Science.gov

Sample records for body vibration therapy

  1. Effects of Whole-Body Vibration Therapy in Patients with Fibromyalgia: A Systematic Literature Review

    PubMed Central

    Collado-Mateo, Daniel; Adsuar, Jose C.; Olivares, Pedro R.; del Pozo-Cruz, Borja; Parraca, Jose A.; del Pozo-Cruz, Jesus; Gusi, Narcis

    2015-01-01

    Objective. To review the literature on the effects of whole-body vibration therapy in patients with fibromyalgia. Design. Systematic literature review. Patients. Patients with fibromyalgia. Methods. An electronic search of the literature in four medical databases was performed to identify studies on whole-body vibration therapy that were published up to the 15th of January 2015. Results. Eight articles satisfied the inclusion and exclusion criteria and were analysed. According to the Dutch CBO guidelines, all selected trials had a B level of evidence. The main outcomes that were measured were balance, fatigue, disability index, health-related quality of life, and pain. Whole-body vibration appeared to improve the outcomes, especially balance and disability index. Conclusion. Whole-body vibration could be an adequate treatment for fibromyalgia as a main therapy or added to a physical exercise programme as it could improve balance, disability index, health-related quality of life, fatigue, and pain. However, this conclusion must be treated with caution because the paucity of trials and the marked differences between existing trials in terms of protocol, intervention, and measurement tools hampered the comparison of the trials. PMID:26351517

  2. Whole body vibration therapy for painful diabetic peripheral neuropathy: a pilot study.

    PubMed

    Kessler, Nathan J; Hong, Junggi

    2013-10-01

    The unsatisfactory results associated with conventional treatments for symptoms of diabetic peripheral neuropathy (DPN) demonstrate a need for research into alternative therapies. The purpose of this study was to determine the efficacy of whole body vibration therapy (WBV) as a treatment for pain associated with DPN. Participants (n = 8) with painful DPN received three treatment sessions per week for four weeks. Each session consisted of four bouts of 3 min of vibration (frequency 25 Hz, amplitude 5 mm). The primary outcome measures were changes in the visual analog pain scale (VAS) and changes in the neuropathic pain scale (NPS). WBV demonstrated a significant (p < 0.05) acute pain reduction in the VAS, and a significant chronic reduction in both the VAS and NPS scales. No side-effects were observed during this study. WBV appears to be an effective, non-invasive treatment for pain associated with DPN.

  3. Effects of 8-Prenylnaringenin and Whole-Body Vibration Therapy on a Rat Model of Osteopenia

    PubMed Central

    Hoffmann, Daniel B.; Griesel, Markus H.; Brockhusen, Bastian; Tezval, Mohammad; Komrakova, Marina; Menger, Bjoern; Wassmann, Marco; Stuermer, Klaus Michael; Sehmisch, Stephan

    2016-01-01

    Background. 8-Prenylnaringenin (8-PN) is the phytoestrogen with the highest affinity for estrogen receptor-α (ER-α), which is required to maintain BMD. The osteoprotective properties of 8-PN have been demonstrated previously in tibiae. We used a rat osteopenia model to perform the first investigation of 8-PN with whole-body vertical vibration (WBVV). Study Design. Ovariectomy was performed on 52 of 64 Sprague-Dawley rats. Five weeks after ovariectomy, one group received daily injections (sc) of 8-PN (1.77 mg/kg) for 10 weeks; a second group was treated with both 8-PN and WBVV (twice a day, 15 min, 35 Hz, amplitude 0.47 mm). Other groups received either only WBVV or no treatment. Methods. The rats were sacrificed 15 weeks after ovariectomy. Lumbar vertebrae and femora were removed for biomechanical and morphological assessment. Results. 8-PN at a cancer-safe dose did not cause fundamental improvements in osteoporotic bones. Treatment with 8-PN caused a slight increase in uterine wet weight. Combined therapy using WBVV and 8-PN showed no significant improvements in bone structure and biomechanical properties. Conclusion. We cannot confirm the osteoprotective effects of 8-PN at a cancer-safe dose in primary affected osteoporotic bones. Higher concentrations of 8-PN are not advisable for safety reasons. Adjunctive therapy with WBVV demonstrates no convincing effects on bones. PMID:26904278

  4. The effect of whole body vibration therapy on bone density in patients with thalassemia: A pilot study

    PubMed Central

    Fung, Ellen B.; Gariepy, Catherine A.; Sawyer, Aenor J.; Higa, Annie; Vichinsky, Elliott P.

    2013-01-01

    Patients with thalassemia (Thal) have low bone mass which can lead to fracture and decreased quality of life. There are no noninvasive anabolic therapies available to improve bone health in Thal. A longitudinal cross-over pilot trial was conducted to evaluate the effectiveness of low magnitude whole body vibration (WBV) therapy on bone in 18 patients with Thal (9 adults, 10 male, 22.1 ± 10.7 years). Subjects were asked to stand on a vibrating platform (30 Hz, 0.3 g) for 20 min/day for 6 months. Areal bone mineral density (aBMD) by DXA and volumetric BMD by peripheral quantitative computed tomography (pQCT) was assessed at baseline, 6 and 12 months. Adherence in the first 3 months was greater when compared with the second 3 months (14 ± 6 vs. 10 ± 7 min/day, P=0.007). Intention to treat analysis revealed a significant increase in whole body BMC (2.6%; P = 0.021), BMC/Ht (2.6%, P = 0.02) and aBMD (1.3%; P = 0.036), as well as a net increase in serum markers of bone formation (Osteocalcin/CTx, P = 0.027) in the adult subjects. These preliminary findings suggest that vibration therapy may be an effective nonpharmacologic intervention in Thal. Future research is needed to confirm these findings in a larger sample for longer duration. PMID:22886910

  5. The effect of whole body vibration therapy on the physical function of people with type II diabetes mellitus: a systematic review

    PubMed Central

    Zhang, Jiaqi; Zhang, Hongyue; Kan, Laidi; Zhang, Chi; Wang, Pu

    2016-01-01

    [Purpose] To review and assess the effectiveness of whole body vibration therapy on the physical function of patients with type II diabetes mellitus. [Subjects and Methods] A computerized database search was performed through PubMed, Medline, EMBASE, the Cochrane Central Register of Controlled Trials, the Physiotherapy Evidence Database, and the reference lists of all relevant articles. The methodological quality was evaluated using the Physiotherapy Evidence Database scale. [Results] Five articles (four studies) with a combined study population of 154 patients with type II diabetes qualified for the inclusion criteria. Our review shows that whole body vibration therapy may have a positive impact on the muscle strength and balance of people with type 2 diabetes mellitus, whereas the effect on their mobility is still under discussion. [Conclusion] There was no sufficient evidence to support the premise that whole body vibration therapy is beneficial for the physical function of people with type II diabetes. Larger and higher-quality trials are needed. PMID:27799718

  6. Effect of whole-body vibration exercise in a sitting position prior to therapy on muscle tone and upper extremity function in stroke patients

    PubMed Central

    Boo, Jung-A; Moon, Sang-Hyun; Lee, Sun-Min; Choi, Jung-Hyun; Park, Si-Eun

    2016-01-01

    [Purpose] The purpose of this study was to determine the effect of whole-body vibration exercise in a sitting position prior to therapy in stroke patients. [Subjects and Methods] Fourteen chronic stroke patients were included in this study. Prior to occupational therapy, whole-body exercise was performed for 10 minutes, 5 times per week, for a total of 8 weeks. Muscle tone and upper extremity function were measured. The Modified Ashworth Scale (MAS) was used to measure muscle tone, and the Manual Function Test (MFT) and Fugl-Meyer Assessment scale (FugM) were used to measure upper extremity function. [Results] MAS score was significantly decreased, and MFT and FugM were significantly increased. [Conclusion] These results indicate that whole-body vibration exercise in a sitting position prior to therapy had a positive effect on muscle tone, and upper extremity function in stroke patients. PMID:27065354

  7. Reactions of the rat musculoskeletal system to compressive spinal cord injury (SCI) and whole body vibration (WBV) therapy.

    PubMed

    Schwarz, A; Pick, C; Harrach, R; Stein, G; Bendella, H; Ozsoy, O; Ozsoy, U; Schoenau, E; Jaminet, P; Sarikcioglu, L; Dunlop, S; Angelov, D N

    2015-06-01

    Traumatic spinal cord injury (SCI) causes a loss of locomotor function with associated compromise of the musculo-skeletal system. Whole body vibration (WBV) is a potential therapy following SCI, but little is known about its effects on the musculo-skeletal system. Here, we examined locomotor recovery and the musculo-skeletal system after thoracic (T7-9) compression SCI in adult rats. Daily WBV was started at 1, 7, 14 and 28 days after injury (WBV1-WBV28 respectively) and continued over a 12-week post-injury period. Intact rats, rats with SCI but no WBV (sham-treated) and a group that received passive flexion and extension (PFE) of their hind limbs served as controls. Compared to sham-treated rats, neither WBV nor PFE improved motor function. Only WBV14 and PFE improved body support. In line with earlier studies we failed to detect signs of soleus muscle atrophy (weight, cross sectional diameter, total amount of fibers, mean fiber diameter) or bone loss in the femur (length, weight, bone mineral density). One possible explanation is that, despite of injury extent, the preservation of some axons in the white matter, in combination with quadripedal locomotion, may provide sufficient trophic and neuronal support for the musculoskeletal system.

  8. Reactions of the rat musculoskeletal system to compressive spinal cord injury (SCI) and whole body vibration (WBV) therapy

    PubMed Central

    Schwarz, A.; Pick, C.; Harrach, R.; Stein, G.; Bendella, H.; Ozsoy, O.; Ozsoy, U.; Schoenau, E.; Jaminet, P.; Sarikcioglu, L.; Dunlop, S.; Angelov, D.N.

    2015-01-01

    Traumatic spinal cord injury (SCI) causes a loss of locomotor function with associated compromise of the musculo-skeletal system. Whole body vibration (WBV) is a potential therapy following SCI, but little is known about its effects on the musculo-skeletal system. Here, we examined locomotor recovery and the musculo-skeletal system after thoracic (T7-9) compression SCI in adult rats. Daily WBV was started at 1, 7, 14 and 28 days after injury (WBV1-WBV28 respectively) and continued over a 12-week post-injury period. Intact rats, rats with SCI but no WBV (sham-treated) and a group that received passive flexion and extension (PFE) of their hind limbs served as controls. Compared to sham-treated rats, neither WBV nor PFE improved motor function. Only WBV14 and PFE improved body support. In line with earlier studies we failed to detect signs of soleus muscle atrophy (weight, cross sectional diameter, total amount of fibers, mean fiber diameter) or bone loss in the femur (length, weight, bone mineral density). One possible explanation is that, despite of injury extent, the preservation of some axons in the white matter, in combination with quadripedal locomotion, may provide sufficient trophic and neuronal support for the musculoskeletal system. PMID:26032204

  9. [The influence of posture on transmission and absorption of vibration energy in whole body vibration exercise].

    PubMed

    Berschin, G; Sommer, H-M

    2010-03-01

    Muscle exercise using whole body vibration platforms is well known as an alternative physical exercise in therapy as well as in high performance sports. Various studies could show an effectiveness in particular to improve maximal strength and springiness. Using these platforms there is no consideration to posture although the damage potential of vibration stress i. e. on intervertebral discs is well-known. Therefore the effect of posture on the transmission and absorption of vibration loads in bipedal standing was examined in a study with 20 sport students. They were exposed to a whole body vibration load in bipedal standing at a vibration frequency of 25 Hz. The transmission of energy was measured at the head in different postural positions. An average transmission of 9 % was measured in spontaneous bipedal standing. It significantly decreased with gradual changes of posture. After 6 weeks posture conditioning exercise this effect was significantly improved. In conclusion different posture in bipedal standing implies not only different energy absorption but also different effects on muscle performance which can explain the partly inconsistent results after vibration exercise. In addition whole body vibration exercise in a prone or sitting position may increase the risk of overload and should be avoided because of reduced energy absorption capacity.

  10. Whole-body vibration exercise in postmenopausal osteoporosis.

    PubMed

    Weber-Rajek, Magdalena; Mieszkowski, Jan; Niespodziński, Bartłomiej; Ciechanowska, Katarzyna

    2015-03-01

    The report of the World Health Organization (WHO) of 2008 defines osteoporosis as a disease characterized by low bone mass and an increased risk of fracture. Postmenopausal osteoporosis is connected to the decrease in estrogens concentration as a result of malfunction of endocrine ovarian function. Low estrogens concentration causes increase in bone demineralization and results in osteoporosis. Physical activity, as a component of therapy of patients with osteoporosis, has been used for a long time now. One of the forms of safe physical activity is the vibration training. Training is to maintain a static position or execution of specific exercises involving the appropriate muscles on a vibrating platform, the mechanical vibrations are transmitted to the body of the patient. According to the piezoelectric theory, pressure induces bone formation in the electrical potential difference, which acts as a stimulant of the process of bone formation. Whole body vibration increases the level of growth hormone and testosterone in serum, preventing sarcopenia and osteoporosis. The aim of this study was to review the literature on vibration exercise in patients with postmenopausal osteoporosis based on the PubMed and Medline database. While searching the database, the following key words were used 'postmenopausal osteoporosis' and 'whole-body vibration exercise'.

  11. Whole-body vibration exercise in postmenopausal osteoporosis

    PubMed Central

    Mieszkowski, Jan; Niespodziński, Bartłomiej; Ciechanowska, Katarzyna

    2015-01-01

    The report of the World Health Organization (WHO) of 2008 defines osteoporosis as a disease characterized by low bone mass and an increased risk of fracture. Postmenopausal osteoporosis is connected to the decrease in estrogens concentration as a result of malfunction of endocrine ovarian function. Low estrogens concentration causes increase in bone demineralization and results in osteoporosis. Physical activity, as a component of therapy of patients with osteoporosis, has been used for a long time now. One of the forms of safe physical activity is the vibration training. Training is to maintain a static position or execution of specific exercises involving the appropriate muscles on a vibrating platform, the mechanical vibrations are transmitted to the body of the patient. According to the piezoelectric theory, pressure induces bone formation in the electrical potential difference, which acts as a stimulant of the process of bone formation. Whole body vibration increases the level of growth hormone and testosterone in serum, preventing sarcopenia and osteoporosis. The aim of this study was to review the literature on vibration exercise in patients with postmenopausal osteoporosis based on the PubMed and Medline database. While searching the database, the following key words were used ‘postmenopausal osteoporosis’ and ‘whole-body vibration exercise’. PMID:26327887

  12. Transmission of vertical whole body vibration to the human body.

    PubMed

    Kiiski, Juha; Heinonen, Ari; Järvinen, Teppo L; Kannus, Pekka; Sievänen, Harri

    2008-08-01

    According to experimental studies, low-amplitude high-frequency vibration is anabolic to bone tissue, whereas in clinical trials, the bone effects have varied. Given the potential of whole body vibration in bone training, this study aimed at exploring the transmission of vertical sinusoidal vibration to the human body over a wide range of applicable amplitudes (from 0.05 to 3 mm) and frequencies (from 10 to 90 Hz). Vibration-induced accelerations were assessed with skin-mounted triaxial accelerometers at the ankle, knee, hip, and lumbar spine in four males standing on a high-performance vibration platform. Peak vertical accelerations of the platform covered a range from 0.04 to 19 in units of G (Earth's gravitational constant). Substantial amplification of peak acceleration could occur between 10 and 40 Hz for the ankle, 10 and 25 Hz for the knee, 10 and 20 Hz for the hip, and at 10 Hz for the spine. Beyond these frequencies, the transmitted vibration power declined to 1/10th-1/1000 th of the power delivered by the platform. Transmission of vibration to the body is a complicated phenomenon because of nonlinearities in the human musculoskeletal system. These results may assist in estimating how the transmission of vibration-induced accelerations to body segments is modified by amplitude and frequency and how well the sinusoidal waveform is maintained. Although the attenuation of vertical vibration at higher frequencies is fortunate from the aspect of safety, amplitudes >0.5 mm may result in greater peak accelerations than imposed at the platform and thus pose a potential hazard for the fragile musculoskeletal system.

  13. Local metabolic rate during whole body vibration.

    PubMed

    Friesenbichler, Bernd; Nigg, Benno M; Dunn, Jeff F

    2013-05-15

    Whole body vibration (WBV) platforms are currently used for muscle training and rehabilitation. However, the effectiveness of WBV training remains elusive, since scientific studies vary largely in the vibration parameters used. The origin of this issue may be related to a lack in understanding of the training intensity that is imposed on individual muscles by WBV. Therefore, this study evaluates the training intensity in terms of metabolic rate of two lower-extremity muscles during WBV under different vibration parameters. Fourteen healthy male subjects were randomly exposed to 0 (control)-, 10-, 17-, and 28-Hz vibrations while standing upright on a vibration platform. A near-infrared spectrometer was used to determine the gastrocnemius medialis (GM) and vastus lateralis (VL) muscles' metabolic rates during arterial occlusion. The metabolic rates during each vibration condition were significantly higher compared with control for both muscles (P < 0.05). Each increase in vibration frequency translated into a significantly higher metabolic rate than the previous lower frequency (P < 0.05) for both muscles. The current study showed that the local metabolic rate during WBV at 28 Hz was on average 5.4 times (GM) and 3.7 times (VL) of the control metabolic rate. The substantial changes in local metabolic rate indicate that WBV may represent a significant local training stimulus for particular leg muscles.

  14. Vibration therapy: clinical applications in bone

    PubMed Central

    Thompson, William R.; Yen, Sherwin S.; Rubin, Janet

    2015-01-01

    Purpose of review The musculoskeletal system is largely regulated through dynamic physical activity and is compromised by cessation of physical loading. There is a need to recreate the anabolic effects of loading on the musculoskeletal system, especially in frail individuals who cannot exercise. Vibration therapy is designed to be a nonpharmacological analogue of physical activity, with an intention to promote bone and muscle strength. Recent findings Animal and human studies suggest that high-frequency, low-magnitude vibration therapy improves bone strength by increasing bone formation and decreasing bone resorption. There is also evidence that vibration therapy is useful in treating sarcopenia, which confounds skeletal fragility and fall risk in aging. Enhancement of skeletal and muscle strength involves regulating the differentiation of mesenchymal stem cells to build these tissues; mesenchymal stem cell lineage allocation is positively promoted by vibration signals. Summary Vibration therapy may be useful as a primary treatment as well as an adjunct to both physical and pharmacological treatments, but future studies must pay close attention to compliance and dosing patterns, and importantly, the vibration signal, be it low-intensity vibration (<1g) appropriate for treatment of frail individuals or high-intensity vibration (>1g) marketed as a training exercise. PMID:25354044

  15. Vibration Therapy in Management of Delayed Onset Muscle Soreness (DOMS)

    PubMed Central

    Imtiyaz, Shagufta

    2014-01-01

    Both athletic and nonathletic population when subjected to any unaccustomed or unfamiliar exercise will experience pain 24-72 hours postexercise. This exercise especially eccentric in nature caused primarily by muscle damage is known as delayed-onset muscle soreness (DOMS). This damage is characterized by muscular pain, decreased muscle force production, reduce range of motion and discomfort experienced. DOMS is due to microscopic muscle fiber tears. The presence of DOMS increases risk of injury. A reduced range of motion may lead to the incapability to efficiently absorb the shock that affect physical activity. Alterations to mechanical motion may increase strain placed on soft tissue structures. Reduced force output may signal compensatory recruitment of muscles, thus leading to unaccustomed stress on musculature. Differences in strength ratios may also cause excessive strain on unaccustomed musculature. A range of interventions aimed at decreasing symptoms of DOMS have been proposed. Although voluminous research has been done in this regard, there is little consensus among the practitioners regarding the most effective way of treating DOMS. Mechanical oscillatory motion provided by vibration therapy. Vibration could represent an effective exercise intervention for enhancing neuromuscular performance in athletes. Vibration has shown effectiveness in flexibility and explosive power. Vibration can apply either local area or whole body vibration. Vibration therapy improves muscular strength, power development, kinesthetic awareness, decreased muscle sore, increased range of motion, and increased blood flow under the skin. VT was effective for reduction of DOMS and regaining full ROM. Application of whole body vibration therapy in postexercise demonstrates less pressure pain threshold, muscle soreness along with less reduction maximal isometric and isokinetic voluntary strength and lower creatine kinase levels in the blood. PMID:25121012

  16. Vibration Therapy in Management of Delayed Onset Muscle Soreness (DOMS).

    PubMed

    Veqar, Zubia; Imtiyaz, Shagufta

    2014-06-01

    Both athletic and nonathletic population when subjected to any unaccustomed or unfamiliar exercise will experience pain 24-72 hours postexercise. This exercise especially eccentric in nature caused primarily by muscle damage is known as delayed-onset muscle soreness (DOMS). This damage is characterized by muscular pain, decreased muscle force production, reduce range of motion and discomfort experienced. DOMS is due to microscopic muscle fiber tears. The presence of DOMS increases risk of injury. A reduced range of motion may lead to the incapability to efficiently absorb the shock that affect physical activity. Alterations to mechanical motion may increase strain placed on soft tissue structures. Reduced force output may signal compensatory recruitment of muscles, thus leading to unaccustomed stress on musculature. Differences in strength ratios may also cause excessive strain on unaccustomed musculature. A range of interventions aimed at decreasing symptoms of DOMS have been proposed. Although voluminous research has been done in this regard, there is little consensus among the practitioners regarding the most effective way of treating DOMS. Mechanical oscillatory motion provided by vibration therapy. Vibration could represent an effective exercise intervention for enhancing neuromuscular performance in athletes. Vibration has shown effectiveness in flexibility and explosive power. Vibration can apply either local area or whole body vibration. Vibration therapy improves muscular strength, power development, kinesthetic awareness, decreased muscle sore, increased range of motion, and increased blood flow under the skin. VT was effective for reduction of DOMS and regaining full ROM. Application of whole body vibration therapy in postexercise demonstrates less pressure pain threshold, muscle soreness along with less reduction maximal isometric and isokinetic voluntary strength and lower creatine kinase levels in the blood.

  17. Action slips during whole-body vibration.

    PubMed

    Ishimatsu, Kazuma; Meland, Anders; Hansen, Tor Are S; Kåsin, Jan Ivar; Wagstaff, Anthony S

    2016-07-01

    Helicopter aircrew members engage in highly demanding cognitive tasks in an environment subject to whole-body vibration (WBV). Sometimes their actions may not be according to plan (e.g. action slips and lapses). This study used a Sustained Attention to Response Task (SART) to examine whether action slips were more frequent during exposure to WBV. Nineteen participants performed the SART in two blocks. In the WBV block participants were exposed to 17 Hz vertical WBV, which is typical of larger helicopter working environments. In the No-WBV block there was no WBV. There were more responses to the rare no-go digit 3 (i.e. action slips) in the WBV block, and participants responded faster in the WBV block. These results suggest that WBV influences response inhibition, and can induce impulsive responding. WBV may increase the likelihood of action slips, mainly due to failure of response inhibition.

  18. Multi-body dynamics modelling of seated human body under exposure to whole-body vibration.

    PubMed

    Yoshimura, Takuya; Nakai, Kazuma; Tamaoki, Gen

    2005-07-01

    In vehicle systems occupational drivers might expose themselves to vibration for a long time. This may cause illness of the spine such as chronic lumbago or low back pain. Therefore, it is necessary to evaluate the influence of vibration to the spinal column and to make up appropriate guidelines or counter plans. In ISO2631-1 or ISO2631-5 assessment of vibration effects to human in the view of adverse-health effect was already presented. However, it is necessary to carry out further research to understand the effect of vibration to human body to examine their validity and to prepare for the future revision. This paper shows the detail measurement of human response to vibration, and the modelling of the seated human body for the assessment of the vibration risk. The vibration transmissibilities from the seat surface to the spinal column and to the head are measured during the exposure to vertical excitation. The modal paramters of seated subject are extracted in order to understand the dominant natural modes. For the evaluation of adverse-health effect the multi-body modelling of the spinal column is introduced. A simplified model having 10 DOFs is counstructed so that the transmissibilities of the model fit to those of experiment. The transient response analysis is illustrated when a half-sine input is applied. The relative displacements of vertebrae are evaluated, which can be a basis for the assessment of vibration risk. It is suggested that the multi-body dynamic model is used to evaluate the vibration effect to the spinal column for seated subjects.

  19. Whole body vibration and cerebral palsy: a systematic review

    PubMed Central

    Duquette, Sean A.; Guiliano, Anthony M.; Starmer, David J.

    2015-01-01

    Purpose: The goal of this review is to evaluate the effects of whole body vibration on outcomes in patients with cerebral palsy. The findings in this review may help clinicians make evidence informed decisions on the use of whole body vibration for cerebral palsy. Methods: A systematic search was conducted on April 29, 2014.The following search terms were used to search of several databases: (whole body vibration OR whole-body vibration OR whole body-vibration OR WBV) AND (cerebral palsy). Articles that met the inclusion criteria were assessed using the Scottish intercollegiate guidelines network (SIGN) rating system to assess the methodology and bias of the articles for randomized control trials. Results: The search produced 25 articles, of which 12 duplicates were identified and removed. Another seven articles were not considered since they did not fit the inclusion criteria, leaving a total of five studies for review. Four of the articles analyzed the effects of WBV in children while the other study focused on adults with cerebral palsy. There was one low quality article, four acceptable quality articles and one high quality article when assessed using the SIGN criteria. Conclusions: It appears that whole body vibration has the potential to provide symptomatic relief for patients with cerebral palsy. Whole body vibration may improve spasticity, muscle strength and coordination. There is a lack of research to conclusively determine whether it does alter bone mineral density. PMID:26500358

  20. Evaluation of Whole-Body Vibration in Vehicles

    NASA Astrophysics Data System (ADS)

    PADDAN, G. S.; GRIFFIN, M. J.

    2002-05-01

    The vibration in 100 different vehicles has been measured, evaluated and assessed according to British Standard BS 6841 (1987) and International Standard ISO 2631 (1997). Vibration was measured in 14 categories of vehicle including cars, lift trucks, tractors, lorries, vans and buses. In each vehicle, the vibration was measured in five axes: vertical vibration beneath the seat, fore-and-aft, lateral and vertical vibration on the seat pan and fore-and-aft vibration at the backrest. The alternative methods of evaluating the vibration (use of different frequency weightings, different averaging methods, the inclusion of different axes, vibration dose values and equivalent r.m.s. acceleration) as defined in the standards have been compared. BS 6841 (1987) suggests that an equivalent acceleration magnitude is calculated using vibration measured at four locations around the seat (x -, y -, z -seat and x -backrest); ISO 2631 (1997) suggests that vibration is measured in the three translational axes only on the seat pan but only the axis with the most severe vibration is used to assess vibration severity. Assessments made using the procedure defined in ISO 2631 tend to underestimate any risks from exposure to whole-body vibration compared to an evaluation made using the guidelines specified in BS 6841; the measurements indicated that the 17 m/s1.75 “health guidance caution zone” in ISO 2631 was less likely to be exceeded than the 15 m/s1.75 “action level” in BS 6841. Consequently, ISO 2631 “allows” appreciably longer daily exposures to whole-body vibration than BS 6841.

  1. Vibration training for upper body: transmission of platform vibrations through cables.

    PubMed

    Tankisheva, Ekaterina; Boonen, Steven; Delecluse, Christophe; Druyts, Hans Lj; Verschueren, Sabine M P

    2014-04-01

    The aim of the present study was to evaluate the vibration transmission from a vibration platform through Vectran cables to the upper body and its relationship to induced muscular activation. Fifteen clinically healthy participants performed 3 different arm exercises-biceps curl, triceps curl, and lateral raise. Vibration transmission to the upper body was assessed over a wide range of accelerations (from 1.90 to 5.98 g) and frequencies (from 25 to 40 Hz). To assess the vibration transmission, 7 triaxial accelerometers were attached from the hand up to the head, and the root-mean-square of acceleration signal of each site-specific body point was calculated. Muscular activity of biceps brachii, triceps brachii, deltoid, and upper trapezius was recorded. The results showed a significant attenuation of the platform accelerations transmitted through the Vectran cables to the upper body. Handle vibration ranged between 27 and 44% of the acceleration delivered by the platform depending on platform vibration parameters (acceleration/frequency). Vibration increased the muscle activity of biceps brachii, triceps brachii, deltoid, and upper trapezius muscles significantly only during biceps curl exercises. No frequency or acceleration effect was found on the size of the muscle response. The results of the present study suggest that a cable-pulley resistance system on a vibration platform channels the vibration safely from the platform to the arms and induces additional muscle activation in some arm muscles when biceps curl exercises are performed.

  2. Wireless Network for Measurement of Whole-Body Vibration.

    PubMed

    Koenig, Diogo; Chiaramont, Marilda S; Balbinot, Alexandre

    2008-05-06

    This article presents the development of a system integrated to a ZigBee network to measure whole-body vibration. The developed system allows distinguishing human vibrations of almost 400Hz in three axes with acceleration of almost 50g. The tests conducted in the study ensured the correct functioning of the system for the project's purpose.

  3. Wireless Network for Measurement of Whole-Body Vibration

    PubMed Central

    Koenig, Diogo; Chiaramonte, Marilda S.; Balbinot, Alexandre

    2008-01-01

    This article presents the development of a system integrated to a ZigBee network to measure whole-body vibration. The developed system allows distinguishing human vibrations of almost 400Hz in three axes with acceleration of almost 50g. The tests conducted in the study ensured the correct functioning of the system for the project's purpose. PMID:27879866

  4. Whole-Body Vibration Assessment of the Palletized Load System

    DTIC Science & Technology

    1994-07-01

    iderrtlfy by block number) An evaluation of all new tactical vehicles and aircraft is required to a.sosas potential whole-body vibration ( WBV ) health...tolerances for WBV exposure were on course 2. The results also show that both driver and passenger were exposed to a Hazard Severity-Category III (marginal...to be evaluated for potential whole-body vibration ( WBV ) health hazards to their crevmembers. This - *3uirement is contained in AR 40-10, "Health

  5. Measurement of Whole-Body Vibration Exposure from Garbage Trucks

    NASA Astrophysics Data System (ADS)

    Maeda, S.; Morioka, M.

    1998-08-01

    Japanese garbage truck drivers are exposed to mechanical whole-body vibration during their work. Some drivers have suffered from low back pain from this vibration. However, there is no evidence of a relationship between the whole-body vibration from the garbage trucks and low back pain or occupational disease, due to the lack of investigations. A field study was conducted in order to characterize the health risks associated with garbage truck work. Three different types of truck were tested at different loadings and on different road surfaces, with the vibrations measured at the driver/seat interface (x,y, andz-axes). The vibrations were compared with the health risk guidance according to Annex B of ISO 2631-1 [1]. The findings of this study indicated that Japanese garbage truck drivers should not operate trucks for 2.5 h in a day, under current working conditions.

  6. Case study: use of vibration therapy in the treatment of diabetic peripheral small fiber neuropathy.

    PubMed

    Hong, Junggi; Barnes, Meredith; Kessler, Nathan

    2013-04-01

    The aim of the study was to describe a case of type II diabetic peripheral small fiber neuropathic pain treated with whole body vibration therapy after a failed trial of conventional drugs and interventional pain management. A 64-year-old male had chronic diabetic peripheral neuropathic pain in his both feet for about 2 years. The patient tried multiple pain medications and various interventional pain treatments without significant pain relief. After 4 weeks of vibration treatment, which targeted the feet the patient's pain level and gait patterns significantly improved. These findings illustrate the importance of considering whole body vibration as a complimentary treatment in patients with diabetic peripheral neuropathic pain.

  7. Whole-body vibration training: metabolic cost of synchronous, side-alternating or no vibrations.

    PubMed

    Gojanovic, Boris; Henchoz, Yves

    2012-01-01

    Whole-body vibration training improves strength and can increase maximal oxygen consumption ([·V]O(2max)). No study has compared the metabolic demand of synchronous and side-alternating whole-body vibration. We measured [·V]O₂ and heart rate during a typical synchronous or side-alternating whole-body vibration session in 10 young female sedentary participants. The 20-min session consisted of three sets of six 45-s exercises, with 15 s recovery between exercises. Three conditions were randomly tested on separate days: synchronous at 35 Hz and 4 mm amplitude, side-alternating at 26 Hz and 7.5 mm amplitude (peak acceleration matched at 20 g in both vibration conditions), and no vibrations. Mean [·V]O₂ (expressed as %[·V]O(2max)) did not differ between conditions: 29.7 ± 4.2%, 32.4 ± 6.5%, and 28.7 ± 6.7% for synchronous, side-alternating, and no vibrations respectively (P = 0.103). Mean heart rate (% maximal heart rate) was 65.6 ± 7.3%, 69.8 ± 7.9%, and 64.7 ± 5.6% for synchronous, side-alternating, and no vibrations respectively, with the side-alternating vibrations being significantly higher (P = 0.019). When analysing changes over exercise sessions, mean [·V]O₂ was higher for side-alternating (P < 0.001) than for synchronous and no vibrations. In conclusion, side-alternating whole-body vibration elicits higher heart rate responses than synchronous or no vibrations, and could elevate [·V]O₂, provided the session lasts more than 20 min.

  8. Effects of Whole Body Vibration Training on Body Composition in Adolescents with Down Syndrome

    ERIC Educational Resources Information Center

    Gonzalez-Aguero, Alejandro; Matute-Llorente, Angel; Gomez-Cabello, Alba; Casajus, Jose A.; Vicente-Rodriguez, German

    2013-01-01

    The present study aimed to determine the effect of 20 weeks of whole body vibration (WBV) on the body composition of adolescents with Down syndrome (DS). Thirty adolescent with DS were divided into two groups: control and WBV. Whole body, upper and lower limbs body fat and lean body mass were measured with dual energy X-ray absorptiometry (DXA)…

  9. [A vertical vibration model of human body in supine position].

    PubMed

    Sun, Jing-gong; Niu, Fu; Qi, Jian-cheng; Li, Ruo-xin

    2002-12-01

    Objective. To establish the models of head, abdomen, and chest of supine human body respectively under vertical vibration. Method. The mechanical impedance of 12 healthy volunteers aged 24-56 was measured under vertical white noise stimulus in the frequency range of 2-35 Hz. To explain these findings, the model of head was proposed, the models of abdomen and chest were computed by way of an optimization procedure. Result. The models of abdomen and chest are three-degree-of-freedom and the head is rigid. Conclusion. The mechanical impedance of the supine human body is linear and sole. The established models of head, abdomen and chest of supine human body when subjected to vertical vibration are useful for calculating and evaluating the comfort of supine human body under whole-body vibration.

  10. Neural systemic impairment from whole-body vibration.

    PubMed

    Yan, Ji-Geng; Zhang, Lin-ling; Agresti, Michael; LoGiudice, John; Sanger, James R; Matloub, Hani S; Havlik, Robert

    2015-05-01

    Insidious brain microinjury from motor vehicle-induced whole-body vibration (WBV) has not yet been investigated. For a long time we have believed that WBV would cause cumulative brain microinjury and impair cerebral function, which suggests an important risk factor for motor vehicle accidents and secondary cerebral vascular diseases. Fifty-six Sprague-Dawley rats were divided into seven groups (n = 8): 1) 2-week normal control group, 2) 2-week sham control group (restrained in the tube without vibration), 3) 2-week vibration group (exposed to whole-body vibration at 30 Hz and 0.5g acceleration for 4 hr/day, 5 days/week, for 2 weeks), 4) 4-week sham control group, 5) 4-week vibration group, 6) 8-week sham control group, and 7) 8-week vibration group. At the end point, all rats were evaluated in behavior, physiological, and brain histopathological studies. The cerebral injury from WBV is a cumulative process starting with vasospasm squeezing of the endothelial cells, followed by constriction of the cerebral arteries. After the 4-week vibration, brain neuron apoptosis started. After the 8-week vibration, vacuoles increased further in the brain arteries. Brain capillary walls thickened, mean neuron size was obviously reduced, neuron necrosis became prominent, and wide-ranging chronic cerebral edema was seen. These pathological findings are strongly correlated with neural functional impairments.

  11. Short-term effects of vibration therapy on motor impairments in Parkinson's disease.

    PubMed

    King, Lauren K; Almeida, Quincy J; Ahonen, Heidi

    2009-01-01

    Recent studies have suggested that vibration therapy may have a positive influence on motor symptoms in individuals with Parkinson's disease (PD). However, quantitative evidence of these benefits is scarce, and the concept of "whole-body" vibration in these studies is vague. The objectives of the current study were to evaluate the influence of vibration on motor symptoms and functional measures in PD by delivering sound waves to the entire body. We delivered whole body sound wave vibration to 40 individuals with PD using a Physioacoustic Chair, a piece of equipment with speakers spaced throughout the chair permitting a series of programmed low frequency sound waves through the body. Using a parallel cross-over design we utilized the Unified Parkinson's Disease Rating Scale (UPDRS), quantitative gait assessments, and a grooved pegboard for upper limb control. Improvements were seen in all symptom, motor control and functional outcome measures at the time of assessment. Specifically, a significant decrease in rigidity, and tremor were shown, as well as a significant increase in step length and improved speed on the grooved pegboard task. Results of this initial investigation provide support for vibration therapy as a non-pharmacological treatment alternative. Long-term benefits of vibration therapy will require further research.

  12. Effect of body shape on vibration of electric guitars

    NASA Astrophysics Data System (ADS)

    Russell, Daniel A.; Haveman, Wesley S.; Broden, Willis; Weibull, N. Pontus

    2003-04-01

    The body vibrations of an electric guitar are typically ignored since the string vibrations are converted to sound through the use of a magnetic pickup. However, vibrations in the neck have been shown to cause dead spots at certain fret positions [H. Fleischer, J. Acoust. Soc. Am. 105, 1330 (1999)]. In this paper we compare the vibrational mode shapes and frequencies of three electric guitars with different body shapes. Two guitars are solid-body electrics: one with a body shape which is symmetric about the neck axis (Epiphone Coronet) and the other which is not (Gibson Explorer). Mode shapes and frequencies are considerably different for the body, though neck vibrations are more closely related. The third guitar is an arched top hollow-body electric (Gibson ES-335). For this guitar, the top and back plates and the air cavities may also contribute to the guitar sound quality. Mode shapes and frequencies are determined from experimental modal analysis using an impact hammer and accelerometer.

  13. Response of the seated human body to whole-body vertical vibration: biodynamic responses to sinusoidal and random vibration.

    PubMed

    Zhou, Zhen; Griffin, Michael J

    2014-01-01

    The dependence of biodynamic responses of the seated human body on the frequency, magnitude and waveform of vertical vibration has been studied in 20 males and 20 females. With sinusoidal vibration (13 frequencies from 1 to 16 Hz) at five magnitudes (0.1-1.6 ms(-2) r.m.s.) and with random vibration (1-16 Hz) at the same magnitudes, the apparent mass of the body was similar with random and sinusoidal vibration of the same overall magnitude. With increasing magnitude of vibration, the stiffness and damping of a model fitted to the apparent mass reduced and the resonance frequency decreased (from 6.5 to 4.5 Hz). Male and female subjects had similar apparent mass (after adjusting for subject weight) and a similar principal resonance frequency with both random and sinusoidal vibration. The change in biodynamic response with increasing vibration magnitude depends on the frequency of the vibration excitation, but is similar with sinusoidal and random excitation.

  14. Response of the seated human body to whole-body vertical vibration: discomfort caused by sinusoidal vibration.

    PubMed

    Zhou, Zhen; Griffin, Michael J

    2014-01-01

    Frequency weightings for predicting vibration discomfort assume the same frequency-dependence at all magnitudes of vibration, whereas biodynamic studies show that the frequency-dependence of the human body depends on the magnitude of vibration. This study investigated how the frequency-dependence of vibration discomfort depends on the acceleration and the force at the subject-seat interface. Using magnitude estimation, 20 males and 20 females judged their discomfort caused by sinusoidal vertical acceleration at 13 frequencies (1-16 Hz) at magnitudes from 0.1 to 4.0 ms(-2) r.m.s. The frequency-dependence of their equivalent comfort contours depended on the magnitude of vibration, but was less dependent on the magnitude of dynamic force than the magnitude of acceleration, consistent with the biodynamic non-linearity of the body causing some of the magnitude-dependence of equivalent comfort contours. There were significant associations between the biodynamic responses and subjective responses at all frequencies in the range 1-16 Hz. Practitioner Summary: Vertical seat vibration causes discomfort in many forms of transport. This study provides the frequency-dependence of vibration discomfort over a range of vibration magnitudes and shows how the frequency weightings in the current standards can be improved.

  15. Therapeutic impact of low amplitude high frequency whole body vibrations on the osteogenesis imperfecta mouse bone.

    PubMed

    Vanleene, Maximilien; Shefelbine, Sandra J

    2013-04-01

    Osteogenesis imperfecta (OI) is characterized by extremely brittle bone. Currently, bisphosphonate drugs allow a decrease of fracture by inhibiting bone resorption and increasing bone mass but with possible long term side effects. Whole body mechanical vibrations (WBV) treatment may offer a promising route to stimulate bone formation in OI patients as it has exhibited health benefits on both muscle and bone mass in human and animal models. The present study has investigated the effects of WBV (45Hz, 0.3g, 15minutes/days, 5days/week) in young OI (oim) and wild type female mice from 3 to 8weeks of age. Vibration therapy resulted in a significant increase in the cortical bone area and cortical thickness in the femur and tibia diaphysis of both vibrated oim and wild type mice compared to sham controls. Trabecular bone was not affected by vibration in the wild type mice; vibrated oim mice, however, exhibited significantly higher trabecular bone volume fraction in the proximal tibia. Femoral stiffness and yield load in three point bending were greater in the vibrated wild type mice than in sham controls, most likely attributed to the increase in femur cortical cross sectional area observed in the μCT morphology analyses. The vibrated oim mice showed a trend toward improved mechanical properties, but bending data had large standard deviations and there was no significant difference between vibrated and non-vibrated oim mice. No significant difference of the bone apposition was observed in the tibial metaphyseal trabecular bone for both the oim and wild type vibrated mice by histomorphometry analyses of calcein labels. At the mid diaphysis, the cortical bone apposition was not significantly influenced by the WBV treatment in both the endosteum and periosteum of the oim vibrated mice while a significant change is observed in the endosteum of the vibrated wild type mice. As only a weak impact in bone apposition between the vibrated and sham groups is observed in the

  16. Clinical applications of vibration therapy in orthopaedic practice

    PubMed Central

    Cerciello, Simone; Rossi, Silvio; Visonà, Enrico; Corona, Katia; Oliva, Francesco

    2016-01-01

    Summary Background Vibration therapy (VT) has been proposed as an option to improve physical performance and reduce the negative effects of ageing on bone, muscles and tendons. Several discrepancies exist on the type of applications, frequency and magnitude. These differences reflex on the contradictory clinical results in literature. Aim of the present study is to carry on an exhaustive review to focus on technical options on the market, clinical applications in orthopaedic practice and expected outcomes. Methods a literature review using the key words “vibration therapy” and “whole-body vibration” and “orthopaedics” was performed. After checking the available abstracts 71 full text articles were evaluated. Results fifty-one articles focused on the effects of VT on muscles and tendons reporting ways of action and clinical outcomes. In a similar way 20 studies focused on the influence of VT on bone tissue with regard on ways of action and clinical trials. Conclusions VT provides anabolic mechanical signals to bone and musculo-tendinous system. The best effects seem to be achieved with devices that deliver low-intensity stimuli at high frequencies providing linear horizontal displacement. PMID:27331044

  17. Quantification of mouse in vivo whole-body vibration amplitude from motion-blur using x-ray imaging

    NASA Astrophysics Data System (ADS)

    Hu, Zhengyi; Welch, Ian; Yuan, Xunhua; Pollmann, Steven I.; Nikolov, Hristo N.; Holdsworth, David W.

    2015-08-01

    Musculoskeletal effects of whole-body vibration on animals and humans have become an intensely studied topic recently, due to the potential of applying this method as a non-pharmacological therapy for strengthening bones. It is relatively easy to quantify the transmission of whole-body mechanical vibration through the human skeletal system using accelerometers. However, this is not the case for small-animal pre-clinical studies because currently available accelerometers have a large mass, relative to the mass of the animals, which causes the accelerometers themselves to affect the way vibration is transmitted. Additionally, live animals do not typically remain motionless for long periods, unless they are anesthetized, and they are required to maintain a static standing posture during these studies. These challenges provide the motivation for the development of a method to quantify vibrational transmission in small animals. We present a novel imaging technique to quantify whole-body vibration transmission in small animals using 280 μm diameter tungsten carbide beads implanted into the hind limbs of mice. Employing time-exposure digital x-ray imaging, vibrational amplitude is quantified based on the blurring of the implanted beads caused by the vibrational motion. Our in vivo results have shown this technique is capable of measuring vibration amplitudes as small as 0.1 mm, with precision as small as  ±10 μm, allowing us to distinguish differences in the transmitted vibration at different locations on the hindlimbs of mice.

  18. Influence of support conditions on vertical whole-body vibration of the seated human body.

    PubMed

    M-Pranesh, Anand; Rakheja, Subhash; Demont, Richard

    2010-01-01

    The vibration transmission to the lumbar and thoracic segments of seated human subjects exposed to whole body vibration of a vehicular nature have been mostly characterised without the back and hand supports, which is not representative of general driving conditions. This non-invasive experimental study investigated the transmission of vertical seat vibration to selected vertebrae and the head along the vertical and fore-aft axes of twelve male human subjects seated on a rigid seat and exposed to random vertical excitation in the 0.5-20 Hz range. The measurements were performed under four different sitting postures involving combinations of back support conditions and hands positions, and three difference magnitudes of vertical vibration (0.25, 0.5 and 1.0 m/s(2) rms acceleration). The results showed significant errors induced by sensor misalignment and skin effects, which required appropriate correction methodologies. The averaged corrected responses revealed that the back support attenuates vibration in the vertical axis to all the body locations while increasing the fore-aft transmissibility at the C7 and T5. The hands position generally has a relatively smaller effect, showing some influences on the C7 and L5 vibration. Sitting without a back support resulted in very low magnitude fore-aft vibration at T5, which was substantially higher with a back support, suggestive of a probable change in the body's vibration mode. The effect of back support was observed to be very small on the horizontal vibration of the lower thoracic and lumbar regions. The results suggest that distinctly different target body-segment biodynamic functions need to be defined for different support conditions in order to represent the unique contribution of the specific support condition. These datasets may then be useful for the development of biodynamic models.

  19. Analysis and Modelling of Muscles Motion during Whole Body Vibration

    NASA Astrophysics Data System (ADS)

    Cesarelli, M.; Fratini, A.; Bifulco, P.; La Gatta, A.; Romano, M.; Pasquariello, G.

    2009-12-01

    The aim of the study is to characterize the local muscles motion in individuals undergoing whole body mechanical stimulation. In this study we aim also to evaluate how subject positioning modifies vibration dumping, altering local mechanical stimulus. Vibrations were delivered to subjects by the use of a vibrating platform, while stimulation frequency was increased linearly from 15 to 60 Hz. Two different subject postures were here analysed. Platform and muscles motion were monitored using tiny MEMS accelerometers; a contra lateral analysis was also presented. Muscle motion analysis revealed typical displacement trajectories: motion components were found not to be purely sinusoidal neither in phase to each other. Results also revealed a mechanical resonant-like behaviour at some muscles, similar to a second-order system response. Resonance frequencies and dumping factors depended on subject and his positioning. Proper mechanical stimulation can maximize muscle spindle solicitation, which may produce a more effective muscle activation.

  20. The influence of vibration type, frequency, body position and additional load on the neuromuscular activity during whole body vibration.

    PubMed

    Ritzmann, Ramona; Gollhofer, Albert; Kramer, Andreas

    2013-01-01

    This study aimed to assess the influence of different whole body vibration (WBV) determinants on the electromyographic (EMG) activity during WBV in order to identify those training conditions that cause highest neuromuscular responses and therefore provide optimal training conditions. In a randomized cross-over study, the EMG activity of six leg muscles was analyzed in 18 subjects with respect to the following determinants: (1) vibration type (side-alternating vibration (SV) vs. synchronous vibration (SyV), (2) frequency (5-10-15-20-25-30 Hz), (3) knee flexion angle (10°-30°-60°), (4) stance condition (forefoot vs. normal stance) and (5) load variation (no extra load vs. additional load equal to one-third of the body weight). The results are: (1) neuromuscular activity during SV was enhanced compared to SyV (P < 0.05); (2) a progressive increase in frequency caused a progressive increase in EMG activity (P < 0.05); (3) the EMG activity was highest for the knee extensors when the knee joint was 60° flexed (P < 0.05); (4) for the plantar flexors in the forefoot stance condition (P < 0.05); and (5) additional load caused an increase in neuromuscular activation (P < 0.05). In conclusion, large variations of the EMG activation could be observed across conditions. However, with an appropriate adjustment of specific WBV determinants, high EMG activations and therefore high activation intensities could be achieved in the selected muscles. The combination of high vibration frequencies with additional load on an SV platform led to highest EMG activities. Regarding the body position, a knee flexion of 60° and forefoot stance appear to be beneficial for the knee extensors and the plantar flexors, respectively.

  1. Modeling of Spinal Column of Seated Human Body under Exposure to Whole-Body Vibration

    NASA Astrophysics Data System (ADS)

    Tamaoki, Gen; Yoshimura, Takuya; Kuriyama, Kaoru; Nakai, Kazuma

    In vehicle systems occupational drivers might expose themselves to vibration for a long time. This may cause illness of the spinal column such as low back pain. Therefore, it is necessary to evaluate the influence of vibration to the spinal column. Thus the modeling of seated human body is conducted in order to evaluate the effect of whole-body vibration to the spinal column. This model has the spinal column and the support structures such as the muscles of the back and the abdomen. The spinal column is made by the vertebrae and the intervertebral disks that are considered the rigid body and the rotational spring and damper respectively. The parameter of this model is decided by the literature and the body type of the subject with respect to the mass and the model structure. And stiffness and damping parameters are searched by fitting the model simulation results to the experimental measured data with respect to the vibration transmissibilities from the seat surface to the spinal column and the head and with respect to the driving-point apparent mass. In addition, the natural modes of the model compare with the result of experimental modal analysis. The influence of the abdomen and the muscles of the back are investigated by comparing three models with respect to above vibration characteristics. Three model are the proposed model, the model that has the spinal column and the model that has the muscles of the back in addition to the spinal column.

  2. Whole body vibration in mountain-rescue operations

    NASA Astrophysics Data System (ADS)

    Alberti, E.; Chiappa, D.; Moschioni, G.; Saggin, B.; Tarabini, M.

    2006-12-01

    In mountain-rescue operations injured people are generally exposed to vibrations and shocks that can be potential causes of physical conditions worsening. Such vibrations can derive both from patient's body manipulations (e.g. when it is being loaded and immobilized on a stretcher) and from forces coming from the transport devices and vehicles. Despite the general feeling that during this kind of operations the levels of transmitted vibrations to the injured can be quite large and potentially dangerous, there is practically no study in literature providing reliable parameters (i.e. measurements) to support or dismiss these beliefs. This paper reports the results of a measurement campaign carried-out in order to outline, identify and quantify the excitations a human body is exposed to, during typical transportation phases related to mountain-rescue operations. The work mainly presents and discusses the experimental setup with the aim of focusing on the problems related to this kind of measurements; the results of the experimental campaign carried-out for the measurement of the vibrations undergone by a human body during a simulated rescue operation are presented and discussed as well. Such simulation includes three phases of transportation: on a hand-held stretcher, on an ambulance and on a helicopter. The work is not intended to supply a complete characterization and analysis of vibrations transmission during any rescue operation but just to provide a preliminary overview and to define a measurement method that can be applied for a more comprehensive characterization. With such aims measurements were carried out in on-field situations stated as "typical" by rescue experts and data then analyzed both with standard procedures and algorithms (e.g. ISO 2631s weighting curves) and with the commonly used statistical indexes; in the analysis it is important to be aware that standardized measurement procedures and indexes, created to verify comfort or health-risks of

  3. Vibration transmission to lower extremity soft tissues during whole-body vibration.

    PubMed

    Friesenbichler, Bernd; Lienhard, Karin; Vienneau, Jordyn; Nigg, Benno M

    2014-09-22

    In order to evaluate potential risks of whole-body vibration (WBV) training, it is important to understand the transfer of vibrations from the WBV platform to the muscles. Therefore, the purpose of this study was to quantify the transmissibility of vibrations from the WBV platform to the triceps surae and quadriceps soft tissue compartments. Sixteen healthy, male participants were exposed to side-altering WBV at 2.5mm amplitude and frequencies of 10, 17 and 28 Hz. Acceleration signals were measured at the platform and at the soft tissue compartments using tri-axial accelerometers. Transmissibility of peak acceleration and peak amplitude for both tested soft tissue compartments was high at 10 Hz (2.1-2.3), moderate at 17 Hz (1.1-1.9) and low at 28 Hz (0.5-1.2). The average peak acceleration was 125.4 ms(-2) and 46.5 ms(-2) for the triceps surae and quadriceps at 28 Hz, respectively. The muscles' vibration frequency was equal to the input frequency of the WBV platform (p<0.05). The transfer of vibrations to the muscles is strongly dependent on the platform frequency and the particular muscle of interest. The acceleration measured at the triceps surae was higher than the corresponding accelerations related to soft tissue injury in animal studies but neither existing regulations nor the comparison to available animal studies seem appropriate to make inferences on injury risk. More realistic animal or computational muscle models may use the current data to evaluate potentially unwanted side effects of WBV training.

  4. Guidelines for Whole-Body Vibration Health Surveillance

    NASA Astrophysics Data System (ADS)

    POPE, M.; MAGNUSSON, M.; LUNDSTRÖM, R.; HULSHOF, C.; VERBEEK, J.; BOVENZI, M.

    2002-05-01

    examination, which includes recording any change in exposure to WBV. The findings for the individual should be compared with previous examinations. Group data should also be compiled periodically. Medical removal may be considered along with re-placement in working practices without exposure to WBV. This paper presents opinions on health surveillance for whole-body vibration developed within a working group of partners funded on a European Community Network (BIOMED2 concerted action BMH4-CT98-3251: Research network on detection and prevention of injuries due to occupational vibration exposures). The health surveillance protocol and the draft questionnaire with explanation comments are presented for wider consideration by the science community and others before being considered appropriate for implementation.

  5. Stochastic many-body perturbation theory for anharmonic molecular vibrations

    SciTech Connect

    Hermes, Matthew R.; Hirata, So

    2014-08-28

    A new quantum Monte Carlo (QMC) method for anharmonic vibrational zero-point energies and transition frequencies is developed, which combines the diagrammatic vibrational many-body perturbation theory based on the Dyson equation with Monte Carlo integration. The infinite sums of the diagrammatic and thus size-consistent first- and second-order anharmonic corrections to the energy and self-energy are expressed as sums of a few m- or 2m-dimensional integrals of wave functions and a potential energy surface (PES) (m is the vibrational degrees of freedom). Each of these integrals is computed as the integrand (including the value of the PES) divided by the value of a judiciously chosen weight function evaluated on demand at geometries distributed randomly but according to the weight function via the Metropolis algorithm. In this way, the method completely avoids cumbersome evaluation and storage of high-order force constants necessary in the original formulation of the vibrational perturbation theory; it furthermore allows even higher-order force constants essentially up to an infinite order to be taken into account in a scalable, memory-efficient algorithm. The diagrammatic contributions to the frequency-dependent self-energies that are stochastically evaluated at discrete frequencies can be reliably interpolated, allowing the self-consistent solutions to the Dyson equation to be obtained. This method, therefore, can compute directly and stochastically the transition frequencies of fundamentals and overtones as well as their relative intensities as pole strengths, without fixed-node errors that plague some QMC. It is shown that, for an identical PES, the new method reproduces the correct deterministic values of the energies and frequencies within a few cm{sup −1} and pole strengths within a few thousandths. With the values of a PES evaluated on the fly at random geometries, the new method captures a noticeably greater proportion of anharmonic effects.

  6. Mind-body therapies in integrative oncology.

    PubMed

    Elkins, Gary; Fisher, William; Johnson, Aimee

    2010-12-01

    There is growing interest in mind-body therapies as adjuncts to mainstream cancer treatment, and an increasing number of patients turn to these interventions for the control of emotional stress associated with cancer. Increased research funding has enabled many such interventions to be evaluated for their efficacy, including studies of mind-body interventions to reduce pain, anxiety, insomnia, anticipatory, and treatment-related nauseas, hot flashes, and improved mood. Mind-body treatments evaluated for their utility in oncology include relaxation therapies, biofeedback, meditation and hypnosis, yoga, art and music therapy, tai chi, and qigong. Although studies are not always methodologically sound and results mixed, a growing number of well-designed studies provide convincing evidence that mind-body techniques are beneficial adjuncts to cancer treatment. The evidence is sufficient to recommend further investigation and adoption of these techniques in mainstream oncology care.

  7. Review of the effects of translational whole-body vibration on continuous manual control performance

    NASA Astrophysics Data System (ADS)

    McLeod, R. W.; Griffin, M. J.

    1989-08-01

    A review of the literature concerned with experimental studies of the effects of translational whole-body vibration on continuous manual control performance is presented. Results from studies of the effects of vibration variables (vibration frequency, magnitude, axis, random vibration and multi-axis vibration) are compared. Evidence of the influence of control system variables (physical characteristics of the control, control gain, system dynamics and display variables) is also provided. Studies of the effects of vibration duration on manual control performance are reviewed separately. A behavioural model is presented to summarize the mechanisms (including vibration breakthrough, visual impairment, neuro-muscular interference and central effects) by which whole-body vibration may interfere with the performance of continuous manual control tasks. The model emphasizes the adaptive ability of the human operator.

  8. [Occupational therapy for work-related damage induced by mechanical vibration].

    PubMed

    Foti, C; Ciocchetti, E; Antignani, E; Pitruzzella, M; Laurini, A

    2010-01-01

    Vibrations are defined as repeated oscillatory movements of a body; they can be transmitted by contact to humans. From the point of view of physics, vibrations can be differentiated on the basis of frequency, wavelength, amplitude of the oscillation, velocity and acceleration. As far as concerns occupational hazards, two risk factors have been identified: the first involves low frequency vibrations (vehicle drivers), while the second involves high frequency vibrations (manual percussion tools). The transmission of vibration energy can be localized or generalized. Tertiary prevention of exposure to vibrations is based on the use of anti-vibration gloves (for vibrations of the hand and arm) and on anti-vibration shoes (for vibrations of the whole body). The damage caused by vibrations is due to reduced blood circulation and mechanical stimulation in the joints exposed.

  9. Whole body vibration exercise for chronic low back pain: study protocol for a single-blind randomized controlled trial

    PubMed Central

    2014-01-01

    Background Low back pain affects approximately 80% of people at some stage in their lives. Exercise therapy is the most widely used nonsurgical intervention for low back pain in practice guidelines. Whole body vibration exercise is becoming increasingly popular for relieving musculoskeletal pain and improving health-related quality of life. However, the efficacy of whole body vibration exercise for low back pain is not without dispute. This study aims to estimate the effect of whole body vibration exercise for chronic low back pain. Methods/Design We will conduct a prospective, single-blind, randomized controlled trial of 120 patients with chronic low back pain. Patients will be randomly assigned into an intervention group and a control group. The intervention group will participate in whole body vibration exercise twice a week for 3 months. The control group will receive general exercise twice a week for 3 months. Primary outcome measures will be the visual analog scale for pain, the Oswestry Disability Index and adverse events. The secondary outcome measures will include muscle strength and endurance of spine, trunk proprioception, transversus abdominis activation capacity, and quality of life. We will conduct intention-to-treat analysis if any participants withdraw from the trial. Discussion Important features of this study include the randomization procedures, single-blind, large sample size, and a standardized protocol for whole body vibration in chronic low back pain. This study aims to determine whether whole body vibration exercise produces more beneficial effects than general exercise for chronic low back pain. Therefore, our results will be useful for patients with chronic low back pain as well as for medical staff and health-care decision makers. Trial registration Chinese Clinical Trial Registry: ChiCTR-TRC-13003708. PMID:24693945

  10. Signal Processing Methods for Removing the Effects of Whole Body Vibration upon Speech

    NASA Technical Reports Server (NTRS)

    Bitner, Rachel M.; Begault, Durand R.

    2014-01-01

    Humans may be exposed to whole-body vibration in environments where clear speech communications are crucial, particularly during the launch phases of space flight and in high-performance aircraft. Prior research has shown that high levels of vibration cause a decrease in speech intelligibility. However, the effects of whole-body vibration upon speech are not well understood, and no attempt has been made to restore speech distorted by whole-body vibration. In this paper, a model for speech under whole-body vibration is proposed and a method to remove its effect is described. The method described reduces the perceptual effects of vibration, yields higher ASR accuracy scores, and may significantly improve intelligibility. Possible applications include incorporation within communication systems to improve radio-communication systems in environments such a spaceflight, aviation, or off-road vehicle operations.

  11. Whole body vibration training improves vibration perception threshold in healthy young adults: A randomized clinical trial pilot study

    PubMed Central

    Hernandez-Mocholi, M.A.; Dominguez-Muñoz, F.J.; Corzo, H.; Silva, S.C.S.; Adsuar, J.C.; Gusi, N.

    2016-01-01

    Objectives: Loss of foot sensitivity is a relevant parameter to assess and prevent in several diseases. It is crucial to determine the vibro-tactile sensitivity threshold response to acute conditions to explore innovative monitor tools and interventions to prevent and treat this challenge. The aims were: 1) to analyze the acute effects of a single whole body vibration session (4min-18Hz-4mm) on vibro-tactile perception threshold in healthy young adults. 2) to analyze the 48 hours effects of 3 whole body vibration sessions on vibro-tactile perception threshold in healthy young adults. Methods: A randomized controlled clinical trial over 3 sessions of whole body vibration intervention or 3 sessions of placebo intervention. Twenty-eight healthy young adults were included: 11 experimental group and 12 placebo group. The experimental group performed 3 sessions of WBV while the placebo group performed 3 sessions of placebo intervention. Results: The vibro-tactile threshold increased right after a single WBV session in comparison with placebo. Nevertheless, after 3 whole body vibration sessions and 48 hours, the threshold decreased to values lower than the initial. Conclusions: The acute response of the vibro-tactile threshold to one whole body vibration session increased, but the 48 hours short-term response of this threshold decreased in healthy young adults. PMID:26944818

  12. Influence of whole body vibration platform frequency on neuromuscular performance of community-dwelling older adults.

    PubMed

    Furness, Trentham P; Maschette, Wayne E

    2009-08-01

    The purpose of this study was to progressively overload vibration platform frequency to describe sea-saw whole body vibration influence on neuromuscular performance of community-dwelling older adults. Seventy-three community-dwelling older adults (aged 72 +/- 8 years) were randomly assigned to 4 groups (zero, one, 2, and 3 whole body vibration sessions per week). Quantifiers of neuromuscular performance such as the 5-Chair Stands test, the Timed Up and Go (TUG) test, and the Tinetti test were recorded. Furthermore, Health-related quality of life was qualified with the SF-36 Health Survey. A 6-week whole body vibration intervention significantly improved the quantifiers of neuromuscular performance in a community-dwelling older adult sample. Whole body vibration was shown to significantly reduce time taken to complete the 5-Chair Stands test (p < 0.05) and the TUG test (p < 0.05). Tinetti test scores significantly improved (p < 0.05). as did all components of health-related quality of life (p < 0.05). Overall, progressively overloaded frequency elicited more beneficial improvement for the 3 whole body vibration sessions per week group. It was concluded that progressively overloaded frequency was effective in improving quantifiable measures of neuromuscular performance in the sample and that practitioners may confidently prescribe 3 whole body vibration sessions per week with more precise knowledge of the effects of whole body vibration on neuromuscular performance and health-related quality-of-life effects.

  13. Self-reported back pain in tractor drivers exposed to whole-body vibration.

    PubMed

    Boshuizen, H C; Bongers, P M; Hulshof, C T

    1990-01-01

    A postal questionnaire on symptoms of ill health and exposure to whole-body vibration was completed by 577 workers (response rate 79%) who were employed in certain functions by two companies 11 years before. The relation between the occupational history of driving vibrating vehicles (mainly agricultural tractors) and back pain has been analyzed. The prevalence of reported back pain is approximately 10% higher in the tractor drivers than in workers not exposed to vibration. The increase is mainly due to more pain in the lower back and more pain lasting at least several days. A vibration dose was calculated by assigning each vehicle driven a vibration magnitude, estimated on the base of vibration measurements. The prevalence of back pain increases with the vibration dose. The highest prevalence odds ratios are found for the more severe types of back pain. These prevalence odds ratios do not increase with the vibration dose. This might be due to health-related selection which is more pronounced for severe back pain than for back pain in general. The two components of the vibration dose, duration of exposure and estimated mean vibration magnitude, have also been considered separately. Back pain increases with duration of exposure but it does not increase with the estimated mean magnitude of vibration. This is probably due to the inaccuracy of this estimate. The higher prevalence of back pain in tractor drivers might be (partly) caused by whole-body vibration, but prolonged sitting and posture might also be of influence.

  14. [Low back pain among farmers exposed to whole body vibration: a literature review].

    PubMed

    Solecki, Leszek

    2011-01-01

    A literature review was performed for the years 1990-2007. It covered reports addressing the problems associated with the prevalence of low back pain and musculoskeletal disorders among farmers. In addition, the anticipated relationship between low back pain and whole body vibration in farmers was evaluated based on 12 reports for the years 1987-2009. The review confirmed that the prevalence of back pain is significantly higher in farmers exposed to whole body vibration than in the control group (not exposed to vibration). The frequency of back pain is related with whole body vibration, as well as with prolonged sitting position, wrong body posture and physical work load (especially lifting and carrying loads). The prevalence of these symptoms increases with the increased vibration dose and duration of exposure. Disorders in the lower section of the spine were associated with age, accidents (concerning the back), cumulative dose of whole body vibration, and overload due to wrong body posture. Long-term exposure affecting the whole body is harmful to the skeletal system (degeneration of the spine). The results of the study suggest that the repeated or constant exposure to mechanical shocks may increase the risk of low back pain. The investigations confirmed that there is a dose-response type of relationship between exposure to whole body vibration and pain in the lumbar section of the spine.

  15. Possible Mechanisms of Low Back Pain due to Whole-Body Vibration

    NASA Astrophysics Data System (ADS)

    Pope, M. H.; Wilder, D. G.; Magnusson, M.

    1998-08-01

    The investigators describe their multifaceted approach to the study of the relationship between whole-body vibration and low back pain.In vitroexperiments, using percutaneous pin-mounted accelerometers have shown that the natural frequency is at 4·5 Hz. The frequency response was affected by posture, seating, and seat-back inclination. The response appears to be largely determined by the rocking of the pelvis. Electromyographic studies have shown that muscle fatigue occurs under whole body vibration. After whole body vibration exposure the muscle response to a sudden load has greater latency. Vehicle driving may be a reason for low back pain or herniated nucleus pulposus. Prolonged seating exposure, coupled with the whole body vibration should be reduced for those recovering from these problems. Vibration attenuating seats, and correct ergonomic layout of the cabs may reduce the risks of recurrence.

  16. Acute corticospinal and spinal modulation after whole body vibration

    PubMed Central

    Krause, A.; Gollhofer, A.; Freyler, K.; Jablonka, L.; Ritzmann, R.

    2016-01-01

    Objectives: The objective of this study was to investigate neural effects of acute whole body vibration (WBV) on lower limb muscles regarding corticospinal and spinal excitability. Methods: In 44 healthy subjects (16 f/ 28 m), motor evoked potentials (MEP) and H-reflexes in m. soleus (SOL) and gastrocnemius medialis (GM) were elicited before (t1), immediately after (t2), 2 (t3), 4 (t4) and 10 min after (t5) WBV. Results: After WBV, MEP amplitudes were significantly increased in SOL (t2+15±30%, t3+22±32%, t4+15±35%, t5+20±30%, P<0.05), but not in GM (t2+32±62%, t3+9±35%, t4+8±36%, t5+22±47%; P=0.07). Contrarily, H-reflexes were significantly reduced in SOL (t2-19±28%, t3-21±22%, t4-20±21%, t5-14±28%, P<0.05) and GM (t2-14±37%, t3-16±25%, t4-18±29%, t5-16±28%, P<0.05). Conclusions: A temporary sustained enhancement of corticospinal excitability concomitant with spinal inhibition after WBV points towards persisting neural modulation in the central nervous system. This could indicate greater neural modulation over M1 and descending pathways, while the contribution of spinal pathways is reduced. PMID:27973385

  17. Analysis of muscle activation in each body segment in response to the stimulation intensity of whole-body vibration

    PubMed Central

    Lee, Dae-Yeon

    2017-01-01

    [Purpose] The purpose of this study was to investigate the effects of a whole-body vibration exercise, as well as to discuss the scientific basis to establish optimal intensity by analyzing differences between muscle activations in each body part, according to the stimulation intensity of the whole-body vibration. [Subjects and Methods] The study subjects included 10 healthy men in their 20s without orthopedic disease. Representative muscles from the subjects’ primary body segments were selected while the subjects were in upright positions on exercise machines; electromyography electrodes were attached to the selected muscles. Following that, the muscle activities of each part were measured at different intensities. No vibration, 50/80 in volume, and 10/25/40 Hz were mixed and applied when the subjects were on the whole-vibration exercise machines in upright positions. After that, electromyographic signals were collected and analyzed with the root mean square of muscular activation. [Results] As a result of the analysis, it was found that the muscle activation effects had statistically meaningful differences according to changes in exercise intensity in all 8 muscles. When the no-vibration status was standardized and analyzed as 1, the muscle effect became lower at higher frequencies, but became higher at larger volumes. [Conclusion] In conclusion, it was shown that the whole-body vibration stimulation promoted muscle activation across the entire body part, and the exercise effects in each muscle varied depending on the exercise intensities. PMID:28265155

  18. Effect of whole-body vibration on bone properties in aging mice.

    PubMed

    Wenger, Karl H; Freeman, James D; Fulzele, Sadanand; Immel, David M; Powell, Brian D; Molitor, Patrick; Chao, Yuh J; Gao, Hong-Sheng; Elsalanty, Mohammed; Hamrick, Mark W; Isales, Carlos M; Yu, Jack C

    2010-10-01

    Recent studies suggest that whole-body vibration (WBV) can improve measures of bone health for certain clinical conditions and ages. In the elderly, there also is particular interest in assessing the ability of physical interventions such as WBV to improve coordination, strength, and movement speed, which help prevent falls and fractures and maintain ambulation for independent living. The current study evaluated the efficacy of WBV in an aging mouse model. Two levels of vibration--0.5 and 1.5g--were applied at 32Hz to CB57BL/6 male mice (n=9 each) beginning at age 18 months and continuing for 12 weeks, 30 min/day, in a novel pivoting vibration device. Previous reports indicate that bone parameters in these mice begin to decrease substantially at 18 months, equivalent to mid-fifties for humans. Micro-computed tomography (micro-CT) and biomechanical assessments were made in the femur, radius, and lumbar vertebra to determine the effect of these WBV magnitudes and durations in the aging model. Sera also were collected for analysis of bone formation and breakdown markers. Mineralizing surface and cell counts were determined histologically. Bone volume in four regions of the femur did not change significantly, but there was a consistent shift toward higher mean density in the bone density spectrum (BDS), with the two vibration levels producing similar results. This new parameter represents an integral of the conventional density histogram. The amount of high density bone statistically improved in the head, neck, and diaphysis. Biomechanically, there was a trend toward greater stiffness in the 1.5 g group (p=0.139 vs. controls in the radius), and no change in strength. In the lumbar spine, no differences were seen due to vibration. Both vibration groups significantly reduced pyridinoline crosslinks, a collagen breakdown marker. They also significantly increased dynamic mineralization, MS/BS. Furthermore, osteoclasts were most numerous in the 1.5 g group (p≤ 0

  19. Whole-Body Vibration Assessment of the M9161A1 Truck Trailer

    DTIC Science & Technology

    1993-08-01

    nd safety exposure Limit 21 8AIaRL summary of analysis per ISO-2631* guideline on RUN-o0 Driver I whole-body vibration ( WBV ) I I 19-AUG-93 8:21:57 1...safety exposure Limit 23 usAaaL summary of analysis per ISO-2631* guideline on RUI-02 Driver I whole-body vibration ( WBV )I ** i~ii19-AUS-93 5:21 58 1... exposure timlt 32 USMIL summary of analysis per 0so-2631* guideline on !RU-07 Passenger whole-body vibration ( WBV ) 19-AUG-93 M::01UM 1: Vehicle

  20. Effects of random whole-body vibration on postural control in Parkinson's disease.

    PubMed

    Turbanski, Stephan; Haas, Christian T; Schmidtbleicher, Dietmar; Friedrich, Antje; Duisberg, Petra

    2005-01-01

    We investigated spontaneous effects of random whole-body vibration (rWBV) on postural control in Parkinsonian subjects. Effects were examined in biomechanical tests from a total of 52 patients divided equally into one experimental and one control group. Postural control was tested pre- and post-treatment in two standardized conditions (narrow standing and tandem standing). The intervention was based on rWBV (ŷ: 3 mm, f: 6 Hz 1 Hz/sec) consisting of 5 series lasting 60 seconds each. The main findings from this study were that (1) rWBV can improve postural stability in Parkinson's disease (PD) spontaneously (2) these effects depend on the test condition. Based on the results of this study, rWBV can be regarded as an additional device in physical therapy in PD.

  1. Head and Helmet Biodynamics and Tracking Performance During Exposure to Whole-Body Vibration

    DTIC Science & Technology

    2005-02-01

    Vibration Suzanne D. Smith Air Force Research Laboratory Jeanne A. Smith Raymond J. Newman Advanced Information Engineering Services, Inc. A General...AND HELMET BIODYNAMICS AND TRACKING PERFORMANCE DURING EXPOSURE TO WHOLE-BODY VIBRATION 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 62202F 6. AUTHOR(S...distribution is unlimited. 13. SUPPLEMENTARY NOTES Presented at the UK Conference on Human Response to Vibration , England Sep 2004 14. ABSTRACT Helmet

  2. Whole-Body Vibration Assessment of the M1070 Heavy Equipment Transporter. Volume 1

    DTIC Science & Technology

    1994-08-01

    vibration , health hazard assessment, exposure 05 09 limits, tactical vehicles, terrain, crewmembers 20 11 19. ABSTRACT (Continue on reverse if necessary...and identify by block number) An evaluation of all new tactical vehicles and aircraft is required to assess potential whole-body vibration ( WBV ...minimal exposure times with respect to axis, vibration frequency, vehicle speed, and test course ........... . . 12 7. Front passenger seat HSEL for

  3. Acute effects of stochastic resonance whole body vibration

    PubMed Central

    Elfering, Achim; Zahno, Jasmine; Taeymans, Jan; Blasimann, Angela; Radlinger, Lorenz

    2013-01-01

    AIM: To investigate the acute effects of stochastic resonance whole body vibration (SR-WBV) training to identify possible explanations for preventive effects against musculoskeletal disorders. METHODS: Twenty-three healthy, female students participated in this quasi-experimental pilot study. Acute physiological and psychological effects of SR-WBV training were examined using electromyography of descending trapezius (TD) muscle, heart rate variability (HRV), different skin parameters (temperature, redness and blood flow) and self-report questionnaires. All subjects conducted a sham SR-WBV training at a low intensity (2 Hz with noise level 0) and a verum SR-WBV training at a higher intensity (6 Hz with noise level 4). They were tested before, during and after the training. Conclusions were drawn on the basis of analysis of variance. RESULTS: Twenty-three healthy, female students participated in this study (age = 22.4 ± 2.1 years; body mass index = 21.6 ± 2.2 kg/m2). Muscular activity of the TD and energy expenditure rose during verum SR-WBV compared to baseline and sham SR-WBV (all P < 0.05). Muscular relaxation after verum SR-WBV was higher than at baseline and after sham SR-WBV (all P < 0.05). During verum SR-WBV the levels of HRV were similar to those observed during sham SR-WBV. The same applies for most of the skin characteristics, while microcirculation of the skin of the middle back was higher during verum compared to sham SR-WBV (P < 0.001). Skin redness showed significant changes over the three measurement points only in the middle back area (P = 0.022). There was a significant rise from baseline to verum SR-WBV (0.86 ± 0.25 perfusion units; P = 0.008). The self-reported chronic pain grade indicators of pain, stiffness, well-being, and muscle relaxation showed a mixed pattern across conditions. Muscle and joint stiffness (P = 0.018) and muscular relaxation did significantly change from baseline to different conditions of SR-WBV (P < 0.001). Moreover

  4. Stereotactic Body Radiation Therapy for Pancreatic Cancer.

    PubMed

    Goodman, Karyn A

    2016-01-01

    The role of radiation therapy in the management of pancreatic cancer represents an area of some controversy. However, local disease progression remains a significant cause of morbidity and even mortality for patients with this disease. Stereotactic body radiotherapy (SBRT) is an emerging treatment option for pancreatic cancer, primarily for locally advanced (unresectable) disease as it can provide a therapeutic benefit with significant advantages for patients' quality of life over standard conventional chemoradiation. There may also be a role for SBRT as neoadjuvant therapy for patients with borderline resectable disease to allow conversion to resectability. The objective of this review is to present the data supporting SBRT in pancreatic cancer as well as the potential limitations and caveats of current studies.

  5. Ride Dynamics and Evaluation of Human Exposure to Whole Body Vibration

    DTIC Science & Technology

    2011-11-29

    serious injuries that may occur as a result of vibration exposure . The technique for collecting data to be used for either ride dynamics or WBV exposure ......evaluating the ride dynamics or ride quality and whole body vibration ( WBV ) of ground vehicles. Ride dynamics and WBV pertain to the sensation or feel of

  6. Ride Dynamics and Evaluation of Human Exposure to Whole Body Vibration. Change 1

    DTIC Science & Technology

    2012-04-03

    methods for evaluating the ride dynamics or ride quality of ground vehicles as well as the vehicle occupants’ exposure to Whole-Body Vibration ( WBV ...occur as a result of vibration exposure . The technique for collecting data to be used for either ride dynamics or WBV exposure assessments is similar...

  7. Determining the Posture and Vibration Frequency that Maximize Pelvic Floor Muscle Activity During Whole-Body Vibration

    PubMed Central

    Lee, Juhyun; Lee, Kyeongjin; Song, Changho

    2016-01-01

    Background The aim of this study was to investigate the electromyogram (EMG) response of pelvic floor muscle (PFM) to whole-body vibration (WBV) while using different body posture and vibration frequencies. Material/Methods Thirteen healthy adults (7 men, 6 women) voluntarily participated in this cross-sectional study in which EMG data from PFM were collected in a total of 12 trials for each subject (4 body postures, 3 vibration frequencies). Pelvic floor EMG activity was recorded using an anal probe. The rating of perceived exertion (RPE) was assessed with a modified Borg scale. Results We found that vibration frequency, body posture, and muscle stimulated had a significant effect on the EMG response. The PFM had high activation at 12 Hz and 26 Hz (p<0.05). PFM activation significantly increased with knee flexion (p<0.05). The RPE significantly increased with increased frequency (p<0.05). Conclusions The knee flexion angle of 40° at 12 Hz frequency can be readily promoted in improving muscle activation during WBV, and exercise would be performed effectively. Based on the results of the present investigation, sports trainers and physiotherapists may be able to optimize PFM training programs involving WBV. PMID:27787476

  8. [EFFECTS OF WHOLE-BODY VIBRATION TRAINING ON BODY COMPOSITION AND PHYSICAL FITNESS IN RECREATIONALLY ACTIVE YOUNG ADULTS].

    PubMed

    Martínez-Pardo, Esmeraldo; Martínez-Ruiz, Enrique; Alcaraz, Pedro E; Rubio-Arias, Jacobo A

    2015-11-01

    In the last decade, it has been suggested that whole- body vibration training (WBV) may increase neuromuscular performance and consequently affect the muscular improvement as either acute response to vibration or chronic adaptation training. Vibrating platforms generate frequencies from 5-45 Hz and vertical oscillations of 1-11 mm peak to peak, affecting more or less intensity acceleration changing by combining frequency and amplitude. Vibration training, in a session as various offers different results in regard to changes in body composition and in increasing the vertical jump, sprint, and the different manifestations of force development. These promising results await further research to establish parameters (duration, frequency and amplitude) with vibration stimulation in young active subjects. This literature review provides an update on the scientific evidence on the body vibrations in order to answer the question whether WBV, meaning the exercise by increasing the gravitational load collection, is a treatment option if the aim is to improve neuromuscular function, flexibility, balance, agility, coordination and body composition.

  9. Dynamic Response of the Standing Human Body Exposed to Vertical Vibration: Influence of Posture and Vibration Magnitude

    NASA Astrophysics Data System (ADS)

    Matsumoto, Y.; Griffin, M. J.

    1998-04-01

    The influence of the posture of the legs and the vibration magnitude on the dynamic response of the standing human body exposed to vertical whole-body vibration has been investigated. Motions were measured on the body surface at the first and eighth thoracic and fourth lumbar vertebrae (T1, T8 and L4), at the right and left iliac crests and at the knee. Twelve subjects took part in the experiment with three leg postures (normal, legs bent and one leg), and five magnitudes of random vibration (0·125-2·0 ms-2r.m.s.) in the frequency range from 0[msde]5-30 Hz. The main resonance frequencies of the apparent masses at 1·0 ms-2r.m.s. differed between postures: 5·5 Hz in the normal posture, 2·75 Hz in the legs bent posture and 3·75 Hz in the one leg posture. In the normal posture, the transmissibilities to L4 and the iliac crests showed a similar trend to the apparent mass at low frequencies. With the legs straight, no resonance was observed in the legs at frequencies below 15 Hz. In the legs bent posture, a bending motion of the legs at the knee and a pitching or bending motion of the upper-body appeared to contribute to the resonance of the whole body as observed in the apparent mass, with attenuation of vibration transmission to the upper body at high frequencies. In the one leg posture, coupled rotational motion of the whole upper-body about the hip joint may have contributed to the resonance observed in the apparent mass at low frequencies and the attenuation of vertical vibration transmission at high frequencies. The resonance frequency of the apparent mass in the normal posture decreased from 6·75-5·25 Hz with increasing vibration magnitude from 0·125 to 2·0 ms-2r.m.s. This “softening” effect was also found in the transmissibilities to many parts of the body that showed resonances.

  10. Three-body abrasive wear characteristics under reciprocating motion of CFRP in vibrating environment

    SciTech Connect

    Teraoka, Sadakazu; Ishikawa, Ken-ichi; Nakagawa, Tatsuo

    1996-12-31

    Carbon fiber reinforced plastics (CFRP) has been widely used in industry because of their attractive mechanical characteristics. Such CFRP parts are invariably subjected to three-body wear due to small indentations and machine vibrations. In this study, the wear characteristics under the three-body condition and the abrasive wear of CFRP were investigated by using a vibrating environment and silicon carbide abrasive grains.

  11. Nonlinear dual-axis biodynamic response of the semi-supine human body during longitudinal horizontal whole-body vibration

    NASA Astrophysics Data System (ADS)

    Huang, Ya; Griffin, Michael J.

    2008-04-01

    The resonance frequencies in frequency response functions of the human body (e.g. apparent mass and transmissibility) decrease with increasing vibration magnitude. This nonlinear biodynamic response is found with various sitting and standing postures requiring postural control. The present study measured the apparent mass of the body in a relaxed semi-supine posture with two types of longitudinal horizontal vibration (in the z-axis of the semi-supine body): (i) continuous random excitation (0.25-20 Hz) at five magnitudes (0.125, 0.25, 0.5, 0.75 and 1.0 ms -2 rms); (ii) intermittent random excitation (0.25-20 Hz) alternately at 0.25 and 1.0 ms -2 rms. With continuous random vibration, the dominant primary resonance frequency in the median normalised apparent mass decreased from 3.7 to 2.4 Hz as the vibration magnitude increased from 0.125 to 1.0 ms -2 rms. A nonlinear response was apparent in both the horizontal ( z-axis) apparent mass and the vertical ( x-axis) cross-axis apparent mass. With intermittent random vibration, as the vibration magnitude increased from 0.25 to 1.0 ms -2 rms, the median resonance frequency of the apparent mass decreased from 3.2 to 2.5 Hz whereas, with continuous random vibration over the same range of magnitudes, the resonance frequency decreased from 3.4 to 2.4 Hz. The median change in the resonance frequency (between 0.25 and 1.0 ms -2 rms) was 0.6 Hz with the intermittent random vibration and 0.9 Hz with the continuous random vibration. With intermittent vibration, the resonance frequency was higher at the high magnitude and lower at the low magnitude than with continuous vibration at the same magnitudes. The responses were consistent with passive thixotropy being a primary cause of nonlinear biodynamic responses to whole-body vibration, although reflex activity of the muscles may also have an influence.

  12. Neuromuscular response of the trunk to inertial based sudden perturbations following whole body vibration exposure.

    PubMed

    MacIntyre, Danielle; Cort, Joel A

    2014-12-01

    The effects of whole body vibration exposure on the neuromuscular responses following inertial-based trunk perturbations were examined. Kinematic and surface EMG (sEMG) data were collected while subjects were securely seated on a robotic platform. Participants were either exposed to 10 min of vibration or not, which was followed by sudden inertial trunk perturbations with and without timing and direction knowledge. Amplitude of sEMG was analyzed for data collected during the vibration protocol, whereas the onset of sEMG activity and lumbar spine angle were analyzed for the perturbation protocol. Data from the vibration protocol did not show a difference in amplitude of sEMG for participants exposed to vibration and those not. The perturbation protocol data showed that those not exposed to vibration had a 14% faster muscle onset, despite data showing no difference in fatigue level.

  13. Apparent Mass and Absorbed Power during Exposure to Whole-Body Vibration and Repeated Shocks

    NASA Astrophysics Data System (ADS)

    MANSFIELD, N. J.; HOLMLUND, P.; LUNDSTRÖM, R.

    2001-11-01

    Exposure to mechanical shocks might pose a greater health risk than exposure to continuous vibration. Previous studies have investigated subjective responses, muscle activity or transmission of vibration to the spine or head during shock. If there is a difference between biomechanic responses of the seated body to shocks when compared to continuous vibration, then this may indicate a more, or less, hazardous vibration waveform. This paper presents measurements of apparent mass and absorbed power during exposure to random vibration, repeated shocks and combinations of shocks and random vibration. Eleven male and 13 female subjects were exposed to 15 vibration conditions generated using an electro-dynamic shaker. Subjects were exposed to five 20 s acceleration waveforms with nominally identical power spectra (random vibration, equally spaced shocks, unequally spaced shocks, random combined with equally spaced shocks, random combined with unequally spaced shocks) at each of 0·5, 1·0 and 1·5 m/s2r.m.s. The general shapes of the apparent mass or absorbed power curves were not affected by stimulus type, indicating that the biomechanical response of the body is fundamentally the same when exposed to shocks or random vibration. Two non-linear effects were observed: apparent mass resonance frequencies were slightly higher for exposure to shocks; apparent mass and absorbed power resonance frequencies decreased with increases in vibration magnitude for each stimulus type. It is concluded that the two non-linear mechanisms operate simultaneously: a stiffening effect during exposure to shocks and a softening effect as vibration magnitudes increase. Total absorbed powers were greatest for shock stimuli and least for random vibration.

  14. Nonlinear dual-axis biodynamic response of the semi-supine human body during vertical whole-body vibration

    NASA Astrophysics Data System (ADS)

    Huang, Ya; Griffin, Michael J.

    2008-04-01

    Nonlinear biodynamic responses are evident in many studies of the apparent masses of sitting and standing subjects in static postures that require muscle activity for postural control. In the present study, 12 male subjects adopted a relaxed semi-supine posture assumed to involve less muscle activity than during static sitting and standing. The supine subjects were exposed to two types of vertical vibration (in the x-axis of the semi-supine body): (i) continuous random vibration (0.25-20 Hz) at five magnitudes (0.125, 0.25, 0.5, 0.75, and 1.0 m s -2 rms); (ii) intermittent random vibration (0.25-20 Hz) alternately at 0.25 and 1.0 m s -2 rms. With continuous random vibration, the dominant primary resonance frequency in the median normalised apparent mass decreased from 10.35 to 7.32 Hz as the vibration magnitude increased from 0.125 to 1.0 m s -2 rms. This nonlinear response was apparent in both the vertical ( x-axis) apparent mass and in the horizontal ( z-axis) cross-axis apparent mass. As the vibration magnitude increased from 0.25 to 1.0 m s -2 rms, the median resonance frequency of the apparent mass with intermittent random vibration decreased from 9.28 to 8.06 Hz whereas, over the same range of magnitudes with continuous random vibration, the resonance frequency decreased from 9.62 to 7.81 Hz. The median change in the resonance frequency (between 0.25 and 1.0 m s -2 rms) was 1.37 Hz with the intermittent random vibration and 1.71 with the continuous random vibration. With the intermittent vibration, the resonance frequency was higher at the high magnitude and lower at the low magnitude than with continuous vibration of the same magnitudes. The response was typical of thixotropy that may be a primary cause of the nonlinear biodynamic responses to whole-body vibration.

  15. Platform accelerations of three different whole-body vibration devices and the transmission of vertical vibrations to the lower limbs.

    PubMed

    Pel, J J M; Bagheri, J; van Dam, L M; van den Berg-Emons, H J G; Horemans, H L D; Stam, H J; van der Steen, J

    2009-10-01

    Physical whole-body vibration (WBV) exercises become available at various levels of intensity. In a first series of measurements, we investigated 3-dimensional platform accelerations of three different WBV devices without and with three volunteers of different weight (62, 81 and 100 kg) in squat position (150 degrees knee flexion). The devices tested were two professional devices, the PowerPlate and the Galileo-Fitness, and one home-use device, the PowerMaxx. In a second series of measurements, the transmission of vertical platform accelerations of each device to the lower limbs was tested in eight healthy volunteers in squat position (100 degrees knee flexion). The first series showed that the platforms of two professional devices vibrated in an almost perfect vertical sine wave at frequencies between 25-50 and 5-40 Hz, respectively. The platform accelerations were slightly influenced by body weight. The PowerMaxx platform mainly vibrated in the horizontal plane at frequencies between 22 and 32 Hz, with minimal accelerations in the vertical direction. The weight of the volunteers reduced the platform accelerations in the horizontal plane but amplified those in the vertical direction about eight times. The vertical accelerations were highest in the Galileo (approximately 15 units of g) and the PowerPlate (approximately 8 units of g) and lowest in the PowerMaxx (approximately 2 units of g). The second series showed that the transmission of vertical accelerations at a common preset vibration frequency of 25 Hz were largest in the ankle and that transmission of acceleration reduced approximately 10 times at the knee and hip. We conclude that large variation in 3-dimensional accelerations exist in commercially available devices. The results suggest that these differences in mechanical behaviour induce variations in transmissibility of vertical vibrations to the (lower) body.

  16. Effects of whole-body vibration after eccentric exercise on muscle soreness and muscle strength recovery.

    PubMed

    Timon, Rafael; Tejero, Javier; Brazo-Sayavera, Javier; Crespo, Carmen; Olcina, Guillermo

    2016-06-01

    [Purpose] The aim of this study was to investigate whether or not a single whole-body vibration treatment after eccentric exercise can reduce muscle soreness and enhance muscle recovery. [Subjects and Methods] Twenty untrained participants were randomly assigned to two groups: a vibration group (n=10) and control group (n=10). Participants performed eccentric quadriceps training of 4 sets of 5 repetitions at 120% 1RM, with 4 min rest between sets. After that, the vibration group received 3 sets of 1 min whole body vibration (12 Hz, 4 mm) with 30 s of passive recovery between sets. Serum creatine kinase, blood urea nitrogen, muscle soreness (visual analog scale) and muscle strength (peak isometric torque) were assessed. [Results] Creatine kinase was lower in the vibration group than in the control group at 24 h (200.2 ± 8.2 vs. 300.5 ± 26.1 U/L) and at 48 h (175.2 ± 12.5 vs. 285.2 ± 19.7 U/L) post-exercise. Muscle soreness decreased in vibration group compared to control group at 48 h post-exercise (34.1 ± 11.4 vs. 65.2 ± 13.2 mm). [Conclusion] Single whole-body vibration treatment after eccentric exercise reduced delayed onset muscle soreness but it did not affect muscle strength recovery.

  17. Effects of whole-body vibration after eccentric exercise on muscle soreness and muscle strength recovery

    PubMed Central

    Timon, Rafael; Tejero, Javier; Brazo-Sayavera, Javier; Crespo, Carmen; Olcina, Guillermo

    2016-01-01

    [Purpose] The aim of this study was to investigate whether or not a single whole-body vibration treatment after eccentric exercise can reduce muscle soreness and enhance muscle recovery. [Subjects and Methods] Twenty untrained participants were randomly assigned to two groups: a vibration group (n=10) and control group (n=10). Participants performed eccentric quadriceps training of 4 sets of 5 repetitions at 120% 1RM, with 4 min rest between sets. After that, the vibration group received 3 sets of 1 min whole body vibration (12 Hz, 4 mm) with 30 s of passive recovery between sets. Serum creatine kinase, blood urea nitrogen, muscle soreness (visual analog scale) and muscle strength (peak isometric torque) were assessed. [Results] Creatine kinase was lower in the vibration group than in the control group at 24 h (200.2 ± 8.2 vs. 300.5 ± 26.1 U/L) and at 48 h (175.2 ± 12.5 vs. 285.2 ± 19.7 U/L) post-exercise. Muscle soreness decreased in vibration group compared to control group at 48 h post-exercise (34.1 ± 11.4 vs. 65.2 ± 13.2 mm). [Conclusion] Single whole-body vibration treatment after eccentric exercise reduced delayed onset muscle soreness but it did not affect muscle strength recovery. PMID:27390415

  18. Biodynamic response of the human body in the sitting position when subjected to vertical vibration

    NASA Astrophysics Data System (ADS)

    Donati, P. M.; Bonthoux, C.

    1983-10-01

    Previous studies of the location of those areas in which the sensation of vibration is perceived under whole body vertical vibration have underlined the predominance of the relative movement between thorax and pelvis. Experiments were designed to explore systematically the transmissibility between the pelvis and thorax. These were supplemented by measurements of mechanical impedance of the body and absorbed power. To determine the body impedance, a procedure was developed to remove the effect of the load platform itself. Fifteen subjects were presented first with a swept sinusoidal vibration, and then with a broad band random vibration, to see how the wave form of the motion might affect the mechanical response of the body. The results obtained for the seat to thorax transmissibility suggest that within the range of vertical vibration investigated (1-10 Hz, 1·6 m/s 2 r.m.s.) the human body in the sitting position can be modelled by a linear system with one or two degrees of freedom according to the subject. Data from the impedance function, which is a more complete description of the response of the body as a mechanical system, lead to systems with one further degree of freedom.

  19. Nonlinear subjective and dynamic responses of seated subjects exposed to horizontal whole-body vibration

    NASA Astrophysics Data System (ADS)

    Subashi, G. H. M. J.; Nawayseh, N.; Matsumoto, Y.; Griffin, M. J.

    2009-03-01

    The effect of the magnitude of fore-and-aft and lateral vibration on the subjective and mechanical responses of seated subjects has been investigated experimentally using simultaneous measurements of relative discomfort and apparent mass. Twelve male subjects were exposed to sinusoidal vibration at nine frequencies (between 1.6 and 10 Hz) at four magnitudes (in the range 0.125-1.0 m s -2 r.m.s.) in both horizontal directions (fore-and-aft and lateral). The method of magnitude estimation was used to estimate discomfort relative to that caused by a 4 Hz reference vibration in the same axis. The apparent mass was calculated from the acceleration and the applied force so as to quantify the mechanical response of the body. With each direction of excitation, the apparent mass was normalised by dividing it by the apparent mass obtained at 4 Hz, so that the mechanical responses could be compared with the subjective responses. The relative discomfort and the normalised apparent mass were similarly affected by the frequency and magnitude of vibration, with significant correlations between the relative discomfort and the normalised apparent mass. The results indicate that the discomfort caused by horizontal whole-body vibration is associated with the apparent mass in a frequency range where motion of the whole body is dominant. In this frequency range, the nonlinear subjective responses may be attributed, at least in part, to the nonlinear dynamic responses to horizontal whole-body vibration.

  20. Varying whole body vibration amplitude differentially affects tendon and ligament structural and material properties.

    PubMed

    Keller, Benjamin V; Davis, Matthew L; Thompson, William R; Dahners, Laurence E; Weinhold, Paul S

    2013-05-31

    Whole Body Vibration (WBV) is becoming increasingly popular for helping to maintain bone mass and strengthening muscle. Vibration regimens optimized for bone maintenance often operate at hypogravity levels (<1G) and regimens for muscle strengthening often employ hypergravity (>1G) vibrations. The effect of vibratory loads on tendon and ligament properties is unclear though excessive vibrations may be injurious. Our objective was to evaluate how tendon gene expression and the mechanical/histological properties of tendon and ligament were affected in response to WBV in the following groups: no vibration, low vibration (0.3G peak-to-peak), and high vibration (2G peak-to-peak). Rats were vibrated for 20 min a day, 5 days a week, for 5 weeks. Upon sacrifice, the medial collateral ligament (MCL), patellar tendon (PT), and the Achilles Tendon (AT) were isolated with insertion sites intact. All tissues were tensile tested to determine structural and material properties or used for histology. Patellar tendon was also subjected to quantitative RT-PCR to evaluate expression of anabolic and catabolic genes. No differences in biomechanical data between the control and the low vibration groups were found. There was evidence of significant weakness in the MCL with high vibration, but no significant effect on the PT or AT. Histology of the MCL and PT showed a hypercellular tissue response and some fiber disorganization with high vibration. High vibration caused an increase in collagen expression and a trend for an increase in IGF-1 expression suggesting a potential anabolic response to prevent tendon overuse injury.

  1. Low back and neck pain in locomotive engineers exposed to whole-body vibration.

    PubMed

    McBride, David; Paulin, Sara; Herbison, G Peter; Waite, David; Bagheri, Nasser

    2014-01-01

    The objective of this study was to determine the prevalence and excess risk of low back pain and neck pain in locomotive engineers, and to investigate the relationship of both with whole-body vibration exposure. A cross-sectional survey comparing locomotive engineers with other rail worker referents was conducted. Current vibration levels were measured, cumulative exposures calculated for engineers and referents, and low back and neck pain assessed by a self-completed questionnaire. Median vibration exposure in the z- (vertical) axis was 0.62 m/s(2). Engineers experienced more frequent low back and neck pain, odds ratios (ORs) of 1.77 (95% confidence interval [CI]: 1.19-2.64) and 1.92 (95% CI: 1.22-3.02), respectively. The authors conclude that vibration close to the "action levels" of published standards contribute to low back and neck pain. Vibration levels need to be assessed conservatively and control measures introduced.

  2. Fluid dynamic aspects of cardiovascular behavior during low-frequency whole-body vibration

    NASA Technical Reports Server (NTRS)

    Nerem, R. M.

    1973-01-01

    The behavior of the cardiovascular system during low frequency whole-body vibration, such as encountered by astronauts during launch and reentry, is examined from a fluid mechanical viewpoint. The vibration characteristics of typical manned spacecraft and other vibration environments are discussed, and existing results from in vivo studies of the hemodynamic aspects of this problem are reviewed. Recent theoretical solutions to related fluid mechanical problems are then used in the interpretation of these results and in discussing areas of future work. The results are included of studies of the effects of vibration on the work done by the heart and on pulsatile flow in blood vessels. It is shown that important changes in pulse velocity, the instantaneous velocity profile, mass flow rate, and wall shear stress may occur in a pulsatile flow due to the presence of vibration. The significance of this in terms of changes in peripheral vascular resistance and possible damage to the endothelium of blood vessels is discussed.

  3. Display strobing: An effective countermeasure against visual blur from whole-body vibration

    NASA Astrophysics Data System (ADS)

    Adelstein, Bernard D.; Kaiser, Mary K.; Beutter, Brent R.; McCann, Robert S.; Anderson, Mark R.

    2013-11-01

    Crews and equipment in aerospace vehicles, including spacecraft at launch, can be exposed to significant vibration. Prior to this study, we examined the ability of vibrating observers to read alphanumeric symbology on stationary (i.e., non-vibrating) flight-relevant display formats and noted performance degradation with increasing vibration amplitude and decreasing font size. Here we test the efficacy of a display strobing countermeasure for the reading decrements caused by the same 12-Hz whole-body vibration in the surge (chest-to-spine) direction applied in our prior studies. To produce the strobe countermeasure, we triggered the backlight of a stationary liquid crystal diode (LCD) display panel to flash in synchrony with the 12-Hz vibration of the observer's seat while experimentally varying both the strobe duty cycle and phase angle between the strobe onset and the vibration cycle zero-crossings. Strobing proved an effective countermeasure, restoring reading error rates during 0.7g (6.9 m/s2 half-amplitude) whole-body vibration to levels indistinguishable from those achieved under the non-strobed (equivalent luminance) non-vibrating baseline condition and improving response times although not fully to the baseline. While we noted differences in the "preferred" phase angle of individual observers, on average, no overall effect of phase angle was detected. Likewise, no effect was seen for the two duty cycles and their respective equivalent luminance levels. Further studies are needed to determine the efficacy of strobing for multi-axis and multi-frequency vibration, and for displays with moving images.

  4. Effect of Whole-Body Vibration on Speech. Part 2; Effect on Intelligibility

    NASA Technical Reports Server (NTRS)

    Begault, Durand R.

    2011-01-01

    The effect on speech intelligibility was measured for speech where talkers reading Diagnostic Rhyme Test material were exposed to 0.7 g whole body vibration to simulate space vehicle launch. Across all talkers, the effect of vibration was to degrade the percentage of correctly transcribed words from 83% to 74%. The magnitude of the effect of vibration on speech communication varies between individuals, for both talkers and listeners. A worst case scenario for intelligibility would be the most sensitive listener hearing the most sensitive talker; one participant s intelligibility was reduced by 26% (97% to 71%) for one of the talkers.

  5. Using consumer electronic devices to estimate whole-body vibration exposure.

    PubMed

    Wolfgang, Rebecca; Burgess-Limerick, Robin

    2014-01-01

    The cost and complexity of commercially available devices for measuring whole-body vibration is a barrier to the systematic collection of the information required to manage this hazard at workplaces. The potential for a consumer electronic device to be used to estimate whole-body vibration was assessed by use of an accelerometer calibrator, and by collecting 42 simultaneous pairs of measurements from a fifth-generation iPod Touch and one of two gold standard vibration measurement devices (Svantech SV111 [Svantech, Warsaw, Poland] or Brüel & Kjær 4447 [Brüel & Kjær Sound & Vibration Measurement A/S, Nærum, Denmark]) while driving light vehicles on a variety of different roadway surfaces. While sampling rate limitations make the accelerometer data collected from the iPod Touch unsuitable for frequency analysis, the vibration amplitudes recorded are sufficiently accurate (errors less than 0.1 m/s(2)) to assist workplaces manage whole-body vibration exposures.

  6. The effect of whole-body resonance vibration in a porcine model of spinal cord injury.

    PubMed

    Streijger, Femke; Lee, Jae H T; Chak, Jason; Dressler, Dan; Manouchehri, Neda; Okon, Elena B; Anderson, Lisa M; Melnyk, Angela D; Cripton, Peter A; Kwon, Brian K

    2015-06-15

    Whole-body vibration has been identified as a potential stressor to spinal cord injury (SCI) patients during pre-hospital transportation. However, the effect that such vibration has on the acutely injured spinal cord is largely unknown, particularly in the frequency domain of 5 Hz in which resonance of the spine occurs. The objective of the study was to investigate the consequences of resonance vibration on the injured spinal cord. Using our previously characterized porcine model of SCI, we subjected animals to resonance vibration (5.7±0.46 Hz) or no vibration for a period of 1.5 or 3.0 h. Locomotor function was assessed weekly and cerebrospinal fluid (CSF) samples were collected to assess different inflammatory and injury severity markers. Spinal cords were evaluated histologically to quantify preserved white and gray matter. No significant differences were found between groups for CSF levels of monocyte chemotactic protein-1, interleukin 6 (IL-6) and lL-8. Glial fibrillary acidic protein levels were lower in the resonance vibration group, compared with the non-vibrated control group. Spared white matter tissue was increased within the vibrated group at 7 d post-injury but this difference was not apparent at the 12-week time-point. No significant difference was observed in locomotor recovery following resonance vibration of the spine. Here, we demonstrate that exposure to resonance vibration for 1.5 or 3 h following SCI in our porcine model is not detrimental to the functional or histological outcomes. Our observation that a 3.0-h period of vibration at resonance frequency induces modest histological improvement at one week post-injury warrants further study.

  7. Whole body vibration: unsupervised training or combined with a supervised multi-purpose exercise for fitness?

    PubMed

    Emerenziani, Gian Pietro; Meucci, Marco; Gallotta, Maria Chiara; Buzzachera, Cosme Franklim; Guidetti, Laura; Baldari, Carlo

    2014-01-01

    The aim of the study was to compare the effect of an unsupervised whole body vibration (WBV) training and two different supervised multi-purpose exercise programmes, with and without WBV, on body composition, functional fitness and self-reported well-being in middle-aged adults. Fifty-four healthy participants (age 48.6 ± 6.7 years) were randomly assigned to a vibration group (VG), a multi-purpose exercise group (MG) and a multi-purpose exercise with vibration group (VMG) and trained 3 days a week for 4 months. VG performed a standardised unsupervised WBV protocol, MG a supervised multi-purpose exercise and VMG a multi-purpose exercise including vibration. After training, drop out was significantly higher in VG group (P = 0.016) when compared to VMG group. In both MG and VMG, body composition, sit-up, push-up, sit and reach, agility test, hopping test and self-reported general health significantly improved (P < 0.05). No additive effects were generated by the vibration stimulus. Percentage of body fat and agility test in VG had a significant opposite trend compared to VMG group (P < 0.05). In summary, an unsupervised WBV training should not be chosen for training protocol. However, positive effects on physical fitness and the best results in adherence could be achieved integrating WBV practice into a multi-purpose exercise training.

  8. Track geometry estimation from car-body vibration

    NASA Astrophysics Data System (ADS)

    Tsunashima, Hitoshi; Naganuma, Yasukuni; Kobayashi, Takahito

    2014-05-01

    Track maintenance works based on track geometry recordings are essential to enhance the safety and comfort of railway transportation. The track condition monitoring system is mainly used for the choice of area needing track tamping works for the purpose of the good riding comfort. An advantage of car-body acceleration measurement devices is their simple structures, which make it easier to carry out maintenance. However, the car-body acceleration waveform is considerably different from track geometry. This paper demonstrates the possibility to estimate the track geometry of Shinkansen tracks using car-body motions only. In an inverse problem to estimate track irregularity from car-body motions, a Kalman Filter (KF) was applied to solve the problem. Estimation results showed that track irregularity estimation in vertical direction is possible with acceptable accuracy for real use.

  9. Neurocognitive responses to a single session of static squats with whole body vibration.

    PubMed

    Amonette, William E; Boyle, Mandy; Psarakis, Maria B; Barker, Jennifer; Dupler, Terry L; Ott, Summer D

    2015-01-01

    The purpose of this study was to determine if the head accelerations using a common whole body vibration (WBV) exercise protocol acutely reduced neurocognition in healthy subjects. Second, we investigated differential responses to WBV plates with 2 different delivery mechanisms: vertical and rotational vibrations. Twelve healthy subjects (N = 12) volunteered and completed a baseline (BASE) neurocognitive assessment: the Immediate Postconcussion Assessment and Cognitive Test (ImPACT). Subjects then participated in 3 randomized exercise sessions separated by no more than 2 weeks. The exercise sessions consisted of five 2-minute sets of static hip-width stance squats, with the knees positioned at a 45° angle of flexion. The squats were performed with no vibration (control [CON]), with a vertically vibrating plate (vertical vibration [VV]), and with a rotational vibrating plate (rotational vibration [RV]) set to 30 Hz with 4 mm of peak-to-peak displacement. The ImPACT assessments were completed immediately after each exercise session and the composite score for 5 cognitive domains was analyzed: verbal memory, visual memory, visual motor speed, reaction time, and impulse control. Verbal memory scores were unaffected by exercise with or without vibration (p = 0.40). Likewise, visual memory was not different (p = 0.14) after CON, VV, or RV. Significant differences were detected for visual motor speed (p = 0.006); VV was elevated compared with BASE (p = 0.01). There were no significant differences (p = 0.26) in reaction time or impulse control (p = 0.16) after exercise with or without vibration. In healthy individuals, 10 minutes of 30 Hz, 4-mm peak-to-peak displacement vibration exposure with a 45° angle of knee flexion did not negatively affect neurocognition.

  10. Investigation of the transmission of fore and aft vibration through the human body.

    PubMed

    Demić, Miroslav; Lukić, Jovanka

    2009-07-01

    Understanding the behavior of human body under the influence of vibration is of great importance for the optimal motor vehicle system design. Therefore, great efforts are being done in order to discover as many information about the influence of vibration on human body as possible. So far the references show that the major scientific attention has been paid to vertical vibration, although intensive research has been performed lately on the other sorts of excitation. In this paper, the results of the investigation of behavior of human body, in seated position, under the influence of random fore and aft vibration are shown. The investigation is performed by the use of an electro-hydraulic simulator, on a group of 30 healthy male occupants. Experiments are performed in order to give results to improve human body modeling in driving conditions. Excitation amplitudes (1.75 and 2.25 m/s(2) rms) and seat backrest conditions (with and without inclination) were varied. Data results are analyzed by partial coherence and transfer functions. Analyses have been performed and results are given in detail. The results obtained have shown that the human body under the influence of random excitations behaves as a non-linear system and its response depends on spatial position. Obtained results give necessary data to define structure and parameters of human biodynamic model with respect to different excitation and seat backrest position.

  11. Effects of whole-body vibrations on sensory motor system performance in man.

    PubMed

    Gauthier, G M; Roll, J P; Martin, B; Harlay, F

    1981-08-01

    The effects of whole body vibration (WBV) were studied on subjects trained to perform on tasks involving blindfolded arm positioning (proprioceptive tasks), tracking of visual targets and control of static and dynamic torques. Subjects were vibrated in a seated position by means of a hydraulic jack. The vibration used (0.1 G at floor level and 18 Hz) was that occasionally encountered on medium-size cruising helicopter. The seat was that of a heliccopter pilot whose foam cushion was 6 cm thick with a density of 26 kg/m3. Systematic past-pointing was observed for both arm flexion and extension. Foot and arm visual tracking precision, as determined by position and velocity errors, increased in both directions. Static and dynamic control, rated by torque holding stability and torque amplitude precision, were also significantly altered compared to pre-stimulus readings. The results are interpreted in relation to current knowledge of the effects of vibration induced at spinal, vestibular, and central nervous system levels. It is concluded that the proprioceptive system through which vibration-induced afferents enter the neurological networks is the common denominator for the observed alterations of the position, velocity, and force controls. Our observations suggest that particular care should be taken in helicopters and other vibrating vehicles to prevent vibration from reaching muscular masses, especially those involved in motor tasks.

  12. Exploring the effects of seated whole body vibration exposure on repetitive asymmetric lifting tasks.

    PubMed

    Mehta, Jay P; Lavender, Steven A; Jagacinski, Richard J; Sommerich, Carolyn M

    2015-01-01

    This study investigated changes in the physiological and behavioral responses to repetitive asymmetric lifting activity after exposure to whole body vibrations. Seventeen healthy volunteers repeatedly lifted a box (15% of lifter's capacity) positioned in front of them at ankle level to a location on their left side at waist level at the rate of 10 lifts/min for a period of 60 minutes. Prior to lifting, participants were seated on a vibrating platform for 60 minutes; in one of the two sessions the platform did not vibrate. Overall, the physiological responses assessed using near-infrared spectroscopy signals for the erector spinae muscles decreased significantly over time during the seating and the lifting tasks (p < 0.001). During repetitive asymmetric lifting, behavioral changes included increases in peak forward bending motion, twisting movement, and three-dimensional movement velocities of the spine. The lateral bending movement of the spine and the duration of each lift decreased significantly over the 60 minutes of repetitive lifting. With exposure to whole body vibration, participants twisted farther (p = 0.046) and twisted faster (p = 0.025). These behavioral changes would suggest an increase in back injury risk when repetitive lifting tasks are preceded by whole body vibration exposure.

  13. Controlled whole-body vibration training reduces risk of falls among community-dwelling older adults.

    PubMed

    Yang, Feng; King, George A; Dillon, Loretta; Su, Xiaogang

    2015-09-18

    The primary purpose of this study was to systematically examine the effects of an 8-week controlled whole-body vibration training on reducing the risk of falls among community-dwelling adults. Eighteen healthy elderlies received vibration training which was delivered on a side alternating vibration platform in an intermittent way: five repetitions of 1 min vibration followed by a 1 min rest. The vibration frequency and amplitude were 20 Hz and 3.0mm respectively. The same training was repeated 3 times a week, and the entire training lasted for 8 weeks for a total of 24 training sessions. Immediately prior to (or pre-training) and following (or post-training) the 8-week training course, all participants' risk of falls were evaluated in terms of body balance, functional mobility, muscle strength and power, bone density, range of motion at lower limb joints, foot cutaneous sensation level, and fear of falling. Our results revealed that the training was able to improve all fall risk factors examined with moderate to large effect sizes ranging between 0.55 and 1.26. The important findings of this study were that an 8-week vibration training could significantly increase the range of motion of ankle joints on the sagittal plane (6.4° at pre-training evaluation vs. 9.6° at post-training evaluation for dorsiflexion and 45.8° vs. 51.9° for plantar-flexion, p<0.05 for both); reduce the sensation threshold of the foot plantar surface (p<0.05); and lower the fear of falling (12.2 vs. 10.8, p<0.05). These findings could provide guidance to design optimal whole-body vibration training paradigm for fall prevention among older adults.

  14. The acute effect of whole body vibration training on flexibility and explosive strength of young gymnasts.

    PubMed

    Dallas, G; Kirialanis, P; Mellos, V

    2014-08-01

    The purpose of this study was to examine the acute effect of a single bout of whole body vibration (WBV) on flexibility and explosive strength of lower limbs in young artistic gymnasts. Thirty-two young competitive gymnasts volunteered to participate in this study, and were allocated to either the vibration group or traditional body weight training according to the vibration protocol. The vibration intervention consisted of a single bout of eccentric and concentric squatting movements on a vibration platform that was turned on (vibration group: VG n = 15), whereas the traditional body weight (no vibration) group performed the same training protocol with the WBV device turned off (NVG: n= 17). Flexibility (sit and reach test) and explosive strength tests [squat jump (SJ), counter movement jump (CMJ), and single leg squat (right leg (RL) and left leg (LL))] were performed initially (pre-test), immediately after the intervention (post-test 1), and 15 minutes after the end of the intervention programme (post-test 15). Four 2x3 ANOVAs were used to examine the interaction between group (VG vs NVG) and time (pre, post 1, and post 15) with respect to examined variables. The results revealed that a significant interaction between group and time was found with respect to SJ (p < 0.05). However, no significant interaction between group and time was found with respect to flexibility, CMJ, RL and LL after the end of the intervention programme (p > 0.05). Further, the percentage improvement of the VG was significantly greater in all examined variables compared to the NVG. This study concluded that WBV training improves flexibility and explosive strength of lower limbs in young trained artistic gymnasts and maintains the initial level of performance for at least 15 minutes after the WBV intervention programme.

  15. Body temperature of the parasitic wasp Pimpla turionellae (Hymenoptera) during host location by vibrational sounding.

    PubMed

    Kroder, Stefan; Samietz, Jörg; Stabentheiner, Anton; Dorn, Silvia

    2008-03-01

    The pupal parasitoid Pimpla turionellae (L.) uses self-produced vibrations transmitted on the plant substrate, so-called vibrational sounding, to locate immobile concealed pupal hosts. The wasps are able to use vibrational sounding reliably over a broad range of ambient temperatures and even show an increased signal frequency and intensity at low temperatures. The present study investigates how control of body temperature in the wasps by endothermic mechanisms may facilitate host location under changing thermal environments. Insect body temperature is measured with real-time IR thermography on plant-stem models at temperature treatments of 10, 18, 26 and 30 °C, whereas behaviour is recorded with respect to vibrational host location. The results reveal a low-level endothermy that likely interferes with vibrational sound production because it occurs only in nonsearching females. At the lowest temperature of 10 °C, the thoracic temperature is 1.15 °C warmer than the ambient surface temperature whereas, at the high temperatures of 26 and 30 ° C, the wasps cool down their thorax by 0.29 and 0.47 °C, respectively, and their head by 0.45 and 0.61 °C below ambient surface temperature. By contrast, regardless of ambient temperature, searching females always have a slightly elevated body temperature of at most 0.30 °C above the ambient surface temperature. Behavioural observations indicate that searching females interrupt host location more frequently at suboptimal temperatures, presumably due to the requirements of thermoregulation. It is assumed that both mechanisms, producing vibrations for host location and low-level endothermy, are located in the thorax. Endothermy by thoracic muscle work probably disturbs signal structure of vibrational sounding, so the processes cannot be used at the same time.

  16. Transmission of whole body vibration to the lower body in static and dynamic half-squat exercises.

    PubMed

    Munera, Marcela; Bertucci, William; Duc, Sebastien; Chiementin, Xavier

    2016-11-01

    Whole body vibration (WBV) is used as a training method but its physical risk is not yet clear. Hence, the aim of this study is to assess the exposure to WBV by a measure of acceleration at the lower limb under dynamic and static postural conditions. The hypothesis of this paper is that this assessment is influenced by the frequency, position, and movement of the body. Fifteen healthy males are exposed to vertical sinusoidal vibration at different frequencies (20-60 Hz), while adopting three different static postures (knee extension angle: 180°, 120° and 90°) or performing a dynamic half-squat exercise. Accelerations at input source and at three joints of the lower limb (ankle, knee, and hip) are measured using skin-mounted accelerometers. Acceleration values (g) in static conditions show a decrease in the vibrational dose when it is measured at a more proximal location in the lower extremity. The results of the performed statistical test show statistically significant differences (p < 0.05) in the transmissibility values caused by the frequency, the position, and to the presence of the movement and its direction at the different conditions. The results confirm the initial hypothesis and justify the importance of a vibration assessment in dynamic conditions.

  17. Acute Effects of Whole-Body Vibration on Trunk and Neck Muscle Activity in Consideration of Different Vibration Loads

    PubMed Central

    Perchthaler, Dennis; Hauser, Simon; Heitkamp, Hans-Christian; Hein, Tobias; Grau, Stefan

    2015-01-01

    The intention of this study was to systematically analyze the impact of biomechanical parameters in terms of different peak-to-peak displacements and knee angles on trunk and neck muscle activity during whole-body vibration (WBV). 28 healthy men and women (age 23 ± 3 years) performed four static squat positions (2 peak-to-peak displacements x 2 knee angles) on a side alternating vibration platform with and without vibration stimulus. Surface electromyography (EMG) was used to record the neuromuscular activity of the erector spinae muscle, the rectus abdominis muscle, and of the splenius muscle. EMG levels normalized to maximal voluntary contractions ranged between 3.2 – 27.2 % MVC during WBV. The increase in muscle activity caused by WBV was significant, particularly for the back muscles, which was up to 19.0 % MVC. The impact of the factor ‘condition’ (F-values ranged from 13.4 to 132.0, p ≤ 0.001) and of the factor ‘peak-to-peak displacement’ (F-values ranged from 6.4 to 69.0 and p-values from < 0.001 to 0.01) were statistically significant for each muscle tested. However, the factor ‘knee angle’ only affected the back muscles (F-value 10.3 and 7.3, p ≤ 0.01). The results of this study should give more information for developing effective and safe training protocols for WBV treatment of the upper body. Key points The maximum levels of muscle activity were significantly reached at high amplitudes at a vibration frequency of 30 Hz. WBV leads to a higher muscle activation of the lower back muscles than of the abdominal muscles. Both knee angles of 30° and 45° have similar effects on the vibration load and represent safe positions to prevent any actual harm. Certain combinations of the biomechanical variables have similar effects on the level of muscle activity. PMID:25729303

  18. Retrospective assessment of occupational exposure to whole-body vibration for a case-control study.

    PubMed

    Harris, M Anne; Cripton, Peter A; Teschke, Kay

    2012-01-01

    Occupational whole-body vibration is often studied as a risk factor for conditions that may arise soon after exposure, but only rarely have studies examined associations with conditions arising long after occupational exposure has ceased. We aimed to develop a method of constructing previous occupational whole-body vibration exposure metrics from self-reported data collected for a case-control study of Parkinson's disease. A detailed job history and exposure interview was administered to 808 residents of British Columbia, Canada (403 people with Parkinson's disease and 405 healthy controls). Participants were prompted to report exposure to whole-body vibrating equipment. We limited the data to exposure reports deemed to be above background exposures and used the whole-body vibration literature (typically reporting on seated vector sum measurements) to assign intensity (acceleration) values to each type of equipment reported. We created four metrics of exposure (duration of exposure, most intense equipment exposure, and two dose metrics combining duration and intensity) and examined their distributions and correlations. We tested the role of age and gender in predicting whole-body vibration exposure. Thirty-six percent of participants had at least one previous occupational exposure to whole-body vibrating equipment. Because less than half of participants reported exposure, all continuous metrics exhibited positively skewed distributions, although the distribution of most intense equipment exposure was more symmetrically distributed among the exposed. The arithmetic mean of duration of exposure among those exposed was 14.0 (standard deviation, SD: 14.2) work years, while the geometric mean was 6.8 (geometric SD, GSD: 4.5). The intensity of the most intense equipment exposure (among the exposed) had an arithmetic mean of 0.9 (SD: 0.3) m·s(-2) and a geometric mean of 0.8 (GSD: 1.4). Male gender and older age were both associated with exposure, although the effect of

  19. Suspected vibration magnitude on the body of chain saw users among National Forest workers in Kyusyu, from 1956 to 1984.

    PubMed

    Sakurai, T

    1990-01-01

    Chain saws were first used in Kyusyu in 1956 for cutting down trees and sawing timber in the national forests. In 1961, some workers complained of symptoms due to the vibrations, but countermeasures were not taken until later. The working system and payment system in those times were different from the systems, today. The magnitudes of the chain saw vibrations were very large and the chain saws were operated for many hours, each day. Workers with VWF (vibration induced white finger) had to continue to operate the chain saws without restriction. Vibration disease is related primarily to the vibration of the tools, but also to the transmission of the vibration to the workers. From the official data on chain saws used in national forests, vibration transmission to the body was determined for workers from 1956 to 1984 by comparing the vibration magnitude on the body during work with modern chain saws and during vibration loading tests with an electrodynamic shaker in the laboratory. The vibrations transmitted to the body in some rule in the observation. If the working posture of chain saw operator was the same as today, the vibration transmission was determined from the tool vibration, tool weight, joint fixation and orientation of the hands and the hands and the arms to the handle (joint elasticity). Older chain saws had 20 to 30 times larger vibration magnitudes than modern chain saws, and were also 2 to 3 times heavier. The vibrations transmitted to the foreheads of earlier workers were approximately the same magnitude as the vibrations at the back of the hands of present workers. Also the daily and annual hours of chain saw use were very long, and there were not sufficient measures to protect from the cold. The vibration in the former days led to more symptoms and lesions than in present times.

  20. Whole body vibration and posture as risk factors for low back pain among forklift truck drivers

    NASA Astrophysics Data System (ADS)

    Hoy, J.; Mubarak, N.; Nelson, S.; Sweerts de Landas, M.; Magnusson, M.; Okunribido, O.; Pope, M.

    2005-06-01

    A cross-sectional study was conducted to investigate the risks from whole-body vibration and posture demands for low back pain (LBP) among forklift truck (forklift) drivers. Using a validated questionnaire, information about health history was obtained over a period of two weeks in face-to-face interviews. The forklift drivers were observed in respect of their sitting posture, including frequency with which different positions were adopted (bending, leaning and twisting) and postural analyses were conducted using the OWAS and RULA techniques. Forklift vibrations at the seat (exposure) were measured in the three orthogonal axes ( x-fore and aft, y-lateral and z-vertical) under actual working conditions according to the recommendations of ISO 2631-1. The results showed that LBP was more prevalent amongst forklift drivers than among non-drivers and driving postures in which the trunk is considerably twisted or bent forward associated with greatest risk. Furthermore, forklift drivers showed to be exposed to acceptable levels of vibration in the x- and y-directions (i.e., below the EU Physical Agents Directive on Vibration Exposure recommended action level—0.5 m/s 2), but not in the z-direction. There were indications that whole-body vibration acts associatively with other factors (not independently) to precipitate LBP.

  1. The influence of whole body vibration on the central and peripheral cardiovascular system.

    PubMed

    Robbins, Dan; Yoganathan, Priya; Goss-Sampson, Mark

    2014-09-01

    The purpose of this study was to investigate the physiological changes of the cardiovascular system in response to whole body vibration during quiet standing and identify whether there is a greater influence on the central or peripheral cardiovascular system. Twenty healthy participants (12 male and 8 female) were assessed over two separate testing sessions for changes in peripheral skin temperature, peripheral venous function, blood flow velocity in the dorsalis pedis artery, blood pressure and heart rate during quiet standing with 40 Hz 1·9 mm synchronous vibration. Vibration exposure totalled 5 min in 1 min increments with 5 min recovery during each testing session. There were no significant changes in heart rate, blood pressure or peripheral skin temperature. Significant results were obtained for blood flow velocity with increases from 0·5 + 0·2 cm·s(-1) at baseline to 1 + 0·2 cm·s(-1) during vibration, returning to baseline levels during the recovery period. Due to the absence of changes in heart rate, blood pressure or lower leg and foot temperature, the change in blood flow velocity can be attributed to changes in peripheral vascular function. The results suggest a high level of sensitivity of the peripheral vascular system to vibration exposure; therefore, further studies should be completed to ascertain the physiological mechanisms underlying the effects of vibration on the peripheral vascular system.

  2. Lumbar back muscle activity of helicopter pilots and whole-body vibration.

    PubMed

    de Oliveira, C G; Simpson, D M; Nadal, J

    2001-10-01

    Several studies have attributed the prevalence of low back pain (LBP) in helicopter pilots mainly to poor posture in-flight and whole-body vibration, with the latter hypothesis particularly related to a cyclic response of the erector spine (ES) muscle to vibration. This work aims to determine if helicopter vibration and the pilot's normal posture during flight have significant effects on the electromyogram (EMG) of the ES muscle. The bilateral surface EMG of the ES muscle at the L3 level was collected in 10 young pilots before and during a short flight in UH-50 helicopters. The vibration was monitored by a triaxial accelerometer fixed to the pilots' seat. Prior to the flight, the EMG was recorded for relaxed seated and standing postures with 0 degrees (P0) and 35 degrees (P35) of trunk flexion. The effect of the posture during the flight was tested by comparing left and right EMG (normalized with respect to P35). The in-flight muscle stress was evaluated by histograms of EMG activity, and compared to P0 values. Only one pilot in ten showed significant (p<0.05) correlation between the vibration and the EMG over cycles of vibration, and no consistent causal effect was found. The pilots' posture did not show significant asymmetric muscular activity, and low EMG levels were observed during most of the duration of the flight. The results do not provide evidence that LBP in helicopter pilots is caused by ES muscle stress in the conditions studied.

  3. Individual Optimal Frequency in Whole-Body Vibration: Effect of Protocol, Joint Angle, and Fatiguing Exercise.

    PubMed

    Carlucci, Flaminia; Felici, Francesco; Piccinini, Alberto; Haxhi, Jonida; Sacchetti, Massimo

    2016-12-01

    Carlucci, F, Felici, F, Piccinini, A, Haxhi, J, and Sacchetti, M. Individual optimal frequency in whole-body vibration: effect of protocol, joint angle, and fatiguing exercise. J Strength Cond Res 30(12): 3503-3511, 2016-Recent studies have shown the importance of individualizing the vibration intervention to produce greater effects on the neuromuscular system in less time. The purpose of this study was to assess the individual optimal vibration frequency (OVF) corresponding to the highest muscle activation (RMSmax) during vibration at different frequencies, comparing different protocols. Twenty-nine university students underwent 3 continuous (C) and 2 random (R) different vibrating protocols, maintaining a squat position on a vibration platform. The C protocol lasted 50 seconds and involved the succession of ascending frequencies from 20 to 55 Hz, every 5 seconds. The same protocol was performed twice, having the knee angle at 120° (C) and 90° (C90), to assess the effect of joint angle and after a fatiguing squatting exercise (CF) to evaluate the influence of fatigue on OVF assessment. In the random protocols, vibration time was 20 seconds with a 2-minute (R2) and a 4-minute (R4) pauses between tested frequencies. Muscle activation and OVF values did not differ significantly in the C, R2, and R4 protocols. RMSmax was higher in C90 (p < 0.001) and in CF (p = 0.04) compared with the C protocol. Joint angle and fatiguing exercise had no effect on OVF. In conclusion, the shorter C protocol produced similar myoelectrical activity in the R2 and the R4 protocols, and therefore, it could be equally valid in identifying the OVF with considerable time efficiency. Knee joint angle and fatiguing exercise had an effect on surface electromyography response during vibration but did not affect OVF identification significantly.

  4. Measurement of whole-body vibration exposure from speed control humps

    NASA Astrophysics Data System (ADS)

    Khorshid, E.; Alkalby, F.; Kamal, H.

    2007-07-01

    The main objective of speed control humps is to introduce shocks and high vibration levels when a car passes over them if its speed is higher than the allowable limit. Hump geometry is a major factor in altering the level of these shocks and specifying the speed limit. However, there is no study of the relationship between whole body vibration due to passing over a speed control hump and lower back pain or occupational diseases. In this study, an experimental investigation is conducted to evaluate health risks associated with different geometry speed control humps. Vibration levels and shocks are measured by a seat pad accelerometer placed under the driver's seat to evaluate hazard risks on the human body's lower back. The assessment is based on two standard methods of measuring whole body vibration: the British standard BS 6841 and the new ISO/DIS standard 2631-5. These methods are used to assess the effects of vehicle type, passenger location in the vehicle, vehicle speed, and speed control hump geometry. It was found that circular speed control humps currently installed on many public roads should be modified in order to eliminate hazards. Two newly designed speed humps were proved to be less hazardous than circular speed control humps.

  5. Spectral composition of a measuring signal during measurements of vibration rates of a moving body

    NASA Technical Reports Server (NTRS)

    Daynauskas, I. A. I.; Slepov, N. N.

    1973-01-01

    Cybernetics diagnostics of machines and mechanisms using the spectral approach is discussed. The problem of establishing the accuracy of determination of the spectral composition is investigated. In systems with rectilinear or rotary movement, the vibrations appear in the form of movement rate vibrations, which are equivalent to frequency modulation of the signal, in proportion to the mean movement rate of the body. The case of a harmonic signal which reproduces and analyzes the characteristics of the frequency modulated signal is discussed. Mathematical models are developed to show the relationships of the parameters.

  6. Effects of a short-term whole body vibration intervention on physical fitness in elderly people.

    PubMed

    Gómez-Cabello, A; González-Agüero, A; Ara, I; Casajús, J A; Vicente-Rodríguez, G

    2013-03-01

    We aimed to clarify whether a short-term whole body vibration (WBV) training has a beneficial effect on physical fitness in elderly people. Forty-nine non-institutionalized elderly (75.0 ± 4.7 years) participated in the study. Twenty-four of them trained on a vibration platform for 11 weeks. Physical fitness included balance, lower- and upper-body strength and flexibility, agility, walking speed and endurance. In the WBV group most of the physical tests improved through the intervention (all P < 0.01) while in the control group only an increment was detected in lower-body strength (P < 0.05). In conclusion, a short-term WBV training is beneficial for physical fitness among elderly people.

  7. Comparison of parathyroid hormone and strontium ranelate in combination with whole-body vibration in a rat model of osteoporosis.

    PubMed

    Hoffmann, D B; Sehmisch, S; Hofmann, A M; Eimer, C; Komrakova, M; Saul, D; Wassmann, M; Stürmer, K M; Tezval, M

    2017-01-01

    We investigated the combinatorial effects of whole-body vertical vibration (WBVV) with the primarily osteoanabolic parathyroid hormone (PTH) and the mainly antiresorptive strontium ranelate (SR) in a rat model of osteoporosis. Ovariectomies were performed on 76 three-month-old Sprague-Dawley rats (OVX, n = 76; NON-OVX, n = 12). After 8 weeks, the ovariectomized rats were divided into 6 groups. One group (OVX + PTH) received daily injections of PTH (40 µg/kg body weight/day) for 6 weeks. Another group (OVX + SR) was fed SR-supplemented chow (600 mg/kg body weight/day). Three groups (OVX + VIB, OVX + PTH + VIB, and OVX + SR + VIB) were treated with WBVV twice a day at 70 Hz for 15 min. Two groups (OVX + PTH + VIB, OVX + SR + VIB) were treated additionally with PTH and SR, respectively. The rats were killed at 14 weeks post-ovariectomy. The lumbar vertebrae and femora were removed for biomechanical and morphological assessment. PTH produced statistically significant improvements in biomechanical and structural properties, including bone mineral density (BMD) and trabecular bone quality. In contrast, SR treatment exerted mild effects, with significant effects in cortical thickness only. SR produced no significant improvement in biomechanical properties. WBVV as a single or an adjunctive therapy produced no significant improvements. In conclusion, vibration therapy administered as a single or dual treatment had no significant impact on bones affected by osteoporosis. PTH considerably improved bone quality in osteoporosis cases and is superior to treatment with SR.

  8. Mind-body therapies for the management of pain.

    PubMed

    Astin, John A

    2004-01-01

    This paper reviews the evidence for mind-body therapies (eg, relaxation, meditation, imagery, cognitive-behavioral therapy) in the treatment of pain-related medical conditions and suggests directions for future research in these areas. Based on evidence from randomized controlled trials and in many cases, systematic reviews of the literature, the following recommendations can be made: 1) multi-component mind-body approaches that include some combination of stress management, coping skills training, cognitive restructuring and relaxation therapy may be an appropriate adjunctive treatment for chronic low back pain; 2) multimodal mind-body approaches such as cognitive-behavioral therapy, particularly when combined with an educational/informational component, can be an effective adjunct in the management of rheumatoid and osteoarthritis; 3) relaxation and thermal biofeedback may be considered as a treatment for recurrent migraine while relaxation and muscle biofeedback can be an effective adjunct or stand alone therapy for recurrent tension headache; 4) an array of mind-body therapies (eg, imagery, hypnosis, relaxation) when employed pre-surgically, can improve recovery time and reduce pain following surgical procedures; 5) mind-body approaches may be considered as adjunctive therapies to help ameliorate pain during invasive medical procedures.

  9. On the significance of body mass and vibration magnitude for acceleration transmission of vibration through seats with horizontal suspensions

    NASA Astrophysics Data System (ADS)

    Blüthner, Ralph; Hinz, Barbara; Menzel, Gerhard; Schust, Marianne; Seidel, Helmut

    2006-12-01

    Seats with horizontal suspensions can help to reduce detrimental effects of whole-body vibration (WBV) on health, comfort and performance. Two seats were used to examine the effect of body mass and WBV-magnitude on the transmission of WBV from the seat base to the cushion. Both seats have suspension in the x-direction while Seat 2 has suspension also in the y-direction. Twelve subjects with a body mass ranging from 59.0 to 97.3 kg volunteered for the study. A set of anthropometric characteristics was acquired. Three magnitudes of WBV were used with a truck-like signal (Seat 1, 0.3-0.59 m s -2w d-weighted rms values at the seat base, x-direction) and a tractor-like signal (Seat 2, 0.55-1.09 m s -2w d-weighted rms values at the seat base, x-direction, 0.52-1.07 m s -2w d-weighted rms values, y-direction). The magnitude of WBV had a significant effect on the transmissibility characterized by SEAT-values. A significant influence of the body mass on SEAT-values was found for the y-direction only. Other anthropometric characteristics proved to be more important for the prediction of SEAT values by multiple regressions. There was no significant correlation of SEAT-values, x-direction, with the body mass. Other anthropometric characteristics enabled a satisfactory prediction of SEAT values also for x-direction in several cases. Tests with only two subjects of extreme body mass are not suited to obtain comparable and representative results required for a comparison of different seats with a suspension in the x-direction. The effect of the WBV-magnitude on the WBV-transmissibility should be considered with the design, testing and application of suspended seats.

  10. An iOS Application for Evaluating Whole-body Vibration Within a Workplace Risk Management Process.

    PubMed

    McGlothlin, James; Burgess-Limerick, R; Lynas, D

    2015-01-01

    Workplace management of whole-body vibration exposure requires systematic collection of whole-body vibration data in conjunction with the numerous variables which influence vibration amplitudes. The cost and complexity of commercially available measurement devices is an impediment to the routine collection of such data by workplaces. An iOS application (WBV) has been developed which allows an iPod Touch to be used to measure whole-body vibration exposures. The utility of the application was demonstrated by simultaneously obtaining 98 pairs of whole-body vibration measurements from both the iPod Touch application and a commercially available whole-body vibration device during the operation of a variety of vehicles and mobile plant in operation at a surface coal mine. The iOS application installed on a fifth-generation iPod Touch was shown to provide a 95% confidence of +/- 0.077 m/s(2) r.m.s. constant error for the vertical direction. Situations in which vibration levels lay within the ISO2631.1 health guidance caution zone were accurately identified, and the qualitative features of the frequency spectra were reproduced. The low cost and relative simplicity of the application has potential to facilitate its use as a screening tool to identify situations in which musculoskeletal disorders may arise as a consequence of exposure to whole-body vibration.

  11. The transmission of vertical vibration through seats: Influence of the characteristics of the human body

    NASA Astrophysics Data System (ADS)

    Toward, Martin G. R.; Griffin, Michael J.

    2011-12-01

    The transmission of vibration through a seat depends on the impedance of the seat and the apparent mass of the seat occupant. This study was designed to determine how factors affecting the apparent mass of the body (age, gender, physical characteristics, backrest contact, and magnitude of vibration) affect seat transmissibility. The transmission of vertical vibration through a car seat was measured with 80 adults (41 males and 39 females aged 18-65) at frequencies between 0.6 and 20 Hz with two backrest conditions (no backrest and backrest), and with three magnitudes of random vibration (0.5, 1.0, and 1.5 m s -2 rms). Linear regression models were used to study the effects of subject physical characteristics (age, gender, and anthropometry) and features of their apparent mass (resonance frequency, apparent mass at resonance and at 12 Hz) on the measured seat transmissibility. The strongest predictor of both the frequency of the principal resonance in seat transmissibility and the seat transmissibility at resonance was subject age, with other factors having only marginal effects. The transmissibility of the seat at 12 Hz depended on subject age, body mass index, and gender. Although subject weight was strongly associated with apparent mass, weight was not strongly associated with seat transmissibility. The resonance frequency of the seat decreased with increases in the magnitude of the vibration excitation and increased when subjects made contact with the backrest. Inter-subject variability in the resonance frequency and transmissibility at resonance was less with greater vibration excitation, but was largely unaffected by backrest contact. A lumped parameter seat-person model showed that changes in seat transmissibility with age can be predicted from changes in apparent mass with age, and that the dynamic stiffness of the seat appeared to increase with increased loading so as to compensate for increases in subject apparent mass associated with increased sitting

  12. Comparison of sEMG processing methods during whole-body vibration exercise.

    PubMed

    Lienhard, Karin; Cabasson, Aline; Meste, Olivier; Colson, Serge S

    2015-12-01

    The objective was to investigate the influence of surface electromyography (sEMG) processing methods on the quantification of muscle activity during whole-body vibration (WBV) exercises. sEMG activity was recorded while the participants performed squats on the platform with and without WBV. The spikes observed in the sEMG spectrum at the vibration frequency and its harmonics were deleted using state-of-the-art methods, i.e. (1) a band-stop filter, (2) a band-pass filter, and (3) spectral linear interpolation. The same filtering methods were applied on the sEMG during the no-vibration trial. The linear interpolation method showed the highest intraclass correlation coefficients (no vibration: 0.999, WBV: 0.757-0.979) with the comparison measure (unfiltered sEMG during the no-vibration trial), followed by the band-stop filter (no vibration: 0.929-0.975, WBV: 0.661-0.938). While both methods introduced a systematic bias (P < 0.001), the error increased with increasing mean values to a higher degree for the band-stop filter. After adjusting the sEMG(RMS) during WBV for the bias, the performance of the interpolation method and the band-stop filter was comparable. The band-pass filter was in poor agreement with the other methods (ICC: 0.207-0.697), unless the sEMG(RMS) was corrected for the bias (ICC ⩾ 0.931, %LOA ⩽ 32.3). In conclusion, spectral linear interpolation or a band-stop filter centered at the vibration frequency and its multiple harmonics should be applied to delete the artifacts in the sEMG signals during WBV. With the use of a band-stop filter it is recommended to correct the sEMG(RMS) for the bias as this procedure improved its performance.

  13. Effects of whole-body vibration training on fibrinolytic and coagulative factors in healthy young men

    PubMed Central

    Ghazalian, Farshad; Hakemi, Laleh; Pourkazemi, Lotfali; Akhoond, Mohammadreza

    2014-01-01

    Background: The aim was to evaluate effects of 5-week whole body vibration (WBV) training with different amplitudes and progressive frequencies on fibrinolytic/coagulative factors. Materials and Methods: 25 subjects were divided randomly in high or low-amplitude vibration, and control groups. Training consisted of 5-week WBV with amplitudes 4 or 2 mm. Plasma samples were analyzed before and after training. Statistical analysis was done using one-way analysis of variance and Wilcoxon signed ranked test. P <0.05 was considered significant. Results: High-amplitude vibration caused an increase in tissue plasminogen activator (tPA) (P = 0.028) (pretest: 1744.61 ± 707.95; posttest: 2313.63 ± 997.19 pg/ml), and decrease in plasminogen activator inhibitor-1 (PAI-1) (P = 0.033) (pretest: 97.94 ± 34.37; posttest: 85.12 ± 36.92 ng/ml). Fibrinogen and plasminogen were not changed significantly. Low-amplitude vibration caused an increase in tPA (P = 0.006) (pretest: 2208.18 ± 1280.37; posttest: 3492.72 ± 3549.22 pg/ml). PAI-1, fibrinogen and plasminogen were not changed significantly. There were no significant differences between groups. Conclusion: Amplitude of vibrations in WBV training may affect fibrinolytic factors. PMID:25538784

  14. Theoretical relationship between vibration transmissibility and driving-point response functions of the human body.

    PubMed

    Dong, Ren G; Welcome, Daniel E; McDowell, Thomas W; Wu, John Z

    2013-11-25

    The relationship between the vibration transmissibility and driving-point response functions (DPRFs) of the human body is important for understanding vibration exposures of the system and for developing valid models. This study identified their theoretical relationship and demonstrated that the sum of the DPRFs can be expressed as a linear combination of the transmissibility functions of the individual mass elements distributed throughout the system. The relationship is verified using several human vibration models. This study also clarified the requirements for reliably quantifying transmissibility values used as references for calibrating the system models. As an example application, this study used the developed theory to perform a preliminary analysis of the method for calibrating models using both vibration transmissibility and DPRFs. The results of the analysis show that the combined method can theoretically result in a unique and valid solution of the model parameters, at least for linear systems. However, the validation of the method itself does not guarantee the validation of the calibrated model, because the validation of the calibration also depends on the model structure and the reliability and appropriate representation of the reference functions. The basic theory developed in this study is also applicable to the vibration analyses of other structures.

  15. Survey of Technical Preventative Measures to Reduce Whole-Body Vibration Effects when Designing Mobile Machinery

    NASA Astrophysics Data System (ADS)

    DONATI, P.

    2002-05-01

    Engineering solutions to minimize the effects on operators of vibrating mobile machinery can be conveniently grouped into three areas: Reduction of vibration at source by improvement of the quality of terrain, careful selection of vehicle or machine, correct loading, proper maintenance, etc.Reduction of vibration transmission by incorporating suspension systems (tyres, vehicle suspensions, suspension cab and seat) between the operator and the source of vibration.Improvement of cab ergonomics and seat profiles to optimize operator posture. These paper reviews the different techniques and problems linked to categories (2) and (3). According to epidemiological studies, the main health risk with whole-body vibration exposure would appear to be lower back pain. When designing new mobile machinery, all factors which may contribute to back injury should be considered in order to reduce risk. For example, optimized seat suspension is useless if the suspension seat cannot be correctly and easily adjusted to the driver's weight or if the driver is forced to drive in a bent position to avoid his head striking the ceiling due to the spatial requirement of the suspension seat.

  16. Comparing the effects of 3 weeks of upper-body vibration training, vibration and stretching, and stretching alone on shoulder flexibility in college-aged men.

    PubMed

    Ferguson, Steven L; Kim, Eonho; Seo, Dong-Il; Bemben, Michael G

    2013-12-01

    This study compared the effects of 3 weeks of upper-body vibration training, vibration and stretching, and stretching alone on shoulder flexibility in college-aged men. Twenty-one men were randomly assigned to vibration-stretching (VS; n = 8), vibration only (VO; n = 6), or stretching only (SO; n = 7) groups that trained 3 times per week for 3 weeks. All 3 groups performed 9 total sets of 30-second stretches. The VS group performed four 30-second upper-body vibration exercises and five 30-second upper-body stretching exercises. The VO group performed nine 30-second upper-body vibration exercises. The SO group performed nine 30-second upper-body stretching exercises. Shoulder flexion (SF), shoulder extension (SE), and shoulder transverse extension (STE) were assessed by a Leighton Flexometer and back scratch tests bilaterally (BSR, BSL) were measured via tape measure. A 1-way analysis of variance (ANOVA) evaluated groups at baseline and a 2-way repeated-measures ANOVA evaluated the interventions over time. At baseline, there were no group differences in age, height, or weight. There was a significant (p < 0.01) time main effect for each flexibility outcome variable (SF: +6.1%, +3.9%, +3.4%; SE: +8.9%, +13.5%, +26.9%; STE: +12.8%, +8.7%, +24.3%; BSR: +4.4 cm, +3.4 cm, +3.1 cm; BSL: +3.6 cm, +2.3 cm, +6.1 cm) for SO, VO, and VS, respectively. Shoulder extension was the only variable that showed a significant (p < 0.05) interaction effect for group by time. In conclusion, vibration training, alone or combined with stretching, is a viable alternative to a standard stretching routine when attempting to increase shoulder flexibility. Adding vibration training to a flexibility regimen may improve the likelihood of regularly performing flexibility sessions because of increased variety.

  17. The effects of long-term whole-body vibration and aerobic exercise on body composition and bone mineral density in obese middle-aged women

    PubMed Central

    Nam, Sang-seok; Park, Hun-young; Moon, Hwang-woon

    2016-01-01

    [Purpose] The purpose of this study was to determine the effectiveness of whole-body passive vibration exercise and its differences from aerobic exercise on body composition, bone mineral density (BMD) and bone mineral content (BMC). [Methods] Obese middle-aged women (n=33 out of 45) with 34±3% body fat completed the training protocol. They were randomly assigned into diet (n=9; control group), diet plus whole-body vibration exercise (n=13; vibration group), and diet plus aerobic exercise (n=11; aerobic group) groups and we compared their body composition, BMD, and BMC before and after 9 months of training. There were no significant differences in nutrient intake among groups during the training period. [Results] Relative body fat (%) decreased significantly (p < .05) in all three groups and the exercise groups showed a greater reduction in fat mass than the diet only group. BMD in the whole body, lumbar spine, hip and forearm were not significantly different among the three groups. Total body BMC increased significantly in the vibration group throughout the first 6 months of training. [Conclusion] Results suggest that long- term vibration training when used in conjunction with a diet program is as effective as aerobic exercise with a diet program in improving body composition of obese middle-aged women without compromising BMC or BMD. Thus, it can be considered a novel and effective method for reducing body fat. PMID:27508150

  18. A system for monitoring cardiac vibration, respiration, and body movement in bed using an infrared.

    PubMed

    Maki, Hiromichi; Ogawa, Hidekuni; Tsukamoto, Sosuke; Yonezawa, Yoshiharu; Caldwell, W Morton

    2010-01-01

    We have developed a non-invasive system for monitoring cardiac vibrations, respiration and body movement of in-bed hospitalized patients and elderly people who need constant care. These physiological parameters are recorded by an infrared emitting diode and a photo transistor, which are attached between spring coils in bed mattress. The infrared emitting diode diffuses infrared light into the mattress. The diffusion of this energy is changed by mattress shape variations and spring coil vibrations, which modulate the intensity of the received infrared signal. The intensity is also modulated by physiological parameters such as heart pulse, respiration and body movement. The physiological parameters are detected from the received infrared intensity signal by low, high and band pass filters.

  19. Whole body vibration for older persons: an open randomized, multicentre, parallel, clinical trial

    PubMed Central

    2011-01-01

    Background Institutionalized older persons have a poor functional capacity. Including physical exercise in their routine activities decreases their frailty and improves their quality of life. Whole-body vibration (WBV) training is a type of exercise that seems beneficial in frail older persons to improve their functional mobility, but the evidence is inconclusive. This trial will compare the results of exercise with WBV and exercise without WBV in improving body balance, muscle performance and fall prevention in institutionalized older persons. Methods/Design An open, multicentre and parallel randomized clinical trial with blinded assessment. 160 nursing home residents aged over 65 years and of both sexes will be identified to participate in the study. Participants will be centrally randomised and allocated to interventions (vibration or exercise group) by telephone. The vibration group will perform static/dynamic exercises (balance and resistance training) on a vibratory platform (Frequency: 30-35 Hz; Amplitude: 2-4 mm) over a six-week training period (3 sessions/week). The exercise group will perform the same exercise protocol but without a vibration stimuli platform. The primary outcome measure is the static/dynamic body balance. Secondary outcomes are muscle strength and, number of new falls. Follow-up measurements will be collected at 6 weeks and at 6 months after randomization. Efficacy will be analysed on an intention-to-treat (ITT) basis and 'per protocol'. The effects of the intervention will be evaluated using the "t" test, Mann-Witney test, or Chi-square test, depending on the type of outcome. The final analysis will be performed 6 weeks and 6 months after randomization. Discussion This study will help to clarify whether WBV training improves body balance, gait mobility and muscle strength in frail older persons living in nursing homes. As far as we know, this will be the first study to evaluate the efficacy of WBV for the prevention of falls. Trial

  20. Acute Cardiovascular Response during Resistance Exercise with Whole-body Vibration in Sedentary Subjects: A Randomized Cross-over Trial.

    PubMed

    Dias, Thaisa; Polito, Marcos

    2015-01-01

    This study aimed to compare the acute cardiovascular responses during and after resistance exercise with and without whole-body vibration. Nineteen sedentary adults randomly performed one session of isometric squats without vibration and the same exercise with vibration. Systolic (SBP) and diastolic blood pressure (DBP), heart rate (HR), stroke volume (SV), cardiac output (CO) and systemic vascular resistance (SVR) were measured. SBP, DBP and HR were also measured for 20 min after the sessions. The exercise with vibration demonstrated significant values ​​(P < 0.05) for SBP (second to sixth sets), DBP (third to sixth sets) and SVR (second to sixth sets) compared with the exercise without vibration. After the sessions, the values ​​of SBP for both exercises were significantly lower than the respective resting values; with no difference between the sessions. In conclusion, exercise with vibration caused increases in SBP, DBP and SVR compared with exercise with no vibration in sedentary adults.

  1. Three-dimensional modeling of supine human and transport system under whole-body vibration.

    PubMed

    Wang, Yang; Rahmatalla, Salam

    2013-06-01

    The development of predictive computer human models in whole-body vibration has shown some success in predicting simple types of motion, mostly for seated positions and in the uniaxial vertical direction. The literature revealed only a handful of papers that tackled supine human modeling in response to vertical vibration. The objective of this work is to develop a predictive, multibody, three-dimensional human model to simulate the supine human and underlying transport system in response to multidirectional whole-body vibration. A three-dimensional dynamic model of a supine human and its underlying transport system is presented in this work to predict supine-human biodynamic response under three-dimensional input random whole-body vibration. The proposed supine-human model consists of three interconnected segments representing the head, torso-arms, and pelvis-legs. The segments are connected via rotational and translational joints that have spring-damper components simulating the three-dimensional muscles and tissuelike connecting elements in the three x, y, and z directions. Two types of transport systems are considered in this work, a rigid support and a long spinal board attached to a standard military litter. The contact surfaces between the supine human and the underlying transport system are modeled using spring-damper components. Eight healthy supine human subjects were tested under combined-axis vibration files with a magnitude of 0.5 m/s2 (rms) and a frequency content of 0.5-16 Hz. The data from seven subjects were used in parameter identification for the dynamic model using optimization schemes in the frequency domain that minimize the differences between the magnitude and phase of the predicted and experimental transmissibility. The predicted accelerations in the time and frequency domains were comparable to those gathered from experiments under different anthropometric, input vibration, and transport conditions under investigation. Based on the

  2. Influence of Combined Whole-Body Vibration Plus G-Loading on Visual Performance

    NASA Technical Reports Server (NTRS)

    Adelstein, Bernard D.; Beutter, Brent Robert; Kaiser, Mary K.; McCann, Robert S.; Stone, Leland S.; Anderson, Mark R.; Renema, Fritz; Paloski, William H.

    2009-01-01

    Recent engineering analyses of the integrated Ares-Orion stack show that vibration levels for Orion crews have the potential to be much higher than those experienced in Gemini, Apollo, and Shuttle vehicles. Of particular concern to the Constellation Program (CxP) is the 12 Hz thrust oscillation (TO) that the Ares-I rocket develops during the final 20 seconds preceding first-stage separation, at maximum G-loading. While the structural-dynamic mitigations being considered can assure that vibration due to TO is reduced to below the CxP crew health limit, it remains to be determined how far below this limit vibration must be reduced to enable effective crew performance during launch. Moreover, this "performance" vibration limit will inform the operations concepts (and crew-system interface designs) for this critical phase of flight. While Gemini and Apollo studies provide preliminary guidance, the data supporting the historical limits were obtained using less advanced interface technologies and very different operations concepts. In this study, supported by the Exploration Systems Mission Directorate (ESMD) Human Research Program, we investigated display readability-a fundamental prerequisite for any interaction with electronic crew-vehicle interfaces-while observers were subjected to 12 Hz vibration superimposed on the 3.8 G loading expected for the TO period of ascent. Two age-matched groups of participants (16 general population and 13 Crew Office) performed a numerical display reading task while undergoing sustained 3.8 G loading and whole-body vibration at 0, 0.15, 0.3, 0.5, and 0.7 g in the eyeballs in/out (x-axis) direction. The time-constrained reading task used an Orion-like display with 10- and 14-pt non-proportional sans-serif fonts, and was designed to emulate the visual acquisition and processing essential for crew system monitoring. Compared to the no-vibration baseline, we found no significant effect of vibration at 0.15 and 0.3 g on task error rates (ER

  3. Analysis of vibrational load influence upon passengers in trains with a compulsory body tilt

    NASA Astrophysics Data System (ADS)

    Antipin, D. Ya; Kobishchanov, V. V.; Lapshin, V. F.; Mitrakov, A. S.; Shorokhov, S. G.

    2017-02-01

    The procedure for forecasting the vibrational load influence upon passengers of trains of rolling stocks equipped with a system of a compulsory body tilt on railroad curves is offered. The procedure is based on the use of computer simulation methods and application of solid-state models of anthropometrical mannequins. As a result of the carried out investigations, there are substantiated criteria of the comfort level estimate for passengers in the rolling-stock under consideration. The procedure is approved by the example of the promising domestic rolling stock with a compulsory body tilt on railroad curves.

  4. Whole-body vibration and ergonomic study of US railroad locomotives

    NASA Astrophysics Data System (ADS)

    Johanning, Eckardt; Landsbergis, Paul; Fischer, Siegfried; Christ, Eberhard; Göres, Benno; Luhrman, Raymond

    2006-12-01

    US locomotive operators have exposure to multi-axis whole-body vibration (WBV) and shocks while seated. This study assessed operator-related and ergonomic seating design factors that may have confounding or mitigating influence on WBV exposure and its effects. Vibration exposure was measured according to international guidelines (ISO 2631-1; 1997); ergonomic work place factors and vibration effects were studied with a cross-sectional survey instrument distributed to a randomly selected group of railroad engineers ( n=2546) and a control group; and during vehicle inspections. The survey response rate was 47% for the RR engineers ( n=1195) and 41% for the controls ( n=323). Results of the mean basic vibration measurements were for the x, y, z-direction and vector sum 0.14, 0.22, 0.28 and 0.49 m/s 2 respectively; almost all crest factors (CF), MTVV and VDV values were above the critical ratios given in ISO 2631-1. The prevalence of serious neck and lower back disorders among locomotive engineers was found to be nearly double that of the sedentary control group without such exposure. Railroad engineers rated their seats mostly unacceptable regarding different adjustment and comfort aspects (3.02-3.51; scale 1=excellent to 4=unacceptable), while the control group rated their chairs more favorably (1.96-3.44). Existing cab and seat design in locomotives can result in prolonged forced awkward spinal posture of the operator combined with WBV exposure. In a logistic regression analysis, time at work being bothered by vibration (h/day) was significantly associated with an increased risk of low back pain, shoulder and neck pain, and sciatic pain among railroad engineers. Customized vibration attenuation seats and improved cab design of the locomotive controls should be further investigated.

  5. Mind-Body Therapies and Osteoarthritis of the Knee

    PubMed Central

    Selfe, Terry Kit; Innes, Kim E.

    2010-01-01

    Osteoarthritis of the knee is a major cause of disability among adults worldwide. Important treatment options include nonpharmacologic therapies, and especially symptom management strategies in which patients take an active role. Among these, mind-body therapies may have particular promise for alleviating the distressful symptoms associated with osteoarthritis of the knee. However, systematic reviews are lacking. The objective of this paper is to review English-language articles describing clinical studies evaluating the effects of patient-driven mind-body therapies on symptoms of knee osteoarthritis. Eight studies, representing a total of 267 participants, met the inclusion criteria. Interventions included tai chi, qigong, and yoga. Collectively, these studies suggest that specific mind-body practices may help alleviate pain and enhance physical function in adults suffering from osteoarthritis of the knee. However, sample sizes are small, rigorous investigations are few, and the potential benefits of several mind-body therapies have not yet been systematically tested. Additional high-quality studies are needed to clarify the effects of specific mind-body therapies on standardized measures of pain, physical function, and related indices in persons with osteoarthritis of the knee, and to investigate possible underlying mechanisms. PMID:21151770

  6. Stability of high-frequency periodic motions of a heavy rigid body with a horizontally vibrating suspension point

    NASA Astrophysics Data System (ADS)

    Belichenko, M. V.

    2016-11-01

    The motion of a heavy rigid body one of whose points (the suspension point) executes horizontal harmonic high-frequency vibrations with small amplitude is considered. The problem of existence of high-frequency periodic motions with period equal to the period of the suspension point vibrations is considered. The stability conditions for the revealed motions are obtained in the linear approximation. The following three special cases of mass distribution in the body are considered; a body whose center of mass lies on the principal axis of inertia, a body whose center of mass lies in the principal plane of inertia, and a dynamically symmetric body.

  7. Transverse vibration and buckling of a cantilevered beam with tip body under constant axial base acceleration

    NASA Technical Reports Server (NTRS)

    Storch, J.; Gates, S.

    1983-01-01

    The planar transverse bending behavior of a uniform cantilevered beam with rigid tip body subject to constant axial base acceleration was analyzed. The beam is inextensible and capable of small elastic transverse bending deformations only. Two classes of tip bodies are recognized: (1) mass centers located along the beam tip tangent line; and (2) mass centers with arbitrary offset towards the beam attachment point. The steady state response is studied for the beam end condition cases: free, tip mass, tip body with restricted mass center offset, and tip body with arbitrary mass center offset. The first three cases constitute classical Euler buckling problems, and the characteristic equation for the critical loads/accelerations are determined. For the last case a unique steady state solution exists. The free vibration response is examined for the two classes of tip body. The characteristic equation, eigenfunctions and their orthogonality properties are obtained for the case of restricted mass center offset. The vibration problem is nonhomogeneous for the case of arbitrary mass center offset. The exact solution is obtained as a sum of the steady state solution and a superposition of simple harmonic motions.

  8. Modelling resonances of the standing body exposed to vertical whole-body vibration: Effects of posture

    NASA Astrophysics Data System (ADS)

    Subashi, G. H. M. J.; Matsumoto, Y.; Griffin, M. J.

    2008-10-01

    Lumped parameter mathematical models representing anatomical parts of the human body have been developed to represent body motions associated with resonances of the vertical apparent mass and the fore-and-aft cross-axis apparent mass of the human body standing in five different postures: 'upright', 'lordotic', 'anterior lean', 'knees bent', and 'knees more bent'. The inertial and geometric parameters of the models were determined from published anthropometric data. Stiffness and damping parameters were obtained by comparing model responses with experimental data obtained previously. The principal resonance of the vertical apparent mass, and the first peak in the fore-and-aft cross-axis apparent mass, of the standing body in an upright posture (at 5-6 Hz) corresponded to vertical motion of the viscera in phase with the vertical motion of the entire body due to deformation of the tissues at the soles of the feet, with pitch motion of the pelvis out of phase with pitch motion of the upper body above the pelvis. Upward motion of the body was in phase with the forward pitch motion of the pelvis. Changing the posture of the upper body had minor effects on the mode associated with the principal resonances of the apparent mass and cross-axis apparent mass, but the mode changed significantly with bending of the legs. In legs-bent postures, the principal resonance (at about 3 Hz) was attributed to bending of the legs coupled with pitch motion of the pelvis in phase with pitch motion of the upper body. In this mode, extension of the legs was in phase with the forward pitch motion of the upper body and the upward vertical motion of the viscera.

  9. The Influence of Whole-Body Vibration on Creatine Kinase Activity and Jumping Performance in Young Basketball Players

    ERIC Educational Resources Information Center

    Fachina, Rafael; da Silva, Antônio; Falcão, William; Montagner, Paulo; Borin, João; Minozzo, Fábio; Falcão, Diego; Vancini, Rodrigo; Poston, Brach; de Lira, Claudio

    2013-01-01

    Purpose: To quantify creatine kinase (CK) activity changes across time following an acute bout of whole-body vibration (WBV) and determine the association between changes in CK activity and jumping performance. Method: Twenty-six elite young basketball players were assigned to 3 groups: 36-Hz and 46-Hz vibration groups (G36 and G46, respectively)…

  10. Acute Effect of Whole-Body Vibration Warm-up on Footspeed Quickness.

    PubMed

    Donahue, Ryan B; Vingren, Jakob L; Duplanty, Anthony A; Levitt, Danielle E; Luk, Hui-Ying; Kraemer, William J

    2016-08-01

    Donahue, RB, Vingren, JL, Duplanty, AA, Levitt, DE, Luk, H-Y, and Kraemer, WJ. Acute effect of whole-body vibration warm-up on footspeed quickness. J Strength Cond Res 30(8): 2286-2291, 2016-The warm-up routine preceding a training or athletic event can affect the performance during that event. Whole-body vibration (WBV) can increase muscle performance, and thus the inclusion of WBV to the warm-up routine might provide additional performance improvements. The purpose of this investigation was to examine the acute effect of a WBV warm-up, using a vertical oscillating platform and a more traditional warm-up protocol on feet quickness in physically active men. Twenty healthy and physically active men (18-25 years, 22 ± 3 years, 176.8 ± 6.4 cm, 84.4 ± 11.5 kg, 10.8 ± 1.4% body fat) volunteered for this study. A 2 × 2 factorial design was used to examine the effect of 4 warm-up scenarios (no warm-up, traditional warm-up only, WBV warm-up only, and combined traditional and WBV warm-up) on subsequent 3-second Quick feet count test (QFT) performance. The traditional warm-up consisted of static and dynamic exercises and stretches. The WBV warm-up consisted of 60 seconds of vertical sinusoidal vibration at a frequency of 35 Hz and amplitude of 4 mm on a vibration platform. The WBV protocol significantly (p ≤ 0.0005, η = 0.581) augmented QFT performance (WBV: 37.1 ± 3.4 touches; no-WBV: 35.7 ± 3.4 touches). The results demonstrate that WBV can enhance the performance score on the QFT. The findings of this study suggest that WBV warm-up should be included in warm-up routines preceding training and athletic events which include very fast foot movements.

  11. Vibration and pressure wave therapy for calf strains: a proposed treatment.

    PubMed

    Saxena, Amol; St Louis, Marie; Fournier, Magali

    2013-04-01

    Calf (lower leg) strains have a variety of treatment regimens with variable outcomes and return to activity (RTA) time frames. These injuries involve disruption of portions or the entire gastrocnemius-soleus myo-tendinous complex. Conservative treatment initially consists of rest, ice, compression, elevation (RICE). Immediately following calf injury, patients can utilize cryotherapy, massage, passive range of motion, and progressive exercise. In general, Grade I through Grade III calf strains can take up to 6 weeks before the athlete can return to training. It can also involve the loss of more than 50% of muscle integrity. Recently, vibration therapy and radial pressure waves have been utilized to treat muscular strains and other myo-tendinous injuries that involve trigger points. Studies have suggested vibration therapy with rehabilitation can increase muscle strength and flexibility in patients. Segmental vibration therapy (SVT) is treatment to a more focal area. Vibration therapy (VT) is applied directly to the area of injury. VT is a mechanical stimulus that is thought to stimulate the sensory receptors, as well as decrease inflammatory cells and receptors. Therefore, VT could be a valuable tool in treating athlete effectively and decreasing their recovery time. The purpose of this paper is to give the reader baseline knowledge of VT and propose a treatment protocol for calf strains using this technology along with radial pressure waves.

  12. Can an iPod Touch be used to assess whole-body vibration associated with mining equipment?

    PubMed

    Wolfgang, Rebecca; Di Corleto, Luke; Burgess-Limerick, Robin

    2014-11-01

    The cost and complexity of commercially available whole-body vibration measurement devices is a barrier to the systematic collection of the information required to manage this hazard. The potential for a consumer electronic device to be used to estimate whole-body vibration was assessed by collecting 58 simultaneous pairs of acceleration measurements in three dimensions from a fifth-generation iPod Touch and gold standard whole-body vibration measurement devices, while a range of heavy mining equipment was operated at three surface coal mines. The results suggest that accelerometer data gathered from a consumer electronic device are able to be used to measure whole-body vibration amplitude with 95% confidence of ±0.06 m s(-2) root mean square for the vertical direction (1.96 × standard deviation of the constant error).

  13. Second-order many-body perturbation expansions of vibrational Dyson self-energies.

    PubMed

    Hermes, Matthew R; Hirata, So

    2013-07-21

    Second-order many-body perturbation theories for anharmonic vibrational frequencies and zero-point energies of molecules are formulated, implemented, and tested. They solve the vibrational Dyson equation self-consistently by taking into account the frequency dependence of the Dyson self-energy in the diagonal approximation, which is expanded in a diagrammatic perturbation series up to second order. Three reference wave functions, all of which are diagrammatically size consistent, are considered: the harmonic approximation and diagrammatic vibrational self-consistent field (XVSCF) methods with and without the first-order Dyson geometry correction, i.e., XVSCF[n] and XVSCF(n), where n refers to the truncation rank of the Taylor-series potential energy surface. The corresponding second-order perturbation theories, XVH2(n), XVMP2[n], and XVMP2(n), are shown to be rigorously diagrammatically size consistent for both total energies and transition frequencies, yield accurate results (typically within a few cm(-1) at n = 4 for water and formaldehyde) for both quantities even in the presence of Fermi resonance, and have access to fundamentals, overtones, and combinations as well as their relative intensities as residues of the vibrational Green's functions. They are implemented into simple algorithms that require only force constants and frequencies of the reference methods (with no basis sets, quadrature, or matrix diagonalization at any stage of the calculation). The rules for enumerating and algebraically interpreting energy and self-energy diagrams are elucidated in detail.

  14. Whole-body vibration transmissibility in supine humans: effects of board litter and neck collar.

    PubMed

    Meusch, John; Rahmatalla, Salam

    2014-05-01

    Whole-body vibration has been identified as a stressor to supine patients during medical transportation. The transmissibility between the input platform acceleration and the output acceleration of the head, sternum, pelvis, head-sternum, and pelvis-sternum of eight supine subjects were investigated. Vibration files were utilized in the fore-aft, lateral, and vertical directions. The power spectral density across the bandwidth of 0.5-20 Hz was approximately flat for each file. A comparison between a baseline rigid-support and a support with a long spinal board strapped to a litter has shown that the latter has considerable effects on the transmitted motion in all directions with a double magnification in the vertical direction around 5 Hz. The results also showed that the neck-collar has increased the relative head-sternum flexion-extension because of the input fore-aft vibration, but reduced the head-sternum extension-compression due to the input vertical vibration.

  15. Acute Effects of Whole Body Vibration on Inhibition in Healthy Children

    PubMed Central

    den Heijer, Anne E.; Groen, Yvonne; Fuermaier, Anselm B. M.; van Heuvelen, Marieke J. G.; van der Zee, Eddy A.; Tucha, Lara; Tucha, Oliver

    2015-01-01

    Objectives Whole Body Vibration (WBV) is a passive exercise method known to have beneficial effects on various physical measures. Studies on adults furthermore demonstrated beneficial effects of WBV treatment on cognition (e.g. inhibition). The present study replicated these findings in healthy children and examined acute effects of WBV treatment on inhibition. Methods Fifty-five healthy children (aged 8–13) participated in this within-subject design study. WBV treatment was applied by having the children sit on a chair mounted to a vibrating platform. After each condition (vibration vs. non-vibration), inhibition was measured by using the Stroop Color-Word Interference Test. Repeated measures analyses were applied in order to explore the effects of WBV treatment on inhibition, and correlations were computed between the treatment effect and participant characteristics in order to explore individual differences in treatment sensitivity. Results Three-minute WBV treatments had significant beneficial effects on inhibition in this sample of healthy children. Especially the repeated application (three times) of WBV treatment appeared beneficial for cognition. Stronger WBV treatment effects were correlated with higher intelligence and younger age, but not with symptoms of Attention Deficit Hyperactivity Disorder (ADHD). Conclusions This study demonstrates that especially repeated WBV treatment improves inhibition in healthy children. As this cognitive function is often impaired in children with developmental disorders (e.g. ADHD), future studies should further explore the effects, working mechanism and potential applicability of WBV treatment for this target group. PMID:26524188

  16. Whole-body vibration induces pain and lumbar spinal inflammation responses in the rat that vary with the vibration profile.

    PubMed

    Zeeman, Martha E; Kartha, Sonia; Winkelstein, Beth A

    2016-08-01

    Whole-body vibration (WBV) is linked epidemiologically to neck and back pain in humans, and to forepaw mechanical allodynia and cervical neuroinflammation in a rodent model of WBV, but the response of the low back and lumbar spine to WBV is unknown. A rat model of WBV was used to determine the effect of different WBV exposures on hind paw behavioral sensitivity and neuroinflammation in the lumbar spinal cord. Rats were exposed to 30 min of WBV at either 8 or 15 Hz on days 0 and 7, with the lumbar spinal cord assayed using immunohistochemistry at day 14. Behavioral sensitivity was measured using mechanical stimulation of the hind paws to determine the onset, persistence, and/or recovery of allodynia. Both WBV exposures induce mechanical allodynia 1 day following WBV, but only the 8 Hz WBV induces a sustained decrease in the withdrawal threshold through day 14. Similarly, increased activation of microglia, macrophages, and astrocytes in the superficial dorsal horn of the lumbar spinal cord is only evident after the painful 8 Hz WBV. Moreover, extracellular signal-regulated kinase (ERK)-phosphorylation is most robust in neurons and astrocytes of the dorsal horn, with the most ERK phosphorylation occurring in the 8 Hz group. These findings indicate that a WBV exposure that induces persistent pain also induces a host of neuroimmune cellular activation responses that are also sustained. This work indicates there is an injury-dependent response that is based on the vibration parameters, providing a potentially useful platform for studying mechanisms of painful spinal injuries. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:1439-1446, 2016.

  17. [Stereotactic body radiation therapy for spinal metastases].

    PubMed

    Pasquier, D; Martinage, G; Mirabel, X; Lacornerie, T; Makhloufi, S; Faivre, J-C; Thureau, S; Lartigau, É

    2016-10-01

    After the liver and lungs, bones are the third most common sites of cancer metastasis. Palliative radiotherapy for secondary bone tumours helps relieve pain, improve the quality of life and reduce the risk of fractures. Stereotactic body radiotherapy can deliver high radiation doses with very tight margins, which has significant advantages when treating tumours close to the spinal cord. Strict quality control is essential as dose gradient at the edge of the spinal cord is important. Optimal schedule is not defined. A range of dose-fractionation schedules have been used. Pain relief and local control are seen in over 80%. Toxicity rates are low, although vertebral fracture may occur. Ongoing prospective studies will help clarify its role in the management of oligometastatic patients.

  18. Relationship Between Lower Limb Muscle Activity and Platform Acceleration During Whole-Body Vibration Exercise.

    PubMed

    Lienhard, Karin; Vienneau, Jordyn; Nigg, Sandro; Meste, Olivier; Colson, Serge S; Nigg, Benno M

    2015-10-01

    The purpose of this study was to identify the influence of different magnitudes and directions of the vibration platform acceleration on surface electromyography (sEMG) during whole-body vibration (WBV) exercises. Therefore, a WBV platform was used that delivers vertical vibrations by a side-alternating mode, horizontal vibrations by a circular mode, and vibrations in all 3 planes by a dual mode. Surface electromyography signals of selected lower limb muscles were measured in 30 individuals while they performed a static squat on a vibration platform. The WBV trials included 2 side-alternating trials (Side-L: 6 Hz, 2.5 mm; Side-H: 16 Hz, 4 mm), 2 circular trials (Circ-L: 14 Hz, 0.8 mm; Circ-H: 43 Hz, 0.8 mm), and 4 dual-mode trials that were the combinations of the single-mode trials (Side-L/Circ-L, Side-L/Circ-H, Side-H/Circ-L, Side-H/Circ-H). Furthermore, control trials without vibration were assessed, and 3-dimensional platform acceleration was quantified during the vibration. Significant increases in the root mean square of the sEMG (sEMGRMS) compared with the control trial were found in most muscles for Side-L/Circ-H (+17 to +63%, p ≤ 0.05), Side-H/Circ-L (+7 to +227%, p ≤ 0.05), and Side-H/Circ-H (+21 to +207%, p < 0.01) and in the lower leg muscles for Side-H (+35 to +138%, p ≤ 0.05). Furthermore, only the vertical platform acceleration showed a linear relationship (r = 0.970, p < 0.001) with the averaged sEMGRMS of the lower limb muscles. Significant increases in sEMGRMS were found with a vertical acceleration threshold of 18 m·s(-2) and higher. The present results emphasize that WBV exercises should be performed on a platform that induces vertical accelerations of 18 m·s(-2) and higher.

  19. What is the most effective posture to conduct vibration from the lower to the upper extremities during whole-body vibration exercise?

    PubMed Central

    Tsukahara, Yuka; Iwamoto, Jun; Iwashita, Kosui; Shinjo, Takuma; Azuma, Koichiro; Matsumoto, Hideo

    2016-01-01

    Background Whole-body vibration (WBV) exercise is widely used for training and rehabilitation. However, the optimal posture for training both the upper and lower extremities simultaneously remains to be established. Objectives The objective of this study was to search for an effective posture to conduct vibration from the lower to the upper extremities while performing WBV exercises without any adverse effects. Methods Twelve healthy volunteers (age: 22–34 years) were enrolled in the study. To measure the magnitude of vibration, four accelerometers were attached to the upper arm, back, thigh, and calf of each subject. Vibrations were produced using a WBV platform (Galileo 900) with an amplitude of 4 mm at two frequencies, 15 and 30 Hz. The following three postures were examined: posture A, standing posture with the knees flexed at 30°; posture B, crouching position with no direct contact between the knees and elbows; and posture C, crouching position with direct contact between the knees and elbows. The ratio of the magnitude of vibration at the thigh, back, and upper arm relative to that at the calf was used as an index of vibration conduction. Results Posture B was associated with a greater magnitude of vibration to the calf than posture A at 15 Hz, and postures B and C were associated with greater magnitudes of vibration than posture A at 30 Hz. Posture C was associated with a vibration conduction to the upper arm that was 4.62 times and 8.26 times greater than that for posture A at 15 and 30 Hz, respectively. Conclusion This study revealed that a crouching position on a WBV platform with direct contact between the knees and elbows was effective for conducting vibration from the lower to the upper extremities. PMID:26793008

  20. Stereotactic Body Radiation Therapy in Spinal Metastases

    SciTech Connect

    Ahmed, Kamran A.; Stauder, Michael C.; Miller, Robert C.; Bauer, Heather J.; Rose, Peter S.; Olivier, Kenneth R.; Brown, Paul D.; Brinkmann, Debra H.; Laack, Nadia N.

    2012-04-01

    Purpose: Based on reports of safety and efficacy, stereotactic body radiotherapy (SBRT) for treatment of malignant spinal tumors was initiated at our institution. We report prospective results of this population at Mayo Clinic. Materials and Methods: Between April 2008 and December 2010, 85 lesions in 66 patients were treated with SBRT for spinal metastases. Twenty-two lesions (25.8%) were treated for recurrence after prior radiotherapy (RT). The mean age of patients was 56.8 {+-} 13.4 years. Patients were treated to a median dose of 24 Gy (range, 10-40 Gy) in a median of three fractions (range, 1-5). Radiation was delivered with intensity-modulated radiotherapy (IMRT) and prescribed to cover 80% of the planning target volume (PTV) with organs at risk such as the spinal cord taking priority over PTV coverage. Results: Tumor sites included 48, 22, 12, and 3 in the thoracic, lumbar, cervical, and sacral spine, respectively. The mean actuarial survival at 12 months was 52.2%. A total of 7 patients had both local and marginal failure, 1 patient experienced marginal but not local failure, and 1 patient had local failure only. Actuarial local control at 1 year was 83.3% and 91.2% in patients with and without prior RT. The median dose delivered to patients who experienced local/marginal failure was 24 Gy (range, 18-30 Gy) in a median of three fractions (range, 1-5). No cases of Grade 4 toxicity were reported. In 1 of 2 patients experiencing Grade 3 toxicity, SBRT was given after previous radiation. Conclusion: The results indicate SBRT to be an effective measure to achieve local control in spinal metastases. Toxicity of treatment was rare, including those previously irradiated. Our results appear comparable to previous reports analyzing spine SBRT. Further research is needed to determine optimum dose and fractionation to further improve local control and prevent toxicity.

  1. Effect of Seating on Exposures to Whole-Body Vibration in Vehicles

    NASA Astrophysics Data System (ADS)

    PADDAN, G. S.; GRIFFIN, M. J.

    2002-05-01

    The vibration isolation efficiency of seating has been evaluated in 100 work vehicles in 14 categories (cars, vans, lift trucks, lorries, tractors, buses, dumpers, excavators, helicopters, armoured vehicles, mobile cranes, grass rollers, mowers and milk floats). Seat isolation efficiency, expressed by the SEAT value, was determined for all seats (67 conventional seats and 33 suspension seats) from the vertical acceleration measured on the floors and on the seats of the vehicles.For most categories of vehicle, the average SEAT value was less than 100%, indicating that the average seat provided some attenuation of vibration. However, there were large variations in SEAT values between vehicles within categories. Two alternative vibration frequency weightings (Wb from BS 6841, 1987; Wk from ISO 2631, 1997) yielded SEAT values that differed by less than 6%. Overall, the SEAT values determined by two alternative methods (the ratio of r.m.s. values and the ratio of vibration dose values) differed by less than 4·5% when using weighting Wb, although larger differences may be expected in some situations. The median SEAT value for the suspension seats was 84·6%; the median SEAT value for the conventional seats was 86·9% (based on weighting Wb and the ratio of r.m.s. values).Predicted SEAT values were obtained assuming that each seat could be interchanged between vehicles without altering its transmissibility. The calculations suggest that 94% of the vehicles investigated might benefit from changing the current seat to a seat from one of the other vehicles investigated. Although the predictions are based on assumptions that will not always apply, it is concluded that the severity of whole-body vibration exposures in many work environments can be lessened by improvements to seating dynamics.

  2. Whole-Body Vibration Training Improves Heart Rate Variability and Body Fat Percentage in Obese Hispanic Postmenopausal Women.

    PubMed

    Severino, Gregory; Sanchez-Gonzalez, Marcos; Walters-Edwards, Michelle; Nordvall, Michael; Chernykh, Oksana; Adames, Jason; Wong, Alexei

    2016-12-05

    The present study examined the effects of a 6-week whole body vibration training (WBVT) regimen on heart rate variability (HRV) and body composition in obese Hispanic postmenopausal women. Participants were randomly assigned to either WBVT (n=13) or non-exercising control group (n=14). HRV and body composition were measured before and after 6 weeks. There was a significant group x time interaction (P<0.05) for heart rate, sympathovagal balance and body fat percentage (BF%) such that all significantly decreased (P<0.05); and R-R intervals which significant increased (P<0.05) following WBVT compared to no changes after control. The changes in sympathovagal balance were correlated with changes in BF% (r=0.63, P<0.05). Our findings indicate that WBVT improves HRV and BF% in obese Hispanic postmenopausal women. The improvement in BF% partially explained the decrease in sympathovagal balance. Since obese and older individuals are at increased risk of developing cardiovascular diseases, they could potentially benefit from WBVT.

  3. Effects of whole body vibration on spinal proprioception in normal individuals.

    PubMed

    Lee, T Y; Chow, D H K

    2013-01-01

    Low back pain (LBP) is a common health problem with high reoccurrence rate. While most LBP cases are classified as non-specific, patients in general often present impaired proprioception. Whole body vibration (WBV) has been proven to improve muscle function and proprioception in the lumbo-pelvic region. The aim of this study was to determine whether WBV would affect spinal proprioception. Eleven young normal individuals were recruited. Their body alignment, lumbar repositioning error and lumbo-pelvic coordination during dynamic motion were assessed before and after 5 minutes WBV (18 Hz, 6 mm amplitude). Assessments were conducted before, immediately after, 30 minutes after and 1 hour after WBV. Subjects were found to have improved lumbo-pelvic coordination and flexibility without any adverse effect on the neuromuscular system after WBV. However, WBV had no significant immediate effect on lumbar repositioning ability and body alignment. Future studies of the effects of different WBV protocols on LBP patients are recommended.

  4. a Modal Analysis of Whole-Body Vertical Vibration, Using a Finite Element Model of the Human Body

    NASA Astrophysics Data System (ADS)

    Kitazaki, S.; Griffin, M. J.

    1997-02-01

    A two-dimensional model of human biomechanical responses to whole-body vibration has been developed, by using the finite element method. Beam, spring and mass elements were used to model the spine, viscera, head, pelvis and buttocks tissue in the mid-sagittal plane. The model was developed by comparison of the vibration mode shapes with those previously measured in the laboratory. At frequencies below 10 Hz, the model produced seven modes which coincided well with the measurements. The principal resonance of the driving point response at about 5 Hz consisted of an entire body mode, in which the head, spinal column and the pelvis move almost rigidly, with axial and shear deformation of tissue beneath the pelvis occurring in phase with a vertical visceral mode. The second principal resonance at about 8 Hz corresponded to a rotational mode of the pelvis, with a possible contribution from a second visceral mode. A shift of the principal resonance of the driving point response, when changing posture, was achieved only by changing the axial stiffness of the buttocks tissue. It is suggested that an increase in contact area between the buttocks and the thighs and the seat surface, when changing posture from erect to slouched, may decrease the axial stiffness beneath the pelvis, with a non-linear force-deflection relationship of tissue resulting in decreases in the natural frequencies. A change in posture from erect to slouched also increased shear deformation of tissue beneath the pelvis in the entire body mode, and the natural frequency was decreased as a result of the much lower shear stiffness of tissue compared to the axial stiffness.

  5. Body Percept Change in Obese Females after Weight Reduction Therapy.

    ERIC Educational Resources Information Center

    Collins, John K.; And Others

    1983-01-01

    Measured video-image representations of body size for 68 females undergoing weight reduction counseling. All judged themselves significantly more obese than they actually were. After therapy, more realistic estimates of their physiques ensued. Dropouts saw themselves as significantly more obese than those who graduated from the program. (JAC)

  6. Modeling of a seated human body exposed to vertical vibrations in various automotive postures.

    PubMed

    Liang, Cho-Chung; Chiang, Chi-Feng

    2008-04-01

    Although much research has been devoted to constructing specific models or to measuring the response characteristics of seated subjects, investigations on a mathematical human model on a seat with a backrest to evaluate vehicular riding comfort have not yet attracted the same level of attention. For the responses of a seated body to vertical vibrations, mathematical models of the mechanisms must be at least two-dimensional in the sagittal plane. In describing the motions of a seated body, two multibody models representative of the automotive postures found in the literature were investigated, one with and the other without a backrest support. Both models were modified to suitably represent the different automotive postures with and without backrest supports, and validated by various experimental data from the published literature pertaining to the same postural conditions. On the basis of the analytical study and the experimental validation, the fourteen-degrees-of-freedom model proposed in this research was found to be best fitted to the test results; therefore, this model is recommended for studying the biodynamic responses of a seated human body exposed to vertical vibrations in various automotive postures.

  7. Apparatus and method of inserting a microelectrode in body tissue or the like using vibration means

    NASA Technical Reports Server (NTRS)

    Feldstein, C.; Crawford, D. W.; Kanabus, E. W. (Inventor)

    1979-01-01

    An arrangement for and method of inserting a glass microelectrode having a tip in the micron range into body tissue is presented. The arrangement includes a microelectrode. The top of the microelectrode is attached to the diaphragm center of a first speaker. The microelectrode tip is brought into contact with the tissue by controlling a micromanipulator. Thereafter, an audio signal is applied to the speaker to cause the microelectrode to vibrate and thereby pierce the tissue surface without breaking the microelectrode tip. Thereafter, the tip is inserted into the tissue to the desired depth by operating the micromanipulator with the microelectrode in a vibratory or non-vibratory state.

  8. Dehydroepiandrosterone Supplementation Combined with Whole-Body Vibration Training Affects Testosterone Level and Body Composition in Mice

    PubMed Central

    Chen, Wen-Chyuan; Chen, Yi-Ming; Huang, Chi-Chang; Tzeng, Yen-Dun

    2016-01-01

    Dehydroepiandrosterone (DHEA), the most abundant sex steroid, is primarily secreted by the adrenal gland and a precursor hormone used by athletes for performance enhancement. Whole-body vibration (WBV) is a well-known light-resistance exercise by automatic adaptations to rapid and repeated oscillations from a vibrating platform, which is also a simple and convenient exercise for older adults. However, the potential effects of DHEA supplementation combined with WBV training on to body composition, exercise performance, and hormone regulation are currently unclear. The objective of the study is to investigate the effects of DHEA supplementation combined with WBV training on body composition, exercise performance, and physical fatigue-related biochemical responses and testosterone content in young-adult C57BL/6 mice. In this study, male C57BL/6 mice were divided into four groups (n = 8 per group) for 6-weeks treatment: sedentary controls with vehicle (SC), DHEA supplementation (DHEA, 10.2 mg/kg), WBV training (WBV; 5.6 Hz, 2 mm, 0.13 g), and WBV training with DHEA supplementation (WBV+DHEA; WBV: 5.6 Hz, 2 mm, 0.13 g and DHEA: 10.2 mg/kg). Exercise performance was evaluated by forelimb grip strength and exhaustive swimming time, as well as changes in body composition and anti-fatigue levels of serum lactate, ammonia, glucose, creatine kinase (CK), and blood urea nitrogen (BUN) after a 15-min swimming exercise. In addition, the biochemical parameters and the testosterone content were measured at the end of the experiment. Six-week DHEA supplementation alone significantly increased mice body weight (BW), muscle weight, testosterone level, and glycogen contents (liver and muscle) when compared with SC group. DHEA supplementation alone had no negative impact on all tissue and biochemical profiles, but could not improve exercise performance. However, WBV+DHEA supplementation also significantly decreased BW, testosterone level and glycogen content of liver, as well as serum

  9. Dehydroepiandrosterone Supplementation Combined with Whole-Body Vibration Training Affects Testosterone Level and Body Composition in Mice.

    PubMed

    Chen, Wen-Chyuan; Chen, Yi-Ming; Huang, Chi-Chang; Tzeng, Yen-Dun

    2016-01-01

    Dehydroepiandrosterone (DHEA), the most abundant sex steroid, is primarily secreted by the adrenal gland and a precursor hormone used by athletes for performance enhancement. Whole-body vibration (WBV) is a well-known light-resistance exercise by automatic adaptations to rapid and repeated oscillations from a vibrating platform, which is also a simple and convenient exercise for older adults. However, the potential effects of DHEA supplementation combined with WBV training on to body composition, exercise performance, and hormone regulation are currently unclear. The objective of the study is to investigate the effects of DHEA supplementation combined with WBV training on body composition, exercise performance, and physical fatigue-related biochemical responses and testosterone content in young-adult C57BL/6 mice. In this study, male C57BL/6 mice were divided into four groups (n = 8 per group) for 6-weeks treatment: sedentary controls with vehicle (SC), DHEA supplementation (DHEA, 10.2 mg/kg), WBV training (WBV; 5.6 Hz, 2 mm, 0.13 g), and WBV training with DHEA supplementation (WBV+DHEA; WBV: 5.6 Hz, 2 mm, 0.13 g and DHEA: 10.2 mg/kg). Exercise performance was evaluated by forelimb grip strength and exhaustive swimming time, as well as changes in body composition and anti-fatigue levels of serum lactate, ammonia, glucose, creatine kinase (CK), and blood urea nitrogen (BUN) after a 15-min swimming exercise. In addition, the biochemical parameters and the testosterone content were measured at the end of the experiment. Six-week DHEA supplementation alone significantly increased mice body weight (BW), muscle weight, testosterone level, and glycogen contents (liver and muscle) when compared with SC group. DHEA supplementation alone had no negative impact on all tissue and biochemical profiles, but could not improve exercise performance. However, WBV+DHEA supplementation also significantly decreased BW, testosterone level and glycogen content of liver, as well as serum

  10. The influence of whole body vibration on the plantarflexors during heel raise exercise.

    PubMed

    Robbins, D; Goss-Sampson, M

    2013-06-01

    Whole body vibration (WBV) during exercise offers potential to augment the effects of basic exercises. However, to date there is limited information on the basic physiological and biomechanical effects of WBV on skeletal muscles. The aim of this study was to determine the effects of WBV (40Hz, 1.9mm synchronous vertical displacement) on the myoelectrical activity of selected plantarflexors during heel raise exercise. 3D motion capture of the ankle, synchronised with sEMG of the lateral gastrocnemius and soleus, was obtained during repetitive heel raises carried out at 0.5Hz on 10 healthy male subjects (age 27±5 years, height 1.78±0.04m, weight 75.75±11.9kg). During both vibration and non vibration the soleus activation peaked earlier than that of the lateral gastrocnemius. The results indicate that WBV has no effect on the timing of exercise completion or the amplitude of the lateral gastrocnemius activity, however significant increases in amplitudes of the soleus muscle activity (77.5-90.4% MVC P<0.05). WBV had no significant effect on median frequencies of either muscle. The results indicate that the greatest effect of WBV during heel raise activity is in the soleus muscles during the early phases of heel raise.

  11. Whole-body vibration does not influence knee joint neuromuscular function or proprioception.

    PubMed

    Hannah, R; Minshull, C; Folland, J P

    2013-02-01

    This study examined the acute effects of whole-body vibration (WBV) on knee joint position sense and indices of neuromuscular function, specifically strength, electromechanical delay and the rate of force development. Electromyography and electrically evoked contractions were used to investigate neural and contractile responses to WBV. Fourteen healthy males completed two treatment conditions on separate occasions: (1) 5 × 1 min of unilateral isometric squat exercise on a synchronous vibrating platform [30 Hz, 4 mm peak-to-peak amplitude] (WBV) and (2) a control condition (CON) of the same exercise without WBV. Knee joint position sense (joint angle replication task) and quadriceps neuromuscular function were assessed pre-, immediately-post and 1 h post-exercise. During maximum voluntary knee extensions, the peak force (PF(V)), electromechanical delay (EMD(V)), rate of force development (RFD(V)) and EMG of the quadriceps were measured. Twitch contractions of the knee extensors were electrically evoked to assess EMD(E) and RFD(E). The results showed no influence of WBV on knee joint position, EMD(V), PF(V) and RFD(V) during the initial 50, 100 or 150 ms of contraction. Similarly, electrically evoked neuromuscular function and neural activation remained unchanged following the vibration exercise. A single session of unilateral WBV did not influence any indices of thigh muscle neuromuscular performance or knee joint proprioception.

  12. Characterization and calibration of piezoelectric polymers: In situ measurements of body vibrations

    NASA Astrophysics Data System (ADS)

    Kappel, Marcel; Abel, Markus; Gerhard, Reimund

    2011-07-01

    Piezoelectric polymers are known for their flexibility in applications, mainly due to their bending ability, robustness, and variable sensor geometry. It is an optimal material for minimal-invasive investigations in vibrational systems, e.g., for wood, where acoustical impedance matches particularly well. Many applications may be imagined, e.g., monitoring of buildings, vehicles, machinery, alarm systems, such that our investigations may have a large impact on technology. Longitudinal piezoelectricity converts mechanical vibrations normal to the polymer-film plane into an electrical signal, and the respective piezoelectric coefficient needs to be carefully determined in dependence on the relevant material parameters. In order to evaluate efficiency and durability for piezopolymers, we use polyvinylidene fluoride and measure the piezoelectric coefficient with respect to static pressure, amplitude of the dynamically applied force, and long-term stability. A known problem is the slow relaxation of the material towards equilibrium, if the external pressure changes; here, we demonstrate how to counter this problem with careful calibration. Since our focus is on acoustical measurements, we determine accurately the frequency response curve - for acoustics probably the most important characteristic. Eventually, we show that our piezopolymer transducers can be used as a calibrated acoustical sensors for body vibration measurements on a wooden musical instrument, where it is important to perform minimal-invasive measurements. A comparison with the simultaneously recorded airborne sound yields important insight of the mechanism of sound radiation in comparison with the sound propagating in the material. This is especially important for transient signals, where not only the long-living eigenmodes contribute to the sound radiation. Our analyses support that piezopolymer sensors can be employed as a general tool for the determination of the internal dynamics of vibrating systems.

  13. Exposure to whole-body vibration in open-cast mines in the Barents region

    PubMed Central

    Burström, Lage; Hyvärinen, Ville; Johnsen, Magnar; Pettersson, Hans

    2016-01-01

    Objectives We aimed to measure and evaluate whole-body vibration (WBV) exposure among drivers of mining vehicles in the Barents region. Study design In the period from November 2012 to August 2014, this cross-sectional study was carried out at 3 mines in Finland, Norway and Sweden as part of the MineHealth project. Methods Measurements of WBV were conducted on the surface of the driver's seat during normal work in accordance with international standards. Personal data on daily exposure times were collected by a questionnaire. Results Measurements were conducted on 95 different mining vehicles both as root mean square (RMS) value and vibration dose value (VDV) representing different manufacturers, models and capacities. Of the 453 miners who answered the questionnaire, 232 indicated that they were exposed to WBV during their working day. The results show that the mean daily exposure time varies between 1.9 and 6.7 h for different vehicles. The calculated mean A(8) could be found in an interval between 0.2 and 1.0 m/s2 and the corresponding 8-h VDV fell between 7 and 17 m/s1.75. Conclusions Exposure to WBV among operators of mining vehicles may be a serious health and safety problem in the mines studied. The employers ought, therefore, take active steps to reduce exposure in accordance with the European vibration directive. Moreover, since some groups of drivers are exposed to vibration that is close to or exceeds the exposure limit values, the employer should take immediate action to reduce exposure below these values. PMID:26864832

  14. The effects of whole body vibration on balance, joint position sense and cutaneous sensation.

    PubMed

    Pollock, Ross D; Provan, Sally; Martin, Finbarr C; Newham, Di J

    2011-12-01

    Whole body vibration (WBV) may enhance muscular strength and power but little is known about its influence on sensory-motor function. Vibration of a single muscle or tendon affects the afferent system in a manner that depends on amplitude and frequency. WBV stimulates many muscle groups simultaneously and the frequencies and amplitudes used are different from many of the studies on single musculotendinous units. We investigated the effects of WBV at two amplitudes on balance, joint position sense (JPS) and cutaneous sensation in young healthy subjects. Eighteen adults (24.3 ± 1.5 years, 15 females) were assessed before WBV (five 1 min bouts, 30 Hz) then immediately, 15 and 30 min afterwards. Two amplitudes (4 and 8 mm peak to peak) were investigated on different occasions. Standing balance was assessed with feet together and eyes closed, and standing on one leg with eyes open and closed. JPS at the knee and ankle was assessed by repositioning tasks while cutaneous sensation was recorded from six sites in the lower limb using pressure aesthesiometry. Neither amplitude affected JPS (P > 0.05). There were minimal effects on balance only in the vertical plane and only 30 min after WBV (P < 0.05). Low amplitude vibration only reduced sensation at the foot and ankle immediately after WBV (P < 0.008). High amplitude vibration impaired sensation at the foot, ankle and posterior shank for the entire test period (P < 0.008). In young healthy individuals WBV did not affect JPS or static balance, but reduced cutaneous sensation. These data may have implications for older and clinical populations with compromised postural control.

  15. Orientation of bluff body for designing efficient energy harvesters from vortex-induced vibrations

    SciTech Connect

    Dai, H. L.; Abdelkefi, A.; Yang, Y.; Wang, L.

    2016-02-01

    The characteristics and performances of four distinct vortex-induced vibrations (VIVs) piezoelectric energy harvesters are experimentally investigated and compared. The difference between these VIV energy harvesters is the installation of the cylindrical bluff body at the tip of cantilever beam with different orientations (bottom, top, horizontal, and vertical). Experiments show that the synchronization regions of the bottom, top, and horizontal configurations are almost the same at low wind speeds (around 1.5 m/s). The vertical configuration has the highest wind speed for synchronization (around 3.5 m/s) with the largest harvested power, which is explained by its highest natural frequency and the smallest coupled damping. The results lead to the conclusion that to design efficient VIV energy harvesters, the bluff body should be aligned with the beam for low wind speeds (<2 m/s) and perpendicular to the beam at high wind speeds (>2 m/s)

  16. Contactless micromanipulation of small particles by an ultrasound field excited by a vibrating body

    NASA Astrophysics Data System (ADS)

    Haake, Albrecht; Dual, Jurg

    2005-05-01

    A method is presented to position and displace micron-sized particles of a diameter between 10 and 100 μm without contact to solid instruments. An ultrasound field is utilized for this purpose. It is excited in a fluid-filled gap between a harmonically vibrating body and a rigid plane surface of an arbitrary other body, e.g., an object slide or a wafer. In this ultrasound field a force field is established, which acts on the particles suspended in the fluid and moves them to certain positions. The advantage of the method is that it is possible to manipulate single particles or many particles in parallel on any surface, for example, on a structured wafer. Theoretical calculations of the force field and experimental results including three principles to displace particles with micrometer accuracy are shown. The method might be used for microassembly or cell manipulation and treatment. .

  17. Typical whole body vibration exposure magnitudes encountered in the open pit mining industry.

    PubMed

    Howard, Bryan; Sesek, Richard; Bloswick, Don

    2009-01-01

    According to recent research, a causal link has been established between occupational exposure to whole body vibration and an increased occurrence of low back pain. To aid in the further development of an in-house health and safety program for a large open pit mining facility interested in reducing back pain among its operators, whole body vibration magnitudes were characterized for a range of jobs. Specifically, thirty-five individual jobs from five different areas across the facility were evaluated for tri-axial acceleration levels during normal operating conditions. Tri-axial acceleration magnitudes were categorized into thirteen job groups. Job groups were ranked according to exposure and compared to the ISO 2631-1 standard for health risk assessment. Three of the thirteen job groups produced tri-axial acceleration magnitudes below the ISO 2631-1 low/moderate health caution limit for a twelve hour exposure. Six of the thirteen job groups produced exposures within the moderate health risk range. Four job groups were found to subject operators to WBV acceleration magnitudes above the moderate/high health caution limit.

  18. The effects of whole-body vibration on the Wingate test for anaerobic power when applying individualized frequencies.

    PubMed

    Surowiec, Rachel K; Wang, Henry; Nagelkirk, Paul R; Frame, Jeffrey W; Dickin, D Clark

    2014-07-01

    Recently, individualized frequency (I-Freq) has been introduced with the notion that athletes may elicit a greater reflex response at differing levels (Hz) of vibration. The aim of the study was to evaluate acute whole-body vibration as a feasible intervention to increase power in trained cyclists and evaluate the efficacy of using I-Freq as an alternative to 30Hz, a common frequency seen in the literature. Twelve highly trained, competitive male cyclists (age, 29.9 ± 10.0 years; body height, 175.4 ± 7.8 cm; body mass, 77.3 ± 13.9 kg) participated in the study. A Wingate test for anaerobic power was administered on 3 occasions: following a control of no vibration, 30 Hz, or I-freq. Measures of peak power, average power (AP), and the rate of fatigue were recorded and compared with the vibration conditions using separate repeated measures analysis of variance. Peak power, AP, and the rate of fatigue were not significantly impacted by either the 30 Hz or I-Freq vibration interventions (p > 0.05). Given the trained status of the individuals in this study, the ability to elicit an acute response may have been muted. Future studies should further refine the vibration parameters used and assess changes in untrained or recreationally trained populations.

  19. Effects of Short-Period Whole-Body Vibration of 20 Hz on Selected Blood Biomarkers in Wistar Rats.

    PubMed

    Monteiro, Milena de Oliveira Bravo; de Sá-Caputo, Danúbia da Cunha; Carmo, Fernanda Santos do; Bernardo, Raquel Mattos; Pacheco, Raphaelle; Arnóbio, Adriano; Guimarães, Carlos Alberto Sampaio; Bernardo, Luciana Camargo; Santos-Filho, Sebastião David; Asad, Nasser Ribeiro; Unger, Marianne; Marin, Pedro Jesus; Bernardo-Filho, Mario

    2015-08-31

    There is a growing interest in the use of vibration generated by oscillating/vibratory platforms - also known as whole-body vibration (WBV) - for achieving therapeutic, preventative and/or physical performance goals. This study investigated the effects of vibration generated by an oscillating platform on the concentration of blood biomarkers in rats. Wistar rats (n = 8) were divided in 2 groups, sedated and individually positioned on an oscillating platform. The experimental group (EG) was subjected to vibrations of 20 Hz for one min per day for one week while the control group (CG) experienced no vibration. Samples of heparinized whole blood were drawn by cardiac puncture for biochemical analysis. Concentrations of total cholesterol, triglycerides, HDL, LDL, VLDL, glucose, CK, albumin, alkaline phosphates, TGP, TGO, γGT, lipase, amylase, urea and creatinine were determined. White blood cell count and a platelet hemogram were also performed. Following seven sessions of exposure to the vibration, a significant (P < 0.05) reduction in γGT, VLDL and leukocytes was found. A weekly 1-min/day exposure of 20 Hz vibration can was shown to alter the concentrations of selected blood biomarkers in rats. The action mechanism associated with these effects seems highly complex, but the findings might contribute to the understanding of these mechanisms related to the exposure to 20 Hz vibration.

  20. Effects of quadriceps strength after static and dynamic whole-body vibration exercise.

    PubMed

    Bush, Jill A; Blog, Gabriel L; Kang, Jie; Faigenbaum, Avery D; Ratamess, Nicholas A

    2015-05-01

    Numerous studies have shown performance benefits including whole-body vibration (WBV) as a training modality or an acute exercise protocol when used as a component of the resistance training program. Some studies have indicated that performing dynamic exercises as compared with static position exercises while exposed to WBV might be beneficial; however, evidence is lacking. Thus, the purpose of this study was to determine if an acute bout of dynamic versus static squats performed during WBV results in increase in quadriceps force production by means of dynamic isokinetic knee extension and flexion exercise. Nonresistance-trained healthy young men and women (N = 21) of 18-25 years participated in 4 protocols with 2-week rest in-between. Protocol 1 consisted of 5 sets of 10 dynamic squats without vibration; Protocol 2: 5 sets of 30-second static squats without vibration; Protocol 3: 5 sets of 10 dynamic squats with 30-Hz WBV for a total of 2.5 minutes; and Protocol 4: 5 sets of 30-second static squats with 30-Hz WBV for a total of 2.5 minutes. Prestrength tests (1 set of 4 repetitions at 100° · s(-1) for the knee extension exercise) was performed within 5 minutes of starting each protocol, and poststrength testing was performed within 1 minute of completing each protocol. Strength outcomes were analyzed by repeated measures analysis of variance with a significance level set at p ≤ 0.05. A significant decrease in strength was observed after dynamic and static squats without WBV (p = 0.002); an increase in strength after dynamic squats with WBV (p = 0.003); and a decrease in strength after static squats with WBV (p = 0.003). The inclusion of WBV to dynamic resistance exercise can be an added modality to increase strength. Whole-body vibration can have varied effects in altering muscle strength in untrained individuals according to the type of resistance training performed. As a dynamic squat with WBV seems to immediately potentiate neuromuscular functioning, the

  1. Whole Body Vibration Treatments in Postmenopausal Women Can Improve Bone Mineral Density: Results of a Stimulus Focussed Meta-Analysis

    PubMed Central

    Bonci, Tecla; Bull, Anthony M. J.

    2016-01-01

    Whole body vibration treatment is a non-pharmacological intervention intended to stimulate muscular response and increase bone mineral density, particularly for postmenopausal women. The literature related to this topic is controversial, heterogeneous, and unclear despite the prospect of a major clinical effect.The aim of this study was to identify and systematically review the literature to assess the effect of whole body vibration treatments on bone mineral density (BMD) in postmenopausal women with a specific focus on the experimental factors that influence the stimulus. Nine studies fulfilled the inclusion criteria, including 527 postmenopausal women and different vibration delivery designs. Cumulative dose, amplitudes and frequency of treatments as well as subject posture during treatment vary widely among studies. Some of the studies included an associated exercise training regime. Both randomized and controlled clinical trials were included. Whole body vibration was shown to produce significant BMD improvements on the hip and spine when compared to no intervention. Conversely, treatment associated with exercise training resulted in negligible outcomes when compared to exercise training or to placebo. Moreover, side-alternating platforms were more effective in improving BMD values than synchronous platforms and mechanical oscillations of magnitude higher than 3 g and/or frequency lower than 25 Hz were also found to be effective. Treatments with a cumulative dose over 1000 minutes in the follow-up period were correlated to positive outcomes.Our conclusion is that whole body vibration treatments in elderly women can reduce BMD decline.However, many factors (e.g., amplitude, frequency and subject posture) affect the capacity of the vibrations to propagate to the target site; the adequate level of stimulation required to produce these effects has not yet been defined. Further biomechanical analyses to predict the propagation of the vibration waves along the body

  2. Whole Body Vibration Treatments in Postmenopausal Women Can Improve Bone Mineral Density: Results of a Stimulus Focussed Meta-Analysis.

    PubMed

    Fratini, Antonio; Bonci, Tecla; Bull, Anthony M J

    2016-01-01

    Whole body vibration treatment is a non-pharmacological intervention intended to stimulate muscular response and increase bone mineral density, particularly for postmenopausal women. The literature related to this topic is controversial, heterogeneous, and unclear despite the prospect of a major clinical effect.The aim of this study was to identify and systematically review the literature to assess the effect of whole body vibration treatments on bone mineral density (BMD) in postmenopausal women with a specific focus on the experimental factors that influence the stimulus. Nine studies fulfilled the inclusion criteria, including 527 postmenopausal women and different vibration delivery designs. Cumulative dose, amplitudes and frequency of treatments as well as subject posture during treatment vary widely among studies. Some of the studies included an associated exercise training regime. Both randomized and controlled clinical trials were included. Whole body vibration was shown to produce significant BMD improvements on the hip and spine when compared to no intervention. Conversely, treatment associated with exercise training resulted in negligible outcomes when compared to exercise training or to placebo. Moreover, side-alternating platforms were more effective in improving BMD values than synchronous platforms and mechanical oscillations of magnitude higher than 3 g and/or frequency lower than 25 Hz were also found to be effective. Treatments with a cumulative dose over 1000 minutes in the follow-up period were correlated to positive outcomes.Our conclusion is that whole body vibration treatments in elderly women can reduce BMD decline.However, many factors (e.g., amplitude, frequency and subject posture) affect the capacity of the vibrations to propagate to the target site; the adequate level of stimulation required to produce these effects has not yet been defined. Further biomechanical analyses to predict the propagation of the vibration waves along the body

  3. Analyses of biodynamic responses of seated occupants to uncorrelated fore-aft and vertical whole-body vibration

    NASA Astrophysics Data System (ADS)

    Mandapuram, Santosh; Rakheja, Subhash; Marcotte, Pierre; Boileau, Paul-Émile

    2011-08-01

    The apparent mass and seat-to-head-transmissibility response functions of the seated human body were investigated under exposures to fore-aft ( x), vertical ( z), and combined fore-aft and vertical ( x and z) axis whole-body vibration. The coupling effects of dual-axis vibration were investigated using two different frequency response function estimators based upon the cross- and auto-spectral densities of the response and excitation signals, denoted as H1 and Hv estimators, respectively. The experiments were performed to measure the biodynamic responses to single and uncorrelated dual-axis vibration, and to study the effects of hands support, back support and vibration magnitude on the body interactions with the seatpan and the backrest, characterized in terms of apparent masses and the vibration transmitted to the head. The data were acquired with 9 subjects exposed to two different magnitudes of vibration applied along the individual x- and z-axis (0.25 and 0.4 m/s 2 rms), and along both the axis (0.28 and 0.4 m/s 2 rms along each axis) in the 0.5-20 Hz frequency range. The two methods resulted in identical single-axis responses but considerably different dual-axis responses. The dual-axis responses derived from the Hv estimator revealed notable effects of dual-axis vibration, as they comprised both the direct and cross-axis responses observed under single axis vibration. Such effect, termed as the coupling effect, was not evident in the dual-axis responses derived using the commonly used H1 estimator. The results also revealed significant effects of hands and back support conditions on the coupling effects and the measured responses. The back support constrained the upper body movements and thus showed relatively weaker coupling compared to that observed in the responses without the back support. The effect of hand support was also pronounced under the fore-aft vibration. The results suggest that a better understanding of the seated human body responses to

  4. Stochastic resonance whole-body vibration improves postural control in health care professionals: a worksite randomized controlled trial.

    PubMed

    Elfering, Achim; Schade, Volker; Stoecklin, Lukas; Baur, Simone; Burger, Christian; Radlinger, Lorenz

    2014-05-01

    Slip, trip, and fall injuries are frequent among health care workers. Stochastic resonance whole-body vibration training was tested to improve postural control. Participants included 124 employees of a Swiss university hospital. The randomized controlled trial included an experimental group given 8 weeks of training and a control group with no intervention. In both groups, postural control was assessed as mediolateral sway on a force plate before and after the 8-week trial. Mediolateral sway was significantly decreased by stochastic resonance whole-body vibration training in the experimental group but not in the control group that received no training (p < .05). Stochastic resonance whole-body vibration training is an option in the primary prevention of balance-related injury at work.

  5. Effects of whole body vibration on motor unit recruitment and threshold.

    PubMed

    Pollock, Ross D; Woledge, Roger C; Martin, Finbarr C; Newham, Di J

    2012-02-01

    Whole body vibration (WBV) has been suggested to elicit reflex muscle contractions but this has never been verified. We recorded from 32 single motor units (MU) in the vastus lateralis of 7 healthy subjects (34 ± 15.4 yr) during five 1-min bouts of WBV (30 Hz, 3 mm peak to peak), and the vibration waveform was also recorded. Recruitment thresholds were recorded from 38 MUs before and after WBV. The phase angle distribution of all MUs during WBV was nonuniform (P < 0.001) and displayed a prominent peak phase angle of firing. There was a strong linear relationship (r = -0.68, P < 0.001) between the change in recruitment threshold after WBV and average recruitment threshold; the lowest threshold MUs increased recruitment threshold (P = 0.008) while reductions were observed in the higher threshold units (P = 0.031). We investigated one possible cause of changed thresholds. Presynaptic inhibition in the soleus was measured in 8 healthy subjects (29 ± 4.6 yr). A total of 30 H-reflexes (stimulation intensity 30% Mmax) were recorded before and after WBV: 15 conditioned by prior stimulation (60 ms) of the antagonist and 15 unconditioned. There were no significant changes in the relationship between the conditioned and unconditioned responses. The consistent phase angle at which each MU fired during WBV indicates the presence of reflex muscle activity similar to the tonic vibration reflex. The varying response in high- and low-threshold MUs may be due to the different contributions of the mono- and polysynaptic pathways but not presynaptic inhibition.

  6. Whole Body Vibration at Different Exposure Frequencies: Infrared Thermography and Physiological Effects

    PubMed Central

    Sonza, Anelise; Robinson, Caroline C.; Achaval, Matilde; Zaro, Milton A.

    2015-01-01

    The aim of this study was to investigate the effects of whole body vibration (WBV) on physiological parameters, cutaneous temperature, tactile sensitivity, and balance. Twenty-four healthy adults (25.3 ± 2.6 years) participated in four WBV sessions. They spent 15 minutes on a vibration platform in the vertical mode at four different frequencies (31, 35, 40, and 44 Hz) with 1 mm of amplitude. All variables were measured before and after WBV exposure. Pressure sensation in five anatomical regions and both feet was determined using Von Frey monofilaments. Postural sway was measured using a force plate. Cutaneous temperature was obtained with an infrared camera. WBV influences the discharge of the skin touch-pressure receptors, decreasing sensitivity at all measured frequencies and foot regions (P ≤ 0.05). Regarding balance, no differences were found after 20 minutes of WBV at frequencies of 31 and 35 Hz. At 40 and 44 Hz, participants showed higher anterior-posterior center of pressure (COP) velocity and length. The cutaneous temperature of the lower limbs decreased during and 10 minutes after WBV. WBV decreases touch-pressure sensitivity at all measured frequencies 10 min after exposure. This may be related to the impaired balance at higher frequencies since these variables have a role in maintaining postural stability. Vasoconstriction might explain the decreased lower limb temperature. PMID:25664338

  7. Changes in postural sway frequency and complexity in altered sensory environments following whole body vibrations.

    PubMed

    Dickin, D Clark; McClain, Matthew A; Hubble, Ryan P; Doan, Jon B; Sessford, David

    2012-10-01

    Studies assessing whole body vibration (WBV) have produced largely positive effects, with some neutral, on postural control with frequencies between 25 and 40 Hz. However no conclusive evidence indicates that 25-40 Hz elicits the optimal beneficial effects. To address this issue, a larger range of vibration intensity (10-50 Hz at peak-to-peak amplitudes of 2 and 5mm) was employed while increasing the postural complexity (altered somatosensory and/or visual information) to assess acute effects of 4-min of WBV on postural control. Twelve healthy young adults underwent postural assessment at four time intervals (prior to, immediately following and 10 and 20 min post WBV). Findings revealed both postural sway frequency and sway complexity/regularity were affected by WBV. Baseline posture demonstrated increased sway frequency (p=.04) following WBV with no changes in sway complexity. When the support surface was altered, changes in both the frequency and complexity of sway were elicited (p=.027, .002, respectively). When both somatosensory and visual information were altered delayed improvements in postural control were elicited (p=.05 and .01, for frequency and complexity, respectively). Given the differential acute effects as a function of postural task complexity, future longitudinal studies could determine the overall training effect on sway frequency and complexity.

  8. Does whole body vibration training affect knee kinematics and neuromuscular control in healthy people?

    PubMed

    Sañudo, Borja; Feria, Adrian; Carrasco, Luis; de Hoyo, Moisés; Santos, Rui; Gamboa, Hugo

    2012-01-01

    This study aimed to investigate the effect of whole body vibration (WBV) training on the knee kinematics and neuromuscular control after single-legged drop landings. Surface electromyographic (EMG) activity of the rectus femoris and hamstring muscles and knee and ankle accelerometry signals were acquired from 42 healthy volunteers. Participants performed three pre-test landings and after a recovery period of three minutes, they completed one set of six bouts of WBV each of one minute duration (30 Hz - 4 mm), followed by a single-leg drop landing. After the WBV intervention no significant changes were observed in the kinematic outcomes measured, although the time to stabilise the lower-limb was significantly lower after the vibration training (F(8,41) = 6.55; P < 0.01). EMG analysis showed no significant differences in the amplitude of rectus femoris or hamstring muscles after WBV training, however, significant differences in EMG frequency of the rectus femoris were found before (F(8,41) = 7.595; P < 0.01) and after toe-down (F(8,41) = 4.440; P < 0.001). Finally, no significant changes were observed in knee or ankle acceleration after WBV. Results suggest that WBV can help to acutely enhance knee neuromuscular control, which may have clinical significance and help in the design of rehabilitation programmes.

  9. Whole Body Vibration Exercises and the Improvement of the Flexibility in Patient with Metabolic Syndrome

    PubMed Central

    Sá-Caputo, Danúbia da Cunha; Ronikeili-Costa, Pedro; Carvalho-Lima, Rafaelle Pacheco; Bernardo, Luciana Camargo; Bravo-Monteiro, Milena Oliveira; Costa, Rebeca; de Moraes-Silva, Janaina; Paiva, Dulciane Nunes; Machado, Christiano Bittencourt; Mantilla-Giehl, Paula; Arnobio, Adriano; Marin, Pedro Jesus; Bernardo-Filho, Mario

    2014-01-01

    Vibrations produced in oscillating/vibratory platform generate whole body vibration (WBV) exercises, which are important in sports, as well as in treating diseases, promoting rehabilitation, and improving the quality of life. WBV exercises relevantly increase the muscle strength, muscle power, and the bone mineral density, as well as improving the postural control, the balance, and the gait. An important number of publications are found in the PubMed database with the keyword “flexibility” and eight of the analyzed papers involving WBV and flexibility reached a level of evidence II. The biggest distance between the third finger of the hand to the floor (DBTFF) of a patient with metabolic syndrome (MS) was found before the first session and was considered to be 100%. The percentages to the other measurements in the different sessions were determined to be related to the 100%. It is possible to see an immediate improvement after each session with a decrease of the %DBTFF. As the presence of MS is associated with poorer physical performance, a simple and safe protocol using WBV exercises promoted an improvement of the flexibility in a patient with MS. PMID:25276434

  10. Effect of vibration on muscle strength imbalance in lower extremity using multi-control whole body vibration platform.

    PubMed

    Yu, Chang Ho; Seo, Shin Bae; Kang, Seung Rok; Kim, Kyung; Kwon, Tae Kyu

    2015-01-01

    This study shows the improvement of muscle activity and muscle strength imbalance in the lower extremities through independent exercise loads in vibration platform. Twenty females of age 20 participated in this study. The subjects were divided into WBV group, with more than 10% of muscle strength imbalance between left and right the lower extremities, and control group, with less than 10% of muscle strength imbalance between left and right the lower extremities. As the prior experiment showed, different exercise postures provide different muscular activities. As a result, the highest muscular activity was found to be in the low squat posture. Therefore, the LS posture was selected for the exercise in this experiment. Vibration intensities were applied to dominant muscle and non-dominant muscle, and the vibration frequency was fixed at 25Hz for the WBV group. The control group was asked to perform the same exercise as the WBV group, without stimulated vibration. This exercise was conducted for a total of 4 weeks. As a result, the WBV group which showed an average deviation of 16% before the experiment, tended to decrease approximately to 5%. In this study, vibration exercise using load deviation is shown to be effective in improving the muscle strength imbalance.

  11. Distinct frequency dependent effects of whole-body vibration on non-fractured bone and fracture healing in mice.

    PubMed

    Wehrle, Esther; Wehner, Tim; Heilmann, Aline; Bindl, Ronny; Claes, Lutz; Jakob, Franz; Amling, Michael; Ignatius, Anita

    2014-08-01

    Low-magnitude high-frequency vibration (LMHFV) provokes anabolic effects in non-fractured bone; however, in fracture healing, inconsistent results were reported and optimum vibration conditions remain unidentified. Here, we investigated frequency dependent effects of LMHFV on fracture healing. Twelve-week-old, female C57BL/6 mice received a femur osteotomy stabilized using an external fixator. The mice received whole-body vibrations (20 min/day) with 0.3g peak-to-peak acceleration and a frequency of either 35 or 45 Hz. After 10 and 21 days, the osteotomized femurs and intact bones (contra-lateral femurs, lumbar spine) were evaluated using bending-testing, µ-computed tomography, and histomorphometry. In non-fractured trabecular bone, vibration with 35 Hz significantly increased the relative amount of bone (+28%) and the trabecular number (+29%), whereas cortical bone was not influenced. LMHFV with 45 Hz failed to provoke anabolic effects in trabecular or cortical bone. Fracture healing was not significantly influenced by whole-body vibration with 35 Hz, whereas 45 Hz significantly reduced bone formation (-64%) and flexural rigidity (-34%) of the callus. Although the exact mechanisms remain open, our results suggest that small vibration setting changes could considerably influence LMHFV effects on bone formation in remodeling and repair, and even disrupt fracture healing, implicating caution when treating patients with impaired fracture healing.

  12. Validity of self reported occupational exposures to hand transmitted and whole body vibration

    PubMed Central

    Palmer, K.; Haward, B.; Griffin, M.; Bendall, H.; Coggon, D.

    2000-01-01

    OBJECTIVES—To assess the accuracy with which workers report their exposure to occupational sources of hand transmitted (HTV) and whole body vibration (WBV).
METHODS—179 Workers from various jobs involving exposure to HTV or WBV completed a self administered questionnaire about sources of occupational exposure to vibration in the past week. They were then observed at work over 1 hour, after which they completed a second questionnaire concerning their exposures during this observation period. The feasibility of reported sources of exposure during the past week was examined by questioning managers and by inspection of tools and machines in the workplace. The accuracy of reported sources and durations of exposure in the 1 hour period were assessed relative to what had been observed.
RESULTS—The feasibility of exposure in the previous week was confirmed for 97% of subjects who reported exposure to HTV, and for 93% of subjects who reported exposure to WBV. The individual sources of exposure reported were generally plausible, but occupational use of cars was substantially overreported, possibly because of confusion with their use in travel to and from work. The accuracy of exposures reported during the observation period was generally high, but some sources of HTV were confused—for example, nailing and stapling guns reported as riveting hammers, and hammer drills not distinguished from other sorts of drill. Workers overestimated their duration of exposure to HTV by a median factor of 2.5 (interquartile range (IQR) 1.6-5.9), but estimated durations of exposure were more accurate when the exposure was relatively continuous rather than for intermittent short periods. Reported durations of exposure to WBV were generally accurate (median ratio of reported to observed time 1.1, IQR 1.0-1.2).
CONCLUSIONS—Sources of recent occupational exposure to vibration seem to be reported with reasonable accuracy, but durations of exposure to HTV are systematically

  13. Role of the Whole Body Vibration Machine in the Prevention and Management of Osteoporosis in Old Age: A Systematic Review

    PubMed Central

    Swe, Myint; Benjamin, Biju; Tun, Aye Aye; Sugathan, Sandheep

    2016-01-01

    A literature search of related articles was carried out in electronic data sources. Initially, 276 randomised controlled trials related to the title were collected, after which 44 were selected using the keywords. Overlapping articles, articles with a study duration of less than six months, and studies involving young participants were removed from the list. The remaining 20 articles were checked for entitlement using the PEDro scale. A total of nine eligible articles with 1486 participants were analysed. Seven trials used dual-energy x-ray absorptiometry (DXA) to measure bone mineral density (BMD). The six trials published from 2005 to 2013 found a significant increase in BMD. In the remaining one trial, there was no significant increase in BMD. One study published in 2013 reported a significant increase in BMD measured with peripheral qualitative computed tomography, whereas another trial published in 2014 stated that there was a reduction in calcaneal bone density measured by peripheral qualitative ultrasound. From these findings it can be concluded that the whole body vibration machine is a good adjunctive therapy for the prevention and management of osteoporosis in postmenopausal women. However, further investigations are necessary before the same can be recommended for elderly men. PMID:27904420

  14. Proposal to use vibration analysis steering components and car body to monitor, for example, the state of unbalance wheel

    NASA Astrophysics Data System (ADS)

    Janczur, R.

    2016-09-01

    The results of road tests of car VW Passat equipped with tires of size 195/65 R15, on the influence of the unbalancing front wheel on vibration of the parts of steering system, steering wheel and the body of the vehicle have been presented in this paper. Unbalances wheels made using weights of different masses, placed close to the outer edge of the steel rim and checked on the machine Hunter GSP 9700 for balancing wheels. The recorded waveforms vibration steering components and car body, at different constant driving speeds, subjected to spectral analysis to determine the possibility of isolating vibration caused by unbalanced wheel in various states and coming from good quality asphalt road surface. The results were discussed in terms of the possibility of identifying the state of unbalancing wheels and possible changes in radial stiffness of the tire vibration transmitted through the system driving wheel on the steering wheel. Vibration analysis steering components and car body, also in the longitudinal direction, including information from the CAN bus of the state of motion of the car, can be used to monitor the development of the state of unbalance wheel, tire damage or errors shape of brake discs or brake drums, causing pulsations braking forces.

  15. In vivo lumbar erector spinae oxygenation and blood volume measurements in healthy men during seated whole-body vibration.

    PubMed

    Maikala, Rammohan V; Bhambhani, Yagesh N

    2006-09-01

    Exposure to whole-body vibration is implicated as one of the occupational risk factors for lower back disorders; however, its influence on the lumbar muscle physiology is still poorly understood. The objective of this study was to investigate the effects of backrest support and hand grip contractions on lumbar muscle oxygenation and blood volume responses during seated whole-body vibration using continuous dual-wave near-infrared spectroscopy. Thirteen healthy men were exposed to frequencies of 3, 4.5 and 6 Hz on a vibration simulator, in randomized order on separate days. Each day the duration of the protocol was 30 min. During the fifth minute of vibration 'with' and 'without' backrest support, participants performed maximal rhythmic hand grip contractions for 1 min. In general, erector spinae oxygenation and blood volume showed a trend to decrease with vibration exposure compared to the control condition. However, these responses were not influenced by the change in vibration frequency (P > 0.05). Sitting without backrest resulted in a greater decrease in oxygenation (by 27%, P = 0.02) and blood volume (by 11%, P = 0.05) than with backrest, implying a deficiency in oxygen supply owing to the sitting posture. Compared to the vibration-only condition, hand grip work decreased both oxygenation (by 22%, P = 0.003) and blood volume responses (by 13%, P = 0.04), suggesting that postural load due to prolonged sitting combined with physical activity during vibration might further burden paraspinal muscles. The influence of adipose tissue thickness of the lumbar muscle on optically derived oxygenation and blood volume changes was inconclusive.

  16. Gastrointestinal Toxicities With Combined Antiangiogenic and Stereotactic Body Radiation Therapy

    SciTech Connect

    Pollom, Erqi L.; Deng, Lei; Pai, Reetesh K.; Brown, J. Martin; Giaccia, Amato; Loo, Billy W.; Shultz, David B.; Le, Quynh Thu; Koong, Albert C.; Chang, Daniel T.

    2015-07-01

    Combining the latest targeted biologic agents with the most advanced radiation technologies has been an exciting development in the treatment of cancer patients. Stereotactic body radiation therapy (SBRT) is an ablative radiation approach that has become established for the treatment of a variety of malignancies, and it has been increasingly used in combination with biologic agents, including those targeting angiogenesis-specific pathways. Multiple reports have emerged describing unanticipated toxicities arising from the combination of SBRT and angiogenesis-targeting agents, particularly of late luminal gastrointestinal toxicities. In this review, we summarize the literature describing these toxicities, explore the biological mechanism of action of toxicity with the combined use of antiangiogenic therapies, and discuss areas of future research, so that this combination of treatment modalities can continue to be used in broader clinical contexts.

  17. Stereotactic body radiation therapy for metastasis to the adrenal glands.

    PubMed

    Shiue, Kevin; Song, Andrew; Teh, Bin S; Ellis, Rodney J; Yao, Min; Mayr, Nina A; Huang, Zhibin; Sohn, Jason; Machtay, Mitchell; Lo, Simon S

    2012-12-01

    Many primary cancers can metastasize to the adrenal glands. Adrenalectomy via an open or laparoscopic approach is the current definitive treatment, but not all patients are eligible or wish to undergo surgery. There are only limited studies on the use of conventional radiation therapy for palliation of symptoms from adrenal metastasis. However, the advent of stereotactic body radiation therapy (SBRT) - also named stereotactic ablative radiotherapy for primary lung cancer, metastases to the lung, and metastases to the liver - have prompted some investigators to consider the use of SBRT for metastases to the adrenal glands. This review focuses on the emerging data on SBRT of metastasis to the adrenal glands, while also providing a brief discussion of the overall management of adrenal metastasis.

  18. Image-Guidance for Stereotactic Body Radiation Therapy

    SciTech Connect

    Fuss, Martin . E-mail: fussm@ohsu.edu; Boda-Heggemann, Judit; Papanikolau, Nikos; Salter, Bill J.

    2007-07-01

    The term stereotactic body radiation therapy (SBRT) describes a recently introduced external beam radiation paradigm by which small lesions outside the brain are treated under stereotactic conditions, in a single or few fractions of high-dose radiation delivery. Similar to the treatment planning and delivery process for cranial radiosurgery, the emphasis is on sparing of adjacent normal tissues through the creation of steep dose gradients. Thus, advanced methods for assuring an accurate relationship between the target volume position and radiation beam geometry, immediately prior to radiation delivery, must be implemented. Such methods can employ imaging techniques such as planar (e.g., x-ray) or volumetric (e.g., computed tomography [CT]) approaches and are commonly summarized under the general term image-guided radiation therapy (IGRT). This review summarizes clinical experience with volumetric and ultrasound based image-guidance for SBRT. Additionally, challenges and potential limitations of pre-treatment image-guidance are presented and discussed.

  19. Energy Expenditure and Substrate Oxidation in Response to Side-Alternating Whole Body Vibration across Three Commonly-Used Vibration Frequencies

    PubMed Central

    Fares, Elie-Jacques; Charrière, Nathalie; Montani, Jean-Pierre; Schutz, Yves; Dulloo, Abdul G.; Miles-Chan, Jennifer L.

    2016-01-01

    Background and Aim There is increasing recognition about the importance of enhancing energy expenditure (EE) for weight control through increases in low-intensity physical activities comparable with daily life (1.5–4 METS). Whole-body vibration (WBV) increases EE modestly and could present both a useful adjuvant for obesity management and tool for metabolic phenotyping. However, it is unclear whether a “dose-response” exists between commonly-used vibration frequencies (VF) and EE, nor if WBV influences respiratory quotient (RQ), and hence substrate oxidation. We aimed to investigate the EE-VF and RQ-VF relationships across three different frequencies (30, 40, and 50Hz). Methods EE and RQ were measured in 8 healthy young adults by indirect calorimetry at rest, and subsequently during side-alternating WBV at one of 3 VFs (30, 40, and 50 Hz). Each frequency was assessed over 5 cycles of intermittent WBV (30s vibration/30s rest), separated by 5 min seated rest. During the WBV participants stood on the platform with knees flexed sufficiently to maintain comfort, prevent transmission of vibration to the upper body, and minimise voluntary physical exertion. Repeatability was assessed across 3 separate days in a subset of 4 individuals. In order to assess any sequence/habituation effect, an additional group of 6 men underwent 5 cycles of intermittent WBV (30s vibration/30s rest) at 40 Hz, separated by 5 min seated rest. Results Side-alternating WBV increased EE relative to standing, non-vibration levels (+36%, p<0.001). However, no differences in EE were observed across VFs. Similarly, no effect of VF on RQ was found, nor did WBV alter RQ relative to standing without vibration. Conclusion No relationship could be demonstrated between EE and VF in the range of 30-50Hz, and substrate oxidation did not change in response to WBV. Furthermore, the thermogenic effect of intermittent WBV, whilst robust, was quantitatively small (<2 METS). PMID:26974147

  20. Effects of whole-body vibration applied to lower extremity muscles during decline bench press exercise

    PubMed Central

    García-Gutiérrez, M.T.; Hazell, T.J.; Marín, P.J.

    2016-01-01

    Objectives: To evaluate the effects of whole-body vibration (WBV) on skeletal muscle activity and power performance of the upper body during decline bench press exercise at different loads. Methods: Forty-seven healthy young and active male students volunteered. Each performed dynamic decline bench press repetitions with and without WBV (50 Hz, 2.2 mm) applied through a hamstring bridge exercise at three different loads of their 1-repetition maximum (1RM): 30%, 50%, and 70% 1RM. Muscle activity of the triceps brachii (TB), biceps brachii (BB), pectoralis major (PM), and biceps femoris (BF) was measured with surface electromyography electrodes and kinetic parameters of the repetitions were measured with a rotary encoder. Results: WBV increased peak power (PP) output during the 70% 1RM condition (p<0.01). Muscle activity was increased with WBV in the TB and BF muscles at all loads (p<0.05). There were no effects of WBV on BB or PM muscles. Conclusion: WBV applied through a hamstring bridge exercise increases TB muscle activity during a decline bench press and this augmentation contributes to an increased peak power at higher loads and increased peak acceleration at lower loads. PMID:27609035

  1. Biodynamic response of the seated human body to single-axis and dual-axis vibration: effect of backrest and non-linearity.

    PubMed

    Qiu, Yi; Griffin, Michael J

    2012-01-01

    The biodynamic responses to the human body give an understanding of why human responses to vibration (changes in health, comfort, and performance) vary with the frequency and direction of vibration. Studies have shown that biodynamic responses also vary with the magnitude of vibration and that the backrests of seats influence the transmission of vibration to the seated human body. There has been little study of the nonlinearity in the biodynamic responses of the body to dual-axis excitation and no study of the influence of backrests during dual-axis excitation. This study investigated the apparent mass and cross-axis apparent mass of the human body exposed to random vibration (0.2 to 20 Hz) in all 15 possible combinations of four magnitudes (0, 0.25, 0.5 and 1.0 ms(-2) r.m.s.) of fore-and-aft vibration and the same four magnitudes of vertical vibration. Nonlinearity was evident, with the body softening with increasing magnitude of vibration when using a fixed magnitude of vibration in one direction and varying the magnitude of vibration in the other direction. The fore-and-aft apparent mass on the seat was greater without a backrest at the lower frequencies but greater with a backrest at the higher frequencies. The vertical apparent mass on the seat was decreased by the backrest at low frequencies. Cross-axis coupling was evident, with excitation in one axis producing a response in the other axis. It is concluded that the nonlinearity of the body evident during single-axis and multi-axis vibration, and the influence of backrests, should be taken into account when determining frequency weightings for predicting human responses to vibration and when optimising the dynamics of seating to minimise exposure to vibration.

  2. Acute effects of whole-body vibration on running gait in marathon runners.

    PubMed

    Padulo, Johnny; Filingeri, Davide; Chamari, Karim; Migliaccio, Gian Mario; Calcagno, Giuseppe; Bosco, Gerardo; Annino, Giuseppe; Tihanyi, Jozsef; Pizzolato, Fabio

    2014-01-01

    The aim of this study was to investigate the effects of a single bout of whole-body vibration (WBV) on running gait. The running kinematic of sixteen male marathon runners was assessed on a treadmill at iso-efficiency speed after 10 min of WBV and SHAM (i.e. no WBV) conditions. A high-speed camera (210 Hz) was used for the video analysis and heart rate (HR) was also monitored. The following parameters were investigated: step length (SL), flight time (FT), step frequency (SF), contact time (CT), HR and the internal work (WINT). Full-within one-way analysis of variance (ANOVA) of the randomised crossover design indicated that when compared to SHAM conditions, WBV decreased the SL and the FT by ~4% (P < 0.0001) and ~7.2% (P < 0.001), respectively, and increased the SF ~4% (P < 0.0001) while the CT was not changed. This effect occurred during the first minute of running: the SL decreased ~3.5% (P < 0.001) and SF increased ~3.3% (P < 0.001). During the second minute the SL decreased ~1.2% (P = 0.017) and the SF increased ~1.1% (P = 0.02). From the third minute onwards, there was a return to the pre-vibration condition. The WINT was increased by ~4% (P < 0.0001) during the WBV condition. Ten minutes of WBV produced a significant alteration of the running kinematics during the first minutes post exposure. These results provide insights on the effects of WBV on the central components controlling muscle function.

  3. Effects of Different Magnitudes of Whole-Body Vibration on Dynamic Squatting Performance.

    PubMed

    Marín, Pedro J; García Rioja, Javier; Bernardo-Filho, Mario; Hazell, Tom J

    2015-10-01

    The purpose of this study was to examine the effects (a) of different whole-body vibration (WBV) accelerations when applied simultaneously during a set of squats on performance and perceived exertion and (b) of different linear increases and decreases of vibrations during the squats. It is a randomized, crossover experimental design. Undergraduate students (3 female; 16 male) participated. Each participant completed 5 laboratory sessions in this study (4 familiarization and 1 test session). The test session then had each participant complete one 20-second set of dynamics quarter-squats for 5 separate conditions followed by 5 minutes of rest. Squatting was performed at maximum speed from full extension knee with plantar-flexion ankle to a knee angle of 70° (0° = anatomic position) with dorsiflexion ankle. All sets were performed on the WBV platform in random order, where the 5 different conditions were (a) no WBV-sham, (b) 30 Hz (30 Hz low amplitude), (c) 50 Hz (50 Hz high amplitude), (d) 30-50 Hz (increasing frequency from 30 to 50 Hz; 1 Hz per second with high amplitude), and (e) 50-30 Hz (decreasing frequency from 50 to 30 Hz; 1 Hz per second). There was a significant decrease in the mean velocity of squatting performed during the 30- to 50-Hz condition compared with all other conditions (p ≤ 0.05). There were a significantly lower amount of repetitions performed during the 30- to 50-Hz exposure compared with the no-WBV and 30-Hz conditions. There was a significantly lower Rating of Perceived Exertion (RPE) during the 30-Hz condition compared with the no-WBV, 50-Hz, 30-50-Hz, and 50-30-Hz conditions.

  4. Whole-body vibration-induced muscular reflex: Is it a stretch-induced reflex?

    PubMed Central

    Cakar, Halil Ibrahim; Cidem, Muharrem; Sebik, Oguz; Yilmaz, Gizem; Karamehmetoglu, Safak Sahir; Kara, Sadik; Karacan, Ilhan; Türker, Kemal Sıtkı

    2015-01-01

    [Purpose] Whole-body vibration (WBV) can induce reflex responses in muscles. A number of studies have reported that the physiological mechanisms underlying this type of reflex activity can be explained by reference to a stretch-induced reflex. Thus, the primary objective of this study was to test whether the WBV-induced muscular reflex (WBV-IMR) can be explained as a stretch-induced reflex. [Subjects and Methods] The present study assessed 20 healthy males using surface electrodes placed on their right soleus muscle. The latency of the tendon reflex (T-reflex) as a stretch-induced reflex was compared with the reflex latency of the WBV-IMR. In addition, simulations were performed at 25, 30, 35, 40, 45, and 50 Hz to determine the stretch frequency of the muscle during WBV. [Results] WBV-IMR latency (40.5 ± 0.8 ms; 95% confidence interval [CI]: 39.0–41.9 ms) was significantly longer than T-reflex latency (34.6 ± 0.5 ms; 95% CI: 33.6–35.5 ms) and the mean difference was 6.2 ms (95% CI of the difference: 4.7–7.7 ms). The simulations performed in the present study demonstrated that the frequency of the stretch signal would be twice the frequency of the vibration. [Conclusion] These findings do not support the notion that WBV-IMR can be explained by reference to a stretch-induced reflex. PMID:26310784

  5. Power absorbed during whole-body fore-and-aft vibration: Effects of sitting posture, backrest, and footrest

    NASA Astrophysics Data System (ADS)

    Nawayseh, Naser; Griffin, Michael J.

    2012-01-01

    Although the discomfort or injury associated with whole-body vibration cannot be predicted directly from the power absorbed during exposure to vibration, the absorbed power may contribute to understanding of the biodynamics involved in such responses. From measurements of force and acceleration at the seat, the feet, and the backrest, the power absorbed at these three locations was calculated for subjects sitting in four postures (feet hanging, maximum thigh contact, average thigh contact, and minimum thigh contact) both with and without a rigid vertical backrest while exposed to four magnitudes (0.125, 0.25, 0.625, and 1.25 m s -2 rms) of random fore-and-aft vibration. The power absorbed by the body at the supporting seat surface when there was no backrest showed a peak around 1 Hz and another peak between 3 and 4 Hz. Supporting the back with the backrest decreased the power absorbed at the seat at low frequencies but increased the power absorbed at high frequencies. Foot support influenced both the magnitude and the frequency of the peaks in the absorbed power spectra as well as the total absorbed power. The measurements of absorbed power are consistent with backrests being beneficial during exposure to low frequency fore-and-aft vibration but detrimental with high frequency fore-and-aft vibration.

  6. Apparent mass and cross-axis apparent mass of standing subjects during exposure to vertical whole-body vibration

    NASA Astrophysics Data System (ADS)

    Subashi, G. H. M. J.; Matsumoto, Y.; Griffin, M. J.

    2006-05-01

    The effects of posture and vibration magnitude on the vertical apparent mass and the fore-and-aft cross-axis apparent mass of the standing human body during exposure to vertical vibration have been investigated. Twelve male subjects were exposed to random vertical vibration over the frequency range 2.0-20 Hz at three vibration magnitudes: 0.125, 0.25 and 0.5 m s -2 rms. Subjects stood in five different postures: upright, lordotic, anterior lean, knees bent and knees more bent. The vertical acceleration at the floor and the forces in the vertical and fore-and-aft directions at the floor were used to obtain the apparent mass and the cross-axis apparent mass. The resonance frequency of the apparent mass was significantly reduced with knees bent and knees more bent postures, but there were only minor effects on the resonance frequency by changing the position of the upper body. Considerable cross-axis apparent mass, up to about 30% of the static mass of subjects, was found. The cross-axis apparent mass was influenced by all postural changes used in the study. In all postures the resonance frequencies of the apparent mass and the cross-axis apparent mass tended to decrease with increasing vibration magnitude. This nonlinear characteristic tended to be less clear in some postures in which subjects increased muscle tension.

  7. a Decade of Improvement in Whole-Body Vibration and Low Back Pain for Freight Container Tractor Drivers

    NASA Astrophysics Data System (ADS)

    Nishiyama, K.; Taoda, K.; Kitahara, T.

    1998-08-01

    The authors' study in 1983 revealed that the whole-body vibration of the tractor units of freight containers was most hazardous in the back-to-chest directions (x-axis). The allowable exposure time was considerably shorter than that for heavy duty trucks. The low back pain (LBP) among the drivers seemed to be due to the long working hours and the ergonomically unsound tractor design, as well as the vibration. A preventative measure was the introduction of a tractor cab suspended by an air spring instead of a steel spring. In 1992, a follow-up field study was conducted. A personal vibration exposure meter developed by us measured the whole-body vibration on eight tractors. Eighty-nine triplets matched with the age and the years of driving tractors answered a questionnaire evaluation of the ergonomics of their tractor units.The comparison of the newest steel suspension vehicles to the old ones produced by the same motor company revealed that in thex-axis the vibration level had decreased by as much as 4 to 9 dB. Some tractors showed an increase in vibration in the buttocks-to-head direction (z-axis). However, such adverse changes seemed not to affect evaluations according to the fatigue-decreased proficiency boundary (FDP) and the exposure limit (EL) recommended in ISO 2631-1978. The present models, regardless of the type of suspension, changed the direction of the most hazardous vibration from thex-axis to thez-axis. However, the effect of the air-suspension was not so remarkable as expected. Among 40% of drivers seemed to exceed the FDP boundary during a day.The questionnaire study showed an improvement in the ergonomic evaluation of the tractors. The air suspension models seemed to induce less LBP than the steel suspension models.

  8. Effect of Phase on Human Responses to Vertical Whole-Body Vibration and SHOCK—ANALYTICAL Investigation

    NASA Astrophysics Data System (ADS)

    MATSUMOTO, Y.; GRIFFIN, M. J.

    2002-03-01

    The effect of the “phase” on human responses to vertical whole-body vibration and shock has been investigated analytically using alternative methods of predicting subjective responses (using r.m.s., VDV and various frequency weightings). Two types of phase have been investigated: the effect of the relative phase between two frequency components in the input stimulus, and the phase response of the human body. Continuous vibrations and shocks, based on half-sine and one-and-a-half-sine accelerations, each of which had two frequency components, were used as input stimuli. For the continuous vibrations, an effect of relative phase was found for the vibration dose value (VDV) when the ratio between two frequency components was three: about 12% variation in the VDV of the unweighted acceleration was possible by changing the relative phase. The effect of the phase response of the body represented by frequency weightings was most significant when the frequencies of two sinusoidal components were about 3 and 9 Hz. With shocks, the effect of relative phase was observed for all stimuli used. The variation in the r.m.s. acceleration and in the VDV caused by variations in the relative phase varied between 3 and 100%, depending on the nature of stimulus and the frequency weighting. The phase of the frequency weightings had a different effect on the r.m.s. and the VDV.

  9. [The effect of betahistine on histological changes in rabbit brain in model of whole body wide-frequency vibration].

    PubMed

    Shimkus, Iu Iu; Sapegin, I D

    2013-01-01

    In acute experiments in conscious rabbits was studied protective action of selective blocker of histamine H3-receptor betahistine (2mg/kg i/v) against histological changes in precentral and postcentral gyrus, as well as in temporal lobe of cerebral cortex, thalamus, hypothalamus, and cerebellum, arising in case of modeling of whole body wide-frequency vibration. Betahistine attenuates edematous and degenerative changes in neurons and reciprocal glial reaction, caused by vibration, but does not eliminate edema in perivascular spaces. This effect may be related to the improvement of blood supply as a result of of vasodilatory action and decrease of oxygen consumption via vestibuloprotective effect.

  10. Professional Soccer Player Neuromuscular Responses and Perceptions to Acute Whole Body Vibration Differ from Amateur Counterparts.

    PubMed

    Cloak, Ross; Lane, Andrew; Wyon, Matthew

    2016-03-01

    Acute whole body vibration (WBV) is an increasingly popular training technique amongst athletes immediately prior to performance and during scheduled breaks in play. Despite its growing popularity, evidence to demonstrate its effectiveness on acute neuromuscular responses is unclear, and suggestions that athlete ability impacts effectiveness warrant further investigation. The purpose of this study was to compare the neuromuscular effects of acute WBV and perceptions of whether WBV is an effective intervention between amateur and professional soccer players. Participants were 44 male soccer players (22 professional and 22 amateur; age: 23.1 ± 3.7 years, body mass: 75.6 ± 8.8 kg and height: 1.77 ± 0.05 m). Participants in each group were randomly assigned to either an intervention of 3 x 60 s of WBV at 40 Hz (8mm peak-to-peak displacement) or control group. Peak knee isometric force, muscle activation and post activation potentiation (PAP) of the knee extensors along with self-report questionnaire of the perceived benefits of using the intervention were collected. A three-way ANOVA with repeated measures revealed professional players demonstrated a significant 10.6% increase (p < 0.01, Partial Eta(2) = 0.22) in peak knee isometric force following acute WBV with no significant differences among amateur players. A significant difference (p < 0.01, Partial Eta(2) = 0.16) in PAP amongst professional players following acute WBVT was also reported. No significant differences amongst amateur players were reported across measurements. Results also indicated professional players reported significantly stronger positive beliefs in the effectiveness of the WBV intervention (p < 0.01, Partial Eta(2) = 0.27) compared to amateur players. Acute WBV elicited a positive neuromuscular response amongst professional players identified by PAP and improvements in knee isometric peak force as well as perceived benefits of the intervention, benefits not found among amateur players. Key

  11. Professional Soccer Player Neuromuscular Responses and Perceptions to Acute Whole Body Vibration Differ from Amateur Counterparts

    PubMed Central

    Cloak, Ross; Lane, Andrew; Wyon, Matthew

    2016-01-01

    Acute whole body vibration (WBV) is an increasingly popular training technique amongst athletes immediately prior to performance and during scheduled breaks in play. Despite its growing popularity, evidence to demonstrate its effectiveness on acute neuromuscular responses is unclear, and suggestions that athlete ability impacts effectiveness warrant further investigation. The purpose of this study was to compare the neuromuscular effects of acute WBV and perceptions of whether WBV is an effective intervention between amateur and professional soccer players. Participants were 44 male soccer players (22 professional and 22 amateur; age: 23.1 ± 3.7 years, body mass: 75.6 ± 8.8 kg and height: 1.77 ± 0.05 m). Participants in each group were randomly assigned to either an intervention of 3 x 60 s of WBV at 40 Hz (8mm peak-to-peak displacement) or control group. Peak knee isometric force, muscle activation and post activation potentiation (PAP) of the knee extensors along with self-report questionnaire of the perceived benefits of using the intervention were collected. A three-way ANOVA with repeated measures revealed professional players demonstrated a significant 10.6% increase (p < 0.01, Partial Eta2 = 0.22) in peak knee isometric force following acute WBV with no significant differences among amateur players. A significant difference (p < 0.01, Partial Eta2 = 0.16) in PAP amongst professional players following acute WBVT was also reported. No significant differences amongst amateur players were reported across measurements. Results also indicated professional players reported significantly stronger positive beliefs in the effectiveness of the WBV intervention (p < 0.01, Partial Eta2 = 0.27) compared to amateur players. Acute WBV elicited a positive neuromuscular response amongst professional players identified by PAP and improvements in knee isometric peak force as well as perceived benefits of the intervention, benefits not found among amateur players. Key points

  12. Movement of the Upper-Body of Seated Subjects Exposed to Vertical Whole-Body Vibration at the Principal Resonance Frequency

    NASA Astrophysics Data System (ADS)

    Matsumoto, Y.; Griffin, M. J.

    1998-08-01

    The dynamic responses of eight male subjects exposed to vertical whole-body vibration have been measured at eight locations of the body in three directions within the sagittal plane: in the vertical, fore-and-aft and pitch axes. The motions were measured on the body surface at the first, fifth and tenth thoracic vertebra (T1, T5, T10), at the first, third and fifth lumbar vertebra (L1, L3, L5) and at the pelvis (the posterior-superior iliac spine), and were corrected so as to estimate the motions of the skeleton. The head motion was measured with a bite bar. The force at the seat surface was also measured. The subjects were exposed to vertical random vibration in the frequency range from 0·5-20 Hz at a magnitude of 1·0 ms-2r.m.s. The movement of the upper-body at the principal resonance frequency of the driving-point apparent mass is illustrated by using the transmissibilities from seat vertical vibration to vertical and fore-and-aft vibration at the eight locations on the body. A bending of the lumbar spine, and probably the lowest thoracic spine, possibly coupled with a rocking motion of the upper thoracic spine about the lower thoracic spine, appeared to be dominant. A small bending along the full length of thoracic spine was also found. Pitch motion of the pelvis, possibly accompanied by longitudinal and shear deformations of the tissue underneath the pelvis, was found to occur near the resonance frequency range, but did not appear to make a principal contribution to the resonance observed in the apparent mass. Any significant axial motions along the spine occurred at higher frequencies.

  13. Anaerobic power in road cyclists is improved after 10 weeks of whole-body vibration training.

    PubMed

    Oosthuyse, Tanja; Viedge, Alison; McVeigh, Joanne; Avidon, Ingrid

    2013-02-01

    Whole-body vibration (WBV) training has previously improved muscle power in various athletic groups requiring explosive muscle contractions. To evaluate the benefit of including WBV as a training adjunct for improving aerobic and anaerobic cycling performance, road cyclists (n = 9) performed 3 weekly, 10-minute sessions of intermittent WBV on synchronous vertical plates (30 Hz) while standing in a static posture. A control group of cyclists (n = 8) received no WBV training. Before and after the 10-week intervention period, lean body mass (LBM), cycling aerobic peak power (Wmax), 4 mM lactate concentration (OBLA), VO2peak, and Wingate anaerobic peak and mean power output were determined. The WBV group successfully completed all WBV sessions but reported a significant 30% decrease in the weekly cycling training time (pre: 9.4 ± 3.3 h·wk(-1); post: 6.7 ± 3.7 h·wk(-1); p = 0.01) that resulted in a 6% decrease in VO2peak and a 4% decrease in OBLA. The control group reported a nonsignificant 6% decrease in cycling training volume (pre: 9.5 ± 3.6 h·wk(-1); 8.6 ± 2.9 h·wk(-1); p = 0.13), and all measured variables were maintained. Despite the evidence of detraining in the WBV group, Wmax was maintained (pre: 258 ± 53 W; post: 254 ± 57 W; p = 0.43). Furthermore, Wingate peak power increased by 6% (668 ± 189 to 708 ± 220 W; p = 0.055), and Wingate mean power increased by 2% (553 ± 157 to 565 ± 157 W; p = 0.006) in the WBV group from preintervention to postintervention, respectively, without any change to LBM. The WBV training is an attractive training supplement for improving anaerobic power without increasing muscle mass in road cyclists.

  14. [Whole-body vibration risk among operators in railway engines shunting ].

    PubMed

    Abbate, A; Saffioti, G; Malara, G; Licordari, P; Carrello, S; De Pasquale, D; Giorgianni, C

    2007-01-01

    Purpose of the present note is to assess the risk from Whole-body vibration (WBV) in operators employed in the shunting of engines within the railway stations. The study has been conducted in the cockpits of the shunting engines used within the railway station of Villa S. Giovanni (RC). The measures have been taken through accelerometer IHVM 100 Larson-Davis, placed on the seat of each locomotives for a recording time of around 15 minutes. A standard measure has been effected besides, positioning the sensor on the floor of the same locomotives. The measurements indicate that the risk to these workers is negligible because in any case the value is exceeded action daily 0.5 m/s2, having recorded values range from 0.1 to 0.2 m / s2. In conclusion it holds him necessary, to the preventive goals, in respect to how much anticipated from the D.L.gs 187/05 the necessary technical, organizational and formative measures to the containment of the risk.

  15. Effects of whole body vibration on hormonal & functional indices in patients with multiple sclerosis

    PubMed Central

    Ebrahimi, Ali; Eftekhari, Elham; Etemadifar, Masoud

    2015-01-01

    Background & objectives: Multiple sclerosis (MS) is a neurodegenerative disease, which affects the patients’ mobility, and exercise training is considered to be beneficial for these patients. The aim of this study was to determine the effects of 10 wk of low intensity exercise and whole body vibration (WBV) training on fatigue, quality of life, functional and physical indices, and serum levels of ghrelin, leptin, and testosterone in MS patients. Methods: Thirty four MS patients with mild to moderate disability were recruited and randomly divided into two groups, the training group (n=17) and control group (n=17). Patients in the training group did low intensity exercise and WBV training programme three times a week for 10 wk. The control group continued their routine life. Intended variables like expanded disability status scale (EDSS), fatigue, quality of life, functional and physical indices consisted of balance, walking speed, functional mobility, functional muscle endurance, and walking endurance, and serum levels of ghrelin, leptin, and testosterone were measured before and after the protocol. Results: Thirty subjects completed the study (23 females, 7 males; mean age =38.80 ± 9.50 yr). Statistical analysis demonstrated that EDSS in the WBV training group was significantly decreased (P=0.01), balance (P=0.01), and walking endurance significantly increased (P=0.01) in MS patients (P<0.05). Interpretation & conclusions: The results suggest that low intensity exercise and WBV training have some beneficial impact on functional and physical indices of MS patients. PMID:26609037

  16. Two way assessment of other physical work demands while measuring the whole body vibration magnitude

    NASA Astrophysics Data System (ADS)

    Tiemessen, Ivo J. H.; Hulshof, Carel T. J.; Frings-Dresen, Monique H. W.

    2008-03-01

    Direct observation, instead of using self-administered questionnaires might give more reliable and specific information about physical work demands at the workplace. This information is of use in a population already at risk of developing low back pain (LBP) due to whole body vibration (WBV) exposure. The aims of this study are to assess the WBV exposure in an exposed population and to assess other physical work demands in two ways, by direct observation and with the use of a self-administered questionnaire. We therefore assessed the WBV magnitude and 5 WBV-related physical work demands by using the PalmTrac system and a self-administered questionnaire in a group of drivers ( N=10). The main findings are 7 out of 10 drivers are exceeding the EU action value. About 50% of the drivers under-estimated the time 'bending', 60% the time 'walking+standing' and 60% over-estimated the time when 'lifting.' We concluded that 7 drivers from this group are at risk of developing LBP and substantial differences exists for the 5 physical work demands comparing the PalmTrac method with the questionnaire. Direct observational assessment in WBV measurements yields extra information. This is useful for preventive activities necessary as drivers are exceeding the EU action value.

  17. Distinct Skeletal Muscle Gene Regulation from Active Contraction, Passive Vibration, and Whole Body Heat Stress in Humans

    PubMed Central

    Petrie, Michael A.; Kimball, Amy L.; McHenry, Colleen L.; Suneja, Manish; Yen, Chu-Ling; Sharma, Arpit; Shields, Richard K.

    2016-01-01

    Skeletal muscle exercise regulates several important metabolic genes in humans. We know little about the effects of environmental stress (heat) and mechanical stress (vibration) on skeletal muscle. Passive mechanical stress or systemic heat stress are often used in combination with many active exercise programs. We designed a method to deliver a vibration stress and systemic heat stress to compare the effects with active skeletal muscle contraction. Purpose: The purpose of this study is to examine whether active mechanical stress (muscle contraction), passive mechanical stress (vibration), or systemic whole body heat stress regulates key gene signatures associated with muscle metabolism, hypertrophy/atrophy, and inflammation/repair. Methods: Eleven subjects, six able-bodied and five with chronic spinal cord injury (SCI) participated in the study. The six able-bodied subjects sat in a heat stress chamber for 30 minutes. Five subjects with SCI received a single dose of limb-segment vibration or a dose of repetitive electrically induced muscle contractions. Three hours after the completion of each stress, we performed a muscle biopsy (vastus lateralis or soleus) to analyze mRNA gene expression. Results: We discovered repetitive active muscle contractions up regulated metabolic transcription factors NR4A3 (12.45 fold), PGC-1α (5.46 fold), and ABRA (5.98 fold); and repressed MSTN (0.56 fold). Heat stress repressed PGC-1α (0.74 fold change; p < 0.05); while vibration induced FOXK2 (2.36 fold change; p < 0.05). Vibration similarly caused a down regulation of MSTN (0.74 fold change; p < 0.05), but to a lesser extent than active muscle contraction. Vibration induced FOXK2 (p < 0.05) while heat stress repressed PGC-1α (0.74 fold) and ANKRD1 genes (0.51 fold; p < 0.05). Conclusion: These findings support a distinct gene regulation in response to heat stress, vibration, and muscle contractions. Understanding these responses may assist in developing regenerative

  18. Study of the effects of age and body mass index on the carotid wall vibration: extraction methodology and analysis.

    PubMed

    Yousefi Rizi, Fereshteh; Setarehdan, Seyed Kamaledin; Behnam, Hamid; Alizadeh Sani, Zahra

    2014-07-01

    This study aims to non-invasively extract the vibrations of the carotid wall and evaluate the changes in the carotid artery wall caused by age and obesity. Such evaluation can increase the possibility of detecting wall stiffness and atherosclerosis in its early stage. In this study, a novel method that uses a phase-tracking method based on the continuous wavelet transform calculates the carotid wall motion from the ultrasound radio frequency signals. To extract the high-frequency components of the wall motion, wall vibration, the empirical mode decomposition was then used. The posterior wall (intima-media) motion and vibration were extracted for 54 healthy volunteers (mean age: 33.87 ± 14.73 years), including 13 overweight subjects (body mass index > 25) and 14 female participants using their radio frequency signals. The results showed that the dominant frequency of the wall vibration correlates with age (r = -0.5887, p < 0.001) and body mass index (r = -0.4838, p < 0.001). The quantitative analysis further demonstrated that the dominant frequency of the vibration in the radial direction of the carotid wall decreases by age and is lower in overweight subjects. Besides, the peak-to-peak amplitude of the wall vibration showed significant correlations with age (r = -0.5456, p < 0.001) and body mass index (r = -0.5821, p < 0.001). The peak-to-peak amplitude also decreases by age and is lower in overweight subjects. However, there were no significant correlations between these features of the wall vibrations and systolic/diastolic blood pressure and sex. Our proposed measures were certified using the calculated arterial stiffness indices. The average power spectrum of the elderly subjects'wall motion in the frequency range of the wall vibration (>100 Hz) is decreased more in comparison with the young subjects. Our results revealed that the proposed method may be useful for detecting the stiffness and distortion in the carotid wall that occur prior to wall thickening

  19. The discomfort produced by noise and whole-body vertical vibration presented separately and in combination.

    PubMed

    Huang, Yu; Griffin, Michael J

    2014-01-01

    This study investigated the prediction of the discomfort caused by simultaneous noise and vibration from the discomfort caused by noise and the discomfort caused by vibration when they are presented separately. A total of 24 subjects used absolute magnitude estimation to report their discomfort caused by seven levels of noise (70-88 dBA SEL), 7 magnitudes of vibration (0.146-2.318 ms(- 1.75)) and all 49 possible combinations of these noise and vibration stimuli. Vibration did not significantly influence judgements of noise discomfort, but noise reduced vibration discomfort by an amount that increased with increasing noise level, consistent with a 'masking effect' of noise on judgements of vibration discomfort. A multiple linear regression model or a root-sums-of-squares model predicted the discomfort caused by combined noise and vibration, but the root-sums-of-squares model is more convenient and provided a more accurate prediction of the discomfort produced by combined noise and vibration.

  20. The Effect of a Single Session of Whole-Body Vibration Training in Recreationally Active Men on the Excitability of the Central and Peripheral Nervous System

    PubMed Central

    Chmielewska, Daria; Piecha, Magdalena; Błaszczak, Edward; Król, Piotr; Smykla, Agnieszka; Juras, Grzegorz

    2014-01-01

    Vibration training has become a popular method used in professional sports and recreation. In this study, we examined the effect of whole-body vibration training on the central nervous system and muscle excitability in a group of 28 active men. Subjects were assigned randomly to one of two experimental groups with different variables of vibrations. The chronaximetry method was used to evaluate the effect of a single session of whole-body vibration training on the excitability of the rectus femoris and brachioradialis muscles. The examination of the fusing and flickering frequencies of the light stimulus was performed. An increase in the excitability of the quadriceps femoris muscle due to low intensity vibrations (20 Hz frequency, 2 mm amplitude) was noted, and a return to the initial values was observed 30 min after the application of vibration. High intensity vibrations (60 Hz frequency, 4 mm amplitude) caused elongations of the chronaxy time; however, these differences were not statistically significant. Neither a low intensity vibration amplitude of 2 mm (frequency of 20 Hz) nor a high intensity vibration amplitude of 4 mm (frequency of 60 Hz) caused a change in the excitability of the central nervous system, as revealed by the average frequency of the fusing and flickering of the light stimulus. A single session of high intensity whole-body vibration did not significantly decrease the excitability of the peripheral nervous system while the central nervous system did not seem to be affected. PMID:25114735

  1. Countermeasures against lumbar spine deconditioning in prolonged bed rest: resistive exercise with and without whole body vibration.

    PubMed

    Belavý, Daniel L; Armbrecht, Gabriele; Gast, Ulf; Richardson, Carolyn A; Hides, Julie A; Felsenberg, Dieter

    2010-12-01

    To evaluate the effect of short-duration, high-load resistive exercise, with and without whole body vibration on lumbar muscle size, intervertebral disk and spinal morphology changes, and low back pain (LBP) incidence during prolonged bed rest, 24 subjects underwent 60 days of head-down tilt bed rest and performed either resistive vibration exercise (n = 7), resistive exercise only (n = 8), or no exercise (n = 9; 2nd Berlin Bed-Rest Study). Discal and spinal shape was measured from sagittal plane magnetic resonance images. Cross-sectional areas (CSAs) of the multifidus, erector spinae, quadratus lumborum, and psoas were measured on para-axial magnetic resonance images. LBP incidence was assessed with questionnaires at regular intervals. The countermeasures reduced CSA loss in the multifidus, lumbar erector spinae and quadratus lumborum muscles, with greater increases in psoas muscle CSA seen in the countermeasure groups (P ≤ 0.004). There was little statistical evidence for an additional effect of whole body vibration above resistive exercise alone on these muscle changes. Exercise subjects reported LBP more frequently in the first week of bed rest, but this was only significant in resistive exercise only (P = 0.011 vs. control, resistive vibration exercise vs. control: P = 0.56). No effect of the countermeasures on changes in spinal morphology was seen (P ≥ 0.22). The results suggest that high-load resistive exercise, with or without whole body vibration, performed 3 days/wk can reduce lumbar muscle atrophy, but further countermeasure optimization is required.

  2. Whole-Body Vibration and the Prevention and Treatment of Delayed-Onset Muscle Soreness

    PubMed Central

    Aminian-Far, Atefeh; Hadian, Mohammad-Reza; Olyaei, Gholamreza; Talebian, Saeed; Bakhtiary, Amir Hoshang

    2011-01-01

    Abstract Context: Numerous recovery strategies have been used in an attempt to minimize the symptoms of delayed-onset muscle soreness (DOMS). Whole-body vibration (WBV) has been suggested as a viable warm-up for athletes. However, scientific evidence to support the protective effects of WBV training (WBVT) on muscle damage is lacking. Objective: To investigate the acute effect of WBVT applied before eccentric exercise in the prevention of DOMS. Design: Randomized controlled trial. Setting: University laboratory. Patients or Other Participants: A total of 32 healthy, untrained volunteers were randomly assigned to either the WBVT (n  =  15) or control (n  =  17) group. Intervention(s): Volunteers performed 6 sets of 10 maximal isokinetic (60°/s) eccentric contractions of the dominant-limb knee extensors on a dynamometer. In the WBVT group, the training was applied using a vibratory platform (35 Hz, 5 mm peak to peak) with 100° of knee flexion for 60 seconds before eccentric exercise. No vibration was applied in the control group. Main Outcome Measure(s): Muscle soreness, thigh circumference, and pressure pain threshold were recorded at baseline and at 1, 2, 3, 4, 7, and 14 days postexercise. Maximal voluntary isometric and isokinetic knee extensor strength were assessed at baseline, immediately after exercise, and at 1, 2, 7, and 14 days postexercise. Serum creatine kinase was measured at baseline and at 1, 2, and 7 days postexercise. Results: The WBVT group showed a reduction in DOMS symptoms in the form of less maximal isometric and isokinetic voluntary strength loss, lower creatine kinase levels, and less pressure pain threshold and muscle soreness (P < .05) compared with the control group. However, no effect on thigh circumference was evident (P < .05). Conclusions: Administered before eccentric exercise, WBVT may reduce DOMS via muscle function improvement. Further investigation should be undertaken to ascertain the effectiveness of WBVT in

  3. To Compare the Effect of Vibration Therapy and Massage in Prevention of Delayed Onset Muscle Soreness (DOMS)

    PubMed Central

    Imtiyaz, Shagufta; Veqar, Zubia; Shareef, M.Y.

    2014-01-01

    Objectives: To compare the effects of vibration therapy and massage in prevention of DOMS. Methods: Pre-test and Post-test Control-Group Design was used, 45 healthy female non athletic Subjects were recruited and randomly distributed to the three groups (15 subject in each group). After the subject’s initial status was measured experimental groups received vibration therapy (50 Hz vibration for five minutes) or massage therapy (15 minutes) intervention and control group received no treatment, just prior to the eccentric exercise. Subjects were undergoing the following measurements to evaluate the changes in the muscle condition: muscle soreness (pain perception), Range of Motion (ROM), Maximum Isometric Force (MIF), Repetition maximum (RM), Lactate dehydrogenase (LDH) and Cretain Kinase (CK) level. All the parameters except LDH, CK and 1RM were measured before, immediately post intervention, immediately post exercise, 24 hours post exercise, 48 hours post exercise and 72 hours post exercise. LDH, CK and 1 RM were measured before and 48 hours post exercise. Result: Muscle soreness was reported to be significantly less for experimental (vibration and massage) group (p=0.000) as compared to control group at 24, 48, and 72 hours of post-exercise. Experimental and control group did not show any significant difference in MIF immediate (p=0.2898), 24 hours (p=0.4173), 48 hours (p=0.752) and 72 hours (p=0.5297) of post-exercise. Range of motion demonstrated significant recovery in experimental groups in 48 hours (p=0.0016) and 72 hours (p=0.0463). Massage therapy showed significant recovery in 1RM (p=0.000) compared to control group and vibration therapy shows significantly less LDH level (p=0.000) 48 hours of post exercise compare to control group. CK at 48 hours of post exercise in vibration group (p=0.000) and massage group showed (p=0.002) significant difference as compared to control group. Conclusion: Vibration therapy and massage are equally effective in

  4. Alternative to traditional stretching methods for flexibility enhancement in well-trained combat athletes: local vibration versus whole-body vibration

    PubMed Central

    2015-01-01

    This study aimed to compare the effect of local vibration (LV) and whole body vibration (WBV) on lower body flexibility and to assess whether vibration treatments were more effective than traditionally used static and dynamic stretching methods. Twenty-four well-trained male combat athletes (age: 22.7 ± 3.3 years) performed four exercise protocols – LV (30 Hz, 4 mm), WBV (30 Hz, 4 mm), static stretching (SS), and dynamic stretching (DS) – in four sessions of equal duration 48 hours apart in a randomized, balanced order. During a 15-minute recovery after each protocol, subjects performed the stand and reach test (S&R) at the 15th second and the 2nd, 4th, 6th, 8th, 10th and 15th minute. There was a similar change pattern in S&R scores across the 15-minute recovery after each protocol (p = 0.572), remaining significantly elevated throughout the recovery. A significant main protocol effect was found for absolute change in S&R scores relative to baseline (p = 0.015). These changes were statistically greater in LV than WBV and DS. Changes in SS were not significantly different from LV, but were consistently lower than LV with almost moderate effect sizes. After LV, a greater percentage of subjects increased flexibility above the minimum detectable change compared to other protocols. Subjects with high flexibility (n = 12) benefited more from LV compared with other methods (effect size ≥ 0.862). In conclusion, LV was an effective alternative exercise modality to acutely increase lower extremity flexibility for well-trained athletes compared with WBV and traditional stretching exercises. PMID:26424926

  5. A whole body vibration perception map and associated acceleration loads at the lower leg, hip and head.

    PubMed

    Sonza, Anelise; Völkel, Nina; Zaro, Milton A; Achaval, Matilde; Hennig, Ewald M

    2015-07-01

    Whole-body vibration (WBV) training has become popular in recent years. However, WBV may be harmful to the human body. The goal of this study was to determine the acceleration magnitudes at different body segments for different frequencies of WBV. Additionally, vibration sensation ratings by subjects served to create perception vibration magnitude and discomfort maps of the human body. In the first of two experiments, 65 young adults mean (± SD) age range of 23 (± 3.0) years, participated in WBV severity perception ratings, based on a Borg scale. Measurements were performed at 12 different frequencies, two intensities (3 and 5 mm amplitudes) of rotational mode WBV. On a separate day, a second experiment (n = 40) included vertical accelerometry of the head, hip and lower leg with the same WBV settings. The highest lower limb vibration magnitude perception based on the Borg scale was extremely intense for the frequencies between 21 and 25 Hz; somewhat hard for the trunk region (11-25 Hz) and fairly light for the head (13-25 Hz). The highest vertical accelerations were found at a frequency of 23 Hz at the tibia, 9 Hz at the hip and 13 Hz at the head. At 5 mm amplitude, 61.5% of the subjects reported discomfort in the foot region (21-25 Hz), 46.2% for the lower back (17, 19 and 21 Hz) and 23% for the abdominal region (9-13 Hz). The range of 3-7 Hz represents the safest frequency range with magnitudes less than 1 g(*)sec for all studied regions.

  6. Reporting whole-body vibration intervention studies: recommendations of the International Society of Musculoskeletal and Neuronal Interactions.

    PubMed

    Rauch, F; Sievanen, H; Boonen, S; Cardinale, M; Degens, H; Felsenberg, D; Roth, J; Schoenau, E; Verschueren, S; Rittweger, J

    2010-09-01

    Whole-body vibration (WBV) is receiving increasing interest as a therapeutic modality to improve neuromuscular performance or to increase bone mass or density. In order to help improve the quality of reports about WBV treatment studies, the International Society of Musculoskeletal and Neuronal Interactions (ISMNI) invited experts in the field to provide suggestions on how the intervention should be described in such reports. The recommendations are presented here.

  7. Acute effects of unilateral whole body vibration training on single leg vertical jump height and symmetry in healthy men.

    PubMed

    Shin, Seungho; Lee, Kyeongjin; Song, Changho

    2015-12-01

    [Purpose] The aim of the present study was to investigate the acute effects of unilateral whole body vibration training on height and symmetry of the single leg vertical jump in healthy men. [Subjects] Thirty males with no history of lower limb dysfunction participated in this study. [Methods] The participants were randomly allocated to one of three groups: the unilateral vibratory stimulation group (n=10), bilateral vibratory stimulation group (n=10), and, no vibratory stimulation group (n=10). The subjects in the unilateral and bilateral stimulation groups participated in one session of whole body vibration training at 26 Hz for 3 min. The no vibratory stimulation group subjects underwent the same training for 3 min without whole body vibration. All participants performed the single leg vertical jump for each lower limb, to account for the strong and weak sides. The single leg vertical jump height and symmetry were measured before and after the intervention. [Results] The single leg vertical jump height of the weak lower limb significantly improved in the unilateral vibratory stimulation group, but not in the other groups. The single leg vertical jump height of the strong lower limb significantly improved in the bilateral vibratory stimulation group, but not in the other groups. The single leg vertical jump symmetry significantly improved in the unilateral vibratory stimulation group, but not in the other groups. [Conclusion] Therefore, the present study found that the effects of whole body vibration training were different depending on the type of application. To improve the single leg vertical jump height in the weak lower limbs as well as limb symmetry, unilateral vibratory stimulation might be more desirable.

  8. Acute effects of unilateral whole body vibration training on single leg vertical jump height and symmetry in healthy men

    PubMed Central

    Shin, Seungho; Lee, Kyeongjin; Song, Changho

    2015-01-01

    [Purpose] The aim of the present study was to investigate the acute effects of unilateral whole body vibration training on height and symmetry of the single leg vertical jump in healthy men. [Subjects] Thirty males with no history of lower limb dysfunction participated in this study. [Methods] The participants were randomly allocated to one of three groups: the unilateral vibratory stimulation group (n=10), bilateral vibratory stimulation group (n=10), and, no vibratory stimulation group (n=10). The subjects in the unilateral and bilateral stimulation groups participated in one session of whole body vibration training at 26 Hz for 3 min. The no vibratory stimulation group subjects underwent the same training for 3 min without whole body vibration. All participants performed the single leg vertical jump for each lower limb, to account for the strong and weak sides. The single leg vertical jump height and symmetry were measured before and after the intervention. [Results] The single leg vertical jump height of the weak lower limb significantly improved in the unilateral vibratory stimulation group, but not in the other groups. The single leg vertical jump height of the strong lower limb significantly improved in the bilateral vibratory stimulation group, but not in the other groups. The single leg vertical jump symmetry significantly improved in the unilateral vibratory stimulation group, but not in the other groups. [Conclusion] Therefore, the present study found that the effects of whole body vibration training were different depending on the type of application. To improve the single leg vertical jump height in the weak lower limbs as well as limb symmetry, unilateral vibratory stimulation might be more desirable. PMID:26834381

  9. The effects of visual control whole body vibration exercise on balance and gait function of stroke patients

    PubMed Central

    Choi, Eon-Tak; Kim, Yong-Nam; Cho, Woon-Soo; Lee, Dong-Kyu

    2016-01-01

    [Purpose] This study aims to verify the effects of visual control whole body vibration exercise on balance and gait function of stroke patients. [Subjects and Methods] A total of 22 stroke patients were randomly assigned to two groups; 11 to the experimental group and 11 to the control group. Both groups received 30 minutes of Neuro-developmental treatment 5 times per week for 4 weeks. The experimental group additionally performed 10 minutes of visual control whole body vibration exercise 5 times per week during the 4 weeks. Balance was measured using the Functional Reach Test. Gait was measured using the Timed Up and Go Test. [Results] An in-group comparison in the experimental group showed significant differences in the Functional Reach Test and Timed Up and Go Test. In comparing the groups, the Functional Reach Test and Timed Up and Go Test of the experimental group were more significantly different compared to the control group. [Conclusion] These results suggest that visual control whole body vibration exercise has a positive effect on the balance and gait function of stroke patients. PMID:27942138

  10. Cardiopulmonary response during whole-body vibration training in patients with severe COPD.

    PubMed

    Gloeckl, Rainer; Richter, Petra; Winterkamp, Sandra; Pfeifer, Michael; Nell, Christoph; Christle, Jeffrey W; Kenn, Klaus

    2017-01-01

    Several studies in patients with chronic obstructive pulmonary disease (COPD) have shown that whole-body vibration training (WBVT) has beneficial effects on exercise capacity. However, the acute cardiopulmonary demand during WBVT remains unknown and was therefore investigated in this study. Ten patients with severe COPD (forced expiratory volume in 1 s: 38±8% predicted) were examined on two consecutive days. On day one, symptom-limited cardiopulmonary exercise testing was performed on a cycle ergometer. The next day, six bouts of repeated squat exercises were performed in random order for one, two or three minutes either with or without WBVT while metabolic demands were simultaneously measured. Squat exercises with or without WBVT induced comparable ventilatory efficiency (minute ventilation (VE)/carbon dioxide production (V'CO2 ): 38.0±4.4 with WBVT versus 37.4±4.1 without, p=0.236). Oxygen uptake after 3 min of squat exercises increased from 339±40 mL·min(-1) to 1060±160 mL·min(-1) with WBVT and 988±124 mL min(-1) without WBV (p=0.093). However, there were no significant differences between squat exercises with and without WBVT in oxygen saturation (90±4% versus 90±4%, p=0.068), heart rate (109±13 bpm versus 110±15 bpm, p=0.513) or dyspnoea (Borg scale 5±2 versus 5±2, p=0.279). Combining squat exercises with WBVT induced a similar cardiopulmonary response in patients with severe COPD compared to squat exercises without WBVT. Bearing in mind the small sample size, WBVT might be a feasible and safe exercise modality even in patients with severe COPD.

  11. The rate of muscle temperature increase during acute whole-body vibration exercise.

    PubMed

    Cochrane, D J; Stannard, S R; Sargeant, A J; Rittweger, J

    2008-07-01

    This study compared the rate of muscle temperature (Tm) increase during acute whole-body vibration (WBV), to that of stationary cycling and passive warm-up. Additionally we wanted to determine if the purported increase in counter-movement jump and peak power cycling from acute WBV could be explained by changes in muscle temperature. Eight active participants volunteered for the study, which involved a rest period of 30 min to collect baseline measures of muscle, core, skin temperature, heart rate (HR), and thermal leg sensation (TLS), which was followed by three vertical jumps and 5 s maximal cycle performance test. A second rest period of 40 min was enforced followed by the intervention and performance tests. The change in Tm elicited during cycling was matched in the hot bath and WBV interventions. Therefore cycling was performed first, proceeded by, in a random order of hot bath and acute WBV. The rate of Tm was significantly greater (P < 0.001) during acute WBV (0.30 degree C min(-1)) compared to cycle (0.15 degree C min(-1)) and hot bath (0.09 degree C min(-1)) however there was no difference between the cycle and hot bath, and the metabolic rate was the same in cycling and WBV (19 mL kg(-1) min(-1)). All three interventions showed a significant (P < 0.001) increase in countermovement jump peak power and height. For the 5 s maximal cycle test (MIC) there were no significant differences in peak power between the three interventions. In conclusion, acute WBV elevates Tm more quickly than traditional forms of cycling and passive warm-up. Given that all three warm-up methods yielded the same increase in peak power output, we propose that the main effect is caused by the increase in Tm.

  12. The acute effect of whole body vibration on repeated shuttle-running in young soccer players.

    PubMed

    Padulo, J; Di Giminiani, R; Ibba, G; Zarrouk, N; Moalla, W; Attene, G; Migliaccio, G M; Pizzolato, F; Bishop, D; Chamari, K

    2014-01-01

    The aim of this study was to investigate the acute effects of whole-body vibration (WBV) on Repeated Sprint Ability (RSA). Seventeen male soccer players (16.71±0.47 y) performed three RSA tests (Randomized crossover study design). The second RSA test was done with WBV (RSA2) to assess the effect of WBV. The studied variables were: best time (BT), worst time (WT), total time (TT), the fatigue index (FI) of RSA, and post-test blood lactate (BLa). ANOVA with repeated measures showed no differences between RSA1 and RSA3, while there were significant differences in all variables studied. TT= [RSA2 0.93% and 1.68% lower than RSA1 and RSA3 respectively; p<0.05], BLa= [RSA2 16.97% and 14.73% greater than RSA1 and RSA3 respectively; p<0.001], WT= [RSA2 1.90% and 2.93% lower than RSA1 and RSA3 respectively; p<0.01], and FI = [RSA2 30.64% and 40.15% lower than RSA1 and RSA3 respectively; p<0.0001]. When comparing individual sprints, WBV showed a significant effect at the 5th sprint: RSA2 2.29% and 2.95% lower than RSA1 and RSA3 respectively (p<0.005), while at the 6th sprint: RSA2 2.75% and 4.09% lower than RSA1 and RSA3 respectively; p<0.005. In conclusion, when applying WBV during the recovery periods of Repeated Sprint Ability efforts, most of the performance variables improved.

  13. The effects of whole-body vibration on the cross-transfer of strength.

    PubMed

    Goodwill, Alicia M; Kidgell, Dawson J

    2012-01-01

    This study investigated whether the use of superimposed whole-body vibration (WBV) during cross-education strength training would optimise strength transfer compared to conventional cross-education strength training. Twenty-one healthy, dominant right leg volunteers (21 ± 3 years) were allocated to a strength training (ST, m = 3, f = 4), a strength training with WBV (ST + V, m = 3, f = 4), or a control group (no training, m = 3, f = 4). Training groups performed 9 sessions over 3 weeks, involving unilateral squats for the right leg, with or without WBV (35 Hz; 2.5 mm amplitude). All groups underwent dynamic single leg maximum strength testing (1RM) and single and paired pulse transcranial magnetic stimulation (TMS) prior to and following training. Strength increased in the trained limb for the ST (41%; ES = 1.14) and ST + V (55%; ES = 1.03) groups, which resulted in a 35% (ES = 0.99) strength transfer to the untrained left leg for the ST group and a 52% (ES = 0.97) strength transfer to the untrained leg for the ST + V group, when compared to the control group. No differences in strength transfer between training groups were observed (P = 0.15). For the untrained leg, no differences in the peak height of recruitment curves or SICI were observed between ST and ST + V groups (P = 1.00). Strength training with WBV does not appear to modulate the cross-transfer of strength to a greater magnitude when compared to conventional cross-education strength training.

  14. Cardiopulmonary response during whole-body vibration training in patients with severe COPD

    PubMed Central

    Richter, Petra; Winterkamp, Sandra; Pfeifer, Michael; Nell, Christoph; Christle, Jeffrey W.; Kenn, Klaus

    2017-01-01

    Several studies in patients with chronic obstructive pulmonary disease (COPD) have shown that whole-body vibration training (WBVT) has beneficial effects on exercise capacity. However, the acute cardiopulmonary demand during WBVT remains unknown and was therefore investigated in this study. Ten patients with severe COPD (forced expiratory volume in 1 s: 38±8% predicted) were examined on two consecutive days. On day one, symptom-limited cardiopulmonary exercise testing was performed on a cycle ergometer. The next day, six bouts of repeated squat exercises were performed in random order for one, two or three minutes either with or without WBVT while metabolic demands were simultaneously measured. Squat exercises with or without WBVT induced comparable ventilatory efficiency (minute ventilation (VE)/carbon dioxide production (V′CO2): 38.0±4.4 with WBVT versus 37.4±4.1 without, p=0.236). Oxygen uptake after 3 min of squat exercises increased from 339±40 mL·min−1 to 1060±160 mL·min−1 with WBVT and 988±124 mL min−1 without WBV (p=0.093). However, there were no significant differences between squat exercises with and without WBVT in oxygen saturation (90±4% versus 90±4%, p=0.068), heart rate (109±13 bpm versus 110±15 bpm, p=0.513) or dyspnoea (Borg scale 5±2 versus 5±2, p=0.279). Combining squat exercises with WBVT induced a similar cardiopulmonary response in patients with severe COPD compared to squat exercises without WBVT. Bearing in mind the small sample size, WBVT might be a feasible and safe exercise modality even in patients with severe COPD. PMID:28326310

  15. Quantitative evaluation of distortion in sketching under mono and dual axes whole body vibration.

    PubMed

    Bhiwapurkar, M K; Saran, V H; Harsha, S P

    2011-01-01

    Performance of sedentary activities such as reading and writing, in trains is known to be affected by the vibrations. An experimental study was therefore initiated to investigate the interference perceived in sketching task under low frequency random vibration in both mono and dual axes. Thirty healthy male subjects participated in the study. Random vibration stimuli were excited in various axes in frequency range of 1-20 Hz at magnitudes of 0.4, 0.8 and 1.2 m/s(2). The task required the subjects to sketch the given geometric figures such as circle, rectangle and triangle under vibration environment in two subject postures (sketch pad on lap and on table). Three performance methods were used to measure the effect of vibration stimuli and posture. They consisted of two specifically designed objective methods for percentage distortion measurement and one subjective method using Borg CR10 scale. The results revealed that the percentage distortion and difficulty in sketching increased with an increase in vibration magnitude and was found to be higher for vibration in Y- and Z-axis. Similar trend was observed for percentage distortion and difficulty in sketching for dual axes also. The perceived difficulty and impairment in sketching performance was greater while sketching on lap for X-axis, while the effect was just the reverse for other axes.

  16. Whole-body vibration can reduce calciuria induced by high protein intakes and may counteract bone resorption: A preliminary study.

    PubMed

    Cardinale, M; Leiper, J; Farajian, P; Heer, M

    2007-01-01

    Excess protein intake can adversely affect the bone via an increase in calcium excretion, while suitable mechanical loading promotes osteogenesis. We therefore investigated whether vibration exposure could alleviate the bone mineral losses associated with a metabolic acidosis. Ten healthy individuals aged 22 - 29 years (median = 25) underwent three 5-day study periods while monitoring their dietary intake. The study consisted of recording the participants' usual dietary intake for 5 consecutive days. Participants were then randomly divided into two groups, one of which received a protein supplement (2 g x kg(-1) body mass x day(-1); n = 5) and the other whole-body low-magnitude (3.5 g), low-frequency (30 Hz) mechanical vibration (WBV) delivered through a specially designed vibrating plate for 10 min each day (n = 5). Finally, for the third treatment period, all participants consumed the protein supplement added to their normal diet and were exposed to WBV exercise for 10 min per day. Daily urine samples were collected throughout the experimental periods to determine the excretion of calcium, phosphate, titratable acid, urea, and C-telopeptide. As expected, when the participants underwent the high protein intake, there was an increase in urinary excretion rates of calcium (P < 0.001), phosphate (P < 0.003), urea (P < 0.001), titratable acid (P < 0.001), and C-telopeptide (P < 0.05) compared with baseline values. However, high protein intake coupled with vibration stimulation resulted in a significant reduction in urinary calcium (P = 0.006), phosphate excretion (P = 0.021), and C-telopeptide (P < 0.05) compared with protein intake alone, but did not affect titratable acid and urea output. The participants showed no effect of WBV exercise alone on urinary excretion of calcium, phosphate, urea, titratable acid, or C-telopeptide. The results indicate that vibration stimulation can moderate the increase in bone resorption and reduction in bone formation caused by a

  17. Whole-Body Vibration While Squatting and Delayed-Onset Muscle Soreness in Women

    PubMed Central

    Dabbs, Nicole C.; Black, Christopher D.; Garner, John

    2015-01-01

    Context  Research into alleviating muscle pain and symptoms in individuals after delayed-onset muscle soreness (DOMS) has been inconsistent and unsuccessful in demonstrating a useful recovery modality. Objective  To investigate the effects of short-term whole-body vibration (WBV) on DOMS over a 72-hour period after a high-intensity exercise protocol. Design  Randomized controlled clinical trial. Setting  University laboratory. Patients or Other Participants  Thirty women volunteered to participate in 4 testing sessions and were assigned randomly to a WBV group (n = 16; age = 21.0 ± 1.9 years, height = 164.86 ± 6.73 cm, mass = 58.58 ± 9.32 kg) or a control group (n = 14; age = 22.00 ± 1.97 years, height = 166.65 ± 8.04 cm, mass = 58.69 ± 12.92 kg). Intervention(s)  Participants performed 4 sets to failure of single-legged split squats with 40% of their body weight to induce muscle soreness in the quadriceps. The WBV or control treatment was administered each day after DOMS. Main Outcome Measure(s)  Unilateral pressure-pain threshold (PPT), range of motion (ROM), thigh circumference, and muscle-pain ratings of the quadriceps were collected before and for 3 days after high-intensity exercise. Each day, we collected 3 sets of measures, consisting of 1 measure before the WBV or control treatment protocol (pretreatment) and 2 sets of posttreatment measures. Results  We observed no interactions for PPT, thigh circumference, and muscle pain (P > .05). An interaction was found for active ROM (P = .01), with the baseline pretreatment measure greater than the measures at baseline posttreatment 1 through 48 hours posttreatment 2 in the WBV group. For PPT, a main effect for time was revealed (P < .05), with the measure at baseline pretreatment greater than at 24 hours pretreatment and all other time points for the vastus medialis, greater than 24 hours pretreatment through 48 hours posttreatment 2 for the vastus lateralis, and greater than 24 hours

  18. Stereotactic Body Radiation Therapy in Recurrent Hepatocellular Carcinoma

    SciTech Connect

    Huang, Wen-Yen; Jen, Yee-Min; Lee, Meei-Shyuan; Chang, Li-Ping; Chen, Chang-Ming; Ko, Kai-Hsiung; Lin, Kuen-Tze; Lin, Jang-Chun; Chao, Hsing-Lung; Lin, Chun-Shu; Su, Yu-Fu; Fan, Chao-Yueh; Chang, Yao-Wen

    2012-10-01

    Purpose: To examine the safety and efficacy of Cyberknife stereotactic body radiation therapy (SBRT) and its effect on survival in patients of recurrent hepatocellular carcinoma (HCC). Methods and Materials: This was a matched-pair study. From January 2008 to December 2009, 36 patients with 42 lesions of unresectable recurrent HCC were treated with SBRT. The median prescribed dose was 37 Gy (range, 25 to 48 Gy) in 4-5 fractions over 4-5 consecutive working days. Another 138 patients in the historical control group given other or no treatments were selected for matched analyses. Results: The median follow-up time was 14 months for all patients and 20 months for those alive. The 1- and 2-year in-field failure-free rates were 87.6% and 75.1%, respectively. Out-field intrahepatic recurrence was the main cause of failure. The 2-year overall survival (OS) rate was 64.0%, and median time to progression was 8.0 months. In the multivariable analysis of all 174 patients, SBRT (yes vs. no), tumor size ({<=}4 cm vs. >4 cm), recurrent stage (stage IIIB/IV vs. I) and Child-Pugh classification (A vs. B/C) were independent prognostic factors for OS. Matched-pair analysis revealed that patients undergoing SBRT had better OS (2-year OS of 72.6% vs. 42.1%, respectively, p = 0.013). Acute toxicities were mild and tolerable. Conclusion: SBRT is a safe and efficacious modality and appears to be well-tolerated at the dose fractionation we have used, and its use correlates with improved survival in this cohort of patients with recurrent unresectable HCC. Out-field recurrence is the major cause of failure. Further studies of combinations of SBRT and systemic therapies may be reasonable.

  19. Acute and Chronic Whole-Body Vibration Exercise does not Induce Health-Promoting Effects on The Blood Profile

    PubMed Central

    Theodorou, Anastasios A.; Gerodimos, Vassilis; Karatrantou, Konstantina; Paschalis, Vassilis; Chanou, Konstantina; Jamurtas, Athanasios Z.; Nikolaidis, Michalis G.

    2015-01-01

    Whole-body vibration (WBV) exercise is an alternative, popular and easy exercise that can be followed by general public. Therefore, the aim of the present study was to investigate the influence of acute and chronic WBV exercise on health-related parameters. Twenty-eight women were allocated into a control group (n=11, mean ±SEM: age, 43.5 ±1.5 yr; body mass, 66.1 ±3.1 kg; height, 160.6 ±1.5 cm) and a vibration group (n=17, mean ±SEM: age, 44.0 ±1.0 yr; body mass, 67.1 ±2.2 kg; height, 162.5 ±1.5 cm). After baseline assessments, participants of the experimental group performed WBV training 3 times/week for 8 weeks. Before and after the chronic WBV exercise, the participants of the vibration group performed one session of acute WBV exercise. Blood chemistry measurements (hematology, creatine kinase, lactate dehydrogenase, aspartate aminotransferase, alanine aminotransferase, C-reactive protein, glucose, insulin, triacylglycerols, total cholesterol, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, apolipoprotein A1, apolipoprotein B and lipoprotein, thiobarbituric-acid reactive substances, protein carbonyls, total antioxidant capacity, uric acid, albumin and bilirubin) were assessed pre-exercise and post-exercise at the first and eighth week of WBV exercise in both control and vibration groups. The results failed to support any effect of both acute and chronic WBV exercise on biochemical health-related parameters. However, it seems that WBV exercise is a safe way of training without a negative impact on muscle and liver functionality. PMID:26240654

  20. The ISO standard: Guide for the evaluation of human exposure to whole-body vibration

    NASA Technical Reports Server (NTRS)

    Vongierke, H. E.

    1975-01-01

    The international guideline is discussed in terms of safety and human tolerance. Charts for equal subjective vibration intensity, subjective judgement of equal fatigue, and severe discomfort boundaries are included.

  1. Digital holography for mechanical vibration measurements in rigid body displacement: elimination of the latter by means of a variable focal length adjustment

    NASA Astrophysics Data System (ADS)

    Pérez-López, Carlos; Mendoza Santoyo, Fernando; Gutiérrez Hernández, David Asael; Muñoz Solis, Silvino

    2008-06-01

    We present our investigation on the separation of mechanical vibrations from rigid body displacements. Pairs of digital holograms acquired between two consecutive time intervals from this type of events produce phase maps that contain both the vibration and rigid body motion information, or even further fully decorrelated phase maps after computer processing. In order to compensate for body displacements, a conjugate object-image experimental arrangement for digital holography is used to measure the mechanical vibrations in a rectangular flat plate. This is achieved by including an extra lens with variable focal length adjustments in front of the typical lens-aperture combination used in the optical head of a digital holographic set up. Out of plane data is obtained from a framed metal plate subjected to a known modal vibration that is also allowed to move perpendicularly to its surface. We will demonstrate that due to the power adjustment of the added lens the angular phase change in the digital hologram from the known object motion allows the separation of the vibration mode at the image plane. The proposed lens addition into a new optical head arrangement in digital holography combined with an a priori knowledge of the rigid body displacement is able to accurately separate the mechanical vibrations making it a promising method in experiments performed under noisy environments. This research suggests the inclusion of adaptive lenses to control the effective focal length when there is a need to separate two distinctive motion types, i.e., vibration from rigid body motion.

  2. Individual and combined effects of noise-like whole-body vibration and parathyroid hormone treatment on bone defect repair in ovariectomized mice.

    PubMed

    Matsumoto, Takeshi; Sato, Daisuke; Hashimoto, Yoshihiro

    2016-01-01

    The effectiveness of intermittent administration of parathyroid hormone and exposure to whole-body vibration on osteoporotic fracture healing has been previously investigated, but data on their concurrent use are lacking. Thus, we evaluated the effects of intermittent administration of parathyroid hormone, whole-body vibration, and their combination on bone repair in osteoporotic mice. Noise-like whole-body vibration with a broad frequency range was used instead of conventional sine-wave whole-body vibration at a specific frequency. Mice were ovariectomized at 9 weeks of age and subjected to drill-hole surgery in the right tibial diaphysis at 11 weeks. The animals were divided into four groups (n = 12 each): a control group, and groups treated with intermittent administration of parathyroid hormone, noise-like whole-body vibration, and both. From postoperative day 2, the groups treated with intermittent administration of parathyroid hormone and groups treated with both intermittent administration of parathyroid hormone and noise-like whole-body vibration were subcutaneously administered parathyroid hormone at a dose of 30 µg/kg/day. The groups treated with noise-like whole-body vibration and groups treated with both intermittent administration of parathyroid hormone and noise-like whole-body vibration were exposed to noise-like whole-body vibration at a root mean squared acceleration of 0.3g and frequency components of 45-100 Hz for 20 min/day. Following 18 days of interventions, the right tibiae were harvested, and the regenerated bone was analyzed by micro-computed tomography and nanoindentation testing. Compared with the control group, callus volume fraction was 40% higher in groups treated with intermittent administration of parathyroid hormone and 73% higher in groups treated with both intermittent administration of parathyroid hormone and noise-like whole-body vibration, and callus thickness was 35% wider in groups treated with both

  3. In-plane rigid-body vibration mode characterization with a nanometer resolution by stroboscopic imaging of a microstructured pattern.

    PubMed

    Sandoz, Patrick; Friedt, Jean-Michel; Carry, Emile

    2007-02-01

    This article introduces an improved approach for the characterization of in-plane rigid-body vibration, based on digital processing of stroboscopic images of the moving part. The method involves a sample preparation step, in order to pattern a periodic microstructure on the vibrating device, for instance, by focused ion beam milling. An image processing method has then been developed to perform the optimum reconstruction of this a priori known object feature. In-plane displacement and rotation are deduced simultaneously with a high resolution (10-2 pixel and 0.5 x 10(-3) rad, respectively). The measurement principle combines phase measurements-that provide the high resolution-with correlation-that unwraps the phase with the proper phase constants. The vibration modes of a tuning fork are used for demonstrating the capabilities of the method. For applications allowing the sample preparation, the proposed methodology is more convenient than common interference methods or image processing techniques for the characterization of the vibration modes, even for amplitudes in the nanometer range.

  4. Low back pain in drivers: The relative role of whole-body vibration, posture and manual materials handling

    NASA Astrophysics Data System (ADS)

    Okunribido, O. O.; Magnusson, M.; Pope, M. H.

    2006-12-01

    A cross-sectional study was conducted to investigate the relative role of whole-body vibration (WBV), posture and manual materials handling (MMH) as risk factors for low back pain (LBP). Using a validated questionnaire, information about health history, posture and MMH performed was obtained from 394 workers who drove vehicles as part of their job (according to seven predefined occupational groups) and 59 who did not. The intention was to reflect a wide range of exposures with the lower end of the exposure spectrum defined as that of non-manual workers who do not drive as part of their job. Based on the questionnaire responses and direct measurements of vibration exposure, personal aggregate measures of exposure were computed for each of the respondents, i.e., total vibration dose (TVD), posture score (PS) and manual handling score (MHS). Odds ratios (and 95% confidence intervals) for back pain were obtained from logistics regression models and log-linear backward elimination analysis was performed. The findings showed that 'combined exposure' due to posture and one or both of vibration and MMH, rather than the individual exposure to one of the three factors (WBV, posture, MMH) is the main contributor of the increased prevalence of LBP.

  5. The acute effects of different whole-body vibration amplitudes and frequencies on flexibility and vertical jumping performance.

    PubMed

    Gerodimos, Vassilis; Zafeiridis, Andreas; Karatrantou, Konstantina; Vasilopoulou, Theodora; Chanou, Konstantina; Pispirikou, Eleni

    2010-07-01

    Frequency and amplitude determine the training load of whole-body vibration (WBV) exercise and thereby possible neuromuscular adaptations. We investigated the effects of amplitude and frequency of a single bout of WBV on flexibility and squat jump performance (SJ) and the time-course of these effects. In the amplitude study, twenty-five females performed three vibration protocols (VPs) for 6 min at frequency of 25Hz and amplitudes of 4 mm, 6 mm, and 8 mm and one control protocol (CP). In the frequency study, eighteen females performed three VPs at 6mm amplitude and frequencies of 15 Hz, 20 Hz, and 30 Hz and one CP. Flexibility and SJ were measured before, immediately-post and 15 min recovery. All protocols were performed on a side-to-side alternating vibration plate. In the amplitude study, flexibility was improved (p<0.01) immediately-post in VP4, VP6, VP8 (31.8+/-8.2, 31.9+/-7.6, 31.5+/-7.9, respectively) and at 15 min recovery (31.6+/-8.1, 31.5+/-7.9, 31.0+/-8.2, respectively) vs. pre-vibration (30.2+/-8.6, 30.3+/-8.1, 30.2+/-8.3, respectively), but remained unchanged in CP (30.6+/-8.3 immediately-post, 30.7+/-8.2 at 15 min vs. 30.4+/-8.2 pre-vibration). In the frequency study, flexibility was improved (p<0.01) immediately-post in VP15, VP20, VP30 (31.5+/-5.2, 31.3+/-5, 31.7+/-5.3, respectively) and at 15 min recovery (31.3+/-5.4, 31.3+/-5.0, 31.3+/-5.3, respectively) vs. pre-vibration (30.6+/-5.4, 30.2+/-5.7, 30.3+/-5.9, respectively), but not in CP (30.7+/-5.1 immediately-post, 30.6+/-5 at 15 min vs. pre-vibration 30.5+/-5.7). There were no significant effects of amplitude or frequency on SJ. In conclusion, a single WBV bout using a side-to-side alternating vibration plate may increase flexibility which persists for at least 15 min, without altering jumping performance. These effects were observed irrespective of frequency and amplitude.

  6. Acute bone response to whole body vibration in healthy pre-pubertal boys

    PubMed Central

    Harrison, R.; Ward, K.; Lee, E.; Razaghi, H.; Horne, C.; Bishop, N.J.

    2015-01-01

    The skeleton responds to mechanical stimulation. We wished to ascertain the magnitude and speed of the growing skeleton’s response to a standardised form of mechanical stimulation, vibration. 36 prepubertal boys stood for 10 minutes in total on one of two vibrating platforms (high (>2 g) or low (<1 g) magnitude vibration) on either 1, 3 or 5 successive days (n=12 for each duration); 15 control subjects stood on an inactive platform. Blood samples were taken at intervals before and after vibration to measure bone formation (P1NP, osteocalcin) and resorption (CTx) markers as well as osteoprotegerin and sclerostin. There were no significant differences between platform and control groups in bone turnover markers immediately after vibration on days 1, 3 and 5. Combining platform groups, at day 8 P1NP increased by 25.1% (CI 12.3 to 38.0; paired t-test p=0.005) and bone resorption increased by 10.9% (CI 3.6 to 18.2; paired t-test p=0.009) compared to baseline. Osteocalcin, osteoprotogerin and sclerostin did not change significantly. The growing skeleton can respond quickly to vibration of either high or low magnitude. Further work is needed to determine the utility of such “stimulation-testing” in clinical practice. PMID:26032203

  7. Functional Genomics in the Study of Mind-Body Therapies

    PubMed Central

    Niles, Halsey; Mehta, Darshan H.; Corrigan, Alexandra A.; Bhasin, Manoj K.; Denninger, John W.

    2014-01-01

    Background Mind-body therapies (MBTs) are used throughout the world in treatment, disease prevention, and health promotion. However, the mechanisms by which MBTs exert their positive effects are not well understood. Investigations into MBTs using functional genomics have revolutionized the understanding of MBT mechanisms and their effects on human physiology. Methods We searched the literature for the effects of MBTs on functional genomics determinants using MEDLINE, supplemented by a manual search of additional journals and a reference list review. Results We reviewed 15 trials that measured global or targeted transcriptomic, epigenomic, or proteomic changes in peripheral blood. Sample sizes ranged from small pilot studies (n=2) to large trials (n=500). While the reliability of individual genes from trial to trial was often inconsistent, genes related to inflammatory response, particularly those involved in the nuclear factor-kappa B (NF-κB) pathway, were consistently downregulated across most studies. Conclusion In general, existing trials focusing on gene expression changes brought about by MBTs have revealed intriguing connections to the immune system through the NF-κB cascade, to telomere maintenance, and to apoptotic regulation. However, these findings are limited to a small number of trials and relatively small sample sizes. More rigorous randomized controlled trials of healthy subjects and specific disease states are warranted. Future research should investigate functional genomics areas both upstream and downstream of MBT-related gene expression changes—from epigenomics to proteomics and metabolomics. PMID:25598735

  8. Stereotactic Body Radiation Therapy Boost in Locally Advanced Pancreatic Cancer

    SciTech Connect

    Seo, Young Seok; Kim, Mi-Sook; Yoo, Sung Yul; Cho, Chul Koo; Yang, Kwang Mo; Yoo, Hyung Jun; Choi, Chul Won; Lee, Dong Han; Kim, Jin; Kim, Min Suk; Kang, Hye Jin; Kim, YoungHan

    2009-12-01

    Purpose: To investigate the clinical application of a stereotactic body radiation therapy (SBRT) boost in locally advanced pancreatic cancer patients with a focus on local efficacy and toxicity. Methods and Materials: We retrospectively reviewed 30 patients with locally advanced and nonmetastatic pancreatic cancer who had been treated between 2004 and 2006. Follow-up duration ranged from 4 to 41 months (median, 14.5 months). A total dose of 40 Gy was delivered in 20 fractions using a conventional three-field technique, and then a single fraction of 14, 15, 16, or 17 Gy SBRT was administered as a boost without a break. Twenty-one patients received chemotherapy. Overall and local progression-free survival were calculated and prognostic factors were evaluated. Results: One-year overall survival and local progression-free survival rates were 60.0% and 70.2%, respectively. One patient (3%) developed Grade 4 toxicity. Carbohydrate antigen 19-9 response was found to be an independent prognostic factor for survival. Conclusions: Our findings indicate that a SBRT boost provides a safe means of increasing radiation dose. Based on the results of this study, we recommend that a well controlled Phase II study be conducted on locally advanced pancreatic cancer.

  9. A study on the contribution of body vibrations to the vibratory sensation induced by high-level, complex low-frequency noise.

    PubMed

    Takahashi, Yukio

    2011-01-01

    To investigate the contribution of body vibrations to the vibratory sensation induced by high-level, complex low-frequency noise, we conducted two experiments. In Experiment 1, eight male subjects were exposed to seven types of low-frequency noise stimuli: two pure tones [a 31.5-Hz, 100-dB(SPL) tone and a 50-Hz, 100-dB(SPL) tone] and five complex noises composed of the pure tones. For the complex noise stimuli, the sound pressure level of one tonal component was 100 dB(SPL) and that of another one was either 90, 95, or 100 dB(SPL). Vibration induced on the body surface was measured at five locations, and the correlation with the subjective rating of the vibratory sensation at each site of measurement was examined. In Experiment 2, the correlation between the body surface vibration and the vibratory sensation was similarly examined using seven types of noise stimuli composed of a 25-Hz tone and a 50-Hz tone. In both the experiments, we found that at the chest and the abdomen, the rating of the vibratory sensation was in close correlation with the vibration acceleration level (VAL) of the body surface vibration measured at each corresponding location. This was consistent with our previous results and suggested that at the trunk of the body (the chest and the abdomen), the mechanoreception of body vibrations plays an important role in the experience of the vibratory sensation in persons exposed to high-level low-frequency noise. At the head, however, no close correlation was found between the rating of the vibratory sensation and the VAL of body surface vibration. This suggested that at the head, the perceptual mechanisms of vibration induced by high-level low-frequency noise were different from those in the trunk of the body.

  10. Cross-sex hormone therapy in transgender persons affects total body weight, body fat and lean body mass: a meta-analysis.

    PubMed

    Klaver, M; Dekker, M J H J; de Mutsert, R; Twisk, J W R; den Heijer, M

    2016-08-29

    Weight gain and body fat increase the risk of cardiometabolic disease. Cross-sex hormone therapy in transgender persons leads to changes in body weight and body composition, but it is unclear to what extent. We performed a meta-analysis to investigate the changes in body weight, body fat and lean body mass during cross-sex hormone therapy in transgender persons. We searched the PubMed database for eligible studies until November 2015. Ten studies reporting changes in body weight, body fat or lean mass in hormone naive transgender persons were included, examining 171 male-to-female and 354 female-to-male transgender people. Pooled effect estimates in the male-to-female group were +1.8 kg (95% CI: 0.2;3.4) for body weight, +3.0 kg (2.0;3.9) for body fat and -2.4 kg (-2.8; -2.1) for lean body mass. In the female-to-male group, body weight changed with +1.7 kg (0.7;2.7), body fat with -2.6 kg (-3.9; -1.4) and lean body mass with +3.9 kg (3.2;4.5). Cross-sex hormone therapy increases body weight in both sexes. In the male-to-female group, a gain in body fat and a decline in lean body mass are observed, while the opposite effects are seen in the female-to-male group. Possibly, these changes increase the risk of cardiometabolic disease in the male-to-female group.

  11. Bioresponses in men after repeated exposures to single and simultaneous sinusoidal or stochastic whole body vibrations of varying bandwidths and noise.

    PubMed

    Manninen, O

    1986-01-01

    This study deals with the changes in temporary hearing threshold (TTS2), upright body posture sway amplitudes in the X and Y direction, heart rate (HR), R-wave amplitude (RWA), systolic (SBP) and diastolic (DBP) blood pressure, pulse pressure (PP) and the index characterizing haemodynamic activity (HDI), when the subjects were exposed to noise alone, to vibrations alone or to simultaneous noise and vibrations. The experiments were carried out in an exposure chamber and the number of exposure combinations was 12. Seven healthy, male students volunteered as subjects, making a total number of 84 experiments. For each person the experiment consisted of a 30-min control period, five consecutive 16-min exposures, between which there was a 4-min measuring interval, and a 15-min recovery period. The noise was broadband (bandwidth 0.2-16.0 kHz) A-weighted (white) noise. The noise categories were: (1) no noise and (2) noise with an intensity of 90 dBA. The categories of low-frequency whole body vibration in the direction of the Z-axis were: (1) vibration within the range 4.4-5.6 Hz, (2) vibration within the range 2.8-5.6 Hz, (3) vibration within the range 2.8-11.2 Hz, (4) vibration within the range 1.4-11.2 Hz and (5) sinusoidal vibration with a frequency of 5 Hz. The (rms) acceleration in all the vibration models was 2.12 m/s2. The results showed that the TTS2 values at 4 and 6 kHz increased as a result of simultaneous exposure to noise and vibration significantly more than as a result of exposure to noise alone. The TTS2 values increased more intensely during the first 16-min exposure. The means of the variances in the amplitudes of body upright posture sway changed not only after exposures to vibration alone, but also after exposure to noise alone. The means of the sway variances in the X and Y directions at 0.1 Hz and within the range 0.06 to 2.00 Hz increased only when the vibration in the noise-vibration combination was sinusoidal. The changes in the heart rate, R

  12. Effect of backrest and torso twist on the apparent mass of the seated body exposed to vertical vibration.

    PubMed

    Mansfield, Neil J; Maeda, Setsuo

    2005-07-01

    Occupational exposure to whole-body vibration is often combined with a requirement to perform twisting actions. This paper reports a study where the effect of twisting on the biomechanical response of the seated person was investigated. Twelve male subjects were exposed to vertical random whole-body vibration at 0.4 m/s2 r.m.s. Each subject sat in four different postures: 'back-on', 'back-off', 'twist' (where subjects were required to twist the torso by 90 degrees) and 'move' (where subjects were required to performing a moving task with extended arms). Similar apparent masses were measured for the 'back-on', 'back-off' and 'twist' conditions, where a peak occurred at about 6 Hz. For the 'move' condition, the peak in the apparent mass was attenuated indicating a different biomechanical response in this posture. The 6 Hz peak in fore-and-aft cross-axis apparent mass was eliminated in the 'move' condition. It is suggested that the change in biomechanical response is due to either the extended arms acting as a passive vibration absorber or that the twisting action interferes with the usual acceleration-muscle feedback system. Further work will be required to test these hypotheses.

  13. The effects of whole body vibration on mobility and balance in children with cerebral palsy: a systematic review with meta-analysis

    PubMed Central

    Saquetto, M.; Carvalho, V.; Silva, C.; Conceição, C.; Gomes-Neto, M.

    2015-01-01

    Objective: We performed a meta-analysis to evaluate the effects of whole-body vibration on physiologic and functional measurements in children with cerebral palsy. Design and methods: We searched MEDLINE, Cochrane Controlled Trials Register, EMBASE, Scielo, CINAHL (from the earliest date available to November 2014) for randomized controlled trials, that aimed to investigate the effects of whole-body vibration versus exercise and/or versus control on physiologic and functional measurements in children with cerebral palsy. Two reviewers independently selected the studies. Weighted mean differences (WMDs) and 95% confidence intervals (CIs) were calculated. Results: Six studies with 176 patients comparing whole-body vibration to exercise and/or control were included. Whole-body vibration resulted in improvement in: gait speed WMDs (0.13 95% CI:0.05 to 0.20); gross motor function dimension E WMDs (2.97 95% CI:0.07 to 5.86) and femur bone density (1.32 95% CI:0.28 to 2.36). The meta-analysis also showed a nonsignificant difference in muscle strength and gross motor function dimension D for participants in the whole-body vibration compared with control group. No serious adverse events were reported. Conclusions: Whole-body vibration may improve gait speed and standing function in children with cerebral palsy and could be considered for inclusion in rehabilitation programs. PMID:26032205

  14. Comparison of whole-body vibration exercise and plyometric exercise to improve isokinetic muscular strength, jumping performance and balance of female volleyball players

    PubMed Central

    Kim, Yong-Youn; Park, Si-Eun

    2016-01-01

    [Purpose] The purpose of this study was to assess the effect of whole-body vibration exercise and plyometric exercise on female volleyball players. [Subjects and Methods] Subjects were randomly allocated to two exercise groups (whole-body vibration exercise group and plyometric exercise group). The exercise was conducted three times each week for 8 weeks. Isokinetic muscular strength, jumping performance, and balance were measured before starting the exercise and after finishing the 8 weeks of exercise. [Results] Measurements of isokinetic muscular strength revealed that the whole-body vibration exercise group showed significant increase after the exercise. However, the plyometric exercise group had no significant increase in lumbar flexion, extension, and knee flexion. Measurements of vertical jumping revealed that, the whole-body vibration exercise group had no significant increase after the exercise. However, the plyometric exercise group showed significant increase. Measurements of balance revealed that, the whole-body vibration exercise group showed significant increase. However, the plyometric exercise group showed no significant increase. [Conclusion] Although both whole-body vibration and plyometric exercises are effective intervention methods, the two methods have different effects on the improvement of isokinetic muscular strength, jumping performance, and balance of female volleyball players. PMID:27942136

  15. Benefits of whole-body vibration to people with COPD: a community-based efficacy trial

    PubMed Central

    2014-01-01

    Background Benefits of community-based whole-body vibration (WBV) as a mode of exercise training for people with chronic obstructive pulmonary disease (COPD) have not been investigated. The low skill demand of WBV may enhance habitual sustainability to physical activity by people with COPD, provided efficacy of WBV can be established. The purpose of this trial was to compare a community-based WBV intervention with a sham WBV (SWBV) intervention and monitor exacerbations, exercise tolerance, and functional performance of the lower limbs of people with COPD. Methods Community-dwelling adults with a GOLD clinical diagnosis of COPD were recruited to the trial. This was a Phase II efficacy trial with crossover to sham intervention interspersed with two-week washout. Each six-week intervention consisted of two sessions per week of either WBV or SWBV. The interventions were completed in the home of each participant under supervision. The outcome measures were selected psychological (perceived dyspnoea) and physiological (heart rate and oxygen saturation) responses to exercise, simulated activities of daily living (timed-up-and got test and 5-chair stands test), and selected kinematic variables of gait across the 14-week trial. Results Sixteen adults with stable COPD were recruited to the trial. No exacerbations were reported during the WBV or SWBV interventions. After WBV, performance of activities of daily living (ADLs) and gait improved (p ≤ 0.05), while there was no change after SWBV (p > 0.05). Despite five withdrawals during the washout period, a 100% compliance to each six-week intervention was noted. Conclusions Results showed that WBV did not exacerbate symptoms of COPD that can be associated with physical inactivity. The WBV intervention improved tests to simulate ADLs such as rising from a chair, turning, and walking gait with greater effect than a SWBV intervention. If a placebo effect was systemic to the WBV intervention, the effect was negligible

  16. Effects of 24 Weeks of Whole Body Vibration Versus Multicomponent Training on Muscle Strength and Body Composition in Postmenopausal Women: A Randomized Controlled Trial.

    PubMed

    Marín-Cascales, Elena; Alcaraz, Pedro E; Rubio-Arias, Jacobo A

    2017-01-19

    The purposes of this study were to analyze the impact of 24 weeks of vibratory and multicomponent training (MT) and to determine what type of training creates greater adaptations on body composition and isokinetic strength of the knee and ankle joints in postmenopausal women. Thirty-eight women (60.0 ± 6.3 years) were randomly assigned to whole body vibration group (WBVG), multicomponent training group (MTG), or a control group. A significant decrease in total fat mass was observed in experimental groups. There were no changes in total lean mass and total bone mineral density in both groups. WBVG and MTG showed significant increases in isokinetic strength for knee extensors at 60°/s and at 270°/s. Regarding the ankle joint, there were significant increments in strength for plantar flexion at 60°/s in WBVG and at 120°/s in the two trainings groups. MTG showed a significant increase in strength for dorsiflexion at 60°/s. With respect to eversion and inversion, WBVG and MTG improved strength at 60°/s. Also, the WBVG showed increased strength in the ankle evertors at 120°/s and both groups showed increased strength in the ankle invertors at 120°/s. Twenty-four weeks of whole body vibration or MTs result in positive modifications in total fat mass. These trainings are effective in improving knee extension and stabilizer muscles of the ankle joint strength.

  17. Mind-Body Therapies: Evidence and Implications in Advanced Oncology Practice

    PubMed Central

    Mayden,, Kelley D.

    2012-01-01

    The idea that thoughts and emotions influence health outcomes is an ancient concept that was initially abandoned by Western medicine researchers. Today, researchers are showing a renewed interest in the interactions of the mind and body and the role these interactions play in disease formation and recovery. Complementary and alternative interventions, such as mind-body therapies, are increasingly being used by cancer survivors for disease prevention, immune system enhancement, and symptom control. Traditional training has not been structured to provide advanced practitioners with an in-depth knowledge of the clinical applications of mind-body therapies. The aim of this article is to acquaint the reader with common mind-body modalities (meditation/mindfulness-based stress reduction, relaxation therapy, cognitive-behavioral therapy, hypnosis, biofeedback, music therapy, art therapy, support groups, and aromatherapy) and to examine important evidence in support of or against their clinical application. PMID:25031967

  18. Mind-body therapies: evidence and implications in advanced oncology practice.

    PubMed

    Mayden, Kelley D

    2012-11-01

    The idea that thoughts and emotions influence health outcomes is an ancient concept that was initially abandoned by Western medicine researchers. Today, researchers are showing a renewed interest in the interactions of the mind and body and the role these interactions play in disease formation and recovery. Complementary and alternative interventions, such as mind-body therapies, are increasingly being used by cancer survivors for disease prevention, immune system enhancement, and symptom control. Traditional training has not been structured to provide advanced practitioners with an in-depth knowledge of the clinical applications of mind-body therapies. The aim of this article is to acquaint the reader with common mind-body modalities (meditation/mindfulness-based stress reduction, relaxation therapy, cognitive-behavioral therapy, hypnosis, biofeedback, music therapy, art therapy, support groups, and aromatherapy) and to examine important evidence in support of or against their clinical application.

  19. The role of whole body vibration, posture and manual materials handling as risk factors for low back pain in occupational drivers.

    PubMed

    Okunribido, O O; Magnusson, M; Pope, M H

    2008-03-01

    It seems evident that occupational drivers have an increased risk of developing back pain. Not only are they exposed to whole body vibration (vibration), their work often includes exposure to several other risk factors for low back pain (LBP), particularly the seated posture (posture) and manual materials handling (MMH). Excessive demands on posture are likely to be aggravated by vibration and vice versa, and the risks may be further compounded when MMH is performed. This study investigated the relative role of vibration, posture and MMH as risk factors for LBP and the stated hypothesis was that the risks for LBP in drivers are the combined effect of vibration, posture and/or MMH. The findings showed that interaction effects due to posture and one or both of vibration and MMH, rather than the individual exposure effects, are the main contributors for precipitation of LBP.

  20. A study on the relationship between subjective unpleasantness and body surface vibrations induced by high-level low-frequency pure tones.

    PubMed

    Takahashi, Yukio; Kanada, Kazuo; Yonekawa, Yoshiharu; Harada, Noriaki

    2005-07-01

    Human body surface vibrations induced by high-level low-frequency pure tones were measured at the chest and the abdomen. At the same time, the subject rated the unpleasantness that he had just perceived during the exposure to low-frequency noise stimulus. Examining the relationship between the measured vibration and the rating score of the unpleasantness revealed that the unpleasantness was in close correlation with the vibration acceleration level (VAL) of the vibration measured. Taking previous results into account, this finding suggests that noise-induced vibrations primarily induce vibratory sensations and through the vibratory sensation or together with some other factors, secondarily contribute to the unpleasantness. The present results suggest that in evaluating high-level low-frequency noise, the effect of vibration should be taken into account.

  1. Back pain and exposure to whole body vibration in helicopter pilots.

    PubMed

    Bongers, P M; Hulshof, C T; Dijkstra, L; Boshuizen, H C; Groenhout, H J; Valken, E

    1990-08-01

    In a questionnaire survey the prevalence of back pain in 163 helicopter pilots was compared to that in a control group of 297 non-flying air force officers who underwent the same pre-employment medical examination. Since pilots document their hours of flight in a personal flight log, an accurate estimate of the duration of exposure could be made. In addition, vibration levels of the helicopters were measured and an accumulative vibration dose was calculated for each pilot. 'Transient' back pain of a short duration was more frequent amongst the pilots compared to the control group, and the prevalence of 'chronic' back pain of a persistent nature was also higher amongst the helicopter pilots. Transient back pain seemed to be most strongly related to the average hours of flight per day, whereas chronic back pain was more closely related to total hours of flight or the accumulative vibration dose. A significant higher prevalence of this chronic back pain was observed only after 2000 hours of flight or a vibration dose of 400 m2h/s4. The observed health effects may be due to vibration or constrained posture but are most likely due to concomitant exposure to both factors.

  2. Whole-body Vibration Exposure Intervention among Professional Bus and Truck Drivers: A Laboratory Evaluation of Seat-suspension Designs.

    PubMed

    Blood, Ryan P; Yost, Michael G; Camp, Janice E; Ching, Randal P

    2015-01-01

    Long-term exposure to seated whole-body vibration (WBV) is one of the leading risk factors for the development of low back disorders. Professional bus and truck drivers are regularly exposed to continuous WBV, since they spend the majority of their working hours driving heavy vehicles. This study measured WBV exposures among professional bus and truck drivers and evaluated the effects of seat-suspension designs using simulated field-collected data on a vibration table. WBV exposures were measured and compared across three different seat designs: an air-ride bus seat, an air-ride truck seat, and an electromagnetically active (EM-active) seat. Air-ride seats use a compressed-air bladder to attenuate vibrations, and they have been in operation throughout the transportation industry for many years. The EM-active seat is a relatively new design that incorporates a microprocessor-controlled actuator to dampen vibration. The vibration table simulated seven WBV exposure scenarios: four segments of vertical vibration and three scenarios that used field-collected driving data on different road surfaces-a city street, a freeway, and a section of rough roadway. The field scenarios used tri-axial WBV data that had been collected at the seat pan and at the driver's sternum, in accordance with ISO 2631-1 and 2631-5. This study found that WBV was significantly greater in the vertical direction (z-axis) than in the lateral directions (x-and y-axes) for each of the three road types and each of the three types of seats. Quantitative comparisons of the results showed that the floor-to-seat-pan transmissibility was significantly lower for the EM-active seat than for either the air-ride bus seat or the air-ride truck seat, across all three road types. This study also demonstrated that seat-suspension designs have a significant effect on the vibrations transmitted to vehicle operators, and the study's results may prove useful in designing future seat suspensions.

  3. Dynamic Lung Tumor Tracking for Stereotactic Ablative Body Radiation Therapy

    PubMed Central

    Kunos, Charles A.; Fabien, Jeffrey M.; Shanahan, John P.; Collen, Christine; Gevaert, Thierry; Poels, Kenneth; Van den Begin, Robbe; Engels, Benedikt; De Ridder, Mark

    2015-01-01

    Physicians considering stereotactic ablative body radiation therapy (SBRT) for the treatment of extracranial cancer targets must be aware of the sizeable risks for normal tissue injury and the hazards of physical tumor miss. A first-of-its-kind SBRT platform achieves high-precision ablative radiation treatment through a combination of versatile real-time imaging solutions and sophisticated tumor tracking capabilities. It uses dual-diagnostic kV x-ray units for stereoscopic open-loop feedback of cancer target intrafraction movement occurring as a consequence of respiratory motions and heartbeat. Image-guided feedback drives a gimbaled radiation accelerator (maximum 15 x 15 cm field size) capable of real-time ±4 cm pan-and-tilt action. Robot-driven ±60° pivots of an integrated ±185° rotational gantry allow for coplanar and non-coplanar accelerator beam set-up angles, ultimately permitting unique treatment degrees of freedom. State-of-the-art software aids real-time six dimensional positioning, ensuring irradiation of cancer targets with sub-millimeter accuracy (0.4 mm at isocenter). Use of these features enables treating physicians to steer radiation dose to cancer tumor targets while simultaneously reducing radiation dose to normal tissues. By adding respiration correlated computed tomography (CT) and 2-[18F] fluoro-2-deoxy-ᴅ-glucose (18F-FDG) positron emission tomography (PET) images into the planning system for enhanced tumor target contouring, the likelihood of physical tumor miss becomes substantially less1. In this article, we describe new radiation plans for the treatment of moving lung tumors. PMID:26131774

  4. Descriptive analysis of combine cabin vibrations and their effect on the human body

    NASA Astrophysics Data System (ADS)

    Hostens, I.; Ramon, H.

    2003-09-01

    All on- and off-road vehicles are exposed to vibrations caused by unevenness of road or soil profile, moving elements within the machine or implements. A higher prevalence of low back pain is found in drivers of off-road machinery than in other drivers. In this study, significantly higher levels of low-frequency vibrations are found in the cabin of a combine, driving at high speed (20 km/h) on a concrete surface, compared to driving slower on field road. Comfort values indicate that injury can result from long-term driving on the field as well as on a concrete road. As seats with suspension systems are the main transmission paths of vibration towards the spine of the driver, their vibration attenuating characteristics play an important role in comfort assessment. The resonant frequency of seats with passive suspension system, used in agricultural machinery, lies in the low-frequency range most excited in agricultural machinery. A seat with air suspension is found to attenuate better frequencies above 4 Hz and provide more comfort to the driver than a seat with a mechanical suspension.

  5. Whole-Body Vibration Training and Its Application to Age-Related Performance Decrements: An Exploratory Analysis.

    PubMed

    Hawkey, Adam; Griffiths, Katie; Babraj, John; Cobley, James N

    2016-02-01

    Middle age is associated with a pronounced decline in power and flexibility. Whilst whole-body vibration training (WBVT) improves performance in a range of populations, whether WBVT can improve muscle power and flexibility in a middle-aged population is not known. The present study aimed to determine the influence of 5 weeks progressive WBVT in middle-aged (45-55 years) and younger (20-30 years) recreationally active females. Participants in each age group were randomly allocated to an intervention (WBVT) or control group. The WBVT groups trained for 5 weeks on a vibration platform, while the control groups performed identical exercises, with no vibration. Prior to, and after, the 5-week study vertical countermovement jump (VCMJ) and range of motion (ROM) performance were measured. WBVT significantly (p = 0.001) improved VCMJ performance when compared to the control groups. This improvement was significantly (p = 0.001) greater in the middle-aged compared with the younger WBVT group. WBVT significantly (p = 0.001) improved ROM irrespective of age. Taken together, these results suggest that WBVT can off-set age related performance decrements, which has therapeutic implications for musculoskeletal aging. Therefore, WBVT could be undertaken to minimise age-related performance deterioration in middle-aged female populations.

  6. The vibration of inclined backrests: perception and discomfort of vibration applied parallel to the back in the z-axis of the body.

    PubMed

    Basri, Bazil; Griffin, Michael J

    2011-12-01

    This study determined how backrest inclination and the frequency of vibration influence the perception and discomfort of vibration applied parallel to the back (vertical vibration when sitting upright, horizontal vibration when recumbent). Subjects experienced backrest vibration at frequencies in the range 2.5 to 25 Hz at vibration magnitudes up to 24 dB above threshold. Absolute thresholds, equivalent comfort contours, and the principal locations for feeling vibration were determined with four backrest inclinations: 0° (upright), 30°, 60° and 90° (recumbent). With all backrest inclinations, acceleration thresholds and equivalent comfort contours were similar and increased with increasing frequency at 6 dB per octave (i.e. velocity constant). It is concluded that backrest inclination has little effect on the frequency dependence of thresholds and equivalent comfort contours for vibration applied along the back, and that the W (d) frequency weighting in current standards is appropriate for evaluating z-axis vibration of the back at all backrest inclinations. STATEMENT OF RELEVANCE: To minimise the vibration discomfort of seated people, it is necessary to understand how discomfort varies with backrest inclination. It is concluded that the vibration on backrests can be measured using a pad between the backrest and the back, so that it reclines with the backrest, and the measured vibration evaluated without correcting for the backrest inclination.

  7. Immediate changes in temporomandibular joint opening and pain following vibration therapy: a feasibility pilot study

    PubMed Central

    Muir, Brad; Brown, Courtney; Brown, Tara; Tatlow, Dionne; Buhay, Jeremy

    2014-01-01

    Objective The purpose of this pilot study was to determine the scientific and process feasibility in an effort to direct future larger trials. Methods: Scientific Feasibility: Twelve subjects were randomly allocated to an intervention and a control group. The intervention protocol consisted of intraoral vibration therapy on the muscles of mastication bilaterally for a period of 1 minute per muscle. Process Feasibility: Several feasibility outcomes were examined including recruitment and retention rates and consent. Results: Scientific Feasibility: Large effect sizes were generated for both mouth opening and VAS in favour of the intervention group. Process Feasibility: a recruitment ratio of 2.3 respondents to 1 participant was determined, along with a retention to loss ratio of 13:1 and a consent to loss ratio of 12:0. Conclusion: Scientific Feasibility: The scientific results should be interpreted with caution due to the small sample sizes employed. The study seems to support the scientific feasibility of a future larger single treatment trial. Process Feasibility: Recruitment and retention rates and ratios seem to support future studies. Utilizing the feasibility results of the current study to direct a future larger multiple treatment trial consistent with other comparable TMD studies however is limited. PMID:25550672

  8. Adaptive Stereotactic Body Radiation Therapy Planning for Lung Cancer

    SciTech Connect

    Qin, Yujiao; Zhang, Fan; Yoo, David S.; Kelsey, Chris R.; Yin, Fang-Fang; Cai, Jing

    2013-09-01

    Purpose: To investigate the dosimetric effects of adaptive planning on lung stereotactic body radiation therapy (SBRT). Methods and Materials: Forty of 66 consecutive lung SBRT patients were selected for a retrospective adaptive planning study. CBCT images acquired at each fraction were used for treatment planning. Adaptive plans were created using the same planning parameters as the original CT-based plan, with the goal to achieve comparable comformality index (CI). For each patient, 2 cumulative plans, nonadaptive plan (P{sub NON}) and adaptive plan (P{sub ADP}), were generated and compared for the following organs-at-risks (OARs): cord, esophagus, chest wall, and the lungs. Dosimetric comparison was performed between P{sub NON} and P{sub ADP} for all 40 patients. Correlations were evaluated between changes in dosimetric metrics induced by adaptive planning and potential impacting factors, including tumor-to-OAR distances (d{sub T-OAR}), initial internal target volume (ITV{sub 1}), ITV change (ΔITV), and effective ITV diameter change (Δd{sub ITV}). Results: 34 (85%) patients showed ITV decrease and 6 (15%) patients showed ITV increase throughout the course of lung SBRT. Percentage ITV change ranged from −59.6% to 13.0%, with a mean (±SD) of −21.0% (±21.4%). On average of all patients, P{sub ADP} resulted in significantly (P=0 to .045) lower values for all dosimetric metrics. Δd{sub ITV}/d{sub T-OAR} was found to correlate with changes in dose to 5 cc (ΔD5cc) of esophagus (r=0.61) and dose to 30 cc (ΔD30cc) of chest wall (r=0.81). Stronger correlations between Δd{sub ITV}/d{sub T-OAR} and ΔD30cc of chest wall were discovered for peripheral (r=0.81) and central (r=0.84) tumors, respectively. Conclusions: Dosimetric effects of adaptive lung SBRT planning depend upon target volume changes and tumor-to-OAR distances. Adaptive lung SBRT can potentially reduce dose to adjacent OARs if patients present large tumor volume shrinkage during the treatment.

  9. Measuring airborne components of seismic body vibrations in a Middle-Asian sand-dwelling Insectivora species, the piebald shrew (Diplomesodon pulchellum).

    PubMed

    Volodin, Ilya A; Zaytseva, Alexandra S; Ilchenko, Olga G; Volodina, Elena V; Chebotareva, Anastasia L

    2012-08-15

    Self-produced seismic vibrations have been found for some subterranean rodents but have not been reported for any Insectivora species, although seismic sensitivity has been confirmed for blind sand-dwelling chrysochlorid golden moles. Studying the vocal behaviour of captive piebald shrews, Diplomesodon pulchellum, we documented vibrations, apparently generated by the whole-body wall muscles, from 11 (5 male, 6 female) of 19 animals, placed singly on a drum membrane. The airborne waves of the vibratory drumming were digitally recorded and then analysed spectrographically. The mean frequency of vibration was 160.5 Hz. This frequency matched the periodicity of the deep sinusoidal frequency modulation (159.4 Hz) found in loud screech calls of the same subjects. The body vibration was not related to thermoregulation, hunger-related depletion of energy resources or fear, as it was produced by well-fed, calm animals, at warm ambient temperatures. We hypothesize that in the solitary, nocturnal, digging desert piebald shrew, body vibrations may be used for seismic exploration of substrate density, to avoid energy-costly digging of packed sand for burrowing and foraging. At the same time, the piercing quality of screech calls due to the deep sinusoidal frequency modulation, matching the periodicity of body vibration, may be important for agonistic communication in this species.

  10. Effects of Eight Months of Whole-Body Vibration Training on the Muscle Mass and Functional Capacity of Elderly Women.

    PubMed

    Santin-Medeiros, Fernanda; Rey-López, Juan P; Santos-Lozano, Alejandro; Cristi-Montero, Carlos S; Garatachea Vallejo, Nuria

    2015-07-01

    Few intervention studies have used whole-body vibration (WBV) training in the elderly, and there is inconclusive evidence about its health benefits. We examined the effect of 8 months of WBV training on muscle mass and functional capacity in elderly women. A total of 37 women (aged 82.4 ± 5.7 years) voluntarily participated in this study. Subjects were randomly assigned to a vibration group (n = 19) or a control group (n = 18). The vibration group trained on a vertical vibration platform twice a week. The control group was requested not to change their habitual lifestyle. The quadriceps femoris muscle cross-sectional area was determined by magnetic resonance imaging. All participants were evaluated by a battery of tests (Senior Fitness Test) to determine their functional capacity, as well as handgrip strength and balance/gait. General linear repeated-measure analysis of variance (group by time) was performed to examine the effect of the intervention on the outcomes variables. After 8 months, nonstatistically significant differences in the quadriceps CSA (pre-training: 8,516.16 ± 1,271.78 mm² and post-training: 8,671.63 ± 1,389.03 mm²) (p > 0.05) were found in the WBV group (Cohen's d: -0.12), whereas the CON group significantly decreased muscle mass (pre-training: 9,756.18 ± 1,420.07 mm² and post-training: 9,326.82 ± 1,577.53 mm²), with moderate effect size evident (Cohen's d: 0.29). In both groups, no changes were observed in the functional capacity, handgrip strength and balance/gait. The WBV training could prevent the loss of quadriceps CSA in elderly women.

  11. Effects of whole-body vibration training on explosive strength and postural control in young female athletes.

    PubMed

    Fort, Azahara; Romero, Daniel; Bagur, Caritat; Guerra, Myriam

    2012-04-01

    This study aimed to evaluate the effectiveness of a whole-body vibration training program to improve neuromuscular performance in young elite female athletes. Twenty-three women basketball players (14-18 years old) were randomly assigned to a control group (CG, n = 11) or to a whole-body vibration group (WBVG, n = 12). During the study period, both groups continued their usual training program, but the WBVG also underwent a 15-week vibration training program. We analyzed the countermovement jump test (CMJ), the 1-leg hop test for the right leg and for the left leg, and the single-limb standing balance for both legs and with eyes open and closed at 3 time points: before training (T1), after an 8-week training period (T2), and after a further 7-week training period (T3). Compared with the CG, CMJ increased significantly in the WBVG from T1 to T2 (6.47%, p < 0.001), T1 to T3 (10.07%, p = 0.005), and T2 to T3 (3.38%, p < 0.001). One-leg hop test for the right and left legs also showed significantly higher values in WBVG from T1 to T2 (10.12%, p < 0.001 and 9.63%, p = 0.002, respectively) and T1 to T3 (14.17%, p = 0.001 and 15.17%, p = 0.004, respectively). Lateral deviation of the center of pressure in the closed eyes test decreased significantly in WBVG for both right and left leg, from T1 to T2 (-22.20%, p = 0.043 and -34.77%, p < 0.001, respectively) and from T1 to T3 (-33.14%, p = 0.027 and -33.58%, p = 0.043, respectively) compared with the CG. In conclusion, our results show that a 15-week whole-body vibration training program improves explosive strength and postural stability in adolescent female basketball players.

  12. Three Case Reports of Successful Vibration Therapy of the Plantar Fascia for Spasticity Due to Cerebral Palsy-Like Syndrome, Fetal-Type Minamata Disease.

    PubMed

    Usuki, Fusako; Tohyama, Satsuki

    2016-04-01

    Fetal-type Minamata disease is caused by the exposure to high concentrations of methylmercury in the fetal period and shows cerebral palsy-like clinical features. Relief of spasticity is a major task of rehabilitation to improve their activities of daily living. Here we report the effect of long-term vibration therapy on bilateral lower-limb spasticity in 3 patients with fetal-type Minamata disease. We used a simple, inexpensive, and noninvasive approach with hand-held vibration massagers, which were applied to the plantar fascia at 90 Hz for 15 minutes. The effect was observed soon after the first treatment and resulted in better performance of the repetitive facilitation. Vibration therapy for 1 year improved Modified Ashworth Scale for the ankle flexors in 2 cases. The labored gait improved and gait speed increased in another case. Continued vibration therapy for another 1 year further improved Modified Ashworth Scale score and range of motion of ankle dorsiflexion in 1 case. This case showed the decreased amplitude of soleus H-reflex after the 15-minute vibration therapy, suggesting that α-motor neuron excitability was suppressed. Vibration therapy using a hand-held vibration massager may offer safe and effective treatment for lower-limb spasticity in patients with chronic neurological disorders.

  13. Three Case Reports of Successful Vibration Therapy of the Plantar Fascia for Spasticity Due to Cerebral Palsy-Like Syndrome, Fetal-Type Minamata Disease

    PubMed Central

    Usuki, Fusako; Tohyama, Satsuki

    2016-01-01

    Abstract Fetal-type Minamata disease is caused by the exposure to high concentrations of methylmercury in the fetal period and shows cerebral palsy-like clinical features. Relief of spasticity is a major task of rehabilitation to improve their activities of daily living. Here we report the effect of long-term vibration therapy on bilateral lower-limb spasticity in 3 patients with fetal-type Minamata disease. We used a simple, inexpensive, and noninvasive approach with hand-held vibration massagers, which were applied to the plantar fascia at 90 Hz for 15 minutes. The effect was observed soon after the first treatment and resulted in better performance of the repetitive facilitation. Vibration therapy for 1 year improved Modified Ashworth Scale for the ankle flexors in 2 cases. The labored gait improved and gait speed increased in another case. Continued vibration therapy for another 1 year further improved Modified Ashworth Scale score and range of motion of ankle dorsiflexion in 1 case. This case showed the decreased amplitude of soleus H-reflex after the 15-minute vibration therapy, suggesting that α-motor neuron excitability was suppressed. Vibration therapy using a hand-held vibration massager may offer safe and effective treatment for lower-limb spasticity in patients with chronic neurological disorders. PMID:27082608

  14. A Galerkin method for the estimation of parameters in hybrid systems governing the vibration of flexible beams with tip bodies

    NASA Technical Reports Server (NTRS)

    Banks, H. T.; Rosen, I. G.

    1985-01-01

    An approximation scheme is developed for the identification of hybrid systems describing the transverse vibrations of flexible beams with attached tip bodies. In particular, problems involving the estimation of functional parameters are considered. The identification problem is formulated as a least squares fit to data subject to the coupled system of partial and ordinary differential equations describing the transverse displacement of the beam and the motion of the tip bodies respectively. A cubic spline-based Galerkin method applied to the state equations in weak form and the discretization of the admissible parameter space yield a sequence of approximating finite dimensional identification problems. It is shown that each of the approximating problems admits a solution and that from the resulting sequence of optimal solutions a convergent subsequence can be extracted, the limit of which is a solution to the original identification problem. The approximating identification problems can be solved using standard techniques and readily available software.

  15. Numerical assessment of fore-and-aft suspension performance to reduce whole-body vibration of wheel loader drivers

    NASA Astrophysics Data System (ADS)

    Fleury, Gérard; Mistrot, Pierre

    2006-12-01

    While driving off-road vehicles, operators are exposed to whole-body vibration acting in the fore-and-aft direction. Seat manufacturers supply products equipped with fore-and-aft suspension but only a few studies report on their performance. This work proposes a computational approach to design fore-and-aft suspensions for wheel loader seats. Field tests were conducted in a quarry to analyse the nature of vibration to which the driver was exposed. Typical input signals were recorded to be reproduced in the laboratory. Technical specifications are defined for the suspension. In order to evaluate the suspension vibration attenuation performance, a model of a sitting human body was developed and coupled to a seat model. The seat model combines the models of each suspension component. A linear two-degree-of-freedom model is used to describe the dynamic behaviour of the sitting driver. Model parameters are identified by fitting the computed apparent mass frequency response functions to the measured values. Model extensions are proposed to investigate postural effects involving variations in hands and feet positions and interaction of the driver's back with the backrest. Suspension design parameters are firstly optimized by computing the seat/man model response to sinusoidal acceleration. Four criteria including transmissibility, interaction force between the driver's back and the backrest and relative maximal displacement of the suspension are computed. A new suspension design with optimized features is proposed. Its performance is checked from calculations of the response of the seat/man model subjected to acceleration measured on the wheel loader during real work conditions. On the basis of the computed values of the SEAT factors, it is found possible to design a suspension that would increase the attenuation provided by the seat by a factor of two.

  16. Psychophysical relationships characterizing human response to whole-body sinusoidal vertical vibration

    NASA Technical Reports Server (NTRS)

    Leatherwood, J. D.; Dempsey, T. K.

    1976-01-01

    An experimental investigation determined that the psychophysical relationships between subjective discomfort evaluations to vibratory stimuli and subjective evaluations of the intensity of vibratory stimuli can be expressed in a linear fashion. Furthermore, significant differences were found to exist between discomfort and intensity subjective response for several but not all discrete frequencies investigated. The implication of these results is that ride quality criteria based upon subjective evaluation of vibration intensity should be applied cautiously in the development of criteria for human comfort.

  17. Contribution of individual components of a job cycle on overall severity of whole-body vibration exposure: a study in Indian mines.

    PubMed

    Mandal, Bibhuti B; Mansfield, Neil J

    2016-01-01

    Drivers of earth-moving machines are exposed to whole-body vibration (WBV). In mining operations there can be a combination of relatively high magnitudes of vibration and long exposure times. Effective risk mitigation requires understanding of the main aspects of a task that pose a hazard to health. There are very few published studies of WBV exposure from India. This paper reports on a study that considered the contribution of the component phases of dumper operations, on the overall vibration exposure of the drivers. It shows that vibration magnitudes are relatively high, and that haulage tasks are the main contributor to the exposure. It is recommended that driver speed, haul road surfaces and vehicle maintenance/selection are optimized to ensure minimization of vibration. If this is not sufficient, operation times might need to be reduced in order to ensure that the health guidance caution zone from Standard No. ISO 2631-1:1997 is not exceeded.

  18. A non-resonant, frequency up-converted electromagnetic energy harvester from human-body-induced vibration for hand-held smart system applications

    NASA Astrophysics Data System (ADS)

    Halim, Miah A.; Park, Jae Y.

    2014-03-01

    We present a non-resonant, frequency up-converted electromagnetic energy harvester that generates significant power from human-body-induced vibration, e.g., hand-shaking. Upon excitation, a freely movable non-magnetic ball within a cylinder periodically hits two magnets suspended on two helical compression springs located at either ends of the cylinder, allowing those to vibrate with higher frequencies. The device parameters have been designed based on the characteristics of human hand-shaking vibration. A prototype has been developed and tested both by vibration exciter (for non-resonance test) and by manual hand-shaking. The fabricated device generated 110 μW average power with 15.4 μW cm-3 average power density, while the energy harvester was mounted on a smart phone and was hand-shaken, indicating its ability in powering portable hand-held smart devices from low frequency (<5 Hz) vibrations.

  19. Effect of a combination of whole body vibration exercise and squat training on body balance, muscle power, and walking ability in the elderly.

    PubMed

    Osugi, Tomohiro; Iwamoto, Jun; Yamazaki, Michio; Takakuwa, Masayuki

    2014-01-01

    A randomized controlled trial was conducted to clarify the beneficial effect of whole body vibration (WBV) exercise plus squat training on body balance, muscle power, and walking ability in the elderly with knee osteoarthritis and/or spondylosis. Of 35 ambulatory patients (14 men and 21 women) who were recruited at our outpatient clinic, 28 (80.0%, 12 men and 16 women) participated in the trial. The subjects (mean age 72.4 years) were randomly divided into two groups (n=14 in each group), ie, a WBV exercise alone group and a WBV exercise plus squat training group. A 4-minute WBV exercise (frequency 20 Hz) was performed 2 days per week in both groups; squat training (20 times per minute) was added during the 4-minute WBV training session in the WBV exercise plus squat training group. The duration of the trial was 6 months. The exercise and training program was safe and well tolerated. WBV exercise alone improved indices of body balance and walking velocity from baseline values. However, WBV exercise plus squat training was more effective for improving tandem gait step number and chair-rising time compared with WBV exercise alone. These results suggest the benefit and safety of WBV exercise plus squat training for improving physical function in terms of body balance and muscle power in the elderly.

  20. An optimal sampling approach to modelling whole-body vibration exposure in all-terrain vehicle driving.

    PubMed

    Lü, Xiaoshu; Takala, Esa-Pekka; Toppila, Esko; Marjanen, Ykä; Kaila-Kangas, Leena; Lu, Tao

    2016-12-01

    Exposure to whole-body vibration (WBV) presents an occupational health risk and several safety standards obligate to measure WBV. The high cost of direct measurements in large epidemiological studies raises the question of the optimal sampling for estimating WBV exposures given by a large variation in exposure levels in real worksites. This paper presents a new approach to addressing this problem. A daily exposure to WBV was recorded for 9-24 days among 48 all-terrain vehicle drivers. Four data-sets based on root mean squared recordings were obtained from the measurement. The data were modelled using semi-variogram with spectrum analysis and the optimal sampling scheme was derived. The optimum sampling period was 140 min apart. The result was verified and validated in terms of its accuracy and statistical power. Recordings of two to three hours are probably needed to get a sufficiently unbiased daily WBV exposure estimate in real worksites. The developed model is general enough that is applicable to other cumulative exposures or biosignals. Practitioner Summary: Exposure to whole-body vibration (WBV) presents an occupational health risk and safety standards obligate to measure WBV. However, direct measurements can be expensive. This paper presents a new approach to addressing this problem. The developed model is general enough that is applicable to other cumulative exposures or biosignals.

  1. Benefits of Whole-Body Vibration with an Oscillating Platform for People with Multiple Sclerosis: A Systematic Review

    PubMed Central

    Santos-Filho, Sebastião David; Cameron, Michelle H.; Bernardo-Filho, Mario

    2012-01-01

    The objective of this work was to investigate the effects of whole-body vibration on people with multiple sclerosis (MS). PubMed, CINAHL and Scopus databases were systematically searched for studies on the use of whole-body vibration (WBV) exercise in people with MS. These searches were supplemented with material identified in the references and in the authors' personal files. A qualitative analysis was performed to summarize the findings. Five studies with a total of seventy-one subjects were identified. All of these studies had small numbers of subjects (3–25), and two of the studies had no control groups. Some investigations have shown significant improvements of the muscle strength, of the functional mobility, and of the timed get up and go test in patients with MS. The number of publications found in the databanks searched is small, and in general, they have limitations in the design of protocols with a weakness to the interpretation of the findings. However, the analysis of the findings in these studies permits to conclude that some papers indicate that WBV exercises could benefit patients with MS. In addition, we suggest further larger scale investigations with controlled parameters and well-designed protocols into the effects of WBV exercises in people with MS. PMID:22685660

  2. [Exposure to whole body vibrations in workers moving heavy items by mechanical vehicles in the warehouse of a large retail outlet].

    PubMed

    Siciliano, E; Rossi, A; Nori, L

    2007-01-01

    Efficient warehouse management and item transportation is of fundamental importance in the commercial outlet in exam. Whole body vibrations have been measured in various types of machines, some of which not widely studied yet, like the electrical pallet truck. In some tasks (fork lifts drivers) vibrations propagate through the driving seat whereas in some other tasks (electrical pallet trucks, stackers), operated in a standing posture, vibrations propagate through the lower limbs. Results have been provided for a homogeneous job tasks. In particular conditions, the action level of the Italian national (and European) regulations on occupational exposure to WBV may be exceeded. The authors propose a simple system of probabilistic classification of the risk of exposure to whole body vibrations, based on the respective areas of the distribution which lay within the three risk classes.

  3. Effect of Whole Body Vibration Exercise in the Horizontal Direction on Balance and Fear of Falling in Elderly People: A Pilot Study

    PubMed Central

    Shim, ChungSin; Lee, YunBok; Lee, DongGeon; Jeong, BeomHo; Kim, JinBeom; Choi, YoungWoo; Lee, GyuChang; Park, Dong-sik

    2014-01-01

    [Purpose] The purpose of the present study was to investigate the effects of whole body vibration exercise in the horizontal direction on balance and fear of falling in the elderly. [Methods] This study was a case series of 17 elderly individuals. Participants performed whole body vibration exercise in the horizontal direction using a whole body vibration device for 15 minutes a day, 3 times a week, for 6 weeks. At baseline and after the 6-week intervention, balance was measured using the Berg Balance Scale and Timed Up and Go test, and fear of falling was assessed using the Falls Efficacy Scale. [Results] After the intervention, significant improvements from baseline values in the Berg Balance Scale, Timed Up and Go test, and Falls Efficacy Scale were observed in the study participants. [Conclusion] Elderly individuals who performed whole body vibration exercise in the horizontal direction showed significant improvements in balance and fear of falling. However, the observed benefits of whole body vibration exercise in the horizontal direction need to be confirmed by additional studies. PMID:25140102

  4. A summary of current Bureau research into the effects of whole-body vibration and shock on operators of underground mobile equipment

    SciTech Connect

    Love, A.C.; Unger, R.L.; Bobick, T.G.; Fowkes, R.S.

    1992-01-01

    This report discusses current research by the U.S. Bureau of Mines on the effects of whole-body vibration (WBV) and shock on underground mobile equipment operators. The highlights of a comprehensive literature review of WBV, shock, and seating are presented. Factors discussed include health and physiological effects, comfort, performance, and fatigue. Vibration data were collected from shuttle cars and ramcars at several underground coal mines in Pennsylvania, Ohio, and Illinois. The data were formatted so that they could be used to drive the Bureau's motion platform, and to compare them with ANSI S3-1979, Guide for the Evaluation of Human Exposure to Whole-Body Vibration. Human subject testing in the Bureau's vibration research laboratory evaluated the effects of two different seat angles and of the presence or absence of vibration and of foam padding on heart rate, blood pressure, and subjective discomfort. Only vibration significantly increased heart rate and systolic and mean blood pressures. Vibration and a steel seat had a significant effect on subjective discomfort. The apparatus used for these tests and the experimental procedures are described in detail. Recommendations are made for additional research on the exposure of underground mining machine operators to WBV and shock.

  5. The acute effects of different training loads of whole body vibration on flexibility and explosive strength of lower limbs in divers.

    PubMed

    Dallas, G; Paradisis, G; Kirialanis, P; Mellos, V; Argitaki, P; Smirniotou, A

    2015-09-01

    The purpose of this study was to examine the acute effects of different vibration loads (frequency and amplitude) of whole-body vibration (WBV) on flexibility and explosive strength of lower limbs in springboard divers. Eighteen male and female divers, aged 19 ± 2 years, volunteered to perform 3 different WBV protocols in the present study. To assess the vibration effect, flexibility and explosive strength of lower limbs were measured before (Pre), immediately after (Post 1) and 15 min after the end of vibration exposure (Post 15). Three protocols with different frequencies and amplitudes were used in the present study: a) low vibration frequency and amplitude (30 Hz/2 mm); b) high vibration frequency and amplitude (50 Hz/4 mm); c) a control protocol (no vibration). WBV protocols were performed on a Power Plate platform, whereas the no vibration divers performed the same protocol but with the vibration platform turned off. A two-way ANOVA 3 x 3 (protocol × time) with repeated measures on both factors was used. The level of significance was set at p < 0.05. Univariate analyses with simple contrasts across time were selected as post hoc tests. Intraclass coefficients (ICC) were used to assess the reliability across time. The results indicated that flexibility and explosive strength of lower limbs were significantly higher in both WBV protocols compared to the no vibration group (NVG). The greatest improvement in flexibility and explosive strength, which occurred immediately after vibration treatment, was maintained 15 min later in both WBV protocols, whereas NVG revealed a significant decrease 15 min later, in all examined strength parameters. In conclusion, a bout of WBV significantly increased flexibility and explosive strength in competitive divers compared with the NVG. Therefore, it is recommended to incorporate WBV as a method to increase flexibility and vertical jump height in sports where these parameters play an important role in the success outcome of

  6. The Effect of Whole Body Vibration Exposure on Muscle Function in Children With Cystic Fibrosis: A Pilot Efficacy Trial

    PubMed Central

    O’Keefe, Kaitlin; Orr, Rhonda; Huang, Peite; Selvadurai, Hiran; Cooper, Peter; Munns, Craig Frank; Singh, Maria A Fiatarone

    2013-01-01

    Background To examine the effects of whole body vibration (WBV) exposure on muscle function in children with Cystic Fibrosis (CF). Non-randomised controlled cross-over trial. Methods The setting was home-based WBV exposure. The participants were children (8 - 15 years) with CF (n = 7). Intervention: participants served as their own controls for the first four weeks (usual care), then underwent four weeks of parentally-supervised home-based WBV exposure followed by four weeks washout (usual care). The WBV exposure consisted of 20 - 30 minutes of intermittent (1 min vibration:1 min rest) exposure on a Galileo platform (20 - 22Hz, 1 mm amplitude) 3 days/week. The primary outcome measures of absolute and relative lower body (leg extension (LE), leg press (LP)), upper body (chess press (CP)) strength and power, and power were measured at baseline, and weeks 4, 8 and 12. Secondary exploratory outcomes were cardiorespiratory fitness, pulmonary function and health-related quality of life. Results Six participants completed the training without adverse events. Muscle function changes following WBV exposure were not statistically significant. However, moderate-to-large relative effect sizes (ES) favouring WBV were evident for leg extension strength (ES = 0.66 (-0.50, 1.82)), LP relative strength (ES = 0.92 (-0.27, 2.11)), leg press peak power (ES = 0.78 (-0.50, 2.07)) and CMJ height (ES = 0.60 (-0.56 to 1.76)). Conclusions The results from this first controlled trial indicate that WBV may be a potentially effective exercise modality to safely increase leg strength and explosive power in children with CF. Potentially clinically relevant changes support continued investigation of the efficacy, mechanism and feasibility of this intervention in future large-scale studies. PMID:23671546

  7. Characterization of the frequency and muscle responses of the lumbar and thoracic spines of seated volunteers during sinusoidal whole body vibration.

    PubMed

    Baig, Hassam A; Dorman, Daniel B; Bulka, Ben A; Shivers, Bethany L; Chancey, Valeta C; Winkelstein, Beth A

    2014-10-01

    Whole body vibration has been postulated to contribute to the onset of back pain. However, little is known about the relationship between vibration exposure, the biomechanical response, and the physiological responses of the seated human. The aim of this study was to measure the frequency and corresponding muscle responses of seated male volunteers during whole body vibration exposures along the vertical and anteroposterior directions to define the transmissibility and associated muscle activation responses for relevant whole body vibration exposures. Seated human male volunteers underwent separate whole body vibration exposures in the vertical (Z-direction) and anteroposterior (X-direction) directions using sinusoidal sweeps ranging from 2 to 18 Hz, with a constant amplitude of 0.4 g. For each vibration exposure, the accelerations and displacements of the seat and lumbar and thoracic spines were recorded. In addition, muscle activity in the lumbar and thoracic spines was recorded using electromyography (EMG) and surface electrodes in the lumbar and thoracic region. Transmissibility was determined, and peak transmissibility, displacement, and muscle activity were compared in each of the lumbar and thoracic regions. The peak transmissibility for vertical vibrations occurred at 4 Hz for both the lumbar (1.55 ± 0.34) and thoracic (1.49 ± 0.21) regions. For X-directed seat vibrations, the transmissibility ratio in both spinal regions was highest at 2 Hz but never exceeded a value of 1. The peak muscle response in both spinal regions occurred at frequencies corresponding to the peak transmissibility, regardless of the direction of imposed seat vibration: 4 Hz for the Z-direction and 2-3 Hz for the X-direction. In both vibration directions, spinal displacements occurred primarily in the direction of seat vibration, with little off-axis motion. The occurrence of peak muscle responses at frequencies of peak transmissibility suggests that such

  8. Patterns of Mind-Body Therapies in Adults with Common Neurological Conditions

    PubMed Central

    Erwin Wells, Rebecca; Phillips, Russell S.; McCarthy, Ellen P.

    2011-01-01

    Background Over 40% of adults with common neurological conditions use complementary and alternative medicine, and mind-body therapies are the most commonly used form. Our objective was to describe mind-body use in adults with common neurological conditions. Methods We compared mind-body use between adults with and without common neurological conditions (regular headaches, migraines, back pain with sciatica, strokes, dementia, seizures or memory loss) using the 2007 National Health Interview Survey of 23,393 sampled American adults. Results Adults with common neurological conditions used mind-body therapies more frequently than those without (24.5 vs. 16.6%, p < 0.0001); differences persisted after adjustment. Deep breathing exercises, meditation and yoga were used most frequently. Nearly 70% of the adults with common neurological conditions did not discuss their mind-body use with their health care provider. Those with neurological conditions used mind-body therapies more than those without these conditions because of provider recommendation (26 vs. 13%) or because conventional treatments were perceived ineffective (12 vs. 4%) or too costly (7 vs. 2%), respectively. Conclusions Mind-body therapies are used more frequently among adults with common neurological conditions, more often when conventional treatments were perceived ineffective. More research is warranted on the efficacy of mind-body use for common neurological conditions. PMID:21196772

  9. Cognitive Behavior Therapy with Body Image Exposure for Bulimia Nervosa: A Case Example

    ERIC Educational Resources Information Center

    Delinsky, Sherrie S.; Wilson, G. Terence

    2010-01-01

    Cognitive behavior therapy (CBT) is an effective treatment for bulimia nervosa (BN). However, among patients with BN, symptom improvement is more pronounced for behavioral eating symptoms (i.e., bingeing and purging) than for body image disturbance, and the persistence of body image disturbance is associated with relapse. The need for more…

  10. Vehicle design influences whole body vibration exposures: effect of the location of the front axle relative to the cab.

    PubMed

    Blood, Ryan P; Rynell, Patrik W; Johnson, Peter W

    2011-06-01

    Using a repeated measure design, this study compared differences in whole body vibration (WBV) exposures among 13 drivers who drove a truck with the cab over the front axle (cab-over design) and a truck with the cab situated behind the front axle (non-cab-over design). The drivers drove both trucks over a standardized route that comprised three distinct segments: a freeway segment, a city street segment with stop-and-go driving (traffic lights), and a city street segment without traffic lights. A portable WBV data acquisition system collected tri-axial time-weighted and raw WBV data per ISO 2631-1 and 2631-5 standards. Simultaneous global positioning system (GPS) data were also collected to compare vehicle speeds. The GPS data indicated that there were no speed differences between the two vehicles. However, average and impulsive z-axis vibration levels were significantly higher for the cab-over design than for the non-cab-over design. In addition, significant WBV exposure differences between road types were found, with the freeway segments having the lowest exposures and the city street segments without traffic lights having the highest exposures. Vehicle type and the associated WBV exposures should be considered when purchasing vehicles to be used by full-time professional vehicle operators.

  11. The influence of a 5-wk whole body vibration on electrophysiological properties of rat hindlimb spinal motoneurons.

    PubMed

    Baczyk, M; Hałuszka, A; Mrówczyński, W; Celichowski, J; Krutki, P

    2013-06-01

    The study aimed at determining the influence of a whole body vibration (WBV) on electrophysiological properties of spinal motoneurons. The WBV training was performed on adult male Wistar rats, 5 days a week, for 5 wk, and each daily session consisted of four 30-s runs of vibration at 50 Hz. Motoneuron properties were investigated intracellularly during experiments on deeply anesthetized animals. The experimental group subjected to the WBV consisted of seven rats, and the control group of nine rats. The WBV treatment induced no significant changes in the passive membrane properties of motoneurons. However, the WBV-evoked adaptations in excitability and firing properties were observed, and they were limited to fast-type motoneurons. A significant decrease in rheobase current and a decrease in the minimum and the maximum currents required to evoke steady-state firing in motoneurons were revealed. These changes resulted in a leftward shift of the frequency-current relationship, combined with an increase in slope of this curve. The functional relevance of the described adaptive changes is the ability of fast motoneurons of rats subjected to the WBV to produce series of action potentials at higher frequencies in a response to the same intensity of activation. Previous studies proved that WBV induces changes in the contractile parameters predominantly of fast motor units (MUs). The data obtained in our experiment shed a new light to possible explanation of these results, suggesting that neuronal factors also play a substantial role in MU adaptation.

  12. Development of a Protocol for Epidemiologal Studies of Whole-Body Vibration and Musculoskeletal Disorders of the Lower Back

    NASA Astrophysics Data System (ADS)

    Magnusson, M. L.; Pope, M. H.; Hulshof, C. T. J.; Bovenzi, M.

    1998-08-01

    It seems evident from a large number of studies that there is a positive relationship between exposure to whole body vibration (WBV) and the occurrence of low back pain. There are existing standards for evaluating the human exposure to WBV, which are based on other factors than the effect of musculoskeletal disorders. Several national and international standards also exist for evaluating human exposure to WBV. The exposure limit values or health guidance caution zones included in some of these standards are not or only to a limited extent based on systematic epidemiological investigations. It has not yet been possible to establish a clear exposure-response relationship. There are many confounding or contributing factors which influence the hazards to workers caused by exposure to WBV. Reliable methods for the detection and prevention of injury due to vibration exposure at work, alone or in combination with other risk factors, need to be implemented. The aim of this paper was to design a protocol and a questionnaire for conducting collaborative studies of WBV and musculoskeletal back disorders. The protocol will be tested in a pilot study before it will be used in multi-center studies.

  13. Energy, structure and vibrational modes of small water clusters by a simple many-body potential mimicking polarisation effects

    NASA Astrophysics Data System (ADS)

    Bingham, R. J.; Ballone, P.

    2013-12-01

    An empirical many-body model potential able to mimic polarisation effects is applied to compute cohesive, structural and vibrational properties of water clusters with up to 12 H2O molecules. The model introduces local coordination functions to account for the variation of charges and other intra- and inter-molecular force constants upon formation of hydrogen bonds among water molecules. The potential is tuned to fit the results of state of the art density functional computations, and it is shown to accurately reproduce cohesive energies, bond lengths and vibrational properties of clusters. Moreover, it reproduces the marked increase of the molecular dipole moment with increasing water-water coordination. At variance from traditional polarisable models, the energy is an explicit function of the atomic coordinates, and does not require the minimisation of the electrostatic energy or the equalisation of the electron chemical potential, and thus is suitable for large-scale simulations in materials science and in bio-chemistry/bio-physics.

  14. Design Optimization of a Magnetically Levitated Electromagnetic Vibration Energy Harvester for Body Motion

    NASA Astrophysics Data System (ADS)

    Pancharoen, K.; Zhu, D.; Beeby, S. P.

    2016-11-01

    This paper presents a magnetically levitated electromagnetic vibration energy harvester based on magnet arrays. It has a nonlinear response that extends the operating bandwidth and enhances the power output of the harvesting device. The harvester is designed to be embedded in a hip prosthesis and harvest energy from low frequency movements (< 5 Hz) associated with human motion. The design optimization is performed using Comsol simulation considering the constraints on size of the harvester and low operating frequency. The output voltage across the optimal load 3.5kΩ generated from hip movement is 0.137 Volts during walking and 0.38 Volts during running. The power output harvested from hip movement during walking and running is 5.35 μW and 41.36 μW respectively..

  15. Approximation methods for inverse problems involving the vibration of beams with tip bodies

    NASA Technical Reports Server (NTRS)

    Rosen, I. G.

    1984-01-01

    Two cubic spline based approximation schemes for the estimation of structural parameters associated with the transverse vibration of flexible beams with tip appendages are outlined. The identification problem is formulated as a least squares fit to data subject to the system dynamics which are given by a hybrid system of coupled ordinary and partial differential equations. The first approximation scheme is based upon an abstract semigroup formulation of the state equation while a weak/variational form is the basis for the second. Cubic spline based subspaces together with a Rayleigh-Ritz-Galerkin approach were used to construct sequences of easily solved finite dimensional approximating identification problems. Convergence results are briefly discussed and a numerical example demonstrating the feasibility of the schemes and exhibiting their relative performance for purposes of comparison is provided.

  16. Whole-Body Vibration Partially Reverses Aging-Induced Increases in Visceral Adiposity and Hepatic Lipid Storage in Mice

    PubMed Central

    van Dijk, Theo H.; Havinga, Rick; van der Zee, Eddy A.; Groen, Albert K.; Reijngoud, Dirk-Jan; Bakker, Barbara M.; van Dijk, Gertjan

    2016-01-01

    At old age, humans generally have declining muscle mass and increased fat deposition, which can increase the risk of developing cardiometabolic diseases. While regular physical activity postpones these age-related derangements, this is not always possible in the elderly because of disabilities or risk of injury. Whole-body vibration (WBV) training may be considered as an alternative to physical activity particularly in the frail population. To explore this possibility, we characterized whole-body and organ-specific metabolic processes in 6-month and 25-month old mice, over a period of 14 weeks of WBV versus sham training. WBV training tended to increase blood glucose turnover rates and stimulated hepatic glycogen utilization during fasting irrespective of age. WBV was effective in reducing white fat mass and hepatic triglyceride content only in old but not in young mice and these reductions were related to upregulation of hepatic mitochondrial uncoupling of metabolism (assessed by high-resolution respirometry) and increased expression of uncoupling protein 2. Because these changes occurred independent of changes in food intake and whole-body metabolic rate (assessed by indirect calorimetry), the liver-specific effects of WBV may be a primary mechanism to improve metabolic health during aging, rather than that it is a consequence of alterations in energy balance. PMID:26886917

  17. A numerical scheme for the identification of hybrid systems describing the vibration of flexible beams with tip bodies

    NASA Technical Reports Server (NTRS)

    Rosen, I. G.

    1984-01-01

    A cubic spline based Galerkin-like method is developed for the identification of a class of hybrid systems which describe the transverse vibration to flexible beams with attached tip bodies. The identification problem is formulated as a least squares fit to data subject to the system dynamics given by a coupled system of ordnary and partial differential equations recast as an abstract evolution equation (AEE) in an appropriate infinite dimensional Hilbert space. Projecting the AEE into spline-based subspaces leads naturally to a sequence of approximating finite dimensional identification problems. The solutions to these problems are shown to exist, are relatively easily computed, and are shown to, in some sense, converge to solutions to the original identification problem. Numerical results for a variety of examples are discussed.

  18. A Case of Treatment- resistant Depression and Body Dysmorphic Disorder: The Role of Electroconvulsive Therapy Revisited.

    PubMed

    Mahato, Ram S; San Gabriel, Maria Chona P; Longshore, Carrol T; Schnur, David B

    2016-01-01

    Body dysmorphic disorder is a common, often disabling condition, and is frequently comorbid with major depressive disorder. Selective serotonin reuptake inhibitors constitute first line set of somatic interventions but the management of refractory patients remains challenging. Electroconvulsive therapy, an often highly beneficial treatment for medication resistant-depression, is not considered an effective therapeutic alternative for treatment refractory body dysmorphic disorder. Here we present a 50-year-old woman with body dysmorphic disorder and comorbid major depressive disorder who remained incapacitated and suicidal despite several trials with selective serotonin reuptake inhibitors and antipsychotic medication. Depressive and dysmorphic symptoms appeared to resolve with electroconvulsive therapy, and remission was sustained for two months. Electroconvulsive therapy has an important place in the management of treatment- resistant depression associated with body dysmorphic disorder, and, in select cases, may be effective for dysmorphic symptoms as well.

  19. Myoelectric Response of Back Muscles to Vertical Random Whole-Body Vibration with Different Magnitudes at Different Postures

    NASA Astrophysics Data System (ADS)

    BLÜTHNER, R.; SEIDEL, H.; HINZ, B.

    2002-05-01

    Back muscle forces contribute essentially to the whole-body vibration-induced spinal load. The electromyogram (EMG) can help to estimate these forces during whole-body vibration (WBV). Thirty-eight subjects were exposed to identical random low-frequency WBV (0·7, 1·0 and 1·4 m/s-2 r.m.s. weighted acceleration) at a relaxed, erect and bent forward postures. The acceleration of the seat and the force between the seat and the buttocks were measured. Six EMGs were derived from the right side of the m. trapezius pars descendens, m. ileocostalis lumborum pars thoracis, m. ileocostalis lumborum pars lumborum; m. longissimus thoracis pars thoracis, m. longissimus thoracis pars lumborum, and lumbar multifidus muscle. All data were filtered for anti-aliasing and sampled with 1000 Hz. Artefacts caused by the ECG in the EMG were identified and eliminated in the time domain using wavelets. The individually rectified and normalized EMGs were averaged across subjects. The EMGs without WBV exhibited characteristic patterns for the three postures examined. The coherence and transfer functions indicated characteristic myoelectric responses to random WBV with several effects of posture and WBV magnitude. A comprehensive set of transfer functions from the seat acceleration or the mean normalized input force to the mean processed EMG was presented.The results can be used for the development of more sophisticated models with a separate control of various back muscle groups. However, the EMG-force relationship under dynamic conditions needs to be examined in more detail before the results can be implemented. Since different reflex mechanisms depending on the frequency of WBV are linked with different types of active muscle fibres, various time delays between the EMG and muscle force may be necessary.

  20. Influence of forest machine function on operator exposure to whole-body vibration in a cut-to-length timber harvester.

    PubMed

    Sherwin, L M; Owende, P M O; Kanali, C L; Lyons, J; Ward, S M

    2004-09-15

    The influence of machine function (tree felling and processing, and machine movement over the terrain) on operator exposure to whole-body vibration in a cut-to-length (CTL) timber harvester was evaluated. Vibrations were measured on the seat and the cabin chassis in three orthogonal (x, y, z) axes for the tree felling and processing, and during motion on a test track. It was found that the level of vibration transmitted to the operator during felling and processing was mainly affected by the tree size (diameter). For tree diameter at breast height (dbh) range of 0.25-0.35 m that was investigated, the vertical (z-axis) vibration component during processing increased by up to 300%, and increased by 50% during felling. However, the associated vibration levels were not sufficient to pose any serious health risks to the operator for an exposure limit of 8 h. Vibration at the operator seat and cabin chassis was predominant in the lateral (y-axis) and vertical (z-axis) respectively, during vehicle motion over the standard test track. Vibration peaks of approximately 0.20 and 0.17 ms(-2) occurred at 5 and 3.2 Hz respectively.

  1. Menopause, the metabolic syndrome, and mind-body therapies

    PubMed Central

    Innes, Kim E.; Selfe, Terry Kit; Taylor, Ann Gill

    2009-01-01

    Cardiovascular disease risk rises sharply with menopause, likely due to the coincident increase in insulin resistance and related atherogenic changes that together comprise the metabolic or insulin resistance syndrome, a cluster of metabolic and hemodynamic abnormalities strongly implicated in the pathogenesis and progression of cardiovascular disease. A growing body of research suggests that traditional mind-body practices such as yoga, tai chi, and qigong may offer safe and cost-effective strategies for reducing insulin resistance syndrome-related risk factors for cardiovascular disease in older populations, including postmenopausal women. Current evidence suggests that these practices may reduce insulin resistance and related physiological risk factors for cardiovascular disease; improve mood, well-being, and sleep; decrease sympathetic activation; and enhance cardiovagal function. However, additional rigorous studies are needed to confirm existing findings and to examine long-term effects on cardiovascular health. PMID:18779682

  2. Validation of Intra-Subject Variation in Biodynamic Responses of Seated Human Exposed to Whole-Body Vibration

    NASA Astrophysics Data System (ADS)

    Park, Min Soo; Yoshimura, Takuya; Tamaoki, Gen

    Many studies have been conducted to investigate the change in human response under various experimental conditions. Usually, these experiments were conducted using many subjects and the inter-subject variation was evaluated. However, the intra-subject variation in human response is also necessary for understanding the change in an individual's physical response to whole-body vibration (WBV). The aim of this study is to investigate the intra-subject variation in biodynamic responses (both apparent mass and seat-to-head transmissibility) of a seated human exposed to vertical whole-body vibration over time. In the experiments, nine male subjects were exposed to vertical random vibration (0.2-0.3 m/s2 in r.m.s.) in the 0-30Hz frequency range. The measurement variation was also evaluated, wherein the measurements were repeated five times without any change to form the “baseline” for each subject, and the intra-subject variations were evaluated by comparing their responses with these “baseline.” The intra-subject variation was examined from two different viewpoints: variation “within a day” and that “over several days.” To determine the intra-subject variation “within a day”, the five measurements were obtained at two-hour intervals on the same day. In the intra-subject variation “over several days”, the five measurements were obtained again, but at the same time of the day on five consecutive days. The results show that the intra-subject variations (both “within a day” and “over several days”) in biodynamic responses are larger than the “baseline.” However, when the variation “within a day” in biodynamic responses is compared to that “over several days,” no common trend is observed among subjects. Although the magnitude of intra-subject variation in biodynamic responses depends on each subject, both variations “within a day” and that “over several days” have a similar range of variation.

  3. Whole body vibration exercise improves body balance and walking velocity in postmenopausal osteoporotic women treated with alendronate: Galileo and Alendronate Intervention Trail (GAIT).

    PubMed

    Iwamoto, J; Sato, Y; Takeda, T; Matsumoto, H

    2012-09-01

    A randomized controlled trial was conducted to determine the effect of 6 months of whole body vibration (WBV) exercise on physical function in postmenopausal osteoporotic women treated with alendronate. Fifty-two ambulatory postmenopausal women with osteoporosis (mean age: 74.2 years, range: 51-91 years) were randomly divided into two groups: an exercise group and a control group. A four-minute WBV exercise was performed two days per week only in the exercise group. No exercise was performed in the control group. All the women were treated with alendronate. After 6 months of the WBV exercise, the indices for flexibility, body balance, and walking velocity were significantly improved in the exercise group compared with the control group. The exercise was safe and well tolerated. The reductions in serum alkaline phosphatase and urinary cross-linked N-terminal telopeptides of type I collagen during the 6-month period were comparable between the two groups. The present study showed the benefit and safety of WBV exercise for improving physical function in postmenopausal osteoporotic women treated with alendronate.

  4. Effect of Muscle Tension on Non-Linearities in the Apparent Masses of Seated Subjects Exposed to Vertical Whole-Body Vibration

    NASA Astrophysics Data System (ADS)

    MATSUMOTO, Y.; GRIFFIN, M. J.

    2002-05-01

    In subjects exposed to whole-body vibration, the cause of non-linear dynamic characteristics with changes in vibration magnitude is not understood. The effect of muscle tension on the non-linearity in apparent mass has been investigated in this study. Eight seated male subjects were exposed to random and sinusoidal vertical vibration at five magnitudes (0·35-1·4 m/s2 r.m.s.). The random vibration was presented for 60 s over the frequency range 2·0-20 Hz; the sinusoidal vibration was presented for 10 s at five frequencies (3·15, 4·0, 5·0, 6·3 and 8·0 Hz). Three sitting conditions were adopted such that, in two conditions, muscle tension in the buttocks and the abdomen was controlled. It was assumed that, in these two conditions, involuntary changes in muscle tension would be minimized. The force and acceleration at the seat surface were used to obtain apparent masses of subjects. With both sinusoidal and random vibration, there was statistical support for the hypothesis that non-linear characteristics were less clear when muscle tension in the buttocks and the abdomen was controlled. With increases in the magnitude of random vibration from 0·35 to 1·4 m/s2 r.m.s., the apparent mass resonance frequency decreased from 5·25 to 4·25 Hz with normal muscle tension, from 5·0 to 4·38 Hz with the buttocks muscles tensed, and from 5·13 to 4·5 Hz with the abdominal muscles tensed. Involuntary changes in muscle tension during whole-body vibration may be partly responsible for non-linear biodynamic responses.

  5. Vibrational investigation of calcium-silicate cements for endodontics in simulated body fluids

    NASA Astrophysics Data System (ADS)

    Taddei, Paola; Modena, Enrico; Tinti, Anna; Siboni, Francesco; Prati, Carlo; Gandolfi, Maria Giovanna

    2011-05-01

    Calcium-silicate MTA (Mineral Trioxide Aggregate) cements have been recently developed for oral and endodontic surgery. This study was aimed at investigating commercial (White ProRoot MTA, White and Grey MTA-Angelus) and experimental (wTC-Bi) accelerated calcium-silicate cements with regards to composition, hydration products and bioactivity upon incubation for 1-28 days at 37 °C, in Dulbecco's Phosphate Buffered Saline (DPBS). Deposits on the surface of the cements and the composition changes during incubation were investigated by micro-Raman and ATR/FT-IR spectroscopy, and pH measurements. Vibrational techniques disclosed significant differences in composition among the unhydrated cements, which significantly affected the bioactivity as well as pH, and hydration products of the cements. After one day in DPBS, all the cements were covered by a more or less homogeneous layer of B-type carbonated apatite. The experimental cement maintained a high bioactivity, only slightly lower than the other cements and appears a valid alternative to commercial cements, in view of its adequate setting time properties. The bioactivity represents an essential property to favour bone healing and makes the calcium-silicate cements the gold standard materials for root-apical endodontic surgery.

  6. Exaggerated haemodynamic and neural responses to involuntary contractions induced by whole-body vibration in normotensive obese versus lean women.

    PubMed

    Dipla, Konstantina; Kousoula, Dimitra; Zafeiridis, Andreas; Karatrantou, Konstantina; Nikolaidis, Michalis G; Kyparos, Antonios; Gerodimos, Vassilis; Vrabas, Ioannis S

    2016-06-01

    What is the central question of this study? In obesity, the exaggerated blood pressure response to voluntary exercise is linked to hypertension, yet the mechanisms are not fully elucidated. We examined whether involuntary contractions elicit greater haemodynamic responses and altered neural control of blood pressure in normotensive obese versus lean women. What is the main finding and its importance? During involuntary contractions induced by whole-body vibration, there were augmented blood pressure and spontaneous baroreflex responses in obese compared with lean women. This finding is suggestive of an overactive mechanoreflex in the exercise-induced hypertensive response in obesity. Passive contractions did not elicit differential heart rate responses in obese compared with lean women, implying other mechanisms for the blunted heart rate response reported during voluntary exercise in obesity. In obesity, the exaggerated blood pressure (BP) response to exercise is linked to hypertension, yet the mechanisms are not fully elucidated. In this study, we examined whether involuntary mechanical oscillations, induced by whole-body vibration (WBV), elicit greater haemodynamic responses and altered neural control of BP in obese versus lean women. Twenty-two normotensive, premenopausal women (12 lean and 10 obese) randomly underwent a passive WBV (25 Hz) and a control protocol (similar posture without WVB). Beat-by-beat BP, heart rate, stroke volume, systemic vascular resistance, cardiac output, parasympathetic output (evaluated by heart rate variability) and spontaneous baroreceptor sensitivity (sBRS) were assessed. We found that during WBV, obese women exhibited an augmented systolic BP response compared with lean women that was correlated with body fat percentage (r = 0.77; P < 0.05). The exaggerated BP rise was driven mainly by the greater increase in cardiac output index in obese versus lean women, associated with a greater stroke volume index in obese women

  7. [Intensity-modulated radiation therapy and stereotactic body radiation therapy for head and neck tumors: evidence-based medicine].

    PubMed

    Lapierre, A; Martin, F; Lapeyre, M

    2014-10-01

    Over the last decade, there have been many technical advances in radiation therapy, such as the spread of intensity-modulated conformal radiotherapy, and the rise of stereotactic body radiation therapy. By allowing better dose-to-target conformation and thus better organs at risk-sparing, these techniques seem very promising, particularly in the field of head and neck tumors. The present work aims at analyzing the level of evidence and recommendation supporting the use of high-technology radiotherapy in head and neck neoplasms, by reviewing the available literature.

  8. Acute effect of whole body vibration on isometric strength, squat jump, and flexibility in well-trained combat athletes

    PubMed Central

    Pekünlü, E

    2015-01-01

    The purpose of this study was to investigate the effect of whole body vibration (WBV) training on maximal strength, squat jump, and flexibility of well-trained combat athletes. Twelve female and 8 male combat athletes (age: 22.8 ± 3.1 years, mass: 65.4 ± 10.7 kg, height: 168.8 ± 8.8 cm, training experience: 11.6 ± 4.7 years, training volume: 9.3 ± 2.8 hours/week) participated in this study. The study consisted of three sessions separated by 48 hours. The first session was conducted for familiarization. In the subsequent two sessions, participants performed WBV or sham intervention in a randomized, balanced order. During WBV intervention, four isometric exercises were performed (26 Hz, 4 mm). During the sham intervention, participants performed the same WBV intervention without vibration treatment (0 Hz, 0 mm). Hand grip, squat jump, trunk flexion, and isometric leg strength tests were performed after each intervention. The results of a two-factor (pre-post[2] × intervention[2]) repeated measures ANOVA revealed a significant interaction (p = 0.018) of pre-post × intervention only for the hand grip test, indicating a significant performance increase of moderate effect (net increase of 2.48%, d = 0.61) after WBV intervention. Squat jump, trunk flexion, and isometric leg strength performances were not affected by WBV. In conclusion, the WBV protocol used in this study potentiated hand grip performance, but did not enhance squat jump, trunk flexion, or isometric leg strength in well-trained combat athletes. PMID:26060334

  9. An Updated Review of Epidemiologic Studies on the Relationship Between Exposure to Whole-Body Vibration and Low Back Pain

    NASA Astrophysics Data System (ADS)

    Bovenzi, M.; Hulshof, C. T. J.

    1998-08-01

    The aim of this paper is to update the information on the epidemiologic evidence of the adverse health effects of whole-body vibration (WBV) on the spinal system by means of a review of the epidemiologic studies published between 1986 and 1996. In a systematic search of epidemiologic studies of low back pain (LBP) disorders and occupations with exposure to WBV, 37 articles were retrieved. The quality of each study was evaluated according to criteria concerning the assessment of vibration exposure, assessment of health effects, and methodology. The epidemiologic studies reaching an adequate score on each of the above mentioned criteria, were included in the final review. A meta-analysis was also conducted in order to combine the results of independent epidemiologic studies. After applying the selection criteria, 16 articles reporting the occurrence of LBP disorders in 19 WBV-exposed occupational groups, reached a sufficient score. The study design was cross-sectional for 13 occupational groups, longitudinal for 5 groups and of case-control type for one group. The main reasons for the exclusion of studies were insufficient quantitative information on WBV exposure and the lack of control groups. The findings of the selected studies and the results of the meta-analysis of both cross-sectional and cohort studies showed that occupational exposure to WBV is associated with an increased risk of LBP, sciatic pain, and degenerative changes in the spinal system, including lumbar intervertebral disc disorders. Owing to the cross-sectional design of the majority of the reviewed studies, this epidemiologic evidence is not sufficient to outline a clear exposure-response relationship between WBV exposure and LBP disorders. Upon comparing the epidemiological studies included in this review with those conducted before 1986, it is concluded that research design and the quality of exposure and health effect data in the field of WBV have improved in the last decade.

  10. Effective seat-to-head transmissibility in whole-body vibration: Effects of posture and arm position

    NASA Astrophysics Data System (ADS)

    Rahmatalla, Salam; DeShaw, Jonathan

    2011-12-01

    Seat-to-head transmissibility is a biomechanical measure that has been widely used for many decades to evaluate seat dynamics and human response to vibration. Traditionally, transmissibility has been used to correlate single-input or multiple-input with single-output motion; it has not been effectively used for multiple-input and multiple-output scenarios due to the complexity of dealing with the coupled motions caused by the cross-axis effect. This work presents a novel approach to use transmissibility effectively for single- and multiple-input and multiple-output whole-body vibrations. In this regard, the full transmissibility matrix is transformed into a single graph, such as those for single-input and single-output motions. Singular value decomposition and maximum distortion energy theory were used to achieve the latter goal. Seat-to-head transmissibility matrices for single-input/multiple-output in the fore-aft direction, single-input/multiple-output in the vertical direction, and multiple-input/multiple-output directions are investigated in this work. A total of ten subjects participated in this study. Discrete frequencies of 0.5-16 Hz were used for the fore-aft direction using supported and unsupported back postures. Random ride files from a dozer machine were used for the vertical and multiple-axis scenarios considering two arm postures: using the armrests or grasping the steering wheel. For single-input/multiple-output, the results showed that the proposed method was very effective in showing the frequencies where the transmissibility is mostly sensitive for the two sitting postures and two arm positions. For multiple-input/multiple-output, the results showed that the proposed effective transmissibility indicated higher values for the armrest-supported posture than for the steering-wheel-supported posture.

  11. Triaxial modulation of the acceleration induced in the lower extremity during whole-body vibration training: a pilot study.

    PubMed

    Cook, David P; Mileva, Katya N; James, Darren C; Zaidell, Lisa N; Goss, Victor G; Bowtell, Joanna L

    2011-02-01

    The purpose of the present study was to quantify vibration transmissibility through the lower extremity during exercise on a whole-body vibration (WBV) platform. Six healthy adults completed 20 trials of 30-second static squat exercise at 30 or 40 degrees of knee flexion angle on a WBV platform working at combinations of 5 frequencies (VF: 20, 25, 30, 35, 40 Hz) and 2 amplitudes (VA: low, 1.5 mm or high, 3 mm). Accelerations induced by the platform were recorded simultaneously at the shank and the thigh using triaxial accelerometers positioned at the segmental center of mass. Root-mean-square (RMS) acceleration amplitude and transmission ratios between the platform and the leg segments were calculated and compared between the experimental conditions. An alpha level of 0.05 was set to establish significance. Shank vertical acceleration was greatest at the lower VF (p = 0.028), higher VA (p = 0.028), and deeper squat (p = 0.048). Thigh vertical acceleration was not affected by depth of squat (p = 0.25), but it was greatest at higher VA (p = 0.046) and lower VF (p = 0.028). Medial-lateral shank acceleration was greatest at higher VF and deeper squat (both p = 0.046) and at higher VA (p = 0.028). Medial-lateral thigh acceleration was positively related to both VF (p = 0.046) and VA (p = 0.028) but was not affected by knee angle (p = 0.46). Anterior-posterior shank acceleration was higher at deeper squat (p = 0.046) and at lower VF and higher VA (both p = 0.028). Anterior-posterior thigh acceleration was related positively to the VA (p = 0.028), inversely to the VF (p = 0.028), and not dependent on knee angle (p = 0.75). Identification of specific vibration parameters and posture, which underpin WBV training efficacy, will enable coaches and athletes to design WBV training programs to specifically target shank or thigh muscles for enhanced performance.

  12. Evaluation of body weight, body mass index, and body fat percentage changes in early stages of fixed orthodontic therapy

    PubMed Central

    Sandeep, K. Sai; Singaraju, Gowri Sankar; Reddy, V. Karunakar; Mandava, Prasad; Bhavikati, Venkata N.; Reddy, Rohit

    2016-01-01

    Aim: The aim of this study was to evaluate and compare the changes in body weight, body mass index (BMI), and body fat percentage (BFP) during the initial stages of fixed orthodontic treatment. Materials and Methods: The sample for this observational prospective study included 68 individuals with fixed orthodontic appliance in the age group of 18–25 years of both the sexes (25 males and 43 females). The control group consisted of 60 individuals (24 males and 36 females). The weight, BMI, and BFP were measured using a Body Composition Monitor at three points of time “T1” initial; “T2” after 1 month; and “T2” after 3 months. The results were tabulated and analyzed with the Statistical Package for the Social Sciences software. The mean changes between different parameters in both the study and control groups and between males and females in the study group was compared by using two-tailed unpaired student's t-test. The statistical significance is set atP ≤ 0.05. Results: There was an overall decrease in the body weight, BMI, and BFP after 1 month in the study cohort, which was statistically significant compared to the control group (P < 0.0001). This was followed by an increase in the parameters after the end of the 3rd month. Comparison of the parameters between the study and control group at the start of the treatment and at the end of the 3rd month had no statistical significance. There was a marked variation in the changes of these parameters between males and females of the study group, which is statistically significant (<0.0001). Conclusion: There is a definite reduction in the weight, BMP, and BMI at the end of the first month followed by a gain of weight, but not at the initial point by the end of the 3rd month. PMID:27583224

  13. Simulation of vortex-induced vibrations of a cylinder using ANSYS CFX rigid body solver

    NASA Astrophysics Data System (ADS)

    Izhar, Abubakar; Qureshi, Arshad Hussain; Khushnood, Shahab

    2017-03-01

    This article simulates the vortex-induced oscillations of a rigid circular cylinder with elastic support using the new ANSYS CFX rigid body solver. This solver requires no solid mesh to setup FSI (Fluid Structure Interaction) simulation. The two-way case was setup in CFX only. Specific mass of the cylinder and flow conditions were similar to previous experimental data with mass damping parameter equal to 0.04, specific mass of 1 and Reynolds number of 3800. Two dimensional simulations were setup. Both one-degree-of-freedom and two-degree-of-freedom cases were run and results were obtained for both cases with reasonable accuracy as compared with experimental results. Eight-figure XY trajectory and lock-in behavior were clearly captured. The obtained results were satisfactory.

  14. Optimization of Car Body under Constraints of Noise, Vibration, and Harshness (NVH), and Crash

    NASA Technical Reports Server (NTRS)

    Kodiyalam, Srinivas; Yang, Ren-Jye; Sobieszczanski-Sobieski, Jaroslaw (Editor)

    2000-01-01

    To be competitive on the today's market, cars have to be as light as possible while meeting the Noise, Vibration, and Harshness (NVH) requirements and conforming to Government-man dated crash survival regulations. The latter are difficult to meet because they involve very compute-intensive, nonlinear analysis, e.g., the code RADIOSS capable of simulation of the dynamics, and the geometrical and material nonlinearities of a thin-walled car structure in crash, would require over 12 days of elapsed time for a single design of a 390K elastic degrees of freedom model, if executed on a single processor of the state-of-the-art SGI Origin2000 computer. Of course, in optimization that crash analysis would have to be invoked many times. Needless to say, that has rendered such optimization intractable until now. The car finite element model is shown. The advent of computers that comprise large numbers of concurrently operating processors has created a new environment wherein the above optimization, and other engineering problems heretofore regarded as intractable may be solved. The procedure, shown, is a piecewise approximation based method and involves using a sensitivity based Taylor series approximation model for NVH and a polynomial response surface model for Crash. In that method the NVH constraints are evaluated using a finite element code (MSC/NASTRAN) that yields the constraint values and their derivatives with respect to design variables. The crash constraints are evaluated using the explicit code RADIOSS on the Origin 2000 operating on 256 processors simultaneously to generate data for a polynomial response surface in the design variable domain. The NVH constraints and their derivatives combined with the response surface for the crash constraints form an approximation to the system analysis (surrogate analysis) that enables a cycle of multidisciplinary optimization within move limits. In the inner loop, the NVH sensitivities are recomputed to update the NVH

  15. Deconstructing the Mirror's Reflection: Narrative Therapy Groups for Women Dissatisfied with Their Body

    ERIC Educational Resources Information Center

    Duba, Jill D.; Kindsvatter, Aaron; Priddy, Constance J.

    2010-01-01

    Women facing middle age and beyond are pressured by a cultural ideal of slimness. The authors review literature pertaining to the factors affecting the societal perceptions of body image and address relevant counseling interventions, specifically, group therapy based on narrative theory, that are aimed at this population.

  16. Evaluating the Impact of Whole-Body Vibration (WBV) on Fatigue and the Implications for Driver Safety

    PubMed Central

    Troxel, Wendy M.; Helmus, Todd C.; Tsang, Flavia; Price, Carter C.

    2016-01-01

    Abstract Driver fatigue is a significant contributor to motor vehicle accidents and fatalities, although the exact share of those events attributable to fatigue is still uncertain. In 2013, accidents involving heavy trucks killed more than 3,944 people in the United States, with over 80 percent of those killed not in the truck. Numerous factors contribute to driver fatigue among commercial drivers, including shiftwork schedules; high prevalence of alcohol and substance use; extended hours; comorbid medical conditions, such as pain; and high prevalence of sleep disorders. Many of these factors have been studied extensively in the trucking industry. Whole-body vibration (WBV) is another potential factor that may contribute to driver fatigue, but it has received little attention. Beginning in January 2015, Bose Corporation and AIG commissioned the RAND Corporation to study the link between WBV and driver fatigue. This article summarizes the findings from RAND's systematic review of the literature on WBV and fatigue as well as considers appropriate study designs and methodology that will inform new areas of research focused on improving the safety of truckers and those who share the road with them. The literature review identified 24 studies examining the impact of WBV on fatigue or sleepiness. The majority of studies (n = 18) found a significant association between WBV and fatigue or sleepiness; however, there are several limitations of the existing literature that preclude definitive conclusions regarding the impact of WBV on these outcomes. This research concludes with recommendations for future studies to strengthen the evidence base. PMID:28083416

  17. Effect of whole-body vibration exercise and muscle strengthening, balance, and walking exercises on walking ability in the elderly.

    PubMed

    Kawanabe, Kazuhiro; Kawashima, Akira; Sashimoto, Issei; Takeda, Tsuyoshi; Sato, Yoshihiro; Iwamoto, Jun

    2007-03-01

    The present study was conducted to determine the beneficial effect of whole-body vibration (WBV) exercise in addition to muscle strengthening, balance, and walking exercises on the walking ability in the elderly. Sixty-seven elderly participants were divided into two groups; the WBV exercise plus routine exercises group (n=40) and the routine exercises alone group (n=27). WBV exercise was performed on a Galileo machine (Novotec, Pforzheim, Germany) at an intensity of 12-20 Hz, for a duration of 4 minutes, once every week. All the participants in both the groups were similarly instructed to undergo routine exercises such as balance and muscle strengthening training, and take walking exercise twice a week. The period of this study was 2 months to evaluate the acute effects of WBV exercise. The mean age of the participants was 72.0 years (range, 59-86 years). At baseline, there were significant negative correlations between age and the walking speed, step length, and maximum standing time on one leg. After the 2-month exercise program, the walking speed, step length, and the maximum standing time on one leg were significantly improved in the WBV exercise plus routine exercises group, while no significant changes in these parameters were observed in the routine exercises alone group. Thus, the present study showed the beneficial effect of WBV exercise in addition to muscle strengthening, balance, and walking exercises in improving the walking ability in the elderly. WBV exercise was safe and well tolerated in the elderly.

  18. Evaluating the Impact of Whole-Body Vibration (WBV) on Fatigue and the Implications for Driver Safety.

    PubMed

    Troxel, Wendy M; Helmus, Todd C; Tsang, Flavia; Price, Carter C

    2016-05-09

    Driver fatigue is a significant contributor to motor vehicle accidents and fatalities, although the exact share of those events attributable to fatigue is still uncertain. In 2013, accidents involving heavy trucks killed more than 3,944 people in the United States, with over 80 percent of those killed not in the truck. Numerous factors contribute to driver fatigue among commercial drivers, including shiftwork schedules; high prevalence of alcohol and substance use; extended hours; comorbid medical conditions, such as pain; and high prevalence of sleep disorders. Many of these factors have been studied extensively in the trucking industry. Whole-body vibration (WBV) is another potential factor that may contribute to driver fatigue, but it has received little attention. Beginning in January 2015, Bose Corporation and AIG commissioned the RAND Corporation to study the link between WBV and driver fatigue. This article summarizes the findings from RAND's systematic review of the literature on WBV and fatigue as well as considers appropriate study designs and methodology that will inform new areas of research focused on improving the safety of truckers and those who share the road with them. The literature review identified 24 studies examining the impact of WBV on fatigue or sleepiness. The majority of studies (n = 18) found a significant association between WBV and fatigue or sleepiness; however, there are several limitations of the existing literature that preclude definitive conclusions regarding the impact of WBV on these outcomes. This research concludes with recommendations for future studies to strengthen the evidence base.

  19. The effects of whole body vibration on static balance, spinal curvature, pain, and disability of patients with low back pain.

    PubMed

    Yang, Jinmo; Seo, Dongkwon

    2015-03-01

    [Purpose] The purpose of this study was to investigate the impact of whole body vibration (WBV) on static balance, spinal curvature, pain, and the disability of patients with chronic lower back pain. [Subjects and Methods] The subjects were of 40 patients, who were randomly assigned to WBV and control groups. Twenty-five minutes of lumbar stability training and 5 minutes of WBV were conducted for the WBV group, and 30 minutes of lumbar stability training was conducted for the control group. The training was conducted three times per week for a total of 6 weeks. Static balance, spinal curvature, pain, and disability were measured before and after the intervention. [Results] After the intervention, the WBV group showed a significant differences in static balance, spinal curvature, pain, and disability. The control group presented significant differences in pain, and disability. In the comparison of the two groups, the WBV group showed more significant improvements in the fall index and pain. [Conclusion] WBV can be recommended for the improvement of the balance ability and pain of chronic lower back pain patients.

  20. Resistance Exercise with concurrent whole body vibration preserves isometric knee extension strength during 8 weeks of horizontal bed rest

    NASA Astrophysics Data System (ADS)

    Mulder, E. R.; Stegeman, D. F.; Gerrits, K.; Rittweger, J.; Felsenberg, D.; de Haan, A.

    2005-08-01

    Changes in the quadriceps femoris (QF) muscle with respect to anatomical cross sectional area (CSA), neural activation level and isometric maximal voluntary torque (MVT) were determined in 18 healthy men subjected to 8 weeks of horizontal bed rest (BR) with (n = 9) and without (Ctrl; n = 9) 6 days/week resistance exercise concurrent with whole body vibration (RVE). For Ctrl, mean QF CSA decreased linearly over time to a reduction of 14.3 ± 4.9% at the end of BR. For RVE, exercise during BR significantly mitigated this reduction (3.9 ± 4.4%). Prior to and seven times during BR, MVT values were obtained together with neural activation levels, the latter by means of a superimposed stimulation technique. MVT was maintained for RVE during BR, whereas for Ctrl, MVT was significantly reduced by 14.2 ± 8.1% after 8 weeks. In contrast to previous reports, the maximal voluntary activation remained unaltered for both groups throughout the study. For Ctrl, the absence of a change in neural activation might be related to the repeated testing during the bed rest, which had presumably resulted in a habituation to the task. When both groups were pooled, a significant positive correlation (R= 0.62; P < 0.01) was observed between changes in CSA and changes in MVT.

  1. The effects of whole body vibration on static balance, spinal curvature, pain, and disability of patients with low back pain

    PubMed Central

    Yang, Jinmo; Seo, Dongkwon

    2015-01-01

    [Purpose] The purpose of this study was to investigate the impact of whole body vibration (WBV) on static balance, spinal curvature, pain, and the disability of patients with chronic lower back pain. [Subjects and Methods] The subjects were of 40 patients, who were randomly assigned to WBV and control groups. Twenty-five minutes of lumbar stability training and 5 minutes of WBV were conducted for the WBV group, and 30 minutes of lumbar stability training was conducted for the control group. The training was conducted three times per week for a total of 6 weeks. Static balance, spinal curvature, pain, and disability were measured before and after the intervention. [Results] After the intervention, the WBV group showed a significant differences in static balance, spinal curvature, pain, and disability. The control group presented significant differences in pain, and disability. In the comparison of the two groups, the WBV group showed more significant improvements in the fall index and pain. [Conclusion] WBV can be recommended for the improvement of the balance ability and pain of chronic lower back pain patients. PMID:25931735

  2. Mind-body therapies and control of inflammatory biology: A descriptive review

    PubMed Central

    Bower, Julienne E.; Irwin, Michael R.

    2015-01-01

    The use of mind-body therapies, including Tai Chi, Qigong, yoga, and meditation, has grown steadily in recent years. These approaches have been shown to be effective in reducing symptoms and improving quality of life, and research has begun to examine the impact of these therapies on biological processes, including inflammation. A review of 26 randomized controlled trials was conducted to describe the effects of mind-body therapies (MBTs) on circulating, cellular, and genomic markers of inflammation. This qualitative evaluation showed mixed effects of MBTs on circulating inflammatory markers, including CRP and IL-6, and on measures of stimulated cytokine production. More consistent findings were seen for genomic markers, with trials showing decreased expression of inflammation-related genes and reduced signaling through the proinflammatory transcription factor NF-κB. Potential mechanisms for these effects are discussed, including alterations in neuroendocrine, neural, and psychological and behavioral processes. PMID:26116436

  3. Implementation of a volumetric modulated arc therapy treatment planning solution for kidney and adrenal stereotactic body radiation therapy.

    PubMed

    Sonier, Marcus; Chu, William; Lalani, Nafisha; Erler, Darby; Cheung, Patrick; Korol, Renee

    2016-01-01

    To develop a volumetric modulated arc therapy (VMAT) treatment planning solution in the treatment of primary renal cell carcinoma and oligometastatic adrenal lesions with stereotactic body radiation therapy. Single-arc VMAT plans (n = 5) were compared with clinically delivered step-and-shoot intensity-modulated radiotherapy (IMRT) with planning target volume coverage normalized between techniques. Target volume conformity, organ-at-risk (OAR) dose, treatment time, and monitor units were compared. A VMAT planning solution, created from a combination of arc settings and optimization constraints, auto-generated treatment plans in a single optimization. The treatment planning solution was evaluated on 15 consecutive patients receiving kidney and adrenal stereotactic body radiation therapy. Treatment time was reduced from 13.0 ± 2.6 to 4.0 ± 0.9 minutes for IMRT and VMAT, respectively. The VMAT planning solution generated treatment plans with increased target homogeneity, improved 95% conformity index, and a reduced maximum point dose to nearby OARs but with increased intermediate dose to distant OARs. The conformity of the 95% isodose improved from 1.32 ± 0.39 to 1.12 ± 0.05 for IMRT and VMAT treatment plans, respectively. Evaluation of the planning solution showed clinically acceptable dose distributions for 13 of 15 cases with tight conformity of the prescription isodose to the planning target volume of 1.07 ± 0.04, delivering minimal dose to OARs. The introduction of a stereotactic body radiation therapy VMAT treatment planning solution improves the efficiency of planning and delivery time, producing treatment plans of comparable or superior quality to IMRT in the case of primary renal cell carcinoma and oligometastatic adrenal lesions.

  4. Whole body motion-detection tasks can yield much lower thresholds than direction-recognition tasks: implications for the role of vibration.

    PubMed

    Chaudhuri, Shomesh E; Karmali, Faisal; Merfeld, Daniel M

    2013-12-01

    Earlier spatial orientation studies used both motion-detection (e.g., did I move?) and direction-recognition (e.g., did I move left/right?) paradigms. The purpose of our study was to compare thresholds measured with motion-detection and direction-recognition tasks on a standard Moog motion platform to see whether a substantial fraction of the reported threshold variation might be explained by the use of different discrimination tasks in the presence of vibrations that vary with motion. Thresholds for the perception of yaw rotation about an earth-vertical axis and for interaural translation in an earth-horizontal plane were determined for four healthy subjects with standard detection and recognition paradigms. For yaw rotation two-interval detection thresholds were, on average, 56 times smaller than two-interval recognition thresholds, and for interaural translation two-interval detection thresholds were, on average, 31 times smaller than two-interval recognition thresholds. This substantive difference between recognition thresholds and detection thresholds is one of our primary findings. For motions near our measured detection threshold, we measured vibrations that matched previously established vibration thresholds. This suggests that vibrations contribute to whole body motion detection. We also recorded yaw rotation thresholds on a second motion device with lower vibration and found direction-recognition and motion-detection thresholds that were not significantly different from one another or from the direction-recognition thresholds recorded on our Moog platform. Taken together, these various findings show that yaw rotation recognition thresholds are relatively unaffected by vibration when moderate (up to ≈ 0.08 m/s(2)) vibration cues are present.

  5. [Clinical care of lung cancer patients with body image changes after targeted therapy].

    PubMed

    Chan, Jui-Chun; Liao, Yu-Chien; Lee, Yun-Hsiang; Lai, Yeur-Hur

    2014-08-01

    Lung cancer has a relatively short survival prognosis and advanced disease progression. Therefore, targeted therapy has become one of the most frequent treatments of this disease. Targeted therapy has several features that effectively extend the survival period; is easy to apply and use; and has fewer side effects than chemotherapy. Therefore, this therapy approach has become the preferred choice of patients with advanced lung cancer. However, current targeted therapies like Iressa and Tarceva produce side effects such as skin dryness and acneiform eruption that may bother patients. These side effects may further cause patient concern over negative changes in their body image, and these concerns may influence their work and social lives. Additionally, some patients treated with targeted therapy worry about their chances of survival if they reduce or stop the medication to avoid the side effects. Consequently, patients may struggle with both physical and psychological impacts, and may have problems sustaining a good quality of life. This article focuses on delivering relevant information to patients receiving targeted therapy who suffer from dermatological toxicity and damage to their body image. We demonstrate an assessment tool and information to help patients cope with physical and psychosocial issues through daily skin care routines, mental / psychological supports, and cognitive behavior therapy. These measures may help patients rebuild a positive self-concept. We plan to develop further associated training to provide professionals / care providers with the appropriate knowledge and skills to care for cancer patients in a resource-limited environment so that they may improve the quality of nursing care for patients with body image changes.

  6. Influence of tyre inflation pressure on whole-body vibrations transmitted to the operator in a cut-to-length timber harvester.

    PubMed

    Sherwin, L M; Owende, P M O; Kanali, C L; Lyons, J; Ward, S M

    2004-05-01

    The influence of tyre inflation pressure on whole-body vibrations transmitted to the operator during the movement of a cut-to-length timber harvester was evaluated. Vibration measurements were taken in three orthogonal (x, y, z) axes at tyre pressure settings of 138, 345 and 414 kPa. Vibration was predominant in the vertical (z) direction with the peak rms acceleration value for the operator seat (0.281 ms(-2)) occurring at approximately 3.2 Hz. The corresponding peak value for the operator cabin chassis was 0.425 m s(-2) at 4 Hz. At 414 kPa, there was potential health risk on the operator for exposures above 8h duration. The vibration total values recorded for the operator seat at the maximum tyre inflation pressure setting were classed as "fairly uncomfortable" (ISO standard 2631-1), and vertical seat vibration transmissibility was highest between 4 and 8 Hz at the 345 kPa tyre pressure setting. The recorded values of WBV were significantly reduced by a reduction in tyre inflation pressure which may therefore be used to moderate the magnitude of WBV on wheeled timber harvesters.

  7. Short-term effect of whole-body vibration training on balance, flexibility and lower limb explosive strength in elite rhythmic gymnasts.

    PubMed

    Despina, Tsopani; George, Dallas; George, Tsiganos; Sotiris, Papouliakos; Alessandra, Di Cagno; George, Korres; Maria, Riga; Stavros, Korres

    2014-02-01

    The purpose of this study was to examine whether whole-body vibration (WBV) training results in short-term performance improvements in flexibility, strength and balance tests in comparison to an equivalent exercise program performed without vibration. Eleven elite rhythmic gymnasts completed a WBV trial, and a control, resistance training trial without vibration (NWBV). The vibration trial consisted of eccentric and concentric squatting exercises on a vibration platform that was turned on, whereas the NWBV involved the same training protocol with the platform turned off. Balance was assessed using the Rhythmic Weight Shift (RWS) based on the EquiTest Dynamic Posturography system; flexibility was measured using the sit & reach test, and lower limb explosive strength was evaluated using standard exercises (squat jump, counter movement jump, single leg squat). All measurements were performed before (pre) immediately after the training program (post 1), and 15 minutes after the end of the program (post 15). Data were analyzed using repeated measures ANOVA was used with condition (WBV-NWBV) as the primary factor and time (pre, post 1, post 15) as the nested within subjects factor, followed by post-hoc pairwise comparison with Bonferroni corrections. Results confirmed the hypothesis of the superiority of WBV training, especially in the post 15 measurement, in all flexibility and strength measures, as well as in a number of balance tests.

  8. Vertical and dual-axis vibration of the seated human body: Nonlinearity, cross-axis coupling, and associations between resonances in transmissibility and apparent mass

    NASA Astrophysics Data System (ADS)

    Zheng, Guangtai; Qiu, Yi; Griffin, Michael J.

    2012-12-01

    The vertical apparent mass of the human body exhibits nonlinearity, with the principal resonance frequency reducing as the vibration magnitude increases. Measures of the transmission of vibration to the spine and the pelvis have suggested complex modes are responsible for the dominant resonance during vertical excitation, but the modes present with dual-axis excitation have not been investigated. This study was designed to examine how the apparent mass and transmissibility of the human body depend on the magnitude of vertical excitation and the addition of fore-and-aft excitation, and the relation between the apparent mass and the transmissibility of the body. The movement of the body (over the first, fifth and twelfth thoracic vertebrae, the third lumbar vertebra, and the pelvis) in the fore-and-aft and vertical directions (and in pitch at the pelvis) was measured in 12 male subjects sitting with their hands on their laps during random vertical vibration excitation (over the range 0.25-20 Hz) at three vibration magnitudes (0.25, 0.5 and 1.0 m s-2 rms). At the highest magnitude of vertical excitation (1.0 m s-2 rms) the effect of adding fore-aft vibration (at 0.25, 0.5, and 1.0 m s-2 rms) was investigated. The forces in the vertical and fore-and-aft directions on the seat surface were also measured so as to calculate apparent masses. Resonances in the apparent mass and transmissibility to the spine and pelvis in the fore-and-aft and vertical directions, and pitch transmissibility to the pelvis, shifted to lower frequencies as the magnitude of vertical excitation increased and as the magnitude of the additional fore-and-aft excitation increased. The nonlinear resonant behaviour of the apparent mass and transmissibility during dual-axis vibration excitation suggests coupling between the principal mode associated with vertical excitation and the cross-axis influence of fore-and-aft excitation. The transmissibility measures are consistent with complex modes

  9. Understanding the role of vibrations, exact exchange, and many-body van der Waals interactions in the cohesive properties of molecular crystals.

    PubMed

    Reilly, Anthony M; Tkatchenko, Alexandre

    2013-07-14

    The development and application of computational methods for studying molecular crystals, particularly density-functional theory (DFT), is a large and ever-growing field, driven by their numerous applications. Here we expand on our recent study of the importance of many-body van der Waals interactions in molecular crystals [A. M. Reilly and A. Tkatchenko, J. Phys. Chem. Lett. 4, 1028 (2013)], with a larger database of 23 molecular crystals. Particular attention has been paid to the role of the vibrational contributions that are required to compare experiment sublimation enthalpies with calculated lattice energies, employing both phonon calculations and experimental heat-capacity data to provide harmonic and anharmonic estimates of the vibrational contributions. Exact exchange, which is rarely considered in DFT studies of molecular crystals, is shown to have a significant contribution to lattice energies, systematically improving agreement between theory and experiment. When the vibrational and exact-exchange contributions are coupled with a many-body approach to dispersion, DFT yields a mean absolute error (3.92 kJ/mol) within the coveted "chemical accuracy" target (4.2 kJ/mol). The role of many-body dispersion for structures has also been investigated for a subset of the database, showing good performance compared to X-ray and neutron diffraction crystal structures. The results show that the approach employed here can reach the demanding accuracy of crystal-structure prediction and organic material design with minimal empiricism.

  10. Does whole-body vibration training in the horizontal direction have effects on motor function and balance of chronic stroke survivors? A preliminary study

    PubMed Central

    Lee, GyuChang

    2015-01-01

    [Purpose] The objective of this study was to investigate the effects of whole-body vibration (WBV) in the horizontal direction on the motor function and balance of chronic stroke survivors. [Subjects and Methods] This study was a randomized controlled trial. Twenty-one individuals with chronic stroke from an inpatient rehabilitation center participated in the study. The participants were allocated to either the WBV training group or the control group. The WBV training group (n = 12) received whole-body vibration delivered in the horizontal direction (15 min/day, 3 times/week, 6 wks) followed by conventional rehabilitation (30 min/day, 5 times/week, 6 wks); the control group (n = 9) received conventional rehabilitation only (30 min/day, 5 times/week, 6 wks). Motor function was measured by using the Fugl-Meyer assessment, and balance was measured by using the Berg Balance Scale (BBS) and the Timed Up and Go (TUG) test before and after the interventions. [Results] After the interventions, all variables improved significantly compared with the baseline values in the WBV training group. In the control group, no significant improvements in any variables were noted. In addition, the BBS score in the WBV training group increased significantly compared with that in the control group. [Conclusion] WBV training with whole-body vibration delivered in the horizontal direction may be a potential intervention for improvement of motor function and balance in patients who previously experienced a stroke. PMID:25995573

  11. Low-magnitude whole body vibration with resistive exercise as a countermeasure against cardiovascular deconditioning after 60 days of head-down bed rest.

    PubMed

    Coupé, Mickael; Yuan, Ming; Demiot, Claire; Bai, Yanqiang Q; Jiang, Shizhong Z; Li, Yongzhi Z; Arbeille, Philippe; Gauquelin-Koch, Guillemette; Levrard, Thibaud; Custaud, Marc-Antoine; Li, Yinghui H

    2011-12-01

    Whole body vibration with resistive exercise is a promising countermeasure against some weightlessness-induced dysfunctions. Our objective was to study whether the combination of low-magnitude whole body vibration with a resistive exercise can prevent the cardiovascular deconditioning induced by a nonstrict 60-day head-down bed rest (Earth Star International Bed Rest Experiment Project). Fourteen healthy men participated in this study. We recorded electrocardiograms and blood pressure waves by means of a noninvasive beat-by-beat measurement system (Cardiospace, integrated by Centre National d'Etudes Spatiales and Astronaut Center of China) during an orthostatic test (20 min of 75-degree head-up tilt test) before and immediately after bed rest. We estimated heart rate, blood pressure, cardiac output, stroke volume, total peripheral resistance, baroreflex sensitivity, and heart rate variability. Low-magnitude whole body vibration with resistive exercise prevented an increase of the sympathetic index (reflecting the sympathovagal balance of cardiac autonomic control) and limited the decrease of the spontaneous baroreflex sensitivity induced by 60 days of head-down bed rest. However, this countermeasure had very little effect on cardiac hemodynamics and did not improve the orthostatic tolerance. This combined countermeasure did not efficiently prevent orthostatic intolerance but prevents changes in the autonomic nervous system associated with cardiovascular deconditioning. The underlying mechanisms remain hypothetical but might involve cutaneous and muscular mechanoreceptors.

  12. Understanding the role of vibrations, exact exchange, and many-body van der Waals interactions in the cohesive properties of molecular crystals

    NASA Astrophysics Data System (ADS)

    Reilly, Anthony M.; Tkatchenko, Alexandre

    2013-07-01

    The development and application of computational methods for studying molecular crystals, particularly density-functional theory (DFT), is a large and ever-growing field, driven by their numerous applications. Here we expand on our recent study of the importance of many-body van der Waals interactions in molecular crystals [A. M. Reilly and A. Tkatchenko, J. Phys. Chem. Lett. 4, 1028 (2013), 10.1021/jz400226x], with a larger database of 23 molecular crystals. Particular attention has been paid to the role of the vibrational contributions that are required to compare experiment sublimation enthalpies with calculated lattice energies, employing both phonon calculations and experimental heat-capacity data to provide harmonic and anharmonic estimates of the vibrational contributions. Exact exchange, which is rarely considered in DFT studies of molecular crystals, is shown to have a significant contribution to lattice energies, systematically improving agreement between theory and experiment. When the vibrational and exact-exchange contributions are coupled with a many-body approach to dispersion, DFT yields a mean absolute error (3.92 kJ/mol) within the coveted "chemical accuracy" target (4.2 kJ/mol). The role of many-body dispersion for structures has also been investigated for a subset of the database, showing good performance compared to X-ray and neutron diffraction crystal structures. The results show that the approach employed here can reach the demanding accuracy of crystal-structure prediction and organic material design with minimal empiricism.

  13. Stochastic resonance whole body vibration increases perceived muscle relaxation but not cardiovascular activation: A randomized controlled trial

    PubMed Central

    Elfering, Achim; Burger, Christian; Schade, Volker; Radlinger, Lorenz

    2016-01-01

    AIM To investigate the acute effects of stochastic resonance whole body vibration (SR-WBV), including muscle relaxation and cardiovascular activation. METHODS Sixty-four healthy students participated. The participants were randomly assigned to sham SR-WBV training at a low intensity (1.5 Hz) or a verum SR-WBV training at a higher intensity (5 Hz). Systolic blood pressure (SBP), diastolic blood pressure (DBP), heart rate (HR) and self-reported muscle relaxation were assessed before and immediately after SR-WBV. RESULTS Two factorial analyses of variance (ANOVA) showed a significant interaction between pre- vs post-SR-WBV measurements and SR-WBV conditions for muscle relaxation in the neck and back [F(1,55) = 3.35, P = 0.048, η2 = 0.07]. Muscle relaxation in the neck and back increased in verum SR-WBV, but not in sham SR-WBV. No significant changes between pre- and post-training levels of SBD, DBD and HR were observed either in sham or verum SR-WBV conditions. With verum SR-WBV, improved muscle relaxation was the most significant in participants who reported the experience of back, neck or shoulder pain more than once a month (P < 0.05). CONCLUSION A single session of SR-WBV increased muscle relaxation in young healthy individuals, while cardiovascular load was low. An increase in musculoskeletal relaxation in the neck and back is a potential mediator of pain reduction in preventive worksite SR-WBV trials. PMID:27900274

  14. Whole-body vibration decreases the proliferative response of TCD4+ cells in elderly individuals with knee osteoarthritis

    PubMed Central

    Tossige-Gomes, R.; Avelar, N.C.P.; Simão, A.P.; Neves, C.D.C.; Brito-Melo, G.E.A.; Coimbra, C.C.; Rocha-Vieira, E.; Lacerda, A.C.R.

    2012-01-01

    The aim of this study was to investigate the effect of adding whole-body vibration (WBV; frequency = 35 to 40 Hz; amplitude = 4 mm) to squat training on the T-cell proliferative response of elderly patients with osteoarthritis (OA) of the knee. This study was a randomized controlled trial in which the selected variables were assessed before and after 12 weeks of training. Twenty-six subjects (72 ± 5 years of age) were divided into three groups: 1) squat training with WBV (WBV, N = 8); 2) squat training without WBV (N = 10), and 3) a control group (N = 8). Women who were ≥60 years of age and had been diagnosed with OA in at least one knee were eligible. The intervention consisted of 12 uninterrupted weeks of squatting exercise training performed 3 times/week. Peripheral blood mononuclear cells were obtained from peripheral blood collected before and after training. The proliferation of TCD4+ and TCD8+ cells was evaluated by flow cytometry measuring the carboxyfluorescein succinimidyl ester fluorescence decay before and after the intervention (Δ). The proliferative response of TCD4+ cells (P = 0.02, effect size = 1.0) showed a significant decrease (23%) in the WBV group compared to the control group, while there was no difference between groups regarding the proliferative response of TCD8+ cells (P = 0.12, effect size = 2.23). The data suggest that the addition of WBV to squat exercise training might modulate T-cell-mediated immunity, minimizing or slowing disease progression in elderly patients with OA of the knee. PMID:22948377

  15. The Fate of Mrs Robinson: Criteria for Recognition of Whole-Body Vibration Injury as AN Occupational Disease

    NASA Astrophysics Data System (ADS)

    HULSHOF, C. T. J.; VAN DER LAAN, G.; BRAAM, I. T. J.; VERBEEK, J. H. A. M.

    2002-05-01

    Several recently published critical reviews conclude that there is strong epidemiological evidence for a relationship between occupational exposure to whole-body vibration (WBV), low back pain (LBP) and back disorders. Whether this exposure is only a modest or a substantial risk factor for the onset and recurrence of LBP is still a matter of debate. In spite of this controversy, four European Union countries have decided to recognize and compensate LBP and certain spinal disorders as an occupational disease. In this paper, we review the criteria currently in use for the recognition of this occupational disease. A search of the literature was performed; additional information was obtained in work visits to national occupational disease institutes in Germany, France and Belgium, in annual reports and national statistics on occupational diseases. Belgium was the first country to add WBV injury to the official list of occupational diseases (1978), followed by Germany (1993), the Netherlands (1997), and France (1999). The incidence of newly recognized cases in 1999 varied considerably: 763 in Belgium, 269 in France, 16 in Germany, and 10 reported cases in the Netherlands. The findings of this review indicate that significant differences exist in the established and applied diagnostic and exposure criteria in the four EU countries. This is illustrated by the case of Mrs Robinson, a 41-year-old forklift driver with LBP, who would probably get recognition and compensation in the Netherlands and Belgium but would be rejected in France and Germany. The development of uniform internationally accepted criteria is recommended, also from an epidemiological point of view, as many data are collected in the process of recognition of this occupational disease.

  16. Evaluation of an occupational health intervention programme on whole‐body vibration in forklift truck drivers: a controlled trial

    PubMed Central

    Hulshof, C T J; Verbeek, J H A M; Braam, I T J; Bovenzi, M; van Dijk, F J H

    2006-01-01

    Objectives To evaluate process and outcome of a multifaceted occupational health intervention programme on whole‐body vibration (WBV) in forklift truck drivers. Methods An experimental pretest/post‐test control group study design. The authors trained occupational health services (OHS) in the experimental group in the use of the programme. OHS in the control group were asked to deliver care as usual. In total, 15 OHS, 32 OHS professionals, 26 companies, and 260 forklift drivers were involved. Post‐test measurements were carried out one year after the start of the programme. Results Baseline data before the start of the programme showed no difference between experimental and control group. Results of the outcome evaluation indicate a slight, although not statistically significant, reduction of WBV exposure in the experimental group (p = 0.06). Process evaluation revealed a positive influence on company policy toward WBV, attitude and intended behaviour of forklift drivers, and a trend towards an increase in knowledge of OHS professionals and company managers. The number of observed control measures with a major impact (levelling of surface and reduction of speed) was rather low. In those cases where control measures had been taken, there was a significant reduction in WBV exposure. This limited effect of the programme might be caused by the short period of follow up and the dropout of participants. The feasibility and the usefulness of the programme within the OHS setting were rated good by the participants. Conclusions This programme to decrease WBV exposure was partially effective. Significant effects on intermediate objectives were observed. More research on the effectiveness of intervention in the field of WBV is needed. PMID:16551762

  17. DOSE-RESPONSE Relationships Between Whole-Body Vibration and Lumbar Disk DISEASE—A Field Study on 388 Drivers of Different Vehicles

    NASA Astrophysics Data System (ADS)

    Schwarze, S.; Notbohm, G.; Dupuis, H.; Hartung, E.

    1998-08-01

    In a longitudinal study, the dose-response relationships between long term occupational exposure to whole-body vibration and degenerative processes in the lumbar spine caused by the lumbar disks were examined. From 1990 to 1992, 388 vibration-exposed workers from different driving jobs were examined medically and by lumbar X-ray. For each individual, a history of all exposure conditions was recorded, and a cumulative vibration dose was calculated allowing comparisons between groups of low, middle, and high intensity of exposure. 310 subjects were selected for a follow-up four years later, of whom 90·6% (n=281) agreed to participate. In comparing the exposure groups, the results indicate that the limit value ofazw(8h)=0·8 m/s2should be reviewed. The best fit between the lifelong vibration dose and the occurrence of a lumbar syndrome was obtained by applying a daily reference ofazw(8h)=0·6 ms2as a limit value. The results became more distinct still when only those subjects were included in the statistical analysis who had had no lumbar symptoms up to the end of the first year of exposure. The prevalence of lumbar syndrome is 1·55 times higher in the highly exposed group when compared to the reference group with low exposure (CI95%=1·24/1·95). Calculating the cumulative incidence of new cases of lumbar syndrome in the follow-up period yields a relative risk ofRRMH=1·37 (CI95%=0·86/2·17) for the highly exposed group. It is concluded that the limit value for the calculation of an individual lifelong vibration dose should be based on a daily reference exposure ofazw(8h)=0·6 m/s2. With increasing dose it is more and more probable that cases of lumbar syndrome are caused by exposure to vibration.

  18. Role of functional imaging in treatment plan optimization of stereotactic body radiation therapy for liver cancer.

    PubMed

    De Bari, Berardino; Jumeau, Raphael; Deantonio, Letizia; Adib, Salim; Godin, Sarah; Zeverino, Michele; Moeckli, Raphael; Bourhis, Jean; Prior, John O; Ozsahin, Mahmut

    2016-10-13

    We report the first known instance of the clinical use of 99mTc-mebrofenin hepatobiliary scintigraphy (HBS) for the optimization of radiotherapy treatment planning and for the follow-up of acute toxicity in a patient undergoing stereotactic body radiation therapy for hepatocellular carcinoma. In our experience, HBS allowed the identification and the sparing of more functioning liver areas, thus potentially reducing the risk of radiation-induced liver toxicity.

  19. Developing, Maintaining, and Using a Body of Knowledge for the Massage Therapy Profession

    PubMed Central

    Sefton, JoEllen M.; Shea, Michael; Hines, Chip

    2011-01-01

    Background: The diverse field of massage therapy has lacked a formal body of knowledge to serve as a practice and educational foundation and to guide future development. This deficit has hampered the growth of the profession and its acceptance and recognition by the medical and allied health care community. Purpose: To provide massage therapists, bodyworkers, physicians, educators, and associated allied health care professionals in the United States with a description of the purpose and development of the massage therapy body of knowledge (MTBOK) and recommendations for its future development and utilization. Methods: Professional groups in the massage therapy community came together and established a task force to develop a body of knowledge for the profession. Five groups became the stewards for this effort. A nationwide search produced a task force of eight volunteers from diverse areas of the profession charged with the responsibility of researching and developing the MTBOK document. Review of documents, curricula, state laws and regulations, certification exam content, interviews, and public comment resulted in the development of the MTBOK. During development multiple opportunities for comment and discussion by stakeholders (public) were provided in an effort to create a professional consensus. Results: The resulting MTBOK document establishes professional descriptions of the field; scope of practice; knowledge, skills, and abilities for entry-level massage therapists; and definitions for terminology to insure standardization, in order to provide a foundation for future discussion and growth. Conclusions: The MTBOK fulfills the goal for which it was developed, to serve as a foundation for the growth and development of the massage therapy profession as a whole. A living document, it should continue to evolve and grow with the profession. Maintenance and continued stewardship of this document by the massage therapy community is vital for continued professional

  20. Changes in circulating angiogenic factors after an acute training bout before and after resistance training with or without whole-body-vibration training

    NASA Astrophysics Data System (ADS)

    Beijer, Åsa; Degens, Hans; May, Francisca; Bloch, Wilhelm; Rittweger, Joern; Rosenberger, Andre

    2012-07-01

    Both Resistance Exercise and Whole-Body-Vibration training are currently considered as countermeasures against microgravity-induced physiological deconditioning. Here we investigated the effects of whole-body vibration superimposed upon resistance exercise. Within this context, the present study focuses on changes in circulating angiogenic factors as indicators of skeletal muscle adaption. Methods: Twenty-six healthy male subjects (25.2 ± 4.2 yr) were included in this two-group parallel-designed study and randomly assigned to one of the training interventions: either resistance exercise (RE) or resistance vibration exercise (RVE). Participants trained 2-3 times per week for 6 weeks (completing 16 training sessions), where one session took 9 ± 1 min. Participants trained with weights on a guided barbell. The individual training load was set at 80% of their 1-Repetition-Maximum. Each training session consisted of three sets with 8 squats and 12 heel raises, following an incremental training design with regards to weight (RE and RVE) and vibration frequency (RVE only). The vibration frequency was increased from 20 Hz in the first week till 40 Hz during the last two weeks with 5-Hz weekly increments. At the first and 16 ^{th} training session, six blood samples (pre training and 2 min, 5 min, 15 min, 35 min and 75 min post training) were taken. Circulating levels of vascular endothelial growth factor (VEGF), Endostatin and Matrix Metalloproteinases -2 and -9 (MMPs) were determined in serum using Enzyme-linked Immunosorbent Assays. Results: MMP-2 levels increased by 7.0% (SE = 2.7%, P < 0.001) within two minutes after the exercise bout and then decreased to 5.7% below baseline (SE = 2.4%, P < 0.001) between 15 and 75 minutes post exercise. This response was comparable before and after the training programs (P = 0.70) and also between the two intervention groups (P = 0.42). Preliminary analyses indicate that a similar pattern applies to circulating MMP-9, VEGF and

  1. Retreatment for prostate cancer with stereotactic body radiation therapy (SBRT): Feasible or foolhardy?

    PubMed

    Arcangeli, Stefano; Agolli, Linda; Donato, Vittorio

    2015-01-01

    The most popular therapeutic option in the management of radio-recurrent prostatic carcinoma is represented by the androgen deprivation therapy, that however should be considered only palliative and hampered by potential adverse effects of testosterone suppression. Local therapies such as surgery, cryoablation or brachytherapy might be curative choices for patients in good conditions and with a long-life expectancy, but at cost of significant risk of failure and severe toxicity. The administration of stereotactic body radiation therapy (SBRT) in this setting have come about because of tremendous technologic advances in image guidance and treatment delivery techniques that enable the delivery of large doses to tumor with reduced margins and high gradients outside the target, thereby reducing the volume of rectum which already received significant doses from primary radiotherapy. So far, very modest data are available to support its employment. Rationale, clinical experience, and challenges are herein reviewed and discussed.

  2. Effects of Levothyroxine Replacement or Suppressive Therapy on Energy Expenditure and Body Composition

    PubMed Central

    Kolobova, Irina; Smeraglio, Anne; Peters, Dawn; Purnell, Jonathan Q.; Schuff, Kathryn G.

    2016-01-01

    Background: Thyrotropin (TSH)-suppressive doses of levothyroxine (LT4) have adverse effects on bone and cardiac function, but it is unclear whether metabolic function is also affected. The objective of this study was to determine whether women receiving TSH-suppressive LT4 doses have alterations in energy expenditure or body composition. Methods: This study was a cross-sectional comparison between three groups of women: 26 women receiving chronic TSH-suppressive LT4 doses, 80 women receiving chronic replacement LT4 doses, and 16 untreated euthyroid control women. Subjects underwent measurements of resting energy expenditure (REE), substrate oxidation, and thermic effect of food by indirect calorimetry; physical activity energy expenditure by accelerometer; caloric intake by 24-hour diet recall; and body composition by dual X-ray absorptiometry. Results: REE per kilogram lean body mass in the LT4 euthyroid women was 6% lower than that of the LT4-suppressed group, and 4% lower than that of the healthy control group (p = 0.04). Free triiodothyronine (fT3) levels were directly correlated with REE, and were 10% lower in the LT4 euthyroid women compared with the other two groups (p = 0.007). The groups of subjects did not differ in other measures of energy expenditure, caloric intake, or body composition. Conclusions: LT4 suppression therapy does not adversely affect energy expenditure or body composition in women. However, LT4 replacement therapy is associated with a lower REE, despite TSH levels within the reference range. This may be due to lower fT3 levels, suggesting relative tissue hypothyroidism may contribute to impaired energy expenditure in LT4 therapy. PMID:26700485

  3. Effects of whole body vibration exercises on bone mineral density of women with postmenopausal osteoporosis without medications: novel findings and literature review

    PubMed Central

    Dionello, C.F.; Sá-Caputo, D.; Pereira, H.V.F.S.; Sousa-Gonçalves, C.R.; Maiworm, A.I.; Morel, D.S.; Moreira-Marconi, E.; Paineiras-Domingos, L.L.; Bemben, D.; Bernardo-Filho, M.

    2016-01-01

    Objectives: The aim of this study was to review the literature about the effect of whole body vibration exercise in the BMD in patients with postmenopausal osteoporosis without medications. Methods: A systematic review was performed. Results: The frequency of the mechanical vibration used in the protocols has varied from 12 to 90 Hz. The time used in the protocols varied from 2 up to 22 months. Techniques with X-rays were used in nine of the twelve publications analyzed, the Dual energy X-ray absorptiometry (DEXA) in eight studies and the High resolution peripheral quantitative computed tomography (HR-pQCT) in one publication. The concentration of some biomarkers was determined, as the sclerostin, the bone alkaline phosphatase, N-telopeptide X and 25-hydroxyvitamin D. Among the twelve articles analyzed, seven of them have shown an improvement of the BMD of some bone of postmenopausal women exposed to whole body vibration exercises not associated to medications; as well as modifications in biomarkers. PMID:27609034

  4. Stereotactic Body Radiation Therapy for Patients With Lung Cancer Previously Treated With Thoracic Radiation

    SciTech Connect

    Kelly, Patrick; Balter, Peter A.; Rebueno, Neal; Sharp, Hadley J.; Liao Zhongxing; Komaki, Ritsuko; Chang, Joe Y.

    2010-12-01

    Purpose: Stereotactic body radiation therapy (SBRT) provides excellent local control with acceptable toxicity for patients with early-stage non-small cell lung cancer. However, the efficacy and safety of SBRT for patients previously given thoracic radiation therapy is not known. In this study, we retrospectively reviewed outcomes after SBRT for recurrent disease among patients previously given radiation therapy to the chest. Materials and Methods: A search of medical records for patients treated with SBRT to the thorax after prior fractionated radiation therapy to the chest at The University of Texas M. D. Anderson Cancer Center revealed 36 such cases. The median follow-up time after SBRT was 15 months. The endpoints analyzed were overall survival, local control, and the incidence and severity of treatment-related toxicity. Results: SBRT provided in-field local control for 92% of patients; at 2 years, the actuarial overall survival rate was 59%, and the actuarial progression-free survival rate was 26%, with the primary site of failure being intrathoracic relapse. Fifty percent of patients experienced worsening of dyspnea after SBRT, with 19% requiring oxygen supplementation; 30% of patients experienced chest wall pain and 8% Grade 3 esophagitis. No Grade 4 or 5 toxic effects were noted. Conclusions: SBRT can provide excellent in-field tumor control in patients who have received prior radiation therapy. Toxicity was significant but manageable. The high rate of intrathoracic failure indicates the need for further study to identify patients who would derive the most benefit from SBRT for this purpose.

  5. The Effects of Mind-Body Therapies on the Immune System: Meta-Analysis

    PubMed Central

    Morgan, Nani; Irwin, Michael R.; Chung, Mei; Wang, Chenchen

    2014-01-01

    Importance Psychological and health-restorative benefits of mind-body therapies have been investigated, but their impact on the immune system remain less defined. Objective To conduct the first comprehensive review of available controlled trial evidence to evaluate the effects of mind-body therapies on the immune system, focusing on markers of inflammation and anti-viral related immune responses. Methods Data sources included MEDLINE, CINAHL, SPORTDiscus, and PsycINFO through September 1, 2013. Randomized controlled trials published in English evaluating at least four weeks of Tai Chi, Qi Gong, meditation, or Yoga that reported immune outcome measures were selected. Studies were synthesized separately by inflammatory (n = 18), anti-viral related immunity (n = 7), and enumerative (n = 14) outcomes measures. We performed random-effects meta-analyses using standardized mean difference when appropriate. Results Thirty-four studies published in 39 articles (total 2, 219 participants) met inclusion criteria. For inflammatory measures, after 7 to 16 weeks of mind-body intervention, there was a moderate effect on reduction of C-reactive protein (effect size [ES], 0.58; 95% confidence interval [CI], 0.04 to 1.12), a small but not statistically significant reduction of interleukin-6 (ES, 0.35; 95% CI, −0.04 to 0.75), and negligible effect on tumor necrosis factor-α (ES, 0.21; 95% CI, −0.15 to 0.58). For anti-viral related immune and enumerative measures, there were negligible effects on CD4 counts (ES, 0.15; 95% CI, −0.04 to 0.34) and natural killer cell counts (ES, 0.12, 95% CI −0.21 to 0.45). Some evidence indicated mind-body therapies increase immune responses to vaccination. Conclusions Mind-body therapies reduce markers of inflammation and influence virus-specific immune responses to vaccination despite minimal evidence suggesting effects on resting anti-viral or enumerative measures. These immunomodulatory effects, albeit incomplete, warrant

  6. Stereotactic Ablative Body Radiation Therapy for Octogenarians With Non-Small Cell Lung Cancer

    SciTech Connect

    Takeda, Atsuya; Sanuki, Naoko; Eriguchi, Takahisa; Kaneko, Takeshi; Morita, Satoshi; Handa, Hiroshi; Aoki, Yousuke; Oku, Yohei; Kunieda, Etsuo

    2013-06-01

    Purpose: To retrospectively investigate treatment outcomes of stereotactic ablative body radiation therapy (SABR) for octogenarians with non-small cell lung cancer (NSCLC). Methods and Materials: Between 2005 and 2012, 109 patients aged ≥80 years with T1-2N0M0 NSCLC were treated with SABR: 47 patients had histology-unproven lung cancer; 62 patients had pathologically proven NSCLC. The prescribed doses were either 50 Gy/5 fractions for peripheral tumors or 40 Gy/5 fractions for centrally located tumors. The treatment outcomes, toxicities, and the correlating factors for overall survival (OS) were evaluated. Results: The median follow-up duration after SABR was 24.2 (range, 3.0-64.6) months. Only limited toxicities were observed, except for 1 grade 5 radiation pneumonitis. The 3-year local, regional, and distant metastasis-free survival rates were 82.3%, 90.1%, and 76.8%, respectively. The OS and lung cancer-specific survival rates were 53.7% and 70.8%, respectively. Multivariate analysis revealed that medically inoperable, low body mass index, high T stage, and high C-reactive protein were the predictors for short OS. The OS for the operable octogenarians was significantly better than that for inoperable (P<.01). Conclusions: Stereotactic ablative body radiation therapy for octogenarians was feasible, with excellent OS. Multivariate analysis revealed that operability was one of the predictors for OS. For medically operable octogenarians with early-stage NSCLC, SABR should be prospectively compared with resection.

  7. Assessing combined exposures of whole-body vibration and awkward posture--further results from application of a simultaneous field measurement methodology.

    PubMed

    Raffler, Nastaran; Hermanns, Ingo; Sayn, Detlef; Göres, Benno; Ellegast, Rolf; Rissler, Jörg

    2010-01-01

    The drivers of ten vehicles (tram, helicopter, saloon car, van, forklift, two mobile excavators, wheel loader, tractor, elevating platform truck) were studied with regard to the combined exposures of whole-body vibration and awkward posture during occupational tasks. Seven degrees of freedom (DOFs), or body angles, were recorded as a function of time by means of the CUELA measuring system (Computer-assisted registration and long-term analysis of musculoskeletal workloads) for the purpose of posture assessment. The vibrational exposure is expressed as the vector sum of the frequency-weighted accelerations in the three Cartesian coordinates; these were recorded simultaneously with the posture measurement. Based upon the percentage of working time spent under different workloads, a scheme is proposed for classification of the two exposures into three categories. In addition, a risk of adverse health effects classified as low, possible or high can be assigned to the combination of the two exposures. With regard to posture, the most severe exposure was measured for the drivers of the wheel loader and for the tractor driver, whereas the lowest exposure was measured for the helicopter pilots and van drivers. With regard to the combination of whole-body and posture exposures, the tractor driver and the elevating platform truck driver exhibited the highest workloads.

  8. Modeling muscle activity to study the effects of footwear on the impact forces and vibrations of the human body during running.

    PubMed

    Zadpoor, Amir Abbas; Nikooyan, Ali Asadi

    2010-01-19

    A previously developed mass-spring-damper model of the human body is improved in this paper, taking muscle activity into account. In the improved model, a nonlinear controller mimics the functionality of the Central Nervous System (CNS) in tuning the mechanical properties of the soft-tissue package. Two physiological hypotheses are used to determine the control strategies that are used by the controller. The first hypothesis (constant-force hypothesis) postulates that the CNS uses muscle tuning to keep the ground reaction force (GRF) constant regardless of shoe hardness, wherever possible. It is shown that the constant-force hypothesis can explain the existing contradiction about the effects of shoe hardness on the GRF during running. This contradiction is emerged from the different trends observed in the experiments on actual runners, and experiments in which the leg was fixed and exposed to impact. While the GRF is found to be dependent on shoe hardness in the former set of experiments, no such dependency was observed in the latter. According to the second hypothesis, the CNS keeps the level of the vibrations of the human body constant using muscle tuning. The results of the study show that this second control strategy improves the model such that it can correctly simulate the effects of shoe hardness on the vibrations of the human body during running.

  9. Vibrational spectroscopy characterization of low level laser therapy on mammary culture cells: a micro-FTIR study

    NASA Astrophysics Data System (ADS)

    Magrini, Taciana D.; Villa dos Santos, Nathalia; Pecora Milazzotto, Marcella; Cerchiaro, Giselle; da Silva Martinho, Herculano

    2011-03-01

    Low level laser therapy (LLLT) is an emerging therapeutic approach for several clinical conditions. The clinical effects induced by LLLT presumably go from the photobiostimulation/photobioinibition at cellular level to the molecular level. The detailed mechanism underlying this effect is still obscure. This work is dedicated to quantify some relevant aspects of LLLT related to molecular and cellular variations. This goal was attached by exposing malignant breast cells (MCF7) to spatially filtered light of a He-Ne laser (633 nm) with 28.8 mJ/cm2 of fluency. The cell viability was evaluated by microscopic observation using Trypan Blue viability test. The vibrational spectra of each experimental group (micro- FTIR technique) were used to identify the relevant biochemical alterations occurred due the process. The red light had influence over RNA, phosphate and serine/threonine/tyrosine bands. Light effects on cell number or viability were not detected. However, the irradiation had direct influence on metabolic activity of cells.

  10. Barriers and facilitators of the use of mind-body therapies by healthcare providers and clinicians to care for themselves.

    PubMed

    Mensah, Sylvanus Brenya; Anderson, Joel G

    2015-05-01

    Healthcare providers may experience a high level of stress, fatigue, and anxiety originating from different factors. Mind-body therapies, which include many interventions, have been proposed to alleviate these conditions. These interventions have been reported to decrease the level of stress, and the negative outcomes associated with these factors: high burnout rate, and poor quality of care for patients. Although research validating the effectiveness of healthcare providers' use of mind-body therapies to care for themselves is emerging, there is little focus on barriers and facilitators that healthcare providers encounter with these mind-body practices, thereby questioning the feasibility and sustainability of these interventions. As such, this systematic review examined the barriers preventing healthcare providers from using mind-body interventions to care for themselves and ways that it has been facilitated. Overall, 12 studies addressed the research question with a limited focus on the facilitators and barriers of the use of mind-body therapies.

  11. Novel approach to lung stereotactic body radiation therapy plan evaluation and delivery

    NASA Astrophysics Data System (ADS)

    Jurkovic, Ines-Ana

    Stereotactic body radiation therapy is currently being used as an efficient treatment for Stage I/II medically inoperable and surgically unrespectable non small cell and metastatic lung cancer. Hypofractional dose and dose escalation used in stereotactic body radiation therapy have the potential of increasing the likelihood of the tumor control and the long term progression free survival. Currently available commercial treatment planning systems are capable of calculating accurate dose distributions for static case, where the tumor and surrounding healthy tissues are not moving during the dose delivery. However, respiratory induced organ motion can result in significant movement of the lesion leading to the discrepancies between the dose delivered and the dose planned. The precision and conformity of the stereotactic body radiation therapy makes it very susceptible to motion, i.e. patient respiration can lead to significant dose delivery errors. Conventional stereotactic body radiation therapy treatment plans use free breathing three-dimensional computed tomography images where margins are added to delineated gross tumor volume to create planning tumor volume and avoid geometrical misses of the target. The specific hypothesis of the study is that the true four-dimensional delivery of the four-dimensional plans will allow for more accurate radiation therapy treatment and critical organ sparing along with radiobiological evaluation of the dose distributions. The specific aims are designed to provide in depth understanding of the radiation therapy treatments and influence of the four-dimensional planning and delivery, heterogeneity corrections and various radiobiological factors on the outcome. The primary focus of the Specific Aim 1 was the evaluation of the tumor volume based on the four-dimensional computed tomography scan data through its motion, volume and computed tomography number. The results indicated that tumor motion parameters will exceed the typical

  12. Spline-based Rayleigh-Ritz methods for the approximation of the natural modes of vibration for flexible beams with tip bodies

    NASA Technical Reports Server (NTRS)

    Rosen, I. G.

    1985-01-01

    Rayleigh-Ritz methods for the approximation of the natural modes for a class of vibration problems involving flexible beams with tip bodies using subspaces of piecewise polynomial spline functions are developed. An abstract operator theoretic formulation of the eigenvalue problem is derived and spectral properties investigated. The existing theory for spline-based Rayleigh-Ritz methods applied to elliptic differential operators and the approximation properties of interpolatory splines are useed to argue convergence and establish rates of convergence. An example and numerical results are discussed.

  13. Assessment of whole-body vibration exposures and influencing factors for quarry haul truck drivers and loader operators

    PubMed Central

    Mayton, Alan G.; Jobes, Christopher C.; Gallagher, Sean

    2015-01-01

    To further assess vibration exposure on haul trucks (HTs) and front-end wheel loaders (FELs), follow-up investigations were conducted at two US crushed stone operations. The purpose was to: 1) evaluate factors such as load/no-load conditions, speed, load capacity, vehicle age, and seat transmissibility relative to vibration exposure; 2) compare exposure levels with existing ISO/ANSI and EUGPG guidelines. Increasing HT speed increased recorded vibration at the chassis and seat as expected. Neither vehicle load nor vehicle speed increased transmissibility. Increasing HT size and age did show transmissibility decreasing. HT dominant-axis wRMS levels (most often the y-axis, lateral or side-to-side direction) were predominantly within the health guidance caution zone (HGCZ). However, several instances showed vibration dose value (VDV) above the exposure limit value (ELV) for the ISO/ANSI guidelines. VDV levels (all dominant x-axis or fore-aft) were within and above the HGCZ for the EUGPG and above the HGCZ for ISO/ANSI guidelines. PMID:26361493

  14. [Setup accuracy of stereotactic body radiation therapy (SBRT) using virtual isocenter in image-guided radiation therapy (IGRT)].

    PubMed

    Nakazawa, Hisato; Uchiyama, Yukio; Komori, Masataka; Hagiwara, Masahiro; Mori, Yoshimasa

    2012-01-01

    We use Novalis Body system for stereotactic body radiation therapy (SBRT) in lung and liver tumors. Novalis system is dedicated to SBRT with image-guided patient setup system ExacTrac. The spinal bone is the main landmark in patient setup during SBRT using ExacTrac kV X-ray system. When the target tumor is located laterally distant from the spinal bone at the midline, it is difficult to ensure the accuracy of the setup, especially if there are rotational gaps (yaw, pitch and roll) in the setup. For this, we resolve the problem by using a virtual isocenter (VIC) different from isocenter (IC) .We evaluated the setup accuracy in a rand phantom by using VIC and checked the setup errors using rand phantom and patient cases by our original method during the setup for IC. The accuracy of setup using VIC was less than 1.0 mm. Our original method was useful for checking patient setup when VIC used.

  15. Dose estimation for internal organs during boron neutron capture therapy for body-trunk tumors.

    PubMed

    Sakurai, Y; Tanaka, H; Suzuki, M; Masunaga, S; Kinashi, Y; Kondo, N; Ono, K; Maruhashi, A

    2014-06-01

    Radiation doses during boron neutron capture therapy for body-trunk tumors were estimated for various internal organs, using data from patients treated at Kyoto University Research Reactor Institute. Dose-volume histograms were constructed for tissues of the lung, liver, kidney, pancreas, and bowel. For pleural mesothelioma, the target total dose to the normal lung tissues on the diseased side is 5Gy-Eq in average for the whole lung. It was confirmed that the dose to the liver should be carefully considered in cases of right lung disease.

  16. Thinking through the body: the conceptualization of yoga as therapy for individuals with eating disorders.

    PubMed

    Douglass, Laura

    2011-01-01

    Yoga has historically been viewed as a discipline that increases self-awareness through body based practices, meditation, self-study, and the reading of philosophical texts. In the 21st century the mindfulness techniques of yoga have been adapted as an adjunct to the treatment of individuals with eating disorders. In an effort to understand the conceptualization of yoga as therapy for individuals with eating disorders, this article juxtaposes how mindfulness based yoga is regarded in three disciplines: sociology, neuroscience, and the "spiritual texts" of yoga.

  17. City bus driving and low back pain: a study of the exposures to posture demands, manual materials handling and whole-body vibration.

    PubMed

    Okunribido, Olanrewaju O; Shimbles, Steven J; Magnusson, Marianne; Pope, Malcolm

    2007-01-01

    A cross-sectional study was conducted to investigate worker exposure to posture demands, manual materials handling (MMH) and whole body vibration as risks for low back pain (LBP). Using validated questionnaire, information about driving experience, driving (sitting) posture MMH, and health history was obtained from 80 city bus drivers. Twelve drivers were observed during their service route driving (at least one complete round trip) and vibration measurements were obtained at the seat and according to the recommendations of ISO 2631 (1997), for three models of bus (a mini-bus, a single-decker bus, a double-decker bus). The results showed that city bus drivers spend about 60% of the daily work time actually driving, often with the torso straight or unsupported, perform occasional and light MMH, and experience discomforting shock/jerking vibration events. Transient and mild LBP (not likely to interfere with work or customary levels of activity) was found to be prevalent among the drivers and a need for ergonomic evaluation of the drivers' seat was suggested.

  18. 4π Noncoplanar Stereotactic Body Radiation Therapy for Centrally Located or Larger Lung Tumors

    SciTech Connect

    Dong, Peng; Lee, Percy; Ruan, Dan; Long, Troy; Romeijn, Edwin; Low, Daniel A.; Kupelian, Patrick; Abraham, John; Yang, Yingli; Sheng, Ke

    2013-07-01

    Purpose: To investigate the dosimetric improvements in stereotactic body radiation therapy for patients with larger or central lung tumors using a highly noncoplanar 4π planning system. Methods and Materials: This study involved 12 patients with centrally located or larger lung tumors previously treated with 7- to 9-field static beam intensity modulated radiation therapy to 50 Gy. They were replanned using volumetric modulated arc therapy and 4π plans, in which a column generation method was used to optimize the beam orientation and the fluence map. Maximum doses to the heart, esophagus, trachea/bronchus, and spinal cord, as well as the 50% isodose volume, the lung volumes receiving 20, 10, and 5 Gy were minimized and compared against the clinical plans. A dose escalation study was performed to determine whether a higher prescription dose to the tumor would be achievable using 4π without violating dose limits set by the clinical plans. The deliverability of 4π plans was preliminarily tested. Results: Using 4π plans, the maximum heart, esophagus, trachea, bronchus and spinal cord doses were reduced by 32%, 72%, 37%, 44%, and 53% (P≤.001), respectively, and R{sub 50} was reduced by more than 50%. Lung V{sub 20}, V{sub 10}, and V{sub 5} were reduced by 64%, 53%, and 32% (P≤.001), respectively. The improved sparing of organs at risk was achieved while also improving planning target volume (PTV) coverage. The minimal PTV doses were increased by the 4π plans by 12% (P=.002). Consequently, escalated PTV doses of 68 to 70 Gy were achieved in all patients. Conclusions: We have shown that there is a large potential for plan quality improvement and dose escalation for patients with larger or centrally located lung tumors using noncoplanar beams with sufficient quality and quantity. Compared against the clinical volumetric modulated arc therapy and static intensity modulated radiation therapy plans, the 4π plans yielded significantly and consistently improved tumor

  19. Pre-dive Whole-Body Vibration Better Reduces Decompression-Induced Vascular Gas Emboli than Oxygenation or a Combination of Both

    PubMed Central

    Balestra, Costantino; Theunissen, Sigrid; Papadopoulou, Virginie; Le Mener, Cedric; Germonpré, Peter; Guerrero, François; Lafère, Pierre

    2016-01-01

    Purpose: Since non-provocative dive profiles are no guarantor of protection against decompression sickness, novel means including pre-dive “preconditioning” interventions, are proposed for its prevention. This study investigated and compared the effect of pre-dive oxygenation, pre-dive whole body vibration or a combination of both on post-dive bubble formation. Methods: Six healthy volunteers performed 6 no-decompression dives each, to a depth of 33 mfw for 20 min (3 control dives without preconditioning and 1 of each preconditioning protocol) with a minimum interval of 1 week between each dive. Post-dive bubbles were counted in the precordium by two-dimensional echocardiography, 30 and 90 min after the dive, with and without knee flexing. Each diver served as his own control. Results: Vascular gas emboli (VGE) were systematically observed before and after knee flexing at each post-dive measurement. Compared to the control dives, we observed a decrease in VGE count of 23.8 ± 7.4% after oxygen breathing (p < 0.05), 84.1 ± 5.6% after vibration (p < 0.001), and 55.1 ± 9.6% after vibration combined with oxygen (p < 0.001). The difference between all preconditioning methods was statistically significant. Conclusions: The precise mechanism that induces the decrease in post-dive VGE and thus makes the diver more resistant to decompression stress is still not known. However, it seems that a pre-dive mechanical reduction of existing gas nuclei might best explain the beneficial effects of this strategy. The apparent non-synergic effect of oxygen and vibration has probably to be understood because of different mechanisms involved. PMID:27965591

  20. Effect of Fractionation in Stereotactic Body Radiation Therapy Using the Linear Quadratic Model

    SciTech Connect

    Yang, Jun; Lamond, John; Fowler, Jack; Lanciano, Rachelle; Feng, Jing; Brady, Luther

    2013-05-01

    Purpose: To examine the fractionation effect of stereotactic body radiation therapy with a heterogeneous dose distribution. Methods: Derived from the linear quadratic formula with measurements from a hypothetical 2-cm radiosurgical tumor, the threshold percentage was defined as (α/β{sub tissue}/α/β{sub tumor}), the balance α/β ratio was defined as (prescription dose/tissue tolerance*α/β{sub tumor}), and the balance dose was defined as (tissue tolerance/threshold percentage). Results: With increasing fractions and equivalent peripheral dose to the target, the biological equivalent dose of “hot spots” in a target decreases. The relative biological equivalent doses of serial organs decrease only when the relative percentage of its dose to the prescription dose is above the threshold percentage. The volume of parallel organs at risk decreases only when the tumor's α/β ratio is above the balance α/β ratio and the prescription dose is lower than balance dose. Conclusions: The potential benefits of fractionation in stereotactic body radiation therapy depend on the complex interplay between the total dose, α/β ratios, and dose differences between the target and the surrounding normal tissues.

  1. Body mass index as a predictive factor of periodontal therapy outcomes.

    PubMed

    Suvan, J; Petrie, A; Moles, D R; Nibali, L; Patel, K; Darbar, U; Donos, N; Tonetti, M; D'Aiuto, F

    2014-01-01

    Body mass index (BMI) and obesity are associated with the prevalence, extent, and severity of periodontitis. This study investigated the predictive role of overweight/obesity on clinical response following non-surgical periodontal therapy in patients with severe periodontitis. Two hundred sixty adults received an intensive course of non-surgical periodontal therapy. Periodontal status at baseline and 2 months was based upon probing pocket depths (PPD), clinical attachment levels (CAL), and whole-mouth gingival bleeding (FMBS) as assessed by two calibrated examiners. Generalized estimating equations (GEE) were used to estimate the impact of BMI and overweight/obesity on periodontal treatment response while controlling for baseline status, age, smoking status (smoker or non-smoker), and full-mouth dental plaque score. BMI (continuous variable) and obesity (vs. normal weight) were associated with worse mean PPD (p < .005), percentage of PPD > 4 mm (p = .01), but not with FMBS (p > .05) or CAL (p > .05) at 2 months, independent of age, smoking status, or dental plaque levels. The magnitude of this association was similar to that of smoking, which was also linked to a worse clinical periodontal outcome (p < .01). BMI and obesity appear to be independent predictors of poor response following non-surgical periodontal therapy.

  2. Systemic AAV8-Mediated Gene Therapy Drives Whole-Body Correction of Myotubular Myopathy in Dogs.

    PubMed

    Mack, David L; Poulard, Karine; Goddard, Melissa A; Latournerie, Virginie; Snyder, Jessica M; Grange, Robert W; Elverman, Matthew R; Denard, Jérôme; Veron, Philippe; Buscara, Laurine; Le Bec, Christine; Hogrel, Jean-Yves; Brezovec, Annie G; Meng, Hui; Yang, Lin; Liu, Fujun; O'Callaghan, Michael; Gopal, Nikhil; Kelly, Valerie E; Smith, Barbara K; Strande, Jennifer L; Mavilio, Fulvio; Beggs, Alan H; Mingozzi, Federico; Lawlor, Michael W; Buj-Bello, Ana; Childers, Martin K

    2017-04-05

    X-linked myotubular myopathy (XLMTM) results from MTM1 gene mutations and myotubularin deficiency. Most XLMTM patients develop severe muscle weakness leading to respiratory failure and death, typically within 2 years of age. Our objective was to evaluate the efficacy and safety of systemic gene therapy in the p.N155K canine model of XLMTM by performing a dose escalation study. A recombinant adeno-associated virus serotype 8 (rAAV8) vector expressing canine myotubularin (cMTM1) under the muscle-specific desmin promoter (rAAV8-cMTM1) was administered by simple peripheral venous infusion in XLMTM dogs at 10 weeks of age, when signs of the disease are already present. A comprehensive analysis of survival, limb strength, gait, respiratory function, neurological assessment, histology, vector biodistribution, transgene expression, and immune response was performed over a 9-month study period. Results indicate that systemic gene therapy was well tolerated, prolonged lifespan, and corrected the skeletal musculature throughout the body in a dose-dependent manner, defining an efficacious dose in this large-animal model of the disease. These results support the development of gene therapy clinical trials for XLMTM.

  3. Attitudes Toward Combining Psychological, Mind-Body Therapies and Nutritional Approaches for the Enhancement of Mood.

    PubMed

    Lores, Taryn Jade; Henke, Miriam; Chur-Hansen, Anna

    2016-01-01

    Context • Interest has been rising in the use of complementary and alternative medicine (CAM) for the promotion of health and treatment of disease. To date, the majority of CAM research has focused on exploring the demographic characteristics, attitudes, and motivations of CAM users and on the efficacy of different therapies and products. Less is known with respect to the psychological characteristics of people who use CAM. Previous research has not investigated the usefulness of integrating mind-body therapies with natural products in a combined mood intervention. Objective • The study intended to investigate attitudes toward a proposed new approach to the treatment of mood, one that integrates psychological mind-body therapies and natural nutritional products. Design • Participants completed an online survey covering demographics, personality traits, locus of control, use of CAM, attitudes toward the proposed psychonutritional approach, and mood. Setting • This study was conducted at the University of Adelaide School of Psychology (Adelaide, SA, Australia). Participants • Participants were 333 members of the Australian general public, who were recruited online via the social-media platform Facebook. The majority were women (83.2%), aged between 18 and 81 y. Outcome Measures • Measures included the Multidimensional Health Locus of Control Scale Form B, the Ten-Item Personality Inventory, and the Depression, Anxiety and Stress Scale. Results • Participants were positive about the proposed approach and were likely to try it to enhance their moods. The likeliness of use of the combined approach was significantly higher in the female participants and was associated with higher levels of the personality trait openness and an internal health locus of control, after controlling for all other variables. Conclusions • Interest exists for an intervention for mood that incorporates both psychological and nutritional approaches. Further research into the

  4. Opening toward life: experiences of basic body awareness therapy in persons with major depression.

    PubMed

    Danielsson, Louise; Rosberg, Susanne

    2015-01-01

    Although there is a vast amount of research on different strategies to alleviate depression, knowledge of movement-based treatments focusing on body awareness is sparse. This study explores the experiences of basic body awareness therapy (BBAT) in 15 persons diagnosed with major depression who participated in the treatment in a randomized clinical trial. Hermeneutic phenomenological methodology inspired the approach to interviews and data analysis. The participants' experiences were essentially grasped as a process of enhanced existential openness, opening toward life, exceeding the tangible corporeal dimension to also involve emotional, temporal, and relational aspects of life. Five constituents of this meaning were described: vitality springing forth, grounding oneself, recognizing patterns in one's body, being acknowledged and allowed to be oneself, and grasping the vagueness. The process of enhanced perceptual openness challenges the numbness experienced in depression, which can provide hope for change, but it is connected to hard work and can be emotionally difficult to bear. Inspired by a phenomenological framework, the results of this study illuminate novel clinical and theoretical insight into the meaning of BBAT as an adjunctive approach in the treatment of depression.

  5. The embodied mind: A review on functional genomic and neurological correlates of mind-body therapies.

    PubMed

    Muehsam, David; Lutgendorf, Susan; Mills, Paul J; Rickhi, Badri; Chevalier, Gaétan; Bat, Namuun; Chopra, Deepak; Gurfein, Blake

    2017-02-01

    A broad range of mind-body therapies (MBTs) are used by the public today, and a growing body of clinical and basic sciences research has resulted in evidence-based integration of many MBTs into clinical practice. Basic sciences research has identified some of the physiological correlates of MBT practices, leading to a better understanding of the processes by which emotional, cognitive and psychosocial factors can influence health outcomes and well-being. In particular, results from functional genomics and neuroimaging describe some of the processes involved in the mind-body connection and how these can influence health outcomes. Functional genomic and neurophysiological correlates of MBTs are reviewed, detailing studies showing changes in sympathetic nervous system activation of gene transcription factors involved in immune function and inflammation, electroencephalographic and neuroimaging studies on MBT practices, and persistent changes in neural function and morphology associated with these practices. While the broad diversity of study designs and MBTs studied presents a patchwork of results requiring further validation through replication and longitudinal studies, clear themes emerge for MBTs as immunomodulatory, with effects on leukocyte transcription and function related to inflammatory and innate immune responses, and neuromodulatory, with effects on brain function and morphology relevant for attention, learning, and emotion regulation. By detailing the potential mechanisms of action by which MBTs may influence health outcomes, the data generated by these studies have contributed significantly towards a better understanding of the biological mechanisms underlying MBTs.

  6. Opening toward life: Experiences of basic body awareness therapy in persons with major depression

    PubMed Central

    Danielsson, Louise; Rosberg, Susanne

    2015-01-01

    Although there is a vast amount of research on different strategies to alleviate depression, knowledge of movement-based treatments focusing on body awareness is sparse. This study explores the experiences of basic body awareness therapy (BBAT) in 15 persons diagnosed with major depression who participated in the treatment in a randomized clinical trial. Hermeneutic phenomenological methodology inspired the approach to interviews and data analysis. The participants’ experiences were essentially grasped as a process of enhanced existential openness, opening toward life, exceeding the tangible corporeal dimension to also involve emotional, temporal, and relational aspects of life. Five constituents of this meaning were described: vitality springing forth, grounding oneself, recognizing patterns in one's body, being acknowledged and allowed to be oneself, and grasping the vagueness. The process of enhanced perceptual openness challenges the numbness experienced in depression, which can provide hope for change, but it is connected to hard work and can be emotionally difficult to bear. Inspired by a phenomenological framework, the results of this study illuminate novel clinical and theoretical insight into the meaning of BBAT as an adjunctive approach in the treatment of depression. PMID:25956354

  7. An analytic model of the in-line and cross-axis apparent mass of the seated human body exposed to vertical vibration with and without a backrest

    NASA Astrophysics Data System (ADS)

    Zheng, Guangtai; Qiu, Yi; Griffin, Michael J.

    2011-12-01

    During vertical excitation of the seated human body there are vertical and fore-and-aft forces at the seat that are influenced by contact with a backrest, so it is desirable to take into account the effect of a backrest when developing models of the seated human body. Initially, a seven degree-of-freedom multi-body dynamic model was developed for the human body sitting with an upright posture unsupported by a backrest and exposed to vertical vibration. The model was optimized to fit the vertical apparent mass and the fore-and-aft cross-axis apparent mass measured on a seat. The model was then extended by the addition of vertical and fore-and-aft reaction forces to the upper lumbar spine to model the interaction between the human body and a backrest. By minimizing the least square error between experimental data and the analytical solution of the apparent masses on the seat and at the back, the human body model was able to represent both the vertical apparent mass and the fore-and-aft cross-axis apparent mass on the seat and at the back. Parameter sensitivity studies showed that the vertical apparent mass and the fore-and-aft cross-axis apparent mass on the seat and the backrest were all highly sensitive to the axial stiffness of the tissue beneath the pelvis. Pitch motion of the upper-body contributed to the vertical apparent mass and the fore-and-aft cross-axis apparent mass on the seat. The apparent mass at the back was more sensitive to the stiffness and damping of the lower back than the properties of the upper back.

  8. Characterization of dose in stereotactic body radiation therapy of lung lesions via Monte Carlo calculation

    NASA Astrophysics Data System (ADS)

    Rassiah, Premavathy

    Stereotactic Body Radiation Therapy is a new form of treatment where hypofractionated (i.e., large dose fractions), conformal doses are delivered to small extracranial target volumes. This technique has proven to be especially effective for treating lung lesions. The inability of most commercially available algorithms/treatment planning systems to accurately account for electron transport in regions of heterogeneous electron density and tissue interfaces make prediction of accurate doses especially challenging for such regions. Monte Carlo which a model based calculation algorithm has proven to be extremely accurate for dose calculation in both homogeneous and inhomogeneous environment. This study attempts to accurately characterize the doses received by static targets located in the lung, as well as critical structures (contra and ipsi -lateral lung, major airways, esophagus and spinal cord) for the serial tomotherapeutic intensity-modulated delivery method used for stereotactic body radiation therapy at the Cancer Therapy and Research Center. PEREGRINERTM (v 1.6. NOMOS) Monte Carlo, doses were compared to the Finite Sized Pencil Beam/Effective Path Length predicted values from the CORVUS 5.0 planning system. The Monte Carlo based treatment planning system was first validated in both homogenous and inhomogeneous environments. 77 stereotactic body radiation therapy lung patients previously treated with doses calculated using the Finite Sized Pencil Beam/Effective Path Length, algorithm were then retrieved and recalculated with Monte Carlo. All 77 patients plans were also recalculated without inhomogeneity correction in an attempt to counteract the known overestimation of dose at the periphery of the target by EPL with increased attenuation. The critical structures were delineated in order to standardize the contouring. Both the ipsi-lateral and contra-lateral lungs were contoured. The major airways were contoured from the apex of the lungs (trachea) to 4 cm below

  9. Therapist guided internet based cognitive behavioural therapy for body dysmorphic disorder: single blind randomised controlled trial

    PubMed Central

    Andersson, Erik; Mataix-Cols, David; Lichtenstein, Linn; Alström, Katarina; Andersson, Gerhard; Ljótsson, Brjánn; Rück, Christian

    2016-01-01

    Objectives To evaluate the efficacy of therapist guided internet based cognitive behavioural therapy (CBT) programme for body dysmorphic disorder (BDD-NET) compared with online supportive therapy. Design A 12 week single blind parallel group randomised controlled trial. Setting Academic medical centre. Participants 94 self referred adult outpatients with a diagnosis of body dysmorphic disorder and a modified Yale-Brown obsessive compulsive scale (BDD-YBOCS) score of ≥20. Concurrent psychotropic drug treatment was permitted if the dose had been stable for at least two months before enrolment and remained unchanged during the trial. Interventions Participants received either BDD-NET (n=47) or supportive therapy (n=47) delivered via the internet for 12 weeks. Main outcome measures The primary outcome was the BDD-YBOCS score after treatment and follow-up (three and six months from baseline) as evaluated by a masked assessor. Responder status was defined as a ≥30% reduction in symptoms on the scale. Secondary outcomes were measures of depression (MADRS-S), global functioning (GAF), clinical global improvement (CGI-I), and quality of life (EQ5D). The six month follow-up time and all outcomes other than BDD-YBOCS and MADRS-S at 3 months were not pre-specified in the registration at clinicaltrials.gov because of an administrative error but were included in the original trial protocol approved by the regional ethics committee before the start of the trial. Results BDD-NET was superior to supportive therapy and was associated with significant improvements in severity of symptoms of body dysmorphic disorder (BDD-YBOCS group difference −7.1 points, 95% confidence interval −9.8 to −4.4), depression (MADRS-S group difference −4.5 points, −7.5 to −1.4), and other secondary measures. At follow-up, 56% of those receiving BDD-NET were classed as responders, compared with 13% receiving supportive therapy. The number needed to treat was 2.34 (1.71 to 4.35). Self

  10. Whole-body vibration improves functional capacity and quality of life in patients with severe chronic obstructive pulmonary disease (COPD): a pilot study

    PubMed Central

    Braz Júnior, Donato S; Dornelas de Andrade, Arméle; Teixeira, Andrei S; Cavalcanti, Cléssyo A; Morais, André B; Marinho, Patrícia EM

    2015-01-01

    Background Exercise intolerance is a common development in patients with chronic obstructive pulmonary disease (COPD). There is little data on the use of an isolated program using vibration platform training on functional capacity in these patients, which is an area that deserves investigation. Aim To investigate the effect of training on a vibrating platform (whole-body vibration [WBV]) on functional performance and quality of life of subjects with COPD. Methods A randomized controlled crossover pilot study with eleven subjects with COPD (forced expiratory volume in 1 second [FEV1]% predicted =14.63±11.14; forced vital capacity [FVC]% predicted =48.84±15.21; FEV1/FVC =47.39±11.63) underwent a 12-week WBV training program. Participants were randomized into the intervention group (IG) undergoing three sessions per week for a total of 12 weeks and control group (CG) without intervention. We evaluated the 6-minute walk test (6MWT), distance walked (DW), duration of the walk (TW), and index of perceived exertion (IPE), quality of life using St George’s Respiratory Questionnaire (SGRQ) and developed a 12-week program of training on a vibrating platform. Results The mean age was 62.91±8.82 years old (72.7% male). The DW increased at the end of training with a difference between groups of 75 m; all domains of the SGRQ improved at the end of training. The effect size Cohen’s d ranged from small to large for all the measured results. Conclusion These preliminary results suggest that WBV may potentially be a safe and feasible way to improve functional capacity in the 6MWT of patients with COPD undergoing a training program on the vibrating platform as well as in all domains of the SGRQ quality of life. However, further studies with a larger number of patients are needed to establish the long-term effect on functional capacity and quality of life in these patients. PMID:25624756

  11. Outcomes for Spine Stereotactic Body Radiation Therapy and an Analysis of Predictors of Local Recurrence

    SciTech Connect

    Bishop, Andrew J.; Tao, Randa; Rebueno, Neal C.; Christensen, Eva N.; Allen, Pamela K.; Wang, Xin A.; Amini, Behrang; Tannir, Nizar M.; Tatsui, Claudio E.; Rhines, Laurence D.; Li, Jing; Chang, Eric L.; Brown, Paul D.; Ghia, Amol J.

    2015-08-01

    Purpose: To investigate local control, survival outcomes, and predictors of local relapse for patients treated with spine stereotactic body radiation therapy. Methods and Materials: We reviewed the records of 332 spinal metastases consecutively treated with stereotactic body radiation therapy between 2002 and 2012. The median follow-up for all living patients was 33 months (range, 0-111 months). Endpoints were overall survival and local control (LC); recurrences were classified as either in-field or marginal. Results: The 1-year actuarial LC and overall survival rates were 88% and 64%, respectively. Patients with local relapses had poorer dosimetric coverage of the gross tumor volume (GTV) compared with patients without recurrence (minimum dose [Dmin] biologically equivalent dose [BED] 23.9 vs 35.1 Gy, P<.001; D98 BED 41.8 vs 48.1 Gy, P=.001; D95 BED 47.2 vs 50.5 Gy, P=.004). Furthermore, patients with marginal recurrences had poorer prescription coverage of the GTV (86% vs 93%, P=.01) compared with those with in-field recurrences, potentially because of more upfront spinal canal disease (78% vs 24%, P=.001). Using a Cox regression univariate analysis, patients with a GTV BED Dmin ≥33.4 Gy (median dose) (equivalent to 14 Gy in 1 fraction) had a significantly higher 1-year LC rate (94% vs 80%, P=.001) compared with patients with a lower GTV BED Dmin; this factor was the only significant variable on multivariate Cox analysis associated with LC (P=.001, hazard ratio 0.29, 95% confidence interval 0.14-0.60) and also was the only variable significant in a separate competing risk multivariate model (P=.001, hazard ratio 0.30, 95% confidence interval 0.15-0.62). Conclusions: Stereotactic body radiation therapy offers durable control for spinal metastases, but there is a subset of patients that recur locally. Patients with local relapse had significantly poorer tumor coverage, which was likely attributable to treatment planning directives that prioritized the

  12. Ride quality and international standard ISO 2631 (Guide for the evaluation of human exposure to whole-body vibration)

    NASA Technical Reports Server (NTRS)

    Allen, G. R.

    1975-01-01

    The evolution of the standard, which is aimed at promoting research and production of more data, and providing some design guidance, is outlined and its contents summarized. Some of the assumptions and information on which it is based are analyzed. Its application to vehicle ride quality is considered in the context of the safety, efficiency and comfort of crew and passengers. The importance of establishing the precise criteria against which vibration limits are required is underlined, particularly the difficulties of first defining comfort and then postulating appropriate levels. Some current and future work related to improving the standard is outlined and additional suggestions offered.

  13. The relationship between body weight and inflammation: Lesson from anti-TNF-α antibody therapy.

    PubMed

    Peluso, Ilaria; Palmery, Maura

    2016-01-01

    Obesity is associated with many pathological conditions. Tumor Necrosis Factor-α (TNF-α) is one of the key mediators of inflammation involved in the obesity-related insulin resistance development. We aim to review the human evidence useful to clarify the relationship between inflammation and body weight, with particular reference to TNF-α. Genetic polymorphisms and epigenetic factors, such as diet, could affect TNF-α activity. TNF-α is associated with obesity, but also with anorexia and cachexia. Despite the role of TNF-α in obesity-related diseases, anti-TNF-α antibody therapy is associated with an increase in adiposity. In conclusion the reviewed results suggest that inflammation is more likely a consequence rather than a cause of obesity.

  14. [The body's responsiveness and the efficiency of antihomotoxic therapy for chronic opisthorchiasis: an aggregate clinical estimate].

    PubMed

    Tolokonskaia, N P; Chabanov, D A

    2007-01-01

    The authors have proposed an extended clinical evaluation system that calls for a study of the mechanisms of development and relationships of any symptoms and diseases, including those unrelated to opisthorchiasis. Forty patients who had been diagnosed as having chronic opisthorchiasis and had a long history were examined. There was a drastic reduction in the body's susceptibility to acute inflammations during progressive chronic degenerative diseases just at the age of 17-30 years, which is indicative of systemic responsiveness abnormalities. The practical application of the proposed aggregate clinical estimate system makes it possible to apply a holistic approach to analyzing the patients' health status, to substantially upgrade the quality of clinical diagnosis, and extend the capabilities of a differential approach to evaluating the severity of disease and planning therapy.

  15. A current perspective on stereotactic body radiation therapy for pancreatic cancer

    PubMed Central

    Hong, Julian C; Czito, Brian G; Willett, Christopher G; Palta, Manisha

    2016-01-01

    Pancreatic cancer is a formidable malignancy with poor outcomes. The majority of patients are unable to undergo resection, which remains the only potentially curative treatment option. The management of locally advanced (unresectable) pancreatic cancer is controversial; however, treatment with either chemotherapy or chemoradiation is associated with high rates of local tumor progression and metastases development, resulting in low survival rates. An emerging local modality is stereotactic body radiation therapy (SBRT), which uses image-guided, conformal, high-dose radiation. SBRT has demonstrated promising local control rates and resultant quality of life with acceptable rates of toxicity. Over the past decade, increasing clinical experience and data have supported SBRT as a local treatment modality. Nevertheless, additional research is required to further evaluate the role of SBRT and improve upon the persistently poor outcomes associated with pancreatic cancer. This review discusses the existing clinical experience and technical implementation of SBRT for pancreatic cancer and highlights the directions for ongoing and future studies. PMID:27826200

  16. [Comments on influence of different functional status of the body on clinical effects of acupuncture therapy].

    PubMed

    Li, Zheng-Jie; Zeng, Fang; Yang, Jie; Ren, Yu-Lan; Liang, Fan-Rang

    2013-10-01

    Functional status is an important factor affecting clinical therapeutic effect of acupuncture therapy. Authors of the present article make an analysis on the related descriptions of ancient classical books about the patient's body constitution, age, duration of disease, type of disease or clinical conditions, psychological state, etc. which determine the functional state of patients. Moreover, the authors also make some comments on the results of modern clinical trials and experimental studies. However, till now, the results of many related modern studies were lower in reliability due to unreliable methodology. Fewer clinical trials involve the patient's psychological state, and constitution from the viewpoint of Chinese medicine. Correspondingly, the related experimental studies are fewer. The authors suggest that in the coming days clinical trials should be greatly improved in quality and the mutual interference among the influential factors should be excluded. At the same time, experimental studies on the related biochemical mechanisms should be strengthened.

  17. A whole body atlas for segmentation and delineation of organs for radiation therapy planning

    NASA Astrophysics Data System (ADS)

    Qatarneh, S. M.; Crafoord, J.; Kramer, E. L.; Maguire, G. Q.; Brahme, A.; Noz, M. E.; Hyödynmaa, S.

    2001-09-01

    A semi-automatic procedure for delineation of organs to be used as the basis of a whole body atlas database for radiation therapy planning was developed. The Visible Human Male Computed Tomography (CT)-data set was used as a "standard man" reference. The organ of interest was outlined manually and then transformed by a polynomial warping algorithm onto a clinical patient CT. This provided an initial contour, which was then adjusted and refined by the semi-automatic active contour model to find the final organ outline. The liver was used as a test organ for evaluating the performance of the procedure. Liver outlines obtained by the segmentation algorithm on six patients were compared to those manually drawn by a radiologist. The combination of warping and semi-automatic active contour model generally provided satisfactory segmentation results, but the procedure has to be extended to three dimensions.

  18. Whole Body Vibration Exercise Protocol versus a Standard Exercise Protocol after ACL Reconstruction: A Clinical Randomized Controlled Trial with Short Term Follow-Up

    PubMed Central

    Berschin, Gereon; Sommer, Björn; Behrens, Antje; Sommer, Hans-Martin

    2014-01-01

    The suitability and effectiveness of whole body vibration (WBV) exercise in rehabilitation after injury of the anterior cruciate ligament (ACL) was studied using a specially designed WBV protocol. We wanted to test the hypothesis if WBV leads to superior short term results regarding neuromuscular performance (strength and coordination) and would be less time consuming than a current standard muscle strengthening protocol. In this prospective randomized controlled clinical trial, forty patients who tore their ACL and underwent subsequent ligament reconstruction were enrolled. Patients were randomized to the whole body vibration (n=20) or standard rehabilitation exercise protocol (n=20). Both protocols started in the 2nd week after surgery. Isometric and isokinetic strength measurements, clinical assessment, Lysholm score, neuromuscular performance were conducted weeks 2, 5, 8 and 11 after surgery. Time spent for rehabilitation exercise was reduced to less than a half in the WBV group. There were no statistically significant differences in terms of clinical assessment, Lysholm score, isokinetic and isometric strength. The WBV group displayed significant better results in the stability test. In conclusion, preliminary data indicate that our whole body vibration muscle exercise protocol seems to be a good alternative to a standard exercise program in ACL-rehabilitation. Despite of its significant reduced time requirement it is at least equally effective compared to a standard rehabilitation protocol. Key points In this prospective randomized controlled clinical trial, we tested the hypothesis if WBV leads to superior short term results regarding neuromuscular performance (strength and coordination) and would be less time consuming than a current standard muscle strengthening protocol in forty patients who underwent ACL reconstruction. Time spent for rehabilitation exercise was reduced to less than a half in the WBV group as compared to the standard exercise group. Both

  19. Outcomes and toxicities of stereotactic body radiation therapy for non-spine bone oligometastases

    PubMed Central

    Owen, Dawn; Laack, Nadia N.; Mayo, Charles S.; Garces, Yolanda I.; Park, Sean S.; Bauer, Heather J.; Nelson, Kathryn; Miller, Robert W.; Brown, Paul D.; Olivier, Kenneth R.

    2015-01-01

    Purpose Stereotactic body radiation therapy (SBRT) is being applied more widely for oligometastatic disease. This technique is now being used for non-spine bony metastases in addition to liver, spine, and lung. However, there are few studies examining the toxicity and outcomes of SBRT for non-spine bone metastases. Methods and Materials Between 2008 and 2012, 74 subjects with oligometastatic non-spine bony metastases of varying histologies were treated at the Mayo Clinic with SBRT. A total of 85 non-spine bony sites were treated. Median local control, overall survival, and progression-free survival were described. Acute toxicity (defined as toxicity <90 days) and late toxicity (defined as toxicity ≥90 days) were reported and graded as per standardized Common Toxicity Criteria for Adverse Events 4.0 criteria. Results The median age of patients treated was 60 years. The most common histology was prostate cancer (31%) and most patients had fewer than 3 sites of disease at the time of simulation (64%). Most of the non-spine bony sites lay within the pelvis (65%). Dose and fractionation varied but the most common prescription was 24 Gy/1 fraction. Local recurrence occurred in 7 patients with a median time to failure of 2.8 months. Local control was 91.8% at 1 year. With a median follow-up of 7.6 months, median SBRT specific overall survival and progression-free survival were 9.3 months and 9.7 months, respectively. Eighteen patients developed acute toxicity (mostly grade 1 and 2 fatigue and acute pain flare); 9 patients developed grade 1–2 late toxicities. Two patients developed pathologic fractures but both were asymptomatic. There were no late grade 3 or 4 toxicities. Conclusions Stereotactic body radiation therapy is a feasible and tolerable treatment for non-spine bony metastases. Longer follow-up will be needed to accurately determine late effects. PMID:24890360

  20. Mathematical equations and system identification models for a portable pneumatic bladder system designed to reduce human exposure to whole body shock and vibration

    NASA Astrophysics Data System (ADS)

    Aziz Ayyad, Ezzat

    A mathematical representation is sought to model the behavior of a portable pneumatic foam bladder designed to mitigate the effects of human exposure to shock and whole body random vibration. Fluid Dynamics principles are used to derive the analytic differential equations used for the physical equations Model. Additionally, combination of Wiener and Hammerstein block oriented representation techniques have been selected to create system identification (SID) block oriented models. A number of algorithms have been iterated to obtain numerical solutions for the system of equations which was found to be coupled and non-linear, with no analytic closed form solution. The purpose is to be able to predict the response of such system due to random vibrations and shock within reasonable margin of error. The constructed models were found to be accurate within accepted confidence level. Beside the analytic set of physical equations model representation, a linear SID model was selected to take advantage of the available vast amount of mathematical tools available to further analyze and redesign the bladder as a dynamic system. Measured field-test and lab test data have been collected from several helicopter and land terrain vehicle experiments. Numerous excitation and response acceleration measurement records were collected and used to prove the agreement with predictions. The estimation of two selected models were later applied to standard metrics in the frequency domain realization and compared with measurement responses. The collected test records are obtained from measured data at the US Army fields and facilities and at UNLV-CMEST environmental lab. The emerged models have been validated for conformity with actual accelerometer measurement responses and found within accepted error tolerance that is in both time and frequency domains. Further, standard metrics have been used to further confirm the confidence in the validation results. When comparing model prediction with

  1. 4D VMAT, gated VMAT, and 3D VMAT for stereotactic body radiation therapy in lung

    NASA Astrophysics Data System (ADS)

    Chin, E.; Loewen, S. K.; Nichol, A.; Otto, K.

    2013-02-01

    Four-dimensional volumetric modulated arc therapy (4D VMAT) is a treatment strategy for lung cancers that aims to exploit relative target and tissue motion to improve organ at risk (OAR) sparing. The algorithm incorporates the entire patient respiratory cycle using 4D CT data into the optimization process. Resulting treatment plans synchronize the delivery of each beam aperture to a specific phase of target motion. Stereotactic body radiation therapy treatment plans for 4D VMAT, gated VMAT, and 3D VMAT were generated on three patients with non-small cell lung cancer. Tumour motion ranged from 1.4-3.4 cm. The dose and fractionation scheme was 48 Gy in four fractions. A B-spline transformation model registered the 4D CT images. 4D dose volume histograms (4D DVH) were calculated from total dose accumulated at the maximum exhalation. For the majority of OARs, gated VMAT achieved the most radiation sparing but treatment times were 77-148% longer than 3D VMAT. 4D VMAT plan qualities were comparable to gated VMAT, but treatment times were only 11-25% longer than 3D VMAT. 4D VMAT's improvement of healthy tissue sparing can allow for further dose escalation. Future study could potentially adapt 4D VMAT to irregular patient breathing patterns.

  2. A comparison of robotic arm versus gantry linear accelerator stereotactic body radiation therapy for prostate cancer.

    PubMed

    Avkshtol, Vladimir; Dong, Yanqun; Hayes, Shelly B; Hallman, Mark A; Price, Robert A; Sobczak, Mark L; Horwitz, Eric M; Zaorsky, Nicholas G

    2016-01-01

    Prostate cancer is the most prevalent cancer diagnosed in men in the United States besides skin cancer. Stereotactic body radiation therapy (SBRT; 6-15 Gy per fraction, up to 45 minutes per fraction, delivered in five fractions or less, over the course of approximately 2 weeks) is emerging as a popular treatment option for prostate cancer. The American Society for Radiation Oncology now recognizes SBRT for select low- and intermediate-risk prostate cancer patients. SBRT grew from the notion that high doses of radiation typical of brachytherapy could be delivered noninvasively using modern external-beam radiation therapy planning and delivery methods. SBRT is most commonly delivered using either a traditional gantry-mounted linear accelerator or a robotic arm-mounted linear accelerator. In this systematic review article, we compare and contrast the current clinical evidence supporting a gantry vs robotic arm SBRT for prostate cancer. The data for SBRT show encouraging and comparable results in terms of freedom from biochemical failure (>90% for low and intermediate risk at 5-7 years) and acute and late toxicity (<6% grade 3-4 late toxicities). Other outcomes (eg, overall and cancer-specific mortality) cannot be compared, given the indolent course of low-risk prostate cancer. At this time, neither SBRT device is recommended over the other for all patients; however, gantry-based SBRT machines have the abilities of treating larger volumes with conventional fractionation, shorter treatment time per fraction (~15 minutes for gantry vs ~45 minutes for robotic arm), and the ability to achieve better plans among obese patients (since they are able to use energies >6 MV). Finally, SBRT (particularly on a gantry) may also be more cost-effective than conventionally fractionated external-beam radiation therapy. Randomized controlled trials of SBRT using both technologies are underway.

  3. A comparison of robotic arm versus gantry linear accelerator stereotactic body radiation therapy for prostate cancer

    PubMed Central

    Avkshtol, Vladimir; Dong, Yanqun; Hayes, Shelly B; Hallman, Mark A; Price, Robert A; Sobczak, Mark L; Horwitz, Eric M; Zaorsky, Nicholas G

    2016-01-01

    Prostate cancer is the most prevalent cancer diagnosed in men in the United States besides skin cancer. Stereotactic body radiation therapy (SBRT; 6–15 Gy per fraction, up to 45 minutes per fraction, delivered in five fractions or less, over the course of approximately 2 weeks) is emerging as a popular treatment option for prostate cancer. The American Society for Radiation Oncology now recognizes SBRT for select low- and intermediate-risk prostate cancer patients. SBRT grew from the notion that high doses of radiation typical of brachytherapy could be delivered noninvasively using modern external-beam radiation therapy planning and delivery methods. SBRT is most commonly delivered using either a traditional gantry-mounted linear accelerator or a robotic arm-mounted linear accelerator. In this systematic review article, we compare and contrast the current clinical evidence supporting a gantry vs robotic arm SBRT for prostate cancer. The data for SBRT show encouraging and comparable results in terms of freedom from biochemical failure (>90% for low and intermediate risk at 5–7 years) and acute and late toxicity (<6% grade 3–4 late toxicities). Other outcomes (eg, overall and cancer-specific mortality) cannot be compared, given the indolent course of low-risk prostate cancer. At this time, neither SBRT device is recommended over the other for all patients; however, gantry-based SBRT machines have the abilities of treating larger volumes with conventional fractionation, shorter treatment time per fraction (~15 minutes for gantry vs ~45 minutes for robotic arm), and the ability to achieve better plans among obese patients (since they are able to use energies >6 MV). Finally, SBRT (particularly on a gantry) may also be more cost-effective than conventionally fractionated external-beam radiation therapy. Randomized controlled trials of SBRT using both technologies are underway. PMID:27574585

  4. The use of stereotactic body radiation therapy for local control of glomangiomatosis: a case report.

    PubMed

    Horne, Zachary D; Karam, Sana D; Rashid, Abdul; Snider, J W; Lax, Allison; Ozdemirli, Metin; Harter, K W

    2013-01-01

    The vast majority of glomangiomas are small, benign neoplasms that can occur anywhere in the body but typically arise in the subcutaneous tissues of the extremities and are capable of causing extreme pain. Typically, these lesions are managed surgically with excellent rates of tumor control. On occasion, patients present with a variant of the glomangioma tumor consisting of numerous or recurrent nodules, a condition classified as glomangiomatosis. The authors present a case report of a young patient with multiply recurrent painful glomangiomas of the left foot, who was ultimately diagnosed with glomangiomatosis pedis. After multiple surgeries and surgical consultations, no surgery other than amputation was recommended. Therefore, the patient sought consultation with regard to stereotactic body radiation therapy (SBRT). In the absence of other options, and based on its effectiveness in treating glomus tumors of the head and neck which display similar natural history and histologic features, SBRT was offered. The patient underwent SBRT to the largest of his remaining tumors with excellent local control and significant reduction in pain at two and a half years follow-up.

  5. The (Re) Production of the Genetically Related Body in Law, Technology and Culture: Mitochondria Replacement Therapy.

    PubMed

    Griffiths, Danielle

    2016-09-01

    Advances in medicine in the latter half of the twentieth century have dramatically altered human bodies, expanding choices around what we do with them and how they connect to other bodies. Nowhere is this more so than in the area of reproductive technologies (RTs). Reproductive medicine and the laws surrounding it in the UK have reconfigured traditional boundaries surrounding parenthood and the family. Yet culture and regulation surrounding RTs have combined to try to ensure that while traditional boundaries may be pushed, they are reconstructed in similar ways. This paper looks at the most recent RT to be permitted in the UK, mitochondria (mtDNA) replacement therapy (MRT). Despite controversial media headlines surrounding the technique, MRT is in fact an example of how science and regulation seek to expand models of traditional relatedness in a way that doesn't challenge the existing order. Yet, like other RTs, while attempts are made to ensure it doesn't push traditional boundaries too far, fissures and inconsistencies appear in law and culture, which give interesting insights into how genetics, parentage and identity are being mediated in new but familiar ways.

  6. The Impact of Obesity on Patient Reported Outcomes Following Stereotactic Body Radiation Therapy for Prostate Cancer

    PubMed Central

    Cyr, Robyn; Feng, Li Rebekah; Bae, Edward; Danner, Malika T; Ayoob, Marilyn; Yung, Thomas M; Lei, Siyuan; Collins, Brian T; Saligan, Leorey; Simeng, Suy; Kumar, Deepak; Collins, Sean P

    2016-01-01

    Objectives The relationship between obesity (Body Mass Index ­>30 kg/m2) and quality of life (QoL) following prostate cancer (PCa) radiation therapy (RT) is unknown. Excess abdominal fat may compromise the precise delivery of radiation, putting surrounding organs at risk for greater radiation exposure. Stereotactic body radiation therapy (SBRT) utilizes a real-time tracking system that provides updated prostate position information and allows for correction of the therapeutic beam during treatment with high accuracy. In this study, we evaluate the impact of obesity on patient reported outcomes following SBRT for prostate cancer. Materials and methods Between February 2008 and April 2012, 88 obese and 178 non-obese patients with PCa were treated with SBRT at Georgetown University Hospital, Washington, DC. Health-related quality of life (HRQol) was assessed via the expanded prostate cancer index composite (EPIC)-26 at baseline, 6, 12, 18, and 24 months after 5-fraction delivery of 35-36.25 Gy with the CyberKnife. Patients who received androgen deprivation therapy (ADT) were excluded from this analysis due to its known negative impact on HRQoL. Results Pretreatment characteristics of obese and non-obese patient groups were similar except that obese patients had lower total testosterone levels. Urinary and bowel function and bother scores between the two patient cohorts were comparable at baseline and subsequent follow-ups. Sexual function and bother were also similar at baseline between both groups. Bother was defined by displeasure patients may experience from functional decline. At 24 months post-SBRT, obese men experienced borderline clinically significant decrease in sexual function and greater sexual bother compared to non-obese patients. Fatigue was significantly higher in obese patients compared to non-obese patients at 18 months post-SBRT. Conclusions Prostate SBRT affects obese and non-obese patients similarly in total HRQoL scores and majority of its

  7. Body electrolytes in bronchopulmonary dysplasia and the effects of diuretic therapy.

    PubMed

    Verma, R P; John, E; Fornell, L; Vidyasagar, D

    1994-01-01

    Body electrolytes and their regulatory hormones were studied in preterm infants who suffered from bronchopulmonary dysplasia under two groups: those who were not treated with diuretics (Group II), and those who were treated with diuretics (Group III). The values were compared with a group of matched healthy controls (Group I). Lower serum Na levels, a need of higher Na intake, and higher urinary Na concentrations and urinary specific gravity were found in Group II infants. FeNa was normal and the urinary flow rate was lower than the controls. These data suggest an inability of these infants to dilute urine. Group III infants who were treated with diuretics showed higher serum Na levels and lower urinary specific gravity than Group II infants. These values, as well as water and Na intake/output ratios, were all similar to the control values. Serum aldosterone level was highest in Group II but did not reach significance. Intracellular K concentration was not different between the groups indicating an optimum total body K balance. A significant negative correlation between serum Na and aldosterone levels was found in Group II infants, which was not noted in the controls. Significant correlations were also found between FeNa and plasma aldosterone level in the BPD groups, unlike the controls. The control group of infants showed significant positive correlation between Na balance and serum Na levels. Our results suggest that inability to dilute urine appropriately might be the reason for the BPD patients to retain body water. Water restriction and diuretic therapy therefore are reasonable therapeutic approaches in such cases.

  8. The effects of whole-body vibration exercise on isokinetic muscular function of the knee and jump performance depending on squatting position

    PubMed Central

    Kim, Jaeyuong; Park, Yunjin; Seo, Yonggon; Kang, Gyumin; Park, Sangseo; Cho, Hyeyoung; Moon, Hyunghoon; Kim, Myungki; Yu, Jaeho

    2016-01-01

    [Purpose] The purpose of this study was to investigate the effects of whole-body vibration exercise (WBVE) on isokinetic muscular function of the knee and jump performance depending on different squatting positions. [Subjects] The subjects were 12 healthy adult men who did not exercise regularly between the ages of 27 and 34. [Methods] WBVE was performed with high squat position (SP), middle SP, and low SP. Before and after the intervention, isokinetic muscular function of the knees and jump performance were measured. [Results] Knee flexion peak torque at 60°/s and total work at 180°/s were significantly increased after implementing WBVE. Jump height also significantly increased after completing the exercise at all positions in comparison with the pre-exercise programs. [Conclusion] The results of this study suggest that SP during WBVE is an important factor stimulating positive effects on muscular function. PMID:26957749

  9. Esophageal Dose Tolerance to Hypofractionated Stereotactic Body Radiation Therapy: Risk Factors for Late Toxicity

    SciTech Connect

    Stephans, Kevin L.; Djemil, Toufik; Diaconu, Claudiu; Reddy, Chandana A.; Xia, Ping; Woody, Neil M.; Greskovich, John; Makkar, Vinit; Videtic, Gregory M.M.

    2014-09-01

    Purpose: To identify factors associated with grade ≥3 treatment related late esophageal toxicity after lung or liver stereotactic body radiation therapy (SBRT). Methods and Materials: This was a retrospective review of 52 patients with a planning target volume within 2 cm of the esophagus from a prospective registry of 607 lung and liver SBRT patients treated between 2005 and 2011. Patients were treated using a risk-adapted dose regimen to a median dose of 50 Gy in 5 fractions (range, 37.5-60 Gy in 3-10 fractions). Normal structures were contoured using Radiation Therapy Oncology Group (RTOG) defined criteria. Results: The median esophageal point dose and 1-cc dose were 32.3 Gy (range, 8.9-55.4 Gy) and 24.0 Gy (range, 7.8-50.9 Gy), respectively. Two patients had an esophageal fistula at a median of 8.4 months after SBRT, with maximum esophageal point doses of 51.5 and 52 Gy, and 1-cc doses of 48.1 and 50 Gy, respectively. These point and 1-cc doses were exceeded by 9 and 2 patients, respectively, without a fistula. The risk of a fistula for point doses exceeding 40, 45, and 50 Gy was 9.5% (n=2/21), 10.5% (n=2/19), and 12.5% (n=2/16), respectively. The risk of fistula for 1-cc doses exceeding 40, 45, and 50 Gy was 25% (n=2/9), 50% (n=2/4), and 50% (n=2/4), respectively. Eighteen patients received systemic therapy after SBRT (11 systemic chemotherapy, and 6 biologic agents, and 1 both). Both patients with fistulas had received adjuvant anti-angiogenic (vascular endothelial growth factor) agents within 2 months of completing SBRT. No patient had a fistula in the absence of adjuvant VEGF-modulating agents. Conclusions: Esophageal fistula is a rare complication of SBRT. In this series, fistula was seen with esophageal point doses exceeding 51 Gy and 1-cc doses greater than 48 Gy. Notably, however, fistula was seen only in those patients who also received adjuvant VEGF-modulating agents after SBRT. The potential interaction of dose and adjuvant therapy

  10. Critical Appraisal of Volumetric Modulated Arc Therapy in Stereotactic Body Radiation Therapy for Metastases to Abdominal Lymph Nodes

    SciTech Connect

    Bignardi, Mario; Cozzi, Luca; Fogliata, Antonella; Lattuada, Paola; Mancosu, Pietro; Navarria, Piera; Urso, Gaetano; Vigorito, Sabrina; Scorsetti, Marta

    2009-12-01

    Purpose: A planning study was performed comparing volumetric modulated arcs, RapidArc (RA), fixed beam IMRT (IM), and conformal radiotherapy (CRT) with multiple static fields or short conformal arcs in a series of patients treated with hypofractionated stereotactic body radiation therapy (SBRT) for solitary or oligo-metastases from different tumors to abdominal lymph nodes. Methods and Materials: Fourteen patients were included in the study. Dose prescription was set to 45 Gy (mean dose to clinical target volume [CTV]) in six fractions of 7.5 Gy. Objectives for CTV and planning target volume (PTV) were as follows: Dose{sub min} >95%, Dose{sub max} <107%. For organs at risk the following objectives were used: Maximum dose to spine <18 Gy; V{sub 15Gy} <35% for both kidneys, V{sub 36Gy} <1% for duodenum, V{sub 36Gy} <3% for stomach and small bowel, V{sub 15Gy} <(total liver volume - 700 cm{sup 3}) for liver. Dose-volume histograms were evaluated to assess plan quality. Results: Planning objectives on CTV and PTV were achieved by all techniques. Use of RA improved PTV coverage (V{sub 95%} = 90.2% +- 5.2% for RA compared with 82.5% +- 9.6% and 84.5% +- 8.2% for CRT and IM, respectively). Most planning objectives for organs at risk were met by all techniques except for the duodenum, small bowel, and stomach, in which the CRT plans exceeded the dose/volume constraints in some patients. The MU/fraction values were as follows: 2186 +- 211 for RA, 2583 +- 699 for IM, and 1554 +- 153 for CRT. Effective treatment time resulted as follows: 3.7 +- 0.4 min for RA, 10.6 +- 1.2 min for IM, and 6.3 +- 0.5 min for CRT. Conclusions: Delivery of SBRT by RA showed improvements in conformal avoidance with respect to standard conformal irradiation. Delivery parameters confirmed logistical advantages of RA, particularly compared with IM.

  11. Voxel-Based Dose Reconstruction for Total Body Irradiation With Helical TomoTherapy

    SciTech Connect

    Chao Ming; Penagaricano, Jose; Yan Yulong; Moros, Eduardo G.; Corry, Peter; Ratanatharathorn, Vaneerat

    2012-04-01

    Purpose: We have developed a megavoltage CT (MVCT)-based dose reconstruction strategy for total body irradiation (TBI) with helical TomoTherapy (HT) using a deformable registration model to account for the patient's interfraction changes. The proposed technique serves as an efficient tool for delivered dose verification and, potentially, plan adaptation. Methods and Materials: Four patients with acute myelogenous leukemia treated with TBI using HT were selected for this study. The prescription was 12 Gy, 2 Gy/fraction, twice per day, given at least 6 h apart. The original plan achieved coverage of 80% of the clinical target volume (CTV) by the 12 Gy isodose surface. MVCTs were acquired prior to each treatment. Regions of interest were contoured on each MVCT. The dose for each fraction was calculated based on the MVCT using the HT planned adaptive station. B-spline deformable registration was conducted to establish voxel-to-voxel correspondence between the MVCT and the planning CT. The resultant deformation vector was employed to map the reconstructed dose from each fraction to the same point as the plan dose, and a voxel-to-voxel summed dose from all six fractions was obtained. The reconstructed dose distribution and its dosimetric parameters were compared with those of the original treatment plan. Results: While changes in CTV contours occurred in all patients, the reconstructed dose distribution showed that the dose-volume histogram for CTV coverage was close (<1.5%) to that of the original plan. For sensitive structures, the differences between the reconstructed and the planned doses were less than 3.0%. Conclusion: Voxel-based dose reconstruction strategy that takes into account interfraction anatomical changes using MVCTs is a powerful tool for treatment verification of the delivered doses. This proposed technique can also be applied to adaptive TBI therapy using HT.

  12. Spine stereotactic body radiation therapy plans: Achieving dose coverage, conformity, and dose falloff.

    PubMed

    Hong, Linda X; Shankar, Viswanathan; Shen, Jin; Kuo, Hsiang-Chi; Mynampati, Dinesh; Yaparpalvi, Ravindra; Goddard, Lee; Basavatia, Amar; Fox, Jana; Garg, Madhur; Kalnicki, Shalom; Tomé, Wolfgang A

    2015-01-01

    We report our experience of establishing planning objectives to achieve dose coverage, conformity, and dose falloff for spine stereotactic body radiation therapy (SBRT) plans. Patients with spine lesions were treated using SBRT in our institution since September 2009. Since September 2011, we established the following planning objectives for our SBRT spine plans in addition to the cord dose constraints: (1) dose coverage—prescription dose (PD) to cover at least 95% planning target volume (PTV) and 90% PD to cover at least 99% PTV; (2) conformity index (CI)—ratio of prescription isodose volume (PIV) to the PTV < 1.2; (3) dose falloff—ratio of 50% PIV to the PTV (R(50%)); (4) and maximum dose in percentage of PD at 2 cm from PTV in any direction (D(2cm)) to follow Radiation Therapy Oncology Group (RTOG) 0915. We have retrospectively reviewed 66 separate spine lesions treated between September 2009 and December 2012 (31 treated before September 2011 [group 1] and 35 treated after [group 2]). The χ(2) test was used to examine the difference in parameters between groups. The PTV V(100% PD) ≥ 95% objective was met in 29.0% of group 1 vs 91.4% of group 2 (p < 0.01) plans. The PTV V(90% PD) ≥ 99% objective was met in 38.7% of group 1 vs 88.6% of group 2 (p < 0.01) plans. Overall, 4 plans in group 1 had CI > 1.2 vs none in group 2 (p = 0.04). For D(2cm), 48.3% plans yielded a minor violation of the objectives and 16.1% a major violation for group 1, whereas 17.1% exhibited a minor violation and 2.9% a major violation for group 2 (p < 0.01). Spine SBRT plans can be improved on dose coverage, conformity, and dose falloff employing a combination of RTOG spine and lung SBRT protocol planning objectives.

  13. Volumetric-modulated arc therapy using multicriteria optimization for body and extremity sarcoma.

    PubMed

    Young, Michael R; Craft, David L; Colbert, Caroline M; Remillard, Kyla; Vanbenthuysen, Liam; Wang, Yi

    2016-11-08

    This study evaluates the implementation of volumetric-modulated arc therapy (VMAT) using multicriteria optimization (MCO) in the RayStation treatment planning system (TPS) for complex sites, namely extremity and body sarcoma. The VMAT-MCO algorithm implemented in RayStation is newly developed and requires an integrated, comprehensive analysis of plan generation, delivery, and treatment efficiency. Ten patients previously treated by intensity-modulated radiation therapy (IMRT) with MCO were randomly selected and replanned using VMAT-MCO. The plan quality was compared using homogeneity index (HI) and conformity index (CI) of the planning target volume (PTV) and dose sparing of organs at risk (OARs). Given the diversity of the tumor location, the 10 plans did not have a common OAR except for skin. The skin D50 and Dmean was directly compared between VMAT-MCO and IMRT-MCO. Additional OAR dose points were compared on a plan-by-plan basis. The treatment efficiency was compared using plan monitor units (MU) and net beam-on time. Plan quality assurance was performed using the Sun Nuclear ArcCHECK phantom and a gamma criteria of 3%/3 mm. No statistically significant differences were found between VMAT- and IMRT-MCO for HI and CI of the PTV or D50 and Dmean to the skin. The VMAT-MCO plans showed general improvements in sparing to OARs. The VMAT-MCO plan set showed statistically significant improvements over the IMRT-MCO set in treatment efficiency per plan MU (p < 0.05) and net beam-on time (p < 0.01). The VMAT-MCO plan deliverability was validated. Similar gamma passing rates were observed for the two modalities. This study verifies the suitability of VMAT-MCO for sarcoma cancer and highlighted the comparability in plan quality and improve-ment in treatment efficiency offered by VMAT-MCO as compared to IMRT-MCO.

  14. Stereotactic body radiation therapy planning with duodenal sparing using volumetric-modulated arc therapy vs intensity-modulated radiation therapy in locally advanced pancreatic cancer: A dosimetric analysis

    SciTech Connect

    Kumar, Rachit; Wild, Aaron T.; Ziegler, Mark A.; Hooker, Ted K.; Dah, Samson D.; Tran, Phuoc T.; Kang, Jun; Smith, Koren; Zeng, Jing; Pawlik, Timothy M.; Tryggestad, Erik; Ford, Eric; Herman, Joseph M.

    2013-10-01

    Stereotactic body radiation therapy (SBRT) achieves excellent local control for locally advanced pancreatic cancer (LAPC), but may increase late duodenal toxicity. Volumetric-modulated arc therapy (VMAT) delivers intensity-modulated radiation therapy (IMRT) with a rotating gantry rather than multiple fixed beams. This study dosimetrically evaluates the feasibility of implementing duodenal constraints for SBRT using VMAT vs IMRT. Non–duodenal sparing (NS) and duodenal-sparing (DS) VMAT and IMRT plans delivering 25 Gy in 1 fraction were generated for 15 patients with LAPC. DS plans were constrained to duodenal D{sub max} of<30 Gy at any point. VMAT used 1 360° coplanar arc with 4° spacing between control points, whereas IMRT used 9 coplanar beams with fixed gantry positions at 40° angles. Dosimetric parameters for target volumes and organs at risk were compared for DS planning vs NS planning and VMAT vs IMRT using paired-sample Wilcoxon signed rank tests. Both DS VMAT and DS IMRT achieved significantly reduced duodenal D{sub mean}, D{sub max}, D{sub 1cc}, D{sub 4%}, and V{sub 20} {sub Gy} compared with NS plans (all p≤0.002). DS constraints compromised target coverage for IMRT as demonstrated by reduced V{sub 95%} (p = 0.01) and D{sub mean} (p = 0.02), but not for VMAT. DS constraints resulted in increased dose to right kidney, spinal cord, stomach, and liver for VMAT. Direct comparison of DS VMAT and DS IMRT revealed that VMAT was superior in sparing the left kidney (p<0.001) and the spinal cord (p<0.001), whereas IMRT was superior in sparing the stomach (p = 0.05) and the liver (p = 0.003). DS VMAT required 21% fewer monitor units (p<0.001) and delivered treatment 2.4 minutes faster (p<0.001) than DS IMRT. Implementing DS constraints during SBRT planning for LAPC can significantly reduce duodenal point or volumetric dose parameters for both VMAT and IMRT. The primary consequence of implementing DS constraints for VMAT is increased dose to other organs at

  15. Body mass and endometrial cancer risk by hormone replacement therapy and cancer subtype.

    PubMed

    McCullough, Marjorie L; Patel, Alpa V; Patel, Roshni; Rodriguez, Carmen; Feigelson, Heather Spencer; Bandera, Elisa V; Gansler, Ted; Thun, Michael J; Calle, Eugenia E

    2008-01-01

    Epidemiologic studies unequivocally show that greater body mass increases the risk of endometrial cancer, but whether risk varies by use of postmenopausal hormone therapy (HT), location of fat deposition, or cancer subtype is still unclear. We examined these associations among 33,436 postmenopausal women in the Cancer Prevention Study II Nutrition Cohort, who completed questionnaires on diet, lifestyle, and medical history at baseline in 1992. A total of 318 cases were eligible through June 2003. Cox-proportional hazards analyses were used to estimate multivariate-adjusted rate ratios (RR). As expected, adult body mass index (BMI) was a strong predictor of risk [RR, 4.70; 95% confidence interval (CI), 3.12-7.07 for BMI 35+ versus 22.5-25.0, P trend < 0.0001]. Use of estrogen plus progestin postmenopausal HT modified the association. Among never-users, risk was significantly linear across the entire range of BMI examined (RR, 0.51; 95% CI, 0.29-0.92 for <22.5 versus 22.5-25.0; RR, 4.41; 95% CI, 2.70-7.20 for > or =35 versus 22.5-25.0, P trend < 0.0001), but among ever estrogen plus progestin users, the association was not significant (P trend = 1.0; P interaction < 0.0001). We observed no difference in risk according to tendency for central versus peripheral fat deposition. Greater BMI (> or =30 versus <25.0) increased risk of both "type I" (classic estrogen pathway, RR, 4.22; 95% CI, 3.07-5.81) and "type II" (serous, clear cell, and all other high grade) cancers (RR, 2.87; 95% CI, 1.59-5.16). The increased risk of endometrial cancer across the range of BMI in women who never used postmenopausal HT stresses the need to prevent both overweight and obesity in women.

  16. Obesity Increases the Risk of Chest Wall Pain From Thoracic Stereotactic Body Radiation Therapy

    SciTech Connect

    Welsh, James; Thomas, Jimmy; Shah, Deep; Allen, Pamela K.; Wei, Xiong; Mitchell, Kevin; Gao, Song; Balter, Peter; Komaki, Ritsuko; Chang, Joe Y.

    2011-09-01

    Purpose: Stereotactic body radiation therapy (SBRT) is increasingly being used to treat thoracic tumors. We attempted here to identify dose-volume parameters that predict chest wall toxicity (pain and skin reactions) in patients receiving thoracic SBRT. Patients and Methods: We screened a database of patients treated with SBRT between August 2004 and August 2008 to find patients with pulmonary tumors within 2.5 cm of the chest wall. All patients received a total dose of 50 Gy in four daily 12.5-Gy fractions. Toxicity was scored according to the NCI-CTCAE V3.0. Results: Of 360 patients in the database, 265 (268 tumors) had tumors within <2.5 cm of the chest wall; 104 (39%) developed skin toxicity (any grade); 14 (5%) developed acute pain (any grade), and 45 (17%) developed chronic pain (Grade 1 in 22 cases [49%] and Grade 2 or 3 in 23 cases [51%]). Both skin toxicity and chest wall pain were associated with the V{sub 30}, or volume of the chest wall receiving 30 Gy. Body mass index (BMI) was also strongly associated with the development of chest pain: patients with BMI {>=}29 had almost twice the risk of chronic pain (p = 0.03). Among patients with BMI >29, diabetes mellitus was a significant contributing factor to the development of chest pain. Conclusion: Safe use of SBRT with 50 Gy in four fractions for lesions close to the chest wall requires consideration of the chest wall volume receiving 30 Gy and the patient's BMI and diabetic state.

  17. Dosimetric benefits of hemigland stereotactic body radiotherapy for prostate cancer: implications for focal therapy

    PubMed Central

    Kishan, Amar U; Park, Sang J; King, Christopher R; Roberts, Kristofer; Kupelian, Patrick A; Steinberg, Michael L

    2015-01-01

    Objective: Compared with standard, whole-gland (WG) therapies for prostate cancer, focal approaches may provide equivalent oncologic outcomes with fewer adverse effects. The purpose of this study was to compare organ-at-risk (OAR) dosimetry between hemigland (HG) and WG stereotactic body radiotherapy (SBRT) plans. Methods: Volumetric-modulated arc radiotherapy-based SBRT plans were designed to treat the left HG, right HG and WG in eight patients, using five fractions of 8 Gy. OARs of interest included the contralateral HG, rectum, urinary bladder, urethra, penile bulb and contralateral neurovascular bundle. Results: Rectal V80% (the percentage of a normal structure receiving a dose of 80%) and V90% were significantly lower with HG plans than with WG plans (median values of 4.4 vs 2.5 cm3 and 2.1 vs 1.1 cm3, respectively, p < 0.05 by Student's t-test). Bladder V50% was also reduced significantly in HG plans (32.3 vs 17.4 cm3, p < 0.05), with a trend towards reduction of V100% (3.4 vs 1.3 cm3, p = 0.09). Urethral maximum dose and mean doses to the penile bulb and contralateral neurovascular bundle were also reduced significantly (42.0 vs 39.7 Gy, p < 0.00001; 13.3 vs 9.2 Gy, p < 0.05; and 40.2 vs 19.3 Gy, p < 0.00001, respectively). Conclusion: Targeting an HG volume rather than a WG volume when delivering SBRT can offer statistically significant reductions for all OARs. Given the large magnitude of the reduction in dose to these OARs, it is anticipated that HG SBRT could offer a superior toxicity profile when compared with WG SBRT. This is likely to be most relevant in the context of salvaging a local failure after radiation therapy. Advances in knowledge: The dosimetric feasibility of HG SBRT is demonstrated. When compared with WG SBRT plans, the HG plans demonstrate statistically significant and large magnitude reduction in doses to the rectum, bladder, urethra, penile bulb and contralateral neurovascular bundle, suggesting

  18. Linac-based total body irradiation (TBI) with volumetric modulated arc therapy (VMAT)

    NASA Astrophysics Data System (ADS)

    Tas, B.; Durmus, I. F.; Okumus, A.; Uzel, O. E.

    2017-02-01

    To evaluate dose distribution of Volumetric modulated arc therapy (VMAT) planning tecnique using Versa HD® lineer accelerator to deliver Total Body Irradiation (TBI) on the coach. Eight TBI patient's Treatment Planning System (TPS) were performed with dual arc VMAT for each patient. The VMAT-TBI consisted of three isocentres and three dual overlapping arcs. The prescribed dose was 12 Gy. Mean dose to lung and kidney were restricted less than 10 Gy and max. dose to lens were restricted less than 6 Gy. The plans were verified using 2D array and ion chamber. The comparison between calculation and measurement were made by γ-index analysis and absolute dose. An average total delivery time was determined 923±34 seconds and an average MU was determined 2614±228 MUs for dual arc VMAT. Mean dose to lungs was 9.7±0.2 Gy, mean dose to kidneys was 8.8±0.3 Gy, max. dose to lens was 5.5±0.3 Gy and max. dose was 14.6±0.3 Gy, HI of PTV was 1.13±0.2, mean dose to PTV was 12.6±1.5 Gy and mean γ-index pass rate was %97.1±1.9. The results show that the tecnique for TBI using VMAT on the treatment coach is feasible.

  19. Histopathologic tumor response after induction chemotherapy and stereotactic body radiation therapy for borderline resectable pancreatic cancer

    PubMed Central

    Chuong, Michael D.; Frakes, Jessica M.; Figura, Nicholas; Hoffe, Sarah E.; Shridhar, Ravi; Mellon, Eric A.; Hodul, Pamela J.; Malafa, Mokenge P.; Springett, Gregory M.

    2016-01-01

    Background While clinical outcomes following induction chemotherapy and stereotactic body radiation therapy (SBRT) have been reported for borderline resectable pancreatic cancer (BRPC) patients, pathologic response has not previously been described. Methods This single-institution retrospective review evaluated BRPC patients who completed induction gemcitabine-based chemotherapy followed by SBRT and surgical resection. Each surgical specimen was assigned two tumor regression grades (TRG), one using the College of American Pathologists (CAP) criteria and one using the MD Anderson Cancer Center (MDACC) criteria. Overall survival (OS) and progression free survival (PFS) were correlated to TRG score. Results We evaluated 36 patients with a median follow-up of 13.8 months (range, 6.1-24.8 months). The most common induction chemotherapy regimen (82%) was GTX (gemcitabine, docetaxel, capecitabine). A median SBRT dose of 35 Gy (range, 30-40 Gy) in 5 fractions was delivered to the region of vascular involvement. The margin-negative resection rate was 97.2%. Improved response according to MDACC grade trended towards superior PFS (P=061), but not OS. Any neoadjuvant treatment effect according to MDACC scoring (IIa-IV vs. I) was associated with improved OS and PFS (both P=0.019). We found no relationship between CAP score and OS or PFS. Conclusions These data suggest that the increased pathologic response after induction chemotherapy and SBRT is correlated with improved survival for BRPC patients. PMID:27034789

  20. Culturally Adapted Cognitive Behavioral Therapy for Body Dysmorphic Disorder: Case Examples

    PubMed Central

    Weingarden, Hilary; Marques, Luana; Fang, Angela; LeBlanc, Nicole; Buhlmann, Ulrike; Phillips, Katharine A.; Wilhelm, Sabine

    2014-01-01

    Individuals with Body Dysmorphic Disorder (BDD) have distressing or impairing preoccupations with imagined or slight defects in their appearance (e.g., nose too big). BDD is a severe psychiatric disorder often associated with high rates of suicidality as well as social and occupational impairment (Phillips, Coles et al., 2005). Researchers have only recently begun to investigate psychological treatments for BDD, with available data suggesting that cognitive behavioral therapy (CBT) appears efficacious for BDD (Williams, Hadjistavropoulos, & Sharpe, 2006). To our knowledge, however, there are no reports of whether CBT for BDD can be effectively generalized to ethnic minority and other special populations. The current report suggests specific modifications within the CBT for BDD framework that might improve the effectiveness and retention rates of CBT among ethnic minority patients with BDD. Specifically, the present study describes the cases of Ben*, a 40-year-old, Jewish, married male, and John, a 30-year-old, African American, single male, both with a primary diagnosis of BDD. Various treatment techniques were used to make the course of CBT more culturally responsive. This case report illustrates the challenges and benefits of integrating cultural variables into a CBT framework for BDD, and it highlights the need for more work in this area. PMID:25346783

  1. Massage therapy for cancer patients: a reciprocal relationship between body and mind

    PubMed Central

    Sagar, S.M.; Dryden, T.; Wong, R.K.

    2007-01-01

    Some cancer patients use therapeutic massage to reduce symptoms, improve coping, and enhance quality of life. Although a meta-analysis concludes that massage can confer short-term benefits in terms of psychological wellbeing and reduction of some symptoms, additional validated randomized controlled studies are necessary to determine specific indications for various types of therapeutic massage. In addition, mechanistic studies need to be conducted to discriminate the relative contributions of the therapist and of the reciprocal relationship between body and mind in the subject. Nuclear magnetic resonance techniques can be used to capture dynamic in vivo responses to biomechanical signals induced by massage of myofascial tissue. The relationship of myofascial communication systems (called “meridians”) to activity in the subcortical central nervous system can be evaluated. Understanding this relationship has important implications for symptom control in cancer patients, because it opens up new research avenues that link self-reported pain with the subjective quality of suffering. The reciprocal body–mind relationship is an important target for manipulation therapies that can reduce suffering. PMID:17576465

  2. Cognitive-Behavioral Therapy for Youth with Body Dysmorphic Disorder: Current Status and Future Directions

    PubMed Central

    Phillips, Katharine A.; Rogers, Jamison

    2011-01-01

    SYNOPSIS Body dysmorphic disorder (BDD), a distressing or impairing preoccupation with nonexistent or slight defect(s) in appearance, usually begins during early adolescence and appears to be common in youth. BDD is characterized by substantial impairment in psychosocial functioning and markedly high rates of suicidality. Cognitive-behavioral therapy (CBT) tailored to BDD’s unique features is the best tested and most promising psychosocial treatment for adults with BDD. CBT has been used for youth with BDD, but it has not been systematically developed for or tested in this age group, and there is a pressing need for this work to be done. This article focuses on CBT for BDD in adults and youth, possible adaptations for youth, and the need for treatment research in youth. We also discuss BDD’s prevalence, clinical features, how to diagnose BDD in youth, recommended pharmacotherapy for BDD (serotonin-reuptake inhibitors), and treatments that are not recommended (surgery and other cosmetic treatments). PMID:21440856

  3. Failure Mode and Effect Analysis for Delivery of Lung Stereotactic Body Radiation Therapy

    SciTech Connect

    Perks, Julian R.; Stanic, Sinisa; Stern, Robin L.; Henk, Barbara; Nelson, Marsha S.; Harse, Rick D.; Mathai, Mathew; Purdy, James A.; Valicenti, Richard K.; Siefkin, Allan D.; Chen, Allen M.

    2012-07-15

    Purpose: To improve the quality and safety of our practice of stereotactic body radiation therapy (SBRT), we analyzed the process following the failure mode and effects analysis (FMEA) method. Methods: The FMEA was performed by a multidisciplinary team. For each step in the SBRT delivery process, a potential failure occurrence was derived and three factors were assessed: the probability of each occurrence, the severity if the event occurs, and the probability of detection by the treatment team. A rank of 1 to 10 was assigned to each factor, and then the multiplied ranks yielded the relative risks (risk priority numbers). The failure modes with the highest risk priority numbers were then considered to implement process improvement measures. Results: A total of 28 occurrences were derived, of which nine events scored with significantly high risk priority numbers. The risk priority numbers of the highest ranked events ranged from 20 to 80. These included transcription errors of the stereotactic coordinates and machine failures. Conclusion: Several areas of our SBRT delivery were reconsidered in terms of process improvement, and safety measures, including treatment checklists and a surgical time-out, were added for our practice of gantry-based image-guided SBRT. This study serves as a guide for other users of SBRT to perform FMEA of their own practice.

  4. Body mass index changes during highly active antiretroviral therapy in Nigeria.

    PubMed

    Denue, B A; Ikunaiye, P N Y; Denue, C B A

    2014-01-09

    Wasting remains an important condition in HIV-infected patients receiving highly active antiretroviral therapy (HAART). In this study, 120 patients with newly diagnosed HIV infection were prospectively evaluated to determine the effect of HAART on body mass index (BMI). Eighty-nine (83.1%) patients gained weight, 5 (4.7%) had no weight change, and 13 (12.2%) lost weight. There was a significant increase in overweight and obese patients. On multivariate analysis, time-updated CD4 count and higher baseline BMI were associated with a greater increase in BMI. Anaemia at diagnosis was associated with a significant increase in BMI. There were no significant effects of age, sex, disease severity, viral load or educational status on BMI changes. About 27% of the HIV patients presented with weight loss, which emphasizes that weight loss and wasting remain important AIDS-defining conditions, despite the advent of HAART. A linear association was observed between time-updated CD4 count and increase in BMI. The association between time-updated CD4 count and greater increase in BMI suggests that BMI could be a surrogate for CD4 count in monitoring treatment response in resource-limited settings.

  5. Interinstitutional Variations in Planning for Stereotactic Body Radiation Therapy for Lung Cancer

    SciTech Connect

    Matsuo, Yukinori; Takayama, Kenji; Nagata, Yasushi . E-mail: nag@kuhp.kyoto-u.ac.jp; Kunieda, Etsuo; Tateoka, Kunihiko; Ishizuka, Naoki; Mizowaki, Takashi; Norihisa, Yoshiki; Sakamoto, Masato; Narita, Yuichiro; Ishikura, Satoshi; Hiraoka, Masahiro

    2007-06-01

    Purpose: The aim of this study was to assess interinstitutional variations in planning for stereotactic body radiation therapy (SBRT) for lung cancer before the start of the Japan Clinical Oncology Group (JCOG) 0403 trial. Methods and Materials: Eleven institutions created virtual plans for four cases of solitary lung cancer. The created plans should satisfy the target definitions and the dose constraints for the JCOG 0403 protocol. Results: FOCUS/XiO (CMS) was used in six institutions, Eclipse (Varian) in 3, Cadplan (Varian) in one, and Pinnacle3 (Philips/ADAC) in one. Dose calculation algorithms of Clarkson with effective path length correction and superposition were used in FOCUS/XiO; pencil beam convolution with Batho power law correction was used in Eclipse and Cadplan; and collapsed cone convolution superposition was used in Pinnacle3. For the target volumes, the overall coefficient of variation was 16.6%, and the interinstitutional variations were not significant. For maximal dose, minimal dose, D95, and the homogeneity index of the planning target volume, the interinstitutional variations were significant. The dose calculation algorithm was a significant factor in these variations. No violation of the dose constraints for the protocol was observed. Conclusion: There can be notable interinstitutional variations in planning for SBRT, including both interobserver variations in the estimate of target volumes as well as dose calculation effects related to the use of different dose calculation algorithms.

  6. Stereotactic Body Radiation Therapy Delivery in a Genetically Engineered Mouse Model of Lung Cancer

    PubMed Central

    Du, Shisuo; Lockamy, Virginia; Zhou, Lin; Xue, Christine; LeBlanc, Justin; Glenn, Shonna; Shukla, Gaurav; Yu, Yan; Dicker, Adam P.; Leeper, Dennis B.; Lu, You; Lu, Bo

    2016-01-01

    Purpose To implement clinical stereotactic body radiation therapy (SBRT) using a small animal radiation research platform (SARRP) in a genetically engineered mouse model of lung cancer. Methods and Materials A murine model of multinodular Kras-driven spontaneous lung tumors was used for this study. High-resolution cone beam computed tomography (CBCT) imaging was used to identify and target peripheral tumor nodules, whereas off-target lung nodules in the contralateral lung were used as a nonirradiated control. CBCT imaging helps localize tumors, facilitate high-precision irradiation, and monitor tumor growth. SBRT planning, prescription dose, and dose limits to normal tissue followed the guidelines set by RTOG protocols. Pathologic changes in the irradiated tumors were investigated using immunohistochemistry. Results The image guided radiation delivery using the SARRP system effectively localized and treated lung cancer with precision in a genetically engineered mouse model of lung cancer. Immunohistochemical data confirmed the precise delivery of SBRT to the targeted lung nodules. The 60 Gy delivered in 3 weekly fractions markedly reduced the proliferation index, Ki-67, and increased apoptosis per staining for cleaved caspase-3 in irradiated lung nodules. Conclusions It is feasible to use the SARRP platform to perform dosimetric planning and delivery of SBRT in mice with lung cancer. This allows for preclinical studies that provide a rationale for clinical trials involving SBRT, especially when combined with immunotherapeutics. PMID:27681749

  7. The effects of whole body vibration in patients with type 2 diabetes: a systematic review and meta-analysis of randomized controlled trials

    PubMed Central

    Robinson, Caroline C.; Barreto, Rodrigo P. G.; Sbruzzi, Graciele; Plentz, Rodrigo D. M.

    2015-01-01

    Background: Whole body vibration (WBV) has been used to increase physical activity levels in patients with type 2 diabetes mellitus (T2DM). Objective: To carry out a systematic review of the effects of WBV on the glycemic control, cardiovascular risk factors, and physical and functional capacity of patients with T2DM. Method: MEDLINE, LILACS, PEDro, and Cochrane Central Register of Controlled Trials were searched up to June 1st, 2015. Randomized controlled trials investigating the effects of WBV, compared to control or other intervention, on blood glucose levels, blood and physical cardiovascular risk factors, and physical and functional capacity in adult individuals with T2DM. Two independent reviewers extracted the data regarding authors, year of publication, number of participants, gender, age, WBV parameters and description of intervention, type of comparison, and mean and standard deviation of pre and post assessments. Results: Out of 585 potentially eligible articles, two studies (reported in four manuscripts) were considered eligible. WBV interventions provided a significant reduction of 25.7 ml/dl (95% CI:-45.3 to -6.1; I2: 19%) in 12 hours fasting blood glucose compared with no intervention. Improvements in glycated hemoglobin, cardiovascular risk factors, and physical and functional capacity were found only at 12 weeks after WBV intervention in comparison with no intervention. Conclusion: WBV combined with exercise seems to improve glycemic control slightly in patients with T2DM in an exposure-dependent way. Large and well-designed trials are still needed to establish the efficacy and understand whether the effects were attributed to vibration, exercise, or a combination of both. PMID:26578253

  8. The development of an intervention programme to reduce whole-body vibration exposure at work induced by a change in behaviour: a study protocol

    PubMed Central

    Tiemessen, Ivo JH; Hulshof, Carel TJ; Frings-Dresen, Monique HW

    2007-01-01

    Background Whole body vibration (WBV) exposure at work is common and studies found evidence that this exposure might cause low back pain (LBP). A recent review concluded there is a lack of evidence of effective strategies to reduce WBV exposure. Most research in this field is focussed on the technical implications, although changing behaviour towards WBV exposure might be promising as well. Therefore, we developed an intervention programme to reduce WBV exposure in a population of drivers with the emphasis on a change in behaviour of driver and employer. The hypothesis is that an effective reduction in WBV exposure, in time, will lead to a reduction in LBP as WBV exposure is a proxy for an increased risk of LBP. Methods/Design The intervention programme was developed specifically for the drivers of vibrating vehicles and their employers. The intervention programme will be based on the most important determinants of WBV exposure as track conditions, driving speed, quality of the seat, etc. By increasing knowledge and skills towards changing these determinants, the attitude, social influence and self-efficacy (ASE) of both drivers and employers will be affected having an effect on the level of exposure. We used the well-known ASE model to develop an intervention programme aiming at a change or the intention to change behaviour towards WBV exposure. The developed programme consists of: individual health surveillance, an information brochure, an informative presentation and a report of the performed field measurements. Discussion The study protocol described is advantageous as the intervention program actively tries to change behaviour towards WBV exposure. The near future will show if this intervention program is effective by showing a decrease in WBV exposure. PMID:18005400

  9. Short Duration Small Sided Football and to a Lesser Extent Whole Body Vibration Exercise Induce Acute Changes in Markers of Bone Turnover.

    PubMed

    Bowtell, J L; Jackman, S R; Scott, S; Connolly, L J; Mohr, M; Ermidis, G; Julian, R; Yousefian, F; Helge, E W; Jørgensen, N R; Fulford, J; Knapp, K M; Krustrup, P

    2016-01-01

    We aimed to study whether short-duration vibration exercise or football sessions of two different durations acutely changed plasma markers of bone turnover and muscle strain. Inactive premenopausal women (n = 56) were randomized to complete a single bout of short (FG15) or long duration (FG60) small sided football or low magnitude whole body vibration training (VIB). Procollagen type 1 amino-terminal propeptide (P1NP) was increased during exercise for FG15 (51.6 ± 23.0 to 56.5 ± 22.5 μg·L(-1), mean ± SD, P < 0.05) and FG60 (42.6 ± 11.8 to 50.2 ± 12.8 μg·L(-1), P < 0.05) but not for VIB (38.8 ± 15.1 to 36.6 ± 14.7 μg·L(-1), P > 0.05). An increase in osteocalcin was observed 48 h after exercise (P < 0.05), which did not differ between exercise groups. C-terminal telopeptide of type 1 collagen was not affected by exercise. Blood lactate concentration increased during exercise for FG15 (0.6 ± 0.2 to 3.4 ± 1.2 mM) and FG60 (0.6 ± 0.2 to 3.3 ± 2.0 mM), but not for VIB (0.6 ± 0.2 to 0.8 ± 0.4 mM) (P < 0.05). Plasma creatine kinase increased by 55 ± 63% and 137 ± 119% 48 h after FG15 and FG60 (P < 0.05), but not after VIB (26 ± 54%, NS). In contrast to the minor elevation in osteocalcin in response to a single session of vibration exercise, both short and longer durations of small sided football acutely increased plasma P1NP, osteocalcin, and creatine kinase. This may contribute to favorable effects of chronic training on musculoskeletal health.

  10. Short Duration Small Sided Football and to a Lesser Extent Whole Body Vibration Exercise Induce Acute Changes in Markers of Bone Turnover

    PubMed Central

    Bowtell, J. L.; Jackman, S. R.; Scott, S.; Connolly, L. J.; Ermidis, G.; Julian, R.; Yousefian, F.; Helge, E. W.; Jørgensen, N. R.; Fulford, J.; Knapp, K. M.

    2016-01-01

    We aimed to study whether short-duration vibration exercise or football sessions of two different durations acutely changed plasma markers of bone turnover and muscle strain. Inactive premenopausal women (n = 56) were randomized to complete a single bout of short (FG15) or long duration (FG60) small sided football or low magnitude whole body vibration training (VIB). Procollagen type 1 amino-terminal propeptide (P1NP) was increased during exercise for FG15 (51.6 ± 23.0 to 56.5 ± 22.5 μg·L−1, mean ± SD, P < 0.05) and FG60 (42.6 ± 11.8 to 50.2 ± 12.8 μg·L−1, P < 0.05) but not for VIB (38.8 ± 15.1 to 36.6 ± 14.7 μg·L−1, P > 0.05). An increase in osteocalcin was observed 48 h after exercise (P < 0.05), which did not differ between exercise groups. C-terminal telopeptide of type 1 collagen was not affected by exercise. Blood lactate concentration increased during exercise for FG15 (0.6 ± 0.2 to 3.4 ± 1.2 mM) and FG60 (0.6 ± 0.2 to 3.3 ± 2.0 mM), but not for VIB (0.6 ± 0.2 to 0.8 ± 0.4 mM) (P < 0.05). Plasma creatine kinase increased by 55 ± 63% and 137 ± 119% 48 h after FG15 and FG60 (P < 0.05), but not after VIB (26 ± 54%, NS). In contrast to the minor elevation in osteocalcin in response to a single session of vibration exercise, both short and longer durations of small sided football acutely increased plasma P1NP, osteocalcin, and creatine kinase. This may contribute to favorable effects of chronic training on musculoskeletal health. PMID:28025642

  11. Vibration manual

    NASA Technical Reports Server (NTRS)

    Green, C.

    1971-01-01

    Guidelines of the methods and applications used in vibration technology at the MSFC are presented. The purpose of the guidelines is to provide a practical tool for coordination and understanding between industry and government groups concerned with vibration of systems and equipments. Topics covered include measuring, reducing, analyzing, and methods for obtaining simulated environments and formulating vibration specifications. Methods for vibration and shock testing, theoretical aspects of data processing, vibration response analysis, and techniques of designing for vibration are also presented.

  12. Spine stereotactic body radiation therapy plans: Achieving dose coverage, conformity, and dose falloff

    SciTech Connect

    Hong, Linda X.; Shankar, Viswanathan; Shen, Jin; Kuo, Hsiang-Chi; Mynampati, Dinesh; Yaparpalvi, Ravindra; Goddard, Lee; Basavatia, Amar; Fox, Jana; Garg, Madhur; Kalnicki, Shalom; Tomé, Wolfgang A.

    2015-10-01

    We report our experience of establishing planning objectives to achieve dose coverage, conformity, and dose falloff for spine stereotactic body radiation therapy (SBRT) plans. Patients with spine lesions were treated using SBRT in our institution since September 2009. Since September 2011, we established the following planning objectives for our SBRT spine plans in addition to the cord dose constraints: (1) dose coverage—prescription dose (PD) to cover at least 95% planning target volume (PTV) and 90% PD to cover at least 99% PTV; (2) conformity index (CI)—ratio of prescription isodose volume (PIV) to the PTV < 1.2; (3) dose falloff—ratio of 50% PIV to the PTV (R{sub 50%}); (4) and maximum dose in percentage of PD at 2 cm from PTV in any direction (D{sub 2cm}) to follow Radiation Therapy Oncology Group (RTOG) 0915. We have retrospectively reviewed 66 separate spine lesions treated between September 2009 and December 2012 (31 treated before September 2011 [group 1] and 35 treated after [group 2]). The χ{sup 2} test was used to examine the difference in parameters between groups. The PTV V{sub 100%} {sub PD} ≥ 95% objective was met in 29.0% of group 1 vs 91.4% of group 2 (p < 0.01) plans. The PTV V{sub 90%} {sub PD} ≥ 99% objective was met in 38.7% of group 1 vs 88.6% of group 2 (p < 0.01) plans. Overall, 4 plans in group 1 had CI > 1.2 vs none in group 2 (p = 0.04). For D{sub 2cm}, 48.3% plans yielded a minor violation of the objectives and 16.1% a major violation for group 1, whereas 17.1% exhibited a minor violation and 2.9% a major violation for group 2 (p < 0.01). Spine SBRT plans can be improved on dose coverage, conformity, and dose falloff employing a combination of RTOG spine and lung SBRT protocol planning objectives.

  13. Volumetric-modulated arc therapy using multicriteria optimization for body and extremity sarcoma.

    PubMed

    Young, Michael R; Craft, David L; Colbert, Caroline M; Remillard, Kyla; Vanbenthuysen, Liam; Wang, Yi

    2016-11-01

    This study evaluates the implementation of volumetric-modulated arc therapy (VMAT) using multicriteria optimization (MCO) in the RayStation treatment planning system (TPS) for complex sites, namely extremity and body sarcoma. The VMAT-MCO algorithm implemented in RayStation is newly developed and requires an integrated, comprehensive analysis of plan generation, delivery, and treatment efficiency. Ten patients previously treated by intensity-modulated radiation therapy (IMRT) with MCO were randomly selected and replanned using VMAT-MCO. The plan quality was compared using homogeneity index (HI) and conformity index (CI) of the planning target volume (PTV) and dose sparing of organs at risk (OARs). Given the diversity of the tumor location, the 10 plans did not have a common OAR except for skin. The skin D50 and Dmean was directly compared between VMAT-MCO and IMRT-MCO. Additional OAR dose points were compared on a plan-by-plan basis. The treatment efficiency was compared using plan monitor units (MU) and net beam-on time. Plan quality assurance was performed using the Sun Nuclear ArcCHECK phantom and a gamma criteria of 3%/3 mm. No statistically significant differences were found between VMAT- and IMRT-MCO for HI and CI of the PTV or D50 and Dmean to the skin. The VMAT-MCO plans showed general improvements in sparing to OARs. The VMAT-MCO plan set showed statistically significant improvements over the IMRT-MCO set in treatment efficiency per plan MU (p<0.05) and net beam-on time (p<0.01). The VMAT-MCO plan deliverability was validated. Similar gamma passing rates were observed for the two modalities. This study verifies the suitability of VMAT-MCO for sarcoma cancer and highlighted the comparability in plan quality and improvement in treatment efficiency offered by VMAT-MCO as compared to IMRT-MCO. PACS number(s): separated by commas 87.55.D, 87.55.de, 87.55.Qr.

  14. The impact of respiratory motion and treatment technique on stereotactic body radiation therapy for liver cancer

    SciTech Connect

    Wu, Q. Jackie; Thongphiew, Danthai; Wang Zhiheng; Chankong, Vira; Yin Fangfang

    2008-04-15

    Stereotactic body radiation therapy (SBRT), which delivers a much higher fractional dose than conventional treatment in only a few fractions, is an effective treatment for liver metastases. For patients who are treated under free-breathing conditions, however, respiration-induced tumor motion in the liver is a concern. Limited clinical information is available related to the impact of tumor motion and treatment technique on the dosimetric consequences. This study evaluated the dosimetric deviations between planned and delivered SBRT dose in the presence of tumor motion for three delivery techniques: three-dimensional conformal static beams (3DCRT), dynamic conformal arc (DARC), and intensity-modulated radiation therapy (IMRT). Five cases treated with SBRT for liver metastases were included in the study, with tumor motions ranging from 0.5 to 1.75 cm. For each case, three different treatment plans were developed using 3DCRT, DARC, and IMRT. The gantry/multileaf collimator (MLC) motion in the DARC plans and the MLC motion in the IMRT plans were synchronized to the patient's respiratory motion. Retrospectively sorted four-dimensional computed tomography image sets were used to determine patient-organ motion and to calculate the dose delivered during each respiratory phase. Deformable registration, using thin-plate-spline models, was performed to encode the tumor motion and deformation and to register the dose-per-phase to the reference phase images. The different dose distributions resulting from the different delivery techniques and motion ranges were compared to assess the effect of organ motion on dose delivery. Voxel dose variations occurred mostly in the high gradient regions, typically between the target volume and normal tissues, with a maximum variation up to 20%. The greatest CTV variation of all the plans was seen in the IMRT technique with the largest motion range (D99: -8.9%, D95: -8.3%, and D90: -6.3%). The greatest variation for all 3DCRT plans was less

  15. Review of the Interaction Between Body Composition and Clinical Outcomes in Metastatic Renal Cell Cancer Treated With Targeted Therapies

    PubMed Central

    Yip, Steven M.; Heng, Daniel Y.C.

    2016-01-01

    Treatment of metastatic renal cell cancer (mRCC) currently focuses on inhibition of the vascular endothelial growth factor pathway and the mammalian target of rapamycin (mTOR) pathway. Obesity confers a higher risk of RCC. However, the influence of obesity on clinical outcomes in mRCC in the era of targeted therapy is less clear. This review focuses on the impact of body composition on targeted therapy outcomes in mRCC. The International Metastatic Renal Cell Carcinoma Database Consortium database has the largest series of patients evaluating the impact of body mass index (BMI) on outcomes in mRCC patients treated with targeted therapy. Overall survival was significantly improved in overweight patients (BMI ≥ 25 kg/m2), and this observation was externally validated in patients who participated in Pfizer trials. In contrast, sarcopenia is consistently associated with increased toxicity to inhibitors of angiogenesis and mTOR. Strengthening patients with mRCC and sarcopenia, through a structured exercise program and dietary intervention, may improve outcomes in mRCC treated with targeted therapies. At the same time, the paradox of obesity being a risk factor for RCC while offering a better overall survival in response to targeted therapy needs to be further evaluated.

  16. Effect of CyberKnife stereotactic body radiation therapy for hepatocellular carcinoma on hepatic toxicity

    PubMed Central

    Liang, Ping; Huang, Cheng; Liang, Shi-Xiong; Li, Ye-Fei; Huang, Shang-Xiao; Lian, Zu-Ping; Liu, Jian-Min; Tang, Yang; Lu, Hai-Jie

    2016-01-01

    Objective To evaluate the safety of CyberKnife stereotactic body radiation therapy (SBRT) for hepatocellular carcinoma (HCC) patients and identify the treatment-related risk factors of hepatic toxicity. Materials and methods One hundred and four HCC patients treated with CyberKnife SBRT were included in this study between August 2009 and December 2012. The average dose of prescribed radiation was 42.81±4.78 Gy (28–55 Gy) with the average fraction size of 8–16 Gy to the planning target volume. The average fractions were 3.31±0.81 (2–6 fractions). Response rates were determined, and the Child–Pugh (CP) score and class following CyberKnife SBRT were obtained to evaluate hepatic toxicity. Results Seventeen patients experienced progression in CP class and 24 patients experienced CTCAE V. 4.0 grade 2–3 hepatic toxicity during the five-month follow-up period, while no patient experienced grade 4 liver toxicity. Multivariate analysis indicated that only V25 was an independent factor in grade 2–3 hepatic toxicity (P=0.029, <0.05). Radiation-induced hepatic toxicity (RIHT), defined as an increase of at least two points within three months following CyberKnife SBRT, occurred in 13 of the 104 patients (13/104, 12.5%), and only the normal liver tissue was found to be associated with RIHT (P=0.008, <0.05). Conclusion CyberKnife SBRT is a feasible and safe treatment for HCC with regard to hepatic toxicity, while V25 and normal liver volume may be an independent factor of grade 2–3 hepatic toxicity and RIHT, respectively. PMID:27920555

  17. Probabilities of Radiation Myelopathy Specific to Stereotactic Body Radiation Therapy to Guide Safe Practice

    SciTech Connect

    Sahgal, Arjun; Weinberg, Vivian; Ma, Lijun; Chang, Eric; Chao, Sam; Muacevic, Alexander; Gorgulho, Alessandra; Soltys, Scott; Gerszten, Peter C.; Ryu, Sam; Angelov, Lilyana; Gibbs, Iris; Wong, C. Shun; Larson, David A.

    2013-02-01

    Purpose: Dose-volume histogram (DVH) results for 9 cases of post spine stereotactic body radiation therapy (SBRT) radiation myelopathy (RM) are reported and compared with a cohort of 66 spine SBRT patients without RM. Methods and Materials: DVH data were centrally analyzed according to the thecal sac point maximum (Pmax) volume, 0.1- to 1-cc volumes in increments of 0.1 cc, and to the 2 cc volume. 2-Gy biologically equivalent doses (nBED) were calculated using an {alpha}/{beta} = 2 Gy (units = Gy{sub 2/2}). For the 2 cohorts, the nBED means and distributions were compared using the t test and Mann-Whitney test, respectively. Significance (P<.05) was defined as concordance of both tests at each specified volume. A logistic regression model was developed to estimate the probability of RM using the dose distribution for a given volume. Results: Significant differences in both the means and distributions at the Pmax and up to the 0.8-cc volume were observed. Concordant significance was greatest for the Pmax volume. At the Pmax volume the fit of the logistic regression model, summarized by the area under the curve, was 0.87. A risk of RM of 5% or less was observed when limiting the thecal sac Pmax volume doses to 12.4 Gy in a single fraction, 17.0 Gy in 2 fractions, 20.3 Gy in 3 fractions, 23.0 Gy in 4 fractions, and 25.3 Gy in 5 fractions. Conclusion: We report the first logistic regression model yielding estimates for the probability of human RM specific to SBRT.

  18. Hypothalamic leptin gene therapy reduces body weight without accelerating age-related bone loss.

    PubMed

    Turner, Russell T; Dube, Michael; Branscum, Adam J; Wong, Carmen P; Olson, Dawn A; Zhong, Xiaoying; Kweh, Mercedes F; Larkin, Iske V; Wronski, Thomas J; Rosen, Clifford J; Kalra, Satya P; Iwaniec, Urszula T

    2015-12-01

    Excessive weight gain in adults is associated with a variety of negative health outcomes. Unfortunately, dieting, exercise, and pharmacological interventions have had limited long-term success in weight control and can result in detrimental side effects, including accelerating age-related cancellous bone loss. We investigated the efficacy of using hypothalamic leptin gene therapy as an alternative method for reducing weight in skeletally-mature (9 months old) female rats and determined the impact of leptin-induced weight loss on bone mass, density, and microarchitecture, and serum biomarkers of bone turnover (CTx and osteocalcin). Rats were implanted with cannulae in the 3rd ventricle of the hypothalamus and injected with either recombinant adeno-associated virus encoding the gene for rat leptin (rAAV-Leptin, n=7) or a control vector encoding green fluorescent protein (rAAV-GFP, n=10) and sacrificed 18 weeks later. A baseline control group (n=7) was sacrificed at vector administration. rAAV-Leptin-treated rats lost weight (-4±2%) while rAAV-GFP-treated rats gained weight (14±2%) during the study. At study termination, rAAV-Leptin-treated rats weighed 17% less than rAAV-GFP-treated rats and had lower abdominal white adipose tissue weight (-80%), serum leptin (-77%), and serum IGF1 (-34%). Cancellous bone volume fraction in distal femur metaphysis and epiphysis, and in lumbar vertebra tended to be lower (P<0.1) in rAAV-GFP-treated rats (13.5 months old) compared to baseline control rats (9 months old). Significant differences in cancellous bone or biomarkers of bone turnover were not detected between rAAV-Leptin and rAAV-GFP rats. In summary, rAAV-Leptin-treated rats maintained a lower body weight compared to baseline and rAAV-GFP-treated rats with minimal effects on bone mass, density, microarchitecture, or biochemical markers of bone turnover.

  19. Dosimetric evaluation of simultaneous integrated boost during stereotactic body radiation therapy for pancreatic cancer

    SciTech Connect

    Yang, Wensha; Reznik, Robert; Fraass, Benedick A.; Nissen, Nicholas; Hendifar, Andrew; Wachsman, Ashley; Sandler, Howard; Tuli, Richard

    2015-04-01

    Stereotactic body radiation therapy (SBRT) provides a promising way to treat locally advanced pancreatic cancer and borderline resectable pancreatic cancer. A simultaneous integrated boost (SIB) to the region of vessel abutment or encasement during SBRT has the potential to downstage otherwise likely positive surgical margins. Despite the potential benefit of using SIB-SBRT, the ability to boost is limited by the local geometry of the organs at risk (OARs), such as stomach, duodenum, and bowel (SDB), relative to tumor. In this study, we have retrospectively replanned 20 patients with 25 Gy prescribed to the planning target volume (PTV) and 33~80 Gy to the boost target volume (BTV) using an SIB technique for all patients. The number of plans and patients able to satisfy a set of clinically established constraints is analyzed. The ability to boost vessels (within the gross target volume [GTV]) is shown to correlate with the overlap volume (OLV), defined to be the overlap between the GTV + a 1(OLV1)- or 2(OLV2)-cm margin with the union of SDB. Integral dose, boost dose contrast (BDC), biologically effective BDC, tumor control probability for BTV, and normal tissue complication probabilities are used to analyze the dosimetric results. More than 65% of the cases can deliver a boost to 40 Gy while satisfying all OAR constraints. An OLV2 of 100 cm{sup 3} is identified as the cutoff volume: for cases with OLV2 larger than 100 cm{sup 3}, it is very unlikely the case could achieve 25 Gy to the PTV while successfully meeting all the OAR constraints.

  20. Dose Escalated Liver Stereotactic Body Radiation Therapy at the Mean Respiratory Position

    SciTech Connect

    Velec, Michael; Moseley, Joanne L.; Dawson, Laura A.; Brock, Kristy K.

    2014-08-01

    Purpose: The dosimetric impact of dose probability based planning target volume (PTV) margins for liver cancer patients receiving stereotactic body radiation therapy (SBRT) was compared with standard PTV based on the internal target volume (ITV). Plan robustness was evaluated by accumulating the treatment dose to ensure delivery of the intended plan. Methods and Materials: Twenty patients planned on exhale CT for 27 to 50 Gy in 6 fractions using an ITV-based PTV and treated free-breathing were retrospectively evaluated. Isotoxic, dose escalated plans were created on midposition computed tomography (CT), representing the mean breathing position, using a dose probability PTV. The delivered doses were accumulated using biomechanical deformable registration of the daily cone beam CT based on liver targeting at the exhale or mean breathing position, for the exhale and midposition CT plans, respectively. Results: The dose probability PTVs were on average 38% smaller than the ITV-based PTV, enabling an average ± standard deviation increase in the planned dose to 95% of the PTV of 4.0 ± 2.8 Gy (9 ± 5%) on the midposition CT (P<.01). For both plans, the delivered minimum gross tumor volume (GTV) doses were greater than the planned nominal prescribed dose in all 20 patients and greater than the planned dose to 95% of the PTV in 18 (90%) patients. Nine patients (45%) had 1 or more GTVs with a delivered minimum dose more than 5 Gy higher with the midposition CT plan using dose probability PTV, compared with the delivered dose with the exhale CT plan using ITV-based PTV. Conclusions: For isotoxic liver SBRT planned and delivered at the mean respiratory, reduced dose probability PTV enables a mean escalation of 4 Gy (9%) in 6 fractions over ITV-based PTV. This may potentially improve local control without increasing the risk of tumor underdosing.

  1. A review of stereotactic body radiotherapy – is volumetric modulated arc therapy the answer?

    SciTech Connect

    Sapkaroski, Daniel Osborne, Catherine; Knight, Kellie A

    2015-06-15

    Stereotactic body radiotherapy (SBRT) is a high precision radiotherapy technique used for the treatment of small to moderate extra-cranial tumours. Early studies utilising SBRT have shown favourable outcomes. However, major disadvantages of static field SBRT include long treatment times and toxicity complications. Volumetric modulated arc therapy (VMAT) and intensity modulated radiotherapy (IMRT) may potentially mitigate these disadvantages. This review aims to assess the feasibility of emerging VMAT and IMRT-based SBRT treatment techniques and qualify which offers the best outcome for patients, whilst identifying any emerging and advantageous SBRT planning trends. A review and synthesis of data from current literature up to September 2013 was conducted on EMBASE, Medline, PubMed, Science Direct, Proquest central, Google Scholar and the Cochrane Database of Systematic reviews. Only full text papers comparing VMAT and or IMRT and or Static SBRT were included. Ten papers were identified that evaluated the results of VMAT/IMRT SBRT. Five related to medically inoperable stage 1 and 2 non-small-cell lung cancer (NSCLC), three to spinal metastasis, one related to abdominal lymph node malignancies, with the final one looking at pancreatic adenocarcinoma. Overall treatment times with VMAT were reduced by 66–70% for lung, 46–58% for spine, 42% and 21% for lymph node and pancreatic metastasis respectively, planning constraints were met with several studies showing improved organs at risk sparing with IMRT/VMAT to static SBRT. Both IMRT and VMAT were able to meet all planning constraints in the studies reviewed, with VMAT offering the greatest treatment efficiency. Early clinical outcomes with VMAT and IMRT SBRT have demonstrated excellent local control and favourable survival outcomes.

  2. SU-E-T-651: Quantification of Dosimetric Accuracy of Respiratory Gated Stereotactic Body Radiation Therapy

    SciTech Connect

    Thiyagarajan, Rajesh; Vikraman, S; Maragathaveni, S; Dhivya, N; Kataria, Tejinder; Nambiraj, N Arunai; Sigamani, Ashokkumar; Sinha, Sujit Nath; Yadav, Girigesh; Raman, Kothanda

    2015-06-15

    Purpose: To quantify the dosimetric accuracy of respiratory gated stereotactic body radiation therapy delivery using dynamic thorax phantom. Methods: Three patients with mobile target (2 lung, 1liver) were chosen. Retrospective 4DCT image sets were acquired for using Varian RPM system. An in-house MATLAB program was designed for MIP, MinIP and AvgIP generation. ITV was contoured on MIP image set for lung patients and on MinIP for liver patient. Dynamic IMRT plans were generated on selected phase bin image set in Eclipse (v10.0) planning system. CIRS dynamic thorax phantom was used to perform the dosimetric quality assurance. Patient breathing pattern file from RPM system was converted to phantom compatible file by an in-house MATLAB program. This respiratory pattern fed to the CIRS dynamic thorax phantom. 4DCT image set was acquired for this phantom using patient breathing pattern. Verification plans were generated using patient gating window and delivered on the phantom. Measurements were carried out using with ion chamber and EBT2 film. Exposed films were analyzed and evaluated in FilmQA software. Results: The stability of gated output in comparison with un-gated output was within 0.5%. The Ion chamber measured and TPS calculated dose compared for all the patients. The difference observed was 0.45%, −0.52% and −0.54 for Patient 1, Patient2 and Patient 3 respectively.Gamma value evaluated from EBT film shows pass rates from 92.41% to 99.93% for 3% dose difference and 3mm distance to agreement criteria. Conclusion: Dosimetric accuracy of respiratory gated SBRT delivery for lung and liver was dosimetrically acceptable. The Ion chamber measured dose was within 0.203±0.5659% of the expected dose. Gamma pass rates were within 96.63±3.84% of the expected dose.

  3. Novel Technique for Hepatic Fiducial Marker Placement for Stereotactic Body Radiation Therapy

    SciTech Connect

    Jarraya, Hajer; Chalayer, Chloé; Tresch, Emmanuelle; Bonodeau, Francois; Lacornerie, Thomas; Mirabel, Xavier; Boulanger, Thomas; Taieb, Sophie; Kramar, Andrew; Lartigau, Eric; Ceugnart, Luc

    2014-09-01

    Purpose: To report experience with fiducial marker insertion and describe an advantageous, novel technique for fiducial placement in the liver for stereotactic body radiation therapy with respiratory tracking. Methods and Materials: We implanted 1444 fiducials (single: 834; linked: 610) in 328 patients with 424 hepatic lesions. Two methods of implantation were compared: the standard method (631 single fiducials) performed on 153 patients from May 2007 to May 2010, and the cube method (813 fiducials: 610 linked/203 single) applied to 175 patients from April 2010 to March 2013. The standard method involved implanting a single marker at a time. The novel technique entailed implanting 2 pairs of linked markers when possible in a way to occupy the perpendicular edges of a cube containing the tumor inside. Results: Mean duration of the cube method was shorter than the standard method (46 vs 61 minutes; P<.0001). Median numbers of skin and subcapsular entries were significantly smaller with the cube method (2 vs 4, P<.0001, and 2 vs 4, P<.0001, respectively). The rate of overall complications (total, major, and minor) was significantly lower in the cube method group compared with the standard method group (5.7% vs 13.7%; P=.013). Major complications occurred while using single markers only. The success rate was 98.9% for the cube method and 99.3% for the standard method. Conclusions: We propose a new technique of hepatic fiducial implantation that makes use of linked fiducials and involves fewer skin entries and shorter time of implantation. The technique is less complication-prone and is migration-resistant.

  4. Phase 1 Clinical Trial of Stereotactic Body Radiation Therapy Concomitant With Neoadjuvant Chemotherapy for Breast Cancer

    SciTech Connect

    Bondiau, Pierre-Yves; Courdi, Adel; Bahadoran, Phillipe; Chamorey, Emmanuel; Queille-Roussel, Catherine; Lallement, Michel; Birtwisle-Peyrottes, Isabelle; Chapellier, Claire; Pacquelet-Cheli, Sandrine; Ferrero, Jean-Marc

    2013-04-01

    Purpose: Stereotactic body radiation therapy (SBRT) allows stereotactic irradiation of thoracic tumors. It may have a real impact on patients who may not otherwise qualify for breast-conserving surgery. We conducted a phase 1 trial that tested 5 dose levels of SBRT concomitant with neoadjuvant chemotherapy (NACT) before to surgery. The purpose of the current dose escalation study was to determine the maximum tolerable dose of SBRT in the treatment of breast cancer. Methods and Materials: To define toxicity, we performed dermatologic examinations that included clinical examinations by 2 separate physicians and technical evaluations using colorimetry, dermoscopy, and skin ultrasonography. Dermatologic examinations were performed before NACT, 36 and 56 days after the beginning of NACT, and before surgery. Surgery was performed 4 to 8 weeks after the last chemotherapy session. Efficacy, the primary endpoint, was determined by the pathologic complete response (pCR) rate. Results: Maximum tolerable dose was not reached. Only 1 case of dose-limiting toxicity was reported (grade 3 dermatologic toxicity), and SBRT was overall well tolerated. The pCR rate was 36%, with none being observed at the first 2 dose levels, and the highest rate being obtained at dose level 3 (25.5 Gy delivered in 3 fractions). Furthermore, the breast-conserving surgery rate was up to 92% compared with an 8% total mastectomy rate. No surgical complications were reported. Conclusions: This study demonstrates that SBRT can be safely combined with NACT. Regarding the efficacy endpoints, this trial showed promising results in terms of pCR rate (36%) and breast-conserving rate (92%). The findings provide a strong rationale for extending the study into a phase 2 trial. In view of the absence of correlation between dose and pCR, and given that the data from dose level 3 met the statistical requirements, a dose of 25.5 Gy in 3 fractions should be used for the phase 2 trial.

  5. Dosimetric comparison of patient setup strategies in stereotactic body radiation therapy for lung cancer

    SciTech Connect

    Wu Jianzhou; He, Tongming T.; Betzing, Christopher; Fuss, Martin; D'Souza, Warren D.

    2013-05-15

    Purpose: In this work, the authors retrospectively compared the accumulated dose over the treatment course for stereotactic body radiation therapy (SBRT) of lung cancer for three patient setup strategies. Methods: Ten patients who underwent lung SBRT were selected for this study. At each fraction, patients were immobilized using a vacuum cushion and were CT scanned. Treatment plans were performed on the simulation CT. The planning target volume (PTV) was created by adding a 5-mm uniform margin to the internal target volume derived from the 4DCT. All plans were normalized such that 99% of the PTV received 60 Gy. The plan parameters were copied onto the daily CT images for dose recalculation under three setup scenarios: skin marker, bony structure, and soft tissue based alignments. The accumulated dose was calculated by summing the dose at each fraction along the trajectory of a voxel over the treatment course through deformable image registration of each CT with the planning CT. The accumulated doses were analyzed for the comparison of setup accuracy. Results: The tumor volume receiving 60 Gy was 91.7 {+-} 17.9%, 74.1 {+-} 39.1%, and 99.6 {+-} 1.3% for setup using skin marks, bony structures, and soft tissue, respectively. The isodose line covering 100% of the GTV was 55.5 {+-} 7.1, 42.1 {+-} 16.0, and 64.3 {+-} 7.1 Gy, respectively. The corresponding average biologically effective dose of the tumor was 237.3 {+-} 29.4, 207.4 {+-} 61.2, and 258.3 {+-} 17.7 Gy, respectively. The differences in lung biologically effective dose, mean dose, and V20 between the setup scenarios were insignificant. Conclusions: The authors' results suggest that skin marks and bony structure are insufficient for aligning patients in lung SBRT. Soft tissue based alignment is needed to match the prescribed dose delivered to the tumors.

  6. Vertebral Compression Fracture (VCF) After Spine Stereotactic Body Radiation Therapy (SBRT): Analysis of Predictive Factors

    SciTech Connect

    Cunha, Marcelo V.R.; Al-Omair, Ameen; Atenafu, Eshetu G.; Masucci, Giuseppina Laura; Letourneau, Daniel; Korol, Renee; Yu, Eugene; Howard, Peter; Lochray, Fiona; Costa, Leodante B. da; Fehlings, Michael G.; Sahgal, Arjun

    2012-11-01

    Purpose: Vertebral compression fractures (VCFs) are increasingly observed after spine stereotactic body radiation therapy (SBRT). The aim of this study was to determine the risk of VCF after spine SBRT and identify clinical and dosimetric factors predictive for VCF. The analysis incorporated the recently described Spinal Instability Neoplastic Score (SINS) criteria. Methods and Materials: The primary endpoint of this study was the development of a de novo VCF (ie, new endplate fracture or collapse deformity) or fracture progression based on an existing fracture at the site of treatment after SBRT. We retrospectively scored 167 spinal segments in 90 patients treated with spine SBRT according to each of the 6 SINS criteria. We also evaluated the presence of paraspinal extension, prior radiation, various dosimetric parameters including dose per fraction ({>=}20 Gy vs <20 Gy), age, and histology. Results: The median follow-up was 7.4 months. We identified 19 fractures (11%): 12 de novo fractures (63%) and 7 cases of fracture progression (37%). The mean time to fracture after SBRT was 3.3 months (range, 0.5-21.6 months). The 1-year fracture-free probability was 87.3%. Multivariate analysis confirmed that alignment (P=.0003), lytic lesions (P=.007), lung (P=.03) and hepatocellular (P<.0001) primary histologies, and dose per fraction of 20 Gy or greater (P=.004) were significant predictors of VCF. Conclusions: The presence of kyphotic/scoliotic deformity and the presence of lytic tumor were the only predictive factors of VCF based on the original 6 SINS criteria. We also report that patients with lung and hepatocellular tumors and treatment with SBRT of 20 Gy or greater in a single fraction are at a higher risk of VCF.

  7. Generalizable Class Solutions for Treatment Planning of Spinal Stereotactic Body Radiation Therapy

    SciTech Connect

    Weksberg, David C.; Palmer, Matthew B.; Vu, Khoi N.; Rebueno, Neal C.; Sharp, Hadley J.; Luo, Dershan; Yang, James N.; Shiu, Almon S.; Rhines, Laurence D.; McAleer, Mary Frances; Brown, Paul D.; Chang, Eric L.

    2012-11-01

    Purpose: Spinal stereotactic body radiation therapy (SBRT) continues to emerge as an effective therapeutic approach to spinal metastases; however, treatment planning and delivery remain resource intensive at many centers, which may hamper efficient implementation in clinical practice. We sought to develop a generalizable class solution approach for spinal SBRT treatment planning that would allow confidence that a given plan provides optimal target coverage, reduce integral dose, and maximize planning efficiency. Methods and Materials: We examined 91 patients treated with spinal SBRT at our institution. Treatment plans were categorized by lesion location, clinical target volume (CTV) configuration, and dose fractionation scheme, and then analyzed to determine the technically achievable dose gradient. A radial cord expansion was subtracted from the CTV to yield a planning CTV (pCTV) construct for plan evaluation. We reviewed the treatment plans with respect to target coverage, dose gradient, integral dose, conformality, and maximum cord dose to select the best plans and develop a set of class solutions. Results: The class solution technique generated plans that maintained target coverage and improved conformality (1.2-fold increase in the 95% van't Riet Conformation Number describing the conformality of a reference dose to the target) while reducing normal tissue integral dose (1.3-fold decrease in the volume receiving 4 Gy (V{sub 4Gy}) and machine output (19% monitor unit (MU) reduction). In trials of planning efficiency, the class solution technique reduced treatment planning time by 30% to 60% and MUs required by {approx}20%: an effect independent of prior planning experience. Conclusions: We have developed a set of class solutions for spinal SBRT that incorporate a pCTV metric for plan evaluation while yielding dosimetrically superior treatment plans with increased planning efficiency. Our technique thus allows for efficient, reproducible, and high-quality spinal

  8. The study of external dose rate and retained body activity of patients receiving 131I therapy for differentiated thyroid carcinoma.

    PubMed

    Zhang, Haiying; Jiao, Ling; Cui, Songye; Wang, Liang; Tan, Jian; Zhang, Guizhi; He, Yajing; Ruan, Shuzhou; Fan, Saijun; Zhang, Wenyi

    2014-10-21

    Radiation safety is an integral part of targeted radionuclide therapy. The aim of this work was to study the external dose rate and retained body activity as functions of time in differentiated thyroid carcinoma patients receiving 131I therapy. Seventy patients were stratified into two groups: the ablation group (A) and the follow-up group (FU). The patients' external dose rate was measured, and simultaneously, their retained body radiation activity was monitored at various time points. The equations of the external dose rate and the retained body activity, described as a function of hours post administration, were fitted. Additionally, the release time for patients was calculated. The reduction in activity in the group receiving a second or subsequent treatment was more rapid than the group receiving only the initial treatment. Most important, an expeditious method was established to indirectly evaluate the retained body activity of patients by measuring the external dose rate with a portable radiation survey meter. By this method, the calculated external dose rate limits are 19.2, 8.85, 5.08 and 2.32 μSv·h-1 at 1, 1.5, 2 and 3 m, respectively, according to a patient's released threshold level of retained body activity <400 MBq. This study is beneficial for radiation safety decision-making.

  9. Mind's response to the body's betrayal: Gestalt/Existential therapy for clients with chronic or life-threatening illnesses.

    PubMed

    Imes, Suzanne A; Clance, Pauline Rose; Gailis, Andra T; Atkeson, Ellen

    2002-11-01

    In the literature on chronic or life-threatening illness, there is an overriding emphasis on clients' psychological coping styles and how they relate to psychological functioning. By contrast, in our approach, we look at the subjective mind/body experiences that clients have of their illness and how their lives are impacted by their illness. As psychotherapists, we address their existential distress, pain, body experience, thoughts, and feelings, as well as their efforts to cope or find meaning in their illness. We summarize Gestalt/Existential therapy for chronic illness, illustrate the approach with three case-vignettes, and stress the importance of attending to each client's unique responses to illness.

  10. Factors affecting the perception of whole-body vibration of occupational drivers: an analysis of posture and manual materials handling and musculoskeletal disorders

    PubMed Central

    Raffler, Nastaran; Ellegast, Rolf; Kraus, Thomas; Ochsmann, Elke

    2016-01-01

    Due to the high cost of conducting field measurements, questionnaires are usually preferred for the assessment of physical workloads and musculoskeletal disorders (MSDs). This study compares the physical workloads of whole-body vibration (WBV) and awkward postures by direct field measurements and self-reported data of 45 occupational drivers. Manual materials handling (MMH) and MSDs were also investigated to analyse their effect on drivers' perception. Although the measured values for WBV exposure were very similarly distributed among the drivers, the subjects' perception differed significantly. Concerning posture, subjects seemed to estimate much better when the difference in exposure was significantly large. The percentage of measured awkward trunk and head inclination were significantly higher for WBV-overestimating subjects than non-overestimators; 77 and 80% vs. 36 and 33%. Health complaints in terms of thoracic spine, cervical spine and shoulder–arm were also significantly more reported by WBV-overestimating subjects (42, 67, 50% vs. 0, 25, 13%, respectively). Although more MMH was reported by WBV-overestimating subjects, there was no statistical significance in this study. PMID:26114619

  11. Benefits of Whole-Body Vibration, as a Component of the Pulmonary Rehabilitation, in Patients with Chronic Obstructive Pulmonary Disease: A Narrative Review with a Suitable Approach.

    PubMed

    Sá-Caputo, Danubia; Gonçalves, Cintia Renata; Morel, Danielle Soares; Marconi, Eloá Moreira; Fróes, Patrícia; Rufino, Rogério; Costa, Cláudia Henrique; Lopes, Agnaldo José; Arnóbio, Adriano; Asad, Nasser Ribeiro; Marin, Pedro Jesus; Furness, Trentham; Bernardo-Filho, Mario

    2016-01-01

    Background. Appropriate management, including pulmonary rehabilitation, associated with correct diagnosis of chronic obstructive pulmonary disease (COPD) in patients can contribute to improving clinical conditions of these patients. Physical activity is recommended for COPD patients. Whole-body vibration (WBV) is a modality of physical activity. Putting together the biological effects and safe use of WBV, it may be a potentially feasible intervention to add to pulmonary rehabilitation. The purpose of this investigation was to systematically review studies regarding the effects of WBV, as a component of the pulmonary rehabilitation, in patients with COPD. Results. A total of six publications met inclusion for review. There was evidence to support the beneficial use of WBV to improve functional performance of the lower limbs and quality of life. However, the appropriateness of and descriptors of WBV methods were poorly described. Conclusions. The results of this review support the use of WBV as a component of pulmonary rehabilitation to assist management of patients with COPD. However, future research should examine the dose-response curve and optimal dosing regimen of WBV according to standard reporting recommendations for people with COPD. Such an approach will allow comparison among studies and the potential of meta-analysis of randomized controlled trials.

  12. Effects of an eight-week whole body vibration on lower extremity muscle tone and function in children with cerebral palsy.

    PubMed

    Cheng, Hsin-Yi Kathy; Yu, Yu-Chun; Wong, Alice May-Kuen; Tsai, Yung-Shen; Ju, Yan-Ying

    2015-03-01

    The aim of this study was to evaluate the effect of an eight-week whole body vibration (WBV) on lower extremity spasticity and ambulatory function in children with cerebral palsy with a complete crossover design. Sixteen participants aged 9.2 (2.1) years participated in this study. Half of the participants received a 10-min WBV, 3 times a week for 8 weeks. Then a 4-week washout period followed, after which they received a sham WBV 3 times a week for 8 weeks. The other half received the intervention in a reversed order. The participants were evaluated via variables measuring range-of-motion, muscle tone, and ambulatory function before, immediately after, 1 day after, and 3 days after each intervention. Repeated-measures analyses revealed significant beneficial effects on most variables expect the passive range-of-motion measurement. Significant correlations were found between timed up-and-go and relaxation index, and between timed up-and-go and six-minute walk test. The results suggested that an 8-week WBV intervention normalized muscle tone, improved active joint range and enhanced ambulatory performance in children with cerebral palsy for at least 3 days. These indicated that regular WBV can serve as an alternative, safe, and efficient treatment for these children in both clinical and home settings.

  13. A Comparative Study of Whole Body Vibration Training and Pelvic Floor Muscle Training on Women's Stress Urinary Incontinence: Three- Month Follow- Up

    PubMed Central

    Farzinmehr, Azizeh; Moezy, Azar; Koohpayehzadeh, Jalil; Kashanian, Maryam

    2015-01-01

    Objective: To determine whether Whole Body Vibration Training (WBVT) is effective at improving pelvic floor muscles strength in women with Stress Urinary Incontinence (SUI). Materials and methods: The study was designed as a randomized clinical trial. 43 women with SUI were randomly assigned in two groups; WBVT and Pelvic Floor Muscle Training (PFMT) and received interventions for four weeks. Pelvic floor muscle (PFM) strength, quality of life and incontinence intensity were evaluated. All measurements were conducted pre and post intervention and also after 3 months in all participants. The ANOVA and the independent sample t test were applied respectively to determine the differences in each group and between the groups. Results: This study showed the WBVT protocol in this study was effective in pelvic floor muscles strength similar to PFMT, and also in reducing the severity of incontinence and increasing I-QOL questionnaire score. We found significant differences in each group pre and post intervention (p = 0.0001); but no significant difference in comparison of two groups' outcomes. Also after three-month follow up, there was no significant difference between groups. Conclusion: The findings of this study showed the beneficial effects of WBVT in improving pelvic floor muscles strength and quality of life in patients with urinary incontinence in four-week treatment period and after three months follow up. PMID:27047560

  14. Effect of combining passive muscle stretching and whole body vibration on spasticity and physical performance of children and adolescents with cerebral palsy

    PubMed Central

    Tupimai, Teeraporn; Peungsuwan, Punnee; Prasertnoo, Jitlada; Yamauchi, Juinichiro

    2016-01-01

    [Purpose] This study evaluated the immediate and short-term effects of a combination of prolonged passive muscle stretching (PMS) and whole body vibration (WBV) on the spasticity, strength and balance of children and adolescents with cerebral palsy. [Subjects and Methods] A randomized two-period crossover trial was designed. Twelve subjects with cerebral palsy aged 10.6 ± 2.4 years received both PMS alone as a control group (CG) and a combination of PMS and WBV as an experimental group (EG). After random allocation to the trial schedules of either EG-CG or CG-EG, CG received prolonged PMS while standing on a tilt-table for 40 minutes/day, and EG received prolonged PMS for 30 minutes, followed by 10 minutes WBV. Both CG and EG received the treatment 5 days/week for 6 weeks. [Results] Immediately after one treatment, EG resulted in better improvement in scores on the Modified Ashworth Scale than CG. After the 6-week intervention, EG also showed significantly decreased scores on the Modified Ashworth Scale compared to CG. Both CG and EG showed significantly reduced the performance times in the five times sit to stand test, and EG also showed significantly increased scores on the pediatric balance scale. [Conclusion] This study showed that 6 weeks of combined prolonged PMS and WBV had beneficial effects on the spasticity, muscle strength and balance of children and adolescents with CP. PMID:26957720

  15. The association between whole body vibration exposure and musculoskeletal disorders in the Swedish work force is confounded by lifting and posture

    NASA Astrophysics Data System (ADS)

    Hagberg, Mats; Burström, Lage; Ekman, Anna; Vilhelmsson, Rebecka

    2006-12-01

    This was a cross-sectional study based on material representing the Swedish work-force from a survey conducted in 1999, 2001 and 2003 by Statistics Sweden. Exposure to whole body vibration (WBV) was prevalent among agricultural, forestry, fishery workers and among plant and machinery operators based on a sample of 40,000 employed persons. Approximately 70% responders, that are 9798 persons answered both the interview and the questionnaire for the analysis of exposure-response. Exposure to WBV at least half the working time was associated with prevalence ratios above two for musculoskeletal symptoms in the low back, neck, shoulder/arm and hand among workers. When the exposure factors lifting and frequent bending were added to a multivariate analysis, surprisingly the magnitude of association was low between low back symptoms and WBV exposure. Interestingly, the relation between WBV exposure and symptoms in the neck, shoulder/arm and hand had the same or higher magnitude of association even when the possible confounders were in the model. For the neck, low back and shoulder/arm there was a visible increase in prevalence ratio (as high as 5 times) when combined exposures of WBV, lifting, frequent bending, twisted posture and noise were included in the analysis.

  16. [Power of music that moves mind and body--music therapy in the Hansen's disease sanatorium in Japan].

    PubMed

    Fukamizu, Yuu; En, Junichiro; Kano, Tatsuo; Arikawa, Isao

    2009-02-01

    Average age of residents living in National sanatorium Hoshizuka-Keiaien where people have past history of Hansen disease is around 80 years old at present, and many of them spend their whole days in watching TV or sleeping almost alone in their rooms. Therefore music therapy was introduced in order to improve their daily activities in our sanatorium. Singing, listening to music, playing the musical instruments, and dancing were performed, either in a group or individually. Reactivation of their brain function such as recollection, sense of unity and relaxation were expected. Improvement of cardiopulmonary function was also expected. Solidarity and relaxed state were observed by being with the other participants in the group therapy. For example, when using musical instruments, some participants with hesitation tried to use their instruments, and had good performance. They seemed to be satisfied and became confident with the musical instruments. Then their confidence and satisfaction activated the group. After the sessions, mutual conversation increased. These processes obtained a synergy effect, which means that a group affects of individuals at first and next alteration of individual behavior influences the group. We could observe a better effect in their motivation and activity in their daily life in the individual therapy. The music therapy was applied to the senior participants by the music therapist in this study. The participants could easily reinforce their mind and body through this therapy. Music therapy will be continued for the improvement of quality of life of residents in the sanatorium.

  17. Radioactive body burden measurements in (131)iodine therapy for differentiated thyroid cancer: effect of recombinant thyroid stimulating hormone in whole body (131)iodine clearance.

    PubMed

    Ravichandran, Ramamoorthy; Al Saadi, Amal; Al Balushi, Naima

    2014-01-01

    Protocols in the management of differentiated thyroid cancer, recommend adequate thyroid stimulating hormone (TSH) stimulation for radioactive (131)I administrations, both for imaging and subsequent ablations. Commonly followed method is to achieve this by endogenous TSH stimulation by withdrawal of thyroxine. Numerous studies worldwide have reported comparable results with recombinant human thyroid stimulating hormone (rhTSH) intervention as conventional thyroxine hormone withdrawal. Radiation safety applications call for the need to understand radioactive (131)I (RA(131)I) clearance pattern to estimate whole body doses when this new methodology is used in our institution. A study of radiation body burden estimation was undertaken in two groups of patients treated with RA(131)I; (a) one group of patients having thyroxine medication suspended for 5 weeks prior to therapy and (b) in the other group retaining thyroxine support with two rhTSH injections prior to therapy with RA(131)I. Sequential exposure rates at 1 m in the air were measured in these patients using a digital auto-ranging beta gamma survey instrument calibrated for measurement of exposure rates. The mean measured exposure rates at 1 m in μSv/h immediately after administration and at 24 h intervals until 3 days are used for calculating of effective ½ time of clearance of administered activity in both groups of patients, 81 patients in conventionally treated group (stop thyroxine) and 22 patients with rhTSH administration. The (131)I activities ranged from 2.6 to 7.9 GBq. The mean administered (131)I activities were 4.24 ± 0.95 GBq (n = 81) in "stop hormone" group and 5.11 ± 1.40 GBq (n = 22) in rhTSH group. The fall of radioactive body burden showed two clearance patterns within observed 72 h. Calculated T½eff values were 16.45 h (stop hormone group) 12.35 h (rhTSH group) for elapsed period of 48 h. Beyond 48 h post administration, clearance of RA(131)I takes place with T½eff> 20 h in both groups

  18. Effects of Mindfulness-Based Cognitive Therapy on Body Awareness in Patients with Chronic Pain and Comorbid Depression

    PubMed Central

    de Jong, Marasha; Lazar, Sara W.; Hug, Kiran; Mehling, Wolf E.; Hölzel, Britta K.; Sack, Alexander T.; Peeters, Frenk; Ashih, Heidi; Mischoulon, David; Gard, Tim

    2016-01-01

    Body awareness has been proposed as one of the major mechanisms of mindfulness interventions, and it has been shown that chronic pain and depression are associated with decreased levels of body awareness. We investigated the effect of Mindfulness-Based Cognitive Therapy (MBCT) on body awareness in patients with chronic pain and comorbid active depression compared to treatment as usual (TAU; N = 31). Body awareness was measured by a subset of the Multidimensional Assessment of Interoceptive Awareness (MAIA) scales deemed most relevant for the population. These included: Noticing, Not-Distracting, Attention Regulation, Emotional Awareness, and Self-Regulation. In addition, pain catastrophizing was measured by the Pain Catastrophizing Scale (PCS). These scales had adequate to high internal consistency in the current sample. Depression severity was measured by the Quick Inventory of Depressive Symptomatology—Clinician rated (QIDS-C16). Increases in the MBCT group were significantly greater than in the TAU group on the “Self-Regulation” and “Not Distracting” scales. Furthermore, the positive effect of MBCT on depression severity was mediated by “Not Distracting.” These findings provide preliminary evidence that a mindfulness-based intervention may increase facets of body awareness as assessed with the MAIA in a population of pain patients with depression. Furthermore, they are consistent with a long hypothesized mechanism for mindfulness and emphasize the clinical relevance of body awareness. PMID:27445929

  19. Effects of Mindfulness-Based Cognitive Therapy on Body Awareness in Patients with Chronic Pain and Comorbid Depression.

    PubMed

    de Jong, Marasha; Lazar, Sara W; Hug, Kiran; Mehling, Wolf E; Hölzel, Britta K; Sack, Alexander T; Peeters, Frenk; Ashih, Heidi; Mischoulon, David; Gard, Tim

    2016-01-01

    Body awareness has been proposed as one of the major mechanisms of mindfulness interventions, and it has been shown that chronic pain and depression are associated with decreased levels of body awareness. We investigated the effect of Mindfulness-Based Cognitive Therapy (MBCT) on body awareness in patients with chronic pain and comorbid active depression compared to treatment as usual (TAU; N = 31). Body awareness was measured by a subset of the Multidimensional Assessment of Interoceptive Awareness (MAIA) scales deemed most relevant for the population. These included: Noticing, Not-Distracting, Attention Regulation, Emotional Awareness, and Self-Regulation. In addition, pain catastrophizing was measured by the Pain Catastrophizing Scale (PCS). These scales had adequate to high internal consistency in the current sample. Depression severity was measured by the Quick Inventory of Depressive Symptomatology-Clinician rated (QIDS-C16). Increases in the MBCT group were significantly greater than in the TAU group on the "Self-Regulation" and "Not Distracting" scales. Furthermore, the positive effect of MBCT on depression severity was mediated by "Not Distracting." These findings provide preliminary evidence that a mindfulness-based intervention may increase facets of body awareness as assessed with the MAIA in a population of pain patients with depression. Furthermore, they are consistent with a long hypothesized mechanism for mindfulness and emphasize the clinical relevance of body awareness.

  20. An evaluation of planning techniques for stereotactic body radiation therapy in lung tumors

    PubMed Central

    Wu, Jianzhou; Li, Huiling; Shekhar, Raj; Suntharalingam, Mohan; D’Souza, Warren

    2009-01-01

    Purpose To evaluate four planning techniques for stereotactic body radiation therapy (SBRT) in lung tumors. Methods and Materials Four SBRT plans were performed for 12 patients with stage I/II non-small-cell lung cancer under the following conditions: (1) conventional margins on free-breathing CT (plan 1), (2) generation of an internal target volume (ITV) using 4DCT with beam delivery under free-breathing conditions (plan 2), (3) gating at end-exhale (plan 3), and (4) gating at end-inhale (plan 4). Planning was performed following the RTOG 0236 protocol with a prescription dose of 54Gy (3 fractions). For each plan 4D dose was calculated using deformable image registration. Results There was no significant difference in tumor dose delivered by the 4 plans. However, compared with plan 1, plans 2-4 reduced total lung BED by 1.9±1.2Gy, 3.1±1.6Gy and 3.5±2.1Gy, reduced mean lung dose by 0.8±0.5Gy, 1.5±0.8Gy, and 1.6±1.0Gy, reduced V20 by 1.5±1.0%, 2.7±1.4%, and 2.8±1.8% respectively with p<0.01. Compared with plan 2, plans 3-4 reduced lung BED by 1.2±1.0Gy and 1.6±1.5Gy, reduced mean lung dose by 0.6±0.5Gy and 0.8±0.7Gy, reduced V20 by 1.2±1.1% and 1.3±1.5% respectively with p<0.01. The differences in lung BED, mean dose and V20 of plan 4 compared with plan 3 are insignificant. Conclusions Tumor dose coverage was statistically insignificant between all plans. However, compared with plan 1, plans 2-4 significantly reduced lung doses. Compared with plan 2, plan 3-4 also reduced lung toxicity. The difference in lung doses between plan 3 and plan 4 was not significant. PMID:18359529

  1. Dosimetric effects of rotational offsets in stereotactic body radiation therapy (SBRT) for lung cancer

    SciTech Connect

    Yang, Yun; Catalano, Suzanne; Kelsey, Chris R.; Yoo, David S.; Yin, Fang-Fang; Cai, Jing

    2014-04-01

    To quantitatively evaluate dosimetric effects of rotational offsets in stereotactic body radiation therapy (SBRT) for lung cancer. Overall, 11 lung SBRT patients (8 female and 3 male; mean age: 75.0 years) with medially located tumors were included. Treatment plans with simulated rotational offsets of 1°, 3°, and 5° in roll, yaw, and pitch were generated and compared with the original plans. Both clockwise and counterclockwise rotations were investigated. The following dosimetric metrics were quantitatively evaluated: planning target volume coverage (PTV V{sub 100%}), max PTV dose (PTV D{sub max}), percentage prescription dose to 0.35 cc of cord (cord D{sub 0.35} {sub cc}), percentage prescription dose to 0.35 cc and 5 cc of esophagus (esophagus D{sub 0.35} {sub cc} and D{sub 5} {sub cc}), and volume of the lungs receiving at least 20 Gy (lung V{sub 20}). Statistical significance was tested using Wilcoxon signed rank test at the significance level of 0.05. Overall, small differences were found in all dosimetric matrices at all rotational offsets: 95.6% of differences were < 1% or < 1 Gy. Of all rotational offsets, largest change in PTV V{sub 100%}, PTV D{sub max}, cord D{sub 0.35} {sub cc}, esophagus D{sub 0.35} {sub cc}, esophagus D{sub 5} {sub cc}, and lung V{sub 20} was − 8.36%, − 6.06%, 11.96%, 8.66%, 6.02%, and − 0.69%, respectively. No significant correlation was found between any dosimetric change and tumor-to-cord/esophagus distances (R{sup 2} range: 0 to 0.44). Larger dosimetric changes and intersubject variations were observed at larger rotational offsets. Small dosimetric differences were found owing to rotational offsets up to 5° in lung SBRT for medially located tumors. Larger intersubject variations were observed at larger rotational offsets.

  2. Single- versus Multifraction Stereotactic Body Radiation Therapy for Pancreatic Adenocarcinoma: Outcomes and Toxicity

    SciTech Connect

    Pollom, Erqi L.; Alagappan, Muthuraman; Eyben, Rie von; Kunz, Pamela L.; Fisher, George A.; Ford, James A.; Poultsides, George A.; Visser, Brendan C.; Norton, Jeffrey A.; Kamaya, Aya; Cox, Veronica L.; Columbo, Laurie A.; Koong, Albert C.; Chang, Daniel T.

    2014-11-15

    Purpose: We report updated outcomes of single- versus multifraction stereotactic body radiation therapy (SBRT) for unresectable pancreatic adenocarcinoma. Methods and Materials: We included 167 patients with unresectable pancreatic adenocarcinoma treated at our institution from 2002 to 2013, with 1-fraction (45.5% of patient) or 5-fraction (54.5% of patients) SBRT. The majority of patients (87.5%) received chemotherapy. Results: Median follow-up was 7.9 months (range: 0.1-63.6). The 6- and 12-month cumulative incidence rates (CIR) of local recurrence for patients treated with single-fraction SBRT were 5.3% (95% confidence interval [CI], 0.2%-10.4%) and 9.5% (95% CI, 2.7%-16.2%), respectively. The 6- and 12-month CIR with multifraction SBRT were 3.4% (95% CI, 0.0-7.2%) and 11.7% (95% CI, 4.8%-18.6%), respectively. Median survival from diagnosis for all patients was 13.6 months (95% CI, 12.2-15.0 months). The 6- and 12- month survival rates from SBRT for the single-fraction group were 67.0% (95% CI, 57.2%-78.5%) and 30.8% (95% CI, 21.9%-43.6%), respectively. The 6- and 12- month survival rates for the multifraction group were 75.7% (95% CI, 67.2%-85.3%) and 34.9% (95% CI, 26.1%-46.8%), respectively. There were no differences in CIR or survival rates between the single- and multifraction groups. The 6- and 12-month cumulative incidence rates of gastrointestinal toxicity grade ≥3 were 8.1% (95% CI, 1.8%-14.4%) and 12.3% (95% CI, 4.7%-20.0%), respectively, in the single-fraction group, and both were 5.6% (95% CI, 0.8%-10.5%) in the multifraction group. There were significantly fewer instances of toxicity grade ≥2 with multifraction SBRT (P=.005). Local recurrence and toxicity grade ≥2 were independent predictors of worse survival. Conclusions: Multifraction SBRT for pancreatic cancer significantly reduces gastrointestinal toxicity without compromising local control.

  3. Quantifying Rigid and Nonrigid Motion of Liver Tumors During Stereotactic Body Radiation Therapy

    SciTech Connect

    Xu, Qianyi; Hanna, George; Grimm, Jimm; Kubicek, Gregory; Pahlajani, Niraj; Asbell, Sucha; Fan, Jiajin; Chen, Yan; LaCouture, Tamara

    2014-09-01

    Purpose: To quantify rigid and nonrigid motion of liver tumors using reconstructed 3-dimensional (3D) fiducials from stereo imaging during CyberKnife-based stereotactic body radiation therapy (SBRT). Methods and Materials: Twenty-three liver patients treated with 3 fractions of SBRT were used in this study. After 2 orthogonal kilovoltage images were taken during treatment, the 3D locations of the fiducials were generated by the CyberKnife system and validated using geometric derivations. A total of 4824 pairs of kilovoltage images from start to end of treatment were analyzed. For rigid motion, the rotational angles and translational shifts were reported by aligning 3D fiducial groups from different image pairs, using least-squares fitting. For nonrigid motion, we quantified interfractional tumor volume variations by using the proportional volume derived from the fiducials, which correlates to the sum of interfiducial distances. The individual fiducial displacements were also reported (1) after rigid corrections and (2) without angle corrections. Results: The proportional volume derived by the fiducials demonstrated a volume-increasing trend in the second (101.9% ± 3.6%) and third (101.0 ± 5.9%) fractions among most patients, possibly due to radiation-induced edema. For all patients, the translational shifts in left-right, anteroposterior, and superoinferior directions were 2.1 ± 2.3 mm, 2.9 ± 2.8 mm, and 6.4 ± 5.5 mm, respectively. The greatest translational shifts occurred in the superoinferior direction, likely due to respiratory motion from the diaphragm. The rotational angles in roll, pitch, and yaw were 1.2° ± 1.8°, 1.8° ± 2.4°, and 1.7° ± 2.1°, respectively. The 3D individual fiducial displacements with rigid corrections were 0.2 ± 0.2 mm and increased to 0.5 ± 0.4 mm without rotational corrections. Conclusions: Accurate 3D locations of internal fiducials can be reconstructed from stereo imaging during treatment. As an

  4. Stereotactic Body Radiation Therapy for Oligometastases to the Lung: A Phase 2 Study

    SciTech Connect

    Nuyttens, Joost J.; Voort van Zyp, Noëlle C.M.G. van der; Verhoef, Cornelis; Maat, A.; Klaveren, Robertus J. van; Holt, Bronno van der; Aerts, Joachim; Hoogeman, Mischa

    2015-02-01

    Purpose: To assess, in a phase 2 study, the efficacy and toxicity of stereotactic body radiation therapy for oligometastases to the lung in inoperable patients. Methods and Materials: Patients with lung metastases were included in this study if (1) the primary tumor was controlled; (2) patients were ineligible for or refused surgery and chemotherapy; and (3) patients had 5 or fewer metastatic lesions in no more than 2 organs. Large peripheral tumors were treated with a dose of 60 Gy (3 fractions), small peripheral tumors with 30 Gy (1 fraction), central tumors received 60 Gy (5 fractions), and mediastinal tumors or tumors close to the esophagus received 56 Gy (7 fractions). Results: Thirty patients with 57 metastatic lung tumors from various primary cancers were analyzed. The median follow-up was 36 months (range, 4-60 months). At 2 years, local control for the 11 central tumors was 100%, for the 23 peripheral tumors treated to 60 Gy it was 91%, and for the 23 tumors treated in a single 30-Gy fraction it was 74% (P=.13). This resulted in an overall local control rate at 1 year of 79%, with a 2-sided 80% confidence interval of 67% to 87%. Because the hypothesized value of 70% lies within the confidence interval, we cannot reject the hypothesis that the true local control rate at 1 year is ≤70%, and therefore we did not achieve the goal of the study: an actuarial local control of the treated lung lesions at 1 year of 90%. The 4-year overall survival rate was 38%. Grade 3 acute toxicity occurred in 5 patients. Three patients complained of chronic grade 3 toxicity, including pain, fatigue, and pneumonitis, and 3 patients had rib fractures. Conclusions: The local control was promising, and the 4-year overall survival rate was 38%. The treatment was well tolerated, even for central lesions.

  5. Salvage Stereotactic Body Radiation Therapy (SBRT) for Local Failure After Primary Lung SBRT

    SciTech Connect

    Hearn, Jason W.D. Videtic, Gregory M.M.; Djemil, Toufik; Stephans, Kevin L.

    2014-10-01

    Purpose: Local failure after definitive stereotactic body radiation therapy (SBRT) for early-stage non-small cell lung cancer (NSCLC) is uncommon. We report the safety and efficacy of SBRT for salvage of local failure after previous SBRT with a biologically effective dose (BED) of ≥100 Gy{sub 10}. Methods and Materials: Using an institutional review board–approved lung SBRT registry, we identified all patients initially treated for early-stage NSCLC between August 2004 and January 2012 who received salvage SBRT for isolated local failure. Failure was defined radiographically and confirmed histologically unless contraindicated. All patients were treated on a Novalis/BrainLAB system using ExacTrac for image guidance, and received a BED of ≥100 Gy{sub 10} for each SBRT course. Tumor motion control involved a Bodyfix vacuum system for immobilization along with abdominal compression. Results: Of 436 patients treated from August 2004 through January 2012, we identified 22 patients with isolated local failure, 10 of whom received SBRT for salvage. The median length of follow-up was 13.8 months from salvage SBRT (range 5.3-43.5 months). Median tumor size was 3.4 cm (range 1.7-4.8 cm). Two of the 10 lesions were “central” by proximity to the mediastinum, but were outside the zone of the proximal bronchial tree. Since completing salvage, 3 patients are alive and without evidence of disease. A fourth patient died of medical comorbidities without recurrence 13.0 months after salvage SBRT. Two patients developed distant disease only. Four patients had local failure. Toxicity included grade 1-2 fatigue (3 patients) and grade 1-2 chest wall pain (5 patients). There was no grade 3-5 toxicity. Conclusions: Repeat SBRT with a BED of ≥100 Gy{sub 10} after local failure in patients with early-stage medically inoperable NSCLC was well tolerated in this series and may represent a viable salvage strategy in select patients with peripheral tumors ≤5 cm.

  6. High-dose MVCT image guidance for stereotactic body radiation therapy

    SciTech Connect

    Westerly, David C.; Schefter, Tracey E.; Kavanagh, Brian D.; Chao, Edward; Lucas, Dan; Flynn, Ryan T.; Miften, Moyed

    2012-08-15

    Purpose: Stereotactic body radiation therapy (SBRT) is a potent treatment for early stage primary and limited metastatic disease. Accurate tumor localization is essential to administer SBRT safely and effectively. Tomotherapy combines helical IMRT with onboard megavoltage CT (MVCT) imaging and is well suited for SBRT; however, MVCT results in reduced soft tissue contrast and increased image noise compared with kilovoltage CT. The goal of this work was to investigate the use of increased imaging doses on a clinical tomotherapy machine to improve image quality for SBRT image guidance. Methods: Two nonstandard, high-dose imaging modes were created on a tomotherapy machine by increasing the linear accelerator (LINAC) pulse rate from the nominal setting of 80 Hz, to 160 Hz and 300 Hz, respectively. Weighted CT dose indexes (wCTDIs) were measured for the standard, medium, and high-dose modes in a 30 cm solid water phantom using a calibrated A1SL ion chamber. Image quality was assessed from scans of a customized image quality phantom. Metrics evaluated include: contrast-to-noise ratios (CNRs), high-contrast spatial resolution, image uniformity, and percent image noise. In addition, two patients receiving SBRT were localized using high-dose MVCT scans. Raw detector data collected after each scan were used to reconstruct standard-dose images for comparison. Results: MVCT scans acquired using a pitch of 1.0 resulted in wCTDI values of 2.2, 4.7, and 8.5 cGy for the standard, medium, and high-dose modes respectively. CNR values for both low and high-contrast materials were found to increase with the square root of dose. Axial high-contrast spatial resolution was comparable for all imaging modes at 0.5 lp/mm. Image uniformity was improved and percent noise decreased as the imaging dose increased. Similar improvements in image quality were observed in patient images, with decreases in image noise being the most notable. Conclusions: High-dose imaging modes are made possible on a

  7. Dosimetric effects on small-field beam-modeling for stereotactic body radiation therapy

    NASA Astrophysics Data System (ADS)

    Cho, Woong; Kim, Suzy; Kim, Jung-In; Wu, Hong-Gyun; Jung, Joo-Young; Kim, Min-Joo; Suh, Tae-Suk; Kim, Jin-Young; Kim, Jong Won

    2015-02-01

    The treatment planning of stereotactic radiosurgery (SRS) and stereotactic body radiation therapy (SBRT) requires high accuracy of dosimetric data for small radiation fields. The dosimetric effects on the beam-modeling process of a treatment planning system (TPS) were investigated using different measured small-field data sets. We performed small-field dosimetry with three detectors: a CC13 ion chamber, a CC01 ion chamber, and an edge detector. Percentage depth doses (PDDs) and dose profiles for field sizes given by 3 × 3 cm2, 2 × 2 cm2, and 1 × 1 cm2 were obtained for 6 MV and 15 MV photon beams. Each measured data set was used as data input for a TPS, in which a beam-modeling process was implemented using the collapsed cone convolution (CCC) algorithm for dose calculation. The measured data were used to generate six beam-models based on each combination of detector type and photon energy, which were then used to calculate the corresponding PDDs and dose profiles for various depths and field sizes. Root mean square differences (RMSDs) between the calculated and the measured doses were evaluated for the PDDs and the dose profiles. The RMSDs of PDDs beyond the maximum dose depth were within an accuracy of 0.2-0.6%, being clinically acceptable. The RMSDs of the dose profiles corresponding to the CC13, the CC01, and the edge detector were 2.80%, 1.49%, and 1.46% for a beam energy of 6 MV and 2.34%, 1.15%, and 1.44% for a beam energy of 15 MV, respectively. The calculated results for the CC13 ion chamber showed the most discrepancy compared to the measured data, due to the relatively large sensitive volume of this detector. However, the calculated dose profiles for the detectors were not significantly different from another. The physical algorithm used in the beam-modeling process did not seem to be sensitive to blurred data measured with detectors with large sensitive volumes. Each beam-model was used to clinically evaluate lung and lymphatic node SBRT plans

  8. Reduction in stray radiation dose using a body-shielding device during external radiation therapy.

    PubMed

    Zhang, Shuxu; Jiang, Shaohui; Zhang, Quanbin; Lin, Shengqu; Wang, Ruihao; Zhou, Xiang; Zhang, Guoqian; Lei, Huaiyu; Yu, Hui

    2017-03-01

    With the purpose of reducing stray radiation dose (SRD) in out-of-field region (OFR) during radiotherapy with 6 MV intensity-modulated radiation therapy (IMRT), a body-shielding device (BSD) was prepared according to the measurements obtained in experimental testing. In experimental testing, optimal shielding conditions, such as 1 mm lead, 2 mm lead, and 1 mm lead plus 10 mm bolus, were investigated along the medial axis of a phantom using thermoluminescent dosimeters (TLDs). The SRDs at distances from field edge were then measured and analyzed for a clinical IMRT treatment plan for nasopharyngeal carcinoma before and after shielding using the BSD. In addition, SRDs in anterior, posterior, left and right directions of phantom were investigated with and without shielding, respectively. Also, the SRD at the bottom of treatment couch was measured. SRD decreased exponentially to a constant value with increasing distance from field edge. The shielding rate was 50%-80%; however, there were no significant differences in SRDs when shielded by 1 mm lead, 2 mm lead, or 1 mm lead plus 10 mm bolus (P>0.05). Importantly, the 10 mm bolus absorbed back-scattering radiation due to the interaction between photons and lead. As a result, 1 mm lead plus 10 mm bolus was selected to prepare the BSD. After shielding with BSD, total SRDs in the OFR decreased to almost 50% of those without shielding when irradiated with IMRT beams. Due to the effects of treatment couch and gantry angle, SRDs at distances were not identical in anterior, posterior, left and right direction of phantom without BSD. As higher dose in anterior and lower dose in posterior, SRDs were substantial similarities after shielding. There was no significant difference in SRDs for left and right directions with or without shielding. Interestingly, SRDs in the four directions were similar after shielding. From these results, the BSD developed in this study may significantly reduce SRD in the OFR during

  9. Statistical analysis of target motion in gated lung stereotactic body radiation therapy

    NASA Astrophysics Data System (ADS)

    Zhao, Bo; Yang, Yong; Li, Tianfang; Li, Xiang; Heron, Dwight E.; Saiful Huq, M.

    2011-03-01

    An external surrogate-based respiratory gating technique is a useful method to reduce target margins for the treatment of a moving lung tumor. The success of this technique relies on a good correlation between the motion of the external markers and the internal tumor as well as the repeatability of the respiratory motion. In gated lung stereotactic body radiation therapy (SBRT), the treatment time for each fraction could exceed 30 min due to large fractional dose. Tumor motion may experience pattern changes such as baseline shift during such extended treatment time. The purpose of this study is to analyze tumor motion traces in actual treatment situations and to evaluate the effect of the target baseline shift in gated lung SBRT treatment. Real-time motion data for both the external markers and tumors from 51 lung SBRT treatments with Cyberknife Synchrony technology were analyzed in this study. The treatment time is typically greater than 30 min. The baseline shift was calculated with a rolling average window equivalent to ~20 s and subtracted from that at the beginning. The magnitude of the baseline shift and its relationship with treatment time were investigated. Phase gating simulation was retrospectively performed on 12 carefully selected treatments with respiratory amplitude larger than 5 mm and regular phases. A customized gating window was defined for each individual treatment. It was found that the baseline shifts are specific to each patient and each fraction. Statistical analysis revealed that more than 69% treatments exhibited increased baseline shifts with the lapse of treatment time. The magnitude of the baseline shift could reach 5.3 mm during a 30 min treatment. Gating simulation showed that tumor excursion was caused mainly by the uncertainties in phase gating simulation and baseline shift, the latter being the primary factor. With a 5 mm gating window, 2 out of 12 treatments in the study group showed significant tumor excursion. Baseline shifts

  10. Her Body Speaks: The Experience of Dance Therapy for Women Survivors of Child Sexual Abuse.

    ERIC Educational Resources Information Center

    Mills, Letty J.; Daniluk, Judith C.

    2002-01-01

    This qualitative, phenomenological study explores the experiences of dance therapy for 5 women who had been sexually abused as children. Using in-depth, largely unstructured interviews, the women reflect on their dance therapy experiences: and on their perceptions of the role of these experiences in their psychological healing. (Contains 46…

  11. Whole-Body Vibration Training During a Low Frequency Outpatient Exercise Training Program in Chronic Obstructive Pulmonary Disease Patients: A Randomized, Controlled Trial

    PubMed Central

    Spielmanns, Marc; Gloeckl, Rainer; Gropp, Jana Marie; Nell, Christoph; Koczulla, Andreas Rembert; Boeselt, Tobias; Storre, Jan Hendrik; Windisch, Wolfram

    2017-01-01

    Background The aim of the study was to investigate whether whole-body vibration training (WBVT) can be applied beneficially within an outpatient low frequency exercise program. Methods In a prospective, controlled, randomized study, WBVT effectiveness and safety were investigated in COPD stage II-IV patients undergoing a 3-month training program. Participants took part in a 90-min circuit training once a week. On top patients were randomized to either perform squats with WBVT, or without (conventional training group (CTG)). Before and after the intervention, a sit-to-stand test (STST), a 6-min walk test (6-MWT), the COPD assessment test (CAT), and the chronic respiratory disease questionnaire (CRQ) were evaluated. Results Twenty-eight out of 55 patients completed the study (n = 12 WBTV, n = 16 CTG). The STST time remained nearly constant for the CTG (Δ -0.8 ± 3.1 s) and the WBVT (Δ 1.4 ± 3.2 s; P = 0.227), respectively. Similarly, for both WBVT and CTG, the 6-min walk distance remained unchanged (Δ 7 ± 55 m vs. 9 ± 45 m, P = 0.961). In three out of four categories, the CRQ scores showed a significant improvement within WBVT, and in one category when comparing across groups. The CAT score dropped by -0.8 ± 2.9 points within CTG and by 2.4 ± 2.7 points within WBVT (P = 0.105). There were no adverse events related to WBVT. Conclusion The implementation of WBVT in the context of an outpatient low frequency exercise program did not significantly improve the patients’ exercise capacity. An improvement in CAT and partially in CRQ was shown within WBVT. However, regarding the high dropout rate (49%), these results must be interpreted with caution. PMID:28392859

  12. A comparison of whole body vibration and moist heat on lower extremity skin temperature and skin blood flow in healthy older individuals

    PubMed Central

    Lohman, Everett B.; Sackiriyas, Kanikkai Steni Balan; Bains, Gurinder S.; Calandra, Giovanni; Lobo, Crystal; Nakhro, Daniel; Malthankar, Gauri; Paul, Sherwine

    2012-01-01

    Summary Background Tissue healing is an intricate process that is regulated by circulation. Heat modalities have been shown to improve skin circulation. Recent research supports that passive vibration increases circulation without risk of burns. Study purpose is to compare and determine effects of short duration vibration, moist heat, and a combination of the two on skin blood flow (SBF) and skin temperature (ST) in elderly, non-diabetic individuals following short-term exposure. Material/Methods Ten subjects, 3 female and 7 male (55–73 years of age), received two interventions over three days: 1 – Active vibration, 2 – passive vibration, 3 – moist heat, 4 – moist heat combined with passive vibration (MHPV), 5 – a commercial massaging heating pad, and 6 – no intervention. SBF and ST were measured using a MOOR Laser Doppler before and after the intervention and the third measurement were taken 10 minutes following. Results Mean SBF following a ten-minute intervention were significantly different in the combination of moist heat and passive vibration from the control, active vibration, and the commercial massaging heating pad. Compared to baseline measurements, this resulted in mean SBF elevation to 450% (at conclusion of 10 minutes of intervention) and 379% (10 minutes post). MHPV (p=0.02) showed significant changes in ST from the commercial massaging heating pad, passive vibration, and active vibration interventions. Conclusions SBF in the lower legs showed greatest increase with MHPV. Interventions should be selected th