Road dust and its effect on human health: a literature review
2018-01-01
The purpose of this study was to determine the effects of road dust on human health. A PubMed search was used to extract references that included the words “road dust” and “health” or “fugitive dust” and “health” in the title or abstract. A total of 46 references were extracted and selected for review after the primary screening of 949 articles. The respiratory system was found to be the most affected system in the human body. Lead, platinum-group elements (platinum, rhodium, and bohrium), aluminum, zinc, vanadium, and polycyclic aromatic hydrocarbons were the components of road dust that were most frequently referenced in the articles reviewed. Road dust was found to have harmful effects on the human body, especially on the respiratory system. To determine the complex mechanism of action of various components of road dust on the human body and the results thereof, the authors recommend a further meta-analysis and extensive risk-assessment research into the health impacts of dust exposure. PMID:29642653
NASA Astrophysics Data System (ADS)
Lütfüoğlu, B. C.
2018-01-01
In this study, we reveal the difference between Woods-Saxon (WS) and Generalized Symmetric Woods-Saxon (GSWS) potentials in order to describe the physical properties of a nucleon, by means of solving Schrödinger equation for the two potentials. The additional term squeezes the WS potential well, which leads an upward shift in the spectrum, resulting in a more realistic picture. The resulting GSWS potential does not merely accommodate extra quasi bound states, but also has modified bound state spectrum. As an application, we apply the formalism to a real problem, an α particle confined in Bohrium-270 nucleus. The thermodynamic functions Helmholtz energy, entropy, internal energy, specific heat of the system are calculated and compared for both wells. The internal energy and the specific heat capacity increase as a result of upward shift in the spectrum. The shift of the Helmholtz free energy is a direct consequence of the shift of the spectrum. The entropy decreases because of a decrement in the number of available states. Supported by the Turkish Science and Research Council (TÜBİTAK) and Akdeniz University
Odd-Z Transactinide Compound Nucleus Reactions Including the Discovery of 260Bh
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nelson, Sarah L.
Several reactions producing odd-Z transactinide compound nuclei were studiedwith the 88-Inch Cyclotron and the Berkeley Gas-Filled Separator at the Lawrence Berkeley National Laboratory. The goal was to produce the same compound nucleus ator near the same excitation energy with similar values of angular momentum via differentnuclear reactions. In doing so, it can be determined if there is a preference in entrancechannel, because under these experimental conditions the survival portion of Swiatecki, Siwek-Wilcznska, and Wilczynski's"Fusion By Diffusion" model is nearly identical forthe two reactions. Additionally, because the same compound nucleus is produced, theexit channel is the same. Four compound nuclei were examined in this study: 258Db, 262Bh, 266Mt, and 272Rg. These nuclei were produced by using very similar heavy-ion induced-fusion reactions which differ only by one proton in the projectile or target nucleus (e.g.: 50Ti + 209Bi vs. 51V + 208Pb). Peak 1n exit channel cross sections were determined for each reaction in each pair, and three of the four pairs' cross sections were identical within statistical uncertainties. This indicates there is not an obvious preference of entrancechannel in these paired reactions. Charge equilibration immediately prior to fusionleading to a decreased fusion barrier is the likely cause of this phenomenon. In addition to this systematic study, the lightest isotope of element 107, bohrium, was discovered in the 209Bi( 52Cr,n) reaction. 260Bh was found to decay by emission of a 10.16 MeV alpha particle with a half-life of 35more » $$+19\\atop{-9}$$ ms. The cross section is 59 pb at an excitation energy of 15.0 MeV. The effect of the N = 152 shell is also seen in this isotope's alpha particle energy, the first evidence of such an effect in Bh. All reactions studied are also compared to model predictions by Swiatecki, Siwek-Wilcznska, and Wilczynski 's" Fusion By Diffusion " theory.« less