Sample records for body temperature decrease

  1. Effect of short-term decrease in water temperature on body temperature and involvement of testosterone in steelhead and rainbow trout, Oncorhynchus mykiss.

    PubMed

    Miura, Go; Munakata, Arimune; Yada, Takashi; Schreck, Carl B; Noakes, David L G; Matsuda, Hiroyuki

    2013-09-01

    The Pacific salmonid species Oncorhynchus mykiss is separated into a migratory form (steelhead trout) and a non-migratory form (rainbow trout). A decrease in water temperature is likely a cue triggering downstream behavior in the migratory form, and testosterone inhibits onset of this behavior. To elucidate differences in sensitivity to water temperature decreases between the migratory and non-migratory forms and effect of testosterone on the sensitivity, we examined two experiments. In experiment 1, we compared changes in body temperature during a short-term decrease in water temperature between both live and dead steelhead and rainbow trout. In experiment 2, we investigated effects of testosterone on body temperature decrease in steelhead trout. Water temperature was decreased by 3°C in 30min. The body temperature of the steelhead decreased faster than that of the rainbow trout. In contrast, there was no significant difference in the decrease in body temperature between dead steelhead and rainbow trout specimens. The body temperature of the testosterone-treated steelhead trout decreased more slowly than that of control fish. Our results suggest that the migratory form is more sensitive to decreases in water temperature than the non-migratory form. Moreover, testosterone might play an inhibitory role in sensitivity to such decreases. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. Body temperature and resistance to evaporative water loss in tropical Australian frogs.

    PubMed

    Tracy, Christopher R; Christian, Keith A; Betts, Gregory; Tracy, C Richard

    2008-06-01

    Although the skin of most amphibians measured to date offers no resistance to evaporative water loss (EWL), some species, primarily arboreal frogs, produce skin secretions that increase resistance to EWL. At high air temperatures, it may be advantageous for amphibians to increase EWL as a means to decrease body temperature. In Australian hylid frogs, most species do not decrease their resistance at high air temperature, but some species with moderate resistance (at moderate air temperatures) gradually decrease resistance with increasing air temperature, and some species with high resistance (at moderate air temperatures) abruptly decrease resistance at high air temperatures. Lower skin resistance at high air temperatures decreases the time to desiccation, but the lower body temperatures allow the species to avoid their critical thermal maximum (CT(Max)) body temperatures. The body temperatures of species with low to moderate resistances to EWL that do not adjust resistance at high air temperatures do not warm to their CT(Max), although for some species, this is because they have high CT(Max) values. As has been reported previously for resistance to EWL generally, the response pattern of change of EWL at high air temperatures has apparently evolved independently among Australian hylids. The mechanisms involved in causing resistance and changes in resistance are unknown.

  3. Decreases in beetle body size linked to climate change and warming temperatures.

    PubMed

    Tseng, Michelle; Kaur, Katrina M; Soleimani Pari, Sina; Sarai, Karnjit; Chan, Denessa; Yao, Christine H; Porto, Paula; Toor, Anmol; Toor, Harpawantaj S; Fograscher, Katrina

    2018-05-01

    Body size is a fundamental ecological trait and is correlated with population dynamics, community structure and function, and ecosystem fluxes. Laboratory data from broad taxonomic groups suggest that a widespread response to a warming world may be an overall decrease in organism body size. However, given the myriad of biotic and abiotic factors that can also influence organism body size in the wild, it is unclear whether results from these laboratory assays hold in nature. Here we use datasets spanning 30 to 100 years to examine whether the body size of wild-caught beetles has changed over time, whether body size changes are correlated with increased temperatures, and we frame these results using predictions derived from a quantitative review of laboratory responses of 22 beetle species to temperature. We found that 95% of laboratory-reared beetles decreased in size with increased rearing temperature, with larger-bodied species shrinking disproportionately more than smaller-bodied beetles. In addition, the museum datasets revealed that larger-bodied beetle species have decreased in size over time, that mean beetle body size explains much of the interspecific variation in beetle responses to temperature, and that long-term beetle size changes are explained by increases in autumn temperature and decreases in spring temperature in this region. Our data demonstrate that the relationship between body size and temperature of wild-caught beetles matches relatively well with results from laboratory studies, and that variation in this relationship is largely explained by interspecific variation in mean beetle body size. This long-term beetle dataset is one of the most comprehensive arthropod body size datasets compiled to date, it improves predictions regarding the shrinking of organisms with global climate change, and together with the meta-analysis data, call for new hypotheses to explain why larger-bodied organisms may be more sensitive to temperature. © 2018 The Authors. Journal of Animal Ecology © 2018 British Ecological Society.

  4. The control effect of histamine on body temperature and respiratory function in IgE-dependent systemic anaphylaxis.

    PubMed

    Makabe-Kobayashi, Yoko; Hori, Yoshio; Adachi, Tetsuya; Ishigaki-Suzuki, Satsuki; Kikuchi, Yoshihiro; Kagaya, Yutaka; Shirato, Kunio; Nagy, András; Ujike, Azusa; Takai, Toshiyuki; Watanabe, Takehiko; Ohtsu, Hiroshi

    2002-08-01

    The systemic anaphylaxis reaction comprises various symptoms, including hypotension, changes in respiration pattern, and hypothermia. To elucidate the role of histamine in each of these symptoms, we induced the passive systemic anaphylaxis reaction in histidine decarboxylase gene knockout (HDC [-/-]) mice, which lack histamine. HDC(-/-) mice were generated by knocking out the HDC gene, which codes for the unique histamine-synthesizing enzyme. Twenty-four hours after the injection of IgE, HDC(+/+) and HDC(-/-) mice were injected with allergen and body temperature, blood pressure, and respiratory function were monitored in each mouse. Blood pressure dropped in both the HDC(-/-) mice and the HDC(+/+) mice. In contrast, respiratory frequency dropped and the expiratory respiration time was elongated only in the HDC(+/+) mice. Body temperature was decreased in the HDC(+/+) mice and was practically unchanged in the HDC(-/-) mice. Histamine receptor antagonists blocked the body temperature drop in the HDC(+/+) mice. Intravenous histamine induced similar patterns of body temperature decrease in the HDC(+/+) mice and the HDC(-/-) mice. Mast cell-deficient W/W (v) mice did not show the decrease in body temperature; this suggests that the histamine that contributed to the decrease in body temperature was derived from mast cells. According to the results of this investigation, in the passive systemic anaphylaxis reaction, respiratory frequency, expiratory time, and body temperature are shown to be controlled by the activity of histamine, but its contribution to blood pressure is negligible.

  5. Short communication: calf body temperature following chemical disbudding with sedation: effects of milk allowance and supplemental heat.

    PubMed

    Vasseur, E; Rushen, J; de Passillé, A M

    2014-01-01

    The use of caustic paste combined with a sedative is one of the least painful methods for disbudding. It is recommended to disbud at as early as 5d of age. However, the sedative xylazine reportedly causes a decrease in core temperature. Furthermore, young calves do not thermoregulate efficiently. We investigated the effects of disbudding calves at 5d of age using caustic paste and xylazine sedation on body temperature, activity, and milk intake of 46 individually housed 5-d-old calves in a 2×2 factorial design, with milk fed at 4.5L/d (low-fed calves) versus 9L/d (high-fed calves), with or without a heat lamp. Body temperature, calf activity (standing time), and barn temperature were monitored continuously using automatic data loggers on the day of, before the day of, and the day after disbudding. All calves were injected intramuscularly with 0.25mL of 2mg/mL xylazine 20min before disbudding (dose: 0.12±0.003mL/kg of BW). We found that the body temperature of 5-d-old calves decreased immediately after the injection of the sedative xylazine. The body temperature of calves decreased 0.9±0.09°C and it took 3.8±0.32h to climb back to the preinjection body temperature. Calves that were fed the lower amount of milk, received a higher dose of xylazine (mL/kg BW), or were disbudded in a colder environment were more affected by body temperature variations (lower and longest decrease in body temperature and higher magnitude). Calf activity recovery followed the pattern of body temperature recovery. Milk allowance and supplemental heat did not help enhance recovery during the 6h following the procedure. The disbudding procedure did not affect milk intake but calves with less body temperature decrease or kept in a warmer environment drank more milk following disbudding. Low-fed calves were overall more affected by the procedure than high-fed calves during the disbudding day and the following day (greater decrease in body temperature and drank less in the colder environment). Providing a high-milk diet is a suitable option to help mitigate calf discomfort due to the disbudding procedure, whereas using a heat lamp does not seem to help, at least in a mildly cold winter. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  6. Lower core body temperature and greater body fat are components of a human thrifty phenotype.

    PubMed

    Reinhardt, M; Schlögl, M; Bonfiglio, S; Votruba, S B; Krakoff, J; Thearle, M S

    2016-05-01

    In small studies, a thrifty human phenotype, defined by a greater 24-hour energy expenditure (EE) decrease with fasting, is associated with less weight loss during caloric restriction. In rodents, models of diet-induced obesity often have a phenotype including a reduced EE and decreased core body temperature. We assessed whether a thrifty human phenotype associates with differences in core body temperature or body composition. Data for this cross-sectional analysis were obtained from 77 individuals participating in one of two normal physiology studies while housed on our clinical research unit. Twenty-four-hour EE using a whole-room indirect calorimeter and 24-h core body temperature were measured during 24 h each of fasting and 200% overfeeding with a diet consisting of 50% carbohydrates, 20% protein and 30% fat. Body composition was measured by dual X-ray absorptiometry. To account for the effects of body size on EE, changes in EE were expressed as a percentage change from 24-hour EE (%EE) during energy balance. A greater %EE decrease with fasting correlated with a smaller %EE increase with overfeeding (r=0.27, P=0.02). The %EE decrease with fasting was associated with both fat mass and abdominal fat mass, even after accounting for covariates (β=-0.16 (95% CI: -0.26, -0.06) %EE per kg fat mass, P=0.003; β=-0.0004 (-0.0007, -0.00004) %EE kg(-1) abdominal fat mass, P=0.03). In men, a greater %EE decrease in response to fasting was associated with a lower 24- h core body temperature, even after adjusting for covariates (β=1.43 (0.72, 2.15) %EE per 0.1 °C, P=0.0003). Thrifty individuals, as defined by a larger EE decrease with fasting, were more likely to have greater overall and abdominal adiposity as well as lower core body temperature consistent with a more efficient metabolism.

  7. Using body temperature, food and water consumption as biomarkers of disease progression in mice with Eμ-myc lymphoma.

    PubMed

    Hunter, J E; Butterworth, J; Perkins, N D; Bateson, M; Richardson, C A

    2014-02-18

    Non-invasive biomarkers of disease progression in mice with cancer are lacking making it challenging to implement appropriate humane end points. We investigated whether body temperature, food and water consumption could be used to predict tumour burden. Thirty-six male, wild-type C57Bl/6 mice were implanted with subcutaneous RFID temperature sensors and inoculated with Eμ-myc tumours that infiltrate lymphoid tissue. Decrease in body temperature over the course of the study positively predicted post-mortem lymph node tumour burden (R(2)=0.68, F(1,22)=44.8, P<0.001). At experimental and humane end points, all mice that had a mean decrease in body temperature of 0.7 °C or greater had lymph nodes heavier than 0.5 g (100% sensitivity), whereas a mean decrease in body temperature <0.7 °C always predicted lymph nodes lighter than 0.5 g (100% specificity). The mean decrease in food consumption in each cage also predicted mean post-mortem lymph node tumour burden at 3 weeks (R(2)=0.89, F(1,3)=23.2, P=0.017). Temperature, food and water consumption were useful biomarkers of disease progression in mice with lymphoma and could potentially be used more widely to monitor mice with other forms of cancer.

  8. Ghrelin-induced hypothermia: A Physiological basis but no clinical risk

    PubMed Central

    Wiedmer, Petra; Strasser, Florian; Horvath, Tamas L.; Blum, David; DiMarchi, Richard; Lutz, Thomas; Schürmann, Annette; Joost, Hans-Georg; Tschöp, Matthias H.; Tong, Jenny

    2011-01-01

    Ghrelin increases food intake and decreases energy expenditure, promoting a positive energy balance. We observed a single case of serious hypothermia during sustained ghrelin treatment in a male subject, suggesting that ghrelin may play a role in the regulation of body temperature. We therefore investigated the effect of ghrelin treatment on body temperature in rodents and humans under controlled conditions. Intriguingly, we could demonstrate ghrelin binding in axon terminals of the medial preoptic area of the hypothalamus located in the vicinity of cold-sensitive neurons. This localization of ghrelin receptors provides a potential anatomical basis for the regulation of body temperature by ghrelin. However, our follow-up studies also indicated that neither a chronic i.c.v. application of ghrelin in rats, nor a single s.c. injection under cold exposure in mice resulted in a relevant decrease in body core temperature. In addition, a four-hour intravenous ghrelin infusion did not decrease body surface temperature in healthy humans. We concluded that while there is a theoretical molecular basis for ghrelin to modify body temperature in mammals, its magnitude is irrelevant under physiologic circumstances. Hypothermia is not likely to represent a serious risk associated with this agent and pathway. PMID:21513721

  9. Body condition of Morelet’s Crocodiles (Crocodylus moreletii) from northern Belize

    USGS Publications Warehouse

    Mazzotti, Frank J.; Cherkiss, Michael S.; Brandt, Laura A.; Fujisaki, Ikuko; Hart, Kristen; Jeffery, Brian; McMurry, Scott T.; Platt, Steven G.; Rainwater, Thomas R.; Vinci, Joy

    2012-01-01

    Body condition factors have been used as an indicator of health and well-being of crocodilians. We evaluated body condition of Morelet's Crocodiles (Crocodylus moreletii) in northern Belize in relation to biotic (size, sex, and habitat) and abiotic (location, water level, and air temperature) factors. We also tested the hypothesis that high water levels and warm temperatures combine or interact to result in a decrease in body condition. Size class, temperature, and water level explained 20% of the variability in condition of Morelet's Crocodiles in this study. We found that adult crocodiles had higher condition scores than juveniles/subadults but that sex, habitat, and site had no effect. We confirmed our hypothesis that warm temperatures and high water levels interact to decrease body condition. We related body condition of Morelet's Crocodiles to natural fluctuations in air temperatures and water levels in northern Belize, providing baseline conditions for population and ecosystem monitoring.

  10. Decrease of body temperature after aglepristone treatment in bitches.

    PubMed

    Corrada, Y; García, P; de la Sota, P E; Huzman, M; Landoni, M F; Gobello, C

    2005-07-01

    Body temperature responses and the timing of abortions were evaluated in pregnant bitches with the anti-progestin aglepristone. Fifteen purebred and crossbred, 25-45 days pregnant, were included in this study and seven untreated bitches at the same stage of pregnancy served as controls. Treated bitches were administered two applications of aglepristone (10 mg/kg SC) 24 h apart for pregnancy termination. Pregnancy termination was confirmed by ultrasonographic assessment. Body temperature was rectally measured three times a day for 6 days beginning 24 h before treatment or pregnancy diagnosis in the treated and control bitches, respectively. Additionally, serum progesterone concentrations were assessed at time points during the study in the treated bitches. Pregnancy was terminated in 14 treated bitches in a mean+/-S.E.M. of 4.3+/-0.7 days after treatment. Control bitches remained pregnant. In the treated bitches, but not in the controls, body temperature significantly decreased 24 h after the beginning of the treatments (P < 0.01) and then gradually returned to pre-treatment values. Correlation between the day of mean minimum body temperature and the day of pregnancy termination was low (0.07; > 0.05). Progesterone did not show significant change throughout the study. Body temperature does not seem to be a suitable variable to clinically monitor the aborting effect of aglepristone. Decrease of body temperature after aglepristone treatment could represent further evidence of its hypothalamic effects.

  11. Overwintering strategy of wild free-ranging and enclosure-housed Japanese raccoon dogs ( Nyctereutes procyonoides albus)

    NASA Astrophysics Data System (ADS)

    Kitao, Naoya; Fukui, Daisuke; Hashimoto, Masaaki; Osborne, Peter G.

    2009-03-01

    The raccoon dog, Nyctereutes procyonoides, is a canid with a passive overwintering strategy in northern Europe. However, the behaviour and physiology of the Japanese subspecies, N. p. albus, which has fewer chromosomes than the other subspecies, remain unknown. We measured body temperature, body composition and blood biochemistry of wild free-ranging and fasted enclosure-housed N. p. albus during boreal winter in Hokkaido, Japan. Body temperature of N. p. albus decreased from 38°C in autumn to 35.9-36.7°C while maintaining a circadian rhythm in late February ( n = 3). A transient 18-36% decrease in resting heart rate occurred when body temperature was low ( n = 2). Despite a 33-45% decrease in body weight due to winter fasting, circulating glucose, total protein and triglyceride levels were maintained ( n = 4). Serum urea nitrogen dropped by 43-45% from autumn to spring, suggesting protein conservation during fasting. The overwintering survival strategy of N. p. albus in central Hokkaido is based upon large changes in seasonal activity patterns, winter denning and communal housing without the large decrease in body temperature that is characteristic of subarctic animals exhibiting hibernation or torpor.

  12. Drosophila DH31 Neuropeptide and PDF Receptor Regulate Night-Onset Temperature Preference

    PubMed Central

    Goda, Tadahiro; Tang, Xin; Umezaki, Yujiro; Chu, Michelle L.

    2016-01-01

    Body temperature exhibits rhythmic fluctuations over a 24 h period (Refinetti and Menaker, 1992) and decreases during the night, which is associated with sleep initiation (Gilbert et al., 2004; Kräuchi, 2007a,b). However, the underlying mechanism of this temperature decrease is largely unknown. We have previously shown that Drosophila exhibit a daily temperature preference rhythm (TPR), in which their preferred temperatures increase during the daytime and then decrease at the transition from day to night (night-onset) (Kaneko et al., 2012). Because Drosophila are small ectotherms, their body temperature is very close to that of the ambient temperature (Stevenson, 1985), suggesting that their TPR generates their body temperature rhythm. Here, we demonstrate that the neuropeptide diuretic hormone 31 (DH31) and pigment-dispersing factor receptor (PDFR) contribute to regulate the preferred temperature decrease at night-onset. We show that PDFR and tethered-DH31 expression in dorsal neurons 2 (DN2s) restore the preferred temperature decrease at night-onset, suggesting that DH31 acts on PDFR in DN2s. Notably, we previously showed that the molecular clock in DN2s is important for TPR. Although PDF (another ligand of PDFR) is a critical factor for locomotor activity rhythms, Pdf mutants exhibit normal preferred temperature decreases at night-onset. This suggests that DH31-PDFR signaling specifically regulates a preferred temperature decrease at night-onset. Thus, we propose that night-onset TPR and locomotor activity rhythms are differentially controlled not only by clock neurons but also by neuropeptide signaling in the brain. SIGNIFICANCE STATEMENT Body temperature rhythm (BTR) is fundamental for the maintenance of functions essential for homeostasis, such as generating metabolic energy and sleep. One major unsolved question is how body temperature decreases dramatically during the night. Previously, we demonstrated that a BTR-like mechanism, referred to as temperature preference rhythm (TPR), exists in Drosophila. Here, we demonstrate that the diuretic hormone 31 (DH31) neuropeptide and pigment-dispersing factor receptor (PDFR) regulate preferred temperature decreases at night-onset via dorsal neurons 2. This is the first in vivo evidence that DH31 could function as a ligand of PDFR. Although both DH31 and PDF are ligands of PDFR, we show that DH31 regulates night-onset TPR, but PDF does not, suggesting that night-onset TPR and locomotor activity rhythms are controlled by different neuropeptides via different clock cells. PMID:27852781

  13. Drosophila DH31 Neuropeptide and PDF Receptor Regulate Night-Onset Temperature Preference.

    PubMed

    Goda, Tadahiro; Tang, Xin; Umezaki, Yujiro; Chu, Michelle L; Kunst, Michael; Nitabach, Michael N; Hamada, Fumika N

    2016-11-16

    Body temperature exhibits rhythmic fluctuations over a 24 h period (Refinetti and Menaker, 1992) and decreases during the night, which is associated with sleep initiation (Gilbert et al., 2004; Kräuchi, 2007a,b). However, the underlying mechanism of this temperature decrease is largely unknown. We have previously shown that Drosophila exhibit a daily temperature preference rhythm (TPR), in which their preferred temperatures increase during the daytime and then decrease at the transition from day to night (night-onset) (Kaneko et al., 2012). Because Drosophila are small ectotherms, their body temperature is very close to that of the ambient temperature (Stevenson, 1985), suggesting that their TPR generates their body temperature rhythm. Here, we demonstrate that the neuropeptide diuretic hormone 31 (DH31) and pigment-dispersing factor receptor (PDFR) contribute to regulate the preferred temperature decrease at night-onset. We show that PDFR and tethered-DH31 expression in dorsal neurons 2 (DN2s) restore the preferred temperature decrease at night-onset, suggesting that DH31 acts on PDFR in DN2s. Notably, we previously showed that the molecular clock in DN2s is important for TPR. Although PDF (another ligand of PDFR) is a critical factor for locomotor activity rhythms, Pdf mutants exhibit normal preferred temperature decreases at night-onset. This suggests that DH31-PDFR signaling specifically regulates a preferred temperature decrease at night-onset. Thus, we propose that night-onset TPR and locomotor activity rhythms are differentially controlled not only by clock neurons but also by neuropeptide signaling in the brain. Body temperature rhythm (BTR) is fundamental for the maintenance of functions essential for homeostasis, such as generating metabolic energy and sleep. One major unsolved question is how body temperature decreases dramatically during the night. Previously, we demonstrated that a BTR-like mechanism, referred to as temperature preference rhythm (TPR), exists in Drosophila Here, we demonstrate that the diuretic hormone 31 (DH31) neuropeptide and pigment-dispersing factor receptor (PDFR) regulate preferred temperature decreases at night-onset via dorsal neurons 2. This is the first in vivo evidence that DH31 could function as a ligand of PDFR. Although both DH31 and PDF are ligands of PDFR, we show that DH31 regulates night-onset TPR, but PDF does not, suggesting that night-onset TPR and locomotor activity rhythms are controlled by different neuropeptides via different clock cells. Copyright © 2016 the authors 0270-6474/16/3611739-16$15.00/0.

  14. Using body temperature, food and water consumption as biomarkers of disease progression in mice with Eμ-myc lymphoma

    PubMed Central

    Hunter, J E; Butterworth, J; Perkins, N D; Bateson, M; Richardson, C A

    2014-01-01

    Background: Non-invasive biomarkers of disease progression in mice with cancer are lacking making it challenging to implement appropriate humane end points. We investigated whether body temperature, food and water consumption could be used to predict tumour burden. Methods: Thirty-six male, wild-type C57Bl/6 mice were implanted with subcutaneous RFID temperature sensors and inoculated with Eμ-myc tumours that infiltrate lymphoid tissue. Results: Decrease in body temperature over the course of the study positively predicted post-mortem lymph node tumour burden (R2=0.68, F(1,22)=44.8, P<0.001). At experimental and humane end points, all mice that had a mean decrease in body temperature of 0.7 °C or greater had lymph nodes heavier than 0.5 g (100% sensitivity), whereas a mean decrease in body temperature <0.7 °C always predicted lymph nodes lighter than 0.5 g (100% specificity). The mean decrease in food consumption in each cage also predicted mean post-mortem lymph node tumour burden at 3 weeks (R2=0.89, F(1,3)=23.2, P=0.017). Conclusion: Temperature, food and water consumption were useful biomarkers of disease progression in mice with lymphoma and could potentially be used more widely to monitor mice with other forms of cancer. PMID:24407190

  15. Minimum daily core body temperature in western grey kangaroos decreases as summer advances: a seasonal pattern, or a direct response to water, heat or energy supply?

    PubMed

    Maloney, Shane K; Fuller, Andrea; Meyer, Leith C R; Kamerman, Peter R; Mitchell, Graham; Mitchell, Duncan

    2011-06-01

    Using implanted temperature loggers, we measured core body temperature in nine western grey kangaroos every 5 min for 24 to 98 days in spring and summer. Body temperature was highest at night and decreased rapidly early in the morning, reaching a nadir at 10:00 h, after ambient temperature and solar radiation had begun to increase. On hotter days, the minimum morning body temperature was lower than on cooler days, decreasing from a mean of 36.2°C in the spring to 34.0°C in the summer. This effect correlated better with the time of the year than with proximate thermal stressors, suggesting that either season itself or some factor correlated with season, such as food availability, caused the change. Water saving has been proposed as a selective advantage of heterothermy in other large mammals, but in kangaroos the water savings would have been small and not required in a reserve with permanent standing water. We calculate that the lower core temperature could provide energy savings of nearly 7%. It is likely that the heterothermy that we observed on hot days results either from decreased energy intake during the dry season or from a seasonal pattern entrained in the kangaroos that presumably has been selected for because of decreased energy availability during the dry season.

  16. [Estimation of the time of death based on the measurements of the eye temperature in comparison with other body sites].

    PubMed

    Kaliszan, Michał; Hauser, Roman

    2007-01-01

    A systematic two-stage study was conducted in pigs to verify the models of postmortem body temperature decrease currently employed in forensic medicine. During the investigations, temperature recordings were performed in four body sites (eyeballs, orbit soft tissues, muscles and rectums). The results of the study support the possible use of the eyeball and also the orbit soft tissues as temperature measuring sites at the early phase after death; they have narrowed the significance of rectum temperature measurements to the late stage of postmortem body temperature decrease, shown insignificant correlations between the body weight and the temperature decrease rate constant and illustrated the functional increase of the time of death estimation error as the body cools, expressed in the distinct tendency to overestimate the calculated time of death as compared to the actual one. In the second stage of the experiment, a lack of a plateau phase was demonstrated, at least from 30 min post mortem. It was also found that in the very early post mortem period, the kinetics of cooling of all the body sites studied was better described by the two-exponential model than the single exponential one. The study also showed that the weak airflow present in the experimental conditions did not practically affect the course of cooling of the investigated body sites. Eyeball temperature measurements with an infra-red laser thermometer performed during the experiment proved to be of no use for determination of the time of death. The experiments allowed for defining the so far unreported value of physiological temperature of pig eyeball as 38 degrees C.

  17. Thermal conditions influence changes in body temperature induced by intragastric administration of capsaicin in mice.

    PubMed

    Mori, Noriyuki; Urata, Tomomi; Fukuwatari, Tsutomu

    2016-08-01

    Capsaicin has been reported to have unique thermoregulatory actions. However, changes in core temperature after the administration of capsaicin are a controversial point. Therefore, we investigated the effects of environmental thermal conditions on changes in body temperature caused by capsaicin in mice. We showed that intragastric administration of 10 and 15 mg/kg capsaicin increased tail temperature and decreased colonic temperatures in the core temperature (CT)-constant and CT-decreasing conditions. In the CT-increasing condition, 15 mg/kg capsaicin increased tail temperature and decreased colonic temperature. However, 10 mg/kg capsaicin increased colonic temperature. Furthermore, the amount of increase in tail temperature was greater in the CT-decreasing condition and lower in the CT-increasing condition, compared with that of the CT-constant condition. These findings suggest that the changes in core temperature were affected by the environmental thermal conditions and that preliminary thermoregulation state might be more important than the constancy of temperature to evaluate the effects of heat diffusion and thermogensis.

  18. Protracted effects of chronic stress on serotonin-dependent thermoregulation.

    PubMed

    Natarajan, Reka; Northrop, Nicole A; Yamamoto, Bryan K

    2015-01-01

    Chronic stress is known to affect serotonin (5HT) neurotransmission in the brain and to alter body temperature. The body temperature is controlled in part, by the medial preoptic area (mPOA) of the hypothalamus. To investigate the effect of chronic stress on 5HT and how it affects body temperature regulation, we examined whether exposure to a chronic unpredictable stress (CUS) paradigm produces long-term alterations in thermoregulatory function of the mPOA through decreased 5HT neurotransmission. Adult male Sprague-Dawley rats underwent 21 d of CUS. Four days after the last stress exposure, basal body temperature in the home cage and body temperature in a cold room maintained at 10 °C were recorded. The CUS rats had significantly higher subcutaneous basal body temperature at 13:00 h compared to unstressed (NoStress) rats. Whereas the NoStress rats were able to significantly elevate body temperature from basal levels at 30 and 60 min of exposure to the cold room, the CUS rats showed a hypothermic response to the cold. Treatment during CUS with metyrapone, a corticosterone synthesis inhibitor, blocked stress-induced decrease in body temperature in response to the cold challenge. CUS also decreased 5HT transporter protein immunoreactivity in the mPOA and 5HT2A/C agonist injection into the mPOA after CUS exposure caused stressed rats to exhibit a sensitized hyperthermic response to cold. These results indicate that the CUS induced changes to the 5HTergic system alter mPOA function in thermoregulation. These findings help us to explain the mechanisms underlying chronic stress-induced disorders such as chronic fatigue syndrome wherein long lasting thermoregulatory deficits are observed.

  19. Protracted effects of chronic stress on serotonin dependent thermoregulation

    PubMed Central

    Natarajan, Reka; Northrop, Nicole A.; Yamamoto, Bryan K.

    2016-01-01

    Chronic stress is known to affect serotonin (5HT) neurotransmission in the brain and to alter body temperature. Body temperature is controlled in part, by the medial preoptic area of the hypothalamus (mPOA). To investigate the effect of chronic stress on 5HT and how it affects body temperature regulation, we examined whether exposure to a chronic unpredictable stress paradigm (CUS) produces long-term alterations in thermoregulatory function of the mPOA through decreased 5HT neurotransmission. Adult male Sprague-Dawley rats underwent 21 days of CUS. Four days after last stress exposure, basal body temperature in the home cage and body temperature in a cold room maintained at 10°C were recorded. CUS rats had significantly higher subcutaneous basal body temperature at 13:00 h compared to unstressed (NoStress) rats. Whereas the NoStress rats were able to significantly elevate body temperature from basal levels at 30 and 60 min of exposure to the cold room, the CUS rats showed a hypothermic response to the cold. Treatment during CUS with metyrapone, a corticosterone synthesis inhibitor, blocked stress-induced decrease in body temperature in response to the cold challenge. CUS also decreased 5HT transporter protein immunoreactivity in the mPOA and 5HT2A/C agonist injection into the mPOA after CUS exposure caused stressed rats to exhibit a sensitized hyperthermic response to cold. These results indicate that CUS induced changes to the 5HTergic system alters mPOA function in thermoregulation. These findings help explain mechanisms underlying chronic stress induced disorders such as chronic fatigue syndrome wherein long lasting thermoregulatory deficits are observed. PMID:26414686

  20. Lauroyl-L-aspartate decreased food intake and body temperature in neonatal chicks.

    PubMed

    Erwan, E; Chowdhury, V S; Ito, K; Furuse, M

    2013-11-15

    We hypothesized that the effects of L- and D-amino acids might be influenced when conjugated with fatty acid. Thus, the effects of oral administration of lauroyl-L-aspartate (Lau-L-Asp) as well as lauroyl-D-aspartate (Lau-D-Asp) were examined. In Experiment 1, oral administration of both Lau-L-Asp and Lau-D-Asp decreased food intake while L- or D-Asp did not influence food intake. Interestingly, only Lau-L-Asp decreased body temperature. Experiment 2 was conducted to determine whether non-conjugated mixture of L-Asp plus lauric acid has same effects under ad libitum feeding conditions. Lau-L-Asp decreased food intake and body temperature, but L-Asp plus lauric acid did not show any effect studied. In Experiment 3, we found that Lau-L-Asp declined food intake as well as time-dependently suppressed the body temperature in fasted chicks. However, L-Asp plus lauric acid did not show any effect. These results suggest that Lau-L-Asp may exert anorexigenic and hypothermic actions in chicks. © 2013.

  1. Whole body cooling by immersion in water at moderate temperatures.

    PubMed

    Marino, F; Booth, J

    1998-06-01

    This study investigated the potential use of whole body cooling by water immersion for lowering body temperatures prior to endurance exercise. Rectal temperature (Tre), mean skin temperature (Tsk), oxygen consumption (VO2), and ventilation (VE) were measured in 7 male and 3 female subjects who were immersed in a water bath for up to 60 min. Initial water temperature was 28.8+/-1.5 degrees C and decreased to 23.8+/-1.1 degrees C by the end of immersion. Pre-immersion Tre of 37.34+/-0.36 degrees C was not altered by 60 min water immersion but decreased to 36.64+/-0.34 degrees C at 3 min post immersion (p < 0.01). Tsk decreased from 33.23+/-1.4 degrees C to 26.95+/-1.8 degrees C (p < 0.01) at the end of immersion. Reductions in Tre and Tsk resulted in reduced body heat content (Hc) of approximately 545 kJ (p < 0.01) at the end of immersion. VO2 and VE increased from pre-immersion values of 0.34+/-0.08 L x min(-1) and 6.2+/-1.4 L x min(-1) to 0.54+/-0.09 L x min(-) and 11.5+/-5.4 L x min(-1) at the end of immersion, respectively. Heart rate remained unchanged throughout immersion. These results indicate that whole body immersion in moderately cold water temperatures is an effective cooling maneuver for lowering body temperatures and body Hc in the absence of severe physiological responses generally associated with sudden cold stress.

  2. The influence of cold on energy expenditure at rest and during exercise in person in the North.

    PubMed

    Grishin, O V; Ustuzaninova, N V

    2007-01-01

    In the majority of research on human adaptation in the North signs of hypoxia were found. In physiology studies of animals it is established that adaptive changes to cold and hypoxia have much in common, for example, the decrease of spent energy (hypometabolism). This phenomenon has been studied much less in humans than in animals. The first study was that of A. Hemingway and L. Birzis which showed that under the influence of air temperature of -3 degrees C on natives of Kalahari deserts the average body temperature and level of metabolism decrease. The reduction of lung ventilation and decrease of heat loss in humans was interpreted as the result of cold. However, it is obvious that ventilation decrease in humans in cold air leads to reduction of oxygen consumption, i.e. to hypoxia. It is possible to assume that adaptation of Northerners is closely connected with cold and hypoxia. At hypoxia and under cold conditions the decrease of energy expenditure is the natural phenomenon. Y. Gauiter and M. Bonora, S. Wood consider that the fall of body temperature observable at hypoxia is a consequence of the decrease in oxygen consumption and reduction of energy expenditure. Besides, the decrease in oxygen consumption (Vo2) always precedes the fall of body temperature. In the work of C. Pedraz, J. Mortola it is shown that the external warming at hypoxia in newborn cats and dogs during restoration of body temperature up to the reference values is not accompanied by authentic change of metabolism. It remains lowered as under the previous conditions of hypoxia (before warming). It specifies that the fall in body temperature at hypoxia is a consequence instead of the reason of Vo2 fall. This is an important question for the human's adaptation--the influence of cold and hypoxia on spent energy. The paper presents the results of research into the effects of cold on resting and exercise energy expenditure among Northerners of the Russian North.

  3. The effect of 60-h sleep deprivation on cardiovascular regulation and body temperature.

    PubMed

    Vaara, Jani; Kyröläinen, Heikki; Koivu, Mikko; Tulppo, Mikko; Finni, Taija

    2009-02-01

    This study examined cardiovascular regulation and body temperature (BT) during 60 h of sleep deprivation in 20 young healthy cadets. Heart rate variability was measured during an active orthostatic test (AOT). Measurements were performed each day in the morning and evening after 2, 14, 26, 38, 50 and 60 h of sleep deprivation. In AOT, in the sitting and standing positions, heart rate decreased (P < 0.001), while high frequency and low frequency power increased (P < 0.05-0.001) during sleep deprivation. Body temperature also decreased (P < 0.001), but no changes were detected in blood pressure. In conclusion, the accumulation of 60 h of sleep loss resulted in increased vagal outflow, as evidenced by decreased heart rate. In addition, BT decreased during sleep deprivation. Thus, sleep deprivation causes alterations in autonomic regulation of the heart, and in thermoregulation.

  4. The impact of morning light intensity and environmental temperature on body temperatures and alertness.

    PubMed

    Te Kulve, Marije; Schlangen, Luc J M; Schellen, Lisje; Frijns, Arjan J H; van Marken Lichtenbelt, Wouter D

    2017-06-01

    Indoor temperature and light exposure are known to affect body temperature, productivity and alertness of building occupants. However, not much is known about the interaction between light and temperature exposure and the relationship between morning light induced alertness and its effect on body temperature. Light intensity and room temperature during morning office hours were investigated under strictly controlled conditions. In a randomized crossover study, two white light conditions (4000K, either bright 1200lx or dim 5lx) under three different room temperatures (26, 29 and 32°C) were investigated. A lower room temperature increased the core body temperature (CBT) and lowered skin temperature and the distal-proximal temperature gradient (DPG). Moreover, a lower room temperature reduced the subjective sleepiness and reaction time on an auditory psychomotor vigilance task (PVT), irrespective of the light condition. Interestingly, the morning bright light exposure did affect thermophysiological parameters, i.e. it decreased plasma cortisol, CBT and proximal skin temperature and increased the DPG, irrespective of the room temperature. During the bright light session, subjective sleepiness decreased irrespective of the room temperature. However, the change in sleepiness due to the light exposure was not related to these physiological changes. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Effect of altered core body temperature on glottal closing force.

    PubMed

    Wadie, Mikhail; Li, Juan; Sasaki, Clarence T

    2011-10-01

    A basic function of the larynx is to provide sphincteric protection of the lower airway, initiated by a brain stem-mediated glottal closure reflex. Glottal closing force is defined as the measured pressure generated between the vocal folds during glottal closure. One of the factors thought to affect the glottal closure reflex is a variation in core body temperature. Four adult male Yorkshire pigs were used in this study. The subjects were studied under control conditions (37 degreesC), hyperthermic conditions (38 degrees C to 41 degrees C), and hypothermic conditions (36 degrees C to 34 degrees C). We demonstrated that the glottal closing force increased significantly with an increase in core body temperature and also decreased significantly with decreased core body temperature. These results are supported by neurophysiological changes demonstrated by other studies in pups and adult dogs in response to altered core body temperatures. The mechanism for these responses is thought to reside centrally, rather than in the peripheral nervous system. We hope that a better understanding of these aspects of glottal closure will alter the care of many patients with postanesthesia hypothermia and many sedated inmates and will also further enhance preventive measures needed to decrease the incidence of sudden infant death syndrome in overheated or febrile infants.

  6. Role of a decrease in body heat content in the thermoregulatory reaction of the concha auriculae vessels

    NASA Technical Reports Server (NTRS)

    Slepchuk, N. A.; Rumyantsev, G. V.

    1980-01-01

    At the constant ambient temperature 28-30 C the rabbit ear vessels were dilated and their temperature was 34.8/0.1 C. Administration of the 23-29 C water into the stomach entailed thermoregulatory construction of the ear vessels within 15-25 min. The response occurred at various combinations of temperature changes in different parts of the body. The heat content of the rabbit body, as calculated by the blood temperature in the aorta arc, reduced by 266.3 + or - 26.2 cal/kg at the beginning of the response. The decrease in the organism heat content seems to serve as a signal for occurrence of a corresponding thermoregulatory response.

  7. Metabolic depression during warm torpor in the Golden spiny mouse (Acomys russatus) does not affect mitochondrial respiration and hydrogen peroxide release.

    PubMed

    Grimpo, Kirsten; Kutschke, Maria; Kastl, Anja; Meyer, Carola W; Heldmaier, Gerhard; Exner, Cornelia; Jastroch, Martin

    2014-01-01

    Small mammals actively decrease metabolism during daily torpor and hibernation to save energy. Recently, depression of mitochondrial substrate oxidation in isolated liver mitochondria was observed and associated to hypothermic/hypometabolic states in Djungarian hamsters, mice and hibernators. We aimed to clarify whether hypothermia or hypometabolism causes mitochondrial depression during torpor by studying the Golden spiny mouse (Acomys russatus), a desert rodent which performs daily torpor at high ambient temperatures of 32°C. Notably, metabolic rate but not body temperature is significantly decreased under these conditions. In isolated liver, heart, skeletal muscle or kidney mitochondria we found no depression of respiration. Moderate cold exposure lowered torpor body temperature but had minor effects on minimal metabolic rate in torpor. Neither decreased body temperature nor metabolic rate impacted mitochondrial respiration. Measurements of mitochondrial proton leak kinetics and determination of P/O ratio revealed no differences in mitochondrial efficiency. Hydrogen peroxide release from mitochondria was not affected. We conclude that interspecies differences of mitochondrial depression during torpor do not support a general relationship between mitochondrial respiration, body temperature and metabolic rate. In Golden spiny mice, reduction of metabolic rate at mild temperatures is not triggered by depression of substrate oxidation as found in liver mitochondria from other cold-exposed rodents. © 2013.

  8. Skin blood flow and local temperature independently modify sweat rate during passive heat stress in humans.

    PubMed

    Wingo, Jonathan E; Low, David A; Keller, David M; Brothers, R Matthew; Shibasaki, Manabu; Crandall, Craig G

    2010-11-01

    Sweat rate (SR) is reduced in locally cooled skin, which may result from decreased temperature and/or parallel reductions in skin blood flow. The purpose of this study was to test the hypotheses that decreased skin blood flow and decreased local temperature each independently attenuate sweating. In protocols I and II, eight subjects rested supine while wearing a water-perfused suit for the control of whole body skin and internal temperatures. While 34°C water perfused the suit, four microdialysis membranes were placed in posterior forearm skin not covered by the suit to manipulate skin blood flow using vasoactive agents. Each site was instrumented for control of local temperature and measurement of local SR (capacitance hygrometry) and skin blood flow (laser-Doppler flowmetry). In protocol I, two sites received norepinephrine to reduce skin blood flow, while two sites received Ringer solution (control). All sites were maintained at 34°C. In protocol II, all sites received 28 mM sodium nitroprusside to equalize skin blood flow between sites before local cooling to 20°C (2 sites) or maintenance at 34°C (2 sites). In both protocols, individuals were then passively heated to increase core temperature ~1°C. Both decreased skin blood flow and decreased local temperature attenuated the slope of the SR to mean body temperature relationship (2.0 ± 1.2 vs. 1.0 ± 0.7 mg·cm(-2)·min(-1)·°C(-1) for the effect of decreased skin blood flow, P = 0.01; 1.2 ± 0.9 vs. 0.07 ± 0.05 mg·cm(-2)·min(-1)·°C(-1) for the effect of decreased local temperature, P = 0.02). Furthermore, local cooling delayed the onset of sweating (mean body temperature of 37.5 ± 0.4 vs. 37.6 ± 0.4°C, P = 0.03). These data demonstrate that local cooling attenuates sweating by independent effects of decreased skin blood flow and decreased local skin temperature.

  9. Effect of local cooling on sweating rate and cold sensation

    NASA Technical Reports Server (NTRS)

    Crawshaw, L. I.; Nadel, E. R.; Stolwijk, J. A. J.; Stamford, B. A.

    1975-01-01

    Subjects resting in a 39 C environment were stimulated in different skin regions with a water-cooled thermode. Results indicate that cooling different body regions produces generally equivalent decreases in sweating rate and increases in cold sensation, with the forehead showing a much greater sensitivity per unit area and temperature decrease than other areas. The high thermal sensitivity of the face may have evolved when it was the thinnest-furred area of the body; today's clothing habits have reestablished the importance of the face in the regulation of body temperature.

  10. Kinetic analysis of superparamagnetic iron oxide nanoparticles in the liver of body-temperature-controlled mice using dynamic susceptibility contrast magnetic resonance imaging and an empirical mathematical model.

    PubMed

    Murase, Kenya; Assanai, Purapan; Takata, Hiroshige; Matsumoto, Nozomi; Saito, Shigeyoshi; Nishiura, Motoko

    2015-06-01

    The purpose of this study was to develop a method for analyzing the kinetic behavior of superparamagnetic iron oxide nanoparticles (SPIONs) in the murine liver under control of body temperature using dynamic susceptibility contrast magnetic resonance imaging (DSC-MRI) and an empirical mathematical model (EMM). First, we investigated the influence of body temperature on the kinetic behavior of SPIONs in the liver by controlling body temperature using our temperature-control system. Second, we investigated the kinetic behavior of SPIONs in the liver when mice were injected with various doses of GdCl3, while keeping the body temperature at 36°C. Finally, we investigated it when mice were injected with various doses of zymosan, while keeping the body temperature at 36°C. We also investigated the effect of these substances on the number of Kupffer cells by immunohistochemical analysis using the specific surface antigen of Kupffer cells (CD68). To quantify the kinetic behavior of SPIONs in the liver, we calculated the upper limit of the relative enhancement (A), the rates of early contrast uptake (α) and washout or late contrast uptake (β), the parameter related to the slope of early uptake (q), the area under the curve (AUC), the maximum change of transverse relaxation rate (ΔR2) (ΔR2(max)), the time to ΔR2(max) (Tmax), and ΔR2 at the last time point (ΔR2(last)) from the time courses of ΔR2 using the EMM. The β and Tmax values significantly decreased and increased, respectively, with decreasing body temperature, suggesting that the phagocytic activity of Kupffer cells is significantly affected by body temperature. The AUC, ΔR2(max), and ΔR2(last) values decreased significantly with increasing dose of GdCl3, which was consistent with the change in the number of CD68-positive cells. They increased with increasing dose of zymosan, which was also consistent with the change in the number of CD68-positive cells. These results suggest that AUC, ΔR2(max), and ΔR2(last) reflect the number of Kupffer cells. In conclusion, we presented a method for analyzing the kinetic behavior of SPIONs in the liver using DSC-MRI and EMM, and investigated the influence of body temperature, GdCl3, and zymosan using body-temperature-controlled mice. The present study suggests that control of body temperature is essential for investigating the kinetic behavior of SPIONs in the liver and that our method will be applicable and useful for quantifying the responses of Kupffer cells to various drugs under control of body temperature. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Effects of water vapor density on cutaneous resistance to evaporative water loss and body temperature in green tree frogs (Hyla cinerea).

    PubMed

    Wygoda, Mark L; Kersten, Constance A

    2013-01-01

    Increased cutaneous resistance to evaporative water loss (Rc) in tree frogs results in decreased water loss rate and increased body temperature. We examined sensitivity of Rc to water vapor density (WVD) in Hyla cinerea by exposing individual frogs and agar models to four different WVD environments and measuring cutaneous evaporative water loss rate and body temperature simultaneously using a gravimetric wind tunnel measuring system. We found that water loss rate varied inversely and body temperature directly with WVD but that models were affected to a greater extent than were animals. Mean Rc was significantly different between the highest WVD environment and each of the three drier environments but did not differ among the drier environments, indicating that Rc initially increases and then reaches a plateau in response to decreasing WVD. Rc was equivalent when calculated using either WVD difference or WVD deficit as the driving force for evaporation. We also directly observed secretions from cutaneous glands while measuring body temperature and tested secretions and skin samples for the presence of lipids. We found that irregular transient body temperature depressions observed during wind tunnel trials occur due to evaporative cooling from intermittent skin secretions containing lipids, although we were unable to identify lipid-secreting glands.

  12. Effect of a heat and moisture exchanger on heat loss in isoflurane-anesthetized dogs undergoing single-limb orthopedic procedures.

    PubMed

    Hofmeister, Erik H; Brainard, Benjamin M; Braun, Christina; Figueiredo, Juliana P

    2011-12-15

    To determine whether a heat and moisture exchange device (HME) prevents a decrease in body temperature in isoflurane-anesthetized dogs undergoing orthopedic procedures. Blinded randomized controlled clinical trial. 60 privately owned dogs weighing at least 15 kg (33 lb). Dogs were randomly assigned to 1 of 3 treatment groups (n = 20/group): HME placed immediately after anesthetic induction with isoflurane, after transfer to the operating room, or not at all. The device consisted of a hygroscopic filter placed between the endotracheal tube and the Y piece of the anesthesia circuit. Each dog was positioned on a circulating warm water blanket and had a forced-air warming blanket placed over its body. Body temperature was monitored after transfer to the operating room with a probe placed in the thoracic aspect of the esophagus. Study groups did not differ significantly with respect to body weight, body condition score, reproductive status, breed, surgical procedure, preoperative sedative and opioid administration, anesthetic induction drug, local nerve block technique, or operating room assignment. There were no significant differences among groups in esophageal temperature variables, interval between anesthetic induction and surgery, surgery duration, anesthesia duration, or oxygen flow rate. However, the relationship between temperature delta and body weight was significant and relevant (R(2) = 0.23), as was the association between temperature nadir and body weight (R(2)= 0.10). As body weight increased, the temperature delta decreased and temperature nadir increased. No other significant relationships were identified. Inclusion of an HME in healthy dogs undergoing anesthesia for an elective orthopedic surgery did not facilitate maintenance of body temperature throughout the procedure.

  13. Effects of peripheral cold application on core body temperature and haemodynamic parameters in febrile patients.

    PubMed

    Asgar Pour, Hossein; Yavuz, Meryem

    2014-04-01

    This study designed to assess the effects of peripheral cold application (PCA) on core body temperature and haemodynamic parameters in febrile patients. This study was an experimental, repeated-measures performed in the neurosurgical intensive-care unit. The research sample included all patients with fever in postoperative period. PCA was performed for 20 min. During fever, systolic blood pressure, mean arterial blood pressure and arterial oxygen saturation (O2 Sat) decreased by 5.07 ± 7.89 mm Hg, 0.191 ± 6.00 mm Hg and 0.742% ± 0.97%, respectively, whereas the pulse rate and diastolic blood pressure increased by 8.528 ± 4.42 beats/ min and 1.842 ± 6.9 mmHg, respectively. Immediately after PCA, core body temperature and pulse rate decreased by 0.3°C, 3.3 beats/min, respectively, whereas systolic, diastolic, mean arterial blood pressure and O2 Sat increased by, 1.40 mm Hg, 1.87 mm Hg, 0.98 mmHg and 0.27%, respectively. Thirty minutes after the end of PCA, core body temperature, diastolic, mean arterial blood pressure and pulse rate decreased by 0.57°C, 0.34 mm Hg, 0.60 mm Hg and 4.5 beats/min, respectively, whereas systolic blood pressure and O2 Sat increased by 0.98 mm Hg and 0.04%, respectively. The present results showed that PCA increases systolic, diastolic, mean arterial blood pressure and O2 Sat, and decreases core body temperature and pulse rate. © 2013 Wiley Publishing Asia Pty Ltd.

  14. Circadian body temperature variability is an indicator of poor prognosis in cardiomyopathic hamsters.

    PubMed

    Ahmed, Amany; Gondi, Sreedevi; Cox, Casey; Wang, Suwei; Stupin, Igor V; Shankar, K J; Munir, Shahzeb M; Sobash, Ed; Brewer, Alan; Ferguson, James J; Elayda, Macarthur A; Casscells, S Ward; Wilson, James M

    2010-03-01

    Low body temperature is an independent predictor of poor prognosis in patients with congestive heart failure. The cardiomyopathic hamster develops progressive biventricular dysfunction, resulting in heart failure death at 9 months to 1 year of life. Our goal was to use cardiomyopathic hamsters to examine the relationship between body temperature and heart failure decompensation and death. To this end, we implanted temperature and activity transducers with telemetry into the peritoneal space of 46 male Bio-TO-2 Syrian cardiomyopathic hamsters. Multiple techniques, including computing mean temperature, frequency domain analysis, and nonlinear analysis, were used to determine the most useful method for predicting poor prognosis. Data from 44 hamsters were included in our final analysis. We detected a decline in core body temperature in 98% of the hamsters 8+/-4 days before death (P < .001). We examined the dominant frequency of temperature variation (ie, the circadian rhythm) by using cosinor analysis, which revealed a significant decrease in the amplitude of the body temperature circadian rhythm 8 weeks before death (0.28 degrees C; 95% CI, 0.26-0.31) compared to baseline (0.36 degrees C; 95% CI, 0.34-0.39; P=.005). The decline in the circadian temperature variation preceded all other evidence of decompensation. We conclude that a decrease in the amplitude of the body temperature circadian rhythm precedes fatal decompensation in cardiomyopathic hamsters. Continuous temperature monitoring may be useful in predicting preclinical decompensation in patients with heart failure and in identifying opportunities for therapeutic intervention. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  15. Effect of irrigation fluid temperature on body temperature during arthroscopic elbow surgery in dogs.

    PubMed

    Thompson, K R; MacFarlane, P D

    2013-01-01

    This prospective randomised clinical trial evaluated the effect of warmed irrigation fluid on body temperature in anaesthetised dogs undergoing arthroscopic elbow surgery. Nineteen dogs undergoing elbow arthroscopy were included in the study and were randomly allocated to one of two groups. Group RT received irrigation fluid at room temperature (RT) while dogs in group W received warmed (W) irrigation fluid (36°C). A standardised patient management and anaesthetic protocol was used and body temperature was measured at four time points; (T1) pre-anaesthetic examination, (T2) arrival into theatre, (T3) end of surgery and (T4) arrival into recovery. There was no significant difference in body temperature at any time point between the groups. The mean overall decrease in body temperature between pre-anaesthetic examination (T1) and return to the recovery suite (T4) was significant in both groups, with a fall of 1.06±0.58°C (p<0.001) in group RT and 1.53±0.76°C (p<0.001) group W. There was no significant difference between the groups. At the end of surgery (T3) 4/19 (21.1%) of dogs were hypothermic (<37°C). The addition of warmed irrigation fluids to a temperature management protocol in dogs undergoing elbow arthroscopy during general anaesthesia did not lead to decreased temperature losses.

  16. Effect of irrigation fluid temperature on body temperature during arthroscopic elbow surgery in dogs

    PubMed Central

    Thompson, K.R.; MacFarlane, P.D.

    2013-01-01

    This prospective randomised clinical trial evaluated the effect of warmed irrigation fluid on body temperature in anaesthetised dogs undergoing arthroscopic elbow surgery. Nineteen dogs undergoing elbow arthroscopy were included in the study and were randomly allocated to one of two groups. Group RT received irrigation fluid at room temperature (RT) while dogs in group W received warmed (W) irrigation fluid (36°C). A standardised patient management and anaesthetic protocol was used and body temperature was measured at four time points; (T1) pre-anaesthetic examination, (T2) arrival into theatre, (T3) end of surgery and (T4) arrival into recovery. There was no significant difference in body temperature at any time point between the groups. The mean overall decrease in body temperature between pre-anaesthetic examination (T1) and return to the recovery suite (T4) was significant in both groups, with a fall of 1.06±0.58°C (p<0.001) in group RT and 1.53±0.76°C (p<0.001) group W. There was no significant difference between the groups. At the end of surgery (T3) 4/19 (21.1%) of dogs were hypothermic (<37°C). The addition of warmed irrigation fluids to a temperature management protocol in dogs undergoing elbow arthroscopy during general anaesthesia did not lead to decreased temperature losses. PMID:26623323

  17. Increased benefit of alteplase in patients with ischemic stroke and a high body temperature.

    PubMed

    de Ridder, Inger; den Hertog, Heleen; van Gemert, Maarten; Dippel, Diederik; van der Worp, Bart

    2013-01-01

    In observational studies, a high body temperature has been associated with unfavorable outcome. In in vitro studies, the fibrinolytic activity of alteplase decreased 5% per degree Celsius reduction in temperature. The modifying effect of body temperature on treatment with alteplase in patients with acute ischemic stroke is unclear. We assessed the influence of baseline body temperature on the effect of alteplase on functional outcome in patients with acute ischemic stroke, included in the Paracetamol (Acetaminophen) in Stroke (PAIS) trial. PAIS was a randomized, double-blind clinical trial to assess the effect of high-dose paracetamol on functional outcome in patients with acute stroke. For this study, we selected all patients with ischemic stroke and randomization within 6 h of symptom onset. We estimated the effect of treatment with alteplase on the modified Rankin Scale score at 3 months with ordinal logistic regression, stratified by baseline body temperature. We made adjustments for confounding factors and expressed associations as adjusted odds ratios (aOR) with 95% confidence intervals (CI). We also tested for interaction between treatment with alteplase and body temperature. We included 647 of the 1,400 patients in PAIS in our study. Treatment with alteplase was associated with improved functional outcome at 3 months (aOR 1.51, 95% CI 1.09-2.08). In the 286 patients (44%) with a baseline body temperature of 37.0°C or higher, alteplase was associated with a larger effect (aOR 2.13, 95% CI 1.28-3.45) than in patients with a temperature below 37.0°C (aOR 1.11, 95% CI 0.71-1.69). A test for interaction between body temperature and alteplase did not reach statistical significance (p = 0.18). Patients with ischemic stroke and a high body temperature may have a larger benefit of treatment with alteplase than patients with lower body temperatures. These findings are in line with those from in vitro studies, in which lowering temperature decreased the fibrinolytic activity of the enzyme alteplase. This interaction should be explored further in randomized clinical trials of thrombolytic therapy or modification of body temperature. Trials of therapeutic hypothermia should be controlled for treatment with thrombolytics, and trials of thrombolytic treatment should consider body temperature as a potential effect modifier. Copyright © 2013 S. Karger AG, Basel.

  18. Rheological investigation of body cream and body lotion in actual application conditions

    NASA Astrophysics Data System (ADS)

    Kwak, Min-Sun; Ahn, Hye-Jin; Song, Ki-Won

    2015-08-01

    The objective of the present study is to systematically evaluate and compare the rheological behaviors of body cream and body lotion in actual usage situations. Using a strain-controlled rheometer, the steady shear flow properties of commercially available body cream and body lotion were measured over a wide range of shear rates, and the linear viscoelastic properties of these two materials in small amplitude oscillatory shear flow fields were measured over a broad range of angular frequencies. The temperature dependency of the linear viscoelastic behaviors was additionally investigated over a temperature range most relevant to usual human life. The main findings obtained from this study are summarized as follows: (1) Body cream and body lotion exhibit a finite magnitude of yield stress. This feature is directly related to the primary (initial) skin feel that consumers usually experience during actual usage. (2) Body cream and body lotion exhibit a pronounced shear-thinning behavior. This feature is closely connected with the spreadability when cosmetics are applied onto the human skin. (3) The linear viscoelastic behaviors of body cream and body lotion are dominated by an elastic nature. These solid-like properties become a criterion to assess the selfstorage stability of cosmetic products. (4) A modified form of the Cox-Merz rule provides a good ability to predict the relationship between steady shear flow and dynamic viscoelastic properties for body cream and body lotion. (5) The storage modulus and loss modulus of body cream show a qualitatively similar tendency to gradually decrease with an increase in temperature. In the case of body lotion, with an increase in temperature, the storage modulus is progressively decreased while the loss modulus is slightly increased and then decreased. This information gives us a criterion to judge how the characteristics of cosmetic products are changed by the usual human environments.

  19. Forced heat loss from body surface reduces heat flow to body surface.

    PubMed

    Berman, A

    2010-01-01

    Heat stress is commonly relieved by forced evaporation from body surfaces. The mode of heat stress relief by heat extraction from the periphery is not clear, although it reduces rectal temperature. Radiant surface temperature (Ts) of the right half of the body surface was examined by thermovision in 4 lactating Holstein cows (30 kg of milk/d) during 7 repeated cycles of forced evaporation created by 30s of wetting followed by 4.5 min of forced airflow. Wetting was performed by an array of sprinklers (0.76 m(3)/h), and forced airflow (>3m/s velocity) over the right side of the body surface was produced by fans mounted at a height of 3m above the ground. Sprinkling wetted the hind legs, rump, and chest, but not the lower abdomen side, front legs, or neck. The animals were maintained in shade at an air temperature of 28 degrees C and relative humidity of 47%. Coat thickness was 1 to 2mm, so Ts closely represented skin temperature. Mean Ts of 5 x 20cm areas on the upper and lower hind and front legs, rump, chest, abdomen side, and neck were obtained by converting to temperature their respective gray intensity in single frames obtained at 10-s intervals. Little change occurred in Ts during the first wetting (0.1+/-0.6 degrees C), but it decreased rapidly thereafter (1.6+/-0.6 degrees C in the fifth wetting). The Ts also decreased, to a smaller extent, in areas that remained dry (0.7+/-1.0 degrees C). In all body sites, a plateau in Ts was reached by 2 min after wetting. The difference between dry and wet areas in the first cooling cycle was approximately 1.2 degrees C. The Ts of different body areas decreased during consecutive cooling cycles and reached a plateau by 3 cooling cycles in dry sites (front leg, neck, abdomen side), by 5 cooling cycles in the hind leg, and 7 cooling cycles in the rump and chest. The reduction in mean Ts produced by 7 cycles was 4.0 to 6.0 degrees C in wetted areas and 1.6 to 3.7 degrees C in sites that were not wetted. Initial rectal temperature was 38.9+/-0.1 degrees C; it remained unchanged during first 5 cooling cycles, decreased by 0.1 degrees C after 7 cooling cycles, and decreased to 38.4+/-0.06 degrees C after 8 to 10 cooling cycles, with no additional subsequent decrease. The concomitant reduction in Ts in dry and wet areas suggests an immediate vasoconstrictor response associated with heat extraction and later development of a cooler body shell. The reduction in rectal temperature represents a response involving transfer of heat from the body core to the body shell. This response mode requires consideration in settings of heat stress relief. Copyright 2010 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  20. Do summer temperatures trigger spring maturation in pacific lamprey, Entosphenus tridentatus?

    USGS Publications Warehouse

    Clemens, B.J.; Van De Wetering, S.; Kaufman, J.; Holt, R.A.; Schreck, C.B.

    2009-01-01

    Pacific lamprey, Entosphenus tridentatus, return to streams and use somatic energy to fuel maturation. Body size decreases, the lamprey mature, spawn, and then die. We predicted that warm, summer temperatures (>20 ??C) would accentuate shrinkage in body size, and expedite sexual maturation and subsequent death. We compared fish reared in the laboratory at diel fluctuating temperatures of 20-24 ??C (mean = 21.8 ??C) with fish reared at cooler temperatures (13.6 ??C). The results confirmed our predictions. Lamprey from the warm water group showed significantly greater proportional decreases in body weight following the summer temperature treatments than fish from the cool water group. A greater proportion of warm water fish sexually matured (100%) and died (97%) the following spring than cool water fish (53% sexually mature, 61% died). Females tended to mature and die earlier than males, most obviously in the warm water group. ?? 2009 John Wiley & Sons A/S.

  1. Relationship of blood corticosterone, immunoglobulin and haematological values in young crocodiles (Crocodylus porosus) to water temperature, clutch of origin and body weight.

    PubMed

    Turton, J A; Ladds, P W; Manolis, S C; Webb, G J

    1997-02-01

    To examine whether sub-optimal temperature induced stress and immunosuppression in farmed saltwater crocodile (Crocodylus porosus) hatchlings. A clinico-pathological study. A total of 140 hatchlings were used. Body weight and length, plasma corticosterone and immunoglobulin concentrations and total and differential white blood cell counts were measured in 140 hatchlings from five clutches divided between five water temperature treatment groups. Initially all groups were housed at 32 degrees C for 10 weeks, then two groups (L, LC) were changed to low temperature (28 degrees C) and two groups (H, HC) to high temperature (36 degrees C), while one group (C) remained at 32 degrees C. The LC and HC groups were maintained at these temperatures for 10 days, after which the water temperature of both groups was returned to 32 degrees C. Blood samples were collected twice (at 6 and 9 weeks of age) before the initial temperature change, and at 10 days and 4 weeks after the initial temperature change (at 11.5 and 14 weeks of age). Except for an increase in plasma corticosterone in the HC group and a decrease in the L group when the temperature change was first introduced, changes in plasma corticosterone were not significant. There were no significant changes in immunoglobulin concentrations. There were, however, significant decreases in the total white cell and lymphocyte counts in the LC group after the temperature was decreased to 28 degrees C, and an increase in these counts after water temperature was returned to 32 degrees C. Clutch of origin had significant effects on body weight and length gains, and there were negative relationships between body weight and corticosterone concentrations and between body weight and immunoglobulin concentrations. As haematological changes indicative of stress were not associated with significant changes in serum corticosterone, immunosuppression in young crocodiles may be independent of the hypothalamic-pituitary-adrenal cortical axis.

  2. Effect of long-term caloric restriction on oxygen consumption and body temperature in two different strains of mice

    PubMed Central

    Ferguson, Melissa; Sohal, Barbara H.; Forster, Michael J.; Sohal, Rajindar S.

    2007-01-01

    The hypothesis, that a decrease in metabolic rate mediates the life span prolonging effect of caloric restriction (CR), was tested using two strains of mice, one of which, C57BL/6, exhibits life span extension as a result of CR, while the other, DBA/2, shows little or no effect. Comparisons of the rate of resting oxygen consumption and body temperature were made between the strains after they were fed ad libitum (AL) or maintained under 40% CR, from 4 to 16 months of age. Ad libitum-fed mice of the two strains weighed the same when young and consumed similar amounts of food throughout the experiment; however, the C57BL/6 mice weighed 25% more than DBA/2 mice at 15 months of age. The rate of oxygen consumption was normalized as per gram body weight, lean body mass or organ weight as well as per animal. The body temperature and the rate of oxygen consumption, expressed according to all of the four criteria, were decreased in the DBA/2 mice following CR. The C57BL/6 mice also showed a CR-related decrease in body temperature and in the rate of oxygen consumption per animal and when normalized according to lean body mass or organ weight. The results of this study indicate that CR indeed lowers the rate of metabolism; however, this effect by CR does not necessarily entail the prolongation of the life span of mice. PMID:17822741

  3. Effect of long-term caloric restriction on oxygen consumption and body temperature in two different strains of mice.

    PubMed

    Ferguson, Melissa; Sohal, Barbara H; Forster, Michael J; Sohal, Rajindar S

    2007-10-01

    The hypothesis, that a decrease in metabolic rate mediates the life span prolonging effect of caloric restriction (CR), was tested using two strains of mice, one of which, C57BL/6, exhibits life span extension as a result of CR, while the other, DBA/2, shows little or no effect. Comparisons of the rate of resting oxygen consumption and body temperature were made between the strains after they were fed ad libitum (AL) or maintained under 40% CR, from 4 to 16 months of age. Ad libitum-fed mice of the two strains weighed the same when young and consumed similar amounts of food throughout the experiment; however, the C57BL/6 mice weighed 25% more than DBA/2 mice at 15 months of age. The rate of oxygen consumption was normalized as per gram body weight, lean body mass or organ weight as well as per animal. The body temperature and the rate of oxygen consumption, expressed according to all of the four criteria, were decreased in the DBA/2 mice following CR. The C57BL/6 mice also showed a CR-related decrease in body temperature and in the rate of oxygen consumption per animal and when normalized according to lean body mass or organ weight. The results of this study indicate that CR indeed lowers the rate of metabolism; however, this effect by CR does not necessarily entail the prolongation of the life span of mice.

  4. Temperature alters food web body-size structure.

    PubMed

    Gibert, Jean P; DeLong, John P

    2014-08-01

    The increased temperature associated with climate change may have important effects on body size and predator-prey interactions. The consequences of these effects for food web structure are unclear because the relationships between temperature and aspects of food web structure such as predator-prey body-size relationships are unknown. Here, we use the largest reported dataset for marine predator-prey interactions to assess how temperature affects predator-prey body-size relationships among different habitats ranging from the tropics to the poles. We found that prey size selection depends on predator body size, temperature and the interaction between the two. Our results indicate that (i) predator-prey body-size ratios decrease with predator size at below-average temperatures and increase with predator size at above-average temperatures, and (ii) that the effect of temperature on predator-prey body-size structure will be stronger at small and large body sizes and relatively weak at intermediate sizes. This systematic interaction may help to simplify forecasting the potentially complex consequences of warming on interaction strengths and food web stability. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  5. Regulation of body temperature and neuroprotection by endogenous interleukin-6 in cerebral ischemia.

    PubMed

    Herrmann, Oliver; Tarabin, Victoria; Suzuki, Shigeaki; Attigah, Nicolas; Coserea, Irinel; Schneider, Armin; Vogel, Johannes; Prinz, Simone; Schwab, Stefan; Monyer, Hannah; Brombacher, Frank; Schwaninger, Markus

    2003-04-01

    Although the function of fever is still unclear, it is now beyond doubt that body temperature influences the outcome of brain damage. An elevated body temperature is often found in stroke patients and denotes a bad prognosis. However, the pathophysiologic basis and treatment options of elevated body temperature after stroke are still unknown. Cerebral ischemia rapidly induced neuronal interleukin-6 (IL-6) expression in mice. In IL-6-deficient mice, body temperature was markedly decreased after middle cerebral artery occlusion (MCAO), but infarct size was comparable to that in control mice. If body temperature was controlled by external warming after MCAO, IL-6-deficient mice had a reduced survival, worse neurologic status, and larger infarcts than control animals. In cell culture, IL-6 exerted an antiapoptotic and neuroprotective effect. These data suggest that IL-6 is a key regulator of body temperature and an endogenous neuroprotectant in cerebral ischemia. Neuroprotective properties apparently compensate for its pyretic action after MCAO and enhance the safety of this endogenous pyrogen.

  6. Comparison of 2 protocols to increase circulating progesterone concentration before timed artificial insemination in lactating dairy cows with or without elevated body temperature.

    PubMed

    Pereira, M H C; Wiltbank, M C; Guida, T G; Lopes, F R; Vasconcelos, J L M

    2017-10-01

    Two treatments designed to increase circulating progesterone concentration (P4) during preovulatory follicle development were compared. One treatment used 2 intravaginal P4 implants (controlled internal drug-releasing inserts; CIDR) and the other used a GnRH treatment at beginning of the protocol. Lactating Holstein cows that had been diagnosed as nonpregnant were randomly assigned to receive timed artificial insemination (TAI) following 1 of 2 treatments (n = 1,638 breedings): (1) GnRH: CIDR+ 2 mg of estradiol (E2) benzoate + 100 µg of GnRH on d -11, PGF 2α on d -4, CIDR withdrawal + 1.0 mg of E2-cypionate + PGF 2α ) on d -2, and TAI on d 0; or (2) 2CIDR: 2 CIDR + 2 mg of E2-benzoate on d -11, 1 CIDR withdrawn + PGF 2α on d -4, second CIDR withdrawn + 1.0 mg of E2-cypionate + PGF 2α on d -2, and TAI on d 0. Milk yield was measured daily between d 0 and d 7. Rectal temperature was measured using a digital thermometer at d 0 and 7, and elevated body temperature was defined as an average rectal temperature ≥39.1°C. Pregnancy diagnoses were performed on d 32 and 60 after TAI. We detected no effect of treatments on pregnancy per AI or pregnancy loss regardless of elevated body temperature, body condition score, parity, milk yield, or presence or absence of a corpus luteum (CL) on d -11 or d -4. Pregnancy per AI at 60 d was reduced [elevated body temperature = 22.8% (162/709), no elevated body temperature 34.1% (279/817)] and pregnancy loss tended to increase [elevated body temperature = 20.2% (41/203), no elevated body temperature 14.4% (47/326)] in cows with elevated body temperature. Various physiological measurements associated with greater fertility were also reduced in cows with elevated body temperature, such as percentage of cows with a CL at PGF 2α (decreased 7.9%), ovulatory follicle diameter (decreased 0.51 mm), expression of estrus (decreased 5.1%), and ovulation near TAI (decreased 2.8%) compared with cows without elevated body temperature. A greater proportion of cows (30.2%) had a CL at PGF 2α in the GnRH treatment [74.1% (570/763)] than in the 2CIDR treatment [56.9% (434/763)]; however, circulating P4 concentration was greater at the time of PGF 2α treatment (d -4) for cows 2CIDR (4.26 ± 0.13 ng/mL) than in cows in GnRH (3.99 ± 0.14 ng/mL). Thus, these 2 protocols yield similar fertility results that might be due to somewhat different physiological alterations. Treatment with GnRH increased the proportion of cows with a CL at PGF 2α ; however, the 2CIDR protocol increased circulating P4 under all circumstances. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  7. Non-linear scaling of oxygen consumption and heart rate in a very large cockroach species (Gromphadorhina portentosa): correlated changes with body size and temperature.

    PubMed

    Streicher, Jeffrey W; Cox, Christian L; Birchard, Geoffrey F

    2012-04-01

    Although well documented in vertebrates, correlated changes between metabolic rate and cardiovascular function of insects have rarely been described. Using the very large cockroach species Gromphadorhina portentosa, we examined oxygen consumption and heart rate across a range of body sizes and temperatures. Metabolic rate scaled positively and heart rate negatively with body size, but neither scaled linearly. The response of these two variables to temperature was similar. This correlated response to endogenous (body mass) and exogenous (temperature) variables is likely explained by a mutual dependence on similar metabolic substrate use and/or coupled regulatory pathways. The intraspecific scaling for oxygen consumption rate showed an apparent plateauing at body masses greater than about 3 g. An examination of cuticle mass across all instars revealed isometric scaling with no evidence of an ontogenetic shift towards proportionally larger cuticles. Published oxygen consumption rates of other Blattodea species were also examined and, as in our intraspecific examination of G. portentosa, the scaling relationship was found to be non-linear with a decreasing slope at larger body masses. The decreasing slope at very large body masses in both intraspecific and interspecific comparisons may have important implications for future investigations of the relationship between oxygen transport and maximum body size in insects.

  8. A systematic review of randomised controlled trials of the effects of warmed irrigation fluid on core body temperature during endoscopic surgeries.

    PubMed

    Jin, Yinghui; Tian, Jinhui; Sun, Mei; Yang, Kehu

    2011-02-01

    The purpose of this systematic review was to establish whether warmed irrigation fluid temperature could decrease the drop of body temperature and incidence of shivering and hypothermia. Irrigation fluid, which is used in large quantities during endoscopic surgeries at room temperature, is considered to be associated with hypothermia and shivering. It remains controversial whether using warmed irrigation fluid to replace room-temperature irrigation fluid will decrease the drop of core body temperature and the occurrence of hypothermia. A comprehensive search (computerised database searches, footnote chasing, citation chasing) was undertaken to identify all the randomised controlled trials that explored temperature of irrigation fluid in endoscopic surgery. An approach involving meta-analysis was used. We searched PubMed, EMBASE, Cochrane Library, SCI, China academic journals full-text databases, Chinese Biomedical Literature Database, Chinese scientific journals databases and Chinese Medical Association Journals for trials that meet the inclusion criteria. Study quality was assessed using standards recommended by Cochrane Library Handbook 5.0.1. Disagreement was resolved by consensus. Thirteen randomised controlled trials including 686 patients were identified. The results showed that room-temperature irrigation fluid caused a greater drop of core body temperature in patients, compared to warmed irrigation fluid (p < 0.00001; I(2) = 85%). The occurrence of shivering [odds ratio (OR) 5.13, 95% CI: 2.95-10.19, p < 0.00001; I(2) = 0%] and hypothermia (OR 22.01, 95% CI: 2.03-197.08, p = 0.01; I(2) = 64%) in the groups having warmed irrigation fluid were lower than the group of studies having room-temperature fluid. In endoscopic surgeries, irrigation fluid is recommended to be warmed to decrease the drop of core body temperature and the risk of perioperative shivering and hypothermia. Warming irrigating fluid should be considered standard practice in all endoscopic surgeries. © 2011 Blackwell Publishing Ltd.

  9. Experimental manipulation of melanism demonstrates the plasticity of preferred temperature in an agricultural pest (Phaulacridium vittatum).

    PubMed

    Harris, Rebecca M B; McQuillan, Peter; Hughes, Lesley

    2013-01-01

    Phenotypic plasticity is a key trait of successful pest species, and may increase the ability to cope with higher, more variable temperatures under climate change. We investigate the plasticity of preferred temperature in a widespread agricultural pest, the wingless grasshopper (Phaulacridium vittatum). Preferred temperature is a measure of thermoregulatory behaviour through habitat selection. It is influenced by melanism, which affects body temperature by determining the amount of radiation absorbed by the body. First we demonstrate that body temperature and preferred temperature in P. vittatum is influenced by melanism, by comparing the preferred temperature of the colour morphs in laboratory thermal gradients and field body temperatures in natural populations. We then test whether preferred temperature changes in response to changes in body temperature, by determining preferred temperature before and after manipulation of melanism by painting. When melanism was manipulated experimentally in live grasshoppers, preferred temperature changed to reflect the thermal qualities of the new colour. The preferred temperature of light grasshoppers increased after they were painted black, and decreased after being painted white. Similarly, dark individuals that were painted white behaved like a light individual, maintaining a lower body temperature. Preferred temperature in P.vittatum is a plastic thermoregulatory response to ambient temperature, mediated by the influence of melanism on body temperature.

  10. Experimental Manipulation of Melanism Demonstrates the Plasticity of Preferred Temperature in an Agricultural Pest (Phaulacridium vittatum)

    PubMed Central

    Harris, Rebecca M. B.; McQuillan, Peter; Hughes, Lesley

    2013-01-01

    Phenotypic plasticity is a key trait of successful pest species, and may increase the ability to cope with higher, more variable temperatures under climate change. We investigate the plasticity of preferred temperature in a widespread agricultural pest, the wingless grasshopper (Phaulacridium vittatum). Preferred temperature is a measure of thermoregulatory behaviour through habitat selection. It is influenced by melanism, which affects body temperature by determining the amount of radiation absorbed by the body. First we demonstrate that body temperature and preferred temperature in P. vittatum is influenced by melanism, by comparing the preferred temperature of the colour morphs in laboratory thermal gradients and field body temperatures in natural populations. We then test whether preferred temperature changes in response to changes in body temperature, by determining preferred temperature before and after manipulation of melanism by painting. When melanism was manipulated experimentally in live grasshoppers, preferred temperature changed to reflect the thermal qualities of the new colour. The preferred temperature of light grasshoppers increased after they were painted black, and decreased after being painted white. Similarly, dark individuals that were painted white behaved like a light individual, maintaining a lower body temperature. Preferred temperature in P.vittatum is a plastic thermoregulatory response to ambient temperature, mediated by the influence of melanism on body temperature. PMID:24223223

  11. Decrease in body surface temperature before parturition in ewes.

    PubMed

    Nabenishi, Hisashi; Yamazaki, Atusi

    2017-04-21

    This study investigated the correlation between the body surface temperature (BST) and core body temperature of ewes and changes in BST during the prepartum stage in pregnant ewes. Four non-pregnant adult ewes were used in the first experiment. The BST of the upper neck, vaginal temperature (VT), and ambient temperature (AT) were measured every 10 min for seven days and analyzed for correlations. The mean (± SD) BST and VT of ewes during the study period were 35.4 ± 1.7°C and 39.1 ± 0.4°C, respectively, with a correlation of r = 0.62, P < 0.001. This finding suggested that the BST was associated with core body temperature in ewes. In the subsequent experiment, seven pregnant ewes in their third trimester were used to evaluate changes in BST measured at the upper neck 72 h before parturition. The mean BST at -24-0 h (0 h = time of parturition) was significantly lower than that at -72- -48 h and -48- -24 h (P < 0.05). The BST tended to decrease toward parturition; all BST measurements at -16- -3 h were significantly lower than those at -72 h (P < 0.05). A clear circadian rhythm in the BST was observed at two days and the day before parturition and an unclear circadian rhythm was observed on the day of parturition. Therefore, these findings indicate that the BST also decreases before parturition, as do vaginal and rectal temperatures.

  12. Body temperature responses to handling stress in wintering Black-capped Chickadees (Poecile atricapillus L.).

    PubMed

    Lewden, Agnès; Nord, Andreas; Petit, Magali; Vézina, François

    2017-10-01

    Body temperature variation in response to acute stress is typically characterized by peripheral vasoconstriction and a concomitant increase in core body temperature (stress-induced hyperthermia). It is poorly understood how this response differs between species and within individuals of the same species, and how it is affected by the environment. We therefore investigated stress-induced body temperature changes in a non-model species, the Black-capped Chickadee, in two environmental conditions: outdoors in low ambient temperature (mean: -6.6°C), and indoors, in milder ambient temperature close to thermoneutrality (mean: 18.7°C). Our results show that the change in body temperature in response to the same handling stressor differs in these conditions. In cold environments, we noted a significant decrease in core body temperature (-2.9°C), whereas the response in mild indoor conditions was weak and non-significant (-0.6°C). Heat loss in outdoor birds was exacerbated when birds were handled for longer time. This may highlight the role of behavioral thermoregulation and heat substitution from activity to body temperature maintenance in harsh condition. Importantly, our work also indicates that changes in the physical properties of the bird during handling (conductive cooling from cold hands, decreased insulation from compression of plumage and prevention of ptiloerection) may have large consequences for thermoregulation. This might explain why females, the smaller sex, lost more heat than males in the experiment. Because physiological and physical changes during handling may carry over to affect predation risk and maintenance of energy balance during short winter days, we advice caution when designing experimental protocols entailing prolonged handling of small birds in cold conditions. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Thermal and energetic constraints on ectotherm abundance: A global test using lizards

    USGS Publications Warehouse

    Buckley, L.B.; Rodda, G.H.; Jetz, W.

    2008-01-01

    Population densities of birds and mammals have been shown to decrease with body mass at approximately the same rate as metabolic rates increase, indicating that energetic needs constrain endotherm population densities. In ectotherms, the exponential increase of metabolic rate with body temperature suggests that environmental temperature may additionally constrain population densities. Here we test simple bioenergetic models for an ecologically important group of ectothermic vertebrates by examining 483 lizard populations. We find that lizard population densities decrease as a power law of body mass with a slope approximately inverse to the slope of the relationship between metabolic rates and body mass. Energy availability should limit population densities. As predicted, environmental productivity has a positive effect on lizard density, strengthening the relationship between lizard density and body mass. In contrast, the effect of environmental temperature is at most weak due to behavioral thermoregulation, thermal evolution, or the temperature dependence of ectotherm performance. Our results provide initial insights into how energy needs and availability differentially constrain ectotherm and endotherm density across broad spatial scales. ?? 2008 by the Ecological Society of America.

  14. Thermal and energetic constraints on ectotherm abundance: a global test using lizards.

    PubMed

    Buckley, Lauren B; Rodda, Gordon H; Jetz, Walter

    2008-01-01

    Population densities of birds and mammals have been shown to decrease with body mass at approximately the same rate as metabolic rates increase, indicating that energetic needs constrain endotherm population densities. In ectotherms, the exponential increase of metabolic rate with body temperature suggests that environmental temperature may additionally constrain population densities. Here we test simple bioenergetic models for an ecologically important group of ectothermic vertebrates by examining 483 lizard populations. We find that lizard population densities decrease as a power law of body mass with a slope approximately inverse to the slope of the relationship between metabolic rates and body mass. Energy availability should limit population densities. As predicted, environmental productivity has a positive effect on lizard density, strengthening the relationship between lizard density and body mass. In contrast, the effect of environmental temperature is at most weak due to behavioral thermoregulation, thermal evolution, or the temperature dependence of ectotherm performance. Our results provide initial insights into how energy needs and availability differentially constrain ectotherm and endotherm density across broad spatial scales.

  15. Ranges of diurnal variation and the pattern of body temperature, blood pressure and heart rate in laboratory beagle dogs.

    PubMed

    Miyazaki, Hiroyasu; Yoshida, Mutsumi; Samura, Keiji; Matsumoto, Hiroyoshi; Ikemoto, Fumihiko; Tagawa, Masahiro

    2002-01-01

    Ranges in diurnal variation and the patterns of body temperature (T), blood pressure (BP), heart rate (HR) and locomotor activity (LA) in 61 laboratory beagle dogs were analyzed using a telemetry system. Body temperature, BP, HR and LA increased remarkably at feeding time. Locomotor activity increased sporadically during the other periods. Body temperature was maintained at the higher value after feeding but had decreased by 0.2 C by early the next morning. Blood pressure fell to a lower value after feeding but had increased by 2.8% by early the next morning. Heart rate decreased progressively after feeding and was 14.5% lower the next morning. This study determined that in laboratory beagles the ranges of diurnal variation and patterns of T, BP and HR are significantly different from those reported in humans and rodents, and that over 24 hr these physiological changes were associated with their sporadic wake-sleep cycles of the dogs.

  16. Correlations among body temperature, plasma progesterone, cortisol and prostaglandin F2alpha of the periparturient bitch.

    PubMed

    Veronesi, M C; Battocchio, M; Marinelli, L; Faustini, M; Kindahl, H; Cairoli, F

    2002-06-01

    The results of this study suggest that, besides the irrelevant role of body temperature measurement to predict the impending parturition in the bitch, progesterone and 15-ketodihydroprostaglandin F2alpha plasma level records could be more suitable to detect the approaching whelping in this species. More interesting was the statistically significant substantial increase in body temperature beginning 12 h after the onset of parturition. Therefore, if any significant increase in body temperature is recorded at the end of pregnancy without the beginning of the expulsion of fetuses, it could indicate problems at parturition. In this study, cortisol levels increased significantly at the time of delivery and remained high 12 h after the beginning of parturition, decreasing within 36 h after the onset of whelping. 15-ketodihydro-prostaglandin F2alpha levels increased significantly 24 h before parturition and again at the onset of whelping. Progesterone levels decreased significantly, starting 24 h before the onset of whelping and remained low after delivery.

  17. EFFECT OF ACTIVE COOLING AND α-2 ADRENOCEPTOR ANTAGONISM ON CORE TEMPERATURE IN ANESTHETIZED BROWN BEARS (URSUS ARCTOS).

    PubMed

    Ozeki, Larissa Mourad; Caulkett, Nigel; Stenhouse, Gordon; Arnemo, Jon M; Fahlman, Åsa

    2015-06-01

    Hyperthermia is a common complication during anesthesia of bears, and it can be life threatening. The objective of this study was to evaluate the effectiveness of active cooling on core body temperature for treatment of hyperthermia in anesthetized brown bears (Ursus arctos). In addition, body temperature after reversal with atipamezole was also evaluated. Twenty-five adult and subadult brown bears were captured with a combination of zolazepam-tiletamine and xylazine or medetomidine. A core temperature capsule was inserted into the bears' stomach or 15 cm into their rectum or a combination of both. In six bears with gastric temperatures≥40.0°C, an active cooling protocol was performed, and the temperature change over 30 min was analyzed. The cooling protocol consisted of enemas with 2 L of water at approximately 5°C/100 kg of body weight every 10 min, 1 L of intravenous fluids at ambient temperature, water or snow on the paws or the inguinal area, intranasal oxygen supplementation, and removing the bear from direct sunlight or providing shade. Nine bears with body temperature>39.0°C that were not cooled served as control for the treated animals. Their body temperatures were recorded for 30 min, prior to administration of reversal. At the end of the anesthetic procedure, all bears received an intramuscular dose of atipamezole. In 10 bears, deep rectal temperature change over 30 min after administration of atipamezole was evaluated. The active cooling protocol used in hyperthermic bears significantly decreased their body temperatures within 10 min, and it produced a significantly greater decrease in their temperature than that recorded in the control group.

  18. Body temperature and mortality in patients with acute respiratory distress syndrome.

    PubMed

    Schell-Chaple, Hildy M; Puntillo, Kathleen A; Matthay, Michael A; Liu, Kathleen D

    2015-01-01

    Little is known about the relationship between body temperature and outcomes in patients with acute respiratory distress syndrome (ARDS). A better understanding of this relationship may provide evidence for fever suppression or warming interventions, which are commonly applied in practice. To examine the relationship between body temperature and mortality in patients with ARDS. Secondary analysis of body temperature and mortality using data from the ARDS Network Fluid and Catheter Treatment Trial (n = 969). Body temperature at baseline and on study day 2, primary cause of ARDS, severity of illness, and 90-day mortality were analyzed by using multiple logistic regression. Mean baseline temperature was 37.5°C (SD, 1.1°C; range, 27.2°C-40.7°C). At baseline, fever (≥ 38.3°C) was present in 23% and hypothermia (< 36°C) in 5% of the patients. Body temperature was a significant predictor of 90-day mortality after primary cause of ARDS and score on the Acute Physiology and Chronic Health Evaluation III were adjusted for. Higher temperature was associated with decreased mortality: for every 1°C increase in baseline temperature, the odds of death decreased by 15% (odds ratio, 0.85; 95% CI, 0.73-0.98, P = .03). When patients were divided into 5 temperature groups, mortality was lower with higher temperature (P for trend = .02). Early in ARDS, fever is associated with improved survival rates. Fever in the acute phase response to lung injury and its relationship to recovery may be an important factor in determining patients' outcome and warrants further study. ©2015 American Association of Critical-Care Nurses.

  19. Body Temperature and Mortality in Patients with Acute Respiratory Distress Syndrome

    PubMed Central

    Schell-Chaple, Hildy M.; Puntillo, Kathleen A.; Matthay, Michael A.; Liu, Kathleen D.

    2015-01-01

    Background Little is known about the relationship between body temperature and outcomes in patients with acute respiratory distress syndrome (ARDS). A better understanding of this relationship may provide evidence for fever suppression or warming interventions, which are commonly applied in practice. Objective To examine the relationship between body temperature and mortality in patients with ARDS. Methods Secondary analysis of body temperature and mortality using data from the ARDS Network Fluid and Catheter Treatment Trial (n =969). Body temperature at baseline and on study day 2, primary cause of ARDS, severity of illness, and 90-day mortality were analyzed by using multiple logistic regression. Results Mean baseline temperature was 37.5°C (SD, 1.1°C; range, 27.2°C-40.7°C). At baseline, fever (≥ 38.3°C) was present in 23% and hypothermia (< 36°C) in 5% of the patients. Body temperature was a significant predictor of 90-day mortality after primary cause of ARDS and score on the Acute Physiology and Chronic Health Evaluation III were adjusted for. Higher temperature was associated with decreased mortality: for every 1°C increase in baseline temperature, the odds of death decreased by 15% (odds ratio, 0.85; 95% CI, 0.73-0.98, P = .03). When patients were divided into 5 temperature groups, mortality was lower with higher temperature (P for trend=.02). Conclusions Early in ARDS, fever is associated with improved survival rates. Fever in the acute phase response to lung injury and its relationship to recovery may be an important factor in determining patients' outcome and warrants further study. PMID:25554550

  20. Lipoprotein Lipase Expression in Hypothalamus Is Involved in the Central Regulation of Thermogenesis and the Response to Cold Exposure

    PubMed Central

    Laperrousaz, Elise; Denis, Raphaël G.; Kassis, Nadim; Contreras, Cristina; López, Miguel; Luquet, Serge; Cruciani-Guglielmacci, Céline; Magnan, Christophe

    2018-01-01

    Lipoprotein lipase (LPL) is expressed in different areas of the brain, including the hypothalamus and plays an important role in neural control of the energy balance, including feeding behavior and metabolic fluxes. This study tested the hypothesis that hypothalamic LPL participates in the control of body temperature. We first showed that cold exposure induces decreased activity and expression of LPL in the mouse hypothalamus. We then selectively deleted LPL in the mediobasal hypothalamus (MBH) through an adeno-associated virus approach in LPL-floxed mice and generated MBHΔLpl mice with 30–35% decrease in hypothalamic LPL activity. Results showed a decrease in body temperature in MBHΔLpl mice when compared with controls at 22°C. Exposure to cold (4°C for 4 h) decreased the body temperature of the control mice while that of the MBHΔLpl mice remained similar to that observed at 22°C. MBHΔLpl mice also showed increased energy expenditure during cold exposure, when compared to controls. Finally, the selective MBH deletion of LPL also increased the expression of the thermogenic PRMD16 and Dio2 in subcutaneous and perigonadal adipose tissues. Thus, the MBH LPL deletion seems to favor thermogenesis. These data demonstrate that for the first time hypothalamic LPL appears to function as a regulator of body temperature and cold-induced thermogenesis. PMID:29593657

  1. The relationship between virtual body ownership and temperature sensitivity

    PubMed Central

    Llobera, Joan; Sanchez-Vives, M. V.; Slater, Mel

    2013-01-01

    In the rubber hand illusion, tactile stimulation seen on a rubber hand, that is synchronous with tactile stimulation felt on the hidden real hand, can lead to an illusion of ownership over the rubber hand. This illusion has been shown to produce a temperature decrease in the hidden hand, suggesting that such illusory ownership produces disownership of the real hand. Here, we apply immersive virtual reality (VR) to experimentally investigate this with respect to sensitivity to temperature change. Forty participants experienced immersion in a VR with a virtual body (VB) seen from a first-person perspective. For half the participants, the VB was consistent in posture and movement with their own body, and in the other half, there was inconsistency. Temperature sensitivity on the palm of the hand was measured before and during the virtual experience. The results show that temperature sensitivity decreased in the consistent compared with the inconsistent condition. Moreover, the change in sensitivity was significantly correlated with the subjective illusion of virtual arm ownership but modulated by the illusion of ownership over the full VB. This suggests that a full body ownership illusion results in a unification of the virtual and real bodies into one overall entity—with proprioception and tactile sensations on the real body integrated with the visual presence of the VB. The results are interpreted in the framework of a ‘body matrix’ recently introduced into the literature. PMID:23720537

  2. Effect of artificial gravity on thermoregulation, respiratory metabolism and intermediary metabolism of animals

    NASA Technical Reports Server (NTRS)

    Oyama, J.

    1973-01-01

    Metabolic alterations in animals exposed to radial acceleration are reported. Temperatures in acutely stressed animals dropped profoundly in correlation with decreased food consumption. Repeated exposure of the acutely stressed animal caused a decrease in hypothermic response whereas deceleration or reduction of G load did not significantly change body temperatures. Adrenal corticosteroids affected significantly the animal's recovery rate. No changes occured in body temperature patterns of chronically centrifuged animals after full adaptation; their respiratory rate increased very significantly in terms of CO2 output as did their glucose uptake by muscle tissues and their insulin responsiveness or sensitivity.

  3. Paclitaxel-induced hypothermia and hypoperfusion increase breast cancer metastasis and angiogenesis in mice

    PubMed Central

    Ami, Nozomi; Sato, Hideki; Hayakawa, Yoshihiro

    2018-01-01

    Housing temperature has been shown to influence thermoregulation and behavior of preclinical cancer models; and anti-cancer drugs typically reduce peripheral blood flow and body temperature. In the present study, the effects of paclitaxel (PTX)-induced reduction of body temperature and peripheral blood flow on metastatic 4T1 breast cancer was investigated in a mouse model and the modification of these effects by thermoneutral temperature was also assessed. A single dose of PTX decreased the body temperature and peripheral blood flow in mice housed at a standard temperature (23°C). Furthermore, although lung metastasis and angiogenesis of inoculated 4T1 cells increased in mice pretreated with PTX, mice housed at a thermoneutral temperature (30°C) could compensate their body temperature and peripheral blood flow compared with control mice, and also suppressed 4T1 angiogenesis and metastasis to lung. The present results imply that maintenance of body temperature or efficient energy supply for thermogenesis may prevent tumor relapse or metastasis after chemotherapy. PMID:29434941

  4. Estimation of body temperature rhythm based on heart activity parameters in daily life.

    PubMed

    Sooyoung Sim; Heenam Yoon; Hosuk Ryou; Kwangsuk Park

    2014-01-01

    Body temperature contains valuable health related information such as circadian rhythm and menstruation cycle. Also, it was discovered from previous studies that body temperature rhythm in daily life is related with sleep disorders and cognitive performances. However, monitoring body temperature with existing devices during daily life is not easy because they are invasive, intrusive, or expensive. Therefore, the technology which can accurately and nonintrusively monitor body temperature is required. In this study, we developed body temperature estimation model based on heart rate and heart rate variability parameters. Although this work was inspired by previous research, we originally identified that the model can be applied to body temperature monitoring in daily life. Also, we could find out that normalized Mean heart rate (nMHR) and frequency domain parameters of heart rate variability showed better performance than other parameters. Although we should validate the model with more number of subjects and consider additional algorithms to decrease the accumulated estimation error, we could verify the usefulness of this approach. Through this study, we expect that we would be able to monitor core body temperature and circadian rhythm from simple heart rate monitor. Then, we can obtain various health related information derived from daily body temperature rhythm.

  5. Oral administration of D-aspartate, but not L-aspartate, depresses rectal temperature and alters plasma metabolites in chicks.

    PubMed

    Erwan, Edi; Chowdhury, Vishwajit Sur; Nagasawa, Mao; Goda, Ryosei; Otsuka, Tsuyoshi; Yasuo, Shinobu; Furuse, Mitsuhiro

    2014-07-25

    L-Aspartate (L-Asp) and D-aspartate (D-Asp) are physiologically important amino acids in mammals and birds. However, the functions of these amino acids have not yet been fully understood. In this study, we therefore examined the effects of L-Asp and D-Asp in terms of regulating body temperature, plasma metabolites and catecholamines in chicks. Chicks were first orally administered with different doses (0, 3.75, 7.5 and 15 mmol/kg body weight) of L- or D-Asp to monitor the effects of these amino acids on rectal temperature during 120 min of the experimental period. Oral administration of D-Asp, but not of L-Asp, linearly decreased the rectal temperature in chicks. Importantly, orally administered D-Asp led to a significant reduction in body temperature in chicks even under high ambient temperature (HT) conditions. However, centrally administered D-Asp did not significantly influence the body temperature in chicks. As for plasma metabolites and catecholamines, orally administered D-Asp led to decreased triacylglycerol and uric acid concentrations and increased glucose and chlorine concentrations but did not alter plasma catecholamines. These results suggest that oral administration of D-Asp may play a potent role in reducing body temperature under both normal and HT conditions. The alteration of plasma metabolites further indicates that D-Asp may contribute to the regulation of metabolic activity in chicks. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Skin temperature changes induced by strong static magnetic field exposure.

    PubMed

    Ichioka, Shigeru; Minegishi, Masayuki; Iwasaka, Masakazu; Shibata, Masahiro; Nakatsuka, Takashi; Ando, Joji; Ueno, Shoogo

    2003-09-01

    High intensity static magnetic fields, when applied to the whole body of the anesthetized rat, have previously been reported to decrease skin temperature. The hypothesis of the present study was that in diamagnetic water, molecules in the air play significant roles in the mechanism of skin temperature decrease. We used a horizontal cylindrical superconducting magnet. The magnet produced 8 T at its center. A thermistor probe was inserted in a subcutaneous pocket of the anesthetized rats to measure skin temperature. Animals (n=10) were placed in an open plastic holder in which the ambient air was free to move in any direction (group I). Animals (n=10) were placed in a closed holder in which the air circulation toward the direction of weak magnetic field was restricted (group II). Each holder was connected to a hydrometer to measure humidity around the animal in the holder. The data acquisition phase consisted of a 5 min baseline interval, followed by inserting the animal together with the holder into the center of the magnet bore for a 5 min exposure and a 5 min postexposure period outside the bore. In group I, skin temperature and humidity around the animal significantly decreased during exposure, followed by recovery after exposure. In group II, skin temperature and humidity did not decrease during the measurement. The skin temperature decrease was closely related to the decrease in humidity around the body of the animal in the holder, and the changes were completely blocked by restricting the air circulation in the direction of the bore entrance. Possible mechanisms responsible for the decrease in skin temperature may be associated with magnetically induced movement of water vapor at the skin surface, leading to skin temperature decrease. Copyright 2003 Wiley-Liss, Inc.

  7. Decrease in body surface temperature before parturition in ewes

    PubMed Central

    NABENISHI, Hisashi; YAMAZAKI, Atusi

    2017-01-01

    This study investigated the correlation between the body surface temperature (BST) and core body temperature of ewes and changes in BST during the prepartum stage in pregnant ewes. Four non-pregnant adult ewes were used in the first experiment. The BST of the upper neck, vaginal temperature (VT), and ambient temperature (AT) were measured every 10 min for seven days and analyzed for correlations. The mean (± SD) BST and VT of ewes during the study period were 35.4 ± 1.7°C and 39.1 ± 0.4°C, respectively, with a correlation of r = 0.62, P < 0.001. This finding suggested that the BST was associated with core body temperature in ewes. In the subsequent experiment, seven pregnant ewes in their third trimester were used to evaluate changes in BST measured at the upper neck 72 h before parturition. The mean BST at –24–0 h (0 h = time of parturition) was significantly lower than that at –72– –48 h and –48– –24 h (P < 0.05). The BST tended to decrease toward parturition; all BST measurements at –16– –3 h were significantly lower than those at –72 h (P < 0.05). A clear circadian rhythm in the BST was observed at two days and the day before parturition and an unclear circadian rhythm was observed on the day of parturition. Therefore, these findings indicate that the BST also decreases before parturition, as do vaginal and rectal temperatures. PMID:28163263

  8. Gigantism, temperature and metabolic rate in terrestrial poikilotherms

    PubMed Central

    Makarieva, Anastassia M; Gorshkov, Victor G; Li, Bai-Lian

    2005-01-01

    The mechanisms dictating upper limits to animal body size are not well understood. We have analysed body length data for the largest representatives of 24 taxa of terrestrial poikilotherms from tropical, temperate and polar environments. We find that poikilothermic giants on land become two–three times shorter per each 10 degrees of decrease in ambient temperature. We quantify that this diminution of maximum body size accurately compensates the drop of metabolic rate dictated by lower temperature. This supports the idea that the upper limit to body size within each taxon can be set by a temperature-independent critical minimum value of mass-specific metabolic rate, a fall below which is not compatible with successful biological performance. PMID:16191647

  9. Ontogenetic shifts in thermal tolerance, selected body temperature and thermal dependence of food assimilation and locomotor performance in a lacertid lizard, Eremias brenchleyi.

    PubMed

    Xu, Xue-Feng; Ji, Xiang

    2006-01-01

    We used Eremias brenchleyi as a model animal to examine differences in thermal tolerance, selected body temperature, and the thermal dependence of food assimilation and locomotor performance between juvenile and adult lizards. Adults selected higher body temperatures (33.5 vs. 31.7 degrees C) and were able to tolerate a wider range of body temperatures (3.4-43.6 vs. 5.1-40.8 degrees C) than juveniles. Within the body temperature range of 26-38 degrees C, adults overall ate more than juveniles, and food passage rate was faster in adults than juveniles. Apparent digestive coefficient (ADC) and assimilation efficiency (AE) varied among temperature treatments but no clear temperature associated patterns could be discerned for these two variables. At each test temperature ADC and AE were both higher in adults than in juveniles. Sprint speed increased with increase in body temperature at lower body temperatures, but decreased at higher body temperatures. At each test temperature adults ran faster than did juveniles, and the range of body temperatures where lizards maintained 90% of maximum speed differed between adults (27-34 degrees C) and juveniles (29-37 degrees C). Optimal temperatures and thermal sensitivities differed between food assimilation and sprint speed. Our results not only show strong patterns of ontogenetic variation in thermal tolerance, selected body temperature and thermal dependence of food assimilation and locomotor performance in E. brenchleyi, but also add support for the multiple optima hypothesis for the thermal dependence of behavioral and physiological variables in reptiles.

  10. Influence of conditioning temperature on the performance, nutrient utilisation and digestive tract development of broilers fed on maize- and wheat-based diets.

    PubMed

    Abdollahi, M R; Ravindran, V; Wester, T J; Ravindran, G; Thomas, D V

    2010-10-01

    1. The influence of conditioning temperature on the performance, nutrient utilisation and digestive tract development of broilers fed on maize- and wheat-based diets was examined up to 21 d of age. The experimental design was a 2 × 3 factorial arrangement of treatments evaluating two grain types (maize and wheat) and three conditioning temperatures (60°C, 75°C and 90°C). Broiler starter diets, each based on one grain (maize or wheat), were formulated and pelleted at the three temperatures. 2. Increasing conditioning temperature decreased the body-weight gain and feed intake in wheat-based diets, but birds fed on maize-based diets conditioned at 60°C and 90°C had higher body-weight gain and feed intake than those fed on the diet conditioned at 75°C. Increasing conditioning temperature increased feed per body-weight gain in both grain-type diets but improved pellet durability index (PDI) only in wheat-based diets; PDI was unaffected in maize-based diets. 3. In wheat-based diets, increasing conditioning temperature decreased the ileal digestibility of nitrogen and starch. Ileal nitrogen digestibility of maize-based diets conditioned at 60°C and 90°C was higher than at 75°C. Starch digestibility was unaffected by conditioning temperature in maize-based diets. No effect of conditioning temperature was found for apparent metabolisable energy (AME). Increasing conditioning temperature decreased digestible protein and AME intakes in wheat-based diets but, in maize-based diets, birds fed on the diet conditioned at 75°C had lower digestible protein and AME intakes compared to those fed on diets conditioned at 60°C and 90°C. 4. Small intestine was longer in birds fed on diets conditioned at 75°C and 90°C compared with those fed on diets conditioned at 60°C. 5. Overall, the data suggest that while the effects of conditioning temperature on body-weight gain and feed intake of broilers to 21 d of age differed depending on the grain type, feed per body-weight gain was adversely affected by higher conditioning temperatures.

  11. Environmental stressors during space flight: potential effects on body temperature

    NASA Technical Reports Server (NTRS)

    Jauchem, J. R.

    1988-01-01

    1. Organisms may be affected by many environmental factors during space flight, e.g., acceleration, weightlessness, decreased pressure, changes in oxygen tension, radiofrequency radiation and vibration. 2. Previous studies of change in body temperature--one response to these environmental factors--are reviewed. 3. Conditions leading to heat stress and hypothermia are discussed.

  12. Inhaled hydrogen sulfide: a rapidly reversible inhibitor of cardiac and metabolic function in the mouse.

    PubMed

    Volpato, Gian Paolo; Searles, Robert; Yu, Binglan; Scherrer-Crosbie, Marielle; Bloch, Kenneth D; Ichinose, Fumito; Zapol, Warren M

    2008-04-01

    Breathing hydrogen sulfide (H2S) has been reported to induce a suspended animation-like state with hypothermia and a concomitant metabolic reduction in rodents. However, the impact of H2S breathing on cardiovascular function remains incompletely understood. In this study, the authors investigated the cardiovascular and metabolic effects of inhaled H2S in a murine model. The impact of breathing H2S on cardiovascular function was examined using telemetry and echocardiography in awake mice. The effects of breathing H2S on carbon dioxide production and oxygen consumption were measured at room temperature and in a warmed environment. Breathing H2S at 80 parts per million by volume at 27 degrees C ambient temperature for 6 h markedly reduced heart rate, core body temperature, respiratory rate, and physical activity, whereas blood pressure remained unchanged. Echocardiography demonstrated that H2S exposure decreased both heart rate and cardiac output but preserved stroke volume. Breathing H2S for 6 h at 35 degrees C ambient temperature (to prevent hypothermia) decreased heart rate, physical activity, respiratory rate, and cardiac output without altering stroke volume or body temperature. H2S breathing seems to induce bradycardia by depressing sinus node activity. Breathing H2S for 30 min decreased whole body oxygen consumption and carbon dioxide production at either 27 degrees or 35 degrees C ambient temperature. Both parameters returned to baseline levels within 10 min after the cessation of H2S breathing. Inhalation of H2S at either 27 degrees or 35 degrees C reversibly depresses cardiovascular function without changing blood pressure in mice. Breathing H2S also induces a rapidly reversible reduction of metabolic rate at either body temperature.

  13. Inhaled Hydrogen Sulfide

    PubMed Central

    Volpato, Gian Paolo; Searles, Robert; Yu, Binglan; Scherrer-Crosbie, Marielle; Bloch, Kenneth D.; Ichinose, Fumito; Zapol, Warren M.

    2010-01-01

    Background Breathing hydrogen sulfide (H2S) has been reported to induce a suspended animation–like state with hypothermia and a concomitant metabolic reduction in rodents. However, the impact of H2S breathing on cardiovascular function remains incompletely understood. In this study, the authors investigated the cardiovascular and metabolic effects of inhaled H2S in a murine model. Methods The impact of breathing H2S on cardiovascular function was examined using telemetry and echocardiography in awake mice. The effects of breathing H2S on carbon dioxide production and oxygen consumption were measured at room temperature and in a warmed environment. Results Breathing H2S at 80 parts per million by volume at 27°C ambient temperature for 6 h markedly reduced heart rate, core body temperature, respiratory rate, and physical activity, whereas blood pressure remained unchanged. Echocardiography demonstrated that H2S exposure decreased both heart rate and cardiac output but preserved stroke volume. Breathing H2S for 6 h at 35°C ambient temperature (to prevent hypothermia) decreased heart rate, physical activity, respiratory rate, and cardiac output without altering stroke volume or body temperature. H2S breathing seems to induce bradycardia by depressing sinus node activity. Breathing H2S for 30 min decreased whole body oxygen consumption and carbon dioxide production at either 27° or 35°C ambient temperature. Both parameters returned to baseline levels within 10 min after the cessation of H2S breathing. Conclusions Inhalation of H2S at either 27° or 35°C reversibly depresses cardiovascular function without changing blood pressure in mice. Breathing H2S also induces a rapidly reversible reduction of metabolic rate at either body temperature. PMID:18362598

  14. Effects of body temperature on post-anoxic oxidative stress from the perspective of postnatal physiological adaptive processes in rats.

    PubMed

    Kletkiewicz, H; Rogalska, J; Nowakowska, A; Wozniak, A; Mila-Kierzenkowska, C; Caputa, M

    2016-04-01

    It is well known that decrease in body temperature provides protection to newborns subjected to anoxia/ischemia. We hypothesized that the normal body temperature of 33°C in neonatal rats (4°C below normal body temperature in adults) is in fact a preadaptation to protect CNS from anoxia and further reductions as well as elevations in temperature may be counterproductive. Our experiments aimed to examine the effect of changes in body temperature on oxidative stress development in newborn rats exposed to anoxia. Two-day-old Wistar rats were divided into 4 temperature groups: i. hypothermic at body temperature of 31°C, ii. maintaining physiological neonatal body temperature of 33°C, iii. forced to maintain hyperthermic temperature of 37°C, and i.v. forced to maintain hyperthermic temperature of 39°C. The temperature was controlled starting 15 minutes before and afterword during 10 minutes of anoxia as well as for 2 hours post-anoxia. Cerebral concentrations of lipid peroxidation products malondialdehyde (MDA) and conjugated dienes (CD) and the activities of antioxidant enzymes had been determined post mortem: immediately after anoxia was finished and 3, 7, and 14 days later. There were no post-anoxic changes in the concentration of MDA, CD and in antioxidant enzymes activity in newborn rats kept at their physiological body temperature of 33°C. In contrast, perinatal anoxia at body temperature elevated to 37°C or 39°C as well as under hypothermic conditions (31°C) intensified post-anoxic oxidative stress and depleted the antioxidant pool. Overall, these findings suggest that elevated body temperature (hyperthermia or fever), as well as exceeding cooling beyond the physiological level of body temperature of newborn rats, may extend perinatal anoxia-induced brain lesions. Our findings provide new insights into the role of body temperature in anoxic insult in vivo.

  15. Seasonal changes in the cardiovascular, respiratory and metabolic responses to temperature and hypoxia in the bullfrog Rana catesbeiana.

    PubMed

    Rocha, P L; Branco, L G

    1998-03-01

    We assessed seasonal variations in the effects of temperature on hypoxia-induced alterations in the bullfrog Rana catesbeiana by measuring the heart rate, arterial blood pressure, breathing frequency, metabolic rate, blood gas levels, acid-base status and plasma glucose concentration. Regardless of the season, decreased body temperature was accompanied by a reduction in heart and breathing frequencies. Lower temperatures caused a significant decrease in arterial blood pressure during all four seasons. Hypoxia-induced changes in breathing frequency were proportional to body temperature and were more pronounced during winter, less so during spring and autumn and even smaller during summer. Season had no effect on the relationship between hypoxia and heart rate. At any temperature tested, the rate of oxygen consumption had a tendency to be highest during summer and lowest during winter, but the difference was significant only at 35 degrees C. The PaO2 and pH values showed no significant change during the year, but PaCO2 was almost twice as high during winter than in summer and spring, indicating increased plasma bicarbonate levels. Lower temperatures were accompanied by decreased plasma glucose levels, and this effect was greater during summer and smaller during autumn. Hypoxia-induced hyperglycaemia was influenced by temperature and season. During autumn and winter, plasma glucose level remained elevated regardless of temperature, probably to avoid dehydration and/or freezing. In winter, the bullfrog may be exposed not only to low temperatures but also to hypoxia. These animals show temperature-dependent responses that may be beneficial since at low body temperatures the set-points of most physiological responses to hypoxia are reduced, regardless of the season.

  16. Nasal reaction to changes in whole body temperature.

    PubMed

    Lundqvist, G R; Pedersen, O F; Hilberg, O; Nielsen, B

    1993-11-01

    The changes in nasal patency following a 1.5 degrees C decrease or increase in whole body temperature were measured in 8 healthy young males, during and after 30 min of immersion in a 15 degrees C cold or a 40 degrees C warm bath, breathing air at the same temperature, in a cross-over experimental design. The nasal reactions were traced by consecutive measurements of changes in nasal cavity volumes by acoustic rhinometry. Swelling of the mucosa during cooling and an almost maximal shrinkage of the mucosa during heating were indicated by respectively a decrease and an increase in nasal cavity volumes. The reactions were determined predominantly by the whole body thermal balance, but were also influenced by the temperature of the inhaled air, either enhanced, reduced or temporarily reversed. The greatest change occurred in the nasal cavity, left or right, which differed most from the final state at the beginning of exposure due to the actual state of nasal cycle.

  17. Turtles (Chelodina longicollis) regulate muscle metabolic enzyme activity in response to seasonal variation in body temperature.

    PubMed

    Seebacher, F; Sparrow, J; Thompson, M B

    2004-04-01

    Fluctuations in the thermal environment may elicit different responses in animals: migration to climatically different areas, regulation of body temperature, modification of biochemical reaction rates, or assuming a state of dormancy. Many ectothermic reptiles are active over a range of body temperatures that vary seasonally. Here we test the hypothesis that metabolic enzyme activity acclimatises seasonally in freshwater turtles (Chelodina longicollis) in addition to, or instead of, behavioural regulation of body temperatures. We measured body temperatures in free-ranging turtles (n = 3) by radiotelemetry, and we assayed phosphofructokinase (PFK), lactate dehydrogenase (LDH), citrate synthase (CS) and cytochrome c oxidase (CCO) activities in early autumn (March, n = 10 turtles), late autumn (May, n = 7) and mid-winter (July, n = 7) over a range of assay temperatures (10 degrees C, 15 degrees C, 20 degrees C, 25 degrees C). Body temperatures were either not different from, or higher than expected from a theoretical null-distribution of a randomly moving animal. Field body temperatures at any season were lower, however, than expected from animals that maximised their sun exposure. Turtles maintained constant PFK, LDH and CCO activities in different months, despite body temperature differences of nearly 13.0 degrees C between March (average daily body temperature = 24.4 degrees C) and July (average = 11.4 degrees C). CS activity did not vary between March and May (average daily body temperature = 20.2 degrees C), but it decreased in July. Thus C. longicollis use a combination of behavioural thermoregulation and biochemical acclimatisation in response to seasonally changing thermal conditions. Ectothermic reptiles were often thought not to acclimatise biochemically, and our results show that behavioural attainment of a preferred body temperature is not mandatory for activity or physiological performance in turtles. Copyright 2004 Springer-Verlag

  18. Dynamic size responses to climate change: prevailing effects of rising temperature drive long-term body size increases in a semi-arid passerine.

    PubMed

    Gardner, Janet L; Amano, Tatsuya; Mackey, Brendan G; Sutherland, William J; Clayton, Mark; Peters, Anne

    2014-07-01

    Changes in animal body size have been widely reported as a correlate of contemporary climate change. Body size affects metabolism and fitness, so changing size has implications for resilience, yet the climatic factors that drive size variation remain poorly understood. We test the role of mean and extreme temperature, rainfall, and remotely sensed primary productivity (NDVI) as drivers of body size in a sedentary, semi-arid Australian passerine, Ptilotula (Lichenostomus)penicillatus, over 23 years. To distinguish effects due to differential growth from changes in population composition, we analysed first-year birds and adults separately and considered climatic variation at three temporal scales (current, previous, and preceding 5 years). The strongest effects related to temperature: in both age classes, larger size was associated with warmer mean temperatures in the previous year, contrary to Bergmann's Rule. Moreover, adults were larger in warmer breeding seasons, while first years was larger after heat waves; these effects are more likely to be mediated through size-dependent mortality, highlighting the role of body size in determining vulnerability to extinction. In addition to temperature, larger adult size was associated with lower primary productivity, which may reflect a trade-off between vegetative growth and nectar production, on which adults rely. Finally, lower rainfall was associated with decreasing size in first year and adults, most likely related to decreased food availability. Overall,body size increased over 23 years, strongly in first-year birds (2.7%) compared with adults (1%), with size outcomes a balance between competing drivers. As rainfall declined over time and productivity remained fairly stable, the temporal increase in body size appears largely driven by rising mean temperature and temperature extremes. Body size responses to environmental change are thus complex and dynamic, driven by effects on growth as well as mortality.

  19. Sensing Disaster: The Use of Wearable Sensor Technology to Decrease Firefighter Line-of-Duty Deaths

    DTIC Science & Technology

    2015-12-01

    peripheral oxygen or SpO2), and temperature , to name but a few.164 The current GTWM allows these sensors to be plugged in anywhere on the shirt, although...desired monitoring parameters included the “heart rate, respiratory rate, body temperature , blood oxygen saturation levels, environmental...physiological tests and parameters of firefighters that should be monitored are the EKG, heart rate (HR), body temperature , blood oxygen saturation

  20. Intraoperative use of a reflective blanket (Sirius rescue sheet) for temperature management in dogs less than 10 kg.

    PubMed

    Tünsmeyer, J; Bojarski, I; Nolte, I; Kramer, S

    2009-07-01

    To compare the effects of the Sirius rescue sheet with gel pads versus gel pads alone on intraoperative body temperature in dogs less than 10 kg. Forty small breed dogs undergoing elective surgical procedures were randomly assigned to two groups. One group was intraoperatively laid on warmed gel pads, and the other group was additionally wrapped in a Sirius rescue sheet. Oesophageal body temperature was determined every 10 minutes and compared between groups. Temperature of gel pads was measured preoperatively and postoperatively to compare heat loss of the gel pads between groups. The body temperature of dogs wrapped with the Sirius rescue sheet increased intraoperatively. In dogs just lying on warmed gel pads, a decrease in mean body temperature was revealed and mean body temperatures differed between groups after 40 minutes. Extent of heat loss from the gel pads did not differ between the groups. The Sirius rescue sheet, used in addition to warmed gel pads, led to higher intraoperative body temperatures in small breed dogs undergoing surgical procedures to the extremities and the head. The cost-effectiveness and ease of handling make this a useful addition to clinical practice.

  1. Effects of Eucommia leaf extracts on autonomic nerves, body temperature, lipolysis, food intake, and body weight.

    PubMed

    Horii, Yuko; Tanida, Mamoru; Shen, Jiao; Hirata, Tetsuya; Kawamura, Naomi; Wada, Atsunori; Nagai, Katsuya

    2010-08-02

    Eucommia ulmoides Oliver leaf extracts (ELE) have been shown to exert a hypolipidemic effect in hamsters. Therefore, it was hypothesized that ELE might affect lipid metabolism via changes in autonomic nerve activities and causes changes in thermogenesis and body weight. We examined this hypothesis, and found that intraduodenal (ID) injection of ELE elevated epididymal white adipose tissue sympathetic nerve activity (WAT-SNA) and interscapular brown adipose tissue sympathetic nerve activity (BAT-SNA) in urethane-anesthetized rats and elevated the plasma concentration of free fatty acids (FFA) (a marker of lipolysis) and body temperature (BT) (a marker of thermogenesis) in conscious rats. Furthermore, it was observed that ID administration of ELE decreased gastric vagal nerve activity (GVNA) in urethane-anesthetized rats, and that ELE given as food reduced food intake, body and abdominal adipose tissue weights and decreased plasma triglyceride level. These findings suggest that ELE stimulates lipolysis and thermogenesis through elevations in WAT-SNA and BAT-SNA, respectively, suppresses appetite by inhibiting the activities of the parasympathetic nerves innervating the gastrointestinal tract, including GVNA, and decreases the amount of abdominal fat and body weight via these changes. Copyright 2010 Elsevier Ireland Ltd. All rights reserved.

  2. The effect of humidified heated breathing circuit on core body temperature in perioperative hypothermia during thyroid surgery.

    PubMed

    Park, Hue Jung; Moon, Ho Sik; Moon, Se Ho; Do Jeong, Hyeon; Jeon, Young Jae; Do Han, Keung; Koh, Hyun Jung

    2017-01-01

    Purpose: During general anesthesia, human body easily reaches a hypothermic state, which is mainly caused by heat redistribution. Most studies suggested that humidified heated breathing circuits (HHBC) have little influence on maintenance of the core temperature during early phase of anesthesia. This study was aimed at examining heat preservation effect with HHBC in case of undergoing surgery with less exposure of surgical fields and short surgical duration. Methods: Patients aged 19 to 70 yr - old, ASA-PS I or II who were scheduled for elective thyroidectomy were assigned and divided to the group using HHBC (G1) and the group using conventional circuit (G2) by random allocation. During operation, core, skin, and room temperatures were measured every 5minutes by specific thermometer. Results: G1 was decreased by a lesser extent than G2 in core temperature, apparently higher at 30 and 60 minutes after induction. Skin and room temperatures showed no differences between the two groups (p>0.05). Consequently, we confirmed HHBC efficiently prevented a decrease in core temperature during early period in small operation which has difficulty in preparing warming devices or environments were not usually considered. Conclusions: This study showed that HHBC influences heat redistribution in early period of operation and can lessen the magnitude of the decrease in core body temperature. Therefore, it can be applied efficiently for other active warming devices in mild hypothermia.

  3. Does the body temperature change in older people?

    PubMed

    Güneş, Ulkü Yapucu; Zaybak, Ayten

    2008-09-01

    The aim of this study was to determine the mean body temperatures in older people using mercury-in-glass thermometer. Older people are unable to regulate their body temperatures to the same degree as young adults because their responses to changes in body temperature are altered. Several published reports suggest that body temperature decreases with advancing age and has a greater variability in older populations. The aim of this study was to determine the mean body temperatures in older people. Non-experimental. Axillary body temperatures were taken in 133 older subjects in a nursing home for older people using mercury-in-glass thermometer. Temperatures were measured at 8 a.m., 2 p.m., and 6 p.m., over three consecutive days. Each subject had all three measurements taken on the same day. The mean age of the subjects was 77.2, SD 7.3. In the 133 older subjects, the mean axillary temperatures ranged from 35.1 to 36.4 degrees C (95.3-97.6 degrees F). The mean temperatures for those aged 65-74 was higher than in those aged 75-84 (p < 0.001) and those aged 85 and older (p < 0.001) at 6 p.m. but not at 8 a.m. or 2 p.m. We concluded that older people have mean axillary body temperatures lower than the reference point of 36.5 degrees C (97.7 degrees F). When assessing body temperature, it is important to take the age of the patient into consideration. Also, the reference point of 36.5 degrees C is inappropriate in older people, especially when diagnosing a febrile illness.

  4. Validation of a new whole-body cryotherapy chamber based on forced convection.

    PubMed

    Bouzigon, Romain; Arfaoui, Ahlem; Grappe, Frédéric; Ravier, Gilles; Jarlot, Benoit; Dugue, Benoit

    2017-04-01

    Whole-body cryotherapy (WBC) and partial-body cryotherapy (PBC) are two methods of cold exposure (from -110 to -195°C according to the manufacturers). However, temperature measurement in the cold chamber during a PBC exposure revealed temperatures ranging from -25 to -50°C next to the skin of the subjects (using isolating layer placed between the sensor and the skin). This discrepancy is due to the human body heat transfer. Moreover, on the surface of the body, an air layer called the boundary layer is created during the exposure and limits heat transfer from the body to the cabin air. Incorporating forced convection in a chamber with a participant inside could reduce this boundary layer. The aim of this study was to explore the use of a new WBC technology based on forced convection (frontal unilateral wind) through the measurement of skin temperature. Fifteen individuals performed a 3-min WBC exposure at -40°C with an average wind speed of 2.3ms -1 . The subjects wore a headband, a surgical mask, underwear, gloves and slippers. The skin temperature of the participants was measured with a thermal camera just before exposure, just after exposure and at 1, 3, 5, 10, 15 and 20min after exposure. Mean skin temperature significantly dropped by 11°C just after exposure (p<0.001) and then significantly increased during the 20-min post exposure period (p<0.001). No critically low skin temperature was observed at the end of the cold exposure. This decrease was greater than the mean decreases in all the cryosauna devices with reported exposures between -140°C and -160°C and those in two other WBC devices with reported exposures between -60°C and -110°C. The use of this new technology provides the ability to reach decreases in skin temperature similar to other technologies. The new chamber is suitable and relevant for use as a WBC device. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Effects of pregnancy on body temperature and locomotor performance of velvet geckos.

    PubMed

    Dayananda, Buddhi; Ibargüengoytía, Nora; Whiting, Martin J; Webb, Jonathan K

    2017-04-01

    Pregnancy is a challenging period for egg laying squamates. Carrying eggs can encumber females and decrease their locomotor performance, potentially increasing their risk of predation. Pregnant females can potentially reduce this handicap by selecting higher temperatures to increase their sprint speed and ability to escape from predators, or to speed up embryonic development and reduce the period during which they are burdened with eggs ('selfish mother' hypothesis). Alternatively, females might select more stable body temperatures during pregnancy to enhance offspring fitness ('maternal manipulation hypothesis'), even if the maintenance of such temperatures compromises a female's locomotor performance. We investigated whether pregnancy affects the preferred body temperatures and locomotor performance of female velvet geckos Amalosia lesueurii. We measured running speed of females during late pregnancy, and one week after they laid eggs at four temperatures (20°, 25°, 30° and 35°C). Preferred body temperatures of females were measured in a cost-free thermal gradient during late pregnancy and one week after egg-laying. Females selected higher and more stable set-point temperatures when they were pregnant (mean =29.0°C, T set =27.8-30.5°C) than when they were non-pregnant (mean =26.2°C, T set =23.7-28.7°C). Pregnancy was also associated with impaired performance; females sprinted more slowly at all four test temperatures when burdened with eggs. Although females selected higher body temperatures during late pregnancy, this increase in temperature did not compensate for their impaired running performance. Hence, our results suggest that females select higher temperatures during pregnancy to speed up embryogenesis and reduce the period during which they have reduced performance. This strategy may decrease a female's probability of encountering predatory snakes that use the same microhabitats for thermoregulation. Selection of stable temperatures by pregnant females may also benefit embryos, but manipulative experiments are necessary to test this hypothesis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Effects of Heat Wave on Body Temperature and Blood Pressure in the Poor and Elderly

    PubMed Central

    Kim, Soyeon; Cheong, Hae-Kwan; Ahn, Byungok; Choi, Kyusik

    2012-01-01

    Objectives We aimed to investigate the acute effects of heat stress on body temperature and blood pressure of elderly individuals living in poor housing conditions. Methods Repeated measurements of the indoor temperature, relative humidity, body temperature, and blood pressure were conducted for 20 elderly individuals living in low-cost dosshouses in Seoul during hot summer days in 2010. Changes in the body temperature, systolic blood pressure (SBP) and diastolic blood pressure (DBP) according to variations in the indoor and outdoor temperature and humidity were analyzed using a repeated-measures ANOVA controlling for age, sex, alcohol, and smoking. Results Average indoor and outdoor temperatures were 31.47℃ (standard deviation [SD], 0.97℃) and 28.15℃ (SD, 2.03℃), respectively. Body temperature increased by 0.21℃ (95% confidence interval [CI], 0.16 to 0.26℃) and 0.07℃ (95% CI, 0.04 to 0.10℃) with an increase in the indoor and outdoor temperature of 1℃. DBP decreased by 2.05 mmHg (95% CI, 0.05 to 4.05 mmHg), showing a statistical significance, as the indoor temperature increased by 1℃, while it increased by 0.20 mmHg (95% CI, -0.83 to 1.22 mmHg) as outdoor temperature increased by 1℃. SBP decreased by 1.75 mmHg (95% CI, -1.11 to 4.61 mmHg) and 0.35 mmHg (95% CI, -1.04 to 1.73 mmHg), as the indoor and outdoor temperature increased by 1℃, respectively. The effects of relative humidity on SBP and DBP were not statistically significant for both indoor and outdoor. Conclusions The poor and elderly are directly exposed to heat waves, while their vital signs respond sensitively to increase in temperature. Careful adaptation strategies to climate change considering socioeconomic status are therefore necessary. PMID:22888472

  7. Effects of heat wave on body temperature and blood pressure in the poor and elderly.

    PubMed

    Kim, Young-Min; Kim, Soyeon; Cheong, Hae-Kwan; Ahn, Byungok; Choi, Kyusik

    2012-01-01

    We aimed to investigate the acute effects of heat stress on body temperature and blood pressure of elderly individuals living in poor housing conditions. Repeated measurements of the indoor temperature, relative humidity, body temperature, and blood pressure were conducted for 20 elderly individuals living in low-cost dosshouses in Seoul during hot summer days in 2010. Changes in the body temperature, systolic blood pressure (SBP) and diastolic blood pressure (DBP) according to variations in the indoor and outdoor temperature and humidity were analyzed using a repeated-measures ANOVA controlling for age, sex, alcohol, and smoking. Average indoor and outdoor temperatures were 31.47℃ (standard deviation [SD], 0.97℃) and 28.15℃ (SD, 2.03℃), respectively. Body temperature increased by 0.21℃ (95% confidence interval [CI], 0.16 to 0.26℃) and 0.07℃ (95% CI, 0.04 to 0.10℃) with an increase in the indoor and outdoor temperature of 1℃. DBP decreased by 2.05 mmHg (95% CI, 0.05 to 4.05 mmHg), showing a statistical significance, as the indoor temperature increased by 1℃, while it increased by 0.20 mmHg (95% CI, -0.83 to 1.22 mmHg) as outdoor temperature increased by 1℃. SBP decreased by 1.75 mmHg (95% CI, -1.11 to 4.61 mmHg) and 0.35 mmHg (95% CI, -1.04 to 1.73 mmHg), as the indoor and outdoor temperature increased by 1℃, respectively. The effects of relative humidity on SBP and DBP were not statistically significant for both indoor and outdoor. The poor and elderly are directly exposed to heat waves, while their vital signs respond sensitively to increase in temperature. Careful adaptation strategies to climate change considering socioeconomic status are therefore necessary.

  8. Being cool: how body temperature influences ageing and longevity.

    PubMed

    Keil, Gerald; Cummings, Elizabeth; de Magalhães, João Pedro

    2015-08-01

    Temperature is a basic and essential property of any physical system, including living systems. Even modest variations in temperature can have profound effects on organisms, and it has long been thought that as metabolism increases at higher temperatures so should rates of ageing. Here, we review the literature on how temperature affects longevity, ageing and life history traits. From poikilotherms to homeotherms, there is a clear trend for lower temperature being associated with longer lifespans both in wild populations and in laboratory conditions. Many life-extending manipulations in rodents, such as caloric restriction, also decrease core body temperature. Nonetheless, an inverse relationship between temperature and lifespan can be obscured or reversed, especially when the range of body temperatures is small as in homeotherms. An example is observed in humans: women appear to have a slightly higher body temperature and yet live longer than men. The mechanisms involved in the relationship between temperature and longevity also appear to be less direct than once thought with neuroendocrine processes possibly mediating complex physiological responses to temperature changes. Lastly, we discuss species differences in longevity in mammals and how this relates to body temperature and argue that the low temperature of the long-lived naked mole-rat possibly contributes to its exceptional longevity.

  9. Temperature and nitrogen supply interact to determine protein distribution gradients in the wheat grain endosperm.

    PubMed

    Savill, George P; Michalski, Adam; Powers, Stephen J; Wan, Yongfang; Tosi, Paola; Buchner, Peter; Hawkesford, Malcolm J

    2018-05-25

    Gradients exist in the distribution of storage proteins in the wheat (Triticum aestivum) endosperm and determine the milling properties and protein recovery rate of the grain. A novel image analysis technique was developed to quantify both the gradients in protein concentration, and the size distribution of protein bodies within the endosperm of wheat plants grown under two different (20 or 28 °C) post-anthesis temperatures, and supplied with a nutrient solution with either high or low nitrogen content. Under all treatment combinations, protein concentration was greater in the endosperm cells closest to the aleurone layer and decreased towards the centre of the two lobes of the grain, i.e. a negative gradient. This was accompanied by a decrease in size of protein bodies from the outer to the inner endosperm layers in all but one of the treatments. Elevated post-anthesis temperature had the effect of increasing the magnitude of the negative gradients in both protein concentration and protein body size, whilst limiting nitrogen supply decreased the gradients.

  10. Heat Waves

    MedlinePlus

    ... This typically occurs when people exercise heavily or work in a hot, humid place where body fluids are lost through heavy sweating. Blood flow to the skin increases, causing blood flow to decrease to the vital organs. This ... cool the body, stops working. The body temperature can rise so high that ...

  11. Morphological change to birds over 120 years is not explained by thermal adaptation to climate change.

    PubMed

    Salewski, Volker; Siebenrock, Karl-Heinz; Hochachka, Wesley M; Woog, Friederike; Fiedler, Wolfgang

    2014-01-01

    Changes in morphology have been postulated as one of the responses of animals to global warming, with increasing ambient temperatures leading to decreasing body size. However, the results of previous studies are inconsistent. Problems related to the analyses of trends in body size may be related to the short-term nature of data sets, to the selection of surrogates for body size, to the appropriate models for data analyses, and to the interpretation as morphology may change in response to ecological drivers other than climate and irrespective of size. Using generalized additive models, we analysed trends in three morphological traits of 4529 specimens of eleven bird species collected between 1889 and 2010 in southern Germany and adjacent areas. Changes and trends in morphology over time were not consistent when all species and traits were considered. Six of the eleven species displayed a significant association of tarsus length with time but the direction of the association varied. Wing length decreased in the majority of species but there were few significant trends in wing pointedness. Few of the traits were significantly associated with mean ambient temperatures. We argue that although there are significant changes in morphology over time there is no consistent trend for decreasing body size and therefore no support for the hypothesis of decreasing body size because of climate change. Non-consistent trends of change in surrogates for size within species indicate that fluctuations are influenced by factors other than temperature, and that not all surrogates may represent size appropriately. Future analyses should carefully select measures of body size and consider alternative hypotheses for change.

  12. Hemodynamic changes during whole body surface cooling and lower body negative pressure

    NASA Technical Reports Server (NTRS)

    Raven, P. B.; Pape, G.; Taylor, W. F.; Gaffney, F. A.; Blomqvist, C. G.

    1981-01-01

    Six young healthy male subjects were studied to evaluate the use of whole body surface cooling (WBSC) as an antiorthostatic intervention. Previous studies have demonstrated that perfusion of an Apollo cooling garment with 16 C water produced a significant increase in stroke volume and decrease in heart rate at rest and during lower body negative pressure (LBNP). However, optimal perfusion temperatures have not been determined. The present study examined the effects of WBSC using perfusion of water at a temperature of 10 C. This perfusion temperature produced a greater decrease in mean skin temperature than water at 16 C (4 C drop compared to 2 C). The hemodynamic effects were also more prominent with 10 C water as shown by the increase in stroke volume of 11% at rest and of 35% during LBNP at -50 torr compared to control measurements at ambient temperature. Heart rates were lowered significantly (8 beats/min) and systolic arterial blood pressure was higher (8 torr). Cooling with 10 C water produced a slight increase in muscle tone, reflected by a small but significant increase (+84 ml/min) in oxygen uptake. These data suggest that WBSC is an effective nonpharmacologic means of controlling preload and deserves further investigation as an antiorthostatic intervention.

  13. The temperature of unheated bodies in a high-speed gas stream

    NASA Technical Reports Server (NTRS)

    Eckert, E; Weise, W

    1941-01-01

    The present report deals with temperature measurements on cylinders of 0.2 to 3 millimeters diameter in longitudinal and transverse air flow at speeds of 100 to 300 meters per second. Within the explored test range, that is, the probable laminar boundary layer region, the temperature of the cylinders in axial flow is practically independent of the speed and in good agreement with Pohlhausen's theoretical values; Whereas, in transverse flow, cylinders of certain diameter manifest a close relationship with speed, the ratio of the temperature above the air of the body to the adiabatic stagnation temperature decreases with rising speed and then rises again from a Mach number of 0.6. The importance of this "specific temperature" of the body for heat-transfer studies at high speed is discussed.

  14. Effect of danofloxacin and tilmicosin on body temperatures of beef calves with pneumonia experimentally induced by inoculation with Mannheimia haemolytica.

    PubMed

    Fajt, Virginia R; Apley, Michael D; Brogden, Kim A; Skogerboe, Terry L; Shostrom, Valerie K; Chin, Ya-Lin

    2004-05-01

    To examine effects of danofloxacin and tilmicosin on continuously recorded body temperature in beef calves with pneumonia experimentally induced by inoculation of Mannheimia haemolytica. 41 Angus-cross heifers (body weight, 160 to 220 kg) without a recent history of respiratory tract disease or antimicrobial treatment, all from a single ranch. Radiotransmitters were implanted intravaginally in each calf. Pneumonia was induced intrabronchially by use of logarithmic-phase cultures of M. haemolytica. At 21 hours after inoculation, calves were treated with saline (0.9% NaCl) solution, danofloxacin, or tilmicosin. Body temperature was monitored from 66 hours before inoculation until 72 hours after treatment. Area under the curve (AUC) of the temperature-time plot and mean temperature were calculated for 3-hour intervals and compared among treatment groups. The AUCs for 3-hour intervals did not differ significantly among treatment groups for any of the time periods. Analysis of the mean temperature for 3-hour intervals revealed significantly higher temperatures at most time periods for saline-treated calves, compared with temperatures for antimicrobial-treated calves; however, we did not detect significant differences between the danofloxacin- and tilmicosin-treated calves. The circadian rhythm of temperatures before exposure was detected again approximately 48 hours after bacterial inoculation. Danofloxacin and tilmicosin did not differ in their effect on mean body temperature for 3-hour intervals but significantly decreased body temperature, compared with body temperature in saline-treated calves. Normal daily variation in body temperature must be considered in the face of respiratory tract disease during clinical evaluation of feedlot cattle.

  15. Whole-body cryostimulation increases parasympathetic outflow and decreases core body temperature.

    PubMed

    Zalewski, Pawel; Bitner, Anna; Słomko, Joanna; Szrajda, Justyna; Klawe, Jacek J; Tafil-Klawe, Malgorzata; Newton, Julia L

    2014-10-01

    The cardiovascular, autonomic and thermal response to whole-body cryostimulation exposure are not completely known. Thus the aim of this study was to evaluate objectively and noninvasively autonomic and thermal reactions observed after short exposure to very low temperatures. We examined 25 healthy men with mean age 30.1 ± 3.7 years and comparable anthropomorphical characteristic. Each subject was exposed to cryotherapeutic temperatures in a cryogenic chamber for 3 min (approx. -120 °C). The cardiovascular and autonomic parameters were measured noninvasively with Task Force Monitor. The changes in core body temperature were determined with the Vital Sense telemetric measurement system. Results show that 3 min to cryotherapeutic temperatures causes significant changes in autonomic balance which are induced by peripheral and central blood volume changes. Cryostimulation also induced changes in core body temperature, maximum drop of core temperature was observed 50-60 min after the stimulation. Autonomic and thermal reactions to cryostimulation were observed up to 6 h after the exposure and were not harmful for examined subjects. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Lower baseline plasma cortisol and prolactin together with increased body temperature and higher mCPP-induced cortisol responses in men with pedophilia.

    PubMed

    Maes, M; van West, D; De Vos, N; Westenberg, H; Van Hunsel, F; Hendriks, D; Cosyns, P; Scharpé, S

    2001-01-01

    There is some evidence that hormonal and serotonergic alterations may play a role in the pathophysiology of paraphilias. The aims of the present study were to examine: 1) baseline plasma cortisol, plasma prolactin, and body temperature; and 2) cortisol, prolactin, body temperature, as well as behavioral responses to meta-chlorophenylpiperazine (mCPP) and placebo in pedophiles and normal men. Pedophiles showed significantly lower baseline plasma cortisol and prolactin concentrations and a higher body temperature than normal volunteers. The mCPP-induced cortisol responses were significantly greater in pedophiles than in normal volunteers. In normal volunteers, mCPP-induced a hyperthermic response, whereas in pedophiles no such response was observed. mCPP induced different behavioral responses in pedophiles than in normal men. In pedophiles, but not in normal men, mCPP increased the sensations "feeling dizzy, " "restless," and "strange" and decreased the sensation "feeling hungry". The results suggest that there are several serotonergic disturbances in pedophiles. It is hypothesized that the results are compatible with a decreased activity of the serotonergic presynaptic neuron and a 5-HT2 postsynaptic receptor hyperresponsivity.

  17. Heat Shock Factor 1 Deficiency Affects Systemic Body Temperature Regulation.

    PubMed

    Ingenwerth, Marc; Noichl, Erik; Stahr, Anna; Korf, Horst-Werner; Reinke, Hans; von Gall, Charlotte

    2016-01-01

    Heat shock factor 1 (HSF1) is a ubiquitous heat-sensitive transcription factor that mediates heat shock protein transcription in response to cellular stress, such as increased temperature, in order to protect the organism against misfolded proteins. In this study, we analysed the effect of HSF1 deficiency on core body temperature regulation. Body temperature, locomotor activity, and food consumption of wild-type mice and HSF1-deficient mice were recorded. Prolactin and thyroid-stimulating hormone levels were measured by ELISA. Gene expression in brown adipose tissue was analysed by quantitative real-time PCR. Hypothalamic HSF1 and its co-localisation with tyrosine hydroxylase was analysed using confocal laser scanning microscopy. HSF1-deficient mice showed an increase in core body temperature (hyperthermia), decreased overall locomotor activity, and decreased levels of prolactin in pituitary and blood plasma reminiscent of cold adaptation. HSF1 could be detected in various hypothalamic regions involved in temperature regulation, suggesting a potential role of HSF1 in hypothalamic thermoregulation. Moreover, HSF1 co-localises with tyrosine hydroxylase, the rate-limiting enzyme in dopamine synthesis, suggesting a potential role of HSF1 in the hypothalamic control of prolactin release. In brown adipose tissue, levels of prolactin receptor and uncoupled protein 1 were increased in HSF1-deficient mice, consistent with an up-regulation of heat production. Our data suggest a role of HSF1 in systemic thermoregulation. © 2015 S. Karger AG, Basel.

  18. Physiology of transgenic mice with brown fat ablation: obesity is due to lowered body temperature.

    PubMed

    Klaus, S; Münzberg, H; Trüloff, C; Heldmaier, G

    1998-02-01

    We investigated the physiological basis for development of obesity in uncoupling protein-diphtheria toxin A chain (UCP-DTA) transgenic mice. In these mice the promoter of the brown adipose tissue (BAT)-specific UCP was used to drive expression of DTA, resulting in decreased BAT function and development of obesity and insulin resistance (Lowell, B. B., S. V. Susulic, A. Hamann, J. A. Lawitts, J. Himms-Hagen, B. B. Boyer, L. Kozak, and J. S. Flier. Nature 366: 740-742, 1994). In adult UCP-DTA mice, we measured food intake and food assimilation, locomotor activity, metabolic rate, and body temperature in comparison to control animals. No differences could be observed in food intake or assimilation and locomotor activity. Weight-specific metabolic rates at temperatures between 20 and 37 degrees C, however, were consistently lower in transgenic mice. Continuous telemetric recording of core body temperature showed that transgenic mice displayed a downshift in body temperature levels of approximately 0.9 degree C. In summary, we provide evidence that attenuated body temperature levels alone can be responsible for development of obesity and that BAT thermogenesis is a major determinant of body temperature levels in rodents.

  19. The effect of warmed inspired gases on body temperature during arthroscopic shoulder surgery under general anesthesia.

    PubMed

    Jo, Youn Yi; Kim, Hong Soon; Chang, Young Jin; Yun, Soon Young; Kwak, Hyun Jeong

    2013-07-01

    Perioperative hypothermia can develop easily during shoulder arthroscopy, because cold irrigation can directly influence core body temperature. The authors investigated whether active warming and humidification of inspired gases reduces falls in core body temperature and allows redistribution of body heat in patients undergoing arthroscopic shoulder surgery under general anesthesia. Patients scheduled for arthroscopic shoulder surgery were randomly assigned to receive either room temperature inspired gases using a conventional respiratory circuit (the control group, n = 20) or inspired gases humidified and heated using a humidified and electrically heated circuit (HHC) (the heated group, n = 20). Core temperatures were significantly lower in both groups from 30 min after anesthesia induction, but were significantly higher in the heated group than in the control group from 75 to 120 min after anesthesia induction. In this study the use of a humidified and electrically heated circuit did not prevent core temperature falling during arthroscopic shoulder surgery, but it was found to decrease reductions in core temperature from 75 min after anesthesia induction.

  20. Isolated effects of peripheral arm and central body cooling on arm performance.

    PubMed

    Giesbrecht, G G; Wu, M P; White, M D; Johnston, C E; Bristow, G K

    1995-10-01

    Whole body cooling impairs manual arm performance. The independent contributions of local (peripheral) and/or whole body (central) cooling are not known. Therefore, a protocol was developed in which the arm and the rest of the body could be independently cooled. Biceps temperature (Tmus), at a depth of 20 mm, and esophageal temperature (Tes) were measured. Six subjects were immersed to the clavicles in a tank (body tank) of water under 3 conditions: 1) cold body-cold arm (CB-CA); 2) warm body-cold arm (WB-CA); and 3) cold body-warm arm (CB-WA). In the latter two conditions, subjects placed their dominant arm in a separate (arm) tank. Water temperature (Tw) in each tank was independently controlled. In conditions requiring cold body and/or cold arm, Tw in the appropriate tanks was 8 degrees C. In conditions requiring warm body and/or warm arm, Tw in the appropriate tanks was adjusted between 29 and 38 degrees C to maintain body/arm temperature at baseline values. A battery of 6 tests, requiring fine or gross motor movements, were performed immediately before immersion and after 15, 45, and 70 minutes of immersion. In CB-CA, Tes decreased from an average of 37.2 to 35.6 degrees C and Tmus decreased from 34.6 to 22.0 degrees C. In WB-CA, Tmus decreased to 18.1 degrees C (Tes = 37.1 degrees C), and in CB-WA, Tes decreased to 35.8 degrees C (Tmus = 34.5 degrees C). By the end of immersion, there were significant decrements (43-85%) in the performance of all tests in CB-CA and WB-CA (p < 0.0002); scores for each test were similar in these two conditions. There was no significant change in scores throughout the CB-WA condition. In both conditions with arm cooling (i.e., WB-CA and CB-CA), Tmus accounted for 85-98% of the variance in all tests. When the core was cooled in the CB-WA condition, Tes was significantly correlated to scores in only two tests (accounted for 90 and 93% of the variance) although the actual effect was small. In the CB-CA condition, partial correlations indicated that Tes accounted for 4-10% of the variance in scores of 4 tests. We conclude that cooling of the body and/or the arm elicits large decrements in finger, hand and arm performance. The decrements are due almost entirely to the local effects of arm tissue cooling.

  1. Circadian rhythms of body temperature and locomotor activity in the antelope ground squirrel, Ammospermophilus leucurus.

    PubMed

    Refinetti, Roberto; Kenagy, G J

    2018-02-01

    We studied circadian rhythms of body temperature and locomotor activity in antelope ground squirrels (Ammospermophilus leucurus) under laboratory conditions of a 12L:12D light-dark cycle and in constant darkness. Antelope ground squirrels are diurnally active and, exceptionally among ground squirrels and other closely related members of the squirrel family in general, they do not hibernate. Daily oscillations in body temperature consisted of a rise in temperature during the daytime activity phase of the circadian cycle and a decrease in temperature during the nighttime rest phase. The body temperature rhythms were robust (71% of maximal strength) with a daily range of oscillation of 4.6°C, a daytime mean of 38.7°C, and a nighttime mean of 34.1°C (24-h overall mean 36.4°C). The body temperature rhythm persisted in continuous darkness with a free-running period of 24.2h. This pattern is similar to that of hibernating species of ground squirrels but with a wave form more similar to that of non-hibernating rodents. Daily oscillations in body temperature were correlated with individual bouts of activity, but daytime temperatures were higher than nighttime temperatures even when comparing short episodes of nocturnal activity that were as intense as diurnal activity. This suggests that although muscular thermogenesis associated with locomotor activity can modify the level of body temperature, the circadian rhythm of body temperature is not simply a consequence of the circadian rhythm of activity. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Effects of Cooling During Exercise on Thermoregulatory Responses of Men With Paraplegia.

    PubMed

    Bongers, Coen C W G; Eijsvogels, Thijs M H; van Nes, Ilse J W; Hopman, Maria T E; Thijssen, Dick H J

    2016-05-01

    People with spinal cord injury (SCI) have an altered afferent input to the thermoregulatory center, resulting in a reduced efferent response (vasomotor control and sweating capacity) below the level of the lesion. Consequently, core body temperature rises more rapidly during exercise in individuals with SCI compared with people who are able-bodied. Cooling strategies may reduce the thermophysiological strain in SCI. The aim of this study was to examine the effects of a cooling vest on the core body temperature response of people with a thoracic SCI during submaximal exercise. Ten men (mean age=44 years, SD=11) with a thoracic lesion (T4-T5 or below) participated in this randomized crossover study. Participants performed two 45-minute exercise bouts at 50% maximal workload (ambient temperature 25°C), with participants randomized to a group wearing a cooling vest or a group wearing no vest (separate days). Core body temperature and skin temperature were continuously measured, and thermal sensation was assessed every 3 minutes. Exercise resulted in an increased core body temperature, skin temperature, and thermal sensation, whereas cooling did not affect core body temperature. The cooling vest effectively decreased skin temperature, increased the core-to-trunk skin temperature gradient, and tended to lower thermal sensation compared with the control condition. The lack of differences in core body temperature among conditions may be a result of the relative moderate ambient temperature in which the exercise was performed. Despite effectively lowering skin temperature and increasing the core-to-trunk skin temperature gradient, there was no impact of the cooling vest on the exercise-induced increase in core body temperature in men with low thoracic SCI. © 2016 American Physical Therapy Association.

  3. Decreased precision contributes to the hypoxic thermoregulatory response in lizards.

    PubMed

    Cadena, Viviana; Tattersall, Glenn J

    2009-01-01

    The decrease in body temperature (T(b)) observed in most vertebrate classes in response to hypoxia has been attributed to a regulated decrease in set-point, protecting organs against tissue death due to oxygen depletion. Hypoxia, however, imparts particular challenges to metabolic function which may, in turn, affect thermoregulation. In ectotherms, where thermoregulation is mainly behavioural, stressors that influence the propensity to move and respond to temperature gradients are expected to have an impact on thermoregulatory control. Using low oxygen as a potent stressor, we evaluated the variability and level of thermoregulation of inland bearded dragons. To examine the source of thermoregulatory variability, we studied their behaviour in an electronically controlled temperature-choice shuttle box, a constant temperature dual-choice shuttle box, and a linear thermal gradient. A significant increase in the size of the T(b) range was observed at the lowest oxygen concentration (4% O(2)), reflecting a decrease in thermoregulatory precision in the temperature-choice shuttle box. This was also accompanied by a drop of approximately 2-4 degrees C in T(b), the drop being greatest in situations where T(b) must be actively defended. Situations that force the lizards to continually choose temperatures, rather than passively remain at a given temperature, lead to an increase in the variability in the manifested T(b), which is further exaggerated in hypoxia. This study reveals that a decrease in thermoregulatory precision caused by a diminished propensity to move or effect appropriate thermoregulatory responses may be a contributing component in the lowering of selected body temperatures observed in many hypoxic ectotherms.

  4. Nicotine and elevated body temperature reduce the complexity of the genioglossus and diaphragm EMG signals in rats during early maturation

    NASA Astrophysics Data System (ADS)

    Akkurt, David; Akay, Yasemin M.; Akay, Metin

    2009-10-01

    In this paper, we examined the effect of nicotine exposure and increased body temperature on the complexity (dynamics) of the genioglossus muscle (EMGg) and the diaphragm muscle (EMGdia) to explore the effects of nicotine and hyperthermia. Nonlinear dynamical analysis of the EMGdia and EMGg signals was performed using the approximate entropy method on 15 (7 saline- and 8 nicotine-treated) juvenile rats (P25-P35) and 19 (11 saline- and 8 nicotine-treated) young adult rats (P36-P44). The mean complexity values were calculated over the ten consecutive breaths using the approximate entropy method during mild elevated body temperature (38 °C) and severe elevated body temperature (39-40 °C) in two groups. In the first (nicotine) group, rats were treated with single injections of nicotine enough to produce brain levels of nicotine similar to those achieved in human smokers (2.5 (mg kg-1)/day) until the recording day. In the second (control) group, rats were treated with injections of saline, beginning at postnatal 5 days until the recording day. Our results show that warming the rat by 2-3 °C and nicotine exposure significantly decreased the complexity of the EMGdia and EMGg for the juvenile age group. This reduction in the complexity of the EMGdia and EMGg for the nicotine group was much greater than the normal during elevated body temperatures. We speculate that the generalized depressive effects of nicotine exposure and elevated body temperature on the respiratory neural firing rate and the behavior of the central respiratory network could be responsible for the drastic decrease in the complexity of the EMGdia and EMGg signals, the outputs of the respiratory neural network during early maturation.

  5. Brünnich's guillemots (Uria lomvia) maintain high temperature in the body core during dives.

    PubMed

    Niizuma, Yasuaki; Gabrielsen, Geir W; Sato, Katsufumi; Watanuki, Yutaka; Naito, Yasuhiko

    2007-06-01

    A major challenge for diving birds, reptiles, and mammals is regulating body temperature while conserving oxygen through a reduction in metabolic processes. To gain insight into how these needs are met, we measured dive depth and body temperatures at the core or periphery between the skin and abdominal muscles simultaneously in freely diving Brünnich's guillemots (Uria lomvia), an arctic seabird, using an implantable data logger (16-mm diameter, 50-mm length, 14-g mass, Little Leonardo Ltd., Tokyo). Guillemots exhibited increased body core temperatures, but decreased peripheral temperatures, during diving. Heat conservation within the body core appeared to result from the combined effect of peripheral vasoconstriction and a high wing beat frequency that generates heat. Conversely, the observed tissue hypothermia in the periphery should reduce metabolic processes as well as heat loss to the water. These physiological effects are likely one of the key physiological adaptations that makes guillemots to perform as an efficient predator in arctic waters.

  6. Effect of a single 3-hour exposure to bright light on core body temperature and sleep in humans.

    PubMed

    Dijk, D J; Cajochen, C; Borbély, A A

    1991-01-02

    Seven human subjects were exposed to bright light (BL, approx. 2500 lux) and dim light (DL, approx. 6 lux) during 3 h prior to nocturnal sleep, in a cross-over design. At the end of the BL exposure period core body temperature was significantly higher than at the end of the DL exposure period. The difference in core body temperature persisted during the first 4 h of sleep. The latency to sleep onset was increased after BL exposure. Rapid-eye movement sleep (REMS) and slow-wave sleep (SWS; stage 3 + 4 of non-REMS) were not significantly changed. Eight subjects were exposed to BL from 20.30 to 23.30 h while their eyes were covered or uncovered. During BL exposure with uncovered eyes, core body temperature decreased significantly less than during exposure with covered eyes. We conclude that bright light immediately affects core body temperature and that this effect is mediated via the eyes.

  7. Body temperature null distributions in reptiles with nonzero heat capacity: seasonal thermoregulation in the American alligator (Alligator mississippiensis).

    PubMed

    Seebacher, Frank; Elsey, Ruth M; Trosclair, Phillip L

    2003-01-01

    Regulation of body temperature may increase fitness of animals by ensuring that biochemical and physiological processes proceed at an optimal rate. The validity of current methods of testing whether or not thermoregulation in reptiles occurs is often limited to very small species that have near zero heat capacity. The aim of this study was to develop a method that allows estimation of body temperature null distributions of large reptiles and to investigate seasonal thermoregulation in the American alligator (Alligator mississippiensis). Continuous body temperature records of wild alligators were obtained from implanted dataloggers in winter (n=7, mass range: 1.6-53.6 kg) and summer (n=7, mass range: 1.9-54.5 kg). Body temperature null distributions were calculated by randomising behavioural postures, thereby randomly altering relative animal surface areas exposed to different avenues of heat transfer. Core body temperatures were predicted by calculations of transient heat transfer by conduction and blood flow. Alligator body temperatures follow regular oscillations during the day. Occasionally, body temperature steadied during the day to fall within a relatively narrow range. Rather than indicating shuttling thermoregulation, however, this pattern could be predicted from random movements. Average daily body temperature increases with body mass in winter but not in summer. Daily amplitudes of body temperature decrease with increasing body mass in summer but not in winter. These patterns result from differential exposure to heat transfer mechanisms at different seasons. In summer, alligators are significantly cooler than predictions for a randomly moving animal, and the reverse is the case in winter. Theoretical predictions show, however, that alligators can be warmer in winter if they maximised their sun exposure. We concluded that alligators may not rely exclusively on regulation of body temperature but that they may also acclimatise biochemically to seasonally changing environmental conditions.

  8. Effects of meal size, meal type, and body temperature on the specific dynamic action of anurans.

    PubMed

    Secor, Stephen M; Wooten, Jessica A; Cox, Christian L

    2007-02-01

    Specific dynamic action (SDA), the increase in metabolism stemming from meal digestion and assimilation, varies as a function of meal size, meal type, and body temperature. To test predictions of these three determinants of SDA, we quantified and compared the SDA responses of nine species of anurans, Bombina orientalis, Bufo cognatus, Ceratophrys ornata, Dyscophus antongilli, Hyla cinerea, Kassina maculata, Kassina senegalensis, Pyxicephalus adspersus, and Rana catesbeiana subjected to meal size, meal type, and body temperature treatments. Over a three to seven-fold increase in meal size, anurans experienced predicted increases in postprandial rates of oxygen consumption (VO(2)) the duration of elevated VO(2) and SDA. Meal type had a significant influence on the SDA response, as the digestion and assimilation of hard-bodied, chitinous crickets, mealworms, and superworms required 76% more energy than the digestion and assimilation of soft-bodied earthworms, waxworms, and neonate rodents. Body temperature largely effected the shape of the postprandial metabolic profile; peak VO(2) increased and the duration of the response decreased with an increase in body temperature. Variation in body temperature did not significantly alter SDA for four species, whereas both H. cinerea and R. catesbeiana experienced significant increases in SDA with body temperature. For 13 or 15 species of anurans ranging in mass from 2.4 to 270 g, SMR, postprandial peak VO(2) and SDA scaled with body mass (log-log) with mass exponents of 0.79, 0.93, and 1.05, respectively.

  9. Body temperature and major neurological improvement in tPA-treated stroke patients.

    PubMed

    Kvistad, C E; Thomassen, L; Waje-Andreassen, U; Logallo, N; Naess, H

    2014-05-01

    Major neurological improvement (MNI) at 24 hours represents a marker of early recanalization in ischaemic stroke. Although low body temperature is considered neuroprotective in cerebral ischaemia, some studies have suggested that higher body temperature may promote clot lysis in the acute phase of ischaemic stroke. We hypothesized that higher body temperature was associated with MNI in severe stroke patients treated with tPA, suggesting a beneficial effect of higher body temperature on clot lysis and recanalization. Patients with ischaemic stroke or transient ischaemic attack (TIA) treated with tPA between February 2006 and August 2012 were prospectively included and retrospectively analysed. Body temperature was measured upon admission. MNI was defined by a ≥8 point improvement in NIHSS score at 24 hours as compared to NIHSS score on admission. No significant improvement (no-MNI) was defined by either an increase in NIHSS score or a decrease of ≤2 points at 24 hours in patients with an admission NIHSS score of ≥8. Of the 2351 patients admitted with ischaemic stroke or TIA, 347 patients (14.8%) were treated with tPA. A total of 32 patients (9.2%) had MNI and 56 patients (16.1%) had no-MNI. Patients with MNI had higher body temperatures compared with patients with no-MNI (36.7°C vs 36.3°C, P = 0.004). Higher body temperature was independently associated with MNI when adjusted for confounders (OR 5.16, P = 0.003). Higher body temperature was independently associated with MNI in severe ischaemic stroke patients treated with tPA. This may suggest a beneficial effect of higher body temperature on clot lysis and recanalization. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. Response and adaptation of Beagle dogs to hypergravity

    NASA Technical Reports Server (NTRS)

    Oyama, J.

    1975-01-01

    Eight male Beagle dogs, five months old, were centrifuged continuously for three months at progressively increasing loads. Heart rate and deep body temperature were monitored continuously by implant biotelemetry. Initially, centrifuged dogs showed transient decreases in heart rate and body temperature along with changes in their diurnal rhythm patterns. Compared with normal gravity controls, exposed dogs showed a slower growth rate and a reduced amount of body fat. Blood protein, total lipids, cholesterol, calcium, packed cell volume, red blood cell count, and hemoglobin were also decreased significantly. Absolute weights of the leg bones of centrifuged dogs were significantly greater than controls. Photon absorptiometry revealed significant density increases in selective regions of the femur and humerus of centrifuged dogs. In spite of the various changes noted, results from this and other studies affirm the view that dogs can tolerate and adapt to sustained loads as high as 2.5 g without serious impairment of their body structure and function.

  11. Protein restriction does not affect body temperature pattern in female mice.

    PubMed

    Kato, Goro A; Shichijo, Hiroki; Takahashi, Toshihiro; Shinohara, Akio; Morita, Tetsuo; Koshimoto, Chihiro

    2017-10-30

    Daily torpor is a physiological adaptation in mammals and birds characterized by a controlled reduction of metabolic rate and body temperature during the resting phase of circadian rhythms. In laboratory mice, daily torpor is induced by dietary caloric restriction. However, it is not known which nutrients are related to daily torpor expression. To determine whether dietary protein is a key factor in inducing daily torpor in mice, we fed mice a protein-restricted (PR) diet that included only one-quarter of the amount of protein but the same caloric level as a control (C) diet. We assigned six non-pregnant female ICR mice to each group and recorded their body weights and core body temperatures for 4 weeks. Body weights in the C group increased, but those in the PR group remained steady or decreased. Mice in both groups did not show daily torpor, but most mice in a food-restricted group (n=6) supplied with 80% of the calories given to the C group exhibited decreased body weights and frequently displayed daily torpor. This suggests that protein restriction is not a trigger of daily torpor; torpid animals can conserve their internal energy, but torpor may not play a significant role in conserving internal protein. Thus, opportunistic daily torpor in mice may function in energy conservation rather than protein saving.

  12. The impact of hypothermia on emergence from isoflurane anesthesia in orexin neuron-ablated mice.

    PubMed

    Kuroki, Chiharu; Takahashi, Yoshiko; Ootsuka, Youichirou; Kanmura, Yuichi; Kuwaki, Tomoyuki

    2013-05-01

    Orexin neurons regulate the sleep/wake cycle and are proposed to influence general anesthesia. In animal experiments, orexin neurons have been shown to drive emergence from general anesthesia. In human studies, however, the role of orexin neurons remains controversial, owing at least, in part, to the fact that orexin neurons are multifunctional. Orexin neurons regulate not only the sleep/wake cycle, but also body temperature. We hypothesized that orexin neurons do not directly regulate emergence from anesthesia, but instead affect emergence indirectly through thermoregulation because anesthesia-induced hypothermia can greatly influence emergence time. To test our hypothesis, we used simultaneous measurement of body temperature and locomotor activity. We used male orexin neuron-ablated (ORX-AB) mice and their corresponding wild-type (WT) littermates to investigate the role of orexin neurons in emergence. Body temperature was recorded using an intraperitoneally implanted telemetric probe, and locomotor activity was measured using an infrared motion sensor. Induction of anesthesia and emergence from anesthesia were defined behaviorally as loss and return, respectively, of body movement. Mice received general anesthesia with 1.5% isoflurane in 100% oxygen for 30 minutes under 3 conditions. In the first experiment, the anesthesia chamber was warmed (32 °C), ensuring a constant body temperature of animals during anesthesia. In the second experiment, the anesthesia chamber was maintained at room temperature (25 °C), allowing body temperature to fluctuate. In the third experiment in WT mice, the anesthesia chamber was cooled (23 °C) so that their body temperature would decrease to the comparable value to that obtained in the ORX-AB mice during room temperature condition. In the warmed condition, there were no significant differences between the ORX-AB and control mice with respect to body temperature, locomotor activity, induction time, or emergence time. In the room temperature condition, however, anesthesia-induced hypothermia was greater and longer lasting in ORX-AB mice than that in WT mice. Emergence time in ORX-AB mice was significantly prolonged from the warmed condition (14.2 ± 0.8 vs 6.0 ± 1.1 minutes) whereas that in WT mice was not different (7.4 ± 0.8 vs 4.9 ± 0.2 minutes). When body temperature was decreased by cooling in WT mice, emergence time was prolonged to 12.4 ± 1.3 minutes. Induction time did not differ among temperature conditions or genotypes. The effect of orexin deficiency to impair thermoregulation during general anesthesia is of sufficient magnitude that body temperature must be appropriately controlled when studying the role of orexin neurons in emergence from anesthesia.

  13. [Wireless Passive Body Sensor for Temperature Monitoring Using Near Field Communication Technology].

    PubMed

    Shi, Bo; Zhang, Li; Zhang, Genxuan; Tsau, Young; Zhang, Sai; Li, Lei

    2017-01-01

    In this study, we designed a wireless body temperature sensor (WBTS) based on near field communication (NFC) technology. Just attaching the WBTS to a mobile phone with NFC function, the real-time body temperature of human subjects can be acquired by an application program without seperate power supply. The WBTS is mainly composed of a digital body temperature probe (d-BTP), a NFC unit and an antenna. The d-BTP acquires and processes body temperature data through a micro control er, and the NFC unit and antenna are used for wireless energy transmission and data communication between the mobile phone and WBTS. UART communication protocol is used in the communication between the d-BTP and NFC unit, and data compression technique is adopted for improving transmission efficiency and decreasing power loss. In tests, the error of WBTS is ±0.1 oC, in range of 32 oC to 42 oC. The WBTS has advantages of high accuracy, low power loss, strong anti-interference ability, dispensation with independent power supply etc., and it can be integrated into wearable apparatuses for temperature monitoring and health management.

  14. Influence of hypo- and hyperthermia on death time estimation - A simulation study.

    PubMed

    Muggenthaler, H; Hubig, M; Schenkl, S; Mall, G

    2017-09-01

    Numerous physiological and pathological mechanisms can cause elevated or lowered body core temperatures. Deviations from the physiological level of about 37°C can influence temperature based death time estimations. However, it has not been investigated by means of thermodynamics, to which extent hypo- and hyperthermia bias death time estimates. Using numerical simulation, the present study investigates the errors inherent in temperature based death time estimation in case of elevated or lowered body core temperatures before death. The most considerable errors with regard to the normothermic model occur in the first few hours post-mortem. With decreasing body core temperature and increasing post-mortem time the error diminishes and stagnates at a nearly constant level. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Ectotherm thermal stress and specialization across altitude and latitude.

    PubMed

    Buckley, Lauren B; Miller, Ethan F; Kingsolver, Joel G

    2013-10-01

    Gradients of air temperature, radiation, and other climatic factors change systematically but differently with altitude and latitude. We explore how these factors combine to produce altitudinal and latitudinal patterns of body temperature, thermal stress, and seasonal overlap that differ markedly from patterns based solely on air temperature. We use biophysical models to estimate body temperature as a function of an organism's phenotype and environmental conditions (air and surface temperatures and radiation). Using grasshoppers as a case study, we compare mean body temperatures and the incidence of thermal extremes along altitudinal gradients both under past and current climates. Organisms at high elevation can experience frequent thermal stress despite generally cooler air temperatures due to high levels of solar radiation. Incidences of thermal stress have increased more rapidly than have increases in mean conditions due to recent climate change. Increases in air temperature have coincided with shifts in cloudiness and solar radiation, which can exacerbate shifts in body temperature. We compare altitudinal thermal gradients and their seasonality between tropical and temperate mountains to ask whether mountain passes pose a greater physiological barrier in the tropics (Janzen's hypothesis). We find that considering body temperature rather than air temperature generally increases the amount of overlap in thermal conditions along gradients in elevation and thus decreases the physiological barrier posed by tropical mountains. Our analysis highlights the limitations of predicting thermal stress based solely on air temperatures, and the importance of considering how phenotypes influence body temperatures.

  16. Comparison of the effects of whole-body cooling during fatiguing exercise in males and females.

    PubMed

    Solianik, Rima; Skurvydas, Albertas; Pukėnas, Kazimieras; Brazaitis, Marius

    2015-08-01

    The effects of cold stress on exercise performance and fatigue have been thoroughly investigated only in males, and thus the general understanding of these effects relates only to males. The aim of this study was to determine whether whole-body cooling has different effects on performance during fatiguing exercise in males and females. Thirty-two subjects (18 males and 14 females) were exposed to acute cold stress by intermittent immersion in 14°C water until their rectal temperature reached 35.5°C or for a maximum of 170 min. Thermal responses and motor performance were monitored before and after whole-body cooling. Whole-body cooling decreased rectal, muscle and mean skin temperatures in all subjects (p<0.05), and these changes did not differ between males and females. Cold stress decreased the fatigue index (FI) of a sustained 2-min maximal voluntary contraction (MVC) only in males (p<0.05). There were no sex differences in central and peripheral fatigability, or muscle electromyographic activity. This observed sex difference (i.e., body cooling-induced decrease in the FI of a sustained MVC in males but not in females) supports the view of sex effects on performance during fatiguing exercise after whole-body cooling. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Agmatine attenuates stress- and lipopolysaccharide-induced fever in rats

    PubMed Central

    Aricioglu, Feyza; Regunathan, Soundar

    2010-01-01

    Physiological stress evokes a number of responses, including a rise in body temperature, which has been suggested to be the result of an elevation in the thermoregulatory set point. This response seems to share similar mechanisms with infectious fever. The aim of the present study was to investigate the effect of agmatine on different models of stressors [(restraint and lipopolysaccaride (LPS)] on body temperature. Rats were either restrained for 4 h or injected with LPS, both of these stressors caused an increase in body temperature. While agmatine itself had no effect on body temperature, treatment with agmatine (20, 40, 80 mg/kg intraperitoneally) dose dependently inhibited stress- and LPS-induced hyperthermia. When agmatine (80 mg/kg) was administered 30 min later than LPS (500 μg/kg) it also inhibited LPS-induced hyperthermia although the effect became significant only at later time points and lower maximal response compared to simultaneous administration. To determine if the decrease in body temperature is associated with an anti-inflammatory effect of agmatine, the nitrite/nitrate levels in plasma was measured. Agmatine treatment inhibited LPS-induced production of nitrates dose dependently. As an endogenous molecule, agmatine has the capacity to inhibit stress- and LPS-induced increases in body temperature. PMID:15936786

  18. [Clinical significance of peak body temperature, white blood cell count, and C-reactive protein level in febrile episodes among geriatric inpatients].

    PubMed

    Ikematsu, H; Nabeshima, A; Yamaga, S; Yamaji, K; Kakuda, K; Ueno, K; Hayashi, J; Shirai, T; Hara, H; Kashiwagi, S

    1997-06-01

    To investigate the clinical implication of peak body temperature, peripheral blood white blood cell (WBC) count, and serum C-reactive protein (CRP) level in febrile symptoms among geriatric hospitalized patients, they were analyzed in 968 febrile episodes obtained from 433 hospitalized patients in the referred hospital. Episodes of one day duration were most frequent (41.6%). WBC count was elevated over 8000/microliters in 475 episodes (49.1%) and CRP exceeded 1.0 mg/dl in 770 episodes (79.5%). Frequency of WBC elevation decreased and frequency of CRP elevation increased according to the time course. The mean value of CRP increased significantly according to the time course. The frequency of WBC count increase and CRP elevation and their averages correlated to the peak body temperature. The peak body temperature displayed the most striking correlation to the length of febrile episodes among three clinical indicators, peak body temperature, WBC count, and CRP level. These results indicate that the elevation of WBC count and/or CRP level is frequent in geriatric patients with febrile symptoms. Peak body temperature may serve as a clinical indicator of the severy of the febrile disease occurring in geriatric patients.

  19. Diatom Cell Size, Coloniality and Motility: Trade-Offs between Temperature, Salinity and Nutrient Supply with Climate Change

    PubMed Central

    Svensson, Filip; Norberg, Jon; Snoeijs, Pauline

    2014-01-01

    Reduction in body size has been proposed as a universal response of organisms, both to warming and to decreased salinity. However, it is still controversial if size reduction is caused by temperature or salinity on their own, or if other factors interfere as well. We used natural benthic diatom communities to explore how “body size” (cells and colonies) and motility change along temperature (2–26°C) and salinity (0.5–7.8) gradients in the brackish Baltic Sea. Fourth-corner analysis confirmed that small cell and colony sizes were associated with high temperature in summer. Average community cell volume decreased linearly with 2.2% per °C. However, cells were larger with artificial warming when nutrient concentrations were high in the cold season. Average community cell volume increased by 5.2% per °C of artificial warming from 0 to 8.5°C and simultaneously there was a selection for motility, which probably helped to optimize growth rates by trade-offs between nutrient supply and irradiation. Along the Baltic Sea salinity gradient cell size decreased with decreasing salinity, apparently mediated by nutrient stoichiometry. Altogether, our results suggest that climate change in this century may polarize seasonality by creating two new niches, with elevated temperature at high nutrient concentrations in the cold season (increasing cell size) and elevated temperature at low nutrient concentrations in the warm season (decreasing cell size). Higher temperature in summer and lower salinity by increased land-runoff are expected to decrease the average cell size of primary producers, which is likely to affect the transfer of energy to higher trophic levels. PMID:25279720

  20. Diatom cell size, coloniality and motility: trade-offs between temperature, salinity and nutrient supply with climate change.

    PubMed

    Svensson, Filip; Norberg, Jon; Snoeijs, Pauline

    2014-01-01

    Reduction in body size has been proposed as a universal response of organisms, both to warming and to decreased salinity. However, it is still controversial if size reduction is caused by temperature or salinity on their own, or if other factors interfere as well. We used natural benthic diatom communities to explore how "body size" (cells and colonies) and motility change along temperature (2-26°C) and salinity (0.5-7.8) gradients in the brackish Baltic Sea. Fourth-corner analysis confirmed that small cell and colony sizes were associated with high temperature in summer. Average community cell volume decreased linearly with 2.2% per °C. However, cells were larger with artificial warming when nutrient concentrations were high in the cold season. Average community cell volume increased by 5.2% per °C of artificial warming from 0 to 8.5°C and simultaneously there was a selection for motility, which probably helped to optimize growth rates by trade-offs between nutrient supply and irradiation. Along the Baltic Sea salinity gradient cell size decreased with decreasing salinity, apparently mediated by nutrient stoichiometry. Altogether, our results suggest that climate change in this century may polarize seasonality by creating two new niches, with elevated temperature at high nutrient concentrations in the cold season (increasing cell size) and elevated temperature at low nutrient concentrations in the warm season (decreasing cell size). Higher temperature in summer and lower salinity by increased land-runoff are expected to decrease the average cell size of primary producers, which is likely to affect the transfer of energy to higher trophic levels.

  1. Is Older Colder or Colder Older? The Association of Age With Body Temperature in 18,630 Individuals

    PubMed Central

    Buxbaum, Joel N.

    2011-01-01

    In animal studies, caloric restriction resulting in increased longevity is associated with a reduction in body temperature, which is strain specific and likely under genetic control. Small studies in humans have suggested that temperatures may be lower among elderly populations, usually attributed to loss of thermoregulation. We analyzed cross-sectional data from 18,630 white adults aged 20–98 years (mean 58.3 years) who underwent oral temperature measurement as part of a standardized health appraisal at a large U.S. health maintenance organization. Overall, women had higher mean temperatures (97.5 ± 1.2°F) than men (97.2 ± 1.1°F; p < .0001). Mean temperature decreased with age, with a difference of 0.3°F between oldest and youngest groups after controlling for sex, body mass index, and white blood cell count. The results are consistent with low body temperature as a biomarker for longevity. Prospective studies are needed to confirm whether this represents a survival advantage associated with lifetime low steady state temperature. PMID:21324956

  2. Improved running performance in hot humid conditions following whole body precooling.

    PubMed

    Booth, J; Marino, F; Ward, J J

    1997-07-01

    On two separate occasions, eight subjects controlled speed to run the greatest distance possible in 30 min in a hot, humid environment (ambient temperature 32 degrees C, relative humidity 60%). For the experimental test (precooling), exercise was preceeded by cold-water immersion. Precooling increased the distance run by 304 +/- 166 m (P < 0.05). Precooling decreased the pre-exercise rectal and mean skin temperature by 0.7 degrees C and 5.9 degrees C, respectively (P < 0.05). Rectal and mean skin temperature were decreased up to 20 and 25 min during exercise, respectively (P < 0.05). Mean body temperature decreased from 36.5 +/- 0.1 degrees C to 33.8 +/- 0.2 degrees C following precooling (P < 0.05) and remained lower throughout exercise (P < 0.01) and at the end of exercise (by 0.8 degrees C; P < 0.05). The rate of heat storage at the end of exercise increased from 113 +/- 45 to 249 +/- 55 W.m-2 (P < 0.005). Precooling lowered the heart rate at rest (13%), 5 (9%), and 10 min (10%) exercise (P < 0.05) and increased the end of exercise blood lactate from 4.9 +/- 0.5 to 7.4 +/- 0.9 mmol.L-1 (P < 0.01). The VO2 at 10 and 20 min of exercise and total body sweating are not different between tests. In conclusion, water immersion precooling increased exercise endurance in hot, humid conditions with an enhanced rate of heat storage and decreased thermoregulatory strain.

  3. Temperature dependence of O2 consumption; opposite effects of leptin and etomoxir on respiratory quotient in mice.

    PubMed

    Högberg, Helena; Engblom, Lars; Ekdahl, Asa; Lidell, Veronica; Walum, Erik; Alberts, Peteris

    2006-04-01

    The aims were to compare the temperature dependence of the metabolic rate in young ob/ob mice with that in mature ob/ob and db/db mice and to examine the effect on the metabolic substrate preference of leptin and etomoxir in ob/ob, C57BL/6J (wild-type), and db/db mice. In vivo oxygen consumption and carbon dioxide production were continuously measured by indirect calorimetry, and body temperature and total locomotor activity were measured by an implanted transponder. Leptin, etomoxir, or vehicle was administered intraperitoneally. The temperature dependence of the metabolic rate of mature ob/ob and db/db mice were similar to that in wild-type mice. In young 6-week-old ob/ob mice, the metabolic rate was almost doubled at 15 degrees C. Leptin (2 x 3 mg/kg) decreased the respiratory quotient (RQ) and carbon dioxide production but did not alter oxygen consumption, body temperature, or locomotor activity in ob/ob and C57BL/6J mice and had no effect in the db/db mice. Etomoxir (2 x 30 mg/kg) enhanced RQ and decreased oxygen consumption, carbon dioxide production, and body temperature in ob/ob, C57BL/6J, and db/db mice. Total locomotor activity was reduced in ob/ob and C57BL/6J mice. In young ob/ob mice, the temperature sensitivity was enhanced compared with mature mice. Leptin and etomoxir had opposite effects on metabolic substrate preference. Leptin and lowered environmental temperature increased the relative fat oxidation as indicated by decreased RQ, possibly through activation of the sympathetic nervous system.

  4. Combat Stress Decreases Memory of Warfighters in Action.

    PubMed

    Delgado-Moreno, Rosa; Robles-Pérez, José Juan; Clemente-Suárez, Vicente Javier

    2017-08-01

    The present research aimed to analyze the effect of combat stress in the psychophysiological response and attention and memory of warfighters in a simulated combat situation. Variables of blood oxygen saturation, heart rate, blood glucose, blood lactate, body temperature, lower body muscular strength manifestation, cortical arousal, autonomic modulation, state anxiety and memory and attention through a postmission questionnaire were analyzed before and after a combat simulation in 20 male professional Spanish Army warfighters. The combat simulation produces a significant increase (p < 0.05) in explosive leg strength, rated perceived exertion, blood glucose, blood lactate, somatic anxiety, heart rate, and low frequency domain of the HRV (LF) and a significant decrease of high frequency domain of the heart rate variability (HF). The percentage of correct response in the postmission questionnaire parameters show that elements more related with a physical integrity threat are the most correctly remembered. There were significant differences in the postmission questionnaire variables when participants were divided by the cortical arousal post: sounds no response, mobile phone correct, mobile phone no response, odours correct. The correlation analysis showed positive correlations: LF post/body temperature post, HF post/correct sound, body temperature post/glucose post, CFFTpre/lactate post, CFFT post/wrong sound, glucose post/AC pre, AC post/wrong fusil, AS post/SC post and SC post/wrong olfactory; and negative correlations: LF post/correct sound, body temperature post/lactate post and glucose post/lactate post. This data suggest that combat stress actives fight-flight system of soldiers. As conclusion, Combat stress produces an increased psychophysiological response that cause a selective decrease of memory, depending on the nature, dangerous or harmless of the objects.

  5. Verification of the exponential model of body temperature decrease after death in pigs.

    PubMed

    Kaliszan, Michal; Hauser, Roman; Kaliszan, Roman; Wiczling, Paweł; Buczyñski, Janusz; Penkowski, Michal

    2005-09-01

    The authors have conducted a systematic study in pigs to verify the models of post-mortem body temperature decrease currently employed in forensic medicine. Twenty-four hour automatic temperature recordings were performed in four body sites starting 1.25 h after pig killing in an industrial slaughterhouse under typical environmental conditions (19.5-22.5 degrees C). The animals had been randomly selected under a regular manufacturing process. The temperature decrease time plots drawn starting 75 min after death for the eyeball, the orbit soft tissues, the rectum and muscle tissue were found to fit the single-exponential thermodynamic model originally proposed by H. Rainy in 1868. In view of the actual intersubject variability, the addition of a second exponential term to the model was demonstrated to be statistically insignificant. Therefore, the two-exponential model for death time estimation frequently recommended in the forensic medicine literature, even if theoretically substantiated for individual test cases, provides no advantage as regards the reliability of estimation in an actual case. The improvement of the precision of time of death estimation by the reconstruction of an individual curve on the basis of two dead body temperature measurements taken 1 h apart or taken continuously for a longer time (about 4 h), has also been proved incorrect. It was demonstrated that the reported increase of precision of time of death estimation due to use of a multiexponential model, with individual exponential terms to account for the cooling rate of the specific body sites separately, is artifactual. The results of this study support the use of the eyeball and/or the orbit soft tissues as temperature measuring sites at times shortly after death. A single-exponential model applied to the eyeball cooling has been shown to provide a very precise estimation of the time of death up to approximately 13 h after death. For the period thereafter, a better estimation of the time of death is obtained from temperature data collected from the muscles or the rectum.

  6. Within-subject correlations between evening-related changes in body temperature and melatonin in the spinal cord injured.

    PubMed

    Jones, Helen; Eijsvogels, Thijs M H; Nyakayiru, Jean; Verheggen, Rebecca J H M; Thompson, Andrew; Groothuis, Jan T; Atkinson, Greg; Hopman, Maria T E; Thijssen, Dick H J

    2014-03-01

    Individuals with a spinal cord injury (SCI) demonstrate altered circadian variation in thermoregulatory control. Recently, we reported that tetraplegia is associated with a blunted release of melatonin in the evening. In order to examine whether this finding relates to circadian thermoregulation, we compared the correlations between evening changes in melatonin, core and skin temperature between thoracic and cervical SCI and able-bodied participants. In 10 able-bodied, 9 paraplegic and 8 tetraplegic participants, we measured, between 1900 and 2300 h, core temperature, proximal skin temperature (above and below the level of the lesion) and physical activity. Salivary melatonin was also sampled during this period and analyzed using enzyme linked immunosorbant assay. Between 1900 and 2300 h, core and upper limb skin temperature gradually decreased in all groups (p = 0.01). A significant group × time interaction was evident in lower body skin temperature (p = 0.03). Lower body skin temperature was significantly higher in able-bodied controls compared with tetraplegics between 1900 and 2000 h (p < 0.05). In able-bodied and paraplegic participants, the changes in melatonin and core temperature were inversely correlated (r = -0.44 and -0.54, respectively, both p = 0.01). Melatonin and mean skin temperature changes were also inversely correlated (able-bodied controls: r = -0.24; p = 0.05 and paraplegics: r = -0.30; p= 0.02). The inverse correlation between evening changes in melatonin and thermoregulation is of a similar magnitude in paraplegic and able-bodied controls. In contrast, changes in skin temperature, below the level of the lesion, are unrelated to changes in melatonin in tetraplegics.

  7. Changes in the PQRST intervals and heart rate variability associated with rewarming in two newborns undergoing hypothermia therapy.

    PubMed

    Lasky, Robert E; Parikh, Nehal A; Williams, Amber L; Padhye, Nikhil S; Shankaran, Seetha

    2009-01-01

    Little is known about the effects of hypothermia therapy and subsequent rewarming on the PQRST intervals and heart rate variability (HRV) in term newborns with hypoxic-ischemic encephalopathy (HIE). This study describes the changes in the PQRST intervals and HRV during rewarming to normal core body temperature of 2 newborns with HIE after hypothermia therapy. Within 6 h after birth, 2 newborns with HIE were cooled to a core body temperature of 33.5 degrees C for 72 h using a cooling blanket, followed by gradual rewarming (0.5 degrees C per hour) until the body temperature reached 36.5 degrees C. Custom instrumentation recorded the electrocardiogram from the leads used for clinical monitoring of vital signs. Generalized linear mixed models were calculated to estimate temperature-related changes in PQRST intervals and HRV. For every 1 degrees C increase in body temperature, the heart rate increased by 9.2 bpm (95% CI 6.8-11.6), the QTc interval decreased by 21.6 ms (95% CI 17.3-25.9), and low and high frequency HRV decreased by 0.480 dB (95% CI 0.052-0.907) and 0.938 dB (95% CI 0.460-1.416), respectively. Hypothermia-induced changes in the electrocardiogram should be monitored carefully in future studies. Copyright 2009 S. Karger AG, Basel.

  8. Effect of morning bright light on body temperature, plasma cortisol and wrist motility measured during 24 hour of constant conditions.

    PubMed

    Foret, J; Aguirre, A; Touitou, Y; Clodoré, M; Benoit, O

    1993-06-11

    Using 24 h constant conditions, time course of body temperature, plasma cortisol and wrist motility was measured in response to a 3 day morning 2 h bright light pulse. This protocol demonstrated that a 2000 lux illumination was sufficient to elicit a shift of about 2 h of temperature minimum and cortisol peak. In reference session, actimetric recordings showed a circadian time course, closely in relation with core temperature. Bright light pulse resulted in a decrease of amplitude and a disappearance of circadian pattern of actimetry.

  9. Effects of ingested crude and dispersed crude oil on thermoregulation in ducks (Anas platyrhynchos)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jenssen, B.M.

    1989-02-01

    Thermoregulatory effects of ingested doses of Statfjord A crude oil and of this oil mixed with the dispersant Finasol OSR-5 were studied in adult domestic ducks (Anas platyrhynchos) exposed to ambient temperatures of +16 degrees C and -17 degrees C. The data show that ingestion of both the crude and the oil-dispersant mixture resulted in an increased body temperature during exposure to the low ambient temperature (-17 degrees C). Neither contaminant had any effect on body temperature during exposure to +16 degrees C. Ingestion of the contaminants had no effect on metabolic heat production at either ambient temperature. The breastmore » skin temperature of the ducks in both contaminated groups was significantly decreased when the ducks were exposed to the low ambient temperature. This indicates that the increase in body temperature observed in the contaminated ducks at the low ambient temperature is due to an increase in peripheral vasoconstriction.« less

  10. Overwintering temperature and body condition shift emergence dates of spring-emerging solitary bees.

    PubMed

    Schenk, Mariela; Mitesser, Oliver; Hovestadt, Thomas; Holzschuh, Andrea

    2018-01-01

    Solitary bees in seasonal environments must align their life-cycles with favorable environmental conditions and resources; the timing of their emergence is highly fitness relevant. In several bee species, overwintering temperature influences both emergence date and body weight at emergence. High variability in emergence dates among specimens overwintering at the same temperatures suggests that the timing of emergence also depends on individual body conditions. However, possible causes for this variability, such as individual differences in body size or weight, have been rarely studied. In a climate chamber experiment using two spring-emerging mason bees ( Osmia cornuta and O. bicornis ), we investigated the relationship between temperature, emergence date, body weight, and body size, the last of which is not affected by overwintering temperature. Our study showed that body weight declined during hibernation more strongly in warm than in cold overwintering temperatures. Although bees emerged earlier in warm than in cold overwintering temperatures, at the time of emergence, bees in warm overwintering temperatures had lower body weights than bees in cold overwintering temperatures (exception of male O. cornuta ). Among specimens that experienced the same overwintering temperatures, small and light bees emerged later than their larger and heavier conspecifics. Using a simple mechanistic model we demonstrated that spring-emerging solitary bees use a strategic approach and emerge at a date that is most promising for their individual fitness expectations. Our results suggest that warmer overwintering temperatures reduce bee fitness by causing a decrease in body weight at emergence. We showed furthermore that in order to adjust their emergence dates, bees use not only temperature but also their individual body condition as triggers. This may explain differing responses to climate warming within and among bee populations and may have consequences for bee-plant interactions as well as for the persistence of bee populations under climate change.

  11. Effect of trunk-to-head bathing on physiological responses in newborns.

    PubMed

    So, Hyun-Sook; You, Mi-Ae; Mun, Je-Yung; Hwang, Myeong-Jin; Kim, Hyun-Kyung; Pyeon, Suk-Jin; Shin, Mi-Young; Chang, Bong-Hee

    2014-01-01

    To determine the effect of trunk-to-head bathing versus the traditional head-to-trunk bathing on newborns' body temperature, heart rate, and oxygen saturation. A prospective, two-group, quasi-experimental repeated measures design. A newborn nursery in an urban university hospital. Sixty-two healthy full-term newborns. Newborns were randomly assigned to two groups. The newborns in the experimental group were bathed from trunk to head; those in the control group were bathed from head to trunk. Measurements of body temperature, heart rate, and oxygen saturation were obtained at four time points: before the bath, immediately after the bath, 30 minutes after the bath, and 60 minutes after the bath. No significant differences in body temperature, heart rate, or oxygen saturation were observed between groups. However, body temperature was significantly different across measurement times, and there was a significant interaction between group and measurement time. The mean body temperature dropped 0.2°C after bathing in both groups, but the experimental group returned to their initial body temperature more rapidly than the control group. These findings suggest that newborns who were bathed from trunk to head and whose heads were wet for shorter periods of time benefited with a more rapid recovery of body temperature and decreased heat loss due to evaporation. © 2014 AWHONN, the Association of Women's Health, Obstetric and Neonatal Nurses.

  12. Acute normobaric hypoxia reduces body temperature in humans.

    PubMed

    DiPasquale, Dana M; Kolkhorst, Fred W; Buono, Michael J

    2015-03-01

    Anapyrexia is the regulated decrease in body temperature during acute exposure to hypoxia. This study examined resting rectal temperature (Trec) in adult humans during acute normobaric hypoxia (NH). Ten subjects breathed air consisting of 21% (NN), 14% (NH14), and 12% oxygen (NH12) for 30 min each in thermoneutral conditions while Trec and blood oxygen saturation (Spo2) were measured. Linear regression indicated that Spo2 was progressively lower in NH14 (p=0.0001) and NH12 (p=0.0001) compared to NN, and that Spo2 in NH14 was different than NH12 (p=0.00001). Trec was progressively lower during NH14 (p=0.014) and in NH12 (p=0.0001) compared to NN. The difference in Trec between NH14 and NH12 was also significant (p=0.0287). Spo2 was a significant predictor of Trec such that for every 1% decrease in Spo2, Trec decreased by 0.15°C (p=0.0001). The present study confirmed that, similar to many other species, human adults respond to acute hypoxia exposure by lowering rectal temperature.

  13. Decrement in manual arm performance during whole body cooling.

    PubMed

    Giesbrecht, G G; Bristow, G K

    1992-12-01

    Six subjects performed three manual arm tasks: 1) prior to immersion in 8 degrees C water; 2) soon after immersion to the neck, but prior to any decrease in core temperature; and 3) every 15 min until core temperatures decreased 2-4.5 degrees C. The tasks were speed of flexion and extension of the fingers, handgrip strength and manual dexterity. There was no immediate effect of cold immersion; however, all scores decreased significantly after core temperature decreased 0.5 degrees C. Further decrease in core temperature was associated with a progressive impairment of performance, although at a slower rate than during the first 0.5 degrees C decrease. Flexion and extension of the fingers was affected relatively more than handgrip strength or manual dexterity. Decrement in performance is a result of peripheral cooling on sensorimotor function with a probable additional effect of central cooling on cerebral function.

  14. Motor excitability measurements: the influence of gender, body mass index, age and temperature in healthy controls.

    PubMed

    Casanova, I; Diaz, A; Pinto, S; de Carvalho, M

    2014-04-01

    The technique of threshold tracking to test axonal excitability gives information about nodal and internodal ion channel function. We aimed to investigate variability of the motor excitability measurements in healthy controls, taking into account age, gender, body mass index (BMI) and small changes in skin temperature. We examined the left median nerve of 47 healthy controls using the automated threshold-tacking program, QTRAC. Statistical multiple regression analysis was applied to test relationship between nerve excitability measurements and subject variables. Comparisons between genders did not find any significant difference (P>0.2 for all comparisons). Multiple regression analysis showed that motor amplitude decreases with age and temperature, stimulus-response slope decreases with age and BMI, and that accommodation half-time decrease with age and temperature. The changes related to demographic features on TRONDE protocol parameters are small and less important than in conventional nerve conduction studies. Nonetheless, our results underscore the relevance of careful temperature control, and indicate that interpretation of stimulus-response slope and accommodation half-time should take into account age and BMI. In contrast, gender is not of major relevance to axonal threshold findings in motor nerves. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  15. Body water balance and body temperature in vasopressin V1b receptor knockout mice.

    PubMed

    Daikoku, R; Kunitake, T; Kato, K; Tanoue, A; Tsujimoto, G; Kannan, H

    2007-10-30

    In an attempt to determine whether there is a specific vasopressin receptor (V(1b)) subtype involved in the regulation of body water balance and temperature, vasopressin V(1b) receptor knockout mice were used. Daily drinking behavior and renal excretory function were examined in V(1b)-deficient (V(1b)(-/-)) and control (V(1b)(+/+)) mice under the basal and stress-induced condition. In addition, body temperature and locomotor activity were measured with a biotelemetry system. The baseline daily water intake and urine volume were larger in V(1b)(-/-) mice than in V(1b)(+/+) mice. V(1b)(-/-) mice (V(1b)(-/-)) had significantly higher locomotor activity than wild-type, whereas the body temperature and oxygen consumption were lower in V(1b)(-/-) than in the V(1b)(+/+) mice. Next, the V(1b)(-/-) and V(1b)(+/+) mice were subjected to water deprivation for 48 hr. Under this condition, their body temperature decreased with the time course, which was significantly larger for V(1b)(-/-) than for V(1b)(+/+) mice. Central vasopressin has been reported to elicit drinking behavior and antipyretic action, and the V(1b) receptor has been reported to be located in the kidney. Thus, the findings suggest that the V(1b) receptor may be, at least in part, involved in body water balance and body temperature regulation.

  16. Effects of Age on Temperature Responses During Exposure to Hypergravity

    NASA Technical Reports Server (NTRS)

    Fung, C.K.; Baer, L. A.; Moran, M. M.; Wang, T. J.; Yuan, F.; Daunton, N. G.; Corcoran, M. L.; Wade, C. E.; Dalfan, Bonnie P. (Technical Monitor)

    2001-01-01

    Rats subjected to centrifugation show a marked decrease in body temperature relating to gravity level. Several studies have indicated, that an initial response to centrifugation is followed by acclimation. To test for differences between young (Y; 2 months) and mature (M; 8 months) rats in their response in temperature, both groups were exposed to hypergravity induced by centrifugation. Thirty-six male rats were divided into four groups according to age and G-load (control (1.0G-Y and 1.0G-M), 2.0G-Y or 2.0G-M) and were housed in pairs in standard vivarium cages. During the 7-day period of centrifugation, temperature was measured every five minutes by surgically implanted telemeters. Body mass was measured daily. We found that initial body temperature in 2.0G-M was less than that of 2.0G-Y. Both hypergravity groups (2.0G-Y and 2.0G-M) showed a decrease in temperature at the onset of centrifugation, and the change in temperature (Delta = 0.5 C) remained the same between the groups. Significant differences persisted with 2.0G-Y recovering to control values in four days and 2.0G-M recovering in five days. These results indicate that the mature animals have a similar response as the younger animals, but take longer to acclimate.

  17. Voluntary Running Aids to Maintain High Body Temperature in Rats Bred for High Aerobic Capacity

    PubMed Central

    Karvinen, Sira M.; Silvennoinen, Mika; Ma, Hongqiang; Törmäkangas, Timo; Rantalainen, Timo; Rinnankoski-Tuikka, Rita; Lensu, Sanna; Koch, Lauren G.; Britton, Steven L.; Kainulainen, Heikki

    2016-01-01

    The production of heat, i.e., thermogenesis, is a significant component of the metabolic rate, which in turn affects weight gain and health. Thermogenesis is linked to physical activity (PA) level. However, it is not known whether intrinsic exercise capacity, aging, and long-term voluntary running affect core body temperature. Here we use rat models selectively bred to differ in maximal treadmill endurance running capacity (Low capacity runners, LCR and High capacity Runners, HCR), that as adults are divergent for aerobic exercise capacity, aging, and metabolic disease risk to study the connection between PA and body temperature. Ten high capacity runner (HCR) and ten low capacity runner (LCR) female rats were studied between 9 and 21 months of age. Rectal body temperature of HCR and LCR rats was measured before and after 1-year voluntary running/control intervention to explore the effects of aging and PA. Also, we determined whether injected glucose and spontaneous activity affect the body temperature differently between LCR and HCR rats at 9 vs. 21 months of age. HCRs had on average 1.3°C higher body temperature than LCRs (p < 0.001). Aging decreased the body temperature level of HCRs to similar levels with LCRs. The opportunity to run voluntarily had a significant impact on the body temperature of HCRs (p < 0.001) allowing them to maintain body temperature at a similar level as when at younger age. Compared to LCRs, HCRs were spontaneously more active, had higher relative gastrocnemius muscle mass and higher UCP2, PGC-1α, cyt c, and OXPHOS levels in the skeletal muscle (p < 0.050). These results suggest that higher PA level together with greater relative muscle mass and higher mitochondrial content/function contribute to the accumulation of heat in the HCRs. Interestingly, neither aging nor voluntary training had a significant impact on core body temperature of LCRs. However, glucose injection resulted in a lowering of the body temperature of LCRs (p < 0.050), but not that of HCRs. In conclusion, rats born with high intrinsic capacity for aerobic exercise and better health have higher body temperature compared to rats born with low exercise capacity and disease risk. Voluntary running allowed HCRs to maintain high body temperature during aging, which suggests that high PA level was crucial in maintaining the high body temperature of HCRs. PMID:27504097

  18. Voluntary Running Aids to Maintain High Body Temperature in Rats Bred for High Aerobic Capacity.

    PubMed

    Karvinen, Sira M; Silvennoinen, Mika; Ma, Hongqiang; Törmäkangas, Timo; Rantalainen, Timo; Rinnankoski-Tuikka, Rita; Lensu, Sanna; Koch, Lauren G; Britton, Steven L; Kainulainen, Heikki

    2016-01-01

    The production of heat, i.e., thermogenesis, is a significant component of the metabolic rate, which in turn affects weight gain and health. Thermogenesis is linked to physical activity (PA) level. However, it is not known whether intrinsic exercise capacity, aging, and long-term voluntary running affect core body temperature. Here we use rat models selectively bred to differ in maximal treadmill endurance running capacity (Low capacity runners, LCR and High capacity Runners, HCR), that as adults are divergent for aerobic exercise capacity, aging, and metabolic disease risk to study the connection between PA and body temperature. Ten high capacity runner (HCR) and ten low capacity runner (LCR) female rats were studied between 9 and 21 months of age. Rectal body temperature of HCR and LCR rats was measured before and after 1-year voluntary running/control intervention to explore the effects of aging and PA. Also, we determined whether injected glucose and spontaneous activity affect the body temperature differently between LCR and HCR rats at 9 vs. 21 months of age. HCRs had on average 1.3°C higher body temperature than LCRs (p < 0.001). Aging decreased the body temperature level of HCRs to similar levels with LCRs. The opportunity to run voluntarily had a significant impact on the body temperature of HCRs (p < 0.001) allowing them to maintain body temperature at a similar level as when at younger age. Compared to LCRs, HCRs were spontaneously more active, had higher relative gastrocnemius muscle mass and higher UCP2, PGC-1α, cyt c, and OXPHOS levels in the skeletal muscle (p < 0.050). These results suggest that higher PA level together with greater relative muscle mass and higher mitochondrial content/function contribute to the accumulation of heat in the HCRs. Interestingly, neither aging nor voluntary training had a significant impact on core body temperature of LCRs. However, glucose injection resulted in a lowering of the body temperature of LCRs (p < 0.050), but not that of HCRs. In conclusion, rats born with high intrinsic capacity for aerobic exercise and better health have higher body temperature compared to rats born with low exercise capacity and disease risk. Voluntary running allowed HCRs to maintain high body temperature during aging, which suggests that high PA level was crucial in maintaining the high body temperature of HCRs.

  19. Seasonal reproductive endothermy in tegu lizards.

    PubMed

    Tattersall, Glenn J; Leite, Cleo A C; Sanders, Colin E; Cadena, Viviana; Andrade, Denis V; Abe, Augusto S; Milsom, William K

    2016-01-01

    With some notable exceptions, small ectothermic vertebrates are incapable of endogenously sustaining a body temperature substantially above ambient temperature. This view was challenged by our observations of nighttime body temperatures sustained well above ambient (up to 10°C) during the reproductive season in tegu lizards (~2 kg). This led us to hypothesize that tegus have an enhanced capacity to augment heat production and heat conservation. Increased metabolic rates and decreased thermal conductance are the same mechanisms involved in body temperature regulation in those vertebrates traditionally acknowledged as "true endotherms": the birds and mammals. The appreciation that a modern ectotherm the size of the earliest mammals can sustain an elevated body temperature through metabolic rates approaching that of endotherms enlightens the debate over endothermy origins, providing support for the parental care model of endothermy, but not for the assimilation capacity model of endothermy. It also indicates that, contrary to prevailing notions, ectotherms can engage in facultative endothermy, providing a physiological analog in the evolutionary transition to true endothermy.

  20. Seasonal reproductive endothermy in tegu lizards

    PubMed Central

    Tattersall, Glenn J.; Leite, Cleo A. C.; Sanders, Colin E.; Cadena, Viviana; Andrade, Denis V.; Abe, Augusto S.; Milsom, William K.

    2016-01-01

    With some notable exceptions, small ectothermic vertebrates are incapable of endogenously sustaining a body temperature substantially above ambient temperature. This view was challenged by our observations of nighttime body temperatures sustained well above ambient (up to 10°C) during the reproductive season in tegu lizards (~2 kg). This led us to hypothesize that tegus have an enhanced capacity to augment heat production and heat conservation. Increased metabolic rates and decreased thermal conductance are the same mechanisms involved in body temperature regulation in those vertebrates traditionally acknowledged as “true endotherms”: the birds and mammals. The appreciation that a modern ectotherm the size of the earliest mammals can sustain an elevated body temperature through metabolic rates approaching that of endotherms enlightens the debate over endothermy origins, providing support for the parental care model of endothermy, but not for the assimilation capacity model of endothermy. It also indicates that, contrary to prevailing notions, ectotherms can engage in facultative endothermy, providing a physiological analog in the evolutionary transition to true endothermy. PMID:26844295

  1. Size matters: plasticity in metabolic scaling shows body-size may modulate responses to climate change.

    PubMed

    Carey, Nicholas; Sigwart, Julia D

    2014-08-01

    Variability in metabolic scaling in animals, the relationship between metabolic rate ( R: ) and body mass ( M: ), has been a source of debate and controversy for decades. R: is proportional to MB: , the precise value of B: much debated, but historically considered equal in all organisms. Recent metabolic theory, however, predicts B: to vary among species with ecology and metabolic level, and may also vary within species under different abiotic conditions. Under climate change, most species will experience increased temperatures, and marine organisms will experience the additional stressor of decreased seawater pH ('ocean acidification'). Responses to these environmental changes are modulated by myriad species-specific factors. Body-size is a fundamental biological parameter, but its modulating role is relatively unexplored. Here, we show that changes to metabolic scaling reveal asymmetric responses to stressors across body-size ranges; B: is systematically decreased under increasing temperature in three grazing molluscs, indicating smaller individuals were more responsive to warming. Larger individuals were, however, more responsive to reduced seawater pH in low temperatures. These alterations to the allometry of metabolism highlight abiotic control of metabolic scaling, and indicate that responses to climate warming and ocean acidification may be modulated by body-size. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  2. Investigation of Factors Affecting Body Temperature Changes During Routine Clinical Head Magnetic Resonance Imaging

    PubMed Central

    Kim, Myeong Seong

    2016-01-01

    Background Pulsed radiofrequency (RF) magnetic fields, required to produce magnetic resonance imaging (MRI) signals from tissue during the MRI procedure have been shown to heat tissues. Objectives To investigate the relationship between body temperature rise and the RF power deposited during routine clinical MRI procedures, and to determine the correlation between this effect and the body’s physiological response. Patients and Methods We investigated 69 patients from the Korean national cancer center to identify the main factors that contribute to an increase in body temperature (external factors and the body’s response) during a clinical brain MRI. A routine protocol sequence of MRI scans (1.5 T and 3.0 T) was performed. The patient’s tympanic temperature was recorded before and immediately after the MRI procedure and compared with changes in variables related to the body’s physiological response to heat. Results Our investigation of the physiological response to RF heating indicated a link between increasing age and body temperature. A higher increase in body temperature was observed in older patients after a 3.0-T MRI (r = 0.07, P = 0.29 for 1.5-T MRI; r = 0.45, P = 0.002 for 3.0-T MRI). The relationship between age and body heat was related to the heart rate (HR) and changes in HR during the MRI procedure; a higher RF power combined with a reduction in HR resulted in an increase in body temperature. Conclusion A higher magnetic field strength and a decrease in the HR resulted in an increase in body temperature during the MRI procedure. PMID:27895872

  3. Body temperature and motion: Evaluation of an online monitoring system in pigs challenged with Porcine Reproductive & Respiratory Syndrome Virus.

    PubMed

    Süli, Tamás; Halas, Máté; Benyeda, Zsófia; Boda, Réka; Belák, Sándor; Martínez-Avilés, Marta; Fernández-Carrión, Eduardo; Sánchez-Vizcaíno, José Manuel

    2017-10-01

    Highly contagious and emerging diseases cause significant losses in the pig producing industry worldwide. Rapid and exact acquisition of real-time data, like body temperature and animal movement from the production facilities would enable early disease detection and facilitate adequate response. In this study, carried out within the European Union research project RAPIDIA FIELD, we tested an online monitoring system on pigs experimentally infected with the East European subtype 3 Porcine Reproductive & Respiratory Syndrome Virus (PRRSV) strain Lena. We linked data from different body temperature measurement methods and the real-time movement of the pigs. The results showed a negative correlation between body temperature and movement of the animals. The correlation was similar with both body temperature obtaining methods, rectal and thermal sensing microchip, suggesting some advantages of body temperature measurement with transponders compared with invasive and laborious rectal measuring. We also found a significant difference between motion values before and after the challenge with a virulent PRRSV strain. The decrease in motion values was noticeable before any clinical sign was recorded. Based on our results the online monitoring system could represent a practical tool in registering early warning signs of health status alterations, both in experimental and commercial production settings. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. The costs of keeping cool in a warming world: implications of high temperatures for foraging, thermoregulation and body condition of an arid-zone bird.

    PubMed

    du Plessis, Katherine L; Martin, Rowan O; Hockey, Philip A R; Cunningham, Susan J; Ridley, Amanda R

    2012-10-01

    Recent mass mortalities of bats, birds and even humans highlight the substantial threats that rising global temperatures pose for endotherms. Although less dramatic, sublethal fitness costs of high temperatures may be considerable and result in changing population demographics. Endothermic animals exposed to high environmental temperatures can adjust their behaviour (e.g. reducing activity) or physiology (e.g. elevating rates of evaporative water loss) to maintain body temperatures within tolerable limits. The fitness consequences of these adjustments, in terms of the ability to balance water and energy budgets and therefore maintain body condition, are poorly known. We investigated the effects of daily maximum temperature on foraging and thermoregulatory behaviour as well as maintenance of body condition in a wild, habituated population of Southern Pied Babblers Turdoides bicolor. These birds inhabit a hot, arid area of southern Africa where they commonly experience environmental temperatures exceeding optimal body temperatures. Repeated measurements of individual behaviour and body mass were taken across days varying in maximum air temperature. Contrary to expectations, foraging effort was unaffected by daily maximum temperature. Foraging efficiency, however, was lower on hotter days and this was reflected in a drop in body mass on hotter days. When maximum air temperatures exceeded 35.5 °C, individuals no longer gained sufficient weight to counter typical overnight weight loss. This reduction in foraging efficiency is likely driven, in part, by a trade-off with the need to engage in heat-dissipation behaviours. When we controlled for temperature, individuals that actively dissipated heat while continuing to forage experienced a dramatic decrease in their foraging efficiency. This study demonstrates the value of investigations of temperature-dependent behaviour in the context of impacts on body condition, and suggests that increasingly high temperatures will have negative implications for the fitness of these arid-zone birds. © 2012 Blackwell Publishing Ltd.

  5. Core Body and Skin Temperature in Type 1 Narcolepsy in Daily Life; Effects of Sodium Oxybate and Prediction of Sleep Attacks.

    PubMed

    van der Heide, Astrid; Werth, Esther; Donjacour, Claire E H M; Reijntjes, Robert H A M; Lammers, Gert Jan; Van Someren, Eus J W; Baumann, Christian R; Fronczek, Rolf

    2016-11-01

    Previous laboratory studies in narcolepsy patients showed altered core body and skin temperatures, which are hypothesised to be related to a disturbed sleep wake regulation. In this ambulatory study we assessed temperature profiles in normal daily life, and whether sleep attacks are heralded by changes in skin temperature. Furthermore, the effects of three months of treatment with sodium oxybate (SXB) were investigated. Twenty-five narcolepsy patients and 15 healthy controls were included. Core body, proximal and distal skin temperatures, and sleep-wake state were measured simultaneously for 24 hours in ambulatory patients. This procedure was repeated in 16 narcolepsy patients after at least 3 months of stable treatment with SXB. Increases in distal skin temperature and distal-to-proximal temperature gradient (DPG) strongly predicted daytime sleep attacks (P < 0.001). As compared to controls, patients had a higher proximal and distal skin temperature in the morning, and a lower distal skin temperature during the night (all P < 0.05). Furthermore, they had a higher core body temperature during the first part of the night (P < 0.05), which SXB decreased (F = 4.99, df = 1, P = 0.03) to a level similar to controls. SXB did not affect skin temperature. This ambulatory study demonstrates that daytime sleep attacks were preceded by clear changes in distal skin temperature and DPG. Furthermore, changes in core body and skin temperature in narcolepsy, previously only studied in laboratory settings, were partially confirmed. Treatment with SXB resulted in a normalisation of the core body temperature profile. Future studies should explore whether predictive temperature changes can be used to signal or even prevent sleep attacks. © 2016 Associated Professional Sleep Societies, LLC.

  6. Temperature determination of shock layer using spectroscopic techniques

    NASA Technical Reports Server (NTRS)

    Akundi, Murty A.

    1989-01-01

    Shock layer temperature profiles are obtained through analysis of radiation from shock layers produced by a blunt body inserted in an arc jet flow. Spectral measurements of N2(+) have been made at 0.5 inch, 1.0 inch, and 1.4 inches from the blunt body. A technique is developed to measure the vibrational and rotational temperatures of N2(+). Temperature profiles from the radiation layers show a high temperature near the shock front and decreasing temperature near the boundary layer. Precise temperature measurements could not be made using this technique due to the limited resolution. Use of a high resolution grating will help to make a more accurate temperature determination. Laser induced fluorescence technique is much better since it gives the scope for selective excitation and a better spacial resolution.

  7. Simulation of human thermoregulation during water immersion: application to an aircraft cabin water-spray system.

    PubMed

    Wolf, M B; Garner, R P

    1997-01-01

    A model was developed of transient changes in metabolic heat production and core temperature for humans subjected to cold conditions. It was modified to predict thermal effects of the upper parts of the body being sprayed with water from a system designed to reduce the smoke effects of an airplane fire. Temperature changes were computed at 25 body segments in response to water immersion, cold-air exposure, and windy conditions. Inputs to the temperature controller were: (a) temperature change signals from skin segments and (b) an integrated signal of the product of skin and head-core (hypothalamic) temperature changes. The controller stimulated changes in blood flow to skin and muscle and heat production by shivering. Two controller parameters were adjusted to obtain good predictions of temperature and heat-production experimental data in head-out, water-immersion (0 degree-28 degrees C) studies in humans. A water layer on the skin whose thickness decreased transiently due to evaporation was added to describe the effects of the water-spray system. Because the layer evaporated rapidly in a very cold and windy environment, its additional cooling effect over a 60-min exposure period was minimal. The largest additional decrease in rectal temperature due to the water layer was < 1 degree C, which was in normal conditions where total decreases were small.

  8. Polysaccharide peptide induces a tumor necrosis factor-α-dependent drop of body temperature in rats.

    PubMed

    Jedrzejewski, Tomasz; Piotrowski, Jakub; Wrotek, Sylwia; Kozak, Wieslaw

    2014-08-01

    Polysaccharide peptide (PSP) extracted from the Coriolus versicolor mushroom is frequently suggested as an adjunct to the chemo- or radiotherapy in cancer patients. It improves quality of the patients' life by decreasing pain, fatigue, loss of appetite, nausea, and vomiting. However, the effect of PSP on body temperature has not thus far been studied, although it is well known that treatment with other polysaccharide adjuvants, such as lipopolysaccharides, may induce fever. The aim of the present study, therefore, was to investigate the influence of PSP on temperature regulation in rats. We report that intraperitoneal injection of PSP provoked a dose-dependent decrease of temperature in male Wistar rats equipped with biotelemetry devices to monitor deep body temperature (Tb). The response was rapid (i.e., with latency of 15-20min), transient (lasting up to 5h post-injection), and accompanied by a significant elevation of the blood tumor necrosis factor-α (TNF-α) level. Pretreatment of the rats with anti-TNF-α antibody prevented the PSP-induced drop in Tb. Based on these data, we conclude that rats may develop an anapyrexia-like response to the injection of peptidopolysaccharide rather than fever, and the response was TNF-α-dependent. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Differential effects of cathinone compounds and MDMA on body temperature in the rat, and pharmacological characterization of mephedrone-induced hypothermia

    PubMed Central

    Shortall, SE; Green, AR; Swift, KM; Fone, KCF; King, MV

    2013-01-01

    Background and Purpose Recreational users report that mephedrone has similar psychoactive effects to 3,4-methylenedioxymethamphetamine (MDMA). MDMA induces well-characterized changes in body temperature due to complex monoaminergic effects on central thermoregulation, peripheral blood flow and thermogenesis, but there are little preclinical data on the acute effects of mephedrone or other synthetic cathinones. Experimental Approach The acute effects of cathinone, methcathinone and mephedrone on rectal and tail temperature were examined in individually housed rats, with MDMA included for comparison. Rats were killed 2 h post-injection and brain regions were collected for quantification of 5-HT, dopamine and major metabolites. Further studies examined the impact of selected α-adrenoceptor and dopamine receptor antagonists on mephedrone-induced changes in rectal temperature and plasma catecholamines. Key Results At normal room temperature, MDMA caused sustained decreases in rectal and tail temperature. Mephedrone caused a transient decrease in rectal temperature, which was enhanced by α1-adrenoceptor and dopamine D1 receptor blockade, and a prolonged decrease in tail temperature. Cathinone and methcathinone caused sustained increases in rectal temperature. MDMA decreased 5-HT and/or 5-hydroxyindoleacetic acid (5-HIAA) content in several brain regions and reduced striatal homovanillic acid (HVA) levels, whereas cathinone and methcathinone increased striatal HVA and 5-HIAA. Cathinone elevated striatal and hypothalamic 5-HT. Mephedrone elevated plasma noradrenaline levels, an effect prevented by α-adrenoceptor and dopamine receptor antagonists. Conclusions and Implications MDMA and cathinones have different effects on thermoregulation, and their acute effects on brain monoamines also differ. These findings suggest that the adverse effects of cathinones in humans cannot be extrapolated from previous observations on MDMA. PMID:23043631

  10. Differential effects of cathinone compounds and MDMA on body temperature in the rat, and pharmacological characterization of mephedrone-induced hypothermia.

    PubMed

    Shortall, S E; Green, A R; Swift, K M; Fone, K C F; King, M V

    2013-02-01

    Recreational users report that mephedrone has similar psychoactive effects to 3,4-methylenedioxymethamphetamine (MDMA). MDMA induces well-characterized changes in body temperature due to complex monoaminergic effects on central thermoregulation, peripheral blood flow and thermogenesis, but there are little preclinical data on the acute effects of mephedrone or other synthetic cathinones. The acute effects of cathinone, methcathinone and mephedrone on rectal and tail temperature were examined in individually housed rats, with MDMA included for comparison. Rats were killed 2 h post-injection and brain regions were collected for quantification of 5-HT, dopamine and major metabolites. Further studies examined the impact of selected α-adrenoceptor and dopamine receptor antagonists on mephedrone-induced changes in rectal temperature and plasma catecholamines. At normal room temperature, MDMA caused sustained decreases in rectal and tail temperature. Mephedrone caused a transient decrease in rectal temperature, which was enhanced by α(1) -adrenoceptor and dopamine D(1) receptor blockade, and a prolonged decrease in tail temperature. Cathinone and methcathinone caused sustained increases in rectal temperature. MDMA decreased 5-HT and/or 5-hydroxyindoleacetic acid (5-HIAA) content in several brain regions and reduced striatal homovanillic acid (HVA) levels, whereas cathinone and methcathinone increased striatal HVA and 5-HIAA. Cathinone elevated striatal and hypothalamic 5-HT. Mephedrone elevated plasma noradrenaline levels, an effect prevented by α-adrenoceptor and dopamine receptor antagonists. MDMA and cathinones have different effects on thermoregulation, and their acute effects on brain monoamines also differ. These findings suggest that the adverse effects of cathinones in humans cannot be extrapolated from previous observations on MDMA. © 2012 The Authors. British Journal of Pharmacology © 2012 The British Pharmacological Society.

  11. Body and brain temperature coupling: the critical role of cerebral blood flow

    PubMed Central

    Ackerman, Joseph J. H.; Yablonskiy, Dmitriy A.

    2010-01-01

    Direct measurements of deep-brain and body-core temperature were performed on rats to determine the influence of cerebral blood flow (CBF) on brain temperature regulation under static and dynamic conditions. Static changes of CBF were achieved using different anesthetics (chloral hydrate, CH; α-chloralose, αCS; and isoflurane, IF) with αCS causing larger decreases in CBF than CH and IF; dynamic changes were achieved by inducing transient hypercapnia (5% CO2 in 40% O2 and 55% N2). Initial deep-brain/body-core temperature differentials were anesthetic-type dependent with the largest differential observed with rats under αCS anesthesia (ca. 2°C). Hypercapnia induction raised rat brain temperature under all three anesthesia regimes, but by different anesthetic-dependent amounts correlated with the initial differentials—αCS anesthesia resulted in the largest brain temperature increase (0.32 ± 0.08°C), while CH and IF anesthesia lead to smaller increases (0.12 ± 0.03 and 0.16 ± 0.05°C, respectively). The characteristic temperature transition time for the hypercapnia-induced temperature increase was 2–3 min under CH and IF anesthesia and ~4 min under αCS anesthesia. We conclude that both, the deep-brain/body-core temperature differential and the characteristic temperature transition time correlate with CBF: a lower CBF promotes higher deep-brain/body-core temperature differentials and, upon hypercapnia challenge, longer characteristic transition times to increased temperatures. PMID:19277681

  12. Body and brain temperature coupling: the critical role of cerebral blood flow.

    PubMed

    Zhu, Mingming; Ackerman, Joseph J H; Yablonskiy, Dmitriy A

    2009-08-01

    Direct measurements of deep-brain and body-core temperature were performed on rats to determine the influence of cerebral blood flow (CBF) on brain temperature regulation under static and dynamic conditions. Static changes of CBF were achieved using different anesthetics (chloral hydrate, CH; alpha-chloralose, alphaCS; and isoflurane, IF) with alphaCS causing larger decreases in CBF than CH and IF; dynamic changes were achieved by inducing transient hypercapnia (5% CO(2) in 40% O(2) and 55% N(2)). Initial deep-brain/body-core temperature differentials were anesthetic-type dependent with the largest differential observed with rats under alphaCS anesthesia (ca. 2 degrees C). Hypercapnia induction raised rat brain temperature under all three anesthesia regimes, but by different anesthetic-dependent amounts correlated with the initial differentials--alphaCS anesthesia resulted in the largest brain temperature increase (0.32 +/- 0.08 degrees C), while CH and IF anesthesia lead to smaller increases (0.12 +/- 0.03 and 0.16 +/- 0.05 degrees C, respectively). The characteristic temperature transition time for the hypercapnia-induced temperature increase was 2-3 min under CH and IF anesthesia and approximately 4 min under alphaCS anesthesia. We conclude that both, the deep-brain/body-core temperature differential and the characteristic temperature transition time correlate with CBF: a lower CBF promotes higher deep-brain/body-core temperature differentials and, upon hypercapnia challenge, longer characteristic transition times to increased temperatures.

  13. The thermal environment of the nest affects body and cell size in the solitary red mason bee (Osmia bicornis L.).

    PubMed

    Kierat, Justyna; Szentgyörgyi, Hajnalka; Czarnoleski, Marcin; Woyciechowski, Michał

    2017-08-01

    Many ectotherms grow larger at lower temperatures than at higher temperatures. This pattern, known as the temperature-size rule, is often accompanied by plastic changes in cell size, which can mechanistically explain the thermal dependence of body size. However, the theory predicts that thermal plasticity in cell size has adaptive value for ectotherms because there are different optimal cell-membrane-to-cell-volume ratios at different temperatures. At high temperatures, the demand for oxygen is high; therefore, a large membrane surface of small cells is beneficial because it allows high rates of oxygen transport into the cell. The metabolic costs of maintaining membranes become more important at low temperatures than at high temperatures, which favours large cells. In a field experiment, we manipulated the thermal conditions inside nests of the red mason bee, a solitary bee that does not regulate the temperature in its nests and whose larvae develop under ambient conditions. We assessed the effect of temperature on body mass and ommatidia size (our proxy of cell size). The body and cell sizes decreased in response to a higher mean temperature and greater temperature fluctuations. This finding is in accordance with predictions of the temperature-size rule and optimal cell size theory and suggests that both the mean temperature and the magnitude of temperature fluctuations are important for determining body and cell sizes. Additionally, we observed that males of the red mason bee tend to have larger ommatidia in relation to their body mass than females, which might play an important role during mating flight. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Effects of acute and 2-hour postphysical activity on the estimation of body fat made by the bod pod.

    PubMed

    Harrop, Bradley J; Woodruff, Sarah J

    2015-06-01

    The Bod Pod has been found to be reliable/valid against several criterion methods, including hydrostatic weighing and dual-energy x-ray absorptiometry, and under different conditions, such as clothing, dehydrated states, and body temperature changes. However, questions remain regarding the effects of an acute bout of exercise. Therefore, the purpose was to determine the effects of an acute bout of exercise on the estimations made by the Bod Pod. Participants (15 men and 22 women) were of age 18-27 years and were currently exercising. Baseline Bod Pod measures were completed followed by a 30-minute cycling trial at 75% of maximum heart rate. Bod Pod measures were taken immediately after exercise and 2 hours after exercise. Differences between men and women were found at baseline between height (p < 0.001), weight (p < 0.001), body volume (BV; p < 0.001), and body density (Db; p < 0.001). Among men, body mass (p < 0.001), body fat percentage (%BF; p < 0.001), and BV (p < 0.001) decreased, whereas Db (p < 0.001) and body temperature (p < 0.001) increased directly after exercise; body mass (p < 0.001) and BV (p < 0.001) remained lower after 2 hours. Among women, body mass (p < 0.001) and BV (p < 0.001) decreased, whereas thoracic gas volume (p = 0.014) and temperature (p < 0.001) increased directly after exercise; body mass (p < 0.001) and BV (p < 0.001) remained lower, whereas %BF (p < 0.001) and Db (p = 0.006) remained higher 2 hours after exercise. These results suggest that a single bout of exercise immediately before Bod Pod testing seems to alter the estimate of %BF, and continues to affect the prediction 2 hours after exercise in women.

  15. Thermoregulation of fish and turtles in thermally stressed habitats. Annual progress report, October 1, 1977--September 30, 1978

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spotila, J.R.

    1978-06-01

    Morphometric and heating and cooling studies on over 100 largemouth bass, Micropterus salmoides, have provided the data needed to refine the time-dependent body temperature model for fish. The model can now track the changes in body temperature of a bass if its weight and water temperature are known. The model is most sensitive to body diameter, body wall thickness, and tissue conductivity. Doubling tissue conductivity is equivalent to decreasing body diameter by a factor or two. Turtles, Chrysemys scripta, living in the heated portion of a cooling reservoir facultatively exploit the warmed water (..delta..T = 4 to 10/sup 0/C) asmore » an auxiliary heat source for behavioral thermoregulation. Turtles in the heated arm of PAR pond have a smaller home range (200 m) than turtles in an ambient portion of the reservoir (507 m). The ability of animals to thermoregulate at a high constant body temperature depends upon the constraints imposed on them by their body size and physical characteristics and those of their environment. The net heat production required to maintain a specific body temperature changes as the size of an ectotherm increases. Operative environmental temperature is an appropriate measure of environmental heat loading and can be used as a predictor of turtle behavior. This concept may become very valuable in quantifying the effect of thermal effluents on turtle and fish behavior.« less

  16. Heat loss and hypothermia in free diving: Estimation of survival time under water

    NASA Astrophysics Data System (ADS)

    Aguilella-Arzo, Marcel; Alcaraz, Antonio; Aguilella, Vicente M.

    2003-04-01

    The heat exchange between a diver and the colder surrounding water is analyzed on the basis of the fundamental equations of thermal transport. To estimate the decrease in the diver's body temperature as a function of time, we discuss the complex interplay of several factors including the body heat production rate, the role of the diver's wet suit, and the way different heat exchange mechanisms (conduction, convection, and radiation) contribute to thermal transport. This knowledge could be useful to prevent physiological disorders that occur when the human body temperature drops below 35 °C.

  17. Metabolism and ventilation in hypoxic rats: effect of body mass.

    PubMed

    Mortola, J P; Matsuoka, T; Saiki, C; Naso, L

    1994-07-01

    Oxygen consumption (VO2) and carbon dioxide production (VCO2) were measured by the flow-through method, and ventilation (VE) by the barometric technique in post-weaning age rats of 50, 100, 250 and 400 g, (5 males and 5 females in each group), at ambient temperature congruent to 24 degrees C. In normoxia, VO2, VCO2 and VE decreased with the increase in body weight (BW), whether normalization was by BW or by BW minus the weights of fat and skeleton; VE/VO2 and rectal temperature remained constant. In hypoxia (10% inspired O2), VE VO2 increased in all groups, to 2-2.5 times the normoxic values, because of a significant increase in VE (hyperpnea) and decrease in VO2 (hypometabolism); arterial PCO2, measured in some 100 g and 400 g rats, dropped similarly. However, the hyperpnea was about twice as large, and metabolism and body temperature decreased significantly less, in the 400 g than in the 50 g rats. The cost (ml O2) of breathing, computed in the paralysed animal artificially ventilated, averaged approximately 0.7% (normoxia) and 2% of VO2 (hypoxia), with no systematic differences with BW. The results agree with the concept that the metabolic response to hypoxia can be an important determinant of the magnitude of the hyperpnea.

  18. Dizocilpine and reduced body temperature do not prevent methamphetamine-induced neurotoxicity in the vervet monkey: [11C]WIN 35,428 - positron emission tomography studies.

    PubMed

    Melega, W P; Lacan, G; Harvey, D C; Huang, S C; Phelps, M E

    1998-12-11

    [11C]WIN 35,428 (WIN), a cocaine analog that binds to the dopamine transporter (DAT), and positron emission tomography (PET) were used to evaluate the potential neuroprotective effects of dizocilpine (MK-801) on methamphetamine (MeAmp) induced neurotoxicity in the striatal dopamine system of the vervet monkey. MK-801 (1 mg/kg, i.m.) was administered 30 min prior to a neurotoxic MeAmp dosage for this species (2 x 2 mg/kg, 4 h apart); control subjects received MeAmp. MK-801 treated subjects were anesthetized by the drug for 6-8 h; throughout that period, a 2-3 degrees C decrease in body temperature was measured. At 1-2 weeks post-MeAmp, decreases of approximately 75% in striatal WIN binding were observed for both MK-801/MeAmp and MeAmp subjects. Thus, in this non-human primate species, the combination of MK-801 pretreatment and reduced body temperature did not provide protection from the MeAmp-induced loss of DAT. Further, the absence of an elevated body temperature during the acute MeAmp exposure period indicated that hyperthermia, per se, was not a necessary concomitant of the MeAmp neurotoxicity profile as has been previously demonstrated in rodents. These results provide evidence that different regulatory factors maintain the integrity of the rodent and primate striatal dopamine systems.

  19. Does size matter? Comparison of body temperature and activity of free-living Arabian oryx (Oryx leucoryx) and the smaller Arabian sand gazelle (Gazella subgutturosa marica) in the Saudi desert.

    PubMed

    Hetem, Robyn Sheila; Strauss, Willem Maartin; Fick, Linda Gayle; Maloney, Shane Kevin; Meyer, Leith Carl Rodney; Shobrak, Mohammed; Fuller, Andrea; Mitchell, Duncan

    2012-04-01

    Heterothermy, a variability in body temperature beyond the normal limits of homeothermy, is widely viewed as a key adaptation of arid-adapted ungulates. However, desert ungulates with a small body mass, i.e. a relatively large surface area-to-volume ratio and a small thermal inertia, are theoretically less likely to employ adaptive heterothermy than are larger ungulates. We measured body temperature and activity patterns, using implanted data loggers, in free-ranging Arabian oryx (Oryx leucoryx, ±70 kg) and the smaller Arabian sand gazelle (Gazella subgutturosa marica, ±15 kg) inhabiting the same Arabian desert environment, at the same time. Compared to oryx, sand gazelle had higher mean daily body temperatures (F(1,6) = 47.3, P = 0.0005), higher minimum daily body temperatures (F(1,6) = 42.6, P = 0.0006) and higher maximum daily body temperatures (F(1,6) = 11.0, P = 0.02). Despite these differences, both species responded similarly to changes in environmental conditions. As predicted for adaptive heterothermy, maximum daily body temperature increased (F(1,6) = 84.0, P < 0.0001), minimum daily body temperature decreased (F(1,6) = 92.2, P < 0.0001), and daily body temperature amplitude increased (F(1,6) = 97.6, P < 0.0001) as conditions got progressively hotter and drier. There were no species differences in activity levels, however, both gazelle and oryx showed a biphasic or crepuscular rhythm during the warm wet season but shifted to a more nocturnal rhythm during the hot dry season. Activity was attenuated during the heat of the day at times when both species selected cool microclimates. These two species of Arabian ungulates employ heterothermy, cathemerality and shade seeking very similarly to survive the extreme, arid conditions of Arabian deserts, despite their size difference.

  20. Short-term effects of air temperature on plasma metabolite concentrations in patients undergoing cardiac catheterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hampel, Regina, E-mail: regina.hampel@helmholtz-mu

    Background: Epidemiological studies have shown associations between air temperature and cardiovascular health outcomes. Metabolic dysregulation might also play a role in the development of cardiovascular disease. Objectives: To investigate short-term temperature effects on metabolites related to cardiovascular disease. Methods: Concentrations of 45 acylcarnitines, 15 amino acids, ketone bodies and total free fatty acids were available in 2869 participants from the CATHeterization GENetics cohort recruited at the Duke University Cardiac Catheterization Clinic (Durham, NC) between 2001 and 2007. Ten metabolites were selected based on quality criteria and cluster analysis. Daily averages of meteorological variables were obtained from the North American Regionalmore » Reanalysis project. Immediate, lagged, and cumulative temperature effects on metabolite concentrations were analyzed using (piecewise) linear regression models. Results: Linear temperature effects were found for glycine, C16-OH:C14:1-DC, and aspartic acid/asparagine. A 5 °C increase in temperature was associated with a 1.8% [95%-confidence interval: 0.3%; 3.3%] increase in glycine (5-day average), a 3.2% [0.1%; 6.3%] increase in C16-OH:C14:1-DC (lag of four days), and a −1.4% [−2.4%; −0.3%] decrease in aspartic acid/asparagine (lag of two days). Non-linear temperature effects were observed for alanine and total ketone bodies with breakpoint of 4 °C and 20 °C, respectively. Both a 5 °C decrease in temperature on colder days (<4 °C)and a 5 °C increase in temperature on warmer days (≥4 °C) were associated with a four day delayed increase in alanine by 6.6% [11.7; 1.8%] and 1.9% [0.3%; 3.4%], respectively. For ketone bodies we found immediate (0-day lag) increases of 4.2% [−0.5%; 9.1%] and 12.3% [0.1%; 26.0%] associated with 5 °C decreases on colder (<20 °C) days and 5 °C increases on warmer days (≥20 °C), respectively. Conclusions: We observed multiple effects of air temperature on metabolites several of which are reported to be involved in cardiovascular disease. Our findings might help to understand the link between air temperature and cardiovascular disease. - Highlights: • Certain metabolites are assumed to be novel biomarkers for cardiovascular disease. • First study investigating associations between air temperature and metabolites. • Short-term effects of temperature on amino acids, ketone bodies and acylcarnitines. • Our findings may help to understand the link between temperature and cardiovascular disease.« less

  1. QT interval correction for drug-induced changes in body temperature during integrated cardiovascular safety assessment in regulatory toxicology studies in dogs: A case study.

    PubMed

    El Amrani, Abdel-Ilah; El Amrani-Callens, Francine; Loriot, Stéphane; Singh, Pramila; Forster, Roy

    2016-01-01

    Cardiovascular safety assessment requires accurate evaluation of QT interval, which depends on the length of the cardiac cycle and also on core body temperature (BT). Increases in QT interval duration have been shown to be associated with decreases in BT in dogs. An example of altered QT interval duration associated with changes in body temperature observed during a 4-week regulatory toxicology study in dogs is presented. Four groups of Beagle dogs received the vehicle or test item once on Day 1, followed by a 4-week observation period. Electrocardiogram (ECG) parameters were continuously recorded on Days 1 and 26 by jacketed external telemetry (JET). Core body temperature (BT) was measured with a conventional rectal thermometer at appropriate time-points during the Day 1 recording period. Decreased BT was observed approximately 2h after treatment on Day 1, along with increased QT interval duration corrected according to the Van de Water formula (QTcV), but the effect was no longer observed after correction for changes in BT [QTcVcT=QTcV-14(37.5-BT)] according to the Van der Linde formula. No significant changes in QTcV were reported at the end of the observation period, on Day 26. The present study demonstrates that core body (rectal) temperature can easily be monitored at appropriate time-points during JET recording in regulatory toxicology studies in dogs, in order to correct QT interval duration values for treatment-related changes in BT. The successful application of the Van der Linde formula to correct QTc prolongation for changes in BT was demonstrated. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  2. Comparative effectiveness of carvedilol and propranolol on glycemic control and insulin resistance associated with L-thyroxin-induced hyperthyroidism--an experimental study.

    PubMed

    Bhatt, Parloop; Makwana, Dharmesh; Santani, Devdas; Goyal, Ramesh

    2007-05-01

    The present study was undertaken to investigate the effectiveness of adrenergic antagonists carvedilol and propranolol on L-thyroxin-induced cardiovascular and metabolic disturbances in rats. Treatment with L-thyroxin sodium (75 mg/kg body mass, s.c., every alternate day for 3 weeks), produced a significant increase in food and water intake, body temperature, heart rate, systolic blood pressure, along with an increase in serum T3, T4, and triglyceride levels. Besides a significant reduction in body mass, serum levels of TSH and cholesterol were also reduced following L-thyroxin treatment. Carvedilol (10 mg/kg body mass, orally) and propranolol (10 mg/kg body mass, i.p.) administered daily in the third week to 2 separate groups of L-thyroxin-treated animals reversed thyroxin-induced loss in body mass and rise in body temperature, blood pressure, and heart rate. Propranolol treatment increased TSH levels and decreased T3 and T4 levels in hyperthyroid animals, whereas carvedilol did not produce any effect on thyroid hormones. Carvedilol treatment reversed thyroxin induced hypertriglyceridemia, whereas propranolol treatment had no effect. Both carvedilol and propranolol prevented decrease in cholesterol levels induced by thyroxine. Compared with normal animals, L-thyroxin-treated animals showed a state of hyperglycemia, hyperinsulinaemia, impaired glucose tolerance, and insulin resistance, as inferred from elevated fasting serum glucose and insulin levels, higher area under the curve over 120 min for glucose, and decreased insulin sensitivity index (KITT). Propranolol and carvedilol treatment significantly decreased fasting serum glucose levels. Treatment with propranolol did not alter serum insulin levels, area-under-the-curve glucose, or KITT values. However, treatment with carvedilol significantly reduced area-under-the-curve glucose, decreased fasting serum insulin levels and significantly increased KITT values. In conclusion, carvedilol appears to produce favorable effects on insulin sensitivity and glycemic control and can therefore be considered as more efficacious adjunctive treatment than propranolol in hyperthyroidism.

  3. FGF21 is dispensable for hypothermia induced by fasting in mice.

    PubMed

    Oishi, Katsutaka; Sakamoto, Katsuhiko; Konishi, Morichika; Murata, Yusuke; Itoh, Nobuyuki; Sei, Hiroyoshi

    2010-01-01

    Fibroblast growth factor 21 (FGF21) is a key metabolic regulator that is induced by peroxisome proliferator-activated receptor alpha (PPARalpha) activation in response to fasting. We recently reported that bezafibrate, a pan-agonist of PPARs, decreases body temperature late at night through hypothalamic neuropeptide Y (NPY) activation and others have shown that mice overexpressing FGF21 are prone to torpor. We examined whether FGF21 is essential for fasting-induced hypothermia using FGF21 knockout (KO) mice. Acute fasting decreased body temperature late at night accompanied by the induction of hepatic FGF21 and hypothalamic NPY expression in wild-type mice. A deficiency of FGF21 affected neither fasting-induced hypothermia nor hypothalamic NPY induction. Fasting enhanced locomotor activity in both genotypes. On the other hand, a deficiency of FGF21 significantly attenuated chronic hypothermia and hypoactivity induced by a ketogenic diet (KD). Our findings suggest that FGF21 is not essential for the hypothermia that is associated with the early stages of fasting, although it might be involved in the adaptive response of body temperature to chronic starvation.

  4. Dietary tyrosine benefits cognitive and psychomotor performance during body cooling.

    PubMed

    O'Brien, Catherine; Mahoney, Caroline; Tharion, William J; Sils, Ingrid V; Castellani, John W

    2007-02-28

    Supplemental tyrosine is effective at limiting cold-induced decreases in working memory, presumably by augmenting brain catecholamine levels, since tyrosine is a precursor for catecholamine synthesis. The effectiveness of tyrosine for preventing cold-induced decreases in physical performance has not been examined. This study evaluated the effect of tyrosine supplementation on cognitive, psychomotor, and physical performance following a cold water immersion protocol that lowered body core temperature. Fifteen subjects completed a control trial (CON) in warm (35 degrees C) water and two cold water trials, each spaced a week apart. Subjects ingested an energy bar during each trial; on one cold trial (TYR) the bar contained tyrosine (300 mg/kg body weight), and on the other cold trial (PLB) and on CON the bar contained no tyrosine. Following each water immersion, subjects completed a battery of performance tasks in a cold air (10 degrees C) chamber. Core temperature was lower (p=0.0001) on PLB and TYR (both 35.5+/-0.6 degrees C) than CON (37.1+/-0.3 degrees C). On PLB, performance on a Match-to-Sample task decreased 18% (p=0.02) and marksmanship performance decreased 14% (p=0.002), compared to CON, but there was no difference between TYR and CON. Step test performance decreased by 11% (p=0.0001) on both cold trials, compared to CON. These data support previous findings that dietary tyrosine supplementation is effective for mitigating cold-induced cognitive performance such as working memory, even with reduced core temperature, and extends those findings to include the psychomotor task of marksmanship.

  5. Thermal adaptation and diversity in tropical ecosystems: evidence from cicadas (Hemiptera, Cicadidae).

    PubMed

    Sanborn, Allen F; Heath, James E; Phillips, Polly K; Heath, Maxine S; Noriega, Fernando G

    2011-01-01

    The latitudinal gradient in species diversity is a central problem in ecology. Expeditions covering approximately 16°54' of longitude and 21°4' of latitude and eight Argentine phytogeographic regions provided thermal adaptation data for 64 species of cicadas. We test whether species diversity relates to the diversity of thermal environments within a habitat. There are general patterns of the thermal response values decreasing in cooler floristic provinces and decreasing maximum potential temperature within a habitat except in tropical forest ecosystems. Vertical stratification of the plant communities leads to stratification in species using specific layers of the habitat. There is a decrease in thermal tolerances in species from the understory communities in comparison to middle level or canopy fauna. The understory Herrera umbraphila Sanborn & Heath is the first diurnally active cicada identified as a thermoconforming species. The body temperature for activity in H. umbraphila is less than and significantly different from active body temperatures of all other studied species regardless of habitat affiliation. These data suggest that variability in thermal niches within the heterogeneous plant community of the tropical forest environments permits species diversification as species adapt their physiology to function more efficiently at temperatures different from their potential competitors.

  6. Static gas expansion cooler

    DOEpatents

    Guzek, J.C.; Lujan, R.A.

    1984-01-01

    Disclosed is a cooler for television cameras and other temperature sensitive equipment. The cooler uses compressed gas ehich is accelerated to a high velocity by passing it through flow passageways having nozzle portions which expand the gas. This acceleration and expansion causes the gas to undergo a decrease in temperature thereby cooling the cooler body and adjacent temperature sensitive equipment.

  7. The influence of reducing fever on blood oxygen saturation in children.

    PubMed

    Goldberg, Shmuel; Heitner, Shmuel; Mimouni, Francis; Joseph, Leon; Bromiker, Reuben; Picard, Elie

    2018-01-01

    Laboratory-based studies on the oxyhemoglobin dissociation curve (ODC) suggest that high blood temperature decreases the affinity of hemoglobin for oxygen. The aim of the study was to evaluate the influence of pyrexia on oxygen saturation (SpO 2 ) in children presenting to the emergency department. Normoxemic children with body temperature at or above 38.5 °C were included. Patients with a dynamic respiratory disease were excluded. SpO 2 was measured before and after antipyretic treatment. The changes in body temperature and SpO 2 were assessed and compared to the changes predicted from the ODC. Thirty-four children completed the study. Mean temperature at presentation was 39.17 ± 0.549 °C and mean SpO 2 was 96.15 ± 2.21%. The mean decrease in temperature after antipyretic treatment was 1.71 ± 0.67 °C and mean increase in SpO 2 was 0.95 ± 1.76%. Among children in whom pyrexia decreased by 1.5 °C or more, the mean increase in SpO 2 was 1.45 ± 1.57%. The measured increase in SpO 2 was close to the increase anticipated from the ODC. Pyrexia was associated with decreased SpO 2 in normoxemic children. The influence of pyrexia in children with low-normal oxygen saturation is expected to be much higher because of the non-linear shape of the ODC. Physicians treating patients with fever should be aware of this effect, especially in patients with borderline hypoxia. What is Known: • High blood temperature decreases the affinity of oxygen to hemoglobin. • It is not known whether fever would decrease SpO 2 . What is New: • Fever is associated with decreased SpO 2 .

  8. Transient receptor potential melastatin 8 (TRPM8) channels are involved in body temperature regulation

    PubMed Central

    2012-01-01

    Background Transient receptor potential cation channel subfamily M member 8 (TRPM8) is activated by cold temperature in vitro and has been demonstrated to act as a ‘cold temperature sensor’ in vivo. Although it is known that agonists of this ‘cold temperature sensor’, such as menthol and icilin, cause a transient increase in body temperature (Tb), it is not known if TRPM8 plays a role in Tb regulation. Since TRPM8 has been considered as a potential target for chronic pain therapeutics, we have investigated the role of TRPM8 in Tb regulation. Results We characterized five chemically distinct compounds (AMG0635, AMG2850, AMG8788, AMG9678, and Compound 496) as potent and selective antagonists of TRPM8 and tested their effects on Tb in rats and mice implanted with radiotelemetry probes. All five antagonists used in the study caused a transient decrease in Tb (maximum decrease of 0.98°C). Since thermoregulation is a homeostatic process that maintains Tb about 37°C, we further evaluated whether repeated administration of an antagonist attenuated the decrease in Tb. Indeed, repeated daily administration of AMG9678 for four consecutive days showed a reduction in the magnitude of the Tb decrease Day 2 onwards. Conclusions The data reported here demonstrate that TRPM8 channels play a role in Tb regulation. Further, a reduction of magnitude in Tb decrease after repeated dosing of an antagonist suggests that TRPM8’s role in Tb maintenance may not pose an issue for developing TRPM8 antagonists as therapeutics. PMID:22571355

  9. Hypothalamic control of pituitary and adrenal hormones during hypothermia.

    PubMed

    Okuda, C; Miyazaki, M; Kuriyama, K

    1986-01-01

    In order to investigate neuroendocrinological mechanisms of hypothermia, we determined the changes in plasma concentrations of corticosterone (CS), prolactin (PRL), and thyrotropin (TSH), and their correlations with alterations in hypothalamic dopamine (DA) and thyrotropin releasing hormone (TRH), in rats restrained and immersed in a water bath at various temperatures. A graded decrease of body temperature induced a progressive increase in the plasma level of CS, whereas that of PRL showed a drastic decrease. The plasma level of TSH also showed an increase during mild hypothermia (about 35 degrees C), but this increase was not evident during profound hypothermia (below 24 degrees C). The changes in these hormones were readily reversed by rewarming animals. Although DA content in the hypothalamus was not affected, its metabolites, 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA), showed an increase following the decrease of body temperature. Pretreatment of the animals with sulpiride, a D2-antagonist, prevented the hypothermia-induced inhibition of PRL release. Hypothalamic TRH was significantly decreased during mild hypothermia, and it returned to control levels after rewarming. These results suggest that the decrease in plasma PRL induced by hypothermia may be associated with the activation of hypothalamic DA neurons, whereas the increase in plasma TSH during mild hypothermia seems to be caused by the increased release of TRH in the hypothalamus.

  10. Effects of immersion in cool water on lung-exhaled nitric oxide at rest and during exercise

    NASA Technical Reports Server (NTRS)

    Pendergast, D. R.; Krasney, J. A.; DeRoberts, D.; Farhi, L. E. (Principal Investigator)

    1999-01-01

    Lung nitric oxide (NO) has been postulated to relax airway and vascular smooth muscle at rest and during exercise. As a cold environment is a common cause of respiratory distress, lung exhaled NO was measured during skin and core body cooling at rest and during a progressive cycle exercise. Ten healthy male subjects were immersed in water at a water temperature (Tw) which was thermal neutral (35 degrees C) at 30 degrees C Tw, at which only skin temperature is decreased; and at 20 degrees C Tw, at which the core temperature is decreased (0.05 degrees C). At rest, V(O), and V(E) increased while exhaled NO concentration [NO] and the rate of expiration of NO (V(NO)) decreased with decreased Tw. V(O2) and ventilation (V(E)) increased with workload (W) and the values at all Tw were not different, whereas, [NO] decreased with W and the values during exercise were progressively less at all Ws as Tw declined. These results indicate that lung NO output is reduced in a graded fashion during body cooling at rest and during exercise. This suggests that lower lung NO may contribute to airway obstruction in cold environments and NO may contribute to regulation of lung heat and water exchange.

  11. The carotid rete and artiodactyl success.

    PubMed

    Mitchell, G; Lust, A

    2008-08-23

    Since the Eocene, the diversity of artiodactyls has increased while that of perissodactyls has decreased. Reasons given for this contrasting pattern are that the evolution of a ruminant digestive tract and improved locomotion in artiodactyls were adaptively advantageous in the highly seasonal post-Eocene climate. We suggest that evolution of a carotid rete, a structure highly developed in artiodactyls but absent in perissodactyls, was at least as important. The rete confers an ability to regulate brain temperature independently of body temperature. The net effect is that in hot ambient conditions artiodactyls are able to conserve energy and water, and in cold ambient conditions they are able to conserve body temperature. In perissodactyls, brain and body temperature change in parallel and thermoregulation requires abundant food and water to warm/cool the body. Consequently, perissodactyls occupy habitats of low seasonality and rich in food and water, such as tropical forests. Conversely, the increased thermoregulatory flexibility of artiodactyls has facilitated invasion of new adaptive zones ranging from the Arctic Circle to deserts and tropical savannahs.

  12. Optimal body size and energy expenditure during winter: why are voles smaller in declining populations?

    PubMed

    Ergon, Torbjørn; Speakman, John R; Scantlebury, Michael; Cavanagh, Rachel; Lambin, Xavier

    2004-03-01

    Winter is energetically challenging for small herbivores because of greater energy requirements for thermogenesis at a time when little energy is available. We formulated a model predicting optimal wintering body size, accounting for the scaling of both energy expenditure and assimilation to body size, and the trade-off between survival benefits of a large size and avoiding survival costs of foraging. The model predicts that if the energy cost of maintaining a given body mass differs between environments, animals should be smaller in the more demanding environments, and there should be a negative correlation between body mass and daily energy expenditure (DEE) across environments. In contrast, if animals adjust their energy intake according to variation in survival costs of foraging, there should be a positive correlation between body mass and DEE. Decreasing temperature always increases equilibrium DEE, but optimal body mass may either increase or decrease in colder climates depending on the exact effects of temperature on mass-specific survival and energy demands. Measuring DEE with doubly labeled water on wintering Microtus agrestis at four field sites, we found that DEE was highest at the sites where voles were smallest despite a positive correlation between DEE and body mass within sites. This suggests that variation in wintering body mass between sites was due to variation in food quality/availability and not adjustments in foraging activity to varying risks of predation.

  13. Changes in cutaneous and body temperature during and after conditioned fear to context in the rat.

    PubMed

    Vianna, Daniel M L; Carrive, Pascal

    2005-05-01

    Infrared thermography was used to image changes in cutaneous temperature during a conditioned fear response to context. Changes in heart rate, arterial pressure, activity and body (i.p.) temperature were recorded at the same time by radio-telemetry, in addition to freezing immobility. A marked drop in tail and paws temperature (-5.3 and -7.5 degrees C, respectively, down to room temperature), which lasted for the entire duration of the response (30 min), was observed in fear-conditioned rats. In sham-conditioned rats, the drop was on average half the magnitude and duration. In contrast, temperature of the eye, head and back increased (between + 0.8 and + 1.5 degrees C), with no difference between the two groups of rats. There was a similar increase in body temperature although it was slightly higher and delayed in the fear-conditioned animals. Finally, ending of the fear response was associated with a gradual decrease in body temperature and a rebound increase in the temperature of the tail (+ 3.3 degrees C above baseline). This study shows that fear, and to some extent arousal, evokes a strong cutaneous vasoconstriction that is restricted to the tail and paws. This regionally specific reduction in blood flow may be part of a preparatory response to a possible fight and flight to reduce blood loss in the most exposed parts of the rat's body in case of injury. The data also show that the tail is the main part of the body used for dissipating internal heat accumulated during fear once the animal has returned to a safe environment.

  14. Predicting body temperature and activity of adult Polyommatus icarus using neural network models under current and projected climate scenarios.

    PubMed

    Howe, P D; Bryant, S R; Shreeve, T G

    2007-10-01

    We use field observations in two geographic regions within the British Isles and regression and neural network models to examine the relationship between microhabitat use, thoracic temperatures and activity in a widespread lycaenid butterfly, Polyommatus icarus. We also make predictions for future activity under climate change scenarios. Individuals from a univoltine northern population initiated flight with significantly lower thoracic temperatures than individuals from a bivoltine southern population. Activity is dependent on body temperature and neural network models of body temperature are better at predicting body temperature than generalized linear models. Neural network models of activity with a sole input of predicted body temperature (using weather and microclimate variables) are good predictors of observed activity and were better predictors than generalized linear models. By modelling activity under climate change scenarios for 2080 we predict differences in activity in relation to both regional differences of climate change and differing body temperature requirements for activity in different populations. Under average conditions for low-emission scenarios there will be little change in the activity of individuals from central-southern Britain and a reduction in northwest Scotland from 2003 activity levels. Under high-emission scenarios, flight-dependent activity in northwest Scotland will increase the greatest, despite smaller predicted increases in temperature and decreases in cloud cover. We suggest that neural network models are an effective way of predicting future activity in changing climates for microhabitat-specialist butterflies and that regional differences in the thermoregulatory response of populations will have profound effects on how they respond to climate change.

  15. Primate body temperature and sleep responses to lower body positive pressure

    NASA Technical Reports Server (NTRS)

    Edgar, D. M.; Fuller, C. A.

    1984-01-01

    Cephalic fluid shifts, induced by lower body positive pressure (LBPP) are known to influence various physiological systems (i.e., cardiovascular and renal). In earlier experiments, an apparent change in the arousal state of primates in such LBPP conditions was observed. This study was designed to examine the effects of LBPP on arousal state and body temperature level which is normally correlated with sleep. Chair-restrained male squirrel monkeys were exposed to 40 mmHg LBPP for 90-100 minutes between the daytime hours of 13:00-15:00. Each monkey was placed in a specially modified restraint chair to which they were highly trained. Deep body temperature (DBT) was collected from 10 animals. Sleep parameters were obtained from six animals chronically implanted for sleep recording. A video camera was used to observe each animal's apparent state of arousal. LBPP resulted in an approximate 0.9 C decrease in DBT. During video observation, some animals appeared drowsy during LBPP; however, sleep recording revealed no significant changes in the state of arousal. Thus, LBPP is capable of inducing a mild hyperthermia. Further, the mechanisms underlying the observed lowering of body temperature appear to be independent of arousal state.

  16. Ostracod body size trends do not follow either Bergmann's rule or Cope's rule during periods of constant temperature increase

    NASA Astrophysics Data System (ADS)

    Xu, Y.; Seshadri, P.; Amin, V.; Heim, N. A.; Payne, J.

    2013-12-01

    Over time, organisms have adapted to changing environments by evolving to be larger or smaller. Scientists have described body-size trends using two generalized theories. Bergmann's rule states that body size is inversely related to temperature, and Cope's rule establishes an increase over time. Cope's rule has been hypothesized as a temporal manifestation of Bergmann's rule, as the temperature of the Earth has consistently decreased over time and mean body size has increased. However, during times of constant temperature increase, Bergmann's rule and Cope's rule predict opposite effects on body size. Our goal was to clarify this relationship using both accessible proxies of historic temperature - atmospheric CO2 levels and paleo-latitude. We measured ostracod lengths throughout the Paleozoic and Mesozoic eras (using the Catalogue of Ostracoda) and utilized ostracod latitudinal information from the Paleobiology Database. By closely studying body-size trends during four time periods of constant CO2 increase across spectrums of time and latitude, we were able to compare the effects of Cope's and Bergmann's rule. The correlation, p-values, and slopes of each of our graphs showed that there is no clear relationship between body size and each of these rules in times of temperature increase, both latitudinally and temporally. Therefore, both Cope's and Bergmann's rule act on marine ostracods and no rule is dominant, though our results more strongly disprove the latitudinal variation in ostracod size.

  17. A study on the measurement of the core body temperature change after radiofrequency ablation (RFA) through MR temperature mapping

    NASA Astrophysics Data System (ADS)

    Kim, Chang-Bok; Dong, Kyung-Rae; Yu, Young; Chung, Woon-Kwan; Cho, Jae-Hwan; Joo, Kyu-Ji

    2013-09-01

    This study examined the change in the heat generated during radiofrequency ablation (RFA) using a self-manufactured phantom and used magnetic resonance imaging (MRI) to analyze the change in the temperature of the core body and the tissues surrounding the phantom. In this experiment, the image and the phase image were obtained simultaneously from a gradient echo-based sequence using 1.5-Tesla MRI equipment and a 12-channel head coil. The temperature mapping technique was used to calculate the change in temperature. The regions of interest (ROIs) (ROI 1 - ROI 6) were set with a focus on the area where the RFA was performed, according to the temperature distribution, before monitoring the temperature change for one hour in time intervals of five minutes. The results showed that the temperature change in the ROI with time was largest in the ROI 1 and smallest in the ROI 5. In addition, after the RFA procedure, the temperature decreased from the initial value to 0 °C in one hour. The temperature changes in the core body and the surrounding tissues were confirmed by MRI temperature mapping, which is a noninvasive method.

  18. Incubation temperature influences trade-off between structural size and energy reserves in mallard hatchlings.

    PubMed

    Koláčková, Martina; Prokůpková, Ludmila; Albrecht, Tomáš; Hořák, David

    2015-01-01

    The reproductive success of precocial birds depends on investments in clutch formation and incubation. Egg quality strongly affects the phenotypic traits correlated with survival of the hatchling, but parental ability to maintain incubation temperature can also influence hatchling outcomes. The effect of incubation temperature on hatchling phenotype has been widely studied in reptiles but not in birds. The aim of this study was to explore the effects of egg mass and incubation temperature on the incubation period, hatchability, and hatchling phenotype of the mallard (Anas platyrhynchos). Mallard eggs were incubated under six constant incubation temperatures (ranging from 35.0° to 39.0°C). Hatchlings were weighed, and their structural size was measured. Some hatchlings were used for an examination of residual yolk sac mass and basic chemical composition of the yolk-free body. All investigated phenotypic traits except for chemical composition were positively correlated with egg mass. Incubation temperature did not affect hatchling body mass, but increased temperatures led to a decreased yolk-free body mass and structural size of hatchlings and to increased yolk sac mass. Our results suggest that there is a trade-off between the yolk-free body size and energetic reserves in the form of the yolk sac and that this trade-off is modulated by incubation temperature.

  19. The 12-day thermoregulatory metamorphosis of Red-winged Blackbirds (Agelaius phoeniceus).

    PubMed

    Sirsat, Sarah K Goy; Sirsat, Tushar S; Crossley, Janna L; Sotherland, Paul R; Dzialowski, Edward M

    2016-07-01

    We examined development of endothermy in altricial Red-winged Blackbirds (Agelaius phoeniceus) by measuring oxygen consumption [Formula: see text], body temperature and ventilation at ambient temperatures from 35 to 15 °C. Mitochondrial respiration of permeabilized skeletal muscle was also measured from breast (pectoralis) and thigh (femorotibialis) muscles. Animals were studied from the first day of hatching through fledging (12 days post-hatch, dph). Nestling whole-body metabolic rate began to show an endothermic response to cold temperature midway between hatching and fledging. Nestlings less than 5 dph were unable to maintain elevated [Formula: see text] and body temperature when exposed to gradually decreasing temperature, whereas 7 dph nestlings maintained [Formula: see text] until ~25 °C, after which [Formula: see text] decreased. From 10 dph to fledging, animals maintained elevated [Formula: see text] and body temperature when exposed to gradual cooling; full endothermic capacity was achieved. Ventilation followed a similar developmental trend to that of [Formula: see text], with increases in 10 dph fledglings occurring in tidal volume rather than ventilation frequency. LEAK respiration and oxidative phosphorylation (OXPHOS) through complex I of breast muscle mitochondria increased significantly after 3 dph. Expression of avUCP and PCG-1α mRNA increased significantly at 3 dph and remained elevated in both skeletal muscle types. Increased metabolic capacity at the cellular level occurred prior to that of the whole animal. This change in whole animal metabolic capacity increased steadily upon hatching as evidenced by the shift of metabolic rate from an ectothermic to endothermic phenotype and the increase of mitochondrial OXPHOS activity of the shivering muscles of this altricial avian species.

  20. Water temperature, body mass and fasting heat production of pacu (Piaractus mesopotamicus).

    PubMed

    Aguilar, Fredy A A; Cruz, Thaline M P DA; Mourão, Gerson B; Cyrino, José Eurico P

    2017-01-01

    Knowledge on fasting heat production (HEf) of fish is key to develop bioenergetics models thus improving feeding management of farmed species. The core of knowledge on HEf of farmed, neotropical fish is scarce. This study assessed the effect of body mass and water temperature on standard metabolism and fasting heat production of pacu, Piaractus mesopotamicus, an omnivore, Neotropical fresh water characin important for farming and fisheries industries all through South American continent. An automated, intermittent flow respirometry system was used to measure standard metabolic rate (SMR) of pacu (17 - 1,050 g) at five water temperatures: 19, 23, 26, 29 and 33 °C. Mass specific SMR increased with increasing water temperature but decreased as function of body mass. The allometric exponent for scaling HEf was 0.788, and lied in the range recorded for all studied warm-water fish. The recorded van't Hoff factor (Q10) for pacu (2.06) shows the species low response to temperature increases. The model HEf = 0.04643×W0.7882×T1.837 allows to predict HEf (kJ d-1) from body mass (W, kg) and water temperature (T, °C), and can be used in bioenergetical models for the species.

  1. Whole Body Vibration at Different Exposure Frequencies: Infrared Thermography and Physiological Effects

    PubMed Central

    Sonza, Anelise; Robinson, Caroline C.; Achaval, Matilde; Zaro, Milton A.

    2015-01-01

    The aim of this study was to investigate the effects of whole body vibration (WBV) on physiological parameters, cutaneous temperature, tactile sensitivity, and balance. Twenty-four healthy adults (25.3 ± 2.6 years) participated in four WBV sessions. They spent 15 minutes on a vibration platform in the vertical mode at four different frequencies (31, 35, 40, and 44 Hz) with 1 mm of amplitude. All variables were measured before and after WBV exposure. Pressure sensation in five anatomical regions and both feet was determined using Von Frey monofilaments. Postural sway was measured using a force plate. Cutaneous temperature was obtained with an infrared camera. WBV influences the discharge of the skin touch-pressure receptors, decreasing sensitivity at all measured frequencies and foot regions (P ≤ 0.05). Regarding balance, no differences were found after 20 minutes of WBV at frequencies of 31 and 35 Hz. At 40 and 44 Hz, participants showed higher anterior-posterior center of pressure (COP) velocity and length. The cutaneous temperature of the lower limbs decreased during and 10 minutes after WBV. WBV decreases touch-pressure sensitivity at all measured frequencies 10 min after exposure. This may be related to the impaired balance at higher frequencies since these variables have a role in maintaining postural stability. Vasoconstriction might explain the decreased lower limb temperature. PMID:25664338

  2. Core and body surface temperatures of nesting leatherback turtles (Dermochelys coriacea).

    PubMed

    Burns, Thomas J; McCafferty, Dominic J; Kennedy, Malcolm W

    2015-07-01

    Leatherback turtles (Dermochelys coriacea) are the largest species of marine turtle and the fourth most massive extant reptile. In temperate waters they maintain body temperatures higher than surrounding seawater through a combination of insulation, physiological, and behavioural adaptations. Nesting involves physical activity in addition to contact with warm sand and air, potentially presenting thermal challenges in the absence of the cooling effect of water, and data are lacking with which to understand their nesting thermal biology. Using non-contact methods (thermal imaging and infrared thermometry) to avoid any stress-related effects, we investigated core and surface temperature during nesting. The mean±SE core temperature was 31.4±0.05°C (newly emerged eggs) and was not correlated with environmental conditions on the nesting beach. Core temperature of leatherbacks was greater than that of hawksbill turtles (Eretmochelys imbricata) nesting at a nearby colony, 30.0±0.13°C. Body surface temperatures of leatherbacks showed regional variation, the lateral and dorsal regions of the head were warmest while the carapace was the coolest surface. Surface temperature increased during the early nesting phases, then levelled off or decreased during later phases with the rates of change varying between body regions. Body region, behavioural phase of nesting and air temperature were found to be the best predictors of surface temperature. Regional variation in surface temperature were likely due to alterations in blood supply, and temporal changes in local muscular activity of flippers during the different phases of nesting. Heat exchange from the upper surface of the turtle was dominated by radiative heat loss from all body regions and small convective heat gains to the carapace and front flippers. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Behavioral thermal tolerances of free-ranging rattlesnakes (Crotalus oreganus) during the summer foraging season.

    PubMed

    Putman, Breanna J; Clark, Rulon W

    2017-04-01

    Increasing temperature due to climate change is one of the greatest challenges for wildlife worldwide. Behavioral data on free-ranging individuals is necessary to determine at what temperatures animals modify activity as this would determine their capacity to continue to move, forage, and mate under altered thermal regimes. In particular, high temperatures could limit available surface activity time and time spent on fitness-related activities. Conversely, performance, such as feeding rate, can increase with temperature potentially having positive fitness effects. Here, we examine how the hunting behaviors of free-ranging Northern Pacific Rattlesnakes (Crotalus oreganus) associate with air temperature and body temperature. We continuously recorded snakes in the field using videography, capturing behaviors rarely considered in past studies such as movements in and out of refuge and strikes on prey. We found that as mean daily air temperature increased, hunting activity and the likelihood of hunting at night decreased, while the number of movements and distance moved per day increased. Snakes typically retreated to refuge before body temperatures reached 31°C. Body temperatures of snakes hunting on the surface were lower compared to temperatures of non-hunting snakes in refuge in the morning, while this relationship was inverted in the afternoon. Snake body size influenced the disparity of these temperatures. Finally, strike initiation and success occurred across a wide range of body temperatures, indicating hunting performance may not be strongly constrained by temperature. These results on the temperatures at which free-ranging rattlesnakes exhibit fitness-related behaviors could be valuable for understanding their vulnerabilities to future climates. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Numerical analysis of whole-body cryotherapy chamber design improvement

    NASA Astrophysics Data System (ADS)

    Yerezhep, D.; Tukmakova, A. S.; Fomin, V. E.; Masalimov, A.; Asach, A. V.; Novotelnova, A. V.; Baranov, A. Yu

    2018-05-01

    Whole body cryotherapy is a state-of-the-art method that uses cold for treatment and prevention of diseases. The process implies the impact of cryogenic gas on a human body that implements in a special cryochamber. The temperature field in the chamber is of great importance since local integument over-cooling may occur. Numerical simulation of WBC has been carried out. Chamber design modification has been proposed in order to increase the uniformity of the internal temperature field. The results have been compared with the ones obtained for a standard chamber design. The value of temperature gradient formed in the chamber containing curved wall with certain height has been decreased almost twice in comparison with the results obtained for the standard design. The modification proposed may increase both safety and comfort of cryotherapy.

  5. Temperature-induced changes in neuromuscular function: central and peripheral mechanisms.

    PubMed

    Goodman, D; Hancock, P A; Runnings, D W; Brown, S L

    1984-10-01

    Three series of experimental tests were conducted on subjects under both elevated and depressed thermal conditions. Tripartite series consisted of whole-body immersion excepting the head, whole-body immersion excepting the head and response limb, and immersion of the discrete-response limb. Measures of physiological and behavioural responses were made at sequential .4 degrees C changes during whole-body immersions and approximately 5 degrees C changes of water temperature during the immersion of a limb only. Results suggested that velocity of nerve conduction decreased with thermal depression. Premotor, motor, simple, and choice reaction times varied differentially as a function of the hot and cold conditions. Implications of these differential effects on neuromuscular function are examined with respect to person-machine performance in artificially induced or naturally occurring extremes of ambient temperature.

  6. The effects of amino acid infusions on core body temperature during the perioperative period: a systematic review.

    PubMed

    Zhou, Bo; Wang, Gang; Yang, Shuofei; He, Xiandi; Liu, Yun

    2014-12-01

    The aim of this systematic review was to determine the effect of amino acid infusions on core body temperature and shivering. We searched the PubMed, EMBASE, CINAHL, and Cochrane Register of Controlled Trials databases to identify randomized controlled trials that met the inclusion criteria. A total of 11 eligible trials involving 506 participants were identified. Amino acid infusions were associated with shorter periods of mechanical ventilation and hospitalization and less perioperative shivering, mechanical intubation, and hospitalization in surgical patients without hepatic, renal, or severe metabolic disorders. It is recommended that infusions are warmed before administration to avoid further decrease in core body temperature. Copyright © 2014 American Society of PeriAnesthesia Nurses. Published by Elsevier Inc. All rights reserved.

  7. Climate change effects on macrofaunal litter decomposition: the interplay of temperature, body masses and stoichiometry.

    PubMed

    Ott, David; Rall, Björn C; Brose, Ulrich

    2012-11-05

    Macrofauna invertebrates of forest floors provide important functions in the decomposition process of soil organic matter, which is affected by the nutrient stoichiometry of the leaf litter. Climate change effects on forest ecosystems include warming and decreasing litter quality (e.g. higher C : nutrient ratios) induced by higher atmospheric CO(2) concentrations. While litter-bag experiments unravelled separate effects, a mechanistic understanding of how interactions between temperature and litter stoichiometry are driving decomposition rates is lacking. In a laboratory experiment, we filled this void by quantifying decomposer consumption rates analogous to predator-prey functional responses that include the mechanistic parameters handling time and attack rate. Systematically, we varied the body masses of isopods, the environmental temperature and the resource between poor (hornbeam) and good quality (ash). We found that attack rates increased and handling times decreased (i) with body masses and (ii) temperature. Interestingly, these relationships interacted with litter quality: small isopods possibly avoided the poorer resource, whereas large isopods exhibited increased, compensatory feeding of the poorer resource, which may be explained by their higher metabolic demands. The combination of metabolic theory and ecological stoichiometry provided critically important mechanistic insights into how warming and varying litter quality may modify macrofaunal decomposition rates.

  8. Effects of acute temperature change, confinement and housing on plasma corticosterone in water snakes, Nerodia sipedon (Colubridae: Natricinae).

    PubMed

    Sykes, Kyle Lea; Klukowski, Matthew

    2009-03-01

    Body temperature affects many aspects of reptilian behavior and physiology, but its effect on hormonal secretion has been little studied, especially in snakes. Major objectives of this study were to determine if acute changes in body temperature during confinement influenced plasma corticosterone levels and if initial body temperatures upon capture in the field were related to baseline corticosterone levels in water snakes (Nerodia sipedon). Water snakes were bled upon capture in the field and after one hour of confinement in a cooled, control, or heated incubator. Since little is known about the potential metabolic changes in response to stress in reptiles, plasma triglyceride levels were also measured. Upon completion of the field study, snakes were housed for 5-8 days without food to determine the effect of chronic stress on both corticosterone and triglyceride levels. Plasma corticosterone concentrations were measured using enzyme-linked immunosorbant assay (ELISA) and plasma triglycerides were determined enzymatically. In the field, experimental alterations of body temperature during confinement had no effect on corticosterone levels. Similarly, there was no correlation between initial body temperature and baseline plasma corticosterone concentrations. However, post-confinement corticosterone levels were approximately three-times greater in females than males. Plasma triglyceride levels were not affected by temperature treatment, confinement, or sex. Compared to field values, both baseline and post-confinement corticosterone levels were elevated after the chronic stress of short-term laboratory housing but triglyceride levels decreased. Overall, these results indicate that sex but not body temperature has a major influence on the adrenocortical stress response in Nerodia sipedon.

  9. Lipid-Emulsion Propofol Less Attenuates the Regulation of Body Temperature than Micro-Emulsion Propofol or Sevoflurane in the Elderly

    PubMed Central

    Jeong, Cheol Won; Ju, Jin; Lee, Dae Wook; Lee, Seong Heon

    2012-01-01

    Purpose Anesthesia and surgery commonly cause hypothermia, and this caused by a combination of anesthetic-induced impairment of thermoregulatory control, a cold operation room environment and other factors that promote heat loss. All the general anesthetics markedly impair normal autonomic thermoregulatory control. The aim of this study is to evaluate the effect of two different types of propofol versus inhalation anesthetic on the body temperature. Materials and Methods In this randomized controlled study, 36 patients scheduled for elective laparoscopic gastrectomy were allocated into three groups; group S (sevoflurane, n=12), group L (lipid-emulsion propofol, n=12) and group M (micro-emulsion propofol, n=12). Anesthesia was maintained with typical doses of the study drugs and all the groups received continuous remifentanil infusion. The body temperature was continuously monitored after the induction of general anesthesia until the end of surgery. Results The body temperature was decreased in all the groups. The temperature gradient of each group (group S, group L and group M) at 180 minutes from induction of anesthesia was 2.5±0.6℃, 1.6±0.5℃ and 2.3±0.6℃, respectively. The body temperature of group L was significantly higher than that of group S and group M at 30 minutes and 75 minute after induction of anesthesia, respectively. There were no temperature differences between group S and group M. Conclusion The body temperature is maintained at a higher level in elderly patients anesthetized with lipid-emulsion propofol. PMID:22187253

  10. Circadian variability of body temperature responses to methamphetamine.

    PubMed

    Behrouzvaziri, Abolhassan; Zaretskaia, Maria V; Rusyniak, Daniel E; Zaretsky, Dmitry V; Molkov, Yaroslav I

    2018-01-01

    Vital parameters of living organisms exhibit circadian rhythmicity. Although rats are nocturnal animals, most of the studies involving rats are performed during the day. The objective of this study was to examine the circadian variability of the body temperature responses to methamphetamine. Body temperature was recorded in male Sprague-Dawley rats that received intraperitoneal injections of methamphetamine (Meth, 1 or 5 mg/kg) or saline at 10 AM or at 10 PM. The baseline body temperature at night was 0.8°C higher than during the day. Both during the day and at night, 1 mg/kg of Meth induced monophasic hyperthermia. However, the maximal temperature increase at night was 50% smaller than during the daytime. Injection of 5 mg/kg of Meth during the daytime caused a delayed hyperthermic response. In contrast, the same dose at night produced responses with a tendency toward a decrease of body temperature. Using mathematical modeling, we previously showed that the complex dose dependence of the daytime temperature responses to Meth results from an interplay between inhibitory and excitatory drives. In this study, using our model, we explain the suppression of the hyperthermia in response to Meth at night. First, we found that the baseline activity of the excitatory drive is greater at night. It appears partially saturated and thus is additionally activated by Meth to a lesser extent. Therefore, the excitatory component causes less hyperthermia or becomes overpowered by the inhibitory drive in response to the higher dose. Second, at night the injection of Meth results in reduction of the equilibrium body temperature, leading to gradual cooling counteracting hyperthermia.

  11. Lipid-emulsion propofol less attenuates the regulation of body temperature than micro-emulsion propofol or sevoflurane in the elderly.

    PubMed

    Jeong, Cheol Won; Ju, Jin; Lee, Dae Wook; Lee, Seong Heon; Yoon, Myung Ha

    2012-01-01

    Anesthesia and surgery commonly cause hypothermia, and this caused by a combination of anesthetic-induced impairment of thermoregulatory control, a cold operation room environment and other factors that promote heat loss. All the general anesthetics markedly impair normal autonomic thermoregulatory control. The aim of this study is to evaluate the effect of two different types of propofol versus inhalation anesthetic on the body temperature. In this randomized controlled study, 36 patients scheduled for elective laparoscopic gastrectomy were allocated into three groups; group S (sevoflurane, n=12), group L (lipid-emulsion propofol, n=12) and group M (micro-emulsion propofol, n=12). Anesthesia was maintained with typical doses of the study drugs and all the groups received continuous remifentanil infusion. The body temperature was continuously monitored after the induction of general anesthesia until the end of surgery. The body temperature was decreased in all the groups. The temperature gradient of each group (group S, group L and group M) at 180 minutes from induction of anesthesia was 2.5 ± 0.6°C, 1.6 ± 0.5°C and 2.3 ± 0.6°C, respectively. The body temperature of group L was significantly higher than that of group S and group M at 30 minutes and 75 minute after induction of anesthesia, respectively. There were no temperature differences between group S and group M. The body temperature is maintained at a higher level in elderly patients anesthetized with lipid-emulsion propofol.

  12. Cerebral autoregulation during whole-body hypothermia and hyperthermia stimulus.

    PubMed

    Doering, T J; Aaslid, R; Steuernagel, B; Brix, J; Niederstadt, C; Breull, A; Schneider, B; Fischer, G C

    1999-01-01

    The purpose of the study contained herein was to investigate the effects of old traditional physiotherapeutic treatments on cerebral autoregulation. Treatment consisted of complete body immersion in cold or warm water baths. Fifteen volunteers were investigated by means of transcranial Doppler sonography and a servo-controlled noninvasive device for blood pressure measuring. One group of 8 volunteers (mean age, 27.2+/-3.5 yr; gender, 3 females/5 males) was subjected to cold baths of 22 degrees C for 20 min Another group of 7 volunteers (mean age, 52.1+/-8.5 yr; gender, 4 females/3 males) took hyperthermic baths at rising water temperatures from 36 degrees to 42 degrees C, increased by 1 degree C every 5 min. Each volunteer in both groups underwent autoregulation tests two to four times before, during, and after the thermic bath. Dynamic autoregulation was measured by the response of cerebral blood flow velocity to a transient decrease of the mean arterial blood pressure, induced by rapid deflation of thigh cuffs. The autoregulation index, i.e., a measure of the speed of change of cerebral autoregulation, was used to quantify the response. Further parameters were core temperature, blood pressure (mm Hg) and CO2et. During hypothermic baths, core temperature decreased by 0.3 degrees C (P = 0.001), measured between preliminary phase and the end of the bath; the autoregulation index decreased significantly (P < 0.05) from 5.3 before the bath to 4.25 during the bath. During hyperthermic baths, the autoregulation index increased from 6.0 to 7.5 and 8.9 (P < 0.001), with an increase of core temperature of 0.4 degrees C. The main cerebral autoregulation system is dependent on changes of core temperature, provoked by hypothermic or hyperthermic whole-body thermostimulus. Application of hyperthermic baths increased the autoregulation index, and hypothermic baths decreased the autoregulation index. Further studies are needed to prove the positive effects of thermo-stimulating water applications on cerebral hemodynamics in patients with cerebral diseases.

  13. Modification of Surface Density of a Porous Medium

    NASA Technical Reports Server (NTRS)

    Stackpoole, Margaret M. (Inventor); Espinoza, Christian (Inventor)

    2016-01-01

    A method for increasing density of a region of a porous, phenolic bonded ("PPB") body adjacent to a selected surface to increase failure tensile strength of the adjacent region and/or to decrease surface recession at elevated temperatures. When the surface-densified PPB body is brought together with a substrate, having a higher failure tensile strength, to form a composite body with a PPB body/substrate interface, the location of tensile failure is moved to a location spaced apart from the interface, the failure tensile strength of the PPB body is increased, and surface recession of the material at elevated temperature is reduced. The method deposits and allows diffusion of a phenolic substance on the selected surface. The PPB body and the substrate may be heated and brought together to form the composite body. The phenolic substance is allowed to diffuse into the PPB body, to volatilize and to cure, to provide a processed body with an increased surface density.

  14. Bolus oral or continuous intestinal amino acids reduce hypothermia during anesthesia in rats.

    PubMed

    Imoto, Akinobu; Yokoyama, Takeshi; Suwa, Kunio; Yamasaki, Fumiyasu; Yatabe, Tomoaki; Yokoyama, Reiko; Yamashita, Koichi; Selldén, Eva

    2010-01-01

    We hypothesized that, with oral or intestinal administration of amino acids (AA), we may reduce hypothermia during general anesthesia as effectively as with intravenous AA. We, therefore, examined the effect of bolus oral and continuous intestinal AA in preventing hypothermia in rats. Male Wistar rats were anesthetized with sevoflurane for induction and with propofol for maintenance. In the first experiment, 30 min before anesthesia, rats received one bolus 42 mL/kg of AA solution (100 g/L) or saline orally. Then for the next 3 h during anesthesia, they received 14 mL/kg/h of AA and/or saline intravenously. They were in 4 groups: I-A/A, both AA; I-A/S, oral AA and intravenous saline; I-S/A, oral saline and intravenous AA; I-S/S, both saline. In the second experiment, rats received 14 mL/kg/h duodenal AA and/or saline for 2 h. They were in 3 groups: II-A/S, duodenal AA and intravenous saline; II-S/A, duodenal saline and intravenous AA; II-S/S, both saline. Core body temperature was measured rectally. After the second experiment, serum electrolytes were examined. In both experiments, rectal temperature decreased in all groups during anesthesia. However, the decrease in rectal temperature was significantly less in groups receiving AA than in groups receiving only saline. In the second experiment, although there was no significant difference in the decrease in body temperature between II-A/S and II-S/A, Na(+) concentration was significantly lower in II-S/A. In conclusion, AA, administered orally or intestinally, tended to keep the body temperature stable during anesthesia without disturbing electrolyte balance. These results suggest that oral or enteral AA may be useful for prevention of hypothermia in patients.

  15. Dedicated tool to assess the impact of a rhetorical task on human body temperature.

    PubMed

    Koprowski, Robert; Wilczyński, Sławomir; Martowska, Katarzyna; Gołuch, Dominik; Wrocławska-Warchala, Emilia

    2017-10-01

    Functional infrared thermal imaging is a method widely used in medicine, including analysis of the mechanisms related to the effect of emotions on physiological processes. The article shows how the body temperature may change during stress associated with performing a rhetorical task and proposes new parameters useful for dynamic thermal imaging measurements MATERIALS AND METHODS: 29 healthy male subjects were examined. They were given a rhetorical task that induced stress. Analysis and processing of collected body temperature data in a spatial resolution of 256×512pixels and a temperature resolution of 0.1°C enabled to show the dynamics of temperature changes. This analysis was preceded by dedicated image analysis and processing methods RESULTS: The presented dedicated algorithm for image analysis and processing allows for fully automated, reproducible and quantitative assessment of temperature changes and time constants in a sequence of thermal images of the patient. When performing the rhetorical task, the temperature rose by 0.47±0.19°C in 72.41% of the subjects, including 20.69% in whom the temperature decreased by 0.49±0.14°C after 237±141s. For 20.69% of the subjects only a drop in temperature was registered. For the remaining 6.89% of the cases, no temperature changes were registered CONCLUSIONS: The performance of the rhetorical task by the subjects causes body temperature changes. The ambiguous temperature response to the given stress factor indicates the complex mechanisms responsible for regulating stressful situations. Stress associated with the examination itself induces body temperature changes. These changes should always be taken into account in the analysis of infrared data. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Core Body and Skin Temperature in Type 1 Narcolepsy in Daily Life; Effects of Sodium Oxybate and Prediction of Sleep Attacks

    PubMed Central

    van der Heide, Astrid; Werth, Esther; Donjacour, Claire E.H.M.; Reijntjes, Robert H.A.M.; Lammers, Gert Jan; Van Someren, Eus J.W.; Baumann, Christian R.; Fronczek, Rolf

    2016-01-01

    Study Objectives: Previous laboratory studies in narcolepsy patients showed altered core body and skin temperatures, which are hypothesised to be related to a disturbed sleep wake regulation. In this ambulatory study we assessed temperature profiles in normal daily life, and whether sleep attacks are heralded by changes in skin temperature. Furthermore, the effects of three months of treatment with sodium oxybate (SXB) were investigated. Methods: Twenty-five narcolepsy patients and 15 healthy controls were included. Core body, proximal and distal skin temperatures, and sleep-wake state were measured simultaneously for 24 hours in ambulatory patients. This procedure was repeated in 16 narcolepsy patients after at least 3 months of stable treatment with SXB. Results: Increases in distal skin temperature and distal-to-proximal temperature gradient (DPG) strongly predicted daytime sleep attacks (P < 0.001). As compared to controls, patients had a higher proximal and distal skin temperature in the morning, and a lower distal skin temperature during the night (all P < 0.05). Furthermore, they had a higher core body temperature during the first part of the night (P < 0.05), which SXB decreased (F = 4.99, df = 1, P = 0.03) to a level similar to controls. SXB did not affect skin temperature. Conclusions: This ambulatory study demonstrates that daytime sleep attacks were preceded by clear changes in distal skin temperature and DPG. Furthermore, changes in core body and skin temperature in narcolepsy, previously only studied in laboratory settings, were partially confirmed. Treatment with SXB resulted in a normalisation of the core body temperature profile. Future studies should explore whether predictive temperature changes can be used to signal or even prevent sleep attacks. Citation: van der Heide A, Werth E, Donjacour CE, Reijntjes RH, Lammers GJ, Van Someren EJ, Baumann CR, Fronczek R. Core body and skin temperature in type 1 narcolepsy in daily life; effects of sodium oxybate and prediction of sleep attacks. SLEEP 2016;39(11):1941–1949. PMID:27568803

  17. Various anti-motion sickness drugs and core body temperature changes.

    PubMed

    Cheung, Bob; Nakashima, Ann M; Hofer, Kevin D

    2011-04-01

    Blood flow changes and inactivity associated with motion sickness appear to exacerbate the rate of core temperature decrease during subsequent body cooling. We investigated the effects of various classes of anti-motion sickness drugs on core temperature changes. There were 12 healthy male and female subjects (20-35 yr old) who were given selected classes of anti-motion sickness drugs prior to vestibular Coriolis cross coupling induced by graded yaw rotation and periodic pitch-forward head movements in the sagittal plane. All subjects were then immersed in water at 18 degrees C for a maximum of 90 min or until their core temperature reached 35 degrees C. Double-blind randomized trials were administered, including a placebo, a non-immersion control with no drug, and six anti-motion sickness drugs: meclizine, dimenhydrinate, chlorpheniramine, promethazine + dexamphetamine, promethazine + caffeine, and scopolamine + dexamphetamine. A 7-d washout period was observed between trials. Core temperature and the severity of sickness were monitored throughout each trial. A repeated measures design was performed on the severity of sickness and core temperature changes prior to motion provocation, immediately after the motion sickness end point, and throughout the period of cold-water immersion. The most effective anti-motion sickness drugs, promethazine + dexamphetamine (with a sickness score/duration of 0.65 +/- 0.17) and scopolamine + dexamphetamine (with a sickness score/duration of 0.79 +/- 0.17), significantly attenuated the decrease in core temperature. The effect of this attenuation was lower in less effective drugs. Our results suggest that the two most effective anti-motion sickness drugs are also the most effective in attenuating the rate of core temperature decrease.

  18. Loss of histaminergic modulation of thermoregulation and energy homeostasis in obese mice.

    PubMed

    Sethi, J; Sanchez-Alavez, M; Tabarean, I V

    2012-08-16

    Histamine acts centrally to increase energy expenditure and reduce body weight by mechanisms not fully understood. It has been suggested that in the obese state hypothalamic histamine signaling is altered. Previous studies have also shown that histamine acting in the preoptic area controls thermoregulation. We aimed to study the influence of preoptic histamine on body temperature and energy homeostasis in control and obese mice. Activating histamine receptors in the preoptic area by increasing the concentration of endogenous histamine or by local injection of specific agonists induced an elevation of core body temperature and decreased respiratory exchange ratio (RER). In addition, the food intake was significantly decreased. The hyperthermic effect was associated with a rapid increase in mRNA expression of uncoupling proteins in thermogenic tissues, the most pronounced being that of uncoupling protein (UCP) 1 in brown adipose tissue and of UCP2 in white adipose tissue. In diet-induced obese mice histamine had much diminished hyperthermic effects as well as reduced effect on RER. Similarly, the ability of preoptic histamine signaling to increase the expression of uncoupling proteins was abolished. We also found that the expression of mRNA encoding the H1 receptor subtype in the preoptic area was significantly lower in obese animals. These results indicate that histamine signaling in the preoptic area modulates energy homeostasis by regulating body temperature, metabolic parameters and food intake and that the obese state is associated with a decrease in neurotransmitter's influence. Copyright © 2012 IBRO. Published by Elsevier Ltd. All rights reserved.

  19. Extremely Low Birth Weight Preterm Infants Lack Vasomotor Response in Relationship to Cold Body Temperatures at Birth

    PubMed Central

    Knobel, Robin B.; Holditch-Davis, Diane; Schwartz, Todd A.; Wimmer, John E.

    2009-01-01

    Objective This study evaluated peripheral vasoconstriction in ELBW infants when body temperature decreased during the first 12-hours of life. Design An exploratory, within-subjects design with 10 ELBW infants. Abdominal and foot temperatures were measured every minute. Peripheral vasoconstriction (abdominal > peripheral temperature by 2° C) and abdominal-peripheral temperature difference were also evaluated. Results Abdominal and peripheral temperatures were significantly correlated within each infant. One 880 g infant exhibited isolated peripheral vasoconstriction; a 960 g infant had abdominal temperatures more than 1° C higher than peripheral temperatures. Eight smaller infants exhibited no peripheral vasoconstriction and spent most of their observations with peripheral greater than abdominal temperatures. In 8 infants, mean temperature difference was significantly higher when abdominal temperature was less than 36.5° C. Conclusion Most ELBW infants did not exhibit peripheral vasoconstriction during their first 12-hours of life, despite low temperatures. ELBW infants’ vasomotor control may be immature during this period. PMID:19626030

  20. Order-picking in deep cold--physiological responses of younger and older females. Part 2: body core temperature and skin surface temperature.

    PubMed

    Baldus, Sandra; Kluth, Karsten; Strasser, Helmut

    2012-01-01

    So far, it was unclear to what extent working in deep cold-storage depots has an influence on female order-pickers body core temperature and skin surface temperature considering different age groups. Physiological effects of order-picking in a chill room (+3°C) and cold store (-24°C) were examined on 30 female subjects (Ss), classified in two age groups (20- to 35- year-olds and 40- to 65-year-olds). The body core temperature was taken every 15 min at the tympanum and the skin surface temperature was recorded continuously at seven different positions. Working in the chill room induced a decrease of the body core temperature up to 0.5K in comparison to the value at the outset for both age groups which could be compensated by all Ss during the breaks. Working in the cold store caused a decline up to 1.1K for the younger Ss and 1.3K for the older Ss. A complete warming-up during the breaks was often not possible. Regarding the skin surface temperature, working in the chill room can be considered as unproblematic, whereas significantly lower temperatures at nose, fingers and toes, associated with substantial negative subjective sensations, were recorded while working in the cold store.

  1. Head Exposure to Cold during Whole-Body Cryostimulation: Influence on Thermal Response and Autonomic Modulation.

    PubMed

    Louis, Julien; Schaal, Karine; Bieuzen, François; Le Meur, Yann; Filliard, Jean-Robert; Volondat, Marielle; Brisswalter, Jeanick; Hausswirth, Christophe

    2015-01-01

    Recent research on whole-body cryotherapy has hypothesized a major responsibility of head cooling in the physiological changes classically reported after a cryostimulation session. The aim of this experiment was to verify this hypothesis by studying the influence of exposing the head to cold during whole-body cryostimulation sessions, on the thermal response and the autonomic nervous system (ANS). Over five consecutive days, two groups of 10 participants performed one whole-body cryostimulation session daily, in one of two different systems; one exposing the whole-body to cold (whole-body cryostimulation, WBC), and the other exposing the whole-body except the head (partial-body cryostimulation, PBC).10 participants constituted a control group (CON) not receiving any cryostimulation. In order to isolate the head-cooling effect on recorded variables, it was ensured that the WBC and PBC systems induced the same decrease in skin temperature for all body regions (mean decrease over the 5 exposures: -8.6°C ± 1.3°C and -8.3 ± 0.7°C for WBC and PBC, respectively), which persisted up to 20-min after the sessions (P20). The WBC sessions caused an almost certain decrease in tympanic temperature from Pre to P20 (-0.28 ± 0.11°C), while it only decreased at P20 (-0.14 ± 0.05°C) after PBC sessions. Heart rate almost certainly decreased after PBC (-8.6%) and WBC (-12.3%) sessions. Resting vagal-related heart rate variability indices (the root-mean square difference of successive normal R-R intervals, RMSSD, and high frequency band, HF) were very likely to almost certainly increased after PBC (RMSSD:+49.1%, HF: +123.3%) and WBC (RMSSD: +38.8%, HF:+70.3%). Plasma norepinephrine concentration was likely increased in similar proportions after PBC and WBC, but only after the first session. Both cryostimulation techniques stimulated the ANS with a predominance of parasympathetic tone activation from the first to the fifth session and in slightly greater proportion with WBC than PBC. The main result of this study indicates that the head exposure to cold during whole-body cryostimulation may not be the main factor responsible for the effects of cryostimulation on the ANS.

  2. Head Exposure to Cold during Whole-Body Cryostimulation: Influence on Thermal Response and Autonomic Modulation

    PubMed Central

    Louis, Julien; Schaal, Karine; Bieuzen, François; Le Meur, Yann; Filliard, Jean-Robert; Volondat, Marielle; Brisswalter, Jeanick; Hausswirth, Christophe

    2015-01-01

    Recent research on whole-body cryotherapy has hypothesized a major responsibility of head cooling in the physiological changes classically reported after a cryostimulation session. The aim of this experiment was to verify this hypothesis by studying the influence of exposing the head to cold during whole-body cryostimulation sessions, on the thermal response and the autonomic nervous system (ANS). Over five consecutive days, two groups of 10 participants performed one whole-body cryostimulation session daily, in one of two different systems; one exposing the whole-body to cold (whole-body cryostimulation, WBC), and the other exposing the whole-body except the head (partial-body cryostimulation, PBC).10 participants constituted a control group (CON) not receiving any cryostimulation. In order to isolate the head-cooling effect on recorded variables, it was ensured that the WBC and PBC systems induced the same decrease in skin temperature for all body regions (mean decrease over the 5 exposures: -8.6°C±1.3°C and -8.3±0.7°C for WBC and PBC, respectively), which persisted up to 20-min after the sessions (P20). The WBC sessions caused an almost certain decrease in tympanic temperature from Pre to P20 (-0.28 ±0.11°C), while it only decreased at P20 (-0.14±0.05°C) after PBC sessions. Heart rate almost certainly decreased after PBC (-8.6%) and WBC (-12.3%) sessions. Resting vagal-related heart rate variability indices (the root-mean square difference of successive normal R-R intervals, RMSSD, and high frequency band, HF) were very likely to almost certainly increased after PBC (RMSSD:+49.1%, HF: +123.3%) and WBC (RMSSD: +38.8%, HF:+70.3%). Plasma norepinephrine concentration was likely increased in similar proportions after PBC and WBC, but only after the first session. Both cryostimulation techniques stimulated the ANS with a predominance of parasympathetic tone activation from the first to the fifth session and in slightly greater proportion with WBC than PBC. The main result of this study indicates that the head exposure to cold during whole-body cryostimulation may not be the main factor responsible for the effects of cryostimulation on the ANS. PMID:25915642

  3. Oral administration of γ-aminobutyric acid affects heat production in a hot environment in resting humans.

    PubMed

    Miyazawa, Taiki; Kawabata, Takashi; Okazaki, Kazunobu; Suzuki, Takashi; Imai, Daiki; Hamamoto, Takeshi; Matsumura, Shinya; Miyagawa, Toshiaki

    2012-02-29

    Central administration of γ-amino butyric acid (GABA) induces lower body temperature in animals in hot ambient air. However, it is still unknown whether oral GABA administration affects temperature regulation at rest in a hot environment in humans. Therefore, in the present study, we specifically hypothesized that systemic administration of GABA in humans would induce hypothermia in a hot environment and that this response would be observed in association with decreased heat production. Eight male participants drank a 200-ml sports drink with 1 g of GABA (trial G) or without GABA (trial C), then rested for 30 minutes in a sitting position in a hot environment (ambient air temperature 33°C, relative humidity 50%). We found that changes in esophageal temperature from before drinking the sports drink were lower in trial G than in trial C (-0.046 ± 0.079°C vs 0.001 ± 0.063°C; P < 0.05), with lower heat production calculated by oxygen consumption (41 ± 5 W/m2 vs 47 ± 8 W/m2; P < 0.05). In this study, we have demonstrated that a single oral administration of GABA induced a larger decrease in body core temperature compared to a control condition during rest in a hot environment and that this response was concomitant with a decrease in total heat production.

  4. Adenosine A3 receptors regulate heart rate, motor activity and body temperature

    PubMed Central

    Yang, Jiangning; Wang, Yingqing; Garcia-Roves, Pablo; Björnholm, Marie; Fredholm, Bertil B.

    2010-01-01

    Aim We wanted to examine the phenotype of mice that lack the adenosine A3 receptor (A3R). Methods We examined the heart rate, body temperature and locomotion continuously by telemetry over several days. In addition the effect of the adenosine analogue R - N6- phenylisopropyl-adenosine (R-PIA) was examined. In addition, we examined heat production and food intake. Results We found that the marked diurnal variation in activity, heart rate and body temperature, with markedly higher values at night than during day time, was reduced in the A3R knockout mice. Surprisingly, the reduction in heart rate, activity and body temperature seen after injection of R-PIA in wild type mice was virtually eliminated in the A3R knock-out mice. The marked reduction in activity was associated with a decreased heat production, as expected. However, the A3R knock-out mice, surprisingly, had a higher food intake but no difference in body weight compared to wild type mice. Conclusions The mice lacking adenosine A3 receptors exhibit a surprisingly clear phenotype with changes in e.g. diurnal rhythm and temperature regulation. Whether these effects are due to a physiological role of A3 receptors in these processes or if they represent a role in development remains to be elucidated. PMID:20121716

  5. Anthocyanin-rich Aronia melanocarpa extract improves body temperature maintenance in healthy women with a cold constitution.

    PubMed

    Sonoda, Keisuke; Aoi, Wataru; Iwata, Tomoaki; Li, Yanmei

    2013-01-01

    Specific anthocyanin-rich dietary factors have been shown to improve metabolic functions associated with thermogenesis in animal studies. Aronia melanocarpa, commonly known as wild chokeberry, contains a high level of anthocyanin that would be expected to maintain body temperature through thermogenesis. We here investigated the effects of Aronia melanocarpa extracts on body temperature and peripheral blood flow in healthy women with a cold constitution. A pre/post comparison trial was performed in 11 women with a cold constitution, who were taking Aronia melanocarpa extracts (150 mg/day) for 4 weeks. Physiological and biochemical parameters, along with psychological tests were examined. The subjects' body surface temperature was significantly higher in the post-trial than in the pre-trial. In psychological tests, factors related to cold were significantly improved by Aronia intake. On the other hand, peripheral blood flow was not affected by Aronia supplementation. Plasma noradrenalin level was significantly elevated by Aronia intake, and subjects with a higher level of 8-hydroxy-2'-deoxyguanosine in the pre-trial showed decreased levels in the post-trial. These data suggest that dietary Aronia melanocarpa extract improves the maintenance of body temperature in healthy women with a cold constitution, which may be mediated by noradrenalin and oxidative stress levels.

  6. A physiological approach to quantifying thermal habitat quality for redband rainbow trout (Oncorhynchus mykiss gairdneri) in the south Fork John Day River, Oregon

    USGS Publications Warehouse

    Feldhaus, J.W.; Heppell, S.A.; Li, H.; Mesa, M.G.

    2010-01-01

    We examined tissue-specific levels of heat shock protein 70 (hsp70) and whole body lipid levels in juvenile redband trout (Oncorhynchus mykiss gairdneri) from the South Fork of the John Day River (SFJD), Oregon, with the goal of determining if these measures could be used as physiological indicators of thermal habitat quality for juvenile redband trout. Our objectives were to determine the hsp70 induction temperature in liver, fin, and white muscle tissue and characterize the relation between whole body lipids and hsp70 for fish in the SFJD. We found significant increases in hsp70 levels between 19 and 22??C in fin, liver, and white muscle tissue. Maximum hsp70 levels in liver, fin, and white muscle tissue occurred when mean weekly maximum temperatures (MWMT) exceeded 20-22??C. In general, the estimated hsp70 induction temperature for fin and white muscle tissue was higher than liver tissue. Whole body lipid levels began to decrease when MWMT exceeded 20. 4??C. There was a significant interaction between temperature and hsp70 in fin and white muscle tissue, but not liver tissue. Collectively, these results suggest that increased hsp70 levels in juvenile redband trout are symptomatic of thermal stress, and that energy storage capacity decreases with this stress. The possible decrease in growth potential and fitness for thermally stressed individuals emphasizes the physiological justification for thermal management criteria in salmon-bearing streams. ?? Springer Science+Business Media B.V. 2010.

  7. Body mass, composition, and food intake in rabbits during altered acceleration fields

    NASA Technical Reports Server (NTRS)

    Katovich, M. J.; Smith, A. H.

    1978-01-01

    Mature male Polish rabbits were subjected to varying gravitational fields in an animal centrifuge in order to evaluate the effects of acceleration and deacceleration on body mass, body composition, and food intake. The acceleration field intensity was increased by 0.25-G increments to a maximum of 2.5 G at intervals which permitted physiological adaptation at each field. Control animals of the same age were maintained at earth gravity under identical conditions of constant-light environment at a room temperature of 23 + or - 5 C. It is shown that increasing the acceleration-field intensity leads to a decrease in body mass. The regulated nature of this decreased body mass is tested by the response to an additional three-day fasting of animals adapted physiologically to 2.5 G. Ad libitum food intake per kg body mass per day tends to increase in chronically accelerated animals above 1.75 G. Increase in water content in centrifuged animals after physiological adaptation to 2.5 G is the result of decreasing body fat. Body mass and food intake returned to the precentrifuged levels of control animals within six weeks after cessation of centrifugation.

  8. Thermal Adaptation and Diversity in Tropical Ecosystems: Evidence from Cicadas (Hemiptera, Cicadidae)

    PubMed Central

    Sanborn, Allen F.; Heath, James E.; Phillips, Polly K.; Heath, Maxine S.; Noriega, Fernando G.

    2011-01-01

    The latitudinal gradient in species diversity is a central problem in ecology. Expeditions covering approximately 16°54′ of longitude and 21°4′ of latitude and eight Argentine phytogeographic regions provided thermal adaptation data for 64 species of cicadas. We test whether species diversity relates to the diversity of thermal environments within a habitat. There are general patterns of the thermal response values decreasing in cooler floristic provinces and decreasing maximum potential temperature within a habitat except in tropical forest ecosystems. Vertical stratification of the plant communities leads to stratification in species using specific layers of the habitat. There is a decrease in thermal tolerances in species from the understory communities in comparison to middle level or canopy fauna. The understory Herrera umbraphila Sanborn & Heath is the first diurnally active cicada identified as a thermoconforming species. The body temperature for activity in H. umbraphila is less than and significantly different from active body temperatures of all other studied species regardless of habitat affiliation. These data suggest that variability in thermal niches within the heterogeneous plant community of the tropical forest environments permits species diversification as species adapt their physiology to function more efficiently at temperatures different from their potential competitors. PMID:22242117

  9. Evaluation of pharmacokinetics and the stability of daptomycin in serum at various temperatures.

    PubMed

    Ogami, Chika; Tsuji, Yasuhiro; Kasai, Hidefumi; Hiraki, Yoichi; Yamamoto, Yoshihiro; Matsunaga, Kazuhisa; Karube, Yoshiharu; To, Hideto

    2017-04-01

    Daptomycin exhibits concentration-dependent antibacterial activity. By monitoring daptomycin serum concentrations, clinicians may be able to predict the effectiveness of treatments for infections more accurately. However, it has been reported that daptomycin concentrations in plasma samples stored at -20°C decrease approximately 25% after 4 weeks. The aim of this study was to evaluate the stability of daptomycin in serum at various temperatures. Daptomycin serum samples were prepared and stored at different temperatures. The stability of daptomycin under various conditions was evaluated by sequential measurements of concentration. Although the loss of concentration of daptomycin in serum samples stored in freezers (-80°C and -20°C) was less than 10% after 168days (6 months), the concentrations in samples stored in a refrigerator (4°C) decreased by more than 70% over the same period. Furthermore, daptomycin concentrations in serum samples stored at close to body temperature (35°C, 37°C, and 39°C) decreased by more than 50% after only 24h. The results of the present study demonstrate that the measurement of serum concentrations of daptomycin needs to be performed rapidly. Furthermore, the degradation of daptomycin in serum may be involved in its elimination from the living body. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  10. Association of low body temperature and poor outcomes in patients admitted with worsening heart failure: a substudy of the Efficacy of Vasopressin Antagonism in Heart Failure Outcome Study with Tolvaptan (EVEREST) trial.

    PubMed

    Payvar, Saeed; Spertus, John A; Miller, Alan B; Casscells, S Ward; Pang, Peter S; Zannad, Faiez; Swedberg, Karl; Maggioni, Aldo P; Reid, Kimberly J; Gheorghiade, Mihai

    2013-12-01

    Risk stratification in patients admitted with worsening heart failure (HF) is essential for tailoring therapy and counselling. Risk models are available but rarely used, in part because many require laboratory and imaging results that are not routinely available. Body temperature is associated with prognosis in other illnesses, and we hypothesized that low body temperature would be associated with worse outcomes in patients admitted with worsening HF. The Efficacy of Vasopressin Antagonism in Heart Failure Outcome Study with Tolvaptan (EVEREST) trial was an event-driven, randomized, double-blind, placebo-controlled study of tolvaptan in 4133 patients hospitalized for worsening HF with an EF <40%. Co-primary endpoints were all-cause mortality and cardiovascular (CV) death or HF rehospitalization. Body temperature was measured orally at randomization and entered in analyses both as a continuous variable and categorized into three groups (<36 °C, 36-36.5 °C, and >36.5 °C) using Cox regression models. The composite of CV death or HF rehospitalization occurred in 1544 patients within 1 year. For every 1 °C decrease in body temperature, the risk of adverse outcomes increased by 16% [hazard raio (HR) 1.16, 95% confidence interval (CI) 1.04-1.28], after adjustment for age, gender, race, systolic blood pressure, EF, blood urea nitrogen, and serum sodium. In fully adjusted analysis, the risk of adverse outcomes in the lowest body temperature group (<36 °C) was 51% higher than that of the index group (>36.5 °C) (HR 1.35, 95% CI 1.15-1.58). Low body temperature is an independent marker of poor cardiovascular outcomes in patients admitted with worsening HF and reduced EF.

  11. A Proposed Methodology to Control Body Temperature in Patients at Risk of Hypothermia by means of Active Rewarming Systems

    PubMed Central

    Costanzo, Silvia; Cusumano, Alessia; Giaconia, Carlo; Mazzacane, Sante

    2014-01-01

    Hypothermia is a common complication in patients undergoing surgery under general anesthesia. It has been noted that, during the first hour of surgery, the patient's internal temperature (T core) decreases by 0.5–1.5°C due to the vasodilatory effect of anesthetic gases, which affect the body's thermoregulatory system by inhibiting vasoconstriction. Thus a continuous check on patient temperature must be carried out. The currently most used methods to avoid hypothermia are based on passive systems (such as blankets reducing body heat loss) and on active ones (thermal blankets, electric or hot-water mattresses, forced hot air, warming lamps, etc.). Within a broader research upon the environmental conditions, pollution, heat stress, and hypothermia risk in operating theatres, the authors set up an experimental investigation by using a warming blanket chosen from several types on sale. Their aim was to identify times and ways the human body reacts to the heat flowing from the blanket and the blanket's effect on the average temperature T skin and, as a consequence, on T core temperature of the patient. The here proposed methodology could allow surgeons to fix in advance the thermal power to supply through a warming blanket for reaching, in a prescribed time, the desired body temperature starting from a given state of hypothermia. PMID:25485278

  12. Coping with thermal challenges: physiological adaptations to environmental temperatures.

    PubMed

    Tattersall, Glenn J; Sinclair, Brent J; Withers, Philip C; Fields, Peter A; Seebacher, Frank; Cooper, Christine E; Maloney, Shane K

    2012-07-01

    Temperature profoundly influences physiological responses in animals, primarily due to the effects on biochemical reaction rates. Since physiological responses are often exemplified by their rate dependency (e.g., rate of blood flow, rate of metabolism, rate of heat production, and rate of ion pumping), the study of temperature adaptations has a long history in comparative and evolutionary physiology. Animals may either defend a fairly constant temperature by recruiting biochemical mechanisms of heat production and utilizing physiological responses geared toward modifying heat loss and heat gain from the environment, or utilize biochemical modifications to allow for physiological adjustments to temperature. Biochemical adaptations to temperature involve alterations in protein structure that compromise the effects of increased temperatures on improving catalytic enzyme function with the detrimental influences of higher temperature on protein stability. Temperature has acted to shape the responses of animal proteins in manners that generally preserve turnover rates at animals' normal, or optimal, body temperatures. Physiological responses to cold and warmth differ depending on whether animals maintain elevated body temperatures (endothermic) or exhibit minimal internal heat production (ectothermic). In both cases, however, these mechanisms involve regulated neural and hormonal over heat flow to the body or heat flow within the body. Examples of biochemical responses to temperature in endotherms involve metabolic uncoupling mechanisms that decrease metabolic efficiency with the outcome of producing heat, whereas ectothermic adaptations to temperature are best exemplified by the numerous mechanisms that allow for the tolerance or avoidance of ice crystal formation at temperatures below 0°C. 2012 American Physiological Society. Compr Physiol 2:2037-2061, 2012.

  13. Effects of alpha-glucosylhesperidin on the peripheral body temperature and autonomic nervous system.

    PubMed

    Takumi, Hiroko; Fujishima, Noboru; Shiraishi, Koso; Mori, Yuka; Ariyama, Ai; Kometani, Takashi; Hashimoto, Shinichi; Nadamoto, Tomonori

    2010-01-01

    We studied the effects of alpha-glucosylhesperidin (G-Hsp) on the peripheral body temperature and autonomic nervous system in humans. We first conducted a survey of 97 female university students about excessive sensitivity to the cold; 74% of them replied that they were susceptible or somewhat susceptible to the cold. We subsequently conducted a three-step experiment. In the first experiment, G-Hsp (500 mg) was proven to prevent a decrease in the peripheral body temperature under an ambient temperature of 24 degrees C. In the second experiment, a warm beverage containing G-Hsp promoted blood circulation and kept the finger temperature higher for a longer time. We finally used a heart-rate variability analysis to study whether G-Hsp changed the autonomic nervous activity. The high-frequency (HF) component tended to be higher, while the ratio of the low-frequency (LF)/HF components tended to be lower after the G-Hsp administration. These results suggest that the mechanism for temperature control by G-Hsp might involve an effect on the autonomic nervous system.

  14. Propranolol (Infantile Hemangioma)

    MedlinePlus

    ... or has had asthma or other breathing problems, pheochromocytoma (a tumor on a small gland near the ... color sweating irritability decreased appetite low body temperature unusual sleepiness breathing stops for short periods of time ...

  15. Effects of individual differences on the efficacy of different distracters during visual sexual stimulation in women.

    PubMed

    Roberts, Verena M; Prause, Nicole

    2012-02-01

    Distractions from sexual cues have been shown to decrease the sexual response, but it is unclear how distracters decrease sexual response. Individual differences may modulate the efficacy of distracters. Forty women viewed three sexual films while their labial temperature and continuous self-reported sexual arousal were monitored. One sexual film had simultaneous verbal distracters concerning dissatisfaction with one's physical appearance (higher salience distracter), a second had distracters concerning daily chores (lower salience distracter), and the third sexual film had no distracters. Participant's reporting greater relationship satisfaction and more communication with their partner about their own physical appearance were expected to decrease the efficacy (increased sexual arousal) of the distracters concerning physical appearance. Contrary to expectations, women who received less feedback about their body from their partners reported less sexual arousal during a sexual film with body distracters than a sexual film with general distracters or a sexual film with no distracters. All women exhibited lower labial temperature in Minutes 2 and 3 of the sexual film with body image distracters as compared to the other two sexual films. Possible explanations explored include self-verification theory and individual differences in the indicators that women consider when rating their sexual arousal.

  16. Dopaminergic neurons encode a distributed, asymmetric representation of temperature in Drosophila.

    PubMed

    Tomchik, Seth M

    2013-01-30

    Dopaminergic circuits modulate a wide variety of innate and learned behaviors in animals, including olfactory associative learning, arousal, and temperature-preference behavior. It is not known whether distinct or overlapping sets of dopaminergic neurons modulate these behaviors. Here, I have functionally characterized the dopaminergic circuits innervating the Drosophila mushroom body with in vivo calcium imaging and conditional silencing of genetically defined subsets of neurons. Distinct subsets of PPL1 dopaminergic neurons innervating the vertical lobes of the mushroom body responded to decreases in temperature, but not increases, with rapidly adapting bursts of activity. PAM neurons innervating the horizontal lobes did not respond to temperature shifts. Ablation of the antennae and maxillary palps reduced, but did not eliminate, the responses. Genetic silencing of dopaminergic neurons innervating the vertical mushroom body lobes substantially reduced behavioral cold avoidance, but silencing smaller subsets of these neurons had no effect. These data demonstrate that overlapping dopaminergic circuits encode a broadly distributed, asymmetric representation of temperature that overlays regions implicated previously in learning, memory, and forgetting. Thus, diverse behaviors engage overlapping sets of dopaminergic neurons that encode multimodal stimuli and innervate a single anatomical target, the mushroom body.

  17. Effects of the TRPV1 antagonist ABT-102 on body temperature in healthy volunteers: pharmacokinetic/pharmacodynamic analysis of three phase 1 trials

    PubMed Central

    Othman, Ahmed A; Nothaft, Wolfram; Awni, Walid M; Dutta, Sandeep

    2013-01-01

    Aim To characterize quantitatively the relationship between ABT-102, a potent and selective TRPV1 antagonist, exposure and its effects on body temperature in humans using a population pharmacokinetic/pharmacodynamic modelling approach. Methods Serial pharmacokinetic and body temperature (oral or core) measurements from three double-blind, randomized, placebo-controlled studies [single dose (2, 6, 18, 30 and 40 mg, solution formulation), multiple dose (2, 4 and 8 mg twice daily for 7 days, solution formulation) and multiple-dose (1, 2 and 4 mg twice daily for 7 days, solid dispersion formulation)] were analyzed. nonmem was used for model development and the model building steps were guided by pre-specified diagnostic and statistical criteria. The final model was qualified using non-parametric bootstrap and visual predictive check. Results The developed body temperature model included additive components of baseline, circadian rhythm (cosine function of time) and ABT-102 effect (Emax function of plasma concentration) with tolerance development (decrease in ABT-102 Emax over time). Type of body temperature measurement (oral vs. core) was included as a fixed effect on baseline, amplitude of circadian rhythm and residual error. The model estimates (95% bootstrap confidence interval) were: baseline oral body temperature, 36.3 (36.3, 36.4)°C; baseline core body temperature, 37.0 (37.0, 37.1)°C; oral circadian amplitude, 0.25 (0.22, 0.28)°C; core circadian amplitude, 0.31 (0.28, 0.34)°C; circadian phase shift, 7.6 (7.3, 7.9) h; ABT-102 Emax, 2.2 (1.9, 2.7)°C; ABT-102 EC50, 20 (15, 28) ng ml−1; tolerance T50, 28 (20, 43) h. Conclusions At exposures predicted to exert analgesic activity in humans, the effect of ABT-102 on body temperature is estimated to be 0.6 to 0.8°C. This effect attenuates within 2 to 3 days of dosing. PMID:22966986

  18. Oligonol supplementation attenuates body temperature and the circulating levels of prostaglandin E2 and cyclooxygenase-2 after heat stress in humans.

    PubMed

    Shin, Young Oh; Lee, Jeong Beom; Song, Young Ju; Min, Young Ki; Yang, Hun Mo

    2013-04-01

    Oligonol, a phenolic production from lychee, has been reported to exhibit anti-oxidative and anti-inflammatory effects. This study investigated the effect of Oligonol supplementation on circulating levels of prostaglandin E2 (PGE2) and cyclooxygenase (COX)-2, as well as body temperature, after heat stress in 17 healthy human male volunteers (age, 21.6±2.1 years). All experiments were performed in an automated climate chamber (26.0°C±0.5°C, relative humidity 60%±3.0%, air velocity less than 1 m/sec) between 2 and 5 p.m. Subjects ingested an Oligonol (100 mg)-containing beverage or placebo beverage before half-body immersion into hot water (42°C±0.5°C for 30 min). Tympanic and skin temperatures were measured and mean body temperatures were calculated. Serum concentrations of PGE2 and COX-2 were analyzed before, immediately after, and 60 min after immersion. Oligonol intake significantly prevented elevation of tympanic (temperature difference: 0.17°C at Post, P<.05; 0.17°C at Re-60, P<.05) and mean body temperatures (temperature difference: 0.18°C at Post, P<.05; 0.15°C at Re-60, P<.05), and lowered concentrations of serum PGE2 (increased by 13.3% vs. 29.6% at Post, P<.05) and COX-2 (increased by 15.6% vs. 21.8% at Post, P<.05), compared to placebo beverage. Our result suggests that Oligonol has the potential to suppress increases in body temperature under heat stress, and this is associated with decreases in serum levels of PGE2 and COX-2.

  19. Lower skin temperature decreases maximal cycling performance.

    PubMed

    Imai, Daiki; Okazaki, Kazunobu; Matsumura, Shinya; Suzuki, Takashi; Miyazawa, Taiki; Suzuki, Akina; Takeda, Ryosuke; Hamamoto, Takeshi; Zako, Tetsuo; Kawabata, Takashi; Miyagawa, Toshiaki

    2011-12-01

    It is known that external cooling of body regions involved in exercise, prior to exercise, decreases anaerobic performance. However, there have been no studies reporting the effects of whole body skin surface cooling before exercise on maximal anaerobic capacity. In order to clarify the effects, we compared power output during the Wingate anaerobic test between preconditioning by exposure to temperature 10 degrees C and 25 degrees C. Eight healthy males carried out the Wingate test for 30 seconds, after pre-conditioning for 60 minutes using a perfusion suit with water at a temperature of 10 degrees C or 25 degrees C. We evaluated the peak power (PP) and peak power slope (PS) of the power output. Mean skin temperature (T(sk)) at 60 minutes of pre-conditioning in the 10 degrees C trial was significantly lower than in the 25 degrees C trial (p < 0.05). PP and also PS were significantly lower in the 10 degrees C trial than in the 25 degrees C trial. Changes (Δ) in PP between the 10 degrees C trial and the 25 degrees C trial were strongly correlated with ΔT(sk) and Δ in thigh and leg skin temperature (ΔT(thigh) and ΔT(leg), respectively), whereas ΔPS was strongly correlated with ΔT(sk), but not with ΔT(thigh) and ΔT(leg). Whole body skin surface cooling prior to exercise restricts anaerobic capacity, especially in the initial phase of exercise.

  20. Effects of Heat Treatment on Corrosion and Wear Behaviors of Mg-6Gd-2Zn-0.4Zr Alloy in Simulated Body Fluid

    NASA Astrophysics Data System (ADS)

    Zhao, Li; Chen, Wei; Dai, Jianwei; Wang, Zhangzhong; Zhang, Xiaobo

    2017-11-01

    Mg-6Gd-2Zn-0.4Zr (wt.%, GZ62K) alloy was processed by solution treatment under different temperatures. The microstructure, hardness, corrosion and wear behaviors in simulated body fluid (SBF) have been studied. The results indicate that the (Mg, Zn)3Gd phase decreases, the precipitated phases gradually increase, and the long-period stacking ordered structure disappears with the increase of solution temperature. The alloy has better corrosion resistance after solution treatment, and that solution treated at 490 °C for 12 h shows the best corrosion resistance. The friction coefficient of the alloy under dry sliding condition decreases slightly, but the mass loss increases with increasing the solution temperature. The alloy solution treated at 460 °C for 12 h exhibits the lowest friction coefficient and mass loss in SBF, and it also has the best wear resistance under dry sliding condition.

  1. Fishing and bottom water temperature as drivers of change in maximum shell length in Atlantic surfclams (Spisula solidissima)

    NASA Astrophysics Data System (ADS)

    Munroe, D. M.; Narváez, D. A.; Hennen, D.; Jacobson, L.; Mann, R.; Hofmann, E. E.; Powell, E. N.; Klinck, J. M.

    2016-03-01

    Maximum shell length of Atlantic surfclams (Spisula solidissima) on the Middle Atlantic Bight (MAB) continental shelf, obtained from federal fishery survey data from 1982-present, has decreased by 15-20 mm. Two potential causes of this decreasing trend, fishery removal of large animals and stress due to warming bottom temperatures, were investigated using an individual-based model for post-settlement surfclams and a fifty-year hindcast of bottom water temperatures on the MAB. Simulations showed that fishing and/or warming bottom water temperature can cause decreases in maximum surfclam shell length (body size) equivalent to those observed in the fished stock. Independently, either localized fishing rates of 20% or sustained bottom temperatures that are 2 °C warmer than average conditions generate the observed decrease in maximum shell length. However, these independent conditions represent extremes and are not sustained in the MAB. The combined effects of fishing and warmer temperatures can generate simulated length decreases that are similar to observed decreases. Interannual variability in bottom water temperatures can also generate fluctuations in simulated shell length of up to 20 mm over a period of 10-15 years. If the change in maximum size is not genotypic, simulations also suggest that shell size composition of surfclam populations can recover if conditions change; however, that recovery could take a decade to become evident.

  2. Infrared thermal imaging as a method to evaluate heat loss in newborn lambs.

    PubMed

    Labeur, L; Villiers, G; Small, A H; Hinch, G N; Schmoelzl, S

    2017-12-01

    Thermal imaging technology has been identified as a potential method for non-invasive study of thermogenesis in the neonatal lamb. In comparison to measurement of the core body temperature, infrared thermography may observe thermal loss and thermogenesis linked to subcutaneous brown fat depots. This study aimed to identify a suitable method to measure heat loss in the neonatal lamb under a cold challenge. During late pregnancy (day 125), ewes were subjected to either shearing (n=15) or mock handling (sham-shorn for 2min mimicking the shearing movements) (n=15). Previous studies have shown an increase in brown adipose tissue deposition in lambs born to ewes shorn during pregnancy and we hypothesized that the shearing treatment would impact thermoregulatory capacities in newborn lambs. Lambs born to control ewes (n=14; CONTROL) and shorn ewes (n=13; SHORN) were subjected to a cold challenge of 1h duration at 4h after birth. During the cold challenge, thermography images were taken every 10min, from above, at a fixed distance from the dorsal midline. On each image, four fixed-size areas were identified (shoulder, mid loin, hips and rump) and the average and maximum temperatures of each recorded. In all lambs, body surface temperature decreased over time. Overall the SHORN lambs appeared to maintain body surface temperature better than CONTROL lambs, while CONTROL lambs appeared to have higher core temperature. At 30min post cold challenge SHORN lambs tended to have higher body surface temperatures than lambs (P=0.0474). Both average and maximum temperatures were highest at the hips. Average temperature was lowest at the shoulder (P<0.05), while maximum temperatures were lowest at both shoulder and rump (P<0.005). These results indicate that lambs born to shorn ewes maintained their radiated body surface temperature better than CONTROL lambs. In conjunction with core temperature changes under cold challenge, this insight will allow us to understand whether increased body surface temperature contributes to increased overall heat loss or whether increased body surface temperature is indeed a mechanism contributing to maintenance of core body temperature under cold challenge conditions. This study has confirmed the utility of infrared thermography images to capture and identify different levels of thermoregulatory capacity in newborn lambs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Effect of brachycephaly and body condition score on respiratory thermoregulation of healthy dogs.

    PubMed

    Davis, Michael S; Cummings, Sabrina L; Payton, Mark E

    2017-11-15

    OBJECTIVE To evaluate the effect of brachycephaly and body condition score on respiratory thermoregulation of healthy dogs. DESIGN Prospective study. ANIMALS 52 brachycephalic and 53 nonbrachycephalic dogs. PROCEDURES All dogs were exposed to a cool treatment (temperature, 21.8 ± 1.7°C [71.2 ± 3.1°F]; relative humidity, 62.2 ± 9.7%; and ambient enthalpy, 47.7 ± 6.6 kcal/kg) and then a hot treatment (temperature, 32.9 ± 1.7°C [91.2 ± 3.1°F]; relative humidity, 51.9 ± 9.8%; and ambient enthalpy, 74.8 ± 8.7 kcal/kg; heat stress) at least 1 hour later. For each treatment, dogs were allowed to acclimatize to the environment for 15 minutes and then were placed in a sealed whole-body plethysmograph for continuous measurement of the respiratory pattern for 10 minutes. Treatment was discontinued if a dog developed signs of respiratory distress. Respiratory variables and body temperature were compared between the 2 breed types (brachycephalic and nonbrachycephalic) and between treatments. RESULTS Body condition score was positively associated with body temperature independent of environmental conditions or breed type and negatively associated with tidal volume. Brachycephalic dogs had a greater increase in respiratory rate in response to heat stress than did nonbrachycephalic dogs. CONCLUSIONS AND CLINICAL RELEVANCE Results indicated that brachycephalic dogs had decreased capacity for thermoregulation, compared with nonbrachycephalic dogs, but body condition score was a greater determinant of body temperature than breed type. Nevertheless, both upper airway conformation and body condition score should be considered when evaluating whether an individual dog is capable of tolerating heat stress.

  4. γδ T cells producing interleukin-17A regulate adipose regulatory T cell homeostasis and thermogenesis.

    PubMed

    Kohlgruber, Ayano C; Gal-Oz, Shani T; LaMarche, Nelson M; Shimazaki, Moto; Duquette, Danielle; Nguyen, Hung N; Mina, Amir I; Paras, Tyler; Tavakkoli, Ali; von Andrian, Ulrich; Banks, Alexander S; Shay, Tal; Brenner, Michael B; Lynch, Lydia

    2018-05-01

    γδ T cells are situated at barrier sites and guard the body from infection and damage. However, little is known about their roles outside of host defense in nonbarrier tissues. Here, we characterize a highly enriched tissue-resident population of γδ T cells in adipose tissue that regulate age-dependent regulatory T cell (T reg ) expansion and control core body temperature in response to environmental fluctuations. Mechanistically, innate PLZF + γδ T cells produced tumor necrosis factor and interleukin (IL) 17 A and determined PDGFRα + and Pdpn + stromal-cell production of IL-33 in adipose tissue. Mice lacking γδ T cells or IL-17A exhibited decreases in both ST2 + T reg cells and IL-33 abundance in visceral adipose tissue. Remarkably, these mice also lacked the ability to regulate core body temperature at thermoneutrality and after cold challenge. Together, these findings uncover important physiological roles for resident γδ T cells in adipose tissue immune homeostasis and body-temperature control.

  5. Physiological Markers of Arousal Change with Psychological Treatment for Insomnia: A Preliminary Investigation

    PubMed Central

    Miller, Christopher B.; Kyle, Simon D.; Gordon, Christopher J.; Espie, Colin A.; Grunstein, Ronald R.; Mullins, Anna E.; Postnova, Svetlana; Bartlett, Delwyn J.

    2015-01-01

    Objectives The aim of this preliminary study was to evaluate if Sleep Restriction Therapy for insomnia is associated with modifications to physiological arousal, indexed through overnight measures of plasma cortisol concentrations and core body temperature. Methods In a pre-to-post open label study design, eleven patients with chronic and severe Psychophysiological Insomnia underwent 5 weeks of Sleep Restriction Therapy. Results Eight (73%) patients out of 11 consented completed therapy and showed a decrease in insomnia severity pre-to-post treatment (mean (SD): 18.1 (2.8) versus 8.4 (4.8); p = .001). Six patients were analyzed with pre-to-post overnight measures of temperature and cortisol. Contrary to our hypothesis, significantly higher levels of plasma cortisol concentrations were found during the early morning at post-treatment compared to baseline (p < .01), while no change was observed in the pre-sleep phase or early part of the night. Core body temperature during sleep was however reduced significantly (overall mean [95% CI]: 36.54 (°C) [36.3, 36.8] versus 36.45 [36.2, 36.7]; p < .05). Conclusions Sleep Restriction Therapy therefore was associated with increased early morning cortisol concentrations and decreased core body temperature, supporting the premise of physiological changes in functioning after effective therapy. Future work should evaluate change in physiological variables associated with clinical treatment response. Trial Registration Australian New Zealand Clinical Trials Registry ANZCTR 12612000049875 PMID:26683607

  6. Effects of climatic factors on plasma lipid levels: A 5-year longitudinal study in a large Chinese population.

    PubMed

    Zhou, Xiaoming; Lin, Haiyan; Zhang, Shigang; Ren, Jianwei; Wang, Zhe; Zhang, Yun; Wang, Mansen; Zhang, Qunye

    2016-01-01

    The rules and mechanisms of seasonal changes in plasma lipid levels, which may be related to annual rhythmicity of incidence and mortality of cardiovascular diseases, are still controversial. The objectives of this study were to study the effects of climatic factors on plasma lipid levels and to preliminarily reveal mechanisms of annual rhythmicity of plasma lipid levels. A longitudinal study was performed using health examination data of 5 consecutive years (47,270 subjects) in Jinan, China. The climate in Jinan is typical temperate continental monsoon climate with huge temperature difference between winter and summer (>30°C). After considering and adjusting those classical lipid-associated risk factors, such as age, gender, diet, exercise, blood pressure, body weight, change of body weight, body mass index, glycemia, alanine aminotransferase, and creatinine, only air temperature could still significantly affect plasma lipid levels among the main climatic factors (humidity, precipitation, and so forth). For men, total cholesterol, high-density lipoprotein cholesterol, and low-density lipoprotein cholesterol was decreased significantly 0.35, 0.18, and 0.06 mmol/L, respectively, whereas triglyceride was increased significantly 0.12 mmol/L for every 10°C increase in air temperature. For women, total cholesterol and high-density lipoprotein cholesterol were decreased notably 0.73 and 0.32 mmol/L, and low-density lipoprotein cholesterol was increased significantly 0.26 mmol/L for every 10°C increase in air temperature, whereas triglyceride was not significantly affected by air temperature. Air temperature is an independent risk factor for plasma lipid levels besides those classical lipid-associated risk factors. The annual air temperature fluctuations might be an important mechanism of the seasonal changes of lipids. Copyright © 2016 National Lipid Association. Published by Elsevier Inc. All rights reserved.

  7. The effect of temperature and body weight on the routine metabolic rate and postprandial metabolic response in mulloway, Argyrosomus japonicus.

    PubMed

    Pirozzi, Igor; Booth, Mark A

    2009-09-01

    Specific dynamic action (SDA) is the energy expended on the physiological processes associated with meal digestion and is strongly influenced by the characteristics of the meal and the body weight (BW) and temperature of the organism. This study assessed the effects of temperature and body weight on the routine metabolic rate (RMR) and postprandial metabolic response in mulloway, Argyrosomus japonicus. RMR and SDA were established at 3 temperatures (14, 20 and 26 degrees C). 5 size classes of mulloway ranging from 60 g to 1.14 kg were used to establish RMR with 3 of the 5 size classes (60, 120 and 240 g) used to establish SDA. The effect of body size on the mass-specific RMR (mg O(2) kg(-1) h(-1)) varied significantly depending on the temperature; there was a greater relative increase in the mass-specific RMR for smaller mulloway with increasing temperature. No statistical differences were found between the mass exponent (b) values at each temperature when tested against H(0): b=0.8. The gross RMR of mulloway (mg O(2) fish(-1) h(-1)) can be described as function of temperature (T; 14-26 degrees C) as: (0.0195T-0.0454)BW(g)(0.8) and the mass-specific RMR (mg O(2) kg(-1) h(-1)) can be described as: (21.042T-74.867)BW(g)(-0.2). Both SDA duration and time to peak SDA were influenced by temperature and body weight; SDA duration occurred within 41-89 h and peak time occurred within 17-38 h of feeding. The effect of body size on peak metabolic rate varied significantly depending on temperature, generally increasing with temperature and decreasing with increasing body size. Peak gross oxygen consumption (MO(2): mg O(2) fish(-1) h(-1)) scaled allometrically with BW. Temperature, but not body size, significantly affected SDA scope, although the difference was numerically small. There was a trend for MO(2) above RMR over the SDA period to increase with temperature; however, this was not statistically significant. The average proportion of energy expended over the SDA period (SDA coefficient) ranged from approximately 7-13% of the total DE intake while the proportion of total energy expended on SDA above RMR ranged from approximately 16-27%.

  8. Metabolism and thermoregulation during fasting in king penguins, Aptenodytes patagonicus, in air and water.

    PubMed

    Fahlman, A; Schmidt, A; Handrich, Y; Woakes, A J; Butler, P J

    2005-09-01

    We measured oxygen consumption rate (Vo(2)) and body temperatures in 10 king penguins in air and water. Vo(2) was measured during rest and at submaximal and maximal exercise before (fed) and after (fasted) an average fasting duration of 14.4 +/- 2.3 days (mean +/- 1 SD, range 10-19 days) in air and water. Concurrently, we measured subcutaneous temperature and temperature of the upper (heart and liver), middle (stomach) and lower (intestine) abdomen. The mean body mass (M(b)) was 13.8 +/- 1.2 kg in fed and 11.0 +/- 0.6 kg in fasted birds. After fasting, resting Vo(2) was 93% higher in water than in air (air: 86.9 +/- 8.8 ml/min; water: 167.3 +/- 36.7 ml/min, P < 0.01), while there was no difference in resting Vo(2) between air and water in fed animals (air: 117.1 +/- 20.0 ml O(2)/min; water: 114.8 +/- 32.7 ml O(2)/min, P > 0.6). In air, Vo(2) decreased with M(b), while it increased with M(b) in water. Body temperature did not change with fasting in air, whereas in water, there were complex changes in the peripheral body temperatures. These latter changes may, therefore, be indicative of a loss in body insulation and of variations in peripheral perfusion. Four animals were given a single meal after fasting and the temperature changes were partly reversed 24 h after refeeding in all body regions except the subcutaneous, indicating a rapid reversal to a prefasting state where body heat loss is minimal. The data emphasize the importance in considering nutritional status when studying king penguins and that the fasting-related physiological changes diverge in air and water.

  9. Adiponectin is required for maintaining normal body temperature in a cold environment.

    PubMed

    Wei, Qiong; Lee, Jong Han; Wang, Hongying; Bongmba, Odelia Y N; Wu, Chia-Shan; Pradhan, Geetali; Sun, Zilin; Chew, Lindsey; Bajaj, Mandeep; Chan, Lawrence; Chapkin, Robert S; Chen, Miao-Hsueh; Sun, Yuxiang

    2017-10-23

    Thermogenic impairment promotes obesity and insulin resistance. Adiponectin is an important regulator of energy homeostasis. While many beneficial metabolic effects of adiponectin resemble that of activated thermogenesis, the role of adiponectin in thermogenesis is not clear. In this study, we investigated the role of adiponectin in thermogenesis using adiponectin-null mice (Adipoq -/- ). Body composition was measured using EchoMRI. Metabolic parameters were determined by indirect calorimetry. Insulin sensitivity was evaluated by glucose- and insulin- tolerance tests. Core body temperature was measured by a TH-8 temperature monitoring system. Gene expression was assessed by real-time PCR and protein levels were analyzed by Western blotting and immunohistochemistry. The mitochondrial density of brown adipose tissue was quantified by calculating the ratio of mtDNA:total nuclear DNA. Under normal housing temperature of 24 °C and ad libitum feeding condition, the body weight, body composition, and metabolic profile of Adipoq -/- mice were unchanged. Under fasting condition, Adipoq -/- mice exhibited reduced energy expenditure. Conversely, under cold exposure, Adipoq -/- mice exhibited reduced body temperature, and the expression of thermogenic regulatory genes was significantly reduced in brown adipose tissue (BAT) and subcutaneous white adipose tissue (WAT). Moreover, we observed that mitochondrial content was reduced in BAT and subcutaneous WAT, and the expression of mitochondrial fusion genes was decreased in BAT of Adipoq -/- mice, suggesting that adiponectin ablation diminishes mitochondrial biogenesis and altered mitochondrial dynamics. Our study further revealed that adiponectin deletion suppresses adrenergic activation, and down-regulates β3-adrenergic receptor, insulin signaling, and the AMPK-SIRT1 pathway in BAT. Our findings demonstrate that adiponectin is an essential regulator of thermogenesis, and adiponectin is required for maintaining body temperature under cold exposure.

  10. Circadian variation in the effects of nitric oxide synthase inhibitors on body temperature, feeding and activity in rats.

    PubMed

    Kamerman, Peter; Mitchell, Duncan; Laburn, Helen

    2002-02-01

    We have investigated whether there is circadian variation in the effects of nitric oxide synthase inhibitors on body temperature, physical activity and feeding. We used nocturnally active Sprague-Dawley rats, housed at approximately 24 degrees C with a 12:12 h light:dark cycle (lights on 07:00 hours) and provided with food and water ad libitum. Nitric oxide synthesis was inhibited by intraperitoneal injection of the unspecific nitric oxide synthase inhibitor N-nitro- L-arginine methyl ester ( L-NAME, 100, 50, 25, 10 mg/kg), or the relatively selective inducible nitric oxide synthase inhibitor aminoguanidine (100, 50 mg/kg), during the day ( approximately 09:00 hours) or night ( approximately 21:00 hours). Body temperature and physical activity were measured using radiotelemetry, while food intake was calculated by weighing each animal's food before as well as 12 and 24 h after each injection. We found that daytime injection of L-NAME and aminoguanidine had no effect on daytime body temperature. However, daytime injection of both drugs did decrease nocturnal food intake ( P<0.05) and activity ( P<0.05). When injected at night, L-NAME reduced night-time body temperature ( P<0.01), activity ( P<0.05) and food intake ( P<0.05) in a dose-dependent manner, but night-time injection of aminoguanidine inhibited only night-time activity ( P<0.05). The effects of nitric oxide synthase inhibition on body temperature, feeding and activity therefore are primarily a consequence of inhibiting constitutively expressed nitric oxide synthase, and are subject to circadian variation.

  11. Incubation Temperature during Fetal Development Influences Morphophysiological Characteristics and Preferred Ambient Temperature of Chicken Hatchlings

    PubMed Central

    Morita, Viviane de Souza; de Almeida, Vitor Rosa; Matos, João Batista; Vicentini, Tamiris Iara; van den Brand, Henry; Boleli, Isabel Cristina

    2016-01-01

    Skin and feather characteristics, which play a critical role in body temperature maintenance, can be affected by incubation circumstances, such as incubation temperature. However, no study to date has assessed the influence of incubation temperature during the fetal stage on morphometric characteristics and vascular development of the skin, feather characteristics, and their relationship to hormone levels and preferred temperature in later life in chickens. Broiler breeder eggs were exposed to low (36°C), control (37.5°C), or high (39°C) temperatures (treatments LT, CK, and HT, respectively) from day 13 of incubation onward, because it is known that the endocrine axes are already established at this time. During this period, eggshell temperature of HT eggs (38.8±0.33°C) was higher than of LT (37.4±0.08°C) and CK eggs (37.8 ±0.15°C). The difference between eggshell and incubator air temperature diminished with the increasing incubation temperature, and was approximately zero for HT. HT hatchlings had higher surface temperature on the head, neck, and back, and thinner and more vascularized skin than did CK and LT hatchlings. No differences were found among treatments for body weight, total feather weight, number and length of barbs, barbule length, and plasma T4 concentration. LT hatchlings showed lower plasma T3 and GH, as well as lower T3/T4 ratio and decreased vascularity in the neck, back, and thigh skin compared to CK hatchlings. On the other hand, HT hatchlings had decreased skin thickness and increased vascularity, and preferred a higher ambient temperature compared to CK and HT hatchlings. In addition, for all treatments, surface temperature on the head was higher than of the other body regions. We conclude that changes in skin thickness and vascularity, as well as changes in thyroid and growth hormone levels, are the result of embryonic strategies to cope with higher or lower than normal incubation temperatures. Additionally exposure to increased temperature during incubation is an environmental factor that can exert early-life influence on ambient temperature preference of broiler hatchlings in later life. PMID:27183111

  12. Incubation Temperature during Fetal Development Influences Morphophysiological Characteristics and Preferred Ambient Temperature of Chicken Hatchlings.

    PubMed

    Morita, Viviane de Souza; Almeida, Vitor Rosa de; Matos, João Batista; Vicentini, Tamiris Iara; van den Brand, Henry; Boleli, Isabel Cristina

    2016-01-01

    Skin and feather characteristics, which play a critical role in body temperature maintenance, can be affected by incubation circumstances, such as incubation temperature. However, no study to date has assessed the influence of incubation temperature during the fetal stage on morphometric characteristics and vascular development of the skin, feather characteristics, and their relationship to hormone levels and preferred temperature in later life in chickens. Broiler breeder eggs were exposed to low (36°C), control (37.5°C), or high (39°C) temperatures (treatments LT, CK, and HT, respectively) from day 13 of incubation onward, because it is known that the endocrine axes are already established at this time. During this period, eggshell temperature of HT eggs (38.8±0.33°C) was higher than of LT (37.4±0.08°C) and CK eggs (37.8 ±0.15°C). The difference between eggshell and incubator air temperature diminished with the increasing incubation temperature, and was approximately zero for HT. HT hatchlings had higher surface temperature on the head, neck, and back, and thinner and more vascularized skin than did CK and LT hatchlings. No differences were found among treatments for body weight, total feather weight, number and length of barbs, barbule length, and plasma T4 concentration. LT hatchlings showed lower plasma T3 and GH, as well as lower T3/T4 ratio and decreased vascularity in the neck, back, and thigh skin compared to CK hatchlings. On the other hand, HT hatchlings had decreased skin thickness and increased vascularity, and preferred a higher ambient temperature compared to CK and HT hatchlings. In addition, for all treatments, surface temperature on the head was higher than of the other body regions. We conclude that changes in skin thickness and vascularity, as well as changes in thyroid and growth hormone levels, are the result of embryonic strategies to cope with higher or lower than normal incubation temperatures. Additionally exposure to increased temperature during incubation is an environmental factor that can exert early-life influence on ambient temperature preference of broiler hatchlings in later life.

  13. Thyrotrophin-releasing hormone decreases feeding and increases body temperature, activity and oxygen consumption in Siberian hamsters.

    PubMed

    Schuhler, S; Warner, A; Finney, N; Bennett, G W; Ebling, F J P; Brameld, J M

    2007-04-01

    Thyrotrophin-releasing hormone (TRH) is known to play an important role in the control of food intake and energy metabolism in addition to its actions on the pituitary-thyroid axis. We have previously shown that central administration of TRH decreases food intake in Siberian hamsters. This species is being increasingly used as a physiological rodent model in which to understand hypothalamic control of long-term changes in energy balance because it accumulates fat reserves in long summer photoperiods, and decreases food intake and body weight when exposed to short winter photoperiods. The objectives of our study in Siberian hamsters were: (i) to investigate whether peripheral administration of TRH would mimic the effects of central administration of TRH on food intake and whether these effects would differ dependent upon the ambient photoperiod; (ii) to determine whether TRH would have an effect on energy expenditure; and (iii) to investigate the potential sites of action of TRH. Both peripheral (5-50 mg/kg body weight; i.p.) and central (0.5 microg/ml; i.c.v.) administration of TRH decreased food intake, and increased locomotor activity, body temperature and oxygen consumption in the Siberian hamster, with a rapid onset and short duration of action. Systemic treatment with TRH was equally effective in suppressing feeding regardless of ambient photoperiod. The acute effects of TRH are likely to be centrally mediated and independent of its role in the control of the production of thyroid hormones. We conclude that TRH functions to promote a catabolic energetic state by co-ordinating acute central and chronic peripheral (thyroid-mediated) function.

  14. The skin function: a factor of anti-metabolic syndrome.

    PubMed

    Zhou, Shi-Sheng; Li, Da; Zhou, Yi-Ming; Cao, Ji-Min

    2012-04-26

    The body's total antioxidant capacity represents a sum of the antioxidant capacity of various tissues/organs. A decrease in the body's antioxidant capacity may induce oxidative stress and subsequent metabolic syndrome, a clustering of risk factors for type 2 diabetes and cardiovascular disease. The skin, the largest organ of the body, is one of the major components of the body's total antioxidant defense system, primarily through its xenobiotic/drug biotransformation system, reactive oxygen species-scavenging system, and sweat glands- and sebaceous glands-mediated excretion system. Notably, unlike other contributors, the skin contribution is variable, depending on lifestyles and ambient temperature or seasonal variations. Emerging evidence suggests that decreased skin's antioxidant and excretory functions (e.g., due to sedentary lifestyles and low ambient temperature) may increase the risk for metabolic syndrome. This review focuses on the relationship between the variability of skin-mediated detoxification and elimination of exogenous and endogenous toxic substances and the development of metabolic syndrome. The potential role of sebum secretion in lipid and cholesterol homeostasis and its impact on metabolic syndrome, and the association between skin disorders (acanthosis nigricans, acne, and burn) and metabolic syndrome are also discussed.

  15. Behavioral buffering of global warming in a cold-adapted lizard.

    PubMed

    Ortega, Zaida; Mencía, Abraham; Pérez-Mellado, Valentín

    2016-07-01

    Alpine lizards living in restricted areas might be particularly sensitive to climate change. We studied thermal biology of Iberolacerta cyreni in high mountains of central Spain. Our results suggest that I. cyreni is a cold-adapted thermal specialist and an effective thermoregulator. Among ectotherms, thermal specialists are more threatened by global warming than generalists. Alpine lizards have no chance to disperse to new suitable habitats. In addition, physiological plasticity is unlikely to keep pace with the expected rates of environmental warming. Thus, lizards might rely on their behavior in order to deal with ongoing climate warming. Plasticity of thermoregulatory behavior has been proposed to buffer the rise of environmental temperatures. Therefore, we studied the change in body and environmental temperatures, as well as their relationships, for I. cyreni between the 1980s and 2012. Air temperatures have increased more than 3.5°C and substrate temperatures have increased by 6°C in the habitat of I. cyreni over the last 25 years. However, body temperatures of lizards have increased less than 2°C in the same period, and the linear relationship between body and environmental temperatures remains similar. These results show that alpine lizards are buffering the potential impact of the increase in their environmental temperatures, most probably by means of their behavior. Body temperatures of I. cyreni are still cold enough to avoid any drop in fitness. Nonetheless, if warming continues, behavioral buffering might eventually become useless, as it would imply spending too much time in shelter, losing feeding, and mating opportunities. Eventually, if body temperature exceeds the thermal optimum in the near future, fitness would decrease abruptly.

  16. Cellular respiration, oxygen consumption, and trade-offs of the jellyfish Cassiopea sp. in response to temperature change

    NASA Astrophysics Data System (ADS)

    Aljbour, Samir M.; Zimmer, Martin; Kunzmann, Andreas

    2017-10-01

    Pelagic jellyfish blooms are increasing worldwide as a potential response to climate-change. However, virtually nothing is known about physiological responses of jellyfish to e.g. sudden changes in water temperature due to extreme weather events. When confronted with a sudden decrease or increase in water temperature by 6 °C, medusae of Cassiopea sp. exhibited a strong response in locomotor activity (i.e., bell pulsation increased and decreased by ca. 37 and 46% in hot and cold acute (2 h) treatments, respectively) relative to control. Although medusae significantly gained in body mass (wet weight) upon chronic (2 weeks) heat treatment, their body size (e.g., bell diameter) did not change over this time interval. In contrast, chronic cold treatment resulted in both significant shrinking (reduced diameter) and mass loss. Measurements of mitochondrial electron transport system (ETS) activities and rate of respiratory oxygen uptake (MO2) are good estimates of energy consumption and the potential aerobic metabolic rates of an organism. While both acute treatments significantly increased ETS-activities, acclimation over two weeks resulted in a drop in activities to the control levels. Whereas acute heat treatment significantly increased MO2, chronic exposure resulted in significant MO2 decrease compared to control; however no changes in MO2 could be observed in both acute and chronic cold treatments. Overall these results suggest an enhanced growth in response to global warming, whereas low temperatures may set the limits for successful invasion of Cassiopea into colder water bodies. Our results provide a framework for understanding the physiological tolerance of Cassiopea under possible future climate changes.

  17. Calorigenic effect of adrenaline in rats under conditions of restricted motor activity

    NASA Technical Reports Server (NTRS)

    Tomaszewska, L.; Kaciuba-Uscilko, H.; Kozlowski, S.

    1980-01-01

    In previous studies, it was demonstrated that long term restricted motor activity in rats induces a decrease in body weight, an increase in release of adrenaline, and a decrease in the release of noradrenaline with the urine, as well as a reduction in activity of the thymus gland and level of thyroxin in the blood. At the same time, a decrease was found in the internal body temperature that was accompanied by an increase in the rate of metabolism in the state of rest. An investigation is presented which attempts to clarify whether the calorigenic effect of adrenaline under conditions of increased metabolism in the period of immobility is exposed to changes.

  18. Effects of acute microinjections of the thyroid hormone derivative 3-iodothyronamine to the preoptic region of adult male rats on sleep, thermoregulation and motor activity

    PubMed Central

    James, Thomas D.; Moffett, Steven X.; Scanlan, Thomas S.; Martin, Joseph V.

    2014-01-01

    The decarboxylated thyroid hormone derivative 3-iodothyronamine (T1AM) has been reported as having behavioral and physiological consequences distinct from those of thyroid hormones. Here, we investigate the effects of T1AM on EEG-defined sleep after acute administration to the preoptic region of adult male rats. Our laboratory recently demonstrated a decrease in EEG-defined sleep after administration of 3,3′,5-triiodo-L-thyronine (T3) to the same brain region. After injection of T1AM or vehicle solution, EEG, EMG, activity, and core body temperature were recorded for 24 h. Sleep parameters were determined from EEG and EMG data. Earlier investigations found contrasting systemic effects of T3 and T1AM, such as decreased heart rate and body temperature after intraperitoneal T1AM injection. However, nREM sleep was decreased in the present study after injections of 1 or 3 μg T1AM, but not after 0.3 or 10 μg, closely mimicking the previously reported effects of T3 administration to the preoptic region. The biphasic dose–response observed after either T1AM or T3 administration seems to indicate shared mechanisms and/or functions of sleep regulation in the preoptic region. Consistent with systemic administration of T1AM, however, microinjection of T1AM decreased body temperature. The current study is the first to show modulation of sleep by T1AM, and suggests that T1AM and T3 have both shared and independent effects in the adult mammalian brain. PMID:23702093

  19. Climatic influences on human body size and proportions: ecological adaptations and secular trends.

    PubMed

    Katzmarzyk, P T; Leonard, W R

    1998-08-01

    This study reevaluates the long-standing observation that human morphology varies with climate. Data on body mass, the body mass index [BMI; mass (kg)/stature (m)2], the surface area/body mass ratio, and relative sitting height (RSH; sitting height/stature) were obtained for 223 male samples and 195 female samples derived from studies published since D.F. Roberts' landmark paper "Body weight, race, and climate" in 1953 (Am. J. Phys. Anthropol. 11:533-558). Current analyses indicate that body mass varies inversely with mean annual temperature in males (r=-0.27, P < 0.001) and females (r=-0.28, P < 0.001), as does the BMI (males: r=-0.22, P=0.001; females: r=-0.30, P < 0.001). The surface area/body mass ratio is positively correlated with temperature in both sexes (males: r=0.29, P < 0.001; females: r=0.34, P < 0.001), whereas the relationship between RSH and temperature is negative (males: r=-0.37, P < 0.001; females: r=-0.46, P < 0.001). These results are consistent with previous work showing that humans follow the ecological rules of Bergmann and Allen. However, the slope of the best-fit regressions between measures of body mass (i.e., mass, BMI, and surface area/mass) and temperature are more modest than those presented by Roberts. These differences appear to be attributable to secular trends in mass, particularly among tropical populations. Body mass and the BMI have increased over the last 40 years, whereas the surface area/body mass ratio has decreased. These findings indicate that, although climatic factors continue to be significant correlates of world-wide variation in human body size and morphology, differential changes in nutrition among tropical, developing world populations have moderated their influence.

  20. Respiratory properties of blood and arterial blood gases in the tegu lizard: effects of temperature and hypercapnia.

    PubMed

    Wood, S C; Glass, M L; Andersen, N A; Heisler, N

    1987-01-01

    The effects of body temperature and hypercapnia (7% inspired CO2) on arterial blood gases, plasma pH, and the characteristics of the blood oxygen dissociation curve were determined in Tegu lizards (Tupinambis nigropunctatus). Arterial pH fell from 7.59 to 7.50 when body temperature was increased from 25 to 35 degrees C. The pH/temperature coefficient (delta pH/delta t = -0.009 U/degrees C) was half of that predicted on the basis of 'constant relative alkalinity' and the alphastat hypothesis. The fall in plasma pH resulted from a decrease in plasma [HCO3-], and a rise in plasma Pco2. The O2 affinity of Tegu blood, expressed by the partial pressure at half saturation (P50), decreased with temperature in vitro from 42.3 to 49.6 torr at pH 7.4. The apparent enthalpy (delta H = -3.1 kcal/mol) is about 1/4 of that of human blood. In vivo, the arterial blood oxygen saturation decreased from 89% at 25 degrees to 82% at 35 degrees C. Arterial Po2 increased from 61 to 71 torr as expected from the right-shift of the oxygen dissociation curve. During environmental hypercapnia (7% CO2, 21% O2, 72% N2 inspired concentrations), arterial pH decreased to 7.28. Arterial O2 saturation remained constant and arterial Po2 increased from 61 to 85 torr due to the right-shift of the oxygen dissociation curve. The comparatively small effect of changes in temperature on the oxygen affinity of Tegu blood (directly according to the delta H value, and indirectly via changes in blood pH) results in a relatively small right shift of the oxygen dissociation curve, and accordingly in relatively high arterial and tissue Po2 values also at higher temperatures.

  1. Heterothermy in large mammals: inevitable or implemented?

    PubMed

    Hetem, Robyn S; Maloney, Shane K; Fuller, Andrea; Mitchell, Duncan

    2016-02-01

    Advances in biologging techniques over the past 20 years have allowed for the remote and continuous measurement of body temperatures in free-living mammals. While there is an abundance of literature on heterothermy in small mammals, fewer studies have investigated the daily variability of body core temperature in larger mammals. Here we review measures of heterothermy and the factors that influence heterothermy in large mammals in their natural habitats, focussing on large mammalian herbivores. The mean 24 h body core temperatures for 17 species of large mammalian herbivores (>10 kg) decreased by ∼1.3°C for each 10-fold increase in body mass, a relationship that remained significant following phylogenetic correction. The degree of heterothermy, as measured by the 24 h amplitude of body core temperature rhythm, was independent of body mass and appeared to be driven primarily by energy and water limitations. When faced with the competing demands of osmoregulation, energy acquisition and water or energy use for thermoregulation, large mammalian herbivores appear to relax the precision of thermoregulation thereby conserving body water and energy. Such relaxation may entail a cost in that an animal moves closer to its thermal limits for performance. Maintaining homeostasis requires trade-offs between regulated systems, and homeothermy apparently is not accorded the highest priority; large mammals are able to maintain optimal homeothermy only if they are well nourished, hydrated, and not compromised energetically. We propose that the amplitude of the 24 h rhythm of body core temperature provides a useful index of any compromise experienced by a free-living large mammal and may predict the performance and fitness of an animal. © 2014 Cambridge Philosophical Society.

  2. Phytoplankton Cell Size: Intra- and Interspecific Effects of Warming and Grazing

    PubMed Central

    Peter, Kalista Higini; Sommer, Ulrich

    2012-01-01

    Decreasing body size has been suggested as the third universal biological response to global warming after latitudinal/altitudinal range shifts and shifts in phenology. Size shifts in a community can be the composite result of intraspecific size shifts and of shifts between differently sized species. Metabolic explanations for the size shifts dominate in the literature but top down effects, i.e. intensified size-selective consumption at higher temperatures, have been proposed as alternative explanation. Therefore, we performed phytoplankton experiments with a factorial combination of warming and consumer type (protist feeding mainly on small algae vs. copepods mainly feeding on large algae). Natural phytoplankton was exposed to 3 (1st experiment) or 4 (2nd experiment) temperature levels and 3 (1st experiment: nano-, microzooplankton, copepods) or 2 (2nd experiment: microzooplankton, copepods) types of consumers. Size shifts of individual phytoplankton species and community mean size were analyzed. Both, mean cell size of most of the individual species and mean community cell size decreased with temperature under all grazing regimes. Grazing by copepods caused an additional reduction in cell size. Our results reject the hypothesis, that intensified size selective consumption at higher temperature would be the dominant explanation of decreasing body size. In this case, the size reduction would have taken place only in the copepod treatments but not in the treatments with protist grazing (nano- and microzooplankton). PMID:23226215

  3. Beneficial effects of footbaths in controlling spasticity after stroke

    NASA Astrophysics Data System (ADS)

    Matsumoto, Shuji; Shimodozono, Megumi; Etoh, Seiji; Shimozono, Yurika; Tanaka, Nobuyuki; Kawahira, Kazumi

    2010-07-01

    Footbaths are considered to provide beneficial thermal therapy for post-stroke patients with spasticity, but their anti-spastic effects have not been investigated comprehensively. The present study aimed to evaluate alterations in motor-neuron excitability using F-wave parameters in post-stroke patients with spastic hemiplegia. Subjects’ legs below the knee joint were immersed in water at 41°C and F-wave recordings were made over the abductor hallucis muscle before, immediately after, and 30 min after thermal treatment. Antidromic stimulation was performed on the tibial nerve at the ankle. Measurements included F-wave amplitude, F-wave/M-response ratio, changes in modified Ashworth scale (MAS), body temperature and surface-skin temperature. The mean values of both F-wave parameters were higher on the affected side before footbath treatment. In post-stroke patients, the mean values of F-wave parameters were significantly reduced after footbath treatment ( P < 0.01). The anti-spastic effects of footbath treatment were indicated by decreased F-wave parameters, in parallel with decreases in MAS. Body temperature was significantly increased both immediately after, and 30 min following footbath treatment in both groups, which appeared to play an important role in decreased spasticity. Surface-skin temperature increased immediately after footbath treatment in both groups and returned to baseline 30 min later. These findings demonstrate that the use of footbaths is an effective nonpharmacological anti-spastic treatment that might facilitate stroke rehabilitation.

  4. Effects of opioid peptides on thermoregulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clark, W.G.

    1981-11-01

    In a given species, injected opioid peptides usually cause changes in temperature similar to those caused by nonpeptide opioids. The main effect in those species most studied, the cat, rat, and mouse, is an increase in the level about which body temperature is regulated; there is a coordinated change in the activity of thermoregulatory effectors such that hyperthermia is produced in both hot and cold environments. Larger doses may depress thermoregulation, thereby causing body temperature to decrease in the cold. Elicitation of different patterns of response over a range of environmental temperatures and studies with naloxone and naltrexone indicate thatmore » stimulation of a number of different receptors by both peptide and nonpeptide opioids can evoke thermoregulatory responses. ..beta..-Endorphin is readily antagonized by naloxone whereas methionine-enkephalin can act on naloxone-insensitive receptors. Moreover, synthetic peptide analogs do not necessarily evoke the same response as does the related endogenous peptide. The lack of effect of naloxone on body temperature of subjects housed at usual laboratory temperature or on pyrogen-induced increases in body temperature indicates that an action of endogenous peptides on naloxone-sensitive receptors plays little, if any, role in normal thermoregulation or in fever. However, there is some evidence that such an action may be involved in responses to restraint or ambient temperature-induced stress. Further evaluation of possible physiological roles of endogenous opioid peptides will be facilitated when specific antagonists at other types of opioid receptors become available.« less

  5. Photoperiod and fur lengths in the arctic fox ( Alopex lagopus L.)

    NASA Astrophysics Data System (ADS)

    Underwood, L. S.; Reynolds, Patricia

    1980-03-01

    Pelage is seasonally dimorphic in the Arctic fox. During the winter, fur lengths for this species are nearly double similar values taken during the summer season. Considerable site-specific differences in fur length are noted. In general, body sites which are exposed to the environment when an Arctic fox lies in a curled position show greater fur lengths in all seasons and greater seasonal variations than body sites that are more protected during rest. Well-furred sites may tend to conserve heat during periods of inactivity, and scantily furred sites may tend to dissipate heat during periods of exercise. The growth of winter fur may compensate for the severe cold of the arctic winter. Changes in fur lengths indicate a definite pattern in spite of individual variations. During the fall months, fur lengths seem to lag behind an increasing body-to-ambient temperature gradient. Both body-to-ambient temperature gradients and fur lengths peak during December through February. From March through June, gradual environmental warming is accompanied by a decrease in average fur lengths. Thus, there appears to be a remarkable parallel between the body-to-ambient temperature gradient and the fur lengths. The growth of fur in the Arctic fox parallels annual changes in ambient temperature and photoperiod.

  6. A hypothalamic circuit that controls body temperature.

    PubMed

    Zhao, Zheng-Dong; Yang, Wen Z; Gao, Cuicui; Fu, Xin; Zhang, Wen; Zhou, Qian; Chen, Wanpeng; Ni, Xinyan; Lin, Jun-Kai; Yang, Juan; Xu, Xiao-Hong; Shen, Wei L

    2017-02-21

    The homeostatic control of body temperature is essential for survival in mammals and is known to be regulated in part by temperature-sensitive neurons in the hypothalamus. However, the specific neural pathways and corresponding neural populations have not been fully elucidated. To identify these pathways, we used cFos staining to identify neurons that are activated by a thermal challenge and found induced expression in subsets of neurons within the ventral part of the lateral preoptic nucleus (vLPO) and the dorsal part of the dorsomedial hypothalamus (DMD). Activation of GABAergic neurons in the vLPO using optogenetics reduced body temperature, along with a decrease in physical activity. Optogenetic inhibition of these neurons resulted in fever-level hyperthermia. These GABAergic neurons project from the vLPO to the DMD and optogenetic stimulation of the nerve terminals in the DMD also reduced body temperature and activity. Electrophysiological recording revealed that the vLPO GABAergic neurons suppressed neural activity in DMD neurons, and fiber photometry of calcium transients revealed that DMD neurons were activated by cold. Accordingly, activation of DMD neurons using designer receptors exclusively activated by designer drugs (DREADDs) or optogenetics increased body temperature with a strong increase in energy expenditure and activity. Finally, optogenetic inhibition of DMD neurons triggered hypothermia, similar to stimulation of the GABAergic neurons in the vLPO. Thus, vLPO GABAergic neurons suppressed the thermogenic effect of DMD neurons. In aggregate, our data identify vLPO→DMD neural pathways that reduce core temperature in response to a thermal challenge, and we show that outputs from the DMD can induce activity-induced thermogenesis.

  7. Sleeping birds do not respond to predator odour.

    PubMed

    Amo, Luisa; Caro, Samuel P; Visser, Marcel E

    2011-01-01

    During sleep animals are relatively unresponsive and unaware of their environment, and therefore, more exposed to predation risk than alert and awake animals. This vulnerability might influence when, where and how animals sleep depending on the risk of predation perceived before going to sleep. Less clear is whether animals remain sensitive to predation cues when already asleep. We experimentally tested whether great tits are able to detect the chemical cues of a common nocturnal predator while sleeping. We predicted that birds exposed to the scent of a mammalian predator (mustelid) twice during the night would not go into torpor (which reduces their vigilance) and hence would not reduce their body temperature as much as control birds, exposed to the scent of another mammal that does not represent a danger for the birds (rabbit). As a consequence of the higher body temperature birds exposed to the scent of a predator are predicted to have a higher resting metabolic rate (RMR) and to lose more body mass. In the experiment, all birds decreased their body temperature during the night, but we did not find any influence of the treatment on body temperature, RMR, or body mass. Our results suggest that birds are not able to detect predator chemical cues while sleeping. As a consequence, antipredatory strategies taken before sleep, such as roosting sites inspection, may be crucial to cope with the vulnerability to predation risk while sleeping.

  8. Formulation and synthesis of hydrogels having lower critical solution temperature near body temperature

    NASA Astrophysics Data System (ADS)

    Abidin, A. Z.; Graha, H. P. R.; Trirahayu, D. A.

    2017-07-01

    Copolymerization between bacterial cellulose nanocrystal (CN) and methyl cellulose (MC) was carried out using UV light to produce a biocompatible hydrogel at body temperature and liquid at room temperature. Viscosity and salt effect of the MC and copolymer solution at room temperature and its Lower Critical Solution Temperature (LCST) were evaluated. The analysis showed that the higher concentration of methyl cellulose and salt content in the solution produced lower LCST and higher solution viscosity. All samples of polymer solution with MC concentrations of 1 and 2% have a viscosity less than 5000 cP at room temperature. The solutions with MC concentration of 1, 2, and 3% have respectively LCST of 59, 58, and 57°C, while its copolymer solutions with CN concentration of 0.1, 0.3, and 0.5% have respectively LCST of 55, 51, and 41°C. The salt addition to the solution of MC-CN copolymer with concentrations of 1x and 1.5x Phosphat Buffered Saline (PBS) produces respectively LCST of 47 and 38°C. The results suggest that the copolymer solution of MC-CN could produce a lower LCST and the addition of salt could amplify the effect of LCST decrease that can be used to produce a biocompatible hydrogel with LCST as close as body temperature.

  9. Vulnerability of the calcifying larval stage of the Antarctic sea urchin Sterechinus neumayeri to near-future ocean acidification and warming.

    PubMed

    Byrne, Maria; Ho, Melanie A; Koleits, Lucas; Price, Casandra; King, Catherine K; Virtue, Patti; Tilbrook, Bronte; Lamare, Miles

    2013-07-01

    Stenothermal polar benthic marine invertebrates are highly sensitive to environmental perturbations but little is known about potential synergistic effects of concurrent ocean warming and acidification on development of their embryos and larvae. We examined the effects of these stressors on development to the calcifying larval stage in the Antarctic sea urchin Sterechinus neumayeri in embryos reared in present and future (2100+) ocean conditions from fertilization. Embryos were reared in 2 temperature (ambient: -1.0 °C, + 2 °C : 1.0 °C) and 3 pH (ambient: pH 8.0, -0.2-0.4 pH units: 7.8,7.6) levels. Principle coordinates analysis on five larval metrics showed a significant effect of temperature and pH on the pattern of growth. Within each temperature, larvae were separated by pH treatment, a pattern primarily influenced by larval arm and body length. Growth was accelerated by temperature with a 20-28% increase in postoral (PO) length at +2 °C across all pH levels. Growth was strongly depressed by reduced pH with a 8-19% decrease in PO length at pH 7.6-7.8 at both temperatures. The boost in growth caused by warming resulted in larvae that were larger than would be observed if acidification was examined in the absence of warming. However, there was no significant interaction between these stressors. The increase in left-right asymmetry and altered body allometry indicated that decreased pH disrupted developmental patterning and acted as a teratogen (agent causing developmental malformation). Decreased developmental success with just a 2 °C warming indicates that development in S. neumayeri is particularly sensitive to increased temperature. Increased temperature also altered larval allometry. Altered body shape impairs swimming and feeding in echinoplutei. In the absence of adaptation, it appears that the larval phase may be a bottleneck for survivorship of S. neumayeri in a changing ocean in a location where poleward migration to escape inhospitable conditions is not possible. © 2013 Blackwell Publishing Ltd.

  10. Kv4.2 Mediates Histamine Modulation of Preoptic Neuron Activity and Body Temperature

    PubMed Central

    Sethi, Jasmine; Sanchez-Alavez, Manuel; Tabarean, Iustin V.

    2011-01-01

    Histamine regulates arousal, circadian rhythms, and thermoregulation. Activation of H3 histamine receptors expressed by preoptic GABAergic neurons results in a decrease of their firing rate and hyperthermia. Here we report that an increase in the A-type K+ current in preoptic GABAergic neurons in response to activation of H3 histamine receptors results in decreased firing rate and hyperthermia in mice. The Kv4.2 subunit is required for these actions in spite of the fact that Kv4.2−/− preoptic GABAergic neurons display A-type currents and firing characteristics similar to those of wild-type neurons. This electrical remodeling is achieved by robust upregulation of the expression of the Kv4.1 subunit and of a delayed rectifier current. Dynamic clamp experiments indicate that enhancement of the A-type current by a similar amount to that induced by histamine is sufficient to mimic its robust effect on firing rates. These data indicate a central role played by the Kv4.2 subunit in histamine regulation of body temperature and its interaction with pERK1/2 downstream of the H3 receptor. We also reveal that this pathway provides a mechanism for selective modulation of body temperature at the beginning of the active phase of the circadian cycle. PMID:22220205

  11. PubMed Central

    Dupras, J; Vachon, P; Cuvelliez, S; Blais, D

    2001-01-01

    In this study, anesthesia levels obtained with tiletamine-zolazepam (TZ) and ketamine-midazolam (KM) with or without xylazine (X) were compared in rabbits. Reflexes (corneal, palpebral and withdrawal), blood parameters (PaO2, PaCO2, pH and ions HCO3-), cardiovascular function (heart rate and mean arterial blood pressure) and body temperature were evaluated before and after the injections of the anesthetic combination in the same rabbits (n = 10). With KM and TZ, no suppression of reflexes occurred. The body temperature and pH decreased and HCO3- increased similarly to KMX et TZX. Some physiological and blood parameters were less (PAM, PaCO2) and not (PaO2) affected comparatively to KMX et TZX. These protocols were of short duration of action and did not offer any anesthesia or analgesia. Therefore, their utilization should be restricted to short procedures where no painful manipulations are performed. Ketamine-midazolam-xylazine and tiletamine-zolazepam-xylazine on the other hand are indicated for interventions that require anesthesia. With these combinations, all reflexes were absent for 30-45 and 60-90 min following injections of KMX et TZX, respectively. However, these combinations induce cardiac depression, as well as a decrease of all measured blood parameters and body temperature and a reduction of PaO2. Supplementation with oxygen is recommended with the introduction of xylazine in the protocol. PMID:11424577

  12. Both Low Temperature and Shorter Duration of Food Availability Delay Testicular Regression and Affect the Daily Cycle in Body Temperature in a Songbird.

    PubMed

    Dawson, Alistair

    Photoperiodic control of reproduction in birds is based on two processes, a positive effect leading to gonadal maturation and an inhibitory effect subsequently inducing regression. Nonphotoperiodic cues can modulate photoperiodic control, particularly the inhibitory process. In previous studies of common starlings (Sturnus vulgaris), (1) restriction of food availability to 8 h after dawn had little effect on testicular maturation but dramatically delayed subsequent regression and (2) lower ambient temperature also had little effect during maturation but delayed regression. Could the effects of food restriction and temperature share a common underlying mechanism? Four groups of starlings were kept on a simulated natural cycle in photoperiod in a 2 × 2 factorial experimental design. Two groups were held under an ambient temperature of 16°C, and the other two were held under 6°C. One of each of these groups had food provided ad lib., and in the other two groups access to food was denied 7 h after dawn. In both the ad lib. food groups and the food-restricted groups, lower temperature had little effect on testicular maturation but delayed subsequent regression and molt. In both the 16°C groups and the 6°C groups, food restriction had no effect on testicular maturation but delayed regression and molt. The daily cycle in body temperature was recorded in all groups when the photoperiod had reached 12L∶12D, the photoperiod at which regression is initiated. In both 6°C groups, nighttime body temperature was lower than in the 16°C groups, a characteristic of shorter photoperiods. In the two ad lib. food groups high daytime temperature was maintained until dusk, whereas in the two food-restricted groups body temperature began to decrease after food withdrawal. Thus, both lower temperature and food restriction delayed regression, as if the photoperiod was shorter than it actually was, and both resulted in daily cycles in body temperature that reflected cycles under shorter photoperiods. This implies that the daily cycle in body temperature is possibly a common pathway through which nonphotoperiodic cues may operate.

  13. Effect of a warm footbath before bedtime on body temperature and sleep in older adults with good and poor sleep: an experimental crossover trial.

    PubMed

    Liao, Wen-Chun; Wang, Lee; Kuo, Ching-Pyng; Lo, Chyi; Chiu, Ming-Jang; Ting, Hua

    2013-12-01

    The decrease in core body temperature before sleep onset and during sleep is associated with dilation of peripheral blood vessels, which permits heat dissipation from the body core to the periphery. A lower core temperature coupled with a higher distal (hands and feet) temperature before sleep are associated with shorter sleep latency and better sleep quality. A warm footbath is thought to facilitate heat dissipation to improve sleep outcomes. This study examined the effect of a warm footbath (40°C water temperature, 20-min duration) on body temperature and sleep in older adults (≥55 years) with good and poor sleep. Two groups and an experimental crossover design was used. Forty-three adults responded to our flyer and 25 participants aged 59.8±3.7 years (poor sleeper with a Pittsburgh Sleep Quality Index score≥5=17; good sleepers with a Pittsburgh Sleep Quality Index score<5=8) completed this study. All participants had body temperatures (core, abdomen, and foot) and polysomnography recorded for 3 consecutive nights. The first night was for adaptation and sleep apnea screening. Participants were then randomly assigned to either the structured foot bathing first (second night) and non-bathing second (third night) condition or the non-bathing first (second night) and foot bathing second (third night) condition. A footbath before sleep significantly increased and retained foot temperatures in both good and poor sleepers. The pattern of core temperatures during foot bathing was gradually elevated (poor sleepers vs. good sleepers=+0.40±0.58°C vs. +0.66±0.17°C). There were no significant changes in polysomnographic sleep and perceived sleep quality between non-bathing and bathing nights for both groups. A footbath of 40°C water temperature and 20-min duration before sleep onset increases foot temperatures and distal-proximal skin temperature gradients to facilitate vessel dilatation and elevates core temperature to provide heat load to the body. This footbath does not alter sleep in older adults with good and poor sleep. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Genetic and phenotypic relationships between immune defense, melanism and life-history traits at different temperatures and sexes in Tenebrio molitor.

    PubMed

    Prokkola, J; Roff, D; Kärkkäinen, T; Krams, I; Rantala, M J

    2013-08-01

    Insect cuticle melanism is linked to a number of life-history traits, and a positive relationship is hypothesized between melanism and the strength of immune defense. In this study, the phenotypic and genetic relationships between cuticular melanization, innate immune defense, individual development time and body size were studied in the mealworm beetle (Tenebrio molitor) using three different temperatures with a half-sib breeding design. Both innate immune defense and cuticle darkness were higher in females than males, and a positive correlation between the traits was found at the lowest temperature. The effect of temperature on all the measured traits was strong, with encapsulation ability and development time decreasing and cuticle darkness increasing with a rise in temperature, and body size showing a curved response. The analysis showed a highly integrated system sensitive to environmental change involving physiological, morphological and life-history traits.

  15. Genetic and phenotypic relationships between immune defense, melanism and life-history traits at different temperatures and sexes in Tenebrio molitor

    PubMed Central

    Prokkola, J; Roff, D; Kärkkäinen, T; Krams, I; Rantala, M J

    2013-01-01

    Insect cuticle melanism is linked to a number of life-history traits, and a positive relationship is hypothesized between melanism and the strength of immune defense. In this study, the phenotypic and genetic relationships between cuticular melanization, innate immune defense, individual development time and body size were studied in the mealworm beetle (Tenebrio molitor) using three different temperatures with a half-sib breeding design. Both innate immune defense and cuticle darkness were higher in females than males, and a positive correlation between the traits was found at the lowest temperature. The effect of temperature on all the measured traits was strong, with encapsulation ability and development time decreasing and cuticle darkness increasing with a rise in temperature, and body size showing a curved response. The analysis showed a highly integrated system sensitive to environmental change involving physiological, morphological and life-history traits. PMID:23572120

  16. Droplet bubbling evaporatively cools a blowfly.

    PubMed

    Gomes, Guilherme; Köberle, Roland; Von Zuben, Claudio J; Andrade, Denis V

    2018-04-19

    Terrestrial animals often use evaporative cooling to lower body temperature. Evaporation can occur from humid body surfaces or from fluids interfaced to the environment through a number of different mechanisms, such as sweating or panting. In Diptera, some flies move tidally a droplet of fluid out and then back in the buccopharyngeal cavity for a repeated number of cycles before eventually ingesting it. This is referred to as the bubbling behaviour. The droplet fluid consists of a mix of liquids from the ingested food, enzymes from the salivary glands, and antimicrobials, associated to the crop organ system, with evidence pointing to a role in liquid meal dehydration. Herein, we demonstrate that the bubbling behaviour also serves as an effective thermoregulatory mechanism to lower body temperature by means of evaporative cooling. In the blowfly, Chrysomya megacephala, infrared imaging revealed that as the droplet is extruded, evaporation lowers the fluid´s temperature, which, upon its re-ingestion, lowers the blowfly's body temperature. This effect is most prominent at the cephalic region, less in the thorax, and then in the abdomen. Bubbling frequency increases with ambient temperature, while its cooling efficiency decreases at high air humidities. Heat transfer calculations show that droplet cooling depends on a special heat-exchange dynamic, which result in the exponential activation of the cooling effect.

  17. Effects of subchronic exposures to concentrated ambient particles (CAPs) in mice. III. Acute and chronic effects of CAPs on heart rate, heart-rate fluctuation, and body temperature.

    PubMed

    Hwang, Jing-Shiang; Nadziejko, Christine; Chen, Lung Chi

    2005-04-01

    Normal mice (C57) and mice prone to develop atherosclerosis (ApoE-/-) were implanted with electrocardiograph (EKG), core body temperature, and motion transmitters were exposed daily for 6 h to Tuxedo, NY, concentrated ambient particles (CAPs) for 5 day/wk during the spring and summer of 2003. The series of 5-min EKG monitoring and body-temperature measurements were obtained for each animal in the CAPs and filtered air sham exposure groups. Our hypothesis was that chronic exposure could cause cumulative health effects. We used our recently developed nonparametric method to estimate the daily time periods that mean heart rates (HR), body temperature, and physical activity differed significantly between the CAPs and sham exposed group. CAPs exposure most affected heart rate between 1:30 a.m. and 4:30 a.m. With the response variables being the average heart rate, body temperature, and physical activity, we adopted a two-stage modeling approach to obtain the estimates of chronic and acute effects on the changes of these three response variables. In the first stage, a time-varying model estimated daily crude effects. In the second stage, the true means of the estimated crude effects were modeled with a polynominal function of time for chronic effects, a linear term of daily CAPs exposure concentrations for acute effects, and a random component for unknown noise. A Bayesian framework combined these two stages. There were significant decreasing patterns of HR, body temperature, and physical activity for the ApoE-/- mice over the 5 mo of CAPs exposure, with smaller and nonsignificant changes for the C57 mice. The chronic effect changes of the three response variables for ApoE-/- mice were maximal in the last few weeks. There was also a significant relationship between CAPs exposure concentration and short-term changes of heart rate in ApoE-/- mice during exposure. Response variables were also defined for examining fluctuations of 5-min heart rates within long (i.e., 3-6 h) and short time periods (i.e., approximately 15 min). The results for the ApoE-/- mice showed that heart-rate fluctuation within the longer periods increased to 1.35-fold by the end of exposure experiment, while the heart-rate fluctuation within 15 min decreased to 0.7-fold.

  18. Thermoregulatory behaviour affects prevalence of chytrid fungal infection in a wild population of Panamanian golden frogs

    PubMed Central

    Richards-Zawacki, Corinne L.

    2010-01-01

    Predicting how climate change will affect disease dynamics requires an understanding of how the environment affects host–pathogen interactions. For amphibians, global declines and extinctions have been linked to a pathogenic chytrid fungus, Batrachochytrium dendrobatidis. Using a combination of body temperature measurements and disease assays conducted before and after the arrival of B. dendrobatidis, this study tested the hypothesis that body temperature affects the prevalence of infection in a wild population of Panamanian golden frogs (Atelopus zeteki). The timing of first detection of the fungus was consistent with that of a wave of epidemic infections spreading south and eastward through Central America. During the epidemic, many golden frogs modified their thermoregulatory behaviour, raising body temperatures above their normal set point. Odds of infection decreased with increasing body temperature, demonstrating that even slight environmental or behavioural changes have the potential to affect an individual's vulnerability to infection. The thermal dependency of the relationship between B. dendrobatidis and its amphibian hosts demonstrates how the progression of an epidemic can be influenced by complex interactions between host and pathogen phenotypes and the environments in which they are found. PMID:19864287

  19. Low body temperature, time dilation, and long-trace conditioned flavor aversion in rats.

    PubMed

    Misanin, James R; Anderson, Matthew J; Christianson, John P; Collins, Michele M; Goodhart, Mark G; Rushanan, Scott G; Hinderliter, Charles F

    2002-07-01

    Conditioned flavor aversion was examined in Wistar-derived albino rats that were immersed in cold water for 0, 2.5, 5, or 10 min immediately following 10-min exposure to a.1% saccharin solution and given an intraperitoneal (i.p.) injection of 0.15 M lithium chloride (LiCl) either 90, 135, 180, or 225 min later. Cold water immersion for 2.5, 5, and 10 min led to body temperature decreases of approximately 4.5, 7, and 10 degrees C, respectively. Rats whose body temperatures were not reduced (0 min immersion) showed no saccharin aversion when the LiCl was delayed 90 min. Rats whose body temperatures were reduced 4.5, 7, and 10 degrees C displayed conditioned aversions at LiCl delays up to 135, 180, and 225 min, respectively. These results were interpreted in terms of a cold-induced slowing of a biochemical clock that may uniquely govern specific timing processes involved in associative learning over long delays, such as long-trace conditioned flavor aversion, learned safety, and certain types of learning that involve an extensive time lapse (e.g., extinction of fear). Copyright 2002 Elsevier Science (USA).

  20. Amphetamine enhances endurance by increasing heat dissipation.

    PubMed

    Morozova, Ekaterina; Yoo, Yeonjoo; Behrouzvaziri, Abolhassan; Zaretskaia, Maria; Rusyniak, Daniel; Zaretsky, Dmitry; Molkov, Yaroslav

    2016-09-01

    Athletes use amphetamines to improve their performance through largely unknown mechanisms. Considering that body temperature is one of the major determinants of exhaustion during exercise, we investigated the influence of amphetamine on the thermoregulation. To explore this, we measured core body temperature and oxygen consumption of control and amphetamine-trea ted rats running on a treadmill with an incrementally increasing load (both speed and incline). Experimental results showed that rats treated with amphetamine (2 mg/kg) were able to run significantly longer than control rats. Due to a progressively increasing workload, which was matched by oxygen consumption, the control group exhibited a steady increase in the body temperature. The administration of amphetamine slowed down the temperature rise (thus decreasing core body temperature) in the beginning of the run without affecting oxygen consumption. In contrast, a lower dose of amphetamine (1 mg/kg) had no effect on measured parameters. Using a mathematical model describing temperature dynamics in two compartments (the core and the muscles), we were able to infer what physiological parameters were affected by amphetamine. Modeling revealed that amphetamine administration increases heat dissipation in the core. Furthermore, the model predicted that the muscle temperature at the end of the run in the amphetamine-treated group was significantly higher than in the control group. Therefore, we conclude that amphetamine may mask or delay fatigue by slowing down exercise-induced core body temperature growth by increasing heat dissipation. However, this affects the integrity of thermoregulatory system and may result in potentially dangerous overheating of the muscles. © 2016 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  1. Effect of body temperature on chondroitinase ABC's ability to cleave chondroitin sulfate glycosaminoglycans.

    PubMed

    Tester, Nicole J; Plaas, Anna H; Howland, Dena R

    2007-04-01

    Chondroitinase ABC (Ch'ase ABC) is a bacterial lyase that degrades chondroitin sulfate (CS), dermatan sulfate, and hyaluronan glycosaminoglycans (GAGs). This enzyme has received significant attention as a potential therapy for promoting central nervous system and peripheral nervous system repair based on its degradation of CS GAGs. Determination of the stability of Ch'ase ABC activity at temperatures equivalent to normal (37 degrees C) and elevated (39 degrees C) body temperatures is important for optimizing its clinical usage. We report here data obtained from examining enzymatic activity at these temperatures across nine lots of commercially available protease-free Ch'ase ABC. CS GAG degrading activity was assayed by using 1) immunohistochemical detection of unsaturated disaccharide stubs generated by digestion of proteoglycans in tissue sections and 2) fluorophore-assisted carbohydrate electrophoresis (FACE) and/or high-performance liquid chromatography (HPLC) to separate and quantify unsaturated disaccharide digestion products. Our results indicate that there is a significant effect of lot and time on enzymatic thermostability. Average enzymatic activity is significantly decreased at 1 and 3 days at 39 degrees C and 37 degrees C, respectively. Furthermore, the average activity seen after 1 day was significantly different between the two temperatures. Addition of bovine serum albumin as a stabilizer significantly preserved enzymatic activity at 1 day, but not 3 days, at 39 degrees C. These results show that the CS GAG degrading activity of Ch'ase ABC is significantly decreased with incubation at body temperature over time and that all lots do not show equal thermostability. These findings are important for the design and interpretation of experimental and potential clinical studies involving Ch'ase ABC. (c) 2007 Wiley-Liss, Inc.

  2. Effect of electroacupuncture in postanesthetic shivering during regional anesthesia: a randomized controlled trial

    PubMed Central

    2012-01-01

    Background Shivering during regional anesthesia is a common complication and is related to a decrease in the patient’s core body temperature. Previous studies have shown that acupuncture on specific acupoints can preserve core body temperature. The present study evaluated the effect of electroacupuncture in preventing the shivering caused by regional anesthesia. Methods This prospective and randomized controlled study analyzed the data from 80 patients undergoing urological surgery, who were classified as ASA I or II. Spinal anesthesia was performed in all patients using 15 mg of bupivacaine. The patients were randomly allocated to receive either placebo acupuncture (Group P, n = 40) or electroacupuncture (Group A, n = 40) for 30 min before administration of spinal anesthesia. Shivering score was recorded at 5 min intervals, with 0 representing no shivering and 4 representing the most severe shivering possible. Heart rate, blood pressure, and tympanic temperature were recorded before the intrathecal injection, and again every 5 min thereafter until 30 min. Results After spinal anesthesia, the decrease in tympanic temperature was less for Group A patients than Group P, with the difference being statistically significant. After 15 min, 13 patients in Group P attained a shivering score of 3 or more, compared with 3 patients in Group A. Significantly more patients in Group P attained a shivering score of at least 1. Conclusions The prophylactic use of electroacupuncture might maintain core body temperature, and may effectively prevent the shivering that commonly develops during regional anesthesia. Trial registration Australian New Zealand Clinical Trials Registry ACTRN12612000096853. PMID:23181618

  3. Warm hands, cold heart: progressive whole-body cooling increases warm thermosensitivity of human hands and feet in a dose-dependent fashion.

    PubMed

    Filingeri, Davide; Morris, Nathan B; Jay, Ollie

    2017-01-01

    What is the central question of this study? Investigations on inhibitory/facilitatory modulation of vision, touch and pain show that conditioning stimuli outside the receptive field of testing stimuli modulate the central processing of visual, touch and painful stimuli. We asked whether contextual modulation also exists in human temperature integration. What is the main finding and its importance? Progressive decreases in whole-body mean skin temperature (the conditioning stimulus) significantly increased local thermosensitivity to skin warming but not cooling (the testing stimuli) in a dose-dependent fashion. In resembling the central mechanisms underlying endogenous analgesia, our findings point to the existence of an endogenous thermosensory system in humans that could modulate local skin thermal sensitivity to facilitate thermal behaviour. Although inhibitory/facilitatory central modulation of vision and pain has been investigated, contextual modulation of skin temperature integration has not been explored. Hence, we tested whether progressive decreases in whole-body mean skin temperature (T sk ; a large conditioning stimulus) alter the magnitude estimation of local warming and cooling stimuli applied to hairy and glabrous skin. On four separate occasions, eight men (27 ± 5 years old) underwent a 30 min whole-body cooling protocol (water-perfused suit; temperature, 5°C), during which a quantitative thermosensory test, consisting of reporting the perceived magnitude of warming and cooling stimuli (±8°C from 30°C baseline) applied to the hand (palm/dorsum) and foot (sole/dorsum), was performed before cooling and every 10 min thereafter. The cooling protocol resulted in large progressive reductions in T sk [10 min, -3.36°C (95% confidence interval -2.62 to -4.10); 20 min, -5.21°C (-4.47 to -5.95); and 30 min, -6.32°C (-5.58 to -7.05); P < 0.001], with minimal changes (∼0.08°C) in rectal temperature. While thermosensitivity to local skin cooling remained unchanged (P = 0.831), sensitivity to skin warming increased significantly at each level of T sk for all skin regions [10 min, +4.9% (-1.1 to +11.0); 20 min, +6.1% (+0.1-12.2); and 30 min, +7.9% (+1.9-13.9); P = 0.009]. Linear regression indicated a 1.2% °C -1 increase in warm thermosensitivity with whole-body skin cooling. Overall, large decreases in T sk significantly facilitated warm but not cold sensory processing of local thermal stimuli, in a dose-dependent fashion. In highlighting a novel feature of human temperature integration, these findings point to the existence of an endogenous thermosensory system that could modulate local skin thermal sensitivity in relationship to whole-body thermal states. © 2016 The Authors. Experimental Physiology © 2016 The Physiological Society.

  4. The effect of temperature on amount and structure of motor variability during 2-minute maximum voluntary contraction.

    PubMed

    Brazaitis, Marius; Skurvydas, Albertas; Pukėnas, Kazimieras; Daniuseviciūtė, Laura; Mickevicienė, Dalia; Solianik, Rima

    2012-11-01

    In this study, we questioned whether local cooling of muscle or heating involving core and muscle temperatures are the main indicators for force variability. Ten volunteers performed a 2-min maximum voluntary contraction (MVC) of the knee extensors under control (CON) conditions after passive heating (HT) and cooling (CL) of the lower body. HT increased muscle and rectal temperatures, whereas CL lowered muscle temperature but did not affect rectal temperature. During 2-min MVC, peak force decreased to a lower level in HT compared with CON and CL experiments. Greater central fatigue was found in the HT experiment, and there was less in the CL experiment than in the CON experiment. Increased core and muscle temperature increased physiological tremor and the amount and structural complexity of force variability of the exercising muscles, whereas local muscle cooling decreased all force variability variables measured. Copyright © 2012 Wiley Periodicals, Inc.

  5. [Methodic approaches to evaluation of microclimate at workplace, with application of various types of protective clothing against occupational hazards].

    PubMed

    Prokopenko, L V; Afanas'eva, R F; Bessonova, N A; Burmistrova, O V; Losik, T K; Konstantinov, E I

    2013-01-01

    Studies of heat state of human involved into physical work in heating environment and having various protective clothing on demonstrated value of the protective clothing in modifying thermal load on the body and possible decrease of this load through air temperature and humidity correction, shorter stay at workplace. The authors presented hygienic requirements to air temperatures range in accordance with allowable body heating degree, suggested mathematic model to forecast integral parameter of human functional state in accordance with type of protective clothing applied. The article also covers necessity of upper air temperature limit during hot season, for applying protective clothing made of materials with low air permeability and hydraulic conductivity.

  6. Thermoregulation is impaired in an environment without circadian time cues

    NASA Technical Reports Server (NTRS)

    Fuller, C. A.; Sulzman, F. M.; Moore-Ede, M. C.

    1978-01-01

    Thirteen adult male squirrel monkeys were restrained to a metabolism chair for periods of two or more weeks within an isolation chamber having controlled environmental lighting and ambient temperature. The monkeys were subjected to mild 6-hour cold exposures at all circadian phases of the day. It was found that a prominent circadian rhythm in body temperature, regulated against mild cold exposure, was present in those monkeys synchronized in a 24-hour light-dark cycle. Cold exposures were found to produce decreased core body temperatures when the circadian rhythms were free running or when environmental time indicators were not present. It is concluded that the thermoregulating system depends on the internal synchronization of the circadian time-keeping system.

  7. Afferent thermosensory function in relapsing-remitting multiple sclerosis following exercise-induced increases in body temperature.

    PubMed

    Filingeri, Davide; Chaseling, Georgia; Hoang, Phu; Barnett, Michael; Davis, Scott L; Jay, Ollie

    2017-08-01

    What is the central question of this study? Between 60 and 80% of multiple sclerosis (MS) patients experience transient worsening of symptoms with increased body temperature (heat sensitivity). As sensory abnormalities are common in MS, we asked whether afferent thermosensory function is altered in MS following exercise-induced increases in body temperature. What is the main finding and its importance? Increases in body temperature of as little as ∼0.4°C were sufficient to decrease cold, but not warm, skin thermosensitivity (∼10%) in MS, across a wider temperature range than in age-matched healthy individuals. These findings provide new evidence on the impact of heat sensitivity on afferent function in MS, which could be useful for clinical evaluation of this neurological disease. In multiple sclerosis (MS), increases in body temperature result in transient worsening of clinical symptoms (heat sensitivity or Uhthoff's phenomenon). Although the impact of heat sensitivity on efferent physiological function has been investigated, the effects of heat stress on afferent sensory function in MS are unknown. Hence, we quantified afferent thermosensory function in MS following exercise-induced increases in body temperature with a new quantitative sensory test. Eight relapsing-remitting MS patients (three men and five women; 51.4 ± 9.1 years of age; Expanded Disability Status Scale score 2.8 ± 1.1) and eight age-matched control (CTR) subjects (five men and three women; 47.4 ± 9.1 years of age) rated the perceived magnitude of two cold (26 and 22°C) and two warm stimuli (34 and 38°C) applied to the dorsum of the hand before and after 30 min cycling in the heat (30°C air; 30% relative humidity). Exercise produced similar increases in mean body temperature in MS [+0.39°C (95% CI: +0.21, +0.53) P = 0.001] and CTR subjects [+0.41°C (95% CI: +0.25, +0.58) P = 0.001]. These changes were sufficient to decrease thermosensitivity significantly to all cold [26°C stimulus, -9.1% (95% CI: -17.0, -1.5), P = 0.006; 22°C stimulus, -10.6% (95% CI: -17.3, -3.7), P = 0.027], but not warm, stimuli in MS. Contrariwise, CTR subjects showed sensitivity reductions to colder stimuli only [22°C stimulus, -9.7% (95% CI: -16.4, -3.1), P = 0.011]. The observation that reductions in thermal sensitivity in MS were confined to the myelinated cold-sensitive pathway and extended across a wider (including milder and colder) temperature range than what is observed in CTR subjects provides new evidence on the impact of rising body temperature on afferent neural function in MS. Also, our findings support the use of our new approach to investigate afferent sensory function in MS during heat stress. © 2017 The Authors. Experimental Physiology © 2017 The Physiological Society.

  8. Parenteral diclofenac infusion significantly decreases brain-tissue oxygen tension in patients with poor-grade aneurysmal subarachnoid hemorrhage

    PubMed Central

    2013-01-01

    Introduction Diclofenac, a nonsteroidal antiinflammatory drug, is commonly used as antipyretic therapy in intensive care. The purpose of this study was to investigate the effects of parenteral diclofenac infusion on brain homeostasis, including brain-tissue oxygen tension (PbtO2) and brain metabolism after aneurysmal subarachnoid hemorrhage (aSAH). Methods We conducted a prospective, observational study with retrospective analysis of 21 consecutive aSAH patients with multimodal neuromonitoring. Cerebral perfusion pressure (CPP), mean arterial pressure (MAP), intracranial pressure (ICP), body temperature, and PbtO2 were analyzed after parenteral diclofenac infusion administered over a 34-minute period (20 to 45 IQR). Data are given as mean ± standard error of mean and median with interquartile range (IQR), as appropriate. Time-series data were analyzed by using a general linear model extended by generalized estimation equations (GEEs). Results One-hundred twenty-three interventions were analyzed. Body temperature decreased from 38.3°C ± 0.05°C by 0.8°C ± 0.06°C (P < 0.001). A 10% decrease in MAP and CPP (P < 0.001) necessitated an increase of vasopressors in 26% (n = 32), colloids in 33% (n = 41), and crystalloids in 5% (n = 7) of interventions. PbtO2 decreased by 13% from a baseline value of 28.1 ± 2.2 mm Hg, resulting in brain-tissue hypoxia (PbtO2 <20 mm Hg) in 38% (n = 8) of patients and 35% (n = 43) of interventions. PbtO2 <30 mm Hg before intervention was associated with brain-tissue hypoxia after parenteral diclofenac infusion (likelihood ratio, 40; AUC, 93%; 95% confidence interval (CI), 87% to 99%; P < 0.001). Cerebral metabolism showed no significant changes after parenteral diclofenac infusion. Conclusions Parenteral diclofenac infusion after aSAH effectively reduces body temperature, but may lead to CPP decrease and brain-tissue hypoxia, which were both associated with poor outcome after aSAH. PMID:23663770

  9. Platelet Dynamics during Natural and Pharmacologically Induced Torpor and Forced Hypothermia

    PubMed Central

    de Vrij, Edwin L.; Vogelaar, Pieter C.; Goris, Maaike; Houwertjes, Martin C.; Herwig, Annika; Dugbartey, George J.; Boerema, Ate S.; Strijkstra, Arjen M.; Bouma, Hjalmar R.; Henning, Robert H.

    2014-01-01

    Hibernation is an energy-conserving behavior in winter characterized by two phases: torpor and arousal. During torpor, markedly reduced metabolic activity results in inactivity and decreased body temperature. Arousal periods intersperse the torpor bouts and feature increased metabolism and euthermic body temperature. Alterations in physiological parameters, such as suppression of hemostasis, are thought to allow hibernators to survive periods of torpor and arousal without organ injury. While the state of torpor is potentially procoagulant, due to low blood flow, increased viscosity, immobility, hypoxia, and low body temperature, organ injury due to thromboembolism is absent. To investigate platelet dynamics during hibernation, we measured platelet count and function during and after natural torpor, pharmacologically induced torpor and forced hypothermia. Splenectomies were performed to unravel potential storage sites of platelets during torpor. Here we show that decreasing body temperature drives thrombocytopenia during torpor in hamster with maintained functionality of circulating platelets. Interestingly, hamster platelets during torpor do not express P-selectin, but expression is induced by treatment with ADP. Platelet count rapidly restores during arousal and rewarming. Platelet dynamics in hibernation are not affected by splenectomy before or during torpor. Reversible thrombocytopenia was also induced by forced hypothermia in both hibernating (hamster) and non-hibernating (rat and mouse) species without changing platelet function. Pharmacological torpor induced by injection of 5′-AMP in mice did not induce thrombocytopenia, possibly because 5′-AMP inhibits platelet function. The rapidness of changes in the numbers of circulating platelets, as well as marginal changes in immature platelet fractions upon arousal, strongly suggest that storage-and-release underlies the reversible thrombocytopenia during natural torpor. Possibly, margination of platelets, dependent on intrinsic platelet functionality, governs clearance of circulating platelets during torpor. PMID:24722364

  10. The temporal dynamics of the effects of monoacylglycerol lipase blockade on locomotion, anxiety, and body temperature.

    PubMed

    Aliczki, Mano; Balogh, Zoltan; Tulogdi, Aron; Haller, Jozsef

    2012-08-01

    Studies with the monoacylglycerol lipase blocker JZL184 have suggested that enhanced 2-arachidonoylglycerol signaling suppresses locomotion, lowers body temperature, and decreases anxiety. Although the neurochemical effects of JZL184 develop within 30 min, its behavioral and autonomic effects have been studied much later. To clarify temporal dynamics, we studied the effects of intraperitoneal injections of JZL184 in mice on home-cage locomotion and body temperature for 120 min using in-vivo biotelemetry. We also studied the effects of 4, 8, and 16 mg/kg JZL184 in the open field and elevated plus maze at various time points. In the home cage, JZL184 blunted injection-induced body temperature increases but exerted no long-term effects. Vehicle injections increased the duration of rapid movements whereas the duration of motionless periods was decreased, a pattern also abolished by JZL184. Although the highest dose exerted a mild long-term effect on the relative duration of motionless periods, JZL184 seemed to have phasic rather than tonic effects in the home cage. By contrast, open field and plus maze behavior was affected 80 and 120 min but not 40 min after treatments, which may indicate tonic rather than phasic effects in these tests. Our findings confirm earlier reports of a mild anxiolytic effect of JZL184, but surprisingly, the compound markedly and dose dependently increased locomotion in the open field in both CD1 and C57BL/6J mice. These findings are difficult to reconcile at present, but suggest that the effects of monoacylglycerol lipase inhibition are more complex than previously believed and may depend strongly on as yet unidentified factors such as environmental conditions, the time of testing, species/strains, etc.

  11. A wider view on gastric erosion: detailed evaluation of complex somatic and behavioral changes in rats treated with indomethacin at gastric ulcerogenic dose.

    PubMed

    Filaretova, L P; Bagaeva, T R; Morozova, O Y; Zelena, D

    2014-10-01

    Gastric erosion is widespread side effect of nonsteroidal anti-inflammatory drugs. To examine the complexity of the brain-gut axis regulation, indomethacin-induced gastric erosion formation was studied in connection with somatic and behavioral changes. During a constant telemetric recording of heart rate, body temperature, and locomotion of male rats we examined the effects of 24 h fasting, indomethacin (35 mg/kg s.c.) injection, and refeeding at 4 h. Behavior was analyzed on elevated plus maze (EPM) at 24 h and somatic changes at 72 h. Gastric erosion developed 4 h after indomethacin injection, healed 72 h later contrasted by large injury in the small intestine. As classical signs of chronic stress, body and thymus weight were reduced while adrenal weight was enhanced 72 h after indomethacin injection. Fasting by itself changed all telemetrically recorded parameters with most prominent decrease in heart rate. Indomethacin induced similar diminishing effects with earliest and strongest temperature decrease. As a sign of more anxious phenotype locomotion reducing effect of indomethacin injection was detected on EPM. The EPM-induced temperature elevation was missing in indomethacin-treated animals. Fasting by itself induce somatic changes, which can make the animals more vulnerable to ulcerogenic stimuli. Development of indomethacin-induced gastrointestinal lesions happened in parallel with disturbances of heart rate, core body temperature, and chronic stress-like somatic changes as well as anxiety-like behavior. We have to be more aware of the existence of the brain-gut axis and should study changes in the whole body rather than focusing on a specific organ. elevated plus maze.

  12. Pharmacological blockade of the cold receptor TRPM8 attenuates autonomic and behavioral cold defenses and decreases deep body temperature

    PubMed Central

    Almeida, M. Camila; Hew-Butler, Tamara; Soriano, Renato N.; Rao, Sara; Wang, Weiya; Wang, Judy; Tamayo, Nuria; Oliveira, Daniela L.; Nucci, Tatiane B.; Aryal, Prafulla; Garami, Andras; Bautista, Diana; Gavva, Narender R.; Romanovsky, Andrej A.

    2012-01-01

    We studied M8-B, a selective and potent antagonist of the transient receptor potential melastatin-8 (TRPM8) channel. In vitro, M8-B blocked cold-induced and TRPM8-agonist-induced activation of rat, human, and murine TRPM8 channels, including those on primary sensory neurons. In vivo, M8-B decreased deep body temperature (Tb) in Trpm8+/+ mice and rats, but not in Trpm8−/− mice, thus suggesting an on-target action. The intravenous administration of M8-B was more effective in decreasing Tb in rats than the intrathecal or intracerebroventricular administration, indicating a peripheral action. M8-B attenuated cold-induced c-Fos expression in the lateral parabrachial nucleus, thus indicating a site of action within the cutaneous cooling neural pathway to thermoeffectors, presumably on sensory neurons. A low intravenous dose of M8-B did not affect Tb at either a constantly high or a constantly low ambient temperature (Ta), but the same dose readily decreased Tb if rats were kept at a high Ta during the M8-B infusion and transferred to a low Ta immediately thereafter. These data suggest that both a successful delivery of M8-B to the skin (high cutaneous perfusion) and the activation of cutaneous TRPM8 channels (by cold) are required for the hypothermic action of M8-B. At tail skin temperatures < 23°C, the magnitude of the M8-B-induced decrease in Tb was inversely related to skin temperature, thus suggesting that M8-B blocks thermal (cold) activation of TRPM8. M8-B affected all thermoeffectors studied (thermopreferendum, tail skin vasoconstriction, and brown fat thermogenesis), thus suggesting that TRPM8 is a universal cold receptor in the thermoregulation system. PMID:22323721

  13. Effect of paracetamol (acetaminophen) on body temperature in acute stroke: A meta-analysis.

    PubMed

    Fang, Junjie; Chen, Chensong; Cheng, Hongsen; Wang, Ren; Ma, Linhao

    2017-10-01

    The objective of this study was to assess the efficacy of paracetamol (acetaminophen) on body temperature in acute stroke. Medline, Cochrane Central Register of Controlled Trials, EMBASE, Chinese BioMedical Literature Database, China National Knowledge Infrastructure, and the World Health Organization (WHO) International Clinical Trials Registry Platform were searched electronically. Relevant journals and references of studies included were hand-searched for randomized controlled trials (RCT) and controlled clinical trials (CCT) regarding the efficacy of paracetamol (acetaminophen) on body temperature in acute stroke. Two reviewers independently performed data extraction and quality assessment. Data were analyzed using RevMan 5.3 software by the Cochrane Collaboration. Five studies were included. To compare the efficacy of paracetamol (acetaminophen) in acute stroke, the pooled RR (Risk Ratio) and its 95% CI of body temperature reduction at 24h from the start of treatment were -0.3 (95% CI: -0.52 to -0.08), with statistical significance (P=0.007). Consistently, the pooled RR (Risk Ratio) and its 95% CI of body temperature at 24h from the start of treatment were -0.22 (-0.29, -0.15), with statistical significance (P<0.00001). When analyzing the body temperature reduction after 5days from the start of treatment, the pooled RR (Risk Ratio) and its 95% CI were 0.04 (95% CI: -0.20 to 0.29), with no statistical significance (P=0.73). For functional outcome (mRS≤2) analysis, the pooled RR and its 95% CI were 1.08 (0.88, 1.32), with no statistical significance (P=0.45). In addition, the difference of serious adverse events between acetaminophen and placebo was 0.86 (95% CI: 0.62 to 1.2), with no statistical significance (P=0.27). Acetaminophen was revealed to have some favorable influence in body temperature reduction in acute stroke, but showed no important effect on improving functional outcome and reducing adverse events of patients. What is already known on this subject? Paracetamol (acetaminophen) is one of the most commonly used antipyretic drugs and has some capability to reduce body temperature through acting on central nervous system. Acetaminophen showed some capability to decrease body temperature for acute stroke. Acetaminophen could not improve functional outcome and reduce adverse events of patients with acute stroke. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Parasympathetic Activity and Blood Catecholamine Responses Following a Single Partial-Body Cryostimulation and a Whole-Body Cryostimulation

    PubMed Central

    Hausswirth, Christophe; Schaal, Karine; Le Meur, Yann; Bieuzen, François; Filliard, Jean-Robert; Volondat, Marielle; Louis, Julien

    2013-01-01

    The aim of this study was to compare the effects of a single whole-body cryostimulation (WBC) and a partial-body cryostimulation (PBC) (i.e., not exposing the head to cold) on indices of parasympathetic activity and blood catecholamines. Two groups of 15 participants were assigned either to a 3-min WBC or PBC session, while 10 participants constituted a control group (CON) not receiving any cryostimulation. Changes in thermal, physiological and subjective variables were recorded before and during the 20-min after each cryostimulation. According to a qualitative statistical analysis, an almost certain decrease in skin temperature was reported for all body regions immediately after the WBC (mean decrease±90% CL, -13.7±0.7°C) and PBC (-8.3±0.3°C), which persisted up to 20-min after the session. The tympanic temperature almost certainly decreased only after the WBC session (-0.32±0.04°C). Systolic and diastolic blood pressures were very likely increased after the WBC session, whereas these changes were trivial in the other groups. In addition, heart rate almost certainly decreased after PBC (-10.9%) and WBC (-15.2%) sessions, in a likely greater proportion for WBC compared to PBC. Resting vagal-related heart rate variability indices (the root-mean square difference of successive normal R-R intervals, RMSSD, and high frequency band, HF) were very likely increased after PBC (RMSSD: +54.4%, HF: +138%) and WBC (RMSSD: +85.2%, HF: +632%) sessions without any marked difference between groups. Plasma norepinephrine concentrations were likely to very likely increased after PBC (+57.4%) and WBC (+76.2%), respectively. Finally, cold and comfort sensations were almost certainly altered after WBC and PBC, sensation of discomfort being likely more pronounced after WBC than PBC. Both acute cryostimulation techniques effectively stimulated the autonomic nervous system (ANS), with a predominance of parasympathetic tone activation. The results of this study also suggest that a whole-body cold exposure induced a larger stimulation of the ANS compared to partial-body cold exposure. PMID:23991134

  15. The role of the seven crude drug components in the sleep-promoting effect of Yokukansan.

    PubMed

    Ogawa, Yuko; Fujii, Yuuko; Sugiyama, Reina; Konishi, Tenji

    2016-01-11

    Yokukansan is a traditional Japanese "Kampo" medicine derived from Yi-Gan San in traditional Chinese medicine. Many studies have been published on its effects and mechanisms. In this study, we focused on the sleep-promoting effects of Yokukansan. Yokukansan composes of seven crude drugs: Uncaria Hook, Bupleurm Root, Cnidium Rhizome, Japanese Angelica Root, Poria Sclerotium, Atractylodes Lancea Rhizome, and Glycyrrhiza. Although each has distinctive effects in isolation, they combine to work as a sleep aid in the Yokukansan formula. We examined the roles of the seven crude drug components in the sleep-promoting effect of Yokukansan. In this study, we used an easy in vivo assay method which we developed previously to screen sleeping substances using thermography. This assay method focuses on the decrease in skin temperature of mice during sleep inducement. By administering the crude drug components of Yokukansan one at a time, it was possible to separate them into two groups: those that caused a decrease in body temperature (Uncaria Hook, Bupleurm Root, Cnidium rhizome, and Japanese Angelica root) and those that did not (Poria Sclerotium, Atractylodes Lancea Rhizome, and Glycyrrhiza). Accordingly, it was thought that the crude drugs causing a drop in body temperature were responsible for promoting sleep, while those in the other group would have no such effect in isolation. To investigate whether the crude drugs that did not cause a decrease in body temperature might be unnecessary for the sleep-promoting effect of Yokukansan, a number of decoctions were prepared using only six of the seven crude drug components, excluding a different crude drug in each case. Results showed that when any of the three components (Poria Sclerotium, Atractylodes Lancea Rhizome, or Glycyrrhiza) of Yokukansan that had no effect on body temperature in isolation were removed from Yokukansan, the resulting extract no longer had any of Yokukansan's sleep-promoting effects. This result suggested that these three crude drug components were involved indirectly in the activity of Yokukansan, by supporting other crude drugs. The interactions of the three supporting crude drugs were then examined further. As a result, a combination of Poria Sclerotium, Atractylodes Lancea Rhizome, and Glycyrrhiza was found to cause a decrease in body temperature, even though none of the three crude drugs had this effect in isolation. When an extract prepared by infusing the three crude drugs together was tested alongside extracts made by infusing the three crude drugs separately, the latter showed no effect and there were differences between the two in constituent analysis by HPLC. These results indicate that some reactions may occur during extraction. Results of this study show that all crude drug components of Yokukansan contribute to its sleep-promoting effects. This is the first report to show the role of the seven clude drug components in the sleep-inducing effects of Yokukansan. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  16. Warm Body Temperature Facilitates Energy Efficient Cortical Action Potentials

    PubMed Central

    Yu, Yuguo; Hill, Adam P.; McCormick, David A.

    2012-01-01

    The energy efficiency of neural signal transmission is important not only as a limiting factor in brain architecture, but it also influences the interpretation of functional brain imaging signals. Action potential generation in mammalian, versus invertebrate, axons is remarkably energy efficient. Here we demonstrate that this increase in energy efficiency is due largely to a warmer body temperature. Increases in temperature result in an exponential increase in energy efficiency for single action potentials by increasing the rate of Na+ channel inactivation, resulting in a marked reduction in overlap of the inward Na+, and outward K+, currents and a shortening of action potential duration. This increase in single spike efficiency is, however, counterbalanced by a temperature-dependent decrease in the amplitude and duration of the spike afterhyperpolarization, resulting in a nonlinear increase in the spike firing rate, particularly at temperatures above approximately 35°C. Interestingly, the total energy cost, as measured by the multiplication of total Na+ entry per spike and average firing rate in response to a constant input, reaches a global minimum between 37–42°C. Our results indicate that increases in temperature result in an unexpected increase in energy efficiency, especially near normal body temperature, thus allowing the brain to utilize an energy efficient neural code. PMID:22511855

  17. Shiver me titin! Elucidating titin's role in shivering thermogenesis.

    PubMed

    Taylor-Burt, Kari R; Monroy, Jenna; Pace, Cinnamon; Lindstedt, Stan; Nishikawa, Kiisa C

    2015-03-01

    Shivering frequency scales predictably with body mass and is 10 times higher in a mouse than a moose. The link between shivering frequency and body mass may lie in the tuning of muscle elastic properties. Titin functions as a muscle 'spring', so shivering frequency may be linked to titin's structure. The muscular dystrophy with myositis (mdm) mouse is characterized by a deletion in titin's N2A region. Mice that are homozygous for the mdm mutation have a lower body mass, stiffer gait and reduced lifespan compared with their wild-type and heterozygous siblings. We characterized thermoregulation in these mice by measuring metabolic rate and tremor frequency during shivering. Mutants were heterothermic at ambient temperatures of 20-37°C while wild-type and heterozygous mice were homeothermic. Metabolic rate increased at smaller temperature differentials (i.e. the difference between body and ambient temperatures) in mutants than in non-mutants. The difference between observed tremor frequencies and shivering frequencies predicted by body mass was significantly larger for mutant mice than for wild-type or heterozygous mice, even after accounting for differences in body temperature. Together, the heterothermy in mutants, the increase in metabolic rate at low temperature differentials and the decreased tremor frequency demonstrate the thermoregulatory challenges faced by mice with the mdm mutation. Oscillatory frequency is proportional to the square root of stiffness, and we observed that mutants had lower active muscle stiffness in vitro. The lower tremor frequencies in mutants are consistent with reduced active muscle stiffness and suggest that titin affects the tuning of shivering frequency. © 2015. Published by The Company of Biologists Ltd.

  18. Homeostasis in Primates in the Hyperdynamic Environment. [circadian timekeeping and effects of lower body positive pressure on sleep

    NASA Technical Reports Server (NTRS)

    Fuller, C. A.

    1985-01-01

    The influence of chronic centrifugation upon the homestatic regulation of the circadian timekeeping system was examined. The interactions of body temperature regulation and the behavioral state of arousal were studied by evaluating the influence of cephalic fluid shifts induced by lower body positive air pressure (LBPP), upon these systems. The small diurnal squirrel monkey (Saimiri sciureus) was used as the non-human primate model. Results show that the circadian timekeeping system of these primates is functional in the hyperdynamic environment, however, some of its components appear to be regulated at different homeostatic levels. The LBPP resulted in an approximate 0.7 C decrease in DBT (p 0.01). However, although on video some animals appeared drowsy during LBPP, sleep recording revealed no significant changes in state of arousal. Thus, the physiological mechanisms underlying this lowering of body temperature can be independent of the arousal state.

  19. Evolution of body size in the woodrat over the past 25,000 years of climate change

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, F.A.; Brown, J.H.; Betancourt, J.L.

    1995-12-22

    Microevolutionary changes in the body size of the bushy-tailed woodrat (Neotoma cinerea) since the last glacial maximum were estimated from measurements of fecal pellets preserved in paleomiddens from the Great Basin and Colorado Plateau of the United States. The changes closely track regional temperature fluctuations simulated by the Community Climate Model of the National Center for Atmospheric Research and also those estimated from deuterium isotope ratios of plant cellulose recovered from paleomiddens. Body size decreased during periods of climatic warming, as predicted from Bergmann`s rule and from physiological responses to temperature stress. Fossil woodrat middens, by providing detailed temporal sequencesmore » of body sizes from many locations, permit precise quantification of responses to climatic change that have occurred in the past and may occur in the future. 24 refs., 3 figs.« less

  20. Correlation between Temperature-dependent Fatigue Resistance and Differential Scanning Calorimetry Analysis for 2 Contemporary Rotary Instruments.

    PubMed

    Arias, Ana; Macorra, José C; Govindjee, Sanjay; Peters, Ove A

    2018-04-01

    The aim of this study was to assess differences in cyclic fatigue (CF) life of contemporary heat-treated nickel-titanium rotary instruments at room and body temperatures and to document corresponding phase transformations. Forty Hyflex EDM (H-EDM) files (Coltene, Cuyahoga Falls, OH [#25/.08, manufactured by electrical discharge machining]) and 40 TRUShape (TS) files (Dentsply Tulsa Dental Specialties, Tulsa, OK [#25/.06v, manufactured by grinding and shape setting]) were divided into 2 groups (n = 20) for CF resistance tests in a water bath either at room (22°C ± 0.5°C) or body temperature (37°C ± 0.5°C). Instruments were rotated in a simulated canal (angle = 60°, radius = 3 mm, and center of the curvature 5 mm from the tip) until fracture occurred. The motor was controlled by an electric circuit that was interrupted after instrument fracture. The mean half-life and beta and eta Weibull parameters were determined and compared. Two instruments of each brand were subjected to differential scanning calorimetry (DSC). While TS instruments lasted significantly longer at room temperature (mean life = 234.7 seconds; 95% confidence interval [CI], 209-263.6) than at body temperature (mean life = 83.2 seconds; 95% CI, 76-91.1), temperature did not affect H-EDM behavior (room temperature mean life = 725.4 seconds; 95% CI, 658.8-798.8 and body temperature mean life = 717.9 seconds; 95% CI, 636.8-809.3). H-EDM instruments significantly outlasted TS instruments at both temperatures. At body temperature, TS was predominantly austenitic, whereas H-EDM was martensitic or in R-phase. TS was in a mixed austenitic/martensitic phase at 22°C, whereas H-EDM was in the same state as at 37°C. H-EDM had a longer fatigue life than TS, which showed a marked decrease in fatigue life at body temperature; neither the life span nor the state of the microstructure in the DSC differed for H-EDM between room or body temperature. Copyright © 2017 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  1. A multilevel approach to examining cephalopod growth using Octopus pallidus as a model.

    PubMed

    Semmens, Jayson; Doubleday, Zoë; Hoyle, Kate; Pecl, Gretta

    2011-08-15

    Many aspects of octopus growth dynamics are poorly understood, particularly in relation to sub-adult or adult growth, muscle fibre dynamics and repro-somatic investment. The growth of 5 month old Octopus pallidus cultured in the laboratory was investigated under three temperature regimes over a 12 week period: seasonally increasing temperatures (14-18°C); seasonally decreasing temperatures (18-14°C); and a constant temperature mid-way between seasonal peaks (16°C). Differences in somatic growth at the whole-animal level, muscle tissue structure and rate of gonad development were investigated. Continuous exponential growth was observed, both at a group and at an individual level, and there was no detectable effect of temperature on whole-animal growth rate. Juvenile growth rate (from 1 to 156 days) was also monitored prior to the controlled experiment; exponential growth was observed, but at a significantly faster rate than in the older experimental animals, suggesting that O. pallidus exhibit a double-exponential two-phase growth pattern. There was considerable variability in size-at-age even between individuals growing under identical thermal regimes. Animals exposed to seasonally decreasing temperatures exhibited a higher rate of gonad development compared with animals exposed to increasing temperatures; however, this did not coincide with a detectable decline in somatic growth rate or mantle condition. The ongoing production of new mitochondria-poor and mitochondria-rich muscle fibres (hyperplasia) was observed, indicated by a decreased or stable mean muscle fibre diameter concurrent with an increase in whole-body size. Animals from both seasonal temperature regimes demonstrated higher rates of new mitochondria-rich fibre generation relative to those from the constant temperature regime, but this difference was not reflected in a difference in growth rate at the whole-body level. This is the first study to record ongoing hyperplasia in the muscle tissue of an octopus species, and provides further insight into the complex growth dynamics of octopus.

  2. Experimental study of thermal comfort on stab resistant body armor.

    PubMed

    Ji, Tingchao; Qian, Xinming; Yuan, Mengqi; Jiang, Jinhui

    2016-01-01

    This research aims to investigate the impacts of exercise intensity and sequence on human physiology parameters and subjective thermal sensation when wearing stab resistant body armor under daily working conditions in China [26 and 31 °C, 45-50 % relative humidity (RH)], and to investigate on the relationship between subjective judgments and objective parameters. Eight male volunteers were recruited to complete 3 terms of exercises with different velocity set on treadmill for 90 min at 26 °C and 31 °C, 45-50 % RH. In Exercise 1 volunteers were seated during the test. In Exercise 2, volunteers walked with the velocity of 3 km/h in the first 45 min and 6 km/h in the left 45 min. In Exercise 3, volunteers walked with the velocity of 6 km/h in the first 45 min and 3 km/h in the left 45 min. The body core temperature, skin temperature and subjective judgments were recorded during the whole process. Analysis of variance was performed among all the tests. Individual discrepancy of Exercise 1 is larger than that of Exercise 2 and 3. On the premise of the same walking distance and environmental conditions, core temperature in Exercise 3 is about 0.2 °C lower than that in Exercise 2 in the end; and with the velocity decrease from 6 km/h to 3 km/h in the end, thermal tolerance of Exercise 3 is about 1 degree lower than that in Exercise 2. Skin temperatures of human trunk were at least 1 °C higher than that of limbs. Activity narrows the individual discrepancy on core temperature. Within experimental conditions, decreasing of intensity at last stage makes the core temperature lower and the whole process much tolerable. The core temperature is more sensitive to the external disturbance on the balance of the whole body, and it can reflect the subjective thermal sensation and physical exertion.

  3. High intra-specific variation in avian body condition responses to climate limits generalisation across species

    PubMed Central

    van der Jeugd, Henk P.; van de Pol, Martijn

    2018-01-01

    It is generally assumed that populations of a species will have similar responses to climate change, and thereby that a single value of sensitivity will reflect species-specific responses. However, this assumption is rarely systematically tested. High intraspecific variation will have consequences for identifying species- or population-level traits that can predict differences in sensitivity, which in turn can affect the reliability of projections of future climate change impacts. We investigate avian body condition responses to changes in six climatic variables and how consistent and generalisable these responses are both across and within species, using 21 years of data from 46 common passerines across 80 Dutch sites. We show that body condition decreases with warmer spring/early summer temperatures and increases with higher humidity, but other climate variables do not show consistent trends across species. In the future, body condition is projected to decrease by 2050, mainly driven by temperature effects. Strikingly, populations of the same species generally responded just as differently as populations of different species implying that a single species signal is not meaningful. Consequently, species-level traits did not explain interspecific differences in sensitivities, rather population-level traits were more important. The absence of a clear species signal in body condition responses implies that generalisation and identifying species for conservation prioritisation is problematic, which sharply contrasts conclusions of previous studies on the climate sensitivity of phenology. PMID:29466460

  4. Effects of temperature, strain rate, and vacancies on tensile and fatigue behaviors of silicon-based nanotubes

    NASA Astrophysics Data System (ADS)

    Jeng, Yeau-Ren; Tsai, Ping-Chi; Fang, Te-Hua

    2005-02-01

    This paper adopts the Tersoff-Brenner many-body potential function to perform molecular dynamics simulations of the tensile and fatigue behaviors of hypothetical silicon-based tubular nanostructures at various temperatures, strain rates, and vacancy percentages. The tensile test results indicate that with a predicted Young’s modulus of approximately 60GPa , silicon nanotubes (SiNTs) are significantly less stiff than conventional carbon nanotubes. It is observed that the presence of hydrogen has a significant influence on the tensile strength of SiNTs . Additionally, the present results indicate that the tensile strength clearly decreases with increasing temperature and with decreasing strain rate. Moreover, it is shown that the majority of the mechanical properties considered in the present study decrease with an increasing vacancy percentage. Regarding the fatigue tests, this study uses a standard theoretical model to derive curves of amplitude stress versus number of cycles for the current nanotubes. The results demonstrate that the fatigue limit of SiNTs increases with a decreasing vacancy percentage and with increasing temperature.

  5. Effects of heat treatment on shape-setting and non-linearmechanical properties of Nitinol stent

    NASA Astrophysics Data System (ADS)

    Liu, Xiaopeng; Wang, Yinong; Qi, Min; Yang, Dazhi

    2007-07-01

    NiTi shape memory alloy is a temperature sensitive material with non-linear mechanical properties and good biocompatibility, which can be used for medical devices such as stent, catheter guide wire and orthodontic wire. The majority of nitinol stents are of the self-expanding type basing on the superelasticity. Nitinol stents are shape set into the open condition and compressed and inserted into the delivery catheter. Additional the shape-setting treatment can be used as a tool to accurately tune the transformation temperatures and mechanical properties. In this study, different heat treatments have been performed on the Ti-50.7at%Ni alloy wires. And results of shape-setting, austenite transformation finish temperature and non-linear mechanical property of NiTi shape memory alloy at body temperature have been investigated. The experimental results show that the proper shape-setting temperature should be chosen between 450-550 °C. And the shape-setting results were stabilization when the NiTi wires were constrain-treated at 500 and 550°C and ageing time longer than 10 minutes. The austenite finish temperatures increased with ageing time and increased first and then decreased with ageing temperature. The peak values were obtained at 400°C. When the heat treatments was performed at the same temperature, both the upper plateau stresses and lower plateau stresses decreased with the ageing time. Most of treated nitinol wires owned good recovery ability at body temperature and the permanent sets were less than 0.05% when short time ageing treatment was performed at 500°C.

  6. Thermoregulation and thermal perception in the cold and heat before and after intermittent heat adaptation

    NASA Astrophysics Data System (ADS)

    Issing, K.; Fuhr, E.

    1986-09-01

    Students wearing swim suits were exposed for 30 min to neutral room temperature (TR=28‡C). During the following 60 min they were subjected to gradual decreases or increases of room temperature reaching 12‡C or 45‡C, respectively. Static thermal stimuli were applied to the palms of the right (38‡C) and left (25‡C) hands. Hands and feet of all subjects were thermally isolated at 22‡C ambient temperature. General thermal comfort (GTC), local thermal comfort (LTC), skin blood flow (which is proportional to heat transport index λ) several body temperatures, oxygen-consumption(dot V_{O_2 } ), and sweat rate (S), were measured. After moderate intermittent heat exposures (7 times for 1h at TR=42.5‡C) the experiments started again. From GTC, LTC, or λ as functions of TR, no new knowledge about thermoregulatory or adaptive mechanisms was available. The high λ in the cold stimulated left hand, however, and the oscillatory thresholds (λOSC) for rhythmic vasomotion indicated the peripheral influence of skin temperature, as well as local, mean skin temperature (¯Ts) and core temperature. When exposed to moderate temperature decreases or increases the body seems to react only with increasing thermal resistance by vasoconstriction or an increase of sweat rate, respectively. Moderate heat adaptation is only able to raise sweat rate, but not the thresholds and gain of the S-function. We assume that functional studies of adaptive modifications in humans must be conducted at temperatures greatly beyond those used in these experiments.

  7. l-Leucine acts as a potential agent in reducing body temperature at hatching and affords thermotolerance in broiler chicks.

    PubMed

    Han, Guofeng; Yang, Hui; Bahry, Mohammad A; Tran, Phuong V; Do, Phong H; Ikeda, Hiromi; Furuse, Mitsuhiro; Chowdhury, Vishwajit S

    2017-02-01

    Thermal manipulation (TM) of incubation temperature causes metabolic alterations and contributes to improving thermotolerance in chicks post hatching. However, there has been no report on amino acid metabolism during TM and the part it plays in thermotolerance. In this study, we therefore first analyzed free amino acid concentrations in the embryonic brain and liver during TM (38.6°C, 6h/d during embryonic day (ED) 10 to ED 18). It was found that leucine (Leu), phenylalanine and lysine were significantly decreased in the embryonic brain and liver. We then chose l-Leu and other branched-chain amino acids (l-isoleucine (L-Ile) and l-valine (l-Val)) for in ovo injection on ED 7 to reveal their roles in thermoregulation, growth, food intake and thermotolerance in chicks. It was found that in ovo injection of l-Leu, but not of l-Ileu or l-Val, caused a significant decline in body temperature at hatching and increased food intake and body weight gain in broiler chicks. Interestingly, in ovo injection of l-Leu resulted in the acquisition of thermotolerance under high ambient temperature (35±1°C for 180min) in comparison with the control thermoneutral temperature (28±1°C for 180min). These results indicate that the free amino acid concentrations during embryogenesis were altered by TM. l-Leu administration in eggs caused a reduction in body temperature at hatching, and afforded thermotolerance in heat-exposed young chicks, further suggesting that l-Leu may be one of the key metabolic factors involved in controlling body temperature in embryos, as well as in producing thermotolerance after hatching. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Body Weight Changes of Laboratory Animals during Transportation

    PubMed Central

    Lee, Sunghak; Nam, Hyunsik; Kim, Jinsung; Cho, Hyejung; Jang, Yumi; Lee, Eunjung; Choi, Eunsung; Jin, Dong Il; Moon, Hongsik

    2012-01-01

    The majority of laboratory animals were transported from commercial breeders to a research facility by ground transportation. During the transportation, many biological functions and systems can be affected by stress. In this experiment, the change of body weight during the transportation was measured and the recovery periods from the transportation stress established based on the body weight changes. Total 676 laboratory animals which were aged between 3 to 9 wk old were studied. The transportation time taken from container packing to unpacking the container was approximately 24 h. The temperature of animal container was constantly maintained by air-conditioning and heating equipment. Rats were found to be more sensitive than mice. The body weight of rats was significantly decreased 3.71% (p<0.05) compared to the body weight of mice which decreased 0.9% There was no significant difference between the strains in the same species. When the changes of body weights were compared between delivery days, C57BL/6 mice showed the most variable changes compared to other species and strains. Consequently, C57BL/6 was more sensitive to stress than the other strains and the transportation process needs to be standardized to reduce between day variability. To establish the recovery periods from transportation stress, the body weight changes were measured during the acclimation period. Although the body weight of animals decreased during transportation, animals recovered their weight loss after the next day. PMID:25049564

  9. Sex Differences in the Cannabinoid Modulation of Appetite, Body Temperature and Neurotransmission at POMC Synapses

    PubMed Central

    Diaz, Shanna; Farhang, Borzoo; Hoien, Joshua; Stahlman, Megan; Adatia, Nadira; Cox, Jeremy M.; Wagner, Edward J.

    2009-01-01

    We sought to determine whether sex differences exist for the cannabinoid modulation of appetite, body temperature and neurotransmission at pro-opiomelanocortin (POMC) synapses. Gonadectomized male and female guinea pigs were outfitted to monitor core body temperature and injected with either the CB1 receptor agonist WIN 55,212-2 (1 mg/kg s.c.), antagonist AM251 (3 mg/kg s.c.) or vehicle (1 ml/kg s.c.) and evaluated for changes in six indices of feeding behavior under ad libitum conditions for 7 days. WIN 55,212-2 elicited an overt, sexually differentiated hyperphagia in which males displayed larger increases in hourly and daily intake, consumption/gram body weight, meal size and meal duration. The agonist also produced a more robust acute hypothermia in males than in females. In addition, males were more sensitive to the hypophagic effect of AM251, manifested by comparatively sizeable decreases in hourly intake, consumption/gram body weight, meal frequency and hyperthermia. To gain additional insight into the cellular mechanism underlying cannabinoid regulation of energy homeostasis, we performed whole-cell patch clamp recordings in hypothalamic slices prepared from gonadectomized male and female guinea pigs, and monitored miniature excitatory and inhibitory postsynaptic currents (mEPSCs and mIPSCs) in arcuate (ARC) neurons. ARC neurons from females exhibited a higher basal mEPSC frequency. WIN 55,212-2 dose-dependently reduced mEPSC and mIPSC frequency; however, cells from males were far less sensitive to the CB1 receptor-mediated decrease in mIPSC frequency. These effects were observed in neurons subsequently identified as POMC neurons. These data reveal pronounced sex differences in how cannabinoids influence the hypothalamic control of homeostasis. PMID:19136814

  10. Thermal diffusivity of rhyolitic glasses and melts: effects of temperature, crystals and dissolved water

    NASA Astrophysics Data System (ADS)

    Romine, William L.; Whittington, Alan G.; Nabelek, Peter I.; Hofmeister, Anne M.

    2012-12-01

    Thermal diffusivity ( D) was measured using laser-flash analysis on pristine and remelted obsidian samples from Mono Craters, California. These high-silica rhyolites contain between 0.013 and 1.10 wt% H2O and 0 to 2 vol% crystallites. At room temperature, D glass varies from 0.63 to 0.68 mm2 s-1, with more crystalline samples having higher D. As T increases, D glass decreases, approaching a constant value of ˜0.55 mm2 s-1 near 700 K. The glass data are fit with a simple model as an exponential function of temperature and a linear function of crystallinity. Dissolved water contents up to 1.1 wt% have no statistically significant effect on the thermal diffusivity of the glass. Upon crossing the glass transition, D decreases rapidly near ˜1,000 K for the hydrous melts and ˜1,200 K for anhydrous melts. Rhyolitic melts have a D melt of ˜0.51 mm2 s-1. Thermal conductivity ( k = D· ρ· C P) of rhyolitic glass and melt increases slightly with T because heat capacity ( C P) increases with T more strongly than density ( ρ) and D decrease. The thermal conductivity of rhyolitic melts is ˜1.5 W m-1 K-1, and should vary little over the likely range of magmatic temperatures and water contents. These values of D and k are similar to those of major crustal rock types and granitic protoliths at magmatic temperatures, suggesting that changes in thermal properties accompanying partial melting of the crust should be relatively minor. Numerical models of shallow rhyolite intrusions indicate that the key difference in thermal history between bodies that quench to obsidian, and those that crystallize, results from the release of latent heat of crystallization. Latent heat release enables bodies that crystallize to remain at high temperatures for much longer times and cool more slowly than glassy bodies. The time to solidification is similar in both cases, however, because solidification requires cooling through the glass transition in the first case, and cooling only to the solidus in the second.

  11. Temperature-driven regime shifts in the dynamics of size-structured populations.

    PubMed

    Ohlberger, Jan; Edeline, Eric; Vøllestad, Leif Asbjørn; Stenseth, Nils C; Claessen, David

    2011-02-01

    Global warming impacts virtually all biota and ecosystems. Many of these impacts are mediated through direct effects of temperature on individual vital rates. Yet how this translates from the individual to the population level is still poorly understood, hampering the assessment of global warming impacts on population structure and dynamics. Here, we study the effects of temperature on intraspecific competition and cannibalism and the population dynamical consequences in a size-structured fish population. We use a physiologically structured consumer-resource model in which we explicitly model the temperature dependencies of the consumer vital rates and the resource population growth rate. Our model predicts that increased temperature decreases resource density despite higher resource growth rates, reflecting stronger intraspecific competition among consumers. At a critical temperature, the consumer population dynamics destabilize and shift from a stable equilibrium to competition-driven generation cycles that are dominated by recruits. As a consequence, maximum age decreases and the proportion of younger and smaller-sized fish increases. These model predictions support the hypothesis of decreasing mean body sizes due to increased temperatures. We conclude that in size-structured fish populations, global warming may increase competition, favor smaller size classes, and induce regime shifts that destabilize population and community dynamics.

  12. The regulation of rat activity following exposure to hyperdynamic fields

    NASA Technical Reports Server (NTRS)

    Fuller, Charles A.; Ishihama, Linda M.; Murakami, Dean M.

    1993-01-01

    The microgravity of space flight and the hyperdynamic fields produced via centrifugation have allowed researchers to examine the effect of altered gravitational environments on the regulation of physiological systems. In this study, a high frequency light/dark cycle was provided for 24 hours as an environmental challenge to assess the recovery of homeostatic and circadian components of physiological regulation in rats. For example, the nocturnal rat exhibited a homeostatic increase in body temperature during the dark periods and a decrease during the light periods. In addition, the magnitude of the body temperature response exhibits a time of day variation demonstrating the effect on circadian regulation.

  13. Interacting effects of water temperature and swimming activity on body composition and mortality of fasted juvenile rainbow trout

    USGS Publications Warehouse

    Simpkins, D.G.; Hubert, W.A.; Martinez Del Rio, C.; Rule, D.C.

    2003-01-01

    Abstract: We assessed changes in proximate body composition, wet mass, and the occurrence of mortality among sedentary and actively swimming (15 cm/s) juvenile rainbow trout (Oncorhynchus mykiss) (120-142 mm total length) that were held at 4.0, 7.5, or 15.0 ??C and fasted for 140 days. Warmer water temperatures and swimming activity accentuated declines in lipid mass, but they did not similarly affect lean mass and wet mass. Swimming fish conserved lean mass independent of water temperature. Because lean mass exceeded lipid mass, wet mass was not affected substantially by decreases in lipid mass. Consequently, wet mass did not accurately reflect the effects that water temperature and swimming activity had on mortality of fasted rainbow trout. Rather, lipid mass was more accurate in predicting death from starvation. Juvenile rainbow trout survived long periods without food, and fish that died of starvation appeared to have similar body composition. It appears that the ability of fish to endure periods without food depends on the degree to which lipid mass and lean mass can be utilized as energy sources.

  14. Effect of pinpoint plantar long-wavelength infrared light irradiation on subcutaneous temperature and stress markers

    PubMed Central

    Ryotokuji, Kenji; Ishimaru, Keisou; Kihara, Kazuhiko; Namiki, Yoshihisa; Hozumi, Nobumichi

    2013-01-01

    Background and aims: The current investigation was aimed at the development of a novel non-invasive treatment system, “pinpoint plantar long-wavelength infrared light irradiation (PP-LILI)”, which may be able to relieve mental stress and reduce stress-related hormones. Materials (Subjects) and methods: We compared the subcutaneous temperature, blood pressure, the degree of secretion of stress hormones before and after pinpoint irradiations (wavelength: 8–11 μm; output: 30mW). The study enrolled 15 subjects (Japanese healthy adults; 8 males, 7 females; average age 47.8 ± 14.6 years). Two parts of the planter region were irradiated for 15 min respectively. The stress markers such as ACTH, salivary amylase and cortisol were measured. As well, core body temperature and blood pressure were analyzed before and after the irradiation. Results: A series of experiments revealed increased body temperature, decreased levels of blood pressure and stress markers described above after the irradiation. Conclusions: These results clearly suggest that the PP-LILI system will be quite useful for relieving stress and improvement of homeostatic functions in the body. PMID:24155554

  15. Association between corneal temperature and mental status of treatment-resistant schizophrenia inpatients.

    PubMed

    Shiloh, Roni; Schapir, Lior; Bar-Ziv, Danit; Stryjer, Rafael; Konas, Shai; Louis, Rachel; Hermesh, Haggai; Munitz, Hanan; Weizman, Abraham; Valevski, Avi

    2009-09-01

    Preliminary point-prevalent data suggest that drug-free schizophrenia patients may exhibit increased body/corneal temperature, that antipsychotic drugs (APDs) may decrease body/core temperature and that patients' mental status might be associated with their body/corneal temperature. Hence, we hypothesized that treatment-resistant psychotic APD-treated schizophrenia patients' mental status may correlate with their corneal temperature during a continuous 6-week period. Corneal temperature of 12 treatment-resistant schizophrenia inpatients and 16 healthy volunteers was evaluated 2-3 times a week during 6 consecutive weeks using a flir thermal imaging camera. A significant and substantial correlation was found between inpatients' mean weekly Positive and Negative Syndrome Scale (PANSS)'s total scores and their mean weekly corneal temperature during the 6-week study period (r=0.82; n=6 weeks; p=0.043). There was no significant difference in mean 6-week corneal temperature between the patient group and the healthy subjects (34.25+/-0.64 degrees C vs. 34.39+/-0.69 degrees C, respectively; t=1.127, df=131, p=0.26). This study indicates that treatment-resistant overtly psychotic schizophrenia inpatients' mental status (as assessed by the PANSS) correlates with their corneal temperature. The relevance of these phenomena to the pathophysiology of schizophrenia, the biological mechanism underlying corneal temperature alterations and the possible role of temperature-modulating drugs (neuroleptics or non-neuroleptics) on schizophrenic psychosis merits further large-scale investigation in both medicated- and drug-free schizophrenia patients compared to matched controls.

  16. Sympathoadrenal responses to cold and ketamine anesthesia in the rhesus monkey

    NASA Technical Reports Server (NTRS)

    Kolka, M. A.; Elizondo, R. S.; Weinberg, R. P.

    1983-01-01

    The effect of cold exposure on the sympathoadrenal system is investigated in eight adult rhesus monekys with and without ketamine anesthesia. It is found that a 3 hr cold exposure (12 c) was associated with a 175 percent increase above control levels of norepinephrine (NE) and a 100 percent increase in epinephrine (E). Also observed were decreases in the core temperature, mean skin temperature, and mean body temperature. No change in the plasma levels of NE and E from the control values was found during continuous infusion of ketamine; while the core temperature, mean skin temperature, and mean body temperature all showed greater declines with the addition of ketamine infusion to the cold exposure. Water exposure (28 C) under ketamine anesthesia resulted in a reduction of the core temperature to 33 C within 1 hr. Plasma levels of NE and E were found to be unchanged from control values at core temperatures of 35 and 33 C. It is concluded that the administration of ketamine abolishes both the thermoregulatory response and the catecholamine response to acute cold exposure.

  17. Epigallocatechin gallate attenuates diet-induced obesity in mice by decreasing energy absorption and increasing fat oxidation.

    PubMed

    Klaus, S; Pültz, S; Thöne-Reineke, C; Wolfram, S

    2005-06-01

    To examine the antiobesity effect of epigallocatechin gallate (EGCG), a green tea bioactive polyphenol in a mouse model of diet-induced obesity. Obesity was induced in male New Zealand black mice by feeding of a high-fat diet. EGCG purified from green tea (TEAVIGO) was supplemented in the diet (0.5 and 1%). Body composition (quantitative magnetic resonance), food intake, and food digestibility were recorded over a 4-week period. Animals were killed and mRNA levels of uncoupling proteins (UCP1-3), leptin, malic enzyme (ME), stearoyl-CoA desaturase-1 (SCD1), glucokinase (GK), and pyruvate kinase (PK) were analysed in different tissues. Also investigated were acute effects of orally administered EGCG (500 mg/kg) on body temperature, activity (transponders), and energy expenditure (indirect calorimetry). Dietary supplementation of EGCG resulted in a dose-dependent attenuation of body fat accumulation. Food intake was not affected but faeces energy content was slightly increased by EGCG, indicating a reduced food digestibility and thus reduced long-term energy absorption. Leptin and SCD1 gene expression in white fat was reduced but SCD1 and UCP1 expression in brown fat was not changed. In liver, gene expression of SCD1, ME, and GK was reduced and that of UCP2 increased. Acute oral administration of EGCG over 3 days had no effect on body temperature, activity, and energy expenditure, whereas respiratory quotient during night (activity phase) was decreased, supportive of a decreased lipogenesis and increased fat oxidation. Dietary EGCG attenuated diet-induced body fat accretion in mice. EGCG apparently promoted fat oxidation, but its fat-reducing effect could be entirely explained by its effect in reducing diet digestibility.

  18. Tail position affects the body temperature of rats during cold exposure in a low-energy state.

    PubMed

    Uchida, Yuki; Tokizawa, Ken; Nakamura, Mayumi; Lin, Cheng-Hsien; Nagashima, Kei

    2012-02-01

    Rats place their tails underneath their body trunks when cold (tail-hiding behavior). The aim of the present study was to determine whether this behavior is necessary to maintain body temperature. Male Wistar rats were divided into 'fed' and '42-h fasting' groups. A one-piece tail holder (8.4 cm in length) that prevented the tail-hiding behavior or a three-piece tail holder (2.8 cm in length) that allowed for the tail-hiding behavior was attached to the tails of the rats. The rats were exposed to 27°C for 180 min or to 20°C for 90 min followed by 15°C for 90 min with continuous body temperature and oxygen consumption measurements. Body temperature decreased by -1.0 ± 0.1°C at 15°C only in the rats that prevented tail-hiding behavior of the 42-h fasting group, and oxygen consumption increased at 15°C in all animals. Oxygen consumption was not different between the rats that prevented tail-hiding behavior and the rats that allowed the behavior in the fed and 42-h fasting groups under ambient conditions. These results show that the tail-hiding behavior is involved in thermoregulation in the cold in fasting rats.

  19. A study of internal energy relaxation in shocks using molecular dynamics based models

    NASA Astrophysics Data System (ADS)

    Li, Zheng; Parsons, Neal; Levin, Deborah A.

    2015-10-01

    Recent potential energy surfaces (PESs) for the N2 + N and N2 + N2 systems are used in molecular dynamics (MD) to simulate rates of vibrational and rotational relaxations for conditions that occur in hypersonic flows. For both chemical systems, it is found that the rotational relaxation number increases with the translational temperature and decreases as the rotational temperature approaches the translational temperature. The vibrational relaxation number is observed to decrease with translational temperature and approaches the rotational relaxation number in the high temperature region. The rotational and vibrational relaxation numbers are generally larger in the N2 + N2 system. MD-quasi-classical trajectory (QCT) with the PESs is also used to calculate the V-T transition cross sections, the collision cross section, and the dissociation cross section for each collision pair. Direct simulation Monte Carlo (DSMC) results for hypersonic flow over a blunt body with the total collision cross section from MD/QCT simulations, Larsen-Borgnakke with new relaxation numbers, and the N2 dissociation rate from MD/QCT show a profile with a decreased translational temperature and a rotational temperature close to vibrational temperature. The results demonstrate that many of the physical models employed in DSMC should be revised as fundamental potential energy surfaces suitable for high temperature conditions become available.

  20. Parameter variation effects on temperature elevation in a steady-state, one-dimensional thermal model for millimeter wave exposure of one- and three-layer human tissue.

    PubMed

    Kanezaki, Akio; Hirata, Akimasa; Watanabe, Soichi; Shirai, Hiroshi

    2010-08-21

    The present study describes theoretical parametric analysis of the steady-state temperature elevation in one-dimensional three-layer (skin, fat and muscle) and one-layer (skin only) models due to millimeter-wave exposure. The motivation of this fundamental investigation is that some variability of warmth sensation in the human skin has been reported. An analytical solution for a bioheat equation was derived by using the Laplace transform for the one-dimensional human models. Approximate expressions were obtained to investigate the dependence of temperature elevation on different thermal and tissue thickness parameters. It was shown that the temperature elevation on the body surface decreases monotonically with the blood perfusion rate, heat conductivity and heat transfer from the body to air. Also revealed were the conditions where maximum and minimum surface temperature elevations were observed for different thermal and tissue thickness parameters. The surface temperature elevation in the three-layer model is 1.3-2.8 times greater than that in the one-layer model. The main reason for this difference is attributed to the adiabatic nature of the fat layer. By considering the variation range of thermal and tissue thickness parameters which causes the maximum and minimum temperature elevations, the dominant parameter influencing the surface temperature elevation was found to be the heat transfer coefficient between the body surface and air.

  1. Adherence to Bergmann's rule by lizards may depend on thermoregulatory mode: support from a nocturnal gecko.

    PubMed

    Penniket, Sophie; Cree, Alison

    2015-06-01

    Bergmann's rule predicts an increase in body size with decreasing environmental temperature; however, the converse pattern has been found in the majority of lizards studied to date. For these ectotherms, small body size may provide thermal benefits (rapid heat uptake when basking), which would be highly advantageous in cold environments. Yet such an advantage may not exist in nocturnal lizards (which do not avidly bask), in which Bergmann's rule has not been closely studied. We have examined whether the body size of a primarily nocturnal gecko, Woodworthia "Otago/Southland" changed with elevation and operative temperature (determined using physical copper models). In a laboratory study, we investigated whether thermoregulatory mode (heliothermy or thigmothermy) alters the effect of body size on heating and cooling rates. This gecko followed Bergmann's rule, thereby showing the opposite of the dominant pattern in diurnal lizards. Size at maturity, maximum size of adults and size at birth were larger at higher elevations and at lower operative temperatures. Using physical models, we found that large body size can confer thermal benefits for nocturnal lizards that remain within diurnal retreats. Bergmann's rule should not be dismissed for all lizards. Our results clearly support Bergmann's rule for at least one thigmothermic species, for which large body size may provide thermal benefits. Future studies on Bergmann's rule in lizards should consider thermoregulatory mode. We advocate that this ecogeographic rule be examined in relation to operative temperature measured at field sites. Finally, we predict that climate warming may weaken the relationship between body size and elevation in this gecko.

  2. Thermoregulatory, cardiovascular, and perceptual responses to intermittent cooling during exercise in a hot, humid outdoor environment.

    PubMed

    Cleary, Michelle A; Toy, Michelle G; Lopez, Rebecca M

    2014-03-01

    Decreasing core body temperature during exercise may improve exercise tolerance, facilitate acclimatization, and prevent heat illness during summer training. We sought to evaluate the effectiveness of intermittent superficial cooling on thermoregulatory, cardiovascular, and perceptual responses during exercise in a hot humid environment. We used a randomized, counterbalanced, repeated measures investigation with 2 conditions (control and cooling) during exercise and recovery outdoors on artificial turf in a hot, humid tropical climate in the sun (wet bulb globe temperature outdoors [WBGTo], 27.0 ± 0.8° C; range, 25.8-28.1° C) and in the shade (WBGTo, 25.4 ± 0.9° C; range, 24.3-26.8° C). Participants were 10 healthy males (age, 22.6 ± 1.6 years; height, 176.0 ± 6.9 cm; mass, 76.5 ± 7.8 kg; body fat, 15.6 ± 5.4%) who wore shorts and T-shirt (control) or "phase change cooling" vest (cooling) during 5-minute rest breaks during 60 minutes of intense American football training and conditioning exercises in the heat and 30 minutes of recovery in the shade. Throughout, we measured core (Tgi) and skin (Tchest) temperature, heart rate (HR), thermal and thirst sensations, and rating of perceived exertion. We found significant (p ≤ 0.001) hypohydration (-2.1%); for Tgi, we found no significant differences between conditions (p = 0.674) during exercise and progressive decreases during recovery (p < 0.001). For [INCREMENT]Tg,i we found no significant (p = 0.090) differences. For Tchest, we found significantly (p < 0.001) decreased skin temperature in the cooling condition (Tchest, 31.85 ± 0.43° C) compared with the control condition (Tchest, 34.38 ± 0.43° C) during exercise and significantly (p < 0.001) lower skin temperature in the cooling condition (Tchest, 31.24 ± 0.47° C) compared with the control condition (Tchest, 33.48 ± 0.47° C) during recovery. For HR, we found no significant difference (p = 0.586) between the conditions during exercise; however, we did find significantly (p < 0.001) lower HR during recovery. Thermal sensations were significantly (p = 0.026) decreased in the cooling (4.4 ± 0.2 points) compared with the control (5.0 ± 0.2 points) condition but not for other perceptual responses. The cooling effects of "phase change cooling" material were effective in reducing skin temperature but did not sufficiently reduce core body temperature or cardiovascular strain.

  3. Behavior and survival of Mytilus congeners following episodes of elevated body temperature in air and seawater.

    PubMed

    Dowd, W Wesley; Somero, George N

    2013-02-01

    Coping with environmental stress may involve combinations of behavioral and physiological responses. We examined potential interactions between adult mussels' simple behavioral repertoire - opening/closing of the shell valves - and thermal stress physiology in common-gardened individuals of three Mytilus congeners found on the West Coast of North America: two native species (M. californianus and M. trossulus) and one invasive species from the Mediterranean (M. galloprovincialis). We first continuously monitored valve behavior over three consecutive days on which body temperatures were gradually increased, either in air or in seawater. A temperature threshold effect was evident between 25 and 33°C in several behavioral measures. Mussels tended to spend much less time with the valves in a sealed position following exposure to 33°C body temperature, especially when exposed in air. This behavior could not be explained by decreases in adductor muscle glycogen (stores of this metabolic fuel actually increased in some scenarios), impacts of forced valve sealing on long-term survival (none observed in a second experiment), or loss of contractile function in the adductor muscles (individuals exhibited as many or more valve adduction movements following elevated body temperature compared with controls). We hypothesize that this reduced propensity to seal the valves following thermal extremes represents avoidance of hypoxia-reoxygenation cycles and concomitant oxidative stress. We further conjecture that prolonged valve gaping following episodes of elevated body temperature may have important ecological consequences by affecting species interactions. We then examined survival over a 90 day period following exposure to elevated body temperature and/or emersion, observing ongoing mortality throughout this monitoring period. Survival varied significantly among species (M. trossulus had the lowest survival) and among experimental contexts (survival was lowest after experiencing elevated body temperature in seawater). Surprisingly, we observed no cumulative impact on survival of 3 days relative to 1 day of exposure to elevated body temperature. The delayed mortality and context-specific outcomes we observed have important implications for the design of future experiments and for interpretation of field distribution patterns of these species. Ultimately, variation in the catalog of physiological and behavioral capacities among closely related or sympatric species is likely to complicate prediction of the ecological consequences of global change and species invasions.

  4. Novel Effect of Berberine on Thermoregulation in Mice Model Induced by Hot and Cold Environmental Stimulation

    PubMed Central

    Lei, Fan; Kheir, Michael M.; Wang, Xin-Pei; Chai, Yu-Shuang; Yuan, Zhi-Yi; Lu, Xi; Xing, Dong-Ming; Du, Feng; Du, Li-Jun

    2013-01-01

    The purpose of this study was to assess the effects of berberine (BBR) on thermoregulation in mice exposed to hot (40°C) and cold (4°C) environmental conditions. Four groups of mice were assembled with three different dosages of BBR (0.2, 0.4, and 0.8 mg/kg) and normal saline (control). In room temperature, our largest dosage of BBR (0.8 mg/kg) can reduce rectal temperatures (Tc) of normal mice. In hot conditions, BBR can antagonize the increasing core body temperature and inhibit the expression of HSP70 and TNFα in mice; conversely, in cold conditions, BBR can antagonize the decreasing core body temperature and enhance the expression of TRPM8. This study demonstrates the dual ability of BBR in maintaining thermal balance, which is of great relevance to the regulation of HSP70, TNFα and TRPM8. PMID:23335996

  5. Pyrrolidin-2-one derivatives may reduce body weight in rats with diet-induced obesity.

    PubMed

    Dudek, Magdalena; Knutelska, Joanna; Bednarski, Marek; Nowiński, Leszek; Zygmunt, Małgorzata; Kazek, Grzegorz; Mordyl, Barbara; Głuch-Lutwin, Monika; Zaręba, Paula; Kulig, Katarzyna; Sapa, Jacek

    2016-04-05

    Obesity affects an increasing number of individuals in the human population and significant importance is attached to research leading to the discovery of drug which would effectively reduce weight. The search for new drugs with anorectic activity and acting within the adrenergic system has attracted the interest of researchers. This study concerns the experimental effects on body weight of α2-adrenoceptor antagonists from the group of pyrrolidin-2-one derivatives in rats with diet-induced obesity. The intrinsic activity of the test compounds at the α-adrenoreceptors was tested. Obesity in rats was obtained by the use of fatty diet and then the influence of the test compounds on body weight, food and water intakes, lipid and glucose profiles and glycerol and cortisol levels were determinated. The effects of the compounds on locomotor activity, body temperature, blood pressure and heart rate were tested. One of the test compounds (1-(3-(4-phenylpiperazin-1-yl)propyl)pyrrolidin-2-one) reduces the animal's body weight and the amount of peritoneal adipose tissue during chronic administration, at the same time it does not cause significant adverse effects on the cardiovascular system. This compound decreases temperature and elevates glycerol levels and does not change the locomotor activity and cortisol level at anti-obese dose. Some derivatives of pyrrolidin-2-one that act as antagonists of the α2-adrenoreceptor may reduce body weight. Reducing body weight for 1-(3-(4-phenylpiperazin-1-yl)propyl)pyrrolidin-2-one can be associated with decrease in food intake, body fat reduction, reduction of blood glucose, and increased thermogenesis and lipolysis. This effect cannot be the result of changes in spontaneous activity or stress. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. MOK, a pharmacopuncture medicine, regulates thyroid dysfunction in L-thyroxin-induced hyperthyroidism in rats through the regulation of oxidation and the TRPV1 ion channel.

    PubMed

    Hwang, Ji Hye; Kang, Seok Yong; Kang, An Na; Jung, Hyo Won; Jung, Chul; Jeong, Jin-Ho; Park, Yong-Ki

    2017-12-15

    In this study, we evaluated the therapeutic effect of MOK, a pharmacopuncture medicine, on thyroid dysfunction in L-thyroxin (LT4)-induced hyperthyroidism rats. The experimental hyperthyroidism model was prepared by the intraperitoneal injection of LT4 (0.5 mg/kg) once daily for 2 weeks in SD rats. MOK extract was injected at doses of 0.3 or 3 mg/kg on acupuncture points in the thyroid glands of LT4-induced hypothyroidism rats once a day for 2 weeks. The body temperature, body weight, and food/water intake were measured once a week for 2 weeks. The levels of thyroid hormones, total cholesterol, LDL-cholesterol, GOT, and GPT were measured in the sera of rats using ELISA and an automatic blood analyzer. The histological changes of thyroid tissues were observed by H&E staining. The expression of thermo-regulating protein, TRPV1 was determined by western blot in dorsal root ganglion (DRG) and brain tissues. We also measured the contents of GSH in the liver and antioxidant enzymes, SOD, and catalase in the liver, heart, and brain tissues by enzyme-based assay and Western blot, respectively. The acupuncture of MOK extract on the thyroid gland of LT4-induced hyperthyroidism rats significantly decreased the body temperature, and did not change body weight and food and water intakes. MOK acupuncture significantly increased the level of TSH, and decreased the levels of T3 and T4 in hyperthyroidism rats. The expression of TRPV1 was inhibited in both DRG and brain tissues after MOK acupuncture, and the levels of GOT, GPT, total cholesterol, and LDL-cholesterol were also decreased. MOK acupuncture also inhibited the pathological feature with follicular lining epithelial thicknesses and increased follicular colloid depositions in the thyroid glands of hypothyroidism. MOK acupuncture significantly increased hepatic GSH levels and decreased the expression of SOD and catalase in the liver, heart, and brain tissues of hyperthyroidism rats. These results suggest that the pharmacopuncture with MOK extract in hyperthyroidism can improve the pathophysiological changes through regulating the body temperature, thyroid hormones imbalance, lipid accumulation, and oxidation. This anti-hyperthyroidism effect of MOK pharmacopuncture is thought to be related to the control of thermo-regulating protein TRPV1 in DRG and brain.

  7. The influence of hypoxia on the thermal sensitivity of skin colouration in the bearded dragon, Pogona vitticeps.

    PubMed

    de Velasco, Jesus Barraza; Tattersall, Glenn J

    2008-09-01

    One physiological mechanism used by reptiles to remain within thermal optima is their ability to reversibly alter skin colour, imparting changes in overall reflectance, and influencing the rate of heat gain from incident radiation. The ability to lighten or darken their skin is caused by the movement of pigment within the dermal chromatophore cells. Additionally, lizards, as ectotherms, significantly lower their preferred body temperatures when experiencing stressors such as hypoxia. This decrease in preferred temperature has been proposed to be the result of a downward adjustment of the thermal set-point, the temperature around which the body temperature is typically defended. We tested the hypothesis that lightening of the skin in lizards would be modified by hypoxia in a manner consistent with the known reduction in preferred temperatures. Skin colouration values of the dorsal skin of bearded dragons were analysed at three different levels of oxygen (20.8, 9.9 and 4.9 kPa) and at temperatures spanning the preferred temperature range (30, 32, 34, 36, 38 and 40 C). Hypoxic lizards lightened their skin at lower ambient temperatures more than normoxic ones, and in an oxygen-dependent fashion. The orchestrated adjustment of skin reflectance suggests that this physiological trait is being regulated at a new and lower set-point. Evidence from this study demonstrates that skin colouration plays a role in body temperature regulation and that the reduction in temperature set-point so prevalent in hypoxia is also manifested in this physiological trait.

  8. H89 dihydrochloride hydrate and calphostin C lower the body temperature through TRPV1.

    PubMed

    Bao, Dongyan; Zhao, Wenqing; Dai, Congcong; Wan, Hongmei; Cao, Yu

    2018-01-01

    The transient receptor potential vanilloid (TRPV1) serves as a negative regulator of body temperature, and during fever conditions its expression can lead to a decrease in temperature. TRPV1 is regulated by a variety of enzymes; however, it is currently unclear whether the regulation of TRPV1 phosphorylation may serve a role in the increase in TRPV1 expression during fever. In the present study, using an in vivo experimental method, rat brain ventricles were injected with the protein kinase A (PKA) antagonist, H89, and the protein kinase C (PKC) antagonist, calphostin C, and fever was induced using lipopolysaccharide (LPS) in order to detect the expression of TRPV1 and phosphorylated (p‑)TRPV1, the intracellular Ca2+ concentration [(Ca2+)i] of hypothalami and rat body temperature. The results demonstrated that following the generation of fever using LPS, the expressions of TRPV1 and p‑TRPV1, and hypothalamic [Ca2+]i markedly increased. In addition, following an injection with the PKA or PKC antagonist, the temperature increased further due to the inhibition of p‑TRPV1. Thus, it was hypothesized that PKA and PKC may be involved in TRPV1 phosphorylation, resulting in a temperature reduction during LPS‑induced fever conditions.

  9. H89 dihydrochloride hydrate and calphostin C lower the body temperature through TRPV1

    PubMed Central

    Bao, Dongyan; Zhao, Wenqing; Dai, Congcong; Wan, Hongmei; Cao, Yu

    2018-01-01

    The transient receptor potential vanilloid (TRPV1) serves as a negative regulator of body temperature, and during fever conditions its expression can lead to a decrease in temperature. TRPV1 is regulated by a variety of enzymes; however, it is currently unclear whether the regulation of TRPV1 phosphorylation may serve a role in the increase in TRPV1 expression during fever. In the present study, using an in vivo experimental method, rat brain ventricles were injected with the protein kinase A (PKA) antagonist, H89, and the protein kinase C (PKC) antagonist, calphostin C, and fever was induced using lipopolysaccharide (LPS) in order to detect the expression of TRPV1 and phosphorylated (p-)TRPV1, the intracellular Ca2+ concentration [(Ca2+)i] of hypothalami and rat body temperature. The results demonstrated that following the generation of fever using LPS, the expressions of TRPV1 and p-TRPV1, and hypothalamic [Ca2+]i markedly increased. In addition, following an injection with the PKA or PKC antagonist, the temperature increased further due to the inhibition of p-TRPV1. Thus, it was hypothesized that PKA and PKC may be involved in TRPV1 phosphorylation, resulting in a temperature reduction during LPS-induced fever conditions. PMID:29257197

  10. Ocean sunfish rewarm at the surface after deep excursions to forage for siphonophores.

    PubMed

    Nakamura, Itsumi; Goto, Yusuke; Sato, Katsufumi

    2015-05-01

    Ocean sunfish (Mola mola) were believed to be inactive jellyfish feeders because they are often observed lying motionless at the sea surface. Recent tracking studies revealed that they are actually deep divers, but there has been no evidence of foraging in deep water. Furthermore, the surfacing behaviour of ocean sunfish was thought to be related to behavioural thermoregulation, but there was no record of sunfish body temperature. Evidence of ocean sunfish feeding in deep water was obtained using a combination of an animal-borne accelerometer and camera with a light source. Siphonophores were the most abundant prey items captured by ocean sunfish and were typically located at a depth of 50-200 m where the water temperature was <12 °C. Ocean sunfish were diurnally active, made frequently deep excursions and foraged mainly at 100-200 m depths during the day. Ocean sunfish body temperatures were measured under natural conditions. The body temperatures decreased during deep excursions and recovered during subsequent surfacing periods. Heat-budget models indicated that the whole-body heat-transfer coefficient between sunfish and the surrounding water during warming was 3-7 times greater than that during cooling. These results suggest that the main function of surfacing is the recovery of body temperature, and the fish might be able to increase heat gain from the warm surface water by physiological regulation. The thermal environment of ocean sunfish foraging depths was lower than their thermal preference (c. 16-17 °C). The behavioural and physiological thermoregulation enables the fish to increase foraging time in deep, cold water. Feeding rate during deep excursions was not related to duration or depth of the deep excursions. Cycles of deep foraging and surface warming were explained by a foraging strategy, to maximize foraging time with maintaining body temperature by vertical temperature environment. © 2015 The Authors. Journal of Animal Ecology © 2015 British Ecological Society.

  11. Circulatory failure during severe hyperthermia in dog.

    PubMed

    Miki, K; Morimoto, T; Nose, H; Itoh, T; Yamada, S

    1983-01-01

    The effect of acute hyperthermia on circulatory function was studied in 6 mongrel dogs. At a core temperature of about 40 degrees C, central venous pressure and stroke volume were maintained at almost normal level. Cardiac output significantly increased (26 ml/(kg . min)) while systemic vascular resistance significantly decreased (1.2 mmHg . sec/ml). In addition, significant decrease in vascular compliance by 40% was observed. When body temperature was raised further (severe hyperthermia), an abrupt fall of arterial pressure was observed at the rectal temperature of about 41-42 degrees C. Concomitant decreases in central venous pressure (3 mmHg), stroke volume (2.1 ml/beat) and cardiac output (29 ml/(kg . min)) were observed while heart rate increased (48 beats/min). These results suggest that the decrease in cardiac output during severe hyperthermia is due to the fall of central venous pressure, and the fall was attributed to the increase in unstressed vascular volume of systemic circulation due to the heat-induced cutaneous vasodilation. The observed decrease in systemic vascular compliance is considered to have a significant role in the maintenance of central venous pressure under hyperthermia.

  12. Neonatal capsaicin treatment in rats affects TRPV1-related noxious heat sensation and circadian body temperature rhythm.

    PubMed

    Jeong, Keun-Yeong; Seong, Jinsil

    2014-06-15

    The transient receptor potential vanilloid 1 (TRPV1) is a cation channel that serves as a polymodal detector of noxious stimuli such as capsaicin. Therefore, capsaicin treatment has been used to investigate the physiological function of TRPV1. Here, we report physiological changes induced by treating neonatal rats with capsaicin. Capsaicin (50mg/kg) (cap-treated) or vehicle (vehicle-treated) was systemically administered to newborn SD rat pups within 48 h after birth. TRPV1 expression, intake volume of capsaicin water, and noxious heat sensation were measured 6 weeks after capsaicin treatment. Circadian body temperature and locomotion were recorded by biotelemetry. Expression of Per1, Per2, Bmal1 and Hsf1 (clock genes) was also investigated. Neonatal capsaicin treatment not only decreased TRPV1 expression but also induced desensitization to noxious heat stimuli. Circadian body temperature of cap-treated rats increased significantly compared with that of vehicle-treated rats. Additionally, the amplitude of the circadian body temperature was reversed in cap-treated rats. Expression of the hypothalamic Hsf1 and liver Per2 clock genes followed a similar trend. Therefore, we suggest that these findings will be useful in studying various physiological mechanisms related to TRPV1. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Changes in seasonal climate outpace compensatory density-dependence in eastern brook trout

    USGS Publications Warehouse

    Bassar, Ronald D.; Letcher, Benjamin H.; Nislow, Keith H.; Whiteley, Andrew R.

    2016-01-01

    Understanding how multiple extrinsic (density-independent) factors and intrinsic (density-dependent) mechanisms influence population dynamics has become increasingly urgent in the face of rapidly changing climates. It is particularly unclear how multiple extrinsic factors with contrasting effects among seasons are related to declines in population numbers and changes in mean body size and whether there is a strong role for density-dependence. The primary goal of this study was to identify the roles of seasonal variation in climate driven environmental direct effects (mean stream flow and temperature) versus density-dependence on population size and mean body size in eastern brook trout (Salvelinus fontinalis). We use data from a 10-year capture-mark-recapture study of eastern brook trout in four streams in Western Massachusetts, USA to parameterize a discrete-time population projection model. The model integrates matrix modeling techniques used to characterize discrete population structures (age, habitat type and season) with integral projection models (IPMs) that characterize demographic rates as continuous functions of organismal traits (in this case body size). Using both stochastic and deterministic analyses we show that decreases in population size are due to changes in stream flow and temperature and that these changes are larger than what can be compensated for through density-dependent responses. We also show that the declines are due mostly to increasing mean stream temperatures decreasing the survival of the youngest age class. In contrast, increases in mean body size over the same period are the result of indirect changes in density with a lesser direct role of climate-driven environmental change.

  14. Global biogeography and ecology of body size in birds.

    PubMed

    Olson, Valérie A; Davies, Richard G; Orme, C David L; Thomas, Gavin H; Meiri, Shai; Blackburn, Tim M; Gaston, Kevin J; Owens, Ian P F; Bennett, Peter M

    2009-03-01

    In 1847, Karl Bergmann proposed that temperature gradients are the key to understanding geographic variation in the body sizes of warm-blooded animals. Yet both the geographic patterns of body-size variation and their underlying mechanisms remain controversial. Here, we conduct the first assemblage-level global examination of 'Bergmann's rule' within an entire animal class. We generate global maps of avian body size and demonstrate a general pattern of larger body sizes at high latitudes, conforming to Bergmann's rule. We also show, however, that median body size within assemblages is systematically large on islands and small in species-rich areas. Similarly, while spatial models show that temperature is the single strongest environmental correlate of body size, there are secondary correlations with resource availability and a strong pattern of decreasing body size with increasing species richness. Finally, our results suggest that geographic patterns of body size are caused both by adaptation within lineages, as invoked by Bergmann, and by taxonomic turnover among lineages. Taken together, these results indicate that while Bergmann's prediction based on physiological scaling is remarkably accurate, it is far from the full picture. Global patterns of body size in avian assemblages are driven by interactions between the physiological demands of the environment, resource availability, species richness and taxonomic turnover among lineages.

  15. Huddling Conserves Energy, Decreases Core Body Temperature, but Increases Activity in Brandt's Voles (Lasiopodomys brandtii)

    PubMed Central

    Sukhchuluun, Gansukh; Zhang, Xue-Ying; Chi, Qing-Sheng; Wang, De-Hua

    2018-01-01

    Huddling as social thermoregulatory behavior is commonly used by small mammals to reduce heat loss and energy expenditure in the cold. Our study aimed to determine the effect of huddling behavior on energy conservation, thermogenesis, core body temperature (Tb) regulation and body composition in Brandt's voles (Lasiopodomys brandtii). Adult captive-bred female Brandt's voles (n = 124) (~50 g) in 31 cages with 4 individuals each were exposed to cool (23 ± 1°C) and cold (4 ± 1°C) ambient temperatures (Ta) and were allowed to huddle or were physically separated. The cold huddling (Cold-H) groups significantly reduced food intake by 29% and saved digestible energy 156.99 kJ/day compared with cold separated groups (Cold-S); in cool huddling groups (Cool-H) the reduction in food intake was 26% and digestible energy was saved by 105.19 kJ/day in comparison to the separated groups (Cool-S). Resting metabolic rate (RMR) of huddling groups was 35.7 and 37.2% lower than in separated groups at cold and cool Tas, respectively. Maximum non-shivering thermogenesis (NSTmax) of huddling voles was not affected by Ta, but in Cold-S voles it was significantly increased in comparison to Cool-S. Huddling groups decreased wet thermal conductance by 39% compared with separated groups in the cold, but not in the cool Ta. Unexpectedly, huddling voles significantly decreased Tb by 0.25 – 0.50°C at each Ta. Nevertheless, activity of Cold-H voles was higher than in Cold-S voles. Thus, huddling is energetically highly effective because of reduced metabolic rate, thermogenic capacity and relaxed Tb regulation despite the increase of activity. Therefore, Brandt's voles can remain active and maintain their body condition without increased energetic costs during cold exposure. This study highlights the ecological significance of huddling behavior for maintenance of individual fitness at low costs, and thus survival of population during severe winter in small mammals. PMID:29867585

  16. Microplastics have a more profound impact than elevated temperatures on the predatory performance, digestion and energy metabolism of an Amazonian cichlid.

    PubMed

    Wen, Bin; Zhang, Nan; Jin, Shi-Rong; Chen, Zai-Zhong; Gao, Jian-Zhong; Liu, Ying; Liu, Han-Peng; Xu, Zhe

    2018-02-01

    Knowledge on the impacts of microplastics (MPs) pollution on freshwater environments and biota remains limited. Meanwhile, freshwater ecosystems have been threatened by elevated temperatures caused by climate change. To date, no information exists on how MPs-especially under elevated temperature conditions-affect predatory performance, digestive processes and metabolic pathways in freshwater organisms. Here, we examined MPs, elevated temperature and their combined effects on juveniles (0+ group) of an Amazonian cichlid, the discus fish (Symphysodon aequifasciatus). For 30 days, fish were exposed to ambient or elevated temperatures (i.e., 28 or 31 °C) in the absence or presence of MPs (i.e., 0 or 200 μg/L). The following metrics were quantified: MPs accumulation; predatory performance; and biomarkers involved in neurotransmission, digestion and energy production. The results showed that survival rate and body length were not affected by MPs, elevated temperatures or their combination. Elevated temperatures resulted in an increase in MP concentrations in fish bodies. Exposure to MPs decreased the post-exposure predatory performance (PEPP) at ambient temperatures but not at elevated temperatures. Elevated temperatures, however, had no effect on the PEPP but antagonistically interacted with MPs, leading to similar predatory performances under present and future conditions. Acetylcholinesterase (AChE) activity was only affected by MPs and decreased in the presence of MPs, indicating adverse effects in nervous and neuromuscular function and, thus, potentially in predatory performance. Trypsin activity was only influenced by MPs and decreased during exposure to MPs. Elevated temperatures or MPs alone increased the amylase activity but interacted antagonistically. Lipase activity was not influenced by either of the two stressors. In contrast, alkaline phosphatase (ALP) activity was affected by MPs or elevated temperatures alone and decreased with both stressors. Such results indicate deficits in the digestive capabilities of early-stage S. aequifasciatus under elevated temperature conditions and especially during exposure to MPs. Electron transport system (ETS) activity was not influenced by either of the two stressors. Both elevated temperatures and MPs alone increased LDH activity; however, the interaction between the two stressors cancelled activity but was still higher than activity in present conditions. Citrate synthase (CS) activity decreased with elevated temperature but increased during exposure to MPs. Cytochrome c oxidase (COX) activity was only influenced by MPs and increased in the presence of MPs. Thus, S. aequifasciatus juveniles exposed to elevated temperatures and MPs not only relied on anaerobic glycolysis for energy production but also depended on aerobic metabolism in the presence of MPs. Overall, these findings suggested that MPs showed a greater impact than elevated temperatures on the predatory performance, digestion and energy production of S. aequifasciatus. Nevertheless, juvenile survival and growth were minimally impacted, and thus, S. aequifasciatus could cope with near-future temperature increases and MP exposure. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Loss of largest and oldest individuals of the Montpellier snake correlates with recent warming in the southeastern Iberian Peninsula

    PubMed Central

    Feriche, Mónica; Alaminos, Esmeralda; Pleguezuelos, Juan M

    2017-01-01

    Abstract The effects of climate change on organisms are now being extensively studied in many different taxa. However, the variation in body size, usually shrinkage in response to increasing temperature, has received little attention regarding to reptiles. During past periods of global warming, many organisms shrank in size, and current evidence and experiments manipulating temperature have shown a biomass decrease in some organisms with increasing temperatures. Here we test whether the body size of the Montpellier snake Malpolon monspessulanus from the southeastern Iberian Peninsula is changing and correlated with the increasing temperature in this region during a 39-year period (1976–2014). We measured the snout–vent length (SVL) of vouchers in scientific collections to check for trends in adult body size at the population level in relation with temperature, while controlling for the age of the individuals (estimated by skeletochronology, n =141). Given the great ontogenetic variation in body size of the study species, we categorized age in 3 classes: “young adults” (under 5 years old), “intermediate adults” (from 5 to 7 years old), and “old adults” (from 8 to 14 years old). By means of linear mixed models, we found a negative relationship between SVL of “old adults” and average annual temperature in the region during the lifetime of each individual. Our results indicate that largest and oldest individuals of the Montpellier Snake, that is, males because of strong sexual size dimorphism in this species, disappeared from the study population, and suggest that it occurred in response to rising environmental temperature. PMID:29492021

  18. Loss of largest and oldest individuals of the Montpellier snake correlates with recent warming in the southeastern Iberian Peninsula.

    PubMed

    López-Calderón, Cosme; Feriche, Mónica; Alaminos, Esmeralda; Pleguezuelos, Juan M

    2017-12-01

    The effects of climate change on organisms are now being extensively studied in many different taxa. However, the variation in body size, usually shrinkage in response to increasing temperature, has received little attention regarding to reptiles. During past periods of global warming, many organisms shrank in size, and current evidence and experiments manipulating temperature have shown a biomass decrease in some organisms with increasing temperatures. Here we test whether the body size of the Montpellier snake Malpolon monspessulanus from the southeastern Iberian Peninsula is changing and correlated with the increasing temperature in this region during a 39-year period (1976-2014). We measured the snout-vent length (SVL) of vouchers in scientific collections to check for trends in adult body size at the population level in relation with temperature, while controlling for the age of the individuals (estimated by skeletochronology, n  =141). Given the great ontogenetic variation in body size of the study species, we categorized age in 3 classes: "young adults" (under 5 years old), "intermediate adults" (from 5 to 7 years old), and "old adults" (from 8 to 14 years old). By means of linear mixed models, we found a negative relationship between SVL of "old adults" and average annual temperature in the region during the lifetime of each individual. Our results indicate that largest and oldest individuals of the Montpellier Snake, that is, males because of strong sexual size dimorphism in this species, disappeared from the study population, and suggest that it occurred in response to rising environmental temperature.

  19. Measuring the human body's microclimate using a thermal manikin.

    PubMed

    Voelker, C; Maempel, S; Kornadt, O

    2014-12-01

    The human body is surrounded by a microclimate, which results from its convective release of heat. In this study, the air temperature and flow velocity of this microclimate were measured in a climate chamber at various room temperatures, using a thermal manikin simulating the heat release of the human being. Different techniques (Particle Streak Tracking, thermography, anemometry, and thermistors) were used for measurement and visualization. The manikin surface temperature was adjusted to the particular indoor climate based on simulations with a thermoregulation model (UCBerkeley Thermal Comfort Model). We found that generally, the microclimate is thinner at the lower part of the torso, but expands going up. At the head, there is a relatively thick thermal layer, which results in an ascending plume above the head. However, the microclimate shape strongly depends not only on the body segment, but also on boundary conditions: The higher the temperature difference between the surface temperature of the manikin and the air temperature, the faster the airflow in the microclimate. Finally, convective heat transfer coefficients strongly increase with falling room temperature, while radiative heat transfer coefficients decrease. The type of body segment strongly influences the convective heat transfer coefficient, while only minimally influencing the radiative heat transfer coefficient. The findings of this study generate a better understanding of the human body’s microclimate, which is important in fields such as thermal comfort, HVAC, or indoor air quality. Additionally, the measurements can be used by CFD users for the validation of their simulations. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. Differences between sexes in rectal cooling rates after exercise-induced hyperthermia.

    PubMed

    Lemire, Bruno B; Gagnon, Daniel; Jay, Ollie; Kenny, Glen P

    2009-08-01

    We evaluated differences between sexes in core cooling rates during cold water immersion after exercise-induced hyperthermia. Ten male (M) and nine female (F) participants, matched for body surface area-to-mass ratio (AD/M) (F: 268 +/- 19 vs M: 261 +/- 16 cm2 x kg(-1)), were recruited for the study. Participants exercised until rectal temperature reached 39.5 degrees C and were subsequently immersed in a 2.0 degrees C circulated water bath until rectal temperature decreased to 37.5 degrees C. Rectal and mean skin temperatures and the relative rate of nonevaporative heat loss (W x m(-2)) were measured continuously during the immersion period. Males were heavier, had a lower body fat percentage, and had a greater amount of lean body mass compared with females (P < or = 0.05). Significant differences were found in the overall cooling rate for rectal temperature (F: 0.22 +/- 0.07 vs M: 0.12 +/- 0.03 degrees C x min(-1), P = 0.001) and in the overall immersion times (F: 10.89 +/- 4.49 vs M: 18.13 +/- 4.47 min, P = 0.003). Mean skin temperature was lower in females compared with that in males during the immersion period (P < 0.001), although there were no differences between sexes in the rate of nonevaporative heat loss (P = 0.180). Although females had a similar AD/M and greater body adiposity, they had approximately 1.7-fold greater rectal cooling rate. Because AD/M and body adiposity do not seem to influence rectal cooling rates in previously hyperthermic individuals, the greater cooling rates in females may be attributed to physical differences in lean body mass.

  1. Effects of Thermal Status on Markers of Blood Coagulation During Simulated Hemorrhage

    DTIC Science & Technology

    2017-06-01

    analogous to the effects of salt consumption on blood pressure where individuals are often defined as “salt-sensitive” or “salt-insensitive” (40). For...Ventilatory parameters ( ventilation , tidal volume and breathing rate) were measured (body temperature and pressure saturated) using an automated gas...method of cooling rapidly decreases the mean skin temperature with little initial effect on Tcore (see Results). Experimental protocol 2 This

  2. Efficacy and safety of a new coverlet device on skin microclimate management: a pilot study in critical care patients.

    PubMed

    Forriez, O; Masseline, J; Coadic, D; David, V; Trouiller, P; Sztrymf, B

    2017-02-02

    To test the effect of a new coverlet device, allowing air circulation at the body/underlying surface interface, on skin microclimate management. This prospective observational pilot study took place in a 15-bed university-affiliated intensive care unit. Overall, 34 mechanically ventilated patients were included. Skin humidity and temperature were monitored before and after the implementation of the tested device at the occiput, scapulas, buttocks and sacrum. Humidity and temperature were evaluated through surface skin impedance and an infra-red thermometer, respectively. Health professionals were asked to evaluate the device. After implementation of the coverlet device, there was a rapid, sustained and significant decrease in skin humidity at all sites ranging from 6 % to 15 %, excluding the occiput. Skin temperature also significantly decreased from 1 % at both scapulas, but not at the other studied body sites. No side effects were observed. Health professionals reported that the device was easy and quick to install. Although they did not report a subjective improvement in skin moisture or temperature, they considered the device to be efficient. Although limited by its design, this pilot study suggests a good efficacy of the studied device on skin microclimate management. Further data are warranted to test the clinical implications of our findings.

  3. [Effect of pineal peptide on parameters of the biological age and life span in mice].

    PubMed

    Anisimov, V N; Khavinson, V Kh; Zavarzina, N Iu; Zabezhinskiĭ, M A; Zimina, O A; Popovich, I G; Shtylik, A V; Arutiunian, A V; Oparina, T I; Prokopenko, V M

    2001-01-01

    Female CBA mice were injected with s.c. synthetic tetrapeptide Epithalon from a 6-month age until death. The drug failed to affect the body weight or food consumption, physical activity or behavioural parameters. However, it slowed down the age-related switching off of the estrus function, decreased body temperature, decelerated free redical processes, prolonged the mice life span with an accompanying drop in spontaneous tumour incidence.

  4. Preoperative carbohydrate-rich beverage reduces hypothermia during general anesthesia in rats.

    PubMed

    Yatabe, Tomoaki; Kawano, Takashi; Yamashita, Koichi; Yokoyama, Masataka

    2011-08-01

    Intraoperative hypothermia is associated with several unfavorable events; therefore, it is important to prevent the development of hypothermia. Amino acid consumption and/or infusion have been reported to prevent hypothermia. We hypothesized that preoperative carbohydrate-rich beverage (Arginaid Water™) loading can reduce intraoperative hypothermia in rats under general anesthesia. We divided 18 rats into 3 groups (group A, 8 mL/kg of saline; group B, 8 mL/kg of a carbohydrate-rich beverage; and group C, 21 mL/kg of the carbohydrate-rich beverage). The rats were administered each beverage at the above mentioned doses via an oral gastric tube 30 min before the induction of anesthesia. During the 2-h general anesthesia, rectal temperature was measured at 20-min intervals. Serum ketone body concentration was measured at 0 and 120 min. The baseline temperature was not significantly different among the groups. At the end of the experiment, group A showed a significantly greater decrease in temperature from the baseline (5.4 ± 0.8°C) than group B (3.9 ± 0.7°C, P = 0.01) and group C (3.8 ± 0.8°C, P = 0.01). The temperatures in groups B and C were not significantly different. There was no significant change in the serum ketone body concentration from the baseline at the end of the experiment in group A. However, the serum ketone body concentrations in group B and group C were significantly decreased from the baseline. Preoperative carbohydrate loading reduces hypothermia in rats under general anesthesia.

  5. Increased Temperature and Protein Oxidation Signal HSP72 mRNA and Protein Accumulation in the In Vivo Exercised Rat Heart

    PubMed Central

    Staib, Jessica L.; Tümer, Nihal; Powers, Scott K.

    2010-01-01

    Myocardial heat shock protein 72 (HSP72) expression, mediated by its transcription factor heat shock factor 1 (HSF1), increases following exercise. However, the up-stream stimuli governing exercise-induced HSF1 activation and subsequent HSP72 gene expression in the whole animal remain unclear. Exercise-induced increases in body temperature may promote myocardial radical production leading to protein oxidation. Conceivably, myocardial protein oxidation during exercise may serve as an important signal promoting nuclear HSF1 migration and activation of HSP72 expression. Therefore, these experiments tested the hypothesis that preventing exercise-induced increases in body temperature attenuates cardiac protein oxidation, diminishes HSF1 activation and decreases HSP72 expression in vivo. To test this hypothesis, in vivo exercise-induced body temperature was manipulated by exercising male rats in either cold (4°C) or warm (22°C) ambient conditions. Warm exercise increased both body temperature (+ 3°C) and myocardial protein oxidation whereas these changes were attenuated by cold exercise. Interestingly, exercise in both conditions did not significantly increase myocardial nuclear localized phosphorylated HSF1. Nonetheless, warm exercise elevated left-ventricular HSP72 mRNA by 9-fold and increased myocardial HSP72 protein levels by 3-fold compared to cold-exercised animals. Collectively, these data indicate that elevated body temperature and myocardial protein oxidation promoted exercise-induced cardiac HSP72 mRNA expression and protein accumulation following in vivo exercise. However, these results suggest that exercise-induced myocardial HSP72 protein accumulation is not a result of nuclear-localized, phosphorylated HSF1 indicating that other transcriptional or posttranscriptional regulatory mechanisms are involved in exercise-induced HSP72 expression. PMID:18931043

  6. Multiple taxon multiple locality approach to providing oxygen isotope evidence for warm-blooded theropod dinosaurs

    NASA Astrophysics Data System (ADS)

    Fricke, Henry C.; Rogers, Raymond R.

    2000-09-01

    Oxygen isotope ratios of fossil remains of coexisting taxa from several different localities can be used to help investigate dinosaur thermoregulation. Focusing on the Late Cretaceous, oxygen isotope ratios of crocodile tooth enamel from four separate localities exhibit less of a decrease with latitude than do ratios of tooth enamel from coexisting theropod dinosaurs. A shallower latitudinal gradient for crocodiles is consistent with how oxygen isotope ratios should vary for heterothermic animals having body temperatures coupled with their environments (“cold blooded”), while a steeper gradient for theropods is consistent with how these ratios should vary for homeothermic animals having constant body temperatures independent of their environments (“warm blooded”). This inferred homoethermy in theropods is likely due to higher rates of metabolic heat production relative to crocodiles and is not an artifact of body size.

  7. The effects of heated and room-temperature abdominal lavage solutions on core body temperature in dogs undergoing celiotomy.

    PubMed

    Nawrocki, Michael A; McLaughlin, Ron; Hendrix, P K

    2005-01-01

    To document the magnitude of temperature elevation obtained with heated lavage solutions during abdominal lavage, 18 dogs were lavaged with sterile isotonic saline intraoperatively (i.e., during a celiotomy). In nine dogs, room-temperature saline was used. In the remaining nine dogs, saline heated to 43+/-2 degrees C (110+/-4 degrees F) was used. Esophageal, rectal, and tympanic temperatures were recorded every 60 seconds for 15 minutes after initiation of the lavage. Temperature levels decreased in dogs lavaged with room-temperature saline. Temperature levels increased significantly in dogs lavaged with heated saline after 2 to 6 minutes of lavage, and temperatures continued to increase throughout the 15-minute lavage period.

  8. [Resuscitation of vital activity after cold arrest of respiration by physiological methods without rewarming the body].

    PubMed

    Ivanov, K P

    2014-01-01

    The arrest of respiration during deep hypothermia means death, though at a low temperature the heart may rhythmically contract for 30-40 minutes more. The attempts of rewarming only shorten the time before the heart arrest. Calcium ions (Ca2+) are believed to accumulate in the nervous cells in cold. An excess of these ions inhibits the metabolism. Moreover it stimulates the cell proteases, which destroy the cell membranes. The aim of the study was to make the the attempts to develop the methods of stimulating the respiration and heart without rewarming the body. The work was carried out on wite rats 250-320g in weight. We introduced disodium salt of ethylenediaminetetraacetic acid into the animals. The second method of blocking the mechanisms of the cold death was artificial respiration. Ethylenediaminetetraacetic acid reacts with calcium ions, decreases their quantity in the blood, and, consequently, in a complex manner in the cell protoplasm. Artificial respiration not only increases the flow of oxygen into an organism but also decreases the lowest temperature threshold of the cold death of an organism. A decrease in the surviving threshold by 1.5-1.8 degrees C is very important from the point of view of reanimation of an organism since to preserve life in the critical period of reanimation each 0.5 degrees C are important. Prolongation of minimal frequency of heart contractions and maintaining a minimal arterial blood pressure in an overcooled organism given the body temperature of 11-12.5 degrees C is a special problem of great interest associated with many physiological and biological parameters.

  9. Intermittent whole-body cold immersion induces similar thermal stress but different motor and cognitive responses between males and females.

    PubMed

    Solianik, Rima; Skurvydas, Albertas; Mickevičienė, Dalia; Brazaitis, Marius

    2014-10-01

    The main aim of this study was to compare the thermal responses and the responses of cognitive and motor functions to intermittent cold stress between males and females. The intermittent cold stress continued until rectal temperature (TRE) reached 35.5°C or for a maximum of 170 min. Thermal response and motor and cognitive performance were monitored. During intermittent cold stress, body temperature variables decreased in all subjects (P < 0.001) and did not differ between sexes. The presence of fast and slow cooling types for participants with similar effect on physiological variables were observed; thus the different rate coolers were grouped together and were attributed only sex specific responses. Overall, TRE cooling rate and cold strain index did not differ between sexes. Maximal voluntary contraction (MVC) decreased after intermittent cold exposure only in males (P < 0.001), whereas changes in muscle electromyography (EMG) activity did not differ between sexes. The effects of intermittent cold stress on electrically evoked muscle properties, spinal (H-reflex), and supraspinal (V-waves) reflexes did not differ between sexes. Intermittent cold-induced cognitive perturbation of attention and memory task performance was greater in males (P < 0.05). Contrary to our expectations, the results of the present study indicated that males and females experience similar thermal stress induced by intermittent whole-body cold immersion. Although no sex-specific differences were observed in muscle EMG activity, involuntary muscle properties, spinal and supraspinal reflexes, some of the sex differences observed (e.g., lower isometric MVC and greater cognitive perturbation in males) support the view of sex-specific physiological responses to core temperature decrease. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Immediate effects of reiki on heart rate variability, cortisol levels, and body temperature in health care professionals with burnout.

    PubMed

    Díaz-Rodríguez, Lourdes; Arroyo-Morales, Manuel; Fernández-de-las-Peñas, Cesar; García-Lafuente, Francisca; García-Royo, Carmen; Tomás-Rojas, Inmaculada

    2011-10-01

    Burnout is a work-related mental health impairment comprising three dimensions: emotional exhaustion, depersonalization, and reduced personal accomplishment. Reiki aims to help replenish and rebalance the body's energetic system, thus stimulating the healing process. The objective of this placebo-controlled, repeated measures, crossover, single-blind, randomized trial was to analyze the immediate effects of Reiki on heart rate variability (HRV), body temperature, and salivary flow rate and cortisol level in health care professionals with burnout syndrome (BS). Participants included 21 health care professionals with BS, who were asked to complete two visits to the laboratory with a 1-week interval between sessions. They were randomly assigned the order in which they would receive a Reiki session applied by an experienced therapist and a placebo treatment applied by a therapist with no knowledge of Reiki, who mimicked the Reiki treatment. Temperature, Holter ECG recordings (standard deviation of the normal-to-normal interval [SDNN], square root of mean squared differences of successive NN intervals [RMSSD], HRV index, low frequency component [LF], and high frequency component [HF]), salivary flow rate and cortisol levels were measured at baseline and postintervention by an assessor blinded to allocation group. SDNN and body temperature were significantly higher after the Reiki treatment than after the placebo. LF was significantly lower after the Reiki treatment. The decrease in the LF domain was associated with the increase in body temperature. These results suggest that Reiki has an effect on the parasympathetic nervous system when applied to health care professionals with BS.

  11. The sympathetic nervous system is controlled by transient receptor potential vanilloid 1 in the regulation of body temperature

    PubMed Central

    Alawi, Khadija M.; Aubdool, Aisah A.; Liang, Lihuan; Wilde, Elena; Vepa, Abhinav; Psefteli, Maria-Paraskevi; Brain, Susan D.; Keeble, Julie E.

    2015-01-01

    Transient receptor potential vanilloid 1 (TRPV1) is involved in sensory nerve nociceptive signaling. Recently, it has been discovered that TRPV1 receptors also regulate basal body temperature in multiple species from mice to humans. In the present study, we investigated whether TRPV1 modulates basal sympathetic nervous system (SNS) activity. C57BL6/J wild-type (WT) mice and TRPV1 knockout (KO) mice were implanted with radiotelemetry probes for measurement of core body temperature. AMG9810 (50 mg/kg) or vehicle (2% DMSO/5% Tween 80/10 ml/kg saline) was injected intraperitoneally. Adrenoceptor antagonists or vehicle (5 ml/kg saline) was injected subcutaneously. In WT mice, the TRPV1 antagonist, AMG9810, caused significant hyperthermia, associated with increased noradrenaline concentrations in brown adipose tissue. The hyperthermia was significantly attenuated by the β-adrenoceptor antagonist propranolol, the mixed α-/β-adrenoceptor antagonist labetalol, and the α1-adrenoceptor antagonist prazosin. TRPV1 KO mice have a normal basal body temperature, indicative of developmental compensation. d-Amphetamine (potent sympathomimetic) caused hyperthermia in WT mice, which was reduced in TRPV1 KO mice, suggesting a decreased sympathetic drive in KOs. This study provides new evidence that TRPV1 controls thermoregulation upstream of the SNS, providing a potential therapeutic target for sympathetic hyperactivity thermoregulatory disorders.—Alawi, K. M., Aubdool, A. A., Liang, L., Wilde, E., Vepa, A., Psefteli, M.-P., Brain, S. D., Keeble, J. E. The sympathetic nervous system is controlled by transient receptor potential vanilloid 1 in the regulation of body temperature. PMID:26136480

  12. Temperature, but Not Available Energy, Affects the Expression of a Sexually Selected Ultraviolet (UV) Colour Trait in Male European Green Lizards

    PubMed Central

    Bajer, Katalin; Molnár, Orsolya; Török, János; Herczeg, Gábor

    2012-01-01

    Background Colour signals are widely used in intraspecific communication and often linked to individual fitness. The development of some pigment-based (e.g. carotenoids) colours is often environment-dependent and costly for the signaller, however, for structural colours (e.g. ultraviolet [UV]) this topic is poorly understood, especially in terrestrial ectothermic vertebrates. Methodology/Principal Findings In a factorial experiment, we studied how available energy and time at elevated body temperature affects the annual expression of the nuptial throat colour patch in male European green lizards (Lacerta viridis) after hibernation and before mating season. In this species, there is a female preference for males with high throat UV reflectance, and males with high UV reflectance are more likely to win fights. We found that (i) while food shortage decreased lizards' body condition, it did not affect colour development, and (ii) the available time for maintaining high body temperature affected the development of UV colour without affecting body condition or other colour traits. Conclusions/Significance Our results demonstrate that the expression of a sexually selected structural colour signal depends on the time at elevated body temperature affecting physiological performance but not on available energy gained from food per se in an ectothermic vertebrate. We suggest that the effect of high ambient temperature on UV colour in male L. viridis makes it an honest signal, because success in acquiring thermally favourable territories and/or effective behavioural thermoregulation can both be linked to individual quality. PMID:22479611

  13. Process- and controller-adaptations determine the physiological effects of cold acclimation.

    PubMed

    Werner, Jürgen

    2008-09-01

    Experimental results on physiological effects of cold adaptation seem confusing and apparently incompatible with one another. This paper will explain that a substantial part of such a variety of results may be deduced from a common functional concept. A core/shell treatment ("model") of the thermoregulatory system is used with mean body temperature as the controlled variable. Adaptation, as a higher control level, is introduced into the system. Due to persistent stressors, either the (heat transfer) process or the controller properties (parameters) are adjusted (or both). It is convenient to call the one "process adaptation" and the other "controller adaptation". The most commonly demonstrated effect of autonomic cold acclimation is a change in the controller threshold. The analysis shows that this necessarily means a lowering of body temperature because of a lowered metabolic rate. This explains experimental results on both Europeans in the climatic chamber and Australian Aborigines in a natural environment. Exclusive autonomic process adaptation occurs in the form of a better insulation. The analysis explains why the post-adaptive steady-state can only be achieved, if the controller system reduces metabolism and why in spite of this the new state is inevitably characterized by a rise in body temperature. If both process and controller adaptations are simultaneously present, there may be not any change of body temperature at all, e.g., as demonstrated in animal experiments. Whether this kind of adaptation delivers a decrease, an increase or no change of mean body temperature, depends on the proportion of process and controller adaptation.

  14. Quantification of Induced Hypothermia from Aseptic Scrub Applications during Rodent Surgery Preparation

    PubMed Central

    Skorupski, Anna M; Zhang, Jingyi; Ferguson, Danielle; Lawrence, Frank

    2017-01-01

    Laboratory mice (Mus musculus) are prone to develop hypothermia during anesthesia for surgery, thus potentially impeding anesthetic recovery, wound healing, and future health. The core body temperatures of isoflurane-anesthetized mice are influenced by the choice of supplemental heat sources; however, the contribution of various surgical scrubs on the body temperatures of mice under gas anesthesia has not been assessed. We sought to quantify the effect of using alcohol (70% isopropyl alcohol [IPA]) compared with saline to rinse away surgical scrub on the progression of hypothermia in anesthetized mice (n = 47). IPA, room-temperature saline, or warmed saline (37 °C) was combined with povidone–iodine and then assessed for effects on core (rectal) and surface (infrared) temperatures. Agents were applied to a 2×2-cm shaved abdominal area of mice maintained on a water-recirculating blanket (at 38 °C) under isoflurane anesthesia (1.5% to 2.0% at 0.6 L/min) for 30 min. Although all scrub regimens significantly decreased body temperature at the time of application, treatments that included povidone–iodine led to the coldest core temperatures, which persisted while mice were anesthetized. Compared with room-temperature saline and when combined with povidone–iodine, warming of saline did not ameliorate heat loss. IPA alone demonstrated the most dramatic cooling of both surface and core readings at application but generated an unanticipated warming (rebound) phase during which body temperatures equilibrated with those of controls within minutes of application. Although alcohol is inappropriate as a stand-alone agent for surgical skin preparation, IPA is a viable alternative to saline-based rinses in this context, and its use should be encouraged within institutional guidance for rodent surgical procedures without concern for prolonged hypothermia in mice. PMID:28903829

  15. Body temperatures of modern and extinct vertebrates from 13C-18O bond abundances in bioapatite

    PubMed Central

    Eagle, Robert A.; Schauble, Edwin A.; Tripati, Aradhna K.; Tütken, Thomas; Hulbert, Richard C.; Eiler, John M.

    2010-01-01

    The stable isotope compositions of biologically precipitated apatite in bone, teeth, and scales are widely used to obtain information on the diet, behavior, and physiology of extinct organisms and to reconstruct past climate. Here we report the application of a new type of geochemical measurement to bioapatite, a “clumped-isotope” paleothermometer, based on the thermodynamically driven preference for 13C and 18O to bond with each other within carbonate ions in the bioapatite crystal lattice. This effect is dependent on temperature but, unlike conventional stable isotope paleothermometers, is independent from the isotopic composition of water from which the mineral formed. We show that the abundance of 13C-18O bonds in the carbonate component of tooth bioapatite from modern specimens decreases with increasing body temperature of the animal, following a relationship between isotope “clumping” and temperature that is statistically indistinguishable from inorganic calcite. This result is in agreement with a theoretical model of isotopic ordering in carbonate ion groups in apatite and calcite. This thermometer constrains body temperatures of bioapatite-producing organisms with an accuracy of 1–2 °C. Analyses of fossilized tooth enamel of both Pleistocene and Miocene age yielded temperatures within error of those derived from similar modern taxa. Clumped-isotope analysis of bioapatite represents a new approach in the study of the thermophysiology of extinct species, allowing the first direct measurement of their body temperatures. It will also open new avenues in the study of paleoclimate, as the measurement of clumped isotopes in phosphorites and fossils has the potential to reconstruct environmental temperatures. PMID:20498092

  16. Cardiovascular and temperature changes in spinal cord injured rats at rest and during autonomic dysreflexia

    PubMed Central

    Laird, A S; Carrive, P; Waite, P M E

    2006-01-01

    In patients with high spinal cord injuries autonomic dysfunction can be dangerous, leading to medical complications such as postural hypotension, autonomic dysreflexia and temperature disturbance. While animal models have been developed to study autonomic dysreflexia, associated temperature changes have not been documented. Our aim here was to use radiotelemetry and infrared thermography in rodents to record the development of cardiovascular and skin temperature changes following complete T4 transection. In adult male Wistar rats (n = 5), responses were assessed prior to spinal cord injury (intact) and for 6 weeks following injury. Statistical analysis by a repeated-measure ANOVA revealed that following spinal cord injury (SCI), rats exhibited decreased mean arterial pressure (MAP, average decrease of 26 mmHg; P < 0.035) and elevated heart rate (HR, average increase of 65 bpm, P < 0.035) at rest. The basal core body temperature following SCI was also significantly lower than intact levels (−0.9°C; P < 0.0035). Associated with this decreased basal core temperature following SCI was an increased skin temperature of the mid-tail and hindpaw (+5.6 and +4.0°C, respectively; P < 0.0003) consistent with decreased cutaneous vasoconstrictor tone. Autonomic dysreflexia, in response to a 1 min colorectal distension (25 mmHg), was fully developed by 4 weeks after spinal cord transection, producing increases in MAP greater than 25 mmHg (P < 0.0003). In contrast to the tachycardia seen in intact animals in response to colorectal distension, SCI animals exhibited bradycardia (P < 0.0023). During episodes of autonomic dysreflexia mid-tail surface temperature decreased (approx. −1.7°C, P < 0.012), consistent with cutaneous vasoconstriction. This is the first study to compare cardiovascular dysfunction with temperature changes following spinal cord transection in rats. PMID:16973703

  17. Numerical modelling on pulsatile flow of Casson nanofluid through an inclined artery with stenosis and tapering under the influence of magnetic field and periodic body acceleration

    NASA Astrophysics Data System (ADS)

    Ponalagusamy, R.; Priyadharshini, S.

    2017-11-01

    The present study investigates the pulsatile flow of Casson nanofluid through an inclined and stenosed artery with tapering in the presence of magnetic field and periodic body acceleration. The iron oxide nanoparticles are allowed to flow along with it. The governing equations for the flow of Casson fluid when the artery is tapered slightly having mild stenosis are highly non-linear and the momentum equations for temperature and concentration are coupled and are solved using finite difference numerical schemes in order to find the solutions for velocity, temperature, concentration, wall shear stress, and resistance to blood flow. The aim of the present study is to analyze the effects of flow parameters on the flow of nanofluid through an inclined arterial stenosis with tapering. These effects are represented graphically and concluded that the wall shear stress profiles enhance with increase in yield stress, magnetic field, thermophoresis parameter and decreases with Brownian motion parameter, local temperature Grashof number, local nanoparticle Grashof number. The significance of the model is the existence of yield stress and it is examined that when the rheology of blood changes from Newtonian to Casson fluid, the percentage of decrease in the flow resistance is higher with respect to the increase in the parameters local temperature Grashof number, local nanoparticle Grashof number, Brownian motion parameter, and Prandtl number. It is pertinent to observe that increase in the Brownian motion parameter leads to increment in concentration and temperature profiles. It is observed that the concentration of nanoparticles decreases with increase in the value of thermophoresis parameter.

  18. Circadian changes in core body temperature, metabolic rate and locomotor activity in rats on a high-protein, carbohydrate-free diet.

    PubMed

    Yamaoka, Ippei; Hagi, Mieko; Doi, Masako

    2009-12-01

    Ingestion of a high-protein meal results in body weight loss due to elevated energy expenditure, while also increasing satiety and decreasing subsequent food intake. The present study aimed to clarify the effects of a high-protein, carbohydrate-free diet (HPCFD) on these physiological indicators from a circadian perspective. Rats were given HPCFD or a pair-fed normal protein content diet (20% protein; NPD) for 4 d. The HPCFD group lost more body weight than the NPD group. Oxygen consumption (VO(2)) in the HPCFD group did not change during the experimental period, and tended to be higher during the light (L) phase than in the NPD group. Carbon dioxide production (VCO(2)) during the L phase was higher in the HPCFD group than in the NPD group, where VCO(2) was gradually decreased during the last dark (D) phase and throughout the L phase. The HPCFD group exhibited higher daily core body temperature (T(b)), particularly during the late D phase and throughout the L phase when compared to the NPD group. Locomotor activities during the D phase of the NPD group tended to gradually increase and were thus significantly higher than in the HPCFD group. These results suggest that HPCFD, even if energy intake is insufficient, maintains circadian changes in metabolic rates, resulting in maintenance of elevated daily T(b) and body weight reduction without increasing activity.

  19. Effects of stocking density, light and perches on broiler growth.

    PubMed

    Velo, Ramón; Ceular, Angel

    2017-02-01

    The aim of this study was to determine the effect of stocking density, light intensity and light color on broiler growth. The experiment consisted of four 35-day phases during each of which 320 chickens were surveyed. The research was performed at stocking densities of four and six birds/m 2 . Illuminances of 15 and 30 lx were obtained through commercial lamps with 4000 K and 6000 K color temperatures. Lighting was used 17 h a day, between 06.00 and 23.00 hours (17 L:7 D). The results showed a decrease in body, carcass, breast and thighs weight (P < 0.05) with the increase in stocking density. Body weight decreased by 10.5% and carcass weight decreased by 9.4% at six birds/m 2 stocking density. Contrastingly, no differences were found for the tested light colors. Increasing illuminance from 15 to 30 lx caused a 1.9% decrease in body weight. The analysis of the effect of perches revealed that using perches significantly increased body (2.5%) and breast weight (11.8%). The interactions between light intensity or color and stocking density and between light intensity and light color were analyzed. © 2016 Japanese Society of Animal Science.

  20. Functional significance and control of release of pulmonary surfactant in the lizard lung.

    PubMed

    Wood, P G; Daniels, C B; Orgeig, S

    1995-10-01

    The amount of pulmonary surfactant in the lungs of the bearded dragon (Pogona vitticeps) increases with increasing body temperature. This increase coincides with a decrease in lung compliance. The relationship between surfactant and lung compliance and the principal stimuli for surfactant release and composition (temperature, ventilatory pattern, and autonomic neurotransmitters) were investigated. We chose to investigate ventilatory pattern (which causes mechanical deformation of the type II cells) and adrenergic agents, because they are the major stimuli for surfactant release in mammals. To examine the effects of body temperature and ventilatory pattern, isolated lungs were ventilated at either 18 or 37 degrees C at different ventilatory regimens. An isolated perfused lung preparation at 27 degrees C was used to analyze the effects of autonomic neurotransmitters. Ventilatory pattern did not affect surfactant release, composition, or lung compliance at either 18 or 37 degrees C. An increase in temperature increased phospholipid reuptake and disproportionately increased cholesterol degradation/uptake. Epinephrine and acetylcholine stimulated phospholipid but not cholesterol release. Removal of surfactant caused a decrease in compliance, regardless of the experimental temperature. Temperature appears to be the principal determinant of lung compliance in the bearded dragon, acting directly to increase the tone of the smooth muscle. Increasing the ambient temperature may result in greater surfactant turnover by increasing cholesterol reuptake/degradation directly and by increasing circulating epinephrine, thereby indirectly increasing phospholipid secretion. We suggest that changing ventilatory pattern may be inadequate as a mechanism for maintaining surfactant homeostasis, given the discontinuous, highly variable reptilian breathing pattern.

  1. Changes in body temperature in king penguins at sea: the result of fine adjustments in peripheral heat loss?

    PubMed

    Schmidt, Alexander; Alard, Frank; Handrich, Yves

    2006-09-01

    To investigate thermoregulatory adjustments at sea, body temperatures (the pectoral muscle and the brood patch) and diving behavior were monitored during a foraging trip of several days at sea in six breeding king penguins Aptenodytes patagonicus. During inactive phases at sea (water temperature: 4-7 degrees C), all tissues measured were maintained at normothermic temperatures. The brood patch temperature was maintained at the same values as those measured when brooding on shore (38 degrees C). This high temperature difference causes a significant loss of heat. We hypothesize that high-energy expenditure associated with elevated peripheral temperature when resting at sea is the thermoregulatory cost that a postabsorptive penguin has to face for the restoration of its subcutaneous body fat. During diving, mean pectoral temperature was 37.6 +/- 1.6 degrees C. While being almost normothermic on average, the temperature of the pectoral muscle was still significantly lower than during inactivity in five out of the six birds and underwent temperature drops of up to 5.5 degrees C. Mean brood patch temperature was 29.6 +/- 2.5 degrees C during diving, and temperature decreases of up to 21.6 degrees C were recorded. Interestingly, we observed episodes of brood patch warming during the descent to depth, suggesting that, in some cases, king penguins may perform active thermolysis using the brood patch. It is hypothesized that functional pectoral temperature may be regulated through peripheral adjustments in blood perfusion. These two paradoxical features, i.e., lower temperature of deep tissues during activity and normothermic peripheral tissues while inactive, may highlight the key to the energetics of this diving endotherm while foraging at sea.

  2. Radiation from wireless technology elevates blood glucose and body temperature in 40-year-old type 1 diabetic male.

    PubMed

    Kleiber, Catherine E

    2017-01-01

    A type 1 diabetic male reports multiple instances when his blood glucose was dramatically elevated by the presence of microwave radiation from wireless technology and plummeted when the radiation exposure ended. In one instance, his body temperature elevated in addition to his blood glucose. Both remained elevated for nearly 48 h after exposure with the effect gradually decreasing. Possible mechanisms for microwave radiation elevating blood glucose include effects on glucose transport proteins and ion channels, insulin conformational changes and oxidative stress. Temperature elevation may be caused by microwave radiation-triggered Ca 2+ efflux, a mechanism similar to malignant hyperthermia. The potential for radiation from wireless technology to cause serious biological effects has important implications and necessitates a reevaluation of its near-ubiquitous presence, especially in hospitals and medical facilities.

  3. Influence of core body temperature on Tryptophan metabolism, kynurenines, and estimated IDO activity in critically ill patients receiving target temperature management following cardiac arrest.

    PubMed

    Schefold, Joerg C; Fritschi, Nora; Fusch, Gerhard; Bahonjic, Aldin; Doehner, Wolfram; von Haehling, Stephan; Pschowski, Rene; Storm, Christian; Schroeder, Tim

    2016-10-01

    Temperature control improves neurological prognosis in comatose cardiac arrest (CA) survivors. Previous reports demonstrate that most affected patients show signs of significant systemic inflammation. In an effort to better characterize potential temperature-related effects on key inflammatory pathways, we investigate the course of Tryptophan (Trp) levels, Tryptophan catabolites (including kynurenines) and indoleamine-2,3-dioxygenase (IDO)-activity in post CA patients. In an observational blinded endpoint analysis, a total of n=270 serial samples from 20 post CA patients (63.1±16.6 yrs., 45% shockable rhythm, mean time to return of spontaneous circulation (ROSC) 26.6±16.0min) treated with target temperature management (TTM) were analyzed. Core body temperatures, course of Trp, Trp catabolites (incl. kynurenines), and estimated IDO-activity were followed up for a maximum of 7 days after ROSC. Patients were followed up until hospital discharge or death and functional outcome was recorded. Over the 7-day observational interval, marked changes in Trp serum levels and IDO-activity were noted. In general, Trp serum levels but not IDO-activity seemed to parallel with the course of core body temperature. In explorative analyses, a correlation of Trp (rho=0.271 (95%-CI: 0.16-0.38, p<0.0001) and IDO-activity (rho=-0.155, 95%-CI: -0.27 to -0.037, p=0.01) with core body temperature was observed. Linear mixed effect models revealed a positive significant association of core body temperature with Trp serum levels (Likelihood ratio test χ(2)=6.35, p=0.012). In patients with good (vs. unfavorable) outcome, a tendency toward higher Trp serum levels, lower IDO-activity, and lower Kynurenic acid levels was noted. We observed significant changes in Trp catabolism and IDO-activity that appeared temperature associated in post CA patients. Under hypothermia, decreased serum levels of Trp and increased IDO-activity were noted. We speculate from our data that IDO-induction during hypothermia contributes to the previously described increased susceptibility to infection or sepsis under reduced temperatures. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  4. Effects of Macrophage Depletion on Sleep in Mice

    PubMed Central

    Ames, Conner; Boland, Erin; Szentirmai, Éva

    2016-01-01

    The reciprocal interaction between the immune system and sleep regulation has been widely acknowledged but the cellular mechanisms that underpin this interaction are not completely understood. In the present study, we investigated the role of macrophages in sleep loss- and cold exposure-induced sleep and body temperature responses. Macrophage apoptosis was induced in mice by systemic injection of clodronate-containing liposomes (CCL). We report that CCL treatment induced an immediate and transient increase in non-rapid-eye movement sleep (NREMS) and fever accompanied by decrease in rapid-eye movement sleep, motor activity and NREMS delta power. Chronically macrophage-depleted mice had attenuated NREMS rebound after sleep deprivation compared to normal mice. Cold-induced increase in wakefulness and decrease in NREMS, rapid-eye movement sleep and body temperature were significantly enhanced in macrophage-depleted mice indicating increased cold sensitivity. These findings provide further evidence for the reciprocal interaction among the immune system, sleep and metabolism, and identify macrophages as one of the key cellular elements in this interplay. PMID:27442442

  5. Muscimol microinjected in the arcuate nucleus affects metabolism, body temperature & ventilation.

    PubMed

    Schlenker, Evelyn H

    2016-06-15

    Effects of microinjection of 2 doses of γ-aminobutyric acid (GABA)A receptor agonist, muscimol (M), into the hypothalamic arcuate nucleus on oxygen consumption and control of ventilation over time and body temperature (BT) at the end of the experiment were compared in adult male and female rats. Relative to cerebrospinal fluid (CSF, 0 nmol), BT was decreased only in male rats with both doses of M, while in female rats, the 5 nmol dose depressed oxygen consumption. Ventilation was depressed by 5 nmol M in male and 10 nmol M in female rats by decreasing tidal volume. M did not affect the ventilatory response of male or female rats to hypoxia, whereas in females 5 and 10 nmol M and in males 10 nmol M depressed the ventilatory response to hypercapnia. Thus, in rats GABAA receptors in the arcuate nucleus modulate BT, oxygen consumption, and ventilation in air and in response to hypercapnia in a sexually dimorphic manner. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Reflex peripheral vasoconstriction is diminished in older men.

    PubMed

    Kenney, W L; Armstrong, C G

    1996-02-01

    The purpose of this study was to compare reflex control of limb blood flow in healthy young (Y; 26 +/- 2 yr) and older (O;61 +/- 2 yr) men during whole body cooling under resting conditions. To better isolate the effect of chronological age, the two age groups (n = 6 per group) were closely matched for maximal oxygen uptake, body surface area, skinfold thickness, and fat-free weight. Subjects sat in an environmentally controlled chamber clad in standardized (0.6-clo) light cotton clothing at a dry-bulb temperature (Tdb) of 28 degrees C. After 30 min, Tdb was decreased by 2 degrees C every 5 min until Tdb = 10 degrees C, where it was held constant for the remainder of the 120-min session. Esophageal and mean skin temperatures were monitored continuously. Forearm blood flow (FBF) was measured every 5 min by venous occlusion plethysmography by using a mercury-in-Silastic strain gauge while arm temperature between the wrist and elbow was clamped at 37.2 +/- 0.1 degrees C by localized warm air heating. In this way, limb vasoconstriction was driven solely by thermoregulatory reflexes and not by direct effects of localized cooling. Mean skin temperature decreased at a similar rate and to a similar extent (by approximately 6 degrees C over a 2-h period) in both age groups, whereas esophageal temperature was relatively unaffected. In response to the local heating, the Y group maintained a significantly higher FBF than did the O group during the initial 30 min but decreased FBF during the cooling phase at a greater rate and to a greater extent than did the O group, leading to a significantly lower FBF during the final 30 min (at Tdb = 10 degrees C). Because there was no age difference in the mean arterial pressure response, similar effects of age were seen on forearm vascular conductance (FBF/mean arterial pressure). It was concluded that older men have a diminished reflex limb vasoconstrictor response to skin cooling. Furthermore, this difference in control of peripheral blood flow appears to be related to age per se; i.e., it is not a reflection of age-related differences in maximal oxygen uptake or body composition.

  7. Effect of alcohol on behavioral and autonomic thermoregulation in mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gordon, C.J.; Stead, A.G.

    1986-01-01

    Male, BALB/c mice were injected intraperitoneally with ethyl alcohol (ethanol) in dosages of 0, 0.03, 0.1, 0.3, 1.0, or 3.0 g/kg and then placed in a temperature gradient that permitted the measurement of preferred ambient temperature (Ta). The 3 g/kg dosage of ethanol resulted in a slight lowering of the preferred Ta during the first 30 min of placement in the gradient. However, there was no overall statistically significant effect of alcohol dosage on preferred Ta. In another experiment, BALB/c mice were treated with the aforementioned ethanol dosages while metabolic rate (MR), evaporative water loss (EWL), and colonic temperature weremore » measured 60 min post-injection at Ta's of 20, 30, and 35 C a dosage of 3 g/kg caused a significant decrease in MR, EWL, and colonic temperature. At a Ta of 30 C this same dosage caused significant reduction in colonic temperature, however; at Ta of 35 C ethanol had no effect on these parameters. In spite of the significant decrease in colonic temperature at a Ta of 30 C, which approximates the normal preferred Ta, the behavioral thermal preference was marginally affected. It is not clear whether or not ethanol injection results in a decrease in the set-point body temperature.« less

  8. Temperature mediated moose survival in Northeastern Minnesota

    USGS Publications Warehouse

    Lenarz, M.S.; Nelson, M.E.; Schrage, M.W.; Edwards, A.J.

    2009-01-01

    The earth is in the midst of a pronounced warming trend and temperatures in Minnesota, USA, as elsewhere, are projected to increase. Northern Minnesota represents the southern edge to the circumpolar distribution of moose (Alces alces), a species intolerant of heat. Moose increase their metabolic rate to regulate their core body temperature as temperatures rise. We hypothesized that moose survival rates would be a function of the frequency and magnitude that ambient temperatures exceeded the upper critical temperature of moose. We compared annual and seasonal moose survival in northeastern Minnesota between 2002 and 2008 with a temperature metric. We found that models based on January temperatures above the critical threshold were inversely correlated with subsequent survival and explained >78 of variability in spring, fall, and annual survival. Models based on late-spring temperatures also explained a high proportion of survival during the subsequent fall. A model based on warm-season temperatures was important in explaining survival during the subsequent winter. Our analyses suggest that temperatures may have a cumulative influence on survival. We expect that continuation or acceleration of current climate trends will result in decreased survival, a decrease in moose density, and ultimately, a retreat of moose northward from their current distribution.

  9. Optical imaging characterizing brain response to thermal insult in injured rodent

    NASA Astrophysics Data System (ADS)

    Abookasis, David; Shaul, Oren; Meitav, Omri; Pinhasi, Gadi A.

    2018-02-01

    We used spatially modulated optical imaging system to assess the effect of temperature elevation on intact brain tissue in a mouse heatstress model. Heatstress or heatstroke is a medical emergency defined by abnormally elevated body temperature that causes biochemical, physiological and hematological changes. During experiments, brain temperature was measured concurrently with a thermal camera while core body temperature was monitored with rectal thermocouple probe. Changes in a battery of macroscopic brain physiological parameters, such as hemoglobin oxygen saturation level, cerebral water content, as well as intrinsic tissue optical properties were monitored during temperature elevation. These concurrent changes reflect the pathophysiology of the brain during heatstress and demonstrate successful monitoring of thermoregulation mechanisms. In addition, the variation of tissue refractive index was calculated showing a monotonous decrease with increasing wavelength. We found increased temperature to greatly affect both the scattering properties and refractive index which represent cellular and subcellular swelling indicative of neuronal damage. The overall trends detected in brain tissue parameters were consistent with previous observations using conventional medical devices and optical modalities.

  10. Energy expenditure during barbiturate coma.

    PubMed

    Ashcraft, Christine M; Frankenfield, David C

    2013-10-01

    Barbiturate coma may have a significant effect on metabolic rate, but the phenomenon is not extensively studied. The primary purpose of the current study was to compare the metabolic rate of general critical care patients with those requiring barbiturate coma. A secondary purpose was to evaluate the accuracy of the Penn State prediction equation between these 2 groups of patients. Indirect calorimetry was used to measure the resting metabolic rate of mechanically ventilated, critically ill patients in a barbiturate coma and those of similar height, weight, and age but not in a barbiturate coma. Measurements of resting metabolic rate were compared with predictions using the Penn State equation accounting for body size, body temperature, and minute ventilation. The barbiturate coma group had a lower resting metabolic rate than the control group that remained lower even after adjustment for predicted healthy metabolic rate and maximum body temperature (1859 ± 290 vs 2037 ± 289 kcal/d, P = .020). When minute ventilation was also included in the analysis, the resting metabolic rate between the groups became statistically insignificant (1929 ± 229 vs 2023 ± 226 kcal/d, P = .142). The Penn State equation, which uses these variables, was accurate in 73% of the control patients and also the barbiturate coma patients. Resting metabolic rate is moderately reduced in barbiturate coma, but the decrease is out of proportion with changes in body temperature. However, if both body temperature and minute ventilation are considered, then the change is predictable.

  11. The role of CCK2 receptors in energy homeostasis: insights from the CCK2 receptor-deficient mouse.

    PubMed

    Weiland, Tracey J; Voudouris, Nicholas J; Kent, Stephen

    2004-09-15

    The present study explored the contribution of type 2 cholecystokinin (CCK) receptors in energy regulation. A total of 78 CCK2 receptor-deficient mice and 80 wild-type controls were acclimated to a 12:12 light-dark cycle at 30 +/- 1 degrees C. Using a computer-monitored biotelemetry system, circadian patterns of body temperature, food intake, and activity were monitored for 4 days. Body weight and water consumption were manually recorded during this period. Results indicate that CCK2 receptor invalidation produces elevated body temperature during both the photophase and scotophase (by 0.38 and 0.12 degrees C, respectively), increased body weight (29.3 +/- 0.2 vs. 26.8 +/- 0.2 g) and water consumption (4.1 +/- 0.1 vs. 3.2 +/- 0.1 ml), and decreased scotophase locomotor activity (WT: 7.0 +/- 0.2 vs. KO: 6.1 +/- 0.2 counts/min). These findings suggest an important role for CCK2 receptors in processes underlying energy regulation during basal and possibly pathological states.

  12. Factors affecting date of implantation, parturition, and den entry estimated from activity and body temperature in free-ranging brown bears.

    PubMed

    Friebe, Andrea; Evans, Alina L; Arnemo, Jon M; Blanc, Stéphane; Brunberg, Sven; Fleissner, Günther; Swenson, Jon E; Zedrosser, Andreas

    2014-01-01

    Knowledge of factors influencing the timing of reproduction is important for animal conservation and management. Brown bears (Ursus arctos) are able to vary the birth date of their cubs in response to their fat stores, but little information is available about the timing of implantation and parturition in free-ranging brown bears. Body temperature and activity of pregnant brown bears is higher during the gestation period than during the rest of hibernation and drops at parturition. We compared mean daily body temperature and activity levels of pregnant and nonpregnant females during preimplantation, gestation, and lactation. Additionally we tested whether age, litter size, primiparity, environmental conditions, and the start of hibernation influence the timing of parturition. The mean date of implantation was 1 December (SD = 12), the mean date of parturition was 26 January (SD = 12), and the mean duration of the gestation period was 56 days (SD = 2). The body temperature of pregnant females was higher during the gestation and lactation periods than that of nonpregnant bears. The body temperature of pregnant females decreased during the gestation period. Activity recordings were also used to determine the date of parturition. The parturition dates calculated with activity and body temperature data did not differ significantly and were the same in 50% of the females. Older females started hibernation earlier. The start of hibernation was earlier during years with favorable environmental conditions. Dates of parturition were later during years with good environmental conditions which was unexpected. We suggest that free-ranging pregnant brown bears in areas with high levels of human activities at the beginning of the denning period, as in our study area, might prioritize investing energy in early denning than in early parturition during years with favorable environmental conditions, as a strategy to prevent disturbances caused by human.

  13. Factors Affecting Date of Implantation, Parturition, and Den Entry Estimated from Activity and Body Temperature in Free-Ranging Brown Bears

    PubMed Central

    Friebe, Andrea; Evans, Alina L.; Arnemo, Jon M.; Blanc, Stéphane; Brunberg, Sven; Fleissner, Günther; Swenson, Jon E.; Zedrosser, Andreas

    2014-01-01

    Knowledge of factors influencing the timing of reproduction is important for animal conservation and management. Brown bears (Ursus arctos) are able to vary the birth date of their cubs in response to their fat stores, but little information is available about the timing of implantation and parturition in free-ranging brown bears. Body temperature and activity of pregnant brown bears is higher during the gestation period than during the rest of hibernation and drops at parturition. We compared mean daily body temperature and activity levels of pregnant and nonpregnant females during preimplantation, gestation, and lactation. Additionally we tested whether age, litter size, primiparity, environmental conditions, and the start of hibernation influence the timing of parturition. The mean date of implantation was 1 December (SD = 12), the mean date of parturition was 26 January (SD = 12), and the mean duration of the gestation period was 56 days (SD = 2). The body temperature of pregnant females was higher during the gestation and lactation periods than that of nonpregnant bears. The body temperature of pregnant females decreased during the gestation period. Activity recordings were also used to determine the date of parturition. The parturition dates calculated with activity and body temperature data did not differ significantly and were the same in 50% of the females. Older females started hibernation earlier. The start of hibernation was earlier during years with favorable environmental conditions. Dates of parturition were later during years with good environmental conditions which was unexpected. We suggest that free-ranging pregnant brown bears in areas with high levels of human activities at the beginning of the denning period, as in our study area, might prioritize investing energy in early denning than in early parturition during years with favorable environmental conditions, as a strategy to prevent disturbances caused by human. PMID:24988486

  14. Comparison of thermoregulatory devices used during anesthesia of C57BL/6 mice and correlations between body temperature and physiologic parameters.

    PubMed

    Caro, Adam C; Hankenson, F Claire; Marx, James O

    2013-09-01

    General anesthesia affects several body systems, including thermoregulation. Decreased body temperature during anesthesia has potential negative effects, including delayed recovery to consciousness. Thermoregulatory support devices are used to maintain temperature in anesthetized rodents. We analyzed 2 novel thermoregulatory devices, thermogenic gel packs and reflective foils, to compare their effectiveness in maintaining temperatures with that of a standard circulating-warm-water blanket (CWWB) in C57BL/6 mice. Mice were grouped randomly: control (no thermal support), reflective foil, gel pack, gel pack plus reflective foil, CWWB on medium setting, CWWB on high setting, and CWWB on high setting plus reflective foil. Mice were anesthetized with isoflurane for 30 min, and temperature and heart and respiratory rates were monitored. Results indicated that the temperatures of mice with reflective foil only (start temperature, 36.2 ± 0.38 °C; end temperature, 28.8 ± 0.78 °C) did not differ significantly from those of control mice; however, the inclusion of foil heightened thermogenic properties when combined with other devices. Thermogenic gel packs and CWWB on high setting, both with and without reflective foil, caused significant temperature increases (that is, 1.6 °C to 4.4 °C) in mice. CWWB on medium setting (blanket temperature, 37.5 °C) maintained mice at temperatures within 1 °C of the 36.1 °C baseline. Strong correlations existed between temperature, heart and respiratory rates, and recovery time to consciousness. This information provides guidance regarding the use of thermoregulatory devices in anesthetized rodents and demonstrates the effect of maintaining a consistent core temperature on physiologic parameters.

  15. Comparison of Thermoregulatory Devices Used during Anesthesia of C57BL/6 Mice and Correlations between Body Temperature and Physiologic Parameters

    PubMed Central

    Caro, Adam C; Hankenson, F Claire; Marx, James O

    2013-01-01

    General anesthesia affects several body systems, including thermoregulation. Decreased body temperature during anesthesia has potential negative effects, including delayed recovery to consciousness. Thermoregulatory support devices are used to maintain temperature in anesthetized rodents. We analyzed 2 novel thermoregulatory devices, thermogenic gel packs and reflective foils, to compare their effectiveness in maintaining temperatures with that of a standard circulating-warm–water blanket (CWWB) in C57BL/6 mice. Mice were grouped randomly: control (no thermal support), reflective foil, gel pack, gel pack plus reflective foil, CWWB on medium setting, CWWB on high setting, and CWWB on high setting plus reflective foil. Mice were anesthetized with isoflurane for 30 min, and temperature and heart and respiratory rates were monitored. Results indicated that the temperatures of mice with reflective foil only (start temperature, 36.2 ± 0.38 °C; end temperature, 28.8 ± 0.78 °C) did not differ significantly from those of control mice; however, the inclusion of foil heightened thermogenic properties when combined with other devices. Thermogenic gel packs and CWWB on high setting, both with and without reflective foil, caused significant temperature increases (that is, 1.6 °C to 4.4 °C) in mice. CWWB on medium setting (blanket temperature, 37.5 °C) maintained mice at temperatures within 1 °C of the 36.1 °C baseline. Strong correlations existed between temperature, heart and respiratory rates, and recovery time to consciousness. This information provides guidance regarding the use of thermoregulatory devices in anesthetized rodents and demonstrates the effect of maintaining a consistent core temperature on physiologic parameters. PMID:24041214

  16. Mass mortality of eastern box turtles with upper respiratory disease following atypical cold weather.

    PubMed

    Agha, Mickey; Price, Steven J; Nowakowski, A Justin; Augustine, Ben; Todd, Brian D

    2017-04-20

    Emerging infectious diseases cause population declines in many ectotherms, with outbreaks frequently punctuated by periods of mass mortality. It remains unclear, however, whether thermoregulation by ectotherms and variation in environmental temperature is associated with mortality risk and disease progression, especially in wild populations. Here, we examined environmental and body temperatures of free-ranging eastern box turtles Terrapene carolina during a mass die-off coincident with upper respiratory disease. We recorded deaths of 17 turtles that showed clinical signs of upper respiratory disease among 76 adult turtles encountered in Berea, Kentucky (USA), in 2014. Of the 17 mortalities, 11 occurred approximately 14 d after mean environmental temperature dropped 2.5 SD below the 3 mo mean. Partial genomic sequencing of the major capsid protein from 1 sick turtle identified a ranavirus isolate similar to frog virus 3. Turtles that lacked clinical signs of disease had significantly higher body temperatures (23°C) than sick turtles (21°C) during the mass mortality, but sick turtles that survived and recovered eventually warmed (measured by temperature loggers). Finally, there was a significant negative effect of daily environmental temperature deviation from the 3 mo mean on survival, suggesting that rapid decreases in environmental temperature were correlated with mortality. Our results point to a potential role for environmental temperature variation and body temperature in disease progression and mortality risk of eastern box turtles affected by upper respiratory disease. Given our findings, it is possible that colder or more variable environmental temperatures and an inability to effectively thermoregulate are associated with poorer disease outcomes in eastern box turtles.

  17. Social huddling and physiological thermoregulation are related to melanism in the nocturnal barn owl.

    PubMed

    Dreiss, Amélie N; Séchaud, Robin; Béziers, Paul; Villain, Nicolas; Genoud, Michel; Almasi, Bettina; Jenni, Lukas; Roulin, Alexandre

    2016-02-01

    Endothermic animals vary in their physiological ability to maintain a constant body temperature. Since melanin-based coloration is related to thermoregulation and energy homeostasis, we predict that dark and pale melanic individuals adopt different behaviours to regulate their body temperature. Young animals are particularly sensitive to a decrease in ambient temperature because their physiological system is not yet mature and growth may be traded-off against thermoregulation. To reduce energy loss, offspring huddle during periods of cold weather. We investigated in nestling barn owls (Tyto alba) whether body temperature, oxygen consumption and huddling were associated with melanin-based coloration. Isolated owlets displaying more black feather spots had a lower body temperature and consumed more oxygen than those with fewer black spots. This suggests that highly melanic individuals display a different thermoregulation strategy. This interpretation is also supported by the finding that, at relatively low ambient temperature, owlets displaying more black spots huddled more rapidly and more often than those displaying fewer spots. Assuming that spot number is associated with the ability to thermoregulate not only in Swiss barn owls but also in other Tytonidae, our results could explain geographic variation in the degree of melanism. Indeed, in the northern hemisphere, barn owls and allies are less spotted polewards than close to the equator, and in the northern American continent, barn owls are also less spotted in colder regions. If melanic spots themselves helped thermoregulation, we would have expected the opposite results. We therefore suggest that some melanogenic genes pleiotropically regulate thermoregulatory processes.

  18. Influence of body composition on physiological responses to post-exercise hydrotherapy.

    PubMed

    Stephens, Jessica M; Halson, Shona L; Miller, Joanna; Slater, Gary J; Askew, Christopher D

    2018-05-01

    This study examined the influence of body composition on temperature and blood flow responses to post-exercise cold water immersion (CWI), hot water immersion (HWI) and control (CON). Twenty-seven male participants were stratified into three groups: 1) low mass and low fat (LM-LF); 2) high mass and low fat (HM-LF); or 3) high mass and high fat (HM-HF). Experimental trials involved a standardised bout of cycling, maintained until core temperature reached 38.5°C. Participants subsequently completed one of three 15-min recovery interventions (CWI, HWI, or CON). Core, skin and muscle temperatures, and limb blood flow were recorded at baseline, post-exercise, and every 30 min following recovery for 240 min. During CON and HWI there were no differences in core or muscle temperature between body composition groups. The rate of fall in core temperature following CWI was greater in the LM-LF (0.03 ± 0.01°C/min) group compared to the HM-HF (0.01 ± 0.001°C/min) group (P = 0.002). Muscle temperature decreased to a greater extent during CWI in the LM-LF and HM-LF groups (8.6 ± 3.0°C) compared with HM-HF (5.1 ± 2.0°C, P < 0.05). Blood flow responses did not differ between groups. Differences in body composition alter the thermal response to post-exercise CWI, which may explain some of the variance in the responses to CWI recovery.

  19. Cardiopulmonary baroreceptor control of muscle sympathetic nerve activity in heat-stressed humans

    NASA Technical Reports Server (NTRS)

    Crandall, C. G.; Etzel, R. A.; Farr, D. B.

    1999-01-01

    Whole body heating decreases central venous pressure (CVP) while increasing muscle sympathetic nerve activity (MSNA). In normothermia, similar decreases in CVP elevate MSNA, presumably via cardiopulmonary baroreceptor unloading. The purpose of this project was to identify whether increases in MSNA during whole body heating could be attributed to cardiopulmonary baroreceptor unloading coincident with the thermal challenge. Seven subjects were exposed to whole body heating while sublingual temperature, skin blood flow, heart rate, arterial blood pressure, and MSNA were monitored. During the heat stress, 15 ml/kg warmed saline was infused intravenously over 7-10 min to increase CVP and load the cardiopulmonary baroreceptors. We reported previously that this amount of saline was sufficient to return CVP to pre-heat stress levels. Whole body heating increased MSNA from 25 +/- 3 to 39 +/- 3 bursts/min (P < 0. 05). Central blood volume expansion via rapid saline infusion did not significantly decrease MSNA (44 +/- 4 bursts/min, P > 0.05 relative to heat stress period) and did not alter mean arterial blood pressure (MAP) or pulse pressure. To identify whether arterial baroreceptor loading decreases MSNA during heat stress, in a separate protocol MAP was elevated via steady-state infusion of phenylephrine during whole body heating. Increasing MAP from 82 +/- 3 to 93 +/- 4 mmHg (P < 0.05) caused MSNA to decrease from 36 +/- 3 to 15 +/- 4 bursts/min (P < 0.05). These data suggest that cardiopulmonary baroreceptor unloading during passive heating is not the primary mechanism resulting in elevations in MSNA. Moreover, arterial baroreceptors remain capable of modulating MSNA during heat stress.

  20. Effects of morphine on circadian rhythms of motor activity and body temperature in pig-tailed macaques.

    PubMed

    Weed, Michael R; Hienz, Robert D

    2006-07-01

    Previous studies of the effects of opiates on motor activity and body temperature in nonhuman primates have been limited in scope and typically only conducted with restrained animals. The present study used radio-telemetry devices to continuously measure activity and temperature in unrestrained pig-tailed macaques for 24 h following morphine administration. Two dose-response functions (0.56 to 5.6 mg/kg, i.m.) were determined, one with morphine administered at 9 a.m. and one with morphine administrated at 3 p.m. Under both the 9 a.m. or 3 p.m. administration schedules, body temperature and activity were increased acutely. Activity was also reduced the following morning after morphine administered at either time. In other regards, morphine's effects on both temperature and activity differed between 9 a.m. and 3 p.m. injection, including periods of decreased activity immediately after the acute increases after 9 a.m. but not 3 p.m. administration. Surprisingly, motor activity also increased 9-12 h post-injection following morphine administered at 9 a.m., but not at 3 p.m. These results clearly show an interaction between timing of morphine administration and effects on temperature and activity. These results also underscore the fact that single injections of drugs may have multiple and delayed effects on circadian rhythms in macaques.

  1. Effect of summer heat environment on body temperature, estrous cycles and blood antioxidant levels in Japanese Black cow.

    PubMed

    Sakatani, Miki; Balboula, Ahmed Z; Yamanaka, Kenichi; Takahashi, Masashi

    2012-05-01

    This study investigated the effect of summer heat environment on estrous cycles and blood antioxidant levels in Japanese Black cows. A total of 13 non-lactating Japanese Black cows (summer: 9, winter: 4) were examined. Body temperature was measured rectally and intravaginally using a thermometer and data logger, respectively. Estrous behavior was monitored using a radiotelemetric pedometer that recorded walking activity. Rectal temperatures were higher during summer than winter (P<0.001). There was an acute increase in vaginal temperature at the onset of estrus during winter but such an increase was not observed during summer. Walking activity during estrus decreased dramatically in the summer compared to the winter. Duration of estrous cycle was longer in summer (23.4 days, P<0.05) than winter (21.5 days), and the subsequent rise in progesterone concentrations following estrus tended to be delayed in summer. The level of thiobarbituric acid reactive substances (TBARS) in peripheral blood cells was higher during summer (P<0.05), while the levels of superoixde dismutase (SOD), glutathione peroxidase (GPx) and glutathione were lower (P<0.05). These results indicate that high ambient temperature during summer increases both body temperature and oxidative stress, and also reduces signs of estrus in Japanese Black cows. © 2011 The Authors. Animal Science Journal © 2011 Japanese Society of Animal Science.

  2. Diatoms can be an important exception to temperature-size rules at species and community levels of organization.

    PubMed

    Adams, Georgina L; Pichler, Doris E; Cox, Eileen J; O'Gorman, Eoin J; Seeney, Alex; Woodward, Guy; Reuman, Daniel C

    2013-11-01

    Climate warming has been linked to an apparent general decrease in body sizes of ectotherms, both across and within taxa, especially in aquatic systems. Smaller body size in warmer geographical regions has also been widely observed. Since body size is a fundamental determinant of many biological attributes, climate-warming-related changes in size could ripple across multiple levels of ecological organization. Some recent studies have questioned the ubiquity of temperature-size rules, however, and certain widespread and abundant taxa, such as diatoms, may be important exceptions. We tested the hypothesis that diatoms are smaller at warmer temperatures using a system of geothermally heated streams. There was no consistent relationship between size and temperature at either the population or community level. These field data provide important counterexamples to both James' and Bergmann's temperature-size rules, respectively, undermining the widely held assumption that warming favours the small. This study provides compelling new evidence that diatoms are an important exception to temperature-size rules for three reasons: (i) we use many more species than prior work; (ii) we examine both community and species levels of organization simultaneously; (iii) we work in a natural system with a wide temperature gradient but minimal variation in other factors, to achieve robust tests of hypotheses without relying on laboratory setups, which have limited realism. In addition, we show that interspecific effects were a bigger contributor to whole-community size differences, and are probably more ecologically important than more commonly studied intraspecific effects. These findings highlight the need for multispecies approaches in future studies of climate warming and body size. © 2013 John Wiley & Sons Ltd.

  3. Habituation of the metabolic and ventilatory responses to cold-water immersion in humans.

    PubMed

    Tipton, Michael J; Wakabayashi, Hitoshi; Barwood, Martin J; Eglin, Clare M; Mekjavic, Igor B; Taylor, Nigel A S

    2013-01-01

    An experiment was undertaken to answer long-standing questions concerning the nature of metabolic habituation in repeatedly cooled humans. It was hypothesised that repeated skin and deep-body cooling would produce such a habituation that would be specific to the magnitude of the cooling experienced, and that skin cooling alone would dampen the cold-shock but not the metabolic response to cold-water immersion. Twenty-one male participants were divided into three groups, each of which completed two experimental immersions in 12°C water, lasting until either rectal temperature fell to 35°C or 90min had elapsed. Between these two immersions, the control group avoided cold exposures, whilst two experimental groups completed five additional immersions (12°C). One experimental group repeatedly immersed for 45min in average, resulting in deep-body (1.18°C) and skin temperature reductions. The immersions in the second experimental group were designed to result only in skin temperature reductions, and lasted only 5min. Only the deep-body cooling group displayed a significantly blunted metabolic response during the second experimental immersion until rectal temperature decreased by 1.18°C, but no habituation was observed when they were cooled further. The skin cooling group showed a significant habituation in the ventilatory response during the initial 5min of the second experimental immersion, but no alteration in the metabolic response. It is concluded that repeated falls of skin and deep-body temperature can habituate the metabolic response, which shows tissue temperature specificity. However, skin temperature cooling only will lower the cold-shock response, but appears not to elicit an alteration in the metabolic response. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Effects of an electrolyte additive on hydration and drinking behavior during wildfire suppression.

    PubMed

    Cuddy, John S; Ham, Julie A; Harger, Stephanie G; Slivka, Dustin R; Ruby, Brent C

    2008-01-01

    The purpose of this study was to compare the effects of a water + electrolyte solution versus plain water on changes in drinking behaviors, hydration status, and body temperatures during wildfire suppression. Eight participants consumed plain water, and eight participants consumed water plus an electrolyte additive during 15 hours of wildfire suppression. Participants wore a specially outfitted backpack hydration system equipped with a digital flow meter system affixed inline to measure drinking characteristics (drinking frequency and volume). Body weight and urine-specific gravity were collected pre- and postshift. Ambient, core, and skin temperatures were measured continuously using a wireless system. Work output was monitored using accelerometry. There were no differences between groups for body weight, drinking frequency, temperature data, activity, or urine-specific gravity (1.019 +/- 0.007 to 1.023 +/- 0.010 vs. 1.019 +/- 0.005 to 1.024 +/- 0.009 for water and water + electrolyte groups pre- and postshift, respectively; P < .05). There was a main effect for time for body weight, demonstrating an overall decrease (78.1 +/- 13.3 and 77.3 +/- 13.3 kg pre- and postshift, respectively; P < .05) across the work shift. The water group consumed more total fluid (main effect for treatment) than the water + electrolyte group (504 +/- 472 vs. 285 +/- 279 mL.h(-1) for the water and water + electrolyte groups, respectively; P < .05). The addition of an electrolyte mixture to plain water decreased the overall fluid consumption of the water + electrolyte group by 220 mL.h(-1) (3.3 L.d(-1)). Supplementing water with electrolytes can reduce the amount of fluid necessary to consume and transport during extended activity. This can minimize carrying excessive weight, possibly reducing fatigue during extended exercise.

  5. Avoidance of physical activity is a sensitive indicator of illness.

    PubMed

    Skinner, Gregory W; Mitchell, Duncan; Harden, Lois M

    2009-03-02

    Although fever and sickness behavior are common responses to infection, it has been proposed that the sickness behaviors associated with infection, in particular lethargy and fatigue, may be more valuable clinical markers of illness and recovery in patients, than is body temperature alone. Measuring abdominal temperature, food intake and wheel running we therefore determined the dose thresholds and sensitivities of these responses to lipopolysaccharide (LPS). Male Sprague-Dawley rats were randomly assigned to receive one of three LPS doses (10, 50, 250 microg/kg), or saline, subcutaneously. Administration of LPS induced a dose-dependent increase in abdominal temperature and decrease in wheel running, food intake and body mass. Regression analysis revealed that decreased running was the most-sensitive of the sickness responses to LPS administration, with a regression slope of -41%/log microg, compared to the slopes for food intake (-30%/log microg, F(1,2)=244, P=0.004) and body mass (-2.2%/log microg, F(1,5)=7491, P<0.0001). To determine the likelihood that exercise training influenced the sickness responses we measured in our dose-response study we performed a second experiment in which we investigated whether fever and anorexia induced by LPS administration would present differently depending on whether rats had been exercising or sedentary. Six weeks of wheel running had no effect on the magnitude of fever and anorexia induced by LPS administration. Avoidance of physical activity therefore appears to be a more-sensitive indicator of a host's reaction to LPS than is anorexia and fever.

  6. Climate change affects low trophic level marine consumers: warming decreases copepod size and abundance.

    PubMed

    Garzke, Jessica; Ismar, Stefanie M H; Sommer, Ulrich

    2015-03-01

    Concern about climate change has re-ignited interest in universal ecological responses to temperature variations: (1) biogeographical shifts, (2) phenology changes, and (3) size shifts. In this study we used copepods as model organisms to study size responses to temperature because of their central role in the pelagic food web and because of the ontogenetic length constancy between molts, which facilitates the definition of size of distinct developmental stages. In order to test the expected temperature-induced shifts towards smaller body size and lower abundances under warming conditions, a mesocosm experiment using plankton from the Baltic Sea at three temperature levels (ambient, ambient +4 °C, ambient -4 °C) was performed in summer 2010. Overall copepod and copepodit abundances, copepod size at all life stages, and adult copepod size in particular, showed significant temperature effects. As expected, zooplankton peak abundance was lower in warm than in ambient treatments. Copepod size-at-immature stage significantly increased in cold treatments, while adult size significantly decreased in warm treatments.

  7. Calculations on the rate of the ion-molecule reaction between NH3(+) and H2

    NASA Technical Reports Server (NTRS)

    Herbst, Eric; Defrees, D. J.; Talbi, D.; Pauzat, F.; Koch, W.

    1991-01-01

    The rate coefficient for the ion-molecule reaction NH3(+) + H2 yields NH4(+) + H has been calculated as a function of temperature with the use of the statistical phase space approach. The potential surface and reaction complex and transition state parameters used in the calculation have been taken from ab initio quantum chemical calculations. The calculated rate coefficient has been found to mimic the unusual temperature dependence measured in the laboratory, in which the rate coefficient decreases with decreasing temperature until 50-100 K and then increases at still lower temperatures. Quantitative agreement between experimental and theoretical rate coefficients is satisfactory given the uncertainties in the ab initio results and in the dynamics calculations. The rate coefficient for the unusual three-body process NH3(+) + H2 + He yields NH4(+) + H + He has also been calculated as a function of temperature and the result found to agree well with a previous laboratory determination.

  8. The time course of body temperature, serum amyloid A protein, C-reactive protein and interleukin-6 in patients with bacterial infection during the initial 3 days of antibiotic therapy.

    PubMed

    Lannergård, Anders; Viberg, Anders; Cars, Otto; Karlsson, Mats O; Sandström, Marie; Larsson, Anders

    2009-01-01

    The accuracy of using body temperature, serum amyloid A (SAA), C-reactive protein (CRP) and interleukin-6 (IL-6) in the work-up for early or late step-down therapy after an initial course of intravenous cefuroxime was investigated. Eighty-one hospitalized patients with an initial course of cefuroxime were retrospectively classified with one of the following diagnoses: bacterial infection without known focus, pneumonia, bronchitis, pyelonephritis, skin and soft-tissue infections or fever of other origin. The majority of the patients had sepsis (91% or 74/81) of whom 6 patients had severe sepsis. The inter-individual variability of body temperature, SAA, CRP and IL-6 was considerable. The time course of SAA and CRP during the first 24 h in patients with sepsis with a short duration of illness but without septic shock showed increasing levels during the initial course of intravenous therapy. In contrast, body temperature and IL-6 decreased, regardless of illness duration. Beyond 24 h, all 4 biomarkers declined, again regardless of the duration of illness. After the initial course of cefuroxime, biomarkers were non-distinguishing in terms of guidance in the judgement of early or late step-down therapy. Further studies are proposed for biomarker guidance antibiotic therapy in sepsis patients without septic shock.

  9. The sympathetic nervous system is controlled by transient receptor potential vanilloid 1 in the regulation of body temperature.

    PubMed

    Alawi, Khadija M; Aubdool, Aisah A; Liang, Lihuan; Wilde, Elena; Vepa, Abhinav; Psefteli, Maria-Paraskevi; Brain, Susan D; Keeble, Julie E

    2015-10-01

    Transient receptor potential vanilloid 1 (TRPV1) is involved in sensory nerve nociceptive signaling. Recently, it has been discovered that TRPV1 receptors also regulate basal body temperature in multiple species from mice to humans. In the present study, we investigated whether TRPV1 modulates basal sympathetic nervous system (SNS) activity. C57BL6/J wild-type (WT) mice and TRPV1 knockout (KO) mice were implanted with radiotelemetry probes for measurement of core body temperature. AMG9810 (50 mg/kg) or vehicle (2% DMSO/5% Tween 80/10 ml/kg saline) was injected intraperitoneally. Adrenoceptor antagonists or vehicle (5 ml/kg saline) was injected subcutaneously. In WT mice, the TRPV1 antagonist, AMG9810, caused significant hyperthermia, associated with increased noradrenaline concentrations in brown adipose tissue. The hyperthermia was significantly attenuated by the β-adrenoceptor antagonist propranolol, the mixed α-/β-adrenoceptor antagonist labetalol, and the α1-adrenoceptor antagonist prazosin. TRPV1 KO mice have a normal basal body temperature, indicative of developmental compensation. d-Amphetamine (potent sympathomimetic) caused hyperthermia in WT mice, which was reduced in TRPV1 KO mice, suggesting a decreased sympathetic drive in KOs. This study provides new evidence that TRPV1 controls thermoregulation upstream of the SNS, providing a potential therapeutic target for sympathetic hyperactivity thermoregulatory disorders. © FASEB.

  10. Altitudinal divergence in maternal thermoregulatory behaviour may be driven by differences in selection on offspring survival in a viviparous lizard.

    PubMed

    Uller, Tobias; While, Geoffrey M; Cadby, Chloe D; Harts, Anna; O'Connor, Katherine; Pen, Ido; Wapstra, Erik

    2011-08-01

    Plastic responses to temperature during embryonic development are common in ectotherms, but their evolutionary relevance is poorly understood. Using a combination of field and laboratory approaches, we demonstrate altitudinal divergence in the strength of effects of maternal thermal opportunity on offspring birth date and body mass in a live-bearing lizard (Niveoscincus ocellatus). Poor thermal opportunity decreased birth weight at low altitudes where selection on body mass was negligible. In contrast, there was no effect of maternal thermal opportunity on body mass at high altitudes where natural selection favored heavy offspring. The weaker effect of poor maternal thermal opportunity on offspring development at high altitude was accompanied by a more active thermoregulation and higher body temperature in highland females. This may suggest that passive effects of temperature on embryonic development have resulted in evolution of adaptive behavioral compensation for poor thermal opportunity at high altitudes, but that direct effects of maternal thermal environment are maintained at low altitudes because they are not selected against. More generally, we suggest that phenotypic effects of maternal thermal opportunity or incubation temperature in reptiles will most commonly reflect weak selection for canalization or selection on maternal strategies rather than adaptive plasticity to match postnatal environments. © 2011 The Author(s). Evolution© 2011 The Society for the Study of Evolution.

  11. Multi-Decadal Surface Water Dynamics in North American Tundra

    NASA Technical Reports Server (NTRS)

    Carroll, Mark L.; Loboda, Tatiana V.

    2017-01-01

    Over the last several decades, warming in the Arctic has outpaced the already impressive increases in global mean temperatures. The impact of these increases in temperature has been observed in a multitude of ecological changes in North American tundra including changes in vegetative cover, depth of active layer, and surface water extent. The low topographic relief and continuous permafrost create an ideal environment for the formation of small water bodies - a definitive feature of tundra surface. In this study, water bodies in Nunavut territory in northern Canada were mapped using a long-term record of remotely sensed observations at 30 meters spatial resolution from the Landsat suite of instruments. The temporal trajectories of water extent between 1985 and 2015 were assessed. Over 675,000 water bodies have been identified over the 31-year study period with over 168,000 showing a significant (probability is less than 0.05) trend in surface area. Approximately 55 percent of water bodies with a significant trend were increasing in size while the remaining 45 percent were decreasing in size. The overall net trend for water bodies with a significant trend is 0.009 hectares per year per water body.

  12. Impact of nesting material on mouse body temperature and physiology.

    PubMed

    Gaskill, Brianna N; Gordon, Christopher J; Pajor, Edmond A; Lucas, Jeffrey R; Davis, Jerry K; Garner, Joseph P

    2013-02-17

    In laboratories, mice are housed at 20-24 °C, which is below their lower critical temperature (≈30 °C). Thus, mice are potentially cold stressed, which can alter metabolism, immune function, and reproduction. These physiological changes reflect impaired wellbeing, and affect scientific outcomes. We hypothesized that nesting material would allow mice to alleviate cold stress by controlling their thermal microenvironment, thus insulating them, reducing heat loss and thermogenic processes. Naïve C57BL/6, CD-1, and BALB/c mice (24 male and 24 female/strain in groups of 3) were housed in standard cages at 20 °C either with or without 8 g nesting material for 4 weeks. Core body temperature was followed using intraperitoneal radio telemetry. The thermal properties of the nests were assessed using a thermal imaging camera, and related to nest quality. Higher scoring nests were negatively correlated with the mean radiated temperature and were thus more insulating. No effects of nesting material on body temperature were found. CD-1 mice with nesting material had higher end body weights than controls. No effect was seen in the other two strains. Mice with the telemetry implant had larger spleens than controls, possibly indicating an immune response to the implant or low level infection from the surgery. BALB/c mice express less mRNA for the UCP1 protein than mice without nesting material. This indicates that BALB/c's with nesting material do not utilize their brown fat to create heat as readily as controls. Nests can alleviate thermal discomfort by decreasing the amount of radiated heat and reduce the need for non-shivering thermogenesis. However, different strains appear to use different behavioral (through different primary modes of behavioral thermoregulation) and physiological strategies (utilizing thermogenesis to different degrees) to maintain a constant body temperature under cool standard laboratory ambient temperatures. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. Scaling the amplitudes of the circadian pattern of resting oxygen consumption, body temperature and heart rate in mammals.

    PubMed

    Mortola, Jacopo P; Lanthier, Clement

    2004-09-01

    We questioned whether the amplitudes of the circadian pattern of body temperature (T(b)), oxygen consumption (V (O(2))) and heart rate (HR) changed systematically among species of different body weight (W). Because bodies of large mass have a greater heat capacitance than those of smaller mass, if the relative amplitude (i.e., amplitude/mean value) of metabolic rate was constant, one would expect the T(b) oscillation to decrease with the increase in the species W. We compiled data of T(b), V (O(2)) and HR from a literature survey of over 200 studies that investigated the circadian pattern of these parameters. Monotremata, Marsupials and Chiroptera, were excluded because of their characteristically low metabolic rate and T(b). The peak-trough ratios of V (O(2)) (42 species) and HR (35 species) averaged, respectively, 1.57+/-0.08, and 1.35+/-0.07, and were independent of W. The daily high values of T(b) did not change, while the daily low T(b) values slightly increased, with the species W; hence, the high-low T(b) difference (57 species) decreased with W (3.3 degrees C.W(-0.13)). However, the decrease in T(b) amplitude with W was much less than expected from physical principles, and the high-low T(b) ratio remained significantly above unity even in the largest mammals. Thus, it appears that in mammals, despite the huge differences in physical characteristics, the amplitude of the circadian pattern is a fixed (for V (O(2)) and HR), or almost fixed (for T(b)), fraction of the 24-h mean value. Presumably, the amplitudes of the oscillations are controlled parameters of physiological significance.

  14. Contributions of different degrees of freedom to thermal transport in the C60 molecular crystal

    NASA Astrophysics Data System (ADS)

    Kumar, Sushant; Shao, Cheng; Lu, Simon; McGaughey, Alan J. H.

    2018-03-01

    Three models of the C60 molecular crystal are studied using molecular dynamics simulations to resolve the roles played by intermolecular and intramolecular degrees of freedom (DOF) in its structural, mechanical, and thermal properties at temperatures between 35 and 400 K. In the full DOF model, all DOF are active. In the rigid body model, the intramolecular DOF are frozen, such that only center of mass (COM) translations and molecular rotations/librations are active. In the point mass model, the molecule is replaced by a point mass, such that only COM translations are active. The zero-pressure lattice constants and bulk moduli predicted from the three models fall within ranges of 0.15 and 20%. The thermal conductivity of the point mass model is the largest across the temperature range, showing a crystal-like temperature dependence (i.e., it decreases with increasing temperature) due to the presence of phonon modes associated with the COM translations. The rigid body model thermal conductivity is the smallest and follows two distinct regimes. It is crystal-like at low temperatures and becomes temperature invariant at high temperatures. The latter is typical of the behavior of an amorphous material. By calculating the rotational diffusion coefficient, the transition between the two regimes is found to occur at the temperature where the molecules begin to rotate freely. Above this temperature, phonons related to COM translations are scattered by the rotational DOF. The full DOF model thermal conductivity is larger than that of the rigid body model, indicating that intramolecular DOF contribute to thermal transport.

  15. Relations of Tualatin River water temperatures to natural and human-caused factors

    USGS Publications Warehouse

    Risley, John C.

    1997-01-01

    Aquatic research has long shown that the survival of cold-water fish, such as salmon and trout, decreases markedly as water temperatures increase above a critical threshold, particularly during sensitive life stages of the fish. In an effort to improve the overall health of aquatic ecosystems, the State of Oregon in 1996 adopted a maximum water-temperature standard of 17.8 degrees Celsius (68 degrees Fahrenheit), based on a 7-day moving average of daily maximum temperatures, for most water bodies in the State. Anthropogenic activities are not permitted to raise the temperature of a water body above this level. In the Tualatin River, a tributary of the Willamette River located in northwestern Oregon, water temperatures periodically surpass this threshold during the low-flow summer and fall months.An investigation by the U.S. Geological Survey quantified existing seasonal, diel, and spatial patterns of water temperatures in the main stem of the river, assessed the relation of water temperatures to natural climatic conditions and anthropogenic factors (such as wastewater-treatment-plant effluent and modification of riparian shading), and assessed the impact of various flow management practices on stream temperatures. Half-hourly temperature measurements were recorded at 13 monitoring sites from river mile (RM) 63.9 to RM 3.4 from May to November of 1994. Four synoptic water- temperature surveys also were conducted in the upstream and downstream vicinities of two wastewater-treatment-plant outfalls. Temperature and streamflow time-series data were used to calibrate two dynamic-flow heat-transfer models, DAFLOW-BLTM (RM 63.9-38.4) and CE-QUAL-W2 (RM 38.4-3.4). Simulations from the models provided a basis for approximating 'natural' historical temperature patterns, performing effluent and riparian-shading sensitivity analyses, and evaluating mitigation management scenarios under 1994 climatic conditions. Findings from the investigation included (1) under 'natural' conditions the temperature of the river would exceed the State standard of 17.8 degrees Celsius at many locations during the low-flow season, (2) current operation of wastewater-treatment plants increases the temperature of the river downstream of the plants under low-flow conditions, (3) river temperature is significantly affected by riparian shade variations along both the tributaries and the main stem, (4) flow releases during the low-flow season from the Henry Hagg Lake reservoir decrease the river temperature in the upper section, and (5) removal of a low diversion dam at RM 3.4 would slightly decrease temperatures below RM 10.0.

  16. Electrodermal lability as an indicator for subjective sleepiness during total sleep deprivation.

    PubMed

    Michael, Lars; Passmann, Sven; Becker, Ruth

    2012-08-01

    The present study addresses the suitability of electrodermal lability as an indicator of individual vulnerability to the effects of total sleep deprivation. During two complete circadian cycles, the effects of 48h of total sleep deprivation on physiological measures (electrodermal activity and body temperature), subjective sleepiness (measured by visual analogue scale and tiredness symptom scale) and task performance (reaction time and errors in a go/no go task) were investigated. Analyses of variance with repeated measures revealed substantial decreases of the number of skin conductance responses, body temperature, and increases for subjective sleepiness, reaction time and error rates. For all changes, strong circadian oscillations could be observed as well. The electrodermal more labile subgroup reported higher subjective sleepiness compared with electrodermal more stable participants, but showed no differences in the time courses of body temperature and task performance. Therefore, electrodermal lability seems to be a specific indicator for the changes in subjective sleepiness due to total sleep deprivation and circadian oscillations, but not a suitable indicator for vulnerability to the effects of sleep deprivation per se. © 2011 European Sleep Research Society.

  17. Experimental and casework validation of ambient temperature corrections in forensic entomology.

    PubMed

    Johnson, Aidan P; Wallman, James F; Archer, Melanie S

    2012-01-01

    This paper expands on Archer (J Forensic Sci 49, 2004, 553), examining additional factors affecting ambient temperature correction of weather station data in forensic entomology. Sixteen hypothetical body discovery sites (BDSs) in Victoria and New South Wales (Australia), both in autumn and in summer, were compared to test whether the accuracy of correlation was affected by (i) length of correlation period; (ii) distance between BDS and weather station; and (iii) periodicity of ambient temperature measurements. The accuracy of correlations in data sets from real Victorian and NSW forensic entomology cases was also examined. Correlations increased weather data accuracy in all experiments, but significant differences in accuracy were found only between periodicity treatments. We found that a >5°C difference between average values of body in situ and correlation period weather station data was predictive of correlations that decreased the accuracy of ambient temperatures estimated using correlation. Practitioners should inspect their weather data sets for such differences. © 2011 American Academy of Forensic Sciences.

  18. Shearing at the end of summer affects body temperature of free-living Angora goats ( Capra aegagrus) more than does shearing at the end of winter.

    PubMed

    Hetem, R S; de Witt, B A; Fick, L G; Fuller, A; Kerley, G I H; Maloney, S K; Meyer, L C R; Mitchell, D

    2009-07-01

    Angora goats are known to be vulnerable to cold stress, especially after shearing, but their thermoregulatory responses to shearing have not been measured. We recorded activity, and abdominal and subcutaneous temperatures, for 10 days pre-shearing and post-shearing, in 10 Angora goats inhabiting the succulent thicket of the Eastern Cape, South Africa, in both March (late summer) and September (late winter). Within each season, environmental conditions were similar pre-shearing and post-shearing, but September was an average 5°C colder than March. Shearing resulted in a decreased mean (P < 0.0001), minimum (P < 0.0001) and maximum daily abdominal temperature (P < 0.0001). Paradoxically, the decrease in daily mean (P = 0.03) and maximum (P = 0.01) abdominal temperatures, from pre-shearing to post-shearing, was greater in March than in September. Daily amplitude of body temperature rhythm (P < 0.0001) and the maximum rate of abdominal temperature rise (P < 0.0001) increased from pre-shearing to post-shearing, resulting in an earlier diurnal peak in abdominal temperature (P = 0.001) post-shearing. These changes in amplitude, rate of abdominal temperature rise and time of diurnal peak in abdominal temperature suggest that the goats' thermoregulatory system was more labile after shearing. Mean daily subcutaneous temperatures also decreased post-shearing (P < 0.0001), despite our index goat selecting more stable microclimates after shearing in March (P = 0.03). Following shearing, there was an increased difference between abdominal and subcutaneous temperatures (P < 0.0001) at night, suggesting that the goats used peripheral vasoconstriction to limit heat loss. In addition to these temperature changes, mean daily activity increased nearly two-fold after March shearing, but not September shearing. This increased activity after March shearing was likely the result of an increased foraging time, food intake and metabolic rate, as suggested by the increased water influx (P = 0.0008). Thus, Angora goats entered a heat conservation mode after shearing in both March and September. That the transition from the fleeced to the shorn state had greater thermoregulatory consequences in March than in September may provide a mechanistic explanation for Angora goats' vulnerability to cold in summer.

  19. Self-paced cycling performance and recovery under a hot and highly humid environment after cooling.

    PubMed

    Gonzales, B R; Hagin, V; Guillot, R; Placet, V; Monnier-Benoit, P; Groslambert, A

    2014-02-01

    This study investigated the effects of pre- and post-cooling on self-paced time-trial cycling performance and recovery of cyclists exercising under a hot and highly humid environment (29.92 °C-78.52% RH). Ten male cyclists performed a self-paced 20-min time trial test (TT20) on a cyclo-ergometer while being cooled by a cooling vest and a refrigerating headband during the warm-up and the recovery period. Heart rate, power output, perceived exertion, thermal comfort, skin and rectal temperatures were recorded. Compared to control condition (222.78 ± 47 W), a significant increase (P<0.05) in the mean power output during the TT20 (239.07 ± 45 W; +7.31%) was recorded with a significant (P<0.05) decrease in skin temperature without affecting perceived exertion, heart rate, or rectal temperature at the end of the TT20. However, pace changes occurred independently of skin or rectal temperatures variations but a significant difference (P<0.05) in the body's heat storage was observed between both conditions. This result suggests that a central programmer using body's heat storage as an input may influence self-paced time-trial performance. During the recovery period, post-cooling significantly decreased heart rate, skin and rectal temperatures, and improved significantly (P<0.05) thermal comfort. Therefore, in hot and humid environments, wearing a cooling vest and a refrigerating headband during warm-up improves self-paced performance, and appears to be an effective mean of reaching skin rest temperatures more rapidly during recovery.

  20. Effects of high pressure treatment and temperature on lipid oxidation and fatty acid composition of yak (Poephagus grunniens) body fat.

    PubMed

    Wang, Qiang; Zhao, Xin; Ren, Yanrong; Fan, Enguo; Chang, Haijun; Wu, Hongbin

    2013-08-01

    Effects of high-pressure treatment (100 MPa to 600 MPa) on lipid oxidation and composition of fatty acids in yak body fat at 4 °C and 15 °C were investigated for up to 20 days storage. 400 and 600 MPa treatments increase the level of thiobarbituric acid-reactive substances (TBARS) 335% and 400% (p<0.05), respectively. Composition analysis shows that 600 MPa treatment induces a lower (p<0.05) percentage of polyunsaturated fatty acids, and C22:6 decreased significantly. A significant decrease in PUFA/SFA and n-6/n-3 PUFA values was observed at the end of storage. Samples treated at the lower pressures gave good sensory acceptability. It is concluded that a higher-pressure treatment is important in catalyzing lipid oxidation and the evolution of fatty acids in pressure-treated yak body fat. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Impact of nursing care on temperature environment in preterm newborns nursed in closed convective incubators.

    PubMed

    Deguines, C; Dégrugilliers, L; Ghyselen, L; Chardon, K; Bach, V; Tourneux, P

    2013-03-01

    Very-low-birth-weight (VLBW) neonates require regular nursing procedures with frequent opening of the incubator resulting in a decrease in incubator air temperature. This study was designed to assess changes in the thermal status of VLBW neonates according to the type of nursing care and incubator openings. Thirty-one VLBW neonates (mean gestational age: 28.7 ± 0.3 weeks of gestation) were included. Over a 10-day period, each opening of the incubator was recorded together with details about caregiving. Body temperature was recorded continuously, and door opening and closing events were recorded by a video camera. This study analysed 1,798 caregiving procedures with mean durations ranging from 6.2 ± 2.1 to 88.5 ± 33.4 min. Abdominal skin temperature decreased by up to 1.08°C/h for procedures such as tracheal intubation (p < 0.01). The temperature decrease was strongly correlated with the type of procedure (p < 0.01), incubator opening (p < 0.01) and procedure duration (p < 0.01). The procedure duration accounted for only 10% of the abdominal skin temperature change (p < 0.01). For VLBW neonates nursed in skin temperature servo-control incubators, the decrease in abdominal skin temperature during caregiving was correlated with the type of procedure, incubator opening modalities and procedure duration. These parameters should be considered to optimize the thermal management of VLBW neonates. ©2012 The Author(s)/Acta Paediatrica ©2012 Foundation Acta Paediatrica.

  2. Newton's Law of Cooling Revisited

    ERIC Educational Resources Information Center

    Vollmer, M.

    2009-01-01

    The cooling of objects is often described by a law, attributed to Newton, which states that the temperature difference of a cooling body with respect to the surroundings decreases exponentially with time. Such behaviour has been observed for many laboratory experiments, which led to a wide acceptance of this approach. However, the heat transfer…

  3. Transient Delivery of Adenosine as a Novel Therapy to Prevent Epileptogenesis

    DTIC Science & Technology

    2015-10-01

    1) increase oxygen supply or to decrease oxygen de- mand by regulation of blood flow, body temperature , and cell work; 2) induce tolerance to hypoxic... temperature . Adv Pharmacol 61:77–94. Fredholm BB and Sollevi A (1977) Antilipolytic effect of adenosine in dog adipose tissue in situ. Acta Physiol Scand 99...seizures and mossy fiber sprouting). To our knowledge this is the first study where a robust antiepileptogenic effect has been demonstrated after the

  4. Comparison of an in-helmet temperature monitor system to rectal temperature during exercise.

    PubMed

    Wickwire, P Jason; Buresh, Robert J; Tis, Laurie L; Collins, Mitchell A; Jacobs, Robert D; Bell, Marla M

    2012-01-01

    Body temperature monitoring is crucial in helping to decrease the amount and severity of heat illnesses; however, a practical method of monitoring temperature is lacking. In response to the lack of a practical method of monitoring the temperature of athletes, Hothead Technologies developed a device (HOT), which continuously monitors an athlete's fluctuations in body temperature. HOT measures forehead temperature inside helmets. The purpose of this study was to compare HOT against rectal temperature (Trec). Male volunteers (n = 29, age = 23.5 ± 4.5 years, weight = 83.8 ± 10.4 kg, height = 180.1 ± 5.8 cm, body fat = 12.3 ± 4.5%) exercised on a treadmill at an intensity of 60-75% heart rate reserve (HRR) (wet bulb globe temperature [WBGT] = 28.7° C) until Trec reached 38.7° C. The correlation between Trec and HOT was 0.801 (R = 0.64, standard error of the estimate (SEE) = 0.25, p = 0.00). One reason for this relatively high correlation is the microclimate that HOT is monitoring. HOT is not affected by the external climate greatly because of its location in the helmet. Therefore, factors such as evaporation do not alter HOT temperature to a great degree. HOT was compared with Trec in a controlled setting, and the exercise used in this study was moderate aerobic exercise, very unlike that used in football. In a controlled laboratory setting, the relationship between HOT and Trec showed favorable correlations. However, in applied settings, helmets are repeatedly removed and replaced forcing HOT to equilibrate to forehead temperature every time the helmet is replaced. Therefore, future studies are needed to mimic how HOT will be used in field situations.

  5. Light at night disrupts nocturnal rest and elevates glucocorticoids at cool color temperatures.

    PubMed

    Alaasam, Valentina J; Duncan, Richard; Casagrande, Stefania; Davies, Scott; Sidher, Abhijaat; Seymoure, Brett; Shen, Yantao; Zhang, Yong; Ouyang, Jenny Q

    2018-05-15

    Nighttime light pollution is quickly becoming a pervasive, global concern. Since the invention and proliferation of light-emitting diodes (LED), it has become common for consumers to select from a range of color temperatures of light with varying spectra. Yet, the biological impacts of these different spectra on organisms remain unclear. We tested if nighttime illumination of LEDs, at two commercially available color temperatures (3000 and 5000 K) and at ecologically relevant illumination levels affected body condition, food intake, locomotor activity, and glucocorticoid levels in zebra finches (Taeniopygia guttata). We found that individuals exposed to 5000 K light had higher rates of nighttime activity (peaking after 1 week of treatment) compared to 3000 K light and controls (no nighttime light). Birds in the 5000 K treatment group also had increased corticosterone levels from pretreatment levels compared to 3000 K and control groups but no changes in body condition or food intake. Individuals that were active during the night did not consequently decrease daytime activity. This study adds to the growing evidence that the spectrum of artificial light at night is important, and we advocate the use of nighttime lighting with warmer color temperatures of 3000 K instead of 5000 K to decrease energetic costs for avian taxa. © 2018 Wiley Periodicals, Inc.

  6. Effect of hypoxia on metabolic rate, core body temperature, and c-fos expression in the naked mole rat.

    PubMed

    Nathaniel, Thomas I; Otukonyong, Effiong; Abdellatif, Ahmed; Soyinka, Julius O

    2012-10-01

    Recent investigations of hypoxia physiology in the naked mole rat have opened up an interesting line of research into the basic physiological and genomic alterations that accompany hypoxia survival. The extent to which such findings connect the effect of hypoxia to metabolic rate (O₂ consumption), core body temperature (Tb), and transcripts encoding the immediate early gene product (such as c-fos) under a constant ambient temperature (Ta) is not well known. We investigated this issue in the current study. Our first sets of experiments measured Tb and metabolic rates during exposure of naked mole rats to hypoxia over a constant Ta. Hypoxia significantly decreased metabolic rates in the naked mole rat. Although core Tb also decreased during hypoxia, the effect of hypoxia in suppressing core Tb was not significant. The second series of experiments revealed that c-fos protein and mRNA expression in the hippocampus neurons (CA1) increased in naked mole rats that were repeatedly exposed to 3% O₂ for 60 min per day for 5 days when compared to normoxia. Our findings provide evidence for the up-regulation of c-fos and suppression of metabolic rate in hypoxia tolerating naked mole rats under constant ambient temperature. Metabolic suppression and c-fos upregulation constitute part of the physiological complex associated with adaptation to hypoxia. Published by Elsevier Ltd.

  7. Ptp1b deletion in pro-opiomelanocortin neurons increases energy expenditure and impairs endothelial function via TNF-α dependent mechanisms.

    PubMed

    Bruder-Nascimento, Thiago; Kennard, Simone; Antonova, Galina; Mintz, James D; Bence, Kendra K; Belin de Chantemèle, Eric J

    2016-06-01

    Protein tyrosine phosphatase 1b (Ptp1b) is a negative regulator of leptin and insulin-signalling pathways. Its targeted deletion in proopiomelanocortin (POMC) neurons protects mice from obesity and diabetes by increasing energy expenditure. Inflammation accompanies increased energy expenditure. Therefore, the present study aimed to determine whether POMC-Ptp1b deletion increases energy expenditure via an inflammatory process, which would impair endothelial function. We characterized the metabolic and cardiovascular phenotypes of Ptp1b+/+ and POMC-Ptp1b-/- mice. Clamp studies revealed that POMC-Ptp1b deletion reduced body fat and increased energy expenditure as evidenced by a decrease in feed efficiency and an increase in oxygen consumption and respiratory exchange ratio. POMC-Ptp1b deletion induced a 2.5-fold increase in plasma tumour necrosis factor α (TNF-α) levels and elevated body temperature. Vascular studies revealed an endothelial dysfunction in POMC-Ptp1b-/- mice. Nitric oxide synthase inhibition [N-nitro-L-arginine methyl ester (L-NAME)] reduced relaxation to a similar extent in Ptp1b+/+ and POMC-Ptp1b-/- mice. POMC-Ptp1b deletion decreased ROS-scavenging enzymes [superoxide dismutases (SODs)] whereas it increased ROS-generating enzymes [NADPH oxidases (NOXs)] and cyclooxygenase-2 (COX-1) expression, in aorta. ROS scavenging or NADPH oxidase inhibition only partially improved relaxation whereas COX-2 inhibition and thromboxane-A2 (TXA2) antagonism fully restored relaxation in POMC-Ptp1b-/- mice Chronic treatment with the soluble TNF-α receptor etanercept decreased body temperature, restored endothelial function and reestablished aortic COX-2, NOXs and SOD expression to their baseline levels in POMC-Ptp1b-/- mice. However, etanercept promoted body weight gain and decreased energy expenditure in POMC-Ptp1b-/- mice. POMC-Ptp1b deletion increases plasma TNF-α levels, which contribute to body weight regulation via increased energy expenditure and impair endothelial function via COX-2 and ROS-dependent mechanisms. © 2016 The Author(s). published by Portland Press Limited on behalf of the Biochemical Society.

  8. Climate change: is the dark Soay sheep endangered?

    PubMed Central

    Maloney, Shane K.; Fuller, Andrea; Mitchell, Duncan

    2009-01-01

    It was recently reported that the proportion of dark-coloured Soay sheep (Ovis aries) in the Hebrides has decreased, despite the fact that dark sheep tend to be larger than lighter sheep, and there exists a selective advantage to large body size. It was concluded that an apparent genetic linkage between loci for the coat colour polymorphism and loci with antagonistic effects on body size explained the decrease. Those results explain why the proportion of dark animals is not increasing, but not why it is decreasing. Between 1985 and 2005 there was a significant increase in mean ambient temperature near the islands. We suggest that, while in the past a dark coat has offset the metabolic costs of thermoregulation by absorbing solar radiation, the selective advantage of a dark coat may be waning as the climate warms in the North Atlantic. In parallel, Bergman's rule may be operating, reducing the selective advantage of large body size in the cold. Either or both of these mechanisms can explain the decrease in the proportion of dark-coloured larger sheep in this population in which smaller (and light-coloured) sheep should be favoured by their lower gross energy demand. If environmental effects are the cause of the decline, then we can expect the proportion of dark-coloured Soay sheep to decrease further. PMID:19625302

  9. Unintended Perioperative Hypothermia

    PubMed Central

    Hart, Stuart R.; Bordes, Brianne; Hart, Jennifer; Corsino, Daniel; Harmon, Donald

    2011-01-01

    Background Hypothermia, defined as a core body temperature less than 36°C (96.8°F), is a relatively common occurrence in the unwarmed surgical patient. A mild degree of perioperative hypothermia can be associated with significant morbidity and mortality. A threefold increase in the frequency of surgical site infections is reported in colorectal surgery patients who experience perioperative hypothermia. As part of the Surgical Care Improvement Project, guidelines aim to decrease the incidence of this complication. Methods We review the physiology of temperature regulation, mechanisms of hypothermia, effects of anesthetics on thermoregulation, and consequences of hypothermia and summarize recent recommendations for maintaining perioperative normothermia. Results Evidence suggests that prewarming for a minimum of 30 minutes may reduce the risk of subsequent hypothermia. Conclusions Monitoring of body temperature and avoidance of unintended perioperative hypothermia through active and passive warming measures are the keys to preventing its complications. PMID:21960760

  10. Cooling of a dwelling by nocturnal radiation

    NASA Astrophysics Data System (ADS)

    Fahim, Othmane; Belouaggadia, Naoual; Taqi, Mohamed; Abid, Chérifa

    2018-05-01

    Atmospheric transparency in the infrared, responsible for night cooling, is exploited to obtain a cooling effect. Radiative cooling to the night sky is based on the principle of infrared radiation heat loss from a surface to a body at a lower temperature. The use of the emissivity equation allowed us to evaluate its variation as a function of wavelength and temperature. A comparison of the temperature variation was made between granite and the materials most often used in the manufacture of radiant panels of hybrid systems. The results show that the temperature of Tedlar-based plates or plastics considerably decreases, and, therefore are rather promising.

  11. The effect of heat transfer mode on heart rate responses and hysteresis during heating and cooling in the estuarine crocodile Crocodylus porosus.

    PubMed

    Franklin, Craig E; Seebacher, Frank

    2003-04-01

    The effect of heating and cooling on heart rate in the estuarine crocodile Crocodylus porosus was studied in response to different heat transfer mechanisms and heat loads. Three heating treatments were investigated. C. porosus were: (1) exposed to a radiant heat source under dry conditions; (2) heated via radiant energy while half-submerged in flowing water at 23 degrees C and (3) heated via convective transfer by increasing water temperature from 23 degrees C to 35 degrees C. Cooling was achieved in all treatments by removing the heat source and with C. porosus half-submerged in flowing water at 23 degrees C. In all treatments, the heart rate of C. porosus increased markedly in response to heating and decreased rapidly with the removal of the heat source. Heart rate during heating was significantly faster than during cooling at any given body temperature, i.e. there was a significant heart rate hysteresis. There were two identifiable responses to heating and cooling. During the initial stages of applying or removing the heat source, there was a dramatic increase or decrease in heart rate ('rapid response'), respectively, indicating a possible cardiac reflex. This rapid change in heart rate with only a small change or no change in body temperature (<0.5 degrees C) resulted in Q(10) values greater than 4000, calling into question the usefulness of this measure on heart rate during the initial stages of heating and cooling. In the later phases of heating and cooling, heart rate changed with body temperature, with Q(10) values of 2-3. The magnitude of the heart rate response differed between treatments, with radiant heating during submergence eliciting the smallest response. The heart rate of C. porosus outside of the 'rapid response' periods was found to be a function of the heat load experienced at the animal surface, as well as on the mode of heat transfer. Heart rate increased or decreased rapidly when C. porosus experienced large positive (above 25 W) or negative (below -15 W) heat loads, respectively, in all treatments. For heat loads between -15 W and 20 W, the increase in heart rate was smaller for the 'unnatural' heating by convection in water compared with either treatment using radiant heating. Our data indicate that changes in heart rate constitute a thermoregulatory mechanism that is modulated in response to the thermal environment occupied by the animal, but that heart rate during heating and cooling is, in part, controlled independently of body temperature.

  12. Seasonal changes in the thermoenergetics of the marsupial sugar glider, Petaurus breviceps.

    PubMed

    Holloway, J C; Geiser, F

    2001-11-01

    Little information is available on seasonal changes in thermal physiology and energy expenditure in marsupials. To provide new information on the subject, we quantified how body mass, body composition, metabolic rate, maximum heat production, body temperature and thermal conductance change with season in sugar gliders (Petaurus breviceps) held in outdoor aviaries. Sugar gliders increased body mass in autumn to a peak in May/June, which was caused to a large extent by an increase in body fat content. Body mass then declined to minimum values in August/September. Resting metabolic rate both below and above the thermoneutral zone (TNZ) was higher in summer than in winter and the lower critical temperature of the TNZ occurred at a higher ambient temperature (Ta) in summer. The basal metabolic rate was as much as 45% below that predicted from allometric equations for placental mammals and was about 15% lower in winter than in summer. In contrast, maximum heat production was raised significantly by about 20% in winter. This, together with an approximately 20% decrease in thermal conductance, resulted in a 13 degrees C reduction of the minimum effective Ta gliders were able to withstand. Our study provides the first evidence that, despite the apparent lack of functional brown adipose tissue, sugar gliders are able to significantly increase heat production in winter. Moreover, the lower thermoregulatory heat production at most TaS in winter, when food in the wild is scarce, should allow them to reduce energy expenditure.

  13. EXPOSURE TO DEXAMETHASONE DURING LATE GESTATION CAUSES FEMALE-SPECIFIC DECREASES IN CORE BODY TEMPERATURE AND PREPRO-THYROTROPIN-RELEASING HORMONE EXPRESSION IN THE PARAVENTRICULAR NUCLEUS OF THE HYPOTHALAMUS IN RATS

    PubMed Central

    Carbone, David L.; Zuloaga, Damian G.; Lacagnina, Anthony F.; McGivern, Robert F.; Handa, Robert J.

    2012-01-01

    Synthetic glucocorticoids (GC) have been used to promote lung development in preterm infants, thereby decreasing respiratory distress syndrome and mortality, yet, concern has arisen from reports that such treatment predisposes individuals to disease in adulthood. Given the variety of preclinical studies that show metabolic and behavioral abnormalities in adulthood following fetal exposure to synthetic GC, we examined the effect of in utero exposure to the synthetic GC, dexamethasone (DEX), on hypothalamic expression of thyrotropin-releasing hormone (TRH) a central neuropeptide involved in mediating behavior and metabolic balance. Pregnant Sprague-Dawley rats were administered 0.4 mg/kg DEX on gestational days 18–21. As adults (postnatal day (PD) 60), the offspring were fitted with temperature sensing transmitters allowing real-time monitoring of core body temperature (CBT) across the 24 hr light dark period. This revealed a significant decrease in CBT throughout the day in prenatal DEX-treated females on estrus and diestrus, but not in male offspring. The reduction in CBT by prenatal DEX exposure was accompanied by a significant decrease in the expression of Trh transcript in the paraventricular nucleus of the hypothalamus (PVN) of female rats at PD 60 and this effect was also present on PD7. There was also a female-specific reduction in the number of preproTRH -immunoreactive (ir) neurons in the PVN, with ppTRH-ir nerve fibers decreases that were present in both male and female offspring. No changes in thyroid hormone (triiodothyronine, T3; thyroxine, T4) were observed in adult offspring, but during development, both males and females (PD14) had lower T3 and T4 levels. These data indicate abnormal expression of TRH results from fetal DEX exposure during late gestation, possibly explaining the decreased CBT observed in the female offspring. PMID:22884559

  14. Brief anesthesia, but not voluntary locomotion, significantly alters cortical temperature

    PubMed Central

    Shirey, Michael J.; Kudlik, D'Anne E.; Huo, Bing-Xing; Greene, Stephanie E.; Drew, Patrick J.

    2015-01-01

    Changes in brain temperature can alter electrical properties of neurons and cause changes in behavior. However, it is not well understood how behaviors, like locomotion, or experimental manipulations, like anesthesia, alter brain temperature. We implanted thermocouples in sensorimotor cortex of mice to understand how cortical temperature was affected by locomotion, as well as by brief and prolonged anesthesia. Voluntary locomotion induced small (∼0.1°C) but reliable increases in cortical temperature that could be described using a linear convolution model. In contrast, brief (90-s) exposure to isoflurane anesthesia depressed cortical temperature by ∼2°C, which lasted for up to 30 min after the cessation of anesthesia. Cortical temperature decreases were not accompanied by a concomitant decrease in the γ-band local field potential power, multiunit firing rate, or locomotion behavior, which all returned to baseline within a few minutes after the cessation of anesthesia. In anesthetized animals where core body temperature was kept constant, cortical temperature was still >1°C lower than in the awake animal. Thermocouples implanted in the subcortex showed similar temperature changes under anesthesia, suggesting these responses occur throughout the brain. Two-photon microscopy of individual blood vessel dynamics following brief isoflurane exposure revealed a large increase in vessel diameter that ceased before the brain temperature significantly decreased, indicating cerebral heat loss was not due to increased cerebral blood vessel dilation. These data should be considered in experimental designs recording in anesthetized preparations, computational models relating temperature and neural activity, and awake-behaving methods that require brief anesthesia before experimental procedures. PMID:25972579

  15. An evaluation of hand immersion for rewarming individuals cooled by immersion in cold water.

    PubMed

    Cahill, C J; Balmi, P J; Tipton, M J

    1995-05-01

    The hypothesis that hypothermic individuals can be actively rewarmed in the field by immersion of the extremities in hot water was investigated. Three techniques for rewarming subjects with lowered deep body temperatures were compared: a) whole body immersion to the neck in water at 40 degrees C; b) immersion of two hands plus forearms only in water at 42 degrees C; and c) passive rewarming. The suggestion that the fall in deep body temperature resulting from immersion to the neck in water at 15 degrees C could be arrested by immersing both arms in water at 42 degrees C was also investigated. Results indicated that immersion to the neck in hot water was clearly the most effective rewarming technique. No significant difference (p > 0.05) was observed in the deep body temperature response during passive rewarming or during immersion of both hands and forearms in water at 42 degrees C. In the later condition some increase in peripheral blood flow to the hands may have occurred and resulted in a heat input of approximately 12 W, but any benefit from this was negated by an associated significant decrease (p > 0.05) in intrinsic heat production. Immersing the arms in hot water during immersion to the neck in cold water appeared to accelerate rather than decelerate the rate of fall of deep body temperature. We concluded that hand rewarming, although theoretically attractive, is ineffective in practice and could be detrimental in some circumstances, by suppressing intrinsic heat production or precipitating rewarming collapse.

  16. Supraclavicular skin temperature as a measure of 18F-FDG uptake by BAT in human subjects.

    PubMed

    Boon, Mariëtte R; Bakker, Leontine E H; van der Linden, Rianne A D; Pereira Arias-Bouda, Lenka; Smit, Frits; Verberne, Hein J; van Marken Lichtenbelt, Wouter D; Jazet, Ingrid M; Rensen, Patrick C N

    2014-01-01

    Brown adipose tissue (BAT) has emerged as a novel player in energy homeostasis in humans and is considered a potential new target for combating obesity and related diseases. The current 'gold standard' for quantification of BAT volume and activity is cold-induced 18F-FDG uptake in BAT. However, use of this technique is limited by cost and radiation exposure. Given the fact that BAT is a thermogenic tissue, mainly located in the supraclavicular region, the aim of the current study was to investigate whether cold-induced supraclavicular skin temperature and core body temperature may be alternative markers of BAT activation in humans. BAT volume and activity were measured in 24 healthy lean adolescent males (mean age 24.1±0.8 years), using cold-induced 18F-FDG uptake with PET-CT. Core body temperature was measured continuously in the small intestine with use of an ingestible telemetric capsule and skin temperature was measured by eighteen wireless iButtons attached to the skin following ISO-defined locations. Proximal and distal (hand/feet) skin temperatures markedly decreased upon cold exposure, while supraclavicular skin temperature significantly increased (35.2±0.1 vs. 35.5±0.1°C, p = 0.001). Furthermore, cold-induced supraclavicular skin temperature positively correlated with both total (R2 = 0.28, P = 0.010) and clavicular BAT volume (R2 = 0.20, P = 0.030) and clavicular SUVmax (R2 = 0.27, P = 0.010), while core body temperature did not. Supraclavicular skin temperature as measured by iButtons may have predictive value for BAT detection in adult humans. This is highly desirable considering the increasing interest in pharmacological interventions to stimulate BAT in human subjects. NTR 2473.

  17. Insomnia Caused by Serotonin Depletion is Due to Hypothermia.

    PubMed

    Murray, Nicholas M; Buchanan, Gordon F; Richerson, George B

    2015-12-01

    Serotonin (5-hydroxytryptamine, 5-HT) neurons are now thought to promote wakefulness. Early experiments using the tryptophan hydroxylase inhibitor para-chlorophenylalanine (PCPA) had led to the opposite conclusion, that 5-HT causes sleep, but those studies were subsequently contradicted by electrophysiological and behavioral data. Here we tested the hypothesis that the difference in conclusions was due to failure of early PCPA experiments to control for the recently recognized role of 5-HT in thermoregulation. Adult male C57BL/6N mice were treated with PCPA (800 mg/kg intraperitoneally for 5 d; n = 15) or saline (n = 15), and housed at 20 °C (normal room temperature) or at 33 °C (thermoneutral for mice) for 24 h. In a separate set of experiments, mice were exposed to 4 °C for 4 h to characterize their ability to thermoregulate. PCPA treatment reduced brain 5-HT to less than 12% of that of controls. PCPA-treated mice housed at 20 °C spent significantly more time awake than controls. However, core body temperature decreased from 36.5 °C to 35.1 °C. When housed at 33 °C, body temperature remained normal, and total sleep duration, sleep architecture, and time in each vigilance state were the same as controls. When challenged with 4 °C, PCPA-treated mice experienced a precipitous drop in body temperature, whereas control mice maintained a normal body temperature. These results indicate that early experiments using para-chlorophenylalanine that led to the conclusion that 5-hydroxytryptamine (5-HT) causes sleep were likely confounded by hypothermia. Temperature controls should be considered in experiments using 5-HT depletion. © 2015 Associated Professional Sleep Societies, LLC.

  18. Skin rubdown with a dry towel, 'kanpu-masatsu' is an aerobic exercise affecting body temperature, energy production, and the immune and autonomic nervous systems.

    PubMed

    Watanabe, Mayumi; Takano, Osamu; Tomiyama, Chikako; Matsumoto, Hiroaki; Kobayashi, Takahiro; Urahigashi, Nobuatsu; Urahigashi, Nobuatsu; Abo, Toru

    2012-01-01

    Skin rubdown using a dry towel (SRDT) to scrub the whole body is a traditional therapy for health promotion. To investigate its mechanism, 24 healthy male volunteers were studied. Body temperature, pulse rate, red blood cells (RBCs), serum levels of catecholamines and cortisol, blood gases (PO(2), sO(2), PCO(2) and pH), lactate and glucose, and the ratio and number of white blood cells (WBCs) were assessed before and after SRDT. After SRDT, pulse rate and body temperature were increased. PO(2), sO(2) and pH were also increased and there was no Rouleaux formation by RBCs. Lactate level tended to increase, whereas that of glucose did not. Adrenaline and noradrenaline levels increased, indicating sympathetic nerve (SN) dominance with increase in granulocytes. WBC number and ratio were divided into two groups according to granulocyte ratio (≤ or < 60%) before SRDT: a normal group and a SN group. Only in the SN group did the granulocyte ratio decrease and the lymphocyte ratio and number increase after SRDT. It is suggested that SRDT is a mild aerobic, systemic exercise that might affect the immune system via the autonomic nervous system.

  19. Temperature and blood flow distribution in the human leg during passive heat stress.

    PubMed

    Chiesa, Scott T; Trangmar, Steven J; González-Alonso, José

    2016-05-01

    The influence of temperature on the hemodynamic adjustments to direct passive heat stress within the leg's major arterial and venous vessels and compartments remains unclear. Fifteen healthy young males were tested during exposure to either passive whole body heat stress to levels approaching thermal tolerance [core temperature (Tc) + 2°C; study 1; n = 8] or single leg heat stress (Tc + 0°C; study 2; n = 7). Whole body heat stress increased perfusion and decreased oscillatory shear index in relation to the rise in leg temperature (Tleg) in all three major arteries supplying the leg, plateauing in the common and superficial femoral arteries before reaching severe heat stress levels. Isolated leg heat stress increased arterial blood flows and shear patterns to a level similar to that obtained during moderate core hyperthermia (Tc + 1°C). Despite modest increases in great saphenous venous (GSV) blood flow (0.2 l/min), the deep venous system accounted for the majority of returning flow (common femoral vein 0.7 l/min) during intense to severe levels of heat stress. Rapid cooling of a single leg during severe whole body heat stress resulted in an equivalent blood flow reduction in the major artery supplying the thigh deep tissues only, suggesting central temperature-sensitive mechanisms contribute to skin blood flow alone. These findings further our knowledge of leg hemodynamic responses during direct heat stress and provide evidence of potentially beneficial vascular alterations during isolated limb heat stress that are equivalent to those experienced during exposure to moderate levels of whole body hyperthermia. Copyright © 2016 the American Physiological Society.

  20. Temperature and blood flow distribution in the human leg during passive heat stress

    PubMed Central

    Chiesa, Scott T.; Trangmar, Steven J.

    2016-01-01

    The influence of temperature on the hemodynamic adjustments to direct passive heat stress within the leg's major arterial and venous vessels and compartments remains unclear. Fifteen healthy young males were tested during exposure to either passive whole body heat stress to levels approaching thermal tolerance [core temperature (Tc) + 2°C; study 1; n = 8] or single leg heat stress (Tc + 0°C; study 2; n = 7). Whole body heat stress increased perfusion and decreased oscillatory shear index in relation to the rise in leg temperature (Tleg) in all three major arteries supplying the leg, plateauing in the common and superficial femoral arteries before reaching severe heat stress levels. Isolated leg heat stress increased arterial blood flows and shear patterns to a level similar to that obtained during moderate core hyperthermia (Tc + 1°C). Despite modest increases in great saphenous venous (GSV) blood flow (0.2 l/min), the deep venous system accounted for the majority of returning flow (common femoral vein 0.7 l/min) during intense to severe levels of heat stress. Rapid cooling of a single leg during severe whole body heat stress resulted in an equivalent blood flow reduction in the major artery supplying the thigh deep tissues only, suggesting central temperature-sensitive mechanisms contribute to skin blood flow alone. These findings further our knowledge of leg hemodynamic responses during direct heat stress and provide evidence of potentially beneficial vascular alterations during isolated limb heat stress that are equivalent to those experienced during exposure to moderate levels of whole body hyperthermia. PMID:26823344

  1. Rectal temperature changes and oxygen toxicity in dogs treated in a monoplace chamber.

    PubMed

    Shmalberg, Justin; Davies, Wendy; Lopez, Stacy; Shmalberg, Danielle; Zilberschtein, Jose

    2015-01-01

    Hyperbaric oxygen treatments are increasingly administered to pet dogs, using veterinary-specific monoplace chambers. The basic physiologic responses, chamber performance and oxygen toxicity rates have not yet been evaluated in dogs in a clinical setting. As a result, a series of consecutive 45-minute, 2-atmospheres absolute (atm abs) hyperbaric treatments with 100% oxygen were evaluated in a veterinary rehabilitation center (n = 285). 65 dogs with a mean body weight of 21 ± 15 kg (1.4-71 kg) were treated with an average of four sessions each. The mean rectal temperature of canine patients decreased 0.07 degrees C (0.1 degrees F) during treatments (p = 0.04). Intra-chamber temperature and humidity both increased: +1.0 degrees C (1.7 degrees F, p < 0.0001) and +5.7% (p < 0.0001), respectively. The mean maximal oxygen concentration measured before depressurization of the veterinary-specific commercial chamber was 98.0 ± 0.9%. No strong correlations (r > 0.75) were identified between body weights, body condition scores, maximal oxygen concentrations, starting or ending rectal temperature, chamber humidity and chamber temperature. Oxygen toxicity was not observed during the observational period. Patients were most commonly treated for intervertebral disc disease (n = 16 dogs) and extensive traumatic wounds (n = 10 dogs), which represented a large number of the total study sessions (19% and 16%, respectively).

  2. Color of hot soup modulates postprandial satiety, thermal sensation, and body temperature in young women.

    PubMed

    Suzuki, Maki; Kimura, Rie; Kido, Yasue; Inoue, Tomoko; Moritani, Toshio; Nagai, Narumi

    2017-07-01

    The color of food is known to modulate not only consumers' motivation to eat, but also thermal perception. Here we investigated whether the colors of hot soup can influence thermal sensations and body temperature, in addition to the food acceptability and appetite. Twelve young female participants consumed commercial white potage soup, modified to yellow or blue by adding food dyes, at 9 a.m. on 3 separated days. During the test, visual impression (willingness to eat, palatability, comfort, warmth, and anxiety) and thermal sensations were self-reported using visual analog scales. Core (intra-aural) and peripheral (toe) temperatures were continuously recorded 10 min before and 60 min after ingestion. Blue soup significantly decreased willingness to eat, palatability, comfort, and warmth ratings, and significantly increased anxiety feelings compared to the white and yellow soups. After ingestion, the blue soup showed significantly smaller satiety ratings and the tendency of lower thermal sensation scores of the whole body compared to the white and yellow soups. Moreover, a significantly greater increase in toe temperature was found with the yellow soup than the white or blue soup. In conclusion, this study provides new evidence that the colors of hot food may modulate postprandial satiety, thermal sensations and peripheral temperature. Such effects of color may be useful for dietary strategies for individuals who need to control their appetite. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. A Reassessment of Bergmann's Rule in Modern Humans

    PubMed Central

    Foster, Frederick; Collard, Mark

    2013-01-01

    It is widely accepted that modern humans conform to Bergmann's rule, which holds that body size in endothermic species will increase as temperature decreases. However, there are reasons to question the reliability of the findings on which this consensus is based. One of these is that the main studies that have reported that modern humans conform to Bergmann's rule have employed samples that contain a disproportionately large number of warm-climate and northern hemisphere groups. With this in mind, we used latitudinally-stratified and hemisphere-specific samples to re-assess the relationship between modern human body size and temperature. We found that when groups from north and south of the equator were analyzed together, Bergmann's rule was supported. However, when groups were separated by hemisphere, Bergmann's rule was only supported in the northern hemisphere. In the course of exploring these results further, we found that the difference between our northern and southern hemisphere subsamples is due to the limited latitudinal and temperature range in the latter subsample. Thus, our study suggests that modern humans do conform to Bergmann's rule but only when there are major differences in latitude and temperature among groups. Specifically, groups must span more than 50 degrees of latitude and/or more than 30°C for it to hold. This finding has important implications for work on regional variation in human body size and its relationship to temperature. PMID:24015229

  4. Thermotaxis, circadian rhythms, and TRP channels in Drosophila

    PubMed Central

    Bellemer, Andrew

    2015-01-01

    The fruit fly Drosophila melanogaster is a poikilothermic organism that must detect and respond to both fine and coarse changes in environmental temperature in order maintain optimal body temperature, synchronize behavior to daily temperature fluctuations, and to avoid potentially injurious environmental hazards. Members of the Transient Receptor Potential (TRP) family of cation channels are well known for their activation by changes in temperature and their essential roles in sensory transduction in both invertebrates and vertebrates. The Drosophila genome encodes 13 TRP channels, and several of these have key sensory transduction and modulatory functions in allowing larval and adult flies to make fine temperature discriminations to attain optimal body temperature, detect and avoid large environmental temperature fluctuations, and make rapid escape responses to acutely noxious stimuli. Drosophila use multiple, redundant signaling pathways and neural circuits to execute these behaviors in response to both increases and decreases in temperature of varying magnitudes and time scales. A plethora of powerful molecular and genetic tools and the fly's simple, well-characterized nervous system have given Drosophila neurobiologists a powerful platform to study the cellular and molecular mechanisms of TRP channel function and how these mechanisms are conserved in vertebrates, as well as how these channels function within sensorimotor circuits to generate both simple and complex thermosensory behaviors. PMID:27227026

  5. Preventing Hypothermia: Comparison of Current Devices Used by the U.S. Army with an In Vitro Warmed Crystalloid Fluid Model

    DTIC Science & Technology

    2010-04-01

    the start of the experiment and remained so throughout the rest of the experimental period (Fig 4, Table 2). Mean core temperature observed was 36.72...removal [4, 9]. At temperatures less than 32ºC the body experiences a severe decrease in intrinsic metabolic rate. At less than 24ºC endocrine...in the field are thus forced to base their procurement decisions on either personal anecdotal experience or manufacturer claims of performance or

  6. Continuous evaluation of drug withdrawal in the rat using telemetry: effects of morphine and chlordiazepoxide.

    PubMed

    Froger-Colléaux, Christelle; Rompion, Sonia; Guillaume, Philippe; Porsolt, Roger D; Castagné, Vincent; Moser, Paul

    2011-01-01

    The procedures used to assess withdrawal must be sensitive and widely applicable, i.e. not specific to any particular drug class. Furthermore, the measurements should not be affected by repeat testing. We have used implanted telemetry devices to continuously follow body temperature, locomotor activity (LMA), heart rate (HR) and mean arterial blood pressure (mean ABP) in addition to food intake and body weight gain over 20days of treatment and 8days of withdrawal. The effects of morphine (32 and 64mg/kg p.o., b.i.d.) and chlordiazepoxide (16, 32 and 64mg/kg p.o., b.i.d.) were studied in rats. The results show that during the treatment phase chronic morphine reduced food intake and body weight gain, increased body temperature, HR, mean ABP and LMA. These effects continued over the 20days of treatment. In contrast, chlordiazepoxide slightly increased food intake and body weight gain throughout the treatment period. It also decreased body temperature and LMA but increased HR and mean ABP after the first few administrations but these effects disappeared over the 20days of treatment. Following discontinuation, both morphine- and chlordiazepoxide-treated rats showed a dose-related decrease in food intake and loss of weight on days 2 and 3 of discontinuation. Morphine discontinuation also induced a nocturnal hypothermia and a diurnal hypertension (i.e. during the light phase) which lasted for 4-5days and also moderate diurnal increases in locomotor activity and heart rate over the first 3days of discontinuation. Chlordiazepoxide discontinuation induced small increases in telemetry parameters some of which, such as the effect on locomotor activity, lasted for more than 5days. The intensity and duration of effects for both substances were broadly dose-related. These data show that telemetry can increase the sensitivity of withdrawal experiments to changes that might otherwise be missed and allows a better definition of the time-course of withdrawal effects. This technique is therefore useful as part of safety pharmacology abuse liability evaluation of novel test substances across a broad range of pharmacological and therapeutic classes. Copyright © 2011 Elsevier Inc. All rights reserved.

  7. Primary radiation damage characterization of α-iron under irradiation temperature for various PKA energies

    NASA Astrophysics Data System (ADS)

    Sahi, Qurat-ul-ain; Kim, Yong-Soo

    2018-04-01

    The understanding of radiation-induced microstructural defects in body-centered cubic (BCC) iron is of major interest to those using advanced steel under extreme conditions in nuclear reactors. In this study, molecular dynamics (MD) simulations were implemented to examine the primary radiation damage in BCC iron with displacement cascades of energy 1, 5, 10, 20, and 30 keV at temperatures ranging from 100 to 1000 K. Statistical analysis of eight MD simulations of collision cascades were carried out along each [110], [112], [111] and a high index [135] direction and the temperature dependence of the surviving number of point defects and the in-cascade clustering of vacancies and interstitials were studied. The peak time and the corresponding number of defects increase with increasing irradiation temperature and primary knock-on atom (PKA) energy. However, the final number of surviving point defects decreases with increasing lattice temperature. This is associated with the increase of thermal spike at high PKA energy and its long timespan at higher temperatures. Defect production efficiency (i.e., surviving MD defects, per Norgett-Robinson-Torrens displacements) also showed a continuous decrease with the increasing irradiation temperature and PKA energy. The number of interstitial clusters increases with both irradiation temperature and PKA energy. However, the increase in the number of vacancy clusters with PKA energy is minimal-to-constant and decreases as the irradiation temperature increases. Similarly, the probability and cluster size distribution for larger interstitials increase with temperature, whereas only smaller size vacancy clusters were observed at higher temperatures.

  8. Attentional validity effect across the human menstrual cycle varies with basal temperature changes.

    PubMed

    Beaudoin, Jessica; Marrocco, Richard

    2005-03-07

    This study examined the correlation between covert attention and basal temperature change during menstrual cycle phase in 22 adult females. Previous work showing beneficial effects of estrogen on working memory led us to hypothesize that attentional function would be facilitated at the apparent time of ovulation. Menstrual phase was determined through questionnaires and objective measurements of basal body temperature (BBT) spikes over a 1 month period. The cued target detection (CTD) task was used to assess visuospatial attentional performance at three times during the menstrual cycle. The mean reaction times (RTs) to visual targets were measured as a function of menstrual cycle phase, cue type and target location. As predicted, the onset of ovulation showed decreased reaction times and a significant increase in the cue validity effect on the days immediately preceding and following ovulation. The magnitude of the attention validity effect was negatively correlated with the basal temperature rise. Women lacking basal temperature shifts failed to show these changes. Results support the conclusion that the natural fluctuations of body temperature, and possibly reproductive hormones, during the menstrual cycle may enhance the attentional component of cognitive performance.

  9. Elevated body temperature and increased blood vessel sensitivity in spontaneously hypertensive rats.

    PubMed

    Price, J M; Wilmoth, F R

    1990-04-01

    Body temperature (BT) was significantly greater in spontaneously hypertensive rats (SHR) than in Wistar-Kyoto (WKY) rats regardless of the time of day, length of rectal probe, sex, age, or commercial vendor. Bath temperature (theta) for excised aortic rings was controlled by a thermoelectric Peltier module with an accuracy of 0.1 degree C. At peak force in individual contractions of norepinephrine (NE) dose-response experiments, theta was changed from 37 to 39 degrees C. Active and resting wall tension (Tw) were increased, and the mean effective dose (ED50) was decreased in the SHR aorta with and without endothelium. For the WKY aorta, active and resting Tw were increased, but ED50 was the same with and without endothelium. These results were supported by experiments where theta was decreased from 39 to 37 degrees C and by experiments on Sprague-Dawley rats. Potassium dose-response experiments with aorta from SHR and WKY rats show an increase in sensitivity at 39 degrees C, but active Tw is the same at 39 and 37 degrees C. When compared at the BT of each rat, the NE ED50 was lower and resting Tw was higher in the SHR aorta than in the WKY aorta, but active Tw was the same.(ABSTRACT TRUNCATED AT 250 WORDS)

  10. Whole-body heating decreases skin vascular response to low orthostatic stress in the lower extremities.

    PubMed

    Yamazaki, Fumio; Nakayama, Yoshiro; Sone, Ryoko

    2006-04-01

    To elucidate the influence of heat stress on cutaneous vascular response in the lower extremities during orthostatic stress, a head-up tilt (HUT) test at angles of 15 degrees, 30 degrees, 45 degrees, and 60 degrees for 4 min each was conducted under normothermic control conditions followed by whole-body heat stress produced by a hot water-perfused suit in healthy volunteers. Skin blood flows (SkBF) in the forearm, thigh, and calf were monitored using laser-Doppler flowmetry throughout the experiment. Furthermore, to elucidate the effects of increased core and local skin temperatures on the local vascular response in calf skin under increasing orthostatic stress, the thigh was occluded at 20, 30, 50, 70, and 80 mmHg with a cuff in both the normothermic condition and the whole-body or local heating condition. Significant decreases in forearm SkBF during HUT were observed at an angle of 60 degrees during normothermia and at 30 degrees or more during heating. SkBF in the thigh and calf was decreased significantly by HUT at 15 degrees and above during normothermia, and there was no significant reduction of SkBF in these sites during HUT at the lower angles (15 degrees -45 degrees ) during whole-body heating. Significant decreases of calf SkBF were observed at cuff pressures of 20 mmHg and above during normothermia and of 30 mmHg and above during whole-body and local heating, respectively. These results suggest that SkBF in the lower extremities shows a marked reduction compared with the upper extremities during low orthostatic stress in normothermia, and the enhanced skin vasoconstrictor response in the lower extremities is diminished by both whole-body and local heat stress.

  11. In Adult Female Hamsters Hypothyroidism Stimulates D1 Receptor-mediated Breathing without altering D1 Receptor Expression

    PubMed Central

    Schlenker, Evelyn H.; Rio, Rodrigo Del; Schultz, Harold D.

    2015-01-01

    Hypothyroidism affects cardiopulmonary regulation and function of dopaminergic receptors. Here we evaluated effects of 5 months of hypothyroidism on dopamine D1 receptor modulation of breathing in female hamsters using a D1 receptor antagonist SCH23390. Euthyroid hamsters (EH) served as controls. Results indicated that hypothyroid female hamsters (HH) exhibited decreased body weights and minute ventilation (VE) following hypoxia due to decreased frequency of breathing (F). Moreover, SCH 23390 administration in HH increased VE by increasing tidal volume during exposure to air, hypoxia and following hypoxia. Relative to vehicle, SCH 23390 treatment decreased body temperature and hypoxic VE responsiveness in both groups. In EH, SCH 23390 decreased F in air, hypoxia and post hypoxia, and VE during hypoxia trended to decrease (P=0.053). Finally, expression of D1 receptor protein was not different between the two groups in any region evaluated. Thus, hypothyroidism in older female hamsters affected D1 receptor modulation of ventilation differently relative to euthyroid animals, but not expression of D1 receptors. PMID:26232642

  12. In adult female hamsters hypothyroidism stimulates D1 receptor-mediated breathing without altering D1 receptor expression.

    PubMed

    Schlenker, Evelyn H; Del Rio, Rodrigo; Schultz, Harold D

    2015-11-01

    Hypothyroidism affects cardiopulmonary regulation and function of dopaminergic receptors. Here we evaluated effects of 5 months of hypothyroidism on dopamine D1 receptor modulation of breathing in female hamsters using a D1 receptor antagonist SCH 23390. Euthyroid hamsters (EH) served as controls. Results indicated that hypothyroid female hamsters (HH) exhibited decreased body weights and minute ventilation (VE) following hypoxia due to decreased frequency of breathing (F). Moreover, SCH 23390 administration in HH increased VE by increasing tidal volume during exposure to air, hypoxia and following hypoxia. Relative to vehicle, SCH 23390 treatment decreased body temperature and hypoxic VE responsiveness in both groups. In EH, SCH 23390 decreased F in air, hypoxia and post hypoxia, and VE during hypoxia trended to decrease (P=0.053). Finally, expression of D1 receptor protein was not different between the two groups in any region evaluated. Thus, hypothyroidism in older female hamsters affected D1 receptor modulation of ventilation differently relative to euthyroid animals, but not expression of D1 receptors. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Tail loss and thermoregulation in the common lizard Zootoca vivipara

    NASA Astrophysics Data System (ADS)

    Herczeg, Gábor; Kovács, Tibor; Tóth, Tamás; Török, János; Korsós, Zoltán; Merilä, Juha

    2004-10-01

    Tail autotomy in lizards is an adaptive strategy that has evolved to reduce the risk of predation. Since tail loss reduces body mass and moving ability—which in turn are expected to influence thermal balance—there is potential for a trade-off between tail autotomy and thermoregulation. To test this hypothesis, we studied a common lizard (Zootoca vivipara) population at high latitude, inhabiting a high-cost thermal environment. Z. vivipara is a small, non-territorial lizard known as a very accurate thermoregulator. We made two predictions: (1) the reduced body weight due to tail loss results in faster heating rate (a benefit), and (2) the reduction in locomotor ability after tail loss induces a shift to the use of thermally poorer microhabitats (a cost), thus decreasing the field body temperatures of active lizards. We did not find any effect of tail loss on heating rate in laboratory experiments conducted under different thermal conditions. Likewise, no significant relationship between tail condition and field body temperatures, or between tail condition and thermal microhabitat use, were detected. Thus, our results suggest that tail autotomy does not influence the accuracy of thermoregulation in small-bodied lizards.

  14. Tail loss and thermoregulation in the common lizard Zootoca vivipara.

    PubMed

    Herczeg, Gábor; Kovács, Tibor; Tóth, Tamás; Török, János; Korsós, Zoltán; Merilä, Juha

    2004-10-01

    Tail autotomy in lizards is an adaptive strategy that has evolved to reduce the risk of predation. Since tail loss reduces body mass and moving ability-which in turn are expected to influence thermal balance-there is potential for a trade-off between tail autotomy and thermoregulation. To test this hypothesis, we studied a common lizard (Zootoca vivipara) population at high latitude, inhabiting a high-cost thermal environment. Z. vivipara is a small, non-territorial lizard known as a very accurate thermoregulator. We made two predictions: (1) the reduced body weight due to tail loss results in faster heating rate (a benefit), and (2) the reduction in locomotor ability after tail loss induces a shift to the use of thermally poorer microhabitats (a cost), thus decreasing the field body temperatures of active lizards. We did not find any effect of tail loss on heating rate in laboratory experiments conducted under different thermal conditions. Likewise, no significant relationship between tail condition and field body temperatures, or between tail condition and thermal microhabitat use, were detected. Thus, our results suggest that tail autotomy does not influence the accuracy of thermoregulation in small-bodied lizards.

  15. Perioperative warming with a thermal gown prevents maternal temperature loss during elective cesarean section. A randomized clinical trial.

    PubMed

    de Bernardis, Ricardo Caio Gracco; Siaulys, Monica Maria; Vieira, Joaquim Edson; Mathias, Lígia Andrade Silva Telles

    2016-01-01

    Decrease in body temperature is common during general and regional anesthesia. Forced-air warming intraoperative during cesarean section under spinal anesthesia seems not able to prevent it. The hypothesis considers that active warming before the intraoperative period avoids temperature loss during cesarean. Forty healthy pregnant patients undergoing elective cesarean section with spinal anesthesia received active warming from a thermal gown in the preoperative care unit 30min before spinal anesthesia and during surgery (Go, n=20), or no active warming at any time (Ct, n=20). After induction of spinal anesthesia, the thermal gown was replaced over the chest and upper limbs and maintained throughout study. Room temperature, hemoglobin saturation, heart rate, arterial pressure, and tympanic body temperature were registered 30min before (baseline) spinal anesthesia, right after it (time zero) and every 15min thereafter. There was no difference for temperature at baseline, but they were significant throughout the study (p<0.0001; repeated measure ANCOVA). Tympanic temperature baseline was 36.6±0.3°C, measured 36.5±0.3°C at time zero and reached 36.1±0.2°C for gown group, while control group had baseline temperature of 36.4±0.4°C, measured 36.3±0.3°C at time zero and reached 35.4±0.4°C (F=32.53; 95% CI 0.45-0.86; p<0.001). Hemodynamics did not differ throughout the study for both groups of patients. Active warming 30min before spinal anesthesia and during surgery prevented a fall in body temperature in full-term pregnant women during elective cesarean delivery. Copyright © 2015 Sociedade Brasileira de Anestesiologia. Published by Elsevier Editora Ltda. All rights reserved.

  16. [Perioperative warming with a thermal gown prevents maternal temperature loss during elective cesarean section. A randomized clinical trial].

    PubMed

    Bernardis, Ricardo Caio Gracco de; Siaulys, Monica Maria; Vieira, Joaquim Edson; Mathias, Lígia Andrade Silva Telles

    2016-01-01

    Decrease in body temperature is common during general and regional anesthesia. Forced-air warming intraoperative during cesarean section under spinal anesthesia seems not able to prevent it. The hypothesis considers that active warming before the intraoperative period avoids temperature loss during cesarean. Forty healthy pregnant patients undergoing elective cesarean section with spinal anesthesia received active warming from a thermal gown in the preoperative care unit 30min before spinal anesthesia and during surgery (Go, n=20), or no active warming at any time (Ct, n=20). After induction of spinal anesthesia, the thermal gown was replaced over the chest and upper limbs and maintained throughout study. Room temperature, hemoglobin saturation, heart rate, arterial pressure, and tympanic body temperature were registered 30min before (baseline) spinal anesthesia, right after it (time zero) and every 15min thereafter. There was no difference for temperature at baseline, but they were significant throughout the study (p<0.0001; repeated measure ANCOVA). Tympanic temperature baseline was 36.6±0.3°C, measured 36.5±0.3°C at time zero and reached 36.1±0.2°C for gown group, while control group had baseline temperature of 36.4±0.4°C, measured 36.3±0.3°C at time zero and reached 35.4±0.4°C (F=32.53; 95% CI 0.45-0.86; p<0.001). Hemodynamics did not differ throughout the study for both groups of patients. Active warming 30min before spinal anesthesia and during surgery prevented a fall in body temperature in full-term pregnant women during elective cesarean delivery. Copyright © 2015 Sociedade Brasileira de Anestesiologia. Publicado por Elsevier Editora Ltda. All rights reserved.

  17. Ablation of Sim1 Neurons Causes Obesity through Hyperphagia and Reduced Energy Expenditure

    PubMed Central

    Xi, Dong; Gandhi, Nilay; Lai, Meizan; Kublaoui, Bassil M.

    2012-01-01

    Single-minded 1 (Sim1) is a transcription factor necessary for development of the paraventricular nucleus of the hypothalamus (PVH). This nucleus is a critical regulator of appetite, energy expenditure and body weight. Previously we showed that Sim1+/− mice and conditional postnatal Sim1−/− mice exhibit hyperphagia, obesity, increased linear growth and susceptibility to diet-induced obesity, but no decrease in energy expenditure. Bilateral ablation of the PVH causes obesity due to hyperphagia and reduced energy expenditure. It remains unknown whether Sim1 neurons regulate energy expenditure. In this study, Sim1cre mice were bred to homozygous inducible diphtheria toxin receptor (iDTR) mice to generate mice expressing the simian DTR in Sim1 cells. In these mice, Sim1 neuron ablation was performed by intracerebroventricular (ICV) injection of diphtheria toxin. Compared to controls, mice with Sim1 neuron ablation became obese (with increased fat mass) on a chow diet due to increased food intake and reduced energy expenditure. In post-injection mice, we observed a strong inverse correlation between the degree of obesity and hypothalamic Sim1 expression. The reduction in baseline energy expenditure observed in these mice was accompanied by a reduction in activity. This reduction in activity did not fully account for the reduced energy expenditure as these mice exhibited decreased resting energy expenditure, decreased body temperature, decreased brown adipose tissue temperature, and decreased UCP1 expression suggesting an impairment of thermogenesis. In injected mice, hypothalamic gene expression of Sim1, oxytocin (OXT) and thyrotropin releasing hormone (TRH) was reduced by about 50%. These results demonstrate that Sim1 neurons in adult mice regulate both food intake and energy expenditure. Based on the body of work in the field, feeding regulation by Sim1 neurons likely occurs in both the PVH and medial amygdala, in contrast to energy expenditure regulation by Sim1 neurons, which likely is localized to the PVH. PMID:22558467

  18. Ablation of Sim1 neurons causes obesity through hyperphagia and reduced energy expenditure.

    PubMed

    Xi, Dong; Gandhi, Nilay; Lai, Meizan; Kublaoui, Bassil M

    2012-01-01

    Single-minded 1 (Sim1) is a transcription factor necessary for development of the paraventricular nucleus of the hypothalamus (PVH). This nucleus is a critical regulator of appetite, energy expenditure and body weight. Previously we showed that Sim1(+/-) mice and conditional postnatal Sim1(-/-) mice exhibit hyperphagia, obesity, increased linear growth and susceptibility to diet-induced obesity, but no decrease in energy expenditure. Bilateral ablation of the PVH causes obesity due to hyperphagia and reduced energy expenditure. It remains unknown whether Sim1 neurons regulate energy expenditure. In this study, Sim1cre mice were bred to homozygous inducible diphtheria toxin receptor (iDTR) mice to generate mice expressing the simian DTR in Sim1 cells. In these mice, Sim1 neuron ablation was performed by intracerebroventricular (ICV) injection of diphtheria toxin. Compared to controls, mice with Sim1 neuron ablation became obese (with increased fat mass) on a chow diet due to increased food intake and reduced energy expenditure. In post-injection mice, we observed a strong inverse correlation between the degree of obesity and hypothalamic Sim1 expression. The reduction in baseline energy expenditure observed in these mice was accompanied by a reduction in activity. This reduction in activity did not fully account for the reduced energy expenditure as these mice exhibited decreased resting energy expenditure, decreased body temperature, decreased brown adipose tissue temperature, and decreased UCP1 expression suggesting an impairment of thermogenesis. In injected mice, hypothalamic gene expression of Sim1, oxytocin (OXT) and thyrotropin releasing hormone (TRH) was reduced by about 50%. These results demonstrate that Sim1 neurons in adult mice regulate both food intake and energy expenditure. Based on the body of work in the field, feeding regulation by Sim1 neurons likely occurs in both the PVH and medial amygdala, in contrast to energy expenditure regulation by Sim1 neurons, which likely is localized to the PVH.

  19. Seasonal bone growth and physiology in endotherms shed light on dinosaur physiology.

    PubMed

    Köhler, Meike; Marín-Moratalla, Nekane; Jordana, Xavier; Aanes, Ronny

    2012-07-19

    Cyclical growth leaves marks in bone tissue that are in the forefront of discussions about physiologies of extinct vertebrates. Ectotherms show pronounced annual cycles of growth arrest that correlate with a decrease in body temperature and metabolic rate; endotherms are assumed to grow continuously until they attain maturity because of their constant high body temperature and sustained metabolic rate. This apparent dichotomy has driven the argument that zonal bone denotes ectotherm-like physiologies, thus fuelling the controversy on dinosaur thermophysiology and the evolution of endothermy in birds and mammal-like reptiles. Here we show, from a comprehensive global study of wild ruminants from tropical to polar environments, that cyclical growth is a universal trait of homoeothermic endotherms. Growth is arrested during the unfavourable season concurrently with decreases in body temperature, metabolic rate and bone-growth-mediating plasma insulin-like growth factor-1 levels, forming part of a plesiomorphic thermometabolic strategy for energy conservation. Conversely, bouts of intense tissue growth coincide with peak metabolic rates and correlated hormonal changes at the beginning of the favourable season, indicating an increased efficiency in acquiring and using seasonal resources. Our study supplies the strongest evidence so far that homeothermic endotherms arrest growth seasonally, which precludes the use of lines of arrested growth as an argument in support of ectothermy. However, high growth rates are a distinctive trait of mammals, suggesting the capacity for endogenous heat generation. The ruminant annual cycle provides an extant model on which to base inferences regarding the thermophysiology of dinosaurs and other extinct taxa.

  20. Some effects of prostaglandins E1 and E2 and of endotoxin injected into the hypothalamus of young chicks: dissociation between endotoxin fever and the effects of prostaglandins.

    PubMed

    Artunkal, A A; Marley, E; Stephenson, J D

    1977-09-01

    Prostaglandins E1 and E2 elevated body temperature of young chicks when injected into the hypothalamus at thermoneutrality (31 degrees C). In contrast, they lowered body temperature when so injected below thermoneutrality (16degreesC): the relation of the fall in body temperature to increased heat loss and decreased heat production was examined. 2 The above effects below thermoneutrality were potentiated by pretreatment with inhibitors of prostaglandin synthetase and possible reasons for this potentation are given. 3 The O-somatic antigen of Shigella dysenteriae consistently evoked hyperthermia when injected into the hypothalamus, irrespective of whether the chicks were within or below thermoneutrality. 4 Pretreatment with prostaglandin synthetase inhibitors failed to prevent the onset of endotoxin fever; however, duration of the fever, induced by intrahypothalamic injection of the O-somatic antigen of Shigella dysenteriae was reduced. 5 The intrahypothalamic injection, belwo thermoneutrality of prostaglandins E1, E2, noradrenaline, 5-hydroxytryptamine or carbachol reversed endotoxin fever, inducing even substantial falls in body temperature. 6 While the results cast some doubts on the role of prostaglandins of the E series as mediators of endotoxin fever in chicks, they cannot be eliminated as mediators until the significance of the reduction in duration of the pyrexic response by indomethacin and 5,8,11,14-eicosatetraynoic acid, and the degree of synthesis inhibition attained, are known.

  1. Some effects of prostaglandins E1 and E2 and of endotoxin injected into the hypothalamus of young chicks: dissociation between endotoxin fever and the effects of prostaglandins.

    PubMed Central

    Artunkal, A A; Marley, E; Stephenson, J D

    1977-01-01

    Prostaglandins E1 and E2 elevated body temperature of young chicks when injected into the hypothalamus at thermoneutrality (31 degrees C). In contrast, they lowered body temperature when so injected below thermoneutrality (16degreesC): the relation of the fall in body temperature to increased heat loss and decreased heat production was examined. 2 The above effects below thermoneutrality were potentiated by pretreatment with inhibitors of prostaglandin synthetase and possible reasons for this potentation are given. 3 The O-somatic antigen of Shigella dysenteriae consistently evoked hyperthermia when injected into the hypothalamus, irrespective of whether the chicks were within or below thermoneutrality. 4 Pretreatment with prostaglandin synthetase inhibitors failed to prevent the onset of endotoxin fever; however, duration of the fever, induced by intrahypothalamic injection of the O-somatic antigen of Shigella dysenteriae was reduced. 5 The intrahypothalamic injection, belwo thermoneutrality of prostaglandins E1, E2, noradrenaline, 5-hydroxytryptamine or carbachol reversed endotoxin fever, inducing even substantial falls in body temperature. 6 While the results cast some doubts on the role of prostaglandins of the E series as mediators of endotoxin fever in chicks, they cannot be eliminated as mediators until the significance of the reduction in duration of the pyrexic response by indomethacin and 5,8,11,14-eicosatetraynoic acid, and the degree of synthesis inhibition attained, are known. PMID:334308

  2. [A comparison of the effects of intravenous fluid warming and skin surface warming on peri-operative body temperature and acid base balance of elderly patients with abdominal surgery].

    PubMed

    Park, Hyosun; Yoon, Haesang

    2007-12-01

    The purpose of this study was to compare the effects of intravenous fluid warming and skin surface warming on peri-operative body temperature and acid base balance of abdominal surgical patients under general anesthesia. Data collection was performed from January 4th, to May 31, 2004. The intravenous fluid warming(IFW) group (30 elderly patients) was warmed through an IV line by an Animec set to 37 degrees C. The skin surface warming (SSW) group (30 elderly patients) was warmed by a circulating-water blanket set to 38 degrees C under the back and a 60W heating lamp 40 cm above the chest. The warming continued from induction of general anesthesia to two hours after completion of surgery. Collected data was analyzed using Repeated Measures ANOVA, and Bonferroni methods. SSW was more effective than IFW in preventing hypothermia(p= .043), preventing a decrease of HCO(3)(-)(p= .000) and preventing base excess (p= .000) respectively. However, there was no difference in pH between the SSW and IFW (p= .401) groups. We conclude that skin surface warming is more effective in preventing hypothermia, and HCO(3)(-) and base excess during general anesthesia, and returning to normal body temperature after surgery than intravenous fluid warming; however, skin surface warming wasn't able to sustain a normal body temperature in elderly patients undergoing abdominal surgery under general anesthesia.

  3. Systemic salt loading decreases body temperature and increases heat-escape/cold-seeking behaviour via the central AT1 and V1 receptors in rats.

    PubMed

    Konishi, Masahiro; Nagashima, Kei; Kanosue, Kazuyuki

    2002-11-15

    Salt loading decreases body core temperature (T(core)) at neutral ambient temperature (26 degrees C) and increases heat-escape/cold-seeking behaviour in desalivated rats. In this study, we tested the hypothesis that brain angiotensin II (AII) and arginine vasopressin (AVP) are associated with these responses. Surgically desalivated rats (n = 28) were administered an injection (S.C., 10 ml kg(-1)) of either normal saline (154 mM, NS) or hypertonic saline (2500 mM, HS) following an intracerebroventricular injection (10 microl kg(-1)) of an AII AT(1)-receptor antagonist (candesartan, 5 microg microl(-1)), an AVP V(1)-receptor antagonist ((beta-mercapto-beta, beta-cyclopenta-methylene propionyl(1), O-Me-Tyr(2), Arg(8))-vasopressin, 0.5 microg microl(-1)), or normal saline (154 mM). Each rat was placed in a behaviour box, first at 26 degrees C for 1 h to allow the measurement of baseline T(core) and movement. The ambient temperature was then elevated to 40 degrees C for the next 2 h, during which time the rat was able to trigger a 0 degrees C air reward for 30 s by moving into a specific area of the box (operant behaviour). The S.C. HS significantly decreased baseline T(core) at 26 degrees C (36.5 +/- 0.1 degrees C) and increased counts of operant behaviour at 40 degrees C (57 +/- 3) compared with results obtained following S.C. NS injection (37.4 +/- 0.1 degrees C and 42 +/- 1, respectively). These responses to s.c. HS were inhibited by the intracerebroventricular injection of AT(1) (37.3 +/- 0.1 degrees C and 43 +/- 2, respectively; P < 0.05) and V(1) antagonists (37.2 +/- 0.2 degrees C and 42 +/- 2, respectively; P < 0.05), although administration of both antagonists with S.C. NS had no effect. These results suggest that brain AII and AVP are involved in the decrease in T(core) observed at neutral ambient temperature and the increase in heat-escape/cold-seeking behaviour in response to osmotic stimulation, via the central AT(1) and V(1) receptors, respectively

  4. Responses of caddisfly larvae (Brachycentrus spp. ) to temperature, food availability and current velocity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gallepp, G.W.

    1977-07-01

    Larvae of the stream caddisflies, Brachycentrus americanus and Brachycentrus occidentalis, were studied in eight simulated stream channels to determine their behavioral responses to temperature, food availability (brine shrimp) and current velocity. For both species, filtering, withdrawn and case-building were the primary behavior patterns of larvae that had attached their cases to the substrate. Most larvae not attached to the substrate were crawling or holding. As temperatures increased above 8 C, B. occidentalis larvae filtered more frequantly; but above 20 C the percentage of larvae filtering steadily decreased and the percentage withdrawn increased dramatically with increasing temperature. Percentages of larvae case-buildingmore » and unattached generally decreased over the range of 4 to 27 C. Despite this decrease in case-building, B. occidentalis larvae generally grew faster as temperature increased from 4 to 16 C. Behavior of B. americanus as a function of temperature was similar to behavior of B. occidentalis. Both species responded to decreased ration by increasing the percentage of time filtering. Although many larvae were unattached and probably grazing in Lawrence Creek, few larvae were unattached in the laboratory, even at the lowest ration (1.2 percent of the body weight per day). Growth and case-building activity of B. americanus larvae were directly related to ration. Over the range of current velocities of 7 to 26 cm/sec, behavior of B. occidentalis changed little. At 5 cm/sec fewer larvae filtered and more were unattached; this suggested a threshold response to current velocity. Increasing temperatures from 10 to 20 C caused the percentage withdrawn at low velocities to increase; however, this trend was hardly noticeable at velocities above 10 cm/sec. In these tests, Brachycentrus were more responsive to temperature and food availability than to current velocity.« less

  5. Climate-water quality relationships in Texas reservoirs

    USGS Publications Warehouse

    Gelca, Rodica; Hayhoe, Katharine; Scott-Fleming, Ian; Crow, Caleb; Dawson, D.; Patino, Reynaldo

    2015-01-01

    Water temperature, dissolved oxygen, and concentrations of salts in surface water bodies can be affected by the natural environment, local human activities such as surface and ground water withdrawals, land use, and energy extraction, and variability and long-term trends in atmospheric conditions including temperature and precipitation. Here, we quantify the relationship between 121 indicators of mean and extreme temperature and precipitation and 24 water quality parameters in 57 Texas reservoirs using observational data records covering the period 1960 to 2010. We find that water temperature, dissolved oxygen, pH, specific conductance, chloride, sulfate, and phosphorus all show consistent correlations with atmospheric predictors, including high and low temperature extremes, dry days, heavy precipitation events, and mean temperature and precipitation over time scales ranging from one week to two years. Based on this analysis and published future projections for this region, we expect climate change to increase water temperatures, decrease dissolved oxygen levels, decrease pH, increase specific conductance, and increase levels of sulfate, chloride in Texas reservoirs. Over decadal time scales, this may affect aquatic ecosystems in the reservoirs, including altering the risk of conditions conducive to algae occurrence, as well as affecting the quality of water available for human consumption and recreation.

  6. Changes in the physiological parameters, fatty acid metabolism, and SCD activity and expression in juvenile GIFT tilapia (Oreochromis niloticus) reared at three different temperatures.

    PubMed

    Ma, X Y; Qiang, J; He, J; Gabriel, N N; Xu, P

    2015-08-01

    We evaluated the effects of rearing temperature on the composition of fatty acids and stearoyl-CoA desaturase (SCD) activity and gene expression in GIFT (genetically improved farmed tilapia) tilapia. Three triplicate groups of fish were reared for 40 days at 22, 28, or 34 °C. At the end of the trial, the final body weight of juveniles reared at 28 °C was higher than that of fish reared at 22 or 34 °C. Feed intake, feed efficiency, and the protein efficiency ratio were also higher at 28 °C. The fatty acid composition of muscle tissue differed significantly (P < 0.05) among the treatment groups. The content of SFA decreased with decreasing temperature, whereas the UFA content increased. We observed high levels of PUFA, particularly n-3 PUFAs, in fish reared at the lower temperature. Rearing at low temperature significantly (P < 0.05) increased the expression and activity of the SCD gene. Increased SCD activity and gene expression can increase the biosynthesis of MUFAs in GIFT tilapia muscle. Additionally, cold acclimation can decrease the content of TC and TG in GIFT tilapia, which can help increase cold tolerance.

  7. [Microclimate and comfortable degree of Shanghai urban open spaces in summer].

    PubMed

    Cao, Dan; Zhou, Li-chen; Mao, Yi-wei; Li, Yin; Liu, Yi-ning; Wang, Tian-hou

    2008-08-01

    Based on the observation data of air temperature, relative humidity, wind speed, and solar radiation from May to August 2006, the regulation effects of five types of open spaces (square, fountain, grassplot, corridor, and woodland) in Shanghai urban districts on the microclimate were analyzed, and discomfort index (DI) was introduced to evaluate the effects of these five types of open spaces on human body' s comfortable degree. The results showed that there existed definite differences in the air temperature and relative humidity among the open spaces, with the mean temperature decreased in the order of square > grassplot > fountain > corridor > woodland, and the mean relative humidity decreased in the order of woodland > corridor > fountain > grassplot > square. The area of the square, the wind speed and direction near the fountain, the grass species on the grass-plot, the width and tree coverage of the corridor, and the tree coverage and canopy height of the woodland had significant correlations with the microclimate parameters of corresponding open spaces. Comparing with other three types of open spaces, woodland and corridor had better regulation effects on the microclimate via shading, decreasing air temperature, and increasing relative humidity.

  8. Innovative materials: the NiTi alloys in orthodontics.

    PubMed

    Airoldi, G; Riva, G

    1996-01-01

    Since ten years the NiTi alloys have gained an ever increasing place in orthodontic practice: that is due to their peculiar mechanical properties ascribed to a martensitic thermoelastic transformation which can be thermally or, in a proper temperature range, stress-induced. In the last case, when martensite is stress-induced at body temperature, the stress-strain behaviour is pseudoelastic with large deformations gained or recovered at constant stress, respectively in direct/reverse transformation: this behaviour exploited in orthodontics allowed to overcome the drawbacks intrinsic to the use of conventional alloys as stainless steel or Co-Mo alloys, where small displacements can be achieved at decreasing loads. From the phase state diagram of NiTi alloys it appears that at body temperature they are stable, but out of equilibrium: thermal treatments at intermediate temperatures can therefore modify the equilibrium state and as a consequence the transformation temperatures respect to body temperature. That allows to modify the recovery stress level according to the requirements of practice and thus disclosing new roads: the capability to foresee NiTi archwires pre-programmed in different sections, with a personalized scheme. Attention has not currently been paid to the modifications in the recovery stress induced by a temperature change inside the oral cavity. Recent results have shown that the thermal changes in the oral cavity induced by cold/hot liquid intake can considerably modify the stress level to which the dentition is exposed: though confined to the time extent connected with drinking, similar effects can be expected also for meals intake and should be taken into account for a correct procedure.

  9. [Circadian rhythms and temperature homeostasis in monkeys during a flight on the Kosmos 1514 biosatellite

    NASA Technical Reports Server (NTRS)

    Klimovitskui, V. Ia; Alpatov, A. M.; Salzman, F. M.; Fuller, C. A.; Moore-Ede, M. S.

    1987-01-01

    In the course of a 5-day space flight of two rhesus-monkeys the following parameters were recorded at an interval of 16 min: core body temperature (Tc), skin temperature (Ts), and motor activity (MA). The telemetric Tc sensor was implanted subcutaneously in the right axilla, Ts thermistor was attached to the right ankle, and the MA piezotape was fixed to the inner side of the vest. Circadian rhythms of Tc varied with a period of 24 hours in one monkey and 25 hours in the other. The daily Tc decreased on the average by 0.5 degrees C, Ts fell immediately after launch and remained close to the lower limit throughout the flight. The Ts amplitude decreased 5-fold. Phases of the circadian rhythms of Ts changed and circadian rhythms of MA remained unchanged and equal to 24 hours.

  10. [Circadian rhythms and temperature homeostasis in monkeys during a flight on the Kosmos 1514 biosatellite].

    PubMed

    Klimovitskuĭ, V Ia; Alpatov, A M; Salzman, F M; Fuller, C A; Moore-Ede, M S

    1987-01-01

    In the course of a 5-day space flight of two rhesus-monkeys the following parameters were recorded at an interval of 16 min: core body temperature (Tc), skin temperature (Ts), and motor activity (MA). The telemetric Tc sensor was implanted subcutaneously in the right axilla, Ts thermistor was attached to the right ankle, and the MA piezotape was fixed to the inner side of the vest. Circadian rhythms of Tc varied with a period of 24 hours in one monkey and 25 hours in the other. The daily Tc decreased on the average by 0.5 degrees C, Ts fell immediately after launch and remained close to the lower limit throughout the flight. The Ts amplitude decreased 5-fold. Phases of the circadian rhythms of Ts changed and circadian rhythms of MA remained unchanged and equal to 24 hours.

  11. ACUTE CARDIOVASCULAR EFFECTS OF FIREFIGHTING AND ACTIVE COOLING DURING REHABILITATION

    PubMed Central

    Burgess, Jefferey L.; Duncan, Michael D.; Hu, Chengcheng; Littau, Sally R.; Caseman, Delayne; Kurzius-Spencer, Margaret; Davis-Gorman, Grace; McDonagh, Paul F.

    2012-01-01

    Objectives To determine the cardiovascular and hemostatic effects of fire suppression and post-exposure active cooling. Methods Forty-four firefighters were evaluated prior to and after a 12 minute live-fire drill. Next, 50 firefighters undergoing the same drill were randomized to post-fire forearm immersion in 10°C water or standard rehabilitation. Results In the first study, heart rate and core body temperature increased and serum C-reactive protein decreased but there were no significant changes in fibrinogen, sE-selectin or sL-selectin. The second study demonstrated an increase in blood coagulability, leukocyte count, factors VIII and X, cortisol and glucose, and a decrease in plasminogen and sP-selectin. Active cooling reduced mean core temperature, heart rate and leukocyte count. Conclusions Live-fire exposure increased core temperature, heart rate, coagulability and leukocyte count; all except coagulability were reduced by active cooling. PMID:23090161

  12. Correction factor in temperature measurements by optoelectronic systems

    NASA Astrophysics Data System (ADS)

    Bikberdina, N.; Yunusov, R.; Boronenko, M.; Gulyaev, P.

    2017-11-01

    It is often necessary to investigate high temperature fast moving microobjects. If you want to measure their temperature, use optoelectronic measuring systems. Optoelectronic systems are always calibrated over a stationary absolutely black body. One of the problems of pyrometry is that you can not use this calibration to measure the temperature of moving objects. Two solutions are proposed in [1]. This article outlines the first results of validation [2]. An experimentally justified coefficient that allows one to take into account the influence of its motion on the decrease in the video signal of the photosensor in the regime of charge accumulation. The study was partially supported by RFBR in the framework of a research project № 15-42-00106

  13. High-temperature Mechanical Properties and Microstructure of ZrTiHfNbMox (x=0.5, 1.0, 1.5) Refractory High Entropy Alloys

    NASA Astrophysics Data System (ADS)

    Chen, Y. W.; Li, Y. K.; Cheng, X. W.; Wu, C.; Cheng, B.

    2018-05-01

    Refractory high entropy alloys (RHEAs), with excellent properties at high temperature, have several applications. In this work, the ZrTiHfNbMox (x=0.5, 1.0, 1.5) alloys were prepared by arc melting. All these alloys form body centered cubic (BCC) structure without other intermediate phases. The Mo element contributes to the strength of alloys at high temperature, but too much of Mo decreases the plasticity severely and enhances the strength. The ZrTiHfNbMo alloy, whose compressive stress is 1099 MPa at 800° C, is a promising material for high-temperature applications.

  14. Synergism of isothermal regimen and sodium succinate in experimental therapy of barbiturate coma.

    PubMed

    Reinyuk, V L; Shefer, T V; Ivnitskii, Yu Yu

    2006-07-01

    In rats with experimental thiopental coma rectal temperature decreased by 9.4 degrees C, oxygen consumption 5-fold, and arteriovenous Po(2)gradient decreased 2-fold within 3 h; CO(2)accumulated in the blood and mixed type acidosis developed. Administration of sodium succinate under these conditions increased arteriovenous Po(2)gradient and reduced manifestations of metabolic acidosis. Maintenance of normal body temperature (warming) corrected primarily manifestations of respiratory acidosis. Each therapeutic agent reduced inhibition of O(2)consumption by 1/4; animal survival tended to increase from 42 to 50%. Combined use of these treatments potentiated the antiacidotic effect and increased survival to 92%. The authors conclude that hypothermia inhibits the therapeutic effect of succinate in barbiturate coma.

  15. The influence of dietary iodine and enviromental temperature on the activity of mitochondria in liver and kidney.

    PubMed

    Chaiyabutr, N; Jakobsen, P E

    1978-08-01

    It was found that both effect of temperatures and diets influence metabolic changes in rabbits. In animals fed basal and PTU diets (propyl-thiouracil diets) at 34 degrees C for 4 weeks the metabolic response showed a marked reduction in feed intake and body weight, compared with animals fed at normal temperatures. In the animals fed the iodine diet, there was an increase in daily food consumption and weekly body weight gain at 34 degrees C. This indicates a rise in metabolic activity in this case. Studying the activity of kidney mitochondria of the three groups of animals using succinate as a substrate revealed that the P/O ratio tends to decrease in animals kept at 6 degrees C while the RCR value was not altered by changing conditions or produced by the different diets. At the temperature of 6 degrees C both the P/O ratios and the RCR values of liver mitochondria using succinate as a substrate decreased in the group of rabbits fed the basal and iodine diets, but were not significantly different in the group fed the PTU diet. In the experiment on kidney mitochondrial activity using alpha-ketoglutarate as a substrate it was found that both the P/O ratios and the RCR values from animals fed basal and PTU diets at 6 degrees C decreased slightly as compared with animals fed at 20 degrees C and 34 degrees C. In liver mitochondria, using alpha-ketoglutarate as a substrate a significant decrease in the P/O ratio and the RCR value was found for both rabbits fed the basal and the iodine diets at 6 degrees C. In the group of rabbits fed the PTU diet, the P/O ratio also decreased but the fall was not significant. These results suggested that the activity of succinate dehydrogenase in liver mitochondria increases in animals fed basal and iodine diets at 6 degrees C. The enzyme dehydrogenase involved in oxidation of alpha-ketoglutarate which is localized in the outer membrane of mitochondria seems to be affected by different temperatures and diets as compared with succinate dehydrogenase localized in the matrix. The kidney mitochondria activity is less sensitive than that of liver mitochondria. Mitochondrial respiration and phosphorylation due to the tightness of their coupling may respond differently depending on the degree of thyroid activity.

  16. Behaviour of aqueous sulfamethizole solution and temperature effects in cold plasma oxidation treatment.

    PubMed

    Sokolov, Alexander; Louhi-Kultanen, Marjatta

    2018-06-07

    The increase in volume and variety of pharmaceuticals found in natural water bodies has become an increasingly serious environmental problem. The implementation of cold plasma technology, specifically gas-phase pulsed corona discharge (PCD), for sulfamethizole abatement was studied in the present work. It was observed that sulfamethizole is easily oxidized by PCD. The flow rate and pH of the solution have no significant effect on the oxidation. Treatment at low pulse repetition frequency is preferable from the energy efficiency point of view but is more time-consuming. The maximum energy efficiency was around 120 g/kWh at half-life and around 50 g/kWh at the end of the treatment. Increasing the solution temperature from room temperature to 50 °C led to a significant reaction retardation of the process and decrease in energy efficiency. The pseudo-first order reaction rate constant (k 1 ) grows with increase in pulse repetition frequency and does not depend on pH. By contrast, decreasing frequency leads to a reduction of the second order reaction rate constant (k 2 ). At elevated temperature of 50 °C, the k 1 , k 2 values decrease 2 and 2.9 times at 50 pps and 500 pps respectively. Lower temperature of 10 °C had no effect on oxidation efficiency compared with room temperature.

  17. Thermal Stress and Toxicity | Science Inventory | US EPA

    EPA Pesticide Factsheets

    Elevating ambient temperature above thermoneutrality exacerbates toxicity of most air pollutants, insecticides, and other toxic chemicals. On the other hand, safety and toxicity testing of toxicants and drugs is usually performed in mice and rats maintained at subthermoneutral temperatures of —22 °C. When exposed to chemical toxicants under these relatively cool conditions, rodents typically undergo a regulated hypothermic response, characterized by preference for cooler ambient temperatures and controlled reduction in core temperature. Reducing core temperature delays the clearance of most toxicants from the body; however, a mild hypothermia also improves recovery and survival from the toxicant. Raising ambient temperature to thermoneutrality and above increases the rate of clearance of the toxicant but also exacerbates toxicity. Furthermore, heat stress combined with work or exercise is likely to worsen toxicity. Body temperature of large mammals, including humans, does not decrease as much in response to exposure to a toxicant. However, heat stress tan nonetheless worsen toxic outcome in humans through a variety of mechanisms. For example, heat-induced sweating and elevation in skin blood flow accelerates uptake of some insecticides. Epidemiological studies suggest that thermal stress may exacerbate the toxicity of airborne pollutants such as ozone and particulate matter. Overall, translating results of studies in rodents to that of humans is a formidable

  18. Size Effect of the 2-D Bodies on the Geothermal Gradient and Q-A Plot

    NASA Astrophysics Data System (ADS)

    Thakur, M.; Blackwell, D. D.

    2009-12-01

    Using numerical models we have investigated some of the criticisms on the Q-A plot of related to the effect of size of the body on the slope and reduced heat flow. The effects of horizontal conduction depend on the relative difference of radioactivity between the body and the country rock (assuming constant thermal conductivity). Horizontal heat transfer due to different 2-D bodies was numerically studied in order to quantify resulting temperature differences at the Moho and errors on the predication of Qr (reduced heat flow). Using the two end member distributions of radioactivity, the step model (thickness 10km) and exponential model, different 2-D models of horizontal scale (width) ranging from 10 -500 km were investigated. Increasing the horizontal size of the body tends to move observations closer towards the 1-D solution. A temperature difference of 50 oC is produced (for the step model) at Moho between models of width 10 km versus 500 km. In other words the 1-D solution effectively provides large scale averaging in terms of heat flow and temperature field in the lithosphere. For bodies’ ≤ 100 km wide the geotherms at shallower levels are affected, but at depth they converge and are 50 oC lower than that of the infinite plate model temperature. In case of 2-D bodies surface heat flow is decreased due to horizontal transfer of heat, which will shift the Q-A point vertically downward on the Q-A plot. The smaller the size of the body, the more will be the deviation from the 1-D solution and the more will be the movement of Q-A point downwards on a Q-A plot. On the Q-A plot, a limited points of bodies of different sizes with different radioactivity contrast (for the step and exponential model), exactly reproduce the reduced heat flow Qr. Thus the size of the body can affect the slope on a Q-A plot but Qr is not changed. Therefore, Qr ~ 32 mWm-2 obtained from the global terrain average Q-A plot represents the best estimate of stable continental mantle heat flow.

  19. Temperature and body weight affect fouling of pig pens.

    PubMed

    Aarnink, A J A; Schrama, J W; Heetkamp, M J W; Stefanowska, J; Huynh, T T T

    2006-08-01

    Fouling of the solid lying area in pig housing is undesirable for reasons of animal welfare, animal health, environmental pollution, and labor costs. In this study the influence of temperature on the excreting and lying behavior of growing-finishing pigs of different BW (25, 45, 65, 85, or 105 kg) was studied. Ten groups of 5 pigs were placed in partially slatted pens (60% solid concrete, 40% metal-slatted) in climate respiration chambers. After an adaptation period, temperatures were raised daily for 9 d. Results showed that above certain inflection temperatures (IT; mean 22.6 degrees C, SE = 0.78) the number of excretions (relative to the total number of excretions) on the solid floor increased with temperature (mean increase 9.7%/ degrees C, SE = 1.41). Below the IT, the number of excretions on the solid floor was low and not influenced by temperature (mean 13.2%, SE = 3.5). On average, the IT for excretion on the solid floor decreased with increasing BW, from approximately 25 degrees C at 25 kg to 20 degrees C at 100 kg of BW (P < 0.05). Increasing temperature also affected the pattern and postural lying. The temperature at which a maximum number of pigs lay on the slatted floor (i.e., the IT for lying) decreased from approximately 27 degrees C at 25 kg to 23 degrees C at 100 kg of BW (P < 0.001). At increasing temperatures, pigs lay more on their sides and less against other pigs (P < 0.001). Temperature affects lying and excreting behavior of growing-finishing pigs in partially slatted pens. Above certain IT, pen fouling increases linearly with temperature. Inflection temperatures decrease at increasing BW.

  20. Effects of inhaled citronella oil and related compounds on rat body weight and brown adipose tissue sympathetic nerve.

    PubMed

    Batubara, Irmanida; Suparto, Irma H; Sa'diah, Siti; Matsuoka, Ryunosuke; Mitsunaga, Tohru

    2015-03-12

    Citronella oil is one of the most famous Indonesian essential oils, having a distinctive aroma. As with other essential oils, it is crucial to explore the effects of inhalation of this oil. Therefore, the aim of this research was to elucidate the effects of inhalation of citronella oil and its components isolated from Cymbopogon nardus L. (Poaceae), Indonesian local name: "Sereh Wangi" on the body weight, blood lipid profile, and liver function of rats, as well as on the sympathetic nerve activity and temperature of brown adipose tissue. Sprague-Dawley male adult rats fed with high fat diet (HFD) were made to inhale citronella oil, R-(+)-citronellal, and β-citronellol for five weeks, and the observations were compared to those of HFD rats that were not subjected to inhalation treatment. The results showed that inhalation of β-citronellol decreased feed consumption. As a consequence, the percentage of weight gain decreased compared with that in control group and the blood cholesterol level in the β-citronellol group was significantly lowered. Concentration of liver function enzymes were not significantly different among the groups. In conclusion, inhalation of citronella oil, specifically β-citronellol, decreased body weight by decreasing appetite, without any marked changes in liver enzyme concentrations.

  1. TRPA1 mediates the hypothermic action of acetaminophen

    PubMed Central

    Gentry, Clive; Andersson, David A.; Bevan, Stuart

    2015-01-01

    Acetaminophen (APAP) is an effective antipyretic and one of the most commonly used analgesic drugs. Unlike antipyretic non-steroidal anti-inflammatory drugs, APAP elicits hypothermia in addition to its antipyretic effect. Here we have examined the mechanisms responsible for the hypothermic activity of APAP. Subcutaneous, but not intrathecal, administration of APAP elicited a dose dependent decrease in body temperature in wildtype mice. Hypothermia was abolished in mice pre-treated with resiniferatoxin to destroy or defunctionalize peripheral TRPV1-expressing terminals, but resistant to inhibition of cyclo-oxygenases. The hypothermic activity was independent of TRPV1 since APAP evoked hypothermia was identical in wildtype and Trpv1−/− mice, and not reduced by administration of a maximally effective dose of a TRPV1 antagonist. In contrast, a TRPA1 antagonist inhibited APAP induced hypothermia and APAP was without effect on body temperature in Trpa1−/− mice. In a model of yeast induced pyrexia, administration of APAP evoked a marked hypothermia in wildtype and Trpv1−/− mice, but only restored normal body temperature in Trpa1−/− and Trpa1−/−/Trpv1−/− mice. We conclude that TRPA1 mediates APAP evoked hypothermia. PMID:26227887

  2. Plasticity of muscle function in a thermoregulating ectotherm (Crocodylus porosus): biomechanics and metabolism.

    PubMed

    Seebacher, Frank; James, Rob S

    2008-03-01

    Thermoregulation and thermal sensitivity of performance are thought to have coevolved so that performance is optimized within the selected body temperature range. However, locomotor performance in thermoregulating crocodiles (Crocodylus porosus) is plastic and maxima shift to different selected body temperatures in different thermal environments. Here we test the hypothesis that muscle metabolic and biomechanical parameters are optimized at the body temperatures selected in different thermal environments. Hence, we related indices of anaerobic (lactate dehydrogenase) and aerobic (cytochrome c oxidase) metabolic capacities and myofibrillar ATPase activity to the biomechanics of isometric and work loop caudofemoralis muscle function. Maximal isometric stress (force per muscle cross-sectional area) did not change with thermal acclimation, but muscle work loop power output increased with cold acclimation as a result of shorter activation and relaxation times. The thermal sensitivity of myofibrillar ATPase activity decreased with cold acclimation in caudofemoralis muscle. Neither aerobic nor anaerobic metabolic capacities were directly linked to changes in muscle performance during thermal acclimation, although there was a negative relationship between anaerobic capacity and isometric twitch stress in cold-acclimated animals. We conclude that by combining thermoregulation with plasticity in biomechanical function, crocodiles maximize performance in environments with highly variable thermal properties.

  3. Cool echidnas survive the fire.

    PubMed

    Nowack, Julia; Cooper, Christine Elizabeth; Geiser, Fritz

    2016-04-13

    Fires have occurred throughout history, including those associated with the meteoroid impact at the Cretaceous-Palaeogene (K-Pg) boundary that eliminated many vertebrate species. To evaluate the recent hypothesis that the survival of the K-Pg fires by ancestral mammals was dependent on their ability to use energy-conserving torpor, we studied body temperature fluctuations and activity of an egg-laying mammal, the echidna (Tachyglossus aculeatus), often considered to be a 'living fossil', before, during and after a prescribed burn. All but one study animal survived the fire in the prescribed burn area and echidnas remained inactive during the day(s) following the fire and substantially reduced body temperature during bouts of torpor. For weeks after the fire, all individuals remained in their original territories and compensated for changes in their habitat with a decrease in mean body temperature and activity. Our data suggest that heterothermy enables mammals to outlast the conditions during and after a fire by reducing energy expenditure, permitting periods of extended inactivity. Therefore, torpor facilitates survival in a fire-scorched landscape and consequently may have been of functional significance for mammalian survival at the K-Pg boundary. © 2016 The Author(s).

  4. Body temperature modulates the antioxidant and acute immune responses to exercise.

    PubMed

    Mestre-Alfaro, Antonia; Ferrer, Miguel D; Banquells, Montserrat; Riera, Joan; Drobnic, Franchek; Sureda, Antoni; Tur, Josep A; Pons, Antoni

    2012-06-01

    The aim of this study was to determine the effects of whole body heat in combination with exercise on the oxidative stress and acute phase immune response. Nine male endurance-trained athletes voluntarily performed two running bouts of 45 minutes at 75-80% of VO(2max) in a climatic chamber in two conditions: cold and hot humid environment. Leukocyte, neutrophil and basophil counts significantly rose after exercise in both environments; it was significantly greater in the hot environment. Lymphocyte and neutrophil antioxidant enzyme activities and carbonyl index significantly increased or decreased after exercise only in the hot environment, respectively. The lymphocytes expression of catalase, Hsp72 and CuZn-superoxide dismutase was increased in the hot environment and Sirt3 in the cold environment, mainly during recovery. In conclusion, the increased core body temperature results in the acute phase immune response associated to intense exercise and in the immune cell adaptations to counteract the oxidative stress situation.

  5. A Solid State Pyranometer

    NASA Astrophysics Data System (ADS)

    Dumitrescu, Anca Laura; Paulescu, Marius; Ercuta, Aurel

    2015-12-01

    The construction of a solid state device-based pyranometer designated to broadband irradiance measurements is presented in this paper. The device is built on the physical basis that the temperature difference between two bodies of identical shape and external surface area, identically exposed to the incident radiation, but having different absorption and heat transfer coefficients (e.g. one body is painted white and the other is painted black), is proportional to the incident irradiance. This proportionality may be put in evidence if the two bodies consisting of identical arrays of correspondingly painted semiconductor diodes, due to the thermal behaviour of their p-n junction. It is theoretically predicted and experimentally confirmed that the voltage drop across a diode passed through a constant forward current linearly decreases with the temperature of the junction. In other words, a signal proportional to the irradiance of the light source may be obtained via conventional analog electronics. The calibration of the apparatus, as performed by means of a professional device (LP PYRA 03), indicates a good linearity.

  6. Tolerance to the hypothermic but not to the analgesic effect of [D-Trp11]neurotensin during the semichronic intracerebroventricular infusion of the peptide in rats.

    PubMed

    Dubuc, I; Pain, C; Suaudeau, C; Costentin, J

    1994-01-01

    The peptidase-resistant derivative of neurotensin, [D-Trp11]neurotensin, has been continuously infused intracerebroventricularly (75 ng/h) with an osmotic minipump for 10 days. On several days during this infusion the locomotor activity, the body temperature, the food intake, the body weight, and the nociceptive response in the plantar test were measured. A nonsignificant decrease of body temperature and a sustained analgesic effect were observed at each time considered. The response to a test dose of [D-Trp11]neurotensin (75 ng per rat) injected intracerebroventricularly at the 10th day of the chronic infusion revealed a complete tolerance to its hypothermic effect. Thus, it appears that the analgesic effect of [D-Trp11]neurotensin is independent of a hypothermic or an incapacitating effect of the peptide and does not give rise to tolerance after a 10-day continuous administration, in contrast to the hypothermic effect.

  7. Seasonal thermoregulatory responses in mammals.

    PubMed

    Lovegrove, Barry G

    2005-05-01

    This study examined the proportional seasonal winter adjustments of total and mass-specific basal power (watts and watts g-1, respectively), thermal conductance (watts g-1 degrees C-1), non-shivering thermogenesis capacity (ratio of NST/basal power), body temperature ( degrees C), and body mass (g) of mammals. The responses are best summarized for three different body size classes; small mammals (<100 g), intermediate-sized mammals (0.1-10 kg), and large mammals (>10 kg). The principal adjustments of the small mammals center on energy conservation, especially the Dehnel Effect, the winter reduction in body size of as much as 50%, accompanied by reductions in mass-specific basal power. On average, these reductions reduce the total basal power approximately in direct proportion to the mass reductions. Reductions in mass-specific basal power are matched by concomitant reductions in conductance to maintain the setpoint body temperature during winter. The overall thermoregulatory adjustments in small mammals serve to (a) lower overall winter power consumption, (b) maintain the setpoint body temperature, and (c) lower the lower critical limit of thermoneutrality and hence thermoregulatory costs. In intermediate-size mammals, the seasonal response is centered more on increasing thermogenic capacity by increasing basal power and NST capacity, accompanied by predictable and large reductions in conductance. The Dehnel effect is negligible. Very large mammals undergo the largest reductions in total and mass-specific basal power and conductance. However, there are too few data to resolve whether the reductions in total basal power can be attributed to the Dehnel effect, because the moderate decreases in body mass may also be caused by nutritional stress. Apart from the seasonal changes in basal power, these observations are consistent with the predictions of Heldmaier's seasonal acclimatization model.

  8. Seasonal patterns in body temperature of free-living rock hyrax (Procavia capensis).

    PubMed

    Brown, Kelly J; Downs, Colleen T

    2006-01-01

    Rock hyrax (Procavia capensis) are faced with large daily fluctuations in ambient temperature during summer and winter. In this study, peritoneal body temperature of free-living rock hyrax was investigated. During winter, when low ambient temperatures and food supply prevail, rock hyrax maintained a lower core body temperature relative to summer. In winter body temperatures during the day were more variable than at night. This daytime variability is likely a result of body temperatures being raised from basking in the sun. Body temperatures recorded during winter never fell to low levels recorded in previous laboratory studies. During summer ambient temperatures exceeded the thermoneutral zone of the rock hyrax throughout most of the day, while crevice temperatures remained within the thermoneutral zone of rock hyrax. However, in summer variation in core body temperature was small. Minimum and maximum body temperatures did not coincide with minimum and maximum ambient temperatures. Constant body temperatures were also recorded when ambient temperatures reached lethal limits. During summer it is likely that rock hyrax select cooler refugia to escape lethal temperatures and to prevent excessive water loss. Body temperature of rock hyrax recorded in this study reflects the adaptability of this animal to the wide range of ambient temperatures experienced in its natural environment.

  9. Intermittently-induced endotoxaemia has no effect on post-challenge plasma metabolites, but increases body temperature and cortisol concentrations in periparturient dairy cows.

    PubMed

    Zebeli, Q; Sivaraman, S; Dunn, S M; Ametaj, B N

    2013-12-01

    This study evaluated the responses of plasma cortisol, metabolites and body temperature to intermittently-induced endotoxaemia in periparturient cows. Sixteen Holstein cows were randomly allocated to one of the two treatment groups. Cows were infused intravenously either with saline solution (control) or with the same solution containing 3 increasing doses of lipopolysaccharide (LPS) for 3 consecutive weeks around parturition as follows: 0.01 μg LPS/kg body weight (BW) on d -14 and -10 prepartum, 0.05 μg LPS/kg BW on d -7 and -3 prepartum, and 0.1 μg LPS/kg BW on d 3 and 7 postpartum. Blood samples were measured shortly before and in 8 time-points after (up to 6h) the challenges on d -14, -7, 3, and 7 to evaluate the post-challenge plasma profile. Results showed greater concentrations of plasma cortisol, in particular after the second and third LPS challenge. An increase in body temperature was recorded after administration of the greatest LPS dose, but this effect diminished during the very last LPS challenge. A biphasic response of glucose was observed; a linear increase up to 60 min after the second LPS challenge followed by a rapid decrease thereafter. Other plasma variables like lactate, cholesterol, non-esterified fatty acids, and beta-hydroxybutyrate were not affected by treatment. In conclusion, LPS administrations did not notably affect post-challenge metabolic responses in periparturient dairy cows but increased the level of plasma cortisol and the body temperature after the highest LPS challenge. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Effect of initial temperature changes on myocardial enzyme levels and cardiac function in acute myocardial infarction.

    PubMed

    Qian, Yuanyu; Liu, Jie; Ma, Jinling; Meng, Qingyi; Peng, Chaoying

    2014-07-01

    In the present study, the effect of initial body temperature changes on myocardial enzyme levels and cardiac function in acute myocardial infarction (AMI) patients was investigated. A total of 315 AMI patients were enrolled and the mean temperature was calculated based on their body temperature within 24 h of admission to hospital. The patients were divided into four groups according to their normal body temperature: Group A, <36.5°C; group B, ≥36.5°C and <37.0°C; group C, ≥37.0°C and <37.5°C and group D, ≥37.5°C. The levels of percutaneous coronary intervention, myocardial enzymes and troponin T (TNT), as well as cardiac ultrasound images, were analyzed. Statistically significant differences in the quantity of creatine kinase at 12 and 24 h following admission were identified between group A and groups C and D (P<0.01). A significant difference in TNT at 12 h following admission was observed between groups A and D (P<0.05), however, this difference was not observed with groups B and C. The difference in TNT between the groups at 24 h following admission was not statistically significant (P>0.05). Significant differences in lactate dehydrogenase at 12 and 24 h following admission were observed between groups A and D (P<0.05), however, differences were not observed with groups B and C (P>0.05). Significant differences in glutamic-oxaloacetic transaminase at 12 and 24 h following admission were observed between groups A and D (P<0.05), however, differences were not observed in groups B and C (P>0.05). However, no significant differences were identified in cardiac function index between all the groups. Therefore, the results of the present study indicated that AMI patients with low initial body temperatures exhibited decreased levels of myocardial enzymes and TNT. Thus, the observation of an initially low body temperature may be used as a protective factor for AMI and may improve the existing clinical program.

  11. Effects of Green Space and Land Use/Land Cover on Urban Heat Island in a Subtropical Mega-city in China

    NASA Astrophysics Data System (ADS)

    Qiu, G. Y.; Li, X.; Li, H.; Guo, Q.

    2014-12-01

    With the quick expansion of urban in size and population, its urban heat island intensity (UHII, expressed as the temperature difference between urban and rural areas) increased rapidly. However, very few studies could quantitatively reveal the effects of green space and land use/land cover (LULC) on urban thermal environment because of lacking of the detailed measurement. This study focuses on quantifying the effects of green space and LULC on urban Heat Island (UHI) in Shenzhen, a mega subtropical city in China. Extensive measurements (air temperature and humidity) were made by mobile traverse method in a transect of 8 km in length, where a variety of LULC types were included. Measurements were carried out at 2 hours interval for 2 years (totally repeated for 7011 times). According to LULC types, we selected 5 different LULC types for studying, including water body, village in the city, shopping center (commercial area), urban green space (well-vegetated area) and suburb (forest). The main conclusions are obtained as follows: (1) The temperature difference between the 5 different urban landscapes is obvious, i.e. shopping center > village in the city > urban water body > urban green space > suburb; (2) Air temperature and UHII decreases linearly with the increase of green space in urban; (3) Green space and water body in urban have obvious effects to reduce the air temperature by evapotranspiration. Compared to the commercial areas, urban water body can relieve the IUHI by 0.9℃, while the urban green space can relieve the IUHI by 1.57℃. The cooling effect of the urban green space is better than that of the urban water body; (4) Periodic activity of human being has obvious effects on urban air temperature. The UHII on Saturday and Sunday are higher than that from Monday to Friday, respectively higher for 0.65, 0.57, 0.26 and 0.21℃. Thursday and Friday have the minimum air temperature and UHII. These results indicate that increase in urban evapotranspiration by increasing green space could be a useful way to improve urban thermal environment and mitigation of UHI.

  12. Impact of 5-h phase advance on sleep architecture and physical performance in athletes.

    PubMed

    Petit, Elisabeth; Mougin, Fabienne; Bourdin, Hubert; Tio, Grégory; Haffen, Emmanuel

    2014-11-01

    Travel across time zones causes jet lag and is accompanied by deleterious effects on sleep and performance in athletes. These poor performances have been evaluated in field studies but not in laboratory conditions. The purpose of this study was to evaluate, in athletes, the impact of 5-h phase advance on the architecture of sleep and physical performances (Wingate test). In a sleep laboratory, 16 male athletes (age: 22.2 ± 1.7 years, height: 178.3 ± 5.6 cm, body mass: 73.6 ± 7.9 kg) spent 1 night in baseline condition and 2 nights, 1 week apart, in phase shift condition recorded by electroencephalography to calculate sleep architecture variables. For these last 2 nights, the clock was advanced by 5 h. Core body temperature rhythm was assessed continuously. The first night with phase advance decreased total sleep time, sleep efficiency, sleep onset latency, stage 2 of nonrapid eye movement (N2), and rapid eye movement (REM) sleep compared with baseline condition, whereas the second night decreased N2 and increased slow-wave sleep and REM, thus improving the quality of sleep. After phase advance, mean power improved, which resulted in higher lactatemia. Acrophase and bathyphase of temperature occurred earlier and amplitude decreased in phase advance but the period was not modified. These results suggest that a simulated phase shift contributed to the changes in sleep architecture, but did not significantly impair physical performances in relation with early phase adjustment of temperature to the new local time.

  13. Fertility, mortality, milk output, and body thermoregulation of growing Hy-Plus rabbits fed on diets supplemented with multi-enzymes preparation.

    PubMed

    Gado, Hany M; Kholif, Ahmed E; Salem, Abdelfattah Z M; Elghandour, Mona M M; Olafadehan, Oluwarotimi A; Martinez, Maricela A; Al-Momani, Ahmed Q

    2016-10-01

    The aim of this study was to evaluate the fertility status, milk output, mortality, and body thermoregulation of rabbit does as affected by different levels of multi-enzyme extracts (EZ) in their diets. A total of 120 Hy-Plus rabbit does were divided into four comparable experimental groups (n = 30 does per group). Animals of each group were divided in six pens (five animals per pen), and each pen was used as an experimental unit. The first group was kept untreated and fed a commercial diet alone without enzyme extracts (EZ0), while the other groups were fed the same diet but supplemented with 1 (EZ1), 3 (EZ3), and 5 (EZ5) kg/ton of enzyme extracts, respectively. Feeding EZ additive increased (P < 0.05) conception and kindling rates, litter size and weight at birth, and litter size and bunny weight at weaning, with decreasing (P < 0.05) abortion rate. Moreover, total milk yield increased (P < 0.05) with increasing level of enzyme supplementation. Pre-weaning mortality decreased (P < 0.05) with EZ inclusion. Signs of vitality (rectal temperature, skin temperature, earlobe temperature, respiration rate, and pulse rate) were improved with EZ inclusion. For all results, 5 kg EZ/ton of feed was more effective than 1 and 3 kg EZ/ton feed. It can be concluded that supplementation of EZ in rabbit diet decreased mortality rate and enhanced fertility status and milk output.

  14. Early Detection of Infection in Pigs through an Online Monitoring System.

    PubMed

    Martínez-Avilés, M; Fernández-Carrión, E; López García-Baones, J M; Sánchez-Vizcaíno, J M

    2017-04-01

    Late detection of emergency diseases causes significant economic losses for pig producers and governments. As the first signs of animal infection are usually fever and reduced motion that lead to reduced consumption of water and feed, we developed a novel smart system to monitor body temperature and motion in real time, facilitating the early detection of infectious diseases. In this study, carried out within the framework of the European Union research project Rapidia Field, we tested the smart system on 10 pigs experimentally infected with two doses of an attenuated strain of African swine fever. Biosensors and an accelerometer embedded in an eartag captured data before and after infection, and video cameras were used to monitor the animals 24 h per day. The results showed that in 8 of 9 cases, the monitoring system detected infection onset as an increase in body temperature and decrease in movement before or simultaneously with fever detection based on rectal temperature measurement, observation of clinical signs, the decrease in water consumption or positive qPCR detection of virus. In addition, this decrease in movement was reliably detected using automatic analysis of video images therefore providing an inexpensive alternative to direct motion measurement. The system can be set up to alert staff when high fever, reduced motion or both are detected in one or more animals. This system may be useful for monitoring sentinel herds in real time, considerably reducing the financial and logistical costs of periodic sampling and increasing the chances of early detection of infection. © 2015 Blackwell Verlag GmbH.

  15. Optimization of a pain model: effects of body temperature and anesthesia on bladder nociception in mice.

    PubMed

    Sadler, Katelyn E; Stratton, Jarred M; DeBerry, Jennifer J; Kolber, Benedict J

    2013-01-01

    Interstitial cystitis/bladder pain syndrome (IC/BPS) is a debilitating urological condition that is resistant to treatment and poorly understood. To determine novel molecular treatment targets and to elucidate the contribution of the nervous system to IC/BPS, many rodent bladder pain models have been developed. In this study we evaluated the effects of anesthesia induction and temperature variation in a mouse model of bladder pain known as urinary bladder distension (UBD). In this model compressed air is used to distend the bladder to distinct pressures while electrodes record the reflexive visceromotor response (VMR) from the overlying abdominal muscle. Two isoflurane induction models are commonly used before UBD: a short method lasting approximately 30 minutes and a long method lasting approximately 90 minutes. Animals were anesthetized with one of the methods then put through three sets of graded bladder distensions. Distensions performed following the short anesthesia protocol were significantly different from one another despite identical testing parameters; this same effect was not observed when the long anesthesia protocol was used. In order to determine the effect of temperature on VMRs, animals were put through three graded distension sets at 37.5 (normal mouse body temperature), 35.5, and 33.5°C. Distensions performed at 33.5 and 35.5°C were significantly lower than those performed at 37.5°C. Additionally, Western blot analysis revealed significantly smaller increases in spinal levels of phosphorylated extracellular-signal regulated kinase 2 (pERK2) following bladder distension in animals whose body temperature was maintained at 33.5°C as opposed to 37.5°C. These results highlight the significance of the dynamic effects of anesthesia on pain-like changes and the importance of close monitoring of temperature while performing UBD. For successful interpretation of VMRs and translation to human disease, body temperature should be maintained at 37.5°C and isoflurane induction should gradually decrease over the course of 90 minutes.

  16. Effects of low temperature on breathing pattern and ventilatory responses during hibernation in the golden-mantled ground squirrel.

    PubMed

    Webb, Cheryl L; Milsom, William K

    2017-07-01

    During entrance into hibernation in golden-mantled ground squirrels (Callospermophilus lateralis), ventilation decreases as metabolic rate and body temperature fall. Two patterns of respiration occur during deep hibernation. At 7 °C body temperature (T b ), a breathing pattern characterized by episodes of multiple breaths (20.6 ± 1.9 breaths/episode) separated by long apneas or nonventilatory periods (T nvp ) (mean = 11.1 ± 1.2 min) occurs, while at 4 °C T b , a pattern in which breaths are evenly distributed and separated by a relatively short T nvp (0.5 ± 0.05 min) occurs. Squirrels exhibiting each pattern have similar metabolic rates and levels of total ventilation (0.2 and 0.23 ml O 2 /hr/kg and 0.11 and 0.16 ml air/min/kg, respectively). Squirrels at 7 °C T b exhibit a significant hypoxic ventilatory response, while squirrels at 4 °C T b do not respond to hypoxia at any level of O 2 tested. Squirrels at both temperatures exhibit a significant hypercapnic ventilatory response, but the response is significantly reduced in the 4 °C T b squirrels. Carotid body denervation has little effect on the breathing patterns or on the hypercapnic ventilatory responses. It does reduce the magnitude and threshold for the hypoxic ventilatory response. Taken together the data suggest that (1) the fundamental rhythm generator remains functional at low temperatures; (2) the hypercapnic ventilatory response arises from central chemoreceptors that remain functional at very low temperatures; (3) the hypoxic ventilatory response arises from both carotid body and aortic chemoreceptors that are silenced at lower temperatures; and (4) there is a strong correlation between breathing pattern and chemosensitivity.

  17. Optimization of a Pain Model: Effects of Body Temperature and Anesthesia on Bladder Nociception in Mice

    PubMed Central

    Sadler, Katelyn E.; Stratton, Jarred M.; DeBerry, Jennifer J.; Kolber, Benedict J.

    2013-01-01

    Interstitial cystitis/bladder pain syndrome (IC/BPS) is a debilitating urological condition that is resistant to treatment and poorly understood. To determine novel molecular treatment targets and to elucidate the contribution of the nervous system to IC/BPS, many rodent bladder pain models have been developed. In this study we evaluated the effects of anesthesia induction and temperature variation in a mouse model of bladder pain known as urinary bladder distension (UBD). In this model compressed air is used to distend the bladder to distinct pressures while electrodes record the reflexive visceromotor response (VMR) from the overlying abdominal muscle. Two isoflurane induction models are commonly used before UBD: a short method lasting approximately 30 minutes and a long method lasting approximately 90 minutes. Animals were anesthetized with one of the methods then put through three sets of graded bladder distensions. Distensions performed following the short anesthesia protocol were significantly different from one another despite identical testing parameters; this same effect was not observed when the long anesthesia protocol was used. In order to determine the effect of temperature on VMRs, animals were put through three graded distension sets at 37.5 (normal mouse body temperature), 35.5, and 33.5°C. Distensions performed at 33.5 and 35.5°C were significantly lower than those performed at 37.5°C. Additionally, Western blot analysis revealed significantly smaller increases in spinal levels of phosphorylated extracellular-signal regulated kinase 2 (pERK2) following bladder distension in animals whose body temperature was maintained at 33.5°C as opposed to 37.5°C. These results highlight the significance of the dynamic effects of anesthesia on pain-like changes and the importance of close monitoring of temperature while performing UBD. For successful interpretation of VMRs and translation to human disease, body temperature should be maintained at 37.5°C and isoflurane induction should gradually decrease over the course of 90 minutes. PMID:24223980

  18. Body temperature variability (Part 2): masking influences of body temperature variability and a review of body temperature variability in disease.

    PubMed

    Kelly, Gregory S

    2007-03-01

    This is the second of a two-part review on body temperature variability. Part 1 discussed historical and modern findings on average body temperatures. It also discussed endogenous sources of temperature variability, including variations caused by site of measurement; circadian, menstrual, and annual biological rhythms; fitness; and aging. Part 2 reviews the effects of exogenous masking agents - external factors in the environment, diet, or lifestyle that can be a significant source of body temperature variability. Body temperature variability findings in disease states are also reviewed.

  19. From Static Stretching to Dynamic Exercises: Changing the Warm-Up Paradigm

    ERIC Educational Resources Information Center

    Young, Shawna

    2010-01-01

    In the United States, pre-exercise static stretching seems to have become common practice and routine. However, research suggests that it is time for a paradigm shift--that pre-exercise static stretching be replaced with dynamic warm-up exercises. Research indicates that a dynamic warm-up elevates body temperature, decreases muscle and joint…

  20. Thermal sensation during mild hyperthermia is modulated by acute postural change in humans

    NASA Astrophysics Data System (ADS)

    Takeda, Ryosuke; Imai, Daiki; Suzuki, Akina; Ota, Akemi; Naghavi, Nooshin; Yamashina, Yoshihiro; Hirasawa, Yoshikazu; Yokoyama, Hisayo; Miyagawa, Toshiaki; Okazaki, Kazunobu

    2016-12-01

    Thermal sensation represents the primary stimulus for behavioral and autonomic thermoregulation. We assessed whether the sensation of skin and core temperatures for the driving force of behavioral thermoregulation was modified by postural change from the supine (Sup) to sitting (Sit) during mild hyperthermia. Seventeen healthy young men underwent measurements of noticeable increase and decrease (±0.1 °C/s) of skin temperature (thresholds of warm and cold sensation on the skin, 6.25 cm2 of area) at the forearm and chest and of the whole-body warm sensation in the Sup and Sit during normothermia (NT; esophageal temperature (Tes), ˜36.6 °C) and mild hyperthermia (HT; Tes, ˜37.2 °C; lower legs immersion in 42 °C of water). The threshold for cold sensation on the skin at chest was lower during HT than NT in the Sit ( P < 0.05) but not in Sup, and at the forearm was lower during HT than NT in the Sup and further in Sit (both, P < 0.05), with interactive effects of temperature (NT vs. HT) × posture (Sup vs. Sit) (chest, P = 0.08; forearm, P < 0.05). The threshold for warm sensation on the skin at both sites remained unchanged with changes in body posture or temperature. The whole-body warm sensation was higher during HT than NT in both postures and higher in the Sit than Sup during both NT and HT (all, P < 0.05). Thus, thermal sensation during mild hyperthermia is modulated by postural change from supine to sitting to sense lesser cold on the skin and more whole-body warmth.

  1. Thermal sensation during mild hyperthermia is modulated by acute postural change in humans.

    PubMed

    Takeda, Ryosuke; Imai, Daiki; Suzuki, Akina; Ota, Akemi; Naghavi, Nooshin; Yamashina, Yoshihiro; Hirasawa, Yoshikazu; Yokoyama, Hisayo; Miyagawa, Toshiaki; Okazaki, Kazunobu

    2016-12-01

    Thermal sensation represents the primary stimulus for behavioral and autonomic thermoregulation. We assessed whether the sensation of skin and core temperatures for the driving force of behavioral thermoregulation was modified by postural change from the supine (Sup) to sitting (Sit) during mild hyperthermia. Seventeen healthy young men underwent measurements of noticeable increase and decrease (±0.1 °C/s) of skin temperature (thresholds of warm and cold sensation on the skin, 6.25 cm 2 of area) at the forearm and chest and of the whole-body warm sensation in the Sup and Sit during normothermia (NT; esophageal temperature (T es ), ∼36.6 °C) and mild hyperthermia (HT; T es , ∼37.2 °C; lower legs immersion in 42 °C of water). The threshold for cold sensation on the skin at chest was lower during HT than NT in the Sit (P < 0.05) but not in Sup, and at the forearm was lower during HT than NT in the Sup and further in Sit (both, P < 0.05), with interactive effects of temperature (NT vs. HT) × posture (Sup vs. Sit) (chest, P = 0.08; forearm, P < 0.05). The threshold for warm sensation on the skin at both sites remained unchanged with changes in body posture or temperature. The whole-body warm sensation was higher during HT than NT in both postures and higher in the Sit than Sup during both NT and HT (all, P < 0.05). Thus, thermal sensation during mild hyperthermia is modulated by postural change from supine to sitting to sense lesser cold on the skin and more whole-body warmth.

  2. Dietary Supplementation with n-3 Polyunsaturated Fatty Acids Reduces Torpor Use in a Tropical Daily Heterotherm.

    PubMed

    Vuarin, Pauline; Henry, Pierre-Yves; Perret, Martine; Pifferi, Fabien

    Polyunsaturated fatty acids (PUFAs) are involved in a variety of physiological mechanisms, including heterothermy preparation and expression. However, the effects of the two major classes of PUFAs, n-6 and n-3, can differ substantially. While n-6 PUFAs enhance torpor expression, n-3 PUFAs reduce the ability to decrease body temperature. This negative impact of n-3 PUFAs has been revealed in temperate hibernators only. Yet because tropical heterotherms generally experience higher ambient temperature and exhibit higher minimum body temperature during heterothermy, they may not be affected as much by PUFAs as their temperate counterparts. We tested whether n-3 PUFAs constrain torpor use in a tropical daily heterotherm (Microcebus murinus). We expected dietary n-3 PUFA supplementation to induce a reduction in torpor use and for this effect to appear rapidly given the time required for dietary fatty acids to be assimilated into phospholipids. n-3 PUFA supplementation reduced torpor use, and its effect appeared in the first days of the experiment. Within 2 wk, control animals progressively deepened their torpor bouts, whereas supplemented ones never entered torpor but rather expressed only constant, shallow reductions in body temperature. For the rest of the experiment, the effect of n-3 PUFA supplementation on torpor use remained constant through time. Even though supplemented animals also started to express torpor, they exhibited higher minimum body temperature by 2°-3°C and spent two fewer hours in a torpid state per day than control individuals, on average. Our study supports the view that a higher dietary content in n-3 PUFAs negatively affects torpor use in general, not only in cold-acclimated hibernators.

  3. Juvenile stress impairs body temperature regulation and augments anticipatory stress-induced hyperthermia responses in rats.

    PubMed

    Yee, Nicole; Plassmann, Kerstin; Fuchs, Eberhard

    2011-09-01

    Clinical studies have implicated adolescence as an important and vulnerable period during which traumatic experiences can predispose individuals to anxiety and mood disorders. As such, a stress model in juvenile rats (age 27-29 d) was previously developed to investigate the long-term effects of stress exposure during adolescence on behavior and physiology. This paradigm involves exposing rats to different stressors on consecutive days over a 3-day period. Here, we studied the effects of juvenile stress on long-term core body temperature regulation and acute stress-induced hyperthermia (SIH) responses using telemetry. We found no differences between control and juvenile stress rats in anxiety-related behavior on the elevated plus maze, which we attribute to stress associated with surgical implantation of telemetry devices. This highlights the severe impact of surgical stress on the results of subsequent behavioral measurements. Nonetheless, juvenile stress disrupted the circadian rhythmicity of body temperature and decreased circadian amplitude. It also induced chronic hypothermia during the dark phase of the day, when rats are most active. When subjected to acute social defeat stress as adults, juvenile stress had no impact on the SIH response relative to controls. However, 24 h later, juvenile stress rats displayed an elevated SIH response in anticipation of social defeat when re-exposed to the social defeat environment. Taken together, our findings indicate that juvenile stress can induce long-term alterations in body temperature regulation and heighten the increase in temperature associated with anticipation of social defeat. The outcomes of behavioral measurements in these experiments, however, are severely affected by surgical stress. Copyright © 2011 Elsevier Inc. All rights reserved.

  4. Is applicable thermodynamics of negative temperature for living organisms?

    NASA Astrophysics Data System (ADS)

    Atanasov, Atanas Todorov

    2017-11-01

    During organismal development the moment of sexual maturity can be characterizes by nearly maximum basal metabolic rate and body mass. Once the living organism reaches extreme values of the mass and the basal metabolic rate, it reaches near equilibrium thermodynamic steady state physiological level with maximum organismal complexity. Such thermodynamic systems that reach equilibrium steady state level at maximum mass-energy characteristics can be regarded from the prospective of thermodynamics of negative temperature. In these systems the increase of the internal and free energy is accompanied with decrease of the entropy. In our study we show the possibility the living organisms to regard as thermodynamic system with negative temperature

  5. Is phenotypic plasticity a key mechanism for responding to thermal stress in ants?

    NASA Astrophysics Data System (ADS)

    Oms, Cristela Sánchez; Cerdá, Xim; Boulay, Raphaël

    2017-06-01

    Unlike natural selection, phenotypic plasticity allows organisms to respond quickly to changing environmental conditions. However, plasticity may not always be adaptive. In insects, body size and other morphological measurements have been shown to decrease as temperature increases. This relationship may lead to a physiological conflict in ants, where larger body size and longer legs often confer better thermal resistance. Here, we tested the effect of developmental temperature (20, 24, 28 or 32 °C) on adult thermal resistance in the thermophilic ant species Aphaenogaster senilis. We found that no larval development occurred at 20 °C. However, at higher temperatures, developmental speed increased as expected and smaller adults were produced. In thermal resistance tests, we found that ants reared at 28 and 32 °C had half-lethal temperatures that were 2 °C higher than those of ants reared at 24 °C. Thus, although ants reared at higher temperatures were smaller in size, they were nonetheless more thermoresistant. These results show that A. senilis can exploit phenotypic plasticity to quickly adjust its thermal resistance to local conditions and that this process is independent of morphological adaptations. This mechanism may be particularly relevant given current rapid climate warming.

  6. Ultrathin body GaSb-on-insulator p-channel metal-oxide-semiconductor field-effect transistors on Si fabricated by direct wafer bonding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yokoyama, Masafumi, E-mail: yokoyama@mosfet.t.u-tokyo.ac.jp; Takenaka, Mitsuru; Takagi, Shinichi

    2015-02-16

    We have realized ultrathin body GaSb-on-insulator (GaSb-OI) on Si wafers by direct wafer bonding technology using atomic-layer deposition (ALD) Al{sub 2}O{sub 3} and have demonstrated GaSb-OI p-channel metal-oxide-semiconductor field-effect transistors (p-MOSFETs) on Si. A 23-nm-thick GaSb-OI p-MOSFET exhibits the peak effective mobility of ∼76 cm{sup 2}/V s. We have found that the effective hole mobility of the thin-body GaSb-OI p-MOSFETs decreases with a decrease in the GaSb-OI thickness or with an increase in Al{sub 2}O{sub 3} ALD temperature. The InAs passivation of GaSb-OI MOS interfaces can enhance the peak effective mobility up to 159 cm{sup 2}/V s for GaSb-OI p-MOSFETs with themore » 20-nm-thick GaSb layer.« less

  7. Hydraulic fracturing and permeability enhancement in granite from subcritical/brittle to supercritical/ductile conditions

    NASA Astrophysics Data System (ADS)

    Watanabe, Noriaki; Egawa, Motoki; Sakaguchi, Kiyotoshi; Ishibashi, Takuya; Tsuchiya, Noriyoshi

    2017-06-01

    Hydraulic fracturing experiments were conducted at 200-450°C by injecting water into cylindrical granite samples containing a borehole at an initial effective confining pressure of 40 MPa. Intensive fracturing was observed at all temperatures, but the fracturing characteristics varied with temperature, perhaps due to differences in the water viscosity. At the lowest considered temperature (200°C), fewer fractures propagated linearly from the borehole, and the breakdown pressure was twice the confining pressure. However, these characteristics disappeared with increasing temperature; the fracture pattern shifted toward the formation of a greater number of shorter fractures over the entire body of the sample, and the breakdown pressure decreased greatly. Hydraulic fracturing significantly increased the permeability at all temperatures, and this permeability enhancement was likely to form a productive geothermal reservoir even at the highest considered temperature, which exceeded both the brittle-ductile transition temperature of granite and the critical temperature of water.

  8. Starch granule formation and protein deposition in wheat (Triticum aestivum L.) starchy endosperm cells is altered by high temperature during grain fill

    NASA Astrophysics Data System (ADS)

    Hurkman, William J.; Wood, Delilah F.

    2010-06-01

    High temperatures during wheat grain fill decrease starch and protein levels, adversely affecting wheat yield and flour quality. To determine the effect of high temperature on starchy endosperm cell development, grain (Triticum aestivum L. 'Butte 86') was produced under a 24/17°C or 37/28°C day/night regimen imposed from flowering to maturity and starch and protein deposition examined using scanning electron microscopy. The high temperature regimen shortened the duration of grain fill from 40 to 18 days. Under the 37/28°C regimen, A- and B-type starch granules decreased in size. A-type starch granules also exhibited pitting, suggesting enhanced action of starch degradative enzymes. Under both temperature regimens, protein bodies originated early in development and coalesced during mid to late development to form a continuous protein matrix surrounding the starch granules. Under the 37/28°C regimen, the proportion of protein matrix increased in endosperm cells of mature grain. Taken together, the changes in starch granule number and size and in protein matrix amount provide clues for understanding how high temperature during grain fill can affect end use properties of wheat flour.

  9. Life-History Evolution on Tropidurinae Lizards: Influence of Lineage, Body Size and Climate

    PubMed Central

    Brandt, Renata; Navas, Carlos A.

    2011-01-01

    The study of life history variation is central to the evolutionary theory. In many ectothermic lineages, including lizards, life history traits are plastic and relate to several sources of variation including body size, which is both a factor and a life history trait likely to modulate reproductive parameters. Larger species within a lineage, for example tend to be more fecund and have larger clutch size, but clutch size may also be influenced by climate, independently of body size. Thus, the study of climatic effects on lizard fecundity is mandatory on the current scenario of global climatic change. We asked how body and clutch size have responded to climate through time in a group of tropical lizards, the Tropidurinae, and how these two variables relate to each other. We used both traditional and phylogenetic comparative methods. Body and clutch size are variable within Tropidurinae, and both traits are influenced by phylogenetic position. Across the lineage, species which evolved larger size produce more eggs and neither trait is influenced by temperature components. A climatic component of precipitation, however, relates to larger female body size, and therefore seems to exert an indirect relationship on clutch size. This effect of precipitation on body size is likely a correlate of primary production. A decrease in fecundity is expected for Tropidurinae species on continental landmasses, which are predicted to undergo a decrease in summer rainfall. PMID:21603641

  10. Effect of ethanol, dry extract and reducing sugars on density and viscosity of Brazilian red wines.

    PubMed

    Neto, Flávia S P P; de Castilhos, Maurício B M; Telis, Vânia R N; Telis-Romero, Javier

    2015-05-01

    Density and viscosity are properties that exert great influence on the body of wines. The present work aimed to evaluate the influence of the alcoholic content, dry extract, and reducing sugar content on density and viscosity of commercial dry red wines at different temperatures. The rheological assays were carried out on a controlled stress rheometer, using concentric cylinder geometry at seven temperatures (2, 8, 14, 16, 18, 20 and 26 °C). Wine viscosity decreased with increasing temperature and density was directly related to the wine alcohol content, whereas viscosity was closely linked to the dry extract. Reducing sugars did not influence viscosity or density. Wines produced from Italian grapes were presented as full-bodied with higher values for density and viscosity, which was linked to the higher alcohol content and dry extract, respectively. The results highlighted the major effects of certain physicochemical properties on the physical properties of wines, which in turn is important for guiding sensory assessments. © 2014 Society of Chemical Industry.

  11. Relationship between alertness, performance, and body temperature in humans.

    PubMed

    Wright, Kenneth P; Hull, Joseph T; Czeisler, Charles A

    2002-12-01

    Body temperature has been reported to influence human performance. Performance is reported to be better when body temperature is high/near its circadian peak and worse when body temperature is low/near its circadian minimum. We assessed whether this relationship between performance and body temperature reflects the regulation of both the internal biological timekeeping system and/or the influence of body temperature on performance independent of circadian phase. Fourteen subjects participated in a forced desynchrony protocol allowing assessment of the relationship between body temperature and performance while controlling for circadian phase and hours awake. Most neurobehavioral measures varied as a function of internal biological time and duration of wakefulness. A number of performance measures were better when body temperature was elevated, including working memory, subjective alertness, visual attention, and the slowest 10% of reaction times. These findings demonstrate that an increased body temperature, associated with and independent of internal biological time, is correlated with improved performance and alertness. These results support the hypothesis that body temperature modulates neurobehavioral function in humans.

  12. Relationship between alertness, performance, and body temperature in humans

    NASA Technical Reports Server (NTRS)

    Wright, Kenneth P Jr; Hull, Joseph T.; Czeisler, Charles A.

    2002-01-01

    Body temperature has been reported to influence human performance. Performance is reported to be better when body temperature is high/near its circadian peak and worse when body temperature is low/near its circadian minimum. We assessed whether this relationship between performance and body temperature reflects the regulation of both the internal biological timekeeping system and/or the influence of body temperature on performance independent of circadian phase. Fourteen subjects participated in a forced desynchrony protocol allowing assessment of the relationship between body temperature and performance while controlling for circadian phase and hours awake. Most neurobehavioral measures varied as a function of internal biological time and duration of wakefulness. A number of performance measures were better when body temperature was elevated, including working memory, subjective alertness, visual attention, and the slowest 10% of reaction times. These findings demonstrate that an increased body temperature, associated with and independent of internal biological time, is correlated with improved performance and alertness. These results support the hypothesis that body temperature modulates neurobehavioral function in humans.

  13. Effect of a phase I Coxiella burnetii inactivated vaccine on body temperature and milk yield in dairy cows.

    PubMed

    Schulze, L S-Ch; Borchardt, S; Ouellet, V; Heuwieser, W

    2016-01-01

    Q fever is a zoonotic disease caused by Coxiella burnetii. The pathogen is prevalent in ruminants (goats, sheep, cows), which are the main sources of human infection. In the cattle industry around the world, animal (15 to 20%) and herd (38 to 72%) level prevalences of C. burnetii are high. Vaccination of ruminants against Q fever is considered important to prevent spreading of the disease and risk of infection in humans. However, published information on side effects of the Q fever vaccination under field conditions is limited for cows. The objective of this study was to investigate the effect of the phase I C. burnetii inactivated vaccine Coxevac on body temperature and milk yield in dairy cows. In 2 experiments, a total of 508 cows were randomly divided into 2 groups to determine the effect of first vaccination on body temperature and milk yield. The C. burnetii serostatus of all cows was tested before vaccination with an indirect ELISA. The first experiment took place in the teaching and research barn of the Clinic of Animal Reproduction at the Freie Universität Berlin. Temperature was measured vaginally in 10 cows in a crossover design. The second experiment was conducted on a commercial dairy farm. Milk yield of 498 cows was measured 1 wk before and 1 wk after vaccination. In a subset of 41 cows, temperature was measured rectally. In both experiments, body temperature increased significantly after vaccination (1.0 ± 0.9°C and 0.7 ± 0.8°C). A significant difference was also found in body temperature between vaccinated and control cows. Thirty percent of the vaccinated animals in experiment 1 showed reversible swelling at the injection site as a reaction to the vaccination. The results indicate that vaccination against Q fever causes a transient increase of body temperature that peaks in the first 12 to 24h and declines after that. In experiment 2, vaccinated cows (26.8 ± 0.39 kg/d) produced significantly less milk than did control cows (28.2 ± 0.44 kg/d) 7d after first vaccination. The cumulative milk loss after first vaccination was influenced by an interaction between C. burnetii serostatus and average milk yield 7d before first vaccination. This was considered as part of the physiological immune response. Three out of 10 vaccinated animals in experiment 1 showed painful swelling of the skin at the injection site, which had a maximum size of 14.0 × 14.0 × 1.1cm. In conclusion, a transient increase of body temperature and a decrease in milk yield is prevalent after Coxevac vaccination. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  14. Body temperature patterns as a predictor of hospital-acquired sepsis in afebrile adult intensive care unit patients: a case-control study.

    PubMed

    Drewry, Anne M; Fuller, Brian M; Bailey, Thomas C; Hotchkiss, Richard S

    2013-09-12

    Early treatment of sepsis improves survival, but early diagnosis of hospital-acquired sepsis, especially in critically ill patients, is challenging. Evidence suggests that subtle changes in body temperature patterns may be an early indicator of sepsis, but data is limited. The aim of this study was to examine whether abnormal body temperature patterns, as identified by visual examination, could predict the subsequent diagnosis of sepsis in afebrile critically ill patients. Retrospective case-control study of 32 septic and 29 non-septic patients in an adult medical and surgical ICU. Temperature curves for the period starting 72 hours and ending 8 hours prior to the clinical suspicion of sepsis (for septic patients) and for the 72-hour period prior to discharge from the ICU (for non-septic patients) were rated as normal or abnormal by seven blinded physicians. Multivariable logistic regression was used to compare groups in regard to maximum temperature, minimum temperature, greatest change in temperature in any 24-hour period, and whether the majority of evaluators rated the curve to be abnormal. Baseline characteristics of the groups were similar except the septic group had more trauma patients (31.3% vs. 6.9%, p = .02) and more patients requiring mechanical ventilation (75.0% vs. 41.4%, p = .008). Multivariable logistic regression to control for baseline differences demonstrated that septic patients had significantly larger temperature deviations in any 24-hour period compared to control patients (1.5°C vs. 1.1°C, p = .02). An abnormal temperature pattern was noted by a majority of the evaluators in 22 (68.8%) septic patients and 7 (24.1%) control patients (adjusted OR 4.43, p = .017). This resulted in a sensitivity of 0.69 (95% CI [confidence interval] 0.50, 0.83) and specificity of 0.76 (95% CI 0.56, 0.89) of abnormal temperature curves to predict sepsis. The median time from the temperature plot to the first culture was 9.40 hours (IQR [inter-quartile range] 8.00, 18.20) and to the first dose of antibiotics was 16.90 hours (IQR 8.35, 34.20). Abnormal body temperature curves were predictive of the diagnosis of sepsis in afebrile critically ill patients. Analysis of temperature patterns, rather than absolute values, may facilitate decreased time to antimicrobial therapy.

  15. Body temperature patterns as a predictor of hospital-acquired sepsis in afebrile adult intensive care unit patients: a case-control study

    PubMed Central

    2013-01-01

    Introduction Early treatment of sepsis improves survival, but early diagnosis of hospital-acquired sepsis, especially in critically ill patients, is challenging. Evidence suggests that subtle changes in body temperature patterns may be an early indicator of sepsis, but data is limited. The aim of this study was to examine whether abnormal body temperature patterns, as identified by visual examination, could predict the subsequent diagnosis of sepsis in afebrile critically ill patients. Methods Retrospective case-control study of 32 septic and 29 non-septic patients in an adult medical and surgical ICU. Temperature curves for the period starting 72 hours and ending 8 hours prior to the clinical suspicion of sepsis (for septic patients) and for the 72-hour period prior to discharge from the ICU (for non-septic patients) were rated as normal or abnormal by seven blinded physicians. Multivariable logistic regression was used to compare groups in regard to maximum temperature, minimum temperature, greatest change in temperature in any 24-hour period, and whether the majority of evaluators rated the curve to be abnormal. Results Baseline characteristics of the groups were similar except the septic group had more trauma patients (31.3% vs. 6.9%, p = .02) and more patients requiring mechanical ventilation (75.0% vs. 41.4%, p = .008). Multivariable logistic regression to control for baseline differences demonstrated that septic patients had significantly larger temperature deviations in any 24-hour period compared to control patients (1.5°C vs. 1.1°C, p = .02). An abnormal temperature pattern was noted by a majority of the evaluators in 22 (68.8%) septic patients and 7 (24.1%) control patients (adjusted OR 4.43, p = .017). This resulted in a sensitivity of 0.69 (95% CI [confidence interval] 0.50, 0.83) and specificity of 0.76 (95% CI 0.56, 0.89) of abnormal temperature curves to predict sepsis. The median time from the temperature plot to the first culture was 9.40 hours (IQR [inter-quartile range] 8.00, 18.20) and to the first dose of antibiotics was 16.90 hours (IQR 8.35, 34.20). Conclusions Abnormal body temperature curves were predictive of the diagnosis of sepsis in afebrile critically ill patients. Analysis of temperature patterns, rather than absolute values, may facilitate decreased time to antimicrobial therapy. PMID:24028682

  16. Warm-up Practices in Elite Boxing Athletes: Impact on Power Output.

    PubMed

    Cunniffe, Brian; Ellison, Mark; Loosemore, Mike; Cardinale, Marco

    2017-01-01

    Cunniffe, B, Ellison, M, Loosemore, M, and Cardinale, M. Warm-up practices in elite boxing athletes: Iimpact on power output. J Strength Cond Res 31(1): 95-105, 2017-This study evaluated the performance impact of routine warm-up strategies in elite Olympic amateur boxing athletes and physiological implications of the time gap (GAP) between warm-up and boxing activity. Six male boxers were assessed while performing standardized prefight warm-up routines. Core and skin temperature measurements (Tcore and Tskin), heart rate, and upper- and lower-body power output (PO) were assessed before and after warm-up, during a 25-minutes GAP and after 3 × 2 minutes rounds of sparring. Reflected temperature (Tc) was also determined using high-resolution thermal images at fixed time-points to explore avenues for heat loss. Despite individual differences in warm-up duration (range 7.4-18.5 minutes), increases in Tcore and Tskin occurred (p ≤ 0.05). Corresponding increases (4.8%; p ≤ 0.05) in countermovement jump (CMJ) height and upward-rightward shifts in upper-body force-velocity and power-velocity curves were observed. Athletes remained inactive during the 25-minutes GAP with a gradual and significant increase in Tc occurring by the end of GAP suggesting the likelihood of heat loss. Decreases in CMJ height and upper-body PO were observed after 15 minutes and 25 minutes GAP (p ≤ 0.05). By the end of GAP period, all performance variables had returned to pre-warm-up values. Results suggest routine warm-ups undertaken by elite boxers have acute effects on power-generating capacity. Gradual decreases in performance variables are evident with inactivity and seem related to alterations in body temperature. Considering the constraints of major competitions and time spent in air conditioned holding areas before fights, practitioners should be aware of the potential of nullifying the warm-up effects.

  17. Effects of airflow on body temperatures and sleep stages in a warm humid climate

    NASA Astrophysics Data System (ADS)

    Tsuzuki, Kazuyo; Okamoto-Mizuno, Kazue; Mizuno, Koh; Iwaki, Tatsuya

    2008-03-01

    Airflow is an effective way to increase heat loss—an ongoing process during sleep and wakefulness in daily life. However, it is unclear whether airflow stimulates cutaneous sensation and disturbs sleep or reduces the heat load and facilitates sleep. In this study, 17 male subjects wearing short pyjamas slept on a bed with a cotton blanket under two of the following conditions: (1) air temperature (Ta) 26°C, relative humidity (RH) 50%, and air velocity (V) 0.2 m s-1; (2) Ta 32°C, RH 80%, V 1.7 m s-1; (3) Ta 32°C; RH 80%, V 0.2 m s-1 (hereafter referred to as 26/50, 32/80 with airflow, and 32/80 with still air, respectively). Electroencephalograms, electrooculograms, and mental electromyograms were obtained for all subjects. Rectal (Tre) and skin (Ts) temperatures were recorded continuously during the sleep session, and body-mass was measured before and after the sleep session. No significant differences were observed in the duration of sleep stages between subjects under the 26/50 and 32/80 with airflow conditions; however, the total duration of wakefulness decreased significantly in subjects under the 32/80 with airflow condition compared to that in subjects under the 32/80 with still air condition ( P < 0.05). Tre, Tsk, Ts, and body-mass loss under the 32/80 with airflow condition were significantly higher compared to those under the 26/50 condition, and significantly lower than those under the 32/80 with still air condition ( P < 0.05). An alleviated heat load due to increased airflow was considered to exist between the 32/80 with still air and the 26/50 conditions. Airflow reduces the duration of wakefulness by decreasing Tre, Tsk, Ts, and body-mass loss in a warm humid condition.

  18. Tissue and external insulation estimates and their effects on prediction of energy requirements and of heat stress.

    PubMed

    Berman, A

    2004-05-01

    Published data were used to develop improved equations to predict tissue insulation (TI) and external insulation (EI) and their effects on maintenance requirements of Holstein cattle. These are used to calculate lower critical temperature (LCT), energy cost of exposure to temperatures below LCT, and excess heat accumulating in the body at temperatures above LCT. The National Research Council classifies TI by age groups and body condition score; and in the EI equation air velocity effects are linear and coat insulation values are derived from beef animals in cold climates. These lead to low LCT values, which are not compatible with known effects of environment on the performance of Holsteins in warm climates. Equations were developed to present TI as a function of body weight, improving prediction of TI for animals of similar age but differing in body weight. An equation was developed to predict rate of decrease of TI at ambient temperatures above LCT. Nonlinear equations were developed that account for wind effects as boundary layer insulation effects dependent on body weight and air velocity. Published data were used to develop adjustments for hair coat effects on EI in Holstein cows. While by NRC equations, wind has negligible effects on heat loss, the recalculated effects of air velocity on heat loss were consistent with published effects of forced ventilation on the responses of the Holstein cow. The derived LCT was higher by 10 to 20 degrees C than that calculated by NRC (2001) and accounted for known Holstein performance in temperate and warm climates. These equations pointed to tentative significant effects of cold (-10 degrees C) on energy requirements (7 Mcal/d) further increased by 1 m/s wind (15 Mcal/d), even in high-producing cows. Needs for increased heat dissipation and estimating heat stress development at ambient temperatures above the LCT are predicted. These equations can be used to revise NRC equations for heat exchange.

  19. Exercise modality modulates body temperature regulation during exercise in uncompensable heat stress.

    PubMed

    Schlader, Zachary J; Raman, Aaron; Morton, R Hugh; Stannard, Stephen R; Mündel, Toby

    2011-05-01

    This study evaluated exercise modality [i.e. self-paced (SP) or fixed-intensity (FI) exercise] as a modulator of body temperature regulation under uncompensable heat stress. Eight well-trained male cyclists completed (work-matched) FI and SP cycling exercise bouts in a hot (40.6 ± 0.2°C) and dry (relative humidity 23 ± 3%) environment estimated to elicit 70% of [Formula: see text]O(2)max. Exercise intensity (i.e. power output) decreased over time in SP, which resulted in longer exercise duration (FI 20.3 ± 3.4 min, SP 23.2 ± 4.1 min). According to the heat strain index, the modification of exercise intensity in SP improved the compensability of the thermal environment which, relative to FI, was likely a result of the reductions in metabolic heat production (i.e. [Formula: see text]O(2)). Consequently, the rate of rise in core body temperature was higher in FI (0.108 ± 0.020°C/min) than in SP (0.082 ± 0.016°C/min). Interestingly, cardiac output, stroke volume, and heart rate during exercise were independent of exercise modality. However, core body temperature (FI 39.4 ± 0.3°C, SP 39.1 ± 0.4°C), blood lactate (FI 2.9 ± 0.8 mmol/L, SP 2.3 ± 0.7 mmol/L), perceived exertion (FI 18 ± 2, SP 16 ± 2), and physiological strain (FI 9.1 ± 0.9, SP 8.3 ± 1.1) were all higher in FI compared to SP at exhaustion/completion. These findings indicate that, when exercise is SP, behavioral modification of metabolic heat production improves the compensability of the thermal environment and reduces thermoregulatory strain. Therefore, under uncompensable heat stress, exercise modality modulates body temperature regulation.

  20. Ecogeographical associations between climate and human body composition: analyses based on anthropometry and skinfolds.

    PubMed

    Wells, Jonathan C K

    2012-02-01

    In the 19th century, two "ecogeographical rules" were proposed hypothesizing associations of climate with mammalian body size and proportions. Data on human body weight and relative leg length support these rules; however, it is unknown whether such associations are attributable to lean tissue (the heat-producing component) or fat (energy stores). Data on weight, height, and two skinfold thickness were obtained from the literature for 137 nonindustrialized populations, providing 145 male and 115 female individual samples. A variety of indices of adiposity and lean mass were analyzed. Preliminary analyses indicated secular increases in skinfolds in men but not women, and associations of age and height with lean mass in both sexes. Decreasing annual temperature was associated with increasing body mass index (BMI), and increasing triceps but not subscapular skinfold. After adjusting for skinfolds, decreasing temperature remained associated with increasing BMI. These results indicate that colder environments favor both greater peripheral energy stores, and greater lean mass. Contrasting results for triceps and subscapular skinfolds might be due to adaptive strategies either constraining central adiposity in cold environments to reduce cardiovascular risk, or favoring central adiposity in warmer environments to maintain energetic support of the immune system. Polynesian populations were analyzed separately and contradicted all of the climate trends, indicating support for the hypothesis that they are cold-adapted despite occupying a tropical region. It is unclear whether such associations emerge through natural selection or through trans-generational and life-course plasticity. These findings nevertheless aid understanding of the wide variability in human physique and adiposity. Copyright © 2011 Wiley Periodicals, Inc.

  1. Little effect of climate change on body size of herbivorous beetles.

    PubMed

    Baar, Yuval; Friedman, Ariel Leib Leonid; Meiri, Shai; Scharf, Inon

    2018-04-01

    Ongoing climate change affects various aspects of an animal's life, with important effects on distribution range and phenology. The relationship between global warming and body size changes in mammals and birds has been widely studied, with most findings indicating a decline in body size over time. Nevertheless, little data exist on similar size change patterns of invertebrates in general and insects in particular, and it is unclear whether insects should decrease in size or not with climate warming. We measured over 4000 beetle specimens, belonging to 29 beetle species in 8 families, collected in Israel during the last 100 years. The sampled species are all herbivorous. We examined whether beetle body size had changed over the years, while also investigating the relationships between body size and annual temperature, precipitation, net primary productivity (NPP) at the collection site and collection month. None of the environmental variables, including the collection year, was correlated with the size of most of the studied beetle species, while there were strong interactions of all variables with species. Our results, though mostly negative, suggest that the effect of climate change on insect body size is species-specific and by no means a general macro-ecological rule. They also suggest that the intrapopulation variance in body size of insects collected as adults in the field is large enough to conceal intersite environmental effects on body size, such as the effect of temperature and NPP. © 2016 Institute of Zoology, Chinese Academy of Sciences.

  2. Human local and total heat losses in different temperature.

    PubMed

    Wang, Lijuan; Yin, Hui; Di, Yuhui; Liu, Yanfeng; Liu, Jiaping

    2016-04-01

    This study investigates the effects of operative temperature on the local and total heat losses, and the relationship between the heat loss and thermal sensation. 10 local parts of head, neck, chest, abdomen, upper arm, forearm, hand, thigh, leg and foot are selected. In all these parts, convection, radiation, evaporation, respiration, conduction and diffusion heat losses are analyzed when operative temperature is 23, 28, 33 and 37 °C. The local heat losses show that the radiation and convection heat losses are mainly affected by the area of local body, and the heat loss of the thigh is the most in the ten parts. The evaporation heat loss is mainly affected by the distribution of sweat gland, and the heat loss of the chest is the most. The total heat loss of the local body shows that in low temperature, the thigh, leg and chest have much heat loss, while in high temperature, the chest, abdomen, thigh and head have great heat loss, which are useful for clothing design. The heat losses of the whole body show that as the operative temperature increases, the radiation and convection heat losses decrease, the heat losses of conduction, respiration, and diffusion are almost constant, and the evaporation heat loss increases. By comparison, the heat loss ratios of the radiation, convection and sweat evaporation, are in agreement with the previous researches. At last, the formula about the heat loss ratio of convection and radiation is derived. It's useful for thermal comfort evaluation and HVAC (heating, ventilation and air conditioning) design. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Behavioral and autonomic responses to acute restraint stress are segregated within the lateral septal area of rats.

    PubMed

    Reis, Daniel G; Scopinho, América A; Guimarães, Francisco S; Corrêa, Fernando M A; Resstel, Leonardo B M

    2011-01-01

    The Lateral Septal Area (LSA) is involved with autonomic and behavior responses associated to stress. In rats, acute restraint (RS) is an unavoidable stress situation that causes autonomic (body temperature, mean arterial pressure (MAP) and heart rate (HR) increases) and behavioral (increased anxiety-like behavior) changes in rats. The LSA is one of several brain regions that have been involved in stress responses. The aim of the present study was to investigate if the neurotransmission blockade in the LSA would interfere in the autonomic and behavioral changes induced by RS. Male Wistar rats with bilateral cannulae aimed at the LSA, an intra-abdominal datalogger (for recording internal body temperature), and an implanted catheter into the femoral artery (for recording and cardiovascular parameters) were used. They received bilateral microinjections of the non-selective synapse blocker cobalt chloride (CoCl(2), 1 mM/ 100 nL) or vehicle 10 min before RS session. The tail temperature was measured by an infrared thermal imager during the session. Twenty-four h after the RS session the rats were tested in the elevated plus maze (EPM). Inhibition of LSA neurotransmission reduced the MAP and HR increases observed during RS. However, no changes were observed in the decrease in skin temperature and increase in internal body temperature observed during this period. Also, LSA inhibition did not change the anxiogenic effect induced by RS observed 24 h later in the EPM. The present results suggest that LSA neurotransmission is involved in the cardiovascular but not the temperature and behavioral changes induced by restraint stress.

  4. Thermoregulation in the lizard Psammodromus algirus along a 2200-m elevational gradient in Sierra Nevada (Spain)

    NASA Astrophysics Data System (ADS)

    Zamora-Camacho, Francisco Javier; Reguera, Senda; Moreno-Rueda, Gregorio

    2016-05-01

    Achieving optimal body temperature maximizes animal fitness. Since ambient temperature may limit ectotherm thermal performance, it can be constrained in too cold or hot environments. In this sense, elevational gradients encompass contrasting thermal environments. In thermally pauperized elevations, ectotherms may either show adaptations or suboptimal body temperatures. Also, reproductive condition may affect thermal needs. Herein, we examined different thermal ecology and physiology capabilities of the lizard Psammodromus algirus along a 2200-m elevational gradient. We measured field (Tb) and laboratory-preferred (Tpref) body temperatures of lizards with different reproductive conditions, as well as ambient (Ta) and copper-model operative temperature (Te), which we used to determine thermal quality of the habitat (de), accuracy (db), and effectiveness of thermoregulation (de-db) indexes. We detected no Tb trend in elevation, while Ta constrained Tb only at high elevations. Moreover, while Ta decreased more than 7 °C with elevation, Tpref dropped only 0.6 °C, although significantly. Notably, low-elevation lizards faced excess temperature (Te > Tpref). Notably, de was best at middle elevations, followed by high elevations, and poorest at low elevations. Nonetheless, regarding microhabitat, high-elevation de was more suitable in sun-exposed microhabitats, which may increase exposition to predators, and at midday, which may limit daily activity. As for gender, db and de-db were better in females than in males. In conclusion, P. algirus seems capable to face a wide thermal range, which probably contributes to its extensive corology and makes it adaptable to climate changes.

  5. Effects of gravity on the circadian period in rats

    NASA Technical Reports Server (NTRS)

    Murakami, Dean M.; Demaria, Victor H.; Fuller, Charles A.

    1991-01-01

    The effect of increased gravity force on the circadian period of body temperature and activity of rats was investigated using rats implanted with a small radio telemetry device and, after a 2-week recovery and a 3-week control period at 1G, rotated at for 4 weeks at a constant 2G field in a 18-ft-diam centrifuge. Measurements of the mean freerunning period of the temperature and activity rhythms after 10 days showed that the exposure to 2G led to a functional separation of the pacemakers that regulate the activity and the temperature in the animals. Each pacemaker reacted differently: the activity period increased and the temperature period decreased. By the third or the fourth week, the activity and the temperature periods have returned to 1G control levels.

  6. Malate dehydrogenase isozymes in the longnose dace, Rhinichthys cataractae.

    PubMed

    Starzyk, R M; Merritt, R B

    1980-08-01

    The interspecies homology of dace supernatant (A2,AB,B2) and mitochondrial (C2) malate dehydrogenase isozymes has been established through cell fractionation and tissue distribution studies. Isolated supernatant malate dehydrogenase (s-MDH) isozymes show significant differences in Michaelis constants for oxaloacetate and in pH optima. Shifts in s-MDH isozyme pH optima with temperature may result in immediate compensation for increase in ectotherm body pH with decrease in temperature, but duplicate s-MDH isozymes are probably maintained through selection for tissue specific regulation of metabolism.

  7. Phonon thermodynamics of iron and cementite

    NASA Astrophysics Data System (ADS)

    Mauger, Lisa Mary

    The vibrational properties of materials are essential to understanding material stability and thermodynamics. In this thesis I outline vibrational thermodynamic models and the experimental tools that provide evidence on phonon behavior. The introductory section discusses the history of metallurgy and thermodynamic theory, with an emphasis on the role of iron and cementite, two important components of steels. The thermodynamic framework for understanding vibrational material behavior is provided alongside the growing body of experimental and computational tools that provide physical insight on vibrational properties. The high temperature vibrational behavior of iron and cementite are explored within this context in the final chapters. Body-centered-cubic iron exhibits decreasing phonon energies at elevated temperatures. The observed energy change in not uniform across phonon modes in iron, and specific phonon modes show significant decreases in energy that are not explained by simple vibrational models. This anomalously energy decrease is linked to the second-nearest-neighbor interactions in the bcc structure, through examination of fitted interatomic force constants. The large changes in phonon energy result in a significant increase in the vibrational entropy, called the nonharmonic vibrational entropy, which emulates the temperature behavior of the magnetic entropy across the Curie temperature. The nonharmonic vibrational entropy is attributed to interactions between the vibrations and state of magnetic disorder in the material, which persists above the magnetic transitions and extends the stability region of the bcc phase. Orthorombic cementite, Fe3C, exhibits anisotropic magneto-volume behavior in the ferromagnetic phase including regions very low thermal expansion. The phonon modes of cementite show anomalous temperature dependence, with low energy phonon modes increasing their energy at elevated temperatures in the ferromagnetic phase. This behavior is reversed after the magnetic transition and these same phonon modes lower their energies with temperature, consistent with observed thermal expansion. This atypical phonon behavior lowers the vibrational entropy of cementite up to the Curie temperature. The experimentally observed increase in low energy acoustic phonons affects the elastic behavior of Fe3C, increasing the isotropy of elastic response. First principles calculations link the observed phonon energy increases to specific vibrational modes that are polarized along the b-axis, which aligns with the closest Fe-Fe bonding direction. The nonharmonic behavior of the vibrational modes are discussed in the context of other observations of anomalous anisotropic magneto-volume behavior in Fe3C.

  8. Oxygen consumption during pouch development of the macropod marsupial Setonix brachyurus

    PubMed Central

    Shield, John

    1966-01-01

    1. Measurements of O2 consumption at 9 or 10 temperatures in the 20-40° C ambient temperature range were made on joeys with ages selected to cover the 180-day period of pouch occupancy. 2. The rate of O2 consumption of joeys younger than 100 days increased directly with ambient temperature. 3. After 100 days of age the O2 consumption rate at low temperatures rose and at about 140 days of age a constant rate was maintained over the full ambient temperature range. 4. Heat transfer from joey to mother commenced after 100 days of age. 5. At 150-180 days of age the rate of O2 consumption at 20° C was approximately 12 times greater than at ages less than 100 days. A thermal neutral zone was established in the range 32-36° C by joeys older than 150 days. 6. At the usual pouch temperature of 36·5° C, O2 consumption per unit wet body weight rose from 12 ml./kg.min at birth to 17 ml./kg.min at the end of pouch life. On a unit dry body weight basis it fell from 120 to 56 ml./kg.min. This decline parallels the decrease in growth rate. PMID:5972171

  9. Validation of an individualised model of human thermoregulation for predicting responses to cold air

    NASA Astrophysics Data System (ADS)

    van Marken Lichtenbelt, Wouter D.; Frijns, Arjan J. H.; van Ooijen, Marieke J.; Fiala, Dusan; Kester, Arnold M.; van Steenhoven, Anton A.

    2007-01-01

    Most computer models of human thermoregulation are population based. Here, we individualised the Fiala model [Fiala et al. (2001) Int J Biometeorol 45:143 159] with respect to anthropometrics, body fat, and metabolic rate. The predictions of the adapted multisegmental thermoregulatory model were compared with measured skin temperatures of individuals. Data from two experiments, in which reclining subjects were suddenly exposed to mild to moderate cold environmental conditions, were used to study the effect on dynamic skin temperature responses. Body fat was measured by the three-compartment method combining underwater weighing and deuterium dilution. Metabolic rate was determined by indirect calorimetry. In experiment 1, the bias (mean difference) between predicted and measured mean skin temperature decreased from 1.8°C to -0.15°C during cold exposure. The standard deviation of the mean difference remained of the same magnitude (from 0.7°C to 0.9°C). In experiment 2 the bias of the skin temperature changed from 2.0±1.09°C using the standard model to 1.3±0.93°C using individual characteristics in the model. The inclusion of individual characteristics thus improved the predictions for an individual and led to a significantly smaller systematic error. However, a large part of the discrepancies in individual response to cold remained unexplained. Possible further improvements to the model accomplished by inclusion of more subject characteristics (i.e. body fat distribution, body shape) and model refinements on the level of (skin) blood perfusion, and control functions, are discussed.

  10. Abnormal Motor Activity and Thermoregulation in a Schizophrenia Rat Model for Translational Science

    PubMed Central

    2015-01-01

    Background Schizophrenia is accompanied by altered motor activity and abnormal thermoregulation; therefore, the presence of these symptoms can enhance the face validity of a schizophrenia animal model. The goal was to characterize these parameters in freely moving condition of a new substrain of rats showing several schizophrenia-related alterations. Methods Male Wistar rats were used: the new substrain housed individually (for four weeks) and treated subchronically with ketamine, and naive animals without any manipulations. Adult animals were implanted with E-Mitter transponders intraabdominally to record body temperature and locomotor activity continuously. The circadian rhythm of these parameters and the acute effects of changes in light conditions were analyzed under undisturbed circumstances, and the effects of different interventions (handling, bed changing or intraperitoneal vehicle injection) were also determined. Results Decreased motor activity with fragmented pattern was observed in the new substrain. However, these animals had higher body temperature during the active phase, and they showed wider range of its alterations, too. The changes in light conditions and different interventions produced blunted hyperactivity and altered body temperature responses in the new substrain. Poincaré plot analysis of body temperature revealed enhanced short- and long-term variabilities during the active phase compared to the inactive phase in both groups. Furthermore, the new substrain showed increased short- and long-term variabilities with lower degree of asymmetry suggesting autonomic dysregulation. Conclusions In summary, the new substrain with schizophrenia-related phenomena showed disturbed motor activity and thermoregulation suggesting that these objectively determined parameters can be biomarkers in translational research. PMID:26629908

  11. Heat production and body temperature during cooling and rewarming in overweight and lean men.

    PubMed

    Claessens-van Ooijen, Anne M J; Westerterp, Klaas R; Wouters, Loek; Schoffelen, Paul F M; van Steenhoven, Anton A; van Marken Lichtenbelt, Wouter D

    2006-11-01

    To compare overweight and lean subjects with respect to thermogenesis and physiological insulation in response to mild cold and rewarming. Ten overweight men (mean BMI, 29.2 +/- 2.8 kg/m(2)) and 10 lean men (mean BMI, 21.1 +/- 2.0 kg/m(2)) were exposed to cold air for 1 hour, followed by 1 hour of rewarming. Body composition was determined by hydrodensitometry and deuterium dilution. Heat production and body temperatures were measured continuously by indirect calorimetry and thermistors, respectively. Muscle activity was recorded using electromyography. In both groups, heat production increased significantly during cooling (lean, p = 0.004; overweight, p = 0.006). The increase was larger in the lean group compared with the overweight group (p = 0.04). During rewarming, heat production returned to baseline in the overweight group and stayed higher compared with baseline in the lean group (p = 0.003). The difference in heat production between rewarming and baseline was larger in the lean (p = 0.01) than in the overweight subjects. Weighted body temperature of both groups decreased during cold exposure (lean, p = 0.002; overweight, p < 0.001) and did not return to baseline during rewarming. Overweight subjects showed a blunted mild cold-induced thermogenesis. The insulative cold response was not different among the groups. The energy-efficient response of the overweight subjects can have consequences for energy balance in the long term. The results support the concept of a dynamic heat regulation model instead of temperature regulation around a fixed set point.

  12. Elevational variation in body-temperature response to immune challenge in a lizard

    PubMed Central

    Reguera, Senda; Moreno-Rueda, Gregorio

    2016-01-01

    Immunocompetence benefits animal fitness by combating pathogens, but also entails some costs. One of its main components is fever, which in ectotherms involves two main types of costs: energy expenditure and predation risk. Whenever those costs of fever outweigh its benefits, ectotherms are expected not to develop fever, or even to show hypothermia, reducing costs of thermoregulation and diverting the energy saved to other components of the immune system. Environmental thermal quality, and therefore the thermoregulation cost/benefit balance, varies geographically. Hence, we hypothesize that, in alpine habitats, immune-challenged ectotherms should show no thermal response, given that (1) hypothermia would be very costly, as the temporal window for reproduction is extremely small, and (2) fever would have a prohibitive cost, as heat acquisition is limited in such habitat. However, in temperate habitats, immune-challenged ectotherms might show a febrile response, due to lower cost/benefit balance as a consequence of a more suitable thermal environment. We tested this hypothesis in Psammodromus algirus lizards from Sierra Nevada (SE Spain), by testing body temperature preferred by alpine and non-alpine lizards, before and after activating their immune system with a typical innocuous pyrogen. Surprisingly, non-alpine lizards responded to immune challenge by decreasing preferential body-temperature, presumably allowing them to save energy and reduce exposure to predators. On the contrary, as predicted, immune-challenged alpine lizards maintained their body-temperature preferences. These results match with increased costs of no thermoregulation with elevation, due to the reduced window of time for reproduction in alpine environment. PMID:27168981

  13. Elevational variation in body-temperature response to immune challenge in a lizard.

    PubMed

    Zamora-Camacho, Francisco Javier; Reguera, Senda; Moreno-Rueda, Gregorio

    2016-01-01

    Immunocompetence benefits animal fitness by combating pathogens, but also entails some costs. One of its main components is fever, which in ectotherms involves two main types of costs: energy expenditure and predation risk. Whenever those costs of fever outweigh its benefits, ectotherms are expected not to develop fever, or even to show hypothermia, reducing costs of thermoregulation and diverting the energy saved to other components of the immune system. Environmental thermal quality, and therefore the thermoregulation cost/benefit balance, varies geographically. Hence, we hypothesize that, in alpine habitats, immune-challenged ectotherms should show no thermal response, given that (1) hypothermia would be very costly, as the temporal window for reproduction is extremely small, and (2) fever would have a prohibitive cost, as heat acquisition is limited in such habitat. However, in temperate habitats, immune-challenged ectotherms might show a febrile response, due to lower cost/benefit balance as a consequence of a more suitable thermal environment. We tested this hypothesis in Psammodromus algirus lizards from Sierra Nevada (SE Spain), by testing body temperature preferred by alpine and non-alpine lizards, before and after activating their immune system with a typical innocuous pyrogen. Surprisingly, non-alpine lizards responded to immune challenge by decreasing preferential body-temperature, presumably allowing them to save energy and reduce exposure to predators. On the contrary, as predicted, immune-challenged alpine lizards maintained their body-temperature preferences. These results match with increased costs of no thermoregulation with elevation, due to the reduced window of time for reproduction in alpine environment.

  14. The influence of body mass index and outdoor temperature on the autonomic response to eating in healthy young Japanese women.

    PubMed

    Okada, Masahiro; Kakehashi, Masayuki

    2014-01-01

    The influences of body weight and air temperature on the autonomic response to food intake have not been clarified. We measured heart rate variability before and after lunch, as well as the effects of outdoor temperature and increased body mass index (BMI), in healthy young Japanese women. We studied 55 healthy young female university students. Heart rate variability was measured before lunch, immediately after lunch, 30 min after lunch, and 1 h after lunch to determine any correlations between heart rate variability, outdoor temperature, and BMI. In addition, multiple regression analysis was performed to elucidate the relationship between heart rate variability and outdoor temperature before and after lunch. A simple slope test was conducted to show the relationship between the low-to-high frequency ratio (1 h after lunch) and outdoor temperature. Subjects were divided into a low BMI group (range: 16.6-20.3) and a high BMI group (range: 20.4-32.9). The very low frequency component of heart rate variability, an index of thermoregulatory vasomotor control exerted by the sympathetic nervous system, was significantly diminished after lunch in the high BMI group (P < 0.01). A significant decrease in the low-to-high frequency (LF/HF) ratio, which represents the balance between the parasympathetic and sympathetic nervous systems, was evident in the low BMI group after lunch, indicating parasympathetic system dominance (P = 0.001). In addition, a significant association was found between the LF/HF ratio and outdoor temperature after lunch with a lower BMI (P = 0.002), but this association disappeared with higher BMIs. Autonomic responses to eating showed clear differences according to BMI, indicating that the sensitivity of the autonomic nervous system may change with increases in BMI.

  15. The Cooling History and Structure of the Ordinary Chondrite Parent Bodies

    NASA Technical Reports Server (NTRS)

    Benoit, P. H.; Sears, D. W. G.

    1996-01-01

    Most major meteorite classes exhibit significant ranges of metamorphism. The effects of metamorphism have been extensively characterized, but the heat source(s) and the metamorphic environment are unknown. Proposed beat sources include Al-26, Fe-60, electromagnetic induction, and impact. It is typically assumed that metamorphism occurred in parent bodies of some sort, but it uncertain whether these bodies were highly structured ("onion skins") or were chaotic mixes of material ("rubble piles"). The lack of simple trends of metallographic cooling rates with petrologic type has been considered supportive of both concepts. In this study, we use induced thermoluminescence (TL) as an indicator of thermal history. The TL of ordinary chondrites is produced by sodic feldspar, and the induced TL peak temperature is related to its crystallographic order/disorder. Ordered feldspar has TL peak temperatures of approx. 120 C, and disordered feldspar has TL peak temperatures of approx. 220 C. While ordered feldspar can be easily disordered in the laboratory by heating above 650 C and is easily quenched in the disordered form, producing ordered feldspar requires cooling at geologic cooling rates. We have measured the induced TL properties of 101 equilibrated ordinary chondrites, including 49 H, 29 L, and 23 LL chondrites. For the H chondrites there is an apparent trend of decreasing induced TL peak temperature with increasing petrologic type. H4 chondrites exhibit a tight range of TL peak temperatures, 190 C - 200 C, while H6 chondrites exhibit TL peak temperatures between 180 C and 190 C. H5 chondrites cover the range between H4 and H6, and also extend up to 210 C. Similar results are obtained for LL chondfiles and most L6 chondrites have lower induced TL peak temperatures than L5 chondrites.

  16. Infralimbic cortex controls core body temperature in a histamine dependent manner.

    PubMed

    Riveros, M E; Perdomo, G; Torrealba, F

    2014-04-10

    An increase in body temperature accelerates biochemical reactions and behavioral and physiological responses. A mechanism to actively increase body temperature would be beneficial during motivated behaviors. The prefrontal cortex is implicated in organizing motivated behavior; the infralimbic cortex, a subregion of the medial prefrontal cortex, has the necessary connectivity to serve the role of initiating such thermogenic mechanism at the beginning of the appetitive phase of motivated behavior; further, this cortex is active during motivated behavior and its disinhibition produces a marked behavioral and vegetative arousal increase, together with increases in histamine levels. We wanted to explore if this arousal was related to histaminergic activation after pharmacological infralimbic disinhibition and during the appetitive phase of motivated behavior. We measured core temperature and motor activity in response to picrotoxin injection in the infralimbic cortex, as well as during food-related appetitive behavior, evoked by enticing hungry rats with food. Pretreatment with the H1 receptor antagonist pyrilamine decreased thermal response to picrotoxin and enticement and completely blunted motor response to enticement. Motor and temperature responses to enticement were also completely abolished by infralimbic cortex inhibition with muscimol. To assess if this histamine dependent temperature increase was produced by an active sympathetic mediated thermogenic mechanism or was just a consequence of increased locomotor activity, we injected propranolol (i.p.), a β adrenergic receptor blocker, before picrotoxin injection into the infralimbic cortex. Propranolol reduced the temperature increase without affecting locomotor activity. Altogether, these results suggest that infralimbic activation is necessary for appetitive behavior by inducing a motor and a vegetative arousal increase mediated by central histamine. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. H2S induced hypometabolism in mice is missing in sedated sheep.

    PubMed

    Haouzi, Philippe; Notet, Véronique; Chenuel, Bruno; Chalon, Bernard; Sponne, Isabelle; Ogier, Virginie; Bihain, Bernard

    2008-01-01

    On the basis of studies performed in mice that showed H(2)S inhalation decreasing dramatically the metabolic rate, H(2)S was proposed as a means of protecting vital organs from traumatic or ischemic episodes in humans. Hypoxia has in fact also long been shown to induce hypometabolism. However, this effect is observed solely in small-sized animals with high VO2 kg(-1), and not in large mammals. Thus, extrapolating the hypometabolic effect of H(2)S to large mammals is questionable and could be potentially dangerous. We measured metabolism in conscious mice (24 g) exposed to H(2)S (60 ppm) at an ambient temperature of 23-24 degrees C. H(2)S caused a rapid and large (50%) drop in gas exchange rate, which occurred independently of the change in body temperature. The metabolic response occurred within less than 3 min. In contrast, sheep, sedated with ketamine and weighing 74 kg did not exhibit any decrease in metabolic rate during a similar challenge at an ambient temperature of 22 degrees C. While a part of H(2)S induced hypometabolism in the mice is related to the reduction in activity, we speculate that the difference between sheep and mice may rely on the nature and the characteristics of the relationship between basal metabolic rate and body weight thus on the different mechanisms controlling resting metabolic rate according to body mass. Therefore, the proposed use of H(2)S administration as a way of protecting vital organs should be reconsidered in view of the lack of hypometabolic effect in a large sedated mammal and of H(2)S established toxicity.

  18. Antipyretic and analgesic effects of zaltoprofen for the treatment of acute upper respiratory tract infection: verification of a noninferiority hypothesis using loxoprofen sodium.

    PubMed

    Azuma, Arata; Kudoh, Shoji; Nakashima, Mitsuyoshi; Nagatake, Tsuyoshi

    2011-01-01

    A multicenter, placebo-controlled, double-dummy, randomized, parallel-group, double-blind study was conducted to verify the hypothesis of noninferiority for single-dose administration of zaltoprofen 160 mg, a nonsteroidal anti-inflammatory drug, compared with loxoprofen sodium 60 mg (loxoprofen), in terms of antipyretic and analgesic effects in patients with acute upper respiratory tract infection. The eligible 330 patients were assigned to one of 3 groups: zaltoprofen 160 mg, loxoprofen 60 mg and placebo. The analysis set consisted of 322 patients. Antipyretic effects were assessed by measuring body temperature, and analgesic effects were evaluated using a visual analog scale (VAS) for 4 h under the control of study staff. A detection kit for influenza virus A and B antigens was used to determine the presence of influenza virus infection. Compared with immediately before administration and with the placebo group, significant decreases in body temperature and summary VAS pain scores were noted in both the zaltoprofen and loxoprofen groups at 4 h after drug administration. Based on the degree of decrease in body temperature and the summary VAS pain scores up to 4 h after administration, noninferiority in terms of antipyretic and analgesic effects of zaltoprofen compared with those of loxoprofen was confirmed after single administration. Similar antipyretic and analgesic effects were also confirmed in influenza virus antigen-positive patients (73 patients). No clinical concerns were identified regarding safety. Zaltoprofen and loxoprofen are confirmed to be safe and useful for patients with acute upper respiratory tract infection, including those with influenza infection. Copyright © 2011 S. Karger AG, Basel.

  19. The effect of a pre-anesthetic infusion of amino acids on body temperature, venous blood pH, glucose, creatinine, and lactate of healthy dogs during anesthesia.

    PubMed

    Clark-Price, Stuart C; Dossin, Olivier; Ngwenyama, Thandeka R; O'Brien, Mauria A; McMichael, Maureen; Schaeffer, David J

    2015-05-01

    To evaluate the effect of preanesthetic, intravenous (IV) amino acids on body temperature of anesthetized healthy dogs. Randomized, experimental, crossover study. Eight mixed-breed dogs approximately 2 years of age weighing 20.7 ± 2.1 kg. Dogs received 10% amino acid solution (AA) or 0.9% saline (SA) IV at 5 mL kg(-1) over 60 minutes. Body temperature (BT) was recorded at 5 minute intervals during infusions. Dogs were then anesthetized with sevoflurane for 90 minutes. BT was recorded at 5 minute intervals during anesthesia. Jugular blood samples were analyzed for pH, glucose, creatinine, and lactate concentrations at baseline, after infusion, after anesthesia and after 24 hours. BT at conclusion of infusion decreased -0.34 ± 0.42 °C in group AA and -0.40 ± 0.38 °C in group SA and was not different between groups (p = 0.072). BT decreased 2.72 ± 0.37 °C in group AA and 2.88 ± 0.26 °C in group SA after anesthesia and was different between groups (p < 0.05). Creatinine in group AA was increased immediately after infusion (p < 0.0001) and at 24 hours (p < 0.0001). There were no differences between groups for other parameters. Values for both groups were never outside the clinical reference ranges. In healthy dogs, preanesthetic IV infusion of amino acids attenuated heat loss compared to controls, however, the amount attenuated may not be clinically useful. Further studies are warranted to determine if nutrient-induced thermogenesis is beneficial to dogs undergoing anesthesia. © 2014 Association of Veterinary Anaesthetists and the American College of Veterinary Anesthesia and Analgesia.

  20. Life jacket design affects dorsal head and chest exposure, core cooling, and cognition in 10 degrees C water.

    PubMed

    Lockhart, Tamara L; Jamieson, Christopher P; Steinman, Alan M; Giesbrecht, Gordon G

    2005-10-01

    Personal floatation devices (PFDs) differ in whether they maintain the head out of the water or allow the dorsum of the head to be immersed. Partial head submersion may hasten systemic cooling, incapacitation, and death in cold water. Six healthy male volunteers (mean age = 26.8 yr; height = 184 cm; weight = 81 kg; body fat = 20%) were immersed in 10 degrees C water for 65 min, or until core temperature = 34 degrees C, under three conditions: PFD#1 maintained the head and upper chest out of the water; PFD#2 allowed the dorsal head and whole body to be immersed; and an insulated drysuit (control) allowed the dorsal head to be immersed. Mental performance tests included: logic reasoning test; Stroop word-color test; digit symbol coding; backward digit span; and paced auditory serial addition test (PASAT). Core cooling was significantly faster for PFD#2 (2.8 +/- 1.6 degrees C x h(-1)) than for PFD#1 (1.5 +/- 0.7 degrees C x h(-1)) or for the drysuit (0.4 +/- 0.2 degrees C x h(-1)). Although no statistically significant effects on cognitive performance were noted for the individual PFDs and drysuit, when analyzed as a group, four of the tests of cognitive performance (Stroop word-color, digit symbol coding, backward digit span, and PASAT) showed significant correlations between decreasing core temperature to 34 degrees C and diminished cognitive performance. Performance in more complicated mental tasks was adversely affected as core temperature decreased to 34 degrees C. The PFD that kept the head and upper chest out of the water preserved body heat and mental performance better than the PFD that produced horizontal flotation.

Top