Placing molecules with Bohr radius resolution using DNA origami
NASA Astrophysics Data System (ADS)
Funke, Jonas J.; Dietz, Hendrik
2016-01-01
Molecular self-assembly with nucleic acids can be used to fabricate discrete objects with defined sizes and arbitrary shapes. It relies on building blocks that are commensurate to those of biological macromolecular machines and should therefore be capable of delivering the atomic-scale placement accuracy known today only from natural and designed proteins. However, research in the field has predominantly focused on producing increasingly large and complex, but more coarsely defined, objects and placing them in an orderly manner on solid substrates. So far, few objects afford a design accuracy better than 5 nm, and the subnanometre scale has been reached only within the unit cells of designed DNA crystals. Here, we report a molecular positioning device made from a hinged DNA origami object in which the angle between the two structural units can be controlled with adjuster helices. To test the positioning capabilities of the device, we used photophysical and crosslinking assays that report the coordinate of interest directly with atomic resolution. Using this combination of placement and analysis, we rationally adjusted the average distance between fluorescent molecules and reactive groups from 1.5 to 9 nm in 123 discrete displacement steps. The smallest displacement step possible was 0.04 nm, which is slightly less than the Bohr radius. The fluctuation amplitudes in the distance coordinate were also small (±0.5 nm), and within a factor of two to three of the amplitudes found in protein structures.
Ulbricht, Ronald; Pijpers, Joep J H; Groeneveld, Esther; Koole, Rolf; Donega, Celso de Mello; Vanmaekelbergh, Daniel; Delerue, Christophe; Allan, Guy; Bonn, Mischa
2012-09-12
We report on the gradual evolution of the conductivity of spherical CdTe nanocrystals of increasing size from the regime of strong quantum confinement with truly discrete energy levels to the regime of weak confinement with closely spaced hole states. We use the high-frequency (terahertz) real and imaginary conductivities of optically injected carriers in the nanocrystals to report on the degree of quantum confinement. For the smaller CdTe nanocrystals (3 nm < radius < 5 nm), the complex terahertz conductivity is purely imaginary. For nanocrystals with radii exceeding 5 nm, we observe the onset of real conductivity, which is attributed to the increasingly smaller separation between the hole states. Remarkably, this onset occurs for a nanocrystal radius significantly smaller than the bulk exciton Bohr radius a(B) ∼ 7 nm and cannot be explained by purely electronic transitions between hole states, as evidenced by tight-binding calculations. The real-valued conductivity observed in the larger nanocrystals can be explained by the emergence of mixed carrier-phonon, that is, polaron, states due to hole transitions that become resonant with, and couple strongly to, optical phonon modes for larger QDs. These polaron states possess larger oscillator strengths and broader absorption, and thereby give rise to enhanced real conductivity within the nanocrystals despite the confinement.
NASA Astrophysics Data System (ADS)
Heyrovska, R.; Narayan, S.
2005-10-01
Recently, the ground state Bohr radius (aB) of hydrogen was shown to be divided into two Golden sections, aB,p = aB/ø2 and aB,e = aB/ø at the point of electrical neutrality, where ø = 1.618 is the Golden ratio (R. Heyrovska, Molecular Physics 103: 877-882, and the literature cited therein). The origin of the difference of two energy terms in the Rydberg equation was thus shown to be in the ground state energy itself, as shown below: EH = (1/2)e2/(κaB) = (1/2)(e2/κ) [(1/aB,p - (1/aB,e)] (1). This work brings some new results that 1) a unit charge in vacuum has a magnetic moment, 2) (e2/2κ) in eq. (1) is an electromagnetic condenser constant, 3) the de Broglie wavelengths of the proton and electron correspond to the Golden arcs of a circle with the Bohr radius, 4) the fine structure constant (α) is the ratio of the Planck's constants without and with the interaction of light with matter, 5) the g-factors of the electron and proton, ge/2 and gp/2 divide the Bohr radius at the magnetic center and 6) the ``mysterious'' value (137.036) of α -1 = (360/ø2) - (2/ø3), where (2/ø3) arises from the difference, (gp - ge).
NASA Astrophysics Data System (ADS)
Bai, Tongdong; Stachel, John
In his response to EPR, Bohr introduces several ideal experimental arrangements that often are not understood correctly, and his discussion about them is given a positivist reading. Our analysis demonstrates the difference between such areading and Bohr's actual position, and also clarifies the meaning of several of Bohr's key physical and philosophical ideas: * The role of the quantum of action in the distinction between classical and quantum systems; * The criterion of measurability for theoretically defined concepts; * The freedom in placement of the "cut" between measuring instrument and measured system; * The non-visualizability of the quantum formalism; and Bohr's concepts of phenomenon and complementarity.
Fine structure of the exciton electroabsorption in semiconductor superlattices
NASA Astrophysics Data System (ADS)
Monozon, B. S.; Schmelcher, P.
2017-02-01
Wannier-Mott excitons in a semiconductor layered superlattice (SL) are investigated analytically for the case that the period of the superlattice is much smaller than the 2D exciton Bohr radius. Additionally we assume the presence of a longitudinal external static electric field directed parallel to the SL axis. The exciton states and the optical absorption coefficient are derived in the tight-binding and adiabatic approximations. Strong and weak electric fields providing spatially localized and extended electron and hole states, respectively, are studied. The dependencies of the exciton states and the exciton absorption spectrum on the SL parameters and the electric field strength are presented in an explicit form. We focus on the fine structure of the ground quasi-2D exciton level formed by the series of closely spaced energy levels adjacent from the high frequencies. These levels are related to the adiabatically slow relative exciton longitudinal motion governed by the potential formed by the in-plane exciton state. It is shown that the external electric fields compress the fine structure energy levels, decrease the intensities of the corresponding optical peaks and increase the exciton binding energy. A possible experimental study of the fine structure of the exciton electroabsorption is discussed.
Two-dimensional excitons in three-dimensional hexagonal boron nitride
Cao, X. K.; Lin, J. Y. Jiang, H. X.; Clubine, B.; Edgar, J. H.
2013-11-04
The recombination processes of excitons in hexagonal boron nitride (hBN) have been probed using time-resolved photoluminescence. It was found that the theory for two-dimensional (2D) exciton recombination describes well the exciton dynamics in three-dimensional hBN. The exciton Bohr radius and binding energy deduced from the temperature dependent exciton recombination lifetime is around 8 Å and 740 meV, respectively. The effective masses of electrons and holes in 2D hBN deduced from the generalized relativistic dispersion relation of 2D systems are 0.54m{sub o}, which are remarkably consistent with the exciton reduced mass deduced from the experimental data. Our results illustrate that hBN represents an ideal platform to study the 2D optical properties as well as the relativistic properties of particles in a condensed matter system.
ERIC Educational Resources Information Center
Haendler, Blanca L.
1982-01-01
Discusses the importance of teaching the Bohr atom at both freshman and advanced levels. Focuses on the development of Bohr's ideas, derivation of the energies of the stationary states, and the Bohr atom in the chemistry curriculum. (SK)
NASA Astrophysics Data System (ADS)
Crease, Robert P.
2008-05-01
In his book Niels Bohr's Times, the physicist Abraham Pais captures a paradox in his subject's legacy by quoting three conflicting assessments. Pais cites Max Born, of the first generation of quantum physics, and Werner Heisenberg, of the second, as saying that Bohr had a greater influence on physics and physicists than any other scientist. Yet Pais also reports a distinguished younger colleague asking with puzzlement and scepticism "What did Bohr really do?".
Multiple exciton generation in colloidal silicon nanocrystals.
Beard, Matthew C; Knutsen, Kelly P; Yu, Pingrong; Luther, Joseph M; Song, Qing; Metzger, Wyatt K; Ellingson, Randy J; Nozik, Arthur J
2007-08-01
Multiple exciton generation (MEG) is a process whereby multiple electron-hole pairs, or excitons, are produced upon absorption of a single photon in semiconductor nanocrystals (NCs) and represents a promising route to increased solar conversion efficiencies in single-junction photovoltaic cells. We report for the first time MEG yields in colloidal Si NCs using ultrafast transient absorption spectroscopy. We find the threshold photon energy for MEG in 9.5 nm diameter Si NCs (effective band gap identical with Eg = 1.20 eV) to be 2.4 +/- 0.1Eg and find an exciton-production quantum yield of 2.6 +/- 0.2 excitons per absorbed photon at 3.4Eg. While MEG has been previously reported in direct-gap semiconductor NCs of PbSe, PbS, PbTe, CdSe, and InAs, this represents the first report of MEG within indirect-gap semiconductor NCs. Furthermore, MEG is found in relatively large Si NCs (diameter equal to about twice the Bohr radius) such that the confinement energy is not large enough to produce a large blue-shift of the band gap (only 80 meV), but the Coulomb interaction is sufficiently enhanced to produce efficient MEG. Our findings are of particular importance because Si dominates the photovoltaic solar cell industry, presents no problems regarding abundance and accessibility within the Earth's crust, and poses no significant environmental problems regarding toxicity.
ERIC Educational Resources Information Center
Willden, Jeff
2001-01-01
"Bohr's Atomic Model" is a small interactive multimedia program that introduces the viewer to a simplified model of the atom. This interactive simulation lets students build an atom using an atomic construction set. The underlying design methodology for "Bohr's Atomic Model" is model-centered instruction, which means the central model of the…
ERIC Educational Resources Information Center
Latimer, Colin J.
1983-01-01
Discusses some lesser known examples of atomic phenomena to illustrate to students that the old quantum theory in its simplest (Bohr) form is not an antiquity but can still make an important contribution to understanding such phenomena. Topics include hydrogenic/non-hydrogenic spectra and atoms in strong electric and magnetic fields. (Author/JN)
NASA Astrophysics Data System (ADS)
Bellac, Michel Le
2014-11-01
The final form of quantum physics, in the particular case of wave mechanics, was established in the years 1925-1927 by Heisenberg, Schrödinger, Born and others, but the synthesis was the work of Bohr who gave an epistemological interpretation of all the technicalities built up over those years; this interpretation will be examined briefly in Chapter 10. Although Einstein acknowledged the success of quantum mechanics in atomic, molecular and solid state physics, he disagreed deeply with Bohr's interpretation. For many years, he tried to find flaws in the formulation of quantum theory as it had been more or less accepted by a large majority of physicists, but his objections were brushed away by Bohr. However, in an article published in 1935 with Podolsky and Rosen, universally known under the acronym EPR, Einstein thought he had identified a difficulty in the by then standard interpretation. Bohr's obscure, and in part beyond the point, answer showed that Einstein had hit a sensitive target. Nevertheless, until 1964, the so-called Bohr-Einstein debate stayed uniquely on a philosophical level, and it was actually forgotten by most physicists, as the few of them aware of it thought it had no practical implication. In 1964, the Northern Irish physicist John Bell realized that the assumptions contained in the EPR article could be tested experimentally. These assumptions led to inequalities, the Bell inequalities, which were in contradiction with quantum mechanical predictions: as we shall see later on, it is extremely likely that the assumptions of the EPR article are not consistent with experiment, which, on the contrary, vindicates the predictions of quantum physics. In Section 3.2, the origin of Bell's inequalities will be explained with an intuitive example, then they will be compared with the predictions of quantum theory in Section 3.3, and finally their experimental status will be reviewed in Section 3.4. The debate between Bohr and Einstein goes much beyond a
THE CENTENARY OF NIELS BOHR: Niels Bohr and quantum physics
NASA Astrophysics Data System (ADS)
Migdal, A. B.
1985-10-01
The way of thinking and scientific style of Niels Bohr are discussed in connection with developments of his emotional and spiritual life. Analysis of the papers of Bohr, his predecessors, and his contemporaries reveals that he was a philosopher of physics who had an incomparable influence upon the creation and development of quantum mechanics. His struggle against nuclear weapons is mentioned.
NASA Astrophysics Data System (ADS)
Pasachoff, Jay M.
2004-01-01
The attempt to bring students to critical thinking about topics in contemporary astronomy is a goal shared by many teachers. Since the rise of astrophysics in the early 20th century, spectroscopy has been the defining technique. Various techniques have been tried to give students a concrete understanding of emission lines and absorption lines in the hydrogen spectrum.1 Spectroscopy of hydrogen plays an important part of most textbooks in elementary astronomy.2 After years of jumping off lecture-room steps and trying (but never succeeding) in hovering between stair levels, I still find too many students drawing equally spaced hydrogen energy levels on exams. I thus arranged for carpenters to build a five-step staircase with the spacing matching that of the actual hydrogen energy levels. I can now use the staircase to demonstrate the Bohr atom3 in a memorable manner. ``Bohr staircase'' is therefore a suitable name for it. If a teacher wants to stress the visible spectrum rather than the energy levels, ``Balmer staircase'' is an alternate name.
NASA Astrophysics Data System (ADS)
Dotson, Allen
2013-07-01
Jon Cartwright's interesting and informative article on quantum philosophy ("The life of psi", May pp26-31) mischaracterizes Niels Bohr's stance as anti-realist by suggesting (in the illustration on p29) that Bohr believed that "quantum theory [does not] describe an objective reality, independent of the observer".
Revisiting Bohr's semiclassical quantum theory.
Ben-Amotz, Dor
2006-10-12
Bohr's atomic theory is widely viewed as remarkable, both for its accuracy in predicting the observed optical transitions of one-electron atoms and for its failure to fully correspond with current electronic structure theory. What is not generally appreciated is that Bohr's original semiclassical conception differed significantly from the Bohr-Sommerfeld theory and offers an alternative semiclassical approximation scheme with remarkable attributes. More specifically, Bohr's original method did not impose action quantization constraints but rather obtained these as predictions by simply matching photon and classical orbital frequencies. In other words, the hydrogen atom was treated entirely classically and orbital quantized emerged directly from the Planck-Einstein photon quantization condition, E = h nu. Here, we revisit this early history of quantum theory and demonstrate the application of Bohr's original strategy to the three quintessential quantum systems: an electron in a box, an electron in a ring, and a dipolar harmonic oscillator. The usual energy-level spectra, and optical selection rules, emerge by solving an algebraic (quadratic) equation, rather than a Bohr-Sommerfeld integral (or Schroedinger) equation. However, the new predictions include a frozen (zero-kinetic-energy) state which in some (but not all) cases lies below the usual zero-point energy. In addition to raising provocative questions concerning the origin of quantum-chemical phenomena, the results may prove to be of pedagogical value in introducing students to quantum mechanics.
Exciton-dominated dielectric function of atomically thin MoS_{2} films
Yu, Yiling; Yu, Yifei; Cai, Yongqing; Li, Wei; Gurarslan, Alper; Peelaers, Hartwin; Aspnes, David E.; Van de Walle, Chris G.; Nguyen, Nhan V.; Zhang, Yong -Wei; Cao, Linyou
2015-11-24
We systematically measure the dielectric function of atomically thin MoS_{2} films with different layer numbers and demonstrate that excitonic effects play a dominant role in the dielectric function when the films are less than 5–7 layers thick. The dielectric function shows an anomalous dependence on the layer number. It decreases with the layer number increasing when the films are less than 5–7 layers thick but turns to increase with the layer number for thicker films. We show that this is because the excitonic effect is very strong in the thin MoS_{2} films and its contribution to the dielectric function may dominate over the contribution of the band structure. We also extract the value of layer-dependent exciton binding energy and Bohr radius in the films by fitting the experimental results with an intuitive model. The dominance of excitonic effects is in stark contrast with what reported at conventional materials whose dielectric functions are usually dictated by band structures. Lastly, the knowledge of the dielectric function may enable capabilities to engineer the light-matter interactions of atomically thin MoS_{2} films for the development of novel photonic devices, such as metamaterials, waveguides, light absorbers, and light emitters.
Exciton-dominated dielectric function of atomically thin MoS2 films
Yu, Yiling; Yu, Yifei; Cai, Yongqing; ...
2015-11-24
We systematically measure the dielectric function of atomically thin MoS2 films with different layer numbers and demonstrate that excitonic effects play a dominant role in the dielectric function when the films are less than 5–7 layers thick. The dielectric function shows an anomalous dependence on the layer number. It decreases with the layer number increasing when the films are less than 5–7 layers thick but turns to increase with the layer number for thicker films. We show that this is because the excitonic effect is very strong in the thin MoS2 films and its contribution to the dielectric function maymore » dominate over the contribution of the band structure. We also extract the value of layer-dependent exciton binding energy and Bohr radius in the films by fitting the experimental results with an intuitive model. The dominance of excitonic effects is in stark contrast with what reported at conventional materials whose dielectric functions are usually dictated by band structures. Lastly, the knowledge of the dielectric function may enable capabilities to engineer the light-matter interactions of atomically thin MoS2 films for the development of novel photonic devices, such as metamaterials, waveguides, light absorbers, and light emitters.« less
Bohr's 1913 molecular model revisited.
Svidzinsky, Anatoly A; Scully, Marlan O; Herschbach, Dudley R
2005-08-23
It is generally believed that the old quantum theory, as presented by Niels Bohr in 1913, fails when applied to few electron systems, such as the H(2) molecule. Here, we find previously undescribed solutions within the Bohr theory that describe the potential energy curve for the lowest singlet and triplet states of H(2) about as well as the early wave mechanical treatment of Heitler and London. We also develop an interpolation scheme that substantially improves the agreement with the exact ground-state potential curve of H(2) and provides a good description of more complicated molecules such as LiH, Li(2), BeH, and He(2).
A Simple Relativistic Bohr Atom
ERIC Educational Resources Information Center
Terzis, Andreas F.
2008-01-01
A simple concise relativistic modification of the standard Bohr model for hydrogen-like atoms with circular orbits is presented. As the derivation requires basic knowledge of classical and relativistic mechanics, it can be taught in standard courses in modern physics and introductory quantum mechanics. In addition, it can be shown in a class that…
ERIC Educational Resources Information Center
Brunori, Maurizio
2012-01-01
Before the outbreak of World War II, Jeffries Wyman postulated that the "Bohr effect" in hemoglobin demanded the oxygen linked dissociation of the imidazole of two histidines of the polypeptide. This proposal emerged from a rigorous analysis of the acid-base titration curves of oxy- and deoxy-hemoglobin, at a time when the information on the…
Atempts to link Quanta & Atoms before the Bohr Atom model
NASA Astrophysics Data System (ADS)
Venkatesan, A.; Lieber, M.
2005-03-01
Attempts to quantize atomic phenomena before Bohr are hardly ever mentioned in elementary textbooks.This presentation will elucidate the contributions of A.Haas around 1910. Haas tried to quantize the Thomson atom model as an optical resonator made of positive and negative charges. The inherent ambiguity of charge distribution in the model made him choose a positive spherical distribution around which the electrons were distributed.He obtained expressions for the Rydberg constant and what is known today as the Bohr radius by balancing centrifugal energy with Coulomb energy and quantizing it with Planck's relation E=hν. We point out that Haas would have arrived at better estimates of these constants had he used the virial theorem apart from the fact that the fundamental constants were not well known. The crux of Haas's physical picture was to derive Planck's constant h from charge quantum e , mass of electron m and atomic radius. Haas faced severe criticism for applying thermodynamic concepts like Planck distribution to microscopic phenomena. We will try to give a flavor for how quantum phenomena were viewed at that time. It is of interest to note that the driving force behind Haas's work was to present a paper that would secure him a position as a Privatdozent in History of Physics. We end with comments by Bohr and Sommerfeld on Haas's work and with some brief biographical remarks.
Corda, Christian
2015-03-10
The idea that black holes (BHs) result in highly excited states representing both the “hydrogen atom” and the “quasi-thermal emission” in quantum gravity is today an intuitive but general conviction. In this paper it will be shown that such an intuitive picture is more than a picture. In fact, we will discuss a model of quantum BH somewhat similar to the historical semi-classical model of the structure of a hydrogen atom introduced by Bohr in 1913. The model is completely consistent with existing results in the literature, starting from the celebrated result of Bekenstein on the area quantization.
Timing and Impact of Bohr's Trilogy
NASA Astrophysics Data System (ADS)
Jeong, Yeuncheol; Wang, Lei; Yin, Ming; Datta, Timir
2014-03-01
In their article- Genesis of the Bohr Atom Heilbron and Kuhn asked - what suddenly turned his [Bohr's] attention, to atom models during June 1912- they were absolutely right; during the short period in question Bohr had made an unexpected change in his research activity, he has found a new interest ``atom'' and would soon produce a spectacularly successful theory about it in his now famous trilogy papers in the Phil Mag (1913). We researched the trilogy papers, Bohr`s memorandum, his own correspondence from that time in question and activities by Moseley (Manchester), Henry and Lawrence Bragg. Our work suggests that Bohr, also at Manchester that summer, was likely to have been inspired by Laue's sensational discovery in April 1912, of X-ray interference from atoms in crystals. The three trilogy papers include sixty five distinct (numbered) references from thirty one authors. The publication dates of the cited works range from 1896 to 1913. Bohr showed an extraordinary skill in navigating thru the most important and up-to date works. Eleven of the cited authors (Bohr included, but not John Nicholson) were recognized by ten Noble prizes, six in physics and four in chemistry.
What classicality? Decoherence and Bohr's classical concepts
NASA Astrophysics Data System (ADS)
Schlosshauer, Maximilian; Camilleri, Kristian
2011-03-01
Niels Bohr famously insisted on the indispensability of what he termed "classical concepts." In the context of the decoherence program, on the other hand, it has become fashionable to talk about the "dynamical emergence of classicality" from the quantum formalism alone. Does this mean that decoherence challenges Bohr's dictum—for example, that classical concepts do not need to be assumed but can be derived? In this paper we'll try to shed some light down the murky waters where formalism and philosophy cohabitate. To begin, we'll clarify the notion of classicality in the decoherence description. We'll then discuss Bohr's and Heisenberg's take on the quantum—classical problem and reflect on different meanings of the terms "classicality" and "classical concepts" in the writings of Bohr and his followers. This analysis will allow us to put forward some tentative suggestions for how we may better understand the relation between decoherence-induced classicality and Bohr's classical concepts.
Bohr model as an algebraic collective model
Rowe, D. J.; Welsh, T. A.; Caprio, M. A.
2009-05-15
Developments and applications are presented of an algebraic version of Bohr's collective model. Illustrative examples show that fully converged calculations can be performed quickly and easily for a large range of Hamiltonians. As a result, the Bohr model becomes an effective tool in the analysis of experimental data. The examples are chosen both to confirm the reliability of the algebraic collective model and to show the diversity of results that can be obtained by its use. The focus of the paper is to facilitate identification of the limitations of the Bohr model with a view to developing more realistic, computationally tractable models.
Genetics Home Reference: Bohring-Opitz syndrome
... Bohring-Opitz syndrome can include a flat nasal bridge, nostrils that open to the front rather than ... and proteins that packages DNA into chromosomes. The structure of chromatin can be changed (remodeled) to alter ...
NASA Astrophysics Data System (ADS)
Camilleri, Kristian; Schlosshauer, Maximilian
2015-02-01
Niels Bohr's doctrine of the primacy of "classical concepts" is arguably his most criticized and misunderstood view. We present a new, careful historical analysis that makes clear that Bohr's doctrine was primarily an epistemological thesis, derived from his understanding of the functional role of experiment. A hitherto largely overlooked disagreement between Bohr and Heisenberg about the movability of the "cut" between measuring apparatus and observed quantum system supports the view that, for Bohr, such a cut did not originate in dynamical (ontological) considerations, but rather in functional (epistemological) considerations. As such, both the motivation and the target of Bohr's doctrine of classical concepts are of a fundamentally different nature than what is understood as the dynamical problem of the quantum-to-classical transition. Our analysis suggests that, contrary to claims often found in the literature, Bohr's doctrine is not, and cannot be, at odds with proposed solutions to the dynamical problem of the quantum-classical transition that were pursued by several of Bohr's followers and culminated in the development of decoherence theory.
Plasmon-Frenkel-exciton in a clustered solid
NASA Astrophysics Data System (ADS)
Rotkin, Slava V.; Suris, Robert A.
1998-08-01
The standard theory of the Frenkel exciton (a small radius exciton) is applied to a fullerene 2D solid. It is the dipole collective electron excitation of a single cluster which forms the delocalized plasmon-Frenkel-exciton (PFE) in a crystal. The PFE retarded interaction is taken into account. We present transverse PFE-polariton dispersion curves along with the Coulomb problem solution for longitudinal excitation in the 2D plane.
Dow, J. D.; Hjalmarson, H. P.; Sankey, O. F.; Allen, R. E.; Buettner, H.
1980-01-01
The observation of core excitons with binding energies much larger than those of the valence excitons in the same material has posed a long-standing theoretical problem. A proposed solution to this problem is presented, and Frenkel excitons and Wannier excitons are shown to coexist naturally in a single material. (GHT)
Extension of the radiative lifetime of Wannier-Mott excitons in semiconductor nanoclusters
Kukushkin, V. A.
2015-01-15
The purpose of the study is to calculate the radiative lifetime of Wannier-Mott excitons in three-dimensional potential wells formed of direct-gap narrow-gap semiconductor nanoclusters in wide-gap semiconductors and assumed to be large compared to the exciton radius. Calculations are carried out for the InAs/GaAs heterosystem. It is shown that, as the nanocluster dimensions are reduced to values on the order of the exciton radius, the exciton radiative lifetime becomes several times longer compared to that in a homogeneous semiconductor. The increase in the radiative lifetime is more pronounced at low temperatures. Thus, it is established that the placement of Wannier-Mott excitons into direct-gap semiconductor nanoclusters, whose dimensions are of the order of the exciton radius, can be used for considerable extension of the exciton radiative lifetime.
Strong charge-transfer excitonic effects and the Bose-Einstein exciton condensate in graphane.
Cudazzo, Pierluigi; Attaccalite, Claudio; Tokatly, Ilya V; Rubio, Angel
2010-06-04
Using first principles many-body theory methods (GW+Bethe-Salpeter equation) we demonstrate that the optical properties of graphane are dominated by localized charge-transfer excitations governed by enhanced electron correlations in a two-dimensional dielectric medium. Strong electron-hole interaction leads to the appearance of small radius bound excitons with spatially separated electron and hole, which are localized out of plane and in plane, respectively. The presence of such bound excitons opens the path towards an excitonic Bose-Einstein condensate in graphane that can be observed experimentally.
Frenkel-like Wannier-Mott excitons in few-layer Pb I2
NASA Astrophysics Data System (ADS)
Toulouse, Alexis S.; Isaacoff, Benjamin P.; Shi, Guangsha; Matuchová, Marie; Kioupakis, Emmanouil; Merlin, Roberto
2015-04-01
Optical measurements and first-principles calculations of the band structure and exciton states in direct-gap bulk and few-layer Pb I2 indicate that the n =1 exciton is Frenkel-like in nature in that its energy exhibits a weak dependence on thickness down to atomic-length scales. Results reveal large increases in the gap and exciton binding energy with a decreasing number of layers and a transition of the fundamental gap, which becomes indirect for one and two monolayers. Calculated values are in reasonable agreement with a particle-in-a-box model relying on the Wannier-Mott theory of exciton formation. General arguments and existing data suggest that the Frenkel-like character of the lowest exciton is a universal feature of wide-gap layered semiconductors whose effective masses and dielectric constants give bulk Bohr radii that are on the order of the layer spacing.
Niels Bohr and the Third Quantum Revolution
NASA Astrophysics Data System (ADS)
Scharff Goldhaber, Alfred
2013-04-01
In the history of science few developments can rival the discovery of quantum mechanics, with its series of abrupt leaps in unexpected directions stretching over a quarter century. The result was a new world, even more strange than any previously imagined subterranean (or in this case submicroscopic) kingdom. Niels Bohr made the third of these leaps (following Planck and Einstein) when he realized that still-new quantum ideas were essential to account for atomic structure: Rutherford had deduced, using entirely classical-physics principles, that the positive charge in an atom is contained in a very small kernel or nucleus. This made the atom an analogue to the solar system. Classical physics implied that negatively charged electrons losing energy to electromagnetic radiation would ``dive in'' to the nucleus in a very short time. The chemistry of such tiny atoms would be trivial, and the sizes of solids made from these atoms would be much too small. Bohr initially got out of this dilemma by postulating that the angular momentum of an electron orbiting about the nucleus is quantized in integer multiples of the reduced quantum constant = h/2π. Solving for the energy of such an orbit in equilibrium immediately produces the famous Balmer formula for the frequencies of visible light radiated from hydrogen as an electron jumps from any particular orbit to another of lower energy. There remained mysteries requiring explanation or at least exploration, including two to be discussed here: 1. Rutherford used classical mechanics to compute the trajectory and hence the scattering angle of an α particle impinging on a small positively charged target. How could this be consistent with Bohr's quantization of particle orbits about the nucleus? 2. Bohr excluded for his integer multiples of the value 0. How can one justify this exclusion, necessary to bar tiny atoms of the type mentioned earlier?
Niels Bohr and the Third Quantum Revolution
NASA Astrophysics Data System (ADS)
Goldhaber, Alfred
2013-04-01
In the history of science few developments can rival the discovery of quantum mechanics, with its series of abrupt leaps in unexpected directions stretching over a quarter century. The result was a new world, even more strange than any previously imagined subterranean (or in this case submicroscopic) kingdom. Niels Bohr made the third of these leaps (following Planck and Einstein) when he realized that still-new quantum ideas were essential to account for atomic structure: Rutherford had deduced, using entirely classical-physics principles, that the positive charge in an atom is contained in a very small kernel or nucleus. This made the atom an analogue to the solar system. Classical physics implied that negatively charged electrons losing energy to electromagnetic radiation would ``dive in'' to the nucleus in a very short time. The chemistry of such tiny atoms would be trivial, and the sizes of solids made from these atoms would be much too small. Bohr initially got out of this dilemma by postulating that the angular momentum of an electron orbiting about the nucleus is quantized in integer multiples of the reduced quantum constant ℏ = h/2 π. Solving for the energy of such an orbit in equilibrium immediately produces the famous Balmer formula for the frequencies of visible light radiated from hydrogen as an electron jumps from any particular orbit to another of lower energy. There remained mysteries requiring explanation or at least exploration, including two to be discussed here: 1. Rutherford used classical mechanics to compute the trajectory and hence the scattering angle of an α particle impinging on a small positively charged target. How could this be consistent with Bohr's quantization of particle orbits about the nucleus? 2. Bohr excluded for his integer multiples of ℏ the value 0. How can one justify this exclusion, necessary to bar tiny atoms of the type mentioned earlier?
Exciton-Exciton Interaction in KMnF3
NASA Astrophysics Data System (ADS)
Strauss, E.; Maniscalco, W. J.; Yen, W. M.; Kellner, U. C.; Gerhardt, V.
1980-03-01
Exciton dynamics in KMnF3 at exciton densities up to 1016 cm-3 are examined with time-resolved emission spectroscopy. The exciton emission line shifts and broadens with increasing exciton density. A nonlinear exciton decay channel is observed. These effects are found to be consistent with an exciton-exciton process. The shift scales with the exciton density and suggests that the effect is dominated by pairwise interactions up to the densities reached in these experiments.
Should we teach the Bohr model?
NASA Astrophysics Data System (ADS)
McKagan, S. B.; Perkins, K. K.; Wieman, C. E.
2007-03-01
Some education researchers have claimed that we should not teach the Bohr model of the atom because it inhibits students' ability to learn the true wave nature of electrons in atoms. Although the evidence for this claim is weak, many in the physics education research community have accepted it. This claim has implications for how we present atoms in classes ranging from elementary school to graduate school. We present results from a study designed to test this claim by developing curriculum on models of the atom, including the Bohr model and the Schrodinger model. We examine student descriptions of atoms on final exams in reformed modern physics classes using various versions of this curriculum. Preliminary results show that if the curriculum does not include sufficient connections between different models, many students still have a Bohr-like view of atoms, rather than a more accurate quantum mechanical view. We present further studies based on an improved curriculum designed to develop model-building skills and with better integration between different models. We will also present a new interactive computer simulation on models of the atom designed to address these issues.
Excitonic Stark effect in MoS2 monolayers
NASA Astrophysics Data System (ADS)
Scharf, Benedikt; Frank, Tobias; Gmitra, Martin; Fabian, Jaroslav; Žutić, Igor; Perebeinos, Vasili
2016-12-01
We theoretically investigate excitons in MoS2 monolayers in an applied in-plane electric field. Tight-binding and Bethe-Salpeter equation calculations predict a quadratic Stark shift, of the order of a few meV for fields of 10 V/μ m , in the linear absorption spectra. The spectral weight of the main exciton peaks decreases by a few percent with an increasing electric field due to the exciton field ionization into free carriers as reflected in the exciton wave functions. Subpicosecond exciton decay lifetimes at fields of a few tens of V/μ m could be utilized in solar energy harvesting and photodetection. We find simple scaling relations of the exciton binding, radius, and oscillator strength with the dielectric environment and an electric field, which provides a path to engineering the MoS2 electro-optical response.
Bohr's Creation of his Quantum Atom
NASA Astrophysics Data System (ADS)
Heilbron, John
2013-04-01
Fresh letters throw new light on the content and state of Bohr's mind before and during his creation of the quantum atom. His mental furniture then included the atomic models of the English school, the quantum puzzles of Continental theorists, and the results of his own studies of the electron theory of metals. It also included the poetry of Goethe, plays of Ibsen and Shakespeare, novels of Dickens, and rhapsodies of Kierkegaard and Carlyle. The mind that held these diverse ingredients together oscillated between enthusiasm and dejection during the year in which Bohr took up the problem of atomic structure. He spent most of that year in England, which separated him for extended periods from his close-knit family and friends. Correspondence with his fianc'ee, Margrethe Nørlund, soon to be published, reports his ups and downs as he adjusted to J.J. Thomson, Ernest Rutherford, the English language, and the uneven course of his work. In helping to smooth out his moods, Margrethe played an important and perhaps an enabling role in his creative process.
Bohr's Principle of Complementarity and Beyond
NASA Astrophysics Data System (ADS)
Jones, R.
2004-05-01
All knowledge is of an approximate character and always will be (Russell, Human Knowledge, 1948, pg 497,507). The laws of nature are not unique (Smolin, Three Roads to Quantum Gravity, 2001, pg 195). There may be a number of different sets of equations which describe our data just as well as the present known laws do (Mitchell, Machine Learning, 1997, pg 65-66 and Cooper, Machine Learning, Vol. 9, 1992, pg 319) In the future every field of intellectual study will possess multiple theories of its domain and scientific work and engineering will be performed based on the ensemble predictions of ALL of these. In some cases the theories may be quite divergent, differing greatly one from the other. The idea can be considered an extension of Bohr's notions of complementarity, "...different experimental arrangements.. described by different physical concepts...together and only together exhaust the definable information we can obtain about the object" (Folse, The Philosophy of Niels Bohr, 1985, pg 238). This idea is not postmodernism. Witchdoctor's theories will not form a part of medical science. Objective data, not human opinion, will decide which theories we use and how we weight their predictions.
100th anniversary of Bohr's model of the atom.
Schwarz, W H Eugen
2013-11-18
In the fall of 1913 Niels Bohr formulated his atomic models at the age of 27. This Essay traces Bohr's fundamental reasoning regarding atomic structure and spectra, the periodic table of the elements, and chemical bonding. His enduring insights and superseded suppositions are also discussed.
Resisting the Bohr Atom: The Early British Opposition
NASA Astrophysics Data System (ADS)
Kragh, Helge
2011-03-01
When Niels Bohr's theory of atomic structure appeared in the summer and fall of 1913, it quickly attracted attention among British physicists. While some of the attention was supportive, others was critical. I consider the opposition to Bohr's theory from 1913 to about 1915, including attempts to construct atomic theories on a classical basis as alternatives to Bohr's. I give particular attention to the astrophysicist John W. Nicholson, who was Bohr's most formidable and persistent opponent in the early years. Although in the long run Nicholson's objections were inconsequential, for a short period of time his atomic theory was considered to be a serious rival to Bohr's. Moreover, Nicholson's theory is of interest in its own right.
Bohr effect of hemoglobins: Accounting for differences in magnitude.
Okonjo, Kehinde O
2015-09-07
The basis of the difference in the Bohr effect of various hemoglobins has remained enigmatic for decades. Fourteen amino acid residues, identical in pairs and located at specific 'Bohr group positions' in human hemoglobin, are implicated in the Bohr effect. All 14 are present in mouse, 11 in dog, eight in pigeon and 13 in guinea pig hemoglobin. The Bohr data for human and mouse hemoglobin are identical: the 14 Bohr groups appear at identical positions in both molecules. The dog data are different from the human because three Bohr group positions are occupied by non-ionizable groups in dog hemoglobin; the pigeon data are vastly different from the human because six Bohr group positions are occupied by non-ionizable groups in pigeon hemoglobin. The guinea pig data are quite complex. Quantitative analyses showed that only the pigeon data could be fitted with the Wyman equation for the Bohr effect. We demonstrate that, apart from guinea pig hemoglobin, the difference between the Bohr effect of each of the other hemoglobins and of pigeon hemoglobin can be accounted for quantitatively on the basis of the occupation of some of their Bohr group positions by non-ionizable groups in pigeon hemoglobin. We attribute the anomalous guinea pig result to a new salt-bridge formed in its R2 quaternary structure between the terminal NH3(+) group of one β-chain and the COO(-) terminal group of the partner β-chain in the same molecule. The pKas of this NH3(+) group are 6.33 in the R2 and 4.59 in the T state.
Niels Bohr and the dawn of quantum theory
NASA Astrophysics Data System (ADS)
Weinberger, P.
2014-09-01
Bohr's atomic model, one of the very few pieces of physics known to the general public, turned a hundred in 2013: a very good reason to revisit Bohr's original publications in the Philosophical Magazine, in which he introduced this model. It is indeed rewarding to (re-)discover what ideas and concepts stood behind it, to see not only 'orbits', but also 'rings' and 'flat ellipses' as electron trajectories at work, and, in particular, to admire Bohr's strong belief in the importance of Planck's law.
Paul Ehrenfest, Niels Bohr, and Albert Einstein: Colleagues and Friends
NASA Astrophysics Data System (ADS)
Klein, Martin J.
2010-09-01
In May 1918 Paul Ehrenfest received a monograph from Niels Bohr in which Bohr had used Ehrenfest's adiabatic principle as an essential assumption for understanding atomic structure. Ehrenfest responded by inviting Bohr, whom he had never met, to give a talk at a meeting in Leiden in late April 1919, which Bohr accepted; he lived with Ehrenfest, his mathematician wife Tatyana, and their young family for two weeks. Albert Einstein was unable to attend this meeting, but in October 1919 he visited his old friend Ehrenfest and his family in Leiden, where Ehrenfest told him how much he had enjoyed and profited from Bohr's visit. Einstein first met Bohr when Bohr gave a lecture in Berlin at the end of April 1920, and the two immediately proclaimed unbounded admiration for each other as physicists and as human beings. Ehrenfest hoped that he and they would meet at the Third Solvay Conference in Brussels in early April 1921, but his hope was unfulfilled. Einstein, the only physicist from Germany who was invited to it in this bitter postwar atmosphere, decided instead to accompany Chaim Weizmann on a trip to the United States to help raise money for the new Hebrew University in Jerusalem. Bohr became so overworked with the planning and construction of his new Institute for Theoretical Physics in Copenhagen that he could only draft the first part of his Solvay report and ask Ehrenfest to present it, which Ehrenfest agreed to do following the presentation of his own report. After recovering his strength, Bohr invited Ehrenfest to give a lecture in Copenhagen that fall, and Ehrenfest, battling his deep-seated self-doubts, spent three weeks in Copenhagen in December 1921 accompanied by his daughter Tanya and her future husband, the two Ehrenfests staying with the Bohrs in their apartment in Bohr's new Institute for Theoretical Physics. Immediately after leaving Copenhagen, Ehrenfest wrote to Einstein, telling him once again that Bohr was a prodigious physicist, and again
Exciton diffusion and relaxation in methyl-substituted polyparaphenylene polymer films.
Gulbinas, V; Mineviciūte, I; Hertel, D; Wellander, R; Yartsev, A; Sundström, V
2007-10-14
Exciton diffusion in ladder-type methyl-substituted polyparaphenylene film and solution was investigated by means of femtosecond pump-probe spectroscopy using a combined approach, analyzing exciton-exciton annihilation, and transient absorption depolarization properties. We show that the different views on the exciton dynamics offered by anisotropy decay and annihilation are required in order to obtain a correct picture of the energy transfer dynamics. Comparison of the exciton diffusion coefficient and exciton diffusion radius obtained for polymer film with the two techniques reveals that there is substantial short-range order in the film. Also in isolated chains there is considerable amount of order, as revealed from only partial anisotropy decay, which shows that only a small fraction of the excitons move to differently oriented polymer segments. It is further concluded that interchain energy transfer is faster than intrachain transfer, mainly as a result of shorter interchain distances between chromophoric units.
Anomalous magnetization of a carbon nanotube as an excitonic insulator
NASA Astrophysics Data System (ADS)
Rontani, Massimo
2014-11-01
We show theoretically that an undoped carbon nanotube might be an excitonic insulator—the long-sought phase of matter proposed by Keldysh, Kohn, and others fifty years ago. We predict that the condensation of triplet excitons, driven by intervalley exchange interaction, spontaneously occurs at equilibrium if the tube radius is sufficiently small. The signatures of exciton condensation are its sizable contributions to both the energy gap and the magnetic moment per electron. The increase of the gap might have already been measured, albeit with a different explanation [V. V. Deshpande, B. Chandra, R. Caldwell, D. S. Novikov, J. Hone, and M. Bockrath, Science 323, 106 (2009), 10.1126/science.1165799]. The enhancement of the quasiparticle magnetic moment is a pair-breaking effect that counteracts the weak paramagnetism of the ground-state condensate of excitons. This property could rationalize the anomalous magnitude of magnetic moments recently observed in different devices close to charge neutrality.
Electronic properties of exciton and biexciton in a CdTe/ZnTe nano-heterostructure
Sujanah, P.; Peter, A. John
2015-06-24
Energy eigen values and the binding energies of exciton and biexciton in a CdTe/ZnTe quantum dot are studied with the geometrical confinement effect. The single exciton binding energy and the biexciton binding energy are calculated as a function of dot radius. Overlap integral of the exciton and the biexciton is found in the CdTe/ZnTe quantum dot. The electron and hole potentials are calculated from the Poisson equations. Self-consistent method is to compute the energy eigenvalues of the exciton and the biexciton. The Hartree potential is employed to obtain the Coulomb interaction energy.
Control of exciton fluxes in an excitonic integrated circuit.
High, Alex A; Novitskaya, Ekaterina E; Butov, Leonid V; Hanson, Micah; Gossard, Arthur C
2008-07-11
Efficient signal communication uses photons. Signal processing, however, uses an optically inactive medium, electrons. Therefore, an interconnection between electronic signal processing and optical communication is required at the integrated circuit level. We demonstrated control of exciton fluxes in an excitonic integrated circuit. The circuit consists of three exciton optoelectronic transistors and performs operations with exciton fluxes, such as directional switching and merging. Photons transform into excitons at the circuit input, and the excitons transform into photons at the circuit output. The exciton flux from the input to the output is controlled by a pattern of the electrode voltages. The direct coupling of photons, used in communication, to excitons, used as the device-operation medium, may lead to the development of efficient exciton-based optoelectronic devices.
Uncertainty in Bohr's response to the Heisenberg microscope
NASA Astrophysics Data System (ADS)
Tanona, Scott
2004-09-01
In this paper, I analyze Bohr's account of the uncertainty relations in Heisenberg's gamma-ray microscope thought experiment and address the question of whether Bohr thought uncertainty was epistemological or ontological. Bohr's account seems to allow that the electron being investigated has definite properties which we cannot measure, but other parts of his Como lecture seem to indicate that he thought that electrons are wave-packets which do not have well-defined properties. I argue that his account merges the ontological and epistemological aspects of uncertainty. However, Bohr reached this conclusion not from positivism, as perhaps Heisenberg did, but because he was led to that conclusion by his understanding of the physics in terms of nonseparability and the correspondence principle. Bohr argued that the wave theory from which he derived the uncertainty relations was not to be taken literally, but rather symbolically, as an expression of the limited applicability of classical concepts to parts of entangled quantum systems. Complementarity and uncertainty are consequences of the formalism, properly interpreted, and not something brought to the physics from external philosophical views.
Exciton polarizability in semiconductor nanocrystals.
Wang, Feng; Shan, Jie; Islam, Mohammad A; Herman, Irving P; Bonn, Mischa; Heinz, Tony F
2006-11-01
The response of charge to externally applied electric fields is an important basic property of any material system, as well as one critical for many applications. Here, we examine the behaviour and dynamics of charges fully confined on the nanometre length scale. This is accomplished using CdSe nanocrystals of controlled radius (1-2.5 nm) as prototype quantum systems. Individual electron-hole pairs are created at room temperature within these structures by photoexcitation and are probed by terahertz (THz) electromagnetic pulses. The electronic response is found to be instantaneous even for THz frequencies, in contrast to the behaviour reported in related measurements for larger nanocrystals and nanocrystal assemblies. The measured polarizability of an electron-hole pair (exciton) amounts to approximately 10(4) A(3) and scales approximately as the fourth power of the nanocrystal radius. This size dependence and the instantaneous response reflect the presence of well-separated electronic energy levels induced in the system by strong quantum-confinement effects.
Jahan K, Luhluh Boda, Aalu; Chatterjee, Ashok
2015-05-15
The problem of an exciton trapped in a three dimensional Gaussian quantum dot is studied in the presence of an external magnetic field. A variational method is employed to obtain the ground state energy of the exciton as a function of the quantum dot size, the confinement strength and the magnetic field. It is also shown that the variation of the size of the exciton with the radius of the quantum dot.
Two-dminensional exciton states in monolayer semiconducting phosphorus alotropes
NASA Astrophysics Data System (ADS)
Rocha, Alexandre R.; Villegas, Cesar E. P.
During the last decade, novel two-dimensional (2D) semiconducting materials have been synthesized and characterised. As a result, there have been several theoretical and experimental proposals to incorporate 2D materials for designing next generation electronic and optoelectronics devices. In particular, it has been demonstrated that light absorption in phosphorus-based monolayers can span the whole visible spectrum, suggesting they could be used for optolectronic applications. A key ingredient for optolectronic applications is the presence of excitons and their subsequent diffusion along a donor material. This is influenced by the character of the different excitations taking place, as well as, the exciton binding energy. Therefore, In this work we use accurate many-body corrected density functional theory by means of GW-BSE methodology to elucidate the most important optical transitions, exciton energy spectrum as well as exciton extension in different types of phosphorene materials. In addition, we solve the Schrodinger equation for different 2D screened potentials and estimate the 2D exciton energy levels and radius extension. Finally, in order to assess further studies based on these systems, we provide a simple analityc expression for estimating 2D exciton energy levels. Research funded by FAPESP-Brazil.
Vectorial nature of redox Bohr effects in bovine heart cytochrome c oxidase.
Capitanio, N; Capitanio, G; De Nitto, E; Papa, S
1997-09-08
The vectorial nature of redox Bohr effects (redox-linked pK shifts) in cytochrome c oxidase from bovine heart incorporated in liposomes has been analyzed. The Bohr effects linked to oxido-reduction of heme a and CuB display membrane vectorial asymmetry. This provides evidence for involvement of redox Bohr effects in the proton pump of the oxidase.
NASA Technical Reports Server (NTRS)
Harris, Michael R.
1987-01-01
Resonator configurations permitting operation with large mode radius while maintaining good transverse mode discrimination are considered. Stable resonators incorporating an intracavity telescope and unstable resonator geometries utilizing an output coupler with a Gaussian reflectivity profile are shown to enable large radius single mode laser operation. Results of heterodyne studies of pulsed CO2 lasers with large (11mm e sup-2 radius) fundamental mode sizes are presented demonstrating minimal frequency sweeping in accordance with the theory of laser-induced medium perturbations.
Singlet exciton fission photovoltaics.
Lee, Jiye; Jadhav, Priya; Reusswig, Philip D; Yost, Shane R; Thompson, Nicholas J; Congreve, Daniel N; Hontz, Eric; Van Voorhis, Troy; Baldo, Marc A
2013-06-18
Singlet exciton fission, a process that generates two excitons from a single photon, is perhaps the most efficient of the various multiexciton-generation processes studied to date, offering the potential to increase the efficiency of solar devices. But its unique characteristic, splitting a photogenerated singlet exciton into two dark triplet states, means that the empty absorption region between the singlet and triplet excitons must be filled by adding another material that captures low-energy photons. This has required the development of specialized device architectures. In this Account, we review work to develop devices that harness the theoretical benefits of singlet exciton fission. First, we discuss singlet fission in the archetypal material, pentacene. Pentacene-based photovoltaic devices typically show high external and internal quantum efficiencies. They have enabled researchers to characterize fission, including yield and the impact of competing loss processes, within functional devices. We review in situ probes of singlet fission that modulate the photocurrent using a magnetic field. We also summarize studies of the dissociation of triplet excitons into charge at the pentacene-buckyball (C60) donor-acceptor interface. Multiple independent measurements confirm that pentacene triplet excitons can dissociate at the C60 interface despite their relatively low energy. Because triplet excitons produced by singlet fission each have no more than half the energy of the original photoexcitation, they limit the potential open circuit voltage within a solar cell. Thus, if singlet fission is to increase the overall efficiency of a solar cell and not just double the photocurrent at the cost of halving the voltage, it is necessary to also harvest photons in the absorption gap between the singlet and triplet energies of the singlet fission material. We review two device architectures that attempt this using long-wavelength materials: a three-layer structure that uses
Bohr model and dimensional scaling analysis of atoms and molecules
NASA Astrophysics Data System (ADS)
Urtekin, Kerim
It is generally believed that the old quantum theory, as presented by Niels Bohr in 1913, fails when applied to many-electron systems, such as molecules, and nonhydrogenic atoms. It is the central theme of this dissertation to display with examples and applications the implementation of a simple and successful extension of Bohr's planetary model of the hydrogenic atom, which has recently been developed by an atomic and molecular theory group from Texas A&M University. This "extended" Bohr model, which can be derived from quantum mechanics using the well-known dimentional scaling technique is used to yield potential energy curves of H2 and several more complicated molecules, such as LiH, Li2, BeH, He2 and H3, with accuracies strikingly comparable to those obtained from the more lengthy and rigorous "ab initio" computations, and the added advantage that it provides a rather insightful and pictorial description of how electrons behave to form chemical bonds, a theme not central to "ab initio" quantum chemistry. Further investigation directed to CH, and the four-atom system H4 (with both linear and square configurations), via the interpolated Bohr model, and the constrained Bohr model (with an effective potential), respectively, is reported. The extended model is also used to calculate correlation energies. The model is readily applicable to the study of molecular species in the presence of strong magnetic fields, as is the case in the vicinities of white dwarfs and neutron stars. We find that magnetic field increases the binding energy and decreases the bond length. Finally, an elaborative review of doubly coupled quantum dots for a derivation of the electron exchange energy, a straightforward application of Heitler-London method of quantum molecular chemistry, concludes the dissertation. The highlights of the research are (1) a bridging together of the pre- and post quantum mechanical descriptions of the chemical bond (Bohr-Sommerfeld vs. Heisenberg-Schrodinger), and
Effective Cleaning Radius Studies
Churnetski, B.V.
2001-10-15
This report discusses results of testing done in the Savannah River Laboratory half tank and full tank mockup facilities using kaolin clay slurries and the relationship between cleaning radius and pump and slurry characteristics.
NASA Astrophysics Data System (ADS)
Downie, E. J.
2016-03-01
The proton radius puzzle is the difference between the proton radius as measured with electron scattering and in the excitation spectrum of atomic hydrogen, and that measured with muonic hydrogen spectroscopy. Since the inception of the proton radius puzzle in 2010 by the measurement of Pohl et al.[1], many possible resolutions to the puzzle have been postulated, but, to date, none has been generally accepted. New data are therefore necessary to resolve the issue. We briefly review the puzzle, the proposed solutions, and the new electron scattering and spectroscopy experiments planned and underway. We then introduce the MUSE experiment, which seeks to resolve the puzzle by simultaneously measuring elastic electron and muon scattering on the proton, in both charge states, thereby providing new information to the puzzle. MUSE addresses issues of two-photon effects, lepton universality and, possibly, new physics, while providing simultaneous form factor, and therefore radius, measurements with both muons and electrons.
Challenges to Bohr's Wave-Particle Complementarity Principle
NASA Astrophysics Data System (ADS)
Rabinowitz, Mario
2013-02-01
Contrary to Bohr's complementarity principle, in 1995 Rabinowitz proposed that by using entangled particles from the source it would be possible to determine which slit a particle goes through while still preserving the interference pattern in the Young's two slit experiment. In 2000, Kim et al. used spontaneous parametric down conversion to prepare entangled photons as their source, and almost achieved this. In 2012, Menzel et al. experimentally succeeded in doing this. When the source emits entangled particle pairs, the traversed slit is inferred from measurement of the entangled particle's location by using triangulation. The violation of complementarity breaches the prevailing probabilistic interpretation of quantum mechanics, and benefits Bohm's pilot-wave theory.
Variable Radius Nacelle Studies
NASA Technical Reports Server (NTRS)
McGowan, David M.
2001-01-01
An overview of the active shape control for a variable radius nacelle leading edge program is presented. The current technical plan and schedule will be discussed. Results from the structural shape change of curved plates demonstration will be presented, as well as the NASA LaRC concept for a variable radius nacelle leading edge. Results of a Boeing systems integration study of this concept will be discussed briefly. The status of the sensors, actuators, and computational design tools tasks will also be presented.
NASA Astrophysics Data System (ADS)
Ishii, A.; Yoshida, M.; Kato, Y. K.
2015-03-01
Luminescence properties of carbon nanotubes are strongly affected by exciton diffusion, which plays an important role in various nonradiative decay processes. Here we perform photoluminescence microscopy on hundreds of individual air-suspended carbon nanotubes to elucidate the interplay between exciton diffusion, end quenching, and exciton-exciton annihilation processes. A model derived from random-walk theory as well as Monte Carlo simulations are utilized to analyze nanotube length dependence and excitation power dependence of emission intensity. We have obtained the values of exciton diffusion length and absorption cross section for different chiralities, and diameter-dependent photoluminescence quantum yields have been observed. The simulations have also revealed the nature of a one-dimensional coalescence process, and an analytical expression for the power dependence of emission intensity is given.
Exciton-photon correlations in bosonic condensates of exciton-polaritons.
Kavokin, Alexey V; Sheremet, Alexandra S; Shelykh, Ivan A; Lagoudakis, Pavlos G; Rubo, Yuri G
2015-07-08
Exciton-polaritons are mixed light-matter quasiparticles. We have developed a statistical model describing stochastic exciton-photon transitions within a condensate of exciton polaritons. We show that the exciton-photon correlator depends on the rate of incoherent exciton-photon transformations in the condensate. We discuss implications of this effect for the quantum statistics of photons emitted by polariton lasers.
Experimental Observation of Bohr's Nonlinear Fluidic Surface Oscillation.
Moon, Songky; Shin, Younghoon; Kwak, Hojeong; Yang, Juhee; Lee, Sang-Bum; Kim, Soyun; An, Kyungwon
2016-01-25
Niels Bohr in the early stage of his career developed a nonlinear theory of fluidic surface oscillation in order to study surface tension of liquids. His theory includes the nonlinear interaction between multipolar surface oscillation modes, surpassing the linear theory of Rayleigh and Lamb. It predicts a specific normalized magnitude of 0.416η(2) for an octapolar component, nonlinearly induced by a quadrupolar one with a magnitude of η much less than unity. No experimental confirmation on this prediction has been reported. Nonetheless, accurate determination of multipolar components is important as in optical fiber spinning, film blowing and recently in optofluidic microcavities for ray and wave chaos studies and photonics applications. Here, we report experimental verification of his theory. By using optical forward diffraction, we measured the cross-sectional boundary profiles at extreme positions of a surface-oscillating liquid column ejected from a deformed microscopic orifice. We obtained a coefficient of 0.42 ± 0.08 consistently under various experimental conditions. We also measured the resonance mode spectrum of a two-dimensional cavity formed by the cross-sectional segment of the liquid jet. The observed spectra agree well with wave calculations assuming a coefficient of 0.414 ± 0.011. Our measurements establish the first experimental observation of Bohr's hydrodynamic theory.
Detonation Shock Radius Experiments.
NASA Astrophysics Data System (ADS)
Lambert, David; Debes, Joshua; Stewart, Scott; Yoo, Sunhee
2007-06-01
A previous passover experiment [1] was designed to create a complex detonation transient used in validating a reduced, asymptotically derived description of detonation shock dynamics (DSD). An underlying question remained on determining the location of the initial detonation shock radius to start the DSD simulation with respect to the dynamical response of the initiation system coupling's to the main charge. This paper concentrates on determining the initial shock radius required of such DSD governed problems. `Cut-back' experiments of PBX-9501 were conducted using an initiation system that sought to optimize the transferred detonation to the desired constant radius, hemispherical shape. Streak camera techniques captured the breakout on three of the prism's surfaces for time-of-arrival data. The paper includes comparisons to simulations using constant volume explosion and high pressure hot spots. The results of the experiments and simulation efforts provide fundamental design considerations for actual explosive systems and verify necessary conditions from which the asymptotic theory of DSD may apply. [1] Lambert, D., Stewart, D. Scott and Yoo, S. and Wescott, B., ``Experimental Validation of Detonation Shock Dynamics in Condensed Explosives. J. of Fluid Mechs., Vol. 546, pp.227-253 (2006).
Experimental test of Bohr's complementarity principle with single neutral atoms
NASA Astrophysics Data System (ADS)
Wang, Zhihui; Tian, Yali; Yang, Chen; Zhang, Pengfei; Li, Gang; Zhang, Tiancai
2016-12-01
An experimental test of the quantum complementarity principle based on single neutral atoms trapped in a blue detuned bottle trap was here performed. A Ramsey interferometer was used to assess the wavelike behavior or particlelike behavior with second π /2 rotation on or off. The wavelike behavior or particlelike behavior is characterized by the visibility V of the interference or the predictability P of which-path information, respectively. The measured results fulfill the complementarity relation P2+V2≤1 . Imbalance losses were deliberately introduced to the system and we find the complementarity relation is then formally "violated." All the experimental results can be completely explained theoretically by quantum mechanics without considering the interference between wave and particle behaviors. This observation complements existing information concerning Bohr's complementarity principle based on wave-particle duality of a massive quantum system.
NASA Astrophysics Data System (ADS)
Crivelli, P.; Cooke, D.; Heiss, M. W.
2016-09-01
The upcoming operation of the extra low energy antiprotons ring at CERN, the upgrade of the antiproton decelerator (AD), and the installation in the AD hall of an intense slow positron beam with an expected flux of 1 08 e+ /s will open the possibility for new experiments with antihydrogen (H ¯). Here we propose a scheme to measure the Lamb shift of H ¯. For four months of data taking, we anticipate an uncertainty of 100 ppm. This will provide a test of C P T and the first determination of the antiproton charge radius at the level of 10%.
Exciton dispersion in molecular solids.
Cudazzo, Pierluigi; Sottile, Francesco; Rubio, Angel; Gatti, Matteo
2015-03-25
The investigation of the exciton dispersion (i.e. the exciton energy dependence as a function of the momentum carried by the electron-hole pair) is a powerful approach to identify the exciton character, ranging from the strongly localised Frenkel to the delocalised Wannier-Mott limiting cases. We illustrate this possibility at the example of four prototypical molecular solids (picene, pentacene, tetracene and coronene) on the basis of the parameter-free solution of the many-body Bethe-Salpeter equation. We discuss the mixing between Frenkel and charge-transfer excitons and the origin of their Davydov splitting in the framework of many-body perturbation theory and establish a link with model approaches based on molecular states. Finally, we show how the interplay between the electronic band dispersion and the exchange electron-hole interaction plays a fundamental role in setting the nature of the exciton. This analysis has a general validity holding also for other systems in which the electron wavefunctions are strongly localized, as in strongly correlated insulators.
Exciton dispersion in molecular solids
NASA Astrophysics Data System (ADS)
Cudazzo, Pierluigi; Sottile, Francesco; Rubio, Angel; Gatti, Matteo
2015-03-01
The investigation of the exciton dispersion (i.e. the exciton energy dependence as a function of the momentum carried by the electron-hole pair) is a powerful approach to identify the exciton character, ranging from the strongly localised Frenkel to the delocalised Wannier-Mott limiting cases. We illustrate this possibility at the example of four prototypical molecular solids (picene, pentacene, tetracene and coronene) on the basis of the parameter-free solution of the many-body Bethe-Salpeter equation. We discuss the mixing between Frenkel and charge-transfer excitons and the origin of their Davydov splitting in the framework of many-body perturbation theory and establish a link with model approaches based on molecular states. Finally, we show how the interplay between the electronic band dispersion and the exchange electron-hole interaction plays a fundamental role in setting the nature of the exciton. This analysis has a general validity holding also for other systems in which the electron wavefunctions are strongly localized, as in strongly correlated insulators.
The effective excitonic g factors of Mn-doped InAs nanowires
NASA Astrophysics Data System (ADS)
Xiong, Wen
2017-04-01
Based on the derived eight-band k · p Hamiltonian, the electronic structures of Mn-doped InAs nanowires in the magnetic field are calculated. We find the lowest optical transition will be split to four individual transitions when the magnetic field is applied along z axis, and two of them are σ polarized light. Furthermore, the Zeeman splitting energy at the Γ point of two σ polarized light will increase nonlinearly as the increase of the magnetic field. Additionally, an effective excitonic g factor at the Γ point is defined, and the effective excitonic g factors will decrease greatly with the increase of the radius of nanowires and the decrease of the concentration of manganese ions, while the effective excitonic g factors decrease slightly when the magnetic field increases. Interestingly, the effective excitonic g factors can experience a substantial decrease when the temperature increases from 10 K to 100 K and is almost not affected when the temperature varies from 100 K to 300 K. Therefore, we can infer that large effective excitonic g factors can be obtained when small radius of nanowires, high concentration of manganese ions and low temperature are satisfied.
Excitonic polaritons in Fibonacci quasicrystals.
Hendrickson, J; Richards, B C; Sweet, J; Khitrova, G; Poddubny, A N; Ivchenko, E L; Wegener, M; Gibbs, H M
2008-09-29
The fabrication and characterization of light-emitting one-dimensional photonic quasicrystals based on excitonic resonances is reported. The structures consist of high-quality GaAs/AlGaAs quantum wells grown by molecular-beam epitaxy with wavelength-scale spacings satisfying a Fibonacci sequence. The polaritonic (resonant light-matter coupling) effects and light emission originate from the quantum well excitonic resonances. Measured reflectivity spectra as a function of detuning between emission and Bragg wavelength are in good agreement with excitonic polariton theory. Photoluminescence experiments show that active photonic quasicrystals, unlike photonic crystals, can be good light emitters: While their long-range order results in a stopband similar to that of photonic crystals, the lack of periodicity results in strong emission.
Exciton-photon correlations in bosonic condensates of exciton-polaritons
Kavokin, Alexey V.; Sheremet, Alexandra S.; Shelykh, Ivan A.; Lagoudakis, Pavlos G.; Rubo, Yuri G.
2015-01-01
Exciton-polaritons are mixed light-matter quasiparticles. We have developed a statistical model describing stochastic exciton-photon transitions within a condensate of exciton polaritons. We show that the exciton-photon correlator depends on the rate of incoherent exciton-photon transformations in the condensate. We discuss implications of this effect for the quantum statistics of photons emitted by polariton lasers. PMID:26153979
Process and Impact of Niels Bohr's Visit to Japan and China in 1937: A Comparative Perspective.
Wang, Lei; Yang, Jian
2017-03-01
At the beginning of the twentieth century, Japan and China, each for its own reasons, invited the famous physicist Niels Bohr to visit and give lectures. Bohr accepted their invitations and made the trip in 1937; however, the topics of his lectures in the two countries differed. In Japan, he mainly discussed quantum mechanics and philosophy, whereas in China, he focused more on atomic physics. This paper begins with a detailed review of Bohr's trip to Japan and China in 1937, followed by a discussion of the impact of each trip from the perspective of the social context. We conclude that the actual effect of Bohr's visit to China and Japan involved not only the spreading of Bohr's knowledge but also clearly hinged on the current status and social background of the recipients. Moreover, the impact of Bohr's trip to East Asia demonstrates that, as is the case for scientific exchanges at the international level, the international exchange of knowledge at the individual level is also powerful, and such individual exchange can even promote exchange on the international level.
Niels Bohr on the wave function and the classical/quantum divide
NASA Astrophysics Data System (ADS)
Zinkernagel, Henrik
2016-02-01
It is well known that Niels Bohr insisted on the necessity of classical concepts in the account of quantum phenomena. But there is little consensus concerning his reasons, and what he exactly meant by this. In this paper, I re-examine Bohr's interpretation of quantum mechanics, and argue that the necessity of the classical can be seen as part of his response to the measurement problem. More generally, I attempt to clarify Bohr's view on the classical/quantum divide, arguing that the relation between the two theories is that of mutual dependence. An important element in this clarification consists in distinguishing Bohr's idea of the wave function as symbolic from both a purely epistemic and an ontological interpretation. Together with new evidence concerning Bohr's conception of the wave function collapse, this sets his interpretation apart from both standard versions of the Copenhagen interpretation, and from some of the reconstructions of his view found in the literature. I conclude with a few remarks on how Bohr's ideas make much sense also when modern developments in quantum gravity and early universe cosmology are taken into account.
Memories of Crisis: Bohr, Kuhn, and the Quantum Mechanical ``Revolution''
NASA Astrophysics Data System (ADS)
Seth, Suman
2013-04-01
``The history of science, to my knowledge,'' wrote Thomas Kuhn, describing the years just prior to the development of matrix and wave mechanics, ``offers no equally clear, detailed, and cogent example of the creative functions of normal science and crisis.'' By 1924, most quantum theorists shared a sense that there was much wrong with all extant atomic models. Yet not all shared equally in the sense that the failure was either terribly surprising or particularly demoralizing. Not all agreed, that is, that a crisis for Bohr-like models was a crisis for quantum theory. This paper attempts to answer four questions: two about history, two about memory. First, which sub-groups of the quantum theoretical community saw themselves and their field in a state of crisis in the early 1920s? Second, why did they do so, and how was a sense of crisis related to their theoretical practices in physics? Third, do we regard the years before 1925 as a crisis because they were followed by the quantum mechanical revolution? And fourth, to reverse the last question, were we to call into the question the existence of a crisis (for some at least) does that make a subsequent revolution less revolutionary?
Measurement of exciton correlations using electrostatic lattices
NASA Astrophysics Data System (ADS)
Remeika, M.; Leonard, J. R.; Dorow, C. J.; Fogler, M. M.; Butov, L. V.; Hanson, M.; Gossard, A. C.
2015-09-01
We present a method for determining correlations in a gas of indirect excitons in a semiconductor quantum well structure. The method involves subjecting the excitons to a periodic electrostatic potential that causes modulations of the exciton density and photoluminescence (PL). Experimentally measured amplitudes of energy and intensity modulations of exciton PL serve as an input to a theoretical estimate of the exciton correlation parameter and temperature. We also present a proof-of-principle demonstration of the method for determining the correlation parameter and discuss how its accuracy can be improved.
Exciton size and quantum transport in nanoplatelets.
Pelzer, Kenley M; Darling, Seth B; Gray, Stephen K; Schaller, Richard D
2015-12-14
Two-dimensional nanoplatelets (NPLs) are an exciting class of materials with promising optical and energy transport properties. The possibility of efficient energy transport between nanoplatelets raises questions regarding the nature of energy transfer in these thin, laterally extended systems. A challenge in understanding exciton transport is the uncertainty regarding the size of the exciton. Depending on the material and defects in the nanoplatelet, an exciton could plausibly extend over an entire plate or localize to a small region. The variation in possible exciton sizes raises the question how exciton size impacts the efficiency of transport between nanoplatelet structures. Here, we explore this issue using a quantum master equation approach. This method goes beyond the assumptions of Förster theory to allow for quantum mechanical effects that could increase energy transfer efficiency. The model is extremely flexible in describing different systems, allowing us to test the effect of varying the spatial extent of the exciton. We first discuss qualitative aspects of the relationship between exciton size and transport and then conduct simulations of exciton transport between NPLs for a range of exciton sizes and environmental conditions. Our results reveal that exciton size has a strong effect on energy transfer efficiency and suggest that manipulation of exciton size may be useful in designing NPLs for energy transport.
Exciton size and quantum transport in nanoplatelets
NASA Astrophysics Data System (ADS)
Pelzer, Kenley M.; Darling, Seth B.; Gray, Stephen K.; Schaller, Richard D.
2015-12-01
Two-dimensional nanoplatelets (NPLs) are an exciting class of materials with promising optical and energy transport properties. The possibility of efficient energy transport between nanoplatelets raises questions regarding the nature of energy transfer in these thin, laterally extended systems. A challenge in understanding exciton transport is the uncertainty regarding the size of the exciton. Depending on the material and defects in the nanoplatelet, an exciton could plausibly extend over an entire plate or localize to a small region. The variation in possible exciton sizes raises the question how exciton size impacts the efficiency of transport between nanoplatelet structures. Here, we explore this issue using a quantum master equation approach. This method goes beyond the assumptions of Förster theory to allow for quantum mechanical effects that could increase energy transfer efficiency. The model is extremely flexible in describing different systems, allowing us to test the effect of varying the spatial extent of the exciton. We first discuss qualitative aspects of the relationship between exciton size and transport and then conduct simulations of exciton transport between NPLs for a range of exciton sizes and environmental conditions. Our results reveal that exciton size has a strong effect on energy transfer efficiency and suggest that manipulation of exciton size may be useful in designing NPLs for energy transport.
Exciton size and quantum transport in nanoplatelets
Pelzer, Kenley M. Gray, Stephen K.; Darling, Seth B.; Schaller, Richard D.
2015-12-14
Two-dimensional nanoplatelets (NPLs) are an exciting class of materials with promising optical and energy transport properties. The possibility of efficient energy transport between nanoplatelets raises questions regarding the nature of energy transfer in these thin, laterally extended systems. A challenge in understanding exciton transport is the uncertainty regarding the size of the exciton. Depending on the material and defects in the nanoplatelet, an exciton could plausibly extend over an entire plate or localize to a small region. The variation in possible exciton sizes raises the question how exciton size impacts the efficiency of transport between nanoplatelet structures. Here, we explore this issue using a quantum master equation approach. This method goes beyond the assumptions of Förster theory to allow for quantum mechanical effects that could increase energy transfer efficiency. The model is extremely flexible in describing different systems, allowing us to test the effect of varying the spatial extent of the exciton. We first discuss qualitative aspects of the relationship between exciton size and transport and then conduct simulations of exciton transport between NPLs for a range of exciton sizes and environmental conditions. Our results reveal that exciton size has a strong effect on energy transfer efficiency and suggest that manipulation of exciton size may be useful in designing NPLs for energy transport.
Exciton-exciton scattering: Composite boson versus elementary boson
NASA Astrophysics Data System (ADS)
Combescot, M.; Betbeder-Matibet, O.; Combescot, R.
2007-05-01
This paper shows the necessity of introducing a quantum object, the “coboson,” to properly describe, through a fermion scheme, any composite particle, such as the exciton, which is made of two fermions. Although commonly dealt with as elementary bosons, these composite bosons—cobosons in short—differ from them due to their composite nature which makes the handling of their many-body effects quite different from the existing treatments valid for elementary bosons. As a direct consequence of this composite nature, there is no correct way to describe the interaction between cobosons as a potential V . This is rather dramatic because, with the Hamiltonian not written as H=H0+V , all the usual approaches to many-body effects fail. In particular, the standard form of the Fermi golden rule, written in terms of V , cannot be used to obtain the transition rates of two cobosons. To get them, we have had to construct an unconventional expression for this Fermi golden rule in which H only appears. Making use of this expression, we give here a detailed calculation of the time evolution of two excitons. We compare the results of this exact approach with the ones obtained by using an effective bosonic Hamiltonian in which the excitons are considered as elementary bosons with effective scatterings between them, these scatterings resulting from an elaborate mapping between the two-fermion space and the ideal boson space. We show that the relation between the inverse lifetime and the sum of the transition rates for elementary bosons differs from the one of the composite bosons by a factor of 1/2 , so that it is impossible to find effective scatterings between bosonic excitons giving these two physical quantities correctly, whatever the mapping from composite bosons to elementary bosons is. The present paper thus constitutes a strong mathematical proof that, in spite of a widely spread belief, we cannot forget the composite nature of these cobosons, even in the extremely low
Excitonic effects in ZnO nanowires and hollow nanotubes
NASA Astrophysics Data System (ADS)
Willander, M.; Lozovik, Y. E.; Zhao, Q. X.; Nur, O.; Hu, Q.-H.; Klason, P.
2007-02-01
Energy levels and wave functions of ground and excited states of an exciton are calculated by the method of imaginary time. Energy levels as functions of radius of single and double wall nanotube are studied. Asymptotic behavior of energy levels at large and small values of the radius using perturbation theory and adiabatic approximation is considered. Spatially indirect exciton in semiconductor nanowire is also investigated. Experimental result from high quality reproducible ZnO nanowires grown by low temperature chemical engineering is presented. State of the art high brightness white light emitting diodes (HB-LEDs) are demonstrated from the grown ZnO nano-wires. The color temperature and color rendering index (CRI) of the HB-LEDs values was found to be (3250 K, 82), and (14000 K, 93), for the best LEDs, which means that the quality of light is superior to one obtained from GaN LEDs available on the market today. The role of V Zn and V ° on the emission responsible for the white light band as well as the peak position of this important wide band is thoroughly investigated in a systematic way.
Spatially indirect excitons in coupled quantum wells
Lai, Chih-Wei Eddy
2004-03-01
Microscopic quantum phenomena such as interference or phase coherence between different quantum states are rarely manifest in macroscopic systems due to a lack of significant correlation between different states. An exciton system is one candidate for observation of possible quantum collective effects. In the dilute limit, excitons in semiconductors behave as bosons and are expected to undergo Bose-Einstein condensation (BEC) at a temperature several orders of magnitude higher than for atomic BEC because of their light mass. Furthermore, well-developed modern semiconductor technologies offer flexible manipulations of an exciton system. Realization of BEC in solid-state systems can thus provide new opportunities for macroscopic quantum coherence research. In semiconductor coupled quantum wells (CQW) under across-well static electric field, excitons exist as separately confined electron-hole pairs. These spatially indirect excitons exhibit a radiative recombination time much longer than their thermal relaxation time a unique feature in direct band gap semiconductor based structures. Their mutual repulsive dipole interaction further stabilizes the exciton system at low temperature and screens in-plane disorder more effectively. All these features make indirect excitons in CQW a promising system to search for quantum collective effects. Properties of indirect excitons in CQW have been analyzed and investigated extensively. The experimental results based on time-integrated or time-resolved spatially-resolved photoluminescence (PL) spectroscopy and imaging are reported in two categories. (i) Generic indirect exciton systems: general properties of indirect excitons such as the dependence of exciton energy and lifetime on electric fields and densities were examined. (ii) Quasi-two-dimensional confined exciton systems: highly statistically degenerate exciton systems containing more than tens of thousands of excitons within areas as small as (10 micrometer)^{2} were
Contrastive analysis of multiple exciton generation theories
NASA Astrophysics Data System (ADS)
Tan, Hengyu; Chang, Qing
2015-10-01
Multiple exciton generation (MEG) is an effect that semiconductor nanocrystals (NCs) quantum dots (QDs) generate multiple excitons (electron-hole pairs) through absorbing a single high energy photon. It can translate the excess photon energy of bandgap (Eg) into new excitons instead of heat loss and improve the photovoltaic performance of solar cells. However, the theories of MEG are not uniform. The main MEG theories can be divided into three types. The first is impact ionization. It explains MEG through a conventional way that a photogenerated exciton becomes multiple excitons by Coulomb interactions between carriers. The Second is coherent superposition of excitonic states. Multiple excitons are generated by the coherent superposition of single photogenerated exciton state with enough excess momentum and the two-exciton state with the same momentum. The third is excitation via virtual excitonic states. The nanocrystals vacuum generates a virtual biexciton by coulomb coupling between two valence band electrons. The virtual biexciton absorbing a photon with an intraband optical transition is converted into a real biexciton. This paper describes the MEG influence on solar photoelectric conversion efficiency, concludes and analyzes the fundamentals of different MEG theories, the MEG experimental measure, their merits and demerits, calculation methods of generation efficiency.
Coherent Exciton Dynamics in Atomically Thin Semiconductors
NASA Astrophysics Data System (ADS)
Li, Xiaoqin (Elaine)
The near band-edge optical response of an emerging class of semiconductors, known as the transitional metal dichalcogenides (TMDs), is dominated by tightly-bound excitons and charged excitons (i.e. trions). A fundamental property of these quasiparticles (excitons and trions) is quantum decoherence time, which reflects irreversible quantum dissipation arising from system (excitons and trions) and bath (vacuum and other quasiparticles) interactions and determines the timescale during which excitons can be coherently manipulated. Dephasing time is also equivalent to the intrinsic homogeneous linewidth of exciton resonance. In addition, excitons in TMDs are localized at the corners of the Brillouin zone and provide a convenient way to optical manipulate the valley degree of freedom, which may act as a useful information carrier analogous to electronic charge or spin. Direct measurement of valley coherence time is challenging because it corresponds to a non-radiative coherence between two degenerate states. Using ultrafast multi-dimensional optical spectroscopy, we investigate the intrinsic homogeneous linewidth of excitons, exciton valley coherence as well as coupling between excitons and trions. Our studies reveal coherent electronic dynamics on the order of ~100 fs in monolayer TMDs. We gratefully acknowledge financial support from NSF, AFOSR, and the Welch Foundation.
Why has the bohr-sommerfeld model of the atom been ignoredby general chemistry textbooks?
Niaz, Mansoor; Cardellini, Liberato
2011-12-01
Bohr's model of the atom is considered to be important by general chemistry textbooks. A major shortcoming of this model was that it could not explain the spectra of atoms containing more than one electron. In order to increase the explanatory power of the model, Sommerfeld hypothesized the existence of elliptical orbits. This study has the following objectives: 1) Formulation of criteria based on a history and philosophy of science framework; and 2) Evaluation of university-level general chemistry textbooks based on the criteria, published in Italy and U.S.A. Presentation of a textbook was considered to be "satisfactory" if it included a description of the Bohr-Sommerfeld model along with diagrams of the elliptical orbits. Of the 28 textbooks published in Italy that were analyzed, only five were classified as "satisfactory". Of the 46 textbooks published in U.S.A., only three were classified as "satisfactory". This study has the following educational implications: a) Sommerfeld's innovation (auxiliary hypothesis) by introducing elliptical orbits, helped to restore the viability of Bohr's model; b) Bohr-Sommerfeld's model went no further than the alkali metals, which led scientists to look for other models; c) This clearly shows that scientific models are tentative in nature; d) Textbook authors and chemistry teachers do not consider the tentative nature of scientific knowledge to be important; e) Inclusion of the Bohr-Sommerfeld model in textbooks can help our students to understand how science progresses.
Bohr's Electron was Problematic for Einstein: String Theory Solved the Problem
NASA Astrophysics Data System (ADS)
Webb, William
2013-04-01
Neils Bohr's 1913 model of the hydrogen electron was problematic for Albert Einstein. Bohr's electron rotates with positive kinetic energies +K but has addition negative potential energies - 2K. The total net energy is thus always negative with value - K. Einstein's special relativity requires energies to be positive. There's a Bohr negative energy conflict with Einstein's positive energy requirement. The two men debated the problem. Both would have preferred a different electron model having only positive energies. Bohr and Einstein couldn't find such a model. But Murray Gell-Mann did! In the 1960's, Gell-Mann introduced his loop-shaped string-like electron. Now, analysis with string theory shows that the hydrogen electron is a loop of string-like material with a length equal to the circumference of the circular orbit it occupies. It rotates like a lariat around its centered proton. This loop-shape has no negative potential energies: only positive +K relativistic kinetic energies. Waves induced on loop-shaped electrons propagate their energy at a speed matching the tangential speed of rotation. With matching wave speed and only positive kinetic energies, this loop-shaped electron model is uniquely suited to be governed by the Einstein relativistic equation for total mass-energy. Its calculated photon emissions are all in excellent agreement with experimental data and, of course, in agreement with those -K calculations by Neils Bohr 100 years ago. Problem solved!
Exciton-polariton integrated circuits
NASA Astrophysics Data System (ADS)
Liew, T. C. H.; Kavokin, A. V.; Ostatnický, T.; Kaliteevski, M.; Shelykh, I. A.; Abram, R. A.
2010-07-01
We show that logical signals encoded in bistable states in semiconductor microcavities can be generated and controlled electronically by exploiting the electrical sensitivity of Tamm-plasmon-exciton-polariton modes. The signals can be transported along polariton neurons, created with a patterned metal surface. Using the Gross-Pitaevskii equations, we simulate an electrically controlled transistor and find that high repetition rates (10 GHz) are possible.
Exciton Seebeck effect in molecular systems.
Yan, Yun-An; Cai, Shaohong
2014-08-07
We investigate the exciton dynamics under temperature difference with the hierarchical equations of motion. Through a nonperturbative simulation of the transient absorption of a heterogeneous trimer model, we show that the temperature difference causes exciton population redistribution and affects the exciton transfer time. It is found that one can reproduce not only the exciton population redistribution but also the change of the exciton transfer time induced by the temperature difference with a proper tuning of the site energies of the aggregate. In this sense, there exists a site energy shift equivalence for any temperature difference in a broad range. This phenomenon is similar to the Seebeck effect as well as spin Seebeck effect and can be named as exciton Seebeck effect.
Exciton Seebeck effect in molecular systems
Yan, Yun-An; Cai, Shaohong
2014-08-07
We investigate the exciton dynamics under temperature difference with the hierarchical equations of motion. Through a nonperturbative simulation of the transient absorption of a heterogeneous trimer model, we show that the temperature difference causes exciton population redistribution and affects the exciton transfer time. It is found that one can reproduce not only the exciton population redistribution but also the change of the exciton transfer time induced by the temperature difference with a proper tuning of the site energies of the aggregate. In this sense, there exists a site energy shift equivalence for any temperature difference in a broad range. This phenomenon is similar to the Seebeck effect as well as spin Seebeck effect and can be named as exciton Seebeck effect.
Hu, Miao; Bi, Cheng; Yuan, Yongbo; Xiao, Zhengguo; Dong, Qingfeng; Shao, Yuchuan; Huang, Jinsong
2015-05-13
The nonexcitonic character for organometal trihalide perovskites is demonstrated by examining the field-dependent exciton dissociation behavior. It is found that photogenerated excitons can be effectively dissociated into free charges inside perovskite without the assistance of charge extraction layer or external field, which is a stark contrast to the charge-separation behavior in excitonic materials in the same photovoltaic operation system.
Hu, Miao; Bi, Cheng; Yuan, Yongbo; ...
2015-01-15
The nonexcitonic character for organometal trihalide perovskites is demonstrated by examining the field-dependent exciton dissociation behavior. Moreover, it is found that photogenerated excitons can be effectively dissociated into free charges inside perovskite without the assistance of charge extraction layer or external field, which is a stark contrast to the charge-separation behavior in excitonic materials in the same photovoltaic operation system.
Ground state energy of N Frenkel excitons
NASA Astrophysics Data System (ADS)
Pogosov, W.; Combescot, M.
2009-03-01
By using the composite many-body theory for Frenkel excitons we have recently developed, we here derive the ground state energy of N Frenkel excitons in the Born approximation through the Hamiltonian mean value in a state made of N identical Q = 0 excitons. While this quantity reads as a density expansion in the case of Wannier excitons, due to many-body effects induced by fermion exchanges between N composite particles, we show that the Hamiltonian mean value for N Frenkel excitons only contains a first order term in density, just as for elementary bosons. Such a simple result comes from a subtle balance, difficult to guess a priori, between fermion exchanges for two or more Frenkel excitons appearing in Coulomb term and the ones appearing in the N exciton normalization factor - the cancellation being exact within terms in 1/Ns where Ns is the number of atomic sites in the sample. This result could make us naively believe that, due to the tight binding approximation on which Frenkel excitons are based, these excitons are just bare elementary bosons while their composite nature definitely appears at various stages in the precise calculation of the Hamiltonian mean value.
Ballistic spin transport in exciton gases
NASA Astrophysics Data System (ADS)
Kavokin, A. V.; Vladimirova, M.; Jouault, B.; Liew, T. C. H.; Leonard, J. R.; Butov, L. V.
2013-11-01
Traditional spintronics relies on spin transport by charge carriers, such as electrons in semiconductor crystals. The challenges for the realization of long-range electron spin transport include rapid spin relaxation due to electron scattering. Scattering and, in turn, spin relaxation can be effectively suppressed in excitonic devices where the spin currents are carried by electrically neutral bosonic quasiparticles: excitons or exciton-polaritons. They can form coherent quantum liquids that carry spins over macroscopic distances. The price to pay is a finite lifetime of the bosonic spin carriers. We present the theory of exciton ballistic spin transport which may be applied to a range of systems supporting bosonic spin transport, in particular to indirect excitons in coupled quantum wells. We describe the effect of spin-orbit interaction for the electron and the hole on the exciton spin, account for the Zeeman effect induced by external magnetic fields and long-range and short-range exchange splittings of the exciton resonances. We also consider exciton transport in the nonlinear regime and discuss the definitions of the exciton spin current, polarization current, and spin conductivity.
Tang, Yanhao; Xie, Wei; McGuire, John A. Lai, Chih Wei; Mandal, Krishna C.
2015-09-21
We analyze exciton spin dynamics in GaSe under nonresonant circularly polarized optical pumping with an exciton spin-flip rate-equation model. The model reproduces polarized time-dependent photoluminescence measurements in which the initial circular polarization approaches unity even when pumping with 0.15 eV excess energy. At T = 10 K, the exciton spin relaxation exhibits a biexponential decay with sub-20 ps and >500 ps time constants, which are also reproduced by the rate-equation model assuming distinct spin-relaxation rates for hot (nonequilibrium) and cold band-edge excitons.
NASA Astrophysics Data System (ADS)
Malyukin, Yu. V.; Sorokin, A. V.; Semynozhenko, V. P.
2016-06-01
We present thoroughly analyzed experimental results that demonstrate the anomalous manifestation of the exciton self-trapping effect, which is already well-known in bulk crystals, in ordered molecular nanoclusters called J-aggregates. Weakly-coupled one-dimensional (1D) molecular chains are the main structural feature of J-aggregates, wherein the electron excitations are manifested as 1D Frenkel excitons. According to the continuum theory of Rashba-Toyozawa, J-aggregates can have only self-trapped excitons, because 1D excitons must adhere to barrier-free self-trapping at any exciton-phonon coupling constant g = ɛLR/2β, wherein ɛLR is the lattice relaxation energy, and 2β is the half-width of the exciton band. In contrast, very often only the luminescence of free, mobile excitons would manifest in experiments involving J-aggregates. Using the Urbach rule in order to analyze the low-frequency region of the low-temperature exciton absorption spectra has shown that J-aggregates can have both a weak (g < 1) and a strong (g > 1) exciton-phonon coupling. Moreover, it is experimentally demonstrated that under certain conditions, the J-aggregate excited state can have both free and self-trapped excitons, i.e., we establish the existence of a self-trapping barrier for 1D Frenkel excitons. We demonstrate and analyze the reasons behind the anomalous existence of both free and self-trapped excitons in J-aggregates, and demonstrate how exciton-self trapping efficiency can be managed in J-aggregates by varying the values of g, which is fundamentally impossible in bulk crystals. We discuss how the exciton-self trapping phenomenon can be used as an alternate interpretation of the wide band emission of some J-aggregates, which has thus far been explained by the strongly localized exciton model.
Josephson effects in condensates of excitons and exciton polaritons
Shelykh, I. A.; Solnyshkov, D. D.; Pavlovic, G.; Malpuech, G.
2008-07-15
We analyze theoretically the phenomena related to the Josephson effect for exciton and polariton condensates, taking into account their specific spin degrees of freedom. We distinguish between two types of Josephson effects: the extrinsic effect, related to the coherent tunneling of particles with the same spin between two spatially separated potential traps, and the intrinsic effect, related to the 'tunneling' between different spinor components of the condensate within the same trap. We show that the Josephson effect in the nonlinear regime can lead to nontrivial polarization dynamics and produce spontaneous separation of the condensates with opposite polarization in real space.
Bound exciton and free exciton states in GaSe thin slab
Wei, Chengrong; Chen, Xi; Li, Dian; Su, Huimin; He, Hongtao; Dai, Jun-Feng
2016-01-01
The photoluminescence (PL) and absorption experiments have been performed in GaSe slab with incident light polarized perpendicular to c-axis of sample at 10 K. An obvious energy difference of about 34 meV between exciton absorption peak and PL peak (the highest energy peak) is observed. By studying the temperature dependence of PL and absorption spectra, we attribute it to energy difference between free exciton and bound exciton states, where main exciton absorption peak comes from free exciton absorption, and PL peak is attributed to recombination of bound exciton at 10 K. This strong bound exciton effect is stable up to 50 K. Moreover, the temperature dependence of integrated PL intensity and PL lifetime reveals that a non-radiative process, with activation energy extracted as 0.5 meV, dominates PL emission. PMID:27654064
Bound exciton and free exciton states in GaSe thin slab
NASA Astrophysics Data System (ADS)
Wei, Chengrong; Chen, Xi; Li, Dian; Su, Huimin; He, Hongtao; Dai, Jun-Feng
2016-09-01
The photoluminescence (PL) and absorption experiments have been performed in GaSe slab with incident light polarized perpendicular to c-axis of sample at 10 K. An obvious energy difference of about 34 meV between exciton absorption peak and PL peak (the highest energy peak) is observed. By studying the temperature dependence of PL and absorption spectra, we attribute it to energy difference between free exciton and bound exciton states, where main exciton absorption peak comes from free exciton absorption, and PL peak is attributed to recombination of bound exciton at 10 K. This strong bound exciton effect is stable up to 50 K. Moreover, the temperature dependence of integrated PL intensity and PL lifetime reveals that a non-radiative process, with activation energy extracted as 0.5 meV, dominates PL emission.
Exciton-polaritons condensate in a microwire
NASA Astrophysics Data System (ADS)
Kamoun, O.; Jaziri, S.
2013-12-01
Recently, polariton condensation has been claimed in microwires. Numerical solutions of the time-dependent Gross-Pitaevskii equation that describes the behavior of the condensate in a trap and exciton-polariton interaction, have been obtained. In this work we study theoretically exciton-polariton one dimensional condensation in several quantized states.
DNA-mediated excitonic upconversion FRET switching
Kellis, Donald L.; Rehn, Sarah M.; Cannon, Brittany L.; ...
2015-11-17
Excitonics is a rapidly expanding field of nanophotonics in which the harvesting of photons, ensuing creation and transport of excitons via Förster resonant energy transfer (FRET), and subsequent charge separation or photon emission has led to the demonstration of excitonic wires, switches, Boolean logic and light harvesting antennas for many applications. FRET funnels excitons down an energy gradient resulting in energy loss with each step along the pathway. Conversely, excitonic energy up conversion via up conversion nanoparticles (UCNPs), although currently inefficient, serves as an energy ratchet to boost the exciton energy. Although FRET-based up conversion has been demonstrated, it suffersmore » from low FRET efficiency and lacks the ability to modulate the FRET. We have engineered an up conversion FRET-based switch by combining lanthanide-doped UCNPs and fluorophores that demonstrates excitonic energy up conversion by nearly a factor of 2, an excited state donor to acceptor FRET efficiency of nearly 25%, and an acceptor fluorophore quantum efficiency that is close to unity. These findings offer a promising path for energy up conversion in nanophotonic applications including artificial light harvesting, excitonic circuits, photovoltaics, nanomedicine, and optoelectronics.« less
DNA-mediated excitonic upconversion FRET switching
Kellis, Donald L.; Rehn, Sarah M.; Cannon, Brittany L.; Davis, Paul H.; Graugnard, Elton; Lee, Jeunghoon; Yurke, Bernard; Knowlton, William B.
2015-11-17
Excitonics is a rapidly expanding field of nanophotonics in which the harvesting of photons, ensuing creation and transport of excitons via Förster resonant energy transfer (FRET), and subsequent charge separation or photon emission has led to the demonstration of excitonic wires, switches, Boolean logic and light harvesting antennas for many applications. FRET funnels excitons down an energy gradient resulting in energy loss with each step along the pathway. Conversely, excitonic energy up conversion via up conversion nanoparticles (UCNPs), although currently inefficient, serves as an energy ratchet to boost the exciton energy. Although FRET-based up conversion has been demonstrated, it suffers from low FRET efficiency and lacks the ability to modulate the FRET. We have engineered an up conversion FRET-based switch by combining lanthanide-doped UCNPs and fluorophores that demonstrates excitonic energy up conversion by nearly a factor of 2, an excited state donor to acceptor FRET efficiency of nearly 25%, and an acceptor fluorophore quantum efficiency that is close to unity. These findings offer a promising path for energy up conversion in nanophotonic applications including artificial light harvesting, excitonic circuits, photovoltaics, nanomedicine, and optoelectronics.
Excitons and optical spectra of phosphorene nanoribbons
NASA Astrophysics Data System (ADS)
Nourbakhsh, Zahra; Asgari, Reza
2016-07-01
On the basis of many-body ab initio calculations, using the single-shot G0W0 method and Bethe-Salpeter equation, we study phosphorene nanoribbons (PNRs) in the two typical zigzag and armchair directions. The electronic structure, optical absorption, electron-hole (exciton) binding energy, exciton exchange splitting, and exciton wave functions are calculated for different sizes of PNRs. The typically strong splitting between singlet and triplet excitonic states make PNRs favorable systems for optoelectronic applications. Quantum confinement occurs in both kinds of PNRs, and it is stronger in the zPNRs, which behave like quasi-zero-dimensional systems. Scaling laws are investigated for the size-dependent behaviors of PNRs. The first bright excitonic state in PNRs is explored in detail.
Excitonic magnetism in d6 perovskites
NASA Astrophysics Data System (ADS)
Afonso, J. Fernández; Kuneš, J.
2017-03-01
We use the LDA+U method to study the possibility of exciton condensation in perovskites of transition metals with the d6 electronic configuration such as LaCoO3. For realistic interaction parameters we find several distinct solutions exhibiting a spin-triplet exciton condensate, which gives rise to a local spin density distribution while the ordered moments are vanishingly small. Rhombohedral distortion from the ideal cubic structure suppresses the ordered state, contrary to the spin-orbit coupling which enhances the excitonic condensation energy. We explain the trends observed in the numerical simulations with the help of a simplified strong-coupling model. Our results indicate that LaCoO3 is close to the excitonic instability and suggest ways how to achieve the exciton condensation.
Baranov, P G; Romanov, N G; Poluektov, O G; Schmidt, J
2010-12-01
Silver halides have unique features in solid state physics because their properties are considered to be of borderline nature between ionic and covalent bonding. In AgCl, the self-trapped hole (STH) is centered and partly trapped in the cationic sublattice, forming an Ag(2+) ion inside of a (AgCl(6))(4-) complex as a result of the Jahn-Teller distortion. The STH in AgCl can capture an electron from the conduction band forming the self-trapped exciton (STE). Recent results of a study of STE by means of high-frequency electron paramagnetic resonance, electron spin echo, electron-nuclear double resonance (ENDOR) and optically detected magnetic resonance (ODMR) are reviewed. The properties of the STE in AgCl crystals, such as exchange coupling, the ordering of the triplet and singlet sublevels, the dynamical properties of the singlet and triplet states, and the hyperfine interaction with the Ag and Cl (Br) nuclei are discussed. Direct information about the spatial distribution of the wave function of STE unpaired electrons was obtained by ENDOR. From a comparison with the results of an ENDOR study of the shallow electron center and STH, it is concluded that the electron is mainly contained in a hydrogen-like 1s orbital with a Bohr radius of 15.1 ± 0.6 Å, but near its center the electron density reflects the charge distribution of the hole. The hole of the STE is virtually identical to an isolated STH center. For AgCl nanocrystals embedded into the KCl crystalline matrix, the anisotropy of the g-factor of STE and STH was found to be substantially reduced compared with that of bulk AgCl crystals, which can be explained by a considerable suppression of the Jahn-Teller effect in nanoparticles. A study of ODMR in AgBr nanocrystals in KBr revealed spatial confinement effects and allowed estimating the nanocrystal size from the shape of the ODMR spectra.
What Can the Bohr-Sommerfeld Model Show Students of Chemistry in the 21st Century?
ERIC Educational Resources Information Center
Niaz, Mansoor; Cardellini, Liberato
2011-01-01
Bohr's model of the atom is considered to be important by general chemistry textbooks. A shortcoming of this model was that it could not explain the spectra of atoms containing more than one electron. To increase the explanatory power of the model, Sommerfeld hypothesized the existence of elliptical orbits. This study aims to elaborate a framework…
Caprio, M. A.
2011-06-15
Detailed quantitative predictions are obtained for phonon and multiphonon excitations in well-deformed rotor nuclei within the geometric framework, by exact numerical diagonalization of the Bohr Hamiltonian in an SO(5) basis. Dynamical {gamma} deformation is found to significantly influence the predictions through its coupling to the rotational motion. Basic signatures for the onset of rigid triaxial deformation are also obtained.
Emergence of complementarity and the Baconian roots of Niels Bohr's method
NASA Astrophysics Data System (ADS)
Perovic, Slobodan
2013-08-01
I argue that instead of a rather narrow focus on N. Bohr's account of complementarity as a particular and perhaps obscure metaphysical or epistemological concept (or as being motivated by such a concept), we should consider it to result from pursuing a particular method of studying physical phenomena. More precisely, I identify a strong undercurrent of Baconian method of induction in Bohr's work that likely emerged during his experimental training and practice. When its development is analyzed in light of Baconian induction, complementarity emerges as a levelheaded rather than a controversial account, carefully elicited from a comprehensive grasp of the available experimental basis, shunning hasty metaphysically motivated generalizations based on partial experimental evidence. In fact, Bohr's insistence on the "classical" nature of observations in experiments, as well as the counterintuitive synthesis of wave and particle concepts that have puzzled scholars, seem a natural outcome (an updated instance) of the inductive method. Such analysis clarifies the intricacies of early Schrödinger's critique of the account as well as Bohr's response, which have been misinterpreted in the literature. If adequate, the analysis may lend considerable support to the view that Bacon explicated the general terms of an experimentally minded strand of the scientific method, developed and refined by scientists in the following three centuries.
Bohr-Sommerfeld Quantization of Hydrogen-Like Atoms in Kaluza-Klein Theory
NASA Astrophysics Data System (ADS)
Wilson, Weldon J.
1984-12-01
A low energy phenomenon in quantum theories with extra dimensions is studied. The method of Bohr and Sommerfeld is used to compute the relativistic bound state energy spectrum for hydrogen-like atoms in the flat, five-dimensional Kaluza-Klein model.
Why We Should Teach the Bohr Model and How to Teach it Effectively
ERIC Educational Resources Information Center
McKagan, S. B.; Perkins, K. K.; Wieman, C. E.
2008-01-01
Some education researchers have claimed that we should not teach the Bohr model of the atom because it inhibits students' ability to learn the true quantum nature of electrons in atoms. Although the evidence for this claim is weak, many have accepted it. This claim has implications for how to present atoms in classes ranging from elementary school…
Gamma-rigid regime of the Bohr-Mottelson Hamiltonian in energy-dependent approach
NASA Astrophysics Data System (ADS)
Alimohammadi, M.; Hassanabadi, H.
2016-10-01
We determine the energy spectrum and wave function for the Bohr-Mottelson Hamiltonian on γ-rigid regime separately with the harmonic and Coulomb energy-dependent potentials. We study the effect of potential parameters on the energy levels and probability density distribution. The transition rates are determined in each case.
Quantum Explorers: Bohr, Jordan, and Delbrück Venturing into Biology
NASA Astrophysics Data System (ADS)
Joaquim, Leyla; Freire, Olival; El-Hani, Charbel N.
2015-09-01
This paper disentangles selected intertwined aspects of two great scientific developments: quantum mechanics and molecular biology. We look at the contributions of three physicists who in the 1930s were protagonists of the quantum revolution and explorers of the field of biology: Niels Bohr, Pascual Jordan, and Max Delbrück. Their common platform was the defense of the Copenhagen interpretation in physics and the adoption of the principle of complementarity as a way of looking at biology. Bohr addressed the problem of how far the results reached in physics might influence our views about life. Jordan and Delbrück were followers of Bohr's ideas in the context of quantum mechanics and also of his tendency to expand the implications of the Copenhagen interpretation to biology. We propose that Bohr's perspective on biology was related to his epistemological views, as Jordan's was to his political positions. Delbrück's propensity to migrate was related to his transformation into a key figure in the history of twentieth-century molecular biology.
EPR before EPR: A 1930 Einstein-Bohr thought Experiment Revisited
ERIC Educational Resources Information Center
Nikolic, Hrvoje
2012-01-01
In 1930, Einstein argued against the consistency of the time-energy uncertainty relation by discussing a thought experiment involving a measurement of the mass of the box which emitted a photon. Bohr seemingly prevailed over Einstein by arguing that Einstein's own general theory of relativity saves the consistency of quantum mechanics. We revisit…
Excitonic polaritons of zinc diarsenide single crystals
NASA Astrophysics Data System (ADS)
Syrbu, N. N.; Stamov, I. G.; Zalamai, V. V.; Dorogan, A.
2017-02-01
Excitonic polaritons of ZnAs2 single crystals had been investigated. Parameters of singlet excitons with D2bar(z) symmetry and orthoexcitons 2D1bar(y)+D2bar(x) had been determined. Spectral dependencies of ordinary and extraordinary dispersion of refractive index had been calculated using interferential reflection and transmittance spectra. It was shown, that A excitonic series were due to hole (V1) and electron (C1) bands. The values of effective masses of electrons (mc*=0.10 m0) and holes (mv1*=0.89 m0) had been estimated. It was revealed that the hole mass mv1* changes from 1.03 m0 to 0.55 m0 at temperature increasing from 10 K up to 230 K and that the electron mass mc* does not depend on temperature. The integral absorption A (eV cm-1) of the states n=1, 2 and 3 of D2bar(z) excitons depends on the An≈n-3 equality, which it is characteristic for S-type excitonic functions. Temperature dependences of the integral absorption of ground states for D2bar(z) and D2bar(D) excitons differ. The ground states of B and C excitons formed by V3 - C1 and V4 - C1 bands and its parameters had been determined.
[Fractures of the distal radius].
Rueger, J M; Hartel, M J; Ruecker, A H; Hoffmann, M
2014-11-01
The most prevalent fractures managed by trauma surgeons are those involving the distal radius. The injury occurs in two peaks of prevalence: the first peak around the age of 10 years and the second peak around the age of 60 years. Distal radius fracture management requires sensitive diagnostics and classification. The objectives of treatment are the reconstruction of a pain-free unlimited durable functioning of the wrist and avoidance of typical fracture complications. Non-operative conservative management is generally employed for stable non-displaced fractures of the distal radius with the expectation of a good functional outcome. Unstable comminuted fractures with intra-articular and extra-articular fragment zones are initially set in a closed operation and finally by osteosynthesis. An armament of surgical implants is available for instable fractures requiring fixation. Palmar locked plate osteosynthesis has been established in recent years as the gold standard for operative management of distal radius fractures. Complex Working Group on Osteosynthesis (AO) classification type 3 fractures require extensive preoperative diagnostics to identify and treat typical associated injuries around the wrist.
Ultracold Gas of Excitons in Traps
2012-06-08
Excitons in a GaAs Quantum-Well Structurewith a Diamond-Shaped Electrostatic Trap, Physical Review Letters, (08 2009): 87403. doi: 2012/06/08 14:38:06 19...Kinetics of the inner ring in the exciton emission pattern in coupled GaAs quantum wells, Physical Review B, (10 2009): 155331. doi: 2012/06/08 14:28:30...17 Sen Yang, , L. V. Butov, , L. S. Levitov, , B. D. Simons,, A. C. Gossard. Exciton front propagation in photoexcited GaAs quantum wells, Physical
Excitons in the Fractional Quantum Hall Effect
DOE R&D Accomplishments Database
Laughlin, R. B.
1984-09-01
Quasiparticles of charge 1/m in the Fractional Quantum Hall Effect form excitons, which are collective excitations physically similar to the transverse magnetoplasma oscillations of a Wigner crystal. A variational exciton wavefunction which shows explicitly that the magnetic length is effectively longer for quasiparticles than for electrons is proposed. This wavefunction is used to estimate the dispersion relation of these excitons and the matrix elements to generate them optically out of the ground state. These quantities are then used to describe a type of nonlinear conductivity which may occur in these systems when they are relatively clean.
Diamagnetic excitons in semiconductors (Review)
NASA Astrophysics Data System (ADS)
Seisyan, R. P.
2016-05-01
Optical properties of semiconductor crystals in the presence of a high magnetic field have been considered. The field turn-on gives rise to oscillations of the optical-absorption edge or, more specifically, the formation of a complex absorption spectrum with a periodic structure, referred to as the spectrum of "diamagnetic excitons." Such spectra appear a source of the most accurate knowledge about the band structure of semiconductors. Moreover, these spectra can be used for simulating the low-dimensional state in semiconductors and possible interpretation of the emission spectra of neutron stars. The proposed analytical review is based on extensive experimental and theoretical data contained mostly in cited original works of the author with colleagues.
Excitonic Aharonov-Bohm effect in a two-dimensional quantum ring
Gonzalez-Santander, C.; Dominguez-Adame, F.; Roemer, R. A.
2011-12-15
We study theoretically the optical properties of an exciton in a two-dimensional ring threaded by a magnetic flux. We model the quantum ring by a confining potential that can be continuously tuned from strictly one-dimensional to truly two-dimensional with finite radius-to-width ratio. We present an analytic solution of the problem when the electron-hole interaction is short ranged. The oscillatory dependence of the oscillator strength as a function of the magnetic flux is attributed to the Aharonov-Bohm effect. The amplitude of the oscillations changes upon increasing the width of the quantum ring. We find that the Aharonov-Bohm oscillations of the ground state of the exciton decrease with increasing the width, but, remarkably, the amplitude remains finite down to radius-to-width ratios less than unity. We attribute this resilience of the excitonic oscillations to the nonsimple connectedness of our chosen confinement potential with its centrifugal core at the origin.
Acoustic-excitonic effects in a two-dimensional gas of dipolar excitons
NASA Astrophysics Data System (ADS)
Boev, M. V.; Kovalev, V. M.; Chaplik, A. V.
2016-08-01
The theory of the interaction of a two-dimensional gas of indirect dipolar excitons with Rayleigh surface elastic waves has been developed. The absorption and renormalization of the phase velocity of a surface wave, as well as the drag of excitons by the surface acoustic wave and the generation of bulk acoustic waves by a twodimensional gas of dipolar excitons irradiated by external electromagnetic radiation, have been considered. These effects have been studied both in a normal phase at high temperatures and in a condensed phase of the exciton gas. The calculations have been performed in the ballistic and diffusion limits for both phases.
Optical nutation in the exciton range of spectrum
Khadzhi, P. I.; Vasiliev, V. V.
2013-08-15
Optical nutation in the exciton range of spectrum is studied in the mean field approximation taking into account exciton-photon and elastic exciton-exciton interactions. It is shown that the features of nutation development are determined by the initial exciton and photon densities, the resonance detuning, the nonlinearity parameter, and the initial phase difference. For nonzero initial exciton and photon concentrations, three regimes of temporal evolution of excitons and photons exist: periodic conversion of excitons to photons and vice versa, aperiodic conversion of photons to excitons, and the rest regime. In the rest regime, the initial exciton and photon densities are nonzero and do not change with time. The oscillation amplitudes and periods of particle densities determined by the system parameters are found. The exciton self-trapping and photon trapping appearing in the system at threshold values of the nonlinearity parameter were predicted. As this parameter increases, the oscillation amplitudes of the exciton and photon densities sharply change at the critical value of the nonlinearity parameter. These two phenomena are shown to be caused by the elastic exciton-exciton interaction, resulting in the dynamic concentration shift of the exciton level.
Schrödinger's interpretation of quantum mechanics and the relevance of Bohr's experimental critique
NASA Astrophysics Data System (ADS)
Perovic, Slobodan
E. Schrödinger's ideas on interpreting quantum mechanics have been recently re-examined by historians and revived by philosophers of quantum mechanics. Such recent re-evaluations have focused on Schrödinger's retention of space-time continuity and his relinquishment of the corpuscularian understanding of microphysical systems. Several of these historical re-examinations claim that Schrödinger refrained from pursuing his 1926 wave-mechanical interpretation of quantum mechanics under pressure from the Copenhagen and Göttingen physicists, who misinterpreted his ideas in their dogmatic pursuit of the complementarity doctrine and the principle of uncertainty. My analysis points to very different reasons for Schrödinger's decision and, accordingly, to a rather different understanding of the dialogue between Schrödinger and N. Bohr, who refuted Schrödinger's arguments. Bohr's critique of Schrödinger's arguments predominantly focused on the results of experiments on the scattering of electrons performed by Bothe and Geiger, and by Compton and Simon. Although he shared Schrödinger's rejection of full-blown classical entities, Bohr argued that these results demonstrated the corpuscular nature of atomic interactions. I argue that it was Schrödinger's agreement with Bohr's critique, not the dogmatic pressure, which led him to give up pursuing his interpretation for 7 yr. Bohr's critique reflected his deep understanding of Schrödinger's ideas and motivated, at least in part, his own pursuit of his complementarity principle. However, in 1935 Schrödinger revived and reformulated the wave-mechanical interpretation. The revival reflected N. F. Mott's novel wave-mechanical treatment of particle-like properties. R. Shankland's experiment, which demonstrated an apparent conflict with the results of Bothe-Geiger and Compton-Simon, may have been additional motivation for the revival. Subsequent measurements have proven the original experimental results accurate, and I argue
Excitons in boron nitride single layer
NASA Astrophysics Data System (ADS)
Galvani, Thomas; Paleari, Fulvio; Miranda, Henrique P. C.; Molina-Sánchez, Alejandro; Wirtz, Ludger; Latil, Sylvain; Amara, Hakim; Ducastelle, François
2016-09-01
Boron nitride single layer belongs to the family of two-dimensional materials whose optical properties are currently receiving considerable attention. Strong excitonic effects have already been observed in the bulk and still stronger effects are predicted for single layers. We present here a detailed study of these properties by combining ab initio calculations and a tight-binding Wannier analysis in both real and reciprocal space. Due to the simplicity of the band structure with single valence (π ) and conduction (π*) bands the tight-binding analysis becomes quasiquantitative with only two adjustable parameters and provides tools for a detailed analysis of the exciton properties. Strong deviations from the usual hydrogenic model are evidenced. The ground-state exciton is not a genuine Frenkel exciton, but a very localized tightly bound one. The other ones are similar to those found in transition-metal dichalcogenides and, although more localized, can be described within a Wannier-Mott scheme.
Radiative lifetime of excitons in carbon nanotubes.
Perebeinos, Vasili; Tersoff, J; Avouris, Phaedon
2005-12-01
We calculate the radiative lifetime and energy bandstructure of excitons in semiconducting carbon nanotubes within a tight-binding approach including the electron-hole correlations via the Bethe-Salpeter equation. In the limit of rapid interband thermalization, the radiative decay rate is maximized at intermediate temperatures and decreases at low temperature because the lowest-energy excitons are optically forbidden. The intrinsic phonons cannot scatter excitons between optically active and forbidden bands, so sample-dependent extrinsic effects that break the symmetries can play a central role. We calculate the diameter-dependent energy splittings between singlet and triplet excitons of different symmetries and the resulting dependence of radiative lifetime on temperature and tube diameter.
Probing dark exciton diffusion using photovoltage
Mullenbach, Tyler K.; Curtin, Ian J.; Zhang, Tao; Holmes, Russell J.
2017-01-01
The migration of weakly and non-luminescent (dark) excitons remains an understudied subset of exciton dynamics in molecular thin films. Inaccessible via photoluminescence, these states are often probed using photocurrent methods that require efficient charge collection. Here we probe exciton harvesting in both luminescent and dark materials using a photovoltage-based technique. Transient photovoltage permits a real-time measurement of the number of charges in an organic photovoltaic cell, while avoiding non-geminate recombination losses. The extracted exciton diffusion lengths are found to be similar to those determined using photocurrent. For the luminescent material boron subphthalocyanine chloride, the photovoltage determined diffusion length is less than that extracted from photoluminescence. This indicates that while photovoltage circumvents non-geminate losses, geminate recombination at the donor–acceptor interface remains the primary recombination pathway. Photovoltage thus offers a general approach for extracting a device-relevant diffusion length, while also providing insight in to the dominant carrier recombination pathways. PMID:28128206
Probing dark exciton diffusion using photovoltage
NASA Astrophysics Data System (ADS)
Mullenbach, Tyler K.; Curtin, Ian J.; Zhang, Tao; Holmes, Russell J.
2017-01-01
The migration of weakly and non-luminescent (dark) excitons remains an understudied subset of exciton dynamics in molecular thin films. Inaccessible via photoluminescence, these states are often probed using photocurrent methods that require efficient charge collection. Here we probe exciton harvesting in both luminescent and dark materials using a photovoltage-based technique. Transient photovoltage permits a real-time measurement of the number of charges in an organic photovoltaic cell, while avoiding non-geminate recombination losses. The extracted exciton diffusion lengths are found to be similar to those determined using photocurrent. For the luminescent material boron subphthalocyanine chloride, the photovoltage determined diffusion length is less than that extracted from photoluminescence. This indicates that while photovoltage circumvents non-geminate losses, geminate recombination at the donor-acceptor interface remains the primary recombination pathway. Photovoltage thus offers a general approach for extracting a device-relevant diffusion length, while also providing insight in to the dominant carrier recombination pathways.
Exciton absorption in narrow armchair graphene nanoribbons
NASA Astrophysics Data System (ADS)
Monozon, B. S.; Schmelcher, P.
2016-11-01
We develop an analytical approach to the exciton optical absorption for narrow gap armchair graphene nanoribbons (AGNR). We focus on the regime of dominant size quantization in combination with the attractive electron-hole interaction. An adiabatic separation of slow and fast motions leads via the two-body Dirac equation to the isolated and coupled subband approximations. Discrete and continuous exciton states are in general coupled and form quasi-Rydberg series of purely discrete and resonance type character. The corresponding oscillator strengths and widths are derived. We show that the exciton peaks are blue-shifted, become broader and increase in magnitude upon narrowing the ribbon. At the edge of a subband the singularity related to the 1D density of states is transformed into finite absorption via the presence of the exciton. Our analytical results are in good agreement with those obtained by other methods including numerical approaches. Estimates of the expected experimental values are provided for realistic AGNR.
Excitonic susceptibility in near triangular quantum wells
NASA Astrophysics Data System (ADS)
Anitha, A.; Arulmozhi, M.
2017-03-01
Diamagnetic susceptibility and binding energy of an exciton in a near triangular quantum well, with potential profile proportional to |z|2/3 composed of GaAs/Ga1- x Al x As and ZnO/Zn1- x Mg x O are calculated as a function of the wellwidth and concentration of Al and Mg respectively varying the magnetic field applied along growth direction (i.e. z-axis). Diamagnetic susceptibility of light hole exciton and heavy hole exciton, shows inverse behaviors in the two materials below 20 nm wellwidth and the binding energy of both excitons increases, as the magnetic field increases. The results obtained, are compared with those of quantum wells with varied potential profiles and the experimental results reported in the literature.
Signatures of Quantum Coherences in Rydberg Excitons
NASA Astrophysics Data System (ADS)
Grünwald, P.; Aßmann, M.; Heckötter, J.; Fröhlich, D.; Bayer, M.; Stolz, H.; Scheel, S.
2016-09-01
Coherent optical control of individual particles has been demonstrated both for atoms and semiconductor quantum dots. Here we demonstrate the emergence of quantum coherent effects in semiconductor Rydberg excitons in bulk Cu2O . Because of the spectral proximity between two adjacent Rydberg exciton states, a single-frequency laser may pump both resonances with little dissipation from the detuning. As a consequence, additional resonances appear in the absorption spectrum that correspond to dressed states consisting of two Rydberg exciton levels coupled to the excitonic vacuum, forming a V -type three-level system, but driven only by one laser light source. We show that the level of pure dephasing in this system is extremely low. These observations are a crucial step towards coherently controlled quantum technologies in a bulk semiconductor.
[Distal radius fractures in children].
Otayek, S; Ramanoudjame, M; Fitoussi, F
2016-12-01
Metaphyseal and physeal fractures of the distal radius are common in children. Most cases are best treated with closed reduction and cast immobilization. Long-term outcomes of these injuries are excellent when specific treatment principles of reduction and casting are followed. Surgical indications are limited and include open fractures, intra-articular fractures, non-reducible fractures, unstable fractures, and the presence of associated nerve injury. Closed reduction and percutaneous pin fixation is the most commonly used surgical option. The clinician should be aware of delayed complications such as growth disturbance of the distal radius, and understand how to manage these problems to ensure successful long-term outcomes. Epiphysiodesis is uncommon but growth plate injuries need to be followed for one year.
Measurement of solar radius changes
NASA Technical Reports Server (NTRS)
Labonte, B. J.; Howard, R.
1981-01-01
Results of daily photometric measurements of the solar radius from Mt. Wilson over the past seven years are reported. Reduction of the full disk magnetograms yields a formal error of 0.1 arcsec in the boustrophedonic scans in the 5250.2 A FeI line. 150 scan lines comprise each observation; 1,412 observations were made from 1974-1981. Measurement procedures, determination of the scattered light of the optics and the atmosphere, and error calculations are described, noting that days of poor atmospheric visibility are omitted from the data. The horizontal diameter of the sun remains visually fixed while the vertical component changes due to atmospheric diffraction; error accounting for thermal effects, telescope aberrations, and instrument calibration are discussed, and results, within instrument accuracy, indicate no change in the solar radius over the last seven years.
Exciton-polariton wakefields in semiconductor microcavities
NASA Astrophysics Data System (ADS)
Terças, H.; Mendonça, J. T.
2016-02-01
We consider the excitation of polariton wakefields due to a propagating light pulse in a semiconductor microcavity. We show that two kinds of wakes are possible, depending on the constituents fraction (either exciton or photon) of the polariton wavefunction. The nature of the wakefields (pure excitonic or polaritonic) can be controlled by changing the speed of propagation of the external pump. This process could be used as a diagnostic for the internal parameters of the microcavity.
Exciton properties of selected aromatic hydrocarbon systems
NASA Astrophysics Data System (ADS)
Roth, Friedrich; Mahns, Benjamin; Hampel, Silke; Nohr, Markus; Berger, Helmuth; Büchner, Bernd; Knupfer, Martin
2013-02-01
We have examined the singlet excitons in two representatives of acene-type (tetracene and pentacene) and phenacene-type (chrysene and picene) molecular crystals, respectively, using electron energy-loss spectroscopy at low temperatures. We show that the excitation spectra of the two hydrocarbon families significantly differ. Moreover, close inspection of the data indicates that there is an increasing importance of charge-transfer excitons at lowest excitation energy with increasing length of the molecules.
Ultrafast exciton dynamics at molecular surfaces
NASA Astrophysics Data System (ADS)
Monahan, Nicholas R.
Further improvements to device performance are necessary to make solar energy conversion a compelling alternative to fossil fuels. Singlet exciton fission and charge separation are two processes that can heavily influence the power conversion efficiency of a solar cell. During exciton fission one singlet excitation converts into two triplet excitons, potentially doubling the photocurrent generated by higher energy photons. There is significant discord over the singlet fission mechanism and of particular interest is whether the process involves a multiexciton intermediate state. I used time-resolved two-photon photoemission to investigate singlet fission in hexacene thin films, a model system with strong electronic coupling. My results indicate that a multiexciton state forms within 40 fs of photoexcitation and loses singlet character on a 280 fs timescale, creating two triplet excitons. This is concordant with the transient absorption spectra of hexacene single crystals and definitively proves that exciton fission in hexacene proceeds through a multiexciton state. This state is likely common to all strongly-coupled systems and my results suggest that a reassessment of the generally-accepted singlet fission mechanism is required. Charge separation is the process of splitting neutral excitons into carriers that occurs at donor-acceptor heterojunctions in organic solar cells. Although this process is essential for device functionality, there are few compelling explanations for why it is highly efficient in certain organic photovoltaic systems. To investigate the charge separation process, I used the model system of charge transfer excitons at hexacene surfaces and time-resolved two-photon photoemission. Charge transfer excitons with sufficient energy spontaneously delocalize, growing from about 14 nm to over 50 nm within 200 fs. Entropy drives this delocalization, as the density of states within the Coulomb potential increases significantly with energy. This charge
Exciton Resonances in Novel Silicon Carbide Polymers
NASA Astrophysics Data System (ADS)
Burggraf, Larry; Duan, Xiaofeng
2015-05-01
A revolutionary technology transformation from electronics to excitionics for faster signal processing and computing will be advantaged by coherent exciton transfer at room temperature. The key feature required of exciton components for this technology is efficient and coherent transfer of long-lived excitons. We report theoretical investigations of optical properties of SiC materials having potential for high-temperature excitonics. Using Car-Parinello simulated annealing and DFT we identified low-energy SiC molecular structures. The closo-Si12C12 isomer, the most stable 12-12 isomer below 1100 C, has potential to make self-assembled chains and 2-D nanostructures to construct exciton components. Using TDDFT, we calculated the optical properties of the isomer as well as oligomers and 2-D crystal formed from the isomer as the monomer unit. This molecule has large optical oscillator strength in the visible. Its high-energy and low-energy transitions (1.15 eV and 2.56 eV) are nearly pure one-electron silicon-to-carbon transitions, while an intermediate energy transition (1.28 eV) is a nearly pure carbon-to-silicon one-electron charge transfer. These results are useful to describe resonant, coherent transfer of dark excitons in the nanostructures. Research supported by the Air Force Office of Scientific Research.
Conceptual objections to the Bohr atomic theory — do electrons have a "free will" ?
NASA Astrophysics Data System (ADS)
Kragh, Helge
2011-11-01
The atomic model introduced by Bohr in 1913 dominated the development of the old quantum theory. Its main features, such as the radiationless stationary states and the discontinuous quantum jumps between the states, were hard to swallow for contemporary physicists. While acknowledging the empirical power of the theory, many scientists criticized its foundation or looked for ways to reconcile it with classical physics. Among the chief critics were A. Crehore, J.J. Thomson, E. Gehrcke and J. Stark. This paper examines from a historical perspective the conceptual objections to Bohr's atom, in particular the stationary states (where electrodynamics was annulled by fiat) and the mysterious, apparently teleological quantum jumps. Although few of the critics played a constructive role in the development of the old quantum theory, a history neglecting their presence would be incomplete and distorted.
Poyart, C F; Guesnon, P; Bohn, B M
1981-05-01
We have used isoelectric focusing to measure the differences between the pI values of various normal and mutant human haemoglobins when completely deoxygenated and when fully liganded with CO. It was assumed that the DeltapI(deox.-ox.) values might correspond quantitatively to the intrinsic alkaline Bohr effect, as most of the anionic cofactors of the haemoglobin molecule are ;stripped' off during the electrophoretic process. In haemoglobins known to exhibit a normal Bohr coefficient (DeltalogP(50)/DeltapH) in solutions, the DeltapI(deox.-ox.) values are lower the higher their respective pI(ox.) values. This indicates that for any particular haemoglobin the DeltapI(deox.-ox.) value accounts for the difference in surface charges at the pH of its pI value. This was confirmed by measuring, by the direct-titration technique, the difference in pH of deoxy and fully liganded haemoglobin A(0) (alpha(2)beta(2)) solutions in conditions approximating those of the isoelectric focusing, i.e. at 5 degrees C and very low concentration of KCl. The variation of the DeltapH(deox.-ox.) curve as a function of pH (ox.) was similar to the isoelectric-focusing curve relating the variation of DeltapI(deox.-ox.) versus pI(ox.) in various haemoglobins with Bohr factor identical with that of haemoglobin A(0). In haemoglobin A(0) the DeltapI(deox.-ox.) value is 0.17 pH unit, which corresponds to a difference of 1.20 positive charges between the oxy and deoxy states of the tetrameric haemoglobin. This value compares favourably with the values of the intrinsic Bohr effect estimated in back-titration experiments. The DeltapI(deox.-ox.) values of mutant or chemically modified haemoglobins carrying an abnormality at the N- or C-terminus of the alpha-chains are decreased by 30% compared with the DeltapI value measured in haemoglobin A(0). When the C-terminus of the beta-chains is altered, as in Hb Nancy (alpha(2)beta(Tyr-145-->Asp) (2)), we observed a 70% decrease in the DeltapI value compared
The cognitive nexus between Bohr's analogy for the atom and Pauli's exclusion schema.
Ulazia, Alain
2016-03-01
The correspondence principle is the primary tool Bohr used to guide his contributions to quantum theory. By examining the cognitive features of the correspondence principle and comparing it with those of Pauli's exclusion principle, I will show that it did more than simply 'save the phenomena'. The correspondence principle in fact rested on powerful analogies and mental schemas. Pauli's rejection of model-based methods in favor of a phenomenological, rule-based approach was therefore not as disruptive as some historians have indicated. Even at a stage that seems purely phenomenological, historical studies of theoretical development should take into account non-formal, model-based approaches in the form of mental schemas, analogies and images. In fact, Bohr's images and analogies had non-classical components which were able to evoke the idea of exclusion as a prohibition law and as a preliminary mental schema.
Darwinism in disguise? A comparison between Bohr's view on quantum mechanics and QBism.
Faye, Jan
2016-05-28
The Copenhagen interpretation is first and foremost associated with Niels Bohr's philosophy of quantum mechanics. In this paper, I attempt to lay out what I see as Bohr's pragmatic approach to science in general and to quantum physics in particular. A part of this approach is his claim that the classical concepts are indispensable for our understanding of all physical phenomena, and it seems as if the claim is grounded in his reflection upon how the evolution of language is adapted to experience. Another, recent interpretation, QBism, has also found support in Darwin's theory. It may therefore not be surprising that sometimes QBism is said to be of the same breed as the Copenhagen interpretation. By comparing the two interpretations, I conclude, nevertheless, that there are important differences.
Quantum Humor: The Playful Side of Physics at Bohr's Institute for Theoretical Physics
NASA Astrophysics Data System (ADS)
Halpern, Paul
2012-09-01
From the 1930s to the 1950s, a period of pivotal developments in quantum, nuclear, and particle physics, physicists at Niels Bohr's Institute for Theoretical Physics in Copenhagen took time off from their research to write humorous articles, letters, and other works. Best known is the Blegdamsvej Faust, performed in April 1932 at the close of one of the Institute's annual conferences. I also focus on the Journal of Jocular Physics, a humorous tribute to Bohr published on the occasions of his 50th, 60th, and 70th birthdays in 1935, 1945, and 1955. Contributors included Léon Rosenfeld, Victor Weisskopf, George Gamow, Oskar Klein, and Hendrik Casimir. I examine their contributions along with letters and other writings to show that they offer a window into some issues in physics at the time, such as the interpretation of complementarity and the nature of the neutrino, as well as the politics of the period.
On Quasi-Normal Modes, Area Quantization and Bohr Correspondence Principle
NASA Astrophysics Data System (ADS)
Corda, Christian
2015-10-01
In (Int. Journ. Mod. Phys. D 14, 181 2005), the author Khriplovich verbatim claims that "the correspondence principle does not dictate any relation between the asymptotics of quasinormal modes and the spectrum of quantized black holes" and that "this belief is in conflict with simple physical arguments". In this paper we analyze Khriplovich's criticisms and realize that they work only for the original proposal by Hod, while they do not work for the improvements suggested by Maggiore and recently finalized by the author and collaborators through a connection between Hawking radiation and black hole (BH) quasi-normal modes (QNMs). This is a model of quantum BH somewhat similar to the historical semi-classical model of the structure of a hydrogen atom introduced by Bohr in 1913. Thus, QNMs can be really interpreted as BH quantum levels (the "electrons" of the "Bohr-like BH model").Our results have also important implications on the BH information puzzle.
Alternative solution of the gamma-rigid Bohr Hamiltonian in minimal length formalism
NASA Astrophysics Data System (ADS)
Alimohammadi, M.; Hassanabadi, H.
2017-01-01
The Bohr-Mottelson Hamiltonian on γ-rigid regime has been extended to the minimal length formalism for the infinite square well potential and the corresponding wave functions as well as the spectra are obtained. The effect of minimal length on energy spectra is studied via various figures and tables and numerical calculations are included for some nuclei and the results are compared with other results and existing experimental data.
Investigation of Bohr-Mottelson Hamiltonian in γ-rigid version with position dependent mass
NASA Astrophysics Data System (ADS)
Alimohammadi, M.; Hassanabadi, H.; Zare, S.
2017-04-01
In this paper, we consider the Bohr-Mottelson Hamiltonian in γ-rigid version with position dependent mass. The separation of variables has been done for the related wave equation. The obtained radial wave equation is solved for Kratzer potential. Then, the corresponding wave function, energy spectra and transition rates have been obtained for some nuclei. In addition, our results have been compared with experimental data.
Model of molecular bonding based on the Bohr Sommerfeld picture of atoms
NASA Astrophysics Data System (ADS)
Svidzinsky, Anatoly A.; Chin, Siu A.; Scully, Marlan O.
2006-07-01
We develop a model of molecular binding based on the Bohr Sommerfeld description of atoms together with a constraint taken from conventional quantum mechanics. The model can describe the binding energy curves of H2, H3 and other molecules with striking accuracy. Our approach treats electrons as point particles with positions determined by extrema of an algebraic energy function. Our constrained model provides a physically appealing, accurate description of multi-electron chemical bonds.
How Sommerfeld extended Bohr's model of the atom (1913-1916)
NASA Astrophysics Data System (ADS)
Eckert, Michael
2014-04-01
Sommerfeld's extension of Bohr's atomic model was motivated by the quest for a theory of the Zeeman and Stark effects. The crucial idea was that a spectral line is made up of coinciding frequencies which are decomposed in an applied field. In October 1914 Johannes Stark had published the results of his experimental investigation on the splitting of spectral lines in hydrogen (Balmer lines) in electric fields, which showed that the frequency of each Balmer line becomes decomposed into a multiplet of frequencies. The number of lines in such a decomposition grows with the index of the line in the Balmer series. Sommerfeld concluded from this observation that the quantization in Bohr's model had to be altered in order to allow for such decompositions. He outlined this idea in a lecture in winter 1914/15, but did not publish it. The First World War further delayed its elaboration. When Bohr published new results in autumn 1915, Sommerfeld finally developed his theory in a provisional form in two memoirs which he presented in December 1915 and January 1916 to the Bavarian Academy of Science. In July 1916 he published the refined version in the Annalen der Physik. The focus here is on the preliminary Academy memoirs whose rudimentary form is better suited for a historical approach to Sommerfeld's atomic theory than the finished Annalen-paper. This introductory essay reconstructs the historical context (mainly based on Sommerfeld's correspondence). It will become clear that the extension of Bohr's model did not emerge in a singular stroke of genius but resulted from an evolving process.
Why we should teach the Bohr model and how to teach it effectively
NASA Astrophysics Data System (ADS)
McKagan, S. B.; Perkins, K. K.; Wieman, C. E.
2008-06-01
Some education researchers have claimed that we should not teach the Bohr model of the atom because it inhibits students’ ability to learn the true quantum nature of electrons in atoms. Although the evidence for this claim is weak, many have accepted it. This claim has implications for how to present atoms in classes ranging from elementary school to graduate school. We present results from a study designed to test this claim by developing a curriculum on models of the atom, including the Bohr and Schrödinger models. We examine student descriptions of atoms on final exams in transformed modern physics classes using various versions of this curriculum. We find that if the curriculum does not include sufficient connections between different models, many students still have a Bohr-like view of atoms rather than a more accurate Schrödinger model. However, with an improved curriculum designed to develop model-building skills and with better integration between different models, it is possible to get most students to describe atoms using the Schrödinger model. In comparing our results with previous research, we find that comparing and contrasting different models is a key feature of a curriculum that helps students move beyond the Bohr model and adopt Schrödinger’s view of the atom. We find that understanding the reasons for the development of models is much more difficult for students than understanding the features of the models. We also present interactive computer simulations designed to help students build models of the atom more effectively.
Electric quadrupole transitions of the Bohr Hamiltonian with the Morse potential
Inci, I.; Bonatsos, D.; Boztosun, I.
2011-08-15
Eigenfunctions of the collective Bohr Hamiltonian with the Morse potential have been obtained by using the asymptotic iteration method (AIM) for both {gamma}-unstable and rotational structures. B(E2) transition rates have been calculated and compared to experimental data. Overall good agreement is obtained for transitions within the ground-state band, while some interband transitions appear to be systematically underpredicted in {gamma}-unstable nuclei and overpredicted in rotational nuclei.
Relationship between the Bohr-Mottelson model and the interacting boson model
NASA Astrophysics Data System (ADS)
Klein, Abraham; Li, Ching-Teh; Vallieres, Michel
1982-05-01
The interacting boson model was invented in two independent modes: The Schwinger mode using six bosons (s and five d bosons) and the Holstein-Primakoff mode using five quadrupole quasibosons. We show that the mathematical equivalence of the two modes can be used to define a number conserving quadrupole boson (the b boson). Two equivalent bases, the usual s-d basis and a new s-b basis, are exhibited. By an exercise of (possibly objectionable) physical license, the result can be interpreted as a proof of equivalence of interacting boson model I with the Bohr-Mottelson model. In the s-b basis, the Hamiltonian and other operators depend only on the b boson. In this form, all the topics usually associated with the Bohr-Mottleson model can be discussed: potential energy surface, shape parameters, vibrations vs rotations, etc. The precise relationship of our method to that employed in previous work is exposed. The latter is shown to correspond to the use of the Dyson generators of SU(6). NUCLEAR STRUCTURE Interacting bosons, Bohr-Mottelson form of IBM, potential energy surface from IBM, generator coordinates and IBM.
Alkaline Bohr effect of bird hemoglobins: the case of the flamingo.
Sanna, Maria Teresa; Manconi, Barbara; Podda, Gabriella; Olianas, Alessandra; Pellegrini, Mariagiuseppina; Castagnola, Massimo; Messana, Irene; Giardina, Bruno
2007-08-01
The hemoglobin (Hb) substitution His-->Gln at position alpha89, very common in avian Hbs, is considered to be responsible for the weak Bohr effect of avian Hbs. Phoenicopterus ruber ruber is one of the few avian Hbs that possesses His at alpha89, but it has not been functionally characterized yet. In the present study the Hb system of the greater flamingo (P. ruber roseus), a bird that lives in Mediterranean areas, has been investigated to obtain further insight into the role played by the alpha89 residue in determining the strong reduction of the Bohr effect. Functional analysis of the two purified Hb components (HbA and HbD) of P. ruber roseus showed that both are characterized by high oxygen affinity in the absence of organic phosphates, a strong modulating effect of inositol hexaphosphate, and a reduced Bohr effect. Indeed, in spite of the close phylogenetic relationship between the two flamingo species, structural analysis based on tandem mass spectrometry of the alpha(A) chain of P. ruber roseus Hb showed that a Gln residue is present at position alpha89.
Microscopic theories of excitons and their dynamics
NASA Astrophysics Data System (ADS)
Berkelbach, Timothy C.
This thesis describes the development and application of microscopically-defined theories of excitons in a wide range of semiconducting materials. In Part I, I consider the topic of singlet exciton fission, an organic photophysical process which generates two spin-triplet excitons from one photoexcited spin-singlet exciton. I construct a theoretical framework that couples a realistic treatment of the static electronic structure with finite-temperature quantum relaxation techniques. This framework is applied separately, but consistently, to the problems of singlet fission in pentacene dimers, crystalline pentacene, and crystalline hexacene. Through this program, I am able to rationalize observed behaviors and make non-trivial predictions, some of which have been confirmed by experiment. In Part II, I present theoretical developments on the properties of neutral excitons and charged excitons (trions) in atomically thin transition metal dichalcogenides. This work includes an examination of material trends in exciton binding energies via an effective mass approach. I also present an experimental and theoretical collaboration, which links the unconventional disposition of excitons in the Rydberg series to the peculiar screening properties of atomically thin materials. The light-matter coupling in these materials is examined within low-energy models and is shown to give rise to bright and dark exciton states, which can be qualitatively labeled in analogy with the hydrogen series. In Part III, I explore theories of relaxation dynamics in condensed phase environments, with a focus on methodology development. This work is aimed towards biological processes, including resonant energy transfer in chromophore complexes and electron transfer in donor-bridge-acceptor systems. Specifically, I present a collaborative development of a numerically efficient but highly accurate hybrid approach to reduced dynamics, which exploits a partitioning of environmental degrees of freedom into
Interaction of Dirac Fermion excitons and biexciton-exciton cascade in graphene quantum dots
NASA Astrophysics Data System (ADS)
Ozfidan, Isil; Korkusinski, Marek; Hawrylak, Pawel
2015-03-01
We present a microscopic theory of interacting Dirac quasi-electrons and quasi-holes confined in graphene quantum dots. The single particle states of quantum dots are described using a tight binding model and screened direct, exchange, and scattering Coulomb matrix elements are computed using Slater pz orbitals. The many-body ground and excited states are expanded in a finite number of electron-hole pair excitations from the Hartree-Fock ground state and computed using exact diagonalization techniques. The resulting exciton and bi-exciton spectrum reflects the degeneracy of the top of the valence and bottom of the conduction band characteristic of graphene quantum dots with C3 symmetry. We study the interaction of multi-electron and hole complexes as a function of quantum dot size, shape and strength of Coulomb interactions. We identify two degenerate bright exciton (X) states and a corresponding biexciton (XX) state as XX-X cascade candidates, a source of entangled photon pairs. We next calculate the exciton to bi-exciton transitions detected in transient absorption experiments to extract the strength of exciton-exciton interactions and biexciton binding energies. We further explore the possibility of excitonic instability.
Yan, Yun-An
2016-01-14
The quantum interference is an intrinsic phenomenon in quantum physics for photon and massive quantum particles. In principle, the quantum interference may also occur with quasi-particles, such as the exciton. In this study, we show how the exciton quantum interference can be significant in aggregates through theoretical simulations with hierarchical equations of motion. The systems under investigation are generalized donor-bridge-acceptor model aggregates with the donor consisting of six homogeneous sites assuming the nearest neighbor coupling. For the models with single-path bridge, the exciton transfer time only shows a weak excitation energy dependence. But models with double-path bridge have a new short transfer time scale and the excitation energy dependence of the exciton transfer time assumes clear peak structure which is detectable with today’s nonlinear spectroscopy. This abnormality is attributed to the exciton quantum interference and the condition for a clear observation in experiment is also explored.
Exciton transport and dissociation at organic interfaces
NASA Astrophysics Data System (ADS)
Beljonne, David
2011-03-01
This paper focuses on modeling studies of exciton transport and dissociation at organic interfaces and includes three parts: 1) Experiments have shown that the values of exciton diffusion length LD in conjugated polymers (CPs) are rather low, in the range of 5-10 nm, apparently regardless of their chemical structure and solid-state packing. In contrast, larger LD values have been reported in molecular materials that are chemically more well-defined than CPs. Here we demonstrate that energetic disorder alone reduces the exciton diffusion length more than one order of magnitude, from values typically encountered in molecules (> 50nm) to values actually measured in CPs (<10nm). 2) A number of organic crystals show anisotropic excitonic couplings, with weak interlayer interactions between molecules that are more strongly coupled within the layers. The resulting energy carriers are intra-layer 2D excitons that diffuse along the interlayer direction. We model this analytically for infinite layers and using quantum-chemical calculations of the electronic couplings for anthracene clusters. We show that the exciton hopping rates and diffusion lengths depend in a subtle manner on the size and shape of the interacting aggregates, temperature and the presence of energetic disorder. 3) The electronic structure at organic/organic interfaces plays a key role, among others, in defining the quantum efficiency of organic-based photovoltaic cells. Here, we perform quantum-chemical and microelectrostatic calculations on molecular aggregates of various sizes and shapes to characterize the interfacial dipole moment at pentacene/C60 heterojunctions. The results show that the interfacial dipole mostly originates in polarization effects due to the asymmetry in the multipolar expansion of the electronic density distribution between the interacting molecules. We will discuss how the quadrupoles on the pentacene molecules produce direct electrostatic interactions with charge carriers and how
Excitonic linewidth and coherence lifetime in monolayer transition metal dichalcogenides
Selig, Malte; Berghäuser, Gunnar; Raja, Archana; ...
2016-11-07
Atomically thin transition metal dichalcogenides are direct-gap semiconductors with strong light–matter and Coulomb interactions. The latter accounts for tightly bound excitons, which dominate their optical properties. Besides the optically accessible bright excitons, these systems exhibit a variety of dark excitonic states. They are not visible in the optical spectra, but can strongly influence the coherence lifetime and the linewidth of the emission from bright exciton states. We investigate the microscopic origin of the excitonic coherence lifetime in two representative materials (WS2 and MoSe2) through a study combining microscopic theory with spectroscopic measurements. We also show that the excitonic coherence lifetimemore » is determined by phonon-induced intravalley scattering and intervalley scattering into dark excitonic states. Particularly, we identify exciton relaxation processes involving phonon emission into lower-lying dark states that are operative at all temperatures, in WS2.« less
Excitonic linewidth and coherence lifetime in monolayer transition metal dichalcogenides
Selig, Malte; Berghäuser, Gunnar; Raja, Archana; Nagler, Philipp; Schüller, Christian; Heinz, Tony F.; Korn, Tobias; Chernikov, Alexey; Malic, Ermin; Knorr, Andreas
2016-11-07
Atomically thin transition metal dichalcogenides are direct-gap semiconductors with strong light–matter and Coulomb interactions. The latter accounts for tightly bound excitons, which dominate their optical properties. Besides the optically accessible bright excitons, these systems exhibit a variety of dark excitonic states. They are not visible in the optical spectra, but can strongly influence the coherence lifetime and the linewidth of the emission from bright exciton states. We investigate the microscopic origin of the excitonic coherence lifetime in two representative materials (WS_{2} and MoSe_{2}) through a study combining microscopic theory with spectroscopic measurements. We also show that the excitonic coherence lifetime is determined by phonon-induced intravalley scattering and intervalley scattering into dark excitonic states. Particularly, we identify exciton relaxation processes involving phonon emission into lower-lying dark states that are operative at all temperatures, in WS_{2}.
Excitonic linewidth and coherence lifetime in monolayer transition metal dichalcogenides
Selig, Malte; Berghäuser, Gunnar; Raja, Archana; Nagler, Philipp; Schüller, Christian; Heinz, Tony F.; Korn, Tobias; Chernikov, Alexey; Malic, Ermin; Knorr, Andreas
2016-01-01
Atomically thin transition metal dichalcogenides are direct-gap semiconductors with strong light–matter and Coulomb interactions. The latter accounts for tightly bound excitons, which dominate their optical properties. Besides the optically accessible bright excitons, these systems exhibit a variety of dark excitonic states. They are not visible in the optical spectra, but can strongly influence the coherence lifetime and the linewidth of the emission from bright exciton states. Here, we investigate the microscopic origin of the excitonic coherence lifetime in two representative materials (WS2 and MoSe2) through a study combining microscopic theory with spectroscopic measurements. We show that the excitonic coherence lifetime is determined by phonon-induced intravalley scattering and intervalley scattering into dark excitonic states. In particular, in WS2, we identify exciton relaxation processes involving phonon emission into lower-lying dark states that are operative at all temperatures. PMID:27819288
Two-Exciton and Exciton-Magnon Bands in DIMANGANESE(+) Magnets.
NASA Astrophysics Data System (ADS)
Darwish, Saqer Mohammed
The temperature dependence of several exciton -magnon and two-exciton bands in the optical absorption spectra of three antiferromagnets have been studied using a Cary 14 spectrophotometer in conjunction with an Air Product Displex, closed-cycle helium refrigerator. The three antiferromagnets with their T_{ rm N} are: KMnF_3, T_{rm N} = 88.3 K; RbMnF_3, T_{ rm N} = 82.6 K; and MnF_2 , T_{rm N} = 67.3 K. In this work the temperature dependence (10 ^circK to 300^ circK) of the line position E, the oscillator strength f, and the half-width of half maximum delta, for several of these bands were measured. For the two-exciton bands f increases where as for the exciton-magnon and exciton-magnon-phonon bands f decreases as the temperature is lowered through T _{rm N}. The temperature dependence of f for the two-exciton bands in the three antiferromagnets agrees well with the theoretical predictions of Fujiwara et al. For the exciton-magnon bands, f increases with increasing T up to T_{rm N} and then remains essentially constant above T_{rm N}, in reasonable agreement with the theory of Shinagawa and Tanabe. For the exciton-magnon-phonon bands, a slight increase in f above T_{rm N} is believed to be due to the role of a phonon. The temperature dependence of the line positions E(T) is also different for the exciton-magnon and two-exciton bands. The exciton-magnon or exciton-magnon-phonon bands undergo a blue shift in E(T) as the temperature is lowered through T_{rm N}. This is semiquantitatively understood in terms of the exchange field using the molecular field theory of Yen et al. On the other hand, most of the two-exciton bands do not show any anomaly in E(T) below T_{rm N}. Instead their line positions are described well by the Einstein-type relation E(T) = E(O) + A ^{*}/ (exp(T^ {*}/T) - 1), where T^{*} represents an odd symmetry phonon with frequency upsilon * = kT^{*} /h. Above T_{rm N} , the exciton-magnon-phonon bands also follow the same equation. From these fits
NASA Astrophysics Data System (ADS)
Xue, Fei; Wu, Feng Cheng; MacDonald, Allan
BEC of excitons and polaritons have drawn attention in recent years because of the demonstration of their ability to host macroscopic quantum phenomena and because of their promise for applications. We study the case of a system containing two TMD monolayers that are separated and surrounded by h-BN. Under appropriate conditions this system is expected to support a spatially indirect thermal equilibrium exciton condensate. We combine a microscopic mean-field calculation and a weakly interacting boson model to explore the bilayer exciton condensates phase diagram. By varying the layer separation and exciton density, we find a phase transition occurs between states containing one and two condensate flavors. We also use a microscopic time-dependent mean-field theory to address condensate collective mode spectra and quantum fluctuations. Next we study the case of exciton-polariton formed by strong coupling between quantum well excitons and confined photon modes when the system is placed in a vertical microcavity. We build a microscopic mean-field theory starting from electrons and holes, and account for their coupling to coherent light field. We compare our model with the normal weakly interacting boson model that starts from weakly interacting excitons that are coupled to photons. This work was supported by the SRC and NIST under the Nanoelectronic Research Initiative (NRI) and SWAN, by the Welch Foundation under Grant No. F1473, and by the ARO Grant No. 26-3508-81.
F4TCNQ-Induced Exciton Quenching Studied by Using in-situ Photoluminescence Measurements
NASA Astrophysics Data System (ADS)
Zhu, Jian; Lu, Min; Wu, Bo; Hou, Xiao-Yuan
2012-09-01
The role of F4TCNQ as an exciton quenching material in thin organic light-emitting films is investigated by means of in situ photoluminescence measurements. C60 was used as another quenching material in the experiment for comparison, with Alq3 as a common organic light-emitting material. The effect of the growth sequence of the materials on quenching was also examined. It is found that the radius of Förster energy transfer between F4TCNQ and Alq3 is close to 0 nm and Dexter energy transfer dominates in the quenching process.
Excitons in Time-Dependent Density-Functional Theory.
Ullrich, Carsten A; Yang, Zeng-hui
2016-01-01
This chapter gives an overview of the description of the optical and dielectric properties of bulk insulators and semiconductors in time-dependent density-functional theory (TDDFT), with an emphasis on excitons. We review the linear-response formalism for periodic solids, discuss excitonic exchange-correlation kernels, calculate exciton binding energies for various materials, and compare the treatment of excitons with TDDFT and with the Bethe-Salpeter equation.
Probing Bose-Einstein condensation of excitons with electromagnetic radiation.
Johnsen, K; Kavoulakis, G M
2001-01-29
We examine the absorption spectrum of electromagnetic radiation from excitons, where an exciton in the 1s state absorbs a photon and makes a transition to the 2p state. We demonstrate that the absorption spectrum depends strongly on the quantum degeneracy of the exciton gas, and that it will generally manifest many-body effects. Based on our results we propose that absorption of infrared radiation could resolve recent contradictory experimental results on excitons in Cu(2)O.
Influence of excitonic effects on luminescence quantum yield in silicon
NASA Astrophysics Data System (ADS)
Sachenko, A. V.; Kostylyov, V. P.; Vlasiuk, V. M.; Sokolovskyi, I. O.; Evstigneev, M.
2017-03-01
Nonradiative exciton lifetime in silicon is determined by comparison of the experimental and theoretical curves of bulk minority charge carriers lifetime on doping and excitation levels. This value is used to analyze the influence of excitonic effects on internal luminescence quantum yield at room temperature, taking into account both nonradiative and radiative exciton lifetimes. A range of Shockley-Hall-Reed lifetimes is found, where excitonic effects lead to an increase of internal luminescence quantum yield.
Excitonic interaction in the fluorene dimer
NASA Astrophysics Data System (ADS)
Wessel, John; Beck, Steven; Highstrete, Clark
1994-12-01
The fluorene van der Waals dimer exhibits a complex origin spectrum. This region has been studied by resonance two-photon ionization and by fluorescence excitation spectroscopies. The spectra can be interpreted on the basis of intermediate strength exciton coupling, in which the electronic interaction is comparable to the van der Waals vibrational energies. The spectra are reasonably well described by two distorted adiabatic potential surfaces, which correspond to the two excitonic components of the origin system. A single Franck-Condon active intermolecular mode provides a reasonable description of the system, however the potentials have significant cubic and quartic contributions. Non-Born-Oppenheimer nuclear momentum coupling is present and intermodal (IVR) interactions are observed, even for intermolecular modes as low as v=1. The results are remarkably different from prior observations of excitonic structure in other systems, providing a detailed picture of coupling between electronic and intermolecular motion in a van der Waals dimer.
Radius of curvature controlled mirror
Neil, George R.; Rathke, John Wickham; Schultheiss, Thomas John; Shinn, Michelle D.; Dillon-Townes, Lawrence A.
2006-01-17
A controlled radius of curvature mirror assembly comprising: a distortable mirror having a reflective surface and a rear surface; and in descending order from the rear surface; a counter-distortion plate; a flow diverter having a flow diverter aperture at the center thereof; a flow return plate having a flow return aperture at the center thereof; a thermal isolation plate having a thermal isolation plate aperture at the center thereof and a flexible heater having a rear surface and a flexible heater aperture at the center thereof; a double walled tube defining a coolant feed chamber and a coolant return chamber; said coolant feed chamber extending to and through the flow diverter aperture and terminating at the counter-distortion plate and the coolant return chamber extending to and through the thermal isolation backplate and terminating at the flow diverter; and a coolant feed and a coolant return exit at the rear of said flexible heater.
Exciton dynamics in perturbed vibronic molecular aggregates
Brüning, C.; Wehner, J.; Hausner, J.; Wenzel, M.; Engel, V.
2015-01-01
A site specific perturbation of a photo-excited molecular aggregate can lead to a localization of excitonic energy. We investigate this localization dynamics for laser-prepared excited states. Changing the parameters of the electric field significantly influences the exciton localization which offers the possibility for a selective control of this process. This is demonstrated for aggregates possessing a single vibrational degree of freedom per monomer unit. It is shown that the effects identified for the molecular dimer can be generalized to larger aggregates with a high density of vibronic states. PMID:26798840
Russo, R; Benazzi, L; Perrella, M
2001-04-27
Understanding mechanisms in cooperative proteins requires the analysis of the intermediate ligation states. The release of hydrogen ions at the intermediate states of native and chemically modified hemoglobin, known as the Bohr effect, is an indicator of the protein tertiary/quaternary transitions, useful for testing models of cooperativity. The Bohr effects due to ligation of one subunit of a dimer and two subunits across the dimer interface are not additive. The reductions of the Bohr effect due to the chemical modification of a Bohr group of one and two alpha or beta subunits are additive. The Bohr effects of monoliganded chemically modified hemoglobins indicate the additivity of the effects of ligation and chemical modification with the possible exception of ligation and chemical modification of the alpha subunits. These observations suggest that ligation of a subunit brings about a tertiary structure change of hemoglobin in the T quaternary structure, which breaks some salt bridges, releases hydrogen ions, and is signaled across the dimer interface in such a way that ligation of a second subunit in the adjacent dimer promotes the switch from the T to the R quaternary structure. The rupture of the salt bridges per se does not drive the transition.
Redox Bohr effects and the role of heme a in the proton pump of bovine heart cytochrome c oxidase.
Capitanio, Giuseppe; Martino, Pietro Luca; Capitanio, Nazzareno; Papa, Sergio
2011-10-01
Structural and functional observations are reviewed which provide evidence for a central role of redox Bohr effect linked to the low-spin heme a in the proton pump of bovine heart cytochrome c oxidase. Data on the membrane sidedness of Bohr protons linked to anaerobic oxido-reduction of the individual metal centers in the liposome reconstituted oxidase are analysed. Redox Bohr protons coupled to anaerobic oxido-reduction of heme a (and Cu(A)) and Cu(B) exhibit membrane vectoriality, i.e. protons are taken up from the inner space upon reduction of these centers and released in the outer space upon their oxidation. Redox Bohr protons coupled to anaerobic oxido-reduction of heme a(3) do not, on the contrary, exhibit vectorial nature: protons are exchanged only with the outer space. A model of the proton pump of the oxidase, in which redox Bohr protons linked to the low-spin heme a play a central role, is described. This article is part of a Special Issue entitled: Allosteric cooperativity in respiratory proteins.
Durran, Richard; Neate, Andrew; Truman, Aubrey
2008-03-15
We consider the Bohr correspondence limit of the Schroedinger wave function for an atomic elliptic state. We analyze this limit in the context of Nelson's stochastic mechanics, exposing an underlying deterministic dynamical system in which trajectories converge to Keplerian motion on an ellipse. This solves the long standing problem of obtaining Kepler's laws of planetary motion in a quantum mechanical setting. In this quantum mechanical setting, local mild instabilities occur in the Keplerian orbit for eccentricities greater than (1/{radical}(2)) which do not occur classically.
Electric quadrupole transitions of the Bohr Hamiltonian with Manning-Rosen potential
NASA Astrophysics Data System (ADS)
Chabab, M.; El Batoul, A.; Lahbas, A.; Oulne, M.
2016-09-01
Analytical expressions of the wave functions are derived for a Bohr Hamiltonian with the Manning-Rosen potential in the cases of γ-unstable nuclei and axially symmetric prolate deformed ones with γ ≈ 0. By exploiting the results we have obtained in a recent work on the same theme Ref. [1], we have calculated the B (E 2) transition rates for 34 γ-unstable and 38 rotational nuclei and compared to experimental data, revealing a qualitative agreement with the experiment and phase transitions within the ground state band and showing also that the Manning-Rosen potential is more appropriate for such calculations than other potentials.
AGU's historical records move to the Niels Bohr Library and Archives
NASA Astrophysics Data System (ADS)
Harper, Kristine C.
2012-11-01
As scientists, AGU members understand the important role data play in finding the answers to their research questions: no data—no answers. The same holds true for the historians posing research questions concerning the development of the geophysical sciences, but their data are found in archival collections comprising the personal papers of geophysicists and scientific organizations. Now historians of geophysics—due to the efforts of the AGU History of Geophysics Committee, the American Institute of Physics (AIP), and the archivists of the Niels Bohr Library and Archives at AIP—have an extensive new data source: the AGU manuscript collection.
Bright and dark excitons in semiconductor carbon nanotubes
Tretiak, Sergei
2008-01-01
We report electronic structure calculations of finite-length semiconducting carbon nanotubes using the time dependent density functional theory (TD-DFT) and the time dependent Hartree Fock (TD-HF) approach coupled with semiempirical AM1 and ZINDO Hamiltonians. We specifically focus on the energy splitting, relative ordering, and localization properties of the optically active (bright) and optically forbidden (dark) states from the lowest excitonic band of the nanotubes. These excitonic states are very important in competing radiative and non-radiative processes in these systems. Our analysis of excitonic transition density matrices demonstrates that pure DFT functionals overdelocalize excitons making an electron-hole pair unbound; consequently, excitonic features are not presented in this method. In contrast, the pure HF and A111 calculations overbind excitons inaccurately predicting the lowest energy state as a bright exciton. Changing AM1 with ZINDO Hamiltonian in TD-HF calculations, predicts the bright exciton as the second state after the dark one. However, in contrast to AM1 calculations, the diameter dependence of the excitation energies obtained by ZINDO does not follow the experimental trends. Finally, the TD-DFT approach incorporating hybrid functions with a moderate portion of the long-range HF exchange, such as B3LYP, has the most generality and predictive capacity providing a sufficiently accurate description of excitonic structure in finite-size nanotubes. These methods characterize four important lower exciton bands. The lowest state is dark, the upper band is bright, and the two other dark and nearly degenerate excitons lie in-between. Although the calculated energy splittings between the lowest dark and the bright excitons are relatively large ({approx}0.1 eV), the dense excitonic manifold below the bright exciton allows for fast non-radiative relaxation leasing to the fast population of the lowest dark exciton. This rationalizes the low
Free-exciton states in crystalline GaTe
NASA Astrophysics Data System (ADS)
Wan, J. Z.; Brebner, J. L.; Leonelli, R.
1995-12-01
Polarized properties of both the singlet and triplet ground exciton states in the photoluminescence and transmission spectra of crystalline GaTe are explained based on the possible symmetry properties of the energy band edge of GaTe. Some experimental results about excited exciton states in GaTe are presented and discussed. The energy positions of exciton series in GaTe follow the three-dimensional direct allowed Wannier exciton formula just as in the the other III-VI layered compounds of GaSe and InSe. The nonthermalized, ``hot'' nature of excitons inside GaTe under higher optical excitation intensities is also discussed.
Exciton dynamics in a single layer MoS2
NASA Astrophysics Data System (ADS)
Kim, Jonghwan; Hong, Xiaoping; Shi, Sufei; Jin, Chenhao; Sun, Yinghui; Wang, Feng
2014-03-01
In a low dimensional semiconductor, exciton plays a crucial role in the optical property. Recently, a single layer of MoS2 has attracted significant attention due to its unique excitonic features. For example, exciton in MoS2 is predicted to have order of magnitude larger binding energy than conventional direct band gap material. For deeper understanding on such properties, however, it is important to understand how exciton is formed and decays in time domain. Our work on exciton dynamics in MoS2 by pump probe spectroscopy will be presented with control of both power and wavelength.
NASA Astrophysics Data System (ADS)
Singh, Jai; Koblov, Alexander
2013-02-01
Using the derived expression for the light yield in a scintillator, the influence of linear radiative and non-radiative (quenching) rates on the nonproportionality in light yield is studied. It is found that if the excitation created within the electron track initiated by a γ-photon incident on a scintillator remains mainly excitonic, then nonproportionality can be minimised by inventing a scintillator material with linear radiative rate >107 s-1, linear quenching rate <106 s-1 and track radius ≥70 nm along with maintaining the rates of other nonlinear processes as discovered earlier. If one can increase the linear radiative rate to 109 s-1, then the nonproportionality can be eliminated at a track radius >20 nm.
(Gene sequencing by scanning molecular exciton microscopy)
Not Available
1991-01-01
This report details progress made in setting up a laboratory for optical microscopy of genes. The apparatus including a fluorescence microscope, a scanning optical microscope, various spectrometers, and supporting computers is described. Results in developing photon and exciton tips, and in preparing samples are presented. (GHH)
electric dipole superconductor in bilayer exciton system
NASA Astrophysics Data System (ADS)
Sun, Qing-Feng; Jiang, Qing-Dong; Bao, Zhi-Qiang; Xie, X. C.
Recently, it was reported that the bilayer exciton systems could exhibit many new phenomena, including the large bilayer counterflow conductivity, the Coulomb drag, etc. These phenomena imply the formation of exciton condensate superfluid state. On the other hand, it is now well known that the superconductor is the condensate superfluid state of the Cooper pairs, which can be viewed as electric monopoles. In other words, the superconductor state is the electric monopole condensate superfluid state. Thus, one may wonder whether there exists electric dipole superfluid state. In this talk, we point out that the exciton in a bilayer system can be considered as a charge neutral electric dipole. And we derive the London-type and Ginzburg-Landau-type equations of electric dipole superconductivity. From these equations, we discover the Meissner-type effect (against spatial variation of magnetic fields), and the dipole current Josephson effect. The frequency in the AC Josephson effect of the dipole current is equal to that in the normal (monopole) superconductor. These results can provide direct evidence for the formation of exciton superfluid state in the bilayer systems and pave new ways to obtain the electric dipole current. We gratefully acknowledge the financial support by NBRP of China (2012CB921303 and 2015CB921102) and NSF-China under Grants Nos. 11274364 and 11574007.
The influence of Niels Bohr on Max Delbrück: revisiting the hopes inspired by "light and life".
McKaughan, Daniel J
2005-12-01
The impact of Niels Bohr's 1932 "Light and Life" lecture on Max Delbrück's lifelong search for a form of "complementarity" in biology is well documented and much discussed, but the precise nature of that influence remains subject to misunderstanding. The standard reading, which sees Delbrück's transition from physics into biology as inspired by the hope that investigation of biological phenomena might lead to a breakthrough discovery of new laws of physics, is colored much more by Erwin Schrödinger's What Is Life? (1944) than is often acknowledged. Bohr's view was that teleological and mechanistic descriptions are mutually exclusive yet jointly necessary for an exhaustive understanding of life. Although Delbrück's approach was empirical and less self-consciously philosophical, he shared Bohr's hope that scientific investigation would vindicate the view that at least some aspects of life are not reducible to physico-chemical terms.
Russell, Bianca; Johnston, Jennifer J; Biesecker, Leslie G.; Kramer, Nancy; Pickart, Angela; Rhead, William; Tan, Wen-Hann; Brownstein, Catherine A; Clarkson, L Kate; Dobson, Amy; Rosenberg, Avi Z; Schrier Vergano, Samantha A.; Helm, Benjamin M.; Harrison, Rachel E; Graham, John M
2016-01-01
Bohring-Opitz syndrome is a rare genetic condition characterized by distinctive facial features, variable microcephaly, hypertrichosis, nevus flammeus, severe myopia, unusual posture (flexion at the elbows with ulnar deviation, and flexion of the wrists and metacarpophalangeal joints), severe intellectual disability, and feeding issues. Nine patients with Bohring-Opitz syndrome have been identified as having a mutation in ASXL1. We report on eight previously unpublished patients with Bohring-Opitz syndrome caused by an apparent or confirmed de novo mutation in ASXL1. Of note, two patients developed bilateral Wilms tumors. Somatic mutations in ASXL1 are associated with myeloid malignancies, and these reports emphasize the need for Wilms tumor screening in patients with ASXL1 mutations. We discuss clinical management with a focus on their feeding issues, cyclic vomiting, respiratory infections, insomnia, and tumor predisposition. Many patients are noted to have distinctive personalities (interactive, happy, and curious) and rapid hair growth; features not previously reported. PMID:25921057
Exciton strings in an organic charge-transfer crystal
NASA Astrophysics Data System (ADS)
Kuwata-Gonokami, M.; Peyghambarian, N.; Meissner, K.; Fluegel, B.; Sato, Y.; Ema, K.; Shimano, R.; Mazumdar, S.; Guo, F.; Tokihiro, T.; Ezaki, H.; Hanamura, E.
1994-01-01
COLLECTIVE excitations resulting from many-body Coulomb interactions have been studied extensively in the solid state1: for example, the exchange interaction between the electrons in two excitons (bound electron-hole pairs) can bind the excitons together, forming a biexciton. At the other extreme, if the number of excitons is sufficiently large (~106), they can condense into a degenerate 'liquid' phase known as an electron-hole drop. But in conventional semiconductors, intermediate bound states, consisting of more than two excitons, are not formed. We show here, both theoretically and experimentally, that bound states of multiple excitons can form in the organic charge-transfer solid anthracene-(pyromellitic acid dianhydride). Coulomb interactions along the one-dimensional stacks of this material can stabilize trains of several charge-transfer excitons, and we refer to the resulting collective excitations as exciton strings.
Coupled exciton-photon Bose condensate in path integral formalism
NASA Astrophysics Data System (ADS)
Elistratov, A. A.; Lozovik, Yu. E.
2016-03-01
We study the behavior of exciton polaritons in an optical microcavity with an embedded semiconductor quantum well. We use a two-component exciton-photon approach formulated in terms of path integral formalism. In order to describe spatial distributions of the exciton and photon condensate densities, the two coupled equations of the Gross-Pitaevskii type are derived. For a homogeneous system, we find the noncondensate photon and exciton spectra, calculate the coefficients of transformation from the exciton-photon basis to the lower-upper polariton basis, and obtain the exciton and photon occupation numbers of the lower and upper polariton branches for nonzero temperatures. For an inhomogeneous system, the set of coupled equations of the Bogoliubov-de Gennes type is derived. The equations govern the spectra and spatial distributions of noncondensate photons and excitons.
Characterization of Macroscopic Ordering in Exciton Rings
NASA Astrophysics Data System (ADS)
Yang, Sen; Levitov, L. S.; Simons, B. D.; Gossard, A. C.
2005-03-01
Recently observed complex PL patterns in 2D QW structures exhibit the inner [1,3] and the outer [1-4] exciton rings, localized bright spots [1,3], and the macroscopically ordered exciton state (MOES) [1,3]. The latter appears at the outer ring via its fragmentation into a periodic array of aggregates. While the gross features have been explained within classical framework, attributing the inner rings to nonradiative exciton transport and cooling [1], and the outermost rings and the bright spots to macroscopic charge separation [3,4], the origin of the MOES remains unidentified [5]. Here, for the first time, we report experiments demonstrating the exciton energy modulation over the MOES as well as the phase diagram of MOES in exciton density and temperature coordinates. The experiments shed new light on the dynamical origin of MOES. Besides, we present the studies of dynamical processes within MOES including the observation of aggregate instabilities and bifurcations that point to the spontaneous character of the instability.[1] L.V. Butov, A.C. Gossard, D.S. Chemla, Nature 418, 751 (2002). [2] D. Snoke, S. Denev, Y. Liu, L. Pfeiffer, K. West, Nature 418, 754 (2002). [3] L.V. Butov, L.S. Levitov, A.V. Mintsev, B.D. Simons, A.C. Gossard, D.S. Chemla PRL 92, 117404 (2004). [4] R. Rapaport, G. Chen, D. Snoke, S.H. Simon, L. Pfeiffer, K. West, Y. Liu, S. Denev PRL 92, 117405 (2004). [5] L.S. Levitov, B.D. Simons, L.V. Butov, cond-mat/0403377.
The boundary conditions for Bohr's law: when is reacting faster than acting?
Pinto, Yaïr; Otten, Marte; Cohen, Michael A; Wolfe, Jeremy M; Horowitz, Todd S
2011-02-01
In gunfights in Western movies, the hero typically wins, even though the villain draws first. Niels Bohr (Gamow, The great physicists from Galileo to Einstein. Chapter: The law of quantum, 1988) suggested that this reflected a psychophysical law, rather than a dramatic conceit. He hypothesized that reacting is faster than acting. Welchman, Stanley, Schomers, Miall, and Bülthoff (Proceedings of the Royal Society of London B: Biological Sciences, 277, 1667-1674, 2010) provided empirical evidence supporting "Bohr's law," showing that the time to complete simple manual actions was shorter when reacting than when initiating an action. Here we probe the limits of this effect. In three experiments, participants performed a simple manual action, which could either be self-initiated or executed following an external visual trigger. Inter-button time was reliably faster when the action was externally triggered. However, the effect disappeared for the second step in a two-step action. Furthermore, the effect reversed when a choice between two actions had to be made. Reacting is faster than acting, but only for simple, ballistic actions.
Inversion of the Bohr effect upon oxygen binding to 24-meric tarantula hemocyanin.
Sterner, R; Decker, H
1994-01-01
The Bohr effect describes the usually negative coupling between the binding of oxygen and the binding of protons to respiratory proteins. It was first described for hemoglobin and provides for an optimal oxygen supply of the organism under changing physiological conditions. Our measurements of both oxygen and proton binding to the 24-meric tarantula hemocyanin establish the unusual case where a respiratory protein binds protons at low degrees of oxygenation but releases protons at high degrees of oxygenation. In contrast to what is observed with hemoglobin and other respiratory proteins, this phenomenon amounts to the inversion of the Bohr effect in the course of an oxygen-binding curve at a given pH value. Therefore, protons in spider blood can act either as allosteric activators or as allosteric inhibitors of oxygen binding, depending on the degree of oxygenation of hemocyanin. These functional properties of tarantula hemocyanin, which cannot be explained by classical allosteric models, require at least four different conformational states of the subunits. Inspection of the known x-ray structures of closely related hemocyanins suggests that salt bridges between completely conserved histidine and glutamate residues located at particular intersubunit interfaces are responsible for the observed phenomena. Images PMID:8197143
Dynamics of exciton transfer in coupled polymer chains
NASA Astrophysics Data System (ADS)
Zhang, Y. L.; Liu, X. J.; Sun, Z.; An, Z.
2013-05-01
The dynamics of singlet and triplet exciton transfer in coupled polymer chains are investigated within the Su-Schrieffer-Heeger+Pariser-Parr-Pople model including both electron-phonon (e-p) coupling and electron-electron (e-e) interactions, using a multi-configurational time-dependent Hartree-Fock dynamic method. In order to explain the processes involved, the effects of on-site and long-range e-e interactions on the locality of the singlet and triplet excitons are first investigated on an isolated chain. It is found that the locality of the singlet exciton decreases, while the locality of the triplet exciton increases with an increase in the on-site e-e interactions. On the other hand, an increase in the long-range e-e interaction results in a more localized singlet exciton and triplet exciton. In coupled polymer chains, we then quantitatively show the yields of singlet and triplet exciton transfer products under the same interchain coupling. It is found that the yield of singlet interchain excitons is much higher than that of triplet interchain excitons, that is to say, singlet exciton transfer is significantly easier than that for triplet excitons. This results from the fact that the singlet exciton is more delocalized than the triplet exciton. In addition, hopping of electrons with opposite spins between the coupled chains can facilitate the transfer of singlet excitons. The results are of great significance for understanding the photoelectric conversion process and developing high-power organic optoelectronic applications.
Mirror with thermally controlled radius of curvature
Neil, George R.; Shinn, Michelle D.
2010-06-22
A radius of curvature controlled mirror for controlling precisely the focal point of a laser beam or other light beam. The radius of curvature controlled mirror provides nearly spherical distortion of the mirror in response to differential expansion between the front and rear surfaces of the mirror. The radius of curvature controlled mirror compensates for changes in other optical components due to heating or other physical changes. The radius of curvature controlled mirror includes an arrangement for adjusting the temperature of the front surface and separately adjusting the temperature of the rear surface to control the radius of curvature. The temperature adjustment arrangements can include cooling channels within the mirror body or convection of a gas upon the surface of the mirror. A control system controls the differential expansion between the front and rear surfaces to achieve the desired radius of curvature.
Puzzling out the proton radius puzzle
Mihovilovič, M.; Merkel, H.; Weber, A.
2016-01-22
The discrepancy between the proton charge radius extracted from the muonic hydrogen Lamb shift measurement and the best present value obtained from the elastic scattering experiments, remains unexplained and represents a burning problem of today’s nuclear physics: after more than 50 years of research the radius of a basic constituent of matter is still not understood. This paper presents a summary of the best existing proton radius measurements, followed by an overview of the possible explanations for the observed inconsistency between the hydrogen and the muonic-hydrogen data. In the last part the upcoming experiments, dedicated to remeasuring the proton radius, are described.
Puzzling out the proton radius puzzle
NASA Astrophysics Data System (ADS)
Mihovilovič, M.; Merkel, H.; Weber, A.
2016-01-01
The discrepancy between the proton charge radius extracted from the muonic hydrogen Lamb shift measurement and the best present value obtained from the elastic scattering experiments, remains unexplained and represents a burning problem of today's nuclear physics: after more than 50 years of research the radius of a basic constituent of matter is still not understood. This paper presents a summary of the best existing proton radius measurements, followed by an overview of the possible explanations for the observed inconsistency between the hydrogen and the muonic-hydrogen data. In the last part the upcoming experiments, dedicated to remeasuring the proton radius, are described.
Energy spectrum of an exciton in a CdSe/ZnTe type-II core/shell spherical quantum dot
NASA Astrophysics Data System (ADS)
Chafai, A.; Dujardin, F.; Essaoudi, I.; Ainane, A.
2017-01-01
The binding energy of an exciton inside a CdSe/ZnTe core/shell spherical quantum dot was theoretically examined taking into account the dependence of the dielectric constant and charge carriers effective mass on radius, and using the envelope function approximation. Such a structure presents original optical and electronic properties because of the spatial separation of electrons and holes caused by the type-II alignment of energy states. The mean distance between the electron and hole was calculated variationally using a trial function taking into account the coulomb interaction between charge carriers. Our numerical results provide a description to the size dependence of the binding energy of an exciton inside a core/shell nanoheterostructure type-II. Indeed, by controlling the inner and outer radii, we can precisely control the energy spectrum of the exciton.
Exciton radiative lifetime in transition metal dichalcogenide monolayers
NASA Astrophysics Data System (ADS)
Robert, C.; Lagarde, D.; Cadiz, F.; Wang, G.; Lassagne, B.; Amand, T.; Balocchi, A.; Renucci, P.; Tongay, S.; Urbaszek, B.; Marie, X.
2016-05-01
We have investigated the exciton dynamics in transition metal dichalcogenide monolayers using time-resolved photoluminescence experiments performed with optimized time resolution. For MoS e2 monolayer, we measure τrad0=1.8 ±0.2 ps at T =7 K that we interpret as the intrinsic radiative recombination time. Similar values are found for WS e2 monolayers. Our detailed analysis suggests the following scenario: at low temperature (T ≲50 K ), the exciton oscillator strength is so large that the entire light can be emitted before the time required for the establishment of a thermalized exciton distribution. For higher lattice temperatures, the photoluminescence dynamics is characterized by two regimes with very different characteristic times. First the photoluminescence intensity drops drastically with a decay time in the range of the picosecond driven by the escape of excitons from the radiative window due to exciton-phonon interactions. Following this first nonthermal regime, a thermalized exciton population is established gradually yielding longer photoluminescence decay times in the nanosecond range. Both the exciton effective radiative recombination and nonradiative recombination channels including exciton-exciton annihilation control the latter. Finally the temperature dependence of the measured exciton and trion dynamics indicates that the two populations are not in thermodynamical equilibrium.
A new class of collective excitations: Exciton strings
NASA Astrophysics Data System (ADS)
Mazumdar, S.; Guo, F.; Meissner, K.; Fluegel, B.; Peyghambarian, N.
1996-06-01
Optical excitation in a strongly neutral quasi-one-dimensional mixed-stack charge-transfer solid results in an exciton state, in which the electron and the hole are bound by electrostatic Coulomb interactions that are large compared to the one-electron hopping. We present a joint theoretical-experimental demonstration of a new class of collective excitations, multiexcitons or exciton strings, consisting of a string of several (more than two) bound excitons, in a prototype neutral charge-transfer solid. The stability of the multiexciton states arise from the combined effects of one dimensionality and strong Coulomb interactions. Theoretically, we show that in narrow band one-dimensional semiconductors with long range Coulomb interactions, the occurrence of stable 2-exciton string (biexciton) necessarily implies stable higher multiexcitons. Experimentally, evidence for the multiexciton strings is demonstrated by femtosecond pump-probe spectroscopy of anthracene pyromellitic acid dianhydride. Excellent qualitative agreement is found between the calculated and the measured differential transmission spectra. Photoinduced absorptions to the 2-exciton string at low pump intensity and to the 3-exciton string at high pump intensity are observed, in agreement with the theory of excited state absorption. The 2-exciton string is confirmed also by a direct two-photon absorption measurement. The binding energies of the 2-exciton and the 3-exciton strings are obtained from the experimental data. The larger binding energy of the 3-exciton is in agreement with theory.
Taming excitons in II-VI semiconductor nanowires and nanobelts
NASA Astrophysics Data System (ADS)
Xu, Xinlong; Zhang, Qing; Zhang, Jun; Zhou, Yixuan; Xiong, Qihua
2014-10-01
Excitons are one of the most important fundamental quasi-particles, and are involved in a variety of processes forming the basis of a wide range of opto-electronic and photonic devices based on II-VI semiconductor nanowires and nanobelts, such as light-emitting diodes, photovoltaic cells, photodetectors and nanolasers. A clear understanding of their properties and unveiling the potential engineering for excitons is of particular importance for the design and optimization of nanoscale opto-electronic and photonic devices. Herein, we present a comprehensive review on discussing the fundamental behaviours of the excitons in one-dimensional (1D) II-VI semiconductor nanomaterials (nanowires and nanobelts). We will start with a focus on the unique properties (origin, generation, etc) and dynamics of excitons and exciton complexes in the II-VI semiconductor nanowires and nanobelts. Then we move to the recent progress on the excitonic response in 1D nanomaterials and focus on the tailoring and engineering of excitonic properties through rational controlling of the physical parameters and conditions, intrinsically and extrinsically. These include (1) exciton-exciton interaction, which is important for 1D nanomaterial nanolasing; (2) exciton-phonon interaction, which has interesting applications for laser cooling; and (3) exciton-plasmon interaction, which is the cornerstone towards the realization of plasmonic lasers. The potential of electric field, morphology and size control for excitonic properties is also discussed. Unveiling and controlling excitonic properties in II-VI semiconductor nanowires and nanobelts would promote the development of 1D nanoscience and nanotechnology.
Two-dimensional coherent spectroscopy of excitons, biexcitons, and exciton-polaritons
NASA Astrophysics Data System (ADS)
Bristow, Alan D.
2016-10-01
Semiconductors systems exhibiting excitonic properties are discussed in terms of their coherent response, which is extracted using two-dimensional coherent spectroscopy. This control method allows for separation of quantum pathways that comprise the optical response, such as interactions between excitons, their dephasing rates, the effects of many-body interactions and the role of structure on the microscopic electronic environment. Additional controls, such as polarization can be used to further distinguish biexcitons and suppress many-body interactions. These result are compared and contrasted with those from a semiconductor microcavity where the excitons form polaritonic modes due to normal-mode splitting. Rephrasing spectra map the detuning dependence of the exciton-polariton branches. Increasing the detuning shifts all features to higher energy and the expected anti-crossing is observed. An isolated biexciton is seen only at negative detuning, separated by a binding energy. For positive detuning, the spectral weight of the off-diagonal features swap, as the lower polariton branch and biexciton come into resonance. This indicates that the off-diagonal features are sensitive to the interactions of the exciton-polaritons and other resonances in the system.
Optical properties of MgZnO alloys: Excitons and exciton-phonon complexes
Neumann, M. D.; Cobet, C.; Esser, N.; Laumer, B.; Wassner, T. A.; Eickhoff, M.; Feneberg, M.; Goldhahn, R.
2011-07-01
The characteristics of the excitonic absorption and emission around the fundamental bandgap of wurtzite Mg{sub x}Zn{sub 1-x}O grown on c-plane sapphire substrates by plasma assisted molecular beam epitaxy with Mg contents between x = 0 and x = 0.23 are studied using spectroscopic ellipsometry and photoluminescence (PL) measurements. The ellipsometric data were analyzed using a multilayer model yielding the dielectric function (DF). The imaginary part of the DF for the alloys exhibits a pronounced feature which is attributed to exciton-phonon coupling (EPC) similar to the previously reported results for ZnO. Thus, in order to determine reliable transition energies, the spectral dependence is analyzed by a model which includes free excitonic lines, the exciton continuum, and the enhanced absorption due to EPC. A line shape analysis of the temperature-dependent PL spectra yielded in particular the emission-related free excitonic transition energies, which are compared to the results from the DF line-shape analysis. The PL linewidth is discussed within the framework of an alloy disorder model.
Proposal for dark exciton based chemical sensors
NASA Astrophysics Data System (ADS)
Feierabend, Maja; Berghäuser, Gunnar; Knorr, Andreas; Malic, Ermin
2017-03-01
The rapidly increasing use of sensors throughout different research disciplines and the demand for more efficient devices with less power consumption depends critically on the emergence of new sensor materials and novel sensor concepts. Atomically thin transition metal dichalcogenides have a huge potential for sensor development within a wide range of applications. Their optimal surface-to-volume ratio combined with strong light-matter interaction results in a high sensitivity to changes in their surroundings. Here, we present a highly efficient sensing mechanism to detect molecules based on dark excitons in these materials. We show that the presence of molecules with a dipole moment transforms dark states into bright excitons, resulting in an additional pronounced peak in easy accessible optical spectra. This effect exhibits a huge potential for sensor applications, since it offers an unambiguous optical fingerprint for the detection of molecules--in contrast to common sensing schemes relying on small peak shifts and intensity changes.
Multiple Exciton Generation in Colloidal Nanocrystals
Smith, Charles; Binks, David
2013-01-01
In a conventional solar cell, the energy of an absorbed photon in excess of the band gap is rapidly lost as heat, and this is one of the main reasons that the theoretical efficiency is limited to ~33%. However, an alternative process, multiple exciton generation (MEG), can occur in colloidal quantum dots. Here, some or all of the excess energy is instead used to promote one or more additional electrons to the conduction band, potentially increasing the photocurrent of a solar cell and thereby its output efficiency. This review will describe the development of this field over the decade since the first experimental demonstration of multiple exciton generation, including the controversies over experimental artefacts, comparison with similar effects in bulk materials, and the underlying mechanisms. We will also describe the current state-of-the-art and outline promising directions for further development.
Emission of Tamm plasmon/exciton polaritons
NASA Astrophysics Data System (ADS)
Symonds, C.; Lemaître, A.; Homeyer, E.; Plenet, J. C.; Bellessa, J.
2009-10-01
We report on the observation of the strong coupling regime occurring between a Tamm plasmon (TP) mode and an exciton from inorganic quantum wells (QWs). The sample is formed by a silver thin film deposited onto an AlAs/GaAlAs Bragg reflector containing InGaAs QWs located in the high refractive index layers. Angular resolved reflectometry experiments evidence a clear anticrossing in the dispersion relations, a signature of the strong coupling regime. The Rabi splitting energy is 11.5 meV. The experimental data are in very good agreement with simple transfer matrix calculations. The emission from low and high energy TP/exciton polaritons is also demonstrated.
Inci, I.; Boztosun, I.; Bonatsos, D.
2008-11-11
Analytical solutions of the collective Bohr Hamiltonian with the Morse potential have been obtained for the U(5)-O(6) and U(5)-SU(3) transition regions through the Asymptotic Iteration Method (AIM). The obtained energy eigenvalue equations have been used to get the experimental excitation energy spectrum of Xe and Yb isotopes. The results are in good agreement with experimental data.
ERIC Educational Resources Information Center
Gjedde, Albert
2010-01-01
The year 2010 is the centennial of the publication of the "Seven Little Devils" in the predecessor of "Acta Physiologica". In these seven papers, August and Marie Krogh sought to refute Christian Bohr's theory that oxygen diffusion from the lungs to the circulation is not entirely passive but rather facilitated by a specific cellular activity…
Resonant pairing of excitons in semiconductor heterostructures
NASA Astrophysics Data System (ADS)
Andreev, S. V.
2016-10-01
We suggest indirect excitons in two-dimensional semiconductor heterostructures as a platform for the realization of a bosonic analog of the Bardeen-Cooper-Schrieffer superconductor. The quantum phase transition to a biexcitonic gapped state can be controlled in situ by tuning the electric field applied to the structure in the growth direction. The proposed playground should allow one to go to strongly correlated and high-temperature regimes, unattainable with Feshbach resonant atomic gases.
Excitonic effects in oxyhalide scintillating host compounds
Shwetha, G.; Kanchana, V.; Valsakumar, M. C.
2014-10-07
Ab-initio calculations based on density functional theory have been performed to study the electronic, optical, mechanical, and vibrational properties of scintillator host compounds YOX (X = F, Cl, Br, and I). Semiempirical dispersion correction schemes are used to find the effect of van der Waals forces on these layered compounds and we found this effect to be negligible except for YOBr. Calculations of phonons and elastic constants showed that all the compounds studied here are both dynamically and mechanically stable. YOF and YOI are found to be indirect band gap insulators while YOCl and YOBr are direct band gap insulators. The band gap is found to decrease as we move from fluorine to iodine, while the calculated refractive index shows the opposite trend. As the band gap decreases on going down the periodic table from YOF to YOI, the luminescence increases. The excitonic binding energy calculated, within the effective mass approximation, is found to be more for YOF than the remaining compounds, suggesting that the excitonic effect to be more in YOF than the other compounds. The optical properties are calculated within the Time-Dependent Density Functional Theory (TDDFT) and compared with results obtained within the random phase approximation. The TDDFT calculations, using the newly developed bootstrap exchange-correlation kernel, showed significant excitonic effects in all the compounds studied here.
Valley excitons in two-dimensional semiconductors
Yu, Hongyi; Cui, Xiaodong; Xu, Xiaodong; Yao, Wang
2014-12-30
Monolayer group-VIB transition metal dichalcogenides have recently emerged as a new class of semiconductors in the two-dimensional limit. The attractive properties include: the visible range direct band gap ideal for exploring optoelectronic applications; the intriguing physics associated with spin and valley pseudospin of carriers which implies potentials for novel electronics based on these internal degrees of freedom; the exceptionally strong Coulomb interaction due to the two-dimensional geometry and the large effective masses. The physics of excitons, the bound states of electrons and holes, has been one of the most actively studied topics on these two-dimensional semiconductors, where the excitons exhibit remarkably new features due to the strong Coulomb binding, the valley degeneracy of the band edges, and the valley dependent optical selection rules for interband transitions. Here we give a brief overview of the experimental and theoretical findings on excitons in two-dimensional transition metal dichalcogenides, with focus on the novel properties associated with their valley degrees of freedom.
Valley excitons in two-dimensional semiconductors
Yu, Hongyi; Cui, Xiaodong; Xu, Xiaodong; ...
2014-12-30
Monolayer group-VIB transition metal dichalcogenides have recently emerged as a new class of semiconductors in the two-dimensional limit. The attractive properties include: the visible range direct band gap ideal for exploring optoelectronic applications; the intriguing physics associated with spin and valley pseudospin of carriers which implies potentials for novel electronics based on these internal degrees of freedom; the exceptionally strong Coulomb interaction due to the two-dimensional geometry and the large effective masses. The physics of excitons, the bound states of electrons and holes, has been one of the most actively studied topics on these two-dimensional semiconductors, where the excitons exhibitmore » remarkably new features due to the strong Coulomb binding, the valley degeneracy of the band edges, and the valley dependent optical selection rules for interband transitions. Here we give a brief overview of the experimental and theoretical findings on excitons in two-dimensional transition metal dichalcogenides, with focus on the novel properties associated with their valley degrees of freedom.« less
Microcavity controlled coupling of excitonic qubits.
Albert, F; Sivalertporn, K; Kasprzak, J; Strauß, M; Schneider, C; Höfling, S; Kamp, M; Forchel, A; Reitzenstein, S; Muljarov, E A; Langbein, W
2013-01-01
Controlled non-local energy and coherence transfer enables light harvesting in photosynthesis and non-local logical operations in quantum computing. This process is intuitively pictured by a pair of mechanical oscillators, coupled by a spring, allowing for a reversible exchange of excitation. On a microscopic level, the most relevant mechanism of coherent coupling of distant quantum bits--like trapped ions, superconducting qubits or excitons confined in semiconductor quantum dots--is coupling via the electromagnetic field. Here we demonstrate the controlled coherent coupling of spatially separated quantum dots via the photon mode of a solid state microresonator using the strong exciton-photon coupling regime. This is enabled by two-dimensional spectroscopy of the sample's coherent response, a sensitive probe of the coherent coupling. The results are quantitatively understood in a rigorous description of the cavity-mediated coupling of the quantum dot excitons. This mechanism can be used, for instance in photonic crystal cavity networks, to enable a long-range, non-local coherent coupling.
Chiral topological excitons in the monolayer transition metal dichalcogenides.
Gong, Z R; Luo, W Z; Jiang, Z F; Fu, H C
2017-02-10
We theoretically investigate the chiral topological excitons emerging in the monolayer transition metal dichalcogenides, where a bulk energy gap of valley excitons is opened up by a position dependent external magnetic field. We find two emerging chiral topological nontrivial excitons states, which exactly connects to the bulk topological properties, i.e., Chern number = 2. The dependence of the spectrum of the chiral topological excitons on the width of the magnetic field domain wall as well as the magnetic filed strength is numerically revealed. The chiral topological valley excitons are not only important to the excitonic transport due to prevention of the backscattering, but also give rise to the quantum coherent control in the optoelectronic applications.
Chiral topological excitons in the monolayer transition metal dichalcogenides
NASA Astrophysics Data System (ADS)
Gong, Z. R.; Luo, W. Z.; Jiang, Z. F.; Fu, H. C.
2017-02-01
We theoretically investigate the chiral topological excitons emerging in the monolayer transition metal dichalcogenides, where a bulk energy gap of valley excitons is opened up by a position dependent external magnetic field. We find two emerging chiral topological nontrivial excitons states, which exactly connects to the bulk topological properties, i.e., Chern number = 2. The dependence of the spectrum of the chiral topological excitons on the width of the magnetic field domain wall as well as the magnetic filed strength is numerically revealed. The chiral topological valley excitons are not only important to the excitonic transport due to prevention of the backscattering, but also give rise to the quantum coherent control in the optoelectronic applications.
Chiral topological excitons in the monolayer transition metal dichalcogenides
Gong, Z. R.; Luo, W. Z.; Jiang, Z. F.; Fu, H. C.
2017-01-01
We theoretically investigate the chiral topological excitons emerging in the monolayer transition metal dichalcogenides, where a bulk energy gap of valley excitons is opened up by a position dependent external magnetic field. We find two emerging chiral topological nontrivial excitons states, which exactly connects to the bulk topological properties, i.e., Chern number = 2. The dependence of the spectrum of the chiral topological excitons on the width of the magnetic field domain wall as well as the magnetic filed strength is numerically revealed. The chiral topological valley excitons are not only important to the excitonic transport due to prevention of the backscattering, but also give rise to the quantum coherent control in the optoelectronic applications. PMID:28186154
Singlet exciton fission in nanostructured organic solar cells.
Jadhav, Priya J; Mohanty, Aseema; Sussman, Jason; Lee, Jiye; Baldo, Marc A
2011-04-13
Singlet exciton fission is an efficient multiexciton generation process in organic molecules. But two concerns must be satisfied before it can be exploited in low-cost solution-processed organic solar cells. Fission must be combined with longer wavelength absorption in a structure that can potentially surpass the single junction limit, and its efficiency must be demonstrated in nanoscale domains within blended devices. Here, we report organic solar cells comprised of tetracene, copper phthalocyanine, and the buckyball C(60). Short wavelength light generates singlet excitons in tetracene. These are subsequently split into two triplet excitons and transported through the phthalocyanine. In addition, the phthalocyanine absorbs photons below the singlet exciton energy of tetracene. To test tetracene in nanostructured blends, we fabricate coevaporated bulk heterojunctions and multilayer heterojunctions of tetracene and C(60). We measure a singlet fission efficiency of (71 ± 18)%, demonstrating that exciton fission can efficiently compete with exciton dissociation on the nanoscale.
Bose-Einstein condensation of dipolar excitons in quantum wells
NASA Astrophysics Data System (ADS)
Timofeev, V. B.; Gorbunov, A. V.
2009-02-01
The experiments on Bose-Einstein condensation (BEC) of dipolar (spatially-indirect) excitons in the lateral traps in GaAs/AlGaAs Schottky-diode heterostructures with double and single quantum wells are presented. The condensed part of dipolar excitons under detection in the far zone is placed in k-space in the range which is almost two orders of magnitude less than thermal exciton wave vector. BEC occurs spontaneously in a reservoir of thermalized excitons. Luminescence images of Bose-condensate of dipolar excitons exhibit along perimeter of circular trap axially symmetrical spatial structures of equidistant bright spots which strongly depend on excitation power and temperature. By means of two-beam interference experiments with the use of cw and pulsed photoexcitation it was found that the state of dipolar exciton Bose-condensate is spatially coherent and the whole patterned luminescence configuration in real space is described by a common wave function.
Hybrid states of Tamm plasmons and exciton-polaritons
NASA Astrophysics Data System (ADS)
Kaliteevski, M.; Brand, S.; Abram, R. A.; Iorsh, I.; Kavokin, A. V.; Liew, T. C. H.; Shelykh, I. A.
2011-03-01
We have demonstrated theoretically that it is possible to use the resonant coupling of exciton-polaritons in a planar microcavity and Tamm plasmons at a metal film on the surface of the structure to provide lateral spatial control of the exciton-polaritons within the cavity. The resonant coupling of the Tamm plasmons to cavity exciton-polaritons results in a triplet of hybrid plasmon-exciton-polariton modes with the lowest at a significantly lower energy than that of the unperturbed exciton-polaritons. Further, a patterned metal film on the structure surface can provide a sufficiently large lateral modulation of the excitation energy that localization of the exciton-polaritons within chosen regions of the cavity is possible. We show how the approach opens the way to a practical demonstration of polariton channels, traps, and devices, including logic gates.
Excitonic gap formation and condensation in the bilayer graphene structure
NASA Astrophysics Data System (ADS)
Apinyan, V.; Kopeć, T. K.
2016-09-01
We have studied the excitonic gap formation in the Bernal Stacked, bilayer graphene (BLG) structures at half-filling. Considering the local Coulomb interaction between the layers, we calculate the excitonic gap parameter and we discuss the role of the interlayer and intralayer Coulomb interactions and the interlayer hopping on the excitonic pair formation in the BLG. Particularly, we predict the origin of excitonic gap formation and condensation, in relation to the furthermost interband optical transition spectrum. The general diagram of excitonic phase transition is given, explaining different interlayer correlation regimes. The temperature dependence of the excitonic gap parameter is shown and the role of the chemical potential, in the BLG, is discussed in details.
Mass tensor in the Bohr Hamiltonian from the nondiagonal energy weighted sum rules
Jolos, R. V.; Brentano, P. von
2009-04-15
Relations are derived in the framework of the Bohr Hamiltonian that express the matrix elements of the deformation-dependent components of the mass tensor through the experimental data on the energies and the E2 transitions relating the low-lying collective states. These relations extend the previously obtained results for the intrinsic mass coefficients of the well-deformed axially symmetric nuclei on nuclei of arbitrary shape. The expression for the mass tensor is suggested, which is sufficient to satisfy the existing experimental data on the energy weighted sum rules for the E2 transitions for the low-lying collective quadrupole excitations. The mass tensor is determined for {sup 106,108}Pd, {sup 108-112}Cd, {sup 134}Ba, {sup 150}Nd, {sup 150-154}Sm, {sup 154-160}Gd, {sup 164}Dy, {sup 172}Yb, {sup 178}Hf, {sup 188-192}Os, and {sup 194-196}Pt.
Large boson number IBM calculations and their relationship to the Bohr model
NASA Astrophysics Data System (ADS)
Thiamova, G.; Rowe, D. J.
2009-08-01
Recently, the SO(5) Clebsch-Gordan (CG) coefficients up to the seniority v max = 40 were computed in floating point arithmetic (T.A. Welsh, unpublished (2008)); and, in exact arithmetic, as square roots of rational numbers (M.A. Caprio et al., to be published in Comput. Phys. Commun.). It is shown in this paper that extending the QQQ model calculations set up in the work by D.J. Rowe and G. Thiamova (Nucl. Phys. A 760, 59 (2005)) to N = v max = 40 is sufficient to obtain the IBM results converged to its Bohr contraction limit. This will be done by comparing some important matrix elements in both models, by looking at the seniority decomposition of low-lying states and at the behavior of the energy and B( E2) transition strengths ratios with increasing seniority.
NASA Astrophysics Data System (ADS)
Madrid, Angeline; Kim, Hyeon-Deuk; Habenicht, Bradley; Prezhdo, Oleg
2010-03-01
Phonon-induced dephasing processes that govern optical line widths, multiple exciton (ME) generation (MEG), and ME fission (MEF) in semiconductor quantum dots (QDs) are investigated by ab initio molecular dynamics simulation. Using Si QDs as an example, we propose that MEF occurs by phonon-induced dephasing and, for the first time, estimate its time scale to be 100 fs. In contrast, luminescence and MEG dephasing times are all sub-10 fs. Generally, dephasing is faster for higher-energy and higher-order excitons and increased temperatures. MEF is slow because it is facilitated only by low-frequency acoustic modes. Luminescence and MEG couple to both acoustic and optical modes of the QD, as well as ligand vibrations. The detailed atomistic simulation of the dephasing processes advances understanding of exciton dynamics in QDs and other nanoscale materials.
Spatially indirect exciton condensate phases in double bilayer graphene
NASA Astrophysics Data System (ADS)
Su, Jung-Jung; MacDonald, Allan H.
2017-01-01
We present a theory of spatially indirect exciton condensate states in systems composed of a pair of electrically isolated Bernal graphene bilayers. The ground-state phase diagram in a two-dimensional displacement-field/inter-bilayer-bias space includes layer-polarized semiconductors, spin-density-wave states, exciton condensates, and states with mixed excitonic and spin order. We find that two different condensate states, distinguished by a chirality index, are stable under different electrical control conditions.
Photogenerated exciton dissociation in highly coupled lead salt nanocrystal assemblies.
Choi, Joshua J; Luria, Justin; Hyun, Byung-Ryool; Bartnik, Adam C; Sun, Liangfeng; Lim, Yee-Fun; Marohn, John A; Wise, Frank W; Hanrath, Tobias
2010-05-12
Internanocrystal coupling induced excitons dissociation in lead salt nanocrystal assemblies is investigated. By combining transient photoluminescence spectroscopy, grazing incidence small-angle X-ray scattering, and time-resolved electric force microscopy, we show that excitons can dissociate, without the aid of an external bias or chemical potential gradient, via tunneling through a potential barrier when the coupling energy is comparable to the exciton binding energy. Our results have important implications for the design of nanocrystal-based optoelectronic devices.
Molecular Basis of the Bohr Effect in Arthropod Hemocyanin*S⃞
Hirota, Shun; Kawahara, Takumi; Beltramini, Mariano; Di Muro, Paolo; Magliozzo, Richard S.; Peisach, Jack; Powers, Linda S.; Tanaka, Naoki; Nagao, Satoshi; Bubacco, Luigi
2008-01-01
Flash photolysis and K-edge x-ray absorption spectroscopy (XAS) were used to investigate the functional and structural effects of pH on the oxygen affinity of three homologous arthropod hemocyanins (Hcs). Flash photolysis measurements showed that the well-characterized pH dependence of oxygen affinity (Bohr effect) is attributable to changes in the oxygen binding rate constant, kon, rather than changes in koff. In parallel, coordination geometry of copper in Hc was evaluated as a function of pH by XAS. It was found that the geometry of copper in the oxygenated protein is unchanged at all pH values investigated, while significant changes were observed for the deoxygenated protein as a function of pH. The interpretation of these changes was based on previously described correlations between spectral lineshape and coordination geometry obtained for model compounds of known structure (Blackburn, N. J., Strange, R. W., Reedijk, J., Volbeda, A., Farooq, A., Karlin, K. D., and Zubieta, J. (1989) Inorg. Chem.,28 ,1349 -1357). A pH-dependent change in the geometry of cuprous copper in the active site of deoxyHc, from pseudotetrahedral toward trigonal was assigned from the observed intensity dependence of the 1s → 4pz transition in x-ray absorption near edge structure (XANES) spectra. The structural alteration correlated well with increase in oxygen affinity at alkaline pH determined in flash photolysis experiments. These results suggest that the oxygen binding rate in deoxyHc depends on the coordination geometry of Cu(I) and suggest a structural origin for the Bohr effect in arthropod Hcs. PMID:18725416
Phase diagram for the trapping kinetics of partially coherent excitons
NASA Astrophysics Data System (ADS)
Pearlstein, Robert M.
1998-06-01
The kinetics of exciton trapping within molecular assemblies similar to those of recently reported structural models of photosynthetic light-harvesting antennas have been described theoretically for any degree of exciton coherence. It is shown here that in the space of two of the kinetic parameters - the local exciton scattering rate constant and the nearest-neighbor separation distance of the exciton-generating transition dipoles - the trapping kinetics segregate into coherent and incoherent phases delineated by universal curves. Consequences of these findings are discussed, particularly as they may apply to purple photosynthetic bacteria.
Surface photovoltage in exciton absorption range in CdS
NASA Technical Reports Server (NTRS)
Morawski, A.; Banisch, R.; Lagowski, J.
1977-01-01
The high resolution, intrinsic spectra of surface photovoltage are reported for semiconducting n-type CdS single crystals. At reduced temperatures (120-160 K) the spectra exhibit three sharp maxima due to A, B and C free exciton transitions. Energy positions of these lines and valence band parameters (spin-orbit and crystal field splittings) estimated from surface photovoltage are in good agreement with values obtained by other methods. The excitonic transitions are very sensitive to surface treatment, i.e. polishing, etching, background illumination and surface doping. The mechanism of direct interaction of free excitons with surface states is proposed to explain exciton lines in surface photovoltage.
Exciton management in organic photovoltaic multidonor energy cascades.
Griffith, Olga L; Forrest, Stephen R
2014-05-14
Multilayer donor regions in organic photovoltaics show improved power conversion efficiency when arranged in decreasing exciton energy order from the anode to the acceptor interface. These so-called "energy cascades" drive exciton transfer from the anode to the dissociating interface while reducing exciton quenching and allowing improved overlap with the solar spectrum. Here we investigate the relative importance of exciton transfer and blocking in a donor cascade employing diphenyltetracene (D1), rubrene (D2), and tetraphenyldibenzoperiflanthene (D3) whose optical gaps monotonically decrease from D1 to D3. In this structure, D1 blocks excitons from quenching at the anode, D2 accepts transfer of excitons from D1 and blocks excitons at the interface between D2 and D3, and D3 contributes the most to the photocurrent due to its strong absorption at visible wavelengths, while also determining the open circuit voltage. We observe singlet exciton Förster transfer from D1 to D2 to D3 consistent with cascade operation. The power conversion efficiency of the optimized cascade OPV with a C60 acceptor layer is 7.1 ± 0.4%, which is significantly higher than bilayer devices made with only the individual donors. We develop a quantitative model to identify the dominant exciton processes that govern the photocurrent generation in multilayer organic structures.
Simulations of singlet exciton diffusion in organic semiconductors: a review
Bjorgaard, Josiah A.; Kose, Muhammet Erkan
2014-12-22
Our review describes the various aspects of simulation strategies for exciton diffusion in condensed phase thin films of organic semiconductors. Several methods for calculating energy transfer rate constants are discussed along with procedures for how to account for energetic disorder. Exciton diffusion can be modelled by using kinetic Monte-Carlo methods or master equations. Recent literature on simulation efforts for estimating exciton diffusion lengths of various conjugated polymers and small molecules are introduced. Moreover, these studies are discussed in the context of the effects of morphology on exciton diffusion and the necessity of accurate treatment of disorder for comparison of simulation results with those of experiment.
Multiple exciton generation and recombination in carbon nanotubes and nanocrystals.
Kanemitsu, Yoshihiko
2013-06-18
Semiconducting nanomaterials such as single-walled carbon nanotubes (SWCNTs) and nanocrystals (NCs) exhibit unique size-dependent quantum properties. They have therefore attracted considerable attention from the viewpoints of fundamental physics and functional device applications. SWCNTs and NCs also provide an excellent new stage for experimental studies of many-body effects of electrons and excitons on optical processes in nanomaterials. In this Account, we discuss multiple exciton generation and recombination in SWCNTs and NCs for next-generation photovoltaics. Strongly correlated ensembles of conduction-band electrons and valence-band holes in semiconductors are complex quantum systems that exhibit unique optical phenomena. In bulk crystals, the carrier recombination dynamics can be described by a simple model, which includes the nonradiative single-carrier trapping rate, the radiative two-carrier recombination rate, and the nonradiative three-carrier Auger recombination rate. The nonradiative Auger recombination rate determines the carrier recombination dynamics at high carrier density and depends on the spatial localization of carriers in two-dimensional quantum wells. The Auger recombination and multiple exciton generation rates can be advantageously manipulated by nanomaterials with designated energy structures. In addition, SWCNTs and NCs show quantized recombination dynamics of multiple excitons and carriers. In one-dimensional SWCNTs, excitons have large binding energies and are very stable at room temperature. The extremely rapid Auger recombination between excitons determines the photoluminescence (PL) intensity, the PL linewidth, and the PL lifetime. SWCNTs can undergo multiple exciton generation, while strong exciton-exciton interactions and complicated exciton structures affect the quantized Auger rate and the multiple exciton generation efficiency. Interestingly, in zero-dimensional NC quantum dots, quantized Auger recombination causes unique
Sugimoto, Toshikazu; Habuchi, Satoshi; Ogino, Kenji; Vacha, Martin
2009-09-10
We study conformation-dependent photophysical properties of polythiophene (PT) by molecular dynamics simulations and by ensemble and single-molecule optical experiments. We use a graft copolymer consisting of a polythiophene backbone and long polystyrene branches and compare its properties with those obtained on the same polythiophene derivative without the side chains. Coarse-grain molecular dynamics simulations show that in a poor solvent, the PT without the side chains (PT-R) forms a globulelike conformation in which distances between any two conjugated segments on the chain are within the Forster radius for efficient energy transfer. In the PT with the polystyrene branches (PT-PS), the polymer main PT chain retains an extended coillike conformation, even in a poor solvent, and the calculated distances between conjugated segments favor energy transfer only between a few neighboring chromophores. The theoretical predictions are confirmed by measurements of fluorescence anisotropy and fluorescence blinking of the polymers' single chains. High anisotropy ratios and two-state blinking in PT-R are due to localization of the exciton on a single conjugated segment. These signatures of exciton localization are absent in single chains of PT-PS. Electric-field-induced quenching measured as a function of concentration of PT dispersed in an inert matrix showed that in well-isolated chains of PT-PS, the exciton dissociation is an intrachain process and that aggregation of the PT-R chains causes an increase in quenching due to the onset of interchain interactions. Measurements of the field-induced quenching on single chains indicate that in PT-R, the exciton dissociation is a slower process that takes place only after the exciton is localized on one conjugated segment.
Excitons and multi-excitons in single CdTe quantum dots probed by near-field spectroscopy
NASA Astrophysics Data System (ADS)
Brun, M.; Huant, S.; Woehl, J. C.; Motte, J.-F.; Marsal, L.; Mariette, H.
2002-03-01
A near-field optical spectroscopy study of a single CdTe/ZnTe quantum dot at low temperatures is presented. While the photoluminescence spectrum at low excitation power reveals only one single sharp peak due to the radiative recombination of excitons (X) in the single dot, several additional sharp peaks appear with increasing excitation density. The dominant features are ascribed to exciton complexes and charged exciton complexes such as negatively charged excitons (X -), neutral (2X and 3X) and negative (2X - and 3X -) biexcitons and triexcitons. Exciton charging arises due to efficient hole trapping by residual acceptors in the barrier material. This partly inhibits the formation of biexcitons and triexcitons. A spectral feature appearing close to the X - peak is tentatively assigned to X 2- negative excitons. This feature is found to shift to the red with increasing power: two possible explanations for this unexpected behaviour are proposed.
Elbow dislocation with ipsilateral distal radius fracture
Meena, Sanjay; Trikha, Vivek; Kumar, Rakesh; Saini, Pramod; Sambharia, Abhishek Kumar
2013-01-01
Elbow dislocation associated with ipsilateral distal radius fracture is a rare pattern of injury, although it is common for elbow dislocation and forearm fractures to occur separately. We report a rare case of a 20-year-old male who had a posterior elbow dislocation and ipsilateral distal radius fracture. Elbow dislocation was first reduced in extension and distal radius fracture was then reduced in flexion. Both the injuries were conservatively managed. At 6 months follow-up, the patient had no pain in his elbow and minimal pain in his wrist on heavy lifting and had resumed his work as a laborer. PMID:24082758
Elbow dislocation with ipsilateral distal radius fracture.
Meena, Sanjay; Trikha, Vivek; Kumar, Rakesh; Saini, Pramod; Sambharia, Abhishek Kumar
2013-07-01
Elbow dislocation associated with ipsilateral distal radius fracture is a rare pattern of injury, although it is common for elbow dislocation and forearm fractures to occur separately. We report a rare case of a 20-year-old male who had a posterior elbow dislocation and ipsilateral distal radius fracture. Elbow dislocation was first reduced in extension and distal radius fracture was then reduced in flexion. Both the injuries were conservatively managed. At 6 months follow-up, the patient had no pain in his elbow and minimal pain in his wrist on heavy lifting and had resumed his work as a laborer.
Management of Complications of Distal Radius Fractures
Chung, Kevin C.; Mathews, Alexandra L.
2015-01-01
Synopsis Treating a fracture of the distal radius may require the surgeon to make a difficult decision between surgical treatment and nonsurgical management. The use of surgical fixation has recently increased owing to complications associated with conservative treatment. However, conservative action may be necessary depending on certain patient factors. The treating surgeon must be aware of the possible complications associated with distal radius fracture treatments to prevent their occurrence. Prevention can be achieved with a proper understanding of the mechanism of these complications. This article discusses the most recent evidence on how to manage and prevent complications following a fracture of the distal radius. PMID:25934197
Mass-radius relationships in icy satellites
NASA Technical Reports Server (NTRS)
Lupo, M. J.; Lewis, J. S.
1979-01-01
Using published laboratory data for H2O ice, a modeling technique was developed by which the bulk density, density and temperature profile, rotational moment of inertia, central pressure, and location of the rock-ice interface can all be obtained as a function of the radius, the heliocentric distance, and the silicate composition. Models of the interiors of Callisto, Ganymede, Europa, Rhea, and Titan are given, consistent with present mass and radius data. The radius and mass of spheres of ice under self-gravitation for two different temperature classes are given (103 and 77 deg K). Measurements of mass, radius and I/MR2 by spacecraft can be interpreted by this model to yield substantial information about the internal structure and the ice/rock ratio of the icy satellites of Jupiter and Saturn.
Perturbed Radius of Geosynchronous-Satellite Orbit
NASA Astrophysics Data System (ADS)
Kawase, Sei-Ichiro
We analyze theoretically how the radius of geosynchronous orbits would vary owing to the perturbations due to the sun/moon gravity, solar radiation pressure, and the oblate earth. The analysis is simple, as it uses a diagrammatic method to solve near-circular orbital motions. Results are obtained in seven terms of corrections to the radius of non-perturbed ideal orbits. Each correction term is derived, with clear physical meaning, from each component of the perturbing forces.
How to resolve the proton radius puzzle?
NASA Astrophysics Data System (ADS)
Paz, Gil
2016-09-01
In 2010 the first measurement of the proton charge radius from spectroscopy of muonic hydrogen was found to be five standard deviations away from the regular hydrogen value. Six years later, this ``proton radius puzzle'' is still unresolved. One of the most promising avenues to test the muonic hydrogen result is a new muon-proton scattering experiment called MUSE. We describe how effective field theory methods will allow to directly connect muonic hydrogen spectroscopy to muon-proton scattering.
NASA Astrophysics Data System (ADS)
Elgawadi, Amal; Gainer, Gordon; Krasinski, Jerzy
2013-08-01
The crystal orientation dependence of GaN excitons was investigated via the photoluminescence (PL) technique. The PL emissions at a temperature of 10 K were obtained from two experimental configurations where the emission K vector (the propagation vector) was either parallel (K ∥ c) or perpendicular (K ∥ c) to the crystal c-axis. Longitudinal, transverse and donor-bound excitons were observed in the two configurations. However, the longitudinal excitons converged onto the transverse free exciton Γ5 in the K⊥c emission. This behavior was discussed in terms of electron screening due to the scattering of electrons moving perpendicular to charged dislocation lines. Additionally, the thermal activation energy of the longitudinal excitons was calculated from the temperature dependent PL measurements collected from the K ∥ c emission, and was found to be 5 to 6 times as high as the binding energy of the free excitons. This high energy was interpreted tentatively in view of the creation of polaritons in strong exciton-photon coupling regimes. These findings present fundamental concepts for applications such as vertical cavity surface-emitting lasers (VCSELs) and polariton lasers.
NASA Astrophysics Data System (ADS)
Schröter, M.; Ivanov, S. D.; Schulze, J.; Polyutov, S. P.; Yan, Y.; Pullerits, T.; Kühn, O.
2015-03-01
The influence of exciton-vibrational coupling on the optical and transport properties of molecular aggregates is an old problem that gained renewed interest in recent years. On the experimental side, various nonlinear spectroscopic techniques gave insight into the dynamics of systems as complex as photosynthetic antennae. Striking evidence was gathered that in these protein-pigment complexes quantum coherence is operative even at room temperature conditions. Investigations were triggered to understand the role of vibrational degrees of freedom, beyond that of a heat bath characterized by thermal fluctuations. This development was paralleled by theory, where efficient methods emerged, which could provide the proper frame to perform non-Markovian and non-perturbative simulations of exciton-vibrational dynamics and spectroscopy. This review summarizes the state of affairs of the theory of exciton-vibrational interaction in molecular aggregates and photosynthetic antenna complexes. The focus is put on the discussion of basic effects of exciton-vibrational interaction from the stationary and dynamics points of view. Here, the molecular dimer plays a prominent role as it permits a systematic investigation of absorption and emission spectra by numerical diagonalization of the exciton-vibrational Hamiltonian in a truncated Hilbert space. An extension to larger aggregates, having many coupled nuclear degrees of freedom, becomes possible with the Multi-Layer Multi-Configuration Time-Dependent Hartree (ML-MCTDH) method for wave packet propagation. In fact it will be shown that this method allows one to approach the limit of almost continuous spectral densities, which is usually the realm of density matrix theory. Real system-bath situations are introduced for two models, which differ in the way strongly coupled nuclear coordinates are treated, as a part of the relevant system or the bath. A rather detailed exposition of the Hierarchy Equations Of Motion (HEOM) method will be
Excitons and Optical Properties of {alpha} -Quartz
Chang, Eric K.; Rohlfing, Michael; Louie, Steven G. [Department of Physics, University of California at Berkeley, Berkeley, California 94720
2000-09-18
We present an ab initio study of the optical properties of {alpha} -quartz. The absorption spectrum is calculated by solving the Bethe-Salpeter equation for the interacting electron-hole system and found to be in excellent agreement with the measured spectrum up to 10 eV above the absorption threshold. We find that excitonic effects are crucial in understanding the sharp features in the absorption spectrum in this energy range. They are also crucial in the ab initio computation of the static dielectric constant, significantly enhancing its value. (c) 2000 The American Physical Society.
Dynamical excitonic effects in metals and semiconductors.
Marini, Andrea; Del Sole, Rodolfo
2003-10-24
The dynamics of an electron-hole pair induced by the time-dependent screened Coulomb interaction is discussed. In contrast to the case where the static electron-hole interaction is considered we demonstrate the occurrence of important dynamical excitonic effects in the solution of the Bethe-Salpeter equation. This is illustrated in the calculated absorption spectra of noble metals (copper and silver) and silicon. Dynamical corrections strongly affect the spectra, partially canceling dynamical self-energy effects and leading to good agreement with experiment.
Electro-optical properties of Rydberg excitons
NASA Astrophysics Data System (ADS)
Zielińska-Raczyńska, Sylwia; Ziemkiewicz, David; Czajkowski, Gerard
2016-07-01
We show how to compute the electro-optical functions (absorption, reflection, and transmission) when Rydberg exciton-polaritons appear, including the effect of the coherence between the electron-hole pair and the electromagnetic field. With the use of the real density matrix approach, numerical calculations applied for the Cu2O crystal are performed. We also examine in detail and explain the dependence of the resonance displacement on the state number and applied electric field strength. We report a fairly good agreement with recently published experimental data.
Excitonic luminescence upconversion in a two-dimensional semiconductor
Jones, Aaron M.; Yu, Hongyi; Schaibley, John R.; ...
2015-12-21
Photon upconversion is an elementary light-matter interaction process in which an absorbed photon is re-emitted at higher frequency after extracting energy from the medium. Furthermore, this phenomenon lies at the heart of optical refrigeration in solids(1), where upconversion relies on anti-Stokes processes enabled either by rare-earth impurities(2) or exciton-phonon coupling(3). We demonstrate a luminescence upconversion process from a negatively charged exciton to a neutral exciton resonance in monolayer WSe2, producing spontaneous anti-Stokes emission with an energy gain of 30 meV. Polarization-resolved measurements find this process to be valley selective, unique to monolayer semiconductors(4). Since the charged exciton binding energy(5) closelymore » matches the 31 meV A(1)' optical phonon(6-9), we ascribe the spontaneous excitonic anti-Stokes to doubly resonant Raman scattering, where the incident and outgoing photons are in resonance with the charged and neutral excitons, respectively. Additionally, we resolve a charged exciton doublet with a 7 meV splitting, probably induced by exchange interactions, and show that anti-Stokes scattering is efficient only when exciting the doublet peak resonant with the phonon, further confirming the excitonic doubly resonant picture.« less
Excitonic luminescence upconversion in a two-dimensional semiconductor
Jones, Aaron M.; Yu, Hongyi; Schaibley, John R.; Yan, Jiaqiang; Mandrus, David G.; Taniguchi, Takashi; Watanabe, Kenji; Dery, Hanan; Yao, Wang; Xu, Xiaodong
2015-12-21
Photon upconversion is an elementary light-matter interaction process in which an absorbed photon is re-emitted at higher frequency after extracting energy from the medium. Furthermore, this phenomenon lies at the heart of optical refrigeration in solids(1), where upconversion relies on anti-Stokes processes enabled either by rare-earth impurities(2) or exciton-phonon coupling(3). We demonstrate a luminescence upconversion process from a negatively charged exciton to a neutral exciton resonance in monolayer WSe2, producing spontaneous anti-Stokes emission with an energy gain of 30 meV. Polarization-resolved measurements find this process to be valley selective, unique to monolayer semiconductors(4). Since the charged exciton binding energy(5) closely matches the 31 meV A(1)' optical phonon(6-9), we ascribe the spontaneous excitonic anti-Stokes to doubly resonant Raman scattering, where the incident and outgoing photons are in resonance with the charged and neutral excitons, respectively. Additionally, we resolve a charged exciton doublet with a 7 meV splitting, probably induced by exchange interactions, and show that anti-Stokes scattering is efficient only when exciting the doublet peak resonant with the phonon, further confirming the excitonic doubly resonant picture.
How to Draw Energy Level Diagrams in Excitonic Solar Cells.
Zhu, X-Y
2014-07-03
Emerging photovoltaic devices based on molecular and nanomaterials are mostly excitonic in nature. The initial absorption of a photon in these materials creates an exciton that can subsequently dissociate in each material or at their interfaces to give charge carriers. Any attempt at mechanistic understanding of excitonic solar cells must start with drawing energy level diagrams. This seemingly elementary exercise, which is described in textbooks for inorganic solar cells, has turned out to be a difficult subject in the literature. The problem stems from conceptual confusion of single-particle energy with quasi-particle energy and the misleading practice of mixing the two on the same energy level diagram. Here, I discuss how to draw physically accurate energy diagrams in excitonic solar cells using only single-particle energies (ionization potentials and electron affinities) of both ground and optically excited states. I will briefly discuss current understanding on the electronic energy landscape responsible for efficient charge separation in excitonic solar cells.
High-Absorption-Efficiency Superlattice Solar Cells by Excitons
NASA Astrophysics Data System (ADS)
Nishinaga, Jiro; Kawaharazuka, Atsushi; Onomitsu, Koji; Horikoshi, Yoshiji
2013-11-01
The effect of excitonic absorption on solar cell efficiency has been investigated using solar cells with AlGaAs/GaAs superlattice structures. Numerical calculations reveal that excitonic absorption considerably enhances the overall absorption of bulk GaAs. Excitonic absorption shows strong and sharp peaks at the absorption edge and in the energy region above the band gap. Absorption enhancement is also achieved in the AlGaAs/GaAs superlattice. The measured quantum efficiency spectra of the superlattice solar cells are quite similar to the calculated absorption spectra considering the excitonic effect. The superlattice solar cells are confirmed to have high absorption coefficient compared with the GaAs and AlGaAs bulk solar cells. These results suggest that the enhanced absorption by excitons can increase the quantum efficiency of solar cells. This effect is more prominent for the solar cells with small absorption layer thicknesses.
Exciton band structure in two-dimensional materials
NASA Astrophysics Data System (ADS)
Cudazzo, Pier Luigi; Sponza, Lorenzo; Giorgetti, Christine; Reining, Lucia; Sottile, Francesco; Gatti, Matteo
In low-dimensional materials the screening of the Coulomb interaction is strongly reduced. As a consequence, the binding energy of both Wannier and Frenkel excitons in the optical spectra is large and comparable in size. Therefore, contrarily to bulk materials, it cannot serve as a criterion to distinguish different kinds of excitons. Here we demonstrate that the exciton band structure, which can be accessed experimentally, instead provides a powerful way to identify the exciton character. By comparing the ab initio solution of the many-body Bethe-Salpeter equation for graphane and single-layer hexagonal BN, we draw a general picture of the exciton dispersion in two-dimensional materials, highlighting the different role played by the exchange electron-hole interaction and by the hopping terms related to the electronic band structure.
Radiative properties of multicarrier bound excitons in GaAs
NASA Astrophysics Data System (ADS)
Karin, Todd; Barbour, Russell J.; Santori, Charles; Yamamoto, Yoshihisa; Hirayama, Yoshiro; Fu, Kai-Mei C.
2015-04-01
Excitons in semiconductors can have multiple lifetimes due to spin-dependent oscillator strengths and interference between different recombination pathways. In addition, strain and symmetry effects can further modify lifetimes via the removal of degeneracies. We present a convenient formalism for predicting the optical properties of k =0 excitons with an arbitrary number of charge carriers in different symmetry environments. Using this formalism, we predict three distinct lifetimes for the neutral acceptor bound exciton in GaAs, and confirm this prediction through polarization dependent and time-resolved photoluminescence experiments. We find the acceptor bound-exciton lifetimes to be To×(1 ,3 ,3/4 ) , where To=(0.61 ±0.12 ) ns . Furthermore, we provide an estimate of the intralevel and interlevel exciton spin-relaxation rates.
Excitons in conjugated polymers: wavefunctions, symmetries, and quantum numbers.
Barford, William; Paiboonvorachat, Nattapong
2008-10-28
We introduce a mapping from configuration interaction singles wavefunctions, expressed as linear combinations of particle-hole excitations between Hartree-Fock molecular orbitals, to real-space exciton wavefunctions, expressed as linear combinations of particle-hole excitations between localized Wannier functions. The exciton wavefunction is a two-dimensional amplitude for the exciton center-of-mass coordinate, R, and the electron-hole separation (or relative coordinate), r, having an exact analogy to one-dimensional hydrogenlike wavefunctions. We describe the excitons by their appropriate quantum numbers, namely, the principle quantum number, n, associated with r and the center-of-mass pseudomomentum quantum number, j, associated with R. In addition, for models with particle-hole symmetry, such as the Pariser-Parr-Pople model, we emphasize the connection between particle-hole symmetry and particle-hole parity. The method is applied to the study of excitons in trans-polyacetylene and poly(para-phenylene).
Probing excitonic dark states in single-layer tungsten disulphide
NASA Astrophysics Data System (ADS)
Ye, Ziliang; Cao, Ting; O'Brien, Kevin; Zhu, Hanyu; Yin, Xiaobo; Wang, Yuan; Louie, Steven G.; Zhang, Xiang
2014-09-01
Transition metal dichalcogenide (TMDC) monolayers have recently emerged as an important class of two-dimensional semiconductors with potential for electronic and optoelectronic devices. Unlike semi-metallic graphene, layered TMDCs have a sizeable bandgap. More interestingly, when thinned down to a monolayer, TMDCs transform from indirect-bandgap to direct-bandgap semiconductors, exhibiting a number of intriguing optical phenomena such as valley-selective circular dichroism, doping-dependent charged excitons and strong photocurrent responses. However, the fundamental mechanism underlying such a strong light-matter interaction is still under intensive investigation. First-principles calculations have predicted a quasiparticle bandgap much larger than the measured optical gap, and an optical response dominated by excitonic effects. In particular, a recent study based on a GW plus Bethe-Salpeter equation (GW-BSE) approach, which employed many-body Green's-function methodology to address electron-electron and electron-hole interactions, theoretically predicted a diversity of strongly bound excitons. Here we report experimental evidence of a series of excitonic dark states in single-layer WS2 using two-photon excitation spectroscopy. In combination with GW-BSE theory, we prove that the excitons are of Wannier type, meaning that each exciton wavefunction extends over multiple unit cells, but with extraordinarily large binding energy (~0.7 electronvolts), leading to a quasiparticle bandgap of 2.7 electronvolts. These strongly bound exciton states are observed to be stable even at room temperature. We reveal an exciton series that deviates substantially from hydrogen models, with a novel energy dependence on the orbital angular momentum. These excitonic energy levels are experimentally found to be robust against environmental perturbations. The discovery of excitonic dark states and exceptionally large binding energy not only sheds light on the importance of many
Exciton Correlations in Intramolecular Singlet Fission
Sanders, Samuel N.; Kumarasamy, Elango; Pun, Andrew B.; ...
2016-05-16
We have synthesized a series of asymmetric pentacene-tetracene heterodimers with a variable-length conjugated bridge that undergo fast and efficient intramolecular singlet fission (iSF). These compounds have distinct singlet and triplet energies, which allow us to study the spatial dynamics of excitons during the iSF process, including the significant role of exciton correlations in promoting triplet pair generation and recombination. We demonstrate that the primary photoexcitations in conjugated dimers are delocalized singlets that enable fast and efficient iSF. However, in these asymmetric dimers, the singlet becomes more localized on the lower energy unit as the length of the bridge is increased,more » slowing down iSF relative to analogous symmetric dimers. We resolve the recombination kinetics of the inequivalent triplets produced via iSF, and find that they primarily decay via concerted processes. By identifying different decay channels, including delayed fluorescence via triplet-triplet annihilation, we can separate transient species corresponding to both correlated triplet pairs and uncorrelated triplets. Recombination of the triplet pair proceeds rapidly despite our experimental and theoretical demonstration that individual triplets are highly localized and unable to be transported across the conjugated linker. In this class of compounds, the rate of formation and yield of uncorrelated triplets increases with bridge length. Overall, these constrained, asymmetric systems provide a unique platform to isolate and study transient species essential for singlet fission, which are otherwise difficult to observe in symmetric dimers or condensed phases.« less
Exciton Correlations in Intramolecular Singlet Fission
Sanders, Samuel N.; Kumarasamy, Elango; Pun, Andrew B.; Appavoo, Kannatassen; Steigerwald, Michael L.; Campos, Luis M.; Sfeir, Matthew Y.
2016-05-16
We have synthesized a series of asymmetric pentacene-tetracene heterodimers with a variable-length conjugated bridge that undergo fast and efficient intramolecular singlet fission (iSF). These compounds have distinct singlet and triplet energies, which allow us to study the spatial dynamics of excitons during the iSF process, including the significant role of exciton correlations in promoting triplet pair generation and recombination. We demonstrate that the primary photoexcitations in conjugated dimers are delocalized singlets that enable fast and efficient iSF. However, in these asymmetric dimers, the singlet becomes more localized on the lower energy unit as the length of the bridge is increased, slowing down iSF relative to analogous symmetric dimers. We resolve the recombination kinetics of the inequivalent triplets produced via iSF, and find that they primarily decay via concerted processes. By identifying different decay channels, including delayed fluorescence via triplet-triplet annihilation, we can separate transient species corresponding to both correlated triplet pairs and uncorrelated triplets. Recombination of the triplet pair proceeds rapidly despite our experimental and theoretical demonstration that individual triplets are highly localized and unable to be transported across the conjugated linker. In this class of compounds, the rate of formation and yield of uncorrelated triplets increases with bridge length. Overall, these constrained, asymmetric systems provide a unique platform to isolate and study transient species essential for singlet fission, which are otherwise difficult to observe in symmetric dimers or condensed phases.
Exciton Dynamics in Semiconducting Carbon Nanotubes
Graham, Matt; Chmeliov, Javgenij; Ma, Yingzhong; Shinohara, Nori; Green, Alexander A.; Hersam, Mark C.; Valkunas, Leonas; Fleming, Graham
2010-01-01
We report femtosecond transient absorption spectroscopic study on the (6, 5) single-walled carbon nanotubes and the (7, 5) inner tubes of a dominant double-walled carbon nanotube species. We found that the dynamics of exciton relaxation probed at the first transition-allowed state (E11) of a given tube type exhibits a markedly slower decay when the second transition-allowed state (E22) is excited than that measured by exciting its first transition-allowed state (E11). A linear intensity dependence of the maximal amplitude of the transient absorption signal is found for the E22 excitation, whereas the corresponding amplitude scales linearly with the square root of the E11 excitation intensity. Theoretical modeling of these experimental findings was performed by developing a continuum model and a stochastic model with explicit consideration of the annihilation of coherent excitons. Our detailed numerical simulations show that both models can reproduce reasonably well the initial portion of decay kinetics measured upon the E22 and E11 excitation of the chosen tube species, but the stochastic model gives qualitatively better agreement with the intensity dependence observed experimentally than those obtained with the continuum model.
Multilevel fitting of {sup 235}U resonance data sensitive to Bohr-and Brosa-fission channels
Moore, M.S.
1995-05-01
The recent determination of the K, J dependence of the neutron induced fission cross section of {sup 235}U by the Dubna group has led to a renewed interest in the mechanism of fission from saddle to scission. The K quantum numbers designate the so-called Bohr fission channels, which describe the fission properties at the saddle point. Certain other fission properties, e.g., the fragment mass and kinetic-energy distribution, are related to the properties of the scission point. The neutron energy dependence of the fragment kinetic energies has been measured by Hambsch et al., who analyzed their data according to a channel description of Brosa et al. How these two channel descriptions, the saddle-point Bohr channels and the scission-point Brosa channels, relate to one another is an open question, and is the subject matter of the present paper. We use the correlation coefficient between various data sets, in which variations are reported from resonance to resonance, as a measure of both-the statistical reliability of the data and of the degree to which different scission variables relate to different Bohr channels. We have carried out an adjustment of the ENDF/B-VI multilevel evaluation of the fission cross section of {sup 235}U, one that provides a reasonably good fit to the energy dependence of the fission, capture, and total cross sections below 100 eV, and to the Bohr-channel structure deduced from an earlier measurement by Pattenden and Postma. We have also further explored the possibility of describing the data of Hambsch et al. in the Brosa-channel framework with the same set of fission-width vectors, only in a different reference system. While this approach shows promise, it is clear that better data are also needed for the neutron energy variation of the scission-point variables.
Enhancement of Exciton Emission in Lead Halide-Based Layered Perovskites by Cation Mixing.
Era, Masanao; Komatsu, Yumeko; Sakamoto, Naotaka
2016-04-01
Spin-coated films of a lead halide, PbX: X = I and Br, layered perovskites having cyclohexenylethyl ammonium molecule as an organic layer, which were mixed with other metal halide-based layered perovskites consisting of various divalent metal halides (for example, Ca2, Cdl2, FeI2, SnBr2 and so on), were prepared. The results of X-ray diffraction measurements exhibited that solid solution formation between PbX-based layered perovskite and other divalent metal halide-based layered perovskites was observed up to very high molar concentration of 50 molar% in the mixed film samples when divalent cations having ionic radius close to that of Pb2+ were employed. In the solid solution films, the exciton emission was much enhanced at room temperature. Exciton emission intensity of Pbl-based layered perovskite mixed with Cal-based layered perovskite (20 molar%) is about 5 times large that of the pristine Pbl-based layered perovskite, and that of PbBr-based layered perovskite mixed with SnBr-based layered perovskite (20 molar%) was also about 5 times large that of the pristine PbBr-based layered perovskite at room temperature.
Trofymchuk, Kateryna; Prodi, Luca; Reisch, Andreas; Mély, Yves; Altenhöner, Kai; Mattay, Jochen; Klymchenko, Andrey S
2015-06-18
Photoswitching of bright fluorescent nanoparticles opens new possibilities for bioimaging with superior temporal and spatial resolution. However, efficient photoswitching of nanoparticles is hard to achieve using Förster resonance energy transfer (FRET) to a photochromic dye, because the particle size is usually larger than the Förster radius. Here, we propose to exploit the exciton diffusion within the FRET donor dyes to boost photoswitching efficiency in dye-doped polymer nanoparticles. To this end, we utilized bulky hydrophobic counterions that prevent self-quenching and favor communication of octadecyl rhodamine B dyes inside a polymer matrix of poly(D,L-lactide-co-glycolide). Among tested counterions, only perfluorinated tetraphenylborate that favors the exciton diffusion enables high photoswitching efficiency (on/off ratio ∼20). The switching improves with donor dye loading and requires only 0.1-0.3 wt % of a diphenylethene photochromic dye. Our nanoparticles were validated both in solution and at the single-particle level. The proposed concept paves the way to new efficient photoswitchable nanomaterials.
Mehra, J.
1987-05-01
In this paper, the main outlines of the discussions between Niels Bohr with Albert Einstein, Werner Heisenberg, and Erwin Schroedinger during 1920-1927 are treated. From the formulation of quantum mechanics in 1925-1926 and wave mechanics in 1926, there emerged Born's statistical interpretation of the wave function in summer 1926, and on the basis of the quantum mechanical transformation theory - formulated in fall 1926 by Dirac, London, and Jordan - Heisenberg formulated the uncertainty principle in early 1927. At the Volta Conference in Como in September 1927 and at the fifth Solvay Conference in Brussels the following month, Bohr publicly enunciated his complementarity principle, which had been developing in his mind for several years. The Bohr-Einstein discussions about the consistency and completeness of quantum mechanics and of physical theory as such - formally begun in October 1927 at the fifth Solvay Conference and carried on at the sixth Solvay Conference in October 1930 - were continued during the next decades. All these aspects are briefly summarized.
Operative treatment of distal radius fractures.
Vasenius, J
2008-01-01
The incidence of distal radius fractures is increasing together with the average age of population. Intra-articular incongruity is the most probable cause of unsatisfactory outcome of distal radius fractures in younger and more active patients. Thus, the main goal in the treatment of distal radius fractures should be restoration of articular congruence. A computed tomography (CT) is recommended to help surgeon in preoperative planning in the treatment of comminuted intra-articular fractures. New implants have been designed to provide stable enough fixation for early mobilisation after surgery and to lower rather high complication rates related to conventional fixation methods such as external fixation and dorsal plating. The most common complications related to volar fixed angle plating such as flexor and extensor tendon problems, median nerve neuropathy, and screw diplacement into the radiocarpal joint are surgeon related and are avoidable with proper education. More randomized prospective studies are needed to prove superiority of any fixation method to another.
Mass and radius of cosmic balloons
NASA Technical Reports Server (NTRS)
Wang, Yun
1994-01-01
Cosmic balloons are spherical domain walls with relativistic particles trapped inside. We derive the exact mass and radius relations for a static cosmic balloon using Gauss-Codazzi equations. The cosmic balloon mass as a function of its radius, M(R), is found to have a functional form similar to that of fermion soliton stars, with a fixed point at 2GM(R)/R approximately or equal to 0.486 which corresponds to the limit of infinite central density. We derive a simple analytical approximation for the mass density of a spherically symmetric relativistic gas star. When applied to the computation of the mass and radius of a cosmic balloon, the analytical approximation yields fairly good agreement with the exact numerical solutions.
A Maximum Radius for Habitable Planets.
Alibert, Yann
2015-09-01
We compute the maximum radius a planet can have in order to fulfill two constraints that are likely necessary conditions for habitability: 1- surface temperature and pressure compatible with the existence of liquid water, and 2- no ice layer at the bottom of a putative global ocean, that would prevent the operation of the geologic carbon cycle to operate. We demonstrate that, above a given radius, these two constraints cannot be met: in the Super-Earth mass range (1-12 Mearth), the overall maximum that a planet can have varies between 1.8 and 2.3 Rearth. This radius is reduced when considering planets with higher Fe/Si ratios, and taking into account irradiation effects on the structure of the gas envelope.
NASA Astrophysics Data System (ADS)
Mathan Kumar, K.; John Peter, A.; Lee, C. W.
2011-12-01
Electronic energies of an exciton confined in a strained Zn1- x Cd x Se/ZnSe quantum dot have been computed as a function of dot radius with various Cd content. Calculations have been performed using Bessel function as an orthonormal basis for different confinement potentials of barrier height considering the internal electric field induced by the spontaneous and piezoelectric polarizations. The optical absorption coefficients and the refractive index changes between the ground state ( L = 0) and the first excited state ( L = 1) are investigated. It is found that the optical properties in the strained ZnCdSe/ZnSe quantum dot are strongly affected by the confinement potentials and the dot radii. The intensity of the total absorption spectra increases for the transition between higher levels. The obtained optical nonlinearity brings out the fact that it should be considered in calculating the optical properties in low dimensional semiconductors especially in quantum dots.
Theory of exciton transfer and diffusion in conjugated polymers
Barford, William; Tozer, Oliver Robert
2014-10-28
We describe a theory of Förster-type exciton transfer between conjugated polymers. The theory is built on three assumptions. First, we assume that the low-lying excited states of conjugated polymers are Frenkel excitons coupled to local normal modes, and described by the Frenkel-Holstein model. Second, we assume that the relevant parameter regime is ℏω < J, i.e., the adiabatic regime, and thus the Born-Oppenheimer factorization of the electronic and nuclear degrees of freedom is generally applicable. Finally, we assume that the Condon approximation is valid, i.e., the exciton-polaron wavefunction is essentially independent of the normal modes. The resulting expression for the exciton transfer rate has a familiar form, being a function of the exciton transfer integral and the effective Franck-Condon factors. The effective Franck-Condon factors are functions of the effective Huang-Rhys parameters, which are inversely proportional to the chromophore size. The Born-Oppenheimer expressions were checked against DMRG calculations, and are found to be within 10% of the exact value for a tiny fraction of the computational cost. This theory of exciton transfer is then applied to model exciton migration in conformationally disordered poly(p-phenylene vinylene). Key to this modeling is the assumption that the donor and acceptor chromophores are defined by local exciton ground states (LEGSs). Since LEGSs are readily determined by the exciton center-of-mass wavefunction, this theory provides a quantitative link between polymer conformation and exciton migration. Our Monte Carlo simulations indicate that the exciton diffusion length depends weakly on the conformation of the polymer, with the diffusion length increasing slightly as the chromophores became straighter and longer. This is largely a geometrical effect: longer and straighter chromophores extend over larger distances. The calculated diffusion lengths of ∼10 nm are in good agreement with experiment. The spectral
What is complementarity?: Niels Bohr and the architecture of quantum theory
NASA Astrophysics Data System (ADS)
Plotnitsky, Arkady
2014-12-01
This article explores Bohr’s argument, advanced under the heading of ‘complementarity,’ concerning quantum phenomena and quantum mechanics, and its physical and philosophical implications. In Bohr, the term complementarity designates both a particular concept and an overall interpretation of quantum phenomena and quantum mechanics, in part grounded in this concept. While the argument of this article is primarily philosophical, it will also address, historically, the development and transformations of Bohr’s thinking, under the impact of the development of quantum theory and Bohr’s confrontation with Einstein, especially their exchange concerning the EPR experiment, proposed by Einstein, Podolsky and Rosen in 1935. Bohr’s interpretation was progressively characterized by a more radical epistemology, in its ultimate form, which was developed in the 1930s and with which I shall be especially concerned here, defined by his new concepts of phenomenon and atomicity. According to this epistemology, quantum objects are seen as indescribable and possibly even as inconceivable, and as manifesting their existence only in the effects of their interactions with measuring instruments upon those instruments, effects that define phenomena in Bohr’s sense. The absence of causality is an automatic consequence of this epistemology. I shall also consider how probability and statistics work under these epistemological conditions.
NASA Astrophysics Data System (ADS)
Udal'tsov, Alexander V.
2016-12-01
Assemblies consisting of protonated meso-tetraphenylporphine (TPP) dimers and water have been investigated by UV-vis and infrared (IR) spectroscopy and by atomic force microscopy (AFM) in thin layers. Features of electronic absorption spectra of the assemblies are interpreted in terms of hole polaron combined with exciton theory using quantum well with parameters obtained from the dimer structure. It appears to be hole polaron moving defines kinetic energy of polaronic exciton confined in a quantum well when the electron absorbs photon. Hole polaron characteristics such as polaron self-energy, energy of Frank-Condon transitions, and radius of hole polaron moving through water are found to be 1.38 eV, 0.2445 eV, and 0.246 Å, respectively. A doublet at 1944, 1960 cm-1 (0.2412, 0.2432 eV) observed in IR spectra matches the energy of Frank-Condon transitions. Excitation energies estimated using molecular parameters for polaronic excitons in pure water and in the TPP dimers are found in a good agreement with the experimental data.
Zhang, H; Chen, S; Wang, Z; Guo, Y; Liu, B; Tong, D
2016-07-01
During osteoarticular reconstruction of the distal radius with the proximal fibula, congruity between the two articular surfaces is an important factor in determining the quality of the outcome. In this study, a three-dimensional model and a coordinate transformation algorithm were developed on computed tomography scanning. Articular surface matching was performed and parameters for the optimal position were determined quantitatively. The mean radii of best-fit spheres of the articular surfaces of the distal radius and proximal fibula were compared quantitatively. The radial inclination and volar tilt following reconstruction by an ipsilateral fibula graft, rather than the contralateral, best resembles the values of the native distal radius. Additionally, the ipsilateral fibula graft reconstructed a larger proportion of the distal radius articular surface than did the contralateral. The ipsilateral proximal fibula graft provides a better match for the reconstruction of the distal radius articular surface than the contralateral, and the optimal position for graft placement is quantitatively determined.
Mass and Radius of Neutron Stars Constrained by Photospheric Radius Expansion X-ray Bursts
NASA Astrophysics Data System (ADS)
Kwak, Kyujin; Kim, Myungkuk; Kim, Young-Min; Lee, Chang-Hwan
Simultaneous measurement of mass and radius of a neutron star is important because it provides strong constraint on the equation of state for nuclear matter inside a neutron star. Type I X-ray Bursts (XRBs) that have been observed in low-mass X-ray binaries sometimes show photospheric radius expansion (PRE). By combining observed fluxes, X-ray spectra, and distances of PRE XRBs and using a statistical analysis, it is possible to simultaneously constrain the mass and radius of a neutron star. However, the mass and radius of a neutron star estimated in this method depends on the opacity of accreted material. We investigate the effect of the opacity on the mass and radius estimation by taking into account the cases that the hydrogen mass fraction of accreted material has narrowly-distributed values. We present preliminary results that are investigated with three different values of hydrogen mass fraction and compare our results with previous studies.
Novel exciton systems in 2D TMD monolayers and heterobilayers
NASA Astrophysics Data System (ADS)
Yu, Hongyi
In this talk, two exciton systems in transition metal dichalcogenides (TMDs) monolayer and heterobilayer will be discussed. In TMD monolayers, the strong e-h Coulomb exchange interaction splits the exciton and trion dispersions into two branches with zero and finite gap, respectively. Each branch is a center-of-mass wave vector dependent coherent superposition of the two valleys, which leads to a valley-orbit coupling and possibly a trion valley Hall effect. The exchange interaction also eliminates the linear polarization of the negative trion PL emission. In TMD heterobilayers with a type-II band alignment, the low energy exciton has an interlayer configuration with the e and h localized in opposite layers. Because of the inevitable twist or/and lattice mismatch between the two layers, the bright interlayer excitons are located at finite center-of-mass velocities with a six-fold degeneracy. The corresponding photon emission is elliptically polarized, with the major axis locked to the direction of exciton velocity, and helicity determined by the valley indices of the e and h. Some experimental results on the interlayer excitons in the WSe2-MoSe2 heterobilayers will also be presented. The interlayer exciton exhibits a long lifetime as well as a long depolarization time, which facilitate the observation of a PL polarization ring pattern due to the valley dependent exciton-exciton interaction induced expansion. The works were supported by the Research Grant Council of Hong Kong (HKU17305914P, HKU705513P), the Croucher Foundation, and the HKU OYRA and ROP.
Proton radius from electron scattering data
NASA Astrophysics Data System (ADS)
Higinbotham, Douglas W.; Kabir, Al Amin; Lin, Vincent; Meekins, David; Norum, Blaine; Sawatzky, Brad
2016-05-01
Background: The proton charge radius extracted from recent muonic hydrogen Lamb shift measurements is significantly smaller than that extracted from atomic hydrogen and electron scattering measurements. The discrepancy has become known as the proton radius puzzle. Purpose: In an attempt to understand the discrepancy, we review high-precision electron scattering results from Mainz, Jefferson Lab, Saskatoon, and Stanford. Methods: We make use of stepwise regression techniques using the F test as well as the Akaike information criterion to systematically determine the predictive variables to use for a given set and range of electron scattering data as well as to provide multivariate error estimates. Results: Starting with the precision, low four-momentum transfer (Q2) data from Mainz (1980) and Saskatoon (1974), we find that a stepwise regression of the Maclaurin series using the F test as well as the Akaike information criterion justify using a linear extrapolation which yields a value for the proton radius that is consistent with the result obtained from muonic hydrogen measurements. Applying the same Maclaurin series and statistical criteria to the 2014 Rosenbluth results on GE from Mainz, we again find that the stepwise regression tends to favor a radius consistent with the muonic hydrogen radius but produces results that are extremely sensitive to the range of data included in the fit. Making use of the high-Q2 data on GE to select functions which extrapolate to high Q2, we find that a Padé (N =M =1 ) statistical model works remarkably well, as does a dipole function with a 0.84 fm radius, GE(Q2) =(1+Q2/0.66 GeV2) -2 . Conclusions: Rigorous applications of stepwise regression techniques and multivariate error estimates result in the extraction of a proton charge radius that is consistent with the muonic hydrogen result of 0.84 fm; either from linear extrapolation of the extremely-low-Q2 data or by use of the Padé approximant for extrapolation using a larger
Proton radius from electron scattering data
Higinbotham, Douglas W.; Kabir, Al Amin; Lin, Vincent; Meekins, David; Norum, Blaine; Sawatzky, Brad
2016-05-01
Background: The proton charge radius extracted from recent muonic hydrogen Lamb shift measurements is significantly smaller than that extracted from atomic hydrogen and electron scattering measurements. The discrepancy has become known as the proton radius puzzle. Purpose: In an attempt to understand the discrepancy, we review high-precision electron scattering results from Mainz, Jefferson Lab, Saskatoon, and Stanford. Methods: We make use of stepwise regression techniques using the F test as well as the Akaike information criterion to systematically determine the predictive variables to use for a given set and range of electron scattering data as well as to provide multivariate error estimates. Results: Starting with the precision, low four-momentum transfer (Q2) data from Mainz (1980) and Saskatoon (1974), we find that a stepwise regression of the Maclaurin series using the F test as well as the Akaike information criterion justify using a linear extrapolation which yields a value for the proton radius that is consistent with the result obtained from muonic hydrogen measurements. Applying the same Maclaurin series and statistical criteria to the 2014 Rosenbluth results on GE from Mainz, we again find that the stepwise regression tends to favor a radius consistent with the muonic hydrogen radius but produces results that are extremely sensitive to the range of data included in the fit. Making use of the high-Q2 data on GE to select functions which extrapolate to high Q2, we find that a Padé (N=M=1) statistical model works remarkably well, as does a dipole function with a 0.84 fm radius, GE(Q2)=(1+Q2/0.66GeV2)−2. Conclusions: Rigorous applications of stepwise regression techniques and multivariate error estimates result in the extraction of a proton charge radius that is consistent with the muonic hydrogen result of 0.84 fm; either from linear extrapolation of the extremely-low-Q2 data or by use of the Padé approximant for extrapolation using a larger range of
Hot exciton cooling and multiple exciton generation in PbSe quantum dots.
Kumar, Manoj; Vezzoli, Stefano; Wang, Zilong; Chaudhary, Varun; Ramanujan, Raju V; Gurzadyan, Gagik G; Bruno, Annalisa; Soci, Cesare
2016-11-16
Multiple exciton generation (MEG) is a promising process to improve the power conversion efficiency of solar cells. PbSe quantum dots (QDs) have shown reasonably high MEG quantum yield (QY), although the photon energy threshold for this process is still under debate. One of the reasons for this inconsistency is the complicated competition of MEG and hot exciton cooling, especially at higher excited states. Here, we investigate MEG QY and the origin of the photon energy threshold for MEG in PbSe QDs of three different sizes by studying the transient absorption (TA) spectra, both at the band gap (near infrared, NIR) and far from the band gap energy (visible range). The comparison of visible TA spectra and dynamics for different pump wavelengths, below, around and above the MEG threshold, provides evidence of the role of the Σ transition in slowing down the exciton cooling process that can help MEG to take over the phonon relaxation process. The universality of this behavior is confirmed by studying QDs of three different sizes. Moreover, our results suggest that MEG QY can be determined by pump-probe experiments probed above the band gap.
Ubiquity of Exciton Localization in Cryogenic Carbon Nanotubes
2016-01-01
We present photoluminescence studies of individual semiconducting single-wall carbon nanotubes at room and cryogenic temperatures. From the analysis of spatial and spectral features of nanotube photoluminescence, we identify characteristic signatures of unintentional exciton localization. Moreover, we quantify the energy scale of exciton localization potentials as ranging from a few to a few tens of millielectronvolts and stemming from both environmental disorder and shallow covalent side-wall defects. Our results establish disorder-induced crossover from the diffusive to the localized regime of nanotube excitons at cryogenic temperatures as a ubiquitous phenomenon in micelle-encapsulated and as-grown carbon nanotubes. PMID:27105355
Transport of indirect excitons in high magnetic fields
NASA Astrophysics Data System (ADS)
Kuznetsova, Y. Y.; Dorow, C. J.; Calman, E. V.; Butov, L. V.; Wilkes, J.; Muljarov, E. A.; Campman, K. L.; Gossard, A. C.
2017-03-01
We present spatially and spectrally resolved photoluminescence measurements of indirect excitons in high magnetic fields. Long indirect exciton lifetimes give the opportunity to measure magnetoexciton transport by optical imaging. Indirect excitons formed from electrons and holes at zeroth Landau levels (0e-0h indirect magnetoexcitons) travel over large distances and form a ring emission pattern around the excitation spot. In contrast, the spatial profiles of 1e-1h and 2e-2h indirect magnetoexciton emission closely follow the laser excitation profile. The 0e-0h indirect magnetoexciton transport distance reduces with increasing magnetic field. These effects are explained in terms of magnetoexciton energy relaxation and effective mass enhancement.
Compensation of dipolar-exciton spin splitting in magnetic field
NASA Astrophysics Data System (ADS)
Gorbunov, A. V.; Timofeev, V. B.
2013-03-01
Magnetoluminescence of spatially indirect dipolar excitons in 25 nm GaAs/AlGaAs single quantum well collected within a lateral potential trap has been studied in Faraday geometry. The paramagnetic spin splitting of the luminescence line of the heavy-hole excitons in the trap centre is completely compensated at magnetic field below critical value ≈2 Т. The effect of spin splitting compensation is caused by the exchange interaction in dense exciton Bose gas which is in qualitative agreement with the existing theoretical concepts.
Quantized Vortices and Four-Component Superfluidity of Semiconductor Excitons
NASA Astrophysics Data System (ADS)
Anankine, Romain; Beian, Mussie; Dang, Suzanne; Alloing, Mathieu; Cambril, Edmond; Merghem, Kamel; Carbonell, Carmen Gomez; Lemaître, Aristide; Dubin, François
2017-03-01
We study spatially indirect excitons of GaAs quantum wells, confined in a 10 μ m electrostatic trap. Below a critical temperature of about 1 K, we detect macroscopic spatial coherence and quantized vortices in the weak photoluminescence emitted from the trap. These quantum signatures are restricted to a narrow range of density, in a dilute regime. They manifest the formation of a four-component superfluid, made by a low population of optically bright excitons coherently coupled to a dominant fraction of optically dark excitons.
Excitonic AND Logic Gates on DNA Brick Nanobreadboards
2015-01-01
A promising application of DNA self-assembly is the fabrication of chromophore-based excitonic devices. DNA brick assembly is a compelling method for creating programmable nanobreadboards on which chromophores may be rapidly and easily repositioned to prototype new excitonic devices, optimize device operation, and induce reversible switching. Using DNA nanobreadboards, we have demonstrated each of these functions through the construction and operation of two different excitonic AND logic gates. The modularity and high chromophore density achievable via this brick-based approach provide a viable path toward developing information processing and storage systems. PMID:25839049
Excitons and the lifetime of organic semiconductor devices
Forrest, Stephen R.
2015-01-01
While excitons are responsible for the many beneficial optical properties of organic semiconductors, their non-radiative recombination within the material can result in material degradation due to the dumping of energy onto localized molecular bonds. This presents a challenge in developing strategies to exploit the benefits of excitons without negatively impacting the device operational stability. Here, we will briefly review the fundamental mechanisms leading to excitonic energy-driven device ageing in two example devices: blue emitting electrophosphorescent organic light emitting devices (PHOLEDs) and organic photovoltaic (OPV) cells. We describe strategies used to minimize or even eliminate this fundamental device degradation pathway. PMID:25987572
Excitons and the lifetime of organic semiconductor devices.
Forrest, Stephen R
2015-06-28
While excitons are responsible for the many beneficial optical properties of organic semiconductors, their non-radiative recombination within the material can result in material degradation due to the dumping of energy onto localized molecular bonds. This presents a challenge in developing strategies to exploit the benefits of excitons without negatively impacting the device operational stability. Here, we will briefly review the fundamental mechanisms leading to excitonic energy-driven device ageing in two example devices: blue emitting electrophosphorescent organic light emitting devices (PHOLEDs) and organic photovoltaic (OPV) cells. We describe strategies used to minimize or even eliminate this fundamental device degradation pathway.
Ubiquity of Exciton Localization in Cryogenic Carbon Nanotubes.
Hofmann, Matthias S; Noé, Jonathan; Kneer, Alexander; Crochet, Jared J; Högele, Alexander
2016-05-11
We present photoluminescence studies of individual semiconducting single-wall carbon nanotubes at room and cryogenic temperatures. From the analysis of spatial and spectral features of nanotube photoluminescence, we identify characteristic signatures of unintentional exciton localization. Moreover, we quantify the energy scale of exciton localization potentials as ranging from a few to a few tens of millielectronvolts and stemming from both environmental disorder and shallow covalent side-wall defects. Our results establish disorder-induced crossover from the diffusive to the localized regime of nanotube excitons at cryogenic temperatures as a ubiquitous phenomenon in micelle-encapsulated and as-grown carbon nanotubes.
Ultrafast excitonic room temperature nonlinearity in neutron irradiated quantum wells
Ten, S.; Williams, J.G.; Guerreiro, P.T.; Khitrova, G.; Peyghambarian, N.
1997-01-01
Sharp room temperature exciton features and complete recovery of the excitonic absorption with 21 ps time constant are demonstrated in neutron irradiated (Ga,Al)As/GaAs multiple quantum wells. Carrier lifetime reduction is consistent with the EL2 midgap defect which is efficiently generated by fast neutrons. Influence of gamma rays accompanying neutron irradiation is discussed. Neutron irradiation provides a straightforward way to control carrier lifetime in semiconductor heterostructures with minor deterioration of their excitonic properties. {copyright} {ital 1997 American Institute of Physics.}
Excitonic AND Logic Gates on DNA Brick Nanobreadboards.
Cannon, Brittany L; Kellis, Donald L; Davis, Paul H; Lee, Jeunghoon; Kuang, Wan; Hughes, William L; Graugnard, Elton; Yurke, Bernard; Knowlton, William B
2015-03-18
A promising application of DNA self-assembly is the fabrication of chromophore-based excitonic devices. DNA brick assembly is a compelling method for creating programmable nanobreadboards on which chromophores may be rapidly and easily repositioned to prototype new excitonic devices, optimize device operation, and induce reversible switching. Using DNA nanobreadboards, we have demonstrated each of these functions through the construction and operation of two different excitonic AND logic gates. The modularity and high chromophore density achievable via this brick-based approach provide a viable path toward developing information processing and storage systems.
Exciton coupling of surface complexes on a nanocrystal surface.
Xu, Xiangxing; Ji, Jianwei; Wang, Guan; You, Xiaozeng
2014-08-25
Exciton coupling may arise when chromophores are brought into close spatial proximity. Herein the intra-nanocrystal exciton coupling of the surface complexes formed by coordination of 8-hydroxyquinoline to ZnS nanocrystals (NCs) is reported. It is studied by absorption, photoluminescence (PL), PL excitation (PLE), and PL lifetime measurements. The exciton coupling of the surface complexes tunes the PL color and broadens the absorption and PLE windows of the NCs, and thus is a potential strategy for improving the light-harvesting efficiency of NC solar cells and photocatalysts.
Role of phonons in Josephson oscillations of excitonic and polaritonic condensates
Magnusson, E. B.; Flayac, H.; Malpuech, G.; Shelykh, I. A.
2010-11-15
We analyze theoretically the role of the exciton-phonon interactions in phenomena related to the Josephson effect between two spatially separated exciton and exciton-polariton condensates. We consider the role of the dephasing introduced by phonons in such phenomena as Josephson tunneling, self-trapping and spontaneous polarization separation. In the regime of cw pumping we find a remarkable bistability effect arising from exciton-exciton interactions as well as regimes of self-sustained regular and chaotic oscillations.
Dopant-Catalyzed Singlet Exciton Fission.
Snamina, Mateusz; Petelenz, Piotr
2017-01-04
In acene-based molecular crystals, singlet exciton fission occurs through superexchange mediated by two virtual charge-transfer states. Hence, it is sensitive to their energies, which depend on the local environment. The crucial point is the balance between the charge-quadrupole interactions within the pair of molecules directly involved in the process and those with the surrounding crystal matrix, which are governed by local symmetry and may be influenced by breaking this symmetry. This happens, for example, in the vicinity of a vacancy or an impurity and in the latter case is complemented by polarization energy and potentially by dipolar contributions. Our model calculations indicate that the superexchange coupling is sensitive enough to these factors to enable fission to be catalyzed by judiciously designed dopant molecules. In favorable cases, dipolar dopants are expected to increase the fission rate by an order of magnitude.
Bruggemann, B; May, V
2004-02-01
Using the multiexciton density matrix theory of excitation energy transfer in chromophore complexes developed in a foregoing paper [J. Chem. Phys. 118, 746 (2003)], the computation of ultrafast transient absorption spectra is presented. Beside static disorder and standard mechanisms of excitation energy dissipation the theory incorporates exciton exciton annihilation (EEA) processes. To elucidate signatures of EEA in intensity dependent transient absorption data the approach is applied to the B850 ring of the LH2 found in rhodobacter sphaeroides. As main indications for two-exciton population and resulting EEA we found (i) a weakening of the dominant single-exciton bleaching structure in the transient absorption, and (ii) an intermediate suppression of long-wavelength and short-wavelength shoulders around the bleaching structure. The suppression is caused by stimulated emission from the two-exciton to the one-exciton state and the return of the shoulders follows from a depletion of two-exciton population according to EEA. The EEA-signature survives as a short-wavelength shoulder in the transient absorption if orientational and energetic disorder are taken into account. Therefore, the observation of the EEA-signatures should be possible when doing frequency resolved transient absorption experiments with a sufficiently strongly varying pump-pulse intensity.
Control of Exciton Photon Coupling in Nano-structures
NASA Astrophysics Data System (ADS)
Liu, Xiaoze
In this thesis, we study the interaction of excitons with photons and plasmons and methods to control and enhance this interaction. This study is categorized in three parts: light-matter interaction in microcavity structures, direct dipole-dipole interactions, and plasmon-exciton interaction in metal-semiconductor systems. In the microcavity structures, the light-matter interactions become significant when the excitonic energy is in resonance with microcavity photons. New hybrid quantum states named polariton states will be formed if the strong coupling regime is achieved, where the interaction rate is faster than the average decay rate of the excitons and photons. Polaritons have been investigated in zinc oxide (ZnO) nanoparticles based microcavity at room temperature and stimulated emission of the polaritons has also been observed with a low optical pump threshold. Exictons in organic semiconductors (modeled as Frenkel excitons) are tightly bound to molecular sites, and differ considerably from loosely bound hydrogen atom-like inorganic excitons (modeled as Wannier-Mott excitons). This fundamental difference results in distinct optoelectronic properties. Not only strongly coupled to Wannier-Mott excitons in ZnO, the microcavity photons have also been observed to be simultaneously coupled to Frenkel excitons in 3,4,7,8-naphthalene tetracarboxylic dianhydride (NTCDA). The photons here act like a glue combining Wannier-Mott and Frenkel excitons into new hybrid polaritons taking the best from both constituents. Two-dimensional (2D) excitons in monolayer transition metal dichalcogenides (TMDs) have emerged as a new and fascinating type of Wannier-Mott-like excitons due to direct bandgap transition, huge oscillator strength and large binding energy. Monolayer molybdenum disulfide (MoS2) has been incorporated into the microcavity structure and 2D exciton-polaritons have been observed for the first time with directional emission in the strong coupling regime. Valley
The nonlinear optical properties of a magneto-exciton in a strained Ga0.2In0.8As/GaAs quantum dot
NASA Astrophysics Data System (ADS)
Senthil Kumar, N R..; Peter, A. John; Kyoo, Yoo Chang
2013-10-01
The magnetic field-dependent heavy hole excitonic states in a strained Ga0.2In0.8As/GaAs quantum dot are investigated by taking into account the anisotropy, non-parabolicity of the conduction band, and the geometrical confinement. The strained quantum dot is considered as a parabolic dot of InAs embedded in a GaAs barrier material. The dependence of the effective excitonic g-factor as a function of dot radius and the magnetic field strength is numerically measured. The interband optical transition energy as a function of geometrical confinement is computed in the presence of a magnetic field. The magnetic field-dependent oscillator strength of interband transition under the geometrical confinement is studied. The exchange enhancements as a function of dot radius are observed for various magnetic field strengths in a strained Ga0.2In0.8As/GaAs quantum dot. Heavy hole excitonic absorption spectra, the changes in refractive index, and the third-order susceptibility of third-order harmonic generation are investigated in the Ga0.2In0.8As/GaAs quantum dot. The result shows that the effect of magnetic field strength is more strongly dependent on the nonlinear optical property in a low-dimensional semiconductor system.
Kirm, M.; Nagirnyi, V.; Feldbach, E.; De Grazia, M.; Carre, B.; Merdji, H.; Guizard, S.; Geoffroy, G.; Gaudin, J.; Fedorov, N.; Martin, P.; Vasil'ev, A.; Belsky, A.
2009-06-15
Exciton-exciton interaction is experimentally revealed and quantitatively analyzed in a wide band-gap scintillator material CdWO{sub 4}. Under high-intensity femtosecond vacuum ultraviolet excitation, the CdWO{sub 4} luminescence is quenched, while its decay becomes essentially nonexponential. We propose an analytical model, which successfully reproduces the decay kinetics recorded in a wide range of excitation densities. The dipole-dipole interaction between excitons leading to their nonradiative decay is shown to be the main cause of a nonproportional response common for many scintillators.
MASS-RADIUS RELATIONSHIPS FOR EXOPLANETS
Swift, D. C.; Eggert, J. H.; Hicks, D. G.; Hamel, S.; Caspersen, K.; Schwegler, E.; Collins, G. W.; Nettelmann, N.; Ackland, G. J.
2012-01-01
For planets other than Earth, particularly exoplanets, interpretation of the composition and structure depends largely on comparing the mass and radius with the composition expected given their distance from the parent star. The composition implies a mass-radius relation which relies heavily on equations of state calculated from electronic structure theory and measured experimentally on Earth. We lay out a method for deriving and testing equations of state, and deduce mass-radius and mass-pressure relations for key, relevant materials whose equation of state (EOS) is reasonably well established, and for differentiated Fe/rock. We find that variations in the EOS, such as may arise when extrapolating from low-pressure data, can have significant effects on predicted mass-radius relations and on planetary pressure profiles. The relations are compared with the observed masses and radii of planets and exoplanets, broadly supporting recent inferences about exoplanet structures. Kepler-10b is apparently 'Earth-like', likely with a proportionately larger core than Earth's, nominally 2/3 of the mass of the planet. CoRoT-7b is consistent with a rocky mantle over an Fe-based core which is likely to be proportionately smaller than Earth's. GJ 1214b lies between the mass-radius curves for H{sub 2}O and CH{sub 4}, suggesting an 'icy' composition with a relatively large core or a relatively large proportion of H{sub 2}O. CoRoT-2b is less dense than the hydrogen relation, which could be explained by an anomalously high degree of heating or by higher than assumed atmospheric opacity. HAT-P-2b is slightly denser than the mass-radius relation for hydrogen, suggesting the presence of a significant amount of matter of higher atomic number. CoRoT-3b lies close to the hydrogen relation. The pressure at the center of Kepler-10b is 1.5{sup +1.2}{sub -1.0} TPa. The central pressure in CoRoT-7b is probably close to 0.8 TPa, though may be up to 2 TPa. These pressures are accessible by planar
Ghost Fano Resonance of Excitons in Twisted Bilayer Graphene
NASA Astrophysics Data System (ADS)
Liang, Yufeng
2014-03-01
Metallic systems are generally considered to be unable to harbor tightly bound excitons because of the strong screening effect as well as the absence of a finite band gap. Previously, exception has only been found in one-dimensional metallic carbon nanotubes due to the depressed screening effects and the symmetry gap. We explore the exciton spectra of twisted bilayer graphene (tBLG) and predict the existence of even more strongly bound exciton (with binding energy as large as 0.5eV) in this system despite of its higher dimensionality. Based on our results from first-principles simulations and effective model calculations, a mechanism known as the ghost Fano resonance is proposed for the bound exciton formation in metallic systems beyond the dimensonality-related argument. Our results shed light on engineering the e-h excitations in the few-layer van der Waals heterojunction. NSF Grant No. DMR-1207141.
Enhanced multiple exciton generation in quasi-one-dimensional semiconductors.
Cunningham, Paul D; Boercker, Janice E; Foos, Edward E; Lumb, Matthew P; Smith, Anthony R; Tischler, Joseph G; Melinger, Joseph S
2011-08-10
The creation of a single electron-hole pair (i.e., exciton) per incident photon is a fundamental limitation for current optoelectronic devices including photodetectors and photovoltaic cells. The prospect of multiple exciton generation per incident photon is of great interest to fundamental science and the improvement of solar cell technology. Multiple exciton generation is known to occur in semiconductor nanostructures with increased efficiency and reduced threshold energy compared to their bulk counterparts. Here we report a significant enhancement of multiple exciton generation in PbSe quasi-one-dimensional semiconductors (nanorods) over zero-dimensional nanostructures (nanocrystals), characterized by a 2-fold increase in efficiency and reduction of the threshold energy to (2.23 ± 0.03)E(g), which approaches the theoretical limit of 2E(g). Photovoltaic cells based on PbSe nanorods are capable of improved power conversion efficiencies, in particular when operated in conjunction with solar concentrators.
Electrical Activation of Dark Excitonic States in Carbon Nanotubes
NASA Astrophysics Data System (ADS)
Uda, Takushi; Yoshida, Masahiro; Ishii, Akihiro; Kato, Yuichiro K.
Electrical activation of optical transitions to parity-forbidden dark excitonic states in individual carbon nanotubes is reported. We examine electric field effects on various excitonic states by simultaneously measuring both photocurrent and photoluminescence. As the applied field increases, we observe an emergence of new absorption peaks in the excitation spectra. From the diameter dependence of the energy separation between the new peaks and the ground state of E11 excitons, we attribute the peaks to the dark excited states which became optically active due to the applied field. A simple field-induced exciton dissociation model is introduced to explain the photocurrent threshold fields, and the edge of the E11 continuum states have been identified using this model. Work supported by JSPS (KAKENHI 24340066, 26610080), MEXT (Photon Frontier Network Program, Nanotechnology Platform), Canon Foundation, and Asahi Glass Foundation.
Large excitonic effects in group-IV sulfide monolayers
NASA Astrophysics Data System (ADS)
Tuttle, Blair R.; Alhassan, Saeed M.; Pantelides, Sokrates T.
2015-12-01
Large exciton binding energies are a distinguishing feature of two-dimensional semiconductors because of reduced screening, potentially leading to unique optoelectronic applications. Here we use electronic structure methods to calculate the properties of a two-dimensional material class: group-IV monosulfides including SiS, GeS, and SnS. Bulk SiS is predicted to be a metastable layered material. Quasiparticle excitations are calculated with the G0W0 method and the Bethe-Salpeter equation is are used to include electron-hole interactions. For monolayers, strongly bound excitons are found below the quasiparticle absorption edge. The predicted excitonic binding energies are as high as 0.7 eV. Due to large excitonic effects, these group-IV sulfide monolayers have great potential for nanoscale optoelectronic applications.
Singlet exciton fission-sensitized infrared quantum dot solar cells.
Ehrler, Bruno; Wilson, Mark W B; Rao, Akshay; Friend, Richard H; Greenham, Neil C
2012-02-08
We demonstrate an organic/inorganic hybrid photovoltaic device architecture that uses singlet exciton fission to permit the collection of two electrons per absorbed high-energy photon while simultaneously harvesting low-energy photons. In this solar cell, infrared photons are absorbed using lead sulfide (PbS) nanocrystals. Visible photons are absorbed in pentacene to create singlet excitons, which undergo rapid exciton fission to produce pairs of triplets. Crucially, we identify that these triplet excitons can be ionized at an organic/inorganic heterointerface. We report internal quantum efficiencies exceeding 50% and power conversion efficiencies approaching 1%. These findings suggest an alternative route to circumvent the Shockley-Queisser limit on the power conversion efficiency of single-junction solar cells.
Excitonic condensation in systems of strongly correlated electrons
NASA Astrophysics Data System (ADS)
Kuneš, Jan
2015-08-01
The idea of exciton condensation in solids was introduced in the 1960s with the analogy of superconductivity in mind. While exciton supercurrents have been realised only in artificial quantum-well structures so far, the application of the concept of excitonic condensation to bulk solids leads to a rich spectrum of thermodynamic phases with diverse physical properties. In this review we discuss recent developments in the theory of exciton condensation in systems described by Hubbard-type models. In particular, we focus on the connections to their various strong-coupling limits that have been studied in other contexts, e.g. cold atoms physics. One of our goals is to provide a ‘dictionary’ that would allow the reader to efficiently combine results obtained in these different fields.
Simulations of singlet exciton diffusion in organic semiconductors: a review
Bjorgaard, Josiah A.; Kose, Muhammet Erkan
2014-12-22
Our review describes the various aspects of simulation strategies for exciton diffusion in condensed phase thin films of organic semiconductors. Several methods for calculating energy transfer rate constants are discussed along with procedures for how to account for energetic disorder. Exciton diffusion can be modelled by using kinetic Monte-Carlo methods or master equations. Recent literature on simulation efforts for estimating exciton diffusion lengths of various conjugated polymers and small molecules are introduced. Moreover, these studies are discussed in the context of the effects of morphology on exciton diffusion and the necessity of accurate treatment of disorder for comparison of simulationmore » results with those of experiment.« less
Exciton-stimulated modulation of recombination in solar cells
Karazhanov, S.Z.
1997-12-01
This work reports an investigation of the effect of excitons on carrier recombination and solar energy conversion processes. The probabilities of exciton-stimulated modulation of the occupancy of r centers in CdS as well as the binding coefficient of free electrons and holes into excitons are estimated. Carrier recombination and transport theories are presented. The theories are applied to Cu{sub 2}S/CdS solar cells for AM1 illumination at a temperature of 300 K. It has been shown by numerical estimation that exciton-stimulated modulation of the occupancy of deep impurities does give a significant reduction of carrier recombination losses and efficiency improvements for Cu{sub 2}S/CdS solar cells. {copyright} {ital 1997 American Institute of Physics.}
Excitonic quantum interference in a quantum dot chain with rings.
Hong, Suc-Kyoung; Nam, Seog Woo; Yeon, Kyu-Hwang
2008-04-16
We demonstrate excitonic quantum interference in a closely spaced quantum dot chain with nanorings. In the resonant dipole-dipole interaction model with direct diagonalization method, we have found a peculiar feature that the excitation of specified quantum dots in the chain is completely inhibited, depending on the orientational configuration of the transition dipole moments and specified initial preparation of the excitation. In practice, these excited states facilitating quantum interference can provide a conceptual basis for quantum interference devices of excitonic hopping.
The radius and albedo of Hyperion
NASA Technical Reports Server (NTRS)
Cruikshank, D. P.
1979-01-01
A measurement of the 20-micron thermal flux from Hyperion is reported, and the radius and surface geometric albedo of this outer satellite of Saturn are computed by the photometric/radiometric method. A corrected and normalized 20-micron thermal flux of 0.033 + or - 0.012 Jy is determined. A radius of 112 + or - 15 km and a surface geometric albedo of 0.47 + or - 0.11 are obtained by assuming values of unity for the phase integral, emissivity, and bolometric/visual geometric-albedo ratio. The sensitivity of the photometric/radiometric method to the assumed values of the parameters involved is discussed, and the results are compared with similar studies of Triton. It is concluded that neither Hyperion nor Triton appears to have a geometric albedo in the lower end of the distribution of small bodies in the solar system.
Fractures of Distal Radius: An Overview
Meena, Sanjay; Sharma, Pankaj; Sambharia, Abhishek Kumar; Dawar, Ashok
2014-01-01
Fractures of distal radius account for up to 20% of all fractures treated in emergency department. Initial assessment includes a history of mechanism of injury, associated injury and appropriate radiological evaluation. Treatment options include conservative management, internal fixation with pins, bridging and non-bridging external fixation, dorsal or volar plating with/without arthroscopy assistance. However, many questions regarding these fractures remain unanswered and good prospective randomized trials are needed. PMID:25657938
Solar radius change between 1925 and 1979
NASA Technical Reports Server (NTRS)
Sofia, S.; Dunham, D. W.; Dunham, J. B.; Fiala, A. D.
1983-01-01
From an analysis of numerous reports from different locations on the duration of totality of the solar eclipses on January 24, 1925, and February 26, 1979, it is found that the solar radius at the earlier date was 0.5 arcsec (or 375 km) larger than at the later date. The correction to the standard solar radius found for each eclipse is different when different subsets of the observations are used (for example, edge of path of totality timings compared with central timings). This is seen as suggesting the existence of systematic inaccuracies in our knowledge of the lunar figure. The differences between the corrections for both eclipses, however, are very similar for all subsets considered, indicating that changes of the solar size may be reliably inferred despite the existence of the lunar figure errors so long as there is proper consideration of the distribution of the observations. These results are regarded as strong evidence in support of the occurrence of solar radius changes on shorter than evolutionary time scales.
Probing the origin of excitonic states in monolayer WSe2
Huang, Jiani; Hoang, Thang B.; Mikkelsen, Maiken H.
2016-01-01
Two-dimensional transition metal dichalcogenides (TMDCs) have spurred excitement for potential applications in optoelectronic and valleytronic devices; however, the origin of the dynamics of excitons, trions, and other localized states in these low dimensional materials is not well-understood. Here, we experimentally probed the dynamics of excitonic states in monolayer WSe2 by investigating the temperature and polarization dependent photoluminescence (PL) spectra. Four pronounced PL peaks were identified below a temperature of 60 K at near-resonant excitation and assigned to exciton, trion and localized states from excitation power dependence measurements. We find that the localized states vanish above 65 K, while exciton and trion emission peaks remain up to room temperature. This can be explained by a multi-level model developed for conventional semiconductors and applied to monolayer TMDCs for the first time here. From this model, we estimated a lower bound of the exciton binding energy of 198 meV for monolayer WSe2 and explained the vanishing of the localized states. Additionally, we observed a rapid decrease in the degree of circular polarization of the PL at increasing temperatures indicating a relatively strong electron-phonon coupling and impurity-related scattering. Our results reveal further insight into the excitonic states in monolayer WSe2 which is critical for future practical applications. PMID:26940069
Exciton energy-momentum map of hexagonal boron nitride
NASA Astrophysics Data System (ADS)
Fugallo, Giorgia; Aramini, Matteo; Koskelo, Jaakko; Watanabe, Kenji; Taniguchi, Takashi; Hakala, Mikko; Huotari, Simo; Gatti, Matteo; Sottile, Francesco
2015-10-01
Understanding and controlling the way excitons propagate in solids is a key for tailoring materials with improved optoelectronic properties. A fundamental step in this direction is the determination of the exciton energy-momentum dispersion. Here, thanks to the solution of the parameter-free Bethe-Salpeter equation (BSE), we draw and explain the exciton energy-momentum map of hexagonal boron nitride (h-BN) in the first three Brillouin zones. We show that h-BN displays strong excitonic effects not only in the optical spectra at vanishing momentum q , as previously reported, but also at large q . We validate our theoretical predictions by assessing the calculated exciton map by means of an inelastic x-ray scattering (IXS) experiment. Moreover, we solve the discrepancies between previous experimental data and calculations, proving then that the BSE is highly accurate through the whole momentum range. Therefore, these results put forward the combination BSE and IXS as the tool of choice for addressing the exciton dynamics in complex materials.
Exciton Band Structure in Two-Dimensional Materials
NASA Astrophysics Data System (ADS)
Cudazzo, Pierluigi; Sponza, Lorenzo; Giorgetti, Christine; Reining, Lucia; Sottile, Francesco; Gatti, Matteo
2016-02-01
Low-dimensional materials differ from their bulk counterparts in many respects. In particular, the screening of the Coulomb interaction is strongly reduced, which can have important consequences such as the significant increase of exciton binding energies. In bulk materials the binding energy is used as an indicator in optical spectra to distinguish different kinds of excitons, but this is not possible in low-dimensional materials, where the binding energy is large and comparable in size for excitons of very different localization. Here we demonstrate that the exciton band structure, which can be accessed experimentally, instead provides a powerful way to identify the exciton character. By comparing the ab initio solution of the many-body Bethe-Salpeter equation for graphane and single-layer hexagonal boron nitride, we draw a general picture of the exciton dispersion in two-dimensional materials, highlighting the different role played by the exchange electron-hole interaction and by the electronic band structure. Our interpretation is substantiated by a prediction for phosphorene.
Magnetic brightening of dark excitons in transitional metal dichalcogenides
NASA Astrophysics Data System (ADS)
Zhang, Xiao-Xiao; Lu, Zhengguang; Cao, Ting; Zhang, Fan; Hone, James; Louie, Steven G.; Li, Zhiqiang; Smirnov, Dmitry; Heinz, Tony
Transitional metal dichalcogenides (TMDC) in the MX2 (M = Mo, W, X = S, Se) family represent an excellent platform to study of excitonic effects. At monolayer thickness, these materials exhibit both direct band-gap character and enhanced excitonic interactions. Theoretical studies suggest that both the valence and conduction bands are split and exhibit spin polarized character at the K/K' valleys. The lowest energy band-edge excitons are predicted to have different spin configurations for different materials in this family. When the lowest lying exciton has parallel electron and hole spin, radiative decay is forbidden and the state is dark. Here we demonstrate that by applying an in-plane magnetic field we can perturb the exciton spin configuration and brighten this state, allowing it to undergo radiative decay. We identify such a brightened dark state by the emergence of a new emission peak lying below the absorption peak, with a strength growing with applied in-plane magnetic field. On the other hand, for monolayer MoSe2, where no low-lying dark state is expected, we do not see the growth of a new emission feature under application of an in-plane magnetic field. Our experimental findings are in agreement with the calculated properties of dark excitons based on GW plus Bethe-Salpeter equation approach
Exciton Band Structure in Two-Dimensional Materials.
Cudazzo, Pierluigi; Sponza, Lorenzo; Giorgetti, Christine; Reining, Lucia; Sottile, Francesco; Gatti, Matteo
2016-02-12
Low-dimensional materials differ from their bulk counterparts in many respects. In particular, the screening of the Coulomb interaction is strongly reduced, which can have important consequences such as the significant increase of exciton binding energies. In bulk materials the binding energy is used as an indicator in optical spectra to distinguish different kinds of excitons, but this is not possible in low-dimensional materials, where the binding energy is large and comparable in size for excitons of very different localization. Here we demonstrate that the exciton band structure, which can be accessed experimentally, instead provides a powerful way to identify the exciton character. By comparing the ab initio solution of the many-body Bethe-Salpeter equation for graphane and single-layer hexagonal boron nitride, we draw a general picture of the exciton dispersion in two-dimensional materials, highlighting the different role played by the exchange electron-hole interaction and by the electronic band structure. Our interpretation is substantiated by a prediction for phosphorene.
Haines, D.E.; Watson, D.D.; Verow, A.F. )
1990-07-01
Myocardial heating by transcatheter delivery of radiofrequency (RF) energy has been proposed as an effective means of arrhythmia ablation. A thermodynamic model describing the radial temperature gradient at steady state during RF-induced heating is proposed. If one assumes that RF power output is adjusted to maintain a constant electrode-tissue interface temperature at all times, then this thermodynamic model predicts that the radius of the RF-induced lesion will be directly proportional to the electrode radius. A total of 76 RF-induced lesions were created in a model of isolated canine right ventricular free wall perfused and superfused with oxygenated Krebs-Henseleit buffer. Electrode radius was varied between 0.75 and 2.25 mm. RF energy (500 kHz) was delivered for 90 seconds, and the power output was adjusted to maintain a constant electrode-tissue interface temperature of 60 degrees C. A strong linear correlation was observed between electrode radius and lesion radius in two dimensions: transverse (p = 0.0001, r = 0.85) and transmural (p = 0.0001, r = 0.89). With these data, the temperature correlation with irreversible myocardial injury in this model was calculated at 46.6-48.8 degrees C. Therefore, the proposed thermodynamic model closely predicts the observed relation between electrode radius and lesion size during RF myocardial heating.
Acousto-exciton interaction in a gas of 2D indirect dipolar excitons in the presence of disorder
NASA Astrophysics Data System (ADS)
Kovalev, V. M.; Chaplik, A. V.
2016-03-01
A theory for the linear and quadratic responses of a 2D gas of indirect dipolar excitons to an external surface acoustic wave perturbation in the presence of a static random potential is considered. The theory is constructed both for high temperatures, definitely greater than the exciton gas condensation temperature, and at zero temperature by taking into account the Bose-Einstein condensation effects. The particle Green functions, the density-density correlation function, and the quadratic response function are calculated by the "cross" diagram technique. The results obtained are used to calculate the absorption of Rayleigh surface waves and the acoustic exciton gas drag by a Rayleigh wave. The damping of Bogoliubov excitations in an exciton condensate due to theirs scattering by a random potential has also been determined.
Wan, Yan; Guo, Zhi; Zhu, Tong; Yan, Suxia; Johnson, Justin; Huang, Libai
2015-09-14
Singlet fission presents an attractive solution to overcome the Shockley–Queisser limit by generating two triplet excitons from one singlet exciton. Although triplet excitons are long-lived, their transport occurs through a Dexter transfer, making them slower than singlet excitons, which travel by means of a Förster mechanism. A thorough understanding of the interplay between singlet fission and exciton transport is therefore necessary to assess the potential and challenges of singlet-fission utilization. We report a direct visualization of exciton transport in single tetracene crystals using transient absorption microscopy with 200 fs time resolution and 50 nm spatial precision. Moreover, these measurements reveal a new singlet-mediated transport mechanism for triplets, which leads to an enhancement in effective triplet exciton diffusion of more than one order of magnitude on picosecond to nanosecond timescales. These results establish that there are optimal energetics of singlet and triplet excitons that benefit both singlet fission and exciton diffusion.
NASA Astrophysics Data System (ADS)
Bondarev, I. V.; Popescu, A.; Younts, R. A.; Hoffman, B.; McAfee, T.; Dougherty, D. B.; Gundogdu, K.; Ade, H. W.
2016-11-01
We report the results of the combined experimental and theoretical studies of the low-lying exciton states in crystalline copper phthalocyanine. We derive the eigen energy spectrum for the two lowest intramolecular Frenkel excitons coupled to the intermolecular charge transfer exciton state and compare it with temperature dependent optical absorption spectra measured experimentally, to obtain the parameters of the Frenkel-charge-transfer exciton intermixing. The two Frenkel exciton states are spaced apart by 0.26 eV, and the charge transfer exciton state is 50 meV above the lowest Frenkel exciton. Both Frenkel excitons are strongly mixed with the charge transfer exciton, showing the coupling constant 0.17 eV which agrees with earlier experimental measurements. These results can be used for the proper interpretation of the physical properties of crystalline phthalocyanines.
NASA Astrophysics Data System (ADS)
Bhunia, Amit; Bansal, Kanika; Henini, Mohamed; Alshammari, Marzook S.; Datta, Shouvik
2016-10-01
Mostly, optical spectroscopies are used to investigate the physics of excitons, whereas their electrical evidences are hardly explored. Here, we examined a forward bias activated differential capacitance response of GaInP/AlGaInP based multi-quantum well laser diodes to trace the presence of excitons using electrical measurements. Occurrence of "negative activation energy" after light emission is understood as thermodynamical signature of steady state excitonic population under intermediate range of carrier injections. Similar corroborative results are also observed in an InGaAs/GaAs quantum dot laser structure grown by molecular beam epitaxy. With increasing biases, the measured differential capacitance response slowly vanishes. This represents gradual Mott transition of an excitonic phase into an electron-hole plasma in a GaInP/AlGaInP laser diode. This is further substantiated by more and more exponentially looking shapes of high energy tails in electroluminescence spectra with increasing forward bias, which originates from a growing non-degenerate population of free electrons and holes. Such an experimental correlation between electrical and optical properties of excitons can be used to advance the next generation excitonic devices.
Probing excitonic dark states in single-layer tungsten disulphide.
Ye, Ziliang; Cao, Ting; O'Brien, Kevin; Zhu, Hanyu; Yin, Xiaobo; Wang, Yuan; Louie, Steven G; Zhang, Xiang
2014-09-11
Transition metal dichalcogenide (TMDC) monolayers have recently emerged as an important class of two-dimensional semiconductors with potential for electronic and optoelectronic devices. Unlike semi-metallic graphene, layered TMDCs have a sizeable bandgap. More interestingly, when thinned down to a monolayer, TMDCs transform from indirect-bandgap to direct-bandgap semiconductors, exhibiting a number of intriguing optical phenomena such as valley-selective circular dichroism, doping-dependent charged excitons and strong photocurrent responses. However, the fundamental mechanism underlying such a strong light-matter interaction is still under intensive investigation. First-principles calculations have predicted a quasiparticle bandgap much larger than the measured optical gap, and an optical response dominated by excitonic effects. In particular, a recent study based on a GW plus Bethe-Salpeter equation (GW-BSE) approach, which employed many-body Green's-function methodology to address electron-electron and electron-hole interactions, theoretically predicted a diversity of strongly bound excitons. Here we report experimental evidence of a series of excitonic dark states in single-layer WS2 using two-photon excitation spectroscopy. In combination with GW-BSE theory, we prove that the excitons are of Wannier type, meaning that each exciton wavefunction extends over multiple unit cells, but with extraordinarily large binding energy (∼0.7 electronvolts), leading to a quasiparticle bandgap of 2.7 electronvolts. These strongly bound exciton states are observed to be stable even at room temperature. We reveal an exciton series that deviates substantially from hydrogen models, with a novel energy dependence on the orbital angular momentum. These excitonic energy levels are experimentally found to be robust against environmental perturbations. The discovery of excitonic dark states and exceptionally large binding energy not only sheds light on the importance of many
Controlling exciton photophysics in single-walled carbon nanotubes
NASA Astrophysics Data System (ADS)
Sarpkaya, Ibrahim
Single-walled carbon nanotubes (SWCNTs) have been studied extensively by scientists and engineers due to their unique mechanical, optical, electronic and thermal properties that make them attractive for both fundamental research and device applications. Specifically, important optical properties of SWCNTs such as formation of strongly bound excitons (electron-hole pairs), being stable at room temperature, and bandgap-tunable light emission from visible to telecom wavelengths make them a promising material for optoelectronic and nanophotonic devices. However, the photophysics of excitons in SWCNTs is not yet fully understood and is largely affected by detrimental extrinsic effects, which give rise to strongly reduced device performance. This dissertation demonstrates novel methods and techniques to better understand and to control the photophysics of excitons in SWCNTs. The first part presents novel ways to completely remove detrimental spectral diffusion and blinking in the optical emission of surfactant dispersed SWCNTs on millisecond time scales and also demonstrates 50-fold enhanced exciton emission. Furthermore, pronounced photon antibunching is observed for the first time under resonant excitation. The demonstrated single photon emission is promising for applications in quantum cryptography, while the achieved stable long term emission is important for optoelectronic devices. The second part demonstrates a new regime of intrinsic exciton photophysics in ultra-clean SWCNTs that is characterized by ultra-narrow exciton linewidth and prolonged emission times up to 18 ns. These lifetimes are two orders of magnitude better than prior measurements and in agreement with values predicted by theorists a decade ago. Moreover, I measure for the first time exciton decoherence times of individual nanotubes in the time-domain and demonstrate fourfold prolonged values up to 2 ps compared to previous ensemble studies. Finally, I demonstrate a novel method which controls
Synthesis and Characterization of Quantum Dots: A Case Study Using PbS
ERIC Educational Resources Information Center
Pan, Yi; Li, Yue Ru; Zhao, Yu; Akins, Daniel L.
2015-01-01
A research project for senior undergraduates of chemistry has been developed to introduce syntheses of a series of monodispersed semiconductor PbS quantum dots (QDs) and their characterization methodologies. In this paper, we report the preparation of monodispersed semiconductor PbS QDs with sizes smaller than the exciton Bohr radius using a…
Electrons, Phonons and Excitons at Semiconductor Surfaces
NASA Astrophysics Data System (ADS)
Pollmann, Johannes; Krueger, Peter; Mazur, Albert; Rohlfing, Michael
We briefly address 'state-of-the-art' ab-initio calculations of basic properties of semiconductor surfaces such as their atomic configuration, electronic structure and surface vibrations, as well as, their optical properties and compare exemplary results with experimental data. The surface structure and the electronic ground state are described within the local density approximation (LDA) of density functional theory (DFT). The description of excited electronic states requires to take dynamical correlations in the many electron system into account, which is achieved to a considerable extent within the GW approximation (GWA) leading to the concept of the quasiparticle bandstructure. Surface phonons are treated from first principles within density functional perturbation theory (DFPT). The theory of optical surface properties and surface excitons, in particular, requires to account for the electron-hole Coulomb correlation which is done in the framework of the Bethe-Salpeter equation (BSE). These methods yield results which are in good agreement with experiment and can significantly contribute to an interpretation of experimental data from high-resolution surface microscopy and spectroscopy thus enhancing our current understanding of semiconductor surfaces.
Plasmon transmission through excitonic subwavelength gaps.
Sukharev, Maxim; Nitzan, Abraham
2016-04-14
We study the transfer of electromagnetic energy across a subwavelength gap separating two co-axial metal nanorods. In the absence of spacer in the gap separating the rods, the system exhibits strong coupling behavior between longitudinal plasmons in the two rods. The nature and magnitude of this coupling are studied by varying various geometrical parameters. As a function of frequency, the transmission is dominated by a split longitudinal plasmon peak. The two hybrid modes are the dipole-like "bonding" mode characterized by a peak intensity in the gap and a quadrupole-like "antibonding" mode whose amplitude vanishes at the gap center. When the length of one rod is varied, this mode spectrum exhibits the familiar anti-crossing behavior that depends on the coupling strength determined by the gap width. When off-resonant 2-level emitters are placed in the gap, almost no effect on the frequency dependent transmission is observed. In contrast, when the molecular system is resonant with the plasmonic line shape, the transmission is strongly modified, showing characteristics of strong exciton-plasmon coupling. Most strongly modified is the transmission near the lower frequency "bonding" plasmon mode. The presence of resonant molecules in the gap affects not only the molecule-field interaction but also the spatial distribution of the field intensity and the electromagnetic energy flux across the junction.
Plasmon transmission through excitonic subwavelength gaps
NASA Astrophysics Data System (ADS)
Sukharev, Maxim; Nitzan, Abraham
2016-04-01
We study the transfer of electromagnetic energy across a subwavelength gap separating two co-axial metal nanorods. In the absence of spacer in the gap separating the rods, the system exhibits strong coupling behavior between longitudinal plasmons in the two rods. The nature and magnitude of this coupling are studied by varying various geometrical parameters. As a function of frequency, the transmission is dominated by a split longitudinal plasmon peak. The two hybrid modes are the dipole-like "bonding" mode characterized by a peak intensity in the gap and a quadrupole-like "antibonding" mode whose amplitude vanishes at the gap center. When the length of one rod is varied, this mode spectrum exhibits the familiar anti-crossing behavior that depends on the coupling strength determined by the gap width. When off-resonant 2-level emitters are placed in the gap, almost no effect on the frequency dependent transmission is observed. In contrast, when the molecular system is resonant with the plasmonic line shape, the transmission is strongly modified, showing characteristics of strong exciton-plasmon coupling. Most strongly modified is the transmission near the lower frequency "bonding" plasmon mode. The presence of resonant molecules in the gap affects not only the molecule-field interaction but also the spatial distribution of the field intensity and the electromagnetic energy flux across the junction.
Photosynthetic light harvesting: excitons and coherence
Fassioli, Francesca; Dinshaw, Rayomond; Arpin, Paul C.; Scholes, Gregory D.
2014-01-01
Photosynthesis begins with light harvesting, where specialized pigment–protein complexes transform sunlight into electronic excitations delivered to reaction centres to initiate charge separation. There is evidence that quantum coherence between electronic excited states plays a role in energy transfer. In this review, we discuss how quantum coherence manifests in photosynthetic light harvesting and its implications. We begin by examining the concept of an exciton, an excited electronic state delocalized over several spatially separated molecules, which is the most widely available signature of quantum coherence in light harvesting. We then discuss recent results concerning the possibility that quantum coherence between electronically excited states of donors and acceptors may give rise to a quantum coherent evolution of excitations, modifying the traditional incoherent picture of energy transfer. Key to this (partially) coherent energy transfer appears to be the structure of the environment, in particular the participation of non-equilibrium vibrational modes. We discuss the open questions and controversies regarding quantum coherent energy transfer and how these can be addressed using new experimental techniques. PMID:24352671
Benchmarking Calculations of Excitonic Couplings between Bacteriochlorophylls.
Kenny, Elise P; Kassal, Ivan
2016-01-14
Excitonic couplings between (bacterio)chlorophyll molecules are necessary for simulating energy transport in photosynthetic complexes. Many techniques for calculating the couplings are in use, from the simple (but inaccurate) point-dipole approximation to fully quantum-chemical methods. We compared several approximations to determine their range of applicability, noting that the propagation of experimental uncertainties poses a fundamental limit on the achievable accuracy. In particular, the uncertainty in crystallographic coordinates yields an uncertainty of about 20% in the calculated couplings. Because quantum-chemical corrections are smaller than 20% in most biologically relevant cases, their considerable computational cost is rarely justified. We therefore recommend the electrostatic TrEsp method across the entire range of molecular separations and orientations because its cost is minimal and it generally agrees with quantum-chemical calculations to better than the geometric uncertainty. Understanding these uncertainties can guard against striving for unrealistic precision; at the same time, detailed benchmarks can allow important qualitative questions-which do not depend on the precise values of the simulation parameters-to be addressed with greater confidence about the conclusions.
Taking Exomoons to the (Radius) Limit
NASA Astrophysics Data System (ADS)
Hinkel, Natalie R.; Kane, S. R.
2014-01-01
Moons around extrasolar planets are the next up-and-coming objects to be not only observed, but characterized for possible habitability. As with planets orbiting stars, exomoons have a limiting radius at which they are gravitationally bound, or the Hill radius. At a particular distance, they may also become tidally locked and therefore be in a synchronous rotation with the host-planet. We have examined the flux phase profile of a simulated, hypothetical moon orbiting at a distant radius around the confirmed exoplanets μ Ara b, HD 28185 b, BD +14 4559 b, and HD 73534 b. The irradiated flux on an exomoon at it's furthest, stable distance from the planet achieves its largest flux gradient, which places a limit on the flux ranges expected for subsequent (observed) moons closer in distance. We have also analyzed the effect of planetary eccentricity and time spent within the habitable zone on the flux on the moon. From stellar contributions alone, we find moons with host-planets fully within the habitable zone experience thermal equilibrium temperatures above the runaway greenhouse limit, requiring a small heat redistribution efficiency. In contrast, exomoons orbiting planets that only spend a fraction of their time within the habitable zone require a heat redistribution efficiency near 100% in order to achieve temperatures suitable for habitability. In other words, a planet might not need to spend its entire orbit within the habitable zone in order for the exomoon to be potentially habitable. In this way our findings separate exomoons and exoplanets, but it broadens the scope of worlds that may occupy a habitable zone.
Singlet fission of hot excitons in π-conjugated polymers.
Zhai, Yaxin; Sheng, Chuanxiang; Vardeny, Z Valy
2015-06-28
We used steady-state photoinduced absorption (PA), excitation dependence (EXPA(ω)) spectrum of the triplet exciton PA band, and its magneto-PA (MPA(B)) response to investigate singlet fission (SF) of hot excitons into two separated triplet excitons, in two luminescent and non-luminescent π-conjugated polymers. From the high energy step in the triplet EXPA(ω) spectrum of the luminescent polymer poly(dioctyloxy)phenylenevinylene (DOO-PPV) films, we identified a hot-exciton SF (HE-SF) process having threshold energy at E≈2E(T) (=2.8 eV, where ET is the energy of the lowest lying triplet exciton), which is about 0.8 eV above the lowest singlet exciton energy. The HE-SF process was confirmed by the triplet MPA(B) response for excitation at E>2E(T), which shows typical SF response. This process is missing in DOO-PPV solution, showing that it is predominantly interchain in nature. By contrast, the triplet EXPA(ω) spectrum in the non-luminescent polymer polydiacetylene (PDA) is flat with an onset at E=E(g) (≈2.25 eV). From this, we infer that intrachain SF that involves a triplet-triplet pair state, also known as the 'dark' 2A(g) exciton, dominates the triplet photogeneration in PDA polymer as E(g)>2E(T). The intrachain SF process was also identified from the MPA(B) response of the triplet PA band in PDA. Our work shows that the SF process in π-conjugated polymers is a much more general process than thought previously.
[Vascularized iliac crest and distal radius reconstruction].
Pic Gomis, L; Gomis, R
2010-12-01
The authors relate their experience concerning the vascularized iliac crest flap. In the first chapter, they detail the anatomic vascularized osteocutaneous iliac crest. Blood supply arises from the deep and superficial circonflexe iliac artery. Many anastomoses connect the two systems. In the second chapter, they detail the operative technique of free and pedicule hone iliac crest flap. Composite cutaneous bone flaps are also detailed. In the third chapter, they detail informations about treatment of distal radius bone defects with associated skeen flap if necessary.
Triplane fracture of the distal radius.
García-Mata, Serafín; Hidalgo-Ovejero, Angel
2006-07-01
A case of triplane fracture of the distal radius is reported in a 13-year-old boy. This exceptional fracture showed displacement, and was healed by closed reduction and 6 weeks of external immobilization. Eighteen months later, the patient showed complete physeal arrest of the distal radius, with radio-ulnar length discrepancy but without any repercussion on wrist mobility. The patient was declared asymptomatic 3 years after the injury. Prompt, physiological physeal arrest reduces the potential of growth deformity. These fractures must be treated conservatively by closed reduction (if displacement exists) and external immobilization, just like a normal one-plane fracture. We may suppose that final radio-ulnar discrepancy could lead to a painful and symptomatic ulno-carpal conflict in adult life. The following characteristics can be associated with this rare fracture: (1) occurrence close to the end of the growth period, as in other types of triplane fractures; (2) evolution towards partial or complete growth arrest of the physis, not requiring treatment and (3) stability of the fracture after closed reduction. In the present case, as in the other reported cases, it may also be added that orthopaedic treatment has been the rule, in contrast with triplane fractures occurring in the distal tibia, in which surgical treatment is indicated.
Distal radius fracture after proximal row carpectomy
Igeta, Yuka; Naito, Kiyohito; Sugiyama, Yoichi; Obata, Hiroyuki; Aritomi, Kentaro; Kaneko, Kazuo; Obayashi, Osamu
2015-01-01
Introduction We encountered a patient with distal radius fracture (DRF) after proximal row carpectomy (PRC). The mechanism of the DRF after PRC is discussed in this report. Presentation of case The patient was a 73-year-old female who had undergone PRC due to Kienböck disease before. The wrist range of motion was: 45° on dorsiflexion and 20° on flexion. DRF has occurred at 3 years after PRC. The fracture type was extra-articular fracture. Osteosynthesis was performed using a volar locking plate. No postoperative complication developed, the Mayo score was excellent at 6 months after surgery, and the daily living activity level recovered to that before injury. Discussion Since the wrist range of motion decreased and the lunate fitted into the joint surface after PRC, making the forearm join with the hand like a single structure, pressure may have been loaded on the weak distal end of the radius from the dorsal side, causing volar displacement and fracture. Conclusion The pressure distribution and range of motion of the radiocarpal joint after PRC are different from those of a normal joint, and the mechanism of fracture also changes due to PRC. PMID:25623755
An Exoplanet Radius and Transit Timing Survey
NASA Astrophysics Data System (ADS)
Deming, Drake; Jennings, Jonald; Sada, Pedro
2010-02-01
Many exoplanet systems contain Jupiter-mass planets on close-in orbits. Theories of planetary system formation account for these hot Jupiters as being end states of inward migration. Variants of those theories also predict terrestrial planets to be captured in mean motion resonance with the hot Jupiters. A continuing explosion of discoveries by transit surveys have given us a sample of 45 hot Jupiters transiting planets brighter than V=13. A transit timing survey of these systems could detect hot Earths in resonance, via the large (~ 180 second) perturbations they induce on the giant planet transits. Moreover, the discovery photometry for these systems usually provides only relatively coarse photometric precision, but larger-aperture follow-up can determine the giant planet radius to a precision limited only by knowledge of the stellar mass, and thereby reveal the diversity of giant exoplanet structure, such as the presence of heavy element cores. The relatively large sample now available means that a radius- and transit timing-survey is well matched to classical observing and telescope scheduling. We propose continued observations to perform transit photometry using FLAMINGOS on the 2.1-meter in the J-band, where stellar limb darkening is minimal and transit photometry has excellent sensitivity to planetary radii and shifts in transit time.
An Exoplanet Radius and Transit Timing Survey
NASA Astrophysics Data System (ADS)
Deming, Drake; Jennings, Jonald; Sada, Pedro
2009-08-01
Many exoplanet systems contain Jupiter-mass planets on close-in orbits. Theories of planetary system formation account for these hot Jupiters as being end states of inward migration. Variants of those theories also predict terrestrial planets to be captured in mean motion resonance with the hot Jupiters. A recent explosion of discoveries by transit surveys have given us a sample of 37 hot Jupiters transiting planets brighter than V=13. A transit timing survey of these systems could detect hot Earths in resonance, via the large (~ 180 second) perturbations they induce on the giant planet transits. Moreover, the discovery photometry for these systems usually provides only relatively coarse photometric precision, but larger-aperture follow-up can determine the giant planet radius to a precision limited only by knowledge of the stellar mass, and thereby reveal the diversity of giant exoplanet structure, such as the presence of heavy element cores. The relatively large sample now available means that a radius- and transit timing-survey is well matched to classical observing and telescope scheduling. We propose continued observations to perform transit photometry using FLAMINGOS on the 2.1-meter in the J-band, where stellar limb darkening is minimal and transit photometry has excellent sensitivity to planetary radii and shifts in transit time.
Chiral exciton in the topological insulator Bi2Se3
NASA Astrophysics Data System (ADS)
Kung, Hsiang-Hsi; Salehi, Maryam; Wang, Xueyun; Koirala, Nikesh; Brahlek, Matthew; Lee, Alexander; Cheong, Sang-Wook; Oh, Seongshik; Blumberg, Girsh
Materials with novel band structures can host ``chiral excitons'', where the exciton emission preserves the helicity of the excitation photon, as recently demonstrated in transition metal dichalcogenide monolayers. Here, we report the observation of a highly polarized photoluminescence peak, which is due to chiral exciton emission in the topological insulator Bi2Se3. Surprisingly, the energy of the emission is centered at 2.26 eV, much higher than the 0.3 eV bulk band gap of Bi2Se3. The excitation profile shows maximum polarization around 2.60 eV excitation, suggesting the chiral exciton is due to interband transition between the topological surface states and a bulk band. We demonstrate that the polarization of the exciton emission is insensitive to temperature and Bi2Se3 film thickness, providing a convenient and robust platform for optoelectronic applications. Gb, HHK and AL acknowledge support from NSF Award DMR-1104884. MS, NK, MB and SO are funded by Gordon and Betty Moore Foundation's EPiQS initiative (GBMF4418) and NSF(DMR-1308142). XYW and SWC acknowledge support from NSF Award DMREF-1233349.
Reconfigurable exciton-plasmon interconversion for nanophotonic circuits.
Lee, Hyun Seok; Luong, Dinh Hoa; Kim, Min Su; Jin, Youngjo; Kim, Hyun; Yun, Seokjoon; Lee, Young Hee
2016-11-28
The recent challenges for improving the operation speed of nanoelectronics have motivated research on manipulating light in on-chip integrated circuits. Hybrid plasmonic waveguides with low-dimensional semiconductors, including quantum dots and quantum wells, are a promising platform for realizing sub-diffraction limited optical components. Meanwhile, two-dimensional transition metal dichalcogenides (TMDs) have received broad interest in optoelectronics owing to tightly bound excitons at room temperature, strong light-matter and exciton-plasmon interactions, available top-down wafer-scale integration, and band-gap tunability. Here, we demonstrate principal functionalities for on-chip optical communications via reconfigurable exciton-plasmon interconversions in ∼200-nm-diameter Ag-nanowires overlapping onto TMD transistors. By varying device configurations for each operation purpose, three active components for optical communications are realized: field-effect exciton transistors with a channel length of ∼32 μm, field-effect exciton multiplexers transmitting multiple signals through a single NW and electrical detectors of propagating plasmons with a high On/Off ratio of∼190. Our results illustrate the unique merits of two-dimensional semiconductors for constructing reconfigurable device architectures in integrated nanophotonic circuits.
Reconfigurable exciton-plasmon interconversion for nanophotonic circuits
Lee, Hyun Seok; Luong, Dinh Hoa; Kim, Min Su; Jin, Youngjo; Kim, Hyun; Yun, Seokjoon; Lee, Young Hee
2016-01-01
The recent challenges for improving the operation speed of nanoelectronics have motivated research on manipulating light in on-chip integrated circuits. Hybrid plasmonic waveguides with low-dimensional semiconductors, including quantum dots and quantum wells, are a promising platform for realizing sub-diffraction limited optical components. Meanwhile, two-dimensional transition metal dichalcogenides (TMDs) have received broad interest in optoelectronics owing to tightly bound excitons at room temperature, strong light-matter and exciton-plasmon interactions, available top-down wafer-scale integration, and band-gap tunability. Here, we demonstrate principal functionalities for on-chip optical communications via reconfigurable exciton-plasmon interconversions in ∼200-nm-diameter Ag-nanowires overlapping onto TMD transistors. By varying device configurations for each operation purpose, three active components for optical communications are realized: field-effect exciton transistors with a channel length of ∼32 μm, field-effect exciton multiplexers transmitting multiple signals through a single NW and electrical detectors of propagating plasmons with a high On/Off ratio of∼190. Our results illustrate the unique merits of two-dimensional semiconductors for constructing reconfigurable device architectures in integrated nanophotonic circuits. PMID:27892463
Reconfigurable exciton-plasmon interconversion for nanophotonic circuits
NASA Astrophysics Data System (ADS)
Lee, Hyun Seok; Luong, Dinh Hoa; Kim, Min Su; Jin, Youngjo; Kim, Hyun; Yun, Seokjoon; Lee, Young Hee
2016-11-01
The recent challenges for improving the operation speed of nanoelectronics have motivated research on manipulating light in on-chip integrated circuits. Hybrid plasmonic waveguides with low-dimensional semiconductors, including quantum dots and quantum wells, are a promising platform for realizing sub-diffraction limited optical components. Meanwhile, two-dimensional transition metal dichalcogenides (TMDs) have received broad interest in optoelectronics owing to tightly bound excitons at room temperature, strong light-matter and exciton-plasmon interactions, available top-down wafer-scale integration, and band-gap tunability. Here, we demonstrate principal functionalities for on-chip optical communications via reconfigurable exciton-plasmon interconversions in ~200-nm-diameter Ag-nanowires overlapping onto TMD transistors. By varying device configurations for each operation purpose, three active components for optical communications are realized: field-effect exciton transistors with a channel length of ~32 μm, field-effect exciton multiplexers transmitting multiple signals through a single NW and electrical detectors of propagating plasmons with a high On/Off ratio of~190. Our results illustrate the unique merits of two-dimensional semiconductors for constructing reconfigurable device architectures in integrated nanophotonic circuits.
Multiple Exciton Generation in Semiconductor Nanostructures: DFT-based Computation
NASA Astrophysics Data System (ADS)
Mihaylov, Deyan; Kryjevski, Andrei; Kilin, Dmitri; Kilina, Svetlana; Vogel, Dayton
Multiple exciton generation (MEG) in nm-sized H-passivated Si nanowires (NWs), and quasi 2D nanofilms depends strongly on the degree of the core structural disorder as shown by the perturbation theory calculations based on the DFT simulations. In perturbation theory, we work to the 2nd order in the electron-photon coupling and in the (approximate) RPA-screened Coulomb interaction. We also include the effect of excitons for which we solve Bethe-Salpeter Equation. To describe MEG we calculate exciton-to-biexciton as well as biexciton-to-exciton rates and quantum efficiency (QE). We consider 3D arrays of Si29H36 quantum dots, NWs, and quasi 2D silicon nanofilms, all with both crystalline and amorphous core structures. Efficient MEG with QE of 1.3 up to 1.8 at the photon energy of about 3Egap is predicted in these nanoparticles except for the crystalline NW and film where QE ~=1. MEG in the amorphous nanoparticles is enhanced by the electron localization due to structural disorder. The exciton effects significantly red-shift QE vs. photon energy curves. Nm-sized a-Si NWs and films are predicted to have effective MEG within the solar spectrum range. Also, we find efficient MEG in the chiral single-wall Carbon nanotubes and in a perovskite nanostructure.
Two-dimensional exciton properties in monolayer semiconducting phosphorus allotropes.
Villegas, Cesar E P; Rodin, A S; Carvalho, Alexandra; Rocha, A R
2016-10-12
Excitons play a key role in technological applications since they have a strong influence on determining the efficiency of photovoltaic devices. Recently, it has been shown that the allotropes of phosphorus possess an optical band gap that can be tuned over a wide range of values including the near-infrared and visible spectra, which would make them promising candidates for optoelectronic applications. In this work we carry out ab initio many-body perturbation theory calculations to study the excitonic effects on the optical properties of two-dimensional phosphorus allotropes: the case of blue and black monolayers. We elucidate the most relevant optical transitions, exciton binding energy spectrum as well as real-space exciton distribution, particularly focusing on the absorption spectrum dependence on the incident light polarization. In addition, based on our results, we use a set of effective hydrogenic models, in which the electron-hole Coulomb interaction is included to estimate exciton binding energies and radii. Our results show an excellent agreement between the many-body methodology and the effective models.
Incoherent exciton trapping in self-similar aperiodic lattices
Dominguez-Adame, F.; Macia, E. ); Sanchez, A. Escuela Politecnica Superior, Universidad Carlos III de Madrid, C./Butarque 15, E-28911 Leganes, Madrid )
1995-01-01
Incoherent exciton dynamics in one-dimensional perfect lattices with traps at sites arranged according to aperiodic deterministic sequences is studied. We focus our attention on Thue-Morse and Fibonacci systems as canonical examples of self-similar aperiodic systems. Solving numerically the corresponding master equation we evaluate the survival probability and the mean-square displacement of an exciton initially created at a single site. Results are compared to systems of the same size with the same concentration of traps randomly as well as periodically distributed over the whole lattice. Excitons progressively extend over the lattice on increasing time and, in this sense, they act as a probe of the particular arrangements of traps in each system considered. The analysis of the characteristic features of their time decay indicates that exciton dynamics in self-similar aperiodic arrangements of traps is quite close to that observed in periodic ones, but differs significantly from that corresponding to random lattices. We also report on characteristic features of exciton motion suggesting that Fibonacci and Thue-Morse orderings might be clearly observed by appropriate experimental measurements. In the conclusions we comment on the implications of our work on the way towards a unified theory of the ordering of matter.
Interface exciton at lateral heterojunction of monolayer semiconductors
NASA Astrophysics Data System (ADS)
Lau, Ka Wai; Gong, Zhirui; Yu, Hongyi; Yao, Wang
Heterostructures based on 2D transition metal dichalcogenides (TMDs) have attracted extensive research interest recently due to the appealing physical properties of TMDs and new geometries for forming heterostructures. One such heterostructure is the lateral heterojunctions seamlessly formed in a monolayer crystal between two different types of TMDs, e.g. WSe2 and MoSe2. Such heterojunction exhibits a type II band alignment, with electrons (holes) having lower energy on the MoSe2 (WSe2) region. Here we present the study of an interface exciton at the 1D lateral junction of monolayer TMDs. With the distance dependent screening, we find that the interface exciton can have strong binding even though the electron-hole separation is much larger compare to the 2D excitons in TMDs. Neutral excitons are studied using two different approaches: the solution based on a real-space tight binding model, and the perturbation expansion in a hydrogen-like basis in an effective mass model. We have also used the latter method to study charged excitons at a MoSe2-WSe2-MoSe2 nanoscale junction. The work is supported by the Research Grant Council of Hong Kong (HKU705513P, HKU9/CRF/13G), the Croucher Foundation, and the HKU OYRA.
Novel Quantum Condensates in Excitonic Matter
NASA Astrophysics Data System (ADS)
Littlewood, P. B.; Keeling, J. M. J.; Simons, B. D.; Eastham, P. R.; Marchetti, F. M.; Szymańska, M. H.
2009-08-01
These lectures interleave discussion of a novel physical problem of a new kind of condensate with teaching of the fundamental theoretical tools of quantum condensed matter field theory. Polaritons and excitons are light mass composite bosons that can be made inside solids in a number of different ways. As bosonic particles, they are liable to make a phase coherent ground state—generically called a Bose-Einstein condensate (BEC)—and these lectures present some models to describe that problem, as well as general approaches to the theory. The focus is very much to explain how mean-field-like approximations that are often presented heuristically can be derived in a systematic fashion by path integral methods. Going beyond the mean field theory then produces a systematic approach to calculation of the excitation energies, and the derivation of effective low energy theories that can be generalised to more complex dynamical and spatial situations than is practicable for the full theory, as well as to study statistical properties beyond the semi-classical regime. in particular, for the polariton problem, it allows one to connect the regimes of equilibrium BEC and non-equilibrium laser. The lectures are self-sufficient, but not highly detailed. The methodological aspects are covered in standard quantum field theory texts and the presentation here is deliberately cursory: the approach will be closest to the book of Altland and Simons [1]. Since these lectures concern a particular type of condensate, reference should also be made to texts on BEC, for example by Pitaevskii and Stringari [2]. A recent theoretically focussed review of polariton systems is [3] covers many of the technical issues associated with the polariton problem in greater depth and provides many further references.
Yu, Hongyi; Liu, Gui-Bin; Gong, Pu; Xu, Xiaodong; Yao, Wang
2014-05-12
In monolayer transition metal dichalcogenides, tightly bound excitons have been discovered with a valley pseudospin optically addressable through polarization selection rules. Here, we show that this valley pseudospin is strongly coupled to the exciton centre-of-mass motion through electron-hole exchange. This coupling realizes a massless Dirac cone with chirality index I = 2 for excitons inside the light cone, that is, bright excitons. Under moderate strain, the I = 2 Dirac cone splits into two degenerate I = 1 Dirac cones, and saddle points with a linear Dirac spectrum emerge. After binding an extra electron, the charged exciton becomes a massive Dirac particle associated with a large valley Hall effect protected from intervalley scattering. Our results point to unique opportunities to study Dirac physics, with exciton's optical addressability at specifiable momentum, energy and pseudospin. The strain-tunable valley-orbit coupling also implies new structures of exciton condensates, new functionalities of excitonic circuits and mechanical control of valley pseudospin.
Rörich, Irina; Mikhnenko, Oleksandr V; Gehrig, Dominik; Blom, Paul W M; Crăciun, N Irina
2017-02-16
Using time-resolved photoluminescence (TRPL) spectroscopy the exciton lifetime in a range of conjugated polymers is investigated. For poly(p-phenylenevinylene) (PPV)-based derivatives and a polyspirobifluorene copolymer (PSBF) we find that the exciton lifetime is correlated with the energetic disorder. Better ordered polymers exhibit a single exponential PL decay with exciton lifetimes of a few hundred picoseconds, whereas polymers with a larger degree of disorder show multiexponential PL decays with exciton lifetimes in the nanosecond regime. These observations are consistent with diffusion-limited exciton quenching at nonradiative recombination centers. The measured PL decay time reflects the time that excitons need to diffuse toward these quenching sites. Conjugated polymers with large energetic disorder and thus longer exciton lifetime also exhibit a higher photoluminescence quantum yield due to the slower exciton diffusion toward nonradiative quenching sites.
Dynamical frustration versus kinetic enhancement with excitons in strongly correlated bilayers
NASA Astrophysics Data System (ADS)
Rademaker, Louk
2014-03-01
Recently the condensation of electron-hole pairs in semiconductor bilayers has been achieved. This has opened up the pursuit of exciton condensation in other layered materials. Here I will present recent theoretical work on exciton physics in complex oxide heterostructures. The poorly understood high temperature superconducting cuprates are ideal candidates for bilayer exciton condensation. Therefore we study the dynamics and the phase diagram of bilayer excitons in a Mott insulating p/n heterostructure, which shows rich exciton-spin interaction phenomena. I will discuss the dynamical frustration experienced by an exciton moving through an antiferromagnetic background. In sharp contrast, I will show how in the exciton superfluid phase the magnetic excitations 'borrow' kinetic energy from the excitons.
Ultrasound-Assisted Distal Radius Fracture Reduction
Socransky, Steve; Skinner, Andrew; Bromley, Mark; Smith, Andrew; Anawati, Alexandre; Middaugh, Jeff; Ross, Peter
2016-01-01
Introduction Closed reduction of distal radius fractures (CRDRF) is a commonly performed emergency department (ED) procedure. The use of point-of-care ultrasound (PoCUS) to diagnose fractures and guide reduction has previously been described. The primary objective of this study was to determine if the addition of PoCUS to CRDRF changed the perception of successful initial reduction. This was measured by the rate of further reduction attempts based on PoCUS following the initial clinical determination of achievement of best possible reduction. Methods We performed a multicenter prospective cohort study, using a convenience sample of adult ED patients presenting with a distal radius fracture to five Canadian EDs. All study physicians underwent standardized PoCUS training for fractures. Standard clinically-guided best possible fracture reduction was initially performed. PoCUS was then used to assess the reduction adequacy. Repeat reduction was performed if deemed indicated. A post-reduction radiograph was then performed. Clinician impression of reduction adequacy was scored on a 5 point Likert scale following the initial clinically-guided reduction and following each PoCUS scan and the post-reduction radiograph. Results There were 131 patients with 132 distal radius fractures. Twelve cases were excluded prior to analysis. There was no significant difference in the assessment of the initial reduction status by PoCUS as compared to the clinical exam (mean score: 3.8 vs. 3.9; p = 0.370; OR 0.89; 95% CI 0.46 to 1.72; p = 0.87). Significantly fewer cases fell into the uncertain category with PoCUS than with clinical assessment (2 vs 12; p = 0.008). Repeat reduction was performed in 49 patients (41.2%). Repeat reduction led to a significant improvement (p < 0.001) in the PoCUS determined adequacy of reduction (mean score: 4.3 vs 3.1; p < 0.001). In this group, the odds ratio for adequate vs. uncertain or inadequate reduction assessment using PoCUS was 12.5 (95% CI 3
21 CFR 886.1450 - Corneal radius measuring device.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Corneal radius measuring device. 886.1450 Section... (CONTINUED) MEDICAL DEVICES OPHTHALMIC DEVICES Diagnostic Devices § 886.1450 Corneal radius measuring device. (a) Identification. A corneal radius measuring device is an AC-powered device intended to...
Charged two-exciton emission from a single semiconductor nanocrystal
Hu, Fengrui; Zhang, Qiang; Zhang, Chunfeng; Wang, Xiaoyong; Xiao, Min
2015-03-30
Here, we study the photoluminescence (PL) time trajectories of single CdSe/ZnS nanocrystals (NCs) as a function of the laser excitation power. At the low laser power, the PL intensity of a single NC switches between the “on” and “off” levels arising from the neutral and positively charged single excitons, respectively. With the increasing laser power, an intermediate “grey” level is formed due to the optical emission from a charged multiexciton state composed of two excitons and an extra electron. Both the inter-photon correlation and the PL decay measurements demonstrate that lifetime-indistinguishable photon pairs are emitted from this negatively charged two-exciton state.
Indirect excitons in hydrogen-doped ZnO
NASA Astrophysics Data System (ADS)
Zhu, Liangchen; Lem, Laurent L. C.; Nguyen, Thien-Phap; Fair, Kit; Ali, Sajid; Ford, Michael J.; Phillips, Matthew R.; Ton-That, Cuong
2017-03-01
We present a correlative experimental and theoretical study of bound excitons in hydrogen-doped ZnO, with a particular focus on the dynamics of their metastable state confined in the sub-surface region, using a combination of surface-sensitive characterisation techniques and density functional theory calculations. A metastable sub-surface emission at 3.31 eV found in H-doped ZnO is attributed to the radiative recombination of indirect excitons localised at basal plane stacking faults (BSFs) where the excitonic transition involves electrons bound to bond-centre hydrogen donors in the potential well of the BSF. Additionally, our work shows the electrical transport of ZnO Schottky junctions is dominated by electrons confined at BSFs in the near-surface region.
Quantum confinement-induced tunable exciton states in graphene oxide
Lee, Dongwook; Seo, Jiwon; Zhu, Xi; Lee, Jiyoul; Shin, Hyeon-Jin; Cole, Jacqueline M.; Shin, Taeho; Lee, Jaichan; Lee, Hangil; Su, Haibin
2013-01-01
Graphene oxide has recently been considered to be a potential replacement for cadmium-based quantum dots due to its expected high fluorescence. Although previously reported, the origin of the luminescence in graphene oxide is still controversial. Here, we report the presence of core/valence excitons in graphene-based materials, a basic ingredient for optical devices, induced by quantum confinement. Electron confinement in the unreacted graphitic regions of graphene oxide was probed by high resolution X-ray absorption near edge structure spectroscopy and first-principles calculations. Using experiments and simulations, we were able to tune the core/valence exciton energy by manipulating the size of graphitic regions through the degree of oxidation. The binding energy of an exciton in highly oxidized graphene oxide is similar to that in organic electroluminescent materials. These results open the possibility of graphene oxide-based optoelectronic device technology. PMID:23872608
Huge excitonic effects in layered hexagonal boron nitride.
Arnaud, B; Lebègue, S; Rabiller, P; Alouani, M
2006-01-20
The all-electron GW approximation energy band gap of bulk hexagonal boron nitride is shown to be of indirect type. The resulting computed in-plane polarized optical spectrum, obtained by solving the Bethe-Salpeter equation for the electron-hole two-particle Green function, is in excellent agreement with experiment and has a strong anisotropy compared to out-of-plane polarized spectrum. A detailed analysis of the excitonic structures within the band gap shows that the low-lying excitons belong to the Frenkel class and are tightly confined within the layers. The calculated exciton binding energy is much larger than that obtained by Watanabe et al. [Nat. Mater. 3, 404 (2004).] based on a Wannier model assuming h-BN to be a direct-band-gap semiconductor.
Magnetic edge-state excitons in zigzag graphene nanoribbons.
Yang, Li; Cohen, Marvin L; Louie, Steven G
2008-10-31
We present first-principles calculations of the optical properties of zigzag-edged graphene nanoribbons (ZGNRs) employing the GW-Bethe-Salpeter equation approach with the spin interaction included. Optical response of the ZGNRs is found to be dominated by magnetic edge-state-derived excitons with large binding energy. The absorption spectrum is composed of a characteristic series of exciton states, providing a possible signature for identifying the ZGNRs. The edge-state excitons are charge-transfer excitations with the excited electron and hole located on opposite edges; they moreover induce a spin transfer across the ribbon, resulting in a photoreduction of the magnetic ordering. These novel characteristics are potentially useful in the applications.
Exciton coupling induces vibronic hyperchromism in light-harvesting complexes
NASA Astrophysics Data System (ADS)
Schulze, Jan; Torbjörnsson, Magne; Kühn, Oliver; Pullerits, Tõnu
2014-04-01
The recently suggested possibility that weak vibronic transitions can be excitonically enhanced in light-harvesting complexes is studied in detail. A vibronic exciton dimer model that includes ground-state vibrations is investigated using the multi-configuration time-dependent Hartree method with a parameter set typical to photosynthetic light-harvesting complexes. The absorption spectra are discussed based on the Coulomb coupling, the detuning of the site energies, and the number of vibrational modes. Fluorescence spectra calculations show that the spectral densities obtained from the low-temperature fluorescence line-narrowing measurements of light-harvesting systems need to be corrected for the effects of excitons. For the J-aggregate configuration, as in most light-harvesting complexes, the true spectral density has a larger amplitude than that obtained from the measurement.
Multiple beats of weakly confined excitons with inverted selection rule
NASA Astrophysics Data System (ADS)
Yasuda, Hideki; Ishihara, Hajime
2009-05-01
The phenomenon of multiple beats (MBs) arising from nondipole-type excitons weakly confined in a thin film is theoretically elucidated using a nonlocal transient-response theory. Kojima previously demonstrated for a GaAs thin film that the degenerate four-wave mixing signals from the quantized levels of the center-of-mass motion of excitons exhibit complex interference between beats under femtosecond-order pulse incidence [Kojima , J. Phys. Soc. Jpn. 77, 044701 (2008)]. This leads to an ultrafast optical response on the order of femtoseconds. This effect occurs in a size region beyond the long-wavelength approximation regime due to the resonant enhancement of the internal field, wherein the usual dipole selection rule is violated. Our analysis of MBs employs a model of the nonlocal multilevel system that considers the spatial interplay between excitonic waves and the radiation field to elucidate the mechanism behind the observed ultrafast response.
Exciton transport, charge extraction, and loss mechanisms in organic photovoltaics
NASA Astrophysics Data System (ADS)
Scully, Shawn Ryan
Organic photovoltaics have attracted significant interest over the last decade due to their promise as clean low-cost alternatives to large-scale electric power generation such as coal-fired power, natural gas, and nuclear power. Many believe power conversion efficiency targets of 10-15% must be reached before commercialization is possible. Consequently, understanding the loss mechanisms which currently limit efficiencies to 4-5% is crucial to identify paths to reach higher efficiencies. In this work, we investigate the dominant loss mechanisms in some of the leading organic photovoltaic architectures. In the first class of architectures, which include planar heterojunctions and bulk heterojunctions with large domains, efficiencies are primarily limited by the distance photogenerated excitations (excitons) can be transported (termed the exciton diffusion length) to a heterojunction where the excitons may dissociate. We will discuss how to properly measure the exciton diffusion length focusing on the effects of optical interference and of energy transfer when using fullerenes as quenching layers and show how this explains the variety of diffusion lengths reported for the same material. After understanding that disorder and defects limit exciton diffusion lengths, we suggest some approaches to overcome this. We then extensively investigate the use of long-range resonant energy transfer to increase exciton harvesting. Using simulations and experiments as support, we discuss how energy transfer can be engineered into architectures to increase the distance excitons can be harvested. In an experimental model system, DOW Red/PTPTB, we will show how the distance excitons are harvested can be increased by almost an order of magnitude up to 27 nm from a heterojunction and give design rules and extensions of this concept for future architectures. After understanding exciton harvesting limitations we will look at other losses that are present in planar heterojunctions. One of
Computational study of exciton generation in suspended carbon nanotube transistors.
Koswatta, Siyuranga O; Perebeinos, Vasili; Lundstrom, Mark S; Avouris, Phaedon
2008-06-01
Optical emission from carbon nanotube transistors (CNTFETs) has recently attracted significant attention due to its potential applications. In this paper, we use a self-consistent numerical solution of the Boltzmann transport equation in the presence of both phonon and exciton scattering to present a detailed study of the operation of a partially suspended CNTFET light emitter, which has been discussed in a recent experiment. We determine the energy distribution of hot carriers in the CNTFET and, as reported in the experiment, observe localized generation of excitons near the trench-substrate junction and an exponential increase in emission intensity with a linear increase in current versus gate voltage. We further provide detailed insight into device operation and propose optimization schemes for efficient exciton generation; a deeper trench increases the generation efficiency, and use of high-k substrate oxides could lead to even larger enhancements.
Effects of fermion exchange on the polarization of exciton condensates.
Combescot, Monique; Combescot, Roland; Alloing, Mathieu; Dubin, François
2015-03-06
Exchange interaction is responsible for the stability of elementary boson condensates with respect to momentum fragmentation. This remains true for composite bosons when single fermion exchanges are included but spin degrees of freedom are ignored. Here, we show that their inclusion can produce a spin fragmentation of the dark exciton condensate, i.e., an unpolarized condensate with an equal amount of spin (+2) and (-2) excitons not coupled to light. The composite boson many-body formalism allows us to predict that, for spatially indirect excitons, the condensate polarization switches from unpolarized to fully polarized when the distance between the layers confining electrons and holes increases. Importantly, the threshold distance for this switch lies in a regime fully accessible to experiments.
Long-range exciton dissociation in organic solar cells.
Caruso, Domenico; Troisi, Alessandro
2012-08-21
It is normally assumed that electrons and holes in organic solar cells are generated by the dissociation of excitons at the interface between donor and acceptor materials in strongly bound hole-electron pairs. We show in this contribution that excitons can dissociate tens of angstroms away from the interface and generate partially separated electrons and holes, which can more easily overcome their coulombic attraction and form free charges. We first establish under what conditions long-range exciton dissociation is likely (using a kinetic model and a microscopic model for the calculation of the long-range electron transfer rate). Then, defining a rather general model Hamiltonian for the donor material, we show that the phenomenon is extremely common in the majority of polymer:fullerene bulk heterojunction solar cells.
Understanding the mass-radius relation for sub-Neptunes: radius as a proxy for composition
Lopez, Eric D.; Fortney, Jonathan J.
2014-09-01
Transiting planet surveys like Kepler have provided a wealth of information on the distribution of planetary radii, particularly for the new populations of super-Earth- and sub-Neptune-sized planets. In order to aid in the physical interpretation of these radii, we compute model radii for low-mass rocky planets with hydrogen-helium envelopes. We provide model radii for planets 1-20 M {sub ⊕}, with envelope fractions 0.01%-20%, levels of irradiation 0.1-1000 times Earth's, and ages from 100 Myr to 10 Gyr. In addition we provide simple analytic fits that summarize how radius depends on each of these parameters. Most importantly, we show that at fixed H/He envelope fraction, radii show little dependence on mass for planets with more than ∼1% of their mass in their envelope. Consequently, planetary radius is to a first order a proxy for planetary composition, i.e., H/He envelope fraction, for Neptune- and sub-Neptune-sized planets. We recast the observed mass-radius relationship as a mass-composition relationship and discuss it in light of traditional core accretion theory. We discuss the transition from rocky super-Earths to sub-Neptune planets with large volatile envelopes. We suggest ∼1.75 R {sub ⊕} as a physically motivated dividing line between these two populations of planets. Finally, we discuss these results in light of the observed radius occurrence distribution found by Kepler.
Physeal arrest of the distal radius.
Abzug, Joshua M; Little, Kevin; Kozin, Scott H
2014-06-01
Fractures of the distal radius are among the most common pediatric fractures. Although most of these fractures heal without complication, some result in partial or complete physeal arrest. The risk of physeal arrest can be reduced by avoiding known risk factors during fracture management, including multiple attempts at fracture reduction. Athletes may place substantial compressive and shear forces across the distal radial physes, making them prone to growth arrest. Timely recognition of physeal arrest can allow for more predictable procedures to be performed, such as distal ulnar epiphysiodesis. In cases of partial arrest, physeal bar excision with interposition grafting can be performed. Once ulnar abutment is present, more invasive procedures may be required, including ulnar shortening osteotomy or radial lengthening.
Dawlaty, Jahan M; Bennett, Doran I G; Huxter, Vanessa M; Fleming, Graham R
2011-07-28
We experimentally demonstrate a nonlinear spectroscopic method that is sensitive to exciton-exciton interactions in a Frenkel exciton system. Spatial overlap of one-exciton wavefunctions leads to coupling between them, resulting in two-exciton eigenstates that have the character of many single-exciton pairs. The mixed character of the two-exciton wavefunctions gives rise to a four-wave-mixing nonlinear frequency generation signal. When only part of the linear excitation spectrum of the complex is excited with three spectrally tailored pulses with separate spatial directions, a frequency-shifted third-order nonlinear signal emerges in the phase-matched direction. We employ the nonlinear response function formalism to show that the emergence of the signal is mediated by and carries information about the two-exciton eigenstates of the system. We report experimental results for nonlinear frequency generation in the Fenna-Matthews-Olson (FMO) photosynthetic pigment-protein complex. Our theoretical analysis of the signal from FMO confirms that the emergence of the frequency-shifted signal is due to the interaction of spatially overlapped excitons. In this method, the signal intensity is directly measured in the frequency domain and does not require scanning of pulse delays or signal phase retrieval. The wavefunctions of the two-exciton states contain information about the spatial overlap of excitons and can be helpful in identifying coupling strengths and relaxation pathways. We propose this method as a facile experimental means of studying exciton correlations in systems with complicated electronic structures.
Crossed excitons in a semiconductor nanostructure of mixed dimensionality
Owschimikow, Nina Kolarczik, Mirco; Kaptan, Yücel I.; Grosse, Nicolai B.; Woggon, Ulrike
2014-09-08
Semiconductor systems of reduced dimensionality, e.g., quantum dots or quantum wells, display a characteristic spectrum of confined excitons. Combining several of these systems may lead to the formation of “crossed” excitons, and thus new equilibrium states and scattering channels. We derive gain excitation spectra from two-color pump-probe experiments on an In(Ga)As based quantum dot semiconductor optical amplifier by analyzing the amplitudes of the traces. This grants access to the quantum dot response, even in the presence of strong absorption by the surroundings at the excitation energy. The gain excitation spectra yield evidence of crossed quantum dot-bulk states.
Singlet exciton fission in polycrystalline pentacene: from photophysics toward devices.
Wilson, Mark W B; Rao, Akshay; Ehrler, Bruno; Friend, Richard H
2013-06-18
Singlet exciton fission is the process in conjugated organic molecules bywhich a photogenerated singlet exciton couples to a nearby chromophore in the ground state, creating a pair of triplet excitons. Researchers first reported this phenomenon in the 1960s, an event that sparked further studies in the following decade. These investigations used fluorescence spectroscopy to establish that exciton fission occurred in single crystals of several acenes. However, research interest has been recently rekindled by the possibility that singlet fission could be used as a carrier multiplication technique to enhance the efficiency of photovoltaic cells. The most successful architecture to-date involves sensitizing a red-absorbing photoactive layer with a blue-absorbing material that undergoes fission, thereby generating additional photocurrent from higher-energy photons. The quest for improved solar cells has spurred a drive to better understand the fission process, which has received timely aid from modern techniques for time-resolved spectroscopy, quantum chemistry, and small-molecule device fabrication. However, the consensus interpretation of the initial studies using ultrafast transient absorption spectroscopy was that exciton fission was suppressed in polycrystalline thin films of pentacene, a material that would be otherwise expected to be an ideal model system, as well as a viable candidate for fission-sensitized photovoltaic devices. In this Account, we review the results of our recent transient absorption and device-based studies of polycrystalline pentacene. We address the controversy surrounding the assignment of spectroscopic features in transient absorption data, and illustrate how a consistent interpretation is possible. This work underpins our conclusion that singlet fission in pentacene is extraordinarily rapid (∼80 fs) and is thus the dominant decay channel for the photoexcited singlet exciton. Further, we discuss our demonstration that triplet excitons
Plasmon and exciton superconductivity mechanisms in layered structures
NASA Technical Reports Server (NTRS)
Gabovich, A. M.; Pashitskiy, E. A.; Uvarova, S. K.
1977-01-01
Plasmon and exciton superconductivity mechanisms are discussed. Superconductivity in a three layer metal semiconductor metal and insulator semimetal insulator sandwich structure was described in terms of the temperature dependent Green function of the longitudinal (Coulomb) field. The dependences of the superconducting transition temperature on structure parameters were obtained. In a semiconducting film, as a result of interactions of degenerate free carriers with excitons, superconductivity exists only in a certain range of parameter values, and the corresponding critical temperature is much lower than in the plasmon mechanism of superconductivity.
Realization of an all optical exciton-polariton router
Marsault, Félix; Nguyen, Hai Son; Tanese, Dimitrii; Lemaître, Aristide; Galopin, Elisabeth; Sagnes, Isabelle; Amo, Alberto
2015-11-16
We report on the experimental realization of an all optical router for exciton-polaritons. This device is based on the design proposed by Flayac and Savenko [Appl. Phys. Lett. 103, 201105 (2013)], in which a zero-dimensional island is connected through tunnel barriers to two periodically modulated wires of different periods. Selective transmission of polaritons injected in the island, into either of the two wires, is achieved by tuning the energy of the island state across the band structure of the modulated wires. We demonstrate routing of ps polariton pulses using an optical control beam which controls the energy of the island quantum states, thanks to polariton-exciton interactions.
Frequency combs with weakly lasing exciton-polariton condensates.
Rayanov, K; Altshuler, B L; Rubo, Y G; Flach, S
2015-05-15
We predict the spontaneous modulated emission from a pair of exciton-polariton condensates due to coherent (Josephson) and dissipative coupling. We show that strong polariton-polariton interaction generates complex dynamics in the weak-lasing domain way beyond Hopf bifurcations. As a result, the exciton-polariton condensates exhibit self-induced oscillations and emit an equidistant frequency comb light spectrum. A plethora of possible emission spectra with asymmetric peak distributions appears due to spontaneously broken time-reversal symmetry. The lasing dynamics is affected by the shot noise arising from the influx of polaritons. That results in a complex inhomogeneous line broadening.
Exciton dynamics in solid-state green fluorescent protein
NASA Astrophysics Data System (ADS)
Dietrich, Christof P.; Siegert, Marie; Betzold, Simon; Ohmer, Jürgen; Fischer, Utz; Höfling, Sven
2017-01-01
We study the decay characteristics of Frenkel excitons in solid-state enhanced green fluorescent protein (eGFP) dried from solution. We further monitor the changes of the radiative exciton decay over time by crossing the phase transition from the solved to the solid state. Complex interactions between protonated and deprotonated states in solid-state eGFP can be identified from temperature-dependent and time-resolved fluorescence experiments that further allow the determination of activation energies for each identified process.
Evidence of Hybrid Excitons in Weakly Interacting Nanopeapods
2013-01-01
Nanopeapods, consisting of optically active π-conjugated molecules encapsulated inside of the cavity of carbon nanotubes, exhibit efficient photon emission in the visible spectral range. Combining optical experiments with ab initio theory, we show that the puzzling features observed in photoluminescence spectra are of excitonic nature. The subunits though being van der Waals bound are demonstrated to interact in the excited state, giving rise to the formation of hybrid excitons. We rationalize why this many-body effect makes such nanohybrids useful for optoelectronic devices. PMID:23991266
Environment-assisted quantum walks in excitonic energy transport
NASA Astrophysics Data System (ADS)
Mohseni, Masoud; Rebentrost, Patrick; Lloyd, Seth; Aspuru-Guzik, Alan
2010-03-01
Long-lived quantum coherence has recently been observed experimentally via ultrafast nonlinear spectroscopy in excitonic energy transfer within light-harvesting photosynthetic complexes, conjugated polymers, and marine alga even at room temperature. Here, we demonstrate that directed quantum walks lead to an enhancement of energy transfer efficiency in such systems. We introduce two complementary theoretical approaches, based on a Green's function method and energy transfer susceptibilities, to partition open quantum dynamics. We quantify the role of fundamental physical processes involved in energy transport. In particular, we examine the contributions of classical hopping, coherent excitonic Hamiltonian, and phonon-induced decoherence effects for pure dephasing, Markovian, and non-Markovian limits.
Enhanced energy transport in genetically engineered excitonic networks
NASA Astrophysics Data System (ADS)
Park, Heechul; Heldman, Nimrod; Rebentrost, Patrick; Abbondanza, Luigi; Iagatti, Alessandro; Alessi, Andrea; Patrizi, Barbara; Salvalaggio, Mario; Bussotti, Laura; Mohseni, Masoud; Caruso, Filippo; Johnsen, Hannah C.; Fusco, Roberto; Foggi, Paolo; Scudo, Petra F.; Lloyd, Seth; Belcher, Angela M.
2016-02-01
One of the challenges for achieving efficient exciton transport in solar energy conversion systems is precise structural control of the light-harvesting building blocks. Here, we create a tunable material consisting of a connected chromophore network on an ordered biological virus template. Using genetic engineering, we establish a link between the inter-chromophoric distances and emerging transport properties. The combination of spectroscopy measurements and dynamic modelling enables us to elucidate quantum coherent and classical incoherent energy transport at room temperature. Through genetic modifications, we obtain a significant enhancement of exciton diffusion length of about 68% in an intermediate quantum-classical regime.
Strong coupling between Tamm plasmon and QW exciton
NASA Astrophysics Data System (ADS)
Homeyer, Estelle; Symonds, Clémentine; Lemaître, Aristide; Plenet, Jean-Claude; Bellessa, Joel
2011-03-01
We report on the strong coupling between a Tamm plasmon mode and excitons from inorganic quantum wells. The sample is formed by an AlAs/GaAlAs Bragg reflector containing InGaAs QWs in its high refractive index layers, on top of which a thin silver film is deposited. Angle resolved reflectometry experiments at low temperature (77 K) show a clear anticrossing in the dispersion relations, evidencing the strong coupling regime. The Rabi splitting amounts to 11.5 meV. Emission from low and high energy Tamm plasmon/exciton polaritons is also demonstrated. Experimental data are in very good agreement with transfer matrix simulations.
Exciton autoionization in ion-induced electron emission.
Bajales, N; Cristina, L; Mendoza, S; Baragiola, R A; Goldberg, E C; Ferrón, J
2008-06-06
We report on measurements of electron emission spectra from surfaces of highly oriented pyrolytic graphite (HOPG) excited by 1-5 keV He+ and Li+ which, for He+, exhibit a previously unreported high-energy structure. Through a full quantum dynamic description that allows for the calculation of neutralization and electron-hole pair excitation, we show that these high-energy electrons can arise from autoionization of excitons formed by electron promotion to conduction band states close to the vacuum level. The same calculation explains the observed absence of high-energy excitons for Li+ on HOPG.
Electronic properties of an exciton in CdTe/CdSe/CdTe/CdSe type-II nano-heterostructure.
Suseel Rahul, K; Salini, K; Mathew, Vincent
2016-11-30
In this study, we have carried out a detailed theoretical investigation on the binding energy of an exciton in type-II CdTe/CdSe core/shell/well/shell (CSWS) nanocrystal quantum dot (NCQD) in the strong confinement region. The calculations are based on the effective mass approximation, and the coulombic interaction between electron and hole is introduced using Hartree approximation. With these theoretical basis, the coupled Poisson-Schrodinger equations are solved in a self consistent iterative manner. In strong confinement regime, the binding energy variation with core radius in type-II NCQD shows a peak. And this peak widens for larger well width and inner shell thickness. Our study suggests that, this anomalous behavior of exciton binding energy is due to an effect called 'positional flip of exciton', caused by the faster tunneling of hole to the inner layer in comparison with electron. Our results can be applied in laser and optoelectronic engineering for designing more efficient optoelectronic devices.
Laser induced magneto-Raman optical gain of an exciton and a biexciton in a CdTe/ZnTe quantum dot
NASA Astrophysics Data System (ADS)
Sujanah, P.; John Peter, A.; Lee, Chang Woo
2016-06-01
Magnetic field and laser field amplitude dependent electronic and optical properties of exciton and biexciton in a CdTe/ZnTe quantum dot nanostructure are brought out taking into account the spatial confinement effect. Binding energies of exciton and biexciton as functions of laser field amplitude and magnetic field strength are computed in a CdTe/ZnTe quantum dot for the constant dot radius 30 Å. Oscillator strength, resonant absorption coefficients and resonant optical Raman intensity of the exciton and biexciton as a function of laser field amplitude are obtained in the presence of magnetic field strength in a CdTe/ZnTe quantum dot. The laser field induced magneto-Raman gain is studied for a constant dot radii. The Coulomb interaction energy which is involved in Hartree potential is obtained numerically. The result shows that the applications of magnetic field strength and the laser field amplitude alter the electronic and optical properties considerably in the CdTe/ZnTe quantum dot.
Strongly Enhanced Free-Exciton Luminescence in Microcrystalline CsPbBr3 Films
NASA Astrophysics Data System (ADS)
Kondo, Shin-ichi; Kakuchi, Mitsugu; Masaki, Atsushi; Saito, Tadaaki
2003-07-01
The luminescence properties of CsPbBr3 films prepared via the amorphous phase by crystallization are dominated by free-exciton emission, and only a weak trace of emission due to trapped excitons was observed, in contrast to the case of bulk CsPbBr3 crystals. In particular, the films in the microcrystalline state show by more than an order of magnitude stronger free-exciton emission than in the polycrystalline state. The enhanced free-exciton emission is suggestive of excitonic superradiance.
All-optical depletion of dark excitons from a semiconductor quantum dot
Schmidgall, E. R.; Schwartz, I.; Cogan, D.; Gershoni, D.; Gantz, L.; Heindel, T.; Reitzenstein, S.
2015-05-11
Semiconductor quantum dots are considered to be the leading venue for fabricating on-demand sources of single photons. However, the generation of long-lived dark excitons imposes significant limits on the efficiency of these sources. We demonstrate a technique that optically pumps the dark exciton population and converts it to a bright exciton population, using intermediate excited biexciton states. We show experimentally that our method considerably reduces the dark exciton population while doubling the triggered bright exciton emission, approaching thereby near-unit fidelity of quantum dot depletion.
Exciton-plasmon and spin-plasmon interactions in hybrid semiconductor-metal nanostructures
NASA Astrophysics Data System (ADS)
Govorov, Alexander
2011-03-01
Coulomb and electromagnetic interactions between excitons and plasmons in nanocrystals cause several effects: energy transfer between nanoparticles, plasmon enhancement, Lamb shifts of exciton lines, Fano interference. In a complex composed of semiconductor quantum dot and metal nanoparticle, plasmons interact with spin-polarized excitons. This interaction leads to the formation of coupled spin-plasmon excitations and to spin-dependent Fano resonances. If an exciton-plasmon system includes chiral elements (chiral molecules or nanocrystals), the exciton-plasmon interaction is able to create new plasmonic lines in circular dichroism spectra.
Evidence for dark excitons in a single carbon nanotube due to the Aharonov-Bohm effect.
Matsunaga, Ryusuke; Matsuda, Kazunari; Kanemitsu, Yoshihiko
2008-10-03
We studied exciton structures and the Aharonov-Bohm effect in a single carbon nanotube using micro-photoluminescence (PL) spectroscopy under a magnetic field at low temperatures. A single sharp PL peak from the bright exciton state of a single carbon nanotube was observed under zero magnetic field, and the additional PL of dark exciton state appeared below the bright exciton peak under high magnetic fields. It was found that the split between the bright and dark exciton states is several millielectron volts at zero field. The tube diameter dependence of the splitting arises from the intervalley short-range Coulomb interaction.
Singlet fission in pentacene through multiple exciton quantum states
NASA Astrophysics Data System (ADS)
Zhang, Zhiyong; Zimmerman, Paul; Musgrave, Charles
2010-03-01
Multi-exciton generation (MEG) has been reported for several materials and may dramatically increase solar cell efficiency. Singlet fission is the molecular analogue of MEG and has been observed in various systems, including tetracene and pentacene, however, no fundamental mechanism for singlet fission has yet been described, although it may govern MEG processes in a variety of materials. Because photoexcited states have single-exciton character, singlet fission to produce a pair of triplet excitons must involve an intermediate state that: (1) exhibits multi-exciton (ME) character, (2) is accessible from S1 and satisfies the fission energy requirement, and (3) efficiently dissociates into multiple electron-hole pairs. Here, we use sophisticated ab initio calculations to show that singlet fission in pentacene proceeds through a dark state (D) of ME character that lies just below S1, satisfies the fission energy requirement (ED>2ET0), and splits into two triplets (2xT0). In tetracene, D lies just above S1, consistent with the observation that singlet fission is thermally activated in tetracene. Rational design of photovoltaic systems that exploit singlet fission will require ab initio analysis of ME states such as D.
Ultrafast exciton dissociation at donor/acceptor interfaces
NASA Astrophysics Data System (ADS)
Grancini, G.; Fazzi, D.; Binda, M.; Maiuri, M.; Petrozza, A.; Criante, L.; Perissinotto, S.; Egelhaaf, H.-J.; Brida, D.; Cerullo, G.; Lanzani, G.
2013-09-01
Charge generation at donor/acceptor interface is a highly debated topic in the organic photovoltaics (OPV) community. The primary photoexcited state evolution happens in few femtosecond timescale, thus making very intriguing their full understanding. In particular charge generation is believed to occur in < 200 fs, but no clear picture emerged so far. In this work we reveal for the first time the actual charge generation mechanism following in real time the exciton dissociation mechanism by means of sub-22 fs pump-probe spectroscopy. We study a low-band-gap polymer: fullerene interface as an ideal system for OPV. We demonstrate that excitons dissociation leads, on a timescale of 20-50 fs, to two byproducts: bound interfacial charge transfer states (CTS) and free charges. The branching ratio of their formation depends on the excess photon energy provided. When high energy singlet polymer states are excited, well above the optical band gap, an ultrafast hot electron transfer happens between the polymer singlet state and the interfacial hot CTS* due to the high electronic coupling between them. Hot exciton dissociation prevails then on internal energy dissipation that occurs within few hundreds of fs. By measuring the internal quantum efficiency of a prototypical device a rising trend with energy is observed, thus indicating that hot exciton dissociation effectively leads to a higher fraction of free charges.
Optical dynamics of exciton and polaron formation in molecular aggregates
NASA Astrophysics Data System (ADS)
de Boer, Steven; Wiersma, Douwe A.
1989-03-01
Results of femtosecond accumulated photon echo, picosecond pump-probe and fluorescence lifetime measurements are reported on aggregates of the dyes pseudoisocyanine (PIC) and substituted thiapyrylium (TPY), embedded in a polycarbonate matrix. It is concluded that in the PIC aggregate, delocalized excitations (excitons) are formed, which are weakly coupled to the aggregate's nuclear frame. In the TPY aggregate, excitons are also initially formed, but through strong local electron-phonon coupling these excitons are not stable and decay into polarons, which become trapped. It is suggested that the nature of the excitations in aggregates crucially depends on the change of electron density distribution upon optical excitation. When this change is large, as revealed by a large change of dipole moment, polarons will be formed. In the other limit of a small change of dipole moment on optical excitation, excitons with an enhanced radiative lifetime are formed, which coherently propagate over that part of the aggregate where the molecules are electronically strongly coupled. The relevance of these findings towards energy transport in photo-biological systems is also discussed.
Exciton-polariton condensation in transition metal dichalcogenide bilayer heterostructure
NASA Astrophysics Data System (ADS)
Lee, Ki Hoon; Jeong, Jae-Seung; Min, Hongki; Chung, Suk Bum
For the bilayer heterostructure system in an optical microcavity, the interplay of the Coulomb interaction and the electron-photon coupling can lead to the emergence of quasiparticles consisting of the spatially indirect exciton and cavity photons known as dipolariton, which can form the Bose-Einstein condensate above a threshold density. Additional physics comes into play when each layer of the bilayer system consists of the transition metal dichalcogenide (TMD) monolayer. The TMD monolayer band structure in the low energy spectrum has two valley components with nontrivial Berry phase, which gives rise to a selection rule in the exciton-polariton coupling, e.g. the exciton from one (the other) valley can couple only to the clockwise (counter-clockwise) polarized photon. We investigate possible condensate phases of exciton-polariton in the bilayer TMD microcavity changing relevant parameters such as detuning, excitation density and interlayer distance. This work was supported in part by the Institute for Basic Science of Korea (IBS) under Grant IBS-R009-Y1 and by the National Research Foundation of Korea (NRF) under the Basic Science Research Program Grant No. 2015R1D1A1A01058071.
Multiple Exciton Generation for Highly Efficient Solar Cells
NASA Astrophysics Data System (ADS)
Nozik, Arthur
2007-03-01
In order to utilize solar power for the production of electricity and fuel on a massive scale, it will be necessary to develop solar photon conversion systems that have an appropriate combination of high efficiency and low capital cost (/m^2). One new potential approach to high solar cell efficiency is to utilize the unique properties of semiconductor quantum dot nanostructures to control the relaxation dynamics of photogenerated carriers to produce either enhanced photocurrent through efficient multiple exciton generation (MEG) or enhanced photopotential through hot electron transport and transfer processes. To achieve these desirable effects it is necessary to understand and control the dynamics of electron relaxation, cooling, multiple exciton generation , transport, and interfacial electron transfer of the photogenerated carriers with fs to ns time resolution. We have been studying these fundamental dynamics in bulk and nanoscale semiconductors (quantum dots, quantum wires, and quantum wells) using femtosecond transient absorption, photoluminescence, and THz spectroscopy. This work will be summarized and recent advances in creating multiple excitons from a single photon will be discussed, including a unique model to explain efficient MEG based on the coherent superposition of multiple excitonic states. Various possible configurations for quantum dot solar cells that could produce ultra-high conversion efficiencies for the production of electricity, as well as for producing solar fuels (for example, hydrogen from water splitting), will be discussed, along with associated thermodynamic calculations that show the increase in the maximum theoretical gain in solar photon conversion efficiency for both electricity and fuel production.
Strong quantum coherence between Fermi liquid Mahan excitons
Paul, J.; Stevens, C. E.; Liu, C.; ...
2016-04-14
In modulation doped quantum wells, the excitons are formed as a result of the interactions of the charged holes with the electrons at the Fermi edge in the conduction band, leading to the so-called “Mahan excitons.” The binding energy of Mahan excitons is expected to be greatly reduced and any quantum coherence destroyed as a result of the screening and electron-electron interactions. Surprisingly, we observe strong quantum coherence between the heavy hole and light hole excitons. Such correlations are revealed by the dominating cross-diagonal peaks in both one-quantum and two-quantum two-dimensional Fourier transform spectra. Theoretical simulations based on the opticalmore » Bloch equations where many-body effects are included phenomenologically reproduce well the experimental spectra. Furthermore, time-dependent density functional theory calculations provide insight into the underlying physics and attribute the observed strong quantum coherence to a significantly reduced screening length and collective excitations of the many-electron system.« less
Strong quantum coherence between Fermi liquid Mahan excitons
Paul, J.; Stevens, C. E.; Liu, C.; Dey, P.; McIntyre, C.; Turkowski, V.; Reno, J. L.; Hilton, D. J.; Karaiskaj, D.
2016-04-14
In modulation doped quantum wells, the excitons are formed as a result of the interactions of the charged holes with the electrons at the Fermi edge in the conduction band, leading to the so-called “Mahan excitons.” The binding energy of Mahan excitons is expected to be greatly reduced and any quantum coherence destroyed as a result of the screening and electron-electron interactions. Surprisingly, we observe strong quantum coherence between the heavy hole and light hole excitons. Such correlations are revealed by the dominating cross-diagonal peaks in both one-quantum and two-quantum two-dimensional Fourier transform spectra. Theoretical simulations based on the optical Bloch equations where many-body effects are included phenomenologically reproduce well the experimental spectra. Furthermore, time-dependent density functional theory calculations provide insight into the underlying physics and attribute the observed strong quantum coherence to a significantly reduced screening length and collective excitations of the many-electron system.
Organic photosensitive optoelectronic device having a phenanthroline exciton blocking layer
Thompson, Mark E.; Li, Jian; Forrest, Stephen; Rand, Barry
2011-02-22
An organic photosensitive optoelectronic device, having an anode, a cathode, and an organic blocking layer between the anode and the cathode is described, wherein the blocking layer comprises a phenanthroline derivative, and at least partially blocks at least one of excitons, electrons, and holes.
Connecting molecular structure and exciton diffusion length in rubrene derivatives.
Mullenbach, Tyler K; McGarry, Kathryn A; Luhman, Wade A; Douglas, Christopher J; Holmes, Russell J
2013-07-19
Connecting molecular structure and exciton diffusion length in rubrene derivatives demonstrates how the diffusion length of rubrene can be enhanced through targeted functionalization aiming to enhance self-Förster energy transfer. Functionalization adds steric bulk, forcing the molecules farther apart on average, and leading to increased photoluminescence efficiency. A diffusion length enhancement greater than 50% is realized over unsubstituted rubrene.
Vibrational exciton mediated quantum state transfer: Simple model
NASA Astrophysics Data System (ADS)
Pouthier, Vincent
2012-06-01
A communication protocol is proposed in which quantum state transfer is mediated by a vibrational exciton. We consider two distant molecular groups grafted on the sides of a one-dimensional lattice. These groups behave as two quantum computers where the information in encoded and received. The lattice plays the role of a communication channel along which the exciton propagates and interacts with a phonon bath. Special attention is paid to describing the system involving an exciton dressed by a single phonon mode. The Hamiltonian is thus solved exactly so that the relevance of the perturbation theory is checked. Within the nonadiabatic weak-coupling limit, it is shown that the system supports three quasidegenerate states that define the relevant paths followed by the exciton to tunnel between the computers. When the model parameters are judiciously chosen, constructive interferences take place between these paths. Phonon-induced decoherence is minimized and a high-fidelity quantum state transfer occurs over a broad temperature range.
Exploration of exciton delocalization in organic crystalline thin films
NASA Astrophysics Data System (ADS)
Hua, Kim; Manning, Lane; Rawat, Naveen; Ainsworth, Victoria; Furis, Madalina
The electronic properties of organic semiconductors play a crucial role in designing new materials for specific applications. Our group recently found evidence for a rotation of molecular planes in phthalocyanines that is responsible for the disappearance of a delocalized exciton in these systems for T >150K.................()().......1 In this study, we attempt to tune the exciton delocalization of small organic molecules using strain effects and alloying different molecules in the same family. The exciton behavior is monitored using time- and polarization resolved photolumniscence (PL) spectroscopy as a function of temperature. Specifically, organic crystalline thin films of octabutoxy phthalocyanine (H2OBPc), octyloxy phthalocyanines and H-bonded semiconductors such as the quinacridone and indigo derivatives are deposited on flexible substrates (i.e. Kapton and PEN) using an in-house developed pen-writing method.........2 that results in crystalline films with macroscopic long range order. The room temperature PL studies show redshift and changes in polarization upon bending of the film. Crystalline thin films of alloyed H2OBPc and octabutoxy naphthalocyanine with ratios ranging from 1:1 to 100:1 fabricated on both sapphire and flexible substrates are also explored using the same PL spectroscopy to elucidate the behaviors of delocalized excitons. .1N. Rawat, et al., J Phys Chem Lett 6, 1834 (2015). 2R. L. Headrick, et al., Applied Physics Letters 92, 063302 (2008). NSF DMR-1056589, NSF DMR-1062966.
Heavy ion collisions and the pre-equilibrium exciton model
Betak, E.
2012-10-20
We present a feasible way to apply the pre-equilibrium exciton model in its masterequation formulation to heavy-ion induced reactions including spin variables. Emission of nucleons, {gamma}'s and also light clusters is included in our model.
Coherent Exciton Dynamics in the Presence of Underdamped Vibrations.
Dijkstra, Arend G; Wang, Chen; Cao, Jianshu; Fleming, Graham R
2015-02-19
Recent ultrafast optical experiments show that excitons in large biological light-harvesting complexes are coupled to molecular vibration modes. These high-frequency vibrations will not only affect the optical response, but also drive the exciton transport. Here, using a model dimer system, the frequency of the underdamped vibration is shown to have a strong effect on the exciton dynamics such that quantum coherent oscillations in the system can be present even in the case of strong noise. Two mechanisms are identified to be responsible for the enhanced transport efficiency: critical damping due to the tunable effective strength of the coupling to the bath, and resonance coupling where the vibrational frequency coincides with the energy gap in the system. The interplay of these two mechanisms determines parameters responsible for the most efficient transport, and these optimal control parameters are comparable to those in realistic light-harvesting complexes. Interestingly, oscillations in the excitonic coherence at resonance are suppressed in comparison to the case of an off-resonant vibration.
Two-dimensional electrostatic lattices for indirect excitons
NASA Astrophysics Data System (ADS)
Remeika, M.; Fogler, M. M.; Butov, L. V.; Hanson, M.; Gossard, A. C.
2012-02-01
We report on a method for the realization of two-dimensional electrostatic lattices for excitons using patterned interdigitated electrodes. Lattice structure is set by the electrode pattern and depth of the lattice potential is controlled by applied voltages. We demonstrate square, hexagonal, and honeycomb lattices created by this method.
[Loco typico radius fractures--personal experience].
Darabos, Nikica; Cesarec, Marijan
2003-01-01
Fractura radii loco typico (FRLT) is the fracture of the distal radius. That is the one of the most frequent fractures of locomotor system with the widest range of treatment in traumatology. Therapy depends on the stability of the fracture: nonoperative or operative. We analysed the five-year experience of our Department of Traumatology where more than 1500 patients with FRLT have been treated in the urgent surgery clinic and 126 of them were hospitalized. In our study we evaluated the results of the operative treatment and postoperative functional status of a treated wrist. According to the A-O classification, we hospitalized 36 patients with A type, 28 patients with B type, and 62 patients with C type of FRLT. We operated 80 patients. The postoperative functional status of a treated wrist was excellent or good in 64 patients and good in 16 patients. The treatment of FRLT depends on the type and the complications of the fracture and the age of the patients. Operative therapy is indicated in the unstable FRLT or after an inadequate nonoperative treatment.
Fragmentation of a jet with small radius
NASA Astrophysics Data System (ADS)
Dai, Lin; Kim, Chul; Leibovich, Adam K.
2016-12-01
In this paper, we consider the fragmentation of a parton into a jet with small jet radius R . Perturbatively, logarithms of R can appear, which for narrow jets can lead to large corrections. Using soft-collinear effective theory, we introduce the fragmentation function to a jet (FFJ), which describes the fragmentation of a parton into a jet. We discuss how these objects are related to the standard jet functions. Calculating the FFJ to next-to-leading order, we show that these objects satisfy the standard Dokshitzer-Gribov-Lipatov-Altarelli-Parisi evolution equations, with a natural scale that depends upon R . By using the standard renormalization group evolution, we can therefore resum logarithms of R . We further use the soft-collinear effective theory to prove a factorization theorem where the FFJs naturally appear, for the fragmentation of a hadron within a jet with small R . Finally, we also show how this formalism can be used to resum the ratio of jet radii for a subjet to be emitted from within a fat jet.
On Galaxy Mass-Radius Relationship
NASA Astrophysics Data System (ADS)
Bindoni, D.; Secco, L.; Contini, E.; Caimmi, R.
In the Clausius' virial maximum theory (TCV) [Secco and Bindoni, NewA 14, 567 (2009)] to explain the galaxy Fundamental Plane (FP) a natural explanation follows about the observed relationship between stellar mass and effective radius, M ∗ - r e , for early type galaxies (ETGs). The key of this correlation lies in the deep link which has to exist between cosmology and the existence of the FP. The general strategy consists in using the two-component tensor virial theorem to describe the virial configuration of the baryonic component of mass M B ≃ M ∗ embedded in a dark matter (DM) halo of mass M D at the end of relaxation phase. In a ΛCDM flat cosmology, starting from variance at equivalence epoch, we derive some preliminary theoretical relationships, M ∗ - r e , which are functions of mass ratio m = M D / M B . They appear to be in agreement with the trends extracted from the data of galaxy sample used by [Tortora et al., MNRAS 396, 1132 (2009)].
Experimental study of finite Larmor radius effects
Struve, K.W.
1980-08-01
Linear Z-pinches in Ar, Kr, Xe, N/sub 2/, and He are experimentally studied in regimes where strong finite Larmor radius effects could provide a significant stabilizing effect. Scaling arguments show that for deuterium such a pinch has an electron line density of order 2 x 10/sup 15//cm. For higher Z plasmas a higher line density is allowed, the exact value of which depends on the average ion charge. The pinch is formed by puffing gas axially through the cathode towards the anode of an evacuated pinch chamber. When the gas reaches the anode, the pinch bank is fired. The pinch current rises in 2 to 3 ..mu..sec to a maximum of 100 to 200 kA. The pinch bank capacitance is 900 ..mu..F, and the external inductance is 100 nH. Additionally, the bank is fused to increase dI/dt. The primary diagnostics are a framing camera, a spatially resolved Mach-Zehnder interferometer, and X-ray absorption.
New Physics and the Proton Radius Problem
Carl E. Carlson, Benjamin C. Rislow
2012-08-01
Background: The recent disagreement between the proton charge radius extracted from Lamb shift measurements of muonic and electronic hydrogen invites speculation that new physics may be to blame. Several proposals have been made for new particles that account for both the Lamb shift and the muon anomalous moment discrepancies. Purpose: We explore the possibility that new particles' couplings to the muon can be fine-tuned to account for all experimental constraints. Method: We consider two fine-tuned models, the first involving new particles with scalar and pseudoscalar couplings, and the second involving new particles with vector and axial couplings. The couplings are constrained by the Lamb shift and muon magnetic moments measurements while mass constraints are obtained by kaon decay rate data. Results: For the scalar-pseudoscalar model, masses between 100 to 200 MeV are not allowed. For the vector model, masses below about 200 MeV are not allowed. The strength of the couplings for both models approach that of electrodynamics for particle masses of about 2 GeV. Conclusions: New physics with fine tuned couplings may be entertained as a possible explanation for the Lamb shift discrepancy.
Physical model of the vapor-liquid (insulator-metal) transition in an exciton gas
Khomkin, A. L. Shumikhin, A. S.
2015-04-15
We propose a simple physical model describing the transition of an exciton gas to a conducting exciton liquid. The transition occurs due to cohesive coupling of excitons in the vicinity of the critical point, which is associated with transformation of the exciton ground state to the conduction band and the emergence of conduction electrons. We calculate the cohesion binding energy for the exciton gas and, using it, derive the equations of state, critical parameters, and binodal. The computational method is analogous to that used by us earlier [5] for predicting the vapor-liquid (insulator-metal) phase transition in atomic (hypothetical, free of molecules) hydrogen and alkali metal vapors. The similarity of the methods used for hydrogen and excitons makes it possible to clarify the physical nature of the transition in the exciton gas and to predict more confidently the existence of a new phase transition in atomic hydrogen.
Permanent Rabi oscillations in coupled exciton-photon systems with PT-symmetry.
Chestnov, Igor Yu; Demirchyan, Sevak S; Alodjants, Alexander P; Rubo, Yuri G; Kavokin, Alexey V
2016-01-21
We propose a physical mechanism which enables permanent Rabi oscillations in driven-dissipative condensates of exciton-polaritons in semiconductor microcavities subjected to external magnetic fields. The method is based on stimulated scattering of excitons from the incoherent reservoir. We demonstrate that permanent non-decaying oscillations may appear due to the parity-time symmetry of the coupled exciton-photon system realized in a specific regime of pumping to the exciton state and depletion of the reservoir. At non-zero exciton-photon detuning, robust permanent Rabi oscillations occur with unequal amplitudes of exciton and photon components. Our predictions pave way to realization of integrated circuits based on exciton-polariton Rabi oscillators.
Permanent Rabi oscillations in coupled exciton-photon systems with PT -symmetry
Chestnov, Igor Yu.; Demirchyan, Sevak S.; Alodjants, Alexander P.; Rubo, Yuri G.; Kavokin, Alexey V.
2016-01-01
We propose a physical mechanism which enables permanent Rabi oscillations in driven-dissipative condensates of exciton-polaritons in semiconductor microcavities subjected to external magnetic fields. The method is based on stimulated scattering of excitons from the incoherent reservoir. We demonstrate that permanent non-decaying oscillations may appear due to the parity-time symmetry of the coupled exciton-photon system realized in a specific regime of pumping to the exciton state and depletion of the reservoir. At non-zero exciton-photon detuning, robust permanent Rabi oscillations occur with unequal amplitudes of exciton and photon components. Our predictions pave way to realization of integrated circuits based on exciton-polariton Rabi oscillators. PMID:26790534
Heitzer, Henry M; Savoie, Brett M; Marks, Tobin J; Ratner, Mark A
2014-07-14
Organic photovoltaics (OPVs) offer the opportunity for cheap, lightweight and mass-producible devices. However, an incomplete understanding of the charge generation process, in particular the timescale of dynamics and role of exciton diffusion, has slowed further progress in the field. We report a new Kinetic Monte Carlo model for the exciton dissociation mechanism in OPVs that addresses the origin of ultra-fast (<1 ps) dissociation by incorporating exciton delocalization. The model reproduces experimental results, such as the diminished rapid dissociation with increasing domain size, and also lends insight into the interplay between mixed domains, domain geometry, and exciton delocalization. Additionally, the model addresses the recent dispute on the origin of ultra-fast exciton dissociation by comparing the effects of exciton delocalization and impure domains on the photo-dynamics.This model provides insight into exciton dynamics that can advance our understanding of OPV structure-function relationships.
Exciton Relaxation and Electron Transfer Dynamics of Semiconductor Quantum Dots
NASA Astrophysics Data System (ADS)
Liu, Cunming
Quantum dots (QDs), also referred to as colloidal semiconductor nanocrystals, exhibit unique electronic and optical properties arising from their three-dimensional confinement and strongly enhanced coulomb interactions. Developing a detailed understanding of the exciton relaxation dynamics within QDs is important not only for sake of exploring the fundamental physics of quantum confinement processes, but also for their applications. Ultrafast transient absorption (TA) spectroscopy, as a powerful tool to explore the relaxation dynamics of excitons, was employed to characterize the hot single/multiexciton relaxation dynamics at the first four exciton states of CdSe/CdZnS QDs. We observed for the first time that the hot hole can relax through two possible pathways: Intraband multiple phonon coupling and intrinsic defect trapping, with a lifetime of ˜7 ps. Additionally, an ultra-short component of ˜ 8 ps, directly associated with the Auger recombination of highly energetic exciton states, was discovered. After exploring the exciton relaxation inside QDs, ultrafast TA spectroscopy was further applied to study the electron transferring outside from QDs. By using a brand-new photocatalytic system consisting of CdSe QDs and Ni-dihydrolipoic acid (Ni-DHLA) catalyst, which has represented a robust photocatalysis of H2 from water, the photoinduced electron transfer (ET) dynamics between QD and the catalyst, one of most important steps during H2 generation, was studied. We found smaller bare CdSe QDs exhibit a better ET performance and CdS shelling on the bare QDs leads to worsen the ET. The calculations of effective mass approximation (EMA) and Marcus theory show the ET process is mainly dominated by driving force, electronic coupling strength and reorganization energy between QD and the catalyst.
Tidal radius estimates for three open clusters
NASA Astrophysics Data System (ADS)
Danilov, V. M.; Loktin, A. V.
2015-10-01
A new method is developed for estimating tidal radii and masses of open star clusters (OCL) based on the sky-plane coordinates and proper motions and/or radial velocities of cluster member stars. To this end, we perform the correlation and spectral analysis of oscillations of absolute values of stellar velocity components relative to the cluster mass center along three coordinate planes and along each coordinate axis in five OCL models. Mutual correlation functions for fluctuations of absolute values of velocity field components are computed. The spatial Fourier transform of the mutual correlation functions in the case of zero time offset is used to compute wavenumber spectra of oscillations of absolute values of stellar velocity components. The oscillation spectra of these quantities contain series of local maxima at equidistant wavenumber k values. The ratio of the tidal radius of the cluster to the wavenumber difference Δ k of adjacent local maxima in the oscillation spectra of absolute values of velocity field components is found to be the same for all five OCL models. This ratio is used to estimate the tidal radii and masses of the Pleiades, Praesepe, and M67 based on the proper motions and sky-plane coordinates of the member stars of these clusters. The radial dependences of the absolute values of the tangential and radial projections of cluster star velocities computed using the proper motions relative to the cluster center are determined, along with the corresponding autocorrelation functions and wavenumber spectra of oscillations of absolute values of velocity field components. The Pleiades virial mass is estimated assuming that the cluster is either isolated or non-isolated. Also derived are the estimates of the Pleiades dynamical mass assuming that it is non-stationary and non-isolated. The inferred Pleiades tidal radii corresponding to these masses are reported.
New concepts in the treatment of distal radius fractures.
Taras, John S; Ladd, Amy L; Kalainov, David M; Ruch, David S; Ring, David C
2010-01-01
Fracture of the distal radius is the type of fracture most commonly seen in emergency departments. The understanding of nonsurgical and surgical care of distal radius fractures is evolving with recently developed methods of fixation. It is worthwhile to review some new methods of treatment, the role of bone grafting and synthetic substitutes, the principles of complex fracture management, and the treatment of common complications of distal radius fractures.
Nonlinear Nano-Optics: Probing One Exciton at a Time
NASA Astrophysics Data System (ADS)
Bonadeo, Nicolas H.
1998-03-01
Optical studies in single quantum dots (QD's) have recently been possible with the use of high spatial resolution techniques (K. Brunner,et al., Phys. Rev. Lett. 69, 3216 (1992).)^,(H. F. Hess,et al., Science 264, 1740 (1994).)^,(D. Gammon, et al., Phys. Rev. Lett. 76, 3005 (1996).). The various approaches remove the spectral blurring caused by inhomogeneous broadening in ensemble measurements revealing extremely sharp resonances that result from the complete energy quantization of the zero-dimensional exciton. Previous experiments in single QD's have been based uniquely in photoluminescence (PL) detection and were mainly performed in the frequency domain. In this work, we present data from two different experimental approaches that go beyond these limitations and open up a new direction of research for direct measurements of exciton dynamics, coherent transients and optical nonlinearities in QD's. The first set of experiments combines the elegance and power of CW coherent nonlinear optical spectroscopy with the breakthrough of single QD probing producing the first nonlinear measurement in a single QD. The nonlinear measurements allow us to identify an incoherent and coherent contribution to the resonant electronic response, extract the excitation decoherence time and energy relaxation rate, as well as demonstrate a behavior similar to two beam coupling. In the second set of experiments, using two phase-locked lasers pulses, we show the possibility to control the population(A. P. Heberly, J.J. Baumberg, and Kohler, Phys. Rev. Lett. 74, 3596 (1995))of a single QD in times shorter than the excitonic lifetime and taking thus, coherent-control to the ultimate quantum limit of a single exciton per control box. In addition, we performed a series of transient experiments that includes the first direct measurement of the decoherence time in single QD. The measurements are performed at T=6K in a narrow (42 Åsingle MBE grown GaAs quantum well with 250 ÅAl _0.3Ga_0.7As
Interlayer Exciton Optoelectronics in a 2D Heterostructure p-n Junction.
Ross, Jason S; Rivera, Pasqual; Schaibley, John; Lee-Wong, Eric; Yu, Hongyi; Taniguchi, Takashi; Watanabe, Kenji; Yan, Jiaqiang; Mandrus, David; Cobden, David; Yao, Wang; Xu, Xiaodong
2017-02-08
Semiconductor heterostructures are backbones for solid-state-based optoelectronic devices. Recent advances in assembly techniques for van der Waals heterostructures have enabled the band engineering of semiconductor heterojunctions for atomically thin optoelectronic devices. In two-dimensional heterostructures with type II band alignment, interlayer excitons, where Coulomb bound electrons and holes are confined to opposite layers, have shown promising properties for novel excitonic devices, including a large binding energy, micron-scale in-plane drift-diffusion, and a long population and valley polarization lifetime. Here, we demonstrate interlayer exciton optoelectronics based on electrostatically defined lateral p-n junctions in a MoSe2-WSe2 heterobilayer. Applying a forward bias enables the first observation of electroluminescence from interlayer excitons. At zero bias, the p-n junction functions as a highly sensitive photodetector, where the wavelength-dependent photocurrent measurement allows the direct observation of resonant optical excitation of the interlayer exciton. The resulting photocurrent amplitude from the interlayer exciton is about 200 times smaller than the resonant excitation of intralayer exciton. This implies that the interlayer exciton oscillator strength is 2 orders of magnitude smaller than that of the intralayer exciton due to the spatial separation of electron and hole to the opposite layers. These results lay the foundation for exploiting the interlayer exciton in future 2D heterostructure optoelectronic devices.
Enabling valley selective exciton scattering in monolayer WSe2 through upconversion.
Manca, M; Glazov, M M; Robert, C; Cadiz, F; Taniguchi, T; Watanabe, K; Courtade, E; Amand, T; Renucci, P; Marie, X; Wang, G; Urbaszek, B
2017-04-03
Excitons, Coulomb bound electron-hole pairs, are composite bosons and their interactions in traditional semiconductors lead to condensation and light amplification. The much stronger Coulomb interaction in transition metal dichalcogenides such as WSe2 monolayers combined with the presence of the valley degree of freedom is expected to provide new opportunities for controlling excitonic effects. But so far the bosonic character of exciton scattering processes remains largely unexplored in these two-dimensional materials. Here we show that scattering between B-excitons and A-excitons preferably happens within the same valley in momentum space. This leads to power dependent, negative polarization of the hot B-exciton emission. We use a selective upconversion technique for efficient generation of B-excitons in the presence of resonantly excited A-excitons at lower energy; we also observe the excited A-excitons state 2s. Detuning of the continuous wave, low-power laser excitation outside the A-exciton resonance (with a full width at half maximum of 4 meV) results in vanishing upconversion signal.
Excitonic complexes in GaN/(Al,Ga)N quantum dots
NASA Astrophysics Data System (ADS)
Elmaghraoui, D.; Triki, M.; Jaziri, S.; Muñoz-Matutano, G.; Leroux, M.; Martinez-Pastor, J.
2017-03-01
Here we report a theoretical investigation of excitonic complexes in polar GaN/(Al,Ga)N quantum dots (QDs). A sum rule between the binding energies of charged excitons is used to calculate the biexciton binding energy. The binding energies of excitonic complexes in GaN/AlN are shown to be strongly correlated to the QD size. Due to the large hole localization, the positively charged exciton energy is found to be always blueshifted compared to the exciton one. The negatively charged exciton and the biexciton energy can be blueshifted or redshifted according to the QD size. Increasing the size of GaN/AlN QDs makes the identification of charged excitons difficult, and the use of an Al0.5Ga0.5N barrier can be advantageous for clear identification. Our theoretical results for the binding energy of exciton complexes are also confronted with values deduced experimentally for InAs/GaAs QDs, confirming our theoretical prediction for charged excitonic complexes in GaN/(Al,Ga)N QDs. Finally, we realize that the trends of excitonic complexes in QDs are significantly related to competition between the local charge separation (whatever its origin) and the correlation effect. Following our findings, entangled photons pairs can be produced in QDs with careful control of their size in order to obtain zero exciton–biexciton energy separation.
Interlayer Exciton Optoelectronics in a 2D Heterostructure p–n Junction
NASA Astrophysics Data System (ADS)
Ross, Jason S.; Rivera, Pasqual; Schaibley, John; Lee-Wong, Eric; Yu, Hongyi; Taniguchi, Takashi; Watanabe, Kenji; Yan, Jiaqiang; Mandrus, David; Cobden, David; Yao, Wang; Xu, Xiaodong
2017-02-01
Semiconductor heterostructures are backbones for solid state based optoelectronic devices. Recent advances in assembly techniques for van der Waals heterostructures has enabled the band engineering of semiconductor heterojunctions for atomically thin optoelectronic devices. In two-dimensional heterostructures with type II band alignment, interlayer excitons, where Coulomb-bound electrons and holes are confined to opposite layers, have shown promising properties for novel excitonic devices, including a large binding energy, micron-scale in-plane drift-diffusion, and long population and valley polarization lifetime. Here, we demonstrate interlayer exciton optoelectronics based on electrostatically defined lateral p-n junctions in a MoSe2-WSe2 heterobilayer. Applying a forward bias enables the first observation of electroluminescence from interlayer excitons. At zero bias, the p-n junction functions as a highly sensitive photodetector, where the wavelength-dependent photocurrent measurement allows the direct observation of resonant optical excitation of the interlayer exciton. The resulting photocurrent amplitude from the interlayer exciton is about 200 times smaller compared to the resonant excitation of intralayer exciton. This implies that the interlayer exciton oscillator strength is two orders of magnitude smaller than that of the intralayer exciton due to the spatial separation of electron and hole to opposite layers. These results lay the foundation for exploiting the interlayer exciton in future 2D heterostructure optoelectronic devices.
Louie, G; Englander, J J; Englander, S W
1988-06-20
Hydrogen exchange experiments using functional labeling and fragment separation methods were performed to study interactions at the C terminus of the hemoglobin beta subunit that contribute to the phosphate effect and the Bohr effect. The results show that the H-exchange behavior of several peptide NH at the beta chain C terminus is determined by a transient, concerted unfolding reaction involving five or more residues, from the C-terminal His146 beta through at least Ala142 beta, and that H-exchange rate can be used to measure the stabilization free energy of interactions, both individually and collectively, at this locus. In deoxy hemoglobin at pH 7.4 and 0 degrees C, the removal of 2,3-diphosphoglycerate (DPG) or pyrophosphate (loss of a salt to His143 beta) speeds the exchange of the beta chain C-terminal peptide NH protons by 2.5-fold (at high salt), indicating a destabilization of the C-terminal segment by 0.5 kcal of free energy. Loss of the His146 beta 1 to Asp94 beta 1 salt link speeds all these protons by 6.3-fold, indicating a bond stabilization free energy of 1.0 kcal. When both these salt links are removed together, the effect is found to be strictly additive; all the protons exchange faster by 16-fold indicating a loss of 1.5 kcal in stabilization free energy. Added salt is slightly destabilizing when DPG is present but provides some increased stability, in the 0.2 kcal range, when DPG is absent. The total allosteric stabilization energy at each beta chain C terminus in deoxy hemoglobin under these conditions is measured to be 3.8 kcal (pH 7.4, 0 degrees C, with DPG). In oxy hemoglobin at pH 7.4 and 0 degrees C, stability at the beta chain C terminus is essentially independent of salt concentration, and the NES modification, which in deoxy hemoglobin blocks the His146 beta to Asp94 beta salt link, has no destabilizing effect, either at high or low salt. These results appear to show that the His146 beta salt link, which participates importantly in the
The Origin of the Ionic-Radius Ratio Rules
ERIC Educational Resources Information Center
Jensen, William B.
2010-01-01
In response to a reader query, this article traces the origins of the ionic-radius ratio rules and their incorrect attribution to Linus Pauling in the chemical literature and to Victor Goldschmidt in the geochemical literature. In actual fact, the ionic-radius ratio rules were first proposed within the context of the coordination chemistry…
bamr: Bayesian analysis of mass and radius observations
NASA Astrophysics Data System (ADS)
Steiner, Andrew W.
2014-08-01
bamr is an MPI implementation of a Bayesian analysis of neutron star mass and radius data that determines the mass versus radius curve and the equation of state of dense matter. Written in C++, bamr provides some EOS models. This code requires O2scl (ascl:1408.019) be installed before compilation.
Modeling the interferometric radius measurement using Gaussian beam propagation
Medicus, Katherine M.; Snyder, James J.; Davies, Angela
2006-12-01
We model the interferometric radius measurement using Gaussian beam propagation to identify biases in the measurement due to using a simple geometric ray-trace model instead of the more complex Gaussian model. The radius measurement is based on using an interferometer to identify the test part's position when it is at two null locations, and the distance between the positions is an estimate of the part's radius. The null condition is observed when there is no difference in curvature between the reflected reference and the test wavefronts, and a Gaussian model will provide a first-order estimate of curvature changes due to wave propagation and therefore changes to the radius measurement. We show that the geometric ray assumption leads to radius biases (errors) that are a strong function of the test part radius and increase as the radius of the part decreases. We tested for a bias for both microscaled(<1 mm) and macroscaled parts. The bias is of the order of parts in 105 for micro-optics with radii a small fraction of a millimeter and much smaller for macroscaled optics. The amount of bias depends on the interferometer configuration (numerical aperture, etc.), the nominal radius of the test part, and the distances in the interferometer.
Gersonde, K; Twilfer, H; Overkamp, M
1982-01-01
The monomeric haemoglobin IV from Chironomus thummi thummi (CTT IV) exhibits an alkaline Bohr-effect and therefore it is an allosteric protein. By substitution of the haem iron for cobalt the O2 half-saturation pressure, measured at 25 degrees C, increases 250-fold. The Bohr-effect is not affected by the replacement of the central atom. The parameters of the Bohr-effect of cobalt CTT IV for 25 degrees C are: inflection point of the Bohr-effect curve at pH 7.1, number of Bohr protons -- deltalog p1/2 (O2)/deltapH = 0.36 mol H+/mol O2 and amplitude of the Bohr-effect curve deltalogp1/2 (O2) = 0.84. The substitution of protoporphyrin for mesoporphyrin causes a 10 nm blue-shift of the visible absorption maxima in both, the native and the cobalt-substituted forms of CTT IV. Furthermore, the replacement of vinyl groups by ethyl groups at position 2 and 4 of the porphyrin system leads to an increase of O2 affinities at 25 degrees C which follows the order: proto less than meso less than deutero for iron and cobalt CTT IV, respectively. Again, the Bohr-effect is not affected by the replacement of protoporphyrin for mesoporphyrin or deuteroporphyrin. The electron spin resonance (ESR) spectra of both, deoxy cobalt proto- and deoxy cobalt meso-CTT IV, are independent of pH. The stronger electron-withdrawing effect by protoporphyrin is reflected by the decrease of the cobalt hyperfine constants coinciding with gparallel = 2.035 and by the low-field shift of gparallel. The ESR spectra of oxy cobalt proto- and oxy cobalt meso-CTT IV are dependent of pH. The cobalt hyperfine constants coinciding with gparallel - 2.078 increase during transition from low to high pH. The pH-induced ESR spectral changes correlate with the alkaline Bohr-effect. Therefore, the two O2 affinity states can be assigned to the low-pH and high-pH ESR spectral species. The low-pH form (low-affinity state) is characterized by a smaller, the high-pH form (high-affinity state) by a larger cobalt hyperfine
Interaction of excitons with optical phonons in layer crystals
NASA Astrophysics Data System (ADS)
Nitsovich, Bohdan M.; Zenkova, C. Y.; Kramar, N. K.
2002-02-01
The investigation is concerned with layer crystals of the GaSe, InSe, GaTe, MoS2-type and other inorganic semiconductors, whose phonon spectrum has a great number of peculiarities, among them the availability of low-energy optical phonons. In this case the dispersion of these phonons can be essential and vary in character. The mass operator of the exciton-phonon system and the light absorption coefficient for different dispersion laws of optical phonons have been calculated. The influence of the sign of the phonon 'effective mass' on the exciton absorption band of layer crystals, which causes the opposite in sign dynamics of the absorption maximum shift, and the change of the absorption curve asymmetry have been determined.
Control of Exciton Valley Coherence in Transition Metal Dichalcogenide Monolayers
NASA Astrophysics Data System (ADS)
Wang, G.; Marie, X.; Liu, B. L.; Amand, T.; Robert, C.; Cadiz, F.; Renucci, P.; Urbaszek, B.
2016-10-01
The direct gap interband transitions in transition metal dichalcogenide monolayers are governed by chiral optical selection rules. Determined by laser helicity, optical transitions in either the K+ or K- valley in momentum space are induced. Linearly polarized laser excitation prepares a coherent superposition of valley states. Here, we demonstrate the control of the exciton valley coherence in monolayer WSe2 by tuning the applied magnetic field perpendicular to the monolayer plane. We show rotation of this coherent superposition of valley states by angles as large as 30° in applied fields up to 9 T. This exciton valley coherence control on the ps time scale could be an important step towards complete control of qubits based on the valley degree of freedom.
Cooling of radiative quantum dot excitons by THz-radiation
NASA Astrophysics Data System (ADS)
Boxberg, Fredrik; Tulkki, Jukka; Yusa, Go; Sakaki, Hiroyuki
2007-04-01
Yusa et al. reported an anomalous cooling of radiative quantum dot (QD) excitons by THz-radiation in [Proc. 24th ICPS, 1083 (1998)] We have analyzed this experiment using continuum elasticity, multi-band kṡp and spin-resolved Monte-Carlo methods. We show that the unexpected discovery is related to hole relaxation via piezo-electric potential minima, induced in the QD sample by InP stressor islands. The THz-radiation gives rise to a drift of dark excitons from the piezo-electric minima to radiative states in the deformation potential minimum. This increases the QD ground state luminescence at the expense of the luminescence from higher QD states. We reproduce also the delayed flash of QD ground state luminescences when a THz-radiation pulse hits the sample even ˜ 1 s after switching off the carrier generation.
Linewidths in excitonic absorption spectra of cuprous oxide
NASA Astrophysics Data System (ADS)
Schweiner, Frank; Main, Jörg; Wunner, Günter
2016-02-01
We present a theoretical calculation of the absorption spectrum of cuprous oxide (Cu2O ) based on the general theory developed by Y. Toyozawa. An inclusion not only of acoustic phonons but also of optical phonons and of specific properties of the excitons in Cu2O like the central-cell corrections for the 1 S exciton allows us to calculate the experimentally observed linewidths in experiments by T. Kazimierczuk et al. [T. Kazimierczuk, D. Fröhlich, S. Scheel, H. Stolz, and M. Bayer, Nature (London) 514, 343 (2014), 10.1038/nature13832] within the same order of magnitude, which demonstrates a clear improvement in comparison to earlier work on this topic. We also discuss a variety of further effects, which explain the still observable discrepancy between theory and experiment but can hardly be included in theoretical calculations.
Exciton localization in solution-processed organolead trihalide perovskites
He, Haiping; Yu, Qianqian; Li, Hui; Li, Jing; Si, Junjie; Jin, Yizheng; Wang, Nana; Wang, Jianpu; He, Jingwen; Wang, Xinke; Zhang, Yan; Ye, Zhizhen
2016-01-01
Organolead trihalide perovskites have attracted great attention due to the stunning advances in both photovoltaic and light-emitting devices. However, the photophysical properties, especially the recombination dynamics of photogenerated carriers, of this class of materials are controversial. Here we report that under an excitation level close to the working regime of solar cells, the recombination of photogenerated carriers in solution-processed methylammonium–lead–halide films is dominated by excitons weakly localized in band tail states. This scenario is evidenced by experiments of spectral-dependent luminescence decay, excitation density-dependent luminescence and frequency-dependent terahertz photoconductivity. The exciton localization effect is found to be general for several solution-processed hybrid perovskite films prepared by different methods. Our results provide insights into the charge transport and recombination mechanism in perovskite films and help to unravel their potential for high-performance optoelectronic devices. PMID:26996605
Exciton-Polariton Fano Resonance Driven by Second Harmonic Generation
NASA Astrophysics Data System (ADS)
Wang, Yafeng; Liao, Liming; Hu, Tao; Luo, Song; Wu, Lin; Wang, Jun; Zhang, Zhe; Xie, Wei; Sun, Liaoxin; Kavokin, A. V.; Shen, Xuechu; Chen, Zhanghai
2017-02-01
Angle-resolved second harmonic generation (SHG) spectra of ZnO microwires show characteristic Fano resonances in the spectral vicinity of exciton-polariton modes. We observe a resonant peak followed by a strong dip in SHG originating from the constructive and destructive interference of the nonresonant SHG and the resonant contribution of the polariton mode. It is demonstrated that the Fano line shape, and thus the Fano asymmetry parameter q , can be tuned by the phase shift of the two channels. We develop a model to calculate the phase-dependent q as a function of the radial angle in the microwire and achieve a good agreement with the experimental results. The deduced phase-to-q relation unveils the crucial information about the dynamics of the system and offers a tool for control on the line shape of the SHG spectra in the vicinity of exciton-polariton modes.
Exciton localization in solution-processed organolead trihalide perovskites
NASA Astrophysics Data System (ADS)
He, Haiping; Yu, Qianqian; Li, Hui; Li, Jing; Si, Junjie; Jin, Yizheng; Wang, Nana; Wang, Jianpu; He, Jingwen; Wang, Xinke; Zhang, Yan; Ye, Zhizhen
2016-03-01
Organolead trihalide perovskites have attracted great attention due to the stunning advances in both photovoltaic and light-emitting devices. However, the photophysical properties, especially the recombination dynamics of photogenerated carriers, of this class of materials are controversial. Here we report that under an excitation level close to the working regime of solar cells, the recombination of photogenerated carriers in solution-processed methylammonium-lead-halide films is dominated by excitons weakly localized in band tail states. This scenario is evidenced by experiments of spectral-dependent luminescence decay, excitation density-dependent luminescence and frequency-dependent terahertz photoconductivity. The exciton localization effect is found to be general for several solution-processed hybrid perovskite films prepared by different methods. Our results provide insights into the charge transport and recombination mechanism in perovskite films and help to unravel their potential for high-performance optoelectronic devices.
Multiple exciton collection in a sensitized photovoltaic system.
Sambur, Justin B; Novet, Thomas; Parkinson, B A
2010-10-01
Multiple exciton generation, the creation of two electron-hole pairs from one high-energy photon, is well established in bulk semiconductors, but assessments of the efficiency of this effect remain controversial in quantum-confined systems like semiconductor nanocrystals. We used a photoelectrochemical system composed of PbS nanocrystals chemically bound to TiO(2) single crystals to demonstrate the collection of photocurrents with quantum yields greater than one electron per photon. The strong electronic coupling and favorable energy level alignment between PbS nanocrystals and bulk TiO(2) facilitate extraction of multiple excitons more quickly than they recombine, as well as collection of hot electrons from higher quantum dot excited states. Our results have implications for increasing the efficiency of photovoltaic devices by avoiding losses resulting from the thermalization of photogenerated carriers.
Exciton Mobility in Organic Photovoltaic Heterojunctions from Femtosecond Stimulated Raman.
Hoffman, David P; Leblebici, Sibel Y; Schwartzberg, Adam M; Mathies, Richard A
2015-08-06
Exciton mobility is crucial to organic photovoltaic (OPV) efficiency, but accurate, quantitative measures and therefore precise understanding of this process are currently lacking. Here, we exploit the unique capabilities of femtosecond stimulated Raman spectroscopy (FSRS) to disentangle the signatures of the bulk and interfacial donor response in a bulk heterojunction composed of poly[2-methoxy-5-(3',7'-dimethyloctyloxy)-1,4-phenylenevinylene] (MDMO-PPV) and phenyl-C61-butyric acid methyl ester (PCBM). Surprisingly, we find that donor excitons are very mobile for the first ∼300 fs following excitation (before thermalization) even though their overall lifetime is significantly longer (170 ps). A sharp decrease in mobility occurs after the system relaxes out of the Franck-Condon (FC) region. From this observation we predict that any polymer lacking a significant resonance Raman effect and fluorescence Stokes shift, indicating slow FC relaxation and small reorganization energy, will make an efficient OPV material.
Organic photovoltaic cell incorporating electron conducting exciton blocking layers
Forrest, Stephen R.; Lassiter, Brian E.
2014-08-26
The present disclosure relates to photosensitive optoelectronic devices including a compound blocking layer located between an acceptor material and a cathode, the compound blocking layer including: at least one electron conducting material, and at least one wide-gap electron conducting exciton blocking layer. For example, 3,4,9,10 perylenetetracarboxylic bisbenzimidazole (PTCBI) and 1,4,5,8-napthalene-tetracarboxylic-dianhydride (NTCDA) function as electron conducting and exciton blocking layers when interposed between the acceptor layer and cathode. Both materials serve as efficient electron conductors, leading to a fill factor as high as 0.70. By using an NTCDA/PTCBI compound blocking layer structure increased power conversion efficiency is achieved, compared to an analogous device using a conventional blocking layers shown to conduct electrons via damage-induced midgap states.
Excitonic absorption intensity of semiconducting and metallic carbon nanotubes.
Verdenhalven, Eike; Malić, Ermin
2013-06-19
The knowledge of the intrinsic absorption intensity of each carbon nanotube is of crucial importance for the optical assignment of nanotube species and the estimation of their abundance in a sample. Based on a microscopic approach, we calculate excitonic absorption spectra for a variety of semiconducting and metallic nanotubes, revealing a clear diameter, chirality, and family dependence of the absorption intensity. In particular, we also study the appearance of excited excitonic transitions, which are shown to be well pronounced for semiconducting nanotubes, reaching intensities of up to 10% of the main transition. We find that nanotubes with large diameters show the most pronounced absorption intensities, confirming well the experimentally observed trend. Depending on the CNT family and transition, the absorption is enhanced or reduced with the chiral angle. This behavior reflects well the qualitative chirality dependence of the analytically derived optical matrix element.
Exciton-Polariton Fano Resonance Driven by Second Harmonic Generation.
Wang, Yafeng; Liao, Liming; Hu, Tao; Luo, Song; Wu, Lin; Wang, Jun; Zhang, Zhe; Xie, Wei; Sun, Liaoxin; Kavokin, A V; Shen, Xuechu; Chen, Zhanghai
2017-02-10
Angle-resolved second harmonic generation (SHG) spectra of ZnO microwires show characteristic Fano resonances in the spectral vicinity of exciton-polariton modes. We observe a resonant peak followed by a strong dip in SHG originating from the constructive and destructive interference of the nonresonant SHG and the resonant contribution of the polariton mode. It is demonstrated that the Fano line shape, and thus the Fano asymmetry parameter q, can be tuned by the phase shift of the two channels. We develop a model to calculate the phase-dependent q as a function of the radial angle in the microwire and achieve a good agreement with the experimental results. The deduced phase-to-q relation unveils the crucial information about the dynamics of the system and offers a tool for control on the line shape of the SHG spectra in the vicinity of exciton-polariton modes.
Plasmonic band gap engineering of plasmon-exciton coupling.
Karademir, Ertugrul; Balci, Sinan; Kocabas, Coskun; Aydinli, Atilla
2014-10-01
Controlling plasmon-exciton coupling through band gap engineering of plasmonic crystals is demonstrated in the Kretschmann configuration. When the flat metal surface is textured with a sinusoidal grating only in one direction, using laser interference lithography, it exhibits a plasmonic band gap because of the Bragg scattering of surface plasmon polaritons on the plasmonic crystals. The contrast of the grating profile determines the observed width of the plasmonic band gap and hence allows engineering of the plasmonic band gap. In this work, resonant coupling between the molecular resonance of a J-aggregate dye and the plasmonic resonance of a textured metal film is extensively studied through plasmonic band gap engineering. Polarization dependent spectroscopic reflection measurements probe the spectral overlap occurring between the molecular resonance and the plasmonic resonance. The results indicate that plasmon-exciton interaction is attenuated in the band gap region along the grating direction.
Acoustically induced stark effect for excitons in intrinsic semiconductors.
Ivanov, A L; Littlewood, P B
2001-09-24
A Stark effect for excitons parametrically driven by coherent acoustic phonons is proposed. Our scheme refers to a low-temperature intrinsic semiconductor or semiconductor nanostructure pumped by an acoustic wave (frequency band nu(ac) approximately equal to 1-40 GHz and intensity range I(ac) approximately equal to 10(-2)-10(2) W/cm(2)) and probed by low-intensity light. Tunable optical band gaps, which strongly change the spectral shape of the exciton line, are induced in the polariton spectrum by acoustic pumping. We develop an exactly solvable model of the acoustic Stark effect and apply our results to GaAs driven by bulk or surface acoustic waves.
Bimolecular Recombination Kinetics of an Exciton-Trion Gas
2015-07-01
Coulomb radius” 2 / 4 0r q kTC = πεε as a boundary between Langevin’s carrier approach and the “ black hole ” where the carriers recombine. We plan to...describe kinetic processes in highly photoexcited semiconductors. In this description, the pairs of electrons and holes generated by photons from the...secondary components such as neutral excitons and so-called trions, which consist of exciton–electron and exciton– hole bound states. The
Exciton-plasmon-photon conversion in silver nanowire: Polarization dependence
NASA Astrophysics Data System (ADS)
Wang, Lu-Lu; Zou, Chang-Ling; Ren, Xi-Feng; Liu, Ai-Ping; Lv, Liu; Cai, Yong-Jing; Sun, Fang-Wen; Guo, Guang-Can; Guo, Guo-Ping
2011-08-01
Polarization dependence of the exciton-plasmon-photon conversion in silver nanowire-quantum dots structure was investigated using a scanning confocal microscope system. We found that the fluorescence enhancement of the CdSe nanocrystals was correlated with the angle between the excitation light polarization and the silver nanowire direction. The polarization of the emission was also related with the nanowire direction. It was in majority in the direction parallel with nanowire due to the nano-antenna effect.
Diffusion of excitons in materials for optoelectronic device applications
NASA Astrophysics Data System (ADS)
Singh, Jai; Narayan, Monishka Rita; Ompong, David
2015-06-01
The diffusion of singlet excitonsis known to occur through the Förster resonance energy transfer (FRET) mechanism and that of singlet and triplet excitonscan occur through the Dexter carrier transfer mechanism. It is shown here that if a material possesses the strong exciton-spin-orbit-photon interaction then triplet excitonscan also be transported /diffused through a mechanism like FRET. The theory is applicable to the diffusion of excitonsin optoelectronic devices like organic solar cells, organic light emitting devices and inorganic scintillators.
Hybrid states of Tamm plasmons and exciton polaritons
NASA Astrophysics Data System (ADS)
Kaliteevski, M.; Brand, S.; Abram, R. A.; Iorsh, I.; Kavokin, A. V.; Shelykh, I. A.
2009-12-01
Channeling of exciton polaritons in the plane of semiconductor microcavities can be achieved by the deposition of metallic mesas on the top of the semiconductor structure. We show theoretically that the regime of strong coupling between cavity polaritons and Tamm surface plasmons is possible in such structures. The effect is favorable for the spatial confinement of polaritons and the formation of hybrid one-dimensional plasmon-polariton modes.
Hybrid states of Tamm plasmons and exciton polaritons
Kaliteevski, M.; Brand, S.; Abram, R. A.; Iorsh, I.; Kavokin, A. V.; Shelykh, I. A.
2009-12-21
Channeling of exciton polaritons in the plane of semiconductor microcavities can be achieved by the deposition of metallic mesas on the top of the semiconductor structure. We show theoretically that the regime of strong coupling between cavity polaritons and Tamm surface plasmons is possible in such structures. The effect is favorable for the spatial confinement of polaritons and the formation of hybrid one-dimensional plasmon-polariton modes.
One Dimensional Time-Dependent Tunnelling of Excitons
NASA Astrophysics Data System (ADS)
Kilcullen, Patrick; Salayka-Ladouceur, Logan; Malmgren, Kevin; Reid, Matthew; Shegelski, Mark R. A.
2017-03-01
We study the time-dependent tunnelling of excitons in one dimension using numerical integration based on the Crank-Nicholson method. A complete development of the time-dependent simulator is provided. External barriers studied include single and double delta barriers. We find that the appearance of transmission resonances depends strongly on the dielectric constant, relative effective masses, and initial spatial spread of the wavefunction. A discussion regarding applications to realistic systems is provided.
Ji, Haojie; Dhomkar, Siddharth; Roy, Bidisha; Kuskovsky, Igor L.; Shuvayev, Vladimir; Deligiannakis, Vasilios; Tamargo, Maria C.; Ludwig, Jonathan; Smirnov, Dmitry; Wang, Alice
2014-10-28
For submonolayer quantum dot (QD) based photonic devices, size and density of QDs are critical parameters, the probing of which requires indirect methods. We report the determination of lateral size distribution of type-II ZnTe/ZnSe stacked submonolayer QDs, based on spectral analysis of the optical signature of Aharanov-Bohm (AB) excitons, complemented by photoluminescence studies, secondary-ion mass spectroscopy, and numerical calculations. Numerical calculations are employed to determine the AB transition magnetic field as a function of the type-II QD radius. The study of four samples grown with different tellurium fluxes shows that the lateral size of QDs increases by just 50%, even though tellurium concentration increases 25-fold. Detailed spectral analysis of the emission of the AB exciton shows that the QD radii take on only certain values due to vertical correlation and the stacked nature of the QDs.
Exciton-polariton state in nanocrystalline SiC films
NASA Astrophysics Data System (ADS)
Semenov, A. V.; Lopin, A. V.
2016-05-01
We studied the features of optical absorption in the films of nanocrystalline SiC (nc-SiC) obtained on the sapphire substrates by the method of direct ion deposition. The optical absorption spectra of the films with a thickness less than ~500 nm contain a maximum which position and intensity depend on the structure and thickness of the nc-SiC films. The most intense peak at 2.36 eV is observed in the nc-SiC film with predominant 3C-SiC polytype structure and a thickness of 392 nm. Proposed is a resonance absorption model based on excitation of exciton polaritons in a microcavity. In the latter, under the conditions of resonance, there occurs strong interaction between photon modes of light with λph=521 nm and exciton of the 3С polytype with an excitation energy of 2.36 eV that results in the formation of polariton. A mismatch of the frequencies of photon modes of the cavity and exciton explains the dependence of the maximum of the optical absorption on the film thickness.
Nature of exciton transitions in hexagonal boron nitride
NASA Astrophysics Data System (ADS)
Li, J.; Cao, X. K.; Hoffman, T. B.; Edgar, J. H.; Lin, J. Y.; Jiang, H. X.
2016-03-01
In contrast to other III-nitride semiconductors GaN and AlN, the intrinsic (or free) exciton transition in hexagonal boron nitride (h-BN) consists of rather complex fine spectral features (resolved into six sharp emission peaks) and the origin of which is still unclear. Here, the free exciton transition (FX) in h-BN bulk crystals synthesized by a solution method at atmospheric pressure has been probed by deep UV time-resolved photoluminescence (PL) spectroscopy. Based on the separations between the energy peak positions of the FX emission lines, the identical PL decay kinetics among different FX emission lines, and the known phonon modes in h-BN, we suggest that there is only one principal emission line corresponding to the direct intrinsic FX transition in h-BN, whereas all other fine features are a result of phonon-assisted transitions. The identified phonon modes are all associated with the center of the Brillouin zone. Our results offer a simple picture for the understanding of the fundamental exciton transitions in h-BN.
Quantitative characterization of exciton from GW+Bethe-Salpeter calculation
NASA Astrophysics Data System (ADS)
Hirose, Daichi; Noguchi, Yoshifumi; Sugino, Osamu
2017-01-01
We propose a method of classifying excitons into local-, Rydberg-, or charge transfer-type as a step toward enabling a data-driven material design of organic solar cells. The classification method is based on the first-principles many-body theory and improves over the conventional method based on state-by-state visualization of the one-electron wave functions. In our method, the exciton wave function is calculated within the level of the GW+Bethe-Salpeter equation, which is used to obtain two dimensionless parameters for the automatic classification. We construct criteria for exciton classification from experiences with a model molecule, dipeptide. Then we check the validity of our method using a model β-dipeptide which has a geometry and an excitation spectrum similar to the model dipeptide. In addition, we test the effectiveness of the method using porphyrin molecules, or P1TA and P2TA, for which the conventional method is hampered by the strong state hybridization associated with excitation. We find that our method works successfully for P1TA, but the analysis of P2TA is hindered by its centrosymmetry.
Electronic absorption of Frenkel excitons in topologically disordered systems
NASA Astrophysics Data System (ADS)
Schweizer, Kenneth S.
1986-10-01
A self-consistent effective medium theory of the electronic absorption spectra of tightly bound dipolar excitons in simple fluids is developed within the adiabatic picture. The theoretical approach is based on the isomorphism between the path-integral formulation of quantum theory and classical statistical mechanics and is an extension of previous work [D. Chandler, K. S. Schweizer, and P. G. Wolynes, Phys. Rev. Lett. 49, 1100 (1982)]. The consequences of fluid structural disorder on resonant excitation transfer and the statistical fluctuations of single molecule energy levels are simultaneously treated. Detailed numerical calculations are performed to establish the dependence of the absorption spectrum on fluid density, short range order, and the relative magnitude of the resonant transfer vs the single site disorder. The density dependence of the spectral features are found to be a sensitive function of fluid structure and the relative strength of the localizing vs the delocalizing interactions. By comparing the liquid state results with the corresponding crystalline solid behavior, the consequences of topological disorder on the exciton spectrum are identified. The relevance of the theoretical predictions to spectroscopic probes of exciton delocalization in molecular liquids and glasses is discussed.
An anomalous interlayer exciton in MoS2
Azhikodan, Dilna; Nautiyal, Tashi; Shallcross, Sam; Sharma, Sangeeta
2016-01-01
The few layer transition metal dichalcogenides are two dimensional materials that have an intrinsic gap of the order of ≈2 eV. The reduced screening in two dimensions implies a rich excitonic physics and, as a consequence, many potential applications in the field of opto-electronics. Here we report that a layer perpendicular electric field, by which the gap size in these materials can be efficiently controlled, generates an anomalous inter-layer exciton whose binding energy is independent of the gap size. We show this originates from the rich gap control and screening physics of TMDCs in a bilayer geometry: gating the bilayer acts on one hand to increase intra-layer screening by reducing the gap and, on the other hand, to decrease the inter-layer screening by field induced charge depletion. This constancy of binding energy is both a striking exception to the universal reduction in binding energy with gap size that all materials are believed to follow, as well as evidence of a degree of control over inter-layer excitons not found in their well studied intra-layer counterparts. PMID:27841337
Excitonic instabilities and insulating states in bilayer graphene
NASA Astrophysics Data System (ADS)
Song, Kok Wee; Liang, Yung-Ching; Haas, Stephan
2012-11-01
The competing ground states of bilayer graphene are studied by applying renormalization group techniques to a bilayer honeycomb lattice with nearest neighbor hopping. In the absence of interactions, the Fermi surface of this model at half-filling consists of two nodal points with momenta K, K', where the conduction band and valence band touch each other, yielding a semimetal. Since near these two points the energy dispersion is quadratic with perfect particle-hole symmetry, excitonic instabilities are inevitable if interband interactions are present. Using a perturbative renormalization group analysis up to the one-loop level, we find different competing ordered ground states, including ferromagnetism, superconductivity, spin and charge density wave states with ordering vector Q=K-K', and excitonic insulator states. In addition, two states with valley symmetry breaking are found in the excitonic insulating and ferromagnetic phases. This analysis strongly suggests that the ground state of bilayer graphene should be gapped, and with the exception of superconductivity, all other possible ground states are insulating.
Evidence for conical intersection dynamics mediating ultrafast singlet exciton fission
NASA Astrophysics Data System (ADS)
Musser, Andrew J.; Liebel, Matz; Schnedermann, Christoph; Wende, Torsten; Kehoe, Tom B.; Rao, Akshay; Kukura, Philipp
2015-04-01
Singlet exciton fission is the process in organic semiconductors through which a spin-singlet exciton converts into a pair of spin-triplet excitons residing on different chromophores, entangled in an overall spin-zero state. For some systems, singlet fission has been shown to occur on the 100 fs timescale and with a 200% quantum yield, but the mechanism of this process remains uncertain. Here we study a model singlet fission system, TIPS-pentacene, using ultrafast vibronic spectroscopy. We observe that vibrational coherence in the initially photogenerated singlet state is transferred to the triplet state and show that this behaviour is effectively identical to ultrafast internal conversion for polyenes in solution. This similarity in vibronic dynamics suggests that both multi-molecular singlet fission and single-molecular internal conversion are mediated by the same underlying relaxation processes, based on strong coupling between nuclear and electronic degrees of freedom. In its most efficient form this leads to a conical intersection between the coupled electronic states.
The nature of singlet excitons in oligoacene molecular crystals
Yamagata, H.; Norton, J.; Hontz, E.; Olivier, Y.; Beljonne, D.; Bredas, J. L.; Silbey, R. J.; Spano, F. C.
2011-01-01
A theory for polarized absorption in crystalline oligoacenes is presented, which includes Frenkel exciton coupling, the coupling between Frenkel and charge-transfer (CT) excitons, and the coupling of all neutral and ionic excited states to the dominant ring-breathing vibrational mode. For tetracene, spectra calculated using all Frenkel couplings among the five lowest energy molecular singlet states predict a Davydov splitting (DS) of the lowest energy (0–0) vibronic band of only -32 cm^{-1}, far smaller than the measured value of 631 cm^{-1 }and of the wrong sign--a negative sign indicating that the polarizations of the lower and upper Davydov components are reversed from experiment. Inclusion of Frenkel-CT coupling dramatically improves the agreement with experiment, yielding a 0–0 DS of 601 cm^{-1} and a nearly quantitative reproduction of the relative spectral intensities of the 0–n vibronic components. Our analysis also shows that CT mixing increases with the size of the oligoacenes. We discuss the implications of these results on exciton dissociation and transport.
Voltage-induced dynamical quantum phase transitions in exciton condensates
NASA Astrophysics Data System (ADS)
Park, Moon Jip; Hankiewicz, E. M.; Gilbert, Matthew J.
2016-12-01
We explore nonanalytic quantum phase dynamics of dipolar exciton condensates formed in a system of two-dimensional quantum layers subjected to voltage quenches. We map the exciton condensate physics on to the pseudospin ferromagnet model, showing an additional oscillatory metastable phase beyond the well-known ferromagnetic phase by utilizing a time-dependent, nonperturbative theoretical model. We explain the coherent phase of the exciton condensate in quantum Hall bilayers, observed for currents equal to and slightly larger than the critical current, as a stable time-dependent phase characterized by persistent flow of charged order parameter defect in each of the individual layers with a characteristic ac Josephson frequency. As the magnitude of the voltage quench is further increased, we find that the time-dependent current oscillations associated with the charged order parameter defect flow decay, resulting in a transient pseudospin paramagnet phase characterized by partially coherent charge transfer between layers, before the state relaxes to incoherent charge transfer between the layers.
Tuning exciton delocalization in organic crystalline thin films
NASA Astrophysics Data System (ADS)
Hua, Kim-Ngan; Manning, Lane; Rawat, Naveen; Ainsworth, Victoria S.; Liang, Libin; Furis, Madalina
2016-09-01
Organic electronics have been drawing a lot of attention over the past few decades with recent commercial applications such as organic photovoltaics, OLEDs, and flexible organic displays. One of the key components for designing organic molecules suitable for electronic devices is a fundamental understanding of excitonic behaviors. Here we report on the fabrication and photoluminescence studies of crystalline thin film organic alloy systems, metal free and metal based octabutoxyphthalocyanine (MOBPcxH2OBPc1-x), and metal-free H2OBPc and octabutoxynapthalocyanine (H2OBNc) mixtures (H2OBNcxH2OBPc1-x). Crystalline thin films of these materials were deposited using an in-house developed pen writing technique that results in macroscopic long-range order even at the ratio of x = 0.5, which is unique and important for spectroscopic studies. Our experiments reveal that the coherent excitonic states of MOBPcxH2OBPc1-x and H2OBNcxH2OBPc1-x crystalline thin films can be tuned continuously as a function of alloy concentration (0 < x < 1). Moreover, the solution-processed technique used to fabricate these crystalline thin films provides us an unprecedented advantage in designing and controlling the bandgap tunability as well as achieving the desired exciton coherent length for variety of applications.
Excitonic couplings between molecular crystal pairs by a multistate approximation
Aragó, Juan Troisi, Alessandro
2015-04-28
In this paper, we present a diabatization scheme to compute the excitonic couplings between an arbitrary number of states in molecular pairs. The method is based on an algebraic procedure to find the diabatic states with a desired property as close as possible to that of some reference states. In common with other diabatization schemes, this method captures the physics of the important short-range contributions (exchange, overlap, and charge-transfer mediated terms) but it becomes particularly suitable in presence of more than two states of interest. The method is formulated to be usable with any level of electronic structure calculations and to diabatize different types of states by selecting different molecular properties. These features make the diabatization scheme presented here especially appropriate in the context of organic crystals, where several excitons localized on the same molecular pair may be found close in energy. In this paper, the method is validated on the tetracene crystal dimer, a well characterized case where the charge transfer (CT) states are closer in energy to the Frenkel excitons (FE). The test system was studied as a function of an external electric field (to explore the effect of changing the relative energy of the CT excited state) and as a function of different intermolecular distances (to probe the strength of the coupling between FE and CT states). Additionally, we illustrate how the approximation can be used to include the environment polarization effect.
Many-body effects and excitonic features in 2D biphenylene carbon
Lüder, Johann Puglia, Carla; Eriksson, Olle; Sanyal, Biplab; Brena, Barbara; Ottosson, Henrik
2016-01-14
The remarkable excitonic effects in low dimensional materials in connection to large binding energies of excitons are of great importance for research and technological applications such as in solar energy and quantum information processing as well as for fundamental investigations. In this study, the unique electronic and excitonic properties of the two dimensional carbon network biphenylene carbon were investigated with GW approach and the Bethe-Salpeter equation accounting for electron correlation effects and electron-hole interactions, respectively. Biphenylene carbon exhibits characteristic features including bright and dark excitons populating the optical gap of 0.52 eV and exciton binding energies of 530 meV as well as a technologically relevant intrinsic band gap of 1.05 eV. Biphenylene carbon’s excitonic features, possibly tuned, suggest possible applications in the field of solar energy and quantum information technology in the future.
Exciton Relaxation Dynamics in Photo-Excited CsPbI3 Perovskite Nanocrystals
Liu, Qinghui; Wang, Yinghui; Sui, Ning; Wang, Yanting; Chi, Xiaochun; Wang, Qianqian; Chen, Ying; Ji, Wenyu; Zou, Lu; Zhang, Hanzhuang
2016-01-01
The exciton relaxation process of CsPbI3 perovskite nanocrystals (NCs) has been investigated by using transient absorption (TA) spectroscopy. The hot exciton relaxation process is confirmed to exist in the CsPbI3 NCs, through comparing the TA data of CsPbI3 NCs in low and high energy excitonic states. In addition, the Auger recombination and intrinsic decay paths also participate in the relaxation process of CsPbI3 NCs, even the number of exciton per NC is estimated to be less than 1. Excitation intensity-dependent TA data further confirms the existence of Auger recombination. Meanwhile, the spectral data also confirms that the weight of hot exciton also increase together with that of Auger recombination at high excitation intensity when CsPbI3 NCs in high energy excitonic states. PMID:27405786
Role of strain on the coherent properties of GaAs excitons and biexcitons
NASA Astrophysics Data System (ADS)
Wilmer, Brian L.; Webber, Daniel; Ashley, Joseph M.; Hall, Kimberley C.; Bristow, Alan D.
2016-08-01
Polarization-dependent two-dimensional Fourier-transform spectroscopy (2DFTS) is performed on excitons in strained bulk GaAs layers, probing the coherent response for differing amounts of strain. Uniaxial tensile strain lifts the degeneracy of heavy-hole (HH) and light-hole (LH) valence states, leading to an observed splitting of the associated excitons at low temperature. Increasing the strain increases the magnitude of the HH/LH exciton peak splitting, induces an asymmetry in the off-diagonal interaction coherences, increases the difference in the HH and LH exciton homogenous linewidths, and increases the inhomogeneous broadening of both exciton species. All results arise from strain-induced variations in the local electronic environment, which is not uniform along the growth direction of the thin layers. For cross-linear polarized excitation, wherein excitonic signals give way to biexcitonic signals, the high-strain sample shows evidence of bound LH, HH, and mixed biexcitons.
Theory for electric dipole superconductivity with an application for bilayer excitons.
Jiang, Qing-Dong; Bao, Zhi-qiang; Sun, Qing-Feng; Xie, X C
2015-07-08
Exciton superfluid is a macroscopic quantum phenomenon in which large quantities of excitons undergo the Bose-Einstein condensation. Recently, exciton superfluid has been widely studied in various bilayer systems. However, experimental measurements only provide indirect evidence for the existence of exciton superfluid. In this article, by viewing the exciton in a bilayer system as an electric dipole, we derive the London-type and Ginzburg-Landau-type equations for the electric dipole superconductors. By using these equations, we discover the Meissner-type effect and the electric dipole current Josephson effect. These effects can provide direct evidence for the formation of the exciton superfluid state in bilayer systems and pave new ways to drive an electric dipole current.
Many-body effects and excitonic features in 2D biphenylene carbon
NASA Astrophysics Data System (ADS)
Lüder, Johann; Puglia, Carla; Ottosson, Henrik; Eriksson, Olle; Sanyal, Biplab; Brena, Barbara
2016-01-01
The remarkable excitonic effects in low dimensional materials in connection to large binding energies of excitons are of great importance for research and technological applications such as in solar energy and quantum information processing as well as for fundamental investigations. In this study, the unique electronic and excitonic properties of the two dimensional carbon network biphenylene carbon were investigated with GW approach and the Bethe-Salpeter equation accounting for electron correlation effects and electron-hole interactions, respectively. Biphenylene carbon exhibits characteristic features including bright and dark excitons populating the optical gap of 0.52 eV and exciton binding energies of 530 meV as well as a technologically relevant intrinsic band gap of 1.05 eV. Biphenylene carbon's excitonic features, possibly tuned, suggest possible applications in the field of solar energy and quantum information technology in the future.
Many-body effects and excitonic features in 2D biphenylene carbon.
Lüder, Johann; Puglia, Carla; Ottosson, Henrik; Eriksson, Olle; Sanyal, Biplab; Brena, Barbara
2016-01-14
The remarkable excitonic effects in low dimensional materials in connection to large binding energies of excitons are of great importance for research and technological applications such as in solar energy and quantum information processing as well as for fundamental investigations. In this study, the unique electronic and excitonic properties of the two dimensional carbon network biphenylene carbon were investigated with GW approach and the Bethe-Salpeter equation accounting for electron correlation effects and electron-hole interactions, respectively. Biphenylene carbon exhibits characteristic features including bright and dark excitons populating the optical gap of 0.52 eV and exciton binding energies of 530 meV as well as a technologically relevant intrinsic band gap of 1.05 eV. Biphenylene carbon's excitonic features, possibly tuned, suggest possible applications in the field of solar energy and quantum information technology in the future.
NASA Astrophysics Data System (ADS)
Pradhan, S.; Taraphder, A.
2016-10-01
A spinless, extended Falicov-Kimball model in the presence of a perpendicular magnetic field is investigated employing a self-consistent mean-field theory in two dimensions. In the presence of the field the excitonic average Δ =< di † fi > is modified: the exciton responds in subtle different ways for different values of the magnetic flux. We examine the effects of Coulomb interaction and hybridization between the localized and itinerant electrons on the excitonic average, for rational values of the applied magnetic field. The excitonic average is found to get enhanced exponentially with the Coulomb interaction while it saturates at large hybridization. The orbital magnetic field suppresses the excitonic average in general, though a strong commensurability effect of the magnetic flux on the behaviour of the excitonic order parameter is observed.
Bukreev, Alexey; Mikhailov, Konstantin; Shelaev, Ivan; Gostev, Fedor; Polevaya, Yuliya; Tyurin, Vladimir; Beletskaya, Irina; Umansky, Stanislav; Nadtochenko, Victor
2016-03-31
The synthesis of new zinc porphyrin oligomers linked by a triazole bridge was carried out via "click" reaction. A split in the porphyrin oligomer B-band was observed. It was considered as evidence of exciton-excitonic coupling. The relaxation of excited states in Q-band porphyrin oligomers was studied by the femtosecond laser spectroscopy technique with a 20 fs pump pulse. The transient oscillations of two B-band excitonic peaks have a π-radian shift. For explanation of the coherent oscillation, a theoretical model was developed. The model considered the combination of the exciton-excitonic coupling between porphyrin rings in dimer and weak exciton-vibronic coupling in one porphyrin ring. By varying the values of the structural parameters of porphyrins (the strength values of this couplings and measure of symmetry breaking), we obtained correspondence between the experimental data (phase shift and amplitudes of the spectrum oscillations) and the predictions of the model developed here.
Crossover from polariton lasing to exciton lasing in a strongly coupled ZnO microcavity
Lai, Ying-Yu; Chou, Yu-Hsun; Lan, Yu-Pin; Lu, Tien-Chang; Wang, Shing-Chung; Yamamoto, Yoshihisa
2016-01-01
Unlike conventional photon lasing, in which the threshold is limited by the population inversion of the electron-hole plasma, the exciton lasing generated by exciton-exciton scattering and the polariton lasing generated by dynamical condensates have received considerable attention in recent years because of the sub-Mott density and low-threshold operation. This paper presents a novel approach to generate both exciton and polariton lasing in a strongly coupled microcavity (MC) and determine the critical driving requirements for simultaneously triggering these two lasing operation in temperature <140 K and large negative polariton-exciton offset (<−133 meV) conditions. In addition, the corresponding lasing behaviors, such as threshold energy, linewidth, phase diagram, and angular dispersion are verified. The results afford a basis from which to understand the complicated lasing mechanisms in strongly coupled MCs and verify a new method with which to trigger dual laser emission based on exciton and polariton. PMID:26838665
NASA Astrophysics Data System (ADS)
Mehra, Jagdish
1987-05-01
In this paper, the main outlines of the discussions between Niels Bohr with Albert Einstein, Werner Heisenberg, and Erwin Schrödinger during 1920 1927 are treated. From the formulation of quantum mechanics in 1925 1926 and wave mechanics in 1926, there emerged Born's statistical interpretation of the wave function in summer 1926, and on the basis of the quantum mechanical transformation theory—formulated in fall 1926 by Dirac, London, and Jordan—Heisenberg formulated the uncertainty principle in early 1927. At the Volta Conference in Como in September 1927 and at the fifth Solvay Conference in Brussels the following month, Bohr publicly enunciated his complementarity principle, which had been developing in his mind for several years. The Bohr-Einstein discussions about the consistency and completeness of qnautum mechanics and of physical theory as such—formally begun in October 1927 at the fifth Solvay Conference and carried on at the sixth Solvay Conference in October 1930—were continued during the next decades. All these aspects are briefly summarized.
Artificially Constructed Plasmarons and Plasmon-Exciton Molecules in 2D Metals
NASA Astrophysics Data System (ADS)
Zhuravlev, A. S.; Kuznetsov, V. A.; Kulik, L. V.; Bisti, V. E.; Kirpichev, V. E.; Kukushkin, I. V.; Schmult, S.
2016-11-01
Resonant optical excitation was used to create a macroscopic nonequilibrium ensemble of "dark" excitons with an unprecedented long lifetime in a two-dimensional electron system placed in a quantizing magnetic field. Exotic three-particle and four-particle states, plasmarons and plasmon-exciton molecules, coupled with the surrounding electrons through the collective plasma oscillations are engineered. Plasmarons and plasmon-exciton molecules are manifested as new features in the recombination spectra of nonequilibrium systems.
NASA Astrophysics Data System (ADS)
Yin, Miao; Cheng, Ze; Wu, Zi-Xia; Ping, Yun-Xia
2009-03-01
Some properties of excitons in polar semiconductors are studied theoretically by means of squeezed state variational approach. This method makes it possible to consider bilinear terms of the phonon operators as well as linear terms arising from the Lee-Low-Pines (LLP)-like transformation. The exciton ground state energy and binding energy are calculated numerically. It is shown that the squeezing effect is significant in the case of strong exciton-phonon coupling region.
Williams, Richard; Grim, Joel; Li, Qi; Ucer, K. B.; Bizarri, G. A.; Kerisit, Sebastien N.; Gao, Fei; Bhattacharya, Pijush; Tupitsyn, Eugene; Rowe, Emmanuel; Buliga, Vladimir M.; Burger, Arnold
2013-10-01
Models of nonproportional response in scintillators have highlighted the importance of parameters such as branching ratios, carrier thermalization times, diffusion, kinetic order of quenching, associated rate constants, and radius of the electron track. For example, the fraction ηeh of excitations that are free carriers versus excitons was shown by Payne and coworkers to have strong correlation with the shape of electron energy response curves from Compton-coincidence studies. Rate constants for nonlinear quenching are implicit in almost all models of nonproportionality, and some assumption about track radius must invariably be made if one is to relate linear energy deposition dE/dx to volume-based excitation density n (eh/cm3) in terms of which the rates are defined. Diffusion, affecting time-dependent track radius and thus density of excitations, has been implicated as an important factor in nonlinear light yield. Several groups have recently highlighted diffusion of hot electrons in addition to thermalized carriers and excitons in scintillators. However, experimental determination of many of these parameters in the insulating crystals used as scintillators has seemed difficult. Subpicosecond laser techniques including interband z scan light yield, fluence-dependent decay time, and transient optical absorption are now yielding experimental values for some of the missing rates and ratios needed for modeling scintillator response. First principles calculations and Monte Carlo simulations can fill in additional parameters still unavailable from experiment. As a result, quantitative modeling of scintillator electron energy response from independently determined material parameters is becoming possible on an increasingly firmer data base. This paper describes recent laser experiments, calculations, and numerical modeling of scintillator response.
Williams, R. T.; Grim, Joel Q.; Li, Qi; Ucer, K. B.; Bizarri, G. A.; Kerisit, S.; Gao, Fei; Bhattacharya, P.; Tupitsyn, E.; Rowe, E.; Buliga, V. M.; Burger, A.
2013-09-26
Models of nonproportional response in scintillators have highlighted the importance of parameters such as branching ratios, carrier thermalization times, diffusion, kinetic order of quenching, associated rate constants, and radius of the electron track. For example, the fraction ηeh of excitations that are free carriers versus excitons was shown by Payne and coworkers to have strong correlation with the shape of electron energy response curves from Compton-coincidence studies. Rate constants for nonlinear quenching are implicit in almost all models of nonproportionality, and some assumption about track radius must invariably be made if one is to relate linear energy deposition dE/dx to volume-based excitation density n (eh/cm^{3}) in terms of which the rates are defined. Diffusion, affecting time-dependent track radius and thus density of excitations, has been implicated as an important factor in nonlinear light yield. Several groups have recently highlighted diffusion of hot electrons in addition to thermalized carriers and excitons in scintillators. However, experimental determination of many of these parameters in the insulating crystals used as scintillators has seemed difficult. Subpicosecond laser techniques including interband z scan light yield, fluence-dependent decay time, and transient optical absorption are now yielding experimental values for some of the missing rates and ratios needed for modeling scintillator response. First principles calculations and Monte Carlo simulations can fill in additional parameters still unavailable from experiment. As a result, quantitative modeling of scintillator electron energy response from independently determined material parameters is becoming possible on an increasingly firmer data base. This study describes recent laser experiments, calculations, and numerical modeling of scintillator response.
Williams, R. T.; Grim, Joel Q.; Li, Qi; ...
2013-09-26
Models of nonproportional response in scintillators have highlighted the importance of parameters such as branching ratios, carrier thermalization times, diffusion, kinetic order of quenching, associated rate constants, and radius of the electron track. For example, the fraction ηeh of excitations that are free carriers versus excitons was shown by Payne and coworkers to have strong correlation with the shape of electron energy response curves from Compton-coincidence studies. Rate constants for nonlinear quenching are implicit in almost all models of nonproportionality, and some assumption about track radius must invariably be made if one is to relate linear energy deposition dE/dx tomore » volume-based excitation density n (eh/cm3) in terms of which the rates are defined. Diffusion, affecting time-dependent track radius and thus density of excitations, has been implicated as an important factor in nonlinear light yield. Several groups have recently highlighted diffusion of hot electrons in addition to thermalized carriers and excitons in scintillators. However, experimental determination of many of these parameters in the insulating crystals used as scintillators has seemed difficult. Subpicosecond laser techniques including interband z scan light yield, fluence-dependent decay time, and transient optical absorption are now yielding experimental values for some of the missing rates and ratios needed for modeling scintillator response. First principles calculations and Monte Carlo simulations can fill in additional parameters still unavailable from experiment. As a result, quantitative modeling of scintillator electron energy response from independently determined material parameters is becoming possible on an increasingly firmer data base. This study describes recent laser experiments, calculations, and numerical modeling of scintillator response.« less
ON THE VARIATION OF SOLAR RADIUS IN ROTATION CYCLES
Qu, Z. N.; Kong, D. F.; Xiang, N. B.; Feng, W.
2015-01-10
The Date Compensated Discrete Fourier Transform and CLEANest algorithm are used to study the temporal variations of the solar radius observed at Rio de Janeiro Observatory from 1998 March 2 to 2009 November 6. The CLEANest spectra show several significant periodicities around 400, 312, 93.5, 86.2, 79.4, 70.9, 53.2, and 26.3 days. Then, combining the data on the daily solar radius measured at Calern Observatory and Rio de Janeiro Observatory and the corresponding daily sunspot areas, we study the short-term periodicity of the solar radius and the role of magnetic field in the variation of the solar radius. The rotation period of the daily solar radius is determined to be statistically significant. Moreover, its temporal evolution is anti-phase with that of sunspot activity, and it is found anti-phase with solar activity. Generally, the stronger solar activity is, the more obvious is the anti-phase relation of radius with solar activity. This indicates that strong magnetic fields have a greater inhibitive effect than weak magnetic fields on the variation of the radius.
Thermoconvective vortices in a cylindrical annulus with varying inner radius.
Castaño, D; Navarro, M C; Herrero, H
2014-12-01
This paper shows the influence of the inner radius on the stability and intensity of vertical vortices, qualitatively similar to dust devils and cyclones, generated in a cylindrical annulus non-homogeneously heated from below. Little relation is found between the intensity of the vortex and the magnitude of the inner radius. Strong stable vortices can be found for both small and large values of the inner radius. The Rankine combined vortex structure, that characterizes the tangential velocity in dust devils, is clearly observed when small values of the inner radius and large values of the ratio between the horizontal and vertical temperature differences are considered. A contraction on the radius of maximum azimuthal velocity is observed when the vortex is intensified by thermal mechanisms. This radius becomes then nearly stationary when frictional force balances the radial inflow generated by the pressure drop in the center, despite the vortex keeps intensifying. These results connect with the behavior of the radius of the maximum tangential wind associated with a hurricane.
Thermoconvective vortices in a cylindrical annulus with varying inner radius
NASA Astrophysics Data System (ADS)
Castaño, D.; Navarro, M. C.; Herrero, H.
2014-12-01
This paper shows the influence of the inner radius on the stability and intensity of vertical vortices, qualitatively similar to dust devils and cyclones, generated in a cylindrical annulus non-homogeneously heated from below. Little relation is found between the intensity of the vortex and the magnitude of the inner radius. Strong stable vortices can be found for both small and large values of the inner radius. The Rankine combined vortex structure, that characterizes the tangential velocity in dust devils, is clearly observed when small values of the inner radius and large values of the ratio between the horizontal and vertical temperature differences are considered. A contraction on the radius of maximum azimuthal velocity is observed when the vortex is intensified by thermal mechanisms. This radius becomes then nearly stationary when frictional force balances the radial inflow generated by the pressure drop in the center, despite the vortex keeps intensifying. These results connect with the behavior of the radius of the maximum tangential wind associated with a hurricane.
NASA Astrophysics Data System (ADS)
Thilagam, A.
2016-09-01
We examine a mechanism by which excitons are generated via the longitudinal optical (LO) phonon-assisted scattering process after optical excitation of monolayer transition metal dichalcogenides. The exciton formation time is computed as a function of the exciton center-of-mass wavevector, electron and hole temperatures, and carrier densities for known values of the Fröhlich coupling constant, LO phonon energy, lattice temperature, and the exciton binding energy in layered structures. For the monolayer MoS2, we obtain ultrafast exciton formation times on the sub-picosecond time scale at charge densities of 5 × 1011 cm-2 and carrier temperatures less than 300 K, in good agreement with recent experimental findings ( ≈0.3 ps). While excitons are dominantly created at zero center-of-mass wavevectors at low charge carrier temperatures ( ≈30 K), the exciton formation time is most rapid at non-zero wavevectors at higher temperatures ( ≥120 K) of charge carriers. The results show the inverse square-law dependence of the exciton formation times on the carrier density, consistent with a square-law dependence of photoluminescence on the excitation density. Our results show that excitons are formed more rapidly in exemplary monolayer selenide-based dichalcogenides (MoSe2 and WSe2) than sulphide-based dichalcogenides (MoS2 and WS2).
Roslyak, Oleksiy; Cherqui, Charles; Dunlap, David H; Piryatinski, Andrei
2014-07-17
We report on a general theoretical approach to study exciton transport and emission in a single-walled carbon nanotube (SWNT) in the presence of a localized surface-plasmon (SP) mode within a metal nanoparticle interacting via near-field coupling. We derive a set of quantum mechanical equations of motion and approximate rate equations that account for the exciton, SP, and the environmental degrees of freedom. The material equations are complemented by an expression for the radiated power that depends on the exciton and SP populations and coherences, allowing for an examination of the angular distribution of the emitted radiation that would be measured in experiment. Numerical simulations for a (6,5) SWNT and cone-shaped Ag metal tip (MT) have been performed using this methodology. Comparison with physical parameters shows that the near-field interaction between the exciton-SP occurs in a weak coupling regime, with the diffusion processes being much faster than the exciton-SP population exchange. In such a case, the effect of the exciton population transfer to the MT with its subsequent dissipation (i.e., the Förster energy transfer) is to modify the exciton steady state distribution while reducing the equilibration time for excitons to reach a steady sate distribution. We find that the radiation distribution is dominated by SP emission for a SWNT-MT separation of a few tens of nanometers due to the fast SP emission rate, whereas the exciton-SP coherences can cause its rotation.
Relaxation of hot excitons in CdZnSe/ZnSe quantum wells and quantum dots
NASA Astrophysics Data System (ADS)
Spiegel, R.; Bacher, G.; Breitwieser, O.; Forchel, A.; Jobst, B.; Hommel, D.; Landwehr, G.
1998-05-01
The relaxation dynamics of hot excitons was studied in (Zn,Cd)Se/ZnSe quantum wells and quantum dots. A fast population of the radiative excitonic ground state occurs for an excitation excess energy corresponding to an integer number of optical phonon energies. This is indicated by a spectrally narrow photoluminescence peak observed immediately after the exciting laser pulse. Spatial diffusion of excitons, controlled by the interaction between excitons and acoustic phonons, causes a distinct linewidth broadening with increasing delay time in quantum wells. In contrast, this process is found to be strongly suppressed in quantum dots.
Suppression of space broadening of exciton polariton transport by Bloch oscillation effect
NASA Astrophysics Data System (ADS)
Duan, Xudong; Zou, Bingsuo; Zhang, Yongyou
2015-12-01
We theoretically study the transport of exciton polaritons under different applied photon potentials. The relation between the photon potentials and the thickness of the cavity layer is first calculated by finite-element simulation. The theoretical analysis and numerical calculation indicate that the cavity photon potential is proportional to the thickness of the cavity layer with the coefficient being about 1.8 meV nm-1. Further, the periodic and linear photon potentials are considered to control the transport of the exciton polaritons in weak- and strong-field pump situations. In both situations the periodic potential cannot by itself effectively suppress the scatterings of the disorder potentials of the cavity photons and excitons and the nonlinear exciton-exciton interaction. When the linear potential is added to the cavity photons, the exciton polariton transport exhibits the Bloch oscillation behavior. Importantly, the polariton Bloch oscillation can strongly suppress the space broadening of the exciton polariton transport due to the disorder potentials and nonlinear exciton-exciton interaction, which is beneficial for designing the polariton circuits.
Exciton binding energy in GaAsBiN spherical quantum dot heterostructures
NASA Astrophysics Data System (ADS)
Das, Subhasis; Dhar, S.
2017-03-01
The ground state exciton binding energies (EBE) of heavy hole excitons in GaAs1-x-yBixNy - GaAs spherical quantum dots (QD) are calculated using a variational approach under 1s hydrogenic wavefunctions within the framework of effective mass approximation. Both the nitrogen and the bismuth content in the material are found to affect the binding energy, in particular for larger nitrogen content and lower dot radii. Calculations also show that the ground state exciton binding energies of heavy holes increase more at smaller dot sizes as compared to that for the light hole excitons.
Lin, Kuen-Feng; Chiang, Chien-Hung; Wu, Chun-Guey
2014-01-01
The refractive index and extinction coefficient of a triiodide perovskite absorber (TPA) were obtained by fitting the transmittance spectra of TPA/PEDOT:PSS/ITO/glass using the transfer matrix method. Cu nanoplasmonic structures were designed to enhance the exciton generation in the TPA and to simultaneously reduce the film thickness of the TPA. Excitons were effectively generated at the interface between TPA and Cu nanoparticles, as observed through the 3D finite-difference time-domain method. The exciton distribution is advantageous for the exciton dissociation and carrier transport. PMID:25295290
Optical bistability and nonlinearity of coherently coupled exciton-plasmon systems.
Li, Jian-Bo; Kim, Nam-Chol; Cheng, Mu-Tian; Zhou, Li; Hao, Zhong-Hua; Wang, Qu-Quan
2012-01-16
We theoretically investigated optical third-order nonlinearity of a coherently coupled exciton-plasmon hybrid system under a strong control field with a weak probe field. The analytic formulas of exciton population and effective third-order optical susceptibility of the hybrid of a metal nanoparticle (MNP) and a semiconductor quantum dot (SQD) were deduced. The bistable exciton population and the induced bistable nonlinear absorption and refraction response were revealed. The bistability region can be tuned by adjusting the size of metal nanoparticle, interparticle distance and intensity of control field. Our results have perspective applications in optical information processing based on resonant coupling of exciton-plasmon.
Excitons and Optical Spectrum of the Si(111)- (2{times}1) Surface
Rohlfing, M.; Louie, S.G.
1999-07-01
We investigate excitons at the Si(111)-( 2{times}1) surface and their optical spectrum from first principles. This is done by solving the Bethe-Salpeter equation for the two-particle Green`s function, including the electron-hole interaction. The optical spectrum of the surface is dominated by a surface exciton formed from the {pi} -bonded surface states. The excitonic binding energy is more than 1thinspthinsporder of magnitude larger than in bulk Si. The two-particle wave function of the exciton state is strongly localized at the surface and exhibits distinct anisotropy due to the surface reconstruction. {copyright} {ital 1999} {ital The American Physical Society }
NASA Astrophysics Data System (ADS)
Wan, Yan; Guo, Zhi; Zhu, Tong; Yan, Suxia; Johnson, Justin; Huang, Libai
2015-10-01
Singlet fission presents an attractive solution to overcome the Shockley-Queisser limit by generating two triplet excitons from one singlet exciton. However, although triplet excitons are long-lived, their transport occurs through a Dexter transfer, making them slower than singlet excitons, which travel by means of a Förster mechanism. A thorough understanding of the interplay between singlet fission and exciton transport is therefore necessary to assess the potential and challenges of singlet-fission utilization. Here, we report a direct visualization of exciton transport in single tetracene crystals using transient absorption microscopy with 200 fs time resolution and 50 nm spatial precision. These measurements reveal a new singlet-mediated transport mechanism for triplets, which leads to an enhancement in effective triplet exciton diffusion of more than one order of magnitude on picosecond to nanosecond timescales. These results establish that there are optimal energetics of singlet and triplet excitons that benefit both singlet fission and exciton diffusion.
Effect of exciton-spin-orbit-photon interaction in the performance of organic solar cells
NASA Astrophysics Data System (ADS)
Narayan, Monishka Rita; Singh, Jai
2013-02-01
Photon absorptions leading to singlet and triplet excitonic states in organic solar cells are presented in this study. Applying Fermi's golden rule, the rates of absorption of singlet and triplet excitons are derived using singlet exciton-photon and triplet exciton-spin-orbit-photon-interaction, respectively, as perturbation operators. The rate of triplet absorption depends on the square of the atomic number and hence heavier atoms play the dominant role. Incorporation of heavy metal atoms in the donor organic material enhances the absorption rate and hence absorption, leading of higher generation of excited charge carriers. This increases the conversion efficiency of organic solar cells. The results are compared with experimental studies.
Exciton-phonon system on a star graph: A perturbative approach.
Yalouz, Saad; Pouthier, Vincent
2016-05-01
Based on the operatorial formulation of the perturbation theory, the properties of an exciton coupled with optical phonons on a star graph are investigated. Within this method, the dynamics is governed by an effective Hamiltonian, which accounts for exciton-phonon entanglement. The exciton is dressed by a virtual phonon cloud whereas the phonons are clothed by virtual excitonic transitions. In spite of the coupling with the phonons, it is shown that the energy spectrum of the dressed exciton resembles that of a bare exciton. The only differences originate in a polaronic mechanism that favors an energy shift and a decay of the exciton hopping constant. By contrast, the motion of the exciton allows the phonons to propagate over the graph so that the dressed normal modes drastically differ from the localized modes associated to bare phonons. They define extended vibrations whose properties depend on the state occupied by the exciton that accompanies the phonons. It is shown that the phonon frequencies, either red shifted or blue shifted, are very sensitive to the model parameter in general, and to the size of the graph in particular.
Transport of dipolar excitons in (Al,Ga)N/GaN quantum wells
NASA Astrophysics Data System (ADS)
Fedichkin, F.; Andreakou, P.; Jouault, B.; Vladimirova, M.; Guillet, T.; Brimont, C.; Valvin, P.; Bretagnon, T.; Dussaigne, A.; Grandjean, N.; Lefebvre, P.
2015-05-01
We investigate the transport of dipolar indirect excitons along the growth plane of polar (Al,Ga)N/GaN quantum well structures by means of spatially and time-resolved photoluminescence spectroscopy. The transport in these strongly disordered quantum wells is activated by dipole-dipole repulsion. The latter induces an emission blue shift that increases linearly with exciton density, whereas the radiative recombination rate increases exponentially. Under continuous, localized excitation, we observe continuously decreasing emission energy, as excitons propagate away from the excitation spot. This corresponds to a steady-state gradient of exciton density, measured over several tens of micrometers. Time-resolved microphotoluminescence experiments provide information on the dynamics of recombination and transport of dipolar excitons. We account for the ensemble of experimental results by solving the nonlinear drift-diffusion equation. Quantitative analysis suggests that in such structures, exciton propagation on the scale of 10 to 20 μ m is mainly driven by diffusion, rather than by drift, due to the strong disorder and the presence of nonradiative defects. Secondary exciton creation, most probably by the intense higher-energy luminescence, guided along the sample plane, is shown to contribute to the exciton emission pattern on the scale up to 100 μ m . The exciton propagation length is strongly temperature dependent, the emission being quenched beyond a critical distance governed by nonradiative recombination.
NASA Astrophysics Data System (ADS)
Matsuda, Takuya; Yokoshi, Nobuhiko; Ishihara, Hajime
2015-06-01
We develop a theoretical formalism to calculate photoluminescence (PL) spectrum of weakly confined excitons incorporating the microscopic nonlocal optical response. The nonlocality is caused by the center-of-mass (c. m.) motion of exciton and becomes remarkable in nano-to-bulk crossover regime. The theory successfully explains the characteristics of recently observed peculiar PL spectra in high quality CuCl films [5], wherein the signals appear at the exciton states with the very large radiative corrections not only for the lowest level but also for the higher ones including non-dipole types of excitons.
Exciton mobility edge in CdS 1-xSe x solid solutions
NASA Astrophysics Data System (ADS)
Permogorov, S.; Reznitsky, A.; Verbin, S.; Lysenko, V.
1983-07-01
Low temperature emission spectra of localized excitons in CdS 1-xSe x solid solutions under the monochromatic excitation with tunable laser have been studied. It has been found that the luminescence of localized excitons has a high degree of linear polarization with respect to the polarization direction of exciting light. This polarization reflects the "hidden" anisotropy of macroscopically isotropic localized exciton system and strongly depends on the frequency of exciting light. Study of this dependence has permitted for the first time a determination of position of the "mobility edge" for exciton migration in disordered semiconductor solid solution.
Exciton-phonon system on a star graph: A perturbative approach
NASA Astrophysics Data System (ADS)
Yalouz, Saad; Pouthier, Vincent
2016-05-01
Based on the operatorial formulation of the perturbation theory, the properties of an exciton coupled with optical phonons on a star graph are investigated. Within this method, the dynamics is governed by an effective Hamiltonian, which accounts for exciton-phonon entanglement. The exciton is dressed by a virtual phonon cloud whereas the phonons are clothed by virtual excitonic transitions. In spite of the coupling with the phonons, it is shown that the energy spectrum of the dressed exciton resembles that of a bare exciton. The only differences originate in a polaronic mechanism that favors an energy shift and a decay of the exciton hopping constant. By contrast, the motion of the exciton allows the phonons to propagate over the graph so that the dressed normal modes drastically differ from the localized modes associated to bare phonons. They define extended vibrations whose properties depend on the state occupied by the exciton that accompanies the phonons. It is shown that the phonon frequencies, either red shifted or blue shifted, are very sensitive to the model parameter in general, and to the size of the graph in particular.
An Asian Perspective on the Management of Distal Radius Fractures
Sebastin, Sandeep J.; Chung, Kevin C.
2012-01-01
Synopsis There is little data with regards to the epidemiology, pathology, or management of distal radius fractures from centers in Asia. Asia includes five advanced economies, namely Hong Kong SAR, Japan, Korea, Singapore, and Taiwan and a number of emerging economies prominent among which are China, India, Malaysia, Philippines, and Thailand. This article examines the available epidemiological data from Asia, and compares the management of distal radius fractures in the advanced and emerging Asian economies and how they match up to the current management in the west. It concludes by offering solutions for improving outcomes of distal radius fractures in both the advanced and emerging economies of Asia. PMID:22554658
Split radius-form blocks for tube benders
NASA Technical Reports Server (NTRS)
Lange, D. R.; Seiple, C. W.
1970-01-01
Two-piece, radius-form block permits accurate forming and removing of parts with more than a 180 degree bend. Tube bender can shape flexible metal tubing in applications dealing with plumbing, heating, and pressure transmission lines.
Applying Occam's Razor To The Proton Radius Puzzle
NASA Astrophysics Data System (ADS)
Higinbotham, Douglas
2016-09-01
Over the past five decades, ever more complex mathematical functions have been used to extract the radius of the proton from electron scattering data. For example, in 1963 the proton radius was extracted with linear and quadratic fits of low Q2 data (< 3 fm-2) and by 2014 a non-linear regression of two tenth order power series functions with thirty-one normalization parameters and data out to 25 fm-2 was used. But for electron scattering, the radius of the proton is determined by extracting the slope of the charge form factor at a Q2 of zero. By using higher precision data than was available in 1963 and focusing on the low Q2 data from 1974 to today, we find extrapolating functions consistently produce a proton radius of around 0.84 fm. A result that is in agreement with modern Lamb shift measurements.
Radius of Curvature of Off-Axis Paraboloids
NASA Technical Reports Server (NTRS)
Robinson, Brian; Reardon, Patrick; Hadaway, James; Geary, Joseph; Russell, Kevin (Technical Monitor)
2002-01-01
We present several methods for measuring the vertex radius of curvature of off-axis paraboloidal mirrors. One is based on least-squares fitting of interferometer output, one on comparison of sagittal and tangential radii of curvature, and another on measurement of displacement of the nulled test article from the ideal reference wave. Each method defines radius of curvature differently and, as a consequence, produces its own sort of errors.
Size effect on the electronic and optical band gap of CdSe QD
Sisodia, Namita
2014-04-24
Present paper deals with a critical and comprehensive analysis of the dependence of photo emission (PE) electronic band gap and optical absorption (OA) excitonic band gap on the size of CdSe QD, via connecting it with excitonic absorbance wavelength. Excitonic absorbance wavelength is determined through an empirical fit of established experimental evidences. Effective excitonic charge and Bohr radius is determined as a function of size. Increase in size of the CdSe QD results in greater Bohr radius and smaller effective excitonic charge. Excitonic binding energy as a degree of size of QD is also calculated which further relates with the difference in PE electronic and OA optical band gaps. It is also shown that with increase in size of CdSe QD, the excitonic binding energy decreases which consequently increases differences in two band gaps. Our results are very well comparable with the established results. Explanation for the origin of the unusual optical properties of CdSe QD has been also discussed.
Isolated Diaphyseal Fractures of the Radius in Skeletally Immature Patients
Guitton, Thierry G.; Van Dijk, Niek C.; Raaymakers, Ernst L.
2009-01-01
Diaphyseal radius fractures without associated ulna fracture or radioulnar dislocation (isolated fracture of the radius) are recognized in adults but are rarely described in skeletally immature patients. A search of our database (1974–2002) identified 17 pediatric patients that had an isolated fracture of the radius. Among the 13 patients with at least 1 year follow-up, ten were treated with manipulative reduction and immobilization in an above elbow cast and three had initial operative treatment with plate and screw fixation. These 13 patients were evaluated for an average of 18 months (range, 12 to 45 months) after injury using the system of Price and colleagues. The incidence of isolated diaphyseal radius fractures in skeletally immature patients was 0.56 per year in our database and represented 27% of the 63 patients with a diaphyseal forearm fracture. All 13 patients, with at least 1 year follow-up, regained full elbow flexion and extension and full forearm rotation. According to the classification system of Price, all 13 patients (100%) had an excellent result. As in adults, isolated radius fractures seem to occur in children more frequently than previously appreciated. Treatment of isolated radius fractures in skeletally immature patients has a low complication rate, and excellent functional outcomes are the rule. PMID:19859772
Ding, Baofu Alameh, Kamal
2014-07-07
The research field of organic spintronics has remarkably and rapidly become a promising research area for delivering a range of high-performance devices, such as magnetic-field sensors, spin valves, and magnetically modulated organic light emitting devices (OLEDs). Plenty of microscopic physical and chemical models based on exciton or charge interactions have been proposed to explain organic magneto-optoelectronic phenomena. However, the simultaneous observation of singlet- and triplet-exciton variations in an external magnetic field is still unfeasible, preventing a thorough theoretical description of the spin dynamics in organic semiconductors. Here, we show that we can simultaneously observe variations of singlet excitons and triplet excitons in an external magnetic field, by designing an OLED structure employing a singlet-exciton filtering and detection layer in conjunction with a separate triplet-exciton detection layer. This OLED structure enables the observation of a Lorentzian and a non-Lorentzian line-shape magnetoresponse for singlet excitons and triplet excitons, respectively.
Crystalline Nanoporous Frameworks: a Nanolaboratory for Probing Excitonic Device Concepts.
Allendorf, Mark D.; Azoulay, Jason; Ford, Alexandra Caroline; Foster, Michael E.; El Gabaly Marquez, Farid; Leonard, Francois Leonard; Leong-Hau, Kirsty; Stavila, Vitalie; Talin, Albert Alec; Wong, Brian M.; Brumbach, Michael T.; Van Gough, D.; Lambert, Timothy N.; Rodriguez, Mark A.; Spoerke, Erik David; Wheeler, David Roger; Deaton, Joseph C.; Centrone, Andrea; Haney, Paul; Kinney, R.; Szalai, Veronika; Yoon, Heayoung P.
2014-09-01
Electro-optical organic materials hold great promise for the development of high-efficiency devices based on exciton formation and dissociation, such as organic photovoltaics (OPV) and organic light-emitting devices (OLEDs). However, the external quantum efficiency (EQE) of both OPV and OLEDs must be improved to make these technologies economical. Efficiency rolloff in OLEDs and inability to control morphology at key OPV interfaces both reduce EQE. Only by creating materials that allow manipulation and control of the intimate assembly and communication between various nanoscale excitonic components can we hope to first understand and then engineer the system to allow these materials to reach their potential. The aims of this proposal are to: 1) develop a paradigm-changing platform for probing excitonic processes composed of Crystalline Nanoporous Frameworks (CNFs) infiltrated with secondary materials (such as a complimentary semiconductor); 2) use them to probe fundamental aspects of excitonic processes; and 3) create prototype OPVs and OLEDs using infiltrated CNF as active device components. These functional platforms will allow detailed control of key interactions at the nanoscale, overcoming the disorder and limited synthetic control inherent in conventional organic materials. CNFs are revolutionary inorganic-organic hybrid materials boasting unmatched synthetic flexibility that allow tuning of chemical, geometric, electrical, and light absorption/generation properties. For example, bandgap engineering is feasible and polyaromatic linkers provide tunable photon antennae; rigid 1-5 nm pores provide an oriented, intimate host for triplet emitters (to improve light emission in OLEDs) or secondary semiconducting polymers (creating a charge-separation interface in OPV). These atomically engineered, ordered structures will enable critical fundamental questions to be answered concerning charge transport, nanoscale interfaces, and exciton behavior that are inaccessible
PREFACE: International Conference on Optics of Excitons in Confined Systems
NASA Astrophysics Data System (ADS)
Viña, Luis; Tejedor, Carlos; Calleja, José M.
2010-01-01
The OECS11 (International Conference on Optics of Excitons in Confined Systems) was the eleventh of a very successful series of conferences that started in 1987 in Rome (Italy). Afterwards the conference was held at Naxos (Sicily, Italy, 1991), Montpellier (France, 1993), Cortona (Italy, 1995), Göttingen (Germany, 1997), Ascona (Switzerland, 1999), Montpellier (France, 2001), Lecce (Italy, 2003), Southampton (UK, 2005) and Patti (Sicily, Italy, 2007). It is addressed to scientists who lead fundamental and applied research on the optical properties of excitons in novel condensed-matter nanostructures. The 2009 meeting (7-11 September 2009) has brought together a large representation of the world leading actors in this domain, with the aim of stimulating the exchange of ideas, promoting international collaborations, and coordinating research on the newest exciton-related issues such as quantum information science and exciton quantum-collective phenomena. The meeting has included invited lectures, contributed oral presentations and posters, covering the following general topics: low-dimensional heterostructures: quantum wells, quantum wires and quantum dots polaritons quantum optics with excitons and polaritons many-body effects under coherent and incoherent excitation coherent optical spectroscopy quantum coherence and quantum-phase manipulation Bose-Einstein condensation and other collective phenomena excitons in novel materials The OECS 11 was held at the campus of the Universidad Autónoma de Madrid in Cantoblanco. The scientific program was composed of more than 200 contributions divided into 16 invited talks, 44 oral contributions and 3 poster sessions with a total of 150 presentations. The scientific level of the presentations was guaranteed by a selection process where each contribution was rated by three members of the Program Committee. The Conference has gathered 238 participants from 21 different countries, with the following distribution: Germany (43
Exciton-polariton trapping and potential landscape engineering.
Schneider, C; Winkler, K; Fraser, M D; Kamp, M; Yamamoto, Y; Ostrovskaya, E A; Höfling, S
2017-01-01
Exciton-polaritons in semiconductor microcavities have become a model system for the studies of dynamical Bose-Einstein condensation, macroscopic coherence, many-body effects, nonclassical states of light and matter, and possibly quantum phase transitions in a solid state. These low-mass bosonic quasiparticles can condense at comparatively high temperatures up to 300 K, and preserve the fundamental properties of the condensate, such as coherence in space and time domain, even when they are out of equilibrium with the environment. Although the presence of a confining potential is not strictly necessary in order to observe Bose-Einstein condensation, engineering of the polariton confinement is a key to controlling, shaping, and directing the flow of polaritons. Prototype polariton-based optoelectronic devices rely on ultrafast photon-like velocities and strong nonlinearities exhibited by polaritons, as well as on their tailored confinement. Nanotechnology provides several pathways to achieving polariton confinement, and the specific features and advantages of different methods are discussed in this review. Being hybrid exciton-photon quasiparticles, polaritons can be trapped via their excitonic as well as photonic component, which leads to a wide choice of highly complementary trapping techniques. Here, we highlight the almost free choice of the confinement strengths and trapping geometries that provide powerful means for control and manipulation of the polariton systems both in the semi-classical and quantum regimes. Furthermore, the possibilities to observe effects of the polariton blockade, Mott insulator physics, and population of higher-order energy bands in sophisticated lattice potentials are discussed. Observation of such effects could lead to realization of novel polaritonic non-classical light sources and quantum simulators.
Exciton-polariton trapping and potential landscape engineering
NASA Astrophysics Data System (ADS)
Schneider, C.; Winkler, K.; Fraser, M. D.; Kamp, M.; Yamamoto, Y.; Ostrovskaya, E. A.; Höfling, S.
2017-01-01
Exciton-polaritons in semiconductor microcavities have become a model system for the studies of dynamical Bose-Einstein condensation, macroscopic coherence, many-body effects, nonclassical states of light and matter, and possibly quantum phase transitions in a solid state. These low-mass bosonic quasiparticles can condense at comparatively high temperatures up to 300 K, and preserve the fundamental properties of the condensate, such as coherence in space and time domain, even when they are out of equilibrium with the environment. Although the presence of a confining potential is not strictly necessary in order to observe Bose-Einstein condensation, engineering of the polariton confinement is a key to controlling, shaping, and directing the flow of polaritons. Prototype polariton-based optoelectronic devices rely on ultrafast photon-like velocities and strong nonlinearities exhibited by polaritons, as well as on their tailored confinement. Nanotechnology provides several pathways to achieving polariton confinement, and the specific features and advantages of different methods are discussed in this review. Being hybrid exciton-photon quasiparticles, polaritons can be trapped via their excitonic as well as photonic component, which leads to a wide choice of highly complementary trapping techniques. Here, we highlight the almost free choice of the confinement strengths and trapping geometries that provide powerful means for control and manipulation of the polariton systems both in the semi-classical and quantum regimes. Furthermore, the possibilities to observe effects of the polariton blockade, Mott insulator physics, and population of higher-order energy bands in sophisticated lattice potentials are discussed. Observation of such effects could lead to realization of novel polaritonic non-classical light sources and quantum simulators.
Unconventional Pairing in Excitonic Condensates under Spin-Orbit Coupling
Can, M. Ali; Hakioglu, T.
2009-08-21
It is shown that Rashba and Dresselhaus spin-orbit couplings enhance the conclusive power in the experiments on the excitonic condensate by at least three low temperature effects. First, spin-orbit coupling facilitates the photoluminescence measurements via enhancing the bright contribution in the otherwise dominantly dark ground state. The second is the presence of a low temperature power law dependence of the specific heat and weakening of the second order transition at the critical temperature. The third is the appearance of the nondiagonal elements in the static spin susceptibility.
Unpaired composite fermion, topological exciton, and zero mode.
Sreejith, G J; Wójs, A; Jain, J K
2011-09-23
The paired state of composite fermions is expected to support two kinds of excitations: vortices and unpaired composite fermions. We construct an explicit microscopic description of the unpaired composite fermions, which we demonstrate to be accurate for a 3-body model interaction and, possibly, adiabatically connected to the Coulomb solution. This understanding reveals that an unpaired composite fermion carries with it a charge-neutral "topological" exciton, which, in turn, helps provide microscopic insight into the origin of zero modes, fusion rules, and energetics.
Unpaired Composite Fermion, Topological Exciton, and Zero Mode
NASA Astrophysics Data System (ADS)
Sreejith, G. J.; Wójs, A.; Jain, J. K.
2011-09-01
The paired state of composite fermions is expected to support two kinds of excitations: vortices and unpaired composite fermions. We construct an explicit microscopic description of the unpaired composite fermions, which we demonstrate to be accurate for a 3-body model interaction and, possibly, adiabatically connected to the Coulomb solution. This understanding reveals that an unpaired composite fermion carries with it a charge-neutral “topological” exciton, which, in turn, helps provide microscopic insight into the origin of zero modes, fusion rules, and energetics.
Spin polarization of excitons in organic multiferroic composites
Han, Shixuan; Yang, Liu; Gao, Kun; Xie, Shijie; Qin, Wei; Ren, Shenqiang
2016-01-01
Recently, the discovery of room temperature magnetoelectricity in organic charge transfer complexes has reignited interest in the multiferroic field. The solution processed, large-area and low cost organic semiconductor materials offer new possibilities for the functional all organic multiferroic devices. Here we report the spin polarization of excitons and charge transfer states in organic charge transfer composites by using extended Su-Schrieffer-Heeger model including Coulomb interaction and spin-flip effect. With the consideration of spin polarization, we suggest a possible mechanism for the origin of excited ferromagnetism. PMID:27334680
A measurable force driven by an excitonic condensate
Hakioğlu, T.; Özgün, Ege; Günay, Mehmet
2014-04-21
Free energy signatures related to the measurement of an emergent force (≈10{sup −9}N) due to the exciton condensate (EC) in Double Quantum Wells are predicted and experiments are proposed to measure the effects. The EC-force is attractive and reminiscent of the Casimir force between two perfect metallic plates, but also distinctively different from it by its driving mechanism and dependence on the parameters of the condensate. The proposed experiments are based on a recent experimental work on a driven micromechanical oscillator. Conclusive observations of EC in recent experiments also provide a strong promise for the observation of the EC-force.
Tunable Magnetic Alignment between Trapped Exciton-Polariton Condensates.
Ohadi, H; Del Valle-Inclan Redondo, Y; Dreismann, A; Rubo, Y G; Pinsker, F; Tsintzos, S I; Hatzopoulos, Z; Savvidis, P G; Baumberg, J J
2016-03-11
Tunable spin correlations are found to arise between two neighboring trapped exciton-polariton condensates which spin polarize spontaneously. We observe a crossover from an antiferromagnetic to a ferromagnetic pair state by reducing the coupling barrier in real time using control of the imprinted pattern of pump light. Fast optical switching of both condensates is then achieved by resonantly but weakly triggering only a single condensate. These effects can be explained as the competition between spin bifurcations and spin-preserving Josephson coupling between the two condensates, and open the way to polariton Bose-Hubbard ladders.
Spin polarization of excitons in organic multiferroic composites.
Han, Shixuan; Yang, Liu; Gao, Kun; Xie, Shijie; Qin, Wei; Ren, Shenqiang
2016-06-23
Recently, the discovery of room temperature magnetoelectricity in organic charge transfer complexes has reignited interest in the multiferroic field. The solution processed, large-area and low cost organic semiconductor materials offer new possibilities for the functional all organic multiferroic devices. Here we report the spin polarization of excitons and charge transfer states in organic charge transfer composites by using extended Su-Schrieffer-Heeger model including Coulomb interaction and spin-flip effect. With the consideration of spin polarization, we suggest a possible mechanism for the origin of excited ferromagnetism.
Excitons and optical properties of alpha-quartz
Chang, Eric K.; Rohlfing, Michael; Louie, Steven G.
2000-04-01
We present an ab initio study of the optical properties of alpa-quartz. The absorption spectrum is calculated by solving the Bethe-Salpeter equation for the interacting electron-hole system and found to be in excellent agreement with the measured spectrum up to 10 eV above the absorption threshold. We find that excitonic effects are crucial in understanding the sharp features in the absorption spectrum in this energy range. The are also crucial in the ab initio computation of the static dielectric constant, significantly enhancing its value.
Excitonic effects and the optical absorption spectrum ofhydrogenated Si clusters
Rohlfing, Michael; Louie, Steven G.
1997-10-19
We calculate the optical absorption spectrum of hydrogen-terminated silicon clusters by solving the Bethe-Salpeter equation for the two-particle Green's function using an ab initio approach. The one-particle Green's function and the electron-hole interaction kernel are calculated within the GW approximation for the electron self-energy operator. Very large exciton binding energies are observed. Our results for the one-particle properties and the optical absorption spectra of the clusters are in very good agreement with available experimental data.
Excitons and optical properties of alpha-quartz
Chang; Rohlfing; Louie
2000-09-18
We present an ab initio study of the optical properties of alpha-quartz. The absorption spectrum is calculated by solving the Bethe-Salpeter equation for the interacting electron-hole system and found to be in excellent agreement with the measured spectrum up to 10 eV above the absorption threshold. We find that excitonic effects are crucial in understanding the sharp features in the absorption spectrum in this energy range. They are also crucial in the ab initio computation of the static dielectric constant, significantly enhancing its value.
Exciton-polariton gap solitons in two-dimensional lattices.
Cerda-Méndez, E A; Sarkar, D; Krizhanovskii, D N; Gavrilov, S S; Biermann, K; Skolnick, M S; Santos, P V
2013-10-04
We report on the two-dimensional gap-soliton nature of exciton-polariton macroscopic coherent phases (PMCP) in a square lattice with a tunable amplitude. The resonantly excited PMCP forms close to the negative mass M point of the lattice band structure with energy within the lattice band gap and its wave function localized within a few lattice periods. The PMCPs are well described as gap solitons resulting from the interplay between repulsive polariton-polariton interactions and effective attractive forces due to the negative mass. The solitonic nature accounts for the reduction of the PMCP coherence length and optical excitation threshold with increasing lattice amplitude.
Exciton recombination dynamics in single ZnO tetrapods
Fernandes-Silva, Lígia C.; Martín, Maria D.; Meulen, Herko P. van der; Calleja, José M.; Viña, Luis; Klopotowski, Lukasz
2013-12-04
We present the optical properties of individual ZnO tetrapods as a function of excitation power and temperature by time-integrated and time-resolved spectroscopy. At 10K, we identify the different excitonic transitions by both their characteristic energy and their excitation power dependence. When we increase the tetrapod temperature we observe that the emission intensity decrease and occur a red shift of the emission energies. Our time-resolved studies confirm the predominance of the radiative recombination at low temperatures (< 45 K). Increasing the temperature opens up the non-radiative channels, which are evidenced by a much faster decay time.
Exciton size and binding energy limitations in one-dimensional organic materials
Kraner, S. Koerner, C.; Leo, K.; Scholz, R.; Plasser, F.
2015-12-28
In current organic photovoltaic devices, the loss in energy caused by the charge transfer step necessary for exciton dissociation leads to a low open circuit voltage, being one of the main reasons for rather low power conversion efficiencies. A possible approach to avoid these losses is to tune the exciton binding energy to a value of the order of thermal energy, which would lead to free charges upon absorption of a photon, and therefore increase the power conversion efficiency towards the Shockley-Queisser limit. We determine the size of the excitons for different organic molecules and polymers by time dependent density functional theory calculations. For optically relevant transitions, the exciton size saturates around 0.7 nm for one-dimensional molecules with a size longer than about 4 nm. For the ladder-type polymer poly(benzimidazobenzophenanthroline), we obtain an exciton binding energy of about 0.3 eV, serving as a lower limit of the exciton binding energy for the organic materials investigated. Furthermore, we show that charge transfer transitions increase the exciton size and thus identify possible routes towards a further decrease of the exciton binding energy.
NASA Astrophysics Data System (ADS)
Tretiak, Sergei
2014-03-01
The exciton scattering (ES) technique is a multiscale approach developed for efficient calculations of excited-state electronic structure and optical spectra in low-dimensional conjugated macromolecules. Within the ES method, the electronic excitations in the molecular structure are attributed to standing waves representing quantum quasi-particles (excitons), which reside on the graph. The exciton propagation on the linear segments is characterized by the exciton dispersion, whereas the exciton scattering on the branching centers is determined by the energy-dependent scattering matrices. Using these ES energetic parameters, the excitation energies are then found by solving a set of generalized ``particle in a box'' problems on the graph that represents the molecule. All parameters can be extracted from quantum-chemical computations of small molecular fragments and tabulated in the ES library for further applications. Subsequently, spectroscopic modeling for any macrostructure within considered molecular family could be performed with negligible numerical effort. The exciton scattering properties of molecular vertices can be further described by tight-binding or equivalently lattice models. The on-site energies and hopping constants are obtained from the exciton dispersion and scattering matrices. Such tight-binding model approach is particularly useful to describe the exciton-phonon coupling, energetic disorder and incoherent energy transfer in large branched conjugated molecules. Overall the ES applications accurately reproduce the optical spectra compared to the reference quantum chemistry results, and make possible to predict spectra of complex macromolecules, where conventional electronic structure calculations are unfeasible.
Identification of a triplet pair intermediate in singlet exciton fission in solution.
Stern, Hannah L; Musser, Andrew J; Gelinas, Simon; Parkinson, Patrick; Herz, Laura M; Bruzek, Matthew J; Anthony, John; Friend, Richard H; Walker, Brian J
2015-06-23
Singlet exciton fission is the spin-conserving transformation of one spin-singlet exciton into two spin-triplet excitons. This exciton multiplication mechanism offers an attractive route to solar cells that circumvent the single-junction Shockley-Queisser limit. Most theoretical descriptions of singlet fission invoke an intermediate state of a pair of spin-triplet excitons coupled into an overall spin-singlet configuration, but such a state has never been optically observed. In solution, we show that the dynamics of fission are diffusion limited and enable the isolation of an intermediate species. In concentrated solutions of bis(triisopropylsilylethynyl)[TIPS]--tetracene we find rapid (<100 ps) formation of excimers and a slower (∼ 10 ns) break up of the excimer to two triplet exciton-bearing free molecules. These excimers are spectroscopically distinct from singlet and triplet excitons, yet possess both singlet and triplet characteristics, enabling identification as a triplet pair state. We find that this triplet pair state is significantly stabilized relative to free triplet excitons, and that it plays a critical role in the efficient endothermic singlet fission process.
Transient Exciton Spin Splitting in GaAs Quantum Wells under Near-Resonant Excitation
NASA Astrophysics Data System (ADS)
Zin Latt, Kyaw; Lai, Chih-Wei
2010-03-01
We investigated spin dependent exciton-exciton interaction and energy relaxation under near-resonant circularly polarized ps pulsed excitation in single, multiple, or double coupled GaAs/AlGaAs quantum wells. Transient exciton spin splitting and relaxation were determined from time-resolved photoluminescence (TRPL) spectroscopy and polarimetry with a streak camera system. In contrast to standard TRPL measurements based on up-conversion and pump-probe techniques, the streak-camera setup allows for speedy spectroscopy and Stokes polarimetry measurements as a function of the exciton density and magnetic/electric field under near -resonant excitation (˜3 to 10 meV from the exciton resonance). For 6-nm and 14-nm GaAs/AlGaAs quantum wells at intermediate density (a few 10^10 cm-2), a spin splitting of 2 and 1 meV appeared instantly within 10 ps after excitation and exhibited a decay time constant of ˜100 and 500 ps, respectively. In the presence of magnetic fields, the spin splitting and relaxation dynamics became non-exponential and exhibited asymmetric and nonlinear dependence on the direction and magnitude of the field up to 10 Tesla. We analyzed the spin splitting and relaxation dynamics in terms of inter-exciton and intra-exciton exchange interaction and exciton-carrier interaction.
NASA Astrophysics Data System (ADS)
Li, L. L.; Zarenia, M.; Xu, W.; Dong, H. M.; Peeters, F. M.
2017-01-01
The magnetic-field dependence of the energy spectrum, wave function, binding energy, and oscillator strength of exciton states confined in a circular graphene quantum dot (CGQD) is obtained within the configuration interaction method. We predict that (i) excitonic effects are very significant in the CGQD as a consequence of a combination of geometric confinement, magnetic confinement, and reduced screening; (ii) two types of excitons (intravalley and intervalley) are present in the CGQD because of the valley degree of freedom in graphene; (iii) the intravalley and intervalley exciton states display different magnetic-field dependencies due to the different electron-hole symmetries of the single-particle energy spectra; (iv) with increasing magnetic field, the exciton ground state in the CGQD undergoes an intravalley to intervalley transition accompanied by a change of angular momentum; (v) the exciton binding energy does not increase monotonically with the magnetic field due to the competition between geometric and magnetic confinements; and (vi) the optical transitions of the intervalley and intravalley excitons can be tuned by the magnetic field, and valley-dependent excitonic transitions can be realized in a CGQD.
Exciton coherence in highly disordered solid DBN: "band-to-band" ODMR transitions in zero field
NASA Astrophysics Data System (ADS)
Tegelaar, P. M. H. L.; Glasbeek, M.; Zewail, A. H.
1986-08-01
Optically detected ELDOR is used to study the 2 | E| band-to-band zero-field spin transition of quasi-one-dimensional triplet excitons in doped 1,4-dibromonaphthalene (16% deutero in proto). Results from line-narrowing experiments provide evidence for a model which correlates homogeneous spin dephasing to the dispersion in the ODMR frequencies of coherent excitons.
Exciton storage in a nanoscale Aharonov-Bohm ring with electric field tuning.
Fischer, Andrea M; Campo, Vivaldo L; Portnoi, Mikhail E; Römer, Rudolf A
2009-03-06
We study analytically the optical properties of a simple model for an electron-hole pair on a ring subjected to perpendicular magnetic flux and in-plane electric field. We show how to tune this excitonic system from optically active to optically dark as a function of these external fields. Our results offer a simple mechanism for exciton storage and readout.
Exciton Storage in a Nanoscale Aharonov-Bohm Ring with Electric Field Tuning
Fischer, Andrea M.; Roemer, Rudolf A.; Campo, Vivaldo L. Jr.; Portnoi, Mikhail E.
2009-03-06
We study analytically the optical properties of a simple model for an electron-hole pair on a ring subjected to perpendicular magnetic flux and in-plane electric field. We show how to tune this excitonic system from optically active to optically dark as a function of these external fields. Our results offer a simple mechanism for exciton storage and readout.
Photoluminescence and the exciton-phonon coupling in hydrothermally grown ZnO
NASA Astrophysics Data System (ADS)
Mendelsberg, R. J.; Allen, M. W.; Durbin, S. M.; Reeves, R. J.
2011-05-01
Near band-edge photoluminescence (PL) from hydrothermally grown bulk ZnO was studied as a function of temperature along with the effects of simultaneous excitation with below-gap photons, allowing for accurate assignment of the emission features not possible from low-temperature data alone. Free exciton emission was clearly observed at low temperatures and dominated the PL spectrum above 100 K. Emission from A excitons bound to three neutral donors dominated the low-temperature PL spectrum. Recombination of B excitons bound to these same neutral donors were also identified along with A excitons bound to the donors in their ionized state. A clear difference in the redshift of free and bound excitons with increasing temperature was observed and attributed to reduced exciton-phonon coupling for the bound excitons. Additionally, Fano resonance of the 1-LO replica of the dominant bound A exciton was observed to reduce its PL intensity which can lead to the misidentification of the 2-LO replica as a donor-acceptor-pair transition.
The Role of Excitons on Light Amplification in Lead Halide Perovskites.
Lü, Quan; Wei, Haohan; Sun, Wenzhao; Wang, Kaiyang; Gu, Zhiyuan; Li, Jiankai; Liu, Shuai; Xiao, Shumin; Song, Qinghai
2016-12-01
The role of excitons on the amplifications of lead halide perovskites has been explored. Unlike the photoluminescence, the intensity of amplified spontaneous emission is partially suppressed at low temperature. The detailed analysis and experiments show that the inhibition is attributed to the existence of exciton and a quantitative model has been built to explain the experimental observations.
Radiation effects from first principles : the role of excitons in electronic-excited processes.
Wong, Bryan Matthew
2009-09-01
Electron-hole pairs, or excitons, are created within materials upon optical excitation or irradiation with X-rays/charged particles. The ability to control and predict the role of excitons in these energetically-induced processes would have a tremendous impact on understanding the effects of radiation on materials. In this report, the excitonic effects in large cycloparaphenylene carbon structures are investigated using various first-principles methods. These structures are particularly interesting since they allow a study of size-scaling properties of excitons in a prototypical semi-conducting material. In order to understand these properties, electron-hole transition density matrices and exciton binding energies were analyzed as a function of size. The transition density matrices allow a global view of electronic coherence during an electronic excitation, and the exciton binding energies give a quantitative measure of electron-hole interaction energies in these structures. Based on overall trends in exciton binding energies and their spatial delocalization, we find that excitonic effects play a vital role in understanding the unique photoinduced dynamics in these systems.
Control of excitons in multi-layer van der Waals heterostructures
NASA Astrophysics Data System (ADS)
Calman, E. V.; Dorow, C. J.; Fogler, M. M.; Butov, L. V.; Hu, S.; Mishchenko, A.; Geim, A. K.
2016-03-01
We report an experimental study of excitons in a double quantum well van der Waals heterostructure made of atomically thin layers of MoS2 and hexagonal boron nitride. The emission of neutral and charged excitons is controlled by gate voltage, temperature, and both the helicity and the power of optical excitation.
Room-Temperature Exciton Lasing in Ultrathin Film of Coupled Nanocrystals
Appavoo, Kannatassen; Xiaoze, Liu; Menon, Vinod; Sfeir, Matthew Y.
2015-05-10
We demonstrate exciton lasing in sub-wavelength coupled nanostructures at ultralow fluence threshold, as probed by femtosecond broadband emission and absorption spectroscopy. The complex spectrotemporal dynamics reveal for the first time an excitonic-to-electron-hole plasma lasing mechanism.
Predicting the failure load of the distal radius.
Muller, Monique E; Webber, Colin E; Bouxsein, Mary L
2003-06-01
The distal radius is an important site for the early detection of patients at risk for fracture. Since measuring bone strength in vivo is not possible, we evaluated which bone assessment method of the forearm would best predict failure load of the distal radius and computed a factor of risk for wrist fracture (Phi wrist). Thirty-eight cadaveric forearm specimens were measured by five different techniques to assess bone density, bone mineral content, geometry and trabecular structure at the distal forearm. The bone assessment techniques included dual-energy X-ray absorptiometry (DXA) of the radius, peripheral quantitative computed tomography (pQCT) of the 4% and 20% distal sites of the radius, DXA of the phalanges, digital X-ray radiogrammetry of the forearm (DXR-BMD), and quantitative ultrasound of the radius. The failure load of each excised radius was determined by simulating a fall on an outstretched hand. The pQCT measurements of polar stress-strain index and cortical content explained the greatest portion of variance in failure load (r2=0.82-0.85). Bone mineral content measures were generally better predictors of failure load (r2=0.53-0.85) than the corresponding volumetric or areal bone mineral density values (r2=0.22-0.69) measured by either pQCT or DXA. Multiple regression analysis showed that the addition of a bone geometry measure improved the ability of a bone density measure alone to predict failure load. There was high variability in the ability of different techniques and different variables within a given technique to predict failure load. Estimates of the factor of risk for wrist fracture (Phi wrist) revealed that the women in this study would have been likely to fracture their distal radius upon falling from a standing height (Phi wrist= 1.04), whereas the men would have likely withstood the impact without fracturing their wrist (Phi wrist= 0.79).
NASA Astrophysics Data System (ADS)
Astakhov, G. V.; Yakovlev, D. R.; Crooker, S. A.; Ossau, W.; Christianen, P. C. M.; Rudenkov, V. V.; Karczewski, G.; Wojtowicz, T.; Kossut, J.
2004-02-01
We present comprehensive study of negatively charged exciton in high magnetic fields for filling factors < 1. In magneto-optical spectra the fine structure was found to be contributed by neutral exciton and different a set of bound states of charged exciton. These states were identified due to their unique polarization properties charecteristics in emission and absorption spectra.