuning of a unit across the dimensions of elevation and time. The majority of cortical single and multiunits showed a special spatiotemporal pattern of excitatory areas in their STRM indicating a preference for echoes with (relative to the setup dimensions) long delays and, interestingly, from low elevations. This neural preference could effectively encode a reflection pattern as it would be perceived by an echolocating bat detecting an object mirrored from below. The current study provides both behavioral and neurophysiological evidence that echo-acoustic mirror images can be exploited by bats for obstacle avoidance. This capability effectively supports echo-acoustic navigation in highly cluttered natural habitats. Copyright © 2015 the American Physiological Society.
Fluoroscopic tomography. [for body section synthesis
NASA Technical Reports Server (NTRS)
Baily, N. A.; Crepeau, R. L.; Lasser, E. C.
1974-01-01
A fluoroscopic tomography system capable of synthesizing body sections at a number of levels within the body has been developed. The synthesized body sections may lie either in a range of planes parallel to, tilted with respect to, skewed with respect to, or both tilted and skewed with respect to the plane of motion of the X-ray tube target. In addition, body sections can be presented which are contoured to the patient's anatomy. That is to say, they may even encompass such complex surfaces as a quadratic hyperplane. In addition, tomograms of organs in motion can be imaged.
[Surface coils for magnetic-resonance images].
Rodríguez-González, Alfredo Odón; Amador-Baheza, Ricardo; Rojas-Jasso, Rafael; Barrios-Alvarez, Fernando Alejandro
2005-01-01
Since the introduction of magnetic resonance imaging in Mexico, the development of this important medical imaging technology has been almost non-existing in our country. The very first surface coil prototypes for clinical applications in magnetic resonance imaging has been developed at the Center of Research in Medical Imaging and Instrumentation of the Universidad Autónoma Metropolitana Iztapalapa (Metropolitan Autonomous University, Campus Iztapalapa). Two surface coil prototypes were built: a) a circular-shaped coil and b) a square-shaped coil for multiple regions of the body, such as heart, brain, knee, hands, and ankles. These coils were tested on the 1.5T imager of the ABC Hospital-Tacubaya, located in Mexico City. Brain images of healthy volunteers were obtained in different orientations: sagittal, coronal, and axial. Since images showed a good-enough clinical quality for diagnosis, it is fair to say that these coil prototypes can be used in the clinical environment, and with small modifications, they can be made compatible with almost any commercial scanner. This type of development can offer new alternatives for further collaboration between the research centers and the radiology community, in the search of new applications and developments of this imaging technique.
Relationship between the upper mantle high velocity seismic lid and the continental lithosphere
NASA Astrophysics Data System (ADS)
Priestley, Keith; Tilmann, Frederik
2009-04-01
The lithosphere-asthenosphere boundary corresponds to the base of the "rigid" plates - the depth at which heat transport changes from advection in the convecting deeper upper mantle to conduction in the shallow upper mantle. Although this boundary is a fundamental feature of the Earth, mapping it has been difficult because it does not correspond to a sharp change in temperature or composition. Various definitions of the lithosphere and asthenosphere are based on the analysis of different types of geophysical and geological observations. The depth to the lithosphere-asthenosphere boundary determined from these different observations often shows little agreement when they are applied to the same region because the geophysical and geological observations (i.e., seismic velocity, strain rate, electrical resistivity, chemical depletion, etc.) are proxies for the change in rheological properties rather than a direct measure of the rheological properties. In this paper, we focus on the seismic mapping of the upper mantle high velocity lid and low velocity zone and its relationship to the lithosphere and asthenosphere. We have two goals: (a) to examine the differences in how teleseismic body-wave travel-time tomography and surface-wave tomography image upper mantle seismic structure; and (b) to summarise how upper mantle seismic velocity structure can be related to the structure of the lithosphere and asthenosphere. Surface-wave tomography provides reasonably good depth resolution, especially when higher modes are included in the analysis, but lateral resolution is limited by the horizontal wavelength of the long-period surface waves used to constrain upper mantle velocity structure. Teleseismic body-wave tomography has poor depth resolution in the upper mantle, particularly when no strong lateral contrasts are present. If station terms are used, features with large lateral extent and gradual boundaries are attenuated in the tomographic image. Body-wave models are not useful in mapping the thickness of the high velocity upper mantle lid because this type of analysis often determines wave speed perturbations from an unknown horizontal average and not absolute velocities. Thus, any feature which extends laterally across the whole region beneath a seismic network becomes invisible in the teleseismic body-wave tomographic image. We compare surface-wave and body-wave tomographic results using southern Africa as an example. Surface-wave tomographic images for southern Africa show a strong, high velocity upper mantle lid confined to depths shallower than ~ 200 km, whereas body-wave tomographic images show weak high velocity in the upper mantle extending to depths of ~ 300 km or more. However, synthetic tests show that these results are not contradictory. The absolute seismic velocity structure of the upper mantle provided by surface wave analysis can be used to map the thermal lithosphere. Priestley and McKenzie (Priestley, K., McKenzie, D., 2006. The thermal structure of the lithosphere from shear wave velocities. Earth and Planetary Science Letters 244, 285-301.) derive an empirical relationship between shear wave velocity and temperature. This relationship is used to obtain temperature profiles from the surface-wave tomographic models of the continental mantle. The base of the lithosphere is shown by a change in the gradient of the temperature profiles indicative of the depth where the mode of heat transport changes from conduction to advection. Comparisons of the geotherms determined from the conversion of surface-wave wave speeds to temperatures with upper mantle nodule-derived geotherms demonstrate that estimates of lithospheric thickness from Vs and from the nodule mineralogy agree to within about 25 km. The lithospheric thickness map for Africa derived from the surface-wave tomographic results shows that thick lithosphere underlies most of the Archean crust in Africa. The distribution of diamondiferous kimberlites provides an independent estimate of where thick lithosphere exists. Diamondiferous kimberlites generally occur where the lower part of the thermal lithosphere as indicated by seismology is in the diamond stability field.
CNNEDGEPOT: CNN based edge detection of 2D near surface potential field data
NASA Astrophysics Data System (ADS)
Aydogan, D.
2012-09-01
All anomalies are important in the interpretation of gravity and magnetic data because they indicate some important structural features. One of the advantages of using gravity or magnetic data for searching contacts is to be detected buried structures whose signs could not be seen on the surface. In this paper, a general view of the cellular neural network (CNN) method with a large scale nonlinear circuit is presented focusing on its image processing applications. The proposed CNN model is used consecutively in order to extract body and body edges. The algorithm is a stochastic image processing method based on close neighborhood relationship of the cells and optimization of A, B and I matrices entitled as cloning template operators. Setting up a CNN (continues time cellular neural network (CTCNN) or discrete time cellular neural network (DTCNN)) for a particular task needs a proper selection of cloning templates which determine the dynamics of the method. The proposed algorithm is used for image enhancement and edge detection. The proposed method is applied on synthetic and field data generated for edge detection of near-surface geological bodies that mask each other in various depths and dimensions. The program named as CNNEDGEPOT is a set of functions written in MATLAB software. The GUI helps the user to easily change all the required CNN model parameters. A visual evaluation of the outputs due to DTCNN and CTCNN are carried out and the results are compared with each other. These examples demonstrate that in detecting the geological features the CNN model can be used for visual interpretation of near surface gravity or magnetic anomaly maps.
NASA Astrophysics Data System (ADS)
Yang, Xiucheng; Chen, Li
2017-04-01
Urban surface water is characterized by complex surface continents and small size of water bodies, and the mapping of urban surface water is currently a challenging task. The moderate-resolution remote sensing satellites provide effective ways of monitoring surface water. This study conducts an exploratory evaluation on the performance of the newly available Sentinel-2A multispectral instrument (MSI) imagery for detecting urban surface water. An automatic framework that integrates pixel-level threshold adjustment and object-oriented segmentation is proposed. Based on the automated workflow, different combinations of visible, near infrared, and short-wave infrared bands in Sentinel-2 image via different water indices are first compared. Results show that object-level modified normalized difference water index (MNDWI with band 11) and automated water extraction index are feasible in urban surface water mapping for Sentinel-2 MSI imagery. Moreover, comparative results are obtained utilizing optimal MNDWI from Sentinel-2 and Landsat 8 images, respectively. Consequently, Sentinel-2 MSI achieves the kappa coefficient of 0.92, compared with that of 0.83 from Landsat 8 operational land imager.
Storyboard GALILEO CRUISE SCIENCE OPPORTUNITIES describes asteroid encounters
NASA Technical Reports Server (NTRS)
1989-01-01
Storyboard with mosaicked image of an asteroid and entitled GALILEO CRUISE SCIENCE OPPORTUNITIES describes asteroid objectives. These objectives include: first asteroid encounter; surface geology, composition size, shape, mass; and relation of primitive bodies to meteorites.
Core and body surface temperatures of nesting leatherback turtles (Dermochelys coriacea).
Burns, Thomas J; McCafferty, Dominic J; Kennedy, Malcolm W
2015-07-01
Leatherback turtles (Dermochelys coriacea) are the largest species of marine turtle and the fourth most massive extant reptile. In temperate waters they maintain body temperatures higher than surrounding seawater through a combination of insulation, physiological, and behavioural adaptations. Nesting involves physical activity in addition to contact with warm sand and air, potentially presenting thermal challenges in the absence of the cooling effect of water, and data are lacking with which to understand their nesting thermal biology. Using non-contact methods (thermal imaging and infrared thermometry) to avoid any stress-related effects, we investigated core and surface temperature during nesting. The mean±SE core temperature was 31.4±0.05°C (newly emerged eggs) and was not correlated with environmental conditions on the nesting beach. Core temperature of leatherbacks was greater than that of hawksbill turtles (Eretmochelys imbricata) nesting at a nearby colony, 30.0±0.13°C. Body surface temperatures of leatherbacks showed regional variation, the lateral and dorsal regions of the head were warmest while the carapace was the coolest surface. Surface temperature increased during the early nesting phases, then levelled off or decreased during later phases with the rates of change varying between body regions. Body region, behavioural phase of nesting and air temperature were found to be the best predictors of surface temperature. Regional variation in surface temperature were likely due to alterations in blood supply, and temporal changes in local muscular activity of flippers during the different phases of nesting. Heat exchange from the upper surface of the turtle was dominated by radiative heat loss from all body regions and small convective heat gains to the carapace and front flippers. Copyright © 2015 Elsevier Ltd. All rights reserved.
THERMAP : a mid-infrared spectro-imager for the Marco Polo R mission
NASA Astrophysics Data System (ADS)
Groussin, O.; Brageot, E.; Reynaud, J.-L.; Lamy, P.; Jorda, L.; Licandro, J.; Helbert, J.; Knollenberg, J.; Kührt, E.; Delbó, M.
2012-09-01
We present THERMAP, a mid-infrared (8-16 μm) spectro-imager based on uncooled micro-bolometer detector arrays. Due to the recent technological development of these detectors, which have undergone significant improvements in the last decade, we wanted to test their performances for a space mission to small bodies in the inner Solar System. THERMAP was selected by ESA in January 2012 for a one year assessment study, in the framework of a call for declaration of interest in science instrumentation for the Marco Polo R Cosmic Vision mission. In this paper, we present some results of this study and in particular demonstrate that the new generation of uncooled micro-bolometer detectors has all the imaging and spectroscopic capabilities to fulfill the scientific objectives of the Marco Polo R mission. THERMAP scientific objectives - The midinfrared instrument of the Marco Polo R mission must be able i) to determine the surface temperature by mapping the entire surface with an absolute accuracy of at least 5 K (goal 1 K) above 200 K, ii) to determine the thermal inertia with an accuracy of 10% and iii) to determine the surface composition by mapping the entire surface with a spectral resolution of 70 between 8 and 16 μm. The above mappings should be performed with a spatial resolution of 10 m for the entire surface (global characterization) and 10 cm for the sampling sites (local characterization). THERMAP imaging capabilities - In order to test the imaging capabilities of the THERMAP uncooled microbolometer detector, we set up an experiment based on a 640x480 ULIS micro-bolometer array, a germanium objective and a black body. Using the results of this experiment, we show that calibrated radiometric images can be obtained down to at least 258 K (lower limit of our experiment), and that two calibration points are sufficient to determine the absolute scene temperature with an accuracy better than 1.5 K. An extrapolation to lower temperatures provides an accuracy of about 5 K at 180 K, the lowest temperature the detector can measure. THERMAP spectroscopic capabilites - In order to test the spectroscopic performances of the detector, we added flux attenuating neutral density mid-infrared filters (transmittance: 50%, 10%, 1%) to our experiment. Our results show that we can perform spectroscopic measurements with a spectral resolution R=40-80 in the wavelength range 8-16 μm for a scene temperature larger than 300 K, the typical surface temperature of a Near Earth Asteroid at 1 AU from the Sun. THERMAP preliminary design - From the above results, we defined a preliminary design for the instrument. THERMAP is a mid-infrared (8-16 μm) spectro-imager based on two uncooled microbolometer arrays. It is composed of two channels, one for imaging and one for spectroscopy. A flip mirror allows switching between the two channels. Calibration is performed using deep space and two black bodies at known temperature. The design of the THERMAP instrument has a strong heritage from the MERTIS instrument on board Bepi-Colombo [1], which guarantees its feasibility and reliability. Our design is very flexible in term of operations, which is fundamental for a mission to a binary asteroid system (1996 FG3). The THERMAP instrument will be proposed for Marco Polo R and any future space missions to small bodies in the inner solar system.
A multi-slot surface coil for MRI of dual-rat imaging at 4 T
NASA Astrophysics Data System (ADS)
Solis, S. E.; Wang, R.; Tomasi, D.; Rodriguez, A. O.
2011-06-01
A slotted surface coil inspired by the hole-and-slot cavity magnetron was developed for magnetic resonance imaging of obese rats at 4 T. Full-wave analysis of the magnetic field was carried out at 170 MHz for both the slotted and circular-shaped coils. The noise figure values of two coils were investigated via the numerical calculation of the quality factors. Fat simulated phantoms to mimic overweight rats were included in the analysis with weights ranging from 300 to 900 g. The noise figures were 1.2 dB for the slotted coil and 2.4 dB for the circular coil when loaded with 600 g of simulated phantom. A slotted surface coil with eight circular slots and a circular coil with similar dimensions were built and operated in the transceiver mode, and their performances were experimentally compared. The imaging tests in phantoms demonstrated that the slotted surface coil has a deeper RF-sensitivity and better field uniformity than the single-loop RF-coil. High quality images of two overweight Zucker rats were acquired simultaneously with the slotted surface coil using standard spin-echo pulse sequences. Experimental results showed that the slotted surface coil outperformed the circular coil for imaging considerably overweight rats. Thus, the slotted surface coil can be a good tool for MRI experiments in rats on a human whole-body 4 T scanner.
EIT image reconstruction with four dimensional regularization.
Dai, Tao; Soleimani, Manuchehr; Adler, Andy
2008-09-01
Electrical impedance tomography (EIT) reconstructs internal impedance images of the body from electrical measurements on body surface. The temporal resolution of EIT data can be very high, although the spatial resolution of the images is relatively low. Most EIT reconstruction algorithms calculate images from data frames independently, although data are actually highly correlated especially in high speed EIT systems. This paper proposes a 4-D EIT image reconstruction for functional EIT. The new approach is developed to directly use prior models of the temporal correlations among images and 3-D spatial correlations among image elements. A fast algorithm is also developed to reconstruct the regularized images. Image reconstruction is posed in terms of an augmented image and measurement vector which are concatenated from a specific number of previous and future frames. The reconstruction is then based on an augmented regularization matrix which reflects the a priori constraints on temporal and 3-D spatial correlations of image elements. A temporal factor reflecting the relative strength of the image correlation is objectively calculated from measurement data. Results show that image reconstruction models which account for inter-element correlations, in both space and time, show improved resolution and noise performance, in comparison to simpler image models.
Three-dimensional surface anthropometry: Applications to the human body
NASA Astrophysics Data System (ADS)
Jones, Peter R. M.; Rioux, Marc
1997-09-01
Anthropometry is the study of the measurement of the human body. By tradition this has been carried out taking the measurements from body surface landmarks, such as circumferences and breadths, using simple instruments like tape measures and calipers. Three-dimensional (3D) surface anthropometry enables us to extend the study to 3D geometry and morphology of mainly external human body tissues. It includes the acquisition, indexing, transmission, archiving, retrieval, interrogation and analysis of body size, shape, and surface together with their variability throughout growth and development to adulthood. While 3D surface anthropometry surveying is relatively new, anthropometric surveying using traditional tools, such as calipers and tape measures, is not. Recorded studies of the human form date back to ancient times. Since at least the 17th century 1 investigators have made attempts to measure the human body for physical properties such as weight, size, and centre of mass. Martin documented 'standard' body measurement methods in a handbook in 1928. 2 This paper reviews the past and current literature devoted to the applications of 3D anthropometry because true 3D scanning of the complete human body is fast becoming a reality. We attempt to take readers through different forms of technology which deal with simple forms of projected light to the more complex advanced forms of laser and video technology giving low and/or high resolution 3D data. Information is also given about image capture of size and shape of the whole as well as most component parts of the human body. In particular, the review describes with explanations a multitude of applications, for example, medical, product design, human engineering, anthropometry and ergonomics etc.
Swift, Andrew J; Rajaram, Smitha; Campbell, Michael J; Hurdman, Judith; Thomas, Steve; Capener, Dave; Elliot, Charlie; Condliffe, Robin; Wild, Jim M; Kiely, David G
2014-01-01
There are limited data on the prognostic value of cardiovascular magnetic resonance measurements in idiopathic pulmonary arterial hypertension, with no studies investigating the impact of correction of cardiovascular magnetic resonance indices for age and sex on prognostic value. Consecutive patients with idiopathic pulmonary arterial hypertension underwent cardiovascular magnetic resonance imaging at 1.5T. Steady-state free precession cardiac volumes and mass measurements were corrected for age, sex, and body surface area according to reference data and prognostic significance assessed. A total of 80 patients with idiopathic pulmonary arterial hypertension were identified, and 23 patients died during the mean follow-up of 32±14 months. Corrected for age, sex, and body surface area, right ventricular end-systolic volume (P=0.004) strongly predicted mortality, independent of World Health Organization functional class, mean right atrial pressure, cardiac index, and mixed venous oxygen saturations. Consideration should be given to correcting cardiovascular magnetic resonance measures for age, sex, and body surface area, particularly given the changing demographics of patients with idiopathic pulmonary arterial hypertension. Corrected right ventricular end-systolic volume is a strong prognostic marker in idiopathic pulmonary arterial hypertension, independent of invasively derived measurements, mean right atrial pressure cardiac index, and mixed venous oxygen saturations.
Using surface markers for MRI guided breast conserving surgery: a feasibility survey
NASA Astrophysics Data System (ADS)
Ebrahimi, Mehran; Siegler, Peter; Modhafar, Amen; Holloway, Claire M. B.; Plewes, Donald B.; Martel, Anne L.
2014-04-01
Breast MRI is frequently performed prior to breast conserving surgery in order to assess the location and extent of the lesion. Ideally, the surgeon should also be able to use the image information during surgery to guide the excision and this requires that the MR image is co-registered to conform to the patient’s position on the operating table. Recent progress in MR imaging techniques has made it possible to obtain high quality images of the patient in the supine position which significantly reduces the complexity of the registration task. Surface markers placed on the breast during imaging can be located during surgery using an external tracking device and this information can be used to co-register the images to the patient. There remains the problem that in most clinical MR scanners the arm of the patient has to be placed parallel to the body whereas the arm is placed perpendicular to the patient during surgery. The aim of this study is to determine the accuracy of co-registration based on a surface marker approach and, in particular, to determine what effect the difference in a patient’s arm position makes on the accuracy of tumour localization. Obtaining a second MRI of the patient where the patient’s arm is perpendicular to body axes (operating room position) is not possible. Instead we obtain a secondary MRI scan where the patient’s arm is above the patient’s head to validate the registration. Five patients with enhancing lesions ranging from 1.5 to 80 cm3 in size were imaged using contrast enhanced MRI with their arms in two positions. A thin-plate spline registration scheme was used to match these two configurations. The registration algorithm uses the surface markers only and does not employ the image intensities. Tumour outlines were segmented and centre of mass (COM) displacement and Dice measures of lesion overlap were calculated. The relationship between the number of markers used and the COM-displacement was also studied. The lesion COM-displacements ranged from 0.9 to 9.3 mm and the Dice overlap score ranged from 20% to 80%. The registration procedure took less than 1 min to run on a standard PC. Alignment of pre-surgical supine MR images to the patient using surface markers on the breast for co-registration therefore appears to be feasible.
Automated measurement of human body shape and curvature using computer vision
NASA Astrophysics Data System (ADS)
Pearson, Jeremy D.; Hobson, Clifford A.; Dangerfield, Peter H.
1993-06-01
A system to measure the surface shape of the human body has been constructed. The system uses a fringe pattern generated by projection of multi-stripe structured light. The optical methodology used is fully described and the algorithms used to process acquired digital images are outlined. The system has been applied to the measurement of the shape of the human back in scoliosis.
Remote sensing of ephemeral water bodies in western Niger
Verdin, J.P.
1996-01-01
Research was undertaken to evaluate the feasibility of monitoring the small ephemeral water bodies of the Sahel with the 1.1 km resolution data of the National Oceanic and Atmospheric Administration (NOAA) Advanced Very High Resolution Radiometer (AVHRR). Twenty-one lakes of western Niger with good ground observation records were selected for examination. Thematic Mapper images from 1988 were first analysed to determine surface areas and temperature differences between water and adjacent land. Six AVHRR scenes from the 1988-89 dry season were then studied. It was found that a lake can be monitored until its surface area drops below 10 ha, in most cases. Furthermore, with prior knowledge of the location and shape of a water body, its surface area can be estimated from AVHRR band 5 data to within about 10 ha. These results are explained by the sharp temperature contrast between water and land, on the order of 13?? C.
A Noninvasive Imaging Modality for Cardiac Arrhythmias
Burnes, John E.; Taccardi, Bruno; Rudy, Yoram
2007-01-01
Background The last decade witnessed an explosion of information regarding the genetic, molecular, and mechanistic basis of heart disease. Translating this information into clinical practice requires the development of novel functional imaging modalities for diagnosis, localization, and guided intervention. A noninvasive modality for imaging cardiac arrhythmias is not yet available. Present electrocardiographic methods cannot precisely localize a ventricular tachycardia (VT) or its key reentrant circuit components. Recently, we developed a noninvasive electrocardiographic imaging modality (ECGI) that can reconstruct epicardial electrophysiological information from body surface potentials. Here, we extend its application to image reentrant arrhythmias. Methods and Results Epicardial potentials were recorded during VT with a 490 electrode sock during an open chest procedure in 2 dogs with 4-day-old myocardial infarctions. Body surface potentials were generated from these epicardial potentials in a human torso model. Realistic geometry errors and measurement noise were added to the torso data, which were then used to noninvasively reconstruct epicardial isochrones, electrograms, and potentials with excellent accuracy. ECGI reconstructed the reentry pathway and its key components, including (1) the central common pathway, (2) the VT exit site, (3) lines of block, and (4) regions of slow and fast conduction. This allowed for detailed characterization of the reentrant circuit morphology. Conclusions ECGI can noninvasively image arrhythmic activation on the epicardium during VT to identify and localize key components of the arrhythmogenic pathway that can be effective targets for antiarrhythmic intervention. PMID:11044435
NASA Astrophysics Data System (ADS)
Mégnin, Charles; Romanowicz, Barbara
1999-08-01
Most global tomographic models to date are derived using a combination of surface wave (or normal-mode) data and body wave traveltime data. The traveltime approach limits the number of phases available for inversion by requiring them to be isolated on the seismogram. This may ultimately result in limiting the resolution of 3-D structure, at least in some depth ranges in the mantle. In a previous study, we successfully derived a degree 12 whole-mantle SH-velocity tomographic model (SAW12D) using exclusively waveform data. In that inversion, a normal-mode formalism suitable for body waveforms, the non-linear asymptotic coupling theory (NACT), was combined with a body wave windowing scheme, referred to as the `individual wavepacket' (IW) technique, which allows one to assign individual weights to different body wave energy packets. We here compare the relative merits of this choice of theoretical formalism and windowing scheme at different depth ranges in the mantle. Choosing as the reference a model obtained using 7500 transverse-component body wave and 8000 surface wave seismograms and the NACT and IW approaches, we discuss the relative performance of the path average approximation (PAVA), a zeroth-order theoretical approximation appropriate for single-mode surface waves, relative to NACT, and compare the IW windowing scheme with a more standard `full window' (FW) approach, in which a single time window is considered from the first body wave arrival to the fundamental-mode surface waves. The combination PAVA/FW is often used in global tomography to supplement the traveltime data. We show that although the quality of the image derived under the PAVA/FW formalism is very similar to that derived under NACT/IW in the first 300 km of the upper mantle, where the resolution is dominated by surface waves, it deteriorates at greater depths. Images of the lower mantle are shown to be strongly sensitive to the theoretical formalism. In contrast, the resolution of structure near the core-mantle boundary depends mostly on the windowing scheme. This is because this resolution is controlled by low-amplitude phases such as S_diff, which are downweighted in the FW scheme. Whilst the image obtained in D'' using the combination NACT/IW is in good agreement with images obtained by other authors using both waveforms and traveltimes, we show that, when using FW, uppermost mantle structure can be mapped into D''. This result is confirmed by synthetic tests performed on a composite of the upper-mantle geodynamic model 3SMAC. We also show, based on synthetic tests, that for structures in the upper mantle with sharp boundaries, differences are observed between NACT and PAVA. Whilst a combination of traveltimes and surface wave data is adequate for resolving relatively smooth features in the mantle, our results show that by potentially increasing the achievable sampling, the waveform approach shows great promise for future high-resolution tomographic modelling of mantle structure, if cast in an appropriate theoretical framework.
The influence of patient centering on CT dose and image noise.
Toth, Thomas; Ge, Zhanyu; Daly, Michael P
2007-07-01
Although x-ray intensity shaping filters (bowtie filters) have been used since the introduction of some of the earliest CT scanner models, the clinical implications on dose and noise are not well understood. To achieve the intended dose and noise advantage requires the patient to be centered in the scan field of view. In this study we explore the implications of patient centering in clinical practice. We scanned various size and shape phantoms on a GE LightSpeed VCT scanner using each available source filter with the phantom centers positioned at 0, 3, and 6 cm below the center of rotation (isocenter). Surface doses were measured along with image noise over a large image region. Regression models of surface dose and noise were generated as a function of phantom size and centering error. Methods were also developed to determine the amount of miscentering using a scout scan projection radiograph (SPR). These models were then used to retrospectively evaluate 273 adult body patients for clinical implications. When miscentered by 3 and 6 cm, the surface dose on a 32 cm CTDI phantom increased by 18% and 41% while image noise also increased by 6% and 22%. The retrospective analysis of adult body scout SPR scans shows that 46% of patients were miscentered in elevation by 20-60 mm with a mean position 23 mm below the center of rotation (isocenter). The analysis indicated a surface dose penalty of up to 140% with a mean dose penalty of 33% assuming that tube current is increased to compensate for the increased noise due to miscentering. Clinical image quality and dose efficiency can be improved on scanners with bowtie filters if care is exercised when positioning patients. Automatically providing patient specific centering and scan parameter selection information can help the technologist improve workflow, achieve more consistent image quality and reduce patient dose.
NASA Technical Reports Server (NTRS)
Garbeff, Theodore J., II; Panda, Jayanta; Ross, James C.
2017-01-01
Time-Resolved shadowgraph and infrared (IR) imaging were performed to investigate off-body and on-body flow features of a generic, 'hammer-head' launch vehicle geometry previously tested by Coe and Nute (1962). The measurements discussed here were one part of a large range of wind tunnel test techniques that included steady-state pressure sensitive paint (PSP), dynamic PSP, unsteady surface pressures, and unsteady force measurements. Image data was captured over a Mach number range of 0.6 less than or equal to M less than or equal to 1.2 at a Reynolds number of 3 million per foot. Both shadowgraph and IR imagery were captured in conjunction with unsteady pressures and forces and correlated with IRIG-B timing. High-speed shadowgraph imagery was used to identify wake structure and reattachment behind the payload fairing of the vehicle. Various data processing strategies were employed and ultimately these results correlated well with the location and magnitude of unsteady surface pressure measurements. Two research grade IR cameras were positioned to image boundary layer transition at the vehicle nose and flow reattachment behind the payload fairing. The poor emissivity of the model surface treatment (fast PSP) proved to be challenging for the infrared measurement. Reference image subtraction and contrast limited adaptive histogram equalization (CLAHE) were used to analyze this dataset. Ultimately turbulent boundary layer transition was observed and located forward of the trip dot line at the model sphere-cone junction. Flow reattachment location was identified behind the payload fairing in both steady and unsteady thermal data. As demonstrated in this effort, recent advances in high-speed and thermal imaging technology have modernized classical techniques providing a new viewpoint for the modern researcher
NASA Technical Reports Server (NTRS)
Young, Larry A.; Pisanich, Gregory; Ippolito, Corey; Alena, Rick
2005-01-01
The objective of this paper is to review the anticipated imaging and remote-sensing technology requirements for aerial vehicle survey missions to other planetary bodies in our Solar system that can support in-atmosphere flight. In the not too distant future such planetary aerial vehicle (a.k.a. aerial explorers) exploration missions will become feasible. Imaging and remote-sensing observations will be a key objective for these missions. Accordingly, it is imperative that optimal solutions in terms of imaging acquisition and real-time autonomous analysis of image data sets be developed for such vehicles.
Remote microscopy and volumetric imaging on the surface of icy satellites
NASA Astrophysics Data System (ADS)
Soto, Alejandro; Nowicki, Keith; Howett, Carly; Feldkhun, Daniel; Retherford, Kurt D.
2017-10-01
With NASA PIDDP support we have applied recent advancements in Fourier-domain microscopy to develop an instrument capable of microscopic imaging from meter-scale distances for use on a planetary lander on the surface of an icy satellite or other planetary bodies. Without moving parts, our instrument projects dynamic patterns of laser light onto a distant target using a lightweight large-aperture reflector, which then collects the light scattered or fluoresced by the target on a fast photon-bucket detector. Using Fourier Transform based techniques, we reconstruct an image from the detected light. The remote microscope has been demonstrated to produce 2D images with better than 15 micron lateral resolution for targets at a distance of 5 meters and is capable of linearly proportionally higher resolution at shorter distances. The remote microscope is also capable of providing three-dimensional (3D) microscopic imaging capabilities, allowing future surface scientists to explore the morphology of microscopic features in surface ices, for example. The instrument enables microscopic in-situ imaging during day or night without the use of a robotic arm, greatly facilitating the surface operations for a lander or rover while expanding the area of investigation near a landing site for improved science targeting. We are developing this remote microscope for in-situ planetary exploration as a collaboration between the Southwest Research Institute, LambdaMetrics, and the University of Colorado.
Detecting Water Bodies in LANDSAT8 Oli Image Using Deep Learning
NASA Astrophysics Data System (ADS)
Jiang, W.; He, G.; Long, T.; Ni, Y.
2018-04-01
Water body identifying is critical to climate change, water resources, ecosystem service and hydrological cycle. Multi-layer perceptron(MLP) is the popular and classic method under deep learning framework to detect target and classify image. Therefore, this study adopts this method to identify the water body of Landsat8. To compare the performance of classification, the maximum likelihood and water index are employed for each study area. The classification results are evaluated from accuracy indices and local comparison. Evaluation result shows that multi-layer perceptron(MLP) can achieve better performance than the other two methods. Moreover, the thin water also can be clearly identified by the multi-layer perceptron. The proposed method has the application potential in mapping global scale surface water with multi-source medium-high resolution satellite data.
Surface analysis by laser beam scanning and stereophotogrammetry
NASA Astrophysics Data System (ADS)
Aliverti, Andrea; Ferrigno, Giancarlo; Pedotti, Antonio
1993-10-01
The possibility to describe mathematically the body surfaces could improve diagnosis and objective evaluation of deformities, the follow up of progressive diseases and could represent a useful tool for other medical sectors as prosthetic and plastic surgery as well as for industrial applications where a real shape needs to be digitized and analyzed or modified mathematically. The approach here presented is based on the acquisition of a surface scanned by a laser beam. The 3D coordinates of the spot generated on the surface by the beam are obtained by an automatic image analyzer (ELITE system), originally developed for human motion analysis. The 3D coordinates are obtained by stereo-photogrammetry starting from at least two different view of the subject. A software package for graphic representation of the obtained surfaces has been developed and some preliminary results about some body shapes will be presented.
LANDSAT-4 image data quality analysis for energy related applications. [nuclear power plant sites
NASA Technical Reports Server (NTRS)
Wukelic, G. E. (Principal Investigator)
1983-01-01
No useable LANDSAT 4 TM data were obtained for the Hanford site in the Columbia Plateau region, but TM simulator data for a Virginia Electric Company nuclear power plant was used to test image processing algorithms. Principal component analyses of this data set clearly indicated that thermal plumes in surface waters used for reactor cooling would be discrenible. Image processing and analysis programs were successfully testing using the 7 band Arkansas test scene and preliminary analysis of TM data for the Savanah River Plant shows that current interactive, image enhancement, analysis and integration techniques can be effectively used for LANDSAT 4 data. Thermal band data appear adequate for gross estimates of thermal changes occurring near operating nuclear facilities especially in surface water bodies being used for reactor cooling purposes. Additional image processing software was written and tested which provides for more rapid and effective analysis of the 7 band TM data.
Hiby, Lex; Lovell, Phil; Patil, Narendra; Kumar, N Samba; Gopalaswamy, Arjun M; Karanth, K Ullas
2009-06-23
The tiger is one of many species in which individuals can be identified by surface patterns. Camera traps can be used to record individual tigers moving over an array of locations and provide data for monitoring and studying populations and devising conservation strategies. We suggest using a combination of algorithms to calculate similarity scores between pattern samples scanned from the images to automate the search for a match to a new image. We show how using a three-dimensional surface model of a tiger to scan the pattern samples allows comparison of images that differ widely in camera angles and body posture. The software, which is free to download, considerably reduces the effort required to maintain an image catalogue and we suggest it could be used to trace the origin of a tiger skin by searching a central database of living tigers' images for matches to an image of the skin.
Hiby, Lex; Lovell, Phil; Patil, Narendra; Kumar, N. Samba; Gopalaswamy, Arjun M.; Karanth, K. Ullas
2009-01-01
The tiger is one of many species in which individuals can be identified by surface patterns. Camera traps can be used to record individual tigers moving over an array of locations and provide data for monitoring and studying populations and devising conservation strategies. We suggest using a combination of algorithms to calculate similarity scores between pattern samples scanned from the images to automate the search for a match to a new image. We show how using a three-dimensional surface model of a tiger to scan the pattern samples allows comparison of images that differ widely in camera angles and body posture. The software, which is free to download, considerably reduces the effort required to maintain an image catalogue and we suggest it could be used to trace the origin of a tiger skin by searching a central database of living tigers' images for matches to an image of the skin. PMID:19324633
Global detection of large lunar craters based on the CE-1 digital elevation model
NASA Astrophysics Data System (ADS)
Luo, Lei; Mu, Lingli; Wang, Xinyuan; Li, Chao; Ji, Wei; Zhao, Jinjin; Cai, Heng
2013-12-01
Craters, one of the most significant features of the lunar surface, have been widely researched because they offer us the relative age of the surface unit as well as crucial geological information. Research on crater detection algorithms (CDAs) of the Moon and other planetary bodies has concentrated on detecting them from imagery data, but the computational cost of detecting large craters using images makes these CDAs impractical. This paper presents a new approach to crater detection that utilizes a digital elevation model instead of images; this enables fully automatic global detection of large craters. Craters were delineated by terrain attributes, and then thresholding maps of terrain attributes were used to transform topographic data into a binary image, finally craters were detected by using the Hough Transform from the binary image. By using the proposed algorithm, we produced a catalog of all craters ⩾10 km in diameter on the lunar surface and analyzed their distribution and population characteristics.
Image registration: enabling technology for image guided surgery and therapy.
Sauer, Frank
2005-01-01
Imaging looks inside the patient's body, exposing the patient's anatomy beyond what is visible on the surface. Medical imaging has a very successful history for medical diagnosis. It also plays an increasingly important role as enabling technology for minimally invasive procedures. Interventional procedures (e.g. catheter based cardiac interventions) are traditionally supported by intra-procedure imaging (X-ray fluoro, ultrasound). There is realtime feedback, but the images provide limited information. Surgical procedures are traditionally supported with pre-operative images (CT, MR). The image quality can be very good; however, the link between images and patient has been lost. For both cases, image registration can play an essential role -augmenting intra-op images with pre-op images, and mapping pre-op images to the patient's body. We will present examples of both approaches from an application oriented perspective, covering electrophysiology, radiation therapy, and neuro-surgery. Ultimately, as the boundaries between interventional radiology and surgery are becoming blurry, also the different methods for image guidance will merge. Image guidance will draw upon a combination of pre-op and intra-op imaging together with magnetic or optical tracking systems, and enable precise minimally invasive procedures. The information is registered into a common coordinate system, and allows advanced methods for visualization such as augmented reality or advanced methods for therapy delivery such as robotics.
Thermal Imaging of Body Surface Temperature Distribution in Women with Anorexia Nervosa.
Chudecka, Monika; Lubkowska, Anna
2016-01-01
The drastic reduction in body weight observed in anorexia nervosa (AN) leads to various endocrine changes and consequently to disturbance in thermoregulation mechanisms and body temperature. Thermography allows for a noninvasive diagnosis of the distribution of skin surface temperatures, which is especially important for difficult patients such as women with AN, who are often very sensitive and difficult to treat. The main aim of this study was to measure the mean temperatures (Tmean ) of selected body areas in young women diagnosed with AN and identify those areas where the temperature differences were particularly significant between healthy women and them. Additionally, we determined the relationships between body mass index, body composition (especially subcutaneous and VFM) and the value of mean surface temperature (Tmean ) in AN woman. In the subjects with AN, Tmean of the abdomen, lower back and thighs were significantly higher than in the reference group, while Tmean of the hands were significantly lower. Among other things, analysis showed a significant negative correlation between Tmean of the abdomen, lower back and thighs, and the mass of subcutaneous and visceral fat. The lower Tmean of the hand was directly proportional to the reduced anthropomorphic parameters. The direct evaluation of body surface temperature distribution could provide clinical implications for the treatment of anorexic patients, including the potential use of thermotherapy in stimulating the circulatory system, especially in hypothermia, bradycardia and hypotension. Copyright © 2015 John Wiley & Sons, Ltd and Eating Disorders Association.
Kottner, Sören; Ebert, Lars C; Ampanozi, Garyfalia; Braun, Marcel; Thali, Michael J; Gascho, Dominic
2017-03-01
Injuries such as bite marks or boot prints can leave distinct patterns on the body's surface and can be used for 3D reconstructions. Although various systems for 3D surface imaging have been introduced in the forensic field, most techniques are both cost-intensive and time-consuming. In this article, we present the VirtoScan, a mobile, multi-camera rig based on close-range photogrammetry. The system can be integrated into automated PMCT scanning procedures or used manually together with lifting carts, autopsy tables and examination couch. The VirtoScan is based on a moveable frame that carries 7 digital single-lens reflex cameras. A remote control is attached to each camera and allows the simultaneous triggering of the shutter release of all cameras. Data acquisition in combination with the PMCT scanning procedures took 3:34 min for the 3D surface documentation of one side of the body compared to 20:20 min of acquisition time when using our in-house standard. A surface model comparison between the high resolution output from our in-house standard and a high resolution model from the multi-camera rig showed a mean surface deviation of 0.36 mm for the whole body scan and 0.13 mm for a second comparison of a detailed section of the scan. The use of the multi-camera rig reduces the acquisition time for whole-body surface documentations in medico-legal examinations and provides a low-cost 3D surface scanning alternative for forensic investigations.
NASA Astrophysics Data System (ADS)
Yu, D.; Wang, M.; Liu, Q.
2015-09-01
A reference man is a theoretical individual that represents the average anatomical structure and physiological and metabolic features of a specific group of people and has been widely used in radiation safety research. With the help of an advantage in deformation, the present work proposed a Chinese reference man adult-male polygon-mesh surface phantom based on the Visible Chinese Human segment image dataset by surface rendering and deforming. To investigate the influence of physique on electromagnetic dosimetry in humans, a series of human phantoms with 10th, 50th and 90th body mass index and body circumference percentile physiques for Chinese adult males were further constructed by deforming the Chinese reference man surface phantom. All the surface phantoms were then voxelized to perform electromagnetic field simulation in a frequency range of 20 MHz to 3 GHz using the finite-difference time-domain method and evaluate the whole-body average and organ average specific absorption rate and the ratios of absorbed energy in skin, fat and muscle to the whole body. The results indicate thinner physique leads to higher WBSAR and the volume of subcutaneous fat, the penetration depth of the electromagnetic field in tissues and standing-wave occurrence may be the influence factors of physique on electromagnetic dosimetry.
Minimizing EIT image artefacts from mesh variability in finite element models.
Adler, Andy; Lionheart, William R B
2011-07-01
Electrical impedance tomography (EIT) solves an inverse problem to estimate the conductivity distribution within a body from electrical simulation and measurements at the body surface, where the inverse problem is based on a solution of Laplace's equation in the body. Most commonly, a finite element model (FEM) is used, largely because of its ability to describe irregular body shapes. In this paper, we show that simulated variations in the positions of internal nodes within a FEM can result in serious image artefacts in the reconstructed images. Such variations occur when designing FEM meshes to conform to conductivity targets, but the effects may also be seen in other applications of absolute and difference EIT. We explore the hypothesis that these artefacts result from changes in the projection of the anisotropic conductivity tensor onto the FEM system matrix, which introduces anisotropic components into the simulated voltages, which cannot be reconstructed onto an isotropic image, and appear as artefacts. The magnitude of the anisotropic effect is analysed for a small regular FEM, and shown to be proportional to the relative node movement as a fraction of element size. In order to address this problem, we show that it is possible to incorporate a FEM node movement component into the formulation of the inverse problem. These results suggest that it is important to consider artefacts due to FEM mesh geometry in EIT image reconstruction.
The Development of a Flexible Measuring System for Muscle Volume Using Ultrasonography
NASA Astrophysics Data System (ADS)
Fukumoto, Kiyotaka; Fukuda, Osamu; Tsubai, Masayoshi; Muraki, Satoshi
Quantification of muscle volume can be used as a means for the estimation of muscle strength. Its measuring process does not need the subject's muscular contractions so it is completely safe and particularly suited for elderly people. Therefore, we have developed a flexible measuring system for muscle volume using ultrasonography. In this system, an ultrasound probe is installed on a link mechanism which continuously scans fragmental images along the human body surface. These images are then measured and composed into a wide area cross-sectional image based on the spatial compounding method. The flexibility of the link mechanism enables the operator to measure the images under any body postures and body site. The spatial compounding method significantly reduces speckle and artifact noises from the composed cross-sectional image so that the operator can observe the individual muscles, such as Rectus femoris, Vastus intermedius, and so on, in detail. We conducted the experiments in order to examine the advantages of this system we have developed. The experimental results showed a high accuracy of the measuring position which was calculated using the link mechanism and presented the noise reduction effect based on the spatial compounding method. Finally, we confirmed high correlations between the MRI images and the ones of the developed system to verify the validity of the system.
Real-time optical measurement of the dynamic body surface for use in guided radiotherapy
NASA Astrophysics Data System (ADS)
Price, G. J.; Parkhurst, J. M.; Sharrock, P. J.; Moore, C. J.
2012-01-01
Optical measurements are increasingly used in radiotherapy. In this paper we present, in detail, the design and implementation of a multi-channel optical system optimized for fast, high spatial resolution, dynamic body surface measurement in guided therapy. We include all algorithmic modifications and calibration procedures required to create a robust, practical system for clinical use. Comprehensive static and dynamic phantom validation measurements in the radiotherapy treatment room show: conformance with simultaneously measured cone beam CT data to within 1 mm over 62% ± 8% of the surface and 2 mm over 90% ± 3%; agreement with the measured radius of a precision geometrical phantom to within 1 mm; and true real-time performance with image capture through to surface display at 23 Hz. An example patient dataset is additionally included, indicating similar performance in the clinic.
Kulick, Michael I
2010-06-01
Cellulite is a condition usually limited to women. The most common location for this surface irregularity is the thigh. Evaluation of treatment efficacy is difficult because of the reliance on patient satisfaction surveys and flash photography, which can "flatten" surface texture. Reproducibility of photographs is also difficult, as subtle changes in body position can affect appearance. Twenty women with mild to moderate cellulite of their lateral thighs were enrolled. Pretreatment and posttreatment assessment included patient weight, body mass index, percentage body fat, standard digital photographs, VECTRA three-dimensional images, and patient questionnaire. Patients received two treatments per week for 4 weeks. Treatment time was 15 minutes per thigh using the SmoothShapes device. Patients were evaluated 1, 3, and 6 months after their last treatment. To be considered improved after treatment, both thighs needed clear improvement in contour as determined by the "untextured" images obtained with the VECTRA camera system. This device depicts skin contour independent of incident lighting. There were no complications. Seventeen patients had complete data for analysis. Ninety-four percent of the patients felt their cellulite was improved. VECTRA analysis showed 82 percent improvement at 1 month, 76 percent improvement at 3 months, and 76 percent improvement at 6 months. Initial cellulite irregularities and improvement were more difficult to discern using standard digital photographs. There was an average increase in patient weight, body mass index, and percentage body fat at 6 months. The SmoothShapes device provided improvement in surface contour (cellulite) 6 months after the last treatment in the majority of the patients based on patient survey and VECTRA analysis.
Pluto and Charon Surfaces in Living Color Animation
2015-07-03
This is a frame from the first movie created by New Horizons to reveal color surface features of Pluto and its largest moon, Charon. "It's a bit unusual to see so much surface detail at this distance," said New Horizons co-investigator William McKinnon, a member of the mission's Geology and Geophysics Investigation team, from Washington University in Saint Louis. "What's especially noteworthy is the level of detail in both bodies. It's certainly whetting our appetite for what's to come." The images were taken between June 23 and June 29, 2015, as New Horizons' distance to Pluto decreased from a distance of 15 million to 11 million miles (24 million to 18 million kilometers). Six high-resolution black-and-white images from New Horizons' Long-Range Reconnaissance Imager (LORRI) instrument were combined with color data from the Ralph instrument to produce the movie. http://photojournal.jpl.nasa.gov/catalog/PIA19696
NASA Astrophysics Data System (ADS)
Monga, Olivier; Ayache, Nicholas; Sander, Peter T.
1991-09-01
Modern medical image techniques, such as magnetic resonance image (MRI) or x-ray computed tomography provide three dimensional images of internal structures of the body, usually by means of a stack of tomographic images. The first stage in the automatic analysis of such data is 3-D edge detection1,2 which provides points corresponding to the boundaries of the surfaces forming the 3-D structure. The next stage is to characterize the local geometry of these surfaces in order to extract points or lines on which registration and/or tracking procedures can rely.3,4,5,6 This paper presents a pipeline of processes which define a hierarchical description of the second order differential characteristics of the surfaces. The focus is on the theoretical coherence of these levels of representation. Using uncertainty, a link is established between the edge detection and the local surface approximation by addressing the uncertainties inherent to edge detection in 2-D or 3-D images; and how to incorporate these uncertainties into the computation of local geometric models. In particular, calculate the uncertainty of edge location, direction, and magnitude for the 3-D Deriche operator is calculated.1,2 Statistical results are then used as a solid theoretical foundation on which to base subsequent computations, such as the determination of local surface curvature using local geometric models for surface segmentation. From the local fitting, for each edge point the mean and Gaussian curvature, principal curvatures and directions, curvature singularities, lines of curvature singularities, and covariance matrices defining the uncertainties are calculated. Experimental results for real data using two 3-D scanner images of the same organ taken at different positions demonstrate the stability of the mean and Gaussian curvatures. Experimental results for real data showing the determination of local curvature extremes of surfaces extracted from MR images are presented.
Ceres' deformational surface features compared to other planetary bodies.
NASA Astrophysics Data System (ADS)
von der Gathen, Isabel; Jaumann, Ralf; Krohn, Katrin; Buczkowski, Debra L.; Elgner, Stephan; Kersten, Elke; Matz, Klaus-Dieter; Nass, Andrea; Otto, Katharina; Preusker, Frank; Roatsch, Thomas; Schröder, Stefanus E.; Schulzeck, Franziska; Stephan, Katrin; Wagner, Roland; De Sanctis, Maria C.; Schenk, Paul; Scully, Jennifer E. C.; Williams, Dave A.; Raymond, Carol A.
2016-04-01
On March 2015, NASA's Dawn spacecraft arrived at the dwarf planet Ceres and has been providing images of its surface. Based on High Altitude Mapping Orbiter (HAMO) clear filter images (140 m/px res.), a Survey mosaic (~400 m/px) and a series of Low Altitude Mapping Orbiter (LAMO) clear filter images (35 m/px) of the Dawn mission [1], deformational features are identified on the surface of Ceres. In order to further our knowledge about the nature and origin of these features, we start a comparative analysis of similar features on different planetary bodies, like Enceladus, Ganymede and the Moon, based on images provided by the Cassini, Galileo and Lunar Orbiter mission. This study focuses on the small scale fractures, mostly located on Ceres' crater floors, in comparison with crater fractures on the planetary bodies named above. The fractures were analyzed concerning the morphology and shape, the distribution, orientation and possible building mechanisms. On Ceres, two different groups of fractures are distinct. The first one includes fractures, normally arranged in subparallel pattern, which are usually located on crater floors, but also on crater rims. Their sense of direction is relatively uniform but in some cases they get deformed by shearing. The second group consists of joint systems, which spread out of one single location, sometimes arranged concentric to the crater rim. They were likely formed by cooling-melting processes linked to the impact process or up doming material. Fractures located on crater floors are also common on the icy satellite Enceladus [3]. While Enceladus' fractures don't seem to have a lot in common compared to those on Ceres, we assume that similar fracture patterns and therefore similar building mechanism can be found e.g. on Ganymede and especially on the Moon [2]. Further work will include the comparison of the fractures with additional planetary bodies and the trial to explain why fracturing e.g. on Enceladus differs from that on Ceres. References: [1] Roatsch T. et al. (2016) PSS, in press. [2] Buczkowski D. L. (2016) LPSC. [3] Stephan, K. et al. (2013), in The Science of Solar System Ices, p. 279.
Kudo, Hiroki; Ishizawa, Takeaki; Tani, Keigo; Harada, Nobuhiro; Ichida, Akihiko; Shimizu, Atsushi; Kaneko, Junichi; Aoki, Taku; Sakamoto, Yoshihiro; Sugawara, Yasuhiko; Hasegawa, Kiyoshi; Kokudo, Norihiro
2014-08-01
Although laparoscopic hepatectomy has increasingly been used to treat cancers in the liver, the accuracy of intraoperative diagnosis may be inferior to that of open surgery because the ability to visualize and palpate the liver surface during laparoscopy is relatively limited. Fluorescence imaging has the potential to provide a simple compensatory diagnostic tool for identification of cancers in the liver during laparoscopic hepatectomy. In 17 patients who were to undergo laparoscopic hepatectomy, 0.5 mg/kg body weight of indocyanine green (ICG) was administered intravenously within the 2 weeks prior to surgery. Intraoperatively, a laparoscopic fluorescence imaging system obtained fluorescence images of its surfaces during mobilization of the liver. In all, 16 hepatocellular carcinomas (HCCs) and 16 liver metastases (LMs) were resected. Of these, laparoscopic ICG fluorescence imaging identified 12 HCCs (75%) and 11 LMs (69%) on the liver surfaces distributed over Couinaud's segments 1-8, including the 17 tumors that had not been identified by visual inspections of normal color images. The 23 tumors that were identified by fluorescence imaging were located closer to the liver surfaces than another nine tumors that were not identified by fluorescence imaging (median [range] depth 1 [0-5] vs. 11 [8-30] mm; p < 0.001). Like palpation during open hepatectomy, laparoscopic ICG fluorescence imaging enables real-time identification of subcapsular liver cancers, thus facilitating estimation of the required extent of hepatic mobilization and determination of the location of an appropriate hepatic transection line.
NASA Astrophysics Data System (ADS)
Roy, A.; Inamdar, A. B.
2016-12-01
Major part of Godavari River Basin is intensely drought prone and climate vulnerable in the Western Maharashtra State, India. The economy of the state depends on the agronomic productivity of this region. So, it is necessary to regulate the effects of existing and upcoming hydro-meteorological advances in various strata. This study investigates and maps the surface water resources availability and vegetation, their decadal deviations with multi-temporal LANDSAT images; and finally quantifies the agricultural adaptations. This work involves the utilization of Remote Sensing and GIS with Hydrological modeling. First, climatic trend analysis is carried out with NCEP dataset. Then, multi-temporal LANDSAT images are classified to determine the decadal LULC changes and correlated to the community level hydrological demand. Finally, NDVI, NDWI and SWAT model analysis are accomplished to determine irrigated and non-irrigated cropping area for identifying the agricultural adaptations. The analysis shows that the mean value of annual and monsoon rainfall is significantly decreasing, whereas the mean value of annual and summer temperature is increasing significantly and the winter temperature is decreasing. The analysis of LANDSAT images shows that the surface water availability is highly dependent on climatic conditions. Barren-lands are most dynamic during the study period followed by, vegetation, and water bodies. The spatial extent of barren-lands is increased drastically during the climate vulnerable years replacing the vegetation and surface water bodies. Hence, the barren lands are constantly increasing and the vegetation cover is linearly decreasing, whereas the water extent is changing either way in a random fashion. There appears a positive correlation between surface water and vegetation occurrence; as they are fluctuating in a similar fashion in all the years. The vegetation cover is densely replenished around the dams and natural water bodies which serve as the water supply stations for the irrigation purposes. Moreover, there is a shift to non-irrigated and less water demanding crops, from more water demanding crops, which is a conspicuous adaptation. Hence, the study shows there are alteration in meteorological predictors, land cover, agricultural practices and surface water availability.
Optimized plasma actuation on asymmetric vortex over a slender body
NASA Astrophysics Data System (ADS)
Long, Yuexiao; Li, Huaxing; Meng, Xuanshi; Hu, Haiyang
2018-01-01
Detailed particle-image-velocimetry and surface pressure measurements are conducted to study asymmetric vortex control over a slender body at high angles of attack by using a pair of optimized alternating current surface-dielectric-barrier discharge plasma actuators. The Reynolds number based on the base diameter of the model is ReD = 3.8 × 105. Steady and duty-cycle manipulations are employed. The results demonstrate the effectiveness of the optimized actuator with a thick Teflon barrier at a high free-stream speed. Perfect linear proportional control is also achieved under duty-cycle control with a reduced frequency of f+ = 0.17.
The Impact of Venous Leg Ulcers on Body Image and Self-esteem.
Salomé, Geraldo Magela; de Almeida, Sergio Aguinaldo; de Jesus Pereira, Maria Teresa; Massahud, Marcelo Renato; de Oliveira Moreira, Carmelita Naira; de Brito, Maria José Azevedo; Ferreira, Lydia Masako
2016-07-01
To evaluate self-esteem and body image in patients with venous leg ulcers (VLUs). A multicenter, prospective, descriptive, analytical, clinical study. A nursing care and education center of a university hospital, a health center, and an outpatient wound care clinic in Brazil. Fifty-nine consecutive adult patients with VLUs and Doppler ankle-brachial index ranging from 0.8 to 1.0 were recruited for the study. Exclusion criteria were mixed ulcers, arterial ulcers, and diabetic foot ulcers. A questionnaire assessing sociodemographic and clinical characteristics of patients, the Brazilian version of the Body Investment Scale, and the Rosenberg Self-esteem (RSE)/UNIFESP-EPM (São Paulo da Universidade Federal de São Paulo-Escola Paulista de Medicina) scale were administered to all patients. Most participants were women, aged between 60 and 70 years, and smokers; 33 (56%) were divorced, widowed, or single, and 26 (44%) were married. The patients had the ulcer for a mean of 5.42 years. Exudate and foul odor were present in most cases. Twenty-one ulcers (36%) measured 29 cm or less in surface area, and 17 (29%) ulcers measured between 30 and 49 cm (mean, 3.39 cm). The mean RSE score was 22.66, indicating low self-esteem. The mean Body Investment Scale total score was 27.49, and the scores on the body image and body touch subscales were also low, indicating negative feelings about the body. Patients with VLUs had low self-esteem and negative feelings about their bodies.
A unified account of gloss and lightness perception in terms of gamut relativity.
Vladusich, Tony
2013-08-01
A recently introduced computational theory of visual surface representation, termed gamut relativity, overturns the classical assumption that brightness, lightness, and transparency constitute perceptual dimensions corresponding to the physical dimensions of luminance, diffuse reflectance, and transmittance, respectively. Here I extend the theory to show how surface gloss and lightness can be understood in a unified manner in terms of the vector computation of "layered representations" of surface and illumination properties, rather than as perceptual dimensions corresponding to diffuse and specular reflectance, respectively. The theory simulates the effects of image histogram skewness on surface gloss/lightness and lightness constancy as a function of specular highlight intensity. More generally, gamut relativity clarifies, unifies, and generalizes a wide body of previous theoretical and experimental work aimed at understanding how the visual system parses the retinal image into layered representations of surface and illumination properties.
Simultaneous PET and Multispectral 3-Dimensional Fluorescence Optical Tomography Imaging System
Li, Changqing; Yang, Yongfeng; Mitchell, Gregory S.; Cherry, Simon R.
2015-01-01
Integrated PET and 3-dimensional (3D) fluorescence optical tomography (FOT) imaging has unique and attractive features for in vivo molecular imaging applications. We have designed, built, and evaluated a simultaneous PET and 3D FOT system. The design of the FOT system is compatible with many existing small-animal PET scanners. Methods The 3D FOT system comprises a novel conical mirror that is used to view the whole-body surface of a mouse with an electron-multiplying charge-coupled device camera when a collimated laser beam is projected on the mouse to stimulate fluorescence. The diffusion equation was used to model the propagation of optical photons inside the mouse body, and 3D fluorescence images were reconstructed iteratively from the fluorescence intensity measurements measured from the surface of the mouse. Insertion of the conical mirror into the gantry of a small-animal PET scanner allowed simultaneous PET and 3D FOT imaging. Results The mutual interactions between PET and 3D FOT were evaluated experimentally. PET has negligible effects on 3D FOT performance. The inserted conical mirror introduces a reduction in the sensitivity and noise-equivalent count rate of the PET system and increases the scatter fraction. PET–FOT phantom experiments were performed. An in vivo experiment using both PET and FOT was also performed. Conclusion Phantom and in vivo experiments demonstrate the feasibility of simultaneous PET and 3D FOT imaging. The first in vivo simultaneous PET–FOT results are reported. PMID:21810591
Liu, T H; Chiou, W K; Lin, J D; Yu, C Y
2001-11-01
Body mass index (BMI) and waist-hip ratio (WHR) using 1-dimensional circumference data have been proven to be highly related to blood pressure and total cholesterol; these 2 indices have been widely used as health indicators in preventive diagnosis and health examination. Sophisticated software, which allows calculation of the triangular mesh related to the body surface in 3D space, is capable of computing the circumference, width, sectional surface, volume, and surface area of the body. Chang Gung Whole Body Scanner (CGWBS) was used to capture 3D whole body surface images. In this study, the human body was divided into 10 segments consisting of the head, breast, wrist, hip, upper arm, forearm, hand, thigh, calf, and foot. Five independent assessments were made on a total of 32 anthropometric sites, including 12 circumferences, 3 widths, 3 profile areas, 7 surface areas, and 7 volumes. In this study, the somatotype index (SI) was computed through anthropometric data after 1,323 subjects were investigated. Correlation analysis was used to describe the relationship between BMI, WHR, SI, and anthropometric data. One-way analysis of variance (ANOVA) and Duncan's multiple range tests were used to examine differences between examination variables across sex and SI groups. This study found 4 somatotypes from anthropometric data. SI determined by CGWBS has better correlation with anthropometry than WHR or BMI. Of the 644 male subjects, 155 were in the ectomorph group, 232 in the semi-mesomorph group, 136 in the full-mesomorph group, and 121 in the endomorph group. Of the 679 female subjects, 160 were in the ectomorph group, 235 in the semi-mesomorph group, 168 in the full-mesomorph group, and 116 in the endomorph group. The results show that SI has great potential to perform precise somatotype classification.
Correlation of nosetip boundary-layer transition data measured in ballistics-range experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reda, D.C.
1979-11-01
Preablated nosetips of various carbonaceous materials were tested in a ballistics range. Surface-temperature contours, measured with image-converter cameras, were used to define boundary-layer transition-fron contours. Measurements of surface roughness, surface temperature, average transition-calculations of nosetip flowfields, and with calculations of laminar boundary-layer development in these flowfields, to transform all data into various dimensionless parameters. These parameters were defined by previous attempts to correlate existing wind-tunnel data for transition on rough/blunt bodies.
The rotation of Titan by latest Cassini data*
NASA Astrophysics Data System (ADS)
Meriggiola, R.; Iess, L.; Stiles, B. W.
2011-12-01
Between 2004 and 2009 the RADAR instrument of the Cassini mission provided 31 SAR images of Titan. With a good coverage of both polar and equatorial regions, SAR imaging revealed the complex and unique landforms of Titan's surface, including hydrocarbon lakes and river channels. As each observed land strip covers a wide interval of latitudes and/or longitudes, there are many regions of the satellite that have been observed twice, at different epochs and mean anomalies. The overlapping portions of the SAR images offer a good opportunity to determine the body's rotational state (spin pole and length of day) by means of landmark tracking. We selected 44 crossings and 252 outstanding surface features for image correlation. Each pair of features was georeferenced using the IAU model of Titan's rotation and correlated to produce a misregistration vector. The mismatching (in the range of 400 m-42 km) is mainly due to the incorrect values of the rotational parameters. A parallax effect due to errors in the presumed surface body shape can also contribute to misregistration. In extreme cases, this effect can contribute > 5 km of misregistration error. To avoid this extra error source we utilize Titan surface height estimates in our fitting procedure. Both systematic and random errors in the image correlation and georeferencing also contribute at the level of 1 km. The misregistration vectors are used as observable quantities in a least-squares fit, where the rotational parameters are adjusted to minimize the weighted residuals. We used the misregistration of tiepoints to estimate spin pole location (right ascension and declination at J2000 epoch) and the spin period. The new pole location, considering also the precession and nutation terms, is compatible with the occupancy of a Cassini state 1. The spin period is found to be compatible with a long-term synchronous rotation within the bounds of the experimental errors. The analysis confirms the large value of the obliquity (> 0.3 degrees), incompatible with the assumption of a rigid body with fully-damped pole and a moment of inertia factor of 0.34 (as determined by gravity measurements). * Portions of the work reported here were performed at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration
Experimental Investigation of the DLR-F6 Transport Configuration in the National Transonic Facility
NASA Technical Reports Server (NTRS)
Gatlin, Gregory M.; Rivers, Melissa B.; Goodliff, Scott L.; Rudnik, Ralf; Sitzmann, Martin
2008-01-01
An experimental aerodynamic investigation of the DLR (German Aerospace Center) F6 generic transport configuration has been conducted in the NASA NTF (National Transonic Facility) for CFD validation within the framework of the AIAA Drag Prediction Workshop. Force and moment, surface pressure, model deformation, and surface flow visualization data have been obtained at Reynolds numbers of both 3 million and 5 million. Flow-through nacelles and a side-of-body fairing were also investigated on this wing-body configuration. Reynolds number effects on trailing edge separation have been assessed, and the effectiveness of the side-of-body fairing in eliminating a known region of separated flow has been determined. Data obtained at a Reynolds number of 3 million are presented together for comparison with data from a previous wind tunnel investigation in the ONERA S2MA facility. New surface flow visualization capabilities have also been successfully explored and demonstrated in the NTF for the high pressure and moderately low temperature conditions required in this investigation. Images detailing wing surface flow characteristics are presented.
Virtual source reflection imaging of the Socorro Magma Body, New Mexico, using a dense seismic array
NASA Astrophysics Data System (ADS)
Finlay, T. S.; Worthington, L. L.; Schmandt, B.; Hansen, S. M.; Bilek, S. L.; Aster, R. C.; Ranasinghe, N. R.
2017-12-01
The Socorro Magma Body (SMB) is one of the largest known actively inflating continental magmatic intrusions. Previous studies have relied on sparse instrument coverage to determine its spatial extent, depth, and seismic signature, which characterized the body as a thin sill with a surface at 19 km below the Earth's surface. However, over the last two decades, InSAR and magneto-telluric (MT) studies have shed new light on the SMB and invigorated the scientific debate of the spatial distribution and uplift rate of the SMB. We return to seismic imaging of the SMB with the Sevilleta Array, a 12-day deployment of approximately 800 vertical component, 10-Hz geophones north of Socorro, New Mexico above and around the estimated northern half of the SMB. Teleseismic virtual source reflection profiling (TVR) employs the free surface reflection off of a teleseismic P as a virtual source in dense arrays, and has been used successfully to image basin structure and the Moho in multiple tectonic environments. The Sevilleta Array recorded 62 teleseismic events greater than M5. Applying TVR to the data collected by the Sevilleta Array, we present stacks from four events that produced the with high signal-to-noise ratios and simple source-time functions: the February 11, 2015 M6.7 in northern Argentina, the February 19, 2015 M5.4 in Kamchatka, Russia, and the February 21, 2015 M5.1 and February 22, 2015 M5.5 in western Colombia. Preliminary results suggest eastward-dipping reflectors at approximately 5 km depth near the Sierra Ladrones range in the northwestern corner of the array. Further analysis will focus on creating profiles across the area of maximum SMB uplift and constraining basin geometry.
Rosetta Images of Comet 67P/CHURYUMOV-GERASIMENKO: Inferences from its Terrain and Structure
NASA Astrophysics Data System (ADS)
Wallis, Max; Wickramasinghe, N. Chandra
The Rosetta mission has given us remarkable images of comet 67P/C-G both from the orbiter, and recently from the Philae lander during its brief days before running out of power. Though its crust is very black, there are several indicators of an underlying icy morphology. Comet 67P displays smooth, planar `seas' (the largest 600 m × 800 m) and flat-bottomed craters, both features seen also on Comet Tempel-1. Comet 67P's surface is peppered with mega-boulders (10-70 km) like Comet Hartley-2, while parallel furrowed terrain appears as a new ice feature. The largest sea (`Cheops' Sea, 600 m × 800 m) curves around one lobe of the 4 km diameter comet, and the crater lakes extending to ~150 m across are re-frozen bodies of water overlain with organic-rich debris (sublimation lag) of order 10 cm. The parallel furrows relate to flexing of the asymmetric and spinning two-lobe body, which generates fractures in an underlying body of ice. The mega-boulders are hypothesised to arise from bolide impacts into ice. In the very low gravity, boulders ejected at a fraction of 1 m/s would readily reach ~100 m from the impact crater and could land perched on elevated surfaces. Where they stand proud, they indicate stronger refrozen terrain or show that the surface they land on (and crush) sublimates more quickly. Outgassing due to ice-sublimation was already evident in September at 3.3 AU, with surface temperature peaks of 220-230 K, which implies impure ice mixtures with less strongly-bound H2O. Increasing rates of sublimation as Rosetta follows comet 67P around its 1.3 AU perihelion will further reveal the nature and prevalence of near-surface ices.
Effect of sway on image fidelity in whole-body digitizing
NASA Astrophysics Data System (ADS)
Corner, Brian D.; Hu, Anmin
1998-03-01
For 3D digitizers to be useful data collection tools in scientific and human factors engineering applications, the models created from scan data must match the original object very closely. Factors such as ambient light, characteristics of the object's surface, and object movement, among others can affect the quality of the image produced by any 3D digitizing system. Recently, Cyberware has developed a whole body digitizer for collecting data on human size and shape. With a digitizing time of about 15 seconds, the effect subject movement, or sway, on model fidelity is an important issue to be addressed. The effect of sway is best measured by comparing the dimensions of an object of known geometry to the model of the same object captured by the digitizer. Since it is difficult to know the geometry of a human body accurately, it was decided to compare an object of simple geometry to its digitized counterpart. Preliminary analysis showed that a single cardboard tube would provide the best artifact for detecting sway. A tube was attached to the subjects using supports that allowed the cylinder to stand away from the body. The stand-off was necessary to minimize occluded areas. Multiple scans were taken of 1 subject and the cylinder extracted from the images. Comparison of the actual cylinder dimensions to those extracted from the whole body images found the effect of sway to be minimal. This follows earlier findings that anthropometric dimensions extracted from whole body scans are very close to the same dimensions measured using standard manual methods. Recommendations for subject preparation and stabilization are discussed.
3D radar wavefield tomography of comet interiors
NASA Astrophysics Data System (ADS)
Sava, Paul; Asphaug, Erik
2018-04-01
Answering fundamental questions about the origin and evolution of small planetary bodies hinges on our ability to image their surface and interior structure in detail and at high resolution. The interior structure is not easily accessible without systematic imaging using, e.g., radar transmission and reflection data from multiple viewpoints, as in medical tomography. Radar tomography can be performed using methodology adapted from terrestrial exploration seismology. Our feasibility study primarily focuses on full wavefield methods that facilitate high quality imaging of small body interiors. We consider the case of a monostatic system (co-located transmitters and receivers) operated in various frequency bands between 5 and 15 MHz, from a spacecraft in slow polar orbit around a spinning comet nucleus. Using realistic numerical experiments, we demonstrate that wavefield techniques can generate high resolution tomograms of comets nuclei with arbitrary shape and complex interior properties.
Seismic interferometry of railroad induced ground motions: body and surface wave imaging
NASA Astrophysics Data System (ADS)
Quiros, Diego A.; Brown, Larry D.; Kim, Doyeon
2016-04-01
Seismic interferometry applied to 120 hr of railroad traffic recorded by an array of vertical component seismographs along a railway within the Rio Grande rift has recovered surface and body waves characteristic of the geology beneath the railway. Linear and hyperbolic arrivals are retrieved that agree with surface (Rayleigh), direct and reflected P waves observed by nearby conventional seismic surveys. Train-generated Rayleigh waves span a range of frequencies significantly higher than those recovered from typical ambient noise interferometry studies. Direct P-wave arrivals have apparent velocities appropriate for the shallow geology of the survey area. Significant reflected P-wave energy is also present at relatively large offsets. A common midpoint stack produces a reflection image consistent with nearby conventional reflection data. We suggest that for sources at the free surface (e.g. trains) increasing the aperture of the array to record wide angle reflections, in addition to longer recording intervals, might allow the recovery of deeper geological structure from railroad traffic. Frequency-wavenumber analyses of these recordings indicate that the train source is symmetrical (i.e. approaching and receding) and that deeper refracted energy is present although not evident in the time-offset domain. These results confirm that train-generated vibrations represent a practical source of high-resolution subsurface information, with particular relevance to geotechnical and environmental applications.
Aluminum Surface Texturing by Means of Laser Interference Metallurgy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Jian; Sabau, Adrian S; Jones, Jonaaron F.
2015-01-01
The increasing use of lightweight materials, such as aluminum alloys, in auto body structures requires more effective surface cleaning and texturing techniques to improve the quality of the structural components. The present work introduces a novel surface treatment method using laser interferometry produced by two beams of a pulsed Nd:YAG laser operating at 10Hz of frequency to clean aluminum surfaces, and meanwhile creating periodic and rough surface structures. The influences of beam size, laser fluence, wavelength, and pulse number per spot are investigated. High resolution optical profiler images reveal the change of the peak-to-valley height on the laser-treated surface.
Foskey, Mark; Niethammer, Marc; Krajcevski, Pavel; Lin, Ming C.
2014-01-01
Estimation of tissue stiffness is an important means of noninvasive cancer detection. Existing elasticity reconstruction methods usually depend on a dense displacement field (inferred from ultrasound or MR images) and known external forces. Many imaging modalities, however, cannot provide details within an organ and therefore cannot provide such a displacement field. Furthermore, force exertion and measurement can be difficult for some internal organs, making boundary forces another missing parameter. We propose a general method for estimating elasticity and boundary forces automatically using an iterative optimization framework, given the desired (target) output surface. During the optimization, the input model is deformed by the simulator, and an objective function based on the distance between the deformed surface and the target surface is minimized numerically. The optimization framework does not depend on a particular simulation method and is therefore suitable for different physical models. We show a positive correlation between clinical prostate cancer stage (a clinical measure of severity) and the recovered elasticity of the organ. Since the surface correspondence is established, our method also provides a non-rigid image registration, where the quality of the deformation fields is guaranteed, as they are computed using a physics-based simulation. PMID:22893381
Defect Detection of Steel Surfaces with Global Adaptive Percentile Thresholding of Gradient Image
NASA Astrophysics Data System (ADS)
Neogi, Nirbhar; Mohanta, Dusmanta K.; Dutta, Pranab K.
2017-12-01
Steel strips are used extensively for white goods, auto bodies and other purposes where surface defects are not acceptable. On-line surface inspection systems can effectively detect and classify defects and help in taking corrective actions. For detection of defects use of gradients is very popular in highlighting and subsequently segmenting areas of interest in a surface inspection system. Most of the time, segmentation by a fixed value threshold leads to unsatisfactory results. As defects can be both very small and large in size, segmentation of a gradient image based on percentile thresholding can lead to inadequate or excessive segmentation of defective regions. A global adaptive percentile thresholding of gradient image has been formulated for blister defect and water-deposit (a pseudo defect) in steel strips. The developed method adaptively changes the percentile value used for thresholding depending on the number of pixels above some specific values of gray level of the gradient image. The method is able to segment defective regions selectively preserving the characteristics of defects irrespective of the size of the defects. The developed method performs better than Otsu method of thresholding and an adaptive thresholding method based on local properties.
Optical method and apparatus for detection of surface and near-subsurface defects in dense ceramics
Ellingson, William A.; Brada, Mark P.
1995-01-01
A laser is used in a non-destructive manner to detect surface and near-subsurface defects in dense ceramics and particularly in ceramic bodies with complex shapes such as ceramic bearings, turbine blades, races, and the like. The laser's wavelength is selected based upon the composition of the ceramic sample and the laser can be directed on the sample while the sample is static or in dynamic rotate or translate motion. Light is scattered off surface and subsurface defects using a preselected polarization. The change in polarization angle is used to select the depth and characteristics of surface/subsurface defects. The scattered light is detected by an optical train consisting of a charge coupled device (CCD), or vidicon, television camera which, in turn, is coupled to a video monitor and a computer for digitizing the image. An analyzing polarizer in the optical train allows scattered light at a given polarization angle to be observed for enhancing sensitivity to either surface or near-subsurface defects. Application of digital image processing allows subtraction of digitized images in near real-time providing enhanced sensitivity to subsurface defects. Storing known "feature masks" of identified defects in the computer and comparing the detected scatter pattern (Fourier images) with the stored feature masks allows for automatic classification of detected defects.
Advanced Optical Technologies for Defense Trauma and Critical Care
2014-02-04
conventional LSI. We also demonstrated that mcLSI enables improved characterization of curved surfaces of the body by positioning LSI modules at...Implementation of an LED based clinical spatial frequency domain imaging 17 system. Proc SPIE Vol. 8254, Emerging Digital Micromirror Device Based
The place of surface anatomy in the medical literature and undergraduate anatomy textbooks.
Azer, Samy A
2013-01-01
The aims of this review were to examine the place of surface anatomy in the medical literature, particularly the methods and approaches used in teaching surface and living anatomy and assess commonly used anatomy textbooks in regard to their surface anatomy contents. PubMed and MEDLINE databases were searched using the following keywords "surface anatomy," "living anatomy," "teaching surface anatomy," "bony landmarks," "peer examination" and "dermatomes". The percentage of pages covering surface anatomy in each textbook was calculated as well as the number of images covering surface anatomy. Clarity, quality and adequacy of surface anatomy contents was also examined. The search identified 22 research papers addressing methods used in teaching surface anatomy, 31 papers that can help in the improvement of surface anatomy curriculum, and 12 anatomy textbooks. These teaching methods included: body painting, peer volunteer surface anatomy, use of a living anatomy model, real time ultrasound, virtual (visible) human dissector (VHD), full body digital x-ray of cadavers (Lodox(®) Statscan(®) images) combined with palpating landmarks on peers and the cadaver, as well as the use of collaborative, contextual and self-directed learning. Nineteen of these studies were published in the period from 2006 to 2013. The 31 papers covered evidence-based and clinically-applied surface anatomy. The percentage of surface anatomy in textbooks' contents ranged from 0 to 6.2 with an average of 3.4%. The number of medical illustrations on surface anatomy varied from 0 to 135. In conclusion, although there has been a progressive increase in publications addressing methods used in teaching surface anatomy over the last six to seven years, most anatomy textbooks do not provide students with adequate information about surface anatomy. Only three textbooks provided a solid explanation and foundation of understanding surface anatomy. © 2013 American Association of Anatomists.
Maiti, Raman; Gerhardt, Lutz-Christian; Lee, Zing S; Byers, Robert A; Woods, Daniel; Sanz-Herrera, José A; Franklin, Steve E; Lewis, Roger; Matcher, Stephen J; Carré, Matthew J
2016-09-01
Stratum corneum and epidermal layers change in terms of thickness and roughness with gender, age and anatomical site. Knowledge of the mechanical and tribological properties of skin associated with these structural changes are needed to aid in the design of exoskeletons, prostheses, orthotics, body mounted sensors used for kinematics measurements and in optimum use of wearable on-body devices. In this case study, optical coherence tomography (OCT) and digital image correlation (DIC) were combined to determine skin surface strain and sub-surface deformation behaviour of the volar forearm due to natural tissue stretching. The thickness of the epidermis together with geometry changes of the dermal-epidermal junction boundary were calculated during change in the arm angle, from flexion (90°) to full extension (180°). This posture change caused an increase in skin surface Lagrange strain, typically by 25% which induced considerable morphological changes in the upper skin layers evidenced by reduction of epidermal layer thickness (20%), flattening of the dermal-epidermal junction undulation (45-50% reduction of flatness being expressed as Ra and Rz roughness profile height change) and reduction of skin surface roughness Ra and Rz (40-50%). The newly developed method, DIC combined with OCT imaging, is a powerful, fast and non-invasive methodology to study structural skin changes in real time and the tissue response provoked by mechanical loading or stretching. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Distortion effects in a switch array UWB radar for time-lapse imaging of human heartbeats
NASA Astrophysics Data System (ADS)
Brovoll, Sverre; Berger, Tor; Aardal, Åyvind; Lande, Tor S.; Hamran, Svein-Erik
2014-05-01
Cardiovascular diseases (CVD) are a major cause of deaths all over the world. Microwave radar can be an alternative sensor for heart diagnostics and monitoring in modern healthcare that aids early detection of CVD symptoms. In this paper measurements from a switch array radar system are presented. This UWB system operates below 3 GHz and does time-lapse imaging of the beating heart inside the human body. The array consists of eight fat dipole elements. With a switch system, every possible sequence of transmit/receive element pairs can be selected to build a radar image from the recordings. To make the radar waves penetrate the human tissue, the antenna array is placed in contact with the body. Removal of the direct signal leakage through the antennas and body surface are done by high-pass (HP) filtering of the data prior to image processing. To analyze the results, measurements of moving spheres in air and simulations are carried out. We see that removal of the direct signal introduces amplitude distortion in the images. In addition, the effect of small target motion between the collection times of data from the individual elements is analyzed. With low pulse repetition frequency (PRF) this motion will distort the image. By using data from real measurements of heart motion in simulations, we analyze how the PRF and the antenna geometry influence this distortions.
Overview of X-38 Hypersonic Aerothermodynamic Wind Tunnel Data and Comparison with Numerical Results
NASA Technical Reports Server (NTRS)
Campbell, C.; Caram, J.; Berry, S.; Horvath, T.; Merski, N.; Loomis, M.; Venkatapathy, E.
2004-01-01
A NASA team of engineers has been organized to design a crew return vehicle for returning International Space Station crew members from orbit. The hypersonic aerothermodynamic characteristics of the X-23/X-24A derived X-38 crew return vehicle are being evaluated in various wind tunnels in support of this effort. Aerothermodynamic data from two NASA hypersonic tunnels at Mach 6 and Mach 10 has been obtained with cast ceramic models and a thermographic phosphorus digital imaging system. General windward surface heating features are described based on experimental surface heating images and surface oil flow patterns for the nominal hypersonic aerodynamic orientation. Body flap reattachment heating levels are examined. Computational Fluid Dynamics tools have been applied at the appropriate wind tunnel conditions to make comparisons with this data.
2015-07-15
New close-up images of a region near Pluto's equator reveal a giant surprise: a range of youthful mountains rising as high as 11,000 feet (3,500 meters) above the surface of the icy body. The mountains likely formed no more than 100 million years ago -- mere youngsters relative to the 4.56-billion-year age of the solar system -- and may still be in the process of building. That suggests the close-up region, which covers less than one percent of Pluto's surface, may still be geologically active today. The youthful age estimate is based on the lack of craters in this scene. Like the rest of Pluto, this region would presumably have been pummeled by space debris for billions of years and would have once been heavily cratered -- unless recent activity had given the region a facelift, erasing those pockmarks. Unlike the icy moons of giant planets, Pluto cannot be heated by gravitational interactions with a much larger planetary body. Some other process must be generating the mountainous landscape. The mountains are probably composed of Pluto's water-ice "bedrock." Although methane and nitrogen ice covers much of the surface of Pluto, these materials are not strong enough to build the mountains. Instead, a stiffer material, most likely water-ice, created the peaks. The close-up image was taken about 1.5 hours before New Horizons closest approach to Pluto, when the craft was 47,800 miles (770,000 kilometers) from the surface of the planet. The image easily resolves structures smaller than a mile across. http://photojournal.jpl.nasa.gov/catalog/PIA19710
Flow Structure along the 1303 UCAV
NASA Astrophysics Data System (ADS)
Kosoglu, Mehmet A.; Rockwell, Donald
2007-11-01
The 1303 Unmanned Combat Air Vehicle is representative of a variety of UCAVs with blended wing-body configurations. Flow structure along a scale model of this configuration was investigated using dye visualization and particle image velocimetry for variations of Reynolds number and angle-of-attack. Both of these parameters substantially influence onset and structure of the leading-edge vortex (LEV) and a separation bubble/stall region along the tip. The onset of formation of the LEV initially occurs at a location well downstream of the apex and moves upstream for increasing values of either Reynolds number or angle-of-attack. In cases where a separation bubble or stall region exists, quantitative information on its structure was obtained via PIV imaging on a plane nearly parallel to the surface of the wing. By acquiring images on planes at successively larger elevations from the surface, it was possible to gain insight into the space-time features of the three-dimensional and highly time-dependent structure of the bubble or stall region. Time-averaged images indicate that maximum velocity defect decreases in magnitude and moves downstream with increasing elevation from the surface.
Large aperture freeform VIS telescope with smart alignment approach
NASA Astrophysics Data System (ADS)
Beier, Matthias; Fuhlrott, Wilko; Hartung, Johannes; Holota, Wolfgang; Gebhardt, Andreas; Risse, Stefan
2016-07-01
The development of smart alignment and integration strategies for imaging mirror systems to be used within astronomical instrumentation are especially important with regard to the increasing impact of non-rotationally symmetric optics. In the present work, well-known assembly approaches preferentially applied in the course of infrared instrumentation are transferred to visible applications and are verified during the integration of an anamorphic imaging telescope breadboard. The four mirror imaging system is based on a modular concept using mechanically fixed arrangements of each two freeform surfaces, generated by servo assisted diamond machining and corrected using Magnetorheological Finishing as a figuring and smoothing step. Surface testing include optical CGH interferometry as well as tactile profilometry and is conducted with respect to diamond milled fiducials at the mirror bodies. A strict compliance of surface referencing during all significant fabrication steps allow for an easy integration and direct measurement of the system's wave aberration after initial assembly. The achievable imaging performance, as well as influences of the tight tolerance budget and mid-spatial frequency errors, are discussed and experimentally evaluated.
Hydra Emerges from the Shadows
2015-07-15
Since its discovery in 2005, Pluto's moon Hydra has been known only as a fuzzy dot of uncertain shape, size, and reflectivity. Imaging obtained during NASA's New Horizons' historic transit of the Pluto-Charon system and transmitted to Earth early this morning has definitively resolved these fundamental properties of Pluto's outermost moon. Long Range Reconnaissance Imager (LORRI) observations revealed an irregularly shaped body characterized by significant brightness variations over the surface. With a resolution of 2 miles (3 kilometers) per pixel, the LORRI image shows the tiny potato-shaped moon measures 27 miles (43 kilometers) by 20 miles (33 kilometers). Like that of Charon, Hydra's surface is probably covered with water ice, the most abundant ice in the universe. Observed within Hydra's bright regions is a darker circular structure with a diameter of approximately 6 miles (10 kilometers). Hydra's reflectivity (the percentage of incident light reflected from the surface) is intermediate between that of Pluto and Charon. Hydra was approximately 400,000 miles away from New Horizons when this image was acquired. http://photojournal.jpl.nasa.gov/catalog/PIA19711
Evolving Concepts on Adjusting Human Resting Energy Expenditure Measurements for Body Size
Heymsfield, Steven B.; Thomas, Diana; Bosy-Westphal, Anja; Shen, Wei; Peterson, Courtney M.; Müller, Manfred J.
2012-01-01
Establishing if an adult’s resting energy expenditure (REE) is high or low for their body size is a pervasive question in nutrition research. Early workers applied body mass and height as size measures and formulated the Surface Law and Kleiber’s Law, although each has limitations when adjusting REE. Body composition methods introduced during the mid-twentieth century provided a new opportunity to identify metabolically homogeneous “active” compartments. These compartments all show improved correlations with REE estimates over body mass-height approaches, but collectively share a common limitation: REE-body composition ratios are not “constant” but vary across men and women and with race, age, and body size. The now-accepted alternative to ratio-based norms is to adjust for predictors by applying regression models to calculate “residuals” that establish if a REE is relatively high or low. The distinguishing feature of statistical REE-body composition models is a “non-zero” intercept of unknown origin. The recent introduction of imaging methods has allowed development of physiological tissue-organ based REE prediction models. Herein we apply these imaging methods to provide a mechanistic explanation, supported by experimental data, for the non-zero intercept phenomenon and in that context propose future research directions for establishing between subject differences in relative energy metabolism. PMID:22863371
Autonomous Detection of Eruptions, Plumes, and Other Transient Events in the Outer Solar System
NASA Astrophysics Data System (ADS)
Bunte, M. K.; Lin, Y.; Saripalli, S.; Bell, J. F.
2012-12-01
The outer solar system abounds with visually stunning examples of dynamic processes such as eruptive events that jettison materials from satellites and small bodies into space. The most notable examples of such events are the prominent volcanic plumes of Io, the wispy water jets of Enceladus, and the outgassing of comet nuclei. We are investigating techniques that will allow a spacecraft to autonomously detect those events in visible images. This technique will allow future outer planet missions to conduct sustained event monitoring and automate prioritization of data for downlink. Our technique detects plumes by searching for concentrations of large local gradients in images. Applying a Scale Invariant Feature Transform (SIFT) to either raw or calibrated images identifies interest points for further investigation based on the magnitude and orientation of local gradients in pixel values. The interest points are classified as possible transient geophysical events when they share characteristics with similar features in user-classified images. A nearest neighbor classification scheme assesses the similarity of all interest points within a threshold Euclidean distance and classifies each according to the majority classification of other interest points. Thus, features marked by multiple interest points are more likely to be classified positively as events; isolated large plumes or multiple small jets are easily distinguished from a textured background surface due to the higher magnitude gradient of the plume or jet when compared with the small, randomly oriented gradients of the textured surface. We have applied this method to images of Io, Enceladus, and comet Hartley 2 from the Voyager, Galileo, New Horizons, Cassini, and Deep Impact EPOXI missions, where appropriate, and have successfully detected up to 95% of manually identifiable events that our method was able to distinguish from the background surface and surface features of a body. Dozens of distinct features are identifiable under a variety of viewing conditions and hundreds of detections are made in each of the aforementioned datasets. In this presentation, we explore the controlling factors in detecting transient events and discuss causes of success or failure due to distinct data characteristics. These include the level of calibration of images, the ability to differentiate an event from artifacts, and the variety of event appearances in user-classified images. Other important factors include the physical characteristics of the events themselves: albedo, size as a function of image resolution, and proximity to other events (as in the case of multiple small jets which feed into the overall plume at the south pole of Enceladus). A notable strength of this method is the ability to detect events that do not extend beyond the limb of a planetary body or are adjacent to the terminator or other strong edges in the image. The former scenario strongly influences the success rate of detecting eruptive events in nadir views.
A new 4-dimensional imaging system for jaw tracking.
Lauren, Mark
2014-01-01
A non-invasive 4D imaging system that produces high resolution time-based 3D surface data has been developed to capture jaw motion. Fluorescent microspheres are brushed onto both tooth and soft-tissue areas of the upper and lower arches to be imaged. An extraoral hand-held imaging device, operated about 12 cm from the mouth, captures a time-based set of perspective image triplets of the patch areas. Each triplet, containing both upper and lower arch data, is converted to a high-resolution 3D point mesh using photogrammetry, providing the instantaneous relative jaw position. Eight 3D positions per second are captured. Using one of the 3D frames as a reference, a 4D model can be constructed to describe the incremental free body motion of the mandible. The surface data produced by this system can be registered to conventional 3D models of the dentition, allowing them to be animated. Applications include integration into prosthetic CAD and CBCT data.
Low-speed Aerodynamic Investigations of a Hybrid Wing Body Configuration
NASA Technical Reports Server (NTRS)
Vicroy, Dan D.; Gatlin, Gregory M.; Jenkins, Luther N.; Murphy, Patrick C.; Carter, Melissa B.
2014-01-01
Two low-speed static wind tunnel tests and a water tunnel static and dynamic forced-motion test have been conducted on a hybrid wing-body (HWB) twinjet configuration. These tests, in addition to computational fluid dynamics (CFD) analysis, have provided a comprehensive dataset of the low-speed aerodynamic characteristics of this nonproprietary configuration. In addition to force and moment measurements, the tests included surface pressures, flow visualization, and off-body particle image velocimetry measurements. This paper will summarize the results of these tests and highlight the data that is available for code comparison or additional analysis.
Elastic Reverse Time Migration (RTM) From Surface Topography
NASA Astrophysics Data System (ADS)
Akram, Naveed; Chen, Xiaofei
2017-04-01
Seismic Migration is a promising data processing technique to construct subsurface images by projecting the recorded seismic data at surface back to their origins. There are numerous Migration methods. Among them, Reverse Time Migration (RTM) is considered a robust and standard imaging technology in present day exploration industry as well as in academic research field because of its superior performance compared to traditional migration methods. Although RTM is extensive computing and time consuming but it can efficiently handle the complex geology, highly dipping reflectors and strong lateral velocity variation all together. RTM takes data recorded at the surface as a boundary condition and propagates the data backwards in time until the imaging condition is met. It can use the same modeling algorithm that we use for forward modeling. The classical seismic exploration theory assumes flat surface which is almost impossible in practice for land data. So irregular surface topography has to be considered in simulation of seismic wave propagation, which is not always a straightforward undertaking. In this study, Curved grid finite difference method (CG-FDM) is adapted to model elastic seismic wave propagation to investigate the effect of surface topography on RTM results and explore its advantages and limitations with synthetic data experiments by using Foothill model with topography as the true model. We focus on elastic wave propagation rather than acoustic wave because earth actually behaves as an elastic body. Our results strongly emphasize on the fact that irregular surface topography must be considered for modeling of seismic wave propagation to get better subsurface images specially in mountainous scenario and suggest practitioners to properly handled the geometry of data acquired on irregular topographic surface in their imaging algorithms.
Elastic Reverse Time Migration (RTM) From Surface Topography
NASA Astrophysics Data System (ADS)
Naveed, A.; Chen, X.
2016-12-01
Seismic Migration is a promising data processing technique to construct subsurface images by projecting the recorded seismic data at surface back to their origins. There are numerous Migration methods. Among them, Reverse Time Migration (RTM) is considered a robust and standard imaging technology in present day exploration industry as well as in academic research field because of its superior performance compared to traditional migration methods. Although RTM is extensive computing and time consuming but it can efficiently handle the complex geology, highly dipping reflectors and strong lateral velocity variation all together. RTM takes data recorded at the surface as a boundary condition and propagates the data backwards in time until the imaging condition is met. It can use the same modeling algorithm that we use for forward modeling. The classical seismic exploration theory assumes flat surface which is almost impossible in practice for land data. So irregular surface topography has to be considered in simulation of seismic wave propagation, which is not always a straightforward undertaking. In this study, Curved grid finite difference method (CG-FDM) is adapted to model elastic seismic wave propagation to investigate the effect of surface topography on RTM results and explore its advantages and limitations with synthetic data experiments by using Foothill model with topography as the true model. We focus on elastic wave propagation rather than acoustic wave because earth actually behaves as an elastic body. Our results strongly emphasize on the fact that irregular surface topography must be considered for modeling of seismic wave propagation to get better subsurface images specially in mountainous scenario and suggest practitioners to properly handled the geometry of data acquired on irregular topographic surface in their imaging algorithms.
NASA Astrophysics Data System (ADS)
Soner Gözü, Mehmet; Zengin, Reyhan; Güneri Gençer, Nevzat
2018-02-01
In this study, the performance and implementation of magneto-acousto-electrical tomography (MAET) is investigated using a linear phased array (LPA) transducer. The goal of MAET is to image the conductivity distribution in biological bodies. It uses the interaction between ultrasound and a static magnetic field to generate velocity current density distribution inside the body. The resultant voltage due to velocity current density is sensed by surface electrodes attached on the body. In this study, the theory of MAET is reviewed. A 16-element LPA transducer with 1 MHz excitation frequency is used to provide beam directivity and steerability of acoustic waves. Different two-dimensional numerical models of breast and tumour are formed to analyze the multiphysics problem coupled with acoustics and electromagnetic fields. In these models, velocity current density distributions are obtained for pulse type ultrasound excitations. The static magnetic field is assumed as 1 T. To sense the resultant voltage caused by the velocity current density, it is assumed that two electrodes are attached on the surface of the body. The performance of MAET is shown through sensitivity matrix analysis. The sensitivity matrix is obtained for two transducer positions with 13 steering angles between -30\\circ to 30\\circ with 5\\circ angular intervals. For the reconstruction of the images, truncated singular value decomposition method is used with different signal-to-noise ratio (SNR) values (20 dB, 40 dB, 60 dB and 80 dB). The resultant images show that the perturbation (5 mm × 5 mm) placed 35 mm depth can be detected even if the SNR is 20 dB.
Zhang, Xiaoming; Zeraati, Mohammad; Kinnick, Randall R; Greenleaf, James F; Fatemi, Mostafa
2007-06-01
A new method for imaging the vibration mode of an object is investigated. The radiation force of ultrasound is used to scan the object at a resonant frequency of the object. The vibration of the object is measured by laser and the resulting acoustic emission from the object is measured by a hydrophone. It is shown that the measured signal is proportional to the value of the mode shape at the focal point of the ultrasound beam. Experimental studies are carried out on a mechanical heart valve and arterial phantoms. The mode images on the valve are made by the hydrophone measurement and confirmed by finite-element method simulations. Compared with conventional B-scan imaging on arterial phantoms, the mode imaging can show not only the interface of the artery and the gelatin, but also the vibration modes of the artery. The images taken on the phantom surface suggest that an image of an interior artery can be made by vibration measurements on the surface of the body. However, the image of the artery can be improved if the vibration of the artery is measured directly. Imaging of the structure in the gelatin or tissue can be enhanced by small bubbles and contrast agents.
Estimating radiofrequency power deposition in body NMR imaging.
Bottomley, P A; Redington, R W; Edelstein, W A; Schenck, J F
1985-08-01
Simple theoretical estimates of the average, maximum, and spatial variation of the radiofrequency power deposition (specific absorption rate) during hydrogen nuclear magnetic resonance imaging are deduced for homogeneous spheres and for cylinders of biological tissue with a uniformly penetrating linear rf field directed axially and transverse to the cylindrical axis. These are all simple scalar multiples of the expression for the cylinder in an axial field published earlier (Med. Phys. 8, 510 (1981]. Exact solutions for the power deposition in the cylinder with axial (Phys. Med. Biol. 23, 630 (1978] and transversely directed rf field are also presented, and the spatial variation of power deposition in head and body models is examined. In the exact models, the specific absorption rates decrease rapidly and monotonically with decreasing radius despite local increases in rf field amplitude. Conversion factors are provided for calculating the power deposited by Gaussian and sinc-modulated rf pulses used for slice selection in NMR imaging, relative to rectangular profiled pulses. Theoretical estimates are compared with direct measurements of the total power deposited in the bodies of nine adult males by a 63-MHz body-imaging system with transversely directed field, taking account of cable and NMR coil losses. The results for the average power deposition agree within about 20% for the exact model of the cylinder with axial field, when applied to the exposed torso volume enclosed by the rf coil. The average values predicted by the simple spherical and cylindrical models with axial fields, the exact cylindrical model with transverse field, and the simple truncated cylinder model with transverse field were about two to three times that measured, while the simple model consisting of an infinitely long cylinder with transverse field gave results about six times that measured. The surface power deposition measured by observing the incremental power as a function of external torso radius was comparable to the average value. This is consistent with the presence of a variable thickness peripheral adipose layer which does not substantially increase surface power deposition with increasing torso radius. The absence of highly localized intensity artifacts in 63-MHz body images does not suggest anomalously intense power deposition at localized internal sites, although peak power is difficult to measure.
Miyata, Akinori; Ishizawa, Takeaki; Kamiya, Mako; Shimizu, Atsushi; Kaneko, Junichi; Ijichi, Hideaki; Shibahara, Junji; Fukayama, Masashi; Midorikawa, Yutaka; Urano, Yasuteru; Kokudo, Norihiro
2014-01-01
Recently, fluorescence imaging following the preoperative intravenous injection of indocyanine green has been used in clinical settings to identify hepatic malignancies during surgery. The aim of this study was to evaluate the ability of photoacoustic tomography using indocyanine green as a contrast agent to produce representative fluorescence images of hepatic tumors by visualizing the spatial distribution of indocyanine green on ultrasonographic images. Indocyanine green (0.5 mg/kg, intravenous) was preoperatively administered to 9 patients undergoing hepatectomy. Intraoperatively, photoacoustic tomography was performed on the surface of the resected hepatic specimens (n = 10) under excitation with an 800 nm pulse laser. In 4 hepatocellular carcinoma nodules, photoacoustic imaging identified indocyanine green accumulation in the cancerous tissue. In contrast, in one hepatocellular carcinoma nodule and five adenocarcinoma foci (one intrahepatic cholangiocarcinoma and 4 colorectal liver metastases), photoacoustic imaging delineated indocyanine green accumulation not in the cancerous tissue but rather in the peri-cancerous hepatic parenchyma. Although photoacoustic tomography enabled to visualize spatial distribution of ICG on ultrasonographic images, which was consistent with fluorescence images on cut surfaces of the resected specimens, photoacoustic signals of ICG-containing tissues decreased approximately by 40% even at 4 mm depth from liver surfaces. Photoacoustic tomography using indocyanine green also failed to identify any hepatocellular carcinoma nodules from the body surface of model mice with non-alcoholic steatohepatitis. In conclusion, photoacoustic tomography has a potential to enhance cancer detectability and differential diagnosis by ultrasonographic examinations and intraoperative fluorescence imaging through visualization of stasis of bile-excreting imaging agents in and/or around hepatic tumors. However, further technical advances are needed to improve the visibility of photoacoustic signals emitted from deeply-located lesions. PMID:25379674
Miyata, Akinori; Ishizawa, Takeaki; Kamiya, Mako; Shimizu, Atsushi; Kaneko, Junichi; Ijichi, Hideaki; Shibahara, Junji; Fukayama, Masashi; Midorikawa, Yutaka; Urano, Yasuteru; Kokudo, Norihiro
2014-01-01
Recently, fluorescence imaging following the preoperative intravenous injection of indocyanine green has been used in clinical settings to identify hepatic malignancies during surgery. The aim of this study was to evaluate the ability of photoacoustic tomography using indocyanine green as a contrast agent to produce representative fluorescence images of hepatic tumors by visualizing the spatial distribution of indocyanine green on ultrasonographic images. Indocyanine green (0.5 mg/kg, intravenous) was preoperatively administered to 9 patients undergoing hepatectomy. Intraoperatively, photoacoustic tomography was performed on the surface of the resected hepatic specimens (n = 10) under excitation with an 800 nm pulse laser. In 4 hepatocellular carcinoma nodules, photoacoustic imaging identified indocyanine green accumulation in the cancerous tissue. In contrast, in one hepatocellular carcinoma nodule and five adenocarcinoma foci (one intrahepatic cholangiocarcinoma and 4 colorectal liver metastases), photoacoustic imaging delineated indocyanine green accumulation not in the cancerous tissue but rather in the peri-cancerous hepatic parenchyma. Although photoacoustic tomography enabled to visualize spatial distribution of ICG on ultrasonographic images, which was consistent with fluorescence images on cut surfaces of the resected specimens, photoacoustic signals of ICG-containing tissues decreased approximately by 40% even at 4 mm depth from liver surfaces. Photoacoustic tomography using indocyanine green also failed to identify any hepatocellular carcinoma nodules from the body surface of model mice with non-alcoholic steatohepatitis. In conclusion, photoacoustic tomography has a potential to enhance cancer detectability and differential diagnosis by ultrasonographic examinations and intraoperative fluorescence imaging through visualization of stasis of bile-excreting imaging agents in and/or around hepatic tumors. However, further technical advances are needed to improve the visibility of photoacoustic signals emitted from deeply-located lesions.
SkinChip, a new tool for investigating the skin surface in vivo.
Lévêque, Jean Luc; Querleux, Bernard
2003-11-01
Non-invasive methods used for characterizing skin micro-relief and skin surface hydration were developed in the 1980s. Although they allowed some progress in the knowledge of skin properties, they are not completely satisfactory in many aspects. Today, new technologies are emerging that may address such issues. We adapted the technology produced by the ST Microelectronics Company for sensing fingerprint for the measurement of skin surface properties. Accordingly, we developed acquisition software for obtaining routinely the distribution of skin surface capacitance along different body sites. Image analysis softwares were also processed for collecting both the main orientations of the micro-relief lines and their density. The average value of skin capacitance is also obtained. The images allow a highly precise observation of the skin topography that can be easily quantified in terms of line density and line orientation. The mean gray levels of the images appear much closely correlated to the Corneometer values. This new device appears to be a very convenient way for characterizing the properties of the skin surface. With regard to hydration, it usefully provides both the average value and the hydration chart of the investigated skin zones.
Ibrahim, El-Sayed H; Cernigliaro, Joseph G; Pooley, Robert A; Bridges, Mellena D; Giesbrandt, Jamie G; Williams, James C; Haley, William E
2016-01-01
With the development of ultrashort echo time (UTE) sequences, it may now be possible to detect kidney stones by using magnetic resonance imaging (MRI). In this study, kidney stones of varying composition and sizes were imaged using both UTE MRI as well as the reference standard of computed tomography (CT), with different surrounding materials and scan setups. One hundred and fourteen kidney stones were inserted into agarose and urine phantoms and imaged both on a dual-energy CT (DECT) scanner using a standard renal stone imaging protocol and on an MRI scanner using the UTE sequence with both head and body surface coils. A subset of the stones representing all composition types and sizes was then inserted into the collecting system of porcine kidneys and imaged in vitro with both CT and MRI. All of the stones were visible on both CT and MRI imaging. DECT was capable of differentiating between uric acid and nonuric acid stones. In MRI imaging, the choice of coil and large field of view (FOV) did not affect stone detection or image quality. The MRI images showed good visualization of the stones' shapes, and the stones' dimensions measured from MRI were in good agreement with the actual values (R(2)=0.886, 0.895, and 0.81 in the agarose phantom, urine phantom, and pig kidneys, respectively). The measured T2 relaxation times ranged from 4.2 to 7.5ms, but did not show significant differences among different stone composition types. UTE MRI compared favorably with the reference standard CT for imaging stones of different composition types and sizes using body surface coil and large FOV, which suggests potential usefulness of UTE MRI in imaging kidney stones in vivo. Copyright © 2015 Elsevier Inc. All rights reserved.
Multidirectional four-dimensional shape measurement system
NASA Astrophysics Data System (ADS)
Lenar, Janusz; Sitnik, Robert; Witkowski, Marcin
2012-03-01
Currently, a lot of different scanning techniques are used for 3D imaging of human body. Most of existing systems are based on static registration of internal structures using MRI or CT techniques as well as 3D scanning of outer surface of human body by laser triangulation or structured light methods. On the other hand there is an existing mature 4D method based on tracking in time the position of retro-reflective markers attached to human body. There are two main drawbacks of this solution: markers are attached to skin (no real skeleton movement is registered) and it gives (x, y, z, t) coordinates only in those points (not for the whole surface). In this paper we present a novel multidirectional structured light measurement system that is capable of measuring 3D shape of human body surface with frequency reaching 60Hz. The developed system consists of two spectrally separated and hardware-synchronized 4D measurement heads. The principle of the measurement is based on single frame analysis. Projected frame is composed from sine-modulated intensity pattern and a special stripe allowing absolute phase measurement. Several different geometrical set-ups will be proposed depending on type of movements that are to be registered.
Imaging System Performance and Visibility as Affected by the Physical Environment
2013-09-30
devoted to the topic of light propagation and imaging across the air-sea interface and within the surface boundary layer of natural water bodies...Zaneveld and Pegau (2003) was used to estimate the horizontal visibility of a black target, y: y = 4.8 / α, (2) where α is the...attenuation coefficient at 532 nm, was necessary for predictions of horizontal visibility of a black target. Equations (2) and (3) were applied to IOP data
Sathiyabarathi, M.; Jeyakumar, S.; Manimaran, A.; Pushpadass, Heartwin A.; Sivaram, M.; Ramesha, K. P.; Das, D. N.; Kataktalware, Mukund A.; Jayaprakash, G.; Patbandha, Tapas Kumar
2016-01-01
Aim: The objective of this study was to investigate the ability of infrared thermography (IRT) technique and its interrelationship with conventional mastitis indicators for the early detection of mastitis in Holstein Friesian (HF) crossbred cows. Materials and Methods: A total of 76 quarters of lactating HF crossbred (Bos indicus × Bos taurus) cows (n=19) were monitored for body temperature (i.e., eye temperature) and udder skin surface temperature (USST) before milking using forward-looking infrared (FLIR) i5 camera. Milk samples were collected from each quarter and screened for mastitis using Somatic Cell Count (SCC), Electrical Conductivity (EC), and California mastitis test. Thermographic images were analyzed using FLIR Quick Report 1.2 image analysis software. Data on body and USST were compiled and analyzed statistically using SPSS 16.0 and Sigmaplot 11. Results: The mean±standard deviation (SD) body (37.23±0.08°C) and USST (37.22±0.04°C) of non-mastitic cow did not differ significantly; however, the mean USST of the mastitis-affected quarters were significantly higher than the body temperature and USST of unaffected quarters (p<0.001). The mean±SD USST of the subclinical mastitis (SCM) and clinical mastitis-affected quarters were 38.08±0.17 °C and 38.25±0.33 °C, respectively, which is 0.72 and 1.05 °C higher than the USST temperature of unaffected quarters. The USST was positively correlated with EC (r=0.95) and SCC (r=0.93). The receiver operating characteristic curve analysis revealed a higher sensitivity for USST in early prediction of SCM with a cut-off value of >37.61°C. Conclusion: It is concluded that infrared thermal imaging technique could be used as a potential noninvasive, quick cow-side diagnostic technique for screening and early detection of SCM and clinical mastitis in crossbred cows. PMID:28096610
Drag and drop simulation: from pictures to full three-dimensional simulations
NASA Astrophysics Data System (ADS)
Bergmann, Michel; Iollo, Angelo
2014-11-01
We present a suite of methods to achieve ``drag and drop'' simulation, i.e., to fully automatize the process to perform thee-dimensional flow simulations around a bodies defined by actual images of moving objects. The overall approach requires a skeleton graph generation to get level set function from pictures, optimal transportation to get body velocity on the surface and then flow simulation thanks to a cartesian method based on penalization. We illustrate this paradigm simulating the swimming of a mackerel fish.
NASA Technical Reports Server (NTRS)
Dicristofaro, D. C. (Principal Investigator)
1980-01-01
A one dimensional boundary layer model was used in conjunction with satellite derived infrared surface temperatures to deduce values of moisture availability, thermal inertia, heat and evaporative fluxes. The Penn State satellite image display system, a sophisticated image display facility, was used to remotely sense these various parameters for three cases: St. Louis, Missouri; the Land Between the Lakes, Kentucky; and Clarksville, Tennessee. The urban centers displayed the maximum daytime surface temperatures which correspond to the minimum values of moisture availability. The urban center of St. Louis and the bodies of water displayed the maximum nighttime surface temperatures which correspond to the maximum thermal inertia values. It is shown that moisture availability and thermal inertia are very much responsible for the formation of important temperature variations over the urban rural complex.
Foppa, Murilo; Arora, Garima; Gona, Philimon; Ashrafi, Arman; Salton, Carol J; Yeon, Susan B; Blease, Susan J; Levy, Daniel; O'Donnell, Christopher J; Manning, Warren J; Chuang, Michael L
2016-03-01
Cardiac magnetic resonance is uniquely well suited for noninvasive imaging of the right ventricle. We sought to define normal cardiac magnetic resonance reference values and to identify the main determinants of right ventricular (RV) volumes and systolic function using a modern imaging sequence in a community-dwelling, longitudinally followed cohort free of clinical cardiovascular and pulmonary disease. The Framingham Heart Study Offspring cohort has been followed since 1971. We scanned 1794 Offspring cohort members using steady-state free precession cardiac magnetic resonance and identified a reference group of 1336 adults (64±9 years, 576 men) free of prevalent cardiovascular and pulmonary disease. RV trabeculations and papillary muscles were considered cavity volume. Men had greater RV volumes and cardiac output before and after indexation to body size (all P<0.001). Women had higher RV ejection fraction than men (68±6% versus 64±7%; P<0.0001). RV volumes and cardiac output decreased with advancing age. There was an increase in raw and height-indexed RV measurements with increasing body mass index, but this trend was weakly inverted after indexation of RV volumes to body surface area. Sex, age, height, body mass index, and heart rate account for most of the variability in RV volumes and function in this community-dwelling population. We report sex-specific normative values for RV measurements among principally middle-aged and older adults. RV ejection fraction is greater in women. RV volumes increase with body size, are greater in men, and are smaller in older people. Body surface area seems to be appropriate for indexation of cardiac magnetic resonance-derived RV volumes. © 2016 American Heart Association, Inc.
Dual-surface dielectric depth detector for holographic millimeter-wave security scanners
NASA Astrophysics Data System (ADS)
McMakin, Douglas L.; Keller, Paul E.; Sheen, David M.; Hall, Thomas E.
2009-05-01
The Transportation Security Administration (TSA) is presently deploying millimeter-wave whole body scanners at over 20 airports in the United States. Threats that may be concealed on a person are displayed to the security operator of this scanner. "Passenger privacy is ensured through the anonymity of the image. The officer attending the passenger cannot view the image, and the officer viewing the image is remotely located and cannot see the passenger. Additionally, the image cannot be stored, transmitted or printed and is deleted immediately after being viewed. Finally, the facial area of the image has been blurred to further ensure privacy." Pacific Northwest National Laboratory (PNNL) originated research into this novel security technology which has been independently commercialized by L-3 Communications, SafeView, Inc. PNNL continues to perform fundamental research into improved software techniques which are applicable to the field of holographic security screening technology. This includes performing significant research to remove human features from the imagery. Both physical and software imaging techniques have been employed. The physical imaging techniques include polarization diversity illumination and reception, dual frequency implementation, and high frequency imaging at 100 GHz. This paper will focus on a software privacy technique using a dual surface dielectric depth detector method.
Viewpoint Dependent Imaging: An Interactive Stereoscopic Display
NASA Astrophysics Data System (ADS)
Fisher, Scott
1983-04-01
Design and implementation of a viewpoint Dependent imaging system is described. The resultant display is an interactive, lifesize, stereoscopic image. that becomes a window into a three dimensional visual environment. As the user physically changes his viewpoint of the represented data in relation to the display surface, the image is continuously updated. The changing viewpoints are retrieved from a comprehensive, stereoscopic image array stored on computer controlled, optical videodisc and fluidly presented. in coordination with the viewer's, movements as detected by a body-tracking device. This imaging system is an attempt to more closely represent an observers interactive perceptual experience of the visual world by presenting sensory information cues not offered by traditional media technologies: binocular parallax, motion parallax, and motion perspective. Unlike holographic imaging, this display requires, relatively low bandwidth.
Magnetic resonance imaging determination of left ventricular mass: junior Olympic weightlifters.
Fleck, S J; Pattany, P M; Stone, M H; Kraemer, W J; Thrush, J; Wong, K
1993-04-01
The relationship between left ventricular mass (LVM) and peak VO2 in junior elite Olympic-style weightlifters and sedentary subjects was investigated. Ten male weightlifters (mean +/- SE, age = 17.5 +/- 0.4 yr, wt = 72.9 +/- 3.3 kg) and 15 sedentary males (age = 18.8 +/- 0.4 yr, wt = 69.6 +/- 2.0 kg) served as subjects. Peak VO2 was measured using a continuous, incrementally loaded bicycle ergometry protocol. LVM was measured using magnetic resonance imaging techniques. Absolute peak VO2 was not significantly different (P > or = 0.05) between the weightlifters and the control subjects (3.5 +/- 0.1 vs 3.3 +/- 0.11.min-1). Absolute LVM (g) was significantly (P < or = 0.05) correlated to absolute peak VO2 (1.min-1) in the weightlifters (r = 0.723), but not in the control subjects. No other correlations between LVM in absolute or normalized by body weight, body surface area, or fat free mass terms, and absolute peak or normalized by body weight peak VO2 were significant. The weightlifters absolute LVM was significantly greater (P < or = 0.05) than that of the controls (208.1 +/- 10.0 vs 179.7 +/- 8.4 g). LVM normalized by body weight and body surface area but not by fat free mass, was significantly greater (P < or = 0.05) in the weightlifters than the control subjects. These data indicate that LVM in junior elite weightlifters is greater than that of control subjects and absolute LVM is related to absolute peak VO2 in weightlifters but not control subjects.
Underhill, Hunter R; Yuan, Chun; Hayes, Cecil E
2010-09-01
Rat brain models effectively simulate a multitude of human neurological disorders. Improvements in coil design have facilitated the wider utilization of rat brain models by enabling the utilization of clinical MR scanners for image acquisition. In this study, a novel coil design, subsequently referred to as the rat brain coil, is described that exploits and combines the strengths of both solenoids and surface coils into a simple, multichannel, receive-only coil dedicated to whole-brain rat imaging on a 3.0 T clinical MR scanner. Compared with a multiturn solenoid mouse body coil, a 3-cm surface coil, a modified Helmholtz coil, and a phased-array surface coil, the rat brain coil improved signal-to-noise ratio by approximately 72, 61, 78, and 242%, respectively. Effects of the rat brain coil on amplitudes of static field and radiofrequency field uniformity were similar to each of the other coils. In vivo, whole-brain images of an adult male rat were acquired with a T(2)-weighted spin-echo sequence using an isotropic acquisition resolution of 0.25 x 0.25 x 0.25 mm(3) in 60.6 min. Multiplanar images of the in vivo rat brain with identification of anatomic structures are presented. Improvement in signal-to-noise ratio afforded by the rat brain coil may broaden experiments that utilize clinical MR scanners for in vivo image acquisition. 2010 Wiley-Liss, Inc.
First Ever High Resolution View of Pluto's Surface
2017-12-08
New close-up images of a region near Pluto’s equator reveal a giant surprise: a range of youthful mountains rising as high as 11,000 feet (3,500 meters) above the surface of the icy body. The mountains likely formed no more than 100 million years ago -- mere youngsters relative to the 4.56-billion-year age of the solar system -- and may still be in the process of building, says Jeff Moore of New Horizons’ Geology, Geophysics and Imaging Team (GGI). That suggests the close-up region, which covers less than one percent of Pluto’s surface, may still be geologically active today. Moore and his colleagues base the youthful age estimate on the lack of craters in this scene. Like the rest of Pluto, this region would presumably have been pummeled by space debris for billions of years and would have once been heavily cratered -- unless recent activity had given the region a facelift, erasing those pockmarks. “This is one of the youngest surfaces we’ve ever seen in the solar system,” says Moore. Unlike the icy moons of giant planets, Pluto cannot be heated by gravitational interactions with a much larger planetary body. Some other process must be generating the mountainous landscape. “This may cause us to rethink what powers geological activity on many other icy worlds,” says GGI deputy team leader John Spencer of the Southwest Research Institute in Boulder, Colo. The mountains are probably composed of Pluto’s water-ice “bedrock.” Although methane and nitrogen ice covers much of the surface of Pluto, these materials are not strong enough to build the mountains. Instead, a stiffer material, most likely water-ice, created the peaks. “At Pluto’s temperatures, water-ice behaves more like rock,” said deputy GGI lead Bill McKinnon of Washington University, St. Louis. The close-up image was taken about 1.5 hours before New Horizons closest approach to Pluto, when the craft was 478,000 miles (770,000 kilometers) from the surface of the planet. The image easily resolves structures smaller than a mile across. Image Credit: NASA-JHUAPL-SwRI NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Determination of the intervertebral disc space from CT images of the lumbar spine
NASA Astrophysics Data System (ADS)
Korez, Robert; Å tern, Darko; Likar, Boštjan; Pernuš, Franjo; Vrtovec, Tomaž
2014-03-01
Degenerative changes of the intervertebral disc are among the most common causes of low back pain, where for individuals with significant symptoms surgery may be needed. One of the interventions is the total disc replacement surgery, where the degenerated disc is replaced by an artificial implant. For designing implants with good bone contact and continuous force distribution, the morphology of the intervertebral disc space and vertebral body endplates is of considerable importance. In this study we propose a method for the determination of the intervertebral disc space from three-dimensional (3D) computed tomography (CT) images of the lumbar spine. The first step of the proposed method is the construction of a model of vertebral bodies in the lumbar spine. For this purpose, a chain of five elliptical cylinders is initialized in the 3D image and then deformed to resemble vertebral bodies by introducing 25 shape parameters. The parameters are obtained by aligning the chain to the vertebral bodies in the CT image according to image intensity and appearance information. The determination of the intervertebral disc space is finally achieved by finding the planes that fit the endplates of the obtained parametric 3D models, and placing points in the space between the planes of adjacent vertebrae that enable surface reconstruction of the intervertebral disc space. The morphometric analysis of images from 20 subjects yielded 11:3 +/- 2:6, 12:1 +/- 2:4, 12:8 +/- 2:0 and 12:9 +/- 2:7 cm3 in terms of L1-L2, L2-L3, L3-L4 and L4-L5 intervertebral disc space volume, respectively.
NASA Astrophysics Data System (ADS)
Zhao, Yue; Zhu, Dianwen; Baikejiang, Reheman; Li, Changqing
2015-03-01
We have developed a new fluorescence molecular tomography (FMT) imaging system, in which we utilized a phase shifting method to extract the mouse surface geometry optically and a rotary laser scanning approach to excite fluorescence molecules and acquire fluorescent measurements on the whole mouse body. Nine fringe patterns with a phase shifting of 2π/9 are projected onto the mouse surface by a projector. The fringe patterns are captured using a webcam to calculate a phase map that is converted to the geometry of the mouse surface with our algorithms. We used a DigiWarp approach to warp a finite element mesh of a standard digital mouse to the measured mouse surface thus the tedious and time-consuming procedure from a point cloud to mesh is avoided. Experimental results indicated that the proposed method is accurate with errors less than 0.5 mm. In the FMT imaging system, the mouse is placed inside a conical mirror and scanned with a line pattern laser that is mounted on a rotation stage. After being reflected by the conical mirror, the emitted fluorescence photons travel through central hole of the rotation stage and the band pass filters in a motorized filter wheel, and are collected by a CCD camera. Phantom experimental results of the proposed new FMT imaging system can reconstruct the target accurately.
Optical method and apparatus for detection of surface and near-subsurface defects in dense ceramics
Ellingson, W.A.; Brada, M.P.
1995-06-20
A laser is used in a non-destructive manner to detect surface and near-subsurface defects in dense ceramics and particularly in ceramic bodies with complex shapes such as ceramic bearings, turbine blades, races, and the like. The laser`s wavelength is selected based upon the composition of the ceramic sample and the laser can be directed on the sample while the sample is static or in dynamic rotate or translate motion. Light is scattered off surface and subsurface defects using a preselected polarization. The change in polarization angle is used to select the depth and characteristics of surface/subsurface defects. The scattered light is detected by an optical train consisting of a charge coupled device (CCD), or vidicon, television camera which, in turn, is coupled to a video monitor and a computer for digitizing the image. An analyzing polarizer in the optical train allows scattered light at a given polarization angle to be observed for enhancing sensitivity to either surface or near-subsurface defects. Application of digital image processing allows subtraction of digitized images in near real-time providing enhanced sensitivity to subsurface defects. Storing known ``feature masks`` of identified defects in the computer and comparing the detected scatter pattern (Fourier images) with the stored feature masks allows for automatic classification of detected defects. 29 figs.
Kaiser, V.; Comtet, J.; Niguès, A.; Siria, A.; Coasne, B.; Bocquet, L.
2017-01-01
The electrostatic interaction between two charged particles is strongly modified in the vicinity of a metal. This situation is usually accounted for by the celebrated image charges approach, which was further extended to account for the electronic screening properties of the metal at the level of the Thomas-Fermi description. In this paper we build upon the approach by [Kornyshev et al. Zh. Eksp. Teor. Fiz., 78(3):1008–1019, 1980] and successive works to calculate the 1-body and 2-body electrostatic energy of ions near a metal in terms of the Thomas-Fermi screening length. We propose workable approximations suitable for molecular simulations of ionic systems close to metallic walls. Furthermore, we use this framework to calculate analytically the electrostatic contribution to the surface energy of a one dimensional crystal at a metallic wall and its dependence on the Thomas-Fermi screening length. These calculations provide a simple interpretation for the surface energy in terms of image charges, which allow for an estimate of interfacial properties in more complex situations of a disordered ionic liquid close to a metal surface. A counterintuitive outcome is that electronic screening, as characterized by a molecular Thomas-Fermi length ℓTF, profoundly affects the wetting of ionic systems close to a metal, in line with the recent experimental observation of capillary freezing of ionic liquids in metallic confinement. PMID:28436506
NASA Astrophysics Data System (ADS)
Bailly, J. S.; Puech, C.; Lukac, F.; Massé, J.
2003-04-01
On Atlantic coastal wetlands, the understanding of hydrological processes may refer to hydraulic surface structures characterization as small ditches or channels networks, permanent and temporary water bodies. Moreover to improve the understanding, this characerization should be realized regarding different seasons and different spatial scales: elementary parcel, managment unit and whole wetland scales. In complement to usual observations on a few local ground points, high spatial resolution remote sensing may be a good information support for extraction and characterization on elementary objects, especially water bodies, permanents or temporary ones and ditches. To carry out a floow-up on wetlands, a seasonal image acquisition rate, reachable from most of satelite systems, is in that case informative for hydrological needs. In this work, georeferencing methods on openfield wetlands have been handled with care in order to use diachronic images or combined geographical data; lack of relief, short vegetation and well structured landscape make this preprocess easier in comparison to other landscape situations. In this presentation we focus on spatial hydromorphy parameters constructed from images with specific processes. Especially, hydromorphy indicators for parcels or managment units have been developped using an IRC winter-spring-summer metric resolution set of images: these descriptors are based on water areas evolution or hydrophyl vegetations presence traducing hydrodynamic submersion behaviour in temporary water bodies. An other example presents a surface water network circulation indicator elaborated on IRC aerial photography combined with vectorized geographic database. This indicator is based on ditches width and vegetation presence : a specific process uses vectorized geo data set to define transects across ditches on which classified image analysis is carried out (supervised classification). These first results proposing hydromorphy descriptors from very high resolution don't give complete indicators for follow-up and monitoring of coastal wetlands, but their combinaison, aggregation should present good technical bases to carry it out with success.
Clinical and histopathological features of adenomas of the ciliary pigment epithelium.
Chang, Ying; Wei, Wen Bin; Shi, Ji Tong; Xian, Jun Fang; Yang, Wen Li; Xu, Xiao Lin; Bai, Hai Xia; Li, Bin; Jonas, Jost B
2016-11-01
Adenomas of the ciliary pigment epithelium (CPE) are rare benign tumours which have mainly to be differentiated from malignant ciliary body melanomas. Here we report on a consecutive series of patients with CPE adenomas and describe their characteristics. The retrospective hospital-based case series study included all patients who were consecutively operated for CPE adenomas. Of the 110 patients treated for ciliary body tumours, five patients (4.5%) had a CPE adenoma. Mean age was 59.0 ± 9.9 years (range: 46-72 years). Mean tumour apical thickness was 6.6 ± 1.7 mm. Tumour colour was mostly homogenously brown to black, and the tumour surface was smooth. The tumour masses pushed the iris tissue forward without infiltrating iris or anterior chamber angle. Sonography revealed an irregular echogram with sharp lesion borders and signs of blood flow in Color Doppler flow imaging. Ultrasonographic biomicroscopy demonstrated medium-low internal reflectivity and acoustic attenuation. In magnetic resonance imaging (MRI), the tumours as compared to brain were hyperintense on T1-weighted images and hypointense on T2-weighted images. Tumour tissue consisted of cords and nests of pigment epithelium cells separated by septa of vascularized fibrous connective tissue, leading to a pseudo-glandular appearance. The melanin granules in the cytoplasm were large and mostly spherical in shape. In four patients, the tumours were hyperpigmented. Tumour cells were large with round or oval nuclei and clearly detectable nucleoli. These clinical characteristics of CPE adenomas, such as homogenous dark brown colour, smooth surface, iris dislocation and anterior chamber angle narrowing but no iris infiltration, segmental cataract, pigment dispersion, and, as compared to brain tissue, hypointensity and, as compared to extraocular muscles or lacrimal gland, hyperintensity on T2-weighted MRI images, may be helpful for the differentiation from ciliary body malignant melanomas. © 2016 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Preusker, Frank; Scholten, Frank; Matz, Klaus-Dieter; Roatsch, Thomas; Willner, Konrad; Hviid, Stubbe; Knollenberg, Jörg; Kührt, Ekkehard; Sierks, Holger
2015-04-01
The European Space Agency's Rosetta spacecraft is equipped with the OSIRIS imaging system which consists of a wide-angle and a narrow-angle camera (WAC and NAC). After the approach phase, Rosetta was inserted into a descent trajectory of comet 67P/Churyumov-Gerasimenko (C-G) in early August 2014. Until early September, OSIRIS acquired several hundred NAC images of C-G's surface at different scales (from ~5 m/pixel during approach to ~0.9 m/pixel during descent). In that one month observation period, the surface was imaged several times within different mapping sequences. With the comet's rotation period of ~12.4 h and the low spacecraft velocity (< 1 m/s), the entire NAC dataset provides multiple NAC stereo coverage, adequate for stereo-photogrammetric (SPG) analysis towards the derivation of 3D surface models. We constrained the OSIRIS NAC images with our stereo requirements (15° < stereo angles < 45°, incidence angles <85°, emission angles <45°, differences in illumination < 10°, scale better than 5 m/pixel) and extracted about 220 NAC images that provide at least triple stereo image coverage for the entire illuminated surface in about 250 independent multi-stereo image combinations. For each image combination we determined tie points by multi-image matching in order to set-up a 3D control network and a dense surface point cloud for the precise reconstruction of C-G's shape. The control point network defines the input for a stereo-photogrammetric least squares adjustment. Based on the statistical analysis of adjustments we first refined C-G's rotational state (pole orientation and rotational period) and its behavior over time. Based upon this description of the orientation of C-G's body-fixed reference frame, we derived corrections for the nominal navigation data (pointing and position) within a final stereo-photogrammetric block adjustment where the mean 3D point accuracy of more than 100 million surface points has been improved from ~10 m to the sub-meter range. We finally applied point filtering and interpolation techniques to these surface 3D points and show the resulting SPG-based 3D surface model with a lateral sampling rate of about 2 m.
Carbone, V; Fluit, R; Pellikaan, P; van der Krogt, M M; Janssen, D; Damsgaard, M; Vigneron, L; Feilkas, T; Koopman, H F J M; Verdonschot, N
2015-03-18
When analyzing complex biomechanical problems such as predicting the effects of orthopedic surgery, subject-specific musculoskeletal models are essential to achieve reliable predictions. The aim of this paper is to present the Twente Lower Extremity Model 2.0, a new comprehensive dataset of the musculoskeletal geometry of the lower extremity, which is based on medical imaging data and dissection performed on the right lower extremity of a fresh male cadaver. Bone, muscle and subcutaneous fat (including skin) volumes were segmented from computed tomography and magnetic resonance images scans. Inertial parameters were estimated from the image-based segmented volumes. A complete cadaver dissection was performed, in which bony landmarks, attachments sites and lines-of-action of 55 muscle actuators and 12 ligaments, bony wrapping surfaces, and joint geometry were measured. The obtained musculoskeletal geometry dataset was finally implemented in the AnyBody Modeling System (AnyBody Technology A/S, Aalborg, Denmark), resulting in a model consisting of 12 segments, 11 joints and 21 degrees of freedom, and including 166 muscle-tendon elements for each leg. The new TLEM 2.0 dataset was purposely built to be easily combined with novel image-based scaling techniques, such as bone surface morphing, muscle volume registration and muscle-tendon path identification, in order to obtain subject-specific musculoskeletal models in a quick and accurate way. The complete dataset, including CT and MRI scans and segmented volume and surfaces, is made available at http://www.utwente.nl/ctw/bw/research/projects/TLEMsafe for the biomechanical community, in order to accelerate the development and adoption of subject-specific models on large scale. TLEM 2.0 is freely shared for non-commercial use only, under acceptance of the TLEMsafe Research License Agreement. Copyright © 2014 Elsevier Ltd. All rights reserved.
Workshop on Body Image: Creating or Reinventing a Positive Body Image.
ERIC Educational Resources Information Center
Ahmed, Christine
This paper examines the culturization of body image and the impact of body image on women and men, noting that the strict definition of body size has made many women and men dissatisfied with their bodies. The first section defines body image and culturization, explaining how the current media images put tremendous pressure on men and women that…
Optical stent inspection of surface texture and coating thickness
NASA Astrophysics Data System (ADS)
Bermudez, Carlos; Laguarta, Ferran; Cadevall, Cristina; Matilla, Aitor; Ibañez, Sergi; Artigas, Roger
2017-02-01
Stent quality control is a critical process. Coronary stents have to be inspected 100% so no defective stent is implanted into a human body. We have developed a high numerical aperture optical stent inspection system able to acquire both 2D and 3D images. Combining a rotational stage, an area camera with line-scan capability and a triple illumination arrangement, unrolled sections of the outer, inner, and sidewalls surfaces are obtained with high resolution. During stent inspection, surface roughness and coating thickness uniformity is of high interest. Due to the non-planar shape of the surface of the stents, the thickness values of the coating need to be corrected with the 3D surface local slopes. A theoretical model and a simulation are proposed, and a measurement with white light interferometry is shown. Confocal and spectroscopic reflectometry showed to be limited in this application due to stent surface roughness. Due to the high numerical aperture of the optical system, only certain parts of the stent are in focus, which is a problem for defect detection, specifically on the sidewalls. In order to obtain fully focused 2D images, an extended depth of field algorithm has been implemented. A comparison between pixel variance and Laplacian filtering is shown. To recover the stack image, two different methods are proposed: maximum projection and weighted intensity. Finally, we also discuss the implementation of the processing algorithms in both the CPU and GPU, targeting real-time 2-Million pixel image acquisition at 50 frames per second.
Changes in body surface temperature during speed endurance work-out in highly-trained male sprinters
NASA Astrophysics Data System (ADS)
Korman, Paweł; Straburzyńska-Lupa, Anna; Kusy, Krzysztof; Kantanista, Adam; Zieliński, Jacek
2016-09-01
The mechanism of thermoregulatory adaptation to exercise cannot yet be fully explained, however, infrared thermography (IRT) seems to have potential for monitoring physiological changes during exercise and training. It is a non-contact and easy to use technology to measure heat radiation from the body surface. The objective of the study was to examine the temperature changes over time on lower limbs in sprinters during speed endurance training session. Eight sprinters, specialized in distances 100 m and 200 m, aged 21-29 years, members of the Polish national team, were evaluated during an outdoor speed endurance work-out. Their track session comprised of warm-up, specific drills for sprinting technique, and speed endurance exercise. The surface temperature of lower limbs was measured and thermal images were taken using infrared camera after each part of the session. The speed endurance training session brought about specific time course of body surface (legs) temperature. The warm-up induced a significant decline in surface temperature by ∼2.5 °C, measured both on the front and back of lower limbs (p < 0.001), followed by a temperature stabilization until the end of the session. No significant asymmetry between the front and back sides of legs was observed. Body surface temperature may help identify an individual optimal time to terminate warm up and start the main part of the training session. It may also be useful for the assessment of muscle activity symmetry in cyclical activities, such as sprint running. This is of particular relevance when a training session is performed outdoors in changeable weather conditions.
NASA Astrophysics Data System (ADS)
Fang, H.; Yao, H.; Zhang, H.
2017-12-01
Reliable crustal and upper mantle structure is important to understand expansion of material from the Tibetan plateau to its northeastern margin. Previous studies have used either ambient noise tomography or body wave traveltime tomography to obtain the crustal velocity models in northeastern Tibetan Plateau. However, clear differences appear in these models obtained using different datasets. Here we propose to jointly invert local and teleseismic body wave arrival times and surface wave dispersion data from ambient noise cross correlation to obtain a unified P and S wavespeed model of the crust and upper mantle in NE Tibetan Plateau. Following Fang et al. (2016), we adopt the direct inversion strategy for surface wave data (Fang et al., 2015), which eliminates the need to construct the phase/group velocity maps and allows the straightforward incorporation of surface wave dispersion data into the body wave inversion framework. For body wave data including both local and teleseismic arrival times, we use the fast marching method (Rawlinson et al., 2004) in order to trace multiple seismic phases simultaneously. The joint inversion method takes advantage of the complementary strengths of different data types, with local body wave data constraining more on the P than S wavespeed in the crust, surface wave data most sensitive to S wavespeed in the crust and upper mantle, teleseismic body wave data resolving the upper mantle structure. A series of synthetic tests will be used to show the robustness and superiority of the joint inversion method. Besides, the inverted model will be validated by waveform simulation and comparison with other studies, like receiver function imaging. The resultant P and S wavespeed models, as well as the derived Vp/Vs model, will be essential to understand the regional tectonics of the northeastern Tibetan Plateau, and to address the related geodynamic questions of the Tibetan Plateau formation and expansion.
Matsumoto, Ken-Ichiro; Hyodo, Fuminori; Mitchell, James B; Krishna, Murali C
2018-02-01
Pharmacokinetics of the tri[8-carboxy-2,2,6,6-tetrakis(2-hydroxymethyl)benzo[1,2-d:4,5-d']bis(1,3)dithio-4-yl]methyl radical (Oxo63) after a single bolus and/or continuous intravenous infusion was investigated in tumor-bearing C3H mice with or without body temperature control while under anesthesia. The in vivo time course of Oxo63 in blood was measured using X-band electron paramagnetic resonance spectroscopy. Distribution of Oxo63 in normal muscle and tumor tissues was obtained using a surface coil resonator and a 700-MHz electron paramagnetic resonance spectrometer. The whole-body distribution of Oxo63 was obtained by 300-MHz continuous-wave electron paramagnetic resonance imaging. The high-resolution 300-MHz time-domain electron paramagnetic resonance imaging was also carried out to probe the distribution of Oxo63. Urination of mice was retarded at low body temperature, causing the concentration of Oxo63 in blood to attain high levels. However, the concentration of Oxo63 in tumor tissue was lower with no control of body temperature than active body temperature control. The nonsystemized blood flow in the tumor tissues may pool Oxo63 at lower body temperature. Pharmacokinetics of the contrast agent were found to be significantly affected by body temperature of the experimental animal, and can influence the probe distribution and the image patterns. Magn Reson Med 79:1212-1218, 2018. © Published 2017. This article is a U.S. Government work and is in the public domain in the USA. © Published 2017. This article is a U.S. Government work and is in the public domain in the USA.
STS-93 Tognini and Hawley pose with the SWUIS on the middeck of Columbia
2013-11-18
STS093-347-027 (23-27 July 1999) --- Astronauts Steven A. Hawley (left) and Michel Tognini, mission specialists, are pictured with the Southwest Ultraviolet Imaging System (SWUIS) on the middeck of the Space Shuttle Columbia. SWUIS was used during the mission to image planets and other solar system bodies in order to explore their atmospheres and surfaces in ultraviolet (UV) region of the spectrum, which astronomers value for diagnostic work. Tognini represents the Centre National d'Etudes Spatiales (CNES) of France.
Water resources by orbital remote sensing: Examples of applications
NASA Technical Reports Server (NTRS)
Martini, P. R. (Principal Investigator)
1984-01-01
Selected applications of orbital remote sensing to water resources undertaken by INPE are described. General specifications of Earth application satellites and technical characteristics of LANDSAT 1, 2, 3, and 4 subsystems are described. Spatial, temporal and spectral image attributes of water as well as methods of image analysis for applications to water resources are discussed. Selected examples are referred to flood monitoring, analysis of water suspended sediments, spatial distribution of pollutants, inventory of surface water bodies and mapping of alluvial aquifers.
Slab geometry of the South American margin from joint inversion of body waves and surface waves
NASA Astrophysics Data System (ADS)
Porritt, R. W.; Ward, K. M.; Porter, R. C.; Portner, D. E.; Lynner, C.; Beck, S. L.; Zandt, G.
2016-12-01
The western margin of South America is a long subduction zone with a complex, highly three -dimensional geometry. The first order structure of the slab has previously been inferred from seismicity patterns and locations of volcanoes, but confirmation of the slab geometry by seismic imaging for the entire margin has been limited by either shallow, lithospheric scale models or broader, upper mantle images, often defined on a limited spatial footprint. Here, we present new teleseismic tomographic SV seismic models of the upper mantle from 10°S to 40°S along the South American subduction zone with resolution to a depth of 1000 km as inferred from checkerboard tests. In regions near the Peru Bolivia border (12°S to 18°S) and near central Chile and western Argentina (29.5°S to 33°S) we jointly invert the multi-band direct S and SKS relative delay times with Rayleigh wave phase velocities from ambient noise and teleseismic surface wave tomography. This self-consistent model provides information from the upper crust to below the mantle transition zone along the western margin in these two regions. This consistency allows tracing the slab from the South American coastline to the sub-transition zone upper mantle. From this model we image several features, but most notable is a significant eastward step near the southern edge of the margin (24°-30° S). West of this step, a large high shear velocity body is imaged in the base of and below the transition zone. We suggest this may be a stagnant slab, which is descending into the lower mantle now that it is no longer attached to the surface. This suggests a new component to the subduction history of western South America when an older slab lead the convergence before anchoring in the transition zone, breaking off from the surface, and being overtaken by the modern, actively subducting slab now located further east.
NASA Astrophysics Data System (ADS)
Obermann, Anne; Planès, Thomas; Hadziioannou, Céline; Campillo, Michel
2016-10-01
In the context of seismic monitoring, recent studies made successful use of seismic coda waves to locate medium changes on the horizontal plane. Locating the depth of the changes, however, remains a challenge. In this paper, we use 3-D wavefield simulations to address two problems: first, we evaluate the contribution of surface- and body-wave sensitivity to a change at depth. We introduce a thin layer with a perturbed velocity at different depths and measure the apparent relative velocity changes due to this layer at different times in the coda and for different degrees of heterogeneity of the model. We show that the depth sensitivity can be modelled as a linear combination of body- and surface-wave sensitivity. The lapse-time-dependent sensitivity ratio of body waves and surface waves can be used to build 3-D sensitivity kernels for imaging purposes. Second, we compare the lapse-time behaviour in the presence of a perturbation in horizontal and vertical slabs to address, for instance, the origin of the velocity changes detected after large earthquakes.
Reflectron Time-of-Flight Mass Spectrometer (REMAS) Instrumentation
NASA Technical Reports Server (NTRS)
Brinckerhoff, W. B.; McEntire, R. W.; Cheng, A. F.
2000-01-01
The restricted mass and power budgets of landed science missions present a challenge to obtaining detailed analyses of planetary bodies. In situ studies, whether alone or as reconnaissance for sample return, must rely on highly miniaturized and autonomous instrumentation. Such devices must still produce useful data sets from a minimum of measurements. The great desire to understand the surfaces and interiors of planets, moons, and small bodies had driven the development of small, robotic techniques with ever-increasing capabilities. One of the most important goals on a surface mission is to study composition in many geological contexts. The mineralogical, molecular, elemental, and isotopic content of near-surface materials (regolith, rocks, soils, dust, etc.) at a variety of sites can complement broader imaging to describe the makeup and formative history of the body in question. Instruments that perform this site-to-site analysis must be highly transportable and work as a suite. For instance, a camera, microscope, spectrophotometer, and mass spectrometer can share several components and operate under a parallel command structure. Efficient use of multiple systems on a small rover has been demonstrated on the Mars Pathfinder mission.
Radar-Sounding of Icy Mantles and Comets Using Natural Radio Noise
NASA Astrophysics Data System (ADS)
Winebrenner, D. P.; Sahr, J. D.
2011-10-01
Radar-sounding of ice sheets on Earth yields crucial information on ice history and dynamics, including discoveries of subglacial lakes beneath 3-4 km of ice [1]. Mars Express and the Mars Reconnaissance Orbiter (MRO) have now demonstrated the corresponding power of orbital radar sounding for planetary exploration, in particular by imaging structures within and beneath kilometers of Martian water ice [2-4]. Based on this experience, a sophisticated orbital radar sounder is planned for a flagship mission to Europa, with the aim of imaging stratigraphy, faults, diapirs and other geological structure in the upper few kilometers of the water-ice mantle there, and possibly even detecting the upper surface of the (likely) underlying ocean [5]. Recent modeling of the formation and evolution of volatilerich bodies suggests that oceans or lakes of liquid water occur beneath water-ice mantles in a surprising variety of places, including Ceres in the outer asteroid belt [6], 3 of the 4 Galilean moons of Jupiter as well as Enceladus and Titan in the Saturnian system [7], and possibly even Pluto [8]. Thus there is now a wide scope for low-cost missions to bodies of exceptional interest, and for radar sounding of icy mantles to image near-surface structural geology related to underlying water (whether past or present).
Surface uplift in the Central Andes driven by growth of the Altiplano Puna Magma Body
Perkins, Jonathan P.; Ward, Kevin M.; de Silva, Shanaka L.; Zandt, George; Beck, Susan L.; Finnegan, Noah J.
2016-01-01
The Altiplano-Puna Magma Body (APMB) in the Central Andes is the largest imaged magma reservoir on Earth, and is located within the second highest orogenic plateau on Earth, the Altiplano-Puna. Although the APMB is a first-order geologic feature similar to the Sierra Nevada batholith, its role in the surface uplift history of the Central Andes remains uncertain. Here we show that a long-wavelength topographic dome overlies the seismically measured extent of the APMB, and gravity data suggest that the uplift is isostatically compensated. Isostatic modelling of the magmatic contribution to dome growth yields melt volumes comparable to those estimated from tomography, and suggests that the APMB growth rate exceeds the peak Cretaceous magmatic flare-up in the Sierran batholith. Our analysis reveals that magmatic addition may provide a contribution to surface uplift on par with lithospheric removal, and illustrates that surface topography may help constrain the magnitude of pluton-scale melt production. PMID:27779183
Surface uplift in the Central Andes driven by growth of the Altiplano Puna Magma Body.
Perkins, Jonathan P; Ward, Kevin M; de Silva, Shanaka L; Zandt, George; Beck, Susan L; Finnegan, Noah J
2016-10-25
The Altiplano-Puna Magma Body (APMB) in the Central Andes is the largest imaged magma reservoir on Earth, and is located within the second highest orogenic plateau on Earth, the Altiplano-Puna. Although the APMB is a first-order geologic feature similar to the Sierra Nevada batholith, its role in the surface uplift history of the Central Andes remains uncertain. Here we show that a long-wavelength topographic dome overlies the seismically measured extent of the APMB, and gravity data suggest that the uplift is isostatically compensated. Isostatic modelling of the magmatic contribution to dome growth yields melt volumes comparable to those estimated from tomography, and suggests that the APMB growth rate exceeds the peak Cretaceous magmatic flare-up in the Sierran batholith. Our analysis reveals that magmatic addition may provide a contribution to surface uplift on par with lithospheric removal, and illustrates that surface topography may help constrain the magnitude of pluton-scale melt production.
Bailey, K Alysse; Gammage, Kimberley L; van Ingen, Cathy
2017-12-01
The definition of body image has evolved within research; however, less is known about the layperson's understanding of the construct. This study explored how members and student trainees of an exercise facility (designed for older adults, people with physical disability, and those with cardiac complications) defined body image. Nineteen participants completed a one-on-one interview, and seven of those participants took part in six additional focus group meetings. The following main themes were found: stereotypical assumptions about body image (e.g., it is solely a person's weight or merely a woman's issue), body image continua for positive and negative body image, degree of complexity of body image dimensions, broad considerations of body image (e.g., it is self-esteem), and limited knowledge about body image. These findings suggest a need for knowledge translation between researchers and the general public which informs future body image program design. Copyright © 2017 Elsevier Ltd. All rights reserved.
Evolving concepts on adjusting human resting energy expenditure measurements for body size.
Heymsfield, S B; Thomas, D; Bosy-Westphal, A; Shen, W; Peterson, C M; Müller, M J
2012-11-01
Establishing if an adult's resting energy expenditure (REE) is high or low for their body size is a pervasive question in nutrition research. Early workers applied body mass and height as size measures and formulated the Surface Law and Kleiber's Law, although each has limitations when adjusting REE. Body composition methods introduced during the mid-20th century provided a new opportunity to identify metabolically homogeneous 'active' compartments. These compartments all show improved correlations with REE estimates over body mass-height approaches, but collectively share a common limitation: REE-body composition ratios are not 'constant' but vary across men and women and with race, age and body size. The now-accepted alternative to ratio-based norms is to adjust for predictors by applying regression models to calculate 'residuals' that establish if an REE is relatively high or low. The distinguishing feature of statistical REE-body composition models is a 'non-zero' intercept of unknown origin. The recent introduction of imaging methods has allowed development of physiological tissue-organ-based REE prediction models. Herein, we apply these imaging methods to provide a mechanistic explanation, supported by experimental data, for the non-zero intercept phenomenon and, in that context, propose future research directions for establishing between-subject differences in relative energy metabolism. © 2012 The Authors. obesity reviews © 2012 International Association for the Study of Obesity.
Wood-Barcalow, Nichole L; Tylka, Tracy L; Augustus-Horvath, Casey L
2010-03-01
Extant body image research has provided a rich understanding of negative body image but a rather underdeveloped depiction of positive body image. Thus, this study used Grounded Theory to analyze interviews from 15 college women classified as having positive body image and five body image experts. Many characteristics of positive body image emerged, including appreciating the unique beauty and functionality of their body, filtering information (e.g., appearance commentary, media ideals) in a body-protective manner, defining beauty broadly, and highlighting their body's assets while minimizing perceived imperfections. A holistic model emerged: when women processed mostly positive and rejected negative source information, their body investment decreased and body evaluation became more positive, illustrating the fluidity of body image. Women reciprocally influenced these sources (e.g., mentoring others to love their bodies, surrounding themselves with others who promote body acceptance, taking care of their health), which, in turn, promoted increased positive source information. Copyright 2010. Published by Elsevier Ltd.
Bruse, Jan L; McLeod, Kristin; Biglino, Giovanni; Ntsinjana, Hopewell N; Capelli, Claudio; Hsia, Tain-Yen; Sermesant, Maxime; Pennec, Xavier; Taylor, Andrew M; Schievano, Silvia
2016-05-31
Medical image analysis in clinical practice is commonly carried out on 2D image data, without fully exploiting the detailed 3D anatomical information that is provided by modern non-invasive medical imaging techniques. In this paper, a statistical shape analysis method is presented, which enables the extraction of 3D anatomical shape features from cardiovascular magnetic resonance (CMR) image data, with no need for manual landmarking. The method was applied to repaired aortic coarctation arches that present complex shapes, with the aim of capturing shape features as biomarkers of potential functional relevance. The method is presented from the user-perspective and is evaluated by comparing results with traditional morphometric measurements. Steps required to set up the statistical shape modelling analyses, from pre-processing of the CMR images to parameter setting and strategies to account for size differences and outliers, are described in detail. The anatomical mean shape of 20 aortic arches post-aortic coarctation repair (CoA) was computed based on surface models reconstructed from CMR data. By analysing transformations that deform the mean shape towards each of the individual patient's anatomy, shape patterns related to differences in body surface area (BSA) and ejection fraction (EF) were extracted. The resulting shape vectors, describing shape features in 3D, were compared with traditionally measured 2D and 3D morphometric parameters. The computed 3D mean shape was close to population mean values of geometric shape descriptors and visually integrated characteristic shape features associated with our population of CoA shapes. After removing size effects due to differences in body surface area (BSA) between patients, distinct 3D shape features of the aortic arch correlated significantly with EF (r = 0.521, p = .022) and were well in agreement with trends as shown by traditional shape descriptors. The suggested method has the potential to discover previously unknown 3D shape biomarkers from medical imaging data. Thus, it could contribute to improving diagnosis and risk stratification in complex cardiac disease.
The landing of the NEAR-Shoemaker spacecraft on asteroid 433 Eros
Veverka, J.; Farquhar, B.; Robinson, M.; Thomas, P.; Murchie, S.; Harch, A.; Antreasian, P.G.; Chesley, S.R.; Miller, J.K.; Owen, W.M.; Williams, B.G.; Yeomans, D.; Dunham, D.; Heyler, G.; Holdridge, M.; Nelson, R.L.; Whittenburg, K.E.; Ray, J.C.; Carcich, B.; Cheng, A.; Chapman, C.; Bell, J.F.; Bell, M.; Bussey, B.; Clark, B.; Domingue, D.; Gaffey, M.J.; Hawkins, E.; Izenberg, N.; Joseph, J.; Kirk, R.; Lucey, P.; Malin, M.; McFadden, L.; Merline, W.J.; Peterson, C.; Prockter, L.; Warren, J.; Wellnitz, D.
2001-01-01
The NEAR-Shoemaker spacecraft was designed to provide a comprehensive characterization of the S-type asteroid 433 Eros (refs 1-3), an irregularly shaped body with approximate dimensions of 34 ?? 13 ?? 13 km. Following the completion of its year-long investigation, the mission was terminated with a controlled descent to its surface, in order to provide extremely high resolution images. Here we report the results of the descent on 12 February 2001, during which 70 images were obtained. The landing area is marked by a paucity of small craters and an abundance of 'ejecta blocks'. The properties and distribution of ejecta blocks are discussed in a companion paper. The last sequence of images reveals a transition from the blocky surface to a smooth area, which we interpret as a 'pond'. Properties of the 'ponds' are discussed in a second companion paper. The closest image, from an altitude of 129 m, shows the interior of a 100-m-diameter crater at 1-cm resolution.
Smartphone based scalable reverse engineering by digital image correlation
NASA Astrophysics Data System (ADS)
Vidvans, Amey; Basu, Saurabh
2018-03-01
There is a need for scalable open source 3D reconstruction systems for reverse engineering. This is because most commercially available reconstruction systems are capital and resource intensive. To address this, a novel reconstruction technique is proposed. The technique involves digital image correlation based characterization of surface speeds followed by normalization with respect to angular speed during rigid body rotational motion of the specimen. Proof of concept of the same is demonstrated and validated using simulation and empirical characterization. Towards this, smart-phone imaging and inexpensive off the shelf components along with those fabricated additively using poly-lactic acid polymer with a standard 3D printer are used. Some sources of error in this reconstruction methodology are discussed. It is seen that high curvatures on the surface suppress accuracy of reconstruction. Reasons behind this are delineated in the nature of the correlation function. Theoretically achievable resolution during smart-phone based 3D reconstruction by digital image correlation is derived.
Acquisition and processing pitfall with clipped traces in surface-wave analysis
NASA Astrophysics Data System (ADS)
Gao, Lingli; Pan, Yudi
2016-02-01
Multichannel analysis of surface waves (MASW) is widely used in estimating near-surface shear (S)-wave velocity. In the MASW method, generating a reliable dispersion image in the frequency-velocity (f-v) domain is an important processing step. A locus along peaks of dispersion energy at different frequencies allows the dispersion curves to be constructed for inversion. When the offsets are short, the output seismic data may exceed the dynamic ranges of geophones/seismograph, as a result of which, peaks and (or) troughs of traces will be squared off in recorded shot gathers. Dispersion images generated by the raw shot gathers with clipped traces would be contaminated by artifacts, which might be misidentified as Rayleigh-wave phase velocities or body-wave velocities and potentially lead to incorrect results. We performed some synthetic models containing clipped traces, and analyzed amplitude spectra of unclipped and clipped waves. The results indicate that artifacts in the dispersion image are dependent on the level of clipping. A real-world example also shows how clipped traces would affect the dispersion image. All the results suggest that clipped traces should be removed from the shot gathers before generating dispersion images, in order to pick accurate phase velocities and set reasonable initial inversion models.
Borkenhagen, Ada; Klapp, Burghard F.; Schoeneich, Frank; Brähler, Elmar
2005-01-01
Objectives: The purpose of the investigation was to explore the body image disturbance of anorexics and in-vitro-fertilization patients (IvF-patients) with Body Grid and Body Identity Plot. Methods: The paper reports on an empirical study conducted with 32 anorexic patients and 30 IvF-patients. The structure of the body image was derived from the Body Grid, an idiographic approach following the Role Repertory Grid developed by George A. Kelly [17]. The representation of the body image and the degree of body-acceptance is represented graphically. Results: By the Body Grid and Body Identity Plot measures we were able to identify important differences in body image between anorexics and IvF-patients. Conclusion: The tendencies of dissociation in the body image of anorexics which we found must be seen in the sense of a specific body image disturbance which differs significantly from the body-experience profile of IvF-patients. With the grid approach it was possible to elicit the inner structure of body image and determine the acceptance of the body and integration of single body parts. PMID:19742059
Accurate fluid force measurement based on control surface integration
NASA Astrophysics Data System (ADS)
Lentink, David
2018-01-01
Nonintrusive 3D fluid force measurements are still challenging to conduct accurately for freely moving animals, vehicles, and deforming objects. Two techniques, 3D particle image velocimetry (PIV) and a new technique, the aerodynamic force platform (AFP), address this. Both rely on the control volume integral for momentum; whereas PIV requires numerical integration of flow fields, the AFP performs the integration mechanically based on rigid walls that form the control surface. The accuracy of both PIV and AFP measurements based on the control surface integration is thought to hinge on determining the unsteady body force associated with the acceleration of the volume of displaced fluid. Here, I introduce a set of non-dimensional error ratios to show which fluid and body parameters make the error negligible. The unsteady body force is insignificant in all conditions where the average density of the body is much greater than the density of the fluid, e.g., in gas. Whenever a strongly deforming body experiences significant buoyancy and acceleration, the error is significant. Remarkably, this error can be entirely corrected for with an exact factor provided that the body has a sufficiently homogenous density or acceleration distribution, which is common in liquids. The correction factor for omitting the unsteady body force, {{{ {ρ f}} {1 - {ρ f} ( {{ρ b}+{ρ f}} )}.{( {{{{ρ }}b}+{ρ f}} )}}} , depends only on the fluid, {ρ f}, and body, {{ρ }}b, density. Whereas these straightforward solutions work even at the liquid-gas interface in a significant number of cases, they do not work for generalized bodies undergoing buoyancy in combination with appreciable body density inhomogeneity, volume change (PIV), or volume rate-of-change (PIV and AFP). In these less common cases, the 3D body shape needs to be measured and resolved in time and space to estimate the unsteady body force. The analysis shows that accounting for the unsteady body force is straightforward to non-intrusively and accurately determine fluid force in most applications.
Intracellular inclusion bodies in 14 patients with B cell lymphoproliferative disorders.
Peters, O; Thielemans, C; Steenssens, L; De Waele, M; Hijmans, W; Van Camp, B
1984-01-01
Two types of intracytoplasmic inclusion were detected by immunofluorescence microscopy in 12 patients with chronic lymphocytic leukaemia and two patients with a leukaemic phase of well differentiated lymphocytic lymphoma. Further analysis with light- and electron microscopy, showed that most inclusion bodies were rod-like crystalline structures. However, in three patients they consisted of amorphous vesicular precipitates. Immunological studies revealed the presence of immunoglobulins of the same class and type at the cell surface as well as in the inclusion bodies. The monoclonal immunoglobulins were all of lambda type except in two cases. The origin of immunoglobulin inclusion bodies in B cell malignancies is discussed in relation to published data and our own observation in one patient followed during treatment. Images PMID:6323543
Fault Zone Imaging from Correlations of Aftershock Waveforms
NASA Astrophysics Data System (ADS)
Hillers, Gregor; Campillo, Michel
2018-03-01
We image an active fault zone environment using cross correlations of 154 15 s long 1992 Landers earthquake aftershock seismograms recorded along a line array. A group velocity and phase velocity dispersion analysis of the reconstructed Rayleigh waves and Love waves yields shear wave velocity images of the top 100 m along the 800 m long array that consists of 22 three component stations. Estimates of the position, width, and seismic velocity of a low-velocity zone are in good agreement with the findings of previous fault zone trapped waves studies. Our preferred solution indicates the zone is offset from the surface break to the east, 100-200 m wide, and characterized by a 30% velocity reduction. Imaging in the 2-6 Hz range resolves further a high-velocity body of similar width to the west of the fault break. Symmetry and shape of zero-lag correlation fields or focal spots indicate a frequency and position dependent wavefield composition. At frequencies greater than 4 Hz surface wave propagation dominates, whereas at lower frequencies the correlation field also exhibits signatures of body waves that likely interact with the high-velocity zone. The polarization and late arrival times of coherent wavefronts observed above the low-velocity zone indicate reflections associated with velocity contrasts in the fault zone environment. Our study highlights the utility of the high-frequency correlation wavefield obtained from records of local and regional seismicity. The approach does not depend on knowledge of earthquake source parameters, which suggests the method can return images quickly during aftershock campaigns to guide network updates for optimal coverage of interesting geological features.
Han, Chengzong; Pogwizd, Steven M; Killingsworth, Cheryl R; Zhou, Zhaoye; He, Bin
2013-10-01
Imaging myocardial activation from noninvasive body surface potentials promises to aid in both cardiovascular research and clinical medicine. To investigate the ability of a noninvasive 3-dimensional cardiac electrical imaging technique for characterizing the activation patterns of dynamically changing ventricular arrhythmias during drug-induced QT prolongation in rabbits. Simultaneous body surface potential mapping and 3-dimensional intracardiac mapping were performed in a closed-chest condition in 8 rabbits. Data analysis was performed on premature ventricular complexes, couplets, and torsades de pointes (TdP) induced during intravenous administration of clofilium and phenylephrine with combinations of various infusion rates. The drug infusion led to a significant increase in the QT interval (from 175 ± 7 to 274 ± 31 ms) and rate-corrected QT interval (from 183 ± 5 to 262 ± 21 ms) during the first dose cycle. All the ectopic beats initiated by a focal activation pattern. The initial beat of TdPs arose at the focal site, whereas the subsequent beats were due to focal activity from different sites or 2 competing focal sites. The imaged results captured the dynamic shift of activation patterns and were in good correlation with the simultaneous measurements, with a correlation coefficient of 0.65 ± 0.02 averaged over 111 ectopic beats. Sites of initial activation were localized to be ~5 mm from the directly measured initiation sites. The 3-dimensional cardiac electrical imaging technique could localize the origin of activation and image activation sequence of TdP during QT prolongation induced by clofilium and phenylephrine in rabbits. It offers the potential to noninvasively investigate the proarrhythmic effects of drug infusion and assess the mechanisms of arrhythmias on a beat-to-beat basis. © 2013 Heart Rhythm Society. All rights reserved.
Preliminary study on the time-related changes of the infrared thermal images of the human body
NASA Astrophysics Data System (ADS)
Li, Ziru; Zhang, Xusheng; Lin, Gang; Chen, Zhigang
2009-08-01
It is of great importance to study the manifestations and the influencing factors of the time-related changes of infrared thermal images (ITI) of human body since the variable body surface temperature distribution seriously affected the application of ITI in medicine. In this paper, manifestations of time-related changes of the ITI of human body from three double-blind randomized trials and their correlation with meteorological factors (e.g. temperature, pressure, humidity, cold front passage and tropical cyclone landing) were studied. The trials were placebo or drug controlled studying the influences of Chinese medicine health food (including Shengsheng capsule with immunity adjustment function, Shengan capsule with sleep improvement function and Shengyi capsule with the function of helping to decrease serum lipid) on the ITI of human body. In the first thirty-six days of the trials images were scanned every six days and image data in the seven observation time spots (including the 0, 6, 12, 18, 24, 30, 36 day of the trial) were used for the time-related study. For every subject the scanned time was fixed in the day within two hours. The ITI features which could reflect the functions of the health foods were studied. The indexes of the features were relative magnitude (temperature difference between the viewing area and the reference area). Results showed that the variation tendencies of the trial group and control group were basically the same in placebo controlled trials and some of the long-term effects of Chinese medicine health food could be reflected significantly in certain time spots in the first thirty-six days. Time-related changes of the ITI of human body were closely related with meteorological factors but there were other influencing factors still need to be studied. As the ITI of human body could reflect the influences of Chinese medicine health foods and are closely related with meteorology, there are bright prospects for the application of ITI in health monitor.
NASA Astrophysics Data System (ADS)
Zhang, H.; Fang, H.; Yao, H.; Maceira, M.; van der Hilst, R. D.
2014-12-01
Recently, Zhang et al. (2014, Pure and Appiled Geophysics) have developed a joint inversion code incorporating body-wave arrival times and surface-wave dispersion data. The joint inversion code was based on the regional-scale version of the double-difference tomography algorithm tomoDD. The surface-wave inversion part uses the propagator matrix solver in the algorithm DISPER80 (Saito, 1988) for forward calculation of dispersion curves from layered velocity models and the related sensitivities. The application of the joint inversion code to the SAFOD site in central California shows that the fault structure is better imaged in the new model, which is able to fit both the body-wave and surface-wave observations adequately. Here we present a new joint inversion method that solves the model in the wavelet domain constrained by sparsity regularization. Compared to the previous method, it has the following advantages: (1) The method is both data- and model-adaptive. For the velocity model, it can be represented by different wavelet coefficients at different scales, which are generally sparse. By constraining the model wavelet coefficients to be sparse, the inversion in the wavelet domain can inherently adapt to the data distribution so that the model has higher spatial resolution in the good data coverage zone. Fang and Zhang (2014, Geophysical Journal International) have showed the superior performance of the wavelet-based double-difference seismic tomography method compared to the conventional method. (2) For the surface wave inversion, the joint inversion code takes advantage of the recent development of direct inversion of surface wave dispersion data for 3-D variations of shear wave velocity without the intermediate step of phase or group velocity maps (Fang et al., 2014, Geophysical Journal International). A fast marching method is used to compute, at each period, surface wave traveltimes and ray paths between sources and receivers. We will test the new joint inversion code at the SAFOD site to compare its performance over the previous code. We will also select another fault zone such as the San Jacinto Fault Zone to better image its structure.
Numerical Simulations of Granular Processes
NASA Astrophysics Data System (ADS)
Richardson, Derek C.; Michel, Patrick; Schwartz, Stephen R.; Ballouz, Ronald-Louis; Yu, Yang; Matsumura, Soko
2014-11-01
Spacecraft images and indirect observations including thermal inertia measurements indicate most small bodies have surface regolith. Evidence of granular flow is also apparent in the images. This material motion occurs in very low gravity, therefore in a completely different gravitational environment than on the Earth. Understanding and modeling these motions can aid in the interpretation of imaged surface features that may exhibit signatures of constituent material properties. Also, upcoming sample-return missions to small bodies, and possible future manned missions, will involve interaction with the surface regolith, so it is important to develop tools to predict the surface response. We have added new capabilities to the parallelized N-body gravity tree code pkdgrav [1,2] that permit the simulation of granular dynamics, including multi-contact physics and friction forces, using the soft-sphere discrete-element method [3]. The numerical approach has been validated through comparison with laboratory experiments (e.g., [3,4]). Ongoing and recently completed projects include: impacts into granular materials using different projectile shapes [5]; possible tidal resurfacing of asteroid Apophis during its 2029 encounter [6]; the Brazil-nut effect in low gravity [7]; and avalanche modeling.Acknowledgements: DCR acknowledges NASA (grants NNX08AM39G, NNX10AQ01G, NNX12AG29G) and NSF (AST1009579). PM acknowledges the French agency CNES. SRS works on the NEOShield Project funded under the European Commission’s FP7 program agreement No. 282703. SM acknowledges support from the Center for Theory and Computation at U Maryland and the Dundee Fellowship at U Dundee. Most simulations were performed using the YORP cluster in the Dept. of Astronomy at U Maryland and on the Deepthought High-Performance Computing Cluster at U Maryland.References: [1] Richardson, D.C. et al. 2000, Icarus 143, 45; [2] Stadel, J. 2001, Ph.D. Thesis, U Washington; [3] Schwartz, S.R. et al. 2012, Gran. Matt. 14, 363. [4] Schwartz, S.R. et al. 2013, Icarus 226, 67; [5] Schwartz, S.R. et al. 2014, P&SS, 10.1016/j.pss.2014.07.013; [6] Yu, Y. et al. 2014, Icarus, 10.1016/j.icarus.2014.07.027; [7] Matsumura, S. et al. 2014, MNRAS, 10.1093/mnras/stu1388.
de-Magistris, Tiziana; López-Galán, Belinda; Caputo, Vincenzina
2016-12-21
The aim of this study is to assess the influence of body image on consumers' willingness to pay (WTP) for potato chips carrying nutritional claims among obese and non-obese people. About 309 non-clinical individuals participated in a Real Choice Experiment. They were recruited by a company and grouped in: (i) non-obese with good body image; (ii) non-obese with body image dissatisfaction; (iii) obese with good body image; (iv) obese with body image dissatisfaction. Results indicate differences in consumers' willingness to pay among consumer groups. Body image dissatisfaction of normal people did not influence the WTP for healthier chips. Obese people with body image dissatisfaction were willing to pay more for healthier chips (i.e., low-salt content potato chips) than normal ones with body image dissatisfaction. Examining the role of knowledge in the light of how this could impact on body image is relevant to improve the health status of individuals and their diet. Knowledge about nutrition could improve the body image of obese people.
Body Image Disturbance in Patients with Acne Vulgaris
Bowe, Whitney P.; Crerand, Canice E.; Margolis, David J.; Shalita, Alan R.
2011-01-01
Psychosocial outcome measures, which attempt to examine acne from the patient's perspective, have become increasingly important in dermatology research. One such measure is the Body Image Disturbance Questionnaire. The authors' primary aim was to determine the validity and internal consistency of the Body Image Disturbance Questionnaire in patients with acne vulgaris. The secondary aim was to investigate the relationship between body image disturbance and quality of life. This cross-sectional investigation included 52 consecutive acne patients presenting to an outpatient dermatology clinic. Subjects completed the Body Image Disturbance Questionnaire, Skindex-16, and other body image and psychosocial functioning measures. An objective assessment of acne was performed. The Body Image Disturbance Questionnaire was internally consistent and converged with other known body image indices. Body Image Disturbance Questionnaire scores also correlated with Skindex-16 scores, confirming that quality of life and body image are related psychosocial constructs. The Body Image Disturbance Questionnaire appears to be an accurate instrument that can assess appearance-related concern and impairment in patients with acne vulgaris. Limitations include a small sample size and the cross-sectional design. PMID:21779418
de-Magistris, Tiziana; López-Galán, Belinda; Caputo, Vincenzina
2016-01-01
The aim of this study is to assess the influence of body image on consumers’ willingness to pay (WTP) for potato chips carrying nutritional claims among obese and non-obese people. About 309 non-clinical individuals participated in a Real Choice Experiment. They were recruited by a company and grouped in: (i) non-obese with good body image; (ii) non-obese with body image dissatisfaction; (iii) obese with good body image; (iv) obese with body image dissatisfaction. Results indicate differences in consumers’ willingness to pay among consumer groups. Body image dissatisfaction of normal people did not influence the WTP for healthier chips. Obese people with body image dissatisfaction were willing to pay more for healthier chips (i.e., low-salt content potato chips) than normal ones with body image dissatisfaction. Examining the role of knowledge in the light of how this could impact on body image is relevant to improve the health status of individuals and their diet. Knowledge about nutrition could improve the body image of obese people. PMID:28009815
Ruuska, J; Kaltiala-Heino, R; Rantanen, P; Koivisto, A M
2005-06-01
Body image dissatisfaction is as well a risk factor for eating disorders (ED) and a central feature of ED. The exact nature of body image in adolescent ED is still debated. This study examined attitudinal body image in adolescent anorexia nervosa (AN) and bulimia nervosa (BN), and the association of age, maturational timing, duration of eating disorder, actual weight and general psychological distress with the attitudinal body image in ED. The study group consisted of an outpatient clinical sample of adolescents attending for assessment because of eating disorders. The attitudinal body image of 57 adolescents (girls) aged 14-21 years was studied at the beginning of the treatment. The attitudes to body shape, body size, appearance, tone and femininity were studied by a Likert format scale and by the body dissatisfaction (BD) and drive for thinness scales (DT) from EDI-2 inventory. Bulimics reported more body image dissatisfaction than anorectics. In multivariate analyses BN and higher general psychological distress had strong associations with body image dissatisfaction. Longer duration of ED and earlier menarche were also associated with negative body image. Attitudinal body image differs between adolescent AN and BN. The psychological distress has a great impact on body image in ED, which should be taken into account in assessment and in treatment interventions.
ERIC Educational Resources Information Center
Peters, Mark Anthony; Phelps, LeAddelle
2001-01-01
Compares college age bodybuilders by sex and steroid intake on two variables: body image dissatisfaction and body image distortion. Results reveal only a significant effect for gender on body distortion. No steroid-use differences were apparent for either body image dissatisfaction or body image distortion. Analyses indicate that female…
Bassett, R L; Martin Ginis, K A
2009-03-01
Cross-sectional. To examine the relationship between body image and leisure time physical activity (LTPA) among men with spinal cord injury (SCI). Specifically, to examine the moderating function of the perceived impact of body image on quality of life (QOL). Ontario, Canada. Men with SCI (N=50, 50% paraplegic) reported, (a) their functional and appearance body image (Adult Body Satisfaction Questionnaire), (b) their perceived impact of body image on QOL and (c) LTPA performed over the previous 3 days. Body image was in the 'normal' range compared with the general population. Linear regression analysis found a significant LTPA x body image impact on QOL interaction beta=0.39, P<0.05. Post hoc analysis showed that among individuals who reported a negative effect of body image on QOL, those who engaged in LTPA were less satisfied with their physical function than those who did not. For those who did not perceive their body image to negatively impact their QOL, there was generally no difference in functional body image between those who engaged in LTPA and those who did not. Appearance body image is not related to LTPA for men with SCI. It has been suggested that body dissatisfaction may motivate some individuals to engage in LTPA. However, for men living with SCI, functional body image may be associated with LTPA only when a negative effect on QOL is perceived. Future research should consider the moderating function of the perceived impact of body image on QOL when examining the relationship between LTPA and body image among men living with SCI.
Classic versus millennial medical lab anatomy.
Benninger, Brion; Matsler, Nik; Delamarter, Taylor
2014-10-01
This study investigated the integration, implementation, and use of cadaver dissection, hospital radiology modalities, surgical tools, and AV technology during a 12-week contemporary anatomy course suggesting a millennial laboratory. The teaching of anatomy has undergone the greatest fluctuation of any of the basic sciences during the past 100 years in order to make room for the meteoric rise in molecular sciences. Classically, anatomy consisted of a 2-year methodical, horizontal, anatomy course; anatomy has now morphed into a 12-week accelerated course in a vertical curriculum, at most institutions. Surface and radiological anatomy is the language for all clinicians regardless of specialty. The objective of this study was to investigate whether integration of full-body dissection anatomy and modern hospital technology, during the anatomy laboratory, could be accomplished in a 12-week anatomy course. Literature search was conducted on anatomy text, journals, and websites regarding contemporary hospital technology integrating multiple image mediums of 37 embalmed cadavers, surgical suite tools and technology, and audio/visual technology. Surgical and radiology professionals were contracted to teach during the anatomy laboratory. Literature search revealed no contemporary studies integrating full-body dissection with hospital technology and behavior. About 37 cadavers were successfully imaged with roentograms, CT, and MRI scans. Students were in favor of the dynamic laboratory consisting of multiple activity sessions occurring simultaneously. Objectively, examination scores proved to be a positive outcome and, subjectively, feedback from students was overwhelmingly positive. Despite the surging molecular based sciences consuming much of the curricula, full-body dissection anatomy is irreplaceable regarding both surface and architectural, radiological anatomy. Radiology should not be a small adjunct to understand full-body dissection, but rather, full-body dissection aids the understanding of radiology mediums. The millennial anatomy dissection laboratory should consist of, at least, 50% radiology integration during full-body dissection. This pilot study is an example of the most comprehensive integration of full-body dissection, radiology, and hospital technology. © 2014 Wiley Periodicals, Inc.
Virtual rigid body: a new optical tracking paradigm in image-guided interventions
NASA Astrophysics Data System (ADS)
Cheng, Alexis; Lee, David S.; Deshmukh, Nishikant; Boctor, Emad M.
2015-03-01
Tracking technology is often necessary for image-guided surgical interventions. Optical tracking is one the options, but it suffers from line of sight and workspace limitations. Optical tracking is accomplished by attaching a rigid body marker, having a pattern for pose detection, onto a tool or device. A larger rigid body results in more accurate tracking, but at the same time large size limits its usage in a crowded surgical workspace. This work presents a prototype of a novel optical tracking method using a virtual rigid body (VRB). We define the VRB as a 3D rigid body marker in the form of pattern on a surface generated from a light source. Its pose can be recovered by observing the projected pattern with a stereo-camera system. The rigid body's size is no longer physically limited as we can manufacture small size light sources. Conventional optical tracking also requires line of sight to the rigid body. VRB overcomes these limitations by detecting a pattern projected onto the surface. We can project the pattern onto a region of interest, allowing the pattern to always be in the view of the optical tracker. This helps to decrease the occurrence of occlusions. This manuscript describes the method and results compared with conventional optical tracking in an experiment setup using known motions. The experiments are done using an optical tracker and a linear-stage, resulting in targeting errors of 0.38mm+/-0.28mm with our method compared to 0.23mm+/-0.22mm with conventional optical markers. Another experiment that replaced the linear stage with a robot arm resulted in rotational errors of 0.50+/-0.31° and 2.68+/-2.20° and the translation errors of 0.18+/-0.10 mm and 0.03+/-0.02 mm respectively.
Free-surface turbulent wake of a surface-piercing slender body at various Froude numbers
NASA Astrophysics Data System (ADS)
Seo, Jeonghwa; Samad, Abdus; Rhee, Shin Hyung
2016-11-01
Free-surface effects on the near-wake around a surface-piercing slender body were investigated through flow field and wave elevation measurements. The near-wake flow field was measured by a towed underwater stereoscopic particle image velocimetry (SPIV) system. The measured flow field was analyzed to obtain coherent turbulence structures by using the Reynolds and proper orthogonal decomposition methods. Three different Froude numbers (Fr) - 0.126, 0.282, and 0.400 - were selected to represent mild, intermediate, and violent free-surface motions. At Fr = 0.126, the wave was hardly visible, although the turbulence strength and isotropy increased near the free-surface. At Fr = 0.282, though it was steady and smooth, wave-induced separation was clearly observed near the juncture of the free-surface and model trailing edge. At Fr = 0.400, wave breaking and the resulting bubbly free-surface were developed with an expanded wave-induced separation region. The wave-induced separation stimulated momentum transfer and turbulence dissipation, resulting in a significant change in the frequency of dominant free-surface motion in the downstream. This research was supported by the IT R&D program of MOTIE/KEIT (Grant No. 100660329) and the National Research Foundation of Korea, Grant funded by the Korean government (Grant No. 2013R1A1A2012597).
Walter, Ofra; Shenaar-Golan, Vered
2017-01-01
Adolescent boys must cope with physical changes that hamper their ability to form a positive body image. Sociocultural messages influence the concepts of body image, personal appearance, and weight, encouraging men to develop lean and muscular bodies. The current study examined adolescent boys’ body image and its relationship to their subjective well-being (SWB) and the effect of the parent–adolescent relationship on body image and SWB. Participating in the research were 107 adolescent boys in Israel, aged 13 to 18 years. Four questionnaires were utilized: demographic, body mass index, Body Investment Scale, and Personal Well-Being Index. The findings indicate a significant, medium positive correlation between SWB and body image. After controlling for the variable of parent–adolescent relationship, the correlation weakened, indicating that the parent–adolescent relationship has no effect on adolescent boys’ SWB and body image. Body image was reported to be a predictor of SWB. PMID:28625112
Walter, Ofra; Shenaar-Golan, Vered
2017-07-01
Adolescent boys must cope with physical changes that hamper their ability to form a positive body image. Sociocultural messages influence the concepts of body image, personal appearance, and weight, encouraging men to develop lean and muscular bodies. The current study examined adolescent boys' body image and its relationship to their subjective well-being (SWB) and the effect of the parent-adolescent relationship on body image and SWB. Participating in the research were 107 adolescent boys in Israel, aged 13 to 18 years. Four questionnaires were utilized: demographic, body mass index, Body Investment Scale, and Personal Well-Being Index. The findings indicate a significant, medium positive correlation between SWB and body image. After controlling for the variable of parent-adolescent relationship, the correlation weakened, indicating that the parent-adolescent relationship has no effect on adolescent boys' SWB and body image. Body image was reported to be a predictor of SWB.
ERIC Educational Resources Information Center
Weinshenker, Naomi
2002-01-01
Discusses body image among adolescents, explaining that today's adolescents are more prone to body image distortions and dissatisfaction than ever and examining the historical context; how self-image develops; normative discontent; body image distortions; body dysmorphic disorder (BDD); vulnerability of boys (muscle dysmorphia); who is at risk;…
Liechty, Janet M; Clarke, Samantha; Birky, Julie P; Harrison, Kristen
2016-12-01
This study sought to explore parental perceptions of body image in preschoolers. We conducted semi-structured interviews with 30 primary caregivers of preschoolers to examine knowledge, beliefs, and strategies regarding early body image socialization in families. Thematic Analysis yielded three themes highlighting knowledge gaps, belief discrepancies, and limited awareness of strategies. Findings regarding knowledge: Most participants defined body image as objective attractiveness rather than subjective self-assessment (53%) and focused on negative body image. Beliefs: Although 97% of participants believed weight and shape impact children's self-esteem, 63% believed preschoolers too young to have a body image. Strategies: Most participants (53%) said family was a primary influence on body image, but identified few effective strategies and 63% said they did not do anything to influence children's body image. Findings suggested family body image socialization in preschoolers is occurring outside the awareness of parents and the concept of positive body image is underdeveloped. Copyright © 2016 Elsevier Ltd. All rights reserved.
LandingNav: a precision autonomous landing sensor for robotic platforms on planetary bodies
NASA Astrophysics Data System (ADS)
Katake, Anup; Bruccoleri, Chrisitian; Singla, Puneet; Junkins, John L.
2010-01-01
Increased interest in the exploration of extra terrestrial planetary bodies calls for an increase in the number of spacecraft landing on remote planetary surfaces. Currently, imaging and radar based surveys are used to determine regions of interest and a safe landing zone. The purpose of this paper is to introduce LandingNav, a sensor system solution for autonomous landing on planetary bodies that enables landing on unknown terrain. LandingNav is based on a novel multiple field of view imaging system that leverages the integration of different state of the art technologies for feature detection, tracking, and 3D dense stereo map creation. In this paper we present the test flight results of the LandingNav system prototype. Sources of errors due to hardware limitations and processing algorithms were identified and will be discussed. This paper also shows that addressing the issues identified during the post-flight test data analysis will reduce the error down to 1-2%, thus providing for a high precision 3D range map sensor system.
Real-time 3D human pose recognition from reconstructed volume via voxel classifiers
NASA Astrophysics Data System (ADS)
Yoo, ByungIn; Choi, Changkyu; Han, Jae-Joon; Lee, Changkyo; Kim, Wonjun; Suh, Sungjoo; Park, Dusik; Kim, Junmo
2014-03-01
This paper presents a human pose recognition method which simultaneously reconstructs a human volume based on ensemble of voxel classifiers from a single depth image in real-time. The human pose recognition is a difficult task since a single depth camera can capture only visible surfaces of a human body. In order to recognize invisible (self-occluded) surfaces of a human body, the proposed algorithm employs voxel classifiers trained with multi-layered synthetic voxels. Specifically, ray-casting onto a volumetric human model generates a synthetic voxel, where voxel consists of a 3D position and ID corresponding to the body part. The synthesized volumetric data which contain both visible and invisible body voxels are utilized to train the voxel classifiers. As a result, the voxel classifiers not only identify the visible voxels but also reconstruct the 3D positions and the IDs of the invisible voxels. The experimental results show improved performance on estimating the human poses due to the capability of inferring the invisible human body voxels. It is expected that the proposed algorithm can be applied to many fields such as telepresence, gaming, virtual fitting, wellness business, and real 3D contents control on real 3D displays.
Khalili, V; Khalil-Allafi, J; Frenzel, J; Eggeler, G
2017-02-01
In order to improve the surface bioactivity of NiTi bone implant and corrosion resistance, hydroxyapatite coating with addition of 20wt% silicon, 1wt% multi walled carbon nano-tubes and both of them were deposited on a NiTi substrate using a cathodic electrophoretic method. The apatite formation ability was estimated using immersion test in the simulated body fluid for 10days. The SEM images of the surface of coatings after immersion in simulated body fluid show that the presence of silicon in the hydroxyapatite coatings accelerates in vitro growth of apatite layer on the coatings. The Open-circuit potential and electrochemical impedance spectroscopy were measured to evaluate the electrochemical behavior of the coatings in the simulated body fluid at 37°C. The results indicate that the compact structure of hydroxyapatite-20wt% silicon and hydroxyapatite-20wt% silicon-1wt% multi walled carbon nano-tubes coatings could efficiently increase the corrosion resistance of NiTi substrate. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Suarez, J.; Ochoa, L.; Saavedra, F.
2017-07-01
Remote sensing has always been the best investigation tool for planetary sciences. In this research have been used data of Surface albedo, electromagnetic spectra and satelital imagery in search of understanding glacier dynamics in some bodies of the solar system, and how it's related to their compositions and associated geological processes, this methodology is very common in icy moons studies. Through analytic software's some albedos map's and geomorphological analysis were made that allow interpretation of different types of ice in the glacier's and it's interaction with other materials, almost all the images were worked in the visible and infrared ranges of the spectrum; spectral data were later used to connect the reflectance whit chemical and reologic properties of the compounds studied. It have been concluded that the albedo analysis is an effective tool to differentiate materials in the bodies surfaces, but the application of spectral data is necessary to know the exact compounds of the glaciers and to have a better understanding of the icy bodies.
NASA Astrophysics Data System (ADS)
Tauro, Flavia; Olivieri, Giorgio; Porfiri, Maurizio; Grimaldi, Salvatore
2014-05-01
Large Scale Particle Image Velocimetry (LSPIV) is a powerful methodology to nonintrusively monitor surface flows. Its use has been beneficial to the development of rating curves in riverine environments and to map geomorphic features in natural waterways. Typical LSPIV experimental setups rely on the use of mast-mounted cameras for the acquisition of natural stream reaches. Such cameras are installed on stream banks and are angled with respect to the water surface to capture large scale fields of view. Despite its promise and the simplicity of the setup, the practical implementation of LSPIV is affected by several challenges, including the acquisition of ground reference points for image calibration and time-consuming and highly user-assisted procedures to orthorectify images. In this work, we perform LSPIV studies on stream sections in the Aniene and Tiber basins, Italy. To alleviate the limitations of traditional LSPIV implementations, we propose an improved video acquisition setup comprising a telescopic, an inexpensive GoPro Hero 3 video camera, and a system of two lasers. The setup allows for maintaining the camera axis perpendicular to the water surface, thus mitigating uncertainties related to image orthorectification. Further, the mast encases a laser system for remote image calibration, thus allowing for nonintrusively calibrating videos without acquiring ground reference points. We conduct measurements on two different water bodies to outline the performance of the methodology in case of varying flow regimes, illumination conditions, and distribution of surface tracers. Specifically, the Aniene river is characterized by high surface flow velocity, the presence of abundant, homogeneously distributed ripples and water reflections, and a meagre number of buoyant tracers. On the other hand, the Tiber river presents lower surface flows, isolated reflections, and several floating objects. Videos are processed through image-based analyses to correct for lens distortions and analyzed with a commercially available PIV software. Surface flow velocity estimates are compared to supervised measurements performed by visually tracking objects floating on the stream surface and to rating curves developed by the Ufficio Idrografico e Mareografico (UIM) at Regione Lazio, Italy. Experimental findings demonstrate that the presence of tracers is crucial for surface flow velocity estimates. Further, considering surface ripples and patterns may lead to underestimations in LSPIV analyses.
Body Talk: Body Image Commentary on Queerty.com.
Schwartz, Joseph; Grimm, Josh
2016-08-01
In this study, we conducted a content analysis of 243 photographic images of men published on the gay male-oriented blog Queerty.com. We also analyzed 435 user-generated comments from a randomly selected 1-year sample. Focusing on images' body types, we found that the range of body types featured on the blog was quite narrow-the vast majority of images had very low levels of body fat and very high levels of muscularity. Users' body image-related comments typically endorsed and celebrated images; critiques of images were comparatively rare. Perspectives from objectification theory and social comparison theory suggest that the images and commentary found on the blog likely reinforce unhealthy body image in gay male communities.
Automated segmentations of skin, soft-tissue, and skeleton, from torso CT images
NASA Astrophysics Data System (ADS)
Zhou, Xiangrong; Hara, Takeshi; Fujita, Hiroshi; Yokoyama, Ryujiro; Kiryu, Takuji; Hoshi, Hiroaki
2004-05-01
We have been developing a computer-aided diagnosis (CAD) scheme for automatically recognizing human tissue and organ regions from high-resolution torso CT images. We show some initial results for extracting skin, soft-tissue and skeleton regions. 139 patient cases of torso CT images (male 92, female 47; age: 12-88) were used in this study. Each case was imaged with a common protocol (120kV/320mA) and covered the whole torso with isotopic spatial resolution of about 0.63 mm and density resolution of 12 bits. A gray-level thresholding based procedure was applied to separate the human body from background. The density and distance features to body surface were used to determine the skin, and separate soft-tissue from the others. A 3-D region growing based method was used to extract the skeleton. We applied this system to the 139 cases and found that the skin, soft-tissue and skeleton regions were recognized correctly for 93% of the patient cases. The accuracy of segmentation results was acceptable by evaluating the results slice by slice. This scheme will be included in CAD systems for detecting and diagnosing the abnormal lesions in multi-slice torso CT images.
3D Reconstruction of Static Human Body with a Digital Camera
NASA Astrophysics Data System (ADS)
Remondino, Fabio
2003-01-01
Nowadays the interest in 3D reconstruction and modeling of real humans is one of the most challenging problems and a topic of great interest. The human models are used for movies, video games or ergonomics applications and they are usually created with 3D scanner devices. In this paper a new method to reconstruct the shape of a static human is presented. Our approach is based on photogrammetric techniques and uses a sequence of images acquired around a standing person with a digital still video camera or with a camcorder. First the images are calibrated and orientated using a bundle adjustment. After the establishment of a stable adjusted image block, an image matching process is performed between consecutive triplets of images. Finally the 3D coordinates of the matched points are computed with a mean accuracy of ca 2 mm by forward ray intersection. The obtained point cloud can then be triangulated to generate a surface model of the body or a virtual human model can be fitted to the recovered 3D data. Results of the 3D human point cloud with pixel color information are presented.
Ceres During Opposition Surge.
2017-05-16
NASA's Dawn spacecraft successfully observed Ceres at opposition on April 29, 2017, taking images from a position exactly between the sun and Ceres' surface. Mission specialists had carefully maneuvered Dawn into a special orbit so that the spacecraft could view Occator Crater, which contains the brightest area of Ceres, from this new perspective. A movie shows these opposition images, with contrast enhanced to highlight brightness differences. The bright spots of Occator stand out particularly well on an otherwise relatively bland surface. Dawn took these images from an altitude of about 12,000 miles (20,000 kilometers). Based on data from ground-based telescopes and spacecraft that have previously viewed planetary bodies at opposition, scientists predicted that Ceres would appear brighter from this opposition configuration. This increase in brightness, or "surge," relates the size of the grains of material on the surface, as well as how porous those materials are. The science motivation for performing these observations is further explained in the March 2017 issue of the Dawn Journal blog. A movie can be viewed at https://photojournal.jpl.nasa.gov/catalog/PIA21405
Cash, David M; Sinha, Tuhin K; Chapman, William C; Terawaki, Hiromi; Dawant, Benoit M; Galloway, Robert L; Miga, Michael I
2003-07-01
As image guided surgical procedures become increasingly diverse, there will be more scenarios where point-based fiducials cannot be accurately localized for registration and rigid body assumptions no longer hold. As a result, procedures will rely more frequently on anatomical surfaces for the basis of image alignment and will require intraoperative geometric data to measure and compensate for tissue deformation in the organ. In this paper we outline methods for which a laser range scanner may be used to accomplish these tasks intraoperatively. A laser range scanner based on the optical principle of triangulation acquires a dense set of three-dimensional point data in a very rapid, noncontact fashion. Phantom studies were performed to test the ability to link range scan data with traditional modes of image-guided surgery data through localization, registration, and tracking in physical space. The experiments demonstrate that the scanner is capable of localizing point-based fiducials to within 0.2 mm and capable of achieving point and surface based registrations with target registration error of less than 2.0 mm. Tracking points in physical space with the range scanning system yields an error of 1.4 +/- 0.8 mm. Surface deformation studies were performed with the range scanner in order to determine if this device was capable of acquiring enough information for compensation algorithms. In the surface deformation studies, the range scanner was able to detect changes in surface shape due to deformation comparable to those detected by tomographic image studies. Use of the range scanner has been approved for clinical trials, and an initial intraoperative range scan experiment is presented. In all of these studies, the primary source of error in range scan data is deterministically related to the position and orientation of the surface within the scanner's field of view. However, this systematic error can be corrected, allowing the range scanner to provide a rapid, robust method of acquiring anatomical surfaces intraoperatively.
The complexity of body image following bariatric surgery: a systematic review of the literature.
Ivezaj, V; Grilo, C M
2018-06-13
Poor body image is common among individuals seeking bariatric surgery and is associated with adverse psychosocial sequelae. Following massive weight loss secondary to bariatric surgery, many individuals experience excess skin and associated concerns, leading to subsequent body contouring procedures. Little is known, however, about body image changes and associated features from pre-to post-bariatric surgery and subsequent body contouring. The objective of the present study was to conduct a comprehensive literature review of body image following bariatric surgery to help inform future clinical research and care. The articles for the current review were identified by searching PubMed and SCOPUS and references from relevant articles. A total of 60 articles examining body image post-bariatric surgery were identified, and 45 did not include body contouring surgery. Overall, there was great variation in standards of reporting sample characteristics and body image terms. When examining broad levels of body image dissatisfaction, the literature suggests general improvements in certain aspects of body image following bariatric surgery; however, few studies have systematically examined various body image domains from pre-to post-bariatric surgery and subsequent body contouring surgery. In conclusion, there is a paucity of research that examines the multidimensional elements of body image following bariatric surgery. © 2018 World Obesity Federation.
Fischer, A; Luginbühl, T; Delattre, L; Delouard, J M; Faverdin, P
2015-07-01
Body condition is an indirect estimation of the level of body reserves, and its variation reflects cumulative variation in energy balance. It interacts with reproductive and health performance, which are important to consider in dairy production but not easy to monitor. The commonly used body condition score (BCS) is time consuming, subjective, and not very sensitive. The aim was therefore to develop and validate a method assessing BCS with 3-dimensional (3D) surfaces of the cow's rear. A camera captured 3D shapes 2 m from the floor in a weigh station at the milking parlor exit. The BCS was scored by 3 experts on the same day as 3D imaging. Four anatomical landmarks had to be identified manually on each 3D surface to define a space centered on the cow's rear. A set of 57 3D surfaces from 56 Holstein dairy cows was selected to cover a large BCS range (from 0.5 to 4.75 on a 0 to 5 scale) to calibrate 3D surfaces on BCS. After performing a principal component analysis on this data set, multiple linear regression was fitted on the coordinates of these surfaces in the principal components' space to assess BCS. The validation was performed on 2 external data sets: one with cows used for calibration, but at a different lactation stage, and one with cows not used for calibration. Additionally, 6 cows were scanned once and their surfaces processed 8 times each for repeatability and then these cows were scanned 8 times each the same day for reproducibility. The selected model showed perfect calibration and a good but weaker validation (root mean square error=0.31 for the data set with cows used for calibration; 0.32 for the data set with cows not used for calibration). Assessing BCS with 3D surfaces was 3 times more repeatable (standard error=0.075 versus 0.210 for BCS) and 2.8 times more reproducible than manually scored BCS (standard error=0.103 versus 0.280 for BCS). The prediction error was similar for both validation data sets, indicating that the method is not less efficient for cows not used for calibration. The major part of reproducibility error incorporates repeatability error. An automation of the anatomical landmarks identification is required, first to allow broadband measures of body condition and second to improve repeatability and consequently reproducibility. Assessing BCS using 3D imaging coupled with principal component analysis appears to be a very promising means of improving precision and feasibility of this trait measurement. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ribeiro, T.; Baptista, R.; Kafka, S.
We present a multi-epoch time-resolved high-resolution optical spectroscopy study of the short-period (P{sub orb} = 11.2 hr) eclipsing M0V+M5V RS CVn binary V405 Andromeda. By means of indirect imaging techniques, namely Doppler imaging, we study the surface activity features of the M0V component of the system. A modified version of a Doppler imaging code, which takes into account the tidal distortion of the surface of the star, is applied to the multi-epoch data set in order to provide indirect images of the stellar surface. The multi-epoch surface brightness distributions show a low intensity 'belt' of spots at latitudes {+-}40{sup 0}more » and a noticeable absence of high latitude features or polar spots on the primary star of V405 Andromeda. They also reveal slow evolution of the spot distribution over {approx}4 yr. An entropy landscape procedure is used in order to find the set of binary parameters that lead to the smoothest surface brightness distributions. As a result, we find M{sub 1} = 0.51 {+-} 0.03 M{sub sun}, M{sub 2} = 0.21 {+-} 0.01 M{sub sun}, R{sub 1} = 0.71 {+-} 0.01 R{sub sun}, and an inclination i = 65{sup 0} {+-} 1{sup 0}. The resulting systemic velocity is distinct for different epochs, raising the possibility of the existence of a third body in the system.« less
NASA Astrophysics Data System (ADS)
Kilgus, T.; Franz, A. M.; Seitel, A.; Marz, K.; Bartha, L.; Fangerau, M.; Mersmann, S.; Groch, A.; Meinzer, H.-P.; Maier-Hein, L.
2012-02-01
Visualization of anatomical data for disease diagnosis, surgical planning, or orientation during interventional therapy is an integral part of modern health care. However, as anatomical information is typically shown on monitors provided by a radiological work station, the physician has to mentally transfer internal structures shown on the screen to the patient. To address this issue, we recently presented a new approach to on-patient visualization of 3D medical images, which combines the concept of augmented reality (AR) with an intuitive interaction scheme. Our method requires mounting a range imaging device, such as a Time-of-Flight (ToF) camera, to a portable display (e.g. a tablet PC). During the visualization process, the pose of the camera and thus the viewing direction of the user is continuously determined with a surface matching algorithm. By moving the device along the body of the patient, the physician is given the impression of looking directly into the human body. In this paper, we present and evaluate a new method for camera pose estimation based on an anisotropic trimmed variant of the well-known iterative closest point (ICP) algorithm. According to in-silico and in-vivo experiments performed with computed tomography (CT) and ToF data of human faces, knees and abdomens, our new method is better suited for surface registration with ToF data than the established trimmed variant of the ICP, reducing the target registration error (TRE) by more than 60%. The TRE obtained (approx. 4-5 mm) is promising for AR visualization, but clinical applications require maximization of robustness and run-time.
Vocks, Silja; Legenbauer, Tanja; Rüddel, Heinz; Troje, Nikolaus F
2007-01-01
The aim of the present study was to find out whether in bulimia nervosa the perceptual component of a disturbed body image is restricted to the overestimation of one's own body dimensions (static body image) or can be extended to a misperception of one's own motion patterns (dynamic body image). Participants with bulimia nervosa (n = 30) and normal controls (n = 55) estimated their body dimensions by means of a photo distortion technique and their walking patterns using a biological motion distortion device. Not only did participants with bulimia nervosa overestimate their own body dimensions, but also they perceived their own motion patterns corresponding to a higher BMI than did controls. Static body image was correlated with shape/weight concerns and drive for thinness, whereas dynamic body image was associated with social insecurity and body image avoidance. In bulimia nervosa, body image disturbances can be extended to a dynamic component. (c) 2006 by Wiley Periodicals, Inc.
What is and what is not positive body image? Conceptual foundations and construct definition.
Tylka, Tracy L; Wood-Barcalow, Nichole L
2015-06-01
A decade ago, research on positive body image as a unique construct was relatively nonexistent, and now this area is flourishing. How and why did positive body image scholarship emerge? What is known about this contemporary construct? This article situates and contextualizes positive body image within Cash's scholarship, eating disorder prevention efforts, feminist influences, strength-based disciplines within psychology, and Buddhism. Extracting insights from quantitative and qualitative research, this article demonstrates that positive body image is (a) distinct from negative body image; (b) multifaceted (including body appreciation, body acceptance/love, conceptualizing beauty broadly, adaptive investment in appearance, inner positivity, interpreting information in a body-protective manner); (c) holistic; (d) stable and malleable; (e) protective; (f) linked to self-perceived body acceptance by others; and (g) shaped by social identities. Complementing what positive body image is, this article further details what positive body image is not to provide a more nuanced understanding of this construct. Copyright © 2015 Elsevier Ltd. All rights reserved.
Obrebski, M.; Allen, R.M.; Pollitz, F.; Hung, S.-H.
2011-01-01
The relation between the complex geological history of the western margin of the North American plate and the processes in the mantle is still not fully documented and understood. Several pre-USArray local seismic studies showed how the characteristics of key geological features such as the Colorado Plateau and the Yellowstone Snake River Plains are linked to their deep mantle structure. Recent body-wave models based on the deployment of the high density, large aperture USArray have provided far more details on the mantle structure while surface-wave tomography (ballistic waves and noise correlations) informs us on the shallow structure. Here we combine constraints from these two data sets to image and study the link between the geology of the western United States, the shallow structure of the Earth and the convective processes in mantle. Our multiphase DNA10-S model provides new constraints on the extent of the Archean lithosphere imaged as a large, deeply rooted fast body that encompasses the stable Great Plains and a large portion of the Northern and Central Rocky Mountains. Widespread slow anomalies are found in the lower crust and upper mantle, suggesting that low-density rocks isostatically sustain part of the high topography of the western United States. The Yellowstone anomaly is imaged as a large slow body rising from the lower mantle, intruding the overlying lithosphere and controlling locally the seismicity and the topography. The large E-W extent of the USArray used in this study allows imaging the 'slab graveyard', a sequence of Farallon fragments aligned with the currently subducting Juan de Fuca Slab, north of the Mendocino Triple Junction. The lithospheric root of the Colorado Plateau has apparently been weakened and partly removed through dripping. The distribution of the slower regions around the Colorado Plateau and other rigid blocks follows closely the trend of Cenozoic volcanic fields and ancient lithospheric sutures, suggesting that the later exert a control on the locus of magmato-tectonic activity today. The DNA velocity models are available for download and slicing at http://dna.berkeley.edu. ?? 2011 The Authors Geophysical Journal International ?? 2011 RAS.
NASA Astrophysics Data System (ADS)
Chung Liu, Wai; Wu, Bo; Wöhler, Christian
2018-02-01
Photoclinometric surface reconstruction techniques such as Shape-from-Shading (SfS) and Shape-and-Albedo-from-Shading (SAfS) retrieve topographic information of a surface on the basis of the reflectance information embedded in the image intensity of each pixel. SfS or SAfS techniques have been utilized to generate pixel-resolution digital elevation models (DEMs) of the Moon and other planetary bodies. Photometric stereo SAfS analyzes images under multiple illumination conditions to improve the robustness of reconstruction. In this case, the directional difference in illumination between the images is likely to affect the quality of the reconstruction result. In this study, we quantitatively investigate the effects of illumination differences on photometric stereo SAfS. Firstly, an algorithm for photometric stereo SAfS is developed, and then, an error model is derived to analyze the relationships between the azimuthal and zenith angles of illumination of the images and the reconstruction qualities. The developed algorithm and error model were verified with high-resolution images collected by the Narrow Angle Camera (NAC) of the Lunar Reconnaissance Orbiter Camera (LROC). Experimental analyses reveal that (1) the resulting error in photometric stereo SAfS depends on both the azimuthal and the zenith angles of illumination as well as the general intensity of the images and (2) the predictions from the proposed error model are consistent with the actual slope errors obtained by photometric stereo SAfS using the LROC NAC images. The proposed error model enriches the theory of photometric stereo SAfS and is of significance for optimized lunar surface reconstruction based on SAfS techniques.
Chacterization of Teleseismic Earthquakes Observed on an Ice Shelf
NASA Astrophysics Data System (ADS)
Baker, M. G.; Aster, R. C.; Anthony, R. E.; Wiens, D.; Nyblade, A.; Bromirski, P. D.; Stephen, R. A.; Gerstoft, P.
2016-12-01
Broadband seismographs deployed atop large tabular icebergs and ice shelves record a rich superposition of atmospheric, oceanic, and solid earth signals. We characterize these signals, including body and surface wave arrivals from approximately 200 global earthquakes, using a 34-station broadband array spanning the Ross Ice Shelf, Antarctica. Teleseismic earthquake arrivals are essential for constructing models of crustal and upper mantle structure, and observations on the ice shelf are key to resolving the structure of the underlying West Antarctic Rift System. To test the plausibility of passive imaging in this unique environment, we examine seasonal and spatial dependence of signal-to-noise ratios of body wave arrivals and the impact of ice shelf dynamics on surface wave dispersion. We also note unusual phase mechanics arising from the floating platform geometry.
Future directions for positive body image research.
Halliwell, Emma
2015-06-01
The emergence of positive body image research during the last 10 years represents an important shift in the body image literature. The existing evidence provides a strong empirical basis for the study of positive body image and research has begun to address issues of age, gender, ethnicity, culture, development, and intervention in relation to positive body image. This article briefly reviews the existing evidence before outlining directions for future research. Specifically, six areas for future positive body image research are outlined: (a) conceptualization, (b) models, (c) developmental factors, (d) social interactions, (e) cognitive processing style, and (f) interventions. Finally, the potential role of positive body image as a protective factor within the broader body image literature is discussed. Copyright © 2015 Elsevier Ltd. All rights reserved.
Caspi, Asaf; Amiaz, Revital; Davidson, Noa; Czerniak, Efrat; Gur, Eitan; Kiryati, Nahum; Harari, Daniel; Furst, Miriam; Stein, Daniel
2017-02-01
Body image disturbances are a prominent feature of eating disorders (EDs). Our aim was to test and evaluate a computerized assessment of body image (CABI), to compare the body image disturbances in different ED types, and to assess the factors affecting body image. The body image of 22 individuals undergoing inpatient treatment with restricting anorexia nervosa (AN-R), 22 with binge/purge AN (AN-B/P), 20 with bulimia nervosa (BN), and 41 healthy controls was assessed using the Contour Drawing Rating Scale (CDRS), the CABI, which simulated the participants' self-image in different levels of weight changes, and the Eating Disorder Inventory-2-Body Dissatisfaction (EDI-2-BD) scale. Severity of depression and anxiety was also assessed. Significant differences were found among the three scales assessing body image, although most of their dimensions differentiated between patients with EDs and controls. Our findings support the use of the CABI in the comparison of body image disturbances in patients with EDs vs. Moreover, the use of different assessment tools allows for a better understanding of the differences in body image disturbances in different ED types.
Liu, Jianlin; Griva, Konstadina; Lim, Haikel A; Tan, Joyce Y S; Mahendran, Rathi
2017-01-01
Body image distress is well-documented in patients with cancer, but little is known about the course of body image distress over time and the role of psychosocial resources such as hope. This prospective study sought to explore the dynamics between trajectories of body image distress and hope across time. Cancer patients receiving outpatient treatment at a cancer center completed self-reported measures of body image distress (Body Image Scale) and hope (Adult Hope Scale) at baseline (within three months of their cancer diagnosis) and follow-up (six months post-baseline; N = 111). Trajectories of intra-individual change (improved, stable, and declined) for body image distress were calculated based on the minimal clinically important difference (±0.5 baseline SD). There was a significant increase in body image distress at follow-up (p < .05); hope remained stable. Rank-transformed mixed-factor repeated measures analyses of variance revealed significant interactions between body image distress trajectory groups and time on hope, suggesting that patients experiencing improvements in body image distress reported higher levels of hope than those who had stable or deteriorating levels of body image distress F(2,108) = 3.25, p < .05. The findings of this exploratory study suggest that psychosocial resources like hope may also reduce body image distress across time in a sample of cancer patients, although the mechanisms of interaction require further examination. Supportive care could lend greater focus to improving patients' hope to alleviating body image distress.
Perceptual body image of patients with anorexia or bulimia nervosa and their fathers.
Benninghoven, D; Tetsch, N; Kunzendorf, S; Jantschek, G
2007-03-01
Little is known about how fathers of patients with eating disorders perceive their own body. In this study we investigated body image perception of patients with anorexia and bulimia nervosa and body image perception of their fathers in a computer assisted approach. A computer program, the somatomorphic matrix, is presented that allows modeling of perceived and desired body-images of patients and their relatives. Patients and fathers rated their own body images and fathers additionally rated the body images of their daughters. The images implemented in the program correspond with defined percentages of body fat and muscularity. Selected images were compared with subjects' anthropometric data regarding body fat and muscularity. Data from 42 father-daughter-dyads (27 patients with anorexia, 15 with bulimia nervosa) were examined. Differences between both diagnostic groups were compared and associations between fathers' and daughters' body image perceptions within each group were investigated. Patients with anorexia nervosa overestimated their bodies on the body fat dimension. Patients with bulimia nervosa wished to have a body with less fat. Fathers of both groups of patients perceived their own bodies correctly but wished to have less body fat and to be more muscular. The wish for a change in body fat of anorexia nervosa patients was highly correlated with fathers' BMI (r=0.49; p=0.009). The wish for a change in body fat of bulimia nervosa patients was correlated with fathers' distorted body image perception in terms of muscularity (r=-0.66, p=0.007) and with fathers' wish for a more muscular body (r=-0.51, p=0.05). Body images of patients with eating disorders and their fathers are related in the group of patients with bulimia nervosa. Perhaps, body images of fathers should be addressed in family therapy with patients with bulimia nervosa.
Microstructural features of carious human enamel imaged with back-scattered electrons.
Pearce, E I; Nelson, D G
1989-02-01
We have used back-scattered electrons (BE) in the scanning electron microscope to produce mineral density images of enamel. Flat surfaces of artificially-carious enamel, softened in an intra-oral experiment, and naturally-carious (white spot) enamel were polished to a high gloss with diamond lapping compound, rendering them almost featureless by secondary electron scanning electron microscopy. They were then examined at 10 to 30 kV in a Philips 505 instrument fitted with a 4-quadrant BE detector. Study of surfaces prepared approximately parallel to the natural surface showed that mineral was lost from both prism core and the interprismatic region, leaving a thin mineral-rich rim at the prism periphery. The same lesions viewed longitudinally on a surface prepared perpendicular to the natural surface showed mineral-rich bands at the prism margins in the outer enamel. Near the advancing front of the lesion, the prism junctions were widened and the prism cores sometimes hypermineralized. Natural lesions sectioned in the prism long axis showed features previously seen with other techniques, e.g., cross-striations and striae of Retzius, but in much greater detail. Mineral enrichment at the prism periphery in the lesion body and a widening of the prism junction at the advancing fronts of lesions in permanent teeth were most obvious. Calculations showed that with an accelerating voltage of 30 kV, the images reflected mineral density up to 4 microns beneath the surface. BE microscopy produces a high-resolution image of mineral loss or gain in carious enamel, with relatively easy sample preparation.
Butler-Ajibade, Phoebe; Robinson, Seronda A.
2014-01-01
The present study provided an initial evaluation of an affect regulation model describing the association between body dissatisfaction and two contemporary measures of positive body image among 247 Black college-bound older adolescent females. We further tested whether possessing a higher body mass index (BMI) would strengthen these associations. Self-reported height and weight were used to calculate BMI. Respondents also completed a culturally-sensitive figure rating scale along with assessments of body appreciation and body image flexibility. Results indicated a robust positive association between the two measures of positive body image; BMI was the strongest predictor of both body appreciation and body image flexibility with body size discrepancy (current minus ideal) contributing incremental variance to both models tested. Implications for improving our understanding of the association between positive and negative body image and bolstering positive body image to promote health-protective behaviors among Black young women at this developmental juncture are discussed. PMID:25079011
Improved image of intrusive bodies at Newberry Volcano, Oregon, based on 3D gravity modelling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bonneville, Alain H.; Cladouhos, Trenton; Rose, Kelly K.
Beneath Newberry Volcano is one of the largest geothermal heat reservoirs in the western United States and it has been extensively studied for the last 40 years. Several magmatic intrusions have been recognized at depths between 2.5 and 8 km and some of them identified as suitable targets for enhanced geothermal energy and tested during two previous EGS campaigns. These subsurface structures have been intersected by three deep wells and imaged by various geophysical methods including seismic tomography and magnetotellurics. Although three high quality gravity surveys were completed between 2006 and 2010 as part of various projects, a complete synthesismore » and interpretation of the gravity data has not yet been performed. Regional gravity data also exist in the vicinity of the Newberry volcano and have been added to these surveys to constitute a dataset with a total of 1418 gravity measurements. When coupled with existing geologic and geophysical data and models, this new gravity dataset provides important constraints on the depth and contours of the magmatic bodies previously identified by other methods and thus greatly contributing to facilitate any future drilling and stimulation works. Using the initial structures discovered by seismic tomography, inversion of gravity data has been performed. Shape, density values and depths of various bodies were allowed to vary and three main bodies have been identified. Densities of the middle and lower intrusive bodies (~2.6-2.7 g/cm3) are consistent with rhyolite, basalt or granites. Modeled density of the near-surface caldera body match that of a low density tephra material and the density of the shallow ring structures contained in the upper kilometer correspond to that of welded tuff or low-density rhyolites. Modeled bodies are in reality a composite of thin layers; however, average densities of the modeled gravity bodies are in good agreement with the density log obtained in one well located on the western flank (well 55-29). Final gravity data residuals show that most of the observed gravity anomalies at the surface can be explained by the modeled gravity bodies and are consistent with other site characterization information.« less
NASA Computational Case Study SAR Data Processing: Ground-Range Projection
NASA Technical Reports Server (NTRS)
Memarsadeghi, Nargess; Rincon, Rafael
2013-01-01
Radar technology is used extensively by NASA for remote sensing of the Earth and other Planetary bodies. In this case study, we learn about different computational concepts for processing radar data. In particular, we learn how to correct a slanted radar image by projecting it on the surface that was sensed by a radar instrument.
Attractive celebrity and peer images on Instagram: Effect on women's mood and body image.
Brown, Zoe; Tiggemann, Marika
2016-12-01
A large body of research has documented that exposure to images of thin fashion models contributes to women's body dissatisfaction. The present study aimed to experimentally investigate the impact of attractive celebrity and peer images on women's body image. Participants were 138 female undergraduate students who were randomly assigned to view either a set of celebrity images, a set of equally attractive unknown peer images, or a control set of travel images. All images were sourced from public Instagram profiles. Results showed that exposure to celebrity and peer images increased negative mood and body dissatisfaction relative to travel images, with no significant difference between celebrity and peer images. This effect was mediated by state appearance comparison. In addition, celebrity worship moderated an increased effect of celebrity images on body dissatisfaction. It was concluded that exposure to attractive celebrity and peer images can be detrimental to women's body image. Copyright © 2016 Elsevier Ltd. All rights reserved.
Television Images and Adolescent Girls' Body Image Disturbance.
ERIC Educational Resources Information Center
Botta, Renee A.
1999-01-01
Contributes to scholarship on the effects of media images on adolescents, using social-comparison theory and critical-viewing theory. Finds that media do have an impact on body-image disturbance. Suggests that body-image processing is the key to understanding how television images affect adolescent girls' body-image attitudes and behaviors. (SR)
Kaiser, V; Comtet, J; Niguès, A; Siria, A; Coasne, B; Bocquet, L
2017-07-01
The electrostatic interaction between two charged particles is strongly modified in the vicinity of a metal. This situation is usually accounted for by the celebrated image charges approach, which was further extended to account for the electronic screening properties of the metal at the level of the Thomas-Fermi description. In this paper we build upon a previous approach [M. A. Vorotyntsev and A. A. Kornyshev, Zh. Eksp. Teor. Fiz., 1980, 78(3), 1008-1019] and successive works to calculate the 1-body and 2-body electrostatic energy of ions near a metal in terms of the Thomas-Fermi screening length. We propose workable approximations suitable for molecular simulations of ionic systems close to metallic walls. Furthermore, we use this framework to calculate analytically the electrostatic contribution to the surface energy of a one dimensional crystal at a metallic wall and its dependence on the Thomas-Fermi screening length. These calculations provide a simple interpretation for the surface energy in terms of image charges, which allows for an estimation of the interfacial properties in more complex situations of a disordered ionic liquid close to a metal surface. The counter-intuitive outcome is that electronic screening, as characterized by a molecular Thomas-Fermi length l TF , profoundly affects the wetting of ionic systems close to a metal, in line with the recent experimental observation of capillary freezing of ionic liquids in metallic confinement.
Globe Browsing: Contextualized Spatio-Temporal Planetary Surface Visualization.
Bladin, Karl; Axelsson, Emil; Broberg, Erik; Emmart, Carter; Ljung, Patric; Bock, Alexander; Ynnerman, Anders
2017-08-29
Results of planetary mapping are often shared openly for use in scientific research and mission planning. In its raw format, however, the data is not accessible to non-experts due to the difficulty in grasping the context and the intricate acquisition process. We present work on tailoring and integration of multiple data processing and visualization methods to interactively contextualize geospatial surface data of celestial bodies for use in science communication. As our approach handles dynamic data sources, streamed from online repositories, we are significantly shortening the time between discovery and dissemination of data and results. We describe the image acquisition pipeline, the pre-processing steps to derive a 2.5D terrain, and a chunked level-of-detail, out-of-core rendering approach to enable interactive exploration of global maps and high-resolution digital terrain models. The results are demonstrated for three different celestial bodies. The first case addresses high-resolution map data on the surface of Mars. A second case is showing dynamic processes, such as concurrent weather conditions on Earth that require temporal datasets. As a final example we use data from the New Horizons spacecraft which acquired images during a single flyby of Pluto. We visualize the acquisition process as well as the resulting surface data. Our work has been implemented in the OpenSpace software [8], which enables interactive presentations in a range of environments such as immersive dome theaters, interactive touch tables, and virtual reality headsets.
SU-F-J-143: Initial Assessment of Image Quality of An Integrated MR-Linac System with ACR Phantom
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, J; Fuller, C; Yung, J
Purpose/Objective(s): To assess the image quality of an integrated MR-Linac system and compare with other MRI systems that are primarily used for diagnostic purposes. Materials/Methods: An ACR MRI quality control (QC) phantom was used to evaluate the image quality of a fully integrated 1.5T MRI-Linac system recently installed at our institution. This system has a new split magnet design which gives the magnetic field strength of 1.5T. All images were acquired with a set of phased-array surface coils which are designed to have minimal attention of radiation beam. The anterior coil rests on a coil holder which keeps the anteriormore » coil’s position consistent for QA purposes. The posterior coil is imbedded in the patient couch. Multiple sets of T1, T2/PD images were acquired using the protocols as prescribed by the ACR on three different dates, ranging 3 months apart. Results: The geometric distortion are within 0.5 mm in the axial scans and within 1mm in the saggital (z-direction) scans. Slice thickness accuracy, image uniformity, ghosting ratio, high contrast detectability are comparable to other 1.5T diagnostic MRI scanners. The low-contrast object detectability are lower comparatively, which is a result of using the body array coil. Additionally, the beam’s-eye-view images (oblique coronal and saggital images) have minimal geometric distortion at all linac gantry angles tested. No observable changes or drift in image quality is found from images acquired 3 month apart. Conclusion: Despite the use of a body array surface coil, the image quality is comparable to that of an 1.5T MRI scanner and is of sufficient quality to pass the ACR MRI accreditation program. The geometric distortion of the MRI system of the integrated MR-Linac is within 1mm for an object size similar to the ACR phantom, sufficient for radiation therapy treatment purpose. The authors received corporate sponsored research grants from Elekta which is the vendor for the MR-Linac evaluated in this study.« less
Media-portrayed idealized images, body shame, and appearance anxiety.
Monro, Fiona; Huon, Gail
2005-07-01
This study was designed to determine the effects of media-portrayed idealized images on young women's body shame and appearance anxiety, and to establish whether the effects depend on advertisement type and on participant self-objectification. Participants were 39 female university students. Twenty-four magazine advertisements comprised 12 body-related and 12 non-body-related products, one half of each with, and the other one half without, idealized images. Preexposure and post exposure body shame and appearance anxiety measures were recorded. Appearance anxiety increased after viewing advertisements featuring idealized images. There was also a significant interaction between self-objectification level and idealized body (presence vs. absence). No differences emerged for body-related compared with non-body-related product advertisements. The only result for body shame was a main effect for time. Participants' body shame increased after exposure to idealized images, irrespective of advertisement type. Although our findings reveal that media-portrayed idealized images detrimentally affect the body image of young women, they highlight the individual differences in vulnerability and the different effects for different components of body image. These results are discussed in terms of their implications for the prevention and early intervention of body image and dieting-related disorders. ( Copyright 2005 by Wiley Periodicals, Inc
A phantom evaluation of a stereo-vision surface imaging system for radiotherapy patient setup
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bert, Christoph; Metheany, Katherine G.; Doppke, Karen
2005-09-15
External beam irradiation requires precise positioning of the target relative to the treatment planning coordinate system. A three-dimensional (3D) surface imaging system for patient positioning has recently been installed in one of our linear accelerator (linac) rooms. The device utilizes close-range photogrammetry to generate a 3D model of the patient's surface. This geometric model can be made to look like a digital camera image if wrapped with a gray-level image (texture mapping) that shows surface coloration. The system is calibrated to the linac coordinate system and has been designed as a patient setup device. To reproduce patient position in fractionatedmore » radiotherapy, the daily patient surface model is registered to a previously recorded reference surface. Using surface registration, the system calculates the rigid-body transformation that minimizes the distance between the treatment and the reference surface models in a region-of-interest (ROI). This transformation is expressed as a set of new couch coordinates at which the patient position best matches with the reference data. If respiratory motion is a concern, the surface can be obtained with a gated acquisition at a specified phase of the respiratory cycle. To analyze the accuracy of the system, we performed several experiments with phantoms to assess stability, alignment accuracy, precision of the gating function, and surface topology. The reproducibility of surface measurements was tested for periods up to 57 h. Each recorded frame was registered to the reference surface to calculate the required couch adjustment. The system stability over this time period was better than 0.5 mm. To measure the accuracy of the system to detect and quantify patient shift relative to a reference image, we compared the shift detected by the surface imaging system with known couch transitions in a phantom study. The maximum standard deviation was 0.75 mm for the three translational degrees of freedom, and less than 0.1 deg. for each rotation. Surface model precision was tested against computed tomography (CT)-derived surface topology. The root-mean-square rms of the distance between the surfaces was 0.65 mm, excluding regions where beam hardening caused artifacts in the CT data. Measurements were made to test the gated acquisition mode. The time-dependent amplitude was measured with the surface imaging system and an established respiratory gating system based on infrared (IR)-marker detection. The measured motion trajectories from both systems were compared to the known trajectory of the stage. The standard deviations of the amplitude differences to the motor trajectory were 0.04 and 0.15 mm for the IR-marker system and the 3D surface imaging system, respectively. A limitation of the surface-imaging device is the frame rate of 6.5 Hz, because rapid changes of the motion trajectory cannot be detected. In conclusion, the system is accurate and sufficiently stable to be used in the clinic. The errors computed when comparing the surface model with CT geometry were submillimeter, and deviations in the alignment and gating-signal tests were of the same magnitude.« less
Weight status and body image perceptions in adolescents: current perspectives.
Voelker, Dana K; Reel, Justine J; Greenleaf, Christy
2015-01-01
Adolescence represents a pivotal stage in the development of positive or negative body image. Many influences exist during the teen years including transitions (eg, puberty) that affect one's body shape, weight status, and appearance. Weight status exists along a spectrum between being obese (ie, where one's body weight is in the 95th percentile for age and gender) to being underweight. Salient influences on body image include the media, which can target adolescents, and peers who help shape beliefs about the perceived body ideal. Internalization of and pressures to conform to these socially prescribed body ideals help to explain associations between weight status and body image. The concepts of fat talk and weight-related bullying during adolescence greatly contribute to an overemphasis on body weight and appearance as well as the development of negative body perceptions and dissatisfaction surrounding specific body parts. This article provides an overview of the significance of adolescent development in shaping body image, the relationship between body image and adolescent weight status, and the consequences of having a negative body image during adolescence (ie, disordered eating, eating disorders, and dysfunctional exercise). Practical implications for promoting a healthy weight status and positive body image among adolescents will be discussed.
Body Image and Body Contouring Procedures.
Sarwer, David B; Polonsky, Heather M
2016-10-01
Dissatisfaction with physical appearance and body image is a common psychological phenomena in Western society. Body image dissatisfaction is frequently reported by those who have excess body weight, but also is seen in those of normal body weight. For both groups of individuals, this dissatisfaction impacts self-esteem and quality of life. Furthermore, it is believed to be the motivational catalyst to a range of appearance-enhancing behaviors, including weight loss efforts and physical activity. Body image dissatisfaction is also believed to play a role in the decision to seek the wide range of body contouring procedures offered by aesthetic physicians. Individuals who seek these procedures typically report increased body image dissatisfaction, focus on the feature they wish to alter with treatment, and often experience improvement in body image following treatment. At the same time, extreme body image dissatisfaction is a symptom of a number of recognized psychiatric disorders. These include anorexia nervosa, bulimia nervosa, and body dysmorphic disorder (BDD), all of which can contraindicate aesthetic treatment. This special topic review paper provides an overview of the relationship between body image dissatisfaction and aesthetic procedures designed to improve body contouring. The review specifically focuses on the relationship of body image and body weight, as well as the presentation of body image psychopathology that would contraindicate aesthetic surgery. The overall goal of the paper is to highlight the clinical implications of the existing research and provide suggestions for future research on the psychological aspects of body contouring procedures. © 2016 The American Society for Aesthetic Plastic Surgery, Inc. Reprints and permission: journals.permissions@oup.com.
Dragonu, Iulius; Almujayyaz, Salam; Batzakis, Alex; Young, Liam A. J.; Purvis, Lucian A. B.; Clarke, William T.; Wichmann, Tobias; Lanz, Titus; Neubauer, Stefan; Robson, Matthew D.; Klomp, Dennis W. J.; Rodgers, Christopher T.
2017-01-01
Purpose Cardiac phosphorus magnetic resonance spectroscopy (31P-MRS) provides unique insight into the mechanisms of heart failure. Yet, clinical applications have been hindered by the restricted sensitivity of the surface radiofrequency-coils normally used. These permit the analysis of spectra only from the interventricular septum, or large volumes of myocardium, which may not be meaningful in focal disease. Löring et al. recently presented a prototype whole-body (52 cm diameter) transmit/receive birdcage coil for 31P at 7T. We now present a new, easily-removable, whole-body 31P transmit radiofrequency-coil built into a patient-bed extension combined with a 16-element receive array for cardiac 31P-MRS. Materials and methods A fully-removable (55 cm diameter) birdcage transmit coil was combined with a 16-element receive array on a Magnetom 7T scanner (Siemens, Germany). Electro-magnetic field simulations and phantom tests of the setup were performed. In vivo maps of B1+, metabolite signals, and saturation-band efficiency were acquired across the torsos of eight volunteers. Results The combined (volume-transmit, local receive array) setup increased signal-to-noise ratio 2.6-fold 10 cm below the array (depth of the interventricular septum) compared to using the birdcage coil in transceiver mode. The simulated coefficient of variation for B1+ of the whole-body coil across the heart was 46.7% (surface coil 129.0%); and the in vivo measured value was 38.4%. Metabolite images of 2,3-diphosphoglycerate clearly resolved the ventricular blood pools, and muscle tissue was visible in phosphocreatine (PCr) maps. Amplitude-modulated saturation bands achieved 71±4% suppression of phosphocreatine PCr in chest-wall muscles. Subjects reported they were comfortable. Conclusion This easy-to-assemble, volume-transmit, local receive array coil combination significantly improves the homogeneity and field-of-view for metabolic imaging of the human heart at 7T. PMID:29073228
NASA Astrophysics Data System (ADS)
Das, I.; Bell, R. E.; Creyts, T. T.; Wolovick, M.
2013-12-01
Large deformed ice structures have been imaged at the base of northern Greenland ice sheet by IceBridge airborne radar. Numerous deformed structures lie along the base of both Petermann Glacier and Northeast Ice stream catchments covering 10-13% of the catchment area. These structures may be combinations of basal freeze-on and folded ice that overturns and inverts stratigraphy. In the interior, where the ice velocity is low, the radar imaged height of the deformed structures are frequently a significant fraction of the ice thickness. They are related to basal freeze on and stick-slip at the base of the ice sheet and may be triggered by subglacial water, sediments or local geological conditions. The larger ones (at times up to 700 m thick and 140 km long) perturb the ice stratigraphy and create prominent undulations on the ice surface and modify the local surface mass balance. Here, we investigate the relationship between the deformed structures and surface processes using shallow and deep ice radar stratigraphy. The surface undulations caused by the deformed structures modulate the pattern of local surface snow accumulation. Using normalized differences of several near-surface stratigraphic layers, we have calculated the accumulation anomaly over these deformed structures. The accumulation anomalies can be as high as 20% of the local surface accumulation over some of the larger surface depressions caused by these deformed structures. We observe distinct differences in the phases of the near-surface internal layers on the Petermann and Northeast catchments. These differences indicate that the deformed bodies over Petermann are controlled by conditions at the bed different from the Northeast Ice stream. The distinctly different near-surface stratigraphy over the deformed structures in the Petermann and Northeast catchments have opened up a number of questions including their formation and how they influence the ice dynamics, ice stratigraphy and surface mass balance. In this study we will model the different physical conditions at the bed and ice rheology from their distinct signatures in the near-surface strata. The results will identify the distinct mechanisms that form these bodies and their control over the surface morphology and snow accumulation.
Mishra, Sushanta Kumar; Kumar, B S Hemanth; Khushu, Subash; Tripathi, Rajendra P; Gangenahalli, Gurudutta
2016-09-01
Synthesis of a contrast agent for biomedical imaging is of great interest where magnetic nanoparticles are concerned, because of the strong influence of particle size on transverse relaxivity. In the present study, biocompatible magnetic iron oxide nanoparticles were synthesized by co-precipitation of Fe 2+ and Fe 3+ salts, followed by surface adsorption with reduced dextran. The synthesized nanoparticles were spherical in shape, and 12 ± 2 nm in size as measured using transmission electron microscopy; this was corroborated with results from X-ray diffraction and dynamic light scattering studies. The nanoparticles exhibited superparamagnetic behavior, superior T 2 relaxation rate and high relaxivities (r 1 = 18.4 ± 0.3, r 2 = 90.5 ± 0.8 s -1 mM -1 , at 7 T). MR image analysis of animals before and after magnetic nanoparticle administration revealed that the signal intensity of tumor imaging, specific organ imaging and whole body imaging can be clearly distinguished, due to the strong relaxation properties of these nanoparticles. Very low concentrations (3.0 mg Fe/kg body weight) of iron oxides are sufficient for early detection of tumors, and also have a clear distinction in pre- and post-enhancement of contrast in organs and body imaging. Many investigators have demonstrated high relaxivities of magnetic nanoparticles at superparamagnetic iron oxide level above 50 nm, but this investigation presents a satisfactory, ultrasmall, superparamagnetic and high transverse relaxivity negative contrast agent for diagnosis in pre-clinical studies. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Asteroidal companions in the visible: HST data
NASA Astrophysics Data System (ADS)
Storrs, Alex; Vilas, Faith; Landis, Rob; Gaffey, Michael J.; Makhoul, Khaldoun; Davis, MIke; Richmond, Mike
2016-01-01
We present a reanalysis of HST images of five asteroids with known companions (45 Eugenia, 87 Sylvia, 93 Minerva, 107 Camilla, 121 Hermione). It is remarkable that all of these companion bodies are much redder in the visible region than their primary bodies. Storrs et al. (2009, BAAS vol. 41, no. 4, p 189) attributed this to space weathering, however, all of these bodies belong to dark C- or X-type groups. Current modeling of space weathering effects are limited to bright asteroids (e.g. Cloutis et al., Icarus 252, pp. 39-82, 2015) and show little change on the scale reported here. We suggest that the interaction of dark, possibly organic-rich surfaces with the solar wind produces reddening on a much greater scale than is observed in bright, silica-rich surfaces, and that this effect is easily reset by collisions. Thus, while both the parent and companion object accumulate the effects, the parent is much more likely to be "reset" by small collisions than the companion, due to the differences in their cross-sections.
The role of body image in prenatal and postpartum depression: a critical review of the literature.
Silveira, Marushka L; Ertel, Karen A; Dole, Nancy; Chasan-Taber, Lisa
2015-06-01
Maternal depression increases risk of adverse perinatal outcomes, and recent evidence suggests that body image may play an important role in depression. This systematic review identifies studies of body image and perinatal depression with the goal of elucidating the complex role that body image plays in prenatal and postpartum depression, improving measurement, and informing next steps in research. We conducted a literature search of the PubMed database (1996-2014) for English language studies of (1) depression, (2) body image, and (3) pregnancy or postpartum. In total, 19 studies matched these criteria. Cross-sectional studies consistently found a positive association between body image dissatisfaction and perinatal depression. Prospective cohort studies found that body image dissatisfaction predicted incident prenatal and postpartum depression; findings were consistent across different aspects of body image and various pregnancy and postpartum time periods. Prospective studies that examined the reverse association found that depression influenced the onset of some aspects of body image dissatisfaction during pregnancy, but few evaluated the postpartum onset of body image dissatisfaction. The majority of studies found that body image dissatisfaction is consistently but weakly associated with the onset of prenatal and postpartum depression. Findings were less consistent for the association between perinatal depression and subsequent body image dissatisfaction. While published studies provide a foundation for understanding these issues, methodologically rigorous studies that capture the perinatal variation in depression and body image via instruments validated in pregnant women, consistently adjust for important confounders, and include ethnically diverse populations will further elucidate this association.
Real-time, ultrasound-based control of a virtual hand by a trans-radial amputee.
Baker, Clayton A; Akhlaghi, Nima; Rangwala, Huzefa; Kosecka, Jana; Sikdar, Siddhartha
2016-08-01
Advancements in multiarticulate upper-limb prosthetics have outpaced the development of intuitive, non-invasive control mechanisms for implementing them. Surface electromyography is currently the most popular non-invasive control method, but presents a number of drawbacks including poor deep-muscle specificity. Previous research established the viability of ultrasound imaging as an alternative means of decoding movement intent, and demonstrated the ability to distinguish between complex grasps in able-bodied subjects via imaging of the anterior forearm musculature. In order to translate this work to clinical viability, able-bodied testing is insufficient. Amputation-induced changes in muscular geometry, dynamics, and imaging characteristics are all likely to influence the effectiveness of our existing techniques. In this work, we conducted preliminary trials with a transradial amputee participant to assess these effects, and potentially elucidate necessary refinements to our approach. Two trials were performed, the first using a set of three motion types, and the second using four. After a brief training period in each trial, the participant was able to control a virtual prosthetic hand in real-time; attempted grasps were successfully classified with a rate of 77% in trial 1, and 71% in trial 2. While the results are sub-optimal compared to our previous able-bodied testing, they are a promising step forward. More importantly, the data collected during these trials can provide valuable information for refining our image processing methods, especially via comparison to previously acquired data from able-bodied individuals. Ultimately, further work with amputees is a necessity for translation towards clinical application.
Heidelberger, Lindsay; Smith, Chery
2018-03-03
Objectives Pediatric obesity is complicated by many factors including psychological issues, such as body dissatisfaction. Body image assessment tools are used with children to measure their acceptance of their body shape or image. Limited research has been conducted with African American and American Indian children to understand their opinions on assessment tools created. This study investigated: (a) children's perception about body image and (b) differences between two body image instruments among low-income, multi-ethnic children. Methods This study uses mixed methodology including focus groups (qualitative) and body image assessment instruments (quantitative). Fifty-one children participated (25 girls, 26 boys); 53% of children identified as African American and 47% as American Indian. The average age was 10.4 years. Open coding methods were used by identify themes from focus group data. SPSS was used for quantitative analysis. Results Children preferred the Figure Rating Scale (FRS/silhouette) instrument over the Children's Body Image Scale (CBIS/photo) because their body parts and facial features were more detailed. Children formed their body image perception with influence from their parents and the media. Children verbalized that they have experienced negative consequences related to poor body image including disordered eating habits, depression, and bullying. Healthy weight children are also aware of weight-related bullying that obese and overweight children face. Conclusions for Practice Children prefer that the images on a body image assessment tool have detailed facial features and are clothed. Further research into body image assessment tools for use with African American and American Indian children is needed.
Hammond, L E; Cuttell, S; Nunley, P; Meyler, J
2014-01-01
This study explored whether anthropometric measures influence magnitude of skin cooling following exposure to whole body cryotherapy (WBC). Height, weight, body fat percentage, and lean mass were measured in 18 male and 14 female participants. Body surface area, body surface area to mass ratio, body mass index, fat-free mass index, and fat mass index were calculated. Thermal images were captured before and after WBC (-60°C for 30 seconds, -110°C for 2 minutes). Skin temperature was measured at the chest, arm, thigh, and calf. Mean skin temperature before and after WBC and change in mean skin temperature (ΔT sk) were calculated. ΔT sk was significantly greater in females (12.07 ± 1.55°C) than males (10.12 ± 1.86°C; t(30) = -3.09, P = .004). A significant relationship was observed between body fat percentage and ΔT sk in the combined dataset (P = .002, r = .516) and between fat-free mass index and ΔT sk in males (P = .005, r = .622). No other significant associations were found. Skin response of individuals to WBC appears to depend upon anthropometric variables and sex, with individuals with a higher adiposity cooling more than thinner individuals. Effects of sex and anthompometrics should be considered when designing WBC research or treatment protocols.
Hammond, L. E.; Cuttell, S.; Nunley, P.; Meyler, J.
2014-01-01
This study explored whether anthropometric measures influence magnitude of skin cooling following exposure to whole body cryotherapy (WBC). Height, weight, body fat percentage, and lean mass were measured in 18 male and 14 female participants. Body surface area, body surface area to mass ratio, body mass index, fat-free mass index, and fat mass index were calculated. Thermal images were captured before and after WBC (−60°C for 30 seconds, −110°C for 2 minutes). Skin temperature was measured at the chest, arm, thigh, and calf. Mean skin temperature before and after WBC and change in mean skin temperature (ΔT sk) were calculated. ΔT sk was significantly greater in females (12.07 ± 1.55°C) than males (10.12 ± 1.86°C; t(30) = −3.09, P = .004). A significant relationship was observed between body fat percentage and ΔT sk in the combined dataset (P = .002, r = .516) and between fat-free mass index and ΔT sk in males (P = .005, r = .622). No other significant associations were found. Skin response of individuals to WBC appears to depend upon anthropometric variables and sex, with individuals with a higher adiposity cooling more than thinner individuals. Effects of sex and anthompometrics should be considered when designing WBC research or treatment protocols. PMID:25061612
The Relationship Between Body Image and Sexual Function in Middle-Aged Women.
Afshari, Poorandokht; Houshyar, Zeinab; Javadifar, Nahid; Pourmotahari, Fatemeh; Jorfi, Maryam
2016-11-01
An individual's social and marital function, interpersonal relationships, and quality of life may, sometimes be affected by negative body image. This study is aimed at determining the relationship between body image and sexual function in middle-aged women. In this cross-sectional study, 437 middle-aged women, who were referred to various public healthcare centers in Ahvaz, Iran during 2014-2015, were selected. The Female Sexual Function Index (FSFI) and Body Shape Questionnaire (BSQ) were used for data collection. Chi-square, one-way analysis of variance, Spearman's correlation test, and logistic regression analysis were performed for statistical analysis. Approximately 58% of the participants expressed satisfaction with their body image, 35% were mildly dissatisfied, and 7% were moderately dissatisfied with their body image. Body image had a significant negative relationship with sexual satisfaction and sexual function (p=0.005). Furthermore, there was a significant relationship between body image and sexual desire (p=0.022), pain (p=0.001), sexual arousal (p<0.0005), sexual orgasm (p=0.001), and sexual satisfaction (p<0.0005). As the results indicated, body image is an important aspect of sexual health. In this study, women with a positive body image had higher sexual function valuation, compared to women with a negative body image. Also, body shape satisfaction was a predictor of sexual function.
Swanson, Vivien; Keely, Alice; Denison, Fiona C
2017-09-01
Obese women have lower breastfeeding initiation and maintenance rates than healthy weight women. Research generally focuses on biomedical explanations for this. Psychosocial factors including body image and well-being after childbirth are less well understood as predictors of breastfeeding. In obese and healthy weight women, we investigated changes in body image between 72 hrs post-delivery and 6-8 weeks post-natal, studying how women's body image related to breastfeeding initiation and maintenance. We also investigated how psychological distress was related to body image. Longitudinal semi-structured questionnaire survey. Body image and psychological distress were assessed within 72 hrs of birth and by postal questionnaire at 6-8 weeks, for 70 obese and 70 healthy weight women initiating exclusive (breastmilk only) breastfeeding or mixed feeding (with formula milk) in hospital. Breastfeeding was re-assessed at 6-8 weeks. Obese women were less likely to exclusively breastfeed in hospital and maintain breastfeeding to 6-8 weeks. Better body image was related to maintaining breastfeeding and to lower post-natal psychological distress for all women, but education level was the most significant predictor of maintenance in multivariate regression including body image and weight status. Body image mediated, but did not moderate the relationship between weight and breastfeeding maintenance. Body image was lower overall in obese women, but all women had low body image satisfaction around childbirth, reducing further at 6-8 weeks. Health professionals should consider women's body image when discussing breastfeeding. A focus on breast function over form may support breastfeeding for all women. Statement of contribution What is already known on this subject? Obesity can negatively affect breastfeeding initiation and maintenance, but there is little information about how psychosocial factors affect this relationship. Body image may be an important factor, but has not been studied in relation to breastfeeding maintenance. What does this study add This article examines the influence of body image on obese and healthy-weight women's breastfeeding maintenance at 6-8 weeks. Different aspects of body image mediated but did not moderate the relationship between weight status and breastfeeding maintenance, but in multivariate regression, maternal education level was the most significant predictor. Obese women had poorer body image and were less likely to maintain breastfeeding; however, for all women, body image became more negative in this postpartum period. Interventions should normalize positive aspects of women's postnatal bodies, including function rather than form. Addressing body concerns could encourage new mothers to maintain breastfeeding, irrespective of weight status. © 2017 The British Psychological Society.
Encouraging Lifelong Healthy Habits for a Positive Body Image in Adolescents.
ERIC Educational Resources Information Center
Ahmed, Christine
This article discusses issues related to body image in adolescents, explaining what school practitioners can do to encourage lifelong healthy habits that enhance body image. Body image is the picture of physical self carried in the mind's eye. This impression can have little resemblance to how a teen actually looks. Body image culturalization is…
Blaho, Miklos; Herczeg, Tamas; Kriska, Gyorgy; Egri, Adam; Szaz, Denes; Farkas, Alexandra; Tarjanyi, Nikolett; Czinke, Laszlo; Barta, Andras; Horvath, Gabor
2014-01-01
The horizontally polarizing surface parts of shiny black cars (the reflection-polarization characteristics of which are similar to those of water surfaces) attract water-leaving polarotactic insects. Thus, shiny black cars are typical sources of polarized light pollution endangering water-leaving insects. A new fashion fad is to make car-bodies matt black or grey. Since rough (matt) surfaces depolarize the reflected light, one of the ways of reducing polarized light pollution is to make matt the concerned surface. Consequently, matt black/grey cars may not induce polarized light pollution, which would be an advantageous feature for environmental protection. To test this idea, we performed field experiments with horizontal shiny and matt black car-body surfaces laid on the ground. Using imaging polarimetry, in multiple-choice field experiments we investigated the attractiveness of these test surfaces to various water-leaving polarotactic insects and obtained the following results: (i) The attractiveness of black car-bodies to polarotactic insects depends in complex manner on the surface roughness (shiny, matt) and species (mayflies, dolichopodids, tabanids). (ii) Non-expectedly, the matt dark grey car finish is much more attractive to mayflies (being endangered and protected in many countries) than matt black finish. (iii) The polarized light pollution of shiny black cars usually cannot be reduced with the use of matt painting. On the basis of these, our two novel findings are that (a) matt car-paints are highly polarization reflecting, and (b) these matt paints are not suitable to repel polarotactic insects. Hence, the recent technology used to make matt the car-bodies cannot eliminate or even can enhance the attractiveness of black/grey cars to water-leaving insects. Thus, changing shiny black car painting to matt one is a disadvantageous fashion fad concerning the reduction of polarized light pollution of black vehicles. PMID:25076137
Blaho, Miklos; Herczeg, Tamas; Kriska, Gyorgy; Egri, Adam; Szaz, Denes; Farkas, Alexandra; Tarjanyi, Nikolett; Czinke, Laszlo; Barta, Andras; Horvath, Gabor
2014-01-01
The horizontally polarizing surface parts of shiny black cars (the reflection-polarization characteristics of which are similar to those of water surfaces) attract water-leaving polarotactic insects. Thus, shiny black cars are typical sources of polarized light pollution endangering water-leaving insects. A new fashion fad is to make car-bodies matt black or grey. Since rough (matt) surfaces depolarize the reflected light, one of the ways of reducing polarized light pollution is to make matt the concerned surface. Consequently, matt black/grey cars may not induce polarized light pollution, which would be an advantageous feature for environmental protection. To test this idea, we performed field experiments with horizontal shiny and matt black car-body surfaces laid on the ground. Using imaging polarimetry, in multiple-choice field experiments we investigated the attractiveness of these test surfaces to various water-leaving polarotactic insects and obtained the following results: (i) The attractiveness of black car-bodies to polarotactic insects depends in complex manner on the surface roughness (shiny, matt) and species (mayflies, dolichopodids, tabanids). (ii) Non-expectedly, the matt dark grey car finish is much more attractive to mayflies (being endangered and protected in many countries) than matt black finish. (iii) The polarized light pollution of shiny black cars usually cannot be reduced with the use of matt painting. On the basis of these, our two novel findings are that (a) matt car-paints are highly polarization reflecting, and (b) these matt paints are not suitable to repel polarotactic insects. Hence, the recent technology used to make matt the car-bodies cannot eliminate or even can enhance the attractiveness of black/grey cars to water-leaving insects. Thus, changing shiny black car painting to matt one is a disadvantageous fashion fad concerning the reduction of polarized light pollution of black vehicles.
Development of multi-dimensional body image scale for malaysian female adolescents
Taib, Mohd Nasir Mohd; Shariff, Zalilah Mohd; Khor, Geok Lin
2008-01-01
The present study was conducted to develop a Multi-dimensional Body Image Scale for Malaysian female adolescents. Data were collected among 328 female adolescents from a secondary school in Kuantan district, state of Pahang, Malaysia by using a self-administered questionnaire and anthropometric measurements. The self-administered questionnaire comprised multiple measures of body image, Eating Attitude Test (EAT-26; Garner & Garfinkel, 1979) and Rosenberg Self-esteem Inventory (Rosenberg, 1965). The 152 items from selected multiple measures of body image were examined through factor analysis and for internal consistency. Correlations between Multi-dimensional Body Image Scale and body mass index (BMI), risk of eating disorders and self-esteem were assessed for construct validity. A seven factor model of a 62-item Multi-dimensional Body Image Scale for Malaysian female adolescents with construct validity and good internal consistency was developed. The scale encompasses 1) preoccupation with thinness and dieting behavior, 2) appearance and body satisfaction, 3) body importance, 4) muscle increasing behavior, 5) extreme dieting behavior, 6) appearance importance, and 7) perception of size and shape dimensions. Besides, a multidimensional body image composite score was proposed to screen negative body image risk in female adolescents. The result found body image was correlated with BMI, risk of eating disorders and self-esteem in female adolescents. In short, the present study supports a multi-dimensional concept for body image and provides a new insight into its multi-dimensionality in Malaysian female adolescents with preliminary validity and reliability of the scale. The Multi-dimensional Body Image Scale can be used to identify female adolescents who are potentially at risk of developing body image disturbance through future intervention programs. PMID:20126371
Development of multi-dimensional body image scale for malaysian female adolescents.
Chin, Yit Siew; Taib, Mohd Nasir Mohd; Shariff, Zalilah Mohd; Khor, Geok Lin
2008-01-01
The present study was conducted to develop a Multi-dimensional Body Image Scale for Malaysian female adolescents. Data were collected among 328 female adolescents from a secondary school in Kuantan district, state of Pahang, Malaysia by using a self-administered questionnaire and anthropometric measurements. The self-administered questionnaire comprised multiple measures of body image, Eating Attitude Test (EAT-26; Garner & Garfinkel, 1979) and Rosenberg Self-esteem Inventory (Rosenberg, 1965). The 152 items from selected multiple measures of body image were examined through factor analysis and for internal consistency. Correlations between Multi-dimensional Body Image Scale and body mass index (BMI), risk of eating disorders and self-esteem were assessed for construct validity. A seven factor model of a 62-item Multi-dimensional Body Image Scale for Malaysian female adolescents with construct validity and good internal consistency was developed. The scale encompasses 1) preoccupation with thinness and dieting behavior, 2) appearance and body satisfaction, 3) body importance, 4) muscle increasing behavior, 5) extreme dieting behavior, 6) appearance importance, and 7) perception of size and shape dimensions. Besides, a multidimensional body image composite score was proposed to screen negative body image risk in female adolescents. The result found body image was correlated with BMI, risk of eating disorders and self-esteem in female adolescents. In short, the present study supports a multi-dimensional concept for body image and provides a new insight into its multi-dimensionality in Malaysian female adolescents with preliminary validity and reliability of the scale. The Multi-dimensional Body Image Scale can be used to identify female adolescents who are potentially at risk of developing body image disturbance through future intervention programs.
Media ideals and early adolescents' body image: Selective avoidance or selective exposure?
Rousseau, Ann; Eggermont, Steven
2018-06-05
The present study combines selective exposure theory with body image coping literature to study effects of media internalization in early adolescence. The main objective was to explore how early adolescents selectively internalize media body ideals to manage their body image. To examine the role of media internalization in early adolescents' body image management, we used two-wave panel data (N Wave1 = 1986) gathered among 9- to 14-year-olds. Structural equation analyses indicated that media internalization (Wave 1) positively related to body surveillance (Wave 2). Body surveillance (Wave 2), in turn, was associated with more body image self-discrepancy (Wave 2). In addition, body image self-discrepancy (Wave 1) related to higher body surveillance (Wave 1). Body surveillance, in turn, related to more media internalization cross-sectionally, but less media internalization six months later. Taken together, these results suggest a role for media internalization in early adolescents' body image management. Theoretical and practical implications are discussed. Copyright © 2018 Elsevier Ltd. All rights reserved.
Swami, Viren; Weis, Laura; Barron, David; Furnham, Adrian
2017-10-20
Studies examining associations between positive body image and well-being have used a limited array of measures of each construct. To rectify this, we asked an online sample of 1148 U.K. adults to complete a range of measures of positive body image (body appreciation, body image flexibility, body pride, body acceptance from others) and a multi-dimensional measure of well-being (emotional, psychological, and social). Results showed that, once the effects of age and body mass index (BMI) had been accounted for, body appreciation significantly predicted all dimensions of well-being. Other positive body image measures emerged as significant predictors, but patterns of associations were mixed across sex and well-being dimension. Additional analyses showed that women had significantly lower scores than men on most body image measures, and that BMI was negatively associated with all body image measures. These results have implications for the promotion of well-being, which we discuss.
Aacovou, I.
2005-01-01
Summary Burn injuries are among the most serious causes of radical changes in body image. The subject of body image and self-image is essential in rehabilitation, and the nurse must be aware of the issues related to these concepts and take them seriously into account in drafting out the nursing programme. This paper defines certain key words related to body image and discusses the social context of body image. Burn injuries are considered in relation to the way each of these affects the patient's body image. The aim of nursing is defined and the nurse's role in cases of severe changes in body image due to burn injuries is discussed. PMID:21990985
Webb, Jennifer B; Butler-Ajibade, Phoebe; Robinson, Seronda A
2014-09-01
The present study provided an initial evaluation of an affect regulation model describing the association between body dissatisfaction and two contemporary measures of positive body image among 247 Black college-bound older adolescent females. We further tested whether possessing a higher body mass index (BMI) would strengthen these associations. Self-reported height and weight were used to calculate BMI. Respondents also completed a culturally-sensitive figure rating scale along with assessments of body appreciation and body image flexibility. Results indicated a robust positive association between the two measures of positive body image; BMI was the strongest predictor of both body appreciation and body image flexibility with body size discrepancy (current minus ideal) contributing incremental variance to both models tested. Implications for improving our understanding of the association between positive and negative body image and bolstering positive body image to promote health-protective behaviors among Black young women at this developmental juncture are discussed. Copyright © 2014 Elsevier Ltd. All rights reserved.
Dissatisfaction with own body makes patients with eating disorders more sensitive to pain
Yamamotova, Anna; Bulant, Josef; Bocek, Vaclav; Papezova, Hana
2017-01-01
Body image represents a multidimensional concept including body image evaluation and perception of body appearance. Disturbances of body image perception are considered to be one of the central aspects of anorexia nervosa and bulimia nervosa. There is growing evidence that body image distortion can be associated with changes in pain perception. The aim of our study was to examine the associations between body image perception, body dissatisfaction, and nociception in women with eating disorders and age-matched healthy control women. We measured body dissatisfaction and pain sensitivity in 61 patients with Diagnostic and Statistical Manual of Mental Disorders-Fourth Edition diagnoses of eating disorders (31 anorexia nervosa and 30 bulimia nervosa) and in 30 healthy women. Thermal pain threshold latencies were evaluated using an analgesia meter and body image perception and body dissatisfaction were assessed using Anamorphic Micro software (digital pictures of their own body distorted into larger-body and thinner-body images). Patients with eating disorders overestimated their body size in comparison with healthy controls, but the two groups did not differ in body dissatisfaction. In anorexia and bulimia patient groups, body dissatisfaction (calculated in pixels as desired size/true image size) correlated with pain threshold latencies (r=0.55, p=0.001), while between body image perception (determined as estimation size/true image size) and pain threshold, no correlation was found. Thus, we demonstrated that in patients with eating disorders, pain perception is significantly associated with emotional contrary to sensory (visual) processing of one’s own body image. The more the patients desired to be thin, the more pain-sensitive they were. Our findings based on some shared mechanisms of body dissatisfaction and pain perception support the significance of negative emotions specific for eating disorders and contribute to better understanding of the psychosomatic characteristics of this spectrum of illnesses. PMID:28761371
Predictive factors of disordered eating and body image satisfaction in cyprus.
Argyrides, Marios; Kkeli, Natalie
2015-05-01
This study aimed to assess possible relationships and predictor variables between disordered eating attitudes and behaviors, the internalization of the thin ideal construct, body image satisfaction, body image investment, weight-related anxiety, and body mass index (BMI) among Greek-Cypriot female university students in Cyprus. A total of 243 female university students responded to self-report measures assessing disordered eating, internalization of the thin ideal, body satisfaction, body image investment, and weight-related anxiety. Disordered eating was positively correlated to the internalization of the thin ideal, body image investment, weight-related anxiety, and BMI and negatively correlated with body image satisfaction. The internalization of the thin ideal was also positively correlated to weight-related anxiety and body image investment and negatively correlated to body image satisfaction. Furthermore, weight-related anxiety and internalization of the thin ideal have been found to be significant predictors of disordered eating attitudes. Possible explanations and vulnerability factors are addressed, as well as implication for prevention strategies and future research. © 2014 Wiley Periodicals, Inc.
Fingeret, Michelle Cororve; Yuan, Ying; Urbauer, Diana; Weston, June; Nipomnick, Summer; Weber, Randal
2016-01-01
Objective The purpose of this study was to describe body image concerns for surgically treated patients with head and neck cancer and evaluate the relationship between body image concerns and quality of life outcomes. Methods Data were obtained from 280 patients undergoing surgical treatment for head and neck cancer. We used a cross-sectional design and obtained data from individuals at different time points relative to initiation of surgical treatment. Participants completed the Body Image Scale, the Functional Assessment of Cancer Therapy scale – Head and Neck version, and a survey designed for this study to evaluate disease-specific body image issues, satisfaction with care regarding body image issues, and interest in psychosocial intervention. Results Body image concerns were prevalent in the majority of participants with 75% acknowledging concerns or embarrassment about one or more types of bodily changes at some point during treatment. Significant associations were found between body image concerns and all major domains of quality of life. Age, gender, cancer type, time since surgery, and body image variables were significantly associated with psychosocial outcomes. A clear subset of participants expressed dissatisfaction with care received about body image issues and/or indicated they would have liked additional resources to help them cope with body image changes. Conclusions These data provide useful information to document wide-ranging body image difficulties for this population and provide important targets for the development of relevant psychosocial interventions. PMID:21706673
Imaging near surface mineral targets with ambient seismic noise
NASA Astrophysics Data System (ADS)
Dales, P.; Audet, P.; Olivier, G.
2017-12-01
To keep up with global metal and mineral demand, new ore-deposits have to be discovered on a regular basis. This task is becoming increasingly difficult, since easily accessible deposits have been exhausted to a large degree. The typical procedure for mineral exploration begins with geophysical surveys followed by a drilling program to investigate potential targets. Since the retrieved drill core samples are one-dimensional observations, the many holes needed to interpolate and interpret potential deposits can lead to very high costs. To reduce the amount of drilling, active seismic imaging is sometimes used as an intermediary, however the active sources (e.g. large vibrating trucks or explosive shots) are expensive and unsuitable for operation in remote or environmentally sensitive areas. In recent years, passive seismic imaging using ambient noise has emerged as a novel, low-cost and environmentally sensitive approach for exploring the sub-surface. This technique dispels with active seismic sources and instead uses ambient seismic noise such as ocean waves, traffic or minor earthquakes. Unfortunately at this point, passive surveys are not capable of reaching the required resolution to image the vast majority of the ore-bodies that are being explored. In this presentation, we will show the results of an experiment where ambient seismic noise recorded on 60 seismic stations was used to image a near-mine target. The target consists of a known ore-body that has been partially exhausted by mining efforts roughly 100 years ago. The experiment examined whether ambient seismic noise interferometry can be used to image the intact and exhausted ore deposit. A drilling campaign was also conducted near the target which offers the opportunity to compare the two methods. If the accuracy and resolution of passive seismic imaging can be improved to that of active surveys (and beyond), this method could become an inexpensive intermediary step in the exploration process and result in a large decrease in the amount of drilling required to investigate and identify high-grade ore deposits.
Weight status and body image perceptions in adolescents: current perspectives
Voelker, Dana K; Reel, Justine J; Greenleaf, Christy
2015-01-01
Adolescence represents a pivotal stage in the development of positive or negative body image. Many influences exist during the teen years including transitions (eg, puberty) that affect one’s body shape, weight status, and appearance. Weight status exists along a spectrum between being obese (ie, where one’s body weight is in the 95th percentile for age and gender) to being underweight. Salient influences on body image include the media, which can target adolescents, and peers who help shape beliefs about the perceived body ideal. Internalization of and pressures to conform to these socially prescribed body ideals help to explain associations between weight status and body image. The concepts of fat talk and weight-related bullying during adolescence greatly contribute to an overemphasis on body weight and appearance as well as the development of negative body perceptions and dissatisfaction surrounding specific body parts. This article provides an overview of the significance of adolescent development in shaping body image, the relationship between body image and adolescent weight status, and the consequences of having a negative body image during adolescence (ie, disordered eating, eating disorders, and dysfunctional exercise). Practical implications for promoting a healthy weight status and positive body image among adolescents will be discussed. PMID:26347007
Managing Body Image Difficulties of Adult Cancer Patients: Lessons from Available Research
Fingeret, Michelle Cororve; Teo, Irene; Epner, Daniel E.
2013-01-01
Background Body image is a critical psychosocial issue for cancer patients as they often undergo significant changes to appearance and functioning. In this review article, our primary purpose was to identify empirically-supported approaches to treat body image difficulties of adult cancer patients that can be incorporated into high-quality comprehensive cancer care. Methods We provided an overview of theoretical models of body image relevant to cancer patients, and presented findings from published literature on body image and cancer from 2003–2013. We integrated these data with information from the patient-doctor communication literature to delineate a practical approach for assessing and treating body image concerns of adult cancer patients. Results Body image difficulties were found across patients with diverse cancer sites, and were most prevalent in the immediate postoperative and treatment period. Age, body mass index, and specific cancer treatments have been identified as potential risk factors for body image disturbance in cancer patients. Current evidence supports the use of time-limited cognitive-behavioral therapy interventions for addressing these difficulties. Other intervention strategies also show promise but require further study. We identified potential indicators of body image difficulties to alert healthcare professionals when to refer patients for psychosocial care, and proposed a framework for approaching conversations about body image that can be used by the oncologic treatment team. Conclusions Body image issues affect a wide array of cancer patients. Providers can use available evidence combined with information from the healthcare communication literature to develop practical strategies for treating body image concerns of cancer patients. PMID:24895287
Managing body image difficulties of adult cancer patients: lessons from available research.
Fingeret, Michelle Cororve; Teo, Irene; Epner, Daniel E
2014-03-01
Body image is a critical psychosocial issue for patients with cancer because they often undergo significant changes to appearance and functioning. The primary purpose of this review article was to identify empirically-supported approaches to treat body image difficulties of adult cancer patients that can be incorporated into high-quality comprehensive cancer care. An overview was provided of theoretical models of body image relevant to cancer patients, and findings were presented from published literature on body image and cancer from 2003 to 2013. These data were integrated with information from the patient-doctor communication literature to delineate a practical approach for assessing and treating body image concerns of adult cancer patients. Body image difficulties were found across patients with diverse cancer sites, and were most prevalent in the immediate postoperative and treatment period. Age, body mass index, and specific cancer treatments have been identified as potential risk factors for body image disturbance in cancer patients. Current evidence supports the use of time-limited cognitive-behavioral therapy interventions for addressing these difficulties. Other intervention strategies also show promise but require further study. Potential indicators of body image difficulties were identified to alert health care professionals when to refer patients for psychosocial care, and a framework was proposed for approaching conversations about body image that can be used by the oncologic treatment team. Body image issues affect a wide array of cancer patients. Providers can use available evidence combined with information from the health care communication literature to develop practical strategies for treating body image concerns of patients with cancer. © 2013 American Cancer Society.
Carey, Renee N; Donaghue, Ngaire; Broderick, Pia
2014-01-01
This study investigated the potential mediating roles of body comparisons with peers and models in the relationship between the internalization of thinness norms and body image concern. A total of 224 Western Australian girls aged 14-15 completed questionnaires assessing their endorsement of thinness norms, body image concerns, and frequency of body comparisons with peers and with models. Both targets of body comparisons were found to significantly mediate the relationship between the endorsement of thinness norms and body image concern, with body comparison with peers a stronger mediator than comparison with models. These findings show that body comparison with peers, in particular, plays a significant role in the experience of body image concerns among adolescent girls, and should be given a higher profile in programs designed to prevent or reduce body image concern. Copyright © 2013 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Lebowitz Elkoubi, Allison
2009-01-01
Research on body image and body image disturbance has met with great debate and inconsistency regarding definition, conceptualization, and measurement. The fundamental understanding of body image ranges from being a perceptual or visual concept to actually representing attitudes or judgments individuals hold regarding their bodies. The present…
Recent advances in 3D SEM surface reconstruction.
Tafti, Ahmad P; Kirkpatrick, Andrew B; Alavi, Zahrasadat; Owen, Heather A; Yu, Zeyun
2015-11-01
The scanning electron microscope (SEM), as one of the most commonly used instruments in biology and material sciences, employs electrons instead of light to determine the surface properties of specimens. However, the SEM micrographs still remain 2D images. To effectively measure and visualize the surface attributes, we need to restore the 3D shape model from the SEM images. 3D surface reconstruction is a longstanding topic in microscopy vision as it offers quantitative and visual information for a variety of applications consisting medicine, pharmacology, chemistry, and mechanics. In this paper, we attempt to explain the expanding body of the work in this area, including a discussion of recent techniques and algorithms. With the present work, we also enhance the reliability, accuracy, and speed of 3D SEM surface reconstruction by designing and developing an optimized multi-view framework. We then consider several real-world experiments as well as synthetic data to examine the qualitative and quantitative attributes of our proposed framework. Furthermore, we present a taxonomy of 3D SEM surface reconstruction approaches and address several challenging issues as part of our future work. Copyright © 2015 Elsevier Ltd. All rights reserved.
MERTIS: the thermal infrared imaging spectrometer onboard of the Mercury Planetary Orbiter
NASA Astrophysics Data System (ADS)
Zeh, T.; Peter, G.; Walter, I.; Kopp, E.; Knollenberg, J.; Helbert, J.; Gebhardt, A.; Weber, I.; Hiesinger, Harry
2017-11-01
The MERTIS instrument is a thermal infrared imaging spectrometer onboard of ESA's cornerstone mission BepiColombo to Mercury. MERTIS has four goals: the study of Mercury's surface composition, identification of rock-forming minerals, mapping of the surface mineralogy, and the study of the surface temperature variations and thermal inertia. MERTIS will provide detailed information about the mineralogical composition of Mercury's surface layer by measuring the spectral emittance in the spectral range from 7-14 μm at high spatial and spectral resolution. Furthermore MERTIS will obtain radiometric measurements in the spectral range from 7-40 μm to study the thermo-physical properties of the surface material. The MERTIS detector is based on an uncooled micro-bolometer array providing spectral separation and spatial resolution according to its 2-dimensional shape. The operation principle is characterized by intermediate scanning of the planet surface and three different calibration targets - free space view and two on-board black body sources. In the current project phase, the MERTIS Qualification Model (QM) is under a rigorous testing program. Besides a general overview of the instrument principles, the papers addresses major aspects of the instrument design, manufacturing and verification.
Automatic anatomy recognition in whole-body PET/CT images
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Huiqian; Udupa, Jayaram K., E-mail: jay@mail.med.upenn.edu; Odhner, Dewey
Purpose: Whole-body positron emission tomography/computed tomography (PET/CT) has become a standard method of imaging patients with various disease conditions, especially cancer. Body-wide accurate quantification of disease burden in PET/CT images is important for characterizing lesions, staging disease, prognosticating patient outcome, planning treatment, and evaluating disease response to therapeutic interventions. However, body-wide anatomy recognition in PET/CT is a critical first step for accurately and automatically quantifying disease body-wide, body-region-wise, and organwise. This latter process, however, has remained a challenge due to the lower quality of the anatomic information portrayed in the CT component of this imaging modality and the paucity ofmore » anatomic details in the PET component. In this paper, the authors demonstrate the adaptation of a recently developed automatic anatomy recognition (AAR) methodology [Udupa et al., “Body-wide hierarchical fuzzy modeling, recognition, and delineation of anatomy in medical images,” Med. Image Anal. 18, 752–771 (2014)] to PET/CT images. Their goal was to test what level of object localization accuracy can be achieved on PET/CT compared to that achieved on diagnostic CT images. Methods: The authors advance the AAR approach in this work in three fronts: (i) from body-region-wise treatment in the work of Udupa et al. to whole body; (ii) from the use of image intensity in optimal object recognition in the work of Udupa et al. to intensity plus object-specific texture properties, and (iii) from the intramodality model-building-recognition strategy to the intermodality approach. The whole-body approach allows consideration of relationships among objects in different body regions, which was previously not possible. Consideration of object texture allows generalizing the previous optimal threshold-based fuzzy model recognition method from intensity images to any derived fuzzy membership image, and in the process, to bring performance to the level achieved on diagnostic CT and MR images in body-region-wise approaches. The intermodality approach fosters the use of already existing fuzzy models, previously created from diagnostic CT images, on PET/CT and other derived images, thus truly separating the modality-independent object assembly anatomy from modality-specific tissue property portrayal in the image. Results: Key ways of combining the above three basic ideas lead them to 15 different strategies for recognizing objects in PET/CT images. Utilizing 50 diagnostic CT image data sets from the thoracic and abdominal body regions and 16 whole-body PET/CT image data sets, the authors compare the recognition performance among these 15 strategies on 18 objects from the thorax, abdomen, and pelvis in object localization error and size estimation error. Particularly on texture membership images, object localization is within three voxels on whole-body low-dose CT images and 2 voxels on body-region-wise low-dose images of known true locations. Surprisingly, even on direct body-region-wise PET images, localization error within 3 voxels seems possible. Conclusions: The previous body-region-wise approach can be extended to whole-body torso with similar object localization performance. Combined use of image texture and intensity property yields the best object localization accuracy. In both body-region-wise and whole-body approaches, recognition performance on low-dose CT images reaches levels previously achieved on diagnostic CT images. The best object recognition strategy varies among objects; the proposed framework however allows employing a strategy that is optimal for each object.« less
Predictors of Change in Body Image in Female Participants of an Outdoor Education Program
ERIC Educational Resources Information Center
Hovey, Kate; Foland, Jody; Foley, John T.; Kniffin, Mike; Bailey, JoEllen
2016-01-01
Body image is an ever-changing phenomenon that has a profound effect on women's quality of life. Research related to body image is expansive, but few researchers have focused on how outdoor education may influence body image. This study examines predictors of change in body image of female participants of an outdoor education program. Twenty-eight…
Utsunomiya, Daisuke; Tanaka, Ryoichi; Yoshioka, Kunihiro; Awai, Kazuo; Mochizuki, Teruhito; Matsunaga, Naofumi; Ichikawa, Tomoaki; Kanematsu, Masayuki; Kim, Tonsok; Yamashita, Yasuyuki
2016-08-01
We investigated the effects of patient- and image acquisition-related factors on the image quality in coronary CT angiography (CCTA). We enrolled 1197 patients (728 men; 65 ± 12 years). All underwent CCTA under the routine scan protocol in 23 participating hospitals. The subjective image quality (3-point Likert scale: excellent, good, and poor) and the attenuation of the left and right coronary artery (LCA, RCA) were recorded; the effects of patient and image acquisition-related factors on vascular attenuation were then compared. The mean LCA attenuation was 515.2 ± 65.8 (excellent), 401.4 ± 63.4 (good), and 319.5 ± 47.6 HU (poor). The corresponding RCA attenuation was 496.6 ± 67.6, 390.5 ± 58.5, and 308.5 ± 50.7 HU, respectively. Univariate analysis revealed significant associations between sufficient coronary attenuation (> 400 HU) and the age, gender, body surface area (BSA), number of detectors, contrast synchronization, scan mode, and the fractional contrast dose. Multivariate analysis revealed that the bolus tracking method, prospective electrocardiogram gating, and fractional contrast dose were significantly associated with sufficient coronary enhancement. BSA and fractional contrast dose are the most important patient- and image acquisition-related factors for sufficient coronary attenuation in CCTA.
Clark, Levina; Tiggemann, Marika
2008-07-01
This study investigated the prospective predictors of body image in 9- to 12-year-old girls. Participants were 150 girls in Grades 4-6 with a mean age of 10.3 years. Girls completed questionnaire measures of media and peer influences (television/magazine exposure, peer appearance conversations), individual psychological variables (appearance schemas, internalization of appearance ideals, autonomy), and body image (figure discrepancy and body esteem) at Time 1 and 1 year later at Time 2. Linear panel analyses showed that after controlling for Time 1 levels of body image, none of the Time 1 sociocultural variables predicted body image variables at Time 2. Body mass index (BMI; a biological variable) and psychological variables, however, did offer significant prospective prediction. Specifically, higher BMI, higher appearance schemas, higher internalization of appearance ideals, and lower autonomy predicted worsening body image 1 year later. Thus, higher weight and certain psychological characteristics were temporally antecedent to body image concerns. It was concluded that both biological and individual psychological variables play a role in the development of body image in children. Individual psychological variables, in particular, may provide useful targets in prevention and intervention programs addressing body image in 9- to 12-year-old girls.
[Perspectives on body: embodiment and body image].
Chang, Shiow-Ru; Chao, Yu-Mei Yu
2007-06-01
"Body" is a basic concept of both the natural and human sciences. This extensive review of the literature explores the various philosophical approaches to the body, including empiricism, idealism, existentialism and phenomenology, as well as the relationship between body and mind. Embodiment and body image are the two main concepts of body addressed in this article. Merleau-Ponty's perspective on embodiment, an important new area of theory development, emphasizes that embodiment research must focus on life experiences, such as the study of body image. Using Schilder's framework of psychosocialology, this article provides a comprehensive understanding of the concept of body image and women's perspectives on the "body" in both Western culture and Eastern cultures. Body size and shape significantly influence the self-image of women. Body image is something that develops and changes throughout one's life span and is continually being constructed, destructed, and reconstructed. Personal body image has important psychological effects on the individual, especially women. This integrative review can make a significant contribution to knowledge in this area and, consequently, to related practice and research.
Swami, Viren; Weis, Laura; Barron, David; Furnham, Adrian
2017-11-01
While studies have documented robust relationships between body image and sexual health outcomes, few studies have looked beyond sexual functioning in women. Here, we hypothesized that more positive body image would be associated with greater sexual liberalism and more positive attitudes toward unconventional sexual practices. An online sample of 151 women and 164 men from the U.S. completed measures of sexual liberalism, attitudes toward unconventional sexual practices, and indices of positive body image (i.e., body appreciation, body acceptance by others, body image flexibility, and body pride), and provided their demographic details. Regression analyses indicated that, once the effects of sexual orientation, relationship status, age, and body mass index had been accounted for, higher body appreciation was significantly associated with greater sexual liberalism in women and men. Furthermore, higher body appreciation and body image flexibility were significantly associated with more positive attitudes toward unconventional sexual practices in women and men. These results may have implications for scholars working from a sex-positive perspective, particularly in terms of understanding the role body image plays in sexual attitudes and behaviors.
Body image and transsexualism.
Kraemer, Bernd; Delsignore, Aba; Schnyder, Ulrich; Hepp, Urs
2008-01-01
To achieve a detailed view of the body image of transsexual patients, an assessment of perception, attitudes and experiences about one's own body is necessary. To date, research on the body image of transsexual patients has mostly covered body dissatisfaction with respect to body perception. We investigated 23 preoperative (16 male-to-female and 7 female-to-male transsexual patients) and 22 postoperative (14 male-to-female and 8 female-to-male) transsexual patients using a validated psychological measure for body image variables. We found that preoperative transsexual patients were insecure and felt unattractive because of concerns about their body image. However, postoperative transsexual patients scored high on attractiveness and self-confidence. Furthermore, postoperative transsexual patients showed low scores for insecurity and concerns about their body. Our results indicate an improvement of body image concerns for transsexual patients following standards of care for gender identity disorder. Follow-up studies are recommended to confirm the assumed positive outcome of standards of care on body image. (c) 2007 S. Karger AG, Basel.
Closeup view of the aft fuselage looking forward along the ...
Close-up view of the aft fuselage looking forward along the approximate centerline of the Orbiter Discovery looking at the expansion nozzles of the Space Shuttle Main Engines (SSME) and the Orbiter Maneuvering System. Also in the view is the orbiter's body flap with a protective covering over the High-temperature Reusable Surface Insulation tiles on the surface facing the SSMEs. This image was taken inside the Orbiter Processing Facility at Kennedy Space Center. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX
Robbins, Lorraine B; Ling, Jiying; Resnicow, Kenneth
2017-12-06
Understanding factors related to girls' body image discrepancy, which is the difference between self-perceived current or actual and ideal body size, is important for addressing body-related issues and preventing adverse sequelae. Two aims were to: 1) examine demographic differences in body image discrepancy; and 2) determine the association of body image discrepancy with weight status, percent body fat, physical activity, sedentary behavior, and cardiovascular (CV) fitness among young adolescent girls. The cross-sectional study included a secondary analysis of baseline data from a group randomized controlled trial including 1519 5th-8th grade girls in 24 U.S. schools. Girls completed physical activity and sedentary behavior surveys. To indicate perceived current/actual and ideal body image, girls selected from nine body figures the one that represented how they look now and another showing how they want to look. Girls wore accelerometers measuring physical activity. Height, weight, and percent body fat were assessed. The Progressive Aerobic CV Endurance Run was used to estimate CV fitness. Independent t-test, one- and two-way ANOVA, correlational analyses, and hierarchical linear regressions were performed. The majority (67.5%; n = 1023) chose a smaller ideal than current/actual figure. White girls had higher body image discrepancy than Black girls (p = .035). Body image discrepancy increased with increasing weight status (F 3,1506 = 171.32, p < .001). Moderate-to-vigorous physical activity (MVPA) and vigorous physical activity were negatively correlated with body image discrepancy (r = -.10, p < .001; r = -.14, p < .001, respectively), but correlations were not significant after adjusting for race and body mass index (BMI), respectively. Body image discrepancy was moderately correlated with CV fitness (r = -.55, p < .001). After adjusting for demographics, percent body fat, but not CV fitness or MVPA, influenced body image discrepancy. Girls with higher percent body fat had higher body image discrepancy (p < .001). This study provided important information to guide interventions for promoting a positive body image among girls. ClinicalTrials.gov Identifier NCT01503333 , registration date: January 4, 2012.
Buck, Ursula; Naether, Silvio; Braun, Marcel; Bolliger, Stephan; Friederich, Hans; Jackowski, Christian; Aghayev, Emin; Christe, Andreas; Vock, Peter; Dirnhofer, Richard; Thali, Michael J
2007-07-20
The examination of traffic accidents is daily routine in forensic medicine. An important question in the analysis of the victims of traffic accidents, for example in collisions between motor vehicles and pedestrians or cyclists, is the situation of the impact. Apart from forensic medical examinations (external examination and autopsy), three-dimensional technologies and methods are gaining importance in forensic investigations. Besides the post-mortem multi-slice computed tomography (MSCT) and magnetic resonance imaging (MRI) for the documentation and analysis of internal findings, highly precise 3D surface scanning is employed for the documentation of the external body findings and of injury-inflicting instruments. The correlation of injuries of the body to the injury-inflicting object and the accident mechanism are of great importance. The applied methods include documentation of the external and internal body and the involved vehicles and inflicting tools as well as the analysis of the acquired data. The body surface and the accident vehicles with their damages were digitized by 3D surface scanning. For the internal findings of the body, post-mortem MSCT and MRI were used. The analysis included the processing of the obtained data to 3D models, determination of the driving direction of the vehicle, correlation of injuries to the vehicle damages, geometric determination of the impact situation and evaluation of further findings of the accident. In the following article, the benefits of the 3D documentation and computer-assisted, drawn-to-scale 3D comparisons of the relevant injuries with the damages to the vehicle in the analysis of the course of accidents, especially with regard to the impact situation, are shown on two examined cases.
Nguyen, Dat Tien; Hong, Hyung Gil; Kim, Ki Wan; Park, Kang Ryoung
2017-03-16
The human body contains identity information that can be used for the person recognition (verification/recognition) problem. In this paper, we propose a person recognition method using the information extracted from body images. Our research is novel in the following three ways compared to previous studies. First, we use the images of human body for recognizing individuals. To overcome the limitations of previous studies on body-based person recognition that use only visible light images for recognition, we use human body images captured by two different kinds of camera, including a visible light camera and a thermal camera. The use of two different kinds of body image helps us to reduce the effects of noise, background, and variation in the appearance of a human body. Second, we apply a state-of-the art method, called convolutional neural network (CNN) among various available methods, for image features extraction in order to overcome the limitations of traditional hand-designed image feature extraction methods. Finally, with the extracted image features from body images, the recognition task is performed by measuring the distance between the input and enrolled samples. The experimental results show that the proposed method is efficient for enhancing recognition accuracy compared to systems that use only visible light or thermal images of the human body.
Role of body surface pressure and kinematics in fish turning
NASA Astrophysics Data System (ADS)
Costello, John; Costello, Sean; Dabiri, John; Leftwich, Megan C.
2017-11-01
Experiments on freely swimming zebrafish were conducted to study the relative contributions to angular acceleration from both the induced pressure field in the fluid surrounding the animal as well as changes in the body moment of inertia due bending during turning maneuvers. PIV-based pressure measurements indicated that turning is initiated by subtle changes to body posture that create large pressure gradients at the head and tail of the animal. The angular turning motion that results from this pressure-based torque is amplified by the animal bending, which reduces the body moment of inertia during the turn. The demonstrated ability to decouple torque generation and body kinematics, using a combination PIV-based pressure measurements and image-based inertia measurements, can facilitate exploration of maneuvering dynamics in a broader range of swimming species, including a search for possible convergent maneuvering strategies that might be common among aquatic animals.
The association between sexual satisfaction and body image in women.
Pujols, Yasisca; Seal, Brooke N; Meston, Cindy M
2010-02-01
Although sexual functioning has been linked to sexual satisfaction, it only partially explains the degree to which women report being sexually satisfied. Other factors include quality of life, relational variables, and individual factors such as body image. Of the few studies that have investigated the link between body image and sexual satisfaction, most have considered body image to be a single construct and have shown mixed results. The present study assessed multiple body image variables in order to better understand which aspects of body image influence multiple domains of sexual satisfaction, including sexual communication, compatibility, contentment, personal concern, and relational concern in a community sample of women. Women between the ages of 18 and 49 years in sexual relationships (N = 154) participated in an Internet survey that assessed sexual functioning, five domains of sexual satisfaction, and several body image variables. Body image variables included the sexual attractiveness, weight concern, and physical condition subscales of the Body Esteem Scale, the appearance-based subscale of the Cognitive Distractions During Sexual Activity Scale, and body mass index. Total score of the Sexual Satisfaction Scale for Women was the main outcome measure. Sexual functioning was measured by a modified Female Sexual Function Index. Consistent with expectations, correlations indicated significant positive relationships between sexual functioning, sexual satisfaction, and all body image variables. A multiple regression analysis revealed that sexual satisfaction was predicted by high body esteem and low frequency of appearance-based distracting thoughts during sexual activity, even after controlling for sexual functioning status. Several aspects of body image, including weight concern, physical condition, sexual attractiveness, and thoughts about the body during sexual activity predict sexual satisfaction in women. The findings suggest that women who experience low sexual satisfaction may benefit from treatments that target these specific aspects of body image.
Dosch, Alessandra; Ghisletta, Paolo; Van der Linden, Martial
2016-01-01
This study explored the link between body image and desire to engage in sexual activity (dyadic and solitary desire) in adult women living in a long-term couple relationship. Moreover, it considered two psychological factors that may underlie such a link: the occurrence of body-related distracting thoughts during sexual activity and encoding style (i.e., the tendency to rely on preexisting internal schemata versus external information at encoding). A total of 53 women (29 to 47 years old) in heterosexual relationships completed questionnaires assessing sexual desire (dyadic, solitary), body image, body-related distracting thoughts during sexual activity, and encoding style. Results showed that poor body image was associated with low dyadic and solitary sexual desire. Body-related distracting thoughts during sexual activity mediated the link between body image and solitary (but not dyadic) sexual desire. Finally, the mediation of body-related distracting thoughts between body image and solitary sexual desire was moderated by encoding style. A negative body image promoted the occurrence of body-related distracting thoughts during sexual activity, especially in internal encoders. Our study highlights the importance of body image, distracting thoughts, and encoding style in women's solitary sexuality and suggests possible factors that may reduce the impact of those body-related factors in dyadic sexual desire.
Lavdas, Ioannis; Glocker, Ben; Kamnitsas, Konstantinos; Rueckert, Daniel; Mair, Henrietta; Sandhu, Amandeep; Taylor, Stuart A; Aboagye, Eric O; Rockall, Andrea G
2017-10-01
As part of a program to implement automatic lesion detection methods for whole body magnetic resonance imaging (MRI) in oncology, we have developed, evaluated, and compared three algorithms for fully automatic, multiorgan segmentation in healthy volunteers. The first algorithm is based on classification forests (CFs), the second is based on 3D convolutional neural networks (CNNs) and the third algorithm is based on a multi-atlas (MA) approach. We examined data from 51 healthy volunteers, scanned prospectively with a standardized, multiparametric whole body MRI protocol at 1.5 T. The study was approved by the local ethics committee and written consent was obtained from the participants. MRI data were used as input data to the algorithms, while training was based on manual annotation of the anatomies of interest by clinical MRI experts. Fivefold cross-validation experiments were run on 34 artifact-free subjects. We report three overlap and three surface distance metrics to evaluate the agreement between the automatic and manual segmentations, namely the dice similarity coefficient (DSC), recall (RE), precision (PR), average surface distance (ASD), root-mean-square surface distance (RMSSD), and Hausdorff distance (HD). Analysis of variances was used to compare pooled label metrics between the three algorithms and the DSC on a 'per-organ' basis. A Mann-Whitney U test was used to compare the pooled metrics between CFs and CNNs and the DSC on a 'per-organ' basis, when using different imaging combinations as input for training. All three algorithms resulted in robust segmenters that were effectively trained using a relatively small number of datasets, an important consideration in the clinical setting. Mean overlap metrics for all the segmented structures were: CFs: DSC = 0.70 ± 0.18, RE = 0.73 ± 0.18, PR = 0.71 ± 0.14, CNNs: DSC = 0.81 ± 0.13, RE = 0.83 ± 0.14, PR = 0.82 ± 0.10, MA: DSC = 0.71 ± 0.22, RE = 0.70 ± 0.34, PR = 0.77 ± 0.15. Mean surface distance metrics for all the segmented structures were: CFs: ASD = 13.5 ± 11.3 mm, RMSSD = 34.6 ± 37.6 mm and HD = 185.7 ± 194.0 mm, CNNs; ASD = 5.48 ± 4.84 mm, RMSSD = 17.0 ± 13.3 mm and HD = 199.0 ± 101.2 mm, MA: ASD = 4.22 ± 2.42 mm, RMSSD = 6.13 ± 2.55 mm, and HD = 38.9 ± 28.9 mm. The pooled performance of CFs improved when all imaging combinations (T2w + T1w + DWI) were used as input, while the performance of CNNs deteriorated, but in neither case, significantly. CNNs with T2w images as input, performed significantly better than CFs with all imaging combinations as input for all anatomical labels, except for the bladder. Three state-of-the-art algorithms were developed and used to automatically segment major organs and bones in whole body MRI; good agreement to manual segmentations performed by clinical MRI experts was observed. CNNs perform favorably, when using T2w volumes as input. Using multimodal MRI data as input to CNNs did not improve the segmentation performance. © 2017 American Association of Physicists in Medicine.
Gynecologic electrical impedance tomograph
NASA Astrophysics Data System (ADS)
Korjenevsky, A.; Cherepenin, V.; Trokhanova, O.; Tuykin, T.
2010-04-01
Electrical impedance tomography extends to the new and new areas of the medical diagnostics: lungs, breast, prostate, etc. The feedback from the doctors who use our breast EIT diagnostic system has induced us to develop the 3D electrical impedance imaging device for diagnostics of the cervix of the uterus - gynecologic impedance tomograph (GIT). The device uses the same measuring approach as the breast imaging system: 2D flat array of the electrodes arranged on the probe with handle is placed against the body. Each of the 32 electrodes of the array is connected in turn to the current source while the rest electrodes acquire the potentials on the surface. The current flows through the electrode of the array and returns through the remote electrode placed on the patient's limb. The voltages are measured relative to another remote electrode. The 3D backprojection along equipotential surfaces is used to reconstruct conductivity distribution up to approximately 1 cm in depth. Small number of electrodes enables us to implement real time imaging with a few frames per sec. rate. The device is under initial testing and evaluation of the imaging capabilities and suitability of usage.
Wind Tunnel Measurements of Shuttle Orbiter Global Heating with Comparisons to Flight
NASA Technical Reports Server (NTRS)
Berry, Scott A.; Merski, N. Ronald; Blanchard, Robert C.
2002-01-01
An aerothermodynamic database of global heating images was acquired of the Shuttle Orbiter in the NASA Langley Research Center 20-Inch Mach 6 Air Tunnel. These results were obtained for comparison to the global infrared images of the Orbiter in flight from the infrared sensing aeroheating flight experiment (ISAFE). The most recent ISAFE results from STS-103, consisted of port side images, at hypersonic conditions, of the surface features that result from the strake vortex scrubbing along the side of the vehicle. The wind tunnel results were obtained with the phosphor thermography system, which also provides global information and thus is ideally suited for comparison to the global flight results. The aerothermodynamic database includes both windward and port side heating images of the Orbiter for a range of angles of attack (20 to 40 deg), freestream unit Reynolds number (1 x 10(exp 6))/ft to 8 x 10(exp 6)/ft, body flap deflections (0, 5, and 10 deg), speed brake deflections (0 and 45 deg), as well as with boundary layer trips for forced transition to turbulence heating results. Sample global wind tunnel heat transfer images were extrapolated to flight conditions for comparison to Orbiter flight data. A windward laminar case for an angle of attack of 40 deg was extrapolated to Mach 11.6 flight conditions for comparison to STS-2 flight thermocouple results. A portside wind tunnel image for an angle of attack of 25 deg was extrapolated for Mach 5 flight conditions for comparison to STS-103 global surface temperatures. The comparisons showed excellent qualitative agreement, however the extrapolated wind tunnel results over-predicted the flight surface temperatures on the order of 5% on the windward surface and slightly higher on the portside.
Fast-response underwater TSP investigation of subcritical instabilities of a cylinder in crossflow
NASA Astrophysics Data System (ADS)
Capone, Alessandro; Klein, Christian; Di Felice, Fabio; Beifuss, Uwe; Miozzi, Massimo
2015-10-01
We investigate the classic cylinder in crossflow case to test the effectiveness of a fast-response underwater temperature-sensitive paint coating (TSP) in providing highly resolved spatial and time observations of the action of a flow over a bluff body surface. The flow is investigated at Reynolds number <190 k, before the onset of the drag-crisis state. The obtained TSP image sequences convey an accurate description of the evolution of the main features in the fluid-cylinder interaction, like the separation line position, the pattern of the large coherent structures acting on the cylinder's surface and the small-scale intermittent streamwise arrays of vortices. Ad hoc data management and features extraction techniques are proposed which allow extraction of quantitative data, such as separation line position and vortex-shedding frequency, and results are compared to the literature. Use of TSP for water applications introduces an interesting point of view about the fluid-body interactions by focusing directly on the effect of the flow on the model surface.
ERIC Educational Resources Information Center
Weaver, Angela D.; Byers, E. Sandra
2006-01-01
Problems related to negative body image are very common among young women. In this study, we examined the relationship between women's body image and their sexual functioning over and above the effects of physical exercise and body mass index (BMI) in a sample of 214 university women. Low situational body image dysphoria and low body…
Cordes, Martin; Vocks, Silja; Düsing, Rainer; Waldorf, Manuel
2017-06-01
Previous body image research suggests that first, exposure to body stimuli can negatively affect men's body satisfaction and second, body concerns are associated with dysfunctional gaze behavior. To date, however, the effects of self- vs. other-referential body stimuli and of gaze behavior on body image in men under exposure conditions have not been investigated. Therefore, 49 weight-trained men were presented with pictures of their own and other bodies of different builds (i.e., normal, muscular, hyper-muscular) while being eye-tracked. Participants completed pre- and post-exposure measures of body image and affect. Results indicated that one's own and the muscular body negatively affected men's body image to a comparable degree. Exposure to one's own body also led to increased negative affect. Increased attention toward disliked own body parts was associated with a more negative post-exposure body image and affect. These results suggest a crucial role of critical self-examination in maintaining body dissatisfaction. Copyright © 2017 Elsevier Ltd. All rights reserved.
Blatherwick, Eleanor Q; Van Berkel, Gary J; Pickup, Kathryn; Johansson, Maria K; Beaudoin, Marie-Eve; Cole, Roderic O; Day, Jennifer M; Iverson, Suzanne; Wilson, Ian D; Scrivens, James H; Weston, Daniel J
2011-08-01
Tissue distribution studies of drug molecules play an essential role in the pharmaceutical industry and are commonly undertaken using quantitative whole body autoradiography (QWBA) methods. The growing need for complementary methods to address some scientific gaps around radiography methods has led to increased use of mass spectrometric imaging (MSI) technology over the last 5 to 10 years. More recently, the development of novel mass spectrometric techniques for ambient surface sampling has redefined what can be regarded as "fit-for-purpose" for MSI in a drug metabolism and disposition arena. Together with a review of these novel alternatives, this paper details the use of two liquid microjunction (LMJ)-based mass spectrometric surface sampling technologies. These approaches are used to provide qualitative determination of parent drug in rat liver tissue slices using liquid extraction surface analysis (LESA) and to assess the performance of a LMJ surface sampling probe (LMJ-SSP) interface for quantitative assessment of parent drug in brain, liver and muscle tissue slices. An assessment of the utility of these spatially-resolved sampling methods is given, showing interdependence between mass spectrometric and QWBA methods, in particular there emerges a reason to question typical MSI workflows for drug metabolism; suggesting the expedient use of profile or region analysis may be more appropriate, rather than generating time-intensive molecular images of the entire tissue section.
Computing volume potentials for noninvasive imaging of cardiac excitation.
van der Graaf, A W Maurits; Bhagirath, Pranav; van Driel, Vincent J H M; Ramanna, Hemanth; de Hooge, Jacques; de Groot, Natasja M S; Götte, Marco J W
2015-03-01
In noninvasive imaging of cardiac excitation, the use of body surface potentials (BSP) rather than body volume potentials (BVP) has been favored due to enhanced computational efficiency and reduced modeling effort. Nowadays, increased computational power and the availability of open source software enable the calculation of BVP for clinical purposes. In order to illustrate the possible advantages of this approach, the explanatory power of BVP is investigated using a rectangular tank filled with an electrolytic conductor and a patient specific three dimensional model. MRI images of the tank and of a patient were obtained in three orthogonal directions using a turbo spin echo MRI sequence. MRI images were segmented in three dimensional using custom written software. Gmsh software was used for mesh generation. BVP were computed using a transfer matrix and FEniCS software. The solution for 240,000 nodes, corresponding to a resolution of 5 mm throughout the thorax volume, was computed in 3 minutes. The tank experiment revealed that an increased electrode surface renders the position of the 4 V equipotential plane insensitive to mesh cell size and reduces simulated deviations. In the patient-specific model, the impact of assigning a different conductivity to lung tissue on the distribution of volume potentials could be visualized. Generation of high quality volume meshes and computation of BVP with a resolution of 5 mm is feasible using generally available software and hardware. Estimation of BVP may lead to an improved understanding of the genesis of BSP and sources of local inaccuracies. © 2014 Wiley Periodicals, Inc.
Light on body image treatment: acceptance through mindfulness.
Stewart, Tiffany M
2004-11-01
The treatment of body image has to be multifaceted and should be directed toward the treatment of the whole individual-body, mind, and spirit-with an ultimate culmination of acceptance and compassion for the self. This article presents information on a mindful approach to the treatment of body image as it pertains to concerns with body size and shape. This approach fosters the idea that the treatment process should be one of observation, nonjudgment, neutrality, and acceptance. To this end, this article will depict the conceptualization of body image treatment from a mindful perspective, in which mindfulness serves as the foundation on which the multiple facets of treatment are built. The core components of body image treatment (i.e., cognitive, perceptual, behavioral, and emotional), in the context of mindfulness, are discussed as they relate to the treatment of body image disturbance. This article may be viewed as a theoretical overview of a new treatment concept for body image disturbance.
Hicks, S; Brown, A
2016-09-01
poor body image during pregnancy is a growing issue. Similarly, emerging evidence is suggesting that social media use may increase the risk of poor well-being e.g. depression, anxiety and body image concerns amongst users. Research has not examined how social media use may influence women during pregnancy. The aim of this study was to therefore to explore the relationship between body image during pregnancy and Facebook use. a cross sectional self-report questionnaire. two hundred and sixty nine pregnant women. community groups and online forums. a self-report questionnaire exploring maternal body image, use of Facebook and how mothers perceived Facebook affected their body image. Descriptive statistics were used to explore body image perceptions. Partial correlations (controlling for maternal age, education, parity and gestation) were used to explore the association between Facebook use and body image during pregnancy. negative body image was common in the sample, increased with gestation and was unrelated to pre pregnancy weight. Mothers with a Facebook account had higher body image concerns than those without a Facebook account. Of those with an account, increased Facebook use was associated with increased body image dissatisfaction, particularly in terms of postnatal concerns for how their body would look with 56.5% reporting that they frequently compared their pregnant body to other pregnant women on the site. Facebook access was frequent with 85% of participants checking it at least once per day and the average participant spending over an hour per day on the site. although causality cannot be fully explained, Facebook use may increase mother's risk of poor body image dissatisfaction during pregnancy. Mothers with already poor body image may also be drawn to the site in order to make comparisons of their appearance. the potential impact of Facebook on increasing the risk of, or promoting existing poor body image is an important message for those working to support mothers during pregnancy and the postnatal period. Care should be taken when directing mothers to use the site. Copyright © 2016. Published by Elsevier Ltd.
Psychological Adaptation to Alteration of Body Image among Stoma Patients: A Descriptive Study.
Jayarajah, Umesh; Samarasekera, Dharmabandhu Nandadeva
2017-01-01
Creation of an ostomy leads to significant change in the body image of the patient. However, adaptation to this alteration of body image is necessary for rehabilitation following surgery. The objective of this study was to identify the factors that influence adaptation to altered body image. An analytical cross-sectional study was conducted among 41 ostomy patients who were treated at a single tertiary care unit. Body image disturbance questionnaire (BIDQ) was used to assess the perception of body image. Data were analyzed using independent samples t -test (unpaired), Chi-square test, and Spearman's correlation. In our study, the mean BIDQ score was 2.22 (standard deviation ± 0.88). The body image disturbance was significantly associated with younger age ( P < 0.05). The prevalence of body image disturbance was significantly higher among overweight patients ( P < 0.05). Males had a higher BIDQ score than females. Those who had temporary stoma had significantly higher BIDQ score ( P < 0.05). Those who felt depressed or had thoughts of self-harm soon after surgery had significantly high body image disturbance score ( P < 0.05). There was a significant negative correlation with the perception of self-efficacy and body image disturbance ( P < 0.01). There was no significant association between body image disturbance and the diagnosis, type of surgery, or time duration after surgery. Poor adaptation to alteration of body image was associated with younger age, overweight, and temporary stoma. Individuals at risk of poor adaptation should be identified before surgery and counseled before surgery, after surgery, and during follow-up visits.
Moreira, Helena; Canavarro, Maria Cristina
2010-09-01
The research of body image among breast cancer patients is characterized by some limitations, such as the lack of longitudinal studies or the absence of a multidimensional perspective of body image. This study intends to overcome these limitations, by examining the evolution of body image dimensions (investment, emotions and evaluations) from the period of surgery (T1) to 6-months after the treatment's ending (T2). It also aims to explore the predictors of body image at T2 and, simultaneously, the predictive role of initial body image to psychosocial adjustment at T2. A total of 56 breast cancer patients participated in both assessments and completed a battery of instruments that included measures of body image dimensions (appearance investment, self-consciousness of appearance, shame and appearance satisfaction) and psychosocial adjustment (quality of life and emotional distress). Within the dimensions of body image, only shame increased over time. In general, initial levels of investment predicted subsequent body image dimensions and having a mastectomy done was associated with higher shame and lower appearance satisfaction at T2. Initial body image did not predict later adjustment, with the exception of depression, where appearance investment played a relevant role. Our findings contributed to the advance of knowledge in this area, providing relevant data about the evolution of body image dimensions, its predictors and its predictive role on psychosocial adjustment among breast cancer patients. This study also suggested some clinical implications that can assist health professionals to implement strategies focused on body image throughout the disease.
Humenikova, Lenka; Gates, Gail E
2008-07-01
The development of an unrealistic ideal body image and body size dissatisfaction among children is common in Western countries, including the USA and many European nations. However, little is known about children's body image perceptions in post-communist countries. This pilot study evaluated body image perceptions in a sample of Czech school-aged children and their parents and compared them with the perceptions of American children and parents. Ninety-seven Czech and 45 American 4th-6th graders and their parents from eight urban schools participated in this study. A previously developed silhouette body image instrument was utilized in a parent questionnaire and during child interviews to measure perceived and ideal body image perceptions of children and parents. Descriptive statistics, independent t-tests and paired t-tests were used to compare differences between children's and parents' perceived and ideal body image perceptions. Associations between body image perceptions and other variables were explored using bivariate correlations. American children had a thinner ideal body image compared with Czech children (P < 0.05). However, a larger proportion of Czech boys desired to be thinner compared with American boys (34.2% vs. 20%). Parent's ideal body image for their children did not differ by nationality (P = 0.858). While the pressure on children to look thinner was apparent among both American and Czech children, Czech children considered a larger body size as more ideal. A future study should evaluate body image perceptions and factors influencing these perceptions in a representative sample of Czech children and parents.
Trache, Andreea; Meininger, Gerald A
2005-01-01
A novel hybrid imaging system is constructed integrating atomic force microscopy (AFM) with a combination of optical imaging techniques that offer high spatial resolution. The main application of this instrument (the NanoFluor microscope) is the study of mechanotransduction with an emphasis on extracellular matrix-integrin-cytoskeletal interactions and their role in the cellular responses to changes in external chemical and mechanical factors. The AFM allows the quantitative assessment of cytoskeletal changes, binding probability, adhesion forces, and micromechanical properties of the cells, while the optical imaging applications allow thin sectioning of the cell body at the coverslip-cell interface, permitting the study of focal adhesions using total internal reflection fluorescence (TIRF) and internal reflection microscopy (IRM). Combined AFM-optical imaging experiments show that mechanical stimulation at the apical surface of cells induces a force-generating cytoskeletal response, resulting in focal contact reorganization on the basal surface that can be monitored in real time. The NanoFluor system is also equipped with a novel mechanically aligned dual camera acquisition system for synthesized Forster resonance energy transfer (FRET). The integrated NanoFluor microscope system is described, including its characteristics, applications, and limitations.
NASA Technical Reports Server (NTRS)
Kobrick, Ryan L.; Klaus, David M.; Street, Kenneth W., Jr.
2010-01-01
A limitation has been identified in the existing test standards used for making controlled, two-body abrasion scratch measurements based solely on the width of the resultant score on the surface of the material. A new, more robust method is proposed for analyzing a surface scratch that takes into account the full three-dimensional profile of the displaced material. To accomplish this, a set of four volume displacement metrics are systematically defined by normalizing the overall surface profile to statistically denote the area of relevance, termed the Zone of Interaction (ZOI). From this baseline, depth of the trough and height of the ploughed material are factored into the overall deformation assessment. Proof of concept data were collected and analyzed to demonstrate the performance of this proposed methodology. This technique takes advantage of advanced imaging capabilities that now allow resolution of the scratched surface to be quantified in greater detail than was previously achievable. A quantified understanding of fundamental particle-material interaction is critical to anticipating how well components can withstand prolonged use in highly abrasive environments, specifically for our intended applications on the surface of the Moon and other planets or asteroids, as well as in similarly demanding, harsh terrestrial settings
McDermott, Edel; Mullen, Georgina; Moloney, Jenny; Keegan, Denise; Byrne, Kathryn; Doherty, Glen A; Cullen, Garret; Malone, Kevin; Mulcahy, Hugh E
2015-02-01
Body image refers to a person's sense of their physical appearance and body function. A negative body image self-evaluation may result in psychosocial dysfunction. Crohn's disease and ulcerative colitis are associated with disabling features, and body image dissatisfaction is a concern for many patients with inflammatory bowel disease (IBD). However, no study has assessed body image and its comorbidities in patients with IBD using validated instruments. Our aim was to explore body image dissatisfaction in patients with IBD and assess its relationship with biological and psychosocial variables. We studied 330 patients (median age, 36 yr; range, 18-83; 169 men) using quantitative and qualitative methods. Patients completed a self-administered questionnaire that included a modified Hopwood Body Image Scale, the Cash Body Image Disturbance Questionnaire, and other validated instruments. Clinical and disease activity data were also collected. Body image dissatisfaction was associated with disease activity (P < 0.001) and steroid treatment (P = 0.03) but not with immunotherapy (P = 0.57) or biological (P = 0.55) therapy. Body image dissatisfaction was also associated with low levels of general (P < 0.001) and IBD-specific (P < 0.001) quality of life, self-esteem (P < 0.001), and sexual satisfaction (P < 0.001), and with high levels of anxiety (P < 0.001) and depression (P < 0.001). Qualitative analysis indicated that patients were concerned about both physical and psychosocial consequences of body image dissatisfaction, including steroid side effects and impaired work and social activities. Body image dissatisfaction is common in patients with IBD, relates to specific clinical variables and is associated with significant psychological dysfunction. Its measurement is warranted as part of a comprehensive patient-centered IBD assessment.
Tod, D; Edwards, C
2015-09-01
The purpose of this study was to examine relationships among bodybuilding dependence, muscle satisfaction, body image-related quality of life and body image-related coping strategies, and test the hypothesis that muscle dysmorphia characteristics may predict quality of life via coping strategies. Participants (294 males, Mage=20.5 years, SD=3.1) participated in a cross-sectional survey. Participants completed questionnaires assessing muscle satisfaction, bodybuilding dependence, body image-related quality of life and body image-related coping. Quality of life was correlated positively with muscle satisfaction and bodybuilding dependence but negatively with body image coping (P<0.05). Body image coping was correlated positively with bodybuilding dependence and negatively with muscle satisfaction (P<0.05). Mediation analysis found that bodybuilding dependence and muscle satisfaction predicted quality of life both directly and indirectly via body image coping strategies (as evidenced by the bias corrected and accelerated bootstrapped confidence intervals). These results provide preliminary evidence regarding the ways that muscularity concerns might influence body image-related quality of life. Copyright © 2014 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.
Toward a Theoretical Model of Women's Body Image Resilience
ERIC Educational Resources Information Center
Choate, Laura Hensley
2005-01-01
This article discusses women's body image resilience. Body image dissatisfaction is prevalent among girls and women. Girls as young as 6 years old experience negative body image, and there is evidence that women struggle with body concerns throughout the life cycle (Lewis & Cachelin, 2001; Smolak, 2002; Striegel-Moore & Franko, 2002). In fact,…
Body Image Satisfaction among Blacks
ERIC Educational Resources Information Center
Gustat, Jeanette; Carton, Thomas W.; Shahien, Amir A.; Andersen, Lori
2017-01-01
Satisfaction with body image is a factor related to health outcomes. The purpose of this study is to examine the relationship between body image satisfaction and body size perception in an urban, Black community sample in New Orleans, Louisiana. Only 42.2% of respondents were satisfied with their body image and 44.1% correctly perceived their body…
Brown, Sherine R; Hossain, Mian Bazle; Bronner, Yvonne
2014-08-01
Differences in male and female perception response to the Pulvers Body Image Scale (PBIS) were examined among 356 freshmen African American students attending an urban historically Black college/university (HBCU). Participants completed a questionnaire identifying images that best represented their current, healthy, and ideal body image. Compared with males, more females selected the normal body image as their ideal (63.3% vs. 15.3%) and healthy body shape (59.3% vs. 15.3%) (p<.001). Compared with females, more males selected the overweight body image as their ideal (44.6% vs. 30.2%) and healthy body shape (52.2% vs. 36.2%) (p<.01). Similarly, more males selected the obese body image as their ideal (40.1% vs. 6.5%) and healthy body shape (32.5% vs. 4.5%) compared with females (p<.001). Male freshmen at an HBCU perceive a larger body image as healthy and ideal more often than their female counterparts, thereby increasing the potential for their weight-related health risks.
Moore, Makeda; Masuda, Akihiko; Hill, Mary L; Goodnight, Bradley L
2014-12-01
Body image flexibility, a regulation process of openly and freely experiencing disordered eating thoughts and body dissatisfaction, has been found to be a buffering factor against disordered eating symptomatology. The present cross-sectional study investigates whether body image flexibility accounts for disordered eating behavior above and beyond disordered eating cognition, mindfulness, and psychological inflexibility in a sample of nonclinical women, and whether body image flexibility moderates the associations between these correlates and disordered eating behavior. Participants were 421 women, age 21±5.3 years old on average, who completed a web-based survey that included the self-report measures of interest. Results demonstrate the incremental effects of body image flexibility on disordered eating behavior above and beyond disordered eating cognition, mindfulness, and psychological inflexibility. Women with greater body image flexibility endorse disordered eating behavior less so than those with lower body image flexibility. Body image flexibility moderates the association between disordered eating cognition and disordered eating behavior; for women with greater body image flexibility, disordered eating cognition is not positively associated with disordered eating behavior. Copyright © 2014 Elsevier Ltd. All rights reserved.
Gaps to "Working" on the Surface of Small Bodies
NASA Astrophysics Data System (ADS)
Bellerose, J.
2012-12-01
Upcoming goals for human spaceflight include sending a crewed mission to a near-Earth asteroid (NEA) by 2025. As an alternative to this, a spacecraft could be sent to capture a small NEA, and return it to cislunar orbit where astronauts could take it apart (Brophy, 2012). In parallel, plans are also to take the next big step in resources utilization, and mine those NEAs (Lewicki, 2012). Although these exciting concepts are very different in scope, they share the same environment they will need to interact with. In this work, we discuss the required techniques for exploring and exploiting small bodies, and compare with the available tools and the current knowledge of small bodies. To support these types of missions, a number of in-situ data are required prior to start surface operations: the body shape and mass, the presence of volatiles and metals, the asteroid morphology, the internal structural properties, the surface and near-surface environments, the existence of hazards, and the time-evolution dynamics. Products obtained from remote sensing - maps, mosaics, shape models - are critical in selecting the locations to be investigated in more details, or the locations to be excavated. Composition measurements become especially important for mining, as it requires appropriate tools and techniques. Although spectrometers can be used in orbit and on the surface to determine elemental composition, the fine scale structure and mineralogical composition can only be done using surface probes or through a close-up camera. Those remote sensing images are also critical in planning the very close approaches by the spacecraft, as the small body environment is one of the most perturbed environments (Scheeres, 2000). Being able to recreate the small body dynamics is necessary to mitigate risks and to enable spacecraft docking. The navigation system, vision tools, and planning software become critical as the spacecraft will need to track features on the surface under different light conditions. Perhaps the most difficult data to obtain is the mass of the NEA, where the resolution depends on the NEA size, and the internal structure and stability of the body. It can be shown that current mass determination techniques easily result in 50% resolution on mass estimation. Secondary or surface probes released from a main spacecraft can increase resolution by one order of magnitude compared to traditional methods (Bellerose, 2012). A volume estimate combined with the overall mass of the small body results in a bulk density estimate. The bulk density is a direct insight into surface and sub-surface mechanical stability, and properties such as compaction and porosity. A number of remote sensing and surface instruments are now available for NEA applications, from past missions to new technology developments. We give a quick review of the data and instruments now available. We also identify existing gaps between the available data and requirements associated with surface interacting mission concepts. Finally, we discuss transient dynamical effects due to surface disturbances, and how these effects can put constraints on a mission concept and feed in operational strategies.
Medical applications of infrared thermography: A review
NASA Astrophysics Data System (ADS)
Lahiri, B. B.; Bagavathiappan, S.; Jayakumar, T.; Philip, John
2012-07-01
Abnormal body temperature is a natural indicator of illness. Infrared thermography (IRT) is a fast, passive, non-contact and non-invasive alternative to conventional clinical thermometers for monitoring body temperature. Besides, IRT can also map body surface temperature remotely. Last five decades witnessed a steady increase in the utility of thermal imaging cameras to obtain correlations between the thermal physiology and skin temperature. IRT has been successfully used in diagnosis of breast cancer, diabetes neuropathy and peripheral vascular disorders. It has also been used to detect problems associated with gynecology, kidney transplantation, dermatology, heart, neonatal physiology, fever screening and brain imaging. With the advent of modern infrared cameras, data acquisition and processing techniques, it is now possible to have real time high resolution thermographic images, which is likely to surge further research in this field. The present efforts are focused on automatic analysis of temperature distribution of regions of interest and their statistical analysis for detection of abnormalities. This critical review focuses on advances in the area of medical IRT. The basics of IRT, essential theoretical background, the procedures adopted for various measurements and applications of IRT in various medical fields are discussed in this review. Besides background information is provided for beginners for better understanding of the subject.
Method for imaging a concealed object
Davidson, James R [Idaho Falls, ID; Partin, Judy K [Idaho Falls, ID; Sawyers, Robert J [Idaho Falls, ID
2007-07-03
A method for imaging a concealed object is described and which includes a step of providing a heat radiating body, and wherein an object to be detected is concealed on the heat radiating body; imaging the heat radiating body to provide a visibly discernible infrared image of the heat radiating body; and determining if the visibly discernible infrared image of the heat radiating body is masked by the presence of the concealed object.
Shloim, Netalie; Hetherington, Marion M; Rudolf, Mary; Feltbower, Richard G
2015-04-01
This study examined the relationship between self-esteem, restrained eating, body image and body mass index during pregnancy. A total of 110 pregnant Israeli and UK women completed the Rosenberg Self-Esteem Questionnaire, the Dutch Eating Behaviour Questionnaire, scales to assess body image and demographics. Body mass index was calculated from antenatal records. Regression modelling determined the relationship between variables, countries and body mass index categories. High correlations were found between body image and body mass index with significantly higher body dissatisfaction for Israeli women. Self-esteem scores for pregnant women were similar to those reported for non-pregnant women. Poorer body image and higher prevalence of restrained eating were found in healthy weight Israeli women. © The Author(s) 2013.
A new multiresolution method applied to the 3D reconstruction of small bodies
NASA Astrophysics Data System (ADS)
Capanna, C.; Jorda, L.; Lamy, P. L.; Gesquiere, G.
2012-12-01
The knowledge of the three-dimensional (3D) shape of small solar system bodies, such as asteroids and comets, is essential in determining their global physical properties (volume, density, rotational parameters). It also allows performing geomorphological studies of their surface through the characterization of topographic features, such as craters, faults, landslides, grooves, hills, etc.. In the case of small bodies, the shape is often only constrained by images obtained by interplanetary spacecrafts. Several techniques are available to retrieve 3D global shapes from these images. Stereography which relies on control points has been extensively used in the past, most recently to reconstruct the nucleus of comet 9P/Tempel 1 [Thomas (2007)]. The most accurate methods are however photogrammetry and photoclinometry, often used in conjunction with stereography. Stereophotogrammetry (SPG) has been used to reconstruct the shapes of the nucleus of comet 19P/Borrelly [Oberst (2004)] and of the asteroid (21) Lutetia [Preusker (2012)]. Stereophotoclinometry (SPC) has allowed retrieving an accurate shape of the asteroids (25143) Itokawa [Gaskell (2008)] and (2867) Steins [Jorda (2012)]. We present a new photoclinometry method based on the deformation of a 3D triangular mesh [Capanna (2012)] using a multi-resolution scheme which starts from a sphere of 300 facets and yields a shape model with 100; 000 facets. Our strategy is inspired by the "Full Multigrid" method [Botsch (2007)] and consists in going alternatively between two resolutions in order to obtain an optimized shape model at a given resolution before going to the higher resolution. In order to improve the robustness of our method, we use a set of control points obtained by stereography. Our method has been tested on images acquired by the OSIRIS visible camera, aboard the Rosetta spacecraft of the European Space Agency, during the fly-by of asteroid (21) Lutetia in July 2010. We present the corresponding 3D shape model of its surface and compare it with models obtained with the SPG and SPC methods. We finally illustrate the practical interest of our approach in geomorphological studies through an analysis of depth to diameter ratio of several craters and topographic properties of other features. Botsch, M., et al., "Geometric modeling based on polygonal meshes," Proc. ACM SIGGRAPH Course Notes, 2007 Capanna, C., et al.: 3D Reconstruction of small solar system bodies using photoclinometry by deformation, IADIS International Journal on Computer Science and Information Systems, in press, 2012. Gaskell, R. W., et al.: Characterizing and navigating small bodies with imaging data, Meteoritics and Planetary Science, vol 43, p. 1049, 2008. Jorda, L., et al: Asteroid (2867) Steins: Shape, Topography and Global Physical Properties from OSIRIS observations, Icarus, in press, 2012. Oberst, J., et al.: The nucleus of Comet Borrelly: a study of morphology and surface brightness, Icarus, vol. 167, 2004. Preusker, F., et al.: The northern hemisphere of asteroid 21 Lutetia topography and orthoimages from Rosetta OSIRIS NAC image data, Planetary and Space Science, vol. 66, p. 54-63, 2012. Thomas, P. C., et al.: The shape, topography, and geology of Tempel 1 from Deep Impact observations, Icarus, vol. 187, Issue 1, p. 4-15, 2007
Mesoporous silica nanoparticles as a breast cancer targeting contrast agent for ultrasound imaging
NASA Astrophysics Data System (ADS)
Milgroom, Andrew Carson
Current clinical use of ultrasound for breast cancer diagnostics is strictly limited to a role as a supplementary detection method to other modalities, such as mammography or MRI. A major reason for ultrasound’s role as a secondary method is its inability to discern between cancerous and non-cancerous bodies of similar density, like dense calcifications or benign fibroadenomas. Its detection capabilities are further diminished by the variable density of the surrounding breast tissue with the progression of age. Preliminary studies suggest that mesoporous silica nanoparticles (MSNs) are a good candidate as an in situ contrast agent for ultrasound. By tagging the silica particle surface with the cancer-targeting antibody trastuzumab (Herceptin), suspect regions of interest can be better identified in real time with standard ultrasound equipment. Once the silica-antibody conjugate is injected into the bloodstream and enters the cancerous growth’s vasculature, the antibody arm will bind to HER2, a cell surface receptor known to be dysfunctional or overexpressed in certain types of breast cancer. As more particles aggregate at the cell surface, backscatter of the ultrasonic waves increases as a result of the higher porous silica concentration. This translates to an increased contrast around the lesion boundary. Tumor detection through ultrasound contrast enhancement provides a tremendous advantage over current cancer diagnostics because is it significantly cheaper and can be monitored in real time. Characterization of MCM-41 type MSNs suggests that these particles have sufficient stability and particle size distribution to penetrate through fenestrated tumor vasculature and accumulate in HER2+ breast cancer cells through the enhanced permeation and retention (EPR) effect. A study of acoustic properties showed that particle concentration is linearly correlated to image contrast in clinical frequency-range ultrasound, although less pronounced than typical microbubble-type contrast agents. In vitro studies using cells with varied levels of HER2 expression demonstrated the selectivity of the MSN-Herceptin conjugate to cells with HER2 overexpression. Fluorescence imaging suggest these images remain surface-bound and are not incorporated into the cell body. This study demonstrates the potential of MSNs as a stable, safe, and effective imaging contrast agent for ultrasound-based cancer diagnostics. Ultimately this work will contribute towards the improvement of diagnostic alternatives to conventional ionizing radiation-intensive imaging—such as MRI or X-ray—without compromising the specificity of the test.
Williams, Gail A; Hudson, Danae L; Whisenhunt, Brooke L; Stone, Megan; Heinberg, Leslie J; Crowther, Janis H
2018-04-01
Many bariatric surgery candidates report body image concerns before surgery. Research has reported post-surgical improvements in body satisfaction, which may be associated with weight loss. However, research has failed to comprehensively examine changes in affective, behavioral, and cognitive body image. This research examined (1) short-term changes in affective, behavioral, and cognitive components of body image from pre-surgery to 1- and 6-months after bariatric surgery, and (2) the association between percent weight loss and these changes. Participants were recruited from a private hospital in the midwestern United States. Eighty-eight females (original N = 123; lost to follow-up: n = 15 at 1-month and n = 20 at 6-months post-surgery) completed a questionnaire battery, including the Body Attitudes Questionnaire, Body Checking Questionnaire, Body Image Avoidance Questionnaire, and Body Shape Questionnaire, and weights were obtained from patients' medical records before and at 1- and 6-months post-surgery. Results indicated significant decreases in body dissatisfaction, feelings of fatness, and body image avoidance at 1- and 6-months after bariatric surgery, with the greatest magnitude of change occurring for body image avoidance. Change in feelings of fatness was significantly correlated with percent weight loss at 6-months, but not 1-month, post-surgery. These findings highlight the importance of examining short-term changes in body image from a multidimensional perspective in the effort to improve postsurgical outcomes. Unique contributions include the findings regarding the behavioral component of body image, as body image avoidance emerges as a particularly salient concern that changes over time among bariatric surgery candidates. Copyright © 2018 American Society for Bariatric Surgery. Published by Elsevier Inc. All rights reserved.
Nguyen, Dat Tien; Hong, Hyung Gil; Kim, Ki Wan; Park, Kang Ryoung
2017-01-01
The human body contains identity information that can be used for the person recognition (verification/recognition) problem. In this paper, we propose a person recognition method using the information extracted from body images. Our research is novel in the following three ways compared to previous studies. First, we use the images of human body for recognizing individuals. To overcome the limitations of previous studies on body-based person recognition that use only visible light images for recognition, we use human body images captured by two different kinds of camera, including a visible light camera and a thermal camera. The use of two different kinds of body image helps us to reduce the effects of noise, background, and variation in the appearance of a human body. Second, we apply a state-of-the art method, called convolutional neural network (CNN) among various available methods, for image features extraction in order to overcome the limitations of traditional hand-designed image feature extraction methods. Finally, with the extracted image features from body images, the recognition task is performed by measuring the distance between the input and enrolled samples. The experimental results show that the proposed method is efficient for enhancing recognition accuracy compared to systems that use only visible light or thermal images of the human body. PMID:28300783
Teo, Irene; Reece, Gregory P; Huang, Sheng-Cheng; Mahajan, Kanika; Andon, Johnny; Khanal, Pujjal; Sun, Clement; Nicklaus, Krista; Merchant, Fatima; Markey, Mia K; Fingeret, Michelle Cororve
2018-03-01
Reconstruction as part of treatment for breast cancer is aimed at mitigating body image concerns after mastectomy. Although algorithms have been developed to objectively assess breast reconstruction outcomes, associations between objectively quantified breast aesthetic appearance and patient-reported body image outcomes have not been examined. Further, the role of appearance investment in explaining a patient's body image is not well understood. We investigated the extent to which objectively quantified breast symmetry and patient-reported appearance investment were associated with body image dissatisfaction in patients undergoing cancer-related breast reconstruction. Breast cancer patients in different stages of reconstruction (n = 190) completed self-report measures of appearance investment and body image dissatisfaction. Vertical extent and horizontal extent symmetry values, which are indicators of breast symmetry, were calculated from clinical photographs. Associations among breast symmetry, appearance investment, body image dissatisfaction, and patient clinical factors were examined. Multi-variable regression was used to evaluate the extent to which symmetry and appearance investment were associated with body image dissatisfaction. Vertical extent symmetry, but not horizontal extent symmetry, was associated with body image dissatisfaction. Decreased vertical extent symmetry (β = -.19, P < .05) and increased appearance investment (β = .45, P < .001) were significantly associated with greater body image dissatisfaction while controlling for clinical factors. Breast symmetry and patient appearance investment both significantly contribute to an understanding of patient-reported body image satisfaction during breast reconstruction treatment. Copyright © 2017 John Wiley & Sons, Ltd.
Surface flow measurements from drones
NASA Astrophysics Data System (ADS)
Tauro, Flavia; Porfiri, Maurizio; Grimaldi, Salvatore
2016-09-01
Drones are transforming the way we sense and interact with the environment. However, despite their increased capabilities, the use of drones in geophysical sciences usually focuses on image acquisition for generating high-resolution maps. Motivated by the increasing demand for innovative and high performance geophysical observational methodologies, we posit the integration of drone technology and optical sensing toward a quantitative characterization of surface flow phenomena. We demonstrate that a recreational drone can be used to yield accurate surface flow maps of sub-meter water bodies. Specifically, drone's vibrations do not hinder surface flow observations, and velocity measurements are in agreement with traditional techniques. This first instance of quantitative water flow sensing from a flying drone paves the way to novel observations of the environment.
Aviles-Espinosa, Rodrigo; Filippidis, George; Hamilton, Craig; Malcolm, Graeme; Weingarten, Kurt J.; Südmeyer, Thomas; Barbarin, Yohan; Keller, Ursula; Santos, Susana I.C.O; Artigas, David; Loza-Alvarez, Pablo
2011-01-01
We present a portable ultrafast Semiconductor Disk Laser (SDL) (or vertical extended cavity surface emitting laser—VECSELs), to be used for nonlinear microscopy. The SDL is modelocked using a quantum-dot semiconductor saturable absorber mirror (SESAM), delivering an average output power of 287 mW, with 1.5 ps pulses at 500 MHz and a central wavelength of 965 nm. Specifically, despite the fact of having long pulses and high repetition rates, we demonstrate the potential of this laser for Two-Photon Excited Fluorescence (TPEF) imaging of in vivo Caenorhabditis elegans (C. elegans) expressing Green Fluorescent Protein (GFP) in a set of neuronal processes and cell bodies. Efficient TPEF imaging is achieved due to the fact that this wavelength matches the peak of the two-photon action cross section of this widely used fluorescent marker. The SDL extended versatility is shown by presenting Second Harmonic Generation images of pharynx, uterus, body wall muscles and its potential to be used to excite other different commercial dyes. Importantly this non-expensive, turn-key, compact laser system could be used as a platform to develop portable nonlinear bio-imaging devices. PMID:21483599
NASA Astrophysics Data System (ADS)
Bouzida, Nabila; Bendada, Abdelhakim; Maldague, Xavier P.
2009-05-01
The article aims first to present a new study on the thermal regulatory response of the human skin surface while exposed to a cold environment. Our work has shown that when a cold stress is applied to the left hand, thermal infrared imaging (MWIR spectral band: 3-5 μm) allows a clear observation of a temperature rise on the right hand. Moreover, a frequency analysis was also carried out upon selected vein pixels of the images monitored during the same cold stress experiment. The objective was to identify the specific frequencies that could be linked to some physiological mechanisms of the human body. This kind of study could be very useful for the characterization of possible thermo-physiological pathologies. Besides thermoregulation, we also present in this article some results on the extraction of the hand vein pattern. Firstly, we show some vein extraction results obtained after image processing of the thermal images recorded in the thermal band (MWIR), then we compare this vein pattern to the signature obtained with a camera operating in the NIR spectral band (0.85-1.7 μm). This method could be used as a complementary means for finger print signatures in biometrics.
Effects of a Body Image Challenge on Smoking Motivation Among College Females
Lopez, Elena N.; Drobes, David J.; Thompson, J. Kevin; Brandon, Thomas H.
2014-01-01
Objective Previous correlational and quasi-experimental research has established that weight concerns and negative body image are associated with tobacco smoking, cessation, and relapse, particularly among young women. This study examined the causal influence of body image upon smoking motivation by merging methodologies from the addiction and body image literatures. Design Using a cue-reactivity paradigm, the study tested whether an experimental manipulation designed to challenge women’s body image—specifically, their weight dissatisfaction—influenced their motivation to smoke. Female college smokers (N = 62) were included in a 2 × 2 factorial, within-subjects design (body image cues X smoking cues). Main Outcome Measures Self-reported urge to smoke was the primary dependent measure, with skin conductance as a secondary measure. Results As hypothesized, the presentation of smoking images and thin model images produced greater urges to smoke than control images. Additionally, trait weight concerns moderated the effect of the body image manipulation such that those women with greater weight concerns produced greater craving to the thin model image (when smoking cues were not present). Conclusion These findings provide initial evidence that situational challenges to body image are causally related to smoking motivation. PMID:18979977
Lundh, Torbjörn; Suh, Ga-Young; DiGiacomo, Phillip; Cheng, Christopher
2018-03-03
Vascular morphology characterization is useful for disease diagnosis, risk stratification, treatment planning, and prediction of treatment durability. To quantify the dynamic surface geometry of tubular-shaped anatomic structures, we propose a simple, rigorous Lagrangian cylindrical coordinate system to monitor well-defined surface points. Specifically, the proposed system enables quantification of surface curvature and cross-sectional eccentricity. Using idealized software phantom examples, we validate the method's ability to accurately quantify longitudinal and circumferential surface curvature, as well as eccentricity and orientation of eccentricity. We then apply the method to several medical imaging data sets of human vascular structures to exemplify the utility of this coordinate system for analyzing morphology and dynamic geometric changes in blood vessels throughout the body. Graphical abstract Pointwise longitudinal curvature of a thoracic aortic endograft surface for systole and diastole, with their absolute difference.
Different Facets of Body Image Disturbance in Binge Eating Disorder: A Review
Lewer, Merle; Bauer, Anika
2017-01-01
The goal of the present review is to give an overview of the current findings on various facets of body image disturbance in Binge Eating Disorder such as body dissatisfaction, overconcern with weight and shape, body-related checking and avoidance behavior, misperception of body size, and body-related cognitive bias. In addition, treatments for a disturbed body image in BED and evidence of body image disturbance in youth with binge eating are reviewed. The results show that a disturbed body image in BED is present in the form of overconcern with weight and shape. Furthermore, there are hints that body dissatisfaction, as well as body-related checking and avoidance behavior, are also impaired. Research concerning misperception of body size in BED has been neglected so far, but first findings show that individuals with BED rate their own body shape rather accurately. Furthermore, there are first hints that body-related cognitive biases are present in individuals with BED. Moreover, in children and adolescents, there are first hints that body dissatisfaction, as well as shape and weight concerns, seem to be associated with loss of control and binge eating. Treatments aimed directly at the convertibility of a disturbed body image in BED have revealed encouraging outcomes. In conclusion, body image disturbance seems to occur in BED, and first studies show that it can be treated effectively. PMID:29182531
NASA Astrophysics Data System (ADS)
Moore, J. M.; Grundy, W. M.; Spencer, J. R.; McKinnon, W. B.; Cruikshank, D. P.; White, O. L.; Umurhan, O. M.; Beyer, R. A.; Singer, K. N.; Schenk, P.; Stern, A.; Weaver, H. A., Jr.; Olkin, C.
2017-12-01
The New Horizons encounter with 2014 MU69 on 1 January 2019 will be the first small Kuiper belt object to be studied in detail from a spacecraft. The prospect that the cold classical population, which includes 2014 MU69, may represent a primordial, in situ population is exciting. Indeed, as we have learned just how complex and dynamic the early Solar System was, the cold classical population of the Kuiper belt has emerged as a singular candidate for a fundamentally unaltered original planetesimal population. MU69 in particular provides a unique opportunity to explore the disk processes and chemistry of the primordial solar nebula. As such, compositional measurements during the NH flyby are of paramount importance. So is high-resolution imaging of shape and structure, as the intermediate size of MU69 (much smaller than Pluto but much larger than a typical comet) may show signs of its accretion from much smaller bodies (layers, pebbles, lobes, etc., in the manner of 67P/C-G), or alternatively, derivation via the collisional fragmentation of a larger body if KBOs are "born big". MU69 may also be big enough to show signs of internal evolution driven by radiogenic heat from 26Al decay, if it accreted early enough and fast enough. The size of MU69 (20 - 40 km) places it in a class that has the potential to harbor unusual, and in some cases, possibly active, surface geological processes: several small satellites of similar size, including Helene and Epimetheus, display what appears to be fine-grained material covering large portions of their surfaces, and the surface of Phobos displays an unusual system of parallel grooves. Invariably, these intriguing surface features are only clearly defined at imaging resolutions of at least tens of meters per pixel. The best images of MU69 are planned to have resolutions of 20 - 40 m/pixel at a phase angle range of 40 - 70°. We also plan color imaging in 4 channels at 0.4 to 1 µ at 200 - 500 m/pixel, and 256 channel spectroscopy from 1.25 to 2.5 µ at 1 - 4 km/pixel. Ices such as H2O, NH3, CO2, and CH3OH would be stable and can be detected and mapped if they are exposed at the surface. It will be especially instructive to compare with Cassini VIMS spectra of Phoebe, thought to be a captured outer solar system planetesimal that formed in a related nebular environment to where MU69 formed.
Whole-body diffusion-weighted MR image stitching and alignment to anatomical MRI
NASA Astrophysics Data System (ADS)
Ceranka, Jakub; Polfliet, Mathias; Lecouvet, Frederic; Michoux, Nicolas; Vandemeulebroucke, Jef
2017-02-01
Whole-body diffusion-weighted (WB-DW) MRI in combination with anatomical MRI has shown a great poten- tial in bone and soft tissue tumour detection, evaluation of lymph nodes and treatment response assessment. Because of the vast body coverage, whole-body MRI is acquired in separate stations, which are subsequently combined into a whole-body image. However, inter-station and inter-modality image misalignments can occur due to image distortions and patient motion during acquisition, which may lead to inaccurate representations of patient anatomy and hinder visual assessment. Automated and accurate whole-body image formation and alignment of the multi-modal MRI images is therefore crucial. We investigated several registration approaches for the formation or stitching of the whole-body image stations, followed by a deformable alignment of the multi- modal whole-body images. We compared a pairwise approach, where diffusion-weighted (DW) image stations were sequentially aligned to a reference station (pelvis), to a groupwise approach, where all stations were simultaneously mapped to a common reference space while minimizing the overall transformation. For each, a choice of input images and corresponding metrics was investigated. Performance was evaluated by assessing the quality of the obtained whole-body images, and by verifying the accuracy of the alignment with whole-body anatomical sequences. The groupwise registration approach provided the best compromise between the formation of WB- DW images and multi-modal alignment. The fully automated method was found to be robust, making its use in the clinic feasible.
2005-12-06
Saturn's impact-pummeled Hyperion stares back at Cassini in this six-image mosaic taken during the spacecraft’s close approach on Sept. 26, 2005. This up-close view shows a low density body blasted by impacts over the eons. Scientists originally believed that the spongy appearance of Hyperion is caused by a phenomenon called thermal erosion, in which dark materials accumulating on crater floors are warmed by sunlight and melt deeper into the surface, allowing surrounding ice to vaporize away. Cassini scientists now think that Hyperion’s unusual appearance can be attributed to the fact that it has an unusually low density for such a large object, giving it weak surface gravity and high porosity. These characteristics help preserve the original shapes of Hyperion’s craters by limiting the amount of impact ejecta coating the moon’s surface. Impactors tend to make craters by compressing the surface material, rather than blasting it out. Further, Hyperion’s weak gravity, and correspondingly low escape velocity, means that what little ejecta is produced has a good chance of escaping the moon altogether. At 280 kilometers, (174 miles) across, Hyperion’s impact-shaped morphology makes it the largest of Saturn's irregularly-shaped moons. Six, clear-filter images were combined to create this mosaic. Images were taken by the Cassini spacecraft narrow-angle camera at a mean distance of about 33,000 kilometers (20,500 miles) from Hyperion and at a sun-Hyperion-spacecraft, or phase, angle of 51 degrees. Image scale is 197 meters per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA07761
Method for radiometric calibration of an endoscope's camera and light source
NASA Astrophysics Data System (ADS)
Rai, Lav; Higgins, William E.
2008-03-01
An endoscope is a commonly used instrument for performing minimally invasive visual examination of the tissues inside the body. A physician uses the endoscopic video images to identify tissue abnormalities. The images, however, are highly dependent on the optical properties of the endoscope and its orientation and location with respect to the tissue structure. The analysis of endoscopic video images is, therefore, purely subjective. Studies suggest that the fusion of endoscopic video images (providing color and texture information) with virtual endoscopic views (providing structural information) can be useful for assessing various pathologies for several applications: (1) surgical simulation, training, and pedagogy; (2) the creation of a database for pathologies; and (3) the building of patient-specific models. Such fusion requires both geometric and radiometric alignment of endoscopic video images in the texture space. Inconsistent estimates of texture/color of the tissue surface result in seams when multiple endoscopic video images are combined together. This paper (1) identifies the endoscope-dependent variables to be calibrated for objective and consistent estimation of surface texture/color and (2) presents an integrated set of methods to measure them. Results show that the calibration method can be successfully used to estimate objective color/texture values for simple planar scenes, whereas uncalibrated endoscopes performed very poorly for the same tests.
Pluto and Charon in False Color Show Compositional Diversity
2015-07-14
This July 13, 2015, image of Pluto and Charon is presented in false colors to make differences in surface material and features easy to see. It was obtained by the Ralph instrument on NASA's New Horizons spacecraft, using three filters to obtain color information, which is exaggerated in the image. These are not the actual colors of Pluto and Charon, and the apparent distance between the two bodies has been reduced for this side-by-side view. The image reveals that the bright heart-shaped region of Pluto includes areas that differ in color characteristics. The western lobe, shaped like an ice-cream cone, appears peach color in this image. A mottled area on the right (east) appears bluish. Even within Pluto's northern polar cap, in the upper part of the image, various shades of yellow-orange indicate subtle compositional differences. The surface of Charon is viewed using the same exaggerated color. The red on the dark northern polar cap of Charon is attributed to hydrocarbon materials including a class of chemical compounds called tholins. The mottled colors at lower latitudes point to the diversity of terrains on Charon. This image was taken at 3:38 a.m. EDT on July 13, one day before New Horizons' closest approach to Pluto. http://photojournal.jpl.nasa.gov/catalog/PIA19707
An equivalent body surface charge model representing three-dimensional bioelectrical activity
NASA Technical Reports Server (NTRS)
He, B.; Chernyak, Y. B.; Cohen, R. J.
1995-01-01
A new surface-source model has been developed to account for the bioelectrical potential on the body surface. A single-layer surface-charge model on the body surface has been developed to equivalently represent bioelectrical sources inside the body. The boundary conditions on the body surface are discussed in relation to the surface-charge in a half-space conductive medium. The equivalent body surface-charge is shown to be proportional to the normal component of the electric field on the body surface just outside the body. The spatial resolution of the equivalent surface-charge distribution appears intermediate between those of the body surface potential distribution and the body surface Laplacian distribution. An analytic relationship between the equivalent surface-charge and the surface Laplacian of the potential was found for a half-space conductive medium. The effects of finite spatial sampling and noise on the reconstruction of the equivalent surface-charge were evaluated by computer simulations. It was found through computer simulations that the reconstruction of the equivalent body surface-charge from the body surface Laplacian distribution is very stable against noise and finite spatial sampling. The present results suggest that the equivalent body surface-charge model may provide an additional insight to our understanding of bioelectric phenomena.
ERIC Educational Resources Information Center
Legenbauer, Tanja; Vocks, Silja; Betz, Sabrina; Puigcerver, Maria Jose Baguena; Benecke, Andrea; Troje, Nikolaus F.; Ruddel, Heinz
2011-01-01
Various components of body image were measured to assess body image disturbances in patients with obesity. To overcome limitations of previous studies, a photo distortion technique and a biological motion distortion device were included to assess static and dynamic aspects of body image. Questionnaires assessed cognitive-affective aspects, bodily…
Automatic RBG-depth-pressure anthropometric analysis and individualised sleep solution prescription.
Esquirol Caussa, Jordi; Palmero Cantariño, Cristina; Bayo Tallón, Vanessa; Cos Morera, Miquel Àngel; Escalera, Sergio; Sánchez, David; Sánchez Padilla, Maider; Serrano Domínguez, Noelia; Relats Vilageliu, Mireia
2017-08-01
Sleep surfaces must adapt to individual somatotypic features to maintain a comfortable, convenient and healthy sleep, preventing diseases and injuries. Individually determining the most adequate rest surface can often be a complex and subjective question. To design and validate an automatic multimodal somatotype determination model to automatically recommend an individually designed mattress-topper-pillow combination. Design and validation of an automated prescription model for an individualised sleep system is performed through a single-image 2 D-3 D analysis and body pressure distribution, to objectively determine optimal individual sleep surfaces combining five different mattress densities, three different toppers and three cervical pillows. A final study (n = 151) and re-analysis (n = 117) defined and validated the model, showing high correlations between calculated and real data (>85% in height and body circumferences, 89.9% in weight, 80.4% in body mass index and more than 70% in morphotype categorisation). Somatotype determination model can accurately prescribe an individualised sleep solution. This can be useful for healthy people and for health centres that need to adapt sleep surfaces to people with special needs. Next steps will increase model's accuracy and analise, if this prescribed individualised sleep solution can improve sleep quantity and quality; additionally, future studies will adapt the model to mattresses with technological improvements, tailor-made production and will define interfaces for people with special needs.
Lamarche, Larkin; Ozimok, Brianne; Gammage, Kimberley L.; Muir, Cameron
2017-01-01
Framed within social self-preservation theory, the present study investigated men’s psychobiological responses to social-evaluative body image threats. University men (n = 66) were randomly assigned to either a high or low social-evaluative body image threat condition. Participants provided saliva samples (to assess cortisol) and completed measures of state body shame prior to and following their condition, during which anthropometric and strength measures were assessed. Baseline corrected values indicated men in the high social-evaluative body image threat condition had higher body shame and cortisol than men in the low social-evaluative body image threat condition. These findings suggest that social evaluation in the context of situations that threaten body image leads to potentially negative psychobiological responses in college men. PMID:28891388
Lamarche, Larkin; Ozimok, Brianne; Gammage, Kimberley L; Muir, Cameron
2017-11-01
Framed within social self-preservation theory, the present study investigated men's psychobiological responses to social-evaluative body image threats. University men ( n = 66) were randomly assigned to either a high or low social-evaluative body image threat condition. Participants provided saliva samples (to assess cortisol) and completed measures of state body shame prior to and following their condition, during which anthropometric and strength measures were assessed. Baseline corrected values indicated men in the high social-evaluative body image threat condition had higher body shame and cortisol than men in the low social-evaluative body image threat condition. These findings suggest that social evaluation in the context of situations that threaten body image leads to potentially negative psychobiological responses in college men.
NASA Astrophysics Data System (ADS)
Liu, Limei; Trakic, Adnan; Sanchez-Lopez, Hector; Liu, Feng; Crozier, Stuart
2014-01-01
MRI-LINAC is a new image-guided radiotherapy treatment system that combines magnetic resonance imaging (MRI) with a linear accelerator (LINAC) in a single unit. One drawback is that the pulsing of the split gradient coils of the system induces an electric field and currents in the patient which need to be predicted and evaluated for patient safety. In this novel numerical study the in situ electric fields and associated current densities were evaluated inside tissue-accurate male and female human voxel models when a number of different split-geometry gradient coils were operated. The body models were located in the MRI-LINAC system along the axial and radial directions in three different body positions. Each model had a region of interest (ROI) suitable for image-guided radiotherapy. The simulation results show that the amplitudes and distributions of the field and current density induced by different split x-gradient coils were similar with one another in the ROI of the body model, but varied outside of the region. The fields and current densities induced by a split classic coil with the surface unconnected showed the largest deviation from those given by the conventional non-split coils. Another finding indicated that the distributions of the peak current densities varied when the body position, orientation or gender changed, while the peak electric fields mainly occurred in the skin and fat tissues.
2017-03-06
Enceladus is a world divided. To the north, we see copious amounts of craters and evidence of the many impacts the moon has suffered in its history. However, to the south we see a smoother body with wrinkles due to geologic activity. Most solar system bodies lacking an atmosphere are heavily cratered like Enceladus' (313 miles or 504 kilometers across) northern region. However, the geologic activity in the south, including the famous plume above the moon's south pole, can erase craters and leave a younger, smoother-looking surface. This view looks toward the anti-Saturn hemisphere of Enceladus. North on Enceladus is up and rotated 4 degrees to the right. The image was taken in visible light with the Cassini spacecraft narrow-angle camera on Nov. 27, 2016. The view was obtained at a distance of approximately 41,000 miles (66,000 kilometers) from Enceladus. Image scale is 1,310 feet (398 meters) per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA20524
Metaphors and images of cancer in early modern Europe.
Stolberg, Michael
2014-01-01
Drawing on learned medical writing about cancer and on nonmedical texts that used cancer as a metaphor for hateful cultural, social, religious, or political phenomena that warranted drastic measures, this article traces the metaphors and images that framed the perception and experience of cancer in the early modern period. It finds that cancer was closely associated with notions of impurity and a visible destruction of the body's surface and was diagnosed primarily in women, as breast and uterine cancer. Putrid, corrosive cancerous humor was thought not only to accumulate and eat its way into the surrounding flesh but also to spread, like the seeds of a plant, "infecting" the whole body. This infectious quality, the putrid secretions, and the often horrendous smell emanating from cancer victims raised fears, in turn, of contagion and were taken to justify a separation of cancer patients from the rest of society.
NASA Astrophysics Data System (ADS)
Tran, Annelise; Goutard, Flavie; Chamaillé, Lise; Baghdadi, Nicolas; Lo Seen, Danny
2010-02-01
Recent studies have highlighted the potential role of water in the transmission of avian influenza (AI) viruses and the existence of often interacting variables that determine the survival rate of these viruses in water; the two main variables are temperature and salinity. Remote sensing has been used to map and monitor water bodies for several decades. In this paper, we review satellite image analysis methods used for water detection and characterization, focusing on the main variables that influence AI virus survival in water. Optical and radar imagery are useful for detecting water bodies at different spatial and temporal scales. Methods to monitor the temperature of large water surfaces are also available. Current methods for estimating other relevant water variables such as salinity, pH, turbidity and water depth are not presently considered to be effective.
PLANET SHADOWS IN PROTOPLANETARY DISKS. II. OBSERVABLE SIGNATURES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jang-Condell, Hannah
2009-07-20
We calculate simulated images of disks perturbed by embedded small planets. These 10-50 M{sub +} bodies represent the growing cores of giant planets. We examine scattered light and thermal emission from these disks over a range of wavelengths, taking into account the wavelength-dependent opacity of dust in the disk. We also examine the effect of inclination on the observed perturbations. We find that the perturbations are best observed in the visible to mid-infrared (mid-IR). Scattered light images reflect shadows produced at the surface of perturbed disks, while the infrared images follow thermal emission from the surface of the disk, showingmore » cooled/heated material in the shadowed/brightened regions. At still longer wavelengths in the submillimeter, the perturbation fades as the disk becomes optically thin and surface features become overwhelmed by emission closer toward the midplane of the disk. With the construction of telescopes such as TMT, GMT, and ALMA due in the next decade, there is a real possibility of observing planets forming in disks in the optical and submillimeter. However, having the angular resolution to observe the features in the mid-IR will remain a challenge.« less
Amr, Mostafa; Kaliyadan, Feroze; Shams, Tarek
2014-01-01
Skin disorders such as acne, which have significant cosmetic implications, can affect the self-perception of cutaneous body image. There are many scales which measure self-perception of cutaneous body image. We evaluated the use of a simple Cutaneous Body Image (CBI) scale to assess self-perception of body image in a sample of young Arab patients affected with acne. A total of 70 patients with acne answered the CBI questionnaire. The CBI score was correlated with the severity of acne and acne scarring, gender, and history of retinoids use. There was no statistically significant correlation between CBI and the other parameters - gender, acne/acne scarring severity, and use of retinoids. Our study suggests that cutaneous body image perception in Arab patients with acne was not dependent on variables like gender and severity of acne or acne scarring. A simple CBI scale alone is not a sufficiently reliable tool to assess self-perception of body image in patients with acne vulgaris.
Identifying environmental features for land management decisions
NASA Technical Reports Server (NTRS)
1983-01-01
Pairs of HCMM day-night thermal infrared (IR) data were selected to examine patterns of surface temperature and thermal inertia (TI) of peninsular Florida. GOES and NOAA-6 thermal IR, as well as National Climatic Center temperatures and rainfall, were also used. The HCMM apparent thermal inertia (ATI) images closely correspond to the General Soil Map of Florida, based on soil drainage classes. Areas with low ATI overlay well-drained soils, such as deep sands and drained organic soils. Areas with high ATI overlay areas with wetlands and bodies of water. The HCMM ATI images also correspond well with GOES-detected winter nocturnal cold-prone areas. Use of HCMM data with Carlson's energy balance model shows both high moisture availability (MA) and high thermal inertia (TI) of wetland-type surfaces and low MA and low TI of upland, well-drained soils. Since soil areas with low TI develop higher temperatures during the day, then antecedent patterns of highest maximum daytime surface temperature can also be used to predict nocturnal cold-prone areas in Florida.
A qualitative exploration of body image experiences of women progressing through pregnancy.
Watson, Brittany; Broadbent, Jaclyn; Skouteris, Helen; Fuller-Tyszkiewicz, Matthew
2016-02-01
Pregnancy provides an interesting challenge to body image theories in that the natural physiological changes push women further from the socioculturally prescribed thin ideal which these theories hinge upon. The impact that these significant physiological changes have on the woman's body image during pregnancy may depend on the extent to which they retain or revise the ideal. However, little is known about body image experiences during pregnancy. To provide a comprehensive exploration of the body image experiences of pregnant women. Individual structured interviews were conducted with 19 currently pregnant women. Transcriptions were analysed using a thematic content analysis approach. Themes extracted from the qualitative data included: (1) women's body image experiences during pregnancy were complex and changing, and shaped by the salience of specific body parts, the women's expectations for future changes to their body within the perinatal period, the functionality of the body, and their experience of maternity clothing, (2) women were able to negotiate the changes to their bodies as they recognised the functionality of the pregnant body, (3) women were surprised by the public nature of the pregnant body, (4) partner support and positive feedback about the pregnant body was highly valued, and (5) the importance of open communication around weight and body image in antenatal healthcare. Our findings highlight the need for the adaptation and expansion of existing body image theories to be used as a framework for women's experiences of pregnancy. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.
Impacts of exposure to images of ideal bodies on male body dissatisfaction: a review.
Blond, Anna
2008-09-01
Research suggests that young men's body dissatisfaction increases when they see images of attractive muscular men. This article provides the first extensive review of experimental studies exposing men to advertisements or commercials featuring idealized male bodies. Impacts on body dissatisfaction were evaluated by calculating and analyzing effect sizes from 15 studies. The effect sizes indicate that exposure to images of idealized male bodies has a small but statistically significant negative impact on men's body dissatisfaction. Three studies suggest that young men who are dissatisfied with their bodies are at increased risk for negative self-evaluations when exposed to idealized images. Two studies suggest that men who are satisfied with their bodies may be protected against negative impacts from seeing such images.
Factors that Influence Body Image Representations of Black Muslim Women
2008-01-01
Research on the body image perceptions of black women is limited. Although previous body image studies have explored the intersection between race and gender, the influence of religion has been neglected. Guided by a grounded theory framework, the focus of this investigation, conducted in Upstate New York, USA, was to examine the role of race and religion in the body image perceptions of 22 African-American Sunni Muslim women. Analysis of individual interviews revealed that, in contrast to using standard medical guidelines, participants’ views about their bodies were largely based on positive images of an earlier body size/shape, social and family expectations and contexts, cultural norms and values, and spirituality and religious beliefs. Although the body image perceptions of black Muslim women were similar to those expressed in previous body image studies with black women, participants expressed the importance of highlighting the spiritual versus physical self by adhering to religious guidelines regarding proper dress and appearance. These findings suggest that religion, race, and gender are all important factors to be considered when conducting body image studies with black women. PMID:18384923
Human body region enhancement method based on Kinect infrared imaging
NASA Astrophysics Data System (ADS)
Yang, Lei; Fan, Yubo; Song, Xiaowei; Cai, Wenjing
2016-10-01
To effectively improve the low contrast of human body region in the infrared images, a combing method of several enhancement methods is utilized to enhance the human body region. Firstly, for the infrared images acquired by Kinect, in order to improve the overall contrast of the infrared images, an Optimal Contrast-Tone Mapping (OCTM) method with multi-iterations is applied to balance the contrast of low-luminosity infrared images. Secondly, to enhance the human body region better, a Level Set algorithm is employed to improve the contour edges of human body region. Finally, to further improve the human body region in infrared images, Laplacian Pyramid decomposition is adopted to enhance the contour-improved human body region. Meanwhile, the background area without human body region is processed by bilateral filtering to improve the overall effect. With theoretical analysis and experimental verification, the results show that the proposed method could effectively enhance the human body region of such infrared images.
Body image, BMI, and physical activity in girls and boys aged 14-16 years.
Kantanista, Adam; Osiński, Wiesław; Borowiec, Joanna; Tomczak, Maciej; Król-Zielińska, Magdalena
2015-09-01
The aim of this study was to investigate the relationship between body image, body mass index (BMI), and physical activity in adolescents. The study included 1702 girls and 1547 boys aged 14-16 years. Moderate-to-vigorous physical activity (MVPA) was evaluated by the Physical Activity Screening Measure. Body image was assessed using the Feelings and Attitudes Towards the Body Scale, and participants' BMI was determined based on measured height and weight. Compared to boys, girls reported more negative body image (p<.05). The results of the three-way hierarchical regression revealed that body image was a statistically significant positive predictor of MVPA for adolescents, regardless of BMI. Additionally, body image was a stronger predictor of MVPA in boys than in girls. These findings suggest that body image, rather than BMI, is important in undertaking physical activity in adolescents and should be considered when preparing programs aimed at improving physical activity. Copyright © 2015 Elsevier Ltd. All rights reserved.
Accuracy comparison in mapping water bodies using Landsat images and Google Earth Images
NASA Astrophysics Data System (ADS)
Zhou, Z.; Zhou, X.
2016-12-01
A lot of research has been done for the extraction of water bodies with multiple satellite images. The Water Indexes with the use of multi-spectral images are the mostly used methods for the water bodies' extraction. In order to extract area of water bodies from satellite images, accuracy may depend on the spatial resolution of images and relative size of the water bodies. To quantify the impact of spatial resolution and size (major and minor lengths) of the water bodies on the accuracy of water area extraction, we use Georgetown Lake, Montana and coalbed methane (CBM) water retention ponds in the Montana Powder River Basin as test sites to evaluate the impact of spatial resolution and the size of water bodies on water area extraction. Data sources used include Landsat images and Google Earth images covering both large water bodies and small ponds. Firstly we used water indices to extract water coverage from Landsat images for both large lake and small ponds. Secondly we used a newly developed visible-index method to extract water coverage from Google Earth images covering both large lake and small ponds. Thirdly, we used the image fusion method in which the Google Earth Images are fused with multi-spectral Landsat images to obtain multi-spectral images of the same high spatial resolution as the Google earth images. The actual area of the lake and ponds are measured using GPS surveys. Results will be compared and the optimal method will be selected for water body extraction.
Weaver, Terri L.; Griffin, Michael G.; Mitchell, Elisha R.
2014-01-01
While body image concerns and interpersonal violence exposure are significant issues for women, their interrelationship has been rarely explored. We examined the associations between severity of acute injuries, symptoms of posttraumatic stress disorder (PTSD), depression and body image distress within a sample of predominantly African-American victims of interpersonal violence (N = 73). Severity of body image distress was significantly associated with each outcome. Moreover, body image distress was a significant, unique predictor of depression but not PTSD severity. We recommend continued exploration of body image concerns to further integrated research on violence against women. PMID:24215653
Wen, Xin; She, Ying; Vinke, Petra Corianne; Chen, Hong
2016-01-01
Body image distress or body dissatisfaction is one of the most common consequences of obesity and overweight. We investigated the neural bases of body image processing in overweight and average weight young women to understand whether brain regions that were previously found to be involved in processing self-reflective, perspective and affective components of body image would show different activation between two groups. Thirteen overweight (O-W group, age = 20.31±1.70 years) and thirteen average weight (A-W group, age = 20.15±1.62 years) young women underwent functional magnetic resonance imaging while performing a body image self-reflection task. Among both groups, whole-brain analysis revealed activations of a brain network related to perceptive and affective components of body image processing. ROI analysis showed a main effect of group in ACC as well as a group by condition interaction within bilateral EBA, bilateral FBA, right IPL, bilateral DLPFC, left amygdala and left MPFC. For the A-W group, simple effect analysis revealed stronger activations in Thin-Control compared to Fat-Control condition within regions related to perceptive (including bilateral EBA, bilateral FBA, right IPL) and affective components of body image processing (including bilateral DLPFC, left amygdala), as well as self-reference (left MPFC). The O-W group only showed stronger activations in Fat-Control than in Thin-Control condition within regions related to the perceptive component of body image processing (including left EBA and left FBA). Path analysis showed that in the Fat-Thin contrast, body dissatisfaction completely mediated the group difference in brain response in left amygdala across the whole sample. Our data are the first to demonstrate differences in brain response to body pictures between average weight and overweight young females involved in a body image self-reflection task. These results provide insights for understanding the vulnerability to body image distress among overweight or obese young females. PMID:27764116
The Association Between Sexual Satisfaction and Body Image in Women
Pujols, Yasisca; Meston, Cindy M.; Seal, Brooke N.
2010-01-01
Introduction Although sexual functioning has been linked to sexual satisfaction, it only partially explains the degree to which women report being sexually satisfied. Other factors include quality of life, relational variables, and individual factors such as body image. Of the few studies that have investigated the link between body image and sexual satisfaction, most have considered body image to be a single construct and have shown mixed results. Aim The present study assessed multiple body image variables in order to better understand which aspects of body image influence multiple domains of sexual satisfaction, including sexual communication, compatibility, contentment, personal concern, and relational concern in a community sample of women. Methods Women between the ages of 18 and 49 years in sexual relationships (N = 154) participated in an Internet survey that assessed sexual functioning, five domains of sexual satisfaction, and several body image variables. Main Outcome Measures Body image variables included the sexual attractiveness, weight concern, and physical condition subscales of the Body Esteem Scale, the appearance-based subscale of the Cognitive Distractions During Sexual Activity Scale, and body mass index. Total score of the Sexual Satisfaction Scale for Women was the main outcome measure. Sexual functioning was measured by a modified Female Sexual Function Index. Results Consistent with expectations, correlations indicated significant positive relationships between sexual functioning, sexual satisfaction, and all body image variables. A multiple regression analysis revealed that sexual satisfaction was predicted by high body esteem and low frequency of appearance-based distracting thoughts during sexual activity, even after controlling for sexual functioning status. Conclusion Several aspects of body image, including weight concern, physical condition, sexual attractiveness, and thoughts about the body during sexual activity predict sexual satisfaction in women. The findings suggest that women who experience low sexual satisfaction may benefit from treatments that target these specific aspects of body image. PMID:19968771
Gao, Xiao; Deng, Xiao; Wen, Xin; She, Ying; Vinke, Petra Corianne; Chen, Hong
2016-01-01
Body image distress or body dissatisfaction is one of the most common consequences of obesity and overweight. We investigated the neural bases of body image processing in overweight and average weight young women to understand whether brain regions that were previously found to be involved in processing self-reflective, perspective and affective components of body image would show different activation between two groups. Thirteen overweight (O-W group, age = 20.31±1.70 years) and thirteen average weight (A-W group, age = 20.15±1.62 years) young women underwent functional magnetic resonance imaging while performing a body image self-reflection task. Among both groups, whole-brain analysis revealed activations of a brain network related to perceptive and affective components of body image processing. ROI analysis showed a main effect of group in ACC as well as a group by condition interaction within bilateral EBA, bilateral FBA, right IPL, bilateral DLPFC, left amygdala and left MPFC. For the A-W group, simple effect analysis revealed stronger activations in Thin-Control compared to Fat-Control condition within regions related to perceptive (including bilateral EBA, bilateral FBA, right IPL) and affective components of body image processing (including bilateral DLPFC, left amygdala), as well as self-reference (left MPFC). The O-W group only showed stronger activations in Fat-Control than in Thin-Control condition within regions related to the perceptive component of body image processing (including left EBA and left FBA). Path analysis showed that in the Fat-Thin contrast, body dissatisfaction completely mediated the group difference in brain response in left amygdala across the whole sample. Our data are the first to demonstrate differences in brain response to body pictures between average weight and overweight young females involved in a body image self-reflection task. These results provide insights for understanding the vulnerability to body image distress among overweight or obese young females.
Performance Sensitivity Studies on the PIAA Implementation of the High-Contrast Imaging Testbed
NASA Technical Reports Server (NTRS)
Sidick, Erkin; Lou, John Z.; Shaklan, Stuart; Levine, Marie
2009-01-01
We have investigated the dependence of the High Contrast Imaging Testbed (HCIT) Phase Induced Amplitude Apodization (PIAA) coronagraph system performance on the rigid-body perturbations of various optics. The structural design of the optical system as well as the parameters of various optical elements used in the analysis are drawn from those of the PIAA/HCIT system that have been and will be implemented, and the simulation takes into account the surface errors of various optics. In this paper, we report our findings when the input light is a narrowband beam.
ERIC Educational Resources Information Center
Morrison, Todd G.; Kalin, Rudolf; Morrison, Melanie A.
2004-01-01
Sociocultural theory and social comparison theory were used to account for variations in body-image evaluation and body-image investment among male and female adolescents (N = 1,543). Exposure to magazines and television programs containing idealistic body imagery as well as frequency of self-comparison to universalistic targets (e.g., fashion…
Radoš, Sandra Nakić; Vraneš, Hrvojka Soljačić; Šunjić, Marijana
2014-01-01
This cross-sectional study examined the role of maternal body image and body image self-consciousness in sexual satisfaction and intercourse frequency during pregnancy when controlling for satisfaction with partnership. Pregnant women in their third trimester of pregnancy (N = 150) participated in the study. Body image was measured by the Body Areas Satisfaction Scale (BASS) and Body Image Self-Consciousness Scale (BISC), while relationship satisfaction was measured by different subscales of the Perceived Quality of Marital Relationship (PQMR) Scale. Sexual satisfaction was also measured by one of the subscales of the PQMR (Intimate Relationship). The sexual behavior questionnaire comprised questions about frequency of sexual intercourse, desire, and other aspects of sexual functioning as well as the reasons that might prevent women from having intercourse during pregnancy. Findings suggested that satisfaction with body image and body image self-consciousness were related to sexual satisfaction. Nevertheless, other aspects of partnership, such as communication, appeared to be much more important predictors of sexual satisfaction than body image variables. The best predictor of sexual frequency was fear that intercourse might harm the fetus. Implications for education about sexuality issues in pregnancy are discussed.
Body Image in Adult Women: Moving Beyond the Younger Years
Kilpela, Lisa Smith; Becker, Carolyn Black; Wesley, Nicole; Stewart, Tiffany
2015-01-01
In spite of copious literature investigating body dissatisfaction and its correlates in adolescents and young adult women, exploration of body image disturbances in adult women remains an underrepresented domain in the literature. Yet, there are many reasons to suspect that body image in adult women both may differ from and possibly be more complex than that of younger women. Adult women face myriad factors influencing body image beyond those delineated in the body image literature on adolescents and young adult women. For instance, aging-related physiological changes shift the female body further away from the thin-young-ideal, which is the societal standard of female beauty. Further, life priorities and psychological factors evolve with age as well. As such, adult women encounter changes that may differentially affect body image across the lifespan. This paper aims to provide an up-to-date review of the current literature on the relationship between body image and associated mental and physical health problems and behaviors in adult women. In addition, we explore factors that may influence body image in adult women. Lastly, we use this review to identify significant gaps in the existing literature with the aim of identifying critical targets for future research. PMID:26052476
Frederick, David A; Sandhu, Gaganjyot; Scott, Terri; Akbari, Yasmin
2016-06-01
Body image activists have proposed adding disclaimer labels to digitally altered media as a way to promote positive body image. Another approach advocated by activists is to alter advertisements through subvertising (adding social commentary to the image to undermine the message of the advertisement). We examined if body image could be enhanced by attaching Photoshop disclaimers or subvertising to thin-ideal media images of swimsuit models. In Study 1 (N=1268), adult women exposed to disclaimers or subvertising did not report higher body state satisfaction or lower drive for thinness than women exposed to unaltered images. In Study 2 (N=820), adult women who were exposed to disclaimers or subvertising did not report higher state body satisfaction or lower state social appearance comparisons than women exposed to unaltered images or to no images. These results raise questions about the effectiveness of disclaimers and subvertising for promoting body satisfaction. Copyright © 2016 Elsevier Ltd. All rights reserved.
Kaczmarek, Maria; Trambacz-Oleszak, Sylwia
2016-05-01
The increasing prevalence of negative body perceptions among adolescent girls and the tendency towards wishing to be thinner have become a cultural norm in Western culture. Adolescent girls are particularly vulnerable to developing a negative body image due to physical and sexual changes occurring during puberty. This study aimed to evaluate the association between different measures of body image perceptions and different phases of the menstrual cycle after controlling for weight status and other potential confounders in Polish adolescent girls aged 12-18 years. Three-hundred and thirty participants of a cross-sectional survey conducted in 2009, normally cycling and with no eating disorders, completed a background questionnaire and the Stunkard Figure Rating Scale, and their anthropometric measurements were collected. The dependent outcome variables were measures of body image (actual body image, ideal body image and ideal-self discrepancy) and dichotomous body image perception (satisfied versus dissatisfied) adjusted for other predictor factors: socio-demographic variables, menstrual history and cycle phases, and weight status. One-way ANOVA indicated that weight status, age at menarche and menstrual cycle phase were associated with actual body image and rate of ideal-self discrepancy. Ideal body image was associated with weight status and menstrual cycle phase. General logistic regression models were constructed to evaluate associations of body dissatisfaction and all potential predictor variables. The final selected model of the multiple logistic regression analysis using the backward elimination procedure revealed that adjusted for other factors, negative body image was significantly associated with different phases of the menstrual cycle (p trend=0.033) and increasing body weight status (p trend=0.0007). The likelihood of body dissatisfaction was greatest during the premenstrual phase of the menstrual cycle (OR=2.38; 95% CI 1.06, 5.32) and among girls in obesity class I (OR=8.04; 95% CI 2.37, 27.26). The study confirmed the association between body image dissatisfaction in adolescent girls and different phases of the menstrual cycle after controlling for weight status. The issue of negative body self-image is not only of cognitive, but also of practical value as understanding better the factors contributing to the formation of a negative body image may be instrumental in developing preventive health programmes targeted at young people.
Treatment planning for internal emitter therapy: Methods, applications and clinical implications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sgouros, G.
1999-01-01
Treatment planning involves three basic steps: (1) a procedure must be devised that will provide the most relevant information, (2) the procedure must be applied and (3) the resulting information must be translated into a definition of the optimum implementation. There are varying degrees of treatment planning that may be implemented in internal emitter therapy. As in chemotherapy, the information from a Phase 1 study may be used to treat patients based upon body surface area. If treatment planning is included on a patient-specific basis, a pretherapy, trace-labeled, administration of the radiopharmaceutical is generally required. The data collected following themore » tracer dose may range from time-activity curves of blood and whole-body for use in blood, marrow or total body absorbed dose estimation to patient imaging for three-dimensional internal emitter dosimetry. The most ambitious approach requires a three-dimensional set of images representing radionuclide distribution (SPECT or PET) and a corresponding set of images representing anatomy (CT or MRI). The absorbed dose (or dose-rate) distribution may be obtained by convolution of a point kernel with the radioactivity distribution or by direct Monte Carlo calculation. A critical requirement for both techniques is the development of an overall structure that makes it possible, in a routine manner, to input the images, to identify the structures of interest and to display the results of the dose calculations in a clinically relevant manner. 52 refs., 4 figs., 1 tab.« less
Shape reconstruction of irregular bodies with multiple complementary data sources
NASA Astrophysics Data System (ADS)
Kaasalainen, M.; Viikinkoski, M.; Carry, B.; Durech, J.; Lamy, P.; Jorda, L.; Marchis, F.; Hestroffer, D.
2011-10-01
Irregularly shaped bodies with at most partial in situ data are a particular challenge for shape reconstruction and mapping. We have created an inversion algorithm and software package for complementary data sources, with which it is possible to create shape and spin models with feature details even when only groundbased data are available. The procedure uses photometry, adaptive optics or other images, occultation timings, and interferometry as main data sources, and we are extending it to include range-Doppler radar and thermal infrared data as well. The data sources are described as generalized projections in various observable spaces [2], which allows their uniform handling with essentially the same techniques, making the addition of new data sources inexpensive in terms of computation time or software development. We present a generally applicable shape support that can be automatically used for all surface types, including strongly nonconvex or non-starlike shapes. New models of Kleopatra (from photometry, adaptive optics, and interferometry) and Hermione are examples of this approach. When using adaptive optics images, the main information from these is extracted from the limb and terminator contours that can be determined much more accurately than the image pixel brightnesses that inevitably contain large errors for most targets. We have shown that the contours yield a wealth of information independent of the scattering properties of the surface [3]. Their use also facilitates a very fast and robustly converging algorithm. An important concept in the inversion is the optimal weighting of the various data modes. We have developed a mathematicallly rigorous scheme for this purpose. The resulting maximum compatibility estimate [3], a multimodal generalization of the maximum likelihood estimate, ensures that the actual information content of each source is properly taken into account, and that the resolution scale of the ensuing model can be reliably estimated. We have applied our procedure to several asteroids, and the ground truth from the Rosetta/Lutetia flyby confirmed the ability of the approach to recover shape details [1] (see also Carry et al., this meeting). We have created a general flyby-version of the procedure to construct full models of planetary targets for which probe images are only available of a part of the surface (a typical setup for many planetary missions). We have successfully combined flyby images with photometry (Steins [4]) and adaptive optics images (Lutetia); the portion of the surface accurately determined by the flyby constrains the shape solution of the "dark side" efficiently.
Development of calcium bodies in Hylonsicus riparius (Crustacea: Isopoda).
Vittori, Miloš; Khurshed, Mohammed; Picavet, Daisy I; van Noorden, Cornelis J F; Štrus, Jasna
2018-03-01
Calcium bodies are internal epithelial sacs found in terrestrial isopods of the family Trichoniscidae that contain a mineralized extracellular matrix that is deposited and resorbed in relation to the molt cycle. Calcium bodies in several trichoniscids are filled with bacteria, the function of which is currently unknown. The woodlouse Hyloniscus riparius differs from other trichoniscids in that it possesses two different pairs of calcium bodies, the posterior pair being filled with bacteria and the anterior pair being devoid of bacteria. We explored the development of these organs and bacterial colonization of their lumen during the postmarsupial development with the use of optical clearing and whole-body confocal imaging of larval and juvenile stages. Our results show that calcium bodies are formed as invaginations of the epidermis in the region of intersegmental membranes during the postmarsupial development. The anterior pair of calcium bodies is generated during the first postmarsupial manca stage, whereas the posterior calcium bodies first appear in juveniles and are immediately colonized by bacteria, likely through a connection between the calcium body lumen and the body surface. Mineral is deposited in calcium bodies as soon as they are present. Copyright © 2018 Elsevier Ltd. All rights reserved.
8. SECOND IMAGE OF THE PANORAMIC SERIES LOOKING WEST FROM ...
8. SECOND IMAGE OF THE PANORAMIC SERIES LOOKING WEST FROM THE UPHILL SIDE OF THE MILL. THE ORE RECEIVING HOUSE AND THE ORE DELIVERY TRESTLE IS IMAGE RIGHT, THE MILL BUILDING AND ANCILLARY STRUCTURE ARE IMAGE CENTER AND THE TOWN OF BODIE IS IMAGE BACKGROUND RIGHT. - Standard Gold Mill, East of Bodie Creek, Northeast of Bodie, Bodie, Mono County, CA
Body Image and Quality of Life in Adolescents With Craniofacial Conditions
Crerand, Canice E.; Sarwer, David B.; Kazak, Anne E.; Clarke, Alexandra; DPsych; Rumsey, Nichola
2017-01-01
Objective To evaluate body image in adolescents with and without craniofacial conditions; and to examine relationships between body image and quality of life. Design Case-control design. Setting A pediatric hospital’s craniofacial center and primary care practices. Participants 70 adolescents with visible craniofacial conditions and a demographically-matched sample of 42 adolescents without craniofacial conditions. Main Outcome Measure Adolescents completed measures of quality of life and body image including satisfaction with weight, facial and overall appearance; investment in appearance (importance of appearance to self-worth); and body image disturbance (appearance-related distress and impairment in functioning). Results Adolescents with craniofacial conditions reported lower appearance investment (p < 0.001) and were more likely to report concerns about facial features (p < 0.02) compared to non-affected youth. Females in both groups reported greater investment in appearance, greater body image disturbance, and lower weight satisfaction compared to males (p < 0.01). Within both groups, greater body image disturbance was associated with lower quality of life (p <0.01). The two groups did not differ significantly on measures of quality of life, body image disturbance, or satisfaction with appearance. Conclusions Body image and quality of life in adolescents with craniofacial conditions are similar to non-affected youth. Relationships between body image and quality of life emphasize that appearance perceptions are important to adolescents’ well-being regardless of whether they have a facial disfigurement. Investment in one’s appearance may explain variations in body image satisfaction and serve as an intervention target particularly for females. PMID:26751907
Manaf, Nurajirahbt Abdul; Zuhrah, Beevi
2016-01-01
Introduction Female students are thought to be more negatively impacted by body image ideals and often more susceptible to various eating related disorders compared to men. A previous study using a sample of female students in Malaysia did not identify whether the increase in susceptibility to eating disorders can be explained by the level of body image acceptance. Aim To identify the prevalence of depression and susceptibility to eating disorders among a sample of 206 female students in one of the private universities in Malaysia and explore the relationship between depression, body image and susceptibility to eating disorders. In addition, this study aimed to determine whether depression is a mediator between body image and susceptibility to eating disorders among female college students. Materials and Methods The Body Image Acceptance and Action Questionnaire were used to assess body image acceptance, the Patient Health Questionnaire to measure depression and the Eating Attitude Test- 26 was used to assess susceptibility to eating disorders. Results The results showed that 65.5% (n=135) of the students were depressed and 6.3% (n=13) were susceptible to eating disorders. There was a significant positive relationship between depression and eating disorders and a negative relationship between body image and depression as well as between body image and eating disorder. Further, the regression model showed that depression was partially mediating the effect of body image on eating disorders. Conclusion Body image and depression contribute to eating disorders and treating depression could reduce susceptibility to eating disorders. PMID:27134977
ERIC Educational Resources Information Center
Kotzé, Sanet Henriët; Driescher, Natasha Darné; Mole, Calvin Gerald
2013-01-01
In a study conducted in 2011, the use of full body digital X-ray images (Lodox® Statscan®) and drawings were described for surface anatomy education during which suggestions were made by students on how to improve the method. Educational innovations should continuously be adjusted and improved to provide the best possible scenario for student…
2017-01-11
On Jan. 14, 2005, ESA's Huygens probe made its descent to the surface of Saturn's hazy moon, Titan. Carried to Saturn by NASA's Cassini spacecraft, Huygens made the most distant landing ever on another world, and the only landing on a body in the outer solar system. This video uses actual images taken by the probe during its two-and-a-half hour fall under its parachutes. Also include mission animation.
Barratt, Dean C; Chan, Carolyn S K; Edwards, Philip J; Penney, Graeme P; Slomczykowski, Mike; Carter, Timothy J; Hawkes, David J
2008-06-01
Statistical shape modelling potentially provides a powerful tool for generating patient-specific, 3D representations of bony anatomy for computer-aided orthopaedic surgery (CAOS) without the need for a preoperative CT scan. Furthermore, freehand 3D ultrasound (US) provides a non-invasive method for digitising bone surfaces in the operating theatre that enables a much greater region to be sampled compared with conventional direct-contact (i.e., pointer-based) digitisation techniques. In this paper, we describe how these approaches can be combined to simultaneously generate and register a patient-specific model of the femur and pelvis to the patient during surgery. In our implementation, a statistical deformation model (SDM) was constructed for the femur and pelvis by performing a principal component analysis on the B-spline control points that parameterise the freeform deformations required to non-rigidly register a training set of CT scans to a carefully segmented template CT scan. The segmented template bone surface, represented by a triangulated surface mesh, is instantiated and registered to a cloud of US-derived surface points using an iterative scheme in which the weights corresponding to the first five principal modes of variation of the SDM are optimised in addition to the rigid-body parameters. The accuracy of the method was evaluated using clinically realistic data obtained on three intact human cadavers (three whole pelves and six femurs). For each bone, a high-resolution CT scan and rigid-body registration transformation, calculated using bone-implanted fiducial markers, served as the gold standard bone geometry and registration transformation, respectively. After aligning the final instantiated model and CT-derived surfaces using the iterative closest point (ICP) algorithm, the average root-mean-square distance between the surfaces was 3.5mm over the whole bone and 3.7mm in the region of surgical interest. The corresponding distances after aligning the surfaces using the marker-based registration transformation were 4.6 and 4.5mm, respectively. We conclude that despite limitations on the regions of bone accessible using US imaging, this technique has potential as a cost-effective and non-invasive method to enable surgical navigation during CAOS procedures, without the additional radiation dose associated with performing a preoperative CT scan or intraoperative fluoroscopic imaging. However, further development is required to investigate errors using error measures relevant to specific surgical procedures.
NASA Astrophysics Data System (ADS)
Miller, Charles Frederick
The surface properties and surface volatile content of rocky bodies contain clues as to the formation and subsequent evolution of our Solar System. Many Solar System bodies retain essentially pristine subsurface volatiles, but their surface volatiles have often undergone chemical processing from UV irradiation and heating from impacts over millennia. The result is a wide range of surface properties observed today. We analyze the surfaces of these primitive bodies with the goal of deducing their evolutionary history. To this end, we employed three targeted analysis methods to characterize the surface properties and/or volatile distribution of three Solar System satellites. We derived photometric properties of Saturn's moon Phoebe from observations taken at low solar phase angles and corn-pared these results to those published for other Solar System objects. We conclude that Phoebe's surface has similarities to both Jupiter family comets and Kuiper Belt Objects (KBOs), supporting the conjecture that Phoebe migrated to Saturn the outer Solar System. We converted a General Circulation Model (GCM) to simulate the atmospheric motion of Neptune's moon Triton. We used this model to investigate the effect of N2 surface frosts on Triton's global atmospheric circulation. Our simulations identified specific atmospheric thermal conditions that led to wind speeds and directions consistent with the motion of erupting geysers captured by Voyager 2 images. Finally, we developed an 3-D n-body ballistic plume model to analyze the geometry and dynamics of the ejecta plume created by the impact of the Lunar CRater Observation and Sensing Satellite (LCROSS) on the Moon. LCROSS was designed to detect water content in lunar regolith, but also served as a test bed for comparing the properties of a large-scale, controlled impact with laboratory impact experiments. By comparing plume simulation results to our observations of the LCROSS impact, we confirmed the predictions that the LCROSS ejecta plume was in fact a multi-component plume and found that the low velocity cutoff for high-angle particles varied with ejection angle.
NASA Astrophysics Data System (ADS)
Wu, S.; Yang, Y.; Wang, K.
2017-12-01
The Tien Shan orogeny, situated in central Asia about 2000 km away from the collision boundary between Indian plate and Eurasian plate, is one of the highest, youngest, and most active intracontinental mountain belts on the earth. It first formed during the Paleozoic times and became reactivated at about 20Ma. Although many studies on the dynamic processes of the Tien Shan orogeny have been carried out before, its tectonic rejuvenation and uplift mechanism are still being debated. A high-resolution model of crust and mantle beneath Tien Shan is critical to discern among competing models for the mountain building. In this study, we collect and process seismic data recorded by several seismic arrays in the central and western Tien Shan region to generate surface wave dispersion curves at 6-140 s period using ambient noise tomography (ANT) and two-plane surface wave tomography (TPWT) methods. Using these dispersion curves, we construct a high-resolution 3-D image of shear wave velocity (Vs) in the crust and upper mantle up to 300 km depth. Our current model constrained only by surface waves shows that, under the Tien Shan orogenic belt, a strong low S-wave velocity anomaly exists in the uppermost mantle down to the depth of 200km, supporting the model that the hot upper mantle is upwelling under the Tien Shan orogenic belt, which may be responsible for the mountain building. To the west of central Tien Shan across the Talas-Fergana fault, low S-wave velocity anomalies in the upper mantle become much weaker and finally disappear beneath the Fergana basin. Because surface waves are insensitive to the structures below 300 km, body wave arrival times will be included for a joint inversion with surface waves to generate S-wave velocity structure from the surface down to the mantle transition zone. The joint inversion of both body and surface waves provide complementary constraints on structures at different depths and helps to achieve a more realistic model compared with body wave or surface wave tomography alone. The joint inversion model will be presented.
Comparative effects of Facebook and conventional media on body image dissatisfaction.
Cohen, Rachel; Blaszczynski, Alex
2015-01-01
Appearance comparison has consistently been shown to engender body image dissatisfaction. To date, most studies have demonstrated this relationship between appearance comparison and body image dissatisfaction in the context of conventional media images depicting the thin-ideal. Social comparison theory posits that people are more likely to compare themselves to similar others. Since social media forums such as Facebook involve one's peers, the current study aimed to determine whether the relationship between appearance comparison and body image dissatisfaction would be stronger for those exposed to social media images, compared to conventional media images. A sample of 193 female first year university students were randomly allocated to view a series of either Facebook or conventional media thin-ideal images. Participants completed questionnaires assessing pre- and post- image exposure measures of thin-ideal internalisation, appearance comparison, self-esteem, Facebook use and eating disorder risk. Type of exposure was not found to moderate the relationship between appearance comparison and changes in body image dissatisfaction. When analysed according to exposure type, appearance comparison only significantly predicted body image dissatisfaction change for those exposed to Facebook, but not conventional media. Facebook use was found to predict higher baseline body image dissatisfaction and was associated with higher eating disorder risk. The findings suggest the importance of extending the body image dissatisfaction literature by taking into account emerging social media formats. It is recommended that interventions for body image dissatisfaction and eating disorders consider appearance comparison processes elicited by thin-ideal content on social media forums, such as Facebook, in addition to conventional media.
Sousa, Paula; Bastos, Ana Pinto; Venâncio, Carla; Vaz, Ana Rita; Brandão, Isabel; Costa, José Maia; Machado, Paulo; Conceição, Eva
2014-01-01
Depressive symptoms have been reported as prevalent after bariatric surgery. This study aims to analyze the role of weight, eating behaviors and body image in depressive symptomatology in bariatric surgery patients assessed post-operatively. This is a cross-sectional study including 52 bariatric surgery patients assessed post-operatively with a follow-up time ranging from 22 to 132 months. Psychological assessment included a clinical interview (Eating Disorder Examination) to assess eating disorders psychopathology, and three self-report measures: Outcome Questionnaire 45--general distress; Beck Depression Inventory--depressive symptoms; and Body Shape Questionnaire--body image. Our data show that depressive symptoms after surgery are associated with loss of control over eating, increased concerns with body image, and body mass index regain. Multiple linear regressions was tested including these variables and showed that body mass index regain after surgery, loss of control over eating and concerns with body image significantly explained 50% of the variance of post-operative depressive symptoms, being the concern with body image the most significant variable: greater dissatisfaction with body image was associated with more depressive symptoms. The results of this study showed that a subgroup of patients presents a significant weight gain after bariatric surgery, which is associated with episodes of loss of control over eating, concerns with body image and depressive symptoms. These results stress the relevance of body image concerns after surgery and the importance of clinically addressing these issues to optimize psychological functioning after bariatric surgery.
Bianchi, Dora; Morelli, Mara; Baiocco, Roberto; Chirumbolo, Antonio
2017-12-01
Sexting motivations during adolescence are related to developmental dimensions-such as sexual identity and body-image development-or harmful intentions-such as aggression among peers and partners. Sociocultural and media models can affect explorations of sexuality and redefinitions of body image, which in turn are related to sexting behaviors and motivations. In this study, we investigated the roles of body-esteem attribution, the internalization of media models, and body objectification as predictors of three sexting motivations: sexual purposes, body-image reinforcement, and instrumental/aggravated reasons. The participants were 190 Italian adolescents aged from 13 to 20 years old (M age = 17.4, SD age = 1.8; 44.7% females). Sexual purposes were predicted by body-esteem attribution and body objectification; body-image reinforcement was predicted by the internalization of media models, and instrumental/aggravated reasons were not predicted by any variable. Thus, only sexual purposes and body-image reinforcement appeared to be affected by body-image concerns due to media models. Copyright © 2017 The Foundation for Professionals in Services for Adolescents. Published by Elsevier Ltd. All rights reserved.
Alleva, Jessica M; Martijn, Carolien; Van Breukelen, Gerard J P; Jansen, Anita; Karos, Kai
2015-09-01
This study tested Expand Your Horizon, a programme designed to improve body image by training women to focus on the functionality of their body using structured writing assignments. Eighty-one women (Mage=22.77) with a negative body image were randomised to the Expand Your Horizon programme or to an active control programme. Appearance satisfaction, functionality satisfaction, body appreciation, and self-objectification were measured at pretest, posttest, and one-week follow-up. Following the intervention, participants in the Expand Your Horizon programme experienced greater appearance satisfaction, functionality satisfaction, and body appreciation, and lower levels of self-objectification, compared to participants in the control programme. Partial eta-squared effect sizes were of small to medium magnitude. This study is the first to show that focusing on body functionality can improve body image and reduce self-objectification in women with a negative body image. These findings provide support for addressing body functionality in programmes designed to improve body image. Copyright © 2015 Elsevier Ltd. All rights reserved.
Nanoparticles for Biomedical Imaging: Fundamentals of Clinical Translation
Choi, Hak Soo; Frangioni, John V.
2010-01-01
Because of their large size compared to small molecules, and their multi-functionality, nanoparticles (NPs) hold promise as biomedical imaging, diagnostic, and theragnostic agents. However, the key to their success hinges on a detailed understanding of their behavior after administration into the body. NP biodistribution, target binding, and clearance are a complex function of their physicochemical properties in serum, which include hydrodynamic diameter, solubility, stability, shape and flexibility, surface charge, composition, and formulation. Moreover, many materials used to construct NPs have real or potential toxicity, or may interfere with other medical tests. In this review, we discuss the design considerations that mediate NP behavior in the body and the fundamental principles that govern clinical translation. By analyzing those nanomaterials that have already received regulatory approval, most of which are actually therapeutic agents, we attempt to predict which types of NPs hold potential as diagnostic agents for biomedical imaging. Finally, using quantum dots as an example, we provide a framework for deciding whether an NP-based agent is the best choice for a particular clinical application. PMID:21084027
NASA Astrophysics Data System (ADS)
O'Reilly, Shannon E.; Plyku, Donika; Sgouros, George; Fahey, Frederic H.; Treves, S. Ted; Frey, Eric C.; Bolch, Wesley E.
2016-03-01
Published guidelines for administered activity to pediatric patients undergoing diagnostic nuclear medicine imaging are currently obtained through expert consensus of the minimum values as a function of body weight as required to yield diagnostic quality images. We have previously shown that consideration of body habitus is also important in obtaining diagnostic quality images at the lowest administered activity. The objective of this study was to create a series of computational phantoms that realistically portray the anatomy of the pediatric patient population which can be used to develop and validate techniques to minimize radiation dose while maintaining adequate image quality. To achieve this objective, we have defined an imaging risk index that may be used in future studies to develop pediatric patient dosing guidelines. A population of 48 hybrid phantoms consisting of non-uniform B-spline surfaces and polygon meshes was generated. The representative ages included the newborn, 1 year, 5 year, 10 year and 15 year male and female. For each age, the phantoms were modeled at their 10th, 50th, and 90th height percentile each at a constant 50th weight percentile. To test the impact of kidney size, the newborn phantoms were modeled with the following three kidney volumes: -15%, average, and +15%. To illustrate the impact of different morphologies on dose optimization, we calculated the effective dose for each phantom using weight-based 99mTc-DMSA activity administration. For a given patient weight, body habitus had a considerable effect on effective dose. Substantial variations were observed in the risk index between the 10th and 90th percentile height phantoms from the 50th percentile phantoms for a given age, with the greatest difference being 18%. There was a dependence found between kidney size and risk of radiation induced kidney cancer, with the highest risk indices observed in newborns with the smallest kidneys. Overall, the phantoms and techniques in this study can be used to provide data to refine dosing guidelines for pediatric nuclear imaging studies while taking into account the effects on both radiation dose and image quality. This work was supported by:R01 EB013558 with the National Institute for Biomedical Imaging and Bioengineering (NIBIB).
Automatic respiration tracking for radiotherapy using optical 3D camera
NASA Astrophysics Data System (ADS)
Li, Tuotuo; Geng, Jason; Li, Shidong
2013-03-01
Rapid optical three-dimensional (O3D) imaging systems provide accurate digitized 3D surface data in real-time, with no patient contact nor radiation. The accurate 3D surface images offer crucial information in image-guided radiation therapy (IGRT) treatments for accurate patient repositioning and respiration management. However, applications of O3D imaging techniques to image-guided radiotherapy have been clinically challenged by body deformation, pathological and anatomical variations among individual patients, extremely high dimensionality of the 3D surface data, and irregular respiration motion. In existing clinical radiation therapy (RT) procedures target displacements are caused by (1) inter-fractional anatomy changes due to weight, swell, food/water intake; (2) intra-fractional variations from anatomy changes within any treatment session due to voluntary/involuntary physiologic processes (e.g. respiration, muscle relaxation); (3) patient setup misalignment in daily reposition due to user errors; and (4) changes of marker or positioning device, etc. Presently, viable solution is lacking for in-vivo tracking of target motion and anatomy changes during the beam-on time without exposing patient with additional ionized radiation or high magnet field. Current O3D-guided radiotherapy systems relay on selected points or areas in the 3D surface to track surface motion. The configuration of the marks or areas may change with time that makes it inconsistent in quantifying and interpreting the respiration patterns. To meet the challenge of performing real-time respiration tracking using O3D imaging technology in IGRT, we propose a new approach to automatic respiration motion analysis based on linear dimensionality reduction technique based on PCA (principle component analysis). Optical 3D image sequence is decomposed with principle component analysis into a limited number of independent (orthogonal) motion patterns (a low dimension eigen-space span by eigen-vectors). New images can be accurately represented as weighted summation of those eigen-vectors, which can be easily discriminated with a trained classifier. We developed algorithms, software and integrated with an O3D imaging system to perform the respiration tracking automatically. The resulting respiration tracking system requires no human intervene during it tracking operation. Experimental results show that our approach to respiration tracking is more accurate and robust than the methods using manual selected markers, even in the presence of incomplete imaging data.
Swami, Viren; Tran, Ulrich S; Brooks, Louise Hoffmann; Kanaan, Laura; Luesse, Ellen-Marlene; Nader, Ingo W; Pietschnig, Jakob; Stieger, Stefan; Voracek, Martin
2013-04-01
Studies have suggested associations between personality dimensions and body image constructs, but these have not been conclusively established. In two studies, we examined direct associations between the Big Five dimensions and two body image constructs, actual-ideal weight discrepancy and body appreciation. In Study 1, 950 women completed measures of both body image constructs and a brief measure of the Big Five dimensions. In Study 2,339 women completed measures of the body image constructs and a more reliable measure of the Big Five. Both studies showed that Neuroticism was significantly associated with actual-ideal weight discrepancy (positively) and body appreciation (negatively) once the effects of body mass index and social status had been accounted for. These results are consistent with the suggestion that Neuroticism is a trait of public health significance requiring attention by body image scholars. © 2012 The Authors. Scandinavian Journal of Psychology © 2012 The Scandinavian Psychological Associations.
Kashiwagi, Toru; Yutani, Kenji; Fukuchi, Minoru; Naruse, Hitoshi; Iwasaki, Tadaaki; Yokozuka, Koichi; Inoue, Shinichi; Kondo, Shoji
2002-06-01
Improvements in image quality and quantitation measurement, and the addition of detailed anatomical structures are important topics for single-photon emission tomography (SPECT). The goal of this study was to develop a practical system enabling both nonuniform attenuation correction and image fusion of SPECT images by means of high-performance X-ray computed tomography (CT). A SPECT system and a helical X-ray CT system were placed next to each other and linked with Ethernet. To avoid positional differences between the SPECT and X-ray CT studies, identical flat patient tables were used for both scans; body distortion was minimized with laser beams from the upper and lateral directions to detect the position of the skin surface. For the raw projection data of SPECT, a scatter correction was performed with the triple energy window method. Image fusion of the X-ray CT and SPECT images was performed automatically by auto-registration of fiducial markers attached to the skin surface. After registration of the X-ray CT and SPECT images, an X-ray CT-derived attenuation map was created with the calibration curve for 99mTc. The SPECT images were then reconstructed with scatter and attenuation correction by means of a maximum likelihood expectation maximization algorithm. This system was evaluated in torso and cylindlical phantoms and in 4 patients referred for myocardial SPECT imaging with Tc-99m tetrofosmin. In the torso phantom study, the SPECT and X-ray CT images overlapped exactly on the computer display. After scatter and attenuation correction, the artifactual activity reduction in the inferior wall of the myocardium improved. Conversely, the incresed activity around the torso surface and the lungs was reduced. In the abdomen, the liver activity, which was originally uniform, had recovered after scatter and attenuation correction processing. The clinical study also showed good overlapping of cardiac and skin surface outlines on the fused SPECT and X-ray CT images. The effectiveness of the scatter and attenuation correction process was similar to that observed in the phantom study. Because the total time required for computer processing was less than 10 minutes, this method of attenuation correction and image fusion for SPECT images is expected to become popular in clinical practice.
Chudecka, Monika; Lubkowska, Anna; Leźnicka, Katarzyna; Krupecki, Krzysztof
2015-01-01
In order to achieve higher efficiency of training and thus better athletic performance, new research and diagnostic methods are constantly being developed, particularly those that are non-invasive. One such a method is thermography, suitable for quantitative and therefore objective evaluation of variables, such as changes in the temperature of the skin covering working muscles. The aim of this study was to use a thermal imaging infrared camera to evaluate temperature changes of symmetric body surfaces over symmetrically working muscles of male scullers after exercising on a two-oared rowing ergometer and compare these to asymmetrically working muscles of handball players after an endurance training session containing elements of an actual game. In the scullers, the mean temperature of body surfaces was always lower post than pre exercise, with no significant differences in an average temperature drop between the opposite sides, indicating that the work of the muscles involved in the physical exertion on the rowing ergometer was symmetrical. In contrast, in the handball players, skin temperatures in symmetric areas over the asymmetrically working muscles showed statistically significant differences between sides, which was associated with the functional asymmetry of training. This study indicates that thermal imaging may be useful for coaches in the evaluation of technical preparations in sports in which equal involvement of symmetric muscles is a condition of success, e.g. in scullers. PMID:26839614
Tunnel Detection Using Seismic Methods
NASA Astrophysics Data System (ADS)
Miller, R.; Park, C. B.; Xia, J.; Ivanov, J.; Steeples, D. W.; Ryden, N.; Ballard, R. F.; Llopis, J. L.; Anderson, T. S.; Moran, M. L.; Ketcham, S. A.
2006-05-01
Surface seismic methods have shown great promise for use in detecting clandestine tunnels in areas where unauthorized movement beneath secure boundaries have been or are a matter of concern for authorities. Unauthorized infiltration beneath national borders and into or out of secure facilities is possible at many sites by tunneling. Developments in acquisition, processing, and analysis techniques using multi-channel seismic imaging have opened the door to a vast number of near-surface applications including anomaly detection and delineation, specifically tunnels. Body waves have great potential based on modeling and very preliminary empirical studies trying to capitalize on diffracted energy. A primary limitation of all seismic energy is the natural attenuation of high-frequency energy by earth materials and the difficulty in transmitting a high- amplitude source pulse with a broad spectrum above 500 Hz into the earth. Surface waves have shown great potential since the development of multi-channel analysis methods (e.g., MASW). Both shear-wave velocity and backscatter energy from surface waves have been shown through modeling and empirical studies to have great promise in detecting the presence of anomalies, such as tunnels. Success in developing and evaluating various seismic approaches for detecting tunnels relies on investigations at known tunnel locations, in a variety of geologic settings, employing a wide range of seismic methods, and targeting a range of uniquely different tunnel geometries, characteristics, and host lithologies. Body-wave research at the Moffat tunnels in Winter Park, Colorado, provided well-defined diffraction-looking events that correlated with the subsurface location of the tunnel complex. Natural voids related to karst have been studied in Kansas, Oklahoma, Alabama, and Florida using shear-wave velocity imaging techniques based on the MASW approach. Manmade tunnels, culverts, and crawl spaces have been the target of multi-modal analysis in Kansas and California. Clandestine tunnels used for illegal entry into the U.S. from Mexico were studied at two different sites along the southern border of California. All these studies represent the empirical basis for suggesting surface seismic has a significant role to play in tunnel detection and that methods are under development and very nearly at hand that will provide an effective tool in appraising and maintaining parameter security. As broadband sources, gravity-coupled towed spreads, and automated analysis software continues to make advancements, so does the applicability of routine deployment of seismic imaging systems that can be operated by technicians with interpretation aids for nearly real-time target selection. Key to making these systems commercial is the development of enhanced imaging techniques in geologically noisy areas and highly variable surface terrain.
Thermal-infrared imager TIR on Hayabusa2: Result of ground calibration
NASA Astrophysics Data System (ADS)
Okada, T.; Fukuhara, T.; Tanaka, S.; Taguchi, M.; Arai, T.; Imamura, T.; Senshu, H.; Sekiguchi, T.; Ogawa, Y.; Demura, H.; Sakatani, N.; Horikawa, Y.; Helbert, J.; Mueller, T.; Hagermann, A.; H. TIR-Team
2014-07-01
Thermal-infrared imager TIR on Hayabusa2 will image C-class NEA (162173)1999JU3 in 8-12 micrometer band. TIR observation is not only for scientific investigation of asteroid thermo-physical properties, but also for assessment of landing site selection and safety descent operation. Hayabusa2 is the follow-on mission after Hayabusa that accomplished the first asteroid sample-return in 2010. Hayabusa2 is primarily an asteroid sample-return mission, but remote sensing of the asteroid is also essential to understand the global nature of asteroid, complementary to returned samples. Active impact experiment using SCI (Small Carry-on Impactor) and surface measurements using MASCOT lander which carries camera, NIR imaging microscope, radiator, and magnetometer, as well as hopping rover MINERVA are also planned in this mission. A thermal-infrared imager is to image the surface temperature profile and its temporal variation by asteroid rotation. TIR adopts a non- cooled bolometer array NEC 320A with 328×248 effective pixels. Its fields of view covers 16°×12° with 0.05° per pixel. The image can be taken at 60 Hz, and summation onboard can be set from 1 to 128 to improve signal-to-background ratio. The imaging is interlaced with the shutter open and close. The subtraction of shutter-close image (bias data) from shutter-open image (biased image) produces the realistic thermal images. To improve more accurate data in radiation intensity, those realistic thermal images can be summed by onboard software. Data compression is also conducted by onboard software[1]. TIR is based on LIR on Akatsuki Venus climate orbiter [2]. We know something about C-type meteorites but little about C-class asteroids. We know little about asteroid 1999JU3 but it is considered as something like low-dense and huge-cratered as asteroid 253 Mathilde, or like rubble-piled, sedimented small asteroid 25143 Itokawa. To investigate the nature of asteroid and its formation processes, thermo-physical properties of boulders or materials inside huge crates are important targets to observe. Evident thermal measurements are conducted to compare them with thermal model for ground observation, and to investigate Yarkovsky or YORP effects. If the orbiting satellites or dust clouds exist at the surroundings, asteroid mass or dust properties will be determined. Cooperative observation with radiometer on MASCOT is also important to determine the thermo-physical properties precisely. We conducted radiometric and geometric calibration for TIR. We use the cavity black-body and oil-bath based black-body plates for calibration at higher temperature from 25 to 150 °C. We also use the black-body plate inside the vacuum chamber for lower temperature from -40 to +50 °C. Both of appratuses share the temperature region from 25 to 50 °C. For geometrical correction, collimator is used measure the square-shaped target. For cross-calibration, the same targets are used for other instruments: 30 cm diameter serpentine target plate with heater is shared with MARA radiometer on MASCOT, and the same meteorite samples (Murchison CM2 meteorites, Murray CM2 meteorites) are shared with NIRS3 spectrometer and ONC camera. The landscape and the walls of test sites were imaged for demonstration. TIR is able to measure the surface temperature from -40 to 150 °C at the central region of images (a little wider range but less resolution at non-central region). The absolute temperature is less than 2 °C, and the resolution (NETD) is less than 0.3 °C for most of conditions. TIR is well calibrated thermal-infrared imager to take thermal images of asteroid and investigate its thermo-physical properties. This type of instruments will be used in other future missions for scientific and operational purposes.
Body-wide anatomy recognition in PET/CT images
NASA Astrophysics Data System (ADS)
Wang, Huiqian; Udupa, Jayaram K.; Odhner, Dewey; Tong, Yubing; Zhao, Liming; Torigian, Drew A.
2015-03-01
With the rapid growth of positron emission tomography/computed tomography (PET/CT)-based medical applications, body-wide anatomy recognition on whole-body PET/CT images becomes crucial for quantifying body-wide disease burden. This, however, is a challenging problem and seldom studied due to unclear anatomy reference frame and low spatial resolution of PET images as well as low contrast and spatial resolution of the associated low-dose CT images. We previously developed an automatic anatomy recognition (AAR) system [15] whose applicability was demonstrated on diagnostic computed tomography (CT) and magnetic resonance (MR) images in different body regions on 35 objects. The aim of the present work is to investigate strategies for adapting the previous AAR system to low-dose CT and PET images toward automated body-wide disease quantification. Our adaptation of the previous AAR methodology to PET/CT images in this paper focuses on 16 objects in three body regions - thorax, abdomen, and pelvis - and consists of the following steps: collecting whole-body PET/CT images from existing patient image databases, delineating all objects in these images, modifying the previous hierarchical models built from diagnostic CT images to account for differences in appearance in low-dose CT and PET images, automatically locating objects in these images following object hierarchy, and evaluating performance. Our preliminary evaluations indicate that the performance of the AAR approach on low-dose CT images achieves object localization accuracy within about 2 voxels, which is comparable to the accuracies achieved on diagnostic contrast-enhanced CT images. Object recognition on low-dose CT images from PET/CT examinations without requiring diagnostic contrast-enhanced CT seems feasible.
Kindrat, Shauna
2007-01-01
Little is known about perceptions of body image in women diagnosed with relapsing remitting multiple sclerosis (RRMS). This descriptive correlational study was conducted to describe how women perceive their body image while living with RRMS, and to examine a potential relationship between body image and depression in women who have RRMS. A convenience sample of 30 women from a western Canadian multiple sclerosis (MS) clinic completed a demographic questionnaire, the Body-Image Ideals Questionnaire (BIQ), and the Beck Depression Inventory Short Form (BDI-SF). Body image and depression scores were highly correlated (r = 0.814, p = 0.01) indicating that a more positive body image was associated with less depression. The findings of this study suggest that there are important psychological aspects to which clinicians might need to attend when working with women who have RRMS. However, further research needs to be done in this area.
NASA Astrophysics Data System (ADS)
Zhao, Shaoshuai; Ni, Chen; Cao, Jing; Li, Zhengqiang; Chen, Xingfeng; Ma, Yan; Yang, Leiku; Hou, Weizhen; Qie, Lili; Ge, Bangyu; Liu, Li; Xing, Jin
2018-03-01
The remote sensing image is usually polluted by atmosphere components especially like aerosol particles. For the quantitative remote sensing applications, the radiative transfer model based atmospheric correction is used to get the reflectance with decoupling the atmosphere and surface by consuming a long computational time. The parallel computing is a solution method for the temporal acceleration. The parallel strategy which uses multi-CPU to work simultaneously is designed to do atmospheric correction for a multispectral remote sensing image. The parallel framework's flow and the main parallel body of atmospheric correction are described. Then, the multispectral remote sensing image of the Chinese Gaofen-2 satellite is used to test the acceleration efficiency. When the CPU number is increasing from 1 to 8, the computational speed is also increasing. The biggest acceleration rate is 6.5. Under the 8 CPU working mode, the whole image atmospheric correction costs 4 minutes.
The Association Between Body Image and Smoking Cessation Among Individuals Living with HIV/AIDS
Fingeret, Michelle Cororve; Vidrine, Damon J.; Arduino, Roberto C.; Gritz, Ellen R.
2007-01-01
Lower smoking cessation rates are associated with body image concerns in the general population. This relationship is particularly important to study in individuals living with HIV/AIDS due to alarmingly high smoking rates and considerable bodily changes experienced with HIV disease progression and treatment. The association between body image and smoking cessation rates was examined among individuals living with HIV/AIDS participating in a smoking cessation intervention. Body image concerns were significantly associated with depression, anxiety, stress, and social support, all variables known to affect cessation rates. However, reduced quit rates were found among individuals reporting elevated and low levels of body image concerns at the end of treatment. These findings suggest a unique relationship between smoking and body image among individuals living with HIV/AIDS. Further research is needed to examine these effects and whether moderate levels of body image concerns in this population reflect realistic body perceptions associated with positive mental health. PMID:18089265
Watson, Brittany; Fuller-Tyszkiewicz, Matthew; Broadbent, Jaclyn; Skouteris, Helen
2015-06-01
Literature reporting body image disturbances across the perinatal period has produced inconsistent findings, owing to the complexity of body image experiences during pregnancy and the first year postpartum. Existing qualitative data might provide potential avenues to advance understanding of pregnancy-related body image experiences and guide future quantitative research. The present systematic review synthesised the findings of 10 qualitative studies exploring the body image experiences of women through the perinatal period, albeit the majority focused only on pregnancy. Themes emerging included malleability of body image ideals across pregnancy (including the shift from aesthetic to functional concerns about one's appearance), the salience of stomach and breasts for self-rated body satisfaction, and perceived pressure to limit weight gain across pregnancy in order to return quickly to pre-pregnancy figure following birth. These qualitative findings suggest greater complexity of body image experiences during perinatal period than can be captured by typically used self-report measures. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.
The Effects of Immigration and Media Influence on Body Image Among Pakistani Men
Saghir, Sheeba; Hyland, Lynda
2017-01-01
This study examined the role of media influence and immigration on body image among Pakistani men. Attitudes toward the body were compared between those living in Pakistan (n = 56) and those who had immigrated to the United Arab Emirates (n = 58). Results of a factorial analysis of variance demonstrated a significant main effect of immigrant status. Pakistani men living in the United Arab Emirates displayed poorer body image than those in the Pakistan sample. Results also indicated a second main effect of media influence.Those highly influenced by the media displayed poorer body image. No interaction effect was observed between immigrant status and media influence on body image. These findings suggest that media influence and immigration are among important risk factors for the development of negative body image among non-Western men. Interventions designed to address the negative effects of the media and immigration may be effective at reducing body image disorders and other related health problems in this population. PMID:28625116
The Effects of Immigration and Media Influence on Body Image Among Pakistani Men.
Saghir, Sheeba; Hyland, Lynda
2017-07-01
This study examined the role of media influence and immigration on body image among Pakistani men. Attitudes toward the body were compared between those living in Pakistan ( n = 56) and those who had immigrated to the United Arab Emirates ( n = 58). Results of a factorial analysis of variance demonstrated a significant main effect of immigrant status. Pakistani men living in the United Arab Emirates displayed poorer body image than those in the Pakistan sample. Results also indicated a second main effect of media influence.Those highly influenced by the media displayed poorer body image. No interaction effect was observed between immigrant status and media influence on body image. These findings suggest that media influence and immigration are among important risk factors for the development of negative body image among non-Western men. Interventions designed to address the negative effects of the media and immigration may be effective at reducing body image disorders and other related health problems in this population.
Adolescent Girls and Body Image: Influence of Outdoor Adventure on Healthy Living
ERIC Educational Resources Information Center
Barr-Wilson, Susie K.; Roberts, Nina S.
2016-01-01
Outdoor adventure may improve body image. However, minimal research exists on the effect outdoor adventure has on body image in adolescent girls, a demographic continually plagued by negative body image. In response, this exploratory study considered the influence of one outdoor adventure program in the San Francisco Bay Area. Through…
Cross-cultural relationships between self-concept and body image in high school-age boys.
Austin, J K; Champion, V L; Tzeng, O C
1989-08-01
The relationship between self-concept and body image was investigated through a secondary analysis of data from a sample of 1,200 high school male students from 30 language/culture communities (Osgood, May, & Myron, 1975). Subjects rated adjectives pertaining to self-concept and body image using 7-step semantic differential bipolar scales. Adjectives were related to the dimensions of Evaluation, Potency, and Activity. Correlation, factor analysis, and multiple regression were utilized to examine multivariate relationships among self-concept dimensions and body-image dimensions. Significant positive correlations were found between self-concept and body image. In addition, significant positive relationships were found when self-concept factors were regressed on the body-image factor (R2 = .49 to .57, p less than or equal to .001) for Activity and Potency. Results support the existence of a strong positive relationship between self-concept and body image across the 30 cultures involved. Findings have important implications for nursing in assessment and interventions with clients who have deficits in either self-concept or body image.
Testing methods of pressure distribution of bra cups on breasts soft tissue
NASA Astrophysics Data System (ADS)
Musilova, B.; Nemcokova, R.; Svoboda, M.
2017-10-01
Objective of this study is to evaluate testing methods of pressure distribution of bra cups on breasts soft tissue, the system which do not affect the space between the wearer's body surface and bra cups and thus do not influence the geometry of the measured body surface and thus investigate the functional performance of brassieres. Two measuring systems were used for the pressure comfort evaluating: 1) The pressure distribution of a wearing bra during 20 minutes on women's breasts has been directly measured using pressure sensor, a dielectricum which is elastic polyurethane foam bra cups. Twelve points were measured in bra cups. 2) Simultaneously the change of temperature in the same points bra was tested with the help of noncontact system the thermal imager. The results indicate that both of those systems can identify different pressure distribution at different points. The same size of bra designing features bra cups made from the same material and which is define by the help of same standardised body dimensions (bust and underbust) can cause different value of a compression on different shape of a woman´s breast soft tissue.
Body Wave and Ambient Noise Tomography of Makushin Volcano, Alaska
NASA Astrophysics Data System (ADS)
Lanza, F.; Thurber, C. H.; Syracuse, E. M.; Ghosh, A.; LI, B.; Power, J. A.
2017-12-01
Located in the eastern portion of the Alaska-Aleutian subduction zone, Makushin Volcano is among the most active volcanoes in the United States and has been classified as high threat based on eruptive history and proximity to the City of Unalaska and international air routes. In 2015, five individual seismic stations and three mini seismic arrays of 15 stations each were deployed on Unalaska island to supplement the Alaska Volcano Observatory (AVO) permanent seismic network. This temporary array was operational for one year. Taking advantage of the increased azimuthal coverage and the array's increased earthquake detection capability, we developed body-wave Vp and Vp/Vs seismic images of the velocity structure beneath the volcano. Body-wave tomography results show a complex structure with the upper 5 km of the crust dominated by both positive and negative Vp anomalies. The shallow high-Vp features possibly delineate remnant magma pathways or conduits. Low-Vp regions are found east of the caldera at approximately 6-9 km depth. This is in agreement with previous tomographic work and geodetic models, obtained using InSAR data, which had identified this region as a possible long-term source of magma. We also observe a high Vp/Vs feature extending between 7 and 12 km depth below the caldera, possibly indicating partial melting, although the resolution is diminished at these depths. The distributed stations allow us to further complement body-wave tomography with ambient noise imaging and to obtain higher quality of Vs images. Our data processing includes single station data preparation and station-pair cross-correlation steps (Bensen et al., 2007), and the use of the phase weighted stacking method (Schimmel and Gallart, 2007) to improve the signal-to-noise ratio of the cross-correlations. We will show surface-wave dispersion curves, group velocity maps, and ultimately a 3D Vs image. By performing both body wave and ambient noise tomography, we provide a high-resolution tomographic image of Makushin Volcano as well as better-constrained earthquake locations, thus enhancing AVO's monitoring and forecasting efforts.
Perceived face size in healthy adults.
D'Amour, Sarah; Harris, Laurence R
2017-01-01
Perceptual body size distortions have traditionally been studied using subjective, qualitative measures that assess only one type of body representation-the conscious body image. Previous research on perceived body size has typically focused on measuring distortions of the entire body and has tended to overlook the face. Here, we present a novel psychophysical method for determining perceived body size that taps into implicit body representation. Using a two-alternative forced choice (2AFC), participants were sequentially shown two life-size images of their own face, viewed upright, upside down, or tilted 90°. In one interval, the width or length dimension was varied, while the other interval contained an undistorted image. Participants reported which image most closely matched their own face. An adaptive staircase adjusted the distorted image to hone in on the image that was equally likely to be judged as matching their perceived face as the accurate image. When viewed upright or upside down, face width was overestimated and length underestimated, whereas perception was accurate for the on-side views. These results provide the first psychophysically robust measurements of how accurately healthy participants perceive the size of their face, revealing distortions of the implicit body representation independent of the conscious body image.
Jiang, Michelle Y W; Vartanian, Lenny R
2016-03-01
This study examined the causal relationship between attention and memory bias toward thin-body images, and the indirect effect of attending to thin-body images on women's body dissatisfaction via memory. In a 2 (restrained vs. unrestrained eaters) × 2 (long vs. short exposure) quasi-experimental design, female participants (n = 90) were shown images of thin models for either 7 s or 150 ms, and then completed a measure of body dissatisfaction and a recognition test to assess their memory for the images. Both restrained and unrestrained eaters in the long exposure condition had better recognition memory for images of thin models than did those in the short exposure condition. Better recognition memory for images of thin models was associated with lower body dissatisfaction. Finally, exposure duration to images of thin models had an indirect effect on body dissatisfaction through recognition memory. These findings suggest that memory for body-related information may be more critical in influencing women's body image than merely the exposure itself, and that targeting memory bias might enhance the effectiveness of cognitive bias modification programs.
Dual-Modality Optical/PET Imaging of PARP1 in Glioblastoma.
Carlucci, Giuseppe; Carney, Brandon; Brand, Christian; Kossatz, Susanne; Irwin, Christopher P; Carlin, Sean D; Keliher, Edmund J; Weber, Wolfgang; Reiner, Thomas
2015-12-01
The current study presents [(18)F]PARPi-FL as a bimodal fluorescent/positron emission tomography (PET) agent for PARP1 imaging. [(18)F]PARPi-FL was obtained by (19)F/(18)F isotopic exchange and PET experiments, biodistribution studies, surface fluorescence imaging, and autoradiography carried out in a U87 MG glioblastoma mouse model. [(18)F]PARPi-FL showed high tumor uptake in vivo and ex vivo in small xenografts (< 2 mm) with both PET and optical imaging technologies. Uptake of [(18)F]PARPi-FL in blocked U87 MG tumors was reduced by 84 % (0.12 ± 0.02 %injected dose/gram (%ID/g)), showing high specificity of the binding. PET imaging showed accumulation in the tumor (1 h p.i.), which was confirmed by ex vivo phosphor autoradiography. The fluorescent component of [(18)F]PARPi-FL enables cellular resolution optical imaging, while the radiolabeled component of [(18)F]PARPi-FL allows whole-body deep-tissue imaging of malignant growth.
Self-enhancing effects of exposure to thin-body images.
Joshi, Ramona; Herman, C Peter; Polivy, Janet
2004-04-01
This study examines the effect of thin-body media images on mood, self-esteem, and self-image ratings of restrained and unrestrained eaters. A secondary purpose was to examine whether these effects were influenced by exposure duration. Under the guise of a perception study, participants were exposed to thin-body or control advertisements (e.g., perfume bottles) for either 7 or 150 ms and then completed a questionnaire packet. Restrained eaters reported more favorable self-image and social self-esteem (but not appearance self-esteem) scores after exposure to thin-body images than after exposure to control advertisements. The self-image and social self-esteem scores of unrestrained eaters were unaffected by advertisement type, but their appearance self-esteem scores were lower after exposure to thin-body advertisements. No differences were found for mood ratings and total self-esteem. We discuss restraint status as a moderator of the effects of thin-body images on women's body image. Copyright 2004 by Wiley Periodicals, Inc. Int J Eat Disord 35: 333-341, 2004.
A biopsychosocial model of body image concerns and disordered eating in early adolescent girls.
Rodgers, Rachel F; Paxton, Susan J; McLean, Siân A
2014-05-01
Body image and eating concerns are prevalent among early adolescent girls, and associated with biological, psychological and sociocultural risk factors. To date, explorations of biopsychosocial models of body image concerns and disordered eating in early adolescent girls are lacking. A sample of 488 early adolescent girls, mean age = 12.35 years (SD = 0.53), completed a questionnaire assessing depressive symptoms, self-esteem, body mass index (BMI), sociocultural appearance pressures, thin-ideal internalization, appearance comparison, body image concerns and disordered eating. Structural equation modelling was conducted to test a hypothetical model in which internalization and comparison were mediators of the effect of both negative affect and sociocultural influences on body image concerns and disordered eating. In addition, the model proposed that BMI would impact body image concerns. Although the initial model was a poor fit to the data, the fit was improved after the addition of a direct pathway between negative affect and bulimic symptoms. The final model explained a large to moderate proportion of the variance in body image and eating concerns. This study supports the role of negative affect in biopsychosocial models of the development of body image concerns and disordered eating in early adolescent girls. Interventions including strategies to address negative affect as well as sociocultural appearance pressures may help decrease the risk for body image concerns and disordered eating among this age group.
A pilot study examining correlates of body image among women living with SCI.
Bassett, R L; Martin Ginis, K A; Buchholz, A C
2009-06-01
Cross-sectional pilot study. To explore correlates of body image among women with spinal cord injury (SCI), within the framework of Cash's cognitive behavioral model of body image. Hamilton, Ontario, Canada. Women with SCI (N=11, 64% with tetraplegia) reported their functional and appearance body image (Adult Body Satisfaction Questionnaire). A 3-day recall of leisure time physical activity (LTPA), three measures of body composition (that is, weight, waist circumference, body fat) and several demographic variables were assessed as potential correlates. Appearance satisfaction was negatively correlated with all three measures of body composition and positively correlated with years postinjury. Functional satisfaction was positively correlated with years postinjury, and negatively correlated with various LTPA variables. Functional and appearance body image may improve with time following SCI. Body composition may impact satisfaction with physical appearance for some women. The negative relationship between LTPA and functional satisfaction merits further examination, as functional dissatisfaction may motivate individuals to engage in certain types and intensities of LTPA. Correlates of body image differ between appearance and functional satisfaction. Future research should examine appearance and functional satisfaction separately among women with SCI.
In vitro bioactivity of micro metal injection moulded stainless steel with defined surface features.
Bitar, Malak; Friederici, Vera; Imgrund, Philipp; Brose, Claudia; Bruinink, Arie
2012-05-04
Micrometre- and nanometre-scale surface structuring with ordered topography features may dramatically enhance orthopaedic implant integration. In this study we utilised a previously optimised micron metal injection moulding (µ-MIM) process to produce medical grade stainless steel surfaces bearing micrometre scale, protruding, hemispheres of controlled dimensions and spatial distribution. Additionally, the structured surfaces were characterised by the presence of submicrometre surface roughness resulting from metal grain boundary formation. Following cytocompatibility (cytotoxicity) evaluation using 3T3 mouse fibroblast cell line, the effect on primary human cell functionality was assessed focusing on cell attachment, shape and cytoskeleton conformation. In this respect, and by day 7 in culture, significant increase in focal adhesion size was associated with the microstructured surfaces compared to the planar control. The morphological conformation of the seeded cells, as revealed by fluorescence cytoskeleton labelling, also appeared to be guided in the vertical dimension between the hemisphere bodies. Quantitative evaluation of this guidance took place using live cytoplasm fluorescence labelling and image morphometry analysis utilising both, compactness and elongation shape descriptors. Significant increase in cell compactness was associated with the hemisphere arrays indicating collective increase in focused cell attachment to the hemisphere bodies across the entire cell population. Micrometre-scale hemisphere array patterns have therefore influenced cell attachment and conformation. Such influence may potentially aid in enhancing key cellular events such as, for example, neo-osteogenesis on implanted orthopaedic surfaces.
NASA Astrophysics Data System (ADS)
Alemu, H.; Velpuri, N.; Senay, G. B.; Angerer, J.
2011-12-01
Information on the location and availability of water resources is a day-to-day challenge for pastoralists in the Sahelian region of Mali. They move seasonally along their migration corridors in search for water and forage. Satellite data can be used to map the spatial and temporal dynamics of these water resources. In this work, ASTER imagery is selected for its high (15 m) spatial resolution and suitable spectral bands for water body identification. Our research indicates that as most of the waterholes of interest in the study area are very shallow and heavily sediment-laden, using only one of those commonly used water identification indices such as the Simple Band Ratio (SBR), or the Normalized Difference Water Index (NDWI) alone does not help in effectively characterizing all the surface water bodies in the region. As a result, we used four different spectral indices to identify surface water features: (i) Simple Band Ratio (SBR), (ii) Normalized Difference Water Index (NDWI), (iii) Modified Normalized Difference Water Index (MNDWI), and (iv) the Mean Absolute Deviation (MAD) to identify and delineate surface water bodies using 91 ASTER images. Initial results indicate that the SBR method identified 17 waterholes while the NDWI 18, the MNDWI 36, and the MAD method identified 28 waterholes. However, by combining the results from the four aforementioned spectral indices following a multi-index approach, 89 waterholes that were previously unidentified by a single approach alone were identified. Furthermore, our analysis indicates that the SBR and the NDWI methods identify relatively clearer waterholes better (29% of the waterholes), whereas MNDWI and MAD proved to be good indices for identifying sediment-laden waterholes. Identifying the location and spatial distribution of surface water bodies is the first step towards monitoring their seasonal dynamics using a hydrologic modeling system, similar to an existing setup for east Africa (http://watermon.tamu.edu/). Seasonal trends in relative surface water levels are one of the most important inputs in the livestock early warning system (LEWS) along with forage and livestock market prices.
Body image disturbance in adults treated for cancer - a concept analysis.
Rhoten, Bethany A
2016-05-01
To report an analysis of the concept of body image disturbance in adults who have been treated for cancer as a phenomenon of interest to nurses. Although the concept of body image disturbance has been clearly defined in adolescents and adults with eating disorders, adults who have been treated for cancer may also experience body image disturbance. In this context, the concept of body image disturbance has not been clearly defined. Concept analysis. PubMed, Psychological Information Database and Cumulative Index of Nursing and Allied Health Literature were searched for publications from 1937 - 2015. Search terms included body image, cancer, body image disturbance, adult and concept analysis. Walker and Avant's 8-step method of concept analysis was used. The defining attributes of body image disturbance in adults who have been treated for cancer are: (1) self-perception of a change in appearance and displeasure with the change or perceived change in appearance; (2) decline in an area of function; and (3) psychological distress regarding changes in appearance and/or function. This concept analysis provides a foundation for the development of multidimensional assessment tools and interventions to alleviate body image disturbance in this population. A better understanding of body image disturbance in adults treated for cancer will assist nurses and other clinicians in identifying this phenomenon and nurse scientists in developing instruments that accurately measure this condition, along with interventions that will promote a better quality of life for survivors. © 2016 John Wiley & Sons Ltd.
Body image and eating disordered behavior in a community sample of Black and Hispanic women.
Hrabosky, Joshua I; Grilo, Carlos M
2007-01-01
The current study examined body image concerns and eating disordered behaviors in a community sample of Black and Hispanic women. In addition, this study explored whether there are ethnic differences in the correlates or in the prediction of body image concerns. Participants were 120 (67 Black and 53 Hispanic) women who responded to advertisements to participate in a study of women and health. Participants completed a battery of established self-report measures to assess body image, eating disordered behaviors, and associated psychological domains. Black and Hispanic women did not differ significantly in their self-reports of body image, eating disordered behaviors, or associated psychological measures. Comparisons performed separately within both ethnic groups revealed significant differences by weight status, with a general graded patterning of greater concerns in obese than overweight than average weight groups. In terms of predicting body image, multiple regression analyses testing a number of variables, including BMI, performed separately for Black and Hispanic women revealed that eating concern and depressive affect were significant predictors of body image concern for both groups. Overall, Black and Hispanic women differed little in their self-reports of body image, eating-disordered features, and depressive affect. Higher weight was associated with a general pattern of increased body image concerns and features of eating disorders in both groups and with binge eating in Black women. Eating concerns and depressive affect emerged as significant independent predictors of body image for both ethnic groups.
Spectrophotometric Characterisation of the Trojan Asteroids (624) Hektor et (911) Agamemnon
NASA Astrophysics Data System (ADS)
Doressoundiram, A.; Bott, N.; Perna, D.
2016-12-01
We obtained spectrophotometric observations of (624) Hektor and (911) Agamemnon, two large Trojan asteroids in order to (1) better understand the composition of their surface by means of their visible and infrared spectra, and (2) eventually detect a possible weak cometary activity by means of their images in the visible. We had data at different rotational phases to probe surface variegations. We found that the visible and infrared spectra are very similar to each other. That indicates a relatively homogenous surface for the asteroids, but it does not exclude the presence of localized inhomogeneities. Computation of a high spectral slope confirmed their D-type asteroids classification. No aqueous alteration absorption band was found in the visible spectra of both studied Trojan asteroids. This can be interpreted in two differents ways: either no liquid water flowed on their surface, or the surface is covered with a crust that mask the presence of hydrated minerals. We use a radiative transfer model to investigate the surface composition of these icy and primitive outer solar system bodies. We suggest models composed of mixtures of organic compounds, minerals and lower limits for water ice. Lastly, the analysis of the images of both Trojan asteroids did not reveal any cometary activity.
A daily diary study of self-compassion, body image, and eating behavior in female college students.
Kelly, Allison C; Stephen, Elizabeth
2016-06-01
Although self-compassion is associated with healthier body image and eating behavior, these findings have generally emerged at the between-persons level only. The present study investigated the unique contributions of within-person variability in self-compassion, and between-persons differences in self-compassion, to body image and eating behavior. Over seven days, 92 female college students completed nightly measures of self-compassion, self-esteem, dietary restraint, intuitive eating, body appreciation, body satisfaction, and state body image. Multilevel modeling revealed that within-persons, day-to-day fluctuations in self-compassion contributed to day-to-day fluctuations in body image and eating. Between-persons, participants' average levels of self-compassion across days contributed to their average levels of body image and eating over the week. Results generally held when controlling for within- and between-persons self-esteem. Evidently, the eating and body image benefits of self-compassion may come not only from being a generally self-compassionate person, but also from treating oneself more self-compassionately than usual on a given day. Copyright © 2016 Elsevier Ltd. All rights reserved.
Development and validation of a tailored measure of body image for pregnant women.
Watson, Brittany; Fuller-Tyszkiewicz, Matthew; Broadbent, Jaclyn; Skouteris, Helen
2017-11-01
This study developed and validated a quantitative measure of body image specifically designed for pregnancy-the Body Image in Pregnancy Scale (BIPS). Scale development was guided by qualitative data from a series of studies exploring the meaning of women's body image experiences during pregnancy, and previously established body image measures. Exploratory factor analysis for a sample of pregnant women (n = 251) indicated good fit for a 36-item scale with seven factors: preoccupation with physical appearance, dissatisfaction with physical strength, dissatisfaction with facial features, sexual attractiveness, prioritizing physical appearance over body functioning, appearance-related behavioral avoidance, and dissatisfaction with body parts. BIPS subscale scores demonstrated good internal reliability, test-retest reliability, and both incremental and convergent validity with measures of body image, self-esteem, and depressive symptomatology. Although the pregnancy-focused wording of BIPS items prevents its use for comparisons with nonpregnant populations, further testing of changes in body image throughout pregnancy is an identified area for further research with this measure. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Kabir, Yearul; Zafar, Tasleem A; Waslien, Carol
2013-01-01
The associations between body image and attitudes toward obesity and thinness and their associations with measured body mass index (BMI) among female students of Kuwait University (n = 137) was examined in 2008. The body image perceptions were assessed using nine female silhouettes figures. The difference between current perceived body image (PBI) and ideal body image (IBI) was used as a measure of body image dissatisfaction (BID). Students tended to have a bigger PBI and smaller IBI than would be expected from their BMI category, leading to high levels of BID in each BMI category. PBI, IBI, BID, RBI were highly correlated with each other, and BMI was significantly correlated with each of them. The coefficients of these associations were not significantly altered in multiple regression analysis by the addition of potential confounding variables, such as age, marital status, physical activity, dieting behavior, parental education, and family size. These results suggest that PBI and a desire to be thinner were strongly related to BID and that thinness is becoming more desired in Kuwaiti society than the plump body image of the past.
Body image and sexual function in women after treatment for anal and rectal cancer.
Benedict, Catherine; Philip, Errol J; Baser, Raymond E; Carter, Jeanne; Schuler, Tammy A; Jandorf, Lina; DuHamel, Katherine; Nelson, Christian
2016-03-01
Treatment for anal and rectal cancer (ARCa) often results in side effects that directly impact sexual functioning; however, ARCa survivors are an understudied group, and factors contributing to the sexual sequelae are not well understood. Body image problems are distressing and may further exacerbate sexual difficulties, particularly for women. This preliminary study sought to (1) describe body image problems, including sociodemographic and disease/treatment correlates, and (2) examine relations between body image and sexual function. For the baseline assessment of a larger study, 70 women completed the European Organization for Research and Treatment of Cancer Core Quality of Life Questionnaire and Colorectal Cancer-specific Module, including the Body Image subscale, and Female Sexual Function Index. Pearson's correlation and multiple regression evaluated correlates of body image. Among sexually active women (n = 41), hierarchical regression examined relations between body image and sexual function domains. Women were on average 55 years old (standard deviation = 11.6), non-Hispanic White (79%), married (57%), and employed (47%). The majority (86%) reported at least one body image problem. Younger age, lower global health status, and greater severity of symptoms related to poorer body image (p's < 0.05). Poor body image was inversely related to all aspects of sexual function (β range 0.50-0.70, p's < 0.05), except pain. The strongest association was with Female Sexual Function Index Sexual/Relationship Satisfaction. These preliminary findings suggest the importance of assessing body image as a potentially modifiable target to address sexual difficulties in this understudied group. Further longitudinal research is needed to inform the development and implementation of effective interventions to improve the sexual health and well-being of female ARCa survivors. Copyright © 2015 John Wiley & Sons, Ltd.
Body Image and Sexual Function in Women after Treatment for Anal and Rectal Cancer
Benedict, Catherine; Philip, Errol J.; Baser, Raymond E.; Carter, Jeanne; Schuler, Tammy A.; Jandorf, Lina; DuHamel, Katherine; Nelson, Christian
2016-01-01
Objective Treatment for anal and rectal cancer (ARCa) often results in side effects that directly impact sexual functioning; however, ARCa survivors are an understudied group and factors contributing to the sexual sequelae are not well understood. Body image problems are distressing and may further exacerbate sexual difficulties, particularly for women. This preliminary study sought to (1) describe body image problems, including sociodemographic and disease/treatment correlates; and (2) examine relations between body image and sexual function. Methods For the baseline assessment of a larger study, 70 women completed the EORTC QLQ-C30 and CR38, including the Body Image subscale, and Female Sexual Function Index (FSFI). Pearson’s correlation and multiple regression evaluated correlates of body image. Among sexually active women (n=41), hierarchical regression examined relations between body image and sexual function domains. Results Women were an average 55 years old (SD=11.6), Non-Hispanic White (79%), married (57%), and employed (47%). The majority (86%) reported at least one body image problem. Younger age, lower global health status, and greater severity of symptoms related to poorer body image (p’s<.05). Poor body image was inversely related to all aspects of sexual function (β range .50 to .70, p’s<.05), except pain. The strongest association was with FSFI Sexual/Relationship Satisfaction. Conclusion These preliminary findings suggest the importance of assessing body image as a potentially modifiable target to address sexual difficulties in this understudied group. Further longitudinal research is needed to inform the development and implementation of effective interventions to improve the sexual health and well-being of female ARCa survivors. PMID:25974874
Body image change and improved eating self-regulation in a weight management intervention in women
2011-01-01
Background Successful weight management involves the regulation of eating behavior. However, the specific mechanisms underlying its successful regulation remain unclear. This study examined one potential mechanism by testing a model in which improved body image mediated the effects of obesity treatment on eating self-regulation. Further, this study explored the role of different body image components. Methods Participants were 239 overweight women (age: 37.6 ± 7.1 yr; BMI: 31.5 ± 4.1 kg/m2) engaged in a 12-month behavioral weight management program, which included a body image module. Self-reported measures were used to assess evaluative and investment body image, and eating behavior. Measurements occurred at baseline and at 12 months. Baseline-residualized scores were calculated to report change in the dependent variables. The model was tested using partial least squares analysis. Results The model explained 18-44% of the variance in the dependent variables. Treatment significantly improved both body image components, particularly by decreasing its investment component (f2 = .32 vs. f2 = .22). Eating behavior was positively predicted by investment body image change (p < .001) and to a lesser extent by evaluative body image (p < .05). Treatment had significant effects on 12-month eating behavior change, which were fully mediated by investment and partially mediated by evaluative body image (effect ratios: .68 and .22, respectively). Conclusions Results suggest that improving body image, particularly by reducing its salience in one's personal life, might play a role in enhancing eating self-regulation during weight control. Accordingly, future weight loss interventions could benefit from proactively addressing body image-related issues as part of their protocols. PMID:21767360
Body image change and improved eating self-regulation in a weight management intervention in women.
Carraça, Eliana V; Silva, Marlene N; Markland, David; Vieira, Paulo N; Minderico, Cláudia S; Sardinha, Luís B; Teixeira, Pedro J
2011-07-18
Successful weight management involves the regulation of eating behavior. However, the specific mechanisms underlying its successful regulation remain unclear. This study examined one potential mechanism by testing a model in which improved body image mediated the effects of obesity treatment on eating self-regulation. Further, this study explored the role of different body image components. Participants were 239 overweight women (age: 37.6 ± 7.1 yr; BMI: 31.5 ± 4.1 kg/m²) engaged in a 12-month behavioral weight management program, which included a body image module. Self-reported measures were used to assess evaluative and investment body image, and eating behavior. Measurements occurred at baseline and at 12 months. Baseline-residualized scores were calculated to report change in the dependent variables. The model was tested using partial least squares analysis. The model explained 18-44% of the variance in the dependent variables. Treatment significantly improved both body image components, particularly by decreasing its investment component (f² = .32 vs. f² = .22). Eating behavior was positively predicted by investment body image change (p < .001) and to a lesser extent by evaluative body image (p < .05). Treatment had significant effects on 12-month eating behavior change, which were fully mediated by investment and partially mediated by evaluative body image (effect ratios: .68 and .22, respectively). Results suggest that improving body image, particularly by reducing its salience in one's personal life, might play a role in enhancing eating self-regulation during weight control. Accordingly, future weight loss interventions could benefit from proactively addressing body image-related issues as part of their protocols.
[Analysis of body image perception of university students in navarra].
Soto Ruiz, Ma Nelia; Marin Fernández, Blanca; Aguinaga Ontoso, Inés; Guillén-Grima, Francisco; Serrano Mozó, Inmaculada; Canga Armayor, Navidad; Hermoso de Mendoza Cantón, Juana; Stock, Christiane; Kraemer, Alexander; Annan, James
2015-05-01
Current models of beauty represent an extreme thinness in the women and a muscular body in the men. The body image perception will condition the search of ideal beauty through different behaviors and can be transform in eating disorders. The university students, with the changes typical of youth and university transition, are a vulnerable group. The purpose of this study was to evaluate the body image perception of university students in Navarra. The study included 1162 subjects of which 64.2% were female. Students asked for a self-managed questionnaire and they were weighted and heighted to calculate the body mass index (BMI). Their body image perception were obtained asking the students to select a picture, according to their perception which corresponded to their current body image from nine different silhouettes for men and women. Their BMI were calculated and compared with their perceived BMI. 43.03% of students, overestimated their body image (10.65% in males and 59.69% in females) and 10.20% of students underestimated it. 46.75% of students had concordance between BMI and body image perception. There were more cases the alterations in the body image perception in women. In general, women saw themselves as being fatter than really were while men saw themselves as being thinner than they really were. The results shown that the women were more worried about their weight and body image than the men. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.
Walker, D Catherine; White, Emily K; Srinivasan, Vamshek J
2018-04-16
Body checking (BC) and body image avoidance (BIA) have been proposed as etiological and maintaining mechanisms for eating disorder (ED) pathology. To date, no comprehensive review summarizes the relationships of BC and BIA with ED pathology, body image dissatisfaction, or mood/affect. Meta-analyses examined the relationships of BC and BIA with ED pathology, body image dissatisfaction, and mood/affect. Gender, publication status, and presence or absence of ED diagnoses were examined as potential moderators. Results showed strong relationships between BC and ED pathology (ρ = 0.588) and BC and body image dissatisfaction (ρ = 0.631) and a moderate relationship between BC and mood/affect (ρ = 0.385). Similarly, results showed strong relationships between BIA and ED pathology (ρ = 0.553) and BIA and body image dissatisfaction (ρ = 0.543) and a moderate relationship between BIA and mood/affect (ρ = 0.392). Overall, limited evidence supported publication bias; however, publication bias may exist in the relationship between BIA and body image dissatisfaction in the literature. Subgroup moderator analyses suggested that gender moderates the strength of the relationships between BC and ED pathology, body image dissatisfaction, and mood/affect and between BIA and body image dissatisfaction. Results are consistent with cognitive-behavioral models of ED pathology that suggest BC and BIA are behavioral expressions of overvaluation of weight and shape. Notably, more published research has investigated BC than BIA. Future studies, incorporating methods such as meta-analytic structural equation modeling, should examine these variables to further test cognitive-behavioral models of ED development and maintenance. © 2018 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Fishwick, S.; Kennett, B. L. N.; Reading, A. M.
2005-03-01
Contrasts in the seismic structure of the lithosphere within and between elements of the Australian Craton are imaged using surface wave tomography. New data from the WACRATON and TIGGER experiments are integrated with re-processed data from previous temporary deployments of broad-band seismometers and permanent seismic stations. The much improved path coverage in critical regions allows an interpretation of structures in the west of Australia, and a detailed comparison between different cratonic regions. Improvements to the waveform inversion procedure and a new multi-scale tomographic method increase the reliability of the tomographic images. In the shallowest part of the model (75 km) a region of lowered velocity is imaged beneath central Australia, and confirmed by the delayed arrival times of body waves for short paths. Within the cratonic lithosphere there is clearly structure at scale lengths of a few hundred kilometres; resolution tests indicate that path coverage within the continent is sufficient to reveal features of this size in the upper part of our model. In Western Australia, differences are seen beneath and within the Archaean cratons: at depths greater than 150 km faster velocities are imaged beneath the Yilgarn Craton than beneath the Pilbara Craton. In the complex North Australian Craton a fast wavespeed anomaly continuing to at least 250 km is observed below parts of the craton, suggesting the possibility of Archaean lithosphere underlying areas of dominantly Proterozoic surface geology.
NASA Astrophysics Data System (ADS)
Xia, Wenfeng; West, Simeon J.; Nikitichev, Daniil I.; Ourselin, Sebastien; Beard, Paul C.; Desjardins, Adrien E.
2016-03-01
Accurate identification of tissue structures such as nerves and blood vessels is critically important for interventional procedures such as nerve blocks. Ultrasound imaging is widely used as a guidance modality to visualize anatomical structures in real-time. However, identification of nerves and small blood vessels can be very challenging, and accidental intra-neural or intra-vascular injections can result in significant complications. Multi-spectral photoacoustic imaging can provide high sensitivity and specificity for discriminating hemoglobin- and lipid-rich tissues. However, conventional surface-illumination-based photoacoustic systems suffer from limited sensitivity at large depths. In this study, for the first time, an interventional multispectral photoacoustic imaging (IMPA) system was used to image nerves in a swine model in vivo. Pulsed excitation light with wavelengths in the ranges of 750 - 900 nm and 1150 - 1300 nm was delivered inside the body through an optical fiber positioned within the cannula of an injection needle. Ultrasound waves were received at the tissue surface using a clinical linear array imaging probe. Co-registered B-mode ultrasound images were acquired using the same imaging probe. Nerve identification was performed using a combination of B-mode ultrasound imaging and electrical stimulation. Using a linear model, spectral-unmixing of the photoacoustic data was performed to provide image contrast for oxygenated and de-oxygenated hemoglobin, water and lipids. Good correspondence between a known nerve location and a lipid-rich region in the photoacoustic images was observed. The results indicate that IMPA is a promising modality for guiding nerve blocks and other interventional procedures. Challenges involved with clinical translation are discussed.
Patil, Shailaja S.; Angadi, Mahabaleshwar Mahantappa; Pattankar, Tanuja P.
2016-01-01
Introduction Body image is an essential aspect of young girls’ self-definition and individual identity which is influenced by various biological, psychological and social factors. Excessive concern about body image, body image misconception are leading to dissatisfaction, disturbed eating patterns, affecting the nutritional status and also leading to depression and anxiety disorders. This concept of body image has been less explored in Indian context, especially among young girls. Aims The objectives of the study were to assess the body image perception among young college going girls, using a visual analog scale and to compare body image perception and satisfaction with their BMI levels and weight changing methods adopted. Materials and Methods An exploratory cross-sectional study was conducted among 63 female students studying BBM course at a private commerce institution in Vijayapur city. Data was collected using a self administered questionnaire containing details of basic socio-demographic information and a validated visual analogue scale. Height was measured by Seca Stadiometer, weight was measured using Digital weighing machine and Body Mass Index levels were calculated. Percentages were calculated for descriptive variables. Chi-square test was applied for analysing categorical variables. Spearman Rank correlation test was applied for analysing ordinal data. Results A 39.7% of participants were underweight and 15.9% were overweight/obese. Majority of underweight and overweight girls (72% and 89%, respectively) perceived themselves as normal weight. Body image satisfaction of participants was found to be significantly associated with their body image perception, mothers’ educational status and also with relatives’ and peer group’s opinions about their body weight. Unhealthy weight changing patterns like skipping meals (13%), increasing quantity and frequency of meals (17%) were reported among study participants Conclusion This exploratory study highlights the gap between young girls’ body image perception and their BMI levels, indicating body image misconception. Lower literacy level of mothers and opinions of relatives and friends significantly influenced body image satisfaction among study participants. Higher percentage of underweight (39.7%) coupled with unhealthy weight changing patterns reportedly adopted by participants (30%) indicates need for further research on this issue, to help inform public health nutrition programmes. PMID:27630869
Rashmi, B M; Patil, Shailaja S; Angadi, Mahabaleshwar Mahantappa; Pattankar, Tanuja P
2016-07-01
Body image is an essential aspect of young girls' self-definition and individual identity which is influenced by various biological, psychological and social factors. Excessive concern about body image, body image misconception are leading to dissatisfaction, disturbed eating patterns, affecting the nutritional status and also leading to depression and anxiety disorders. This concept of body image has been less explored in Indian context, especially among young girls. The objectives of the study were to assess the body image perception among young college going girls, using a visual analog scale and to compare body image perception and satisfaction with their BMI levels and weight changing methods adopted. An exploratory cross-sectional study was conducted among 63 female students studying BBM course at a private commerce institution in Vijayapur city. Data was collected using a self administered questionnaire containing details of basic socio-demographic information and a validated visual analogue scale. Height was measured by Seca Stadiometer, weight was measured using Digital weighing machine and Body Mass Index levels were calculated. Percentages were calculated for descriptive variables. Chi-square test was applied for analysing categorical variables. Spearman Rank correlation test was applied for analysing ordinal data. A 39.7% of participants were underweight and 15.9% were overweight/obese. Majority of underweight and overweight girls (72% and 89%, respectively) perceived themselves as normal weight. Body image satisfaction of participants was found to be significantly associated with their body image perception, mothers' educational status and also with relatives' and peer group's opinions about their body weight. Unhealthy weight changing patterns like skipping meals (13%), increasing quantity and frequency of meals (17%) were reported among study participants. This exploratory study highlights the gap between young girls' body image perception and their BMI levels, indicating body image misconception. Lower literacy level of mothers and opinions of relatives and friends significantly influenced body image satisfaction among study participants. Higher percentage of underweight (39.7%) coupled with unhealthy weight changing patterns reportedly adopted by participants (30%) indicates need for further research on this issue, to help inform public health nutrition programmes.
Hamilton, S J
2017-05-22
Electrical impedance tomography (EIT) is an emerging imaging modality that uses harmless electrical measurements taken on electrodes at a body's surface to recover information about the internal electrical conductivity and or permittivity. The image reconstruction task of EIT is a highly nonlinear inverse problem that is sensitive to noise and modeling errors making the image reconstruction task challenging. D-bar methods solve the nonlinear problem directly, bypassing the need for detailed and time-intensive forward models, to provide absolute (static) as well as time-difference EIT images. Coupling the D-bar methodology with the inclusion of high confidence a priori data results in a noise-robust regularized image reconstruction method. In this work, the a priori D-bar method for complex admittivities is demonstrated effective on experimental tank data for absolute imaging for the first time. Additionally, the method is adjusted for, and tested on, time-difference imaging scenarios. The ability of the method to be used for conductivity, permittivity, absolute as well as time-difference imaging provides the user with great flexibility without a high computational cost.
Kyle, Daniel J T; Oikonomou, Antonios; Hill, Ernie; Bayat, Ardeshir
2015-06-01
Reproducing extracellular matrix topographical cues, such as those present within acellular dermal matrix (ADM), in synthetic implant surfaces, may augment cellular responses, independent of surface chemistry. This could lead to enhanced implant integration and performance while reducing complications. In this work, the hierarchical micro and nanoscale features of ADM were accurately and reproducibly replicated in polydimethylsiloxane (PDMS), using an innovative maskless 3D grayscale fabrication process not previously reported. Human breast derived fibroblasts (n=5) were cultured on PDMS surfaces and compared to commercially available smooth and textured silicone implant surfaces, for up to one week. Cell attachment, proliferation and cytotoxicity, in addition to immunofluorescence staining, SEM imaging, qRT-PCR and cytokine array were performed. ADM PDMS surfaces promoted cell adhesion, proliferation and survival (p=<0.05), in addition to increased focal contact formation and spread fibroblast morphology when compared to commercially available implant surfaces. PCNA, vinculin and collagen 1 were up-regulated in fibroblasts on biomimetic surfaces while IL8, TNFα, TGFβ1 and HSP60 were down-regulated (p=<0.05). A reduced inflammatory cytokine response was also observed (p=<0.05). This study represents a novel approach to the development of functionalised biomimetic prosthetic implant surfaces which were demonstrated to significantly attenuate the acute in vitro foreign body reaction to silicone. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
Body Image in Patients With Spinal Cord Injury During Inpatient Rehabilitation.
van Diemen, Tijn; van Leeuwen, Christel; van Nes, Ilse; Geertzen, Jan; Post, Marcel
2017-06-01
(1) To investigate the course of body image in patients with spinal cord injury (SCI) during their first inpatient rehabilitation stay; and (2) to explore the association between demographic and injury-related variables and body image and the association between body image and psychological distress. Longitudinal inception cohort study. Rehabilitation center. Of the 210 people admitted for their first inpatient SCI rehabilitation program (between March 2011 and April 2015), 188 met the inclusion criteria. Of these, N=150 (80%) agreed to participate. Not applicable. The Body Experience Questionnaire was used to measure 2 dimensions of body image: alienation and harmony. Mean scores on the Body Experience Questionnaire alienation subscale decreased significantly during the rehabilitation program. Mean scores on the Body Experience Questionnaire harmony subscale did not increase significantly but showed a trend in the hypothesized direction. The 2 subscales showed weak correlations with demographic and injury-related variables. The 2 subscales together explained 16% and 14% of the variance of depression and anxiety, respectively, after correction for demographic and injury-related variables. During participants' first inpatient rehabilitation stay after SCI, body image progressed toward a healthier state. Body image explains part of the variance in depression and anxiety, and the entire rehabilitation team should be targeting interventions to improve body image. Copyright © 2016 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Campana, Lorenzo; Breitbeck, Robert; Bauer-Kreuz, Regula; Buck, Ursula
2016-05-01
This study evaluated the feasibility of documenting patterned injury using three dimensions and true colour photography without complex 3D surface documentation methods. This method is based on a generated 3D surface model using radiologic slice images (CT) while the colour information is derived from photographs taken with commercially available cameras. The external patterned injuries were documented in 16 cases using digital photography as well as highly precise photogrammetry-supported 3D structured light scanning. The internal findings of these deceased were recorded using CT and MRI. For registration of the internal with the external data, two different types of radiographic markers were used and compared. The 3D surface model generated from CT slice images was linked with the photographs, and thereby digital true-colour 3D models of the patterned injuries could be created (Image projection onto CT/IprojeCT). In addition, these external models were merged with the models of the somatic interior. We demonstrated that 3D documentation and visualization of external injury findings by integration of digital photography in CT/MRI data sets is suitable for the 3D documentation of individual patterned injuries to a body. Nevertheless, this documentation method is not a substitution for photogrammetry and surface scanning, especially when the entire bodily surface is to be recorded in three dimensions including all external findings, and when precise data is required for comparing highly detailed injury features with the injury-inflicting tool.
BODY IMAGE IN CHILDHOOD: AN INTEGRATIVE LITERATURE REVIEW.
Neves, Clara Mockdece; Cipriani, Flávia Marcelle; Meireles, Juliana Fernandes Filgueiras; Morgado, Fabiane Frota da Rocha; Ferreira, Maria Elisa Caputo
2017-01-01
To analyse the scientific literature regarding the evaluation of body image in children through an integrative literature review. An intersection of the keywords "body image" AND "child" was conducted in Scopus, Medline and Virtual Health Library (BVS - Biblioteca Virtual de Saúde) databases. The electronic search was based on studies published from January 2013 to January 2016, in order to verify the most current investigations on the subject. Exclusion criteria were: articles in duplicate; no available summaries; not empirical; not assessing any component of body image; the sample did not consider the target age of this research (0 to 12 years old) and/or considered clinical populations; besides articles not fully available. 7,681 references were identified, and, after the exclusion criteria were implemented, 33 studies were analysed. Results showed that the perceptual and attitudinal dimensions focusing on body dissatisfaction were explored, mainly evaluated by silhouette scales. Intervention programs were developed internationally to prevent negative body image in children. The studies included in this review evaluated specific aspects of body image in children, especially body perception and body dissatisfaction. The creation of specific tools for children to evaluate body image is recommended to promote the psychosocial well being of individuals throughout human development.
Stimulus features coded by single neurons of a macaque body category selective patch.
Popivanov, Ivo D; Schyns, Philippe G; Vogels, Rufin
2016-04-26
Body category-selective regions of the primate temporal cortex respond to images of bodies, but it is unclear which fragments of such images drive single neurons' responses in these regions. Here we applied the Bubbles technique to the responses of single macaque middle superior temporal sulcus (midSTS) body patch neurons to reveal the image fragments the neurons respond to. We found that local image fragments such as extremities (limbs), curved boundaries, and parts of the torso drove the large majority of neurons. Bubbles revealed the whole body in only a few neurons. Neurons coded the features in a manner that was tolerant to translation and scale changes. Most image fragments were excitatory but for a few neurons both inhibitory and excitatory fragments (opponent coding) were present in the same image. The fragments we reveal here in the body patch with Bubbles differ from those suggested in previous studies of face-selective neurons in face patches. Together, our data indicate that the majority of body patch neurons respond to local image fragments that occur frequently, but not exclusively, in bodies, with a coding that is tolerant to translation and scale. Overall, the data suggest that the body category selectivity of the midSTS body patch depends more on the feature statistics of bodies (e.g., extensions occur more frequently in bodies) than on semantics (bodies as an abstract category).
Stimulus features coded by single neurons of a macaque body category selective patch
Popivanov, Ivo D.; Schyns, Philippe G.; Vogels, Rufin
2016-01-01
Body category-selective regions of the primate temporal cortex respond to images of bodies, but it is unclear which fragments of such images drive single neurons’ responses in these regions. Here we applied the Bubbles technique to the responses of single macaque middle superior temporal sulcus (midSTS) body patch neurons to reveal the image fragments the neurons respond to. We found that local image fragments such as extremities (limbs), curved boundaries, and parts of the torso drove the large majority of neurons. Bubbles revealed the whole body in only a few neurons. Neurons coded the features in a manner that was tolerant to translation and scale changes. Most image fragments were excitatory but for a few neurons both inhibitory and excitatory fragments (opponent coding) were present in the same image. The fragments we reveal here in the body patch with Bubbles differ from those suggested in previous studies of face-selective neurons in face patches. Together, our data indicate that the majority of body patch neurons respond to local image fragments that occur frequently, but not exclusively, in bodies, with a coding that is tolerant to translation and scale. Overall, the data suggest that the body category selectivity of the midSTS body patch depends more on the feature statistics of bodies (e.g., extensions occur more frequently in bodies) than on semantics (bodies as an abstract category). PMID:27071095
Hartmann, A S; Thomas, J J; Greenberg, J L; Elliott, C M; Matheny, N L; Wilhelm, S
2015-06-01
Although body image is central to the etiological models of anorexia nervosa and body dysmorphic disorder, studies comparing body image and beliefs about attractiveness between the disorders are rare. Sixty-nine individuals (anorexia nervosa: n=24, body dysmorphic disorder: n=23, healthy controls: n=22) completed self-report measures (body image and general psychopathology), diagnostic interviews, and Go/No-Go Association tasks measuring implicit associations. Compared to controls, both clinical groups exhibited greater negative body image, a more negative attitude toward their physical selves, and more dysfunctional coping strategies (ps<.001). Also, both clinical groups shared greater explicit beliefs about the importance of attractiveness (ps<.001). In addition to supporting previous research with regard to comparable body image disturbance, this study also showed that beliefs regarding the importance of appearance (e.g., "one must be attractive to be successful") might be a fruitful target for therapy across both disorders. Copyright © 2015 Elsevier Ltd. All rights reserved.
Sketching people: Prospective investigations of the impact of life drawing on body image.
Swami, Viren
2017-03-01
Three studies were conducted to establish the extent to which life drawing is effective at promoting positive body image. Study 1 (N=84 women) showed that life drawing had a positive impact on state body image, but only if artists observed a human model and not non-human objects. Study 2 (N=61 women, 61 men) showed that life drawing had a positive impact on state body image for women and men, irrespective of whether artists observed a sex-congruent or -incongruent model. Study 3 (N=23) showed that participating in weekly life drawing sessions for a 6-week period resulted in significantly elevated trait positive body image (body appreciation and body pride) and embodiment, and in reduced social physique anxiety; however, the intervention had no significant impact on negative body image (drive for thinness or muscularity). These results highlight the potential of life drawing for promoting positive body experiences. Copyright © 2016 Elsevier Ltd. All rights reserved.
3D silicon breast surface mapping via structured light profilometry
NASA Astrophysics Data System (ADS)
Vairavan, R.; Ong, N. R.; Sauli, Z.; Kirtsaeng, S.; Sakuntasathien, S.; Shahimin, M. M.; Alcain, J. B.; Lai, S. L.; Paitong, P.; Retnasamy, V.
2017-09-01
Digital fringe projection technique is one of the promising optical methods for 3D surface imaging as it demonstrates non contact and non invasive characteristics. The potential of this technique matches the requirement for human body evaluation, as it is vital for disease diagnosis and for treatment option selection. Thus, the digital fringe projection has addressed this requirement with its wide clinical related application and studies. However, the application of this technique for 3D surface mapping of the breast is very minimal. Hence, in this work, the application of digital fringe projection for 3D breast surface mapping is reported. Phase shift fringe projection technique was utilized to perform the 3D breast surface mapping. Maiden results have confirmed the feasibility of using the digital fringe projection method for 3D surface mapping of the breast and it can be extended for breast cancer detection.
Quinn-Nilas, Christopher; Benson, Lindsay; Milhausen, Robin R; Buchholz, Andrea C; Goncalves, Melissa
2016-09-01
Research suggests that body image affects sexual functioning, but the relationship between specific types of body image (evaluative, affective, and behavioral) and domains of sexual functioning (desire, arousal, and orgasm) has not been investigated. To determine whether, and to what degree, body image concerns (evaluative, affective, and behavioral) influence aspects of women's sexual functioning (desire, arousal, and orgasm). Eighty-eight sexually active women in heterosexual romantic relationships completed surveys assessing evaluative, affective, and behavioral body image and sexual functioning. Body composition data also were collected using dual energy x-ray absorptiometry. Sexual functioning was assessed using the desire, arousal, and orgasm subscales of the Female Sexual Functioning Index. Hierarchical multiple regression analysis indicated that poor evaluative, affective, and behavioral body image were detrimental to women's sexual functioning. Specifically, dissatisfaction with one's body predicted decrements in desire (β = -0.31, P < .05) and arousal (β = -0.35, P < .01). Similarly, feeling that others evaluate one's body negatively predicted decrements in desire (β = 0.22, P < .05) and arousal (β = 0.35, P < .01). Feeling negatively about one's appearance predicted decrements in arousal (β = 0.26, P < .05). Negative thoughts and feelings about one's body during a sexual encounter (body image self-consciousness) predicted decrements in arousal (β = -0.37, P < .01) and orgasm (β = -0.25, P < .05). Findings from this study suggest important linkages between body image and sexual functioning constructs and indicates that interventions to improve body image could have concomitant benefits related to sexual experience. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Slater, Amy; Varsani, Neesha; Diedrichs, Phillippa C
2017-09-01
This study experimentally examined the impact of exposure to fitspiration images and self-compassion quotes on social media on young women's body satisfaction, body appreciation, self-compassion, and negative mood. Female undergraduate students (N=160) were randomly assigned to view either Instagram images of fitspiration, self-compassion quotes, a combination of both, or appearance-neutral images. Results showed no differences between viewing fitspiration images compared to viewing neutral images, except for poorer self-compassion among those who viewed fitspiration images. However, women who viewed self-compassion quotes showed greater body satisfaction, body appreciation, self-compassion, and reduced negative mood compared to women who viewed neutral images. Further, viewing a combination of fitspiration images and self-compassion quotes led to positive outcomes compared to viewing only fitspiration images. Trait levels of thin-ideal internalisation moderated some effects. The findings suggest that self-compassion might offer a novel avenue for attenuating the negative impact of social media on women's body satisfaction. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Futaana, Yoshifumi; Barabash, Stas; Wieser, Martin; Wurz, Peter; Hurley, Dana; Horányi, Mihaly; Mall, Urs; Andre, Nicolas; Ivchenko, Nickolay; Oberst, Jürgen; Retherford, Kurt; Coates, Andrew; Masters, Adam; Wahlund, Jan-Erik; Kallio, Esa; SELMA Proposal Team
2018-07-01
The Moon is an archetypal atmosphere-less celestial body in the Solar System. For such bodies, the environments are characterized by complex interaction among the space plasma, tenuous neutral gas, dust and the outermost layer of the surface. Here we propose the SELMA mission (Surface, Environment, and Lunar Magnetic Anomalies) to study how airless bodies interact with space environment. SELMA uses a unique combination of remote sensing via ultraviolet and infrared wavelengths, and energetic neutral atom imaging, as well as in situ measurements of exospheric gas, plasma, and dust at the Moon. After observations in a lunar orbit for one year, SELMA will conduct an impact experiment to investigate volatile content in the soil of the permanently shadowed area of the Shackleton crater. SELMA also carries an impact probe to sound the Reiner-Gamma mini-magnetosphere and its interaction with the lunar regolith from the SELMA orbit down to the surface. SELMA was proposed to the European Space Agency as a medium-class mission (M5) in October 2016. Research on the SELMA scientific themes is of importance for fundamental planetary sciences and for our general understanding of how the Solar System works. In addition, SELMA outcomes will contribute to future lunar explorations through qualitative characterization of the lunar environment and, in particular, investigation of the presence of water in the lunar soil, as a valuable resource to harvest from the lunar regolith.
Presence of muscle dysmorphia symptomology among male weightlifters.
Hildebrandt, Tom; Schlundt, David; Langenbucher, James; Chung, Tammy
2006-01-01
Limited research exists on muscle dysmorphia (MD) in men and in nonclinical populations. The current study evaluated types of body image disturbance among 237 male weightlifters. Latent class analysis of 8 measures of body image disturbance revealed 5 independent types of respondents: Dysmorphic, Muscle Concerned, Fat Concerned, Normal Behavioral, and Normal. One-way analysis of variance of independent measures of body image disturbance and associated psychopathology confirmed significant differences between groups. The Dysmorphic group reported a pattern of body image disturbance consistent with MD by displaying a high overall level of body image disturbance, symptoms of associated psychopathology, steroid use, and appearance-controlling behavior. Findings generally supported classifying MD as a subtype of body dysmorphic disorder and an obsessive-compulsive spectrum disorder. Implications for studying body image disturbance in male weightlifters, and further evaluation of the MD diagnostic criteria are discussed.
21 CFR 900.4 - Standards for accreditation bodies.
Code of Federal Regulations, 2014 CFR
2014-04-01
... image quality, or upon request by FDA, the accreditation body shall review a facility's clinical images... review by the accreditation body demonstrates that a problem does exist with respect to image quality or... program shall: (i) Include requirements for clinical image review and phantom image review; (ii) Ensure...
21 CFR 900.4 - Standards for accreditation bodies.
Code of Federal Regulations, 2011 CFR
2011-04-01
... image quality, or upon request by FDA, the accreditation body shall review a facility's clinical images... review by the accreditation body demonstrates that a problem does exist with respect to image quality or... program shall: (i) Include requirements for clinical image review and phantom image review; (ii) Ensure...
21 CFR 900.4 - Standards for accreditation bodies.
Code of Federal Regulations, 2012 CFR
2012-04-01
... image quality, or upon request by FDA, the accreditation body shall review a facility's clinical images... review by the accreditation body demonstrates that a problem does exist with respect to image quality or... program shall: (i) Include requirements for clinical image review and phantom image review; (ii) Ensure...
21 CFR 900.4 - Standards for accreditation bodies.
Code of Federal Regulations, 2013 CFR
2013-04-01
... image quality, or upon request by FDA, the accreditation body shall review a facility's clinical images... review by the accreditation body demonstrates that a problem does exist with respect to image quality or... program shall: (i) Include requirements for clinical image review and phantom image review; (ii) Ensure...
NASA Technical Reports Server (NTRS)
Wilder, Michael C.; Reda, Daniel C.; Prabhu, Dinesh K.
2015-01-01
Blunt-body geometries were flown through carbon dioxide in the NASA Ames Hypervelocity Free Flight Aerodynamic Facility to investigate the influence of distributed surface roughness on transition to turbulence in CO2-dominated atmospheres, such as those of Mars and Venus. Tests were also performed in air for direct comparison with archival results. Models of hemispherical and spherically-blunted large-angle conical geometries were flown at speeds between 2.8 km/s and 5.1 km/s and freestream pressures between 50 Torr and 228 Torr. Transition fronts were determined from global surface heat flux distributions measured using thermal imaging techniques. Distributed surface roughness was produced by grit-blasting the model surfaces. Real-gas Navier-Stokes solutions were used to calculate non-dimensional correlating parameters at the measured transition onset locations. Transition-onset locations correlated well with a constant roughness Reynolds number based on the mean roughness element height. The critical roughness Reynolds number for transition onset determined for flight in CO2 was 223 +/- 25%. This mean value is lower than the critical value of 250 +/- 20% previously-established from tests conducted in air, but within the bounds of the expected measurement uncertainty.
Ridolfi, Danielle R; Vander Wal, Jillion S
2008-01-01
The purpose of this study was to assess the effectiveness of a body image dissatisfaction prevention session that provided information on body image and media literacy to college women. Participants were 81 undergraduates who were randomly assigned to attend either a body image intervention or a control intervention. Participants completed measures at pre- and post-intervention and at 4-week follow-up. The body image group improved significantly more than the control group on body shape concerns, but not on the other outcome variables. Efficacious interventions capable of reaching large numbers of women are necessary to help dispel the "normative discontent" prevalent today.
Body image and weight control in South Africans 15 years or older: SANHANES-1.
Mchiza, Zandile J; Parker, Whadi-Ah; Makoae, Mokhantso; Sewpaul, Ronel; Kupamupindi, Takura; Labadarios, Demetre
2015-09-30
South African studies have suggested that differences in obesity prevalence between groups may be partly related to differences in body image and body size dissatisfaction. However, there has never been a national study that measured body image and its relationship to weight control in the country. Hence, the main aim of the study was to examine body image in relation to body mass index and weight control in South Africa. A cross-sectional survey and a secondary analyses of data were undertaken for 6 411 South Africans (15+ years) participating in the first South African National Health and Nutrition Examination Survey. Body image was investigated in relation to weight status and attempts to lose or gain weight. Data were analysed using STATA version 11.0. Descriptive statistics are presented as counts (numbers), percentages, means, standard error of means, and 95 % confidence intervals. Any differences in values were considered to be significantly different if the confidence intervals did not overlap. Overall, 84.5 % participants had a largely distorted body image and 45.3 % were highly dissatisfied about their body size. Overweight and obese participants under estimated their body size and desired to be thinner. On the other hand, normal- and under-weight participants over estimated their body size and desired to be fatter. Only 12.1 and 10.1 % of participants attempted to lose or gain weight, respectively, mainly by adjusting dietary intake and physical activity. Body mass index appears to influence body image and weight adjustment in South Africa. South Africans at the extreme ends of the body mass index range have a largely distorted body image and are highly dissatisfied by it. This suggests a need for health education and beneficial weight control strategies to halt the obesity epidemic in the country.
Ji, Dong Xu; Foong, Kelvin Weng Chiong; Ong, Sim Heng
2013-09-01
Extraction of the mandible from 3D volumetric images is frequently required for surgical planning and evaluation. Image segmentation from MRI is more complex than CT due to lower bony signal-to-noise. An automated method to extract the human mandible body shape from magnetic resonance (MR) images of the head was developed and tested. Anonymous MR images data sets of the head from 12 subjects were subjected to a two-stage rule-constrained region growing approach to derive the shape of the body of the human mandible. An initial thresholding technique was applied followed by a 3D seedless region growing algorithm to detect a large portion of the trabecular bone (TB) regions of the mandible. This stage is followed with a rule-constrained 2D segmentation of each MR axial slice to merge the remaining portions of the TB regions with lower intensity levels. The two-stage approach was replicated to detect the cortical bone (CB) regions of the mandibular body. The TB and CB regions detected from the preceding steps were merged and subjected to a series of morphological processes for completion of the mandibular body region definition. Comparisons of the accuracy of segmentation between the two-stage approach, conventional region growing method, 3D level set method, and manual segmentation were made with Jaccard index, Dice index, and mean surface distance (MSD). The mean accuracy of the proposed method is [Formula: see text] for Jaccard index, [Formula: see text] for Dice index, and [Formula: see text] mm for MSD. The mean accuracy of CRG is [Formula: see text] for Jaccard index, [Formula: see text] for Dice index, and [Formula: see text] mm for MSD. The mean accuracy of the 3D level set method is [Formula: see text] for Jaccard index, [Formula: see text] for Dice index, and [Formula: see text] mm for MSD. The proposed method shows improvement in accuracy over CRG and 3D level set. Accurate segmentation of the body of the human mandible from MR images is achieved with the proposed two-stage rule-constrained seedless region growing approach. The accuracy achieved with the two-stage approach is higher than CRG and 3D level set.
High Resolution 3D Radar Imaging of Comet Interiors
NASA Astrophysics Data System (ADS)
Asphaug, E. I.; Gim, Y.; Belton, M.; Brophy, J.; Weissman, P. R.; Heggy, E.
2012-12-01
Knowing the interiors of comets and other primitive bodies is fundamental to our understanding of how planets formed. We have developed a Discovery-class mission formulation, Comet Radar Explorer (CORE), based on the use of previously flown planetary radar sounding techniques, with the goal of obtaining high resolution 3D images of the interior of a small primitive body. We focus on the Jupiter-Family Comets (JFCs) as these are among the most primitive bodies reachable by spacecraft. Scattered in from far beyond Neptune, they are ultimate targets of a cryogenic sample return mission according to the Decadal Survey. Other suitable targets include primitive NEOs, Main Belt Comets, and Jupiter Trojans. The approach is optimal for small icy bodies ~3-20 km diameter with spin periods faster than about 12 hours, since (a) navigation is relatively easy, (b) radar penetration is global for decameter wavelengths, and (c) repeated overlapping ground tracks are obtained. The science mission can be as short as ~1 month for a fast-rotating JFC. Bodies smaller than ~1 km can be globally imaged, but the navigation solutions are less accurate and the relative resolution is coarse. Larger comets are more interesting, but radar signal is unlikely to be reflected from depths greater than ~10 km. So, JFCs are excellent targets for a variety of reasons. We furthermore focus on the use of Solar Electric Propulsion (SEP) to rendezvous shortly after the comet's perihelion. This approach leaves us with ample power for science operations under dormant conditions beyond ~2-3 AU. This leads to a natural mission approach of distant observation, followed by closer inspection, terminated by a dedicated radar mapping orbit. Radar reflections are obtained from a polar orbit about the icy nucleus, which spins underneath. Echoes are obtained from a sounder operating at dual frequencies 5 and 15 MHz, with 1 and 10 MHz bandwidths respectively. The dense network of echoes is used to obtain global 3D images of interior structure to ~20 m, and to map dielectric properties (related to internal composition) to better than 200 m throughout. This is comparable in detail to modern 3D medical ultrasound, although we emphasize that the techniques are somewhat different. An interior mass distribution is obtained through spacecraft tracking, using data acquired during the close, quiet radar orbits. This is aligned with the radar-based images of the interior, and the shape model, to contribute to the multi-dimensional 3D global view. High-resolution visible imaging provides boundary conditions and geologic context to these interior views. An infrared spectroscopy and imaging campaign upon arrival reveals the time-evolving activity of the nucleus and the structure and composition of the inner coma, and the definition of surface units. CORE is designed to obtain a total view of a comet, from the coma to the active and evolving surface to the deep interior. Its primary science goal is to obtain clear images of internal structure and dielectric composition. These will reveal how the comet was formed, what it is made of, and how it 'works'. By making global yet detailed connections from interior to exterior, this knowledge will be an important complement to the Rosetta mission, and will lay the foundation for comet nucleus sample return by revealing the areas of shallow depth to 'bedrock', and relating accessible deposits to their originating provenances within the nucleus.
Alleva, Jessica M; Diedrichs, Phillippa C; Halliwell, Emma; Martijn, Carolien; Stuijfzand, Bobby G; Treneman-Evans, Georgia; Rumsey, Nichola
2018-06-01
Focusing on body functionality is a promising technique for improving women's body image. This study replicates prior research in a large novel sample, tests longer-term follow-up effects, and investigates underlying mechanisms of these effects (body complexity and body-self integration). British women (N = 261) aged 18-30 who wanted to improve their body image were randomised to Expand Your Horizon (three online body functionality writing exercises) or an active control. Trait body image was assessed at Pretest, Posttest, 1-week, and 1-month Follow-Up. To explore whether changes in body complexity and body-self integration 'buffer' the impact of negative body-related experiences, participants also completed beauty-ideal media exposure. Relative to the control, intervention participants experienced improved appearance satisfaction, functionality satisfaction, body appreciation, and body complexity at Posttest, and at both Follow-Ups. Neither body complexity nor body-self integration mediated intervention effects. Media exposure decreased state body satisfaction among intervention and control participants, but neither body complexity nor body-self integration moderated these effects. The findings underscore the value of focusing on body functionality for improving body image and show that effects persist one month post-intervention. Copyright © 2018 Elsevier Ltd. All rights reserved.
"Exercise to be fit, not skinny": The effect of fitspiration imagery on women's body image.
Tiggemann, Marika; Zaccardo, Mia
2015-09-01
Fitspiration is an online trend designed to inspire viewers towards a healthier lifestyle by promoting exercise and healthy food. The present study aimed to experimentally investigate the impact of fitspiration images on women's body image. Participants were 130 female undergraduate students who were randomly assigned to view either a set of Instagram fitspiration images or a control set of travel images presented on an iPad. Results showed that acute exposure to fitspiration images led to increased negative mood and body dissatisfaction and decreased state appearance self-esteem relative to travel images. Importantly, regression analyses showed that the effects of image type were mediated by state appearance comparison. Thus it was concluded that fitspiration can have negative unintended consequences for body image. The results offer support to general sociocultural models of media effects on body image, and extend these to "new" media. Copyright © 2015 Elsevier Ltd. All rights reserved.
Design and development of a smart aerial platform for surface hydrological measurements
NASA Astrophysics Data System (ADS)
Tauro, F.; Pagano, C.; Porfiri, M.; Grimaldi, S.
2013-12-01
Currently available experimental methodologies for surface hydrological monitoring rely on the use of intrusive sensing technologies which tend to provide local rather than distributed information on the flow physics. In this context, drawbacks deriving from the use of invasive instrumentation are partially alleviated by Large Scale Particle Image Velocimetry (LSPIV). LSPIV is based on the use of cameras mounted on masts along river banks which capture images of artificial tracers or naturally occurring objects floating on water surfaces. Images are then georeferenced and the displacement of groups of floating tracers statistically analyzed to reconstruct flow velocity maps at specific river cross-sections. In this work, we mitigate LSPIV spatial limitations and inaccuracies due to image calibration by designing and developing a smart platform which integrates digital acquisition system and laser calibration units onboard of a custom-built quadricopter. The quadricopter is designed to be lightweight, low cost as compared to kits available on the market, highly customizable, and stable to guarantee minimal vibrations during image acquisition. The onboard digital system includes an encased GoPro Hero 3 camera whose axis is constantly kept orthogonal to the water surface by means of an in-house developed gimbal. The gimbal is connected to the quadricopter through a shock absorber damping device which further reduces eventual vibrations. Image calibration is performed through laser units mounted at known distances on the quadricopter landing apparatus. The vehicle can be remotely controlled by the open-source Ardupilot microcontroller. Calibration tests and field experiments are conducted in outdoor environments to assess the feasibility of using the smart platform for acquisition of high quality images of natural streams. Captured images are processed by LSPIV algorithms and average flow velocities are compared to independently acquired flow estimates. Further, videos are presented where the smart platform captures the motion of environmentally-friendly buoyant fluorescent particle tracers floating on the surface of water bodies. Such fluorescent particles are in-house synthesized and their visibility and accuracy in tracing complex flows have been previously tested in laboratory and outdoor settings. Experimental results demonstrate the potential of the methodology in monitoring severely accessible and spatially extended environments. Improved accuracy in flow monitoring is accomplished by minimizing image orthorectification and introducing highly visible particle tracers. Future developments will aim at the autonomy of the vehicle through machine learning procedures for unmanned monitoring in the environment.
Roemer, P B; Edelstein, W A; Hayes, C E; Souza, S P; Mueller, O M
1990-11-01
We describe methods for simultaneously acquiring and subsequently combining data from a multitude of closely positioned NMR receiving coils. The approach is conceptually similar to phased array radar and ultrasound and hence we call our techniques the "NMR phased array." The NMR phased array offers the signal-to-noise ratio (SNR) and resolution of a small surface coil over fields-of-view (FOV) normally associated with body imaging with no increase in imaging time. The NMR phased array can be applied to both imaging and spectroscopy for all pulse sequences. The problematic interactions among nearby surface coils is eliminated (a) by overlapping adjacent coils to give zero mutual inductance, hence zero interaction, and (b) by attaching low input impedance preamplifiers to all coils, thus eliminating interference among next nearest and more distant neighbors. We derive an algorithm for combining the data from the phased array elements to yield an image with optimum SNR. Other techniques which are easier to implement at the cost of lower SNR are explored. Phased array imaging is demonstrated with high resolution (512 x 512, 48-cm FOV, and 32-cm FOV) spin-echo images of the thoracic and lumbar spine. Data were acquired from four-element linear spine arrays, the first made of 12-cm square coils and the second made of 8-cm square coils. When compared with images from a single 15 x 30-cm rectangular coil and identical imaging parameters, the phased array yields a 2X and 3X higher SNR at the depth of the spine (approximately 7 cm).
NASA Astrophysics Data System (ADS)
Wang, Jianing; Chen, Fuyao; Dellalana, Laura E.; Jagasia, Madan H.; Tkaczyk, Eric R.; Dawant, Benoit M.
2018-02-01
Chronic graft-versus-host disease (cGVHD) is a frequent and potentially life-threatening complication of allogeneic hematopoietic stem cell transplantation (HCT) and commonly affects the skin, resulting in distressing patient morbidity. The percentage of involved body surface area (BSA) is commonly used for diagnosing and scoring the severity of cGVHD. However, the segmentation of the involved BSA from patient whole body serial photography is challenging because (1) it is difficult to design traditional segmentation method that rely on hand crafted features as the appearance of cGVHD lesions can be drastically different from patient to patient; (2) to the best of our knowledge, currently there is no publicavailable labelled image set of cGVHD skin for training deep networks to segment the involved BSA. In this preliminary study we create a small labelled image set of skin cGVHD, and we explore the possibility to use a fully convolutional neural network (FCN) to segment the skin lesion in the images. We use a commercial stereoscopic Vectra H1 camera (Canfield Scientific) to acquire 400 3D photographs of 17 cGVHD patients aged between 22 and 72. A rotational data augmentation process is then applied, which rotates the 3D photos through 10 predefined angles, producing one 2D projection image at each position. This results in 4000 2D images that constitute our cGVHD image set. A FCN model is trained and tested using our images. We show that our method achieves encouraging results for segmenting cGVHD skin lesion in photographic images.
Infrared thermography quantitative image processing
NASA Astrophysics Data System (ADS)
Skouroliakou, A.; Kalatzis, I.; Kalyvas, N.; Grivas, TB
2017-11-01
Infrared thermography is an imaging technique that has the ability to provide a map of temperature distribution of an object’s surface. It is considered for a wide range of applications in medicine as well as in non-destructive testing procedures. One of its promising medical applications is in orthopaedics and diseases of the musculoskeletal system where temperature distribution of the body’s surface can contribute to the diagnosis and follow up of certain disorders. Although the thermographic image can give a fairly good visual estimation of distribution homogeneity and temperature pattern differences between two symmetric body parts, it is important to extract a quantitative measurement characterising temperature. Certain approaches use temperature of enantiomorphic anatomical points, or parameters extracted from a Region of Interest (ROI). A number of indices have been developed by researchers to that end. In this study a quantitative approach in thermographic image processing is attempted based on extracting different indices for symmetric ROIs on thermograms of the lower back area of scoliotic patients. The indices are based on first order statistical parameters describing temperature distribution. Analysis and comparison of these indices result in evaluating the temperature distribution pattern of the back trunk expected in healthy, regarding spinal problems, subjects.
NASA Astrophysics Data System (ADS)
Sedano, Fernando; Kempeneers, Pieter; Strobl, Peter; Kucera, Jan; Vogt, Peter; Seebach, Lucia; San-Miguel-Ayanz, Jesús
2011-09-01
This study presents a novel cloud masking approach for high resolution remote sensing images in the context of land cover mapping. As an advantage to traditional methods, the approach does not rely on thermal bands and it is applicable to images from most high resolution earth observation remote sensing sensors. The methodology couples pixel-based seed identification and object-based region growing. The seed identification stage relies on pixel value comparison between high resolution images and cloud free composites at lower spatial resolution from almost simultaneously acquired dates. The methodology was tested taking SPOT4-HRVIR, SPOT5-HRG and IRS-LISS III as high resolution images and cloud free MODIS composites as reference images. The selected scenes included a wide range of cloud types and surface features. The resulting cloud masks were evaluated through visual comparison. They were also compared with ad-hoc independently generated cloud masks and with the automatic cloud cover assessment algorithm (ACCA). In general the results showed an agreement in detected clouds higher than 95% for clouds larger than 50 ha. The approach produced consistent results identifying and mapping clouds of different type and size over various land surfaces including natural vegetation, agriculture land, built-up areas, water bodies and snow.
Ozimok, Brianne; Lamarche, Larkin; Gammage, Kimberley L
2015-05-01
This study examined the importance of body image evaluation and investment to predict dietary restraint in men (N = 272). Measures of physical activity, evaluation, investment and dietary restraint were completed. A hierarchical regression was conducted to predict dietary restraint from physical activity and body mass index (entered on the first step), body image evaluation (entered on the second step) and investment (entered on the final step). The overall regression was significant, F(4, 271) = 15.12, p < .001, R (2) adj = .17). Body mass index, physical activity and body image investment were significant positive predictors of dietary restraint. The present findings emphasize measuring body image investment. © The Author(s) 2015.
NASA Astrophysics Data System (ADS)
Meng, Xuanshi; Long, Yuexiao; Wang, Jianlei; Liu, Feng; Luo, Shijun
2018-02-01
Detailed particle-image-velocimetry (PIV) and surface pressure measurements are presented to study the vortex flow behind a slender conical forebody at high angles of attack. The results confirm the existence of two randomly appearing mirror imaged asymmetric bi-stable states of the separation vortices, giving rise to large side force and moment. A pair of carefully designed dielectric barrier discharge plasma actuators mounted near the apex and on both sides of the conical body are used to manipulate the vortex flow and thus provide control of the side forces on the body without using flaps. By making use of a duty-cycle actuation scheme that alternately actuates the port and starboard plasma actuators and optimizing the duty-cycle frequency, the present work demonstrates the feasibility of achieving a nearly perfect linear proportional control of the side force and moment in response to the duty-cycle ratio. Phase-locked PIV and surface pressure measurements are used to study the unsteady dynamic evolution of the flow within one duty-cycle actuation to reveal the flow control mechanism. It is found that under the duty-cycle actuation with the optimized frequency, the vortex flow essentially follows the plasma actuation by alternating between the two bi-stable states controlled directly by the duty-cycle ratio.
Coll-Font, Jaume; Burton, Brett M; Tate, Jess D; Erem, Burak; Swenson, Darrel J; Wang, Dafang; Brooks, Dana H; van Dam, Peter; Macleod, Rob S
2014-09-01
Cardiac electrical imaging often requires the examination of different forward and inverse problem formulations based on mathematical and numerical approximations of the underlying source and the intervening volume conductor that can generate the associated voltages on the surface of the body. If the goal is to recover the source on the heart from body surface potentials, the solution strategy must include numerical techniques that can incorporate appropriate constraints and recover useful solutions, even though the problem is badly posed. Creating complete software solutions to such problems is a daunting undertaking. In order to make such tools more accessible to a broad array of researchers, the Center for Integrative Biomedical Computing (CIBC) has made an ECG forward/inverse toolkit available within the open source SCIRun system. Here we report on three new methods added to the inverse suite of the toolkit. These new algorithms, namely a Total Variation method, a non-decreasing TMP inverse and a spline-based inverse, consist of two inverse methods that take advantage of the temporal structure of the heart potentials and one that leverages the spatial characteristics of the transmembrane potentials. These three methods further expand the possibilities of researchers in cardiology to explore and compare solutions to their particular imaging problem.
McGill, L A; Ferreira, P F; Scott, A D; Nielles-Vallespin, S; Giannakidis, A; Kilner, P J; Gatehouse, P D; de Silva, R; Firmin, D N; Pennell, D J
2016-01-06
In vivo cardiac diffusion tensor imaging (cDTI) is uniquely capable of interrogating laminar myocardial dynamics non-invasively. A comprehensive dataset of quantative parameters and comparison with subject anthropometrics is required. cDTI was performed at 3T with a diffusion weighted STEAM sequence. Data was acquired from the mid left ventricle in 43 subjects during the systolic and diastolic pauses. Global and regional values were determined for fractional anisotropy (FA), mean diffusivity (MD), helix angle gradient (HAg, degrees/%depth) and the secondary eigenvector angulation (E2A). Regression analysis was performed between global values and subject anthropometrics. All cDTI parameters displayed regional heterogeneity. The RR interval had a significant, but clinically small effect on systolic values for FA, HAg and E2A. Male sex and increasing left ventricular end diastolic volume were associated with increased systolic HAg. Diastolic HAg and systolic E2A were both directly related to left ventricular mass and body surface area. There was an inverse relationship between E2A mobility and both age and ejection fraction. Future interpretations of quantitative cDTI data should take into account anthropometric variations observed with patient age, body surface area and left ventricular measurements. Further work determining the impact of technical factors such as strain and SNR is required.
Dagvasumberel, Munkhbaatar; Shimabukuro, Michio; Nishiuchi, Takeshi; Ueno, Junji; Takao, Shoichiro; Fukuda, Daiju; Hirata, Yoichiro; Kurobe, Hirotsugu; Soeki, Takeshi; Iwase, Takashi; Kusunose, Kenya; Niki, Toshiyuki; Yamaguchi, Koji; Taketani, Yoshio; Yagi, Shusuke; Tomita, Noriko; Yamada, Hirotsugu; Wakatsuki, Tetsuzo; Harada, Masafumi; Kitagawa, Tetsuya; Sata, Masataka
2012-09-10
Growing evidence suggests that epicardial adipose tissue (EAT) may contribute to the development of coronary artery disease (CAD). In this study, we explored gender disparities in EAT volume (EATV) and its impact on coronary atherosclerosis. The study population consisted of 90 consecutive subjects (age: 63 ± 12 years; men: 47, women: 43) who underwent 256-slice multi-detector computed tomography (MDCT) coronary angiography. EATV was measured as the sum of cross-sectional epicardial fat area on CT images, from the lower surface of the left pulmonary artery origin to the apex. Subjects were segregated into the CAD group (coronary luminal narrowing > 50%) and non-CAD group. EATV/body surface area (BSA) was higher among men in the CAD group than in the non-CAD group (62 ± 13 vs. 33 ± 10 cm3/m2, p < 0.0001), but did not differ significantly among women in the 2 groups (49 ± 18 vs. 42 ± 9 cm3/m2, not significant). Multivariate logistic analysis showed that EATV/BSA was the single predictor for >50% coronary luminal narrowing in men (p < 0.0001). Predictors excluded were age, body mass index, hypertension, diabetes mellitus, and hyperlipidemia. Increased EATV is strongly associated with coronary atherosclerosis in men.
Photometric Modeling of a Cometary Nucleus: Taking Hapke Modeling to the Limit
NASA Technical Reports Server (NTRS)
Buratti, B. J.; Hicks, M. D.; Soderblom, L.; Hillier, J.; Britt, D.
2002-01-01
In the past two decades, photometric models developed by Bruce Hapke have been fit to a wide range of bodies in the Solar System: The Moon, Mercury, several asteroids, and many icy and rocky satellites. These models have enabled comparative descriptions of the physical attributes of planetary surfaces, including macroscopic roughness, particle size and size-distribution, the single scattering albedo, and the compaction state of the optically active portion of the regolith. One challenging type of body to observe and model, a cometary nucleus, awaited the first space based mission to obtain images unobscured by coma. The NASA-JPL Deep Space 1 Mission (DS1) encountered the short-period Jupiter-family comet 19/P Borrelly on September 22, 2001, about 8 days after perihelion. Prior to its closest approach of 2171 km, the remote-sensing package on the spacecraft obtained 25 CCD images of the comet, representing the first closeup, unobscured view of a comet's nucleus. At closest approach, corresponding to a resolution of 47 meters per pixel, the intensity of the coma was less than 1% of that of the nucleus. An unprecedented range of high solar phase angles (52-89 degrees), viewing geometries that are in general attainable only when a comet is active, enabled the first quantitative and disk-resolved modeling of surface photometric physical parameters.
Junne, Florian; Zipfel, Stephan; Wild, Beate; Martus, Peter; Giel, Katrin; Resmark, Gaby; Friederich, Hans-Christoph; Teufel, Martin; de Zwaan, Martina; Dinkel, Andreas; Herpertz, Stephan; Burgmer, Markus; Tagay, Sefik; Rothermund, Eva; Zeeck, Almut; Ziser, Katrin; Herzog, Wolfgang; Löwe, Bernd
2016-06-01
Body image disturbance represents a central characteristic of anorexia nervosa (AN). Depression and anxiety are the most common mental comorbidities in patients with AN. This study aims to investigate the relationship of body image with symptoms of depression and anxiety during outpatient psychotherapy in AN. Analyses were conducted using the data set of the Anorexia Nervosa Treatment Outpatient Study (ANTOP) randomized controlled trial. The ANTOP study included N = 242 females with AN between 18 and 56 years of age. The trial was designed to compare enhanced cognitive behavioral therapy (CBT-E) and focal psychodynamic therapy (FPT) with optimized treatment as usual (TAU-O) for patients with AN. The analyses on body image dimensions were conducted using measures of correlations and multiple linear regression analyses to assess the relationship and longitudinal prediction of symptoms of depression and anxiety by body image dimensions. Results showed that body image perceptions were significantly associated with symptoms of depression and anxiety in patients with AN at all treatment stages. In addition, body image dimensions at early treatment stages predict depression and anxiety in follow-up measurements. The correlation of symptoms of depression and anxiety by body image perceptions increased along treatment course. The persistence of body image disturbance, while body mass index increases under treatment (persistency effect), may constitute a relevant factor contributing to the course of the most common affective comorbidities of depression and anxiety in patients with AN. Body image disturbances in patients with AN should therefore be explicitly targeted within the specialized psychotherapy of affected patients. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Benedict, Catherine; Rodriguez, Vivian M.; Carter, Jeanne; Temple, Larissa; Nelson, Christian; DuHamel, Katherine
2016-01-01
Purpose Treatment for rectal and anal cancer (RACa) can result in persistent bowel and gastrointestinal (GI) dysfunction. Body image problems may develop over time and exacerbate symptom-related distress. RACa survivors are an understudied group, however, and factors contributing to post-treatment well-being are not well understood. This study examined whether poorer body image explained the relation between symptom severity and psychological distress. Methods Participants (N=70) completed the baseline assessment of a sexual health intervention study. Bootstrap methods tested body image as a mediator between bowel and GI symptom severity and two indicators of psychological distress (depressive and anxiety symptoms), controlling for relevant covariates. Measures included the EORTC-QLQ-CR38 Diarrhea, GI Symptoms, and Body Image subscales and Brief Symptom Index Depression and Anxiety subscales. Results Women averaged 55 years old (SD=11.6), White (79%), and 4-years post-treatment. Greater Depression related to poorer body image (r=−.61) and worse diarrhea (r=.35) and GI symptoms (r=.48). Greater Anxiety related to poorer body image (r=−.42) and worse GI symptoms (r=.45), but not diarrhea (r=.20). Body image mediated the effects of bowel and GI symptoms on Depression, but not on Anxiety. Conclusions Long-term bowel and GI dysfunction are distressing and affect how women perceive and relate to their bodies, exacerbating survivorship difficulties. Interventions to improve adjustment post-treatment should address treatment side effects, but also target body image problems to alleviate depressive symptoms. Reducing anxiety may require other strategies. Body image may be a key modifiable factor to improve well-being in this understudied population. Longitudinal research is needed to confirm findings. PMID:26446699
Understanding Appearance-Enhancing Drug Use in Sport Using an Enactive Approach to Body Image
Hauw, Denis; Bilard, Jean
2017-01-01
From an enactive approach to human activity, we suggest that the use of appearance-enhancing drugs is better explained by the sense-making related to body image rather than the cognitive evaluation of social norms about appearance and consequent psychopathology-oriented approach. After reviewing the main psychological disorders thought to link body image issues to the use of appearance-enhancing substances, we sketch a flexible, dynamic and embedded account of body image defined as the individual’s propensity to act and experience in specific situations. We show how this enacted body image is a complex process of sense-making that people engage in when they are trying to adapt to specific situations. These adaptations of the enacted body image require effort, perseverance and time, and therefore any substance that accelerates this process appears to be an easy and attractive solution. In this enactive account of body image, we underline that the link between the enacted body image and substance use is also anchored in the history of the body’s previous interactions with the world. This emerges during periods of upheaval and hardship, especially in a context where athletes experience weak participatory sense-making in a sport community. We conclude by suggesting prevention and intervention designs that would promote a safe instrumental use of the body in sports and psychological helping procedures for athletes experiencing difficulties with substances use and body image. PMID:29238320
Use of the Electronic Medical Record to Assess Pancreas Size in Type 1 Diabetes
Virostko, John; Hilmes, Melissa; Eitel, Kelsey; Moore, Daniel J.; Powers, Alvin C.
2016-01-01
Aims This study harnessed the electronic medical record to assess pancreas volume in patients with type 1 diabetes (T1D) and matched controls to determine whether pancreas volume is altered in T1D and identify covariates that influence pancreas volume. Methods This study included 25 patients with T1D and 25 age-, sex-, and weight-matched controls from the Vanderbilt University Medical Center enterprise data warehouse. Measurements of pancreas volume were made from medical imaging studies using magnetic resonance imaging (MRI) or computed tomography (CT). Results Patients with T1D had a pancreas volume 47% smaller than matched controls (41.16 ml vs. 77.77 ml, P < 0.0001) as well as pancreas volume normalized by subject body weight, body mass index, or body surface area (all P < 0.0001). Pancreatic volume was smaller with a longer duration of T1D across the patient population (N = 25, P = 0.04). Additionally, four individual patients receiving multiple imaging scans displayed progressive declines in pancreas volume over time (~ 6% of volume/year), whereas five controls scanned a year apart did not exhibit a decline in pancreas size (P = 0.03). The pancreas was uniformly smaller on the right and left side of the abdomen. Conclusions Pancreas volume declines with disease duration in patients with T1D, suggesting a protracted pathological process that may include the exocrine pancreas. PMID:27391588
NASA Technical Reports Server (NTRS)
Street, K. W. Jr.; Kobrick, R. L.; Klaus, D. M.
2011-01-01
A limitation has been identified in the existing test standards used for making controlled, two-body abrasion scratch measurements based solely on the width of the resultant score on the surface of the material. A new, more robust method is proposed for analyzing a surface scratch that takes into account the full three-dimensional profile of the displaced material. To accomplish this, a set of four volume- displacement metrics was systematically defined by normalizing the overall surface profile to denote statistically the area of relevance, termed the Zone of Interaction. From this baseline, depth of the trough and height of the plowed material are factored into the overall deformation assessment. Proof-of-concept data were collected and analyzed to demonstrate the performance of this proposed methodology. This technique takes advantage of advanced imaging capabilities that allow resolution of the scratched surface to be quantified in greater detail than was previously achievable. When reviewing existing data analysis techniques for conducting two-body abrasive scratch tests, it was found that the ASTM International Standard G 171 specified a generic metric based only on visually determined scratch width as a way to compare abraded materials. A limitation to this method was identified in that the scratch width is based on optical surface measurements, manually defined by approximating the boundaries, but does not consider the three-dimensional volume of material that was displaced. With large, potentially irregular deformations occurring on softer materials, it becomes unclear where to systematically determine the scratch width. Specifically, surface scratches on different samples may look the same from a top view, resulting in an identical scratch width measurement, but may vary in actual penetration depth and/or plowing deformation. Therefore, two different scratch profiles would be measured as having identical abrasion properties, although they differ significantly.