Boiling Experiment Facility for Heat Transfer Studies in Microgravity
NASA Technical Reports Server (NTRS)
Delombard, Richard; McQuillen, John; Chao, David
2008-01-01
Pool boiling in microgravity is an area of both scientific and practical interest. By conducting tests in microgravity, it is possible to assess the effect of buoyancy on the overall boiling process and assess the relative magnitude of effects with regards to other "forces" and phenomena such as Marangoni forces, liquid momentum forces, and microlayer evaporation. The Boiling eXperiment Facility is now being built for the Microgravity Science Glovebox that will use normal perfluorohexane as a test fluid to extend the range of test conditions to include longer test durations and less liquid subcooling. Two experiments, the Microheater Array Boiling Experiment and the Nucleate Pool Boiling eXperiment will use the Boiling eXperiment Facility. The objectives of these studies are to determine the differences in local boiling heat transfer mechanisms in microgravity and normal gravity from nucleate boiling, through critical heat flux and into the transition boiling regime and to examine the bubble nucleation, growth, departure and coalescence processes. Custom-designed heaters will be utilized to achieve these objectives.
The Boiling eXperiment Facility (BXF) for the Microgravity Science Glovebox (MSG)
NASA Technical Reports Server (NTRS)
McQuillen, John; Chao, David; Vergilii, Frank
2006-01-01
Boiling is an effective means of cooling by removing heat from surfaces through vaporization of a working fluid. It is also affected by both the magnitude and direction of gravity. By conducting pool boiling tests in microgravity, the effect of buoyancy n the overall boiling process and the relative magnitude of other phenomena can be assessed. The Boiling eXperiment Facility (BXF) is being built for the Microgravity Science Glovebox. This facility will conduct two pool boiling studies. The first study the Microheater Array Boiling Experiment (MABE) uses two 96 element microheater arrays, 2.7 mm and 7.0 mm in size, to measure localized hear fluxes while operating at a constant temperature. The other experiment, the Nucleate Pool Boiling eXperiment (NPBX) uses a 85 mm diameter heater wafer that has been "seeded" with five individually-controlled nucleation sites to study bubble nucleation, growth, coalescence and departure. The BXF uses normal-perfluorohexane as the test fluid and will operate between pressures of 60 to 244 Pa. and temperatures of 35 to 60 C. Both sets of experimental heaters are highly instrumented. Pressure and bulk fluid temperature measurements will be made with standard rate video. A high speed video system will be used to visualize the boiling process through the bottom of the MABE heater arrays. The BXF is currently scheduled to fly on Utilization Flight-13A.1 to the ISS with facility integration into the MSG and operation during Increment 15
NASA Technical Reports Server (NTRS)
Nahra, Henry K.; Hall, Nancy R.; Hasan, Mohammad M.; Wagner, James D.; May, Rochelle L.; Mackey, Jeffrey R.; Kolacz, John S.; Butcher, Robert L.; Frankenfield, Bruce J.; Mudawar, Issam;
2013-01-01
Flow boiling and condensation have been identified as two key mechanisms for heat transport that are vital for achieving weight and volume reduction as well as performance enhancement in future space systems. Since inertia driven flows are demanding on power usage, lower flows are desirable. However, in microgravity, lower flows are dominated by forces other than inertia (like the capillary force). It is of paramount interest to investigate limits of low flows beyond which the flow is inertial enough to be gravity independent. One of the objectives of the Flow Boiling and Condensation Flight Experiment sets to investigate these limits for flow boiling and condensation. A two-phase flow loop consisting of a Flow Boiling Module and two Condensation Modules has been developed to experimentally study flow boiling condensation heat transfer in the reduced gravity environment provided by the reduced gravity platform. This effort supports the development of a flow boiling and condensation facility for the International Space Station (ISS). The closed loop test facility is designed to deliver the test fluid, FC-72 to the inlet of any one of the test modules at specified thermodynamic and flow conditions. The zero-g-aircraft tests will provide subcooled and saturated flow boiling critical heat flux and flow condensation heat transfer data over wide range of flow velocities. Additionally, these tests will verify the performance of all gravity sensitive components, such as evaporator, condenser and accumulator associated with the two-phase flow loop. We will present in this paper the breadboard development and testing results which consist of detailed performance evaluation of the heater and condenser combination in reduced and normal gravity. We will also present the design of the reduced gravity aircraft rack and the results of the ground flow boiling heat transfer testing performed with the Flow Boiling Module that is designed to investigate flow boiling heat transfer and Critical Heat Flux (CHF) phenomena.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rose, S.D.; Dearing, J.F.
An understanding of conditions that may cause sodium boiling and boiling propagation that may lead to dryout and fuel failure is crucial in liquid-metal fast-breeder reactor safety. In this study, the SABRE-2P subchannel analysis code has been used to analyze the ultimate transient of the in-core W-1 Sodium Loop Safety Facility experiment. This code has a 3-D simple nondynamic boiling model which is able to predict the flow instability which caused dryout. In other analyses dryout has been predicted for out-of-core test bundles and so this study provides additional confirmation of the model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chu, T.Y.; Bentz, J.H.; Simpson, R.B.
1995-06-01
Reactor-scale ex-vessel boiling experiments were performed in the CYBL facility at Sandia National Laboratories. The boiling flow pattern outside the RPV bottom head shows a center pulsating region and an outer steady two-phase boundary layer region. The local heat transfer data can be correlated in terms of a modified Rohsenow correlation.
NASA Technical Reports Server (NTRS)
Hasan, Mohammad; Balasubramaniam, R.; Nahra, Henry; Mackey, Jeff; Hall, Nancy; Frankenfield, Bruce; Harpster, George; May, Rochelle; Mudawar, Issam; Kharangate, Chirag R.;
2016-01-01
A ground-based experimental facility to perform flow boiling and condensation experiments is built in support of the development of the long duration Flow Boiling and Condensation Experiment (FBCE) destined for operation on board of the International Space Station (ISS) Fluid Integrated Rack (FIR). We performed tests with the condensation test module oriented horizontally and vertically. Using FC-72 as the test fluid and water as the cooling fluid, we evaluated the operational characteristics of the condensation module and generated ground based data encompassing the range of parameters of interest to the condensation experiment to be performed on the ISS. During this testing, we also evaluated the pressure drop profile across different components of the fluid subsystem, heater performance, on-orbit degassing subsystem, and the heat loss from different components. In this presentation, we discuss representative results of performance testing of the FBCE flow loop. These results will be used in the refinement of the flight system design and build-up of the FBCE which is scheduled for flight in 2019.
Large-scale boiling experiments of the flooded cavity concept for in-vessel core retention
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chu, T.Y.; Slezak, S.E.; Bentz, J.H.
1994-03-01
This paper presents results of ex-vessel boiling experiments performed in the CYBL (CYlindrical BoiLing) facility. CYBL is a reactor-scale facility for confirmatory research of the flooded cavity concept for accident management. CYBL has a tank-within-a-tank design; the inner tank simulates the reactor vessel and the outer tank simulates the reactor cavity. Experiments with uniform and edge-peaked heat flux distributions up to 20 W/cm{sup 2} across the vessel bottom were performed. Boiling outside the reactor vessel was found to be subcooled nucleate boiling. The subcooling is mainly due to the gravity head which results from flooding the sides of the reactormore » vessel. The boiling process exhibits a cyclic pattern with four distinct phases: direct liquid/solid contact, bubble nucleation and growth, coalescence, and vapor mass dispersion (ejection). The results suggest that under prototypic heat load and heat flux distributions, the flooded cavity in a passive pressurized water reactor like the AP-600 should be capable of cooling the reactor pressure vessel in the central region of the lower head that is addressed by these tests.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mullins, C. B.; Felde, D. K.; Sutton, A. G.
1982-04-01
Reduced instrument responses are presented for Thermal-Hydraulic Test Facility (THTF) Test 3.03.6AR. This test was conducted by members of the ORNL Pressurized-Water-Reactor (PWR) Blowdown Heat Transfer (BDHT) Separate-Effects Program on May 21, 1980. Objective was to investigate heat transfer phenomena believed to occur in PWRs during accidents, including small and large break loss-of-coolant accidents. Test 3.03.6AR was conducted to obtain transient film boiling data in rod bundle geometry under reactor accident-type conditions. The primary purpose of this report is to make the reduced instrument responses for THTF Test 3.03.6AR available. Included in the report are uncertainties in the instrument responses,more » calculated mass flows, and calculated rod powers.« less
A fundamental study of nucleate pool boiling under microgravity
NASA Technical Reports Server (NTRS)
Ervin, Jamie S.; Merte, Herman, Jr.
1991-01-01
An experimental study of incipient boiling in short-term microgravity and with a/g = +/- 1 for pool boiling was performed. Calibrated thin gold films sputtered on a smoothly polished quartz surface were used simultaneously for thermal resistance measurements and heating of the boiling surface. The gold films were used for both transient and quasi-steady heating surface temperature measurements. Two test vessels were constructed for precise measurement and control of fluid temperature and pressure: a laboratory pool boiling vessel for the a/g = +/- experiments and a pool boiling vessel designed for the 131 m free-fall in the NASA Lewis Research Center Microgravity Research Facility for the microgravity tests. Measurements included the heater surface temperature, the pressure near the heating surface, and the bulk liquid temperatures. High speed photography was used in the experiments. With high quality microgravity and the measured initial temperature of the quiescent test fluid, R113, the temperature distribution in the liquid at the moment of boiling inception resulting from an imposed step in heat flux is known with a certainty not possible previously. The types of boiling propagation across the large flat heating surface are categorized; the conditions necessary for their occurrence are described. Explosive boiling propagation with a striking pattern of small scale protuberances over the entire vapor mass periphery not observed previously at low heat flux levels is described. For the heater surface with a/g = -1, a step in the heater surface temperature of short duration was imposed. The resulting liquid temperature distribution at the moment of boiling inception was different from that obtained with a step in heat flux.
A Fundamental Study of Nucleate Pool Boiling Under Microgravity
NASA Technical Reports Server (NTRS)
Ervin, Jamie S.; Merte, Herman, Jr.
1996-01-01
An experimental study of incipient boiling in short-term microgravity and with a/g = +/- 1 for pool boiling was performed. Calibrated thin gold films sputtered on a smoothly polished quartz surface were used simultaneously for thermal-resistance measurements and heating of the boiling surface. The gold films were used for both transient and quasi-steady heating surface temperature measurements. Two test vessels were constructed for precise measurement and control of fluid temperature and pressure: a laboratory pool boiling vessel for the a/g = +/- 1 experiments and a pool boiling vessel designed for the 131 m free-fall in the NASA Lewis Research Center Microgravity Research Facility for the microgravity tests. Measurements included the heater surface temperature, the pressure near the heating surface, the bulk liquid temperatures. High speed photography (up to 1,000 frames per second) was used in the experiments. With high quality microgravity and the measured initial temperature of the quiescent test fluid, R113, the temperature distribution in the liquid at the moment of boiling inception resulting from an imposed step in heat flux is known with a certainty not possible previously. The types of boiling propagation across the large flat heating surface, some observed here for the first time, are categorized; the conditions necessary for their occurrence are described. Explosive boiling propagation with a striking pattern of small scale protuberances over the entire vapor mass periphery not observed previously at low heat flux levels (on the order of 5 W/cm(exp 2)) is described. For the heater surface with a/g = -1, a step in the heater surface temperature of short duration was imposed. The resulting liquid temperature distribution at the moment of boiling inception was different from that obtained with a step in heat flux.
BRUCELLOSIS IN TEREKEKA COUNTY, CENTRAL EQUATORIA STATE, SOUTHERN SUDAN.
Lado, D; Maina, N; Lado, M; Abade, A; Amwayi, S; Omolo, J; Oundo, J
2012-01-01
To identify factors associated with Brucellosis in patients attending Terekeka Health Facility, Terekeka County, Central Equatoria State, Southern Sudan and to evaluate the utility of the rapid test kit Euracil®. A facility based case-control study. Terekeka Health Facility, Terekeka County, Central Equatoria State, Southern Sudan. Cases were patients presenting at the Terekeka Health Facility with clinical symptoms suggestive of Brucellosis and tested positive for Brucellosis by rapid antigen test while controls were selected from individuals attending Terekeka Health facility with health problems unrelated to brucellosis or febrile illness. A total of fifty eight cases with clinical symptoms suggestive of and tested positive for Brucellosis by rapid antigen test presented. A total of 116 consented controls were recruited into the study. Males accounted for 52% of the cases and 53% of the controls. The mean age was 31 years for both groups. Cases without formal education were 84% while 40% had no source of income, 20% of the cases and 14% of the controls were cattle keepers while 5% of the cases and 13% of the controls were students. In multivariate analysis there were many factors associated with Brucellosis like consumption of raw meat, living with animals at the same place, raising of goats, farm cleaning contact, eating of aborted and wild animals. Logistic regression revealed two factors associated with the disease; consumption of raw milk (OR=3.9, P-value 0.001, 95% CI 1.6666-9.0700) was a risk factor while drinking boiled milk was protective (OR = 0.09, p-value 0.000, 95% CI, 0.1-0.2). The main age-groups affected were 20-30 years with males being affected more than females. Drinking of raw milk was significantly associated with Brucellosis while drinking boiled milk was protective. There should be active public health education on the benefits of boiling milk before consumption. Further studies to elucidate the extent and epidemiology of brucellosis in humans and animals in Southern Sudan are recommended.
Preliminary design of flight hardware for two-phase fluid research
NASA Technical Reports Server (NTRS)
Hustvedt, D. C.; Oonk, R. L.
1982-01-01
This study defined the preliminary designs of flight software for the Space Shuttle Orbiter for three two-phase fluid research experiments: (1) liquid reorientation - to study the motion of liquid in tanks subjected to small accelerations; (2) pool boiling - to study low-gravity boiling from horizontal cylinders; and (3) flow boiling - to study low-gravity forced flow boiling heat transfer and flow phenomena in a heated horizontal tube. The study consisted of eight major tasks: reassessment of the existing experiment designs, assessment of the Spacelab facility approach, assessment of the individual carry-on approach, selection of the preferred approach, preliminary design of flight hardware, safety analysis, preparation of a development plan, estimates of detailed design, fabrication and ground testing costs. The most cost effective design approach for the experiments is individual carry-ons in the Orbiter middeck. The experiments were designed to fit into one or two middeck lockers. Development schedules for the detailed design, fabrication and ground testing ranged from 15 1/2 to 18 months. Minimum costs (in 1981 dollars) ranged from $463K for the liquid reorientation experiment to $998K for the pool boiling experiment.
Proposed Space Flight Experiment Hardware
NASA Technical Reports Server (NTRS)
2003-01-01
The primary thrust for this plan is to develop design tools and fundamental understanding that are timely and consistent with the goal of the various exploration initiatives. The plan will utilize ISS facilities, such as the Fluids Integrated Rack (FIR) and the Microgravity Science Glovebox (MSG). A preliminary flow schematic of Two-Phase Flow Facility (T(phi)FFy) which would utilize FIR is shown in Figure 3. MSG can be utilized to use the Boiling eXperiment Facility (BXF) and Contact Line Dynamics Experiment (CLiDE) Facility. The T(phi)FFy system would have multiple test sections whereby different configurations of heat exchangers could be used to study boiling and condensation phenomena. The test sections would be instrumented for pressure drop, void fraction, heat fluxes, temperatures, high-speed imaging and other diagnostics. Besides a high-speed data acquisition system with a large data storage capability, telemetry could be used to update control and test parameters and download limited amounts of data. In addition, there would be multiple accumulators that could be used to investigate system stability and fluid management issues. The system could accommodate adiabatic tests through either the space station nitrogen supply or have an experiment-specific compressor to pressurize a sufficient amount of air or other non-condensable gas for reuse as the supply bottle is depleted.
Development and Capabilities of ISS Flow Boiling and Condensation Experiment
NASA Technical Reports Server (NTRS)
Nahra, Henry; Hasan, Mohammad; Balasubramaniam, R.; Patania, Michelle; Hall, Nancy; Wagner, James; Mackey, Jeffrey; Frankenfield, Bruce; Hauser, Daniel; Harpster, George;
2015-01-01
An experimental facility to perform flow boiling and condensation experiments in long duration microgravity environment is being designed for operation on the International Space Station (ISS). This work describes the design of the subsystems of the FBCE including the Fluid subsystem modules, data acquisition, controls, and diagnostics. Subsystems and components are designed within the constraints of the ISS Fluid Integrated Rack in terms of power availability, cooling capability, mass and volume, and most importantly the safety requirements. In this work we present the results of ground-based performance testing of the FBCE subsystem modules and test module which consist of the two condensation modules and the flow boiling module. During this testing, we evaluated the pressure drop profile across different components of the fluid subsystem, heater performance, on-orbit degassing subsystem, heat loss from different modules and components, and performance of the test modules. These results will be used in the refinement of the flight system design and build-up of the FBCE which is manifested for flight in late 2017-early 2018.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Maolong; Ryals, Matthew; Ali, Amir
2016-08-01
A variety of instruments are being developed and qualified to support the Accident Tolerant Fuels (ATF) program and future transient irradiations at the Transient Reactor Test (TREAT) facility at Idaho National Laboratory (INL). The University of New Mexico (UNM) is working with INL to develop capacitance-based void sensors for determining the timing of critical boiling phenomena in static capsule fuel testing and the volume-averaged void fraction in flow-boiling in-pile water loop fuel testing. The static capsule sensor developed at INL is a plate-type configuration, while UNM is utilizing a ring-type capacitance sensor. Each sensor design has been theoretically and experimentallymore » investigated at INL and UNM. Experiments are being performed at INL in an autoclave to investigate the performance of these sensors under representative Pressurized Water Reactor (PWR) conditions in a static capsule. Experiments have been performed at UNM using air-water two-phase flow to determine the sensitivity and time response of the capacitance sensor under a flow boiling configuration. Initial measurements from the capacitance sensor have demonstrated the validity of the concept to enable real-time measurement of void fraction. The next steps include designing the cabling interface with the flow loop at UNM for Reactivity Initiated Accident (RIA) ATF testing at TREAT and further characterization of the measurement response for each sensor under varying conditions by experiments and modeling.« less
78 FR 53482 - Entergy Operations, Inc., River Bend Station, Unit 1; Exemption
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-29
... facility consists of a boiling-water reactor located in West Feliciana Parish, Louisiana. 2.0 Request... Containment Leakage Testing for Water- Cooled Power Reactors,'' requires that components which penetrate containment be periodically leak tested at the ``P a, '' defined as the ``calculated peak containment internal...
Final report of the decontamination and decommissioning of the BORAX-V facility turbine building
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arave, A.E.; Rodman, G.R.
1992-12-01
The Boiling Water Reactor Experiment (BORAX)-V Facility Turbine Building Decontamination and Decommissioning (D&D) Project is described in this report. The BORAX series of five National Reactor Testing Station (NRTS) reactors pioneered intensive work on boiling water reactor (BWR) experiments conducted between 1953 and 1964. Facility characterization, decision analyses, and D&D plans for the turbine building were prepared from 1979 through 1990. D&D activities of the turbine building systems were initiated in November of 1988 and completed with the demolition and backfill of the concrete foundation in March 1992. Due to the low levels of radioactivity and the absence of loosemore » contamination, the D&D activities were completed with no radiation exposure to the workers. The D&D activities were performed in a manner that no radiological health or safety hazard to the public or to personnel at the Idaho National Engineering Laboratory (INEL) remain.« less
Final report of the decontamination and decommissioning of the BORAX-V facility turbine building
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arave, A.E.; Rodman, G.R.
1992-12-01
The Boiling Water Reactor Experiment (BORAX)-V Facility Turbine Building Decontamination and Decommissioning (D D) Project is described in this report. The BORAX series of five National Reactor Testing Station (NRTS) reactors pioneered intensive work on boiling water reactor (BWR) experiments conducted between 1953 and 1964. Facility characterization, decision analyses, and D D plans for the turbine building were prepared from 1979 through 1990. D D activities of the turbine building systems were initiated in November of 1988 and completed with the demolition and backfill of the concrete foundation in March 1992. Due to the low levels of radioactivity and themore » absence of loose contamination, the D D activities were completed with no radiation exposure to the workers. The D D activities were performed in a manner that no radiological health or safety hazard to the public or to personnel at the Idaho National Engineering Laboratory (INEL) remain.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dreier, J.; Huggenberger, M.; Aubert, C.
1996-08-01
The PANDA test facility at PSI in Switzerland is used to study the long-term Simplified Boiling Water Reactor (SBWR) Passive Containment Cooling System (PCCS) performance. The PANDA tests demonstrate performance on a larger scale than previous tests and examine the effects of any non-uniform spatial distributions of steam and non-condensables in the system. The PANDA facility has a 1:1 vertical scale, and 1:25 ``system`` scale (volume, power, etc.). Steady-state PCCS condenser performance tests and extensive facility characterization tests have been completed. Transient system behavior tests were conducted late in 1995; results from the first three transient tests (M3 series) aremore » reviewed. The first PANDA tests showed that the overall global behavior of the SBWR containment was globally repeatable and very favorable; the system exhibited great ``robustness.``« less
A test program was performed at the Environmental Protection Agency Incineration Research Facility to study the effectiveness of incineration at low-to-moderate temperatures in decontaminating soils containing organic compounds with different volatilities (boiling points). The da...
Performance of Charcoal Cookstoves for Haiti Part 1: Results from the Water Boiling Test
DOE Office of Scientific and Technical Information (OSTI.GOV)
Booker, Kayje; Han, Tae Won; Granderson, Jessica
2011-06-01
In April 2010, a team of scientists and engineers from Lawrence Berkeley National Lab (LBNL) and UC Berkeley, with support from the Darfur Stoves Project (DSP), undertook a fact-finding mission to Haiti in order to assess needs and opportunities for cookstove intervention. Based on data collected from informal interviews with Haitians and NGOs, the team, Scott Sadlon, Robert Cheng, and Kayje Booker, identified and recommended stove testing and comparison as a high priority need that could be filled by LBNL. In response to that recommendation, five charcoal stoves were tested at the LBNL stove testing facility using a modified formmore » of version 3 of the Shell Foundation Household Energy Project Water Boiling Test (WBT). The original protocol is available online. Stoves were tested for time to boil, thermal efficiency, specific fuel consumption, and emissions of CO, CO{sub 2}, and the ratio of CO/CO{sub 2}. In addition, Haitian user feedback and field observations over a subset of the stoves were combined with the experiences of the laboratory testing technicians to evaluate the usability of the stoves and their appropriateness for Haitian cooking. The laboratory results from emissions and efficiency testing and conclusions regarding usability of the stoves are presented in this report.« less
The PANDA tests for SBWR certification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Varadi, G.; Dreier, J.; Bandurski, Th.
1996-03-01
The ALPHA project is centered around the experimental and analytical investigation of the long-term decay heat removal from the containments of the next generation of {open_quotes}passive{close_quotes} ALWRs. The project includes integral system tests in the large-scale (1:25 in volume) PANDA facility as well as several other series of tests and supporting analytical work. The first series of experiments to be conducted in PANDA have become a required experimental element in the certification process for the General Electric Simplified Boiling Water Reactor (SBWR). The PANDA general experimental philosophy, facility design, scaling, and instrumentation are described. Steady-state PCCS condenser performance tests andmore » extensive facility characterization tests were already conducted. The transient system behavior tests are underway; preliminary results from the first transient test M3 are reviewed.« less
10 CFR 50.55a - Codes and standards.
Code of Federal Regulations, 2011 CFR
2011-01-01
... specified in § 50.55, except that each combined license for a boiling or pressurized water-cooled nuclear... boiling or pressurized water-cooled nuclear power facility is subject to the conditions in paragraphs (f... performed. (2) Systems and components of boiling and pressurized water-cooled nuclear power reactors must...
NASA Technical Reports Server (NTRS)
Sheredy, William A.
2012-01-01
A Technical Interchange meeting was held between the payload developers for the Boiling eXperiment Facility (BXF) and the NASA Safety Review Panel concerning operational anomaly that resulted in overheating one of the fluid heaters, shorted a 24VDC power supply and generated Perfluoroisobutylene (PFiB) from Perfluorohexane.
SASSYS pretest analysis of the THORS-SHRS experiments. [LMFBR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bordner, G.L.; Dunn, F.E.
The THORS Facility at ORNL was recently modified to allow the testing of two parallel 19-pin simulated fueled subassemblies under natural circulation conditions similar to those that might occur during a partial failure of the shutdown heat removal system (SHRS) of a liquid-metal fast breeder reactor. The planned experimental program included a series of tests at various inlet plenum temperatures to determine boiling threshold power levels and the power range for stable boiling during natural circulation operation. Pretest calculations were performed at ANL, which supplement those carried out at ORNL for the purposes of validating the SASSYS model in themore » natural circulation regime and of providing data which would be useful in planning the experiments.« less
New PANDA Tests to Investigate Effects of Light Gases on Passive Safety Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paladino, D.; Auban, O.; Candreia, P.
The large- scale thermal-hydraulic PANDA facility (located at PSI in Switzerland), has been used over the last few years for investigating different passive decay- heat removal systems and containment phenomena for the next generation of light water reactors (Simplified Boiling Water Reactor: SBWR; European Simplified Boiling Water Reactor: ESBWR; Siedewasserreaktor: SWR-1000). Currently, as part of the European Commission 5. EURATOM Framework Programme project 'Testing and Enhanced Modelling of Passive Evolutionary Systems Technology for Containment Cooling' (TEMPEST), a new series of tests is being planned in the PANDA facility to experimentally investigate the distribution of non-condensable gases inside the containment andmore » their effect on the performance of the 'Passive Containment Cooling System' (PCCS). Hydrogen release caused by the metal-water reaction in the case of a postulated severe accident will be simulated in PANDA by injecting helium into the reactor pressure vessel. In order to provide suitable data for Computational Fluid Dynamic (CFD) code assessment and improvement, the instrumentation in PANDA has been upgraded for the new tests. In the present paper, a detailed discussion is given of the new PANDA tests to be performed to investigate the effects of light gas on passive safety systems. The tests are scheduled for the first half of the year 2002. (authors)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martino, C.
An evaluation of the previous Chemical Processing Cell (CPC) testing was performed to determine whether the planned concurrent operation, or “coupled” operations, of the Defense Waste Processing Facility (DWPF) with the Salt Waste Processing Facility (SWPF) has been adequately covered. Tests with the nitricglycolic acid flowsheet, which were both coupled and uncoupled with salt waste streams, included several tests that required extended boiling times. This report provides the evaluation of previous testing and the testing recommendation requested by Savannah River Remediation. The focus of the evaluation was impact on flammability in CPC vessels (i.e., hydrogen generation rate, SWPF solvent components,more » antifoam degradation products) and processing impacts (i.e., acid window, melter feed target, rheological properties, antifoam requirements, and chemical composition).« less
Flow Boiling and Condensation Experiment (FBCE) for the International Space Station
NASA Technical Reports Server (NTRS)
Mudawar, Issam; Hasan, Mohammad M.; Kharangate, Chirag; O'Neill, Lucas; Konishi, Chris; Nahra, Henry; Hall, Nancy; Balasubramaniam, R.; Mackey, Jeffrey
2015-01-01
The proposed research aims to develop an integrated two-phase flow boiling/condensation facility for the International Space Station (ISS) to serve as primary platform for obtaining two-phase flow and heat transfer data in microgravity.
Paz, Concepción; Conde, Marcos; Porteiro, Jacobo; Concheiro, Miguel
2017-01-01
This work introduces the use of machine vision in the massive bubble recognition process, which supports the validation of boiling models involving bubble dynamics, as well as nucleation frequency, active site density and size of the bubbles. The two algorithms presented are meant to be run employing quite standard images of the bubbling process, recorded in general-purpose boiling facilities. The recognition routines are easily adaptable to other facilities if a minimum number of precautions are taken in the setup and in the treatment of the information. Both the side and front projections of subcooled flow-boiling phenomenon over a plain plate are covered. Once all of the intended bubbles have been located in space and time, the proper post-process of the recorded data become capable of tracking each of the recognized bubbles, sketching their trajectories and size evolution, locating the nucleation sites, computing their diameters, and so on. After validating the algorithm’s output against the human eye and data from other researchers, machine vision systems have been demonstrated to be a very valuable option to successfully perform the recognition process, even though the optical analysis of bubbles has not been set as the main goal of the experimental facility. PMID:28632158
NASA Astrophysics Data System (ADS)
Trujillo, Abraham Gerardo
In the past decades, interest in developing hydrocarbon-fueled rocket engines for deep spaceflight missions has continued to grow. In particular, liquid methane (LCH4) has been of interest due to the weight efficiency, storage, and handling advantages it offers over several currently used propellants. Deep space exploration requires reusable, long life rocket engines. Due to the high temperatures reached during combustion, the life of an engine is significantly impacted by the cooling system's efficiency. Regenerative (regen) cooling is presented as a viable alternative to common cooling methods such as film and dump cooling since it provides improved engine efficiency. Due to limited availability of experimental sub-critical liquid methane cooling data for regen engine design, there has been an interest in studying the heat transfer characteristics of the propellant. For this reason, recent experimental studies at the Center for Space Exploration Technology Research (cSETR) at the University of Texas at El Paso (UTEP) have focused on investigating the heat transfer characteristics of sub-critical CH4 flowing through sub-scale cooling channels. To conduct the experiments, the csETR developed a High Heat Flux Test Facility (HHFTF) where all the channels are heated using a conduction-based thermal concentrator. In this study, two smooth channels with cross sectional geometries of 1.8 mm x 4.1 mm and 3.2 mm x 3.2 mm were tested. In addition, three roughened channels all with a 3.2 mm x 3.2 mm square cross section were also tested. For the rectangular smooth channel, Reynolds numbers ranged between 68,000 and 131,000, while the Nusselt numbers were between 40 and 325. For the rough channels, Reynolds numbers ranged from 82,000 to 131,000, and Nusselt numbers were between 65 and 810. Sub-cooled film-boiling phenomena were confirmed for all the channels presented in this work. Film-boiling onset at Critical Heat Flux (CHF) was correlated to a Boiling Number (Bo) of approximately 0.1 for all channels. Convective Nusselt number follows predicted trends for Reynolds number with a wall temperature correction for both the boiling and non-boiling regimes.
NASA Astrophysics Data System (ADS)
Wong, Thiam
In vapor compression cycles, a small portion of the oil circulates with the refrigerant throughout the system components, while most of the oil stays in the compressors. In heat exchangers, the lubricant in excess penalizes the heat transfer and increases the pressure losses: both effects are highly undesired but yet unavoidable. Nanoparticles dispersed in the excess lubricant are expected to provide enhancements in heat transfer. While solubility and miscibility of refrigerants in polyolesters (POE) lubricant are well established knowledge, there is a lack of information regarding if and how nanoparticles dispersed in the lubricant affect these properties. This thesis presents experimental data of solubility of two types of Al2O3 nanolubricants with refrigerant R-410A. The nanoparticles were dispersed in POE lubricant by using different surfactants and dispersion methods. The nanolubricants appeared to have slightly lower solubility than that of R-410A but actually the solid nanoparticles did not really interfere with the POE oil solubility characteristics. A test facility and experimental methodology was developed for the investigation of heat transfer coefficient and pressure drop. The pressure drop of the refrigerant lubricant mixtures during flow boiling depended on the mass flux of the refrigerant. Greater augmentation was seen in the pressure drop results with decreasing mass flow rate. Pure refrigerant R410A showed the lowest pressure drop, addition of nanolubricants to the refrigerant showed a slightly higher pressure drop and POE-refrigerant mixture showed the highest pressure drop in the tests conducted. Enhancement or degradation in heat transfer coefficient during flow boiling depended on the nanoparticle concentration in the lubricant as well as the lubricant concentration in refrigerant. R410A showed the highest heat transfer coefficient for all conditions tested. For a concentration of 1% nanolubricant in refrigerant, the heat transfer coefficient showed more enhancement with increase in nanoparticle concentration compared to POE refrigerant mixtures. For a concentration of 3% nanolubricant in refrigerant mixtures there was little to no enhancement for tests conducted.
Blanketing effect of expansion foam on liquefied natural gas (LNG) spillage pool.
Zhang, Bin; Liu, Yi; Olewski, Tomasz; Vechot, Luc; Mannan, M Sam
2014-09-15
With increasing consumption of natural gas, the safety of liquefied natural gas (LNG) utilization has become an issue that requires a comprehensive study on the risk of LNG spillage in facilities with mitigation measures. The immediate hazard associated with an LNG spill is the vapor hazard, i.e., a flammable vapor cloud at the ground level, due to rapid vaporization and dense gas behavior. It was believed that high expansion foam mitigated LNG vapor hazard through warming effect (raising vapor buoyancy), but the boil-off effect increased vaporization rate due to the heat from water drainage of foam. This work reveals the existence of blocking effect (blocking convection and radiation to the pool) to reduce vaporization rate. The blanketing effect on source term (vaporization rate) is a combination of boil-off and blocking effect, which was quantitatively studied through seven tests conducted in a wind tunnel with liquid nitrogen. Since the blocking effect reduces more heat to the pool than the boil-off effect adds, the blanketing effect contributes to the net reduction of heat convection and radiation to the pool by 70%. Water drainage rate of high expansion foam is essential to determine the effectiveness of blanketing effect, since water provides the boil-off effect. Copyright © 2014 Elsevier B.V. All rights reserved.
Facile synthesis of stable superhydrophobic nanocomposite based on multi-walled carbon nanotubes
NASA Astrophysics Data System (ADS)
Mokarian, Zahra; Rasuli, Reza; Abedini, Yousefali
2016-04-01
A facile approach to fabricate a stable superhydrophobic composite comprising multi-walled carbon nanotubes and silicone rubber has been reported. Contact angle of de-ionized water droplets on the prepared surface was measured with the value of near 159°; while water droplets easily rolled off and bounced on it. Surface free energy of the superhydrophobic coating was examined by three methods about 26 mJ/m2. The prepared film shows good stability under high stress conditions such as ultraviolet exposure, heating, pencil hardness test, attacking with different pH value and ionic-strength solutions. In addition, remarkable stability of the coating was observed after soaking in condensed hydrochloric acid, 5 wt.% NaCl aqueous solution, boiling water and tape test.
NASA Technical Reports Server (NTRS)
Wegener, P. P.
1980-01-01
A cryogenic wind tunnel is based on the twofold idea of lowering drive power and increasing Reynolds number by operating with nitrogen near its boiling point. There are two possible types of condensation problems involved in this mode of wind tunnel operation. They concern the expansion from the nozzle supply to the test section at relatively low cooling rates, and secondly the expansion around models in the test section. This secondary expansion involves higher cooling rates and shorter time scales. In addition to these two condensation problems it is not certain what purity of nitrogen can be achieved in a large facility. Therefore, one cannot rule out condensation processes other than those of homogeneous nucleation.
Subcooled forced convection boiling of trichlorotrifluoroethane
NASA Technical Reports Server (NTRS)
Dougall, R. S.; Panian, D. J.
1972-01-01
Experimental heat-transfer data were obtained for the forced-convection boiling of trichlorotrifluoroethane (R-113 or Freon-113) in a vertical annular test annular test section. The 97 data points obtained covered heat transfer by forced convection, local boiling, and fully-developed boiling. Correlating methods were obtained which accurately predicted the heat flux as a function of wall superheat (boiling curve) over the range of parameters studied.
... Camps Boil Water Advisories Public Users of Public Water Supplies Commercial Establishments Commercial Ice Maker Users Childcare Facilities Dental Offices Hospitals, Healthcare Facilities, & Nursing Homes Dialysis A Guide to Water Filters A Guide to Commercially-Bottled Water and ...
... Camps Boil Water Advisories Public Users of Public Water Supplies Commercial Establishments Commercial Ice Maker Users Childcare Facilities Dental Offices Hospitals, Healthcare Facilities, & Nursing Homes Dialysis A Guide to Water Filters A Guide to Commercially-Bottled Water and ...
Critical heat flux (CHF) phenomenon on a downward facing curved surface
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheung, F.B.; Haddad, K.H.; Liu, Y.C.
1997-06-01
This report describes a theoretical and experimental study of the boundary layer boiling and critical heat flux phenomena on a downward facing curved heating surface, including both hemispherical and toroidal surfaces. A subscale boundary layer boiling (SBLB) test facility was developed to measure the spatial variation of the critical heat flux and observe the underlying mechanisms. Transient quenching and steady-state boiling experiments were performed in the SBLB facility under both saturated and subcooled conditions to obtain a complete database on the critical heat flux. To complement the experimental effort, an advanced hydrodynamic CHF model was developed from the conservation lawsmore » along with sound physical arguments. The model provides a clear physical explanation for the spatial variation of the CHF observed in the SBLB experiments and for the weak dependence of the CHF data on the physical size of the vessel. Based upon the CHF model, a scaling law was established for estimating the local critical heat flux on the outer surface of a heated hemispherical vessel that is fully submerged in water. The scaling law, which compares favorably with all the available local CHF data obtained for various vessel sizes, can be used to predict the local CHF limits on large commercial-size vessels. This technical information represents one of the essential elements that is needed in assessing the efficacy of external cooling of core melt by cavity flooding as a severe accident management strategy. 83 figs., 3 tabs.« less
Alkali metal pool boiler life tests for a 25 kWe advanced Stirling conversion system
NASA Technical Reports Server (NTRS)
Anderson, W. G.; Rosenfeld, J. H.; Noble, J.
1991-01-01
The overall operating temperature and efficiency of solar-powered Stirling engines can be improved by adding an alkali metal pool boiler heat transport system to supply heat more uniformly to the heater head tubes. One issue with liquid metal pool boilers is unstable boiling. Stable boiling is obtained with an enhanced boiling surface containing nucleation sites that promote continuous boiling. Over longer time periods, it is possible that the boiling behavior of the system will change. An 800-h life test was conducted to verify that pool boiling with the chosen fluid/surface combination remains stable as the system ages. The apparatus uses NaK boiling on a - 100 + 140 stainless steel sintered porous layer, with the addition of a small amount of xenon. Pool boiling remained stable to the end of life test. The pool boiler life test included a total of 82 cold starts, to simulate startup each morning, and 60 warm restarts, to simulate cloud cover transients. The behavior of the cold and warm starts showed no significant changes during the life test. In the experiments, the fluid/surface combination provided stable, high-performance boiling at the operating temperature of 700 C. Based on these experiments, a pool boiler was designed for a full-scale 25-kWe Stirling system.
Multiphase Flow Technology Impacts on Thermal Control Systems for Exploration
NASA Technical Reports Server (NTRS)
McQuillen, John; Sankovic, John; Lekan, Jack
2006-01-01
The Two-Phase Flow Facility (TPHIFFy) Project focused on bridging the critical knowledge gap by developing and demonstrating critical multiphase fluid products for advanced life support, thermal management and power conversion systems that are required to enable the Vision for Space Exploration. Safety and reliability of future systems will be enhanced by addressing critical microgravity fluid physics issues associated with flow boiling, condensation, phase separation, and system stability. The project included concept development, normal gravity testing, and reduced gravity aircraft flight campaigns, in preparation for the development of a space flight experiment implementation. Data will be utilized to develop predictive models that could be used for system design and operation. A single fluid, two-phase closed thermodynamic loop test bed was designed, assembled and tested. The major components in this test bed include: a boiler, a condenser, a phase separator and a circulating pump. The test loop was instrumented with flow meters, thermocouples, pressure transducers and both high speed and normal speed video cameras. A low boiling point surrogate fluid, FC-72, was selected based on scaling analyses using preliminary designs for operational systems. Preliminary results are presented which include flow regime transitions and some observations regarding system stability.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McGee, Mike; Harms, Elvin; Klebaner, Arkadiy
Two TESLA-style 8-cavity cryomodules have been operated at Fermilab Accelerator Science and Technology (FAST), formerly the Superconducting Radio Frequency (SRF) Accelerator Test Facility. Operational instabilities were revealed during Radio Frequency (RF) power studies. These observations were complemented by the characterization of thermal acoustic effects on cavity microphonics manifested by apparent noisy boiling of helium involving vapor bubble and liquid vibration. The thermal acoustic measurements also consider pressure and temperature spikes which drive the phenomenon at low and high frequencies.
Cryptosporidium (Crypto) Disease: Diagnosis & Detection
... Camps Boil Water Advisories Public Users of Public Water Supplies Commercial Establishments Commercial Ice Maker Users Childcare Facilities Dental Offices Hospitals, Healthcare Facilities, & Nursing Homes Dialysis A Guide to Water Filters A Guide to Commercially-Bottled Water and ...
Research on radiation detectors, boiling transients, and organic lubricants
NASA Technical Reports Server (NTRS)
1974-01-01
The accomplishments of a space projects research facility are presented. The subjects discussed are: (1) a study of radiation resistant semiconductor devices, (2) synthesis of high temperature organic lubricants, (3) departure from phase equilibrium during boiling transients, (4) effects of neutron irradiation on defect state in tungsten, and (5) determination of photon response function of NE-213 liquid scintillation detectors.
NASA Technical Reports Server (NTRS)
Tobin, R. D.
1974-01-01
Descriptions are given of the test hardware, facility, procedures, and results of electrically heated tube, channel and panel tests conducted to determine effects of helium ingestion, two dimensional conduction, and plugged coolant channels on operating limits of convectively cooled chambers typical of space shuttle orbit maneuvering engine designs. Helium ingestion in froth form, was studied in tubular and rectangular single channel test sections. Plugged channel simulation was investigated in a three channel panel. Burn-out limits (transition of film boiling) were studied in both single channel and panel test sections to determine 2-D conduction effects as compared to tubular test results.
CHF Enhancement by Vessel Coating for External Reactor Vessel Cooling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fan-Bill Cheung; Joy L. Rempe
2004-06-01
In-vessel retention (IVR) is a key severe accident management (SAM) strategy that has been adopted by some operating nuclear power plants and advanced light water reactors (ALWRs). One viable means for IVR is the method of external reactor vessel cooling (ERVC) by flooding of the reactor cavity during a severe accident. As part of a joint Korean – United States International Nuclear Energy Research Initiative (K-INERI), an experimental study has been conducted to investigate the viability of using an appropriate vessel coating to enhance the critical heat flux (CHF) limits during ERVC. Toward this end, transient quenching and steady-state boilingmore » experiments were performed in the SBLB (Subscale Boundary Layer Boiling) facility at Penn State using test vessels with micro-porous aluminum coatings. Local boiling curves and CHF limits were obtained in these experiments. When compared to the corresponding data without coatings, substantial enhancement in the local CHF limits for the case with surface coatings was observed. Results of the steady state boiling experiments showed that micro-porous aluminum coatings were very durable. Even after many cycles of steady state boiling, the vessel coatings remained rather intact, with no apparent changes in color or structure. Moreover, the heat transfer performance of the coatings was found to be highly desirable with an appreciable CHF enhancement in all locations on the vessel outer surface but with very little effect of aging.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
N /A
The U.S. Department of Energy (DOE) proposes to consent to a proposal by the Puerto Rico Electric Power Authority (PREPA) to allow public access to the Boiling Nuclear Superheat (BONUS) reactor building located near Rincon, Puerto Rico for use as a museum. PREPA, the owner of the BONUS facility, has determined that the historical significance of this facility, as one of only two reactors of this design ever constructed in the world, warrants preservation in a museum, and that this museum would provide economic benefits to the local community through increased tourism. Therefore, PREPA is proposing development of the BONUSmore » facility as a museum.« less
Stability and potency of raw and boiled shrimp extracts for skin prick test.
Pariyaprasert, Wipada; Piboonpocanun, Surapon; Jirapongsananuruk, Orathai; Visitsunthorn, Nualanong
2015-06-01
The difference of stability between raw and boiled shrimp extracts used in prick tests has never been investigated despite its potential consequences in tests development. The aim of this study was to compare the raw and boiled shrimp extracts of two species; Macrobrachium rosenbergii (freshwater shrimp) and Penaeus monodon (seawater shrimp) held at 4 ?C for different periods of time for their stability and potency in vivo by using the skin prick test (SPT) method. Raw and boiled M. rosenbergii and P. monodon extracts were prepared and stored at 4 ?C for 1, 7, 14 and 30 days. Thirty patients were pricked with raw and boiled shrimp extracts at all storage times, as well as prick to prick skin test (PTP) to fresh raw and boiled shrimps of both species. The mean wheal diameter (MWD) resulting from prick tests for all shrimp extracts was measured and compared. The shrimp extracts of all storage times yielded positive skin test results in the range of 90% - 100%. Raw P. monodon extracts induced larger wheals than boiled extracts at all storage times. There was no significant difference of MWD between raw and boiled M. rosenbergii extracts on day 1, 7, and 14. Significant correlations between MWD of PTP to fresh shrimps and SPT to all shrimp extracts were observed. All shrimp extracts were sterile at all storage times. Raw and boiled M. rosenbergii and P. monodon extracts were stable and sterile at 4 ?C for at most 30 days. SPT with these extracts induced more than 10 mm in shrimp allergy patients and the results were comparable with PTP to fresh shrimps.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, X. G.; Kim, Y. S.; Choi, K. Y.
2012-07-01
A SBO (station blackout) experiment named SBO-01 was performed at full-pressure IET (Integral Effect Test) facility ATLAS (Advanced Test Loop for Accident Simulation) which is scaled down from the APR1400 (Advanced Power Reactor 1400 MWe). In this study, the transient of SBO-01 is discussed and is subdivided into three phases: the SG fluid loss phase, the RCS fluid loss phase, and the core coolant depletion and core heatup phase. In addition, the typical phenomena in SBO-01 test - SG dryout, natural circulation, core coolant boiling, the PRZ full, core heat-up - are identified. Furthermore, the SBO-01 test is reproduced bymore » the MARS code calculation with the ATLAS model which represents the ATLAS test facility. The experimental and calculated transients are then compared and discussed. The comparison reveals there was malfunction of equipments: the SG leakage through SG MSSV and the measurement error of loop flow meter. As the ATLAS model is validated against the experimental results, it can be further employed to investigate the other possible SBO scenarios and to study the scaling distortions in the ATLAS. (authors)« less
78 FR 63516 - Initial Test Program of Emergency Core Cooling Systems for New Boiling-Water Reactors
Federal Register 2010, 2011, 2012, 2013, 2014
2013-10-24
... NUCLEAR REGULATORY COMMISSION [NRC-2012-0134] Initial Test Program of Emergency Core Cooling....79.1, ``Initial Test Program of Emergency Core Cooling Systems for New Boiling-Water Reactors.'' This... emergency core cooling systems (ECCSs) for boiling- water reactors (BWRs) whose licenses are issued after...
PANDA asymmetric-configuration passive decay heat removal test results
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fischer, O.; Dreier, J.; Aubert, C.
1997-12-01
PANDA is a large-scale, low-pressure test facility for investigating passive decay heat removal systems for the next generation of LWRs. In the first series of experiments, PANDA was used to examine the long-term LOCA response of the Passive Containment Cooling System (PCCS) for the General Electric (GE) Simplified Boiling Water Reactor (SBWR). The test objectives include concept demonstration and extension of the database available for qualification of containment codes. Also included is the study of the effects of nonuniform distributions of steam and noncondensable gases in the Dry-well (DW) and in the Suppression Chamber (SC). 3 refs., 9 figs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scott, R.L.; Gallaher, R.B.
1977-08-02
This bibliography contains 100-word abstracts of reports to the U.S. Nuclear Regulatory Commission concerning operational events that occurred at boiling-water reactor nuclear power plants in 1976. The report includes 1,253 abstracts that describe incidents, failures, and design or construction deficiencies that were experienced at the facilities. They are arranged alphabetically by reactor name and then chronologically for each reactor. Key-word and permuted-title indexes are provided to facilitate location of the subjects of interest, and tables that summarize the information contained in the bibliography are provided. The information listed in the tables includes instrument failures, equipment failures, system failures, causes ofmore » failures, deficiencies noted, and the time of occurrence (i.e., during refueling, operation, testing, or construction). Three of the unique events that occurred during the year are reviewed in detail.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scott, R.L.; Gallaher, R.B.
1976-07-01
The bibliography presented contains 100-word abstracts of reports to the U.S. Nuclear Regulatory Commission concerning operational events that occurred at boiling-water reactor nuclear power plants in 1975. The report includes 1169 abstracts, arranged alphabetically by reactor name and then chronologically for each reactor, that describe incidents, failures, and design or construction deficiencies that were experienced at the facilities. Key-word and permuted-title indexes are provided to facilitate location of the subjects of interest, and tables that summarize the information contained in the bibliography are provided. The information listed in the tables includes instrument failures, equipment failures, system failures, causes of failures,more » deficiencies noted, and the time of occurrence (i.e., during refueling, operation, testing, or construction). Seven of the unique events that occurred during the year are reviewed in detail.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chu, T.Y.; Bentz, J.H.; Bergeron, K.D.
1994-04-01
The possibility of achieving in-vessel core retention by flooding the reactor cavity, or the ``flooded cavity``, is an accident management concept currently under consideration for advanced light water reactors (ALWR), as well as for existing light water reactors (LWR). The CYBL (CYlindrical BoiLing) facility is a facility specifically designed to perform large-scale confirmatory testing of the flooded cavity concept. CYBL has a tank-within-a-tank design; the inner 3.7 m diameter tank simulates the reactor vessel, and the outer tank simulates the reactor cavity. The energy deposition on the bottom head is simulated with an array of radiant heaters. The array canmore » deliver a tailored heat flux distribution corresponding to that resulting from core melt convection. The present paper provides a detailed description of the capabilities of the facility, as well as results of recent experiments with heat flux in the range of interest to those required for in-vessel retention in typical ALWRs. The paper concludes with a discussion of other experiments for the flooded cavity applications.« less
NASA Astrophysics Data System (ADS)
Galvan, Manuel de Jesus
In the past years, hydrocarbon fuels have been the focus of attention as the interest in developing reusable, high-performing liquid rocket engines has grown. Liquid methane (LCH4) has been of particular interest because of the cost, handling, and storage advantages that it presents when compared to currently used propellants. Deep space exploration requires thrusters that can operate reliably during long-duration missions. One of the challenges in the development of a reliable engine has been providing adequate combustion chamber cooling to prevent engine failure. Regenerative (regen) cooling has presented itself as an appealing option because it provides improved cooling and engine efficiency over other types of cooling, such as film or dump cooling. Due to limited availability of experimental sub-critical liquid methane cooling data for pressure-fed regen engine design, there has been an interest in studying the heat transfer characteristics of the propellant. For this reason, recent experimental studies at the Center for Space Exploration Technology Research (cSETR) at the University of Texas at El Paso (UTEP) have focused on investigating the heat transfer characteristics of sub-critical CH4 flowing through smooth sub-scale cooling channels. In addition to investigating smooth channels, the cSETR has conducted experiments to investigate the effects of internal longitudinal fins on the heat transfer of methane. To conduct the experiments, the cSETR developed a conduction-based thermal concentrator known as the High Heat Flux Test Facility (HHFTF) in which the channels are heated. In this study, a smooth channel and three channels with longitudinal fins all with cross sectional geometries of 3.2 mm x 3.2 mm were tested. The Nusselt numbers ranged from 70 and 510, and Reynolds numbers were between 50,000 and 128,000. Sub-cooled film-boiling phenomena were discovered in the data pertaining to the smooth and two finned channels. Sub-cooled film-boiling was not observed in the channel that had the fins with the highest height. Film-boiling onset at Critical Heat Flux (CHF) was correlated to a Boiling Number (Bo) of approximately 0.1 for the channels studies. Convective Nusselt number follows predicted trends for Reynolds number with a wall temperature correction factor for both the boiling and non-boiling regimes.
16 CFR 1511.5 - Structural integrity tests.
Code of Federal Regulations, 2012 CFR
2012-01-01
... pounds for an additional 10 seconds. (c) Heat cycle deterioration. After the testing prescribed in... pacifier in boiling water for 5 minutes and then remove the pacifier and allow it to cool for 5 minutes in... in the boiling water for 5 minutes. The process shall be repeated for a total of 6 boiling/cooling...
16 CFR 1511.5 - Structural integrity tests.
Code of Federal Regulations, 2011 CFR
2011-01-01
... pounds for an additional 10 seconds. (c) Heat cycle deterioration. After the testing prescribed in... pacifier in boiling water for 5 minutes and then remove the pacifier and allow it to cool for 5 minutes in... in the boiling water for 5 minutes. The process shall be repeated for a total of 6 boiling/cooling...
16 CFR § 1511.5 - Structural integrity tests.
Code of Federal Regulations, 2013 CFR
2013-01-01
... pounds for an additional 10 seconds. (c) Heat cycle deterioration. After the testing prescribed in... pacifier in boiling water for 5 minutes and then remove the pacifier and allow it to cool for 5 minutes in... in the boiling water for 5 minutes. The process shall be repeated for a total of 6 boiling/cooling...
16 CFR 1511.5 - Structural integrity tests.
Code of Federal Regulations, 2014 CFR
2014-01-01
... pounds for an additional 10 seconds. (c) Heat cycle deterioration. After the testing prescribed in... pacifier in boiling water for 5 minutes and then remove the pacifier and allow it to cool for 5 minutes in... in the boiling water for 5 minutes. The process shall be repeated for a total of 6 boiling/cooling...
Flow Boiling and Condensation Experiment (FBCE) for the International Space Station
NASA Technical Reports Server (NTRS)
Mudawar, Issam; O'Neill, Lucas; Hasan, Mohammad; Nahra, Henry; Hall, Nancy; Balasubramaniam, R.; Mackey, Jeffrey
2016-01-01
An effective means to reducing the size and weight of future space vehicles is to replace present mostly single-phase thermal management systems with two-phase counterparts. By capitalizing upon both latent and sensible heat of the coolant rather than sensible heat alone, two-phase thermal management systems can yield orders of magnitude enhancement in flow boiling and condensation heat transfer coefficients. Because the understanding of the influence of microgravity on two-phase flow and heat transfer is quite limited, there is an urgent need for a new experimental microgravity facility to enable investigators to perform long-duration flow boiling and condensation experiments in pursuit of reliable databases, correlations and models. This presentation will discuss recent progress in the development of the Flow Boiling and Condensation Experiment (FBCE) for the International Space Station (ISS) in collaboration between Purdue University and NASA Glenn Research Center. Emphasis will be placed on the design of the flow boiling module and on new flow boiling data that were measured in parabolic flight, along with extensive flow visualization of interfacial features at heat fluxes up to critical heat flux (CHF). Also discussed a theoretical model that will be shown to predict CHF with high accuracy.
Asiimwe, J; Sembajwe, L F; Senoga, A; Bakiika, E; Muwonge, H; Kalyesubula, R
2013-09-01
There is an increase in number of patients with chronic kidney disease (CKD) in Uganda's health facilities looking for different options of preparing matooke (bananas), their staple food. To establish and evaluate an effective method of removing potassium from bananas (matooke). Bananas were sampled from 5 markets in Kampala, Uganda. Deionized water was used to soak the bananas and the potassium concentration was determined using an atomic absorption spectrophotometer in both the bananas and water after soaking for varying time intervals. We also determined the potassium concentrations in the bananas and the water after boiling the bananas at 200 degrees Celsius at intervals of 10 minutes (for 60 minutes). The potassium concentration did not appear to change on soaking alone without boiling. However, on boiling, the concentration in the bananas decreased from about 1.4 ppm to approx. 1 ppm after 60 min; yet the concentration of potassium released into deionized water increased steadily from 0.0 ppm to about 1.2 ppm after 60 min of boiling. This study demonstrates that boiling the bananas is a more effective way of removing the potassium from bananas than simply soaking them.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bucci, Matteo; Seong, Jee H.; Buongiorno, Jdacopo
Here we report on MIT’s THM work in Q4 2016 and Q1 2017. The goal of this project is to design, construct and execute tests of flow boiling critical heat flux (CHF) at high-pressure using high-resolution and high-speed video and infrared (IR) thermometry, to generate unique data to inform the development of and validate mechanistic boiling heat transfer and CHF models. In FY2016, a new test section was designed and fabricated. Data was collected at atmospheric conditions at 10, 25 and 50 K subcoolings, and three mass fluxes, i.e. 500, 750 and 1000 kg/m2/s. Starting in Q4 2016 and continuingmore » forward, new post-processing techniques have been developed to analyze the data collected. These new algorithms analyze the time-dependent temperature and heat flux distributions to calculate nucleation site density, nucleation frequency, growth and wait time, dry area fraction, and the complete heat flux partitioning. In Q1 2017 a new flow boiling loop was designed and constructed to support flow boiling tests up 10 bar pressure and 180 °C. Initial shakedown and testing has been completed. The flow loop and test section are now ready to begin high-pressure flow boiling testing.« less
Carbon-based nanostructured surfaces for enhanced phase-change cooling
NASA Astrophysics Data System (ADS)
Selvaraj Kousalya, Arun
To maintain acceptable device temperatures in the new generation of electronic devices under development for high-power applications, conventional liquid cooling schemes will likely be superseded by multi-phase cooling solutions to provide substantial enhancement to the cooling capability. The central theme of the current work is to investigate the two-phase thermal performance of carbon-based nanostructured coatings in passive and pumped liquid-vapor phase-change cooling schemes. Quantification of the critical parameters that influence thermal performance of the carbon nanostructured boiling surfaces presented herein will lead to improved understanding of the underlying evaporative and boiling mechanisms in such surfaces. A flow boiling experimental facility is developed to generate consistent and accurate heat transfer performance curves with degassed and deionized water as the working fluid. New means of boiling heat transfer enhancement by altering surface characteristics such as surface energy and wettability through light-surface interactions is explored in this work. In this regard, carbon nanotube (CNT) coatings are exposed to low-intensity irradiation emitted from a light emitting diode and the subcooled flow boiling performance is compared against a non-irradiated CNT-coated copper surface. A considerable reduction in surface superheat and enhancement in average heat transfer coefficient is observed. In another work involving CNTs, the thermal performance of CNT-integrated sintered wick structures is evaluated in a passively cooled vapor chamber. A physical vapor deposition process is used to coat the CNTs with varying thicknesses of copper to promote surface wetting with the working fluid, water. Thermal performance of the bare sintered copper powder sample and the copper-functionalized CNT-coated sintered copper powder wick samples is compared using an experimental facility that simulates the capillary fluid feeding conditions of a vapor chamber. Nanostructured samples having a thicker copper coating provided a considerable increase in dryout heat flux while maintaining lower surface superheat temperatures compared to a bare sintered powder sample; this enhancement is attributed primarily to the improved surface wettability. Dynamic contact angle measurements are conducted to quantitatively compare the surface wetting trends for varying copper coating thicknesses and confirm the increase in hydrophilicity with increasing coating thickness. The second and relatively new carbon nanostructured coating, carbon nanotubes decorated with graphitic nanopetals, are used as a template to manufacture boiling surfaces with heterogeneous wettability. Heat transfer surfaces with parallel alternating superhydrophobic and superhydrophilic stripes are fabricated by a combination of oxygen plasma treatment, Teflon coating and shadow masking. Such composite wetting surfaces exhibit enhanced flow-boiling performance compared to homogeneous wetting surfaces. Flow visualization studies elucidate the physical differences in nucleate boiling mechanisms between the different heterogeneous wetting surfaces. The third and the final carbon nanomaterial, graphene, is examined as an oxidation barrier coating for liquid and liquid-vapor phase-change cooling systems. Forced convection heat transfer experiments on bare and graphene-coated copper surfaces reveal nearly identical liquid-phase and two-phase thermal performance for the two surfaces. Surface analysis after thermal testing indicates significant oxide formation on the entire surface of the bare copper substrate; however, oxidation is observed only along the grain boundaries of the graphene-coated substrate. Results suggest that few-layer graphene can act as a protective layer even under vigorous flow boiling conditions, indicating a broad application space of few-layer graphene as an ultra-thin oxidation barrier coating.
NASA Astrophysics Data System (ADS)
Yang, Jun
Nucleate boiling is a well-recognized means for passively removing high heat loads (up to ˜106 W/m2) generated by a molten reactor core under severe accident conditions while maintaining relatively low reactor vessel temperature (<800 °C). With the upgrade and development of advanced power reactors, however, enhancing the nucleate boiling rate and its upper limit, Critical Heat Flux (CHF), becomes the key to the success of external passive cooling of reactor vessel undergoing core disrupture accidents. In the present study, two boiling heat transfer enhancement methods have been proposed, experimentally investigated and theoretically modelled. The first method involves the use of a suitable surface coating to enhance downward-facing boiling rate and CHF limit so as to substantially increase the possibility of reactor vessel surviving high thermal load attack. The second method involves the use of an enhanced vessel/insulation design to facilitate the process of steam venting through the annular channel formed between the reactor vessel and the insulation structure, which in turn would further enhance both the boiling rate and CHF limit. Among the various available surface coating techniques, metallic micro-porous layer surface coating has been identified as an appropriate coating material for use in External Reactor Vessel Cooling (ERVC) based on the overall consideration of enhanced performance, durability, the ease of manufacturing and application. Since no previous research work had explored the feasibility of applying such a metallic micro-porous layer surface coating on a large, downward facing and curved surface such as the bottom head of a reactor vessel, a series of characterization tests and experiments were performed in the present study to determine a suitable coating material composition and application method. Using the optimized metallic micro-porous surface coatings, quenching and steady-state boiling experiments were conducted in the Sub-scale Boundary Layer Boiling (SBLB) test facility at Penn State to investigate the nucleate boiling and CHF enhancement effects of the surface coatings by comparing the measurements with those for a plain vessel without coatings. An overall enhancement in nucleate boiling rates and CHF limits up to 100% were observed. Moreover, combination of data from quenching experiments and steady-state experiments produced new sets of boiling curves, which covered both the nucleate and transient boiling regimes with much greater accuracy. Beside the experimental work, a theoretical CHF model has also been developed by considering the vapor dynamics and the boiling-induced two-phase motions in three separate regions adjacent to the heating surface. The CHF model is capable of predicting the performance of micro-porous coatings with given particle diameter, porosity, media permeability and thickness. It is found that the present CHF model agrees favorably with the experimental data. Effects of an enhanced vessel/insulation structure on the local nucleate boiling rate and CHF limit have also been investigated experimentally. It is observed that the local two-phase flow quantities such as the local void fraction, quality, mean vapor velocity, mean liquid velocity, and mean vapor and liquid mass flow rates could have great impact on the local surface heat flux as boiling of water takes place on the vessel surface. An upward co-current two-phase flow model has been developed to predict the local two-phase flow behavior for different flow channel geometries, which are set by the design of insulation structures. It is found from the two-phase flow visualization experiments and the two-phase flow model calculations that the enhanced vessel/insulation structure greatly improved the steam venting process at the minimum gap location compared to the performance of thermal insulation structures without enhancement. Moveover, depending on the angular location, steady-state boiling experiments with the enhanced insulation design showed an enhancement of 1.8 to 3.0 times in the local critical heat flux. Finally, nucleate boiling and CHF correlations were developed based on the data obtained from various quenching and steady-state boiling experiments. Additionally, CHF enhancement factors were determined and examined to show the separate and integral effects of the two ERVC enhancement methods. When both vessel coating and insulation structure were used simultaneously, the integral effect on CHF enhancement was found much less than the product of the two separate effects, indicating possible competing mechanisms (i.e., interference) between the two enhancement methods.
Nucleate pool boiling in the long duration low gravity environment of the space shuttle
NASA Technical Reports Server (NTRS)
Hasan, M. M.; Lin, C. S.; Knoll, R. H.; Bentz, M. D.; Meserole, J. S.
1993-01-01
The results are presented of an experimental study of nucleate pool boiling performed in the low gravity environment of the space shuttle. Photographic observations of pool boiling in Freon 113 were obtained during the 'Tank Pressure Control Experiment', flown on the Space Transportation System STS-43 in August 1991. Nucleate boiling data from large (relative to bubble size) flat heating surfaces (0.1046 by 0.0742 m) was obtained at very low heat fluxes (0.22 to 1.19 kw/so m). The system pressure and the bulk liquid subcooling varied in the range of 40 to 60 kPa and 3 to 5 C respectively. Thirty-eight boiling tests, each of 10 min duration for a given heat flux, were conducted. Measurements included the heater power, heater surface temperature, the liquid temperature and the system pressure as functions of heating time. Video data of the first 2 min of heating was recorded for each test. In some tests the video clearly shows the inception of boiling and the growth and departure of bubbles from the surface during the first 2 min of heating. In the absence of video data, the heater temperature variation during heating shows the inception of boiling and stable nucleate boiling. During the stable nucleate boiling, the wall superheat varied between 2.8 to 3.8 C for heat fluxes in the range of 0.95 to 1.19 kw/so m. The wall superheat at the inception of boiling varied between 2 to 13 C.
Nucleate pool boiling in the long duration low gravity environment of the Space Shuttle
NASA Technical Reports Server (NTRS)
Hasan, M. M.; Lin, C. S.; Knoll, R. H.; Bentz, M. D.; Meserole, J. S.
1993-01-01
The results are presented of an experimental study of nucleate pool boiling performed in the low gravity environment of the space shuttle. Photographic observations of pool boiling in Freon 113 were obtained during the 'Tank Pressure Control Experiment,' flown on the Space Transportation System, STS-43 in August 1991. Nucleate boiling data from large (relative to bubble size) flat heating surfaces (0.1046 by 0.0742 m) was obtained at very low heat fluxes (0.22 to 1.19 kW/sq m). The system pressure and the bulk liquid subcooling varied in the range of 40 to 60 kPa and 3 to 5 C respectively. Thirty-eight boiling tests, each of 10-min duration for a given heat flux, were conducted. Measurements included the heater power, heater surface temperature, the liquid temperature and the system pressure as functions of heating time. Video data of the first 2 min of heating was recorded for each test. In some tests the video clearly shows the inception of boiling and the growth and departure of bubbles from the surface during the first 2 min of heating. In the absence of video data, the heater temperature variation during heating shows the inception of boiling and stable nucleate boiling. During the stable nucleate boiling, the wall superheat varied between 2.8 to 3.8 C for heat fluxes in the range of 0.95 to 1.19 kW/sq m. The wall superheat at the inception of boiling varied between 2 to 13 C.
MSG test report-steady-state heat transfer. [LMFBR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harty, R.B.
This report documents the results of the Steady-State Heat Transfer Tests conducted on the AI Modular Steam Generator (MSG), at the Sodium Component Test Installation (SCTI) of the Liquid Metal Engineering Center. Heat transfer and pressure drop performance data are given along with current predictions of performance. Departure from nucleate boiling characteristics is given. A dispersed flow film boiling model, employing thermal nonequilibrium, was used to analyze data in the film boiling region.
Tagami, K; Uchida, S
2011-08-01
Iodine-131 concentrations in tap water higher than 100 BqL(-1) were reported by several local governments in Japan following the Fukushima Daiichi Nuclear Power Plant accident. Some individuals in the emergency-response community recommended the boiling of tap water to remove iodine-131. However, the tap water boiling tests in this study showed no iodine-131 loss from the tap water with either short-term boiling (1-10 min) or prolonged boiling (up to 30 min) resulting in up to 3-fold volume reductions. In this situation, boiling was shown to be not effective in removing iodine-131 from tap water; indeed even higher concentrations may result from the liquid-volume reduction accompanying this process. Copyright © 2011 Elsevier Ltd. All rights reserved.
Numerical Simulation of the Emergency Condenser of the SWR-1000
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krepper, Eckhard; Schaffrath, Andreas; Aszodi, Attila
The SWR-1000 is a new innovative boiling water reactor (BWR) concept, which was developed by Siemens AG. This concept is characterized in particular by passive safety systems (e.g., four emergency condensers, four building condensers, eight passive pressure pulse transmitters, and six gravity-driven core-flooding lines). In the framework of the BWR Physics and Thermohydraulic Complementary Action to the European Union BWR Research and Development Cluster, emergency condenser tests were performed by Forschungszentrum Juelich at the NOKO test facility. Posttest calculations with ATHLET are presented, which aim at the determination of the removable power of the emergency condenser and its operation mode.more » The one-dimensional thermal-hydraulic code ATHLET was extended by the module KONWAR for the calculation of the heat transfer coefficient during condensation in horizontal tubes. In addition, results of conventional finite difference calculations using the code CFX-4 are presented, which investigate the natural convection during the heatup process at the secondary side of the NOKO test facility.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCormack, K.E.; Gallaher, R.B.
1982-03-01
This document presents a bibliography that contains 100-word abstracts of event reports submitted to the US Nuclear Regulatory Commission concerning operational events that occurred at boiling-water-reactor nuclear power plants in 1980. The 1547 abstracts included on microfiche in this bibliography describe incidents, failures, and design or construction deficiencies that were experienced at the facilities. These abstracts are arranged alphabetically by reactor name and then chronologically for each reactor. Full-size keyword and permuted-title indexes to facilitate location of individual abstracts are provided following the text. Tables that summarize the information contained in the bibliography are also provided. The information in themore » tables includes a listing of the equipment items involved in the reported events and the associated number of reports for each item. Similar information is given for the various kinds of instrumentation and systems, causes of failures, deficiencies noted, and the time of occurrence (i.e., during refueling, operation, testing, or construction).« less
Xu, Baojun; Chang, Sam K C
2008-09-01
The effects of soaking, boiling and steaming processes on the total phenolic components and antioxidant activity in commonly consumed cool season food legumes (CSFL's), including green pea, yellow pea, chickpea and lentil were investigated. As compared to original unprocessed legumes, all processing steps caused significant (p<0.05) decreases in total phenolic content (TPC), DPPH free radical scavenging activity (DPPH) in all tested CSFL's. All soaking and atmospheric boiling treatments caused significant (p<0.05) decreases in oxygen radical absorbing capacity (ORAC). However, pressure boiling and pressure steaming caused significant (p<0.05) increases in ORAC values. Steaming treatments resulted in a greater retention of TPC, DPPH, and ORAC values in all tested CSFL's as compared to boiling treatments. To obtain cooked legumes with similar palatability and firmness, pressure boiling shortened processing time as compared to atmospheric boiling, resulted in insignificant differences in TPC, DPPH for green and yellow pea. However, TPC and DPPH in cooked lentils differed significantly between atmospheric and pressure boiling. As compared to atmospheric processes, pressure processes significantly increased ORAC values in both boiled and steamed CSFL's. Greater TPC, DPPH and ORAC values were detected in boiling water than that in soaking and steaming water. Boiling also caused more solid loss than steaming. Steam processing exhibited several advantages in retaining the integrity of the legume appearance and texture of the cooked product, shortening process time, and greater retention of antioxidant components and activities. Copyright © 2008 Elsevier Ltd. All rights reserved.
Performance of a 12-coil superconducting bumpy torus magnet facility
NASA Technical Reports Server (NTRS)
Roth, J. R.; Holmes, A. D.; Keller, T. A.; Krawczonek, W. M.
1972-01-01
The bumpy torus facility consists of 12 superconducting coils, each 19 cm i.d. and capable of 3.0 teslas on their axes. The coils are equally spaced around a toroidal array with a major diameter of 1.52 m, and are mounted with the major axis of the torus vertical in a single vacuum tank 2.6 m in diameter. Final shakedown tests of the facility mapped out its magnetic, cryogenic, vacuum, mechanical, and electrical performance. The facility is now ready for use as a plasma physics research facility. A maximum magnetic field on the magnetic axis of 3.23 teslas was held for a period of more than sixty minutes without a coil normalcy. The design field was 3.00 teslas. The steady-state liquid helium boil-off rate was 87 liters per hour of liquid helium without the coils charged. The coil array was stable when subjected to an impulsive loading, even with the magnets fully charged. When the coils were charged to a maximum magnetic field of 3.35 teslas, the system was driven normal without damage.
NASA Astrophysics Data System (ADS)
Ariyani, F.; Hermana, I.; Hidayah, I.
2018-03-01
The main problem in boiled salted fish ikan pindang is mucus and mold on the surface of the fish which is produced relatively fast as well as the high level of histamine content especially when scombroid fish species are used as raw material. This study was performed to evaluate the effectiveness of various preservatives to overcome such problems. Three combinations of preservatives P1 (green tea and sorbate), P3 (green tea, piper betel, sorbate), P4 (green tea and piper betel) and P0 (no preservative/control) resulted from the previous study were used in this study. Before being used, the preservatives were tested against deteriorating microorganisms commonly found in boiled salted products, of which the result showed that all microorganisms were inhibited. The preservatives were then applied at three different stages of the process of boiled salted fish, i.e. before boiling, during boiling and after boiling. Sensory attributes and microbial characteristics of the products were then evaluated. The results showed that the performance of all tested preservatives against deteriorating microorganisms was relatively similar. It was also shown that the application before and during boiling performed better.
Turner, Terry D.; Beller, Laurence S.; Clark, Michael L.; Klingler, Kerry M.
1997-01-01
A method of processing a test sample to concentrate an analyte in the sample from a solvent in the sample includes: a) boiling the test sample containing the analyte and solvent in a boiling chamber to a temperature greater than or equal to the solvent boiling temperature and less than the analyte boiling temperature to form a rising sample vapor mixture; b) passing the sample vapor mixture from the boiling chamber to an elongated primary separation tube, the separation tube having internal sidewalls and a longitudinal axis, the longitudinal axis being angled between vertical and horizontal and thus having an upper region and a lower region; c) collecting the physically transported liquid analyte on the internal sidewalls of the separation tube; and d) flowing the collected analyte along the angled internal sidewalls of the separation tube to and pass the separation tube lower region. The invention also includes passing a turbulence inducing wave through a vapor mixture to separate physically transported liquid second material from vaporized first material. Apparatus are also disclosed for effecting separations. Further disclosed is a fluidically powered liquid test sample withdrawal apparatus for withdrawing a liquid test sample from a test sample container and for cleaning the test sample container.
Turner, T.D.; Beller, L.S.; Clark, M.L.; Klingler, K.M.
1997-10-14
A method of processing a test sample to concentrate an analyte in the sample from a solvent in the sample includes: (a) boiling the test sample containing the analyte and solvent in a boiling chamber to a temperature greater than or equal to the solvent boiling temperature and less than the analyte boiling temperature to form a rising sample vapor mixture; (b) passing the sample vapor mixture from the boiling chamber to an elongated primary separation tube, the separation tube having internal sidewalls and a longitudinal axis, the longitudinal axis being angled between vertical and horizontal and thus having an upper region and a lower region; (c) collecting the physically transported liquid analyte on the internal sidewalls of the separation tube; and (d) flowing the collected analyte along the angled internal sidewalls of the separation tube to and pass the separation tube lower region. The invention also includes passing a turbulence inducing wave through a vapor mixture to separate physically transported liquid second material from vaporized first material. Apparatus is also disclosed for effecting separations. Further disclosed is a fluidically powered liquid test sample withdrawal apparatus for withdrawing a liquid test sample from a test sample container and for cleaning the test sample container. 8 figs.
Robbins, C A; Breysse, P N
1996-08-01
This research evaluated the effect of the polarity of a second vapor on the adsorption of a polar and a nonpolar vapor using the Wheeler model. To examine the effect of polarity, it was also necessary to observe the effect of component boiling point. The 1% breakthrough time (1% tb), kinetic adsorption capacity (W(e)), and rate constant (kv) of the Wheeler model were determined for vapor challenges on carbon beds for both p-xylene and pyrrole (referred to as test vapors) individually, and in equimolar binary mixtures with the polar and nonpolar vapors toluene, p-fluorotoluene, o-dichlorobenzene, and p-dichlorobenzene (referred to as probe vapors). Probe vapor polarity (0 to 2.5 Debye) did not systematically alter the 1% tb, W(e), or kv of the test vapors. The 1% tb and W(e) for test vapors in binary mixtures can be estimated reasonably well, using the Wheeler model, from single-vapor data (1% tb +/- 30%, W(e) +/- 20%). The test vapor 1% tb depended mainly on total vapor concentration in both single and binary systems. W(e) was proportional to test vapor fractional molar concentration (mole fraction) in mixtures. The kv for p-xylene was significantly different (p < or = 0.001) when compared according to probe boiling point; however, these differences were apparently of limited importance in estimating 1% tb for the range of boiling points tested (111 to 180 degrees C). Although the polarity and boiling point of chemicals in the range tested are not practically important in predicting 1% tb with the Wheeler model, an effect due to probe boiling point is suggested, and tests with chemicals of more widely ranging boiling point are warranted. Since the 1% tb, and thus, respirator service life, depends mainly on total vapor concentration, these data underscore the importance of taking into account the presence of other vapors when estimating respirator service life for a vapor in a mixture.
Electrically Driven Liquid Film Boiling Experiment
NASA Technical Reports Server (NTRS)
Didion, Jeffrey R.
2016-01-01
This presentation presents the science background and ground based results that form the basis of the Electrically Driven Liquid Film Boiling Experiment. This is an ISS experiment that is manifested for 2021. Objective: Characterize the effects of gravity on the interaction of electric and flow fields in the presence of phase change specifically pertaining to: a) The effects of microgravity on the electrically generated two-phase flow. b) The effects of microgravity on electrically driven liquid film boiling (includes extreme heat fluxes). Electro-wetting of the boiling section will repel the bubbles away from the heated surface in microgravity environment. Relevance/Impact: Provides phenomenological foundation for the development of electric field based two-phase thermal management systems leveraging EHD, permitting optimization of heat transfer surface area to volume ratios as well as achievement of high heat transfer coefficients thus resulting in system mass and volume savings. EHD replaces buoyancy or flow driven bubble removal from heated surface. Development Approach: Conduct preliminary experiments in low gravity and ground-based facilities to refine technique and obtain preliminary data for model development. ISS environment required to characterize electro-wetting effect on nucleate boiling and CHF in the absence of gravity. Will operate in the FIR - designed for autonomous operation.
Issue a Boil-Water Advisory or Wait for Definitive Information? A Decision Analysis
Wagner, Michael M.; Wallstrom, Garrick L.; Onisko, Agnieszka
2005-01-01
Objective Study the decision to issue a boil-water advisory in response to a spike in sales of diarrhea remedies or wait 72 hours for the results of definitive testing of water and people. Methods Decision analysis. Results In the base-case analysis, the optimal decision is test-and-wait. If the cost of issuing a boil-water advisory is less than 13.92 cents per person per day, the optimal decision is to issue the boil-water advisory immediately. Conclusions Decisions based on surveillance data that are suggestive but not conclusive about the existence of a disease outbreak can be modeled. PMID:16779145
Bench-scale screening tests for a boiling sodium-potassium alloy solar receiver
NASA Astrophysics Data System (ADS)
Moreno, J. B.; Moss, T. A.
1993-06-01
Bench-scale tests were carried out in support of the design of a second-generation 75-kW(sub t) reflux pool-boiler solar receiver. The receiver will be made from Haynes Alloy 230 and will contain the sodium-potassium alloy NaK-78. The bench-scale tests used quartz lamp heated boilers to screen candidate boiling stabilization materials and methods at temperatures up to 750 degree C. Candidates that provided stable boiling were tested for hot-restart behavior. Poor stability was obtained with single 1/4-inch diameter patches of powdered metal hot press sintered onto the wetted side of the heat-input area. Laser-drilled and electric discharge machined cavities in the heated surface also performed poorly. Small additions of xenon, and heated-surface tilt out of the vertical, dramatically improved poor boiling stability; additions of helium or oxygen did not. The most stable boiling was obtained when the entire heat-input area was covered by a powdered-metal coating. The effect of heated-area size was assessed for one coating: at low incident fluxes, when even this coating performed poorly, increasing the heated-area size markedly improved boiling stability. Good hot-restart behavior was not observed with any candidate, although results were significantly better with added xenon in a boiler shortened from 3 to 2 feet. In addition to the screening tests, flash-radiography imaging of metal-vapor bubbles during boiling was attempted. Contrary to the Cole-Rohsenow correlation, these bubble-size estimates did not vary with pressure; instead they were constant, consistent with the only other alkali metal measurements, but about 1/2 their size.
Technical activities report: Heat, water, and mechanical studies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alexander, W.K.
1951-10-04
Topics in the heat studies section include: front and rear face reflector shields at the C-pile; process tube channel thermocouples; water temperature limits for horizontal rods; slug temperature and thermal conductivity calculations; maximum slug-end cap temperature; boiling consideration studies; scram time limit for Panellit alarm; heat transfer test; slug stresses; thermal insulation of bottom tube row at C-pile; flow tests; present pile enrichment; electric analog; and measurement of thermal contact resistance. Topics in the water studies section include: 100-D flow laboratory; process water studies; fundamental studies on film formation; coatings on tip-offs; can difference tests; slug jacket abrasion at highmore » flow rates; corrosion studies; front tube dummy slugs; metallographic examination of tubes from H-pile; fifty-tube mock-up; induction heating facility; operational procedures and standards; vertical safety rod dropping time tests; recirculation; and power recovery. Mechanical development studies include: effect of Sphincter seal and lubricant VSR drop time; slug damage; slug bubble tester; P-13 removal; chemical slug stripper; effect of process tube rib spacing and width; ink facility installation; charging and discharging machines; process tube creep; flapper nozzle assembly test; test of single gun barrel assembly; pigtail fixture test; horizontal rod gland seal test; function test of C-pile; and intermediate test of Ball 3-X and VSR systems.« less
First on-sun test of NaK pool-boiler solar receiver
NASA Astrophysics Data System (ADS)
Moreno, J. B.; Andraka, C. E.; Moss, T. A.; Cordeiro, P. G.; Dudley, V. E.; Rawlinson, K. S.
During 1989-1990, a refluxing liquid-metal pool-boiler solar receiver designed for dish/Stirling application at 75 kW(sub t) throughput was successfully demonstrated at Sandia National Laboratories. Significant features of this receiver included (1) boiling sodium as the heat transfer medium, and (2) electric-discharge-machined (EDM) cavities as artificial nucleation sites to stabilize boiling. Following this first demonstration, a second-generation pool-boiler receiver that brings the concept closer to commercialization has been designed, constructed, and successfully tested. For long life, the new receiver is built from Haynes Alloy 230. For increased safety factors against film boiling and flooding, the absorber area and vapor-flow passages have been enlarged. To eliminate the need for trace heating, sodium has been replaced by the sodium-potassium alloy NaK-78. To reduce manufacturing costs, the receiver has a powdered-metal coating instead of EDM cavities for stabilization of boiling. To control incipient-boiling superheats, especially during hot restarts, it contains a small amount of xenon. In this paper, we present the receiver design and report the results of on-sun tests using a nominal 75 kW(sub t) test-bed concentrator to characterize boiling stability, hot-restart behavior, and thermal efficiency at temperatures up to 750 C. We also report briefly on late results from an advanced-concepts pool-boiler receiver.
Pool boiling of nanofluids on rough and porous coated tubes: experimental and correlation
NASA Astrophysics Data System (ADS)
Cieśliński, Janusz T.; Kaczmarczyk, Tomasz Z.
2014-06-01
The paper deals with pool boiling of water-Al2O3 and water- Cu nanofluids on rough and porous coated horizontal tubes. Commercially available stainless steel tubes having 10 mm outside diameter and 0.6 mm wall thickness were used to fabricate the test heater. The tube surface was roughed with emery paper 360 or polished with abrasive compound. Aluminium porous coatings of 0.15 mm thick with porosity of about 40% were produced by plasma spraying. The experiments were conducted under different absolute operating pressures, i.e., 200, 100, and 10 kPa. Nanoparticles were tested at the concentration of 0.01, 0.1, and 1% by weight. Ultrasonic vibration was used in order to stabilize the dispersion of the nanoparticles. It was observed that independent of operating pressure and roughness of the stainless steel tubes addition of even small amount of nanoparticles augments heat transfer in comparison to boiling of distilled water. Contrary to rough tubes boiling heat transfer coefficient of tested nanofluids on porous coated tubes was lower compared to that for distilled water while boiling on porous coated tubes. A correlation equation for prediction of the average heat transfer coefficient during boiling of nanofluids on smooth, rough and porous coated tubes is proposed. The correlation includes all tested variables in dimensionless form and is valid for low heat flux, i.e., below 100 kW/m2.
Pool Boiling Experiment Has Five Successful Flights
NASA Technical Reports Server (NTRS)
Chiaramonte, Fran
1997-01-01
The Pool Boiling Experiment (PBE) is designed to improve understanding of the fundamental mechanisms that constitute nucleate pool boiling. Nucleate pool boiling is a process wherein a stagnant pool of liquid is in contact with a surface that can supply heat to the liquid. If the liquid absorbs enough heat, a vapor bubble can be formed. This process occurs when a pot of water boils. On Earth, gravity tends to remove the vapor bubble from the heating surface because it is dominated by buoyant convection. In the orbiting space shuttle, however, buoyant convection has much less of an effect because the forces of gravity are very small. The Pool Boiling Experiment was initiated to provide insight into this nucleate boiling process, which has many earthbound applications in steamgeneration power plants, petroleum plants, and other chemical plants. In addition, by using the test fluid R-113, the Pool Boiling Experiment can provide some basic understanding of the boiling behavior of cryogenic fluids without the large cost of an experiment using an actual cryogen.
A Summary of the Slush Hydrogen Technology Program for the National Aero-Space Plane
NASA Technical Reports Server (NTRS)
Mcnelis, Nancy B.; Hardy, Terry L.; Whalen, Margaret V.; Kudlac, Maureen T.; Moran, Matthew E.; Tomsik, Thomas M.; Haberbusch, Mark S.
1995-01-01
Slush hydrogen, a mixture of solid and liquid hydrogen, offers advantages of higher density (16 percent) and higher heat capacity (18 percent) than normal boiling point hydrogen. The combination of increased density and heat capacity of slush hydrogen provided a potential to decrease the gross takeoff weight of the National Aero-Space Plane (NASP) and therefore slush hydrogen was selected as the propellant. However, no large-scale data was available on the production, transfer and tank pressure control characteristics required to use slush hydrogen as a fuel. Extensive testing has been performed at the NASA Lewis Research Center K-Site and Small Scale Hydrogen Test Facility between 1990 and the present to provide a database for the use of slush hydrogen. This paper summarizes the results of this testing.
Dearden, John C
2003-08-01
Boiling point, vapor pressure, and melting point are important physicochemical properties in the modeling of the distribution and fate of chemicals in the environment. However, such data often are not available, and therefore must be estimated. Over the years, many attempts have been made to calculate boiling points, vapor pressures, and melting points by using quantitative structure-property relationships, and this review examines and discusses the work published in this area, and concentrates particularly on recent studies. A number of software programs are commercially available for the calculation of boiling point, vapor pressure, and melting point, and these have been tested for their predictive ability with a test set of 100 organic chemicals.
Food-cooking processes modulate allergenic properties of hen's egg white proteins.
Liu, Xiaoyu; Feng, Bai-Sui; Kong, Xiaoli; Xu, Hong; Li, Xiumin; Yang, Ping-Chang; Liu, Zhigang
2013-01-01
Reducing the allergenicity of food allergens can suppress the clinical symptoms of food allergy. The objective of the present study was to investigate the effects of processing on the allergenic properties of hen's egg white proteins. Eggs were processed by traditional Chinese cooking, including steaming, water boiling, frying, spicing and tea boiling. The contents of processed egg protein were assessed by sodium dodecyl sulfate polyacrylamide gel electrophoresis; the allergenicity was evaluated by Western blotting, enzyme-linked immunosorbent assay and enzyme allergosorbent test inhibition. Circular dichroism spectrum analysis of four major egg allergens from various egg products was performed as well. A mouse model of food allergy was developed to test the allergenicity of processed egg protein in vivo. Protein degradation was significant following tea boiling and spiced-tea boiling. The total allergenic potential of water-boiled egg and fried egg was relatively higher than that of steamed egg, spiced egg and tea-boiled egg. Challenge with proteins from raw egg, water-boiled egg and fried egg induced skewed T-helper 2 pattern responses (Th2 responses) in the intestine of mice sensitized to egg proteins; however, when the mice sensitized to egg proteins were challenged with proteins from steamed egg, spiced egg and tea-boiled egg, respectively, only weak Th2 responses were induced in their intestine. Processing by steaming, spicing, or tea boiling can weaken the allergenicity of egg proteins. Copyright © 2012 S. Karger AG, Basel.
Evaluation of Cooling Conditions for a High Heat Flux Testing Facility Based on Plasma-Arc Lamps
Charry, Carlos H.; Abdel-khalik, Said I.; Yoda, Minami; ...
2015-07-31
The new Irradiated Material Target Station (IMTS) facility for fusion materials at Oak Ridge National Laboratory (ORNL) uses an infrared plasma-arc lamp (PAL) to deliver incident heat fluxes as high as 27 MW/m 2. The facility is being used to test irradiated plasma-facing component materials as part of the joint US-Japan PHENIX program. The irradiated samples are to be mounted on molybdenum sample holders attached to a water-cooled copper rod. Depending on the size and geometry of samples, several sample holders and copper rod configurations have been fabricated and tested. As a part of the effort to design sample holdersmore » compatible with the high heat flux (HHF) testing to be conducted at the IMTS facility, numerical simulations have been performed for two different water-cooled sample holder designs using the ANSYS FLUENT 14.0 commercial computational fluid dynamics (CFD) software package. The primary objective of this work is to evaluate the cooling capability of different sample holder designs, i.e. to estimate their maximum allowable incident heat flux values. 2D axisymmetric numerical simulations are performed using the realizable k-ε turbulence model and the RPI nucleate boiling model within ANSYS FLUENT 14.0. The results of the numerical model were compared against the experimental data for two sample holder designs tested in the IMTS facility. The model has been used to parametrically evaluate the effect of various operational parameters on the predicted temperature distributions. The results were used to identify the limiting parameter for safe operation of the two sample holders and the associated peak heat flux limits. The results of this investigation will help guide the development of new sample holder designs.« less
Experimental Investigation of Flow Condensation in Microgravity
NASA Technical Reports Server (NTRS)
Lee, Hyoungsoon; Park, Ilchung; Konishi, Christopher; Mudawar, Issam; May, Rochelle I.; Juergens, Jeffery R.; Wagner, James D.; Hall, Nancy R.; Nahra, Henry K.; Hasan, Mohammed M.;
2013-01-01
Future manned missions to Mars are expected to greatly increase the space vehicle's size, weight, and heat dissipation requirements. An effective means to reducing both size and weight is to replace single-phase thermal management systems with two-phase counterparts that capitalize upon both latent and sensible heat of the coolant rather than sensible heat alone. This shift is expected to yield orders of magnitude enhancements in flow boiling and condensation heat transfer coefficients. A major challenge to this shift is a lack of reliable tools for accurate prediction of two-phase pressure drop and heat transfer coefficient in reduced gravity. Developing such tools will require a sophisticated experimental facility to enable investigators to perform both flow boiling and condensation experiments in microgravity in pursuit of reliable databases. This study will discuss the development of the Flow Boiling and Condensation Experiment (FBCE) for the International Space Station (ISS), which was initiated in 2012 in collaboration between Purdue University and NASA Glenn Research Center. This facility was recently tested in parabolic flight to acquire condensation data for FC-72 in microgravity, aided by high-speed video analysis of interfacial structure of the condensation film. The condensation is achieved by rejecting heat to a counter flow of water, and experiments were performed at different mass velocities of FC-72 and water and different FC-72 inlet qualities. It is shown that the film flow varies from smooth-laminar to wavy-laminar and ultimately turbulent with increasing FC-72 mass velocity. The heat transfer coefficient is highest near the inlet of the condensation tube, where the film is thinnest, and decreases monotonically along the tube, except for high FC-72 mass velocities, where the heat transfer coefficient is enhanced downstream. This enhancement is attributed to both turbulence and increased interfacial waviness. One-ge correlations are shown to predict the average condensation heat transfer coefficient with varying degrees of success, and a recent correlation is identified for its superior predictive capability, evidenced by a mean absolute error of 21.7%.
Conceptual design for spacelab pool boiling experiment
NASA Technical Reports Server (NTRS)
Lienhard, J. H.; Peck, R. E.
1978-01-01
A pool boiling heat transfer experiment to be incorporated with a larger two-phase flow experiment on Spacelab was designed to confirm (or alter) the results of earth-normal gravity experiments which indicate that the hydrodynamic peak and minimum pool boiling heat fluxes vanish at very low gravity. Twelve small sealed test cells containing water, methanol or Freon 113 and cylindrical heaters of various sizes are to be built. Each cell will be subjected to one or more 45 sec tests in which the surface heat flux on the heaters is increased linearly until the surface temperature reaches a limiting value of 500 C. The entire boiling process will be photographed in slow-motion. Boiling curves will be constructed from thermocouple and electric input data, for comparison with the motion picture records. The conduct of the experiment will require no more than a few hours of operator time.
NASA Astrophysics Data System (ADS)
Zhang, Yonghai; Liu, Bin; Zhao, Jianfu; Deng, Yueping; Wei, Jinjia
2018-06-01
The flow boiling heat transfer characteristics of subcooled air-dissolved FC-72 on a smooth surface (chip S) were studied in microgravity by utilizing the drop tower facility in Beijing. The heater, with dimensions of 40 × 10 × 0.5 mm3 (length × width × thickness), was combined with two silicon chips with the dimensions of 20 × 10 × 0.5 mm3. High-speed visualization was used to supplement observation in the heat transfer and vapor-liquid two-phase flow characteristics. In the low and moderate heat fluxes region, the flow boiling of chip S at inlet velocity V = 0.5 m/s shows almost the same regulations as that in pool boiling. All the wall temperatures at different positions along the heater in microgravity are slightly lower than that in normal gravity, which indicates slight heat transfer enhancement. However, in the high heat flux region, the pool boiling of chip S shows much evident deterioration of heat transfer compared with that of flow boiling in microgravity. Moreover, the bubbles of flow boiling in microgravity become larger than that in normal gravity due to the lack of buoyancy Although the difference of the void fraction in x-y plain becomes larger with increasing heat flux under different gravity levels, it shows nearly no effect on heat transfer performance except for critical heat flux (CHF). Once the void fraction in y-z plain at the end of the heater equals 1, the vapor blanket will be formed quickly and transmit from downstream to upstream along the heater, and CHF occurs. Thus, the height of channel is an important parameter to determine CHF in microgravity at a fixed velocity. The flow boiling of chip S at inlet velocity V = 0.5 m/s shows higher CHF than that of pool boiling because of the inertia force, and the CHF under microgravity is about 78-92% of that in normal gravity.
Insulation of Nitrocellulose Boiling Tubs at Radford Army Ammunition Plant
1982-03-01
control system. The amount of steam usea for the on-boil cycle with the single-sensor autocontrol averaged 647 kg/hr (1426 lb/hr) (test 1, table 2...This was a reduc- tion of 210 kg/hr (463 lb/hr) over the manually controlled uninsulated tub. Steam usage with the single sensor autocontrol and...uninsulated tub. At times durin)g the on- boil cycle of tests I and 2, the temperature of the manual sensor was different from the autocontrol sensor indicating
Cryogenic Boil-Off Reduction System Testing
NASA Technical Reports Server (NTRS)
Plachta, David W.; Johnson, Wesley L.; Feller, Jeffery
2014-01-01
The Cryogenic Boil-Off Reduction System was tested with LH2 and LOX in a vacuum chamber to simulate space vacuum and the temperatures of low Earth orbit. Testing was successful and results validated the scaling study model that predicts active cooling reduces upper stage cryogenic propulsion mass for loiter periods greater than 2 weeks.
A Heat Transfer Investigation of Liquid and Two-Phase Methane
NASA Technical Reports Server (NTRS)
VanNoord, Jonathan
2010-01-01
A heat transfer investigation was conducted for liquid and two-phase methane. The tests were conducted at the NASA Glenn Research Center Heated Tube Facility (HTF) using resistively heated tube sections to simulate conditions encountered in regeneratively cooled rocket engines. This testing is part of NASA s Propulsion and Cryogenics Advanced Development (PCAD) project. Nontoxic propellants, such as liquid oxygen/liquid methane (LO2/LCH4), offer potential benefits in both performance and safety over equivalently sized hypergolic propulsion systems in spacecraft applications. Regeneratively cooled thrust chambers are one solution for high performance, robust LO2/LCH4 engines, but cooling data on methane is limited. Several test runs were conducted using three different diameter Inconel 600 tubes, with nominal inner diameters of 0.0225-, 0.054-, and 0.075-in. The mass flow rate was varied from 0.005 to 0.07 lbm/sec. As the current focus of the PCAD project is on pressure fed engines for LO2/LCH4, the average test section outlet pressures were targeted to be 200 psia or 500 psia. The heat flux was incrementally increased for each test condition while the test section wall temperatures were monitored. A maximum average heat flux of 6.2 Btu/in.2 sec was achieved and, at times, the temperatures of the test sections reached in excess of 1800 R. The primary objective of the tests was to produce heat transfer correlations for methane in the liquid and two-phase regime. For two-phase flow testing, the critical heat flux values were determined where the fluid transitions from nucleate boiling to film boiling. A secondary goal of the testing was to measure system pressure drops in the two-phase regime.
Cryogenic Boil-Off Reduction System Testing
NASA Technical Reports Server (NTRS)
Plachta, David W.; Johnson, Wesley L.; Feller, Jeffrey R.
2014-01-01
Cryogenic propellants such as liquid hydrogen (LH2) and liquid oxygen (LO2) are a part of NASA's future space exploration due to the high specific impulse that can be achieved using engines suitable for moving 10's to 100's of metric tons of payload mass to destinations outside of low earth orbit. However, the low storage temperatures of LH2 and LO2 cause substantial boil-off losses for missions with durations greater than several days. The losses can be greatly reduced by incorporating high performance cryocooler technology to intercept heat load to the propellant tanks and by the integration of self-supporting multi-layer insulation. The active thermal control technology under development is the integration of the reverse turbo- Brayton cycle cryocooler to the propellant tank through a distributed cooling network of tubes coupled to a shield in the tank insulation and to the tank wall itself. Also, the self-supporting insulation technology was utilized under the shield to obtain needed tank applied LH2 performance. These elements were recently tested at NASA Glenn Research Center in a series of three tests, two that reduced LH2 boil-off and one to eliminate LO2 boil-off. This test series was conducted in a vacuum chamber that replicated the vacuum of space and the temperatures of low Earth orbit. The test results show that LH2 boil-off was reduced 60% by the cryocooler system operating at 90K and that robust LO2 zero boil-off storage, including full tank pressure control was achieved.
IMPROVED ANTIFOAM AGENT STUDY END OF YEAR REPORT, EM PROJECT 3.2.3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lambert, D.; Koopman, D.; Newell, J.
2011-09-30
Antifoam 747 is added to minimize foam produced by process gases and water vapor during chemical processing of sludge in the Defense Waste Processing Facility (DWPF). This allows DWPF to maximize acid addition and evaporation rates to minimize the cycle time in the Chemical Processing Cell (CPC). Improvements in DWPF melt rate due to the addition of bubblers in the melter have resulted in the need for further reductions in cycle time in the CPC. This can only be accomplished with an effective antifoam agent. DWPF production was suspended on March 22, 2011 as the result of a Flammable Gasmore » New Information/(NI) Potential Inadequacy in the Safety Analysis (PISA). The issue was that the DWPF melter offgas flammability strategy did not take into account the H and C in the antifoam, potentially flammable components, in the melter feed. It was also determined the DWPF was using much more antifoam than anticipated due to a combination of longer processing in the CPC due to high Hg, longer processing due to Actinide Removal Process (ARP)/Modular Caustic Side Solvent Extraction Unit (MCU) additions, and adding more antifoam than recommended. The resolution to the PISA involved and assessment of the impact of the antifoam on melter flammability and the implementation of a strategy to control additions within acceptable levels. This led to the need to minimize the use of Antifoam 747 in processing beginning in May 2011. DWPF has had limited success in using Antifoam 747 in caustic processing. Since starting up the ARP facility, the ARP product (similar chemically to caustic sludge) is added to the Sludge Receipt and Adjustment Tank (SRAT) at boiling and evaporated to maintain a constant SRAT volume. Although there is very little offgas generated during caustic boiling, there is a large volume of water vapor produced which can lead to foaming. High additions and more frequent use of antifoam are used to mitigate the foaming during caustic boiling. The result of these three issues above is that DWPF had three antifoam needs in FY2011: (1) Determine the cause of the poor Antifoam 747 performance during caustic boiling; (2) Determine the decomposition products of Antifoam 747 during CPC processing; and (3) Improve the effectiveness of Antifoam 747, in order to minimize the amount used. Testing was completed by Illinois Institute of Technology (IIT) and Savannah River National Laboratory (SRNL) researchers to address these questions. The testing results reported were funded by both DWPF and DOE/EM 31. Both sets of results are reported in this document for completeness. The results of this research are summarized: (1) The cause for the poor Antifoam 747 performance during caustic boiling was the high hydrolysis rate, cleaving the antifoam molecule in two, leading to poor antifoam performance. In testing with pH solutions from 1 to 13, the antifoam degraded quickly at a pH < 4 and pH > 10. As the antifoam decomposed it lost its spreading ability (wetting agent performance), which is crucial to its antifoaming performance. During testing of a caustic sludge simulants, there was more foam in tests with added Antifoam 747 than in tests without added antifoam. (2) Analyses were completed to determine the composition of the two antifoam components and Antifoam 747. In addition, the decomposition products of Antifoam 747 were determined during CPC processing of sludge simulants. The main decomposition products were identified primarily as Long Chain Siloxanes, boiling point > 400 C. Total antifoam recovery was 33% by mass. In a subsequent study, various compounds potentially related to antifoam were found using semi-volatile organic analysis and volatile organic analysis on the hexane extractions and hexane rinses. These included siloxanes, trimethyl silanol, methoxy trimethyl silane, hexamethyl disiloxane, aliphatic hydrocarbons, dioctyl phthalate, and emulsifiers. Cumulatively, these species amounted to less than 3% of the antifoam mass. The majority of the antifoam was identified using carbon analysis of the SRAT product (40-80% by mass) and silicon analysis (23-83% by mass) of the condensate. Both studies recommended a better solvent for antifoam and more specific tests for antifoam degradation products than the Si and C analyses used. (3) The DWPF Antifoam 747 Purchase Specification was revised in Month, 2011 with a goal of increasing the quality of Antifoam 747. The purchase specification was changed to specify the manufacturer and product for both components that are blended by Siovation to produce Antifoam 747 for DWPF. Testing of Antifoam produced using both the old and new antifoam specifications perform very similarly in testing. Since the change in purchase specification has not improved antifoam performance, an improved antifoam agent is required.« less
Pool and flow boiling in variable and microgravity
NASA Technical Reports Server (NTRS)
Merte, Herman, Jr.
1994-01-01
As is well known, boiling is an effective mode of heat transfer in that high heat flux levels are possible with relatively small temperature differences. Its optimal application requires that the process be adequately understood. A measure of the understanding of any physical event lies in the ability to predict its behavior in terms of the relevant parameters. Despite many years of research the predictability of boiling is currently possible only for quite specialized circumstances, e.g., the critical heat flux and film boiling for the pool boiling case, and then only with special geometries. Variable gravity down to microgravity provides the opportunity to test this understanding, but possibly more important, by changing the dimensional and time scales involved permits more detailed observations of elements involved in the boiling process, and perhaps discloses phenomena heretofore unknown. The focus here is on nucleate boiling although, as will be demonstrated below, under but certain circumstances in microgravity it can take place concurrently with the dryout process. In the presence of earth gravity or forced convection effects, the latter process is usually referred to as film boiling. However, no vapor film as such forms with pool boiling in microgravity, only dryout. Initial results are presented here for pool boiling in microgravity, and were made possible at such an early date by the availability of the Get-Away-Specials (GAS). Also presented here are some results of ground testing of a flow loop for the study of low velocity boiling, eventually to take place also in microgravity. In the interim, variable buoyancy normal to the heater surface is achieved by rotation of the entire loop relative to earth gravity. Of course, this is at the expense of varying the buoyancy parallel to the heater surface. Two questions which must be resolved early in the study of flow boiling in microgravity are (1) the lower limits of liquid flow velocity where buoyancy effects become significant to the boiling process (2) the effect of lower liquid flow velocities on the Critical Heat Flux when buoyancy is removed. Results of initial efforts in these directions are presented, albeit restricted currently to the ever present earth gravity.
Measurement of Key Pool BOiling Parameters in nanofluids for Nuclerar Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bang, In C; Buongiorno, Jdacopo; Hu, Lin-wen
Nanofluids, colloidal dispersions of nanoparticles in a base fluid such as water, can afford very significant Critical Heat Flux (CHF) enhancement. Such engineered fluids potentially could be employed in reactors as advanced coolants in safety systems with significant safety and economic advantages. However, a satisfactory explanation of the CHF enhancement mechanism in nanofluids is lacking. To close this gap, we have identified the important boiling parameters to be measured. These are the properties (e.g., density, viscosity, thermal conductivity, specific heat, vaporization enthalpy, surface tension), hydrodynamic parameters (i.e., bubble size, bubble velocity, departure frequency, hot/dry spot dynamics) and surface conditions (i.e.,more » contact angle, nucleation site density). We have also deployed a pool boiling facility in which many such parameters can be measured. The facility is equipped with a thin indium-tin-oxide heater deposited over a sapphire substrate. An infra-red high-speed camera and an optical probe are used to measure the temperature distribution on the heater and the hydrodynamics above the heater, respectively. The first data generated with this facility already provide some clue on the CHF enhancement mechanism in nanofluids. Specifically, the progression to burnout in a pure fluid (ethanol in this case) is characterized by a smoothly-shaped and steadily-expanding hot spot. By contrast, in the ethanol-based nanofluid the hot spot pulsates and the progression to burnout lasts longer, although the nanofluid CHF is higher than the pure fluid CHF. The presence of a nanoparticle deposition layer on the heater surface seems to enhance wettability and aid hot spot dissipation, thus delaying burnout.« less
Physical quality of Simental Ongole crossbred silverside meat at various boiling times
NASA Astrophysics Data System (ADS)
Riyanto, J.; Cahyadi, M.; Guntari, W. S.
2018-03-01
This study aims to determine the physical quality of silverside beef meat at various boiling times. Samples that have been used are the back thigh or silverside meat. Treatment of boiling meat included TR (meat without boiled), R15 (boiled 15 minutes), and R30 (boiled for 30 minutes). The experimental design using Completely Randomized Design with 3 replications. Each replication was done in triple physical quality test. Determination of physical quality was performed at the Livestock Industry and Processing Laboratory at Sebelas Maret University Surakarta and the Meat Technology Laboratory at the Faculty of Animal Husbandry of Gadjah Mada University. The result of variance analysis showed that boiling affect cooking loss (P≥0.05) and but did not affect (P≤0,05) pH, water holding capacity and meat tenderness. The conclusions of the study showed that boiling for 15 minutes and 30 minutes decreased the cooking loss of Simental Ongole Crossbred silverside meat. Meat physical quality of pH, water holding capacity and the value of tenderness is not affected by boiling for 15 and 30 minutes.
Transition boiling heat transfer and the film transition regime
NASA Technical Reports Server (NTRS)
Ramilison, J. M.; Lienhard, J. H.
1987-01-01
The Berenson (1960) flat-plate transition-boiling experiment has been recreated with a reduced thermal resistance in the heater, and an improved access to those portions of the transition boiling regime that have a steep negative slope. Tests have been made in Freon-113, acetone, benzene, and n-pentane boiling on horizontal flat copper heaters that have been mirror-polished, 'roughened', or teflon-coated. The resulting data reproduce and clarify certain features observed by Berenson: the modest surface finish dependence of boiling burnout, and the influence of surface chemistry on both the minimum heat flux and the mode of transition boiling, for example. A rational scheme of correlation yields a prediction of the heat flux in what Witte and Lienhard (1982) previously identified as the 'film-transition boiling' region. It is also shown how to calculate the heat flux at the boundary between the pure-film, and the film-transition, boiling regimes, as a function of the advancing contact angle.
NASA Technical Reports Server (NTRS)
Bamberger, Helmut H.; Robinson, R. Craig; Jurns, John M.; Grasl, Steven J.
2011-01-01
Glenn Research Center s Creek Road Cryogenic Complex, Small Multi-Purpose Research Facility (SMiRF) recently completed validation / checkout testing of a new liquid methane delivery system and liquid methane (LCH4) conditioning system. Facility checkout validation was conducted in preparation for a series of passive thermal control technology tests planned at SMiRF in FY10 using a flight-like propellant tank at simulated thermal environments from 140 to 350K. These tests will validate models and provide high quality data to support consideration of LCH4/LO2 propellant combination option for a lunar or planetary ascent stage.An infrastructure has been put in place which will support testing of large amounts of liquid methane at SMiRF. Extensive modifications were made to the test facility s existing liquid hydrogen system for compatibility with liquid methane. Also, a new liquid methane fluid conditioning system will enable liquid methane to be quickly densified (sub-cooled below normal boiling point) and to be quickly reheated to saturation conditions between 92 and 140 K. Fluid temperatures can be quickly adjusted to compress the overall test duration. A detailed trade study was conducted to determine an appropriate technique to liquid conditioning with regard to the SMiRF facility s existing infrastructure. In addition, a completely new roadable dewar has been procured for transportation and temporary storage of liquid methane. A new spherical, flight-representative tank has also been fabricated for integration into the vacuum chamber at SMiRF. The addition of this system to SMiRF marks the first time a large-scale liquid methane propellant test capability has been realized at Glenn.This work supports the Cryogenic Fluid Management Project being conducted under the auspices of the Exploration Technology Development Program, providing focused cryogenic fluid management technology efforts to support NASA s future robotic or human exploration missions.
Steady State Film Boiling Heat Transfer Simulated With Trace V4.160
DOE Office of Scientific and Technical Information (OSTI.GOV)
Audrius Jasiulevicius; Rafael Macian-Juan
2006-07-01
This paper presents the results of the assessment and analysis of TRACE v4.160 heat transfer predictions in the post-CHF (critical heat flux) region and discusses the possibilities to improve the TRACE v4.160 code predictions in the film boiling heat transfer when applying different film boiling correlations. For this purpose, the TRACE v4.160-calculated film boiling heat flux and the resulting maximum inner wall temperatures during film boiling in single tubes were compared with experimental data obtained at the Royal Institute of Technology (KTH) in Stockholm, Sweden. The experimental database included measurements for pressures ranging from 30 to 200 bar and coolantmore » mass fluxes from 500 to 3000 kg/m{sup 2}s. It was found that TRACE v4.160 does not produce correct predictions of the film boiling heat flux, and consequently of the maximum inner wall temperature in the test section, under the wide range of conditions documented in the KTH experiments. In particular, it was found that the standard TRACE v4.160 under-predicts the film boiling heat transfer coefficient at low pressure-low mass flux and high pressure-high mass flux conditions. For most of the rest of the investigated range of parameters, TRACE v4.160 over-predicts the film boiling heat transfer coefficient, which can lead to non-conservative predictions in applications to nuclear power plant analyses. Since no satisfactory agreement with the experimental database was obtained with the standard TRACE v4.160 film boiling heat transfer correlations, we have added seven film boiling correlations to TRACE v4.160 in order to investigate the possibility to improve the code predictions for the conditions similar to the KTH tests. The film boiling correlations were selected among the most commonly used film boiling correlations found in the open literature, namely Groeneveld 5.7, Bishop (2 correlations), Tong, Konkov, Miropolskii and Groeneveld-Delorme correlations. The only correlation among the investigated, which resulted in a significant improvement of TRACE predictions, was the Groeneveld 5.7. It was found, that replacing the current film boiling correlation (Dougall-Rohsenow) for the wall-togas heat transfer with Groeneveld 5.7 improves the code predictions for the film boiling heat transfer at high qualities in single tubes in the entire range of pressure and coolant mass flux considered. (authors)« less
Miniature Joule Thomson (JT) CryoCoolers for Propellant Management
NASA Technical Reports Server (NTRS)
Kapat, Jay; Chow, Louis
2002-01-01
A proof-of-concept project is proposed here that would attempt to demonstrate how miniature cryocoolers can be used to chill the vacuum jacket line of a propellant transfer line and thus to achieve transfer line pre-chill, zero boil off and possible propellant densification. The project would be performed both at UCF and KSC, with all of the cryogenic testing taking place in the KSC cryogenic test bed. A LN2 line available in that KSC test facility would serve to simulate a LOX transfer line. Under this project, miniature and highly efficient cold heads would be designed. Two identical cold heads will be fabricated and then integrated with a JT-type cryogenic system (consisting of a common compressor and a common external heat exchanger). The two cold heads will be integrated into the vacuum jacket of a LN2 line in the KSC cryo lab, where the testing will take place.
NASA Astrophysics Data System (ADS)
Notardonato, W. U.; Swanger, A. M.; E Fesmire, J.; Jumper, K. M.; Johnson, W. L.; Tomsik, T. M.
2017-12-01
NASA has completed a series of tests at the Kennedy Space Center to demonstrate the capability of using integrated refrigeration and storage (IRAS) to remove energy from a liquid hydrogen (LH2) tank and control the state of the propellant. A primary test objective was the keeping and storing of the liquid in a zero boil-off state, so that the total heat leak entering the tank is removed by a cryogenic refrigerator with an internal heat exchanger. The LH2 is therefore stored and kept with zero losses for an indefinite period of time. The LH2 tank is a horizontal cylindrical geometry with a vacuum-jacketed, multilayer insulation system and a capacity of 125,000 liters. The closed-loop helium refrigeration system was a Linde LR1620 capable of 390W cooling at 20K (without any liquid nitrogen pre-cooling). Three different control methods were used to obtain zero boil-off: temperature control of the helium refrigerant, refrigerator control using the tank pressure sensor, and duty cycling (on/off) of the refrigerator as needed. Summarized are the IRAS design approach, zero boil-off control methods, and results of the series of zero boil-off tests.
NASA Technical Reports Server (NTRS)
Notardonato, W. U.; Swanger, A. M.; Fesmire, J. E.; Jumper, K. M.; Johnson, W. L.; Tomsik, T. M.
2017-01-01
NASA has completed a series of tests at the Kennedy Space Center to demonstrate the capability of using integrated refrigeration and storage (IRAS) to remove energy from a liquid hydrogen (LH2) tank and control the state of the propellant. A primary test objective was the keeping and storing of the liquid in a zero boil-off state, so that the total heat leak entering the tank is removed by a cryogenic refrigerator with an internal heat exchanger. The LH2 is therefore stored and kept with zero losses for an indefinite period of time. The LH2 tank is a horizontal cylindrical geometry with a vacuum-jacketed, multi-layer insulation system and a capacity of 125,000 liters. The closed-loop helium refrigeration system was a Linde LR1620 capable of 390W cooling at 20K (without any liquid nitrogen pre-cooling). Three different control methods were used to obtain zero boil-off: temperature control of the helium refrigerant, refrigerator control using the tank pressure sensor, and duty cycling (on/off) of the refrigerator as needed. Summarized are the IRAS design approach, zero boil-off control methods, and results of the series of zero boil-off tests.
Design and test of a compact optics system for the pool boiling experiment
NASA Technical Reports Server (NTRS)
Ling, Jerri S.; Laubenthal, James R.
1990-01-01
The experiment described seeks to improve the understanding of the fundamental mechanisms that constitute nucleate pool boiling. The vehicle for accomplishing this is an investigation, including tests to be conducted in microgravity and coupled with appropriate analyses, of the heat transfer and vapor bubble dynamics associated with nucleation, bubble growth/collapse and subsequent motion, considering the interrelations between buoyancy, momentum and surface tension which will govern the motion of the vapor and surrounding liquid, as a function of the heating rate at the heat transfer surface and the temperature level and distribution in the bulk liquid. The experiment is designed to be contained within the confines of a Get-Away-Special Canister (GAS Can) installed in the bay of the space shuttle. When the shuttle reaches orbit, the experiment will be turned on and testing will proceed automatically. In the proposed Pool Boiling Experiment a pool of liquid, initially at a precisely defined pressure and temperature, will be subjected to a step imposed heat flux from a semitransparent thin-film heater forming part of one wall of the container such that boiling is initiated and maintained for a defined period of time at a constant pressure level. Transient measurements of the heater surface and fluid temperatures near the surface will be made, noting especially the conditions at the onset of boiling, along with motion photography of the boiling process in two simultaneous views, from beneath the heating surface and from the side. The conduct of the experiment and the data acquisition will be completely automated and self-contained. For the initial flight, a total of nine tests are proposed, with three levels of heat flux and three levels of subcooling. The design process used in the development and check-out of the compact photographic/optics system for the Pool Boiling Experiment is documented.
Alessandri, C; Zennaro, D; Scala, E; Ferrara, R; Bernardi, M Livia; Santoro, M; Palazzo, P; Mari, A
2012-03-01
Egg allergy is a very common finding in early childhood. Detecting hen's egg (HE) allergy outgrowing and reintroduction of food containing egg is a task for the allergist. We sought to evaluate the suitability of boiled egg food challenge compared with IgE to allergenic molecules from HE white using a microarray system. Sixty-eight children referring to our centre by the family paediatricians for a suspected egg allergy were enrolled. Patients underwent double-blind, placebo-controlled food challenge with boiled and raw eggs. Challenge outcomes were compared with skin tests performed using egg white and yolk commercial extracts, to prick-prick test with boiled and raw egg white and yolk, total IgE, egg white specific IgE detected using ImmunoCAP and IgE to egg allergens available on the immunosolid phase allergen chip (ISAC) 103 microarray. Nineteen subjects (28%) were reactive to both raw and boiled egg, 14 (20.5%) to raw egg only and 35 (51.4%) tolerated both boiled and raw egg. Efficiency analysis was carried out using both raw and boiled egg challenges as gold standard. Forty four of 47 Gal d 1 negative patients tolerated boiled egg (94%). Conversely, 20 of 21 Gal d 1 positive patients reacted to raw egg (95%). None of the other tests was able to discriminate patients' response to HE challenge. Furthermore, Gal d 1 positivity seems to lead to broader environmental allergen IgE sensitization. The Gal d 1 IgE reactivity appears to be a very good predictor of HE clinical allergy. Gal d 1 positive children have a high frequency of HE allergy, whereas Gal d 1 negative children have a high frequency of tolerance to boiled egg. Multiple specific IgE detection by means of ISAC improves the diagnostic approach in HE allergic children, disclosing other food and inhalant allergic sensitizations, anyhow requiring a comprehensive clinical evaluation. © 2011 Blackwell Publishing Ltd.
Methods of producing transportation fuel
Nair, Vijay [Katy, TX; Roes, Augustinus Wilhelmus Maria [Houston, TX; Cherrillo, Ralph Anthony [Houston, TX; Bauldreay, Joanna M [Chester, GB
2011-12-27
Systems, methods, and heaters for treating a subsurface formation are described herein. At least one method for producing transportation fuel is described herein. The method for producing transportation fuel may include providing formation fluid having a boiling range distribution between -5.degree. C. and 350.degree. C. from a subsurface in situ heat treatment process to a subsurface treatment facility. A liquid stream may be separated from the formation fluid. The separated liquid stream may be hydrotreated and then distilled to produce a distilled stream having a boiling range distribution between 150.degree. C. and 350.degree. C. The distilled liquid stream may be combined with one or more additives to produce transportation fuel.
Stability Estimation of ABWR on the Basis of Noise Analysis
NASA Astrophysics Data System (ADS)
Furuya, Masahiro; Fukahori, Takanori; Mizokami, Shinya; Yokoya, Jun
In order to investigate the stability of a nuclear reactor core with an oxide mixture of uranium and plutonium (MOX) fuel installed, channel stability and regional stability tests were conducted with the SIRIUS-F facility. The SIRIUS-F facility was designed and constructed to provide a highly accurate simulation of thermal-hydraulic (channel) instabilities and coupled thermalhydraulics-neutronics instabilities of the Advanced Boiling Water Reactors (ABWRs). A real-time simulation was performed by modal point kinetics of reactor neutronics and fuel-rod thermal conduction on the basis of a measured void fraction in a reactor core section of the facility. A time series analysis was performed to calculate decay ratio and resonance frequency from a dominant pole of a transfer function by applying auto regressive (AR) methods to the time-series of the core inlet flow rate. Experiments were conducted with the SIRIUS-F facility, which simulates ABWR with MOX fuel installed. The variations in the decay ratio and resonance frequency among the five common AR methods are within 0.03 and 0.01 Hz, respectively. In this system, the appropriate decay ratio and resonance frequency can be estimated on the basis of the Yule-Walker method with the model order of 30.
Pretest thermal analysis of the Tuff Water Migration/In-Situ Heater Experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bulmer, B.M.
This report describes the pretest thermal analysis for the Tuff Water Migration/In-Situ Heater Experiment to be conducted in welded tuff in G-tunnel, Nevada Test Site. The parametric thermal modeling considers variable boiling temperature, tuff thermal conductivity, tuff emissivity, and heater operating power. For nominal tuff properties, some near field boiling is predicted for realistic operating power. However, the extent of boiling will be strongly determined by the ambient (100% water saturated) rock thermal conductivity. In addition, the thermal response of the heater and of the tuff within the dry-out zone (i.e., bounded by boiling isotherm) is dependent on the temperaturemore » variation of rock conductivity as well as the extent of induced boiling.« less
Bubble dynamics, two-phase flow, and boiling heat transfer in a microgravity environment
NASA Technical Reports Server (NTRS)
Chung, Jacob N.
1994-01-01
The two-phase bubbly flow and boiling heat transfer in microgravity represents a substantial challenge to scientists and engineers and yet there is an urgent need to seek fundamental understanding in this area for future spacecraft design and space missions. At Washington State University, we have successfully designed, built and tested a 2.1 second drop tower with an innovation airbag deceleration system. Microgravity boiling experiments performed in our 0.6 second Drop Tower produced data flow visualizations that agree with published results and also provide some new understanding concerning flow boiling and microgravity bubble behavior. On the analytical and numerical work, the edge effects of finite divergent electrode plates on the forces experienced by bubbles were investigated. Boiling in a concentric cylinder microgravity and an electric field was numerically predicted. We also completed a feasibility study for microgravity boiling in an acoustic field.
NASA Technical Reports Server (NTRS)
Chiaramonte, Fran
2002-01-01
This paper presents viewgraphs of NASA's strategic and fundamental research program at the Office of Biological and Physical Research (OBPR). The topics include: 1) Colloid-Polymer Samples; 2) Pool Boiling Experiment; 3) The Dynamics of Miscible Interfaces: A Space Flight Experiment (MIDAS); and 4) ISS and Ground-based Facilities.
Numerical Modeling of Propellant Boil-Off in a Cryogenic Storage Tank
NASA Technical Reports Server (NTRS)
Majumdar, A. K.; Steadman, T. E.; Maroney, J. L.; Sass, J. P.; Fesmire, J. E.
2007-01-01
A numerical model to predict boil-off of stored propellant in large spherical cryogenic tanks has been developed. Accurate prediction of tank boil-off rates for different thermal insulation systems was the goal of this collaboration effort. The Generalized Fluid System Simulation Program, integrating flow analysis and conjugate heat transfer for solving complex fluid system problems, was used to create the model. Calculation of tank boil-off rate requires simultaneous simulation of heat transfer processes among liquid propellant, vapor ullage space, and tank structure. The reference tank for the boil-off model was the 850,000 gallon liquid hydrogen tank at Launch Complex 39B (LC- 39B) at Kennedy Space Center, which is under study for future infrastructure improvements to support the Constellation program. The methodology employed in the numerical model was validated using a sub-scale model and tank. Experimental test data from a 1/15th scale version of the LC-39B tank using both liquid hydrogen and liquid nitrogen were used to anchor the analytical predictions of the sub-scale model. Favorable correlations between sub-scale model and experimental test data have provided confidence in full-scale tank boil-off predictions. These methods are now being used in the preliminary design for other cases including future launch vehicles
NaK pool-boiler bench-scale receiver durability test: Test results and materials analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andraka, C.E.; Goods, S.H.; Bradshaw, R.W.
1994-06-01
Pool-boiler reflux receivers have been considered as an alternative to heat pipes for the input of concentrated solar energy to Stirling-cycle engines in dish-Stirling electric generation systems. Pool boilers offer simplicity in design and fabrication. The operation of a full-scale pool-boiler receiver has been demonstrated for short periods of time. However, to generate cost-effective electricity, the receiver must operate Without significant maintenance for the entire system life, as much as 20 to 30 years. Long-term liquid-metal boiling stability and materials compatibility with refluxing NaK-78 is not known and must be determined for the pool boiler receiver. No boiling system hasmore » been demonstrated for a significant duration with the current porous boiling enhancement surface and materials. Therefore, it is necessary to simulate the full-scale pool boiler design as much as possible, including flux levels, materials, and operating cycles. On-sun testing is impractical because of the limited test time available. A test vessel was constructed with a porous boiling enhancement surface. The boiling surface consisted of a brazed stainless steel powder with about 50% porosity. The vessel was heated with a quartz lamp array providing about go W/CM2 peak incident thermal flux. The vessel was charged with NaK-78. This allows the elimination of costly electric preheating, both on this test and on fullscale receivers. The vessel was fabricated from Haynes 230 alloy. The vessel operated at 750{degrees}C around the clock, with a 1/2-hour shutdown cycle to ambient every 8 hours. The test completed 7500 hours of lamp-on operation time, and over 1000 startups from ambient. The test was terminated when a small leak in an Inconel 600 thermowell was detected. The test design and data are presented here. Metallurgical analysis of virgin and tested materials has begun, and initial results are also presented.« less
Nucleate Boiling Heat Transfer Studied Under Reduced-Gravity Conditions
NASA Technical Reports Server (NTRS)
Chao, David F.; Hasan, Mohammad M.
2000-01-01
Boiling is known to be a very efficient mode of heat transfer, and as such, it is employed in component cooling and in various energy-conversion systems. In space, boiling heat transfer may be used in thermal management, fluid handling and control, power systems, and on-orbit storage and supply systems for cryogenic propellants and life-support fluids. Recent interest in the exploration of Mars and other planets and in the concept of in situ resource utilization on the Martian and Lunar surfaces highlights the need to understand how gravity levels varying from the Earth's gravity to microgravity (1g = or > g/g(sub e) = or > 10(exp -6)g) affect boiling heat transfer. Because of the complex nature of the boiling process, no generalized prediction or procedure has been developed to describe the boiling heat transfer coefficient, particularly at reduced gravity levels. Recently, Professor Vijay K. Dhir of the University of California at Los Angeles proposed a novel building-block approach to investigate the boiling phenomena in low-gravity to microgravity environments. This approach experimentally investigates the complete process of bubble inception, growth, and departure for single bubbles formed at a well-defined and controllable nucleation site. Principal investigator Professor Vijay K. Dhir, with support from researchers from the NASA Glenn Research Center at Lewis Field, is performing a series of pool boiling experiments in the low-gravity environments of the KC 135 microgravity aircraft s parabolic flight to investigate the inception, growth, departure, and merger of bubbles from single- and multiple-nucleation sites as a function of the wall superheat and the liquid subcooling. Silicon wafers with single and multiple cavities of known characteristics are being used as test surfaces. Water and PF5060 (an inert liquid) were chosen as test liquids so that the role of surface wettability and the magnitude of the effect of interfacial tension on boiling in reduced gravity can be investigated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Auban, Olivier; Paladino, Domenico; Zboray, Robert
2004-12-15
Twenty-five tests have been carried out in the large-scale thermal-hydraulic facility PANDA to investigate natural-circulation and stability behavior under low-pressure/low-power conditions, when void flashing might play an important role. This work, which extends the current experimental database to a large geometric scale, is of interest notably with regard to the start-up procedures in natural-circulation-cooled boiling water reactors. It should help the understanding of the physical phenomena that may cause flow instability in such conditions and can be used for validation of thermal-hydraulics system codes. The tests were performed at a constant power, balanced by a specific condenser heat removal capacity.more » The test matrix allowed the reactor pressure vessel power and pressure to be varied, as well as other parameters influencing the natural-circulation flow. The power spectra of flow oscillations showed in a few tests a major and unique resonance peak, and decay ratios between 0.5 and 0.9 have been found. The remainder of the tests showed an even more pronounced stable behavior. A classification of the tests is presented according to the circulation modes (from single-phase to two-phase flow) that could be assumed and particularly to the importance and the localization of the flashing phenomenon.« less
Nanoporous metallic surface: Facile fabrication and enhancement of boiling heat transfer
NASA Astrophysics Data System (ADS)
Tang, Yong; Tang, Biao; Qing, Jianbo; Li, Qing; Lu, Longsheng
2012-09-01
The paper reports a flexible and low-cost approach, hot-dip galvanizing and dealloying, for the fabrication of enhanced nanoporous metallic surfaces. A Cu-Zn alloy layer mainly composed of γ-Cu5Zn8 and β'-CuZn was formed during the hot-dipping process. The multiple oxidation peaks recorded in the anodic liner sweep voltammetry measurements indicate different dezincification preferences of the alloy phases. A nanoporous copper surface with approximately 50-200 nm in pore size was obtained after a free corrosion process. The nanoporous structure improves the surface wettability and shows dramatic reduction of wall superheat compared to that of the plain surface in the pool-boiling experiments.
Boiling Experiment Facility (BXF): Post Flight Assessment Anomaly Investigation Report
NASA Technical Reports Server (NTRS)
Booth, Wendell H.
2012-01-01
This document serves as the report for presenting the results and conclusions of investigation activities that were performed to determine the root causes of the anomaly, camera misalignment, and dissolved gas concentration issues and to verify the calibration and accuracy of the pressure and temperature measurements.
76 FR 32238 - Detroit Edison Company, Fermi 2; Exemption
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-03
..., to M. S. Fertel, Nuclear Energy Institute (ADAMS Accession No. ML091410309)). The licensee's request... Programmatic Environmental Assessment and Finding of No Significant Impact (76 FR 187) for the treatment of..., the Commission) now or hereafter in effect. The facility consists of one boiling-water reactor located...
75 FR 14208 - Entergy Nuclear Operations, Inc.; Pilgrim Nuclear Power Station; Exemption
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-24
... for all operating nuclear power plants, but noted that the Commission's regulations provide mechanisms...: June 4, 2009, letter from R. W. Borchardt, NRC, to M. S. Fertel, Nuclear Energy Institute). The... hereafter in effect. The facility consists of a boiling-water reactor located in Plymouth County...
Modeling of a Two-Phase Jet Pump with Phase Change, Shocks and Temperature-Dependent Properties
NASA Technical Reports Server (NTRS)
Sherif, S. A.
1998-01-01
One of the primary motivations behind this work is the attempt to understand the physics of a two-phase jet pump which constitutes part of a flow boiling test facility at NASA-Marshall. The flow boiling apparatus is intended to provide data necessary to design highly efficient two-phase thermal control systems for aerospace applications. The facility will also be capable of testing alternative refrigerants and evaluate their performance using various heat exchangers with enhanced surfaces. The test facility is also intended for use in evaluating single-phase performance of systems currently using CFC refrigerants. Literature dealing with jet pumps is abundant and covers a very wide array of application areas. Example application areas include vacuum pumps which are used in the food industry, power station work, and the chemical industry; ejector systems which have applications in the aircraft industry as cabin ventilators and for purposes of jet thrust augmentation; jet pumps which are used in the oil industry for oil well pumping; and steam-jet ejector refrigeration, to just name a few. Examples of work relevant to this investigation includes those of Fairuzov and Bredikhin (1995). While past researchers have been able to model the two-phase flow jet pump using the one-dimensional assumption with no shock waves and no phase change, there is no research known to the author apart from that of Anand (1992) who was able to account for condensation shocks. Thus, one of the objectives of this work is to model the dynamics of fluid interaction between a two-phase primary fluid and a subcooled liquid secondary fluid which is being injected employing atomizing spray injectors. The model developed accounts for phase transformations due to expansion, compression, and mixing. It also accounts for shock waves developing in the different parts of the jet pump as well as temperature and pressure dependencies of the fluid properties for both the primary two-phase mixture and the secondary subcooled liquid. The research effort on which this document partly reports described a relatively simple model capable of describing the performance of a two-phase flow jet pump. The model is based on the isentropic homogeneous expansion/compression hypothesis and is capable of fully incorporating the effects of shocks in both the mixing chamber and the throat/diffuser parts of the pump. The physical system chosen is identical to that experimentally tested by Fairuzov and Bredikhin (1995) and should therefore be relatively easy to validate.
NASA Technical Reports Server (NTRS)
Plachta, David W.; Johnson, Wesley L.; Feller, Jeffrey R.
2015-01-01
Cryogenic propellants such as liquid hydrogen (LH2) and liquid oxygen (LO2) are a part of NASA's future space exploration due to their high specific impulse for rocket motors of upper stages suitable for transporting 10s to 100s of metric tons of payload mass to destinations outside of low earth orbit and for their return. However, the low storage temperatures of LH2 and LO2 cause substantial boil-off losses for missions with durations greater than several months. These losses can be eliminated by incorporating high performance cryocooler technology to intercept heat load to the propellant tanks and modulating the cryocooler to control tank pressure. The active thermal control technology being developed by NASA is the reverse turbo-Brayton cycle cryocooler and its integration to the propellant tank through a distributed cooling tubing network coupled to the tank wall. This configuration was recently tested at NASA Glenn Research Center, in a vacuum chamber and cryoshroud that simulated the essential thermal aspects of low Earth orbit, its vacuum and temperature. Testing consisted of three passive tests with the active cryocooler system off, and 7 active tests, with the cryocooler powered up. The test matrix included zero boil-off tests performed at 90 full and 25 full, and several demonstrations at excess cooling capacity and reduced cooling capacity. From this, the tank pressure response with varied cryocooler power inputs was determined. This test series established that the active cooling system integrated with the propellant tank eliminated boil-off and robustly controlled tank pressure.
Water absorption characteristic of interlocking compressed earth brick units
NASA Astrophysics Data System (ADS)
Bakar, B. H. Abu; Saari, S.; Surip, N. A.
2017-10-01
This study aims to investigate the water absorption characteristic of interlocking compressed earth brick (ICEB) units. Apart from compressive strength, water absorption is an important property in masonry. This property can affect the quality of the brick itself and the bond strength between the brick and mortar in masonry structures and can result in reducing its strength properties. The units were tested for 24 h water absorption and 5 h boiling water absorption. A total of 170 ICEB units from four ICEB types underwent both tests. For the 24 h water absorption, the ICEB units were dried in the oven for 24 h and then cooled before being weighed. Thereafter, each brick was immersed in water for 24 h and weighed. The same specimens used for the 24 h water absorption test were re-used for the 5 h boiling water absorption test. After completing the 24 h water absorption test, the brick was boiled for 5-hours and weighed. The highest water absorption for the ICEBs in the 24-hour water absorption and 5 h boiling water absorption tests are 15.09% and 17.18%, respectively. The half brick has the highest water absorption (15.87%), whereas the beam brick has the lowest (13.20%). The water absorption of an ICEB unit is higher than that of normal bricks, although the water absorption of the former remains below the maximum rate of the brick water absorption (21%).
Numerical Investigation of Microgravity Tank Pressure Rise Due to Boiling
NASA Technical Reports Server (NTRS)
Hylton, Sonya; Ibrahim, Mounir; Kartuzova, Olga; Kassemi, Mohammad
2015-01-01
The ability to control self-pressurization in cryogenic storage tanks is essential for NASAs long-term space exploration missions. Predictions of the tank pressure rise in Space are needed in order to inform the microgravity design and optimization process. Due to the fact that natural convection is very weak in microgravity, heat leaks into the tank can create superheated regions in the liquid. The superheated regions can instigate microgravity boiling, giving rise to pressure spikes during self-pressurization. In this work, a CFD model is developed to predict the magnitude and duration of the microgravity pressure spikes. The model uses the Schrage equation to calculate the mass transfer, with a different accommodation coefficient for evaporation at the interface, condensation at the interface, and boiling in the bulk liquid. The implicit VOF model was used to account for the moving interface, with bounded second order time discretization. Validation of the models predictions was carried out using microgravity data from the Tank Pressure Control Experiment, which flew aboard the Space Shuttle Mission STS-52. Although this experiment was meant to study pressurization and pressure control, it underwent boiling during several tests. The pressure rise predicted by the CFD model compared well with the experimental data. The ZBOT microgravity experiment is scheduled to fly on February 2016 aboard the ISS. The CFD model was also used to perform simulations for setting parametric limits for the Zero-Boil-Off Tank (ZBOT) Experiments Test Matrix in an attempt to avoid boiling in the majority of the test runs that are aimed to study pressure increase rates during self-pressurization. *Supported in part by NASA ISS Physical Sciences Research Program, NASA HQ, USA
BOILING HEAT TRANSFER IN ZERO GRAVITY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zara, E.A.
1964-01-01
The preliminary results of a research program to determine the effects of zero and near zero gravity on boiling heat transfer are presented. Zero gravity conditions were obtained on the ASD KC-135 zero gravity test aircraft, capable of providing 30-seconds of zero gravity. Results of the program to date indicate that nucleate (bubble) boiling heat transfer rates are not greatly affected by the absence of gravity forces. However, radical pressure increases were observed that will dictate special design considerations to space vehicle systems utilizing pool boiling processes, such as cryogenic or other fluid storage vessels where thermal input to themore » fluid is used for vessel pressurization. (auth)« less
Forrest, Eric C.; Don, Sarah M.; Hu, Lin -Wen; ...
2016-02-29
The onset of nucleate boiling (ONB) serves as the thermal-hydraulic operating limit for many research and test reactors. However, boiling incipience under forced convection has not been well-characterized in narrow channel geometries or for oxidized surface conditions. This study presents experimental data for the ONB in vertical upflow of deionized (DI) water in a simulated materials test reactor (MTR) coolant channel. The channel gap thickness and aspect ratio were 1.96 mm and 29:1, respectively. Boiling surface conditions were carefully controlled and characterized, with both heavily oxidized and native oxide surfaces tested. Measurements were performed for mass fluxes ranging from 750more » to 3000 kg/m 2s and for subcoolings ranging from 10 to 45°C. ONB was identified using a combination of high-speed visual observation, surface temperature measurements, and channel pressure drop measurements. Surface temperature measurements were found to be most reliable in identifying the ONB. For the nominal (native oxide) surface, results indicate that the correlation of Bergles and Rohsenow, when paired with the appropriate single-phase heat transfer correlation, adequately predicts the ONB heat flux. Furthermore, incipience on the oxidized surface occurred at a higher heat flux and superheat than on the plain surface.« less
Boiling local heat transfer enhancement in minichannels using nanofluids
2013-01-01
This paper reports an experimental study on nanofluid convective boiling heat transfer in parallel rectangular minichannels of 800 μm hydraulic diameter. Experiments are conducted with pure water and silver nanoparticles suspended in water base fluid. Two small volume fractions of silver nanoparticles suspended in water are tested: 0.000237% and 0.000475%. The experimental results show that the local heat transfer coefficient, local heat flux, and local wall temperature are affected by silver nanoparticle concentration in water base fluid. In addition, different correlations established for boiling flow heat transfer in minichannels or macrochannels are evaluated. It is found that the correlation of Kandlikar and Balasubramanian is the closest to the water boiling heat transfer results. The boiling local heat transfer enhancement by adding silver nanoparticles in base fluid is not uniform along the channel flow. Better performances and highest effect of nanoparticle concentration on the heat transfer are obtained at the minichannels entrance. PMID:23506445
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-01
.... Borchardt, NRC, to M. S. Fertel, Nuclear Energy Institute, ADAMS Accession No. ML091410309). The licensee's... effect. The facility consists of one boiling water reactor and two pressurized water reactors located in... public. The supplemental January 12, 2010, letter contains, as an attachment, an environmental assessment...
75 FR 15749 - Entergy Operations, Inc., Grand Gulf Nuclear Station, Unit 1; Exemption
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-30
... request to extend the rule's compliance date for all operating nuclear power plants, but noted that the... (Nuclear Energy Institute) dated June 4, 2009. The licensee's request for an exemption is therefore...) now or hereafter in effect. The facility consists of a boiling-water reactor located in Claiborne...
75 FR 14209 - Entergy Nuclear Operations, Inc.; Vermont Yankee Nuclear Power Station; Exemption
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-24
... compliance date for all operating nuclear power plants, but noted that the Commission's regulations provide...: June 4, 2009, letter from R.W. Borchardt, NRC, to M.S. Fertel, Nuclear Energy Institute). The licensee... Commission) now or hereafter in effect. The facility consists of a boiling-water reactor located in Windham...
75 FR 15462 - PPL Susquehanna, LLC; Susquehanna Steam Electric Station, Units 1 and 2; Exemption
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-29
... nuclear power plants, but noted that the Commission's regulations provide mechanisms for individual [[Page... dated June 4, 2009, from R.W. Borchardt, NRC, to M.S. Fertel, Nuclear Energy Institute, Agencywide... Commission (NRC, the Commission) now or hereafter in effect. The facility consists of two boiling-water...
10 CFR 50.44 - Combustible gas control for nuclear power reactors.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 1 2014-01-01 2014-01-01 false Combustible gas control for nuclear power reactors. 50.44... FACILITIES Standards for Licenses, Certifications, and Regulatory Approvals § 50.44 Combustible gas control... capability for ensuring a mixed atmosphere. (2) Combustible gas control. (i) All boiling water reactors with...
10 CFR 50.44 - Combustible gas control for nuclear power reactors.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 1 2010-01-01 2010-01-01 false Combustible gas control for nuclear power reactors. 50.44... FACILITIES Standards for Licenses, Certifications, and Regulatory Approvals § 50.44 Combustible gas control... capability for ensuring a mixed atmosphere. (2) Combustible gas control. (i) All boiling water reactors with...
10 CFR 50.44 - Combustible gas control for nuclear power reactors.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 1 2012-01-01 2012-01-01 false Combustible gas control for nuclear power reactors. 50.44... FACILITIES Standards for Licenses, Certifications, and Regulatory Approvals § 50.44 Combustible gas control... capability for ensuring a mixed atmosphere. (2) Combustible gas control. (i) All boiling water reactors with...
Low temperature dissolution flowsheet for Pu metal
Daniel, Jr., William E.; Almond, Philip M.; Rudisill, Tracy S.
2017-06-30
The Savannah River National Laboratory was requested to develop a Pu metal dissolution flowsheet at two reduced temperature ranges for implementation in the Savannah River Site H-Canyon facility. The dissolution and H 2 generation rates during Pu metal dissolution were investigated using a dissolving solution at ambient temperature (20–30°C) and for an intermediate temperature of 50–60°C. The Pu metal dissolution rate measured at 57°C was approximately 20 times slower than at boiling (112–116°C). As a result, the dissolution rate at ambient temperature (24°C) was approximately 80 times slower than the dissolution rate at boiling. Hydrogen concentrations were less than detectablemore » (<0.1 vol%).« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pointer, William David
The objective of this effort is to establish a strategy and process for generation of suitable computational mesh for computational fluid dynamics simulations of departure from nucleate boiling in a 5 by 5 fuel rod assembly held in place by PWR mixing vane spacer grids. This mesh generation process will support ongoing efforts to develop, demonstrate and validate advanced multi-phase computational fluid dynamics methods that enable more robust identification of dryout conditions and DNB occurrence.Building upon prior efforts and experience, multiple computational meshes were developed using the native mesh generation capabilities of the commercial CFD code STAR-CCM+. These meshes weremore » used to simulate two test cases from the Westinghouse 5 by 5 rod bundle facility. The sensitivity of predicted quantities of interest to the mesh resolution was then established using two evaluation methods, the Grid Convergence Index method and the Least Squares method. This evaluation suggests that the Least Squares method can reliably establish the uncertainty associated with local parameters such as vector velocity components at a point in the domain or surface averaged quantities such as outlet velocity magnitude. However, neither method is suitable for characterization of uncertainty in global extrema such as peak fuel surface temperature, primarily because such parameters are not necessarily associated with a fixed point in space. This shortcoming is significant because the current generation algorithm for identification of DNB event conditions relies on identification of such global extrema. Ongoing efforts to identify DNB based on local surface conditions will address this challenge« less
Generalized syntheses of nanocrystal-graphene hybrids in high-boiling-point organic solvents.
Pang, Danny Wei-Ping; Yuan, Fang-Wei; Chang, Yan-Cheng; Li, Guo-An; Tuan, Hsing-Yu
2012-08-07
Nanocrystal-graphene have been proposed as a new kind of promising hybrid for a wide range of application areas including catalysts, electronics, sensors, biomedicine, and energy storage, etc. Although a variety of methods have been developed for the preparation of hybrids, a facile and general synthetic approach is still highly required. In this study, nanocrystal-graphene hybrids were successfully synthesized in high-boiling-point organic solvents. Graphene oxide (GO) nanosheets were modified by oleylamine (OLA) to form a OLA-GO complex in order to be readily incorporated into hydrophobic synthesis. A rich library of highly crystalline nanocrystals, with types including noble metal, metal oxide, magnetic material and semiconductor were successfully grown on chemically converted graphene (CCG), which is simultaneously reduced from GO during the synthesis. High boiling-point solvents afford sufficient thermal energy to assure the high-quality crystalline nature of NCs, therefore the post-annealing process is obviated. Controlled experiments revealed that OLA-GO triggers heterogeneous nucleation and serves as excellent nuclei anchorage media. The protocol developed here brings one step closer to achieve "unity in diversity" on the preparation of nanocrystal-graphene hybrids.
Preliminary design and hazards report. Boiling Reactor Experiment V (BORAX V)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rice, R. E.
1960-02-01
The preliminary objectives of the proposed BORAX V program are to test nuclear superheating concepts and to advance the technology of boiling-water-reactor design by performing experiments which will improve the understanding of factors limiting the stability of boiling reactors at high power densities. The reactor vessel is a cylinder with ellipsoidal heads, made of carbon steel clad internally with stainless steel. Each of the three cores is 24 in. high and has an effective diameter of 39 in. This is a preliminary report. (W.D.M.)
NASA Astrophysics Data System (ADS)
Gao, Le; Bhavnani, Sushil H.
2017-10-01
A saw-toothed shaped microchannel heat sink is investigated for enhancing flow boiling heat transfer. Tests are conducted at mass fluxes of 444-1776 kg/m2 s and an inlet subcooling of 15 °C. The effects of channel geometry on boiling curves, flow patterns, pressure drops, and heat transfer coefficient are discussed in this letter. It is found that heat transfer performance is enhanced by up to 50% especially at heat flux levels associated with the current generation of microprocessors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abdulla, S.; Liu, X.; Anderson, M.H.
One concept being considered for steam generation in innovative nuclear reactor applications, involves water coming into direct contact with a circulating molten metal. The vigorous agitation of the two fluids, the direct liquid-liquid contact and the consequent large interfacial area can give rise to large heat transfer coefficients and rapid steam generation. For an optimum design of such direct contact heat exchange and vaporization systems, detailed knowledge is necessary of the various flow regimes, interfacial transport phenomena, heat transfer and operational stability. In order to investigate the interfacial transport phenomena, heat transfer and operational stability of direct liquid-liquid contact, amore » series of experiments are being performed in a 1-d test facility at Argonne National Laboratory and a 2-d experimental facility at UW-Madison. Each of the experimental facilities primarily consist of a liquid-metal melt chamber, heated test section (10 cm diameter tube for 1-d facility and 10 cm 50 cm rectangle for 2-d facility), water injection system and steam suppression tank. This paper is part II which, primarily addresses results and analysis of a set of preliminary experiments and void fraction measurements conducted in the 2-d facility at UW-Madison, part I deals with the heat transfer in the 1-d test facility at Argonne National Laboratory. A real-time high energy X-ray imaging system was developed and utilized to visualize the multiphase flow and measure line-average local void fractions, time-dependent void fraction distribution as well as estimates of the vapor bubble sizes and velocities. These measurements allowed us to determine the volumetric heat transfer coefficient and gain insight into the local heat transfer mechanisms. In this study, the images were captured at frame rates of 100 fps with spatial resolution of about 7 mm with a full-field view of a 15 cm square and five different positions along the test section height. The full-field average void fraction increases rapidly to about 15% in these preliminary tests, with the apparent boiling length of less than 20 cm. The volumetric heat transfer coefficient between the liquid metal and water are compared to the CRIEPI data, the only prior data for direct contact heat exchange for these liquid metal/water systems. (authors)« less
Ground systems and operations concepts for the Space Infrared Telescope Facility (SIRTF)
NASA Technical Reports Server (NTRS)
Miller, Richard B.
1991-01-01
Key requirements and ground systems implementation strategy for SIRTF which presents a significant challenge in the operational phase of the mission are discussed. The facility is aimed at reliably integrating a guaranteed time program, requests from about 200 guest observer teams per year, and observatory maintenance. SIRFT is characterized by the five-year life time due to cryogen boil-off which means that the ground system must be fully operational at launch and must operate with an efficiency and timeliness rarely achieved in previous space missions.
NASA Astrophysics Data System (ADS)
Riyanto, J.; Sudibya; Cahyadi, M.; Aji, A. P.
2018-01-01
This aim of this study was to determine the quality of nutritional contents of beef brisket point end of Simental Ongole Crossbred meat in various boiling temperatures. Simental Ongole Crossbred had been fattened for 9 months. Furthermore, they were slaughtered at slaughterhouse and brisket point end part of meat had been prepared to analyse its nutritional contents using Food Scan. These samples were then boiled at 100°C for 0 (TR), 15 (R15), and 30 (R30) minutes, respectively. The data was analysed using Randomized Complete Design (CRD) and Duncan’s multiple range test (DMRT) had been conducted to differentiate among three treatments. The results showed that boiling temperatures significantly affected moisture, and cholesterol contents of beef (P<0.05) while fat content was not significantly affected by boiling temperatures. The boiling temperature decreased beef water contents from 72.77 to 70.84%, on the other hand, the treatment increased beef protein and cholesterol contents from 20.77 to 25.14% and 47.55 to 50.45 mg/100g samples, respectively. The conclusion of this study was boiling of beef at 100°C for 15 minutes and 30 minutes decreasing water content and increasing protein and cholesterol contents of brisket point end of Simental Ongole Crossbred beef.
NASA Technical Reports Server (NTRS)
Herman, Cila; Iacona, Estelle; Acquaviva, Tom; Coho, Bill; Grant, Nechelle; Nahra, Henry; Sankaran, Subramanian; Taylor, Al; Julian, Ed; Robinson, Dale;
2001-01-01
The BCOEL project focuses on improving pool boiling heat transfer and bubble control in microgravity by exposing the fluid to electric fields. The electric fields induce a body force that can replace gravity in the low gravity environment, and enhance bubble removal from thc heated surface. A better understanding of microgravity effects on boiling with and without electric fields is critical to the proper design of the phase-change-heat-removal equipment for use in space-based applications. The microgravity experiments will focus on the visualization of bubble formation and shape during boiling. Heat fluxes on the boiling surface will be measured, and, together with the measured driving temperature differences, used to plot boiling curvcs for different electric field magnitudes. Bubble formation and boiling processes were found to be extremely sensitive to g-jitter. The duration of the experimental run is critical in order to achieve steady state in microgravity experiments. The International Space Station provides conditions suitable for such experiments. The experimental appararus to be used in the study is described in the paper. The apparatus will be tested in the KC-135 first, and microgravity experiments will be conducted on board of the International Space Station using the Microgravity Science Glovebox as the experimental platform.
NASA Technical Reports Server (NTRS)
Herman, Cila; Iacona, Estelle; Acquaviva, Tom; Coho, Bill; Grant, Nechelle; Nahra, Henry; Taylor, Al; Julian, Ed; Robinson, Dale; VanZandt, Dave
2001-01-01
The BCOEL project focuses on improving pool boiling heat transfer and bubble control in microgravity by exposing the fluid to electric fields. The electric fields induce a body force that can replace gravity in the low gravity environment, and enhance bubble removal from the heated surface. A better understanding of microgravity effects on boiling with and without electric fields is critical to the proper design of the phase-change-heat-removal equipment for use in spacebased applications. The microgravity experiments will focus on the visualization of bubble formation and shape during boiling. Heat fluxes on the boiling surface will be measured, and, together with the measured driving temperature differences, used to plot boiling curves for different electric field magnitudes. Bubble formation and boiling processes were found to be extremely sensitive to g-jitter. The duration of the experimental run is critical in order to achieve steady state in microgravity experiments. The International Space Station provides conditions suitable for such experiments. The experimental apparatus to be used in the study is described in the paper. The apparatus will be tested in the KC-135 first, and microgravity experiments will be conducted on board of the International Space Station using the Microgravity Science Glovebox as the experimental platform.
Surface buffing and its effect on chloride induced SCC of 304L austenitic stainless steel
NASA Astrophysics Data System (ADS)
kumar, Pandu Sunil; Ghosh Acharyya, Swati; Ramana Rao, S. V.; Kapoor, Komal
2018-02-01
The study focuses on the impact of buffing operation on the stress corrosion cracking (SCC) susceptibility of 304L austenitic stainless steel (SS). The SCC susceptibility of the buffed surfaces were determined by testing in boiling magnesium chloride (MgCl2) environment as per ASTM G 36. Test was conducted for 3hr, 9hr and 72hr to study the SCC susceptibility. Buffed surfaces were resistant to SCC even after 72hr of exposure to boiling MgCl2. The surface and cross section of the samples were examined for both before and after exposure to boiling MgCl2 and was characterized using optical microscopy. The study revealed that buffing operation induces compressive residual stresses on the surface, which helps in protecting the surface from SCC.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-03
... Methodology for Boiling Water Reactors, June 2011. To support use of Topical Report ANP-10307PA, Revision 0... the NRC's E-Filing system does not support unlisted software, and the NRC Meta System Help Desk will... Water Reactors with AREVA Topical Report ANP- 10307PA, Revision 0, ``AREVA MCPR Safety Limit Methodology...
76 FR 73609 - Cameron LNG, LLC; Notice of Application
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-29
... 3(a) of the Natural Gas Act (NGA) for authority to construct and operate a boil-off gas (BOG... install facilities consisting of a closed loop refrigeration system at the terminal to liquefy BOG and return such gas in the form of LNG to its storage tanks. Cameron states that the project will not require...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-03
... industry request to extend the rule's compliance date for all operating nuclear power plants, but noted... M.S. Fertel, Nuclear Energy Institute). The licensee's request for an exemption is therefore... effect. The facility consists of two boiling-water reactors located in Appling County, Georgia. 2.0...
Code of Federal Regulations, 2014 CFR
2014-01-01
... light-water nuclear power reactors. 50.46 Section 50.46 Energy NUCLEAR REGULATORY COMMISSION DOMESTIC... reactors. (a)(1)(i) Each boiling or pressurized light-water nuclear power reactor fueled with uranium oxide... evaluation model. This section does not apply to a nuclear power reactor facility for which the...
Code of Federal Regulations, 2013 CFR
2013-01-01
... light-water nuclear power reactors. 50.46 Section 50.46 Energy NUCLEAR REGULATORY COMMISSION DOMESTIC... reactors. (a)(1)(i) Each boiling or pressurized light-water nuclear power reactor fueled with uranium oxide... evaluation model. This section does not apply to a nuclear power reactor facility for which the...
Code of Federal Regulations, 2012 CFR
2012-01-01
... light-water nuclear power reactors. 50.46 Section 50.46 Energy NUCLEAR REGULATORY COMMISSION DOMESTIC... reactors. (a)(1)(i) Each boiling or pressurized light-water nuclear power reactor fueled with uranium oxide... evaluation model. This section does not apply to a nuclear power reactor facility for which the...
Initial fuel temperature effects on burning rate of pool fire.
Chen, Bing; Lu, Shou-Xiang; Li, Chang-Hai; Kang, Quan-Sheng; Lecoustre, Vivien
2011-04-15
The influence of the initial fuel temperature on the burning behavior of n-heptane pool fire was experimentally studied at the State Key Laboratory of Fire Science (SKLFS) large test hall. Circular pool fires with diameters of 100mm, 141 mm, and 200 mm were considered with initial fuel temperatures ranging from 290 K to 363 K. Burning rate and temperature distributions in fuel and vessel wall were recorded during the combustion. The burning rate exhibited five typical stages: initial development, steady burning, transition, bulk boiling burning, and decay. The burning rate during the steady burning stage was observed to be relatively independent of the initial fuel temperature. In contrast, the burning rate of the bulk boiling burning stage increases with increased initial fuel temperature. It was also observed that increased initial fuel temperature decreases the duration of steady burning stage. When the initial temperature approaches the boiling point, the steady burning stage nearly disappears and the burning rate moves directly from the initial development stage to the transition stage. The fuel surface temperature increases to its boiling point at the steady burning stage, shortly after ignition, and the bulk liquid reaches boiling temperature at the bulk boiling burning stage. No distinguished cold zone is formed in the fuel bed. However, boiling zone is observed and the thickness increases to its maximum value when the bulk boiling phenomena occurs. Copyright © 2011 Elsevier B.V. All rights reserved.
Agiang, M A; Umoh, I B; Essien, A I; Eteng, M U
2010-10-15
Evaluations of the effect of prolong cooking on the nutrient and antinutrient composition ofbeniseed and beniseed soup were carried out in this study. Proximate, mineral, vitamin A and C and antinutrient compositions of raw beniseed (BS-R), beniseed boiled (BSB) for 15, 30, 45 and 60 min and beniseed soup (BSS) cooked for the same intervals of time were assessed. Results of the proximate composition analyses showed that raw and boiled beniseed had lower moisture content (5.39-5.51%) than beniseed soups (10.06-15.20%). Nitrogen-free extract (total carbohydrates), fats and phosphorus contents were improved in both the boiled beniseed and beniseed soup while calcium and potassium were increased in the boiled seeds and soup samples respectively. Moisture (in the raw and boiled beniseed), ash, magnesium, zinc, iron contents in both the seed and soup were unchanged in all the samples. Vitamins A and C levels of both boiled beniseed and beniseed soup samples were reduced with increase in cooking time. Beniseed soup had higher protein contents than both the raw and boiled beniseed which decreased with increase in cooking time. Beniseed samples provided good sources of energy (572.97-666.05 kcal/100 g). Except for phytate, the levels of antinutrients tested were lower in the raw and boiled beniseed than in the soup samples which decreased with increase in cooking time. The results are discussed with reference to the effect of prolonged cooking on the nutrient requirements of consumers.
Olga A. Kildisheva; R. Kasten Dumroese; Anthony S. Davis
2013-01-01
Physically dormant seeds of Munro's globemallow (Sphaeralcea munroana (Douglas) Spach [Malvaceae]) were scarified by boiling, tumbling, burning, dry-heating, and burning + heating treatments in an attempt to find an effective, operational, largescale treatment for nurseries and restoration activities. Results indicate that out of the tested treatments, seed...
NASA Astrophysics Data System (ADS)
Dye, S. A.; Johnson, W. L.; Plachta, D. W.; Mills, G. L.; Buchanan, L.; Kopelove, A. B.
2014-11-01
Improvements in cryogenic propellant storage are needed to achieve reduced or Zero Boil Off of cryopropellants, critical for long duration missions. Techniques for reducing heat leak into cryotanks include using passive multi-layer insulation (MLI) and vapor cooled or actively cooled thermal shields. Large scale shields cannot be supported by tank structural supports without heat leak through the supports. Traditional MLI also cannot support shield structural loads, and separate shield support mechanisms add significant heat leak. Quest Thermal Group and Ball Aerospace, with NASA SBIR support, have developed a novel Load Bearing multi-layer insulation (LBMLI) capable of self-supporting thermal shields and providing high thermal performance. We report on the development of LBMLI, including design, modeling and analysis, structural testing via vibe and acoustic loading, calorimeter thermal testing, and Reduced Boil-Off (RBO) testing on NASA large scale cryotanks. LBMLI uses the strength of discrete polymer spacers to control interlayer spacing and support the external load of an actively cooled shield and external MLI. Structural testing at NASA Marshall was performed to beyond maximum launch profiles without failure. LBMLI coupons were thermally tested on calorimeters, with superior performance to traditional MLI on a per layer basis. Thermal and structural tests were performed with LBMLI supporting an actively cooled shield, and comparisons are made to the performance of traditional MLI and thermal shield supports. LBMLI provided a 51% reduction in heat leak per layer over a previously tested traditional MLI with tank standoffs, a 38% reduction in mass, and was advanced to TRL5. Active thermal control using LBMLI and a broad area cooled shield offers significant advantages in total system heat flux, mass and structural robustness for future Reduced Boil-Off and Zero Boil-Off cryogenic missions with durations over a few weeks.
Pool boiling of water-Al2O3 and water-Cu nanofluids on horizontal smooth tubes
2011-01-01
Experimental investigation of heat transfer during pool boiling of two nanofluids, i.e., water-Al2O3 and water-Cu has been carried out. Nanoparticles were tested at the concentration of 0.01%, 0.1%, and 1% by weight. The horizontal smooth copper and stainless steel tubes having 10 mm OD and 0.6 mm wall thickness formed test heater. The experiments have been performed to establish the influence of nanofluids concentration as well as tube surface material on heat transfer characteristics at atmospheric pressure. The results indicate that independent of concentration nanoparticle material (Al2O3 and Cu) has almost no influence on heat transfer coefficient while boiling of water-Al2O3 or water-Cu nanofluids on smooth copper tube. It seems that heater material did not affect the boiling heat transfer in 0.1 wt.% water-Cu nanofluid, nevertheless independent of concentration, distinctly higher heat transfer coefficient was recorded for stainless steel tube than for copper tube for the same heat flux density. PMID:21711741
NASA Astrophysics Data System (ADS)
Baba, S.; Sakai, T.; Sawada, K.; Kubota, C.; Wada, Y.; Shinmoto, Y.; Ohta, H.; Asano, H.; Kawanami, O.; Suzuki, K.; Imai, R.; Kawasaki, H.; Fujii, K.; Takayanagi, M.; Yoda, S.
2011-12-01
Boiling is one of the efficient modes of heat transfer due to phase change, and is regarded as promising means to be applied for the thermal management systems handling a large amount of waste heat under high heat flux. However, gravity effects on the two-phase flow phenomena and corresponding heat transfer characteristics have not been clarified in detail. The experiments onboard Japanese Experiment Module "KIBO" in International Space Station on boiling two-phase flow under microgravity conditions are proposed to clarify both of heat transfer and flow characteristics under microgravity conditions. To verify the feasibility of ISS experiments on boiling two-phase flow, the Bread Board Model is assembled and its performance and the function of components installed in a test loop are examined.
NASA Astrophysics Data System (ADS)
Arifan, Fahmi; Winarni, Sri; Handoyo, Gentur; Nurdiana, Asri; Nabila Rahma H, Afkar; Risdiyanti, Sri
2018-05-01
There are so many jasmine plantations without any preservation and post production in Kaliprau, Pemalang. The aims of this research are analyzing the amount of antioxidant and organoleptic-hedonic test. The measurement of antioxidant used in this research is using DPPH. The organoleptic and hedonic test on 25 respondents. Jasmines that been used on this research are the flower and the root part. Through the test, some results have been found from the jasmine tea’s sampling with the boiling time of 15 minutes and it contain antioxidant for about 55.0% and 74.84% for the jasmine root tea. Whereas for the boiling time of 30 minutes, it contained 54.00% of antioxidant for the jasmine tea and 84.00% of antioxidant in jasmine root tea. Jasmine tea and jasmine root tea contains flavonoids. Despite the large amount of antioxidant were found in jasmine tea and jasmine root tea (50-100%). There’s a decreasing of antioxidant amount found in the samples, along with the prolonged boiling time. 84% of tresponden like the scent, flavor, color and the texture of jasmine tea and jasmine root tea. These products are finally accepted by the people and have its large amount of antioxidant contain for the jasmine tea.
Chan, Poh Yin; Tong, Chi Ming; Durrant, Marcus C
2011-09-01
An empirical method for estimation of the boiling points of organic molecules based on density functional theory (DFT) calculations with polarized continuum model (PCM) solvent corrections has been developed. The boiling points are calculated as the sum of three contributions. The first term is calculated directly from the structural formula of the molecule, and is related to its effective surface area. The second is a measure of the electronic interactions between molecules, based on the DFT-PCM solvation energy, and the third is employed only for planar aromatic molecules. The method is applicable to a very diverse range of organic molecules, with normal boiling points in the range of -50 to 500 °C, and includes ten different elements (C, H, Br, Cl, F, N, O, P, S and Si). Plots of observed versus calculated boiling points gave R²=0.980 for a training set of 317 molecules, and R²=0.979 for a test set of 74 molecules. The role of intramolecular hydrogen bonding in lowering the boiling points of certain molecules is quantitatively discussed. Crown Copyright © 2011. Published by Elsevier Inc. All rights reserved.
Gravity and Heater Size Effects on Pool Boiling Heat Transfer
NASA Technical Reports Server (NTRS)
Kim, Jungho; Raj, Rishi
2014-01-01
The current work is based on observations of boiling heat transfer over a continuous range of gravity levels between 0g to 1.8g and varying heater sizes with a fluorinert as the test liquid (FC-72/n-perfluorohexane). Variable gravity pool boiling heat transfer measurements over a wide range of gravity levels were made during parabolic flight campaigns as well as onboard the International Space Station. For large heaters and-or higher gravity conditions, buoyancy dominated boiling and heat transfer results were heater size independent. The power law coefficient for gravity in the heat transfer equation was found to be a function of wall temperature under these conditions. Under low gravity conditions and-or for smaller heaters, surface tension forces dominated and heat transfer results were heater size dependent. A pool boiling regime map differentiating buoyancy and surface tension dominated regimes was developed along with a unified framework that allowed for scaling of pool boiling over a wide range of gravity levels and heater sizes. The scaling laws developed in this study are expected to allow performance quantification of phase change based technologies under variable gravity environments eventually leading to their implementation in space based applications.
Zero Boil-OFF Tank Hardware Setup
2017-09-19
iss053e027051 (Sept. 19, 2017) --- Flight Engineer Joe Acaba works in the U.S. Destiny laboratory module setting up hardware for the Zero Boil-Off Tank (ZBOT) experiment. ZBOT uses an experimental fluid to test active heat removal and forced jet mixing as alternative means for controlling tank pressure for volatile fluids. Rocket fuel, spacecraft heating and cooling systems, and sensitive scientific instruments rely on very cold cryogenic fluids. Heat from the environment around cryogenic tanks can cause their pressures to rise, which requires dumping or "boiling off" fluid to release the excess pressure, or actively cooling the tanks in some way.
Multipurpose Thermal Insulation Test Apparatus
NASA Technical Reports Server (NTRS)
Fesmire, James E. (Inventor); Augustynowicz, Stanislaw D. (Inventor)
2002-01-01
A multi-purpose thermal insulation test apparatus is used for testing insulation materials, or other components. The test apparatus is a fluid boil-off calorimeter system for calibrated measurement of the apparent thermal conductivity (k-value) of a specimen material at a fixed vacuum level. The apparatus includes an inner vessel for receiving a fluid with a normal boiling point below ambient temperature, such as liquid nitrogen, enclosed within a vacuum chamber. A cold mass assembly, including the inner vessel and thermal guards, is suspended from the top of the vacuum chamber. Handling tools attach to the cold mass assembly for convenient manipulation of the assembly and for the installation or wrapping of insulation test materials. Liquid nitrogen is typically supplied to the inner vessel using a fill tube with funnel. A single port through the top of the vacuum chamber facilitates both filling and venting. Aerogel composite stacks with reflective films are fastened to the top and the bottom of the inner vessel as thermal guards. The comparative k-value of the insulation material is determined by measuring the boil-off flow rate of gas, the temperature differential across the insulation thickness, and the dimensions (length and diameters) of the test specimen.
Testing of a high capacity research heat pipe
NASA Technical Reports Server (NTRS)
1982-01-01
Tests were performed on a high-capacity channel-wick heat pipe to assess the transport limitations of v-grooves and the effects of boiling. The results showed that transport can vary significantly (less than 50 W) under similar conditions and the continuous boiling was observed at power levels as low as 40 W. In addition, some evidence was found to support the predictions using a groove transport model which shows that transport increases with lower groove densities and longer evaporators. However, due to transport variations, these results were not consistent throughout the program. When a glass fiber wick was installed over the grooves, a relatively low transport level was achieved (80 to 140 W). Based on these results and the identification of some potential causes for them, several design suggestions were recommended for reducing the possibility of boiling and improving groove transport.
Water NSTF Design, Instrumentation, and Test Planning
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lisowski, Darius D.; Gerardi, Craig D.; Hu, Rui
The following report serves as a formal introduction to the water-based Natural convection Shutdown heat removal Test Facility (NSTF) program at Argonne. Since 2005, this US Department of Energy (DOE) sponsored program has conducted large scale experimental testing to generate high-quality and traceable validation data for guiding design decisions of the Reactor Cavity Cooling System (RCCS) concept for advanced reactor designs. The most recent facility iteration, and focus of this report, is the operation of a 1/2 scale model of a water-RCCS concept. Several features of the NSTF prototype align with the conceptual design that has been publicly released formore » the AREVA 625 MWt SC-HTGR. The design of the NSTF also retains all aspects common to a fundamental boiling water thermosiphon, and thus is well poised to provide necessary experimental data to advance basic understanding of natural circulation phenomena and contribute to computer code validation. Overall, the NSTF program operates to support the DOE vision of aiding US vendors in design choices of future reactor concepts, advancing the maturity of codes for licensing, and ultimately developing safe and reliable reactor technologies. In this report, the top-level program objectives, testing requirements, and unique considerations for the water cooled test assembly are discussed, and presented in sufficient depth to support defining the program’s overall scope and purpose. A discussion of the proposed 6-year testing program is then introduced, which outlines the specific strategy and testing plan for facility operations. The proposed testing plan has been developed to meet the toplevel objective of conducting high-quality test operations that span across a broad range of single- and two-phase operating conditions. Details of characterization, baseline test cases, accident scenario, and parametric variations are provided, including discussions of later-stage test cases that examine the influence of geometric variations and off-normal configurations. The facility design follows, including as-built dimensions and specifications of the various mechanical and liquid systems, design choices for the test section, water storage tank, and network piping. Specifications of the instrumentation suite are then presented, along with specific information on performance windows, measurement uncertainties, and installation locations. Finally, descriptions of the control systems and heat removal networks are provided, which have been engineered to support precise quantification of energy balances and facilitate well-controlled test operations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buongiorno, Jacopo; Hu, Lin-wen
2009-07-31
Nanofluids are colloidal dispersions of nanoparticles in water. Many studies have reported very significant enhancement (up to 200%) of the Critical Heat Flux (CHF) in pool boiling of nanofluids (You et al. 2003, Vassallo et al. 2004, Bang and Chang 2005, Kim et al. 2006, Kim et al. 2007). These observations have generated considerable interest in nanofluids as potential coolants for more compact and efficient thermal management systems. Potential Light Water Reactor applications include the primary coolant, safety systems and severe accident management strategies, as reported in other papers (Buongiorno et al. 2008 and 2009). However, the situation of interestmore » in reactor applications is often flow boiling, for which no nanofluid data have been reported so far. In this project we investigated the potential of nanofluids to enhance CHF in flow boiling. Subcooled flow boiling heat transfer and CHF experiments were performed with low concentrations of alumina, zinc oxide, and diamond nanoparticles in water (≤ 0.1 % by volume) at atmospheric pressure. It was found that for comparable test conditions the values of the nanofluid and water heat transfer coefficient (HTC) are similar (within ±20%). The HTC increased with mass flux and heat flux for water and nanofluids alike, as expected in flow boiling. The CHF tests were conducted at 0.1 MPa and at three different mass fluxes (1500, 2000, 2500 kg/m2s) under subcooled conditions. The maximum CHF enhancement was 53%, 53% and 38% for alumina, zinc oxide and diamond, respectively, always obtained at the highest mass flux. A post-mortem analysis of the boiling surface reveals that its morphology is altered by deposition of the particles during nanofluids boiling. A confocal-microscopy-based examination of the test section revealed that nanoparticles deposition not only changes the number of micro-cavities on the surface, but also the surface wettability. A simple model was used to estimate the ensuing nucleation site density changes, but no definitive correlation between the nucleation site density and the heat transfer coefficient data could be found. Wettability of the surface was substantially increased for heater coupons boiled in alumina and zinc oxide nanofluids, and such wettability increase seems to correlate reasonably well with the observed marked CHF enhancement for the respective nanofluids. Interpretation of the experimental data was conducted in light of the governing surface parameters (surface area, contact angle, roughness, thermal conductivity) and existing models. It was found that no single parameter could explain the observed HTC or CHF phenomena.« less
NASA Astrophysics Data System (ADS)
Plachta, D. W.; Johnson, W. L.; Feller, J. R.
2016-03-01
Cryogenic propellants such as liquid hydrogen (LH2) and liquid oxygen (LO2) are a part of NASA's future space exploration plans due to their high specific impulse for rocket motors of upper stages. However, the low storage temperatures of LH2 and LO2 cause substantial boil-off losses for long duration missions. These losses can be eliminated by incorporating high performance cryocooler technology to intercept heat load to the propellant tanks and modulating the cryocooler temperature to control tank pressure. The technology being developed by NASA is the reverse turbo-Brayton cycle cryocooler and its integration to the propellant tank through a distributed cooling tubing network coupled to the tank wall. This configuration was recently tested at NASA Glenn Research Center in a vacuum chamber and cryoshroud that simulated the essential thermal aspects of low Earth orbit, its vacuum and temperature. This test series established that the active cooling system integrated with the propellant tank eliminated boil-off and robustly controlled tank pressure.
NASA Technical Reports Server (NTRS)
Plachta, D. W.; Johnson, W. L.; Feller, J. R.
2015-01-01
Cryogenic propellants such as liquid hydrogen (LH2) and liquid oxygen (LO2) are a part of NASA's future space exploration plans due to their high specific impulse for rocket motors of upper stages. However, the low storage temperatures of LH2 and LO2 cause substantial boil-off losses for long duration missions. These losses can be eliminated by incorporating high performance cryocooler technology to intercept heat load to the propellant tanks and modulating the cryocooler temperature to control tank pressure. The technology being developed by NASA is the reverse turbo-Brayton cycle cryocooler and its integration to the propellant tank through a distributed cooling tubing network coupled to the tank wall. This configuration was recently tested at NASA Glenn Research Center in a vacuum chamber and cryoshroud that simulated the essential thermal aspects of low Earth orbit, its vacuum and temperature. This test series established that the active cooling system integrated with the propellant tank eliminated boil-off and robustly controlled tank pressure.
Boiling behavior of sodium-potassium alloy in a bench-scale solar receiver
NASA Astrophysics Data System (ADS)
Moreno, J. B.; Andraka, C. E.; Moss, T. A.
During 1989-90, a 75-kW(sub t) sodium reflux pool-boiler solar receiver was successfully demonstrated at Sandia National Laboratories. Significant features of this receiver include the following: (1) boiling sodium as the heat transfer medium, and (2) electric-discharge-machined (EDM) cavities as artificial nucleation sites to stabilize boiling. Since this first demonstration, design of a second-generation pool-boiler receiver that will bring the concept closer to commercialization has begun. For long life, the new receiver uses Haynes Alloy 230. For increased safety factors against film boiling and flooding, it has a refined shape and somewhat larger dimensions. To eliminate the need for trace heating, the receiver will boil the sodium-potassium alloy NaK-78 instead of sodium. To reduce manufacturing costs, it will use one of a number of alternatives to EDM cavities for stabilization of boiling. To control incipient-boiling superheats, especially during hot restarts, it will contain a small amount of inert gas. Before the new receiver design could be finalized, bench-scale tests of some of the proposed changes were necessary. A series of bench-scale pool boilers were built from Haynes Alloy 230 and filled with NaK-78. Various boiling-stabilizer candidates were incorporated into them, including laser-drilled cavities and a number of different sintered-powder-metal coatings. These bench-scale pool boilers have been operated at temperatures up to 750 C, heated by quartz lamps with incident radiant fluxes up to 95 W/sq cm. The effects of various orientations and added gases have been studied. Results of these studies are presented.
Conceptual design of two-phase fluid mechanics and heat transfer facility for spacelab
NASA Technical Reports Server (NTRS)
North, B. F.; Hill, M. E.
1980-01-01
Five specific experiments were analyzed to provide definition of experiments designed to evaluate two phase fluid behavior in low gravity. The conceptual design represents a fluid mechanics and heat transfer facility for a double rack in Spacelab. The five experiments are two phase flow patterns and pressure drop, flow boiling, liquid reorientation, and interface bubble dynamics. Hardware was sized, instrumentation and data recording requirements defined, and the five experiments were installed as an integrated experimental package. Applicable available hardware was selected in the experiment design and total experiment program costs were defined.
Flowsheets and source terms for radioactive waste projections
DOE Office of Scientific and Technical Information (OSTI.GOV)
Forsberg, C.W.
1985-03-01
Flowsheets and source terms used to generate radioactive waste projections in the Integrated Data Base (IDB) Program are given. Volumes of each waste type generated per unit product throughput have been determined for the following facilities: uranium mining, UF/sub 6/ conversion, uranium enrichment, fuel fabrication, boiling-water reactors (BWRs), pressurized-water reactors (PWRs), and fuel reprocessing. Source terms for DOE/defense wastes have been developed. Expected wastes from typical decommissioning operations for each facility type have been determined. All wastes are also characterized by isotopic composition at time of generation and by general chemical composition. 70 references, 21 figures, 53 tables.
Transient nucleate pool boiling in microgravity: Some initial results
NASA Technical Reports Server (NTRS)
Merte, Herman, Jr.; Lee, H. S.; Ervin, J. S.
1994-01-01
Variable gravity provides an opportunity to test the understanding of phenomena which are considered to depend on buoyancy, such as nucleate pool boiling. The active fundamental research in nucleate boiling has sought to determine the mechanisms or physical processes responsible for its high effectiveness, manifested by the high heat flux levels possible with relatively low temperature differences. Earlier research on nucleate pool boiling at high gravity levels under steady conditions demonstrated quantitatively that the heat transfer is degraded as the buoyancy normal to the heater surfaced increases. Correspondingly, it was later shown, qualitatively for short periods of time only, that nucleate boiling heat transfer is enhanced as the buoyancy normal to the heater surface is reduced. It can be deduced that nucleate pool boiling can be sustained as a quasi-steady process provided that some means is available to remove the vapor generated from the immediate vicinity of the heater surface. One of the objectives of the research, the initial results of which are presented here, is to quantify the heat transfer associated with boiling in microgravity. Some quantitative results of nucleate pool boiling in high quality microgravity (a/g approximately 10(exp -5)) of 5s duration, obtained in an evacuated drop tower, are presented here. These experiments were conducted as precursors of longer term space experiments. A transient heating technique is used, in which the heater surface is a transparent gold film sputtered on a qua rtz substrate, simultaneously providing the mean surface temperature from resistance thermometry and viewing of the boiling process both from beneath and across the surface. The measurement of the transient mean heater surface temperature permits the computation, by numerical means, of the transient mean heat transfer coefficient. The preliminary data obtained demonstrates that a quasi-steady boiling process can occur in microgravity if the bulk liquid subcooling is sufficiently high and if the imposed heat flux is sufficiently low. This is attributed to suface tension effects at the liquid-vapor-solid junction causing rewetting to take place, sustaining the nucleate boiling. Otherwise, dryout at the heater surface will occur, as observed.
Cryogenic Propellant Long-Term Storage With Zero Boil-Off
NASA Technical Reports Server (NTRS)
Hedayat, Ali; Hastings, L. J.; Bryant, C.; Plachta, D. W.; Cruit, Wendy (Technical Monitor)
2001-01-01
Significant boil-off losses from cryogenic propellant storage systems in long-duration space mission applications result in additional propellant and larger tanks. The potential propellant mass loss reductions with the Zero Boil-off (ZBO) concept are substantial; therefore, further exploration through technology programs has been initiated within NASA. A large-scale demonstration of the ZBO concept has been devised utilizing the Marshall Space Flight Center (MSFC) Multipurpose Hydrogen Test Bed (MHTB) along with a cryo-cooler unit. The ZBO concept consists of an active cryo-cooling system integrated with traditional passive thermal insulation. The cryo-cooler is interfaced with the MHTB and spraybar recirculation/mixer system in a manner that enables thermal energy removal at a rate that equals the total tank heat leak. The liquid hydrogen (LH2) is withdrawn from the tank, passed through a heat exchanger, and then the chilled liquid is sprayed back into the tank through a spraybar. The test series will be performed over a 20-30 day period. Tests will be conducted at multiple fill levels to demonstrate concept viability and to provide benchmark data to be used in analytical model development. In this paper the test set-up and test procedures are presented.
Tank Pressure Control Experiment: Thermal Phenomena in Microgravity
NASA Technical Reports Server (NTRS)
Hasan, Mohammad M.; Lin, Chin S.; Knoll, Richard H.; Bentz, Michael D.
1996-01-01
The report presents the results of the flight experiment Tank Pressure Control Experiment/Thermal Phenomena (TPCE/TP) performed in the microgravity environment of the space shuttle. TPCE/TP, flown on the Space Transportation System STS-52, was a second flight of the Tank Pressure Control Experiment (TPCE). The experiment used Freon 113 at near saturation conditions. The test tank was filled with liquid to about 83% by volume. The experiment consisted of 21 tests. Each test generally started with a heating phase to increase the tank pressure and to develop temperature stratification in the fluid, followed by a fluid mixing phase for the tank pressure reduction and fluid temperature equilibration. The heating phase provided pool boiling data from large (relative to bubble sizes) heating surfaces (0.1046 m by 0.0742 m) at low heat fluxes (0.23 to 1.16 kW/sq m). The system pressure and the bulk liquid subcooling varied from 39 to 78 kPa and 1 to 3 C, respectively. The boiling process during the entire heating period, as well as the jet-induced mixing process for the first 2 min of the mixing period, was also recorded on video. The unique features of the experimental results are the sustainability of high liquid superheats for long periods and the occurrence of explosive boiling at low heat fluxes (0.86 to 1.1 kW/sq m). For a heat flux of 0.97 kW/sq m, a wall superheat of 17.9 C was attained in 10 min of heating. This superheat was followed by an explosive boiling accompanied by a pressure spike of about 38% of the tank pressure at the inception of boiling. However, at this heat flux the vapor blanketing the heating surface could not be sustained. Steady nucleate boiling continued after the explosive boiling. The jet-induced fluid mixing results were obtained for jet Reynolds numbers of 1900 to 8000 and Weber numbers of 0.2 to 6.5. Analyses of data from the two flight experiments (TPCE and TPCE/TP) and their comparison with the results obtained in drop tower experiments suggest that as Bond number approaches zero the flow pattern produced by an axial jet and the mixing time can be predicted by the Weber number.
Effect of force fields on pool boiling flow patterns in normal and reduced gravity
NASA Astrophysics Data System (ADS)
di Marco, P.; Grassi, W.
2009-05-01
This paper reports the observations of boiling flow patterns in FC-72, performed during a microgravity experiment, recently flown aboard of Foton-M2 satellite, in some instances with the additional aid of an electrostatic field to replace the buoyancy force. The heater consisted of a flat plate, 20 × 20 mm2, directly heated by direct current. Several levels of liquid subcooling (from 20 to 6 K) and heat fluxes up to 200 kW/m2 were tested. A complete counterpart test, carried out on ground before the mission, allowed direct comparison with terrestrial data. The void fraction in microgravity revealed much larger than in normal gravity condition: this may be attributed to increased bubble coalescence that hinders vapor condensation in the bulk of the subcooled fluid. In several cases, an oscillatory boiling behavior was detected, leading to periodical variation of average wall overheating of some degrees. The electric field confirmed to be very effective, even at low values of applied voltage, in reducing bubble size, thus improving their condensation rate in the bulk fluid, and in enhancing heat transfer performance, suppressing the boiling oscillations and preventing surface dryout.
The Structural Heat Intercept-Insulation-Vibration Evaluation Rig (SHIVER)
NASA Technical Reports Server (NTRS)
Johnson, W. L.; Zoeckler, J. G.; Best-Ameen, L. M.
2015-01-01
NASA is currently investigating methods to reduce the boil-off rate on large cryogenic upper stages. Two such methods to reduce the total heat load on existing upper stages are vapor cooling of the cryogenic tank support structure and integration of thick multilayer insulation systems to the upper stage of a launch vehicle. Previous efforts have flown a 2-layer MLI blanket and shown an improved thermal performance, and other efforts have ground-tested blankets up to 70 layers thick on tanks with diameters between 2 3 meters. However, thick multilayer insulation installation and testing in both thermal and structural modes has not been completed on a large scale tank. Similarly, multiple vapor cooled shields are common place on science payload helium dewars; however, minimal effort has gone into intercepting heat on large structural surfaces associated with rocket stages. A majority of the vapor cooling effort focuses on metallic cylinders called skirts, which are the most common structural components for launch vehicles. In order to provide test data for comparison with analytical models, a representative test tank is currently being designed to include skirt structural systems with integral vapor cooling. The tank is 4 m in diameter and 6.8 m tall to contain 5000 kg of liquid hydrogen. A multilayer insulation system will be designed to insulate the tank and structure while being installed in a representative manner that can be extended to tanks up to 10 meters in diameter. In order to prove that the insulation system and vapor cooling attachment methods are structurally sound, acoustic testing will also be performed on the system. The test tank with insulation and vapor cooled shield installed will be tested thermally in the B2 test facility at NASAs Plumbrook Station both before and after being vibration tested at Plumbrooks Space Power Facility.
Nanofluids for power engineering: Emergency cooling of overheated heat transfer surfaces
NASA Astrophysics Data System (ADS)
Bondarenko, B. I.; Moraru, V. N.; Sidorenko, S. V.; Komysh, D. V.
2016-07-01
The possibility of emergency cooling of an overheated heat transfer surface using nanofluids in the case of a boiling crisis is explored by means of synchronous recording of changes of main heat transfer parameters of boiling water over time. Two nanofluids are tested, which are derived from a mixture of natural aluminosilicates (AlSi-7) and titanium dioxide (NF-8). It is found that the introduction of a small portions of nanofluid into a boiling coolant (distilled water) in a state of film boiling ( t heater > 500°C) can dramatically decrease the heat transfer surface temperature to 130-150°C, which corresponds to a transition to a safe nucleate boiling regime without affecting the specific heat flux. The fact that this regime is kept for a long time at a specific heat load exceeding the critical heat flux for water and t heater = 125-130°C is particularly important. This makes it possible to prevent a potential accident emergency (heater burnout and failure of the heat exchanger) and to ensure the smooth operation of the equipment.
Pool boiling of water on nano-structured micro wires at sub-atmospheric conditions
NASA Astrophysics Data System (ADS)
Arya, Mahendra; Khandekar, Sameer; Pratap, Dheeraj; Ramakrishna, S. Anantha
2016-09-01
Past decades have seen active research in enhancement of boiling heat transfer by surface modifications. Favorable surface modifications are expected to enhance boiling efficiency. Several interrelated mechanisms such as capillarity, surface energy alteration, wettability, cavity geometry, wetting transitions, geometrical features of surface morphology, etc., are responsible for change in the boiling behavior of modified surfaces. Not much work is available on pool boiling at low pressures on microscale/nanoscale geometries; low pressure boiling is attractive in many applications wherein low operating temperatures are desired for a particular working fluid. In this background, an experimental setup was designed and developed to investigate the pool boiling performance of water on (a) plain aluminum micro wire (99.999 % pure) and, (b) nano-porous alumina structured aluminum micro wire, both having diameter of 250 µm, under sub-atmospheric pressure. Nano-structuring on the plain wire surface was achieved via anodization. Two samples, A and B of anodized wires, differing by the degree of anodization were tested. The heater length scale (wire diameter) was much smaller than the capillary length scale. Pool boiling characteristics of water were investigated at three different sub-atmospheric pressures of 73, 123 and 199 mbar (corresponding to T sat = 40, 50 and 60 °C). First, the boiling characteristics of plain wire were measured. It was noticed that at sub-atmospheric pressures, boiling heat transfer performance for plain wire was quite low due to the increased bubble sizes and low nucleation site density. Subsequently, boiling performance of nano-structured wires (both Sample A and Sample B) was compared with plain wire and it was noted that boiling heat transfer for the former was considerably enhanced as compared to the plain wire. This enhancement is attributed to increased nucleation site density, change in wettability and possibly due to enhanced pore scale evaporation. A preliminary estimation of the bubble growth rates, measured by high speed videography, was undertaken and compared with classical bubble growth rate correlations. It was observed that the average bubble departure sizes on Sample B were larger as compared to plain wire, due to larger surface forces holding the bubble before departure. Bubble condensation in the thermal boundary layer was also captured.
Copper vertical micro dendrite fin arrays and their superior boiling heat transfer capability
NASA Astrophysics Data System (ADS)
Wang, Ya-Qiao; Lyu, Shu-Shen; Luo, Jia-Li; Luo, Zhi-Yong; Fu, Yuan-Xiang; Heng, Yi; Zhang, Jian-Hui; Mo, Dong-Chuan
2017-11-01
Micro pin fin arrays have been widely used in electronic cooling, micro reactors, catalyst support, and wettability modification and so on, and a facile way to produce better micro pin fin arrays is demanded. Herein, a simple electrochemical method has been developed to fabricate copper vertical micro dendrite fin arrays (Cu-VMDFA) with controllable shapes, number density and height. High copper sulphate concentration is one key point to make the dendrite stand vertically. Besides, the applied current should rise at an appropriate rate to ensure the copper dendrite can grow vertically on its own. The Cu-VMDFA can significantly enhance the heat transfer coefficient by approximately twice compared to the plain copper surface. The Cu-VMDFA may be widely used in boiling heat transfer areas such as nuclear power plants, electronic cooling, heat exchangers, and so on.
Pool boiling from rotating and stationary spheres in liquid nitrogen
NASA Technical Reports Server (NTRS)
Cuan, Winston M.; Schwartz, Sidney H.
1988-01-01
Results are presented for a preliminary experiment involving saturated pool boiling at 1 atm from rotating 2 and 3 in. diameter spheres which were immersed in liquid nitrogen (LN2). Additional results are presented for a stationary, 2 inch diameter sphere, quenched in LN2, which were obtained utilizing a more versatile and complete experimental apparatus that will eventually be used for additional rotating sphere experiments. The speed for the rotational tests was varied from 0 to 10,000 rpm. The stationary experiments parametrically varied pressure and subcooling levels from 0 to 600 psig and from 0 to 50 F, respectively. During the rotational tests, a high speed photographic analysis was undertaken to measure the thickness of the vapor film surrounding the sphere. The average Nusselt number over the cooling period was plotted against the rotational Reynolds number. Stationary sphere results included local boiling heat transfer coefficients at different latitudinal locations, for various pressure and subcooling levels.
NASA Astrophysics Data System (ADS)
Huang, Lihao; Li, Gang; Tao, Leren
2016-07-01
Experimental investigation for the flow boiling of water in a vertical rectangular channel was conducted to reveal the boiling heat transfer mechanism and flow patterns map aspects. The onset of nucleate boiling went upward with the increasing of the working fluid mass flow rate or the decreasing of the inlet working fluid temperature. As the vapour quality was increased, the local heat transfer coefficient increased first, then decreased, followed by various flow patterns. The test data from other researchers had a similar pattern transition for the bubble-slug flow and the slug-annular flow. Flow pattern transition model analysis was performed to make the comparison with current test data. The slug-annular and churn-annular transition models showed a close trend with current data except that the vapor phase superficial velocity of flow pattern transition was much higher than that of experimental data.
Mukhtar, Maowia; Ali, Sababil S.; Boshara, Salah A.; Albertini, Audrey; Monnerat, Séverine; Bessell, Paul; Mori, Yasuyoshi; Kubota, Yutaka; Ndung’u, Joseph M.
2018-01-01
Background Confirmatory diagnosis of visceral leishmaniasis (VL), as well as diagnosis of relapses and test of cure, usually requires examination by microscopy of samples collected by invasive means, such as splenic, bone marrow or lymph node aspirates. This causes discomfort to patients, with risks of bleeding and iatrogenic infections, and requires technical expertise. Molecular tests have great potential for diagnosis of VL using peripheral blood, but require well-equipped facilities and trained personnel. More user-friendly, and field-amenable options are therefore needed. One method that could meet these requirements is loop-mediated isothermal amplification (LAMP) using the Loopamp Leishmania Detection Kit, which comes as dried down reagents that can be stored at room temperature, and allows simple visualization of results. Methodology/Principal findings The Loopamp Leishmania Detection Kit (Eiken Chemical Co., Japan), was evaluated in the diagnosis of VL in Sudan. A total of 198 VL suspects were tested by microscopy of lymph node aspirates (the reference test), direct agglutination test-DAT (in house production) and rK28 antigen-based rapid diagnostic test (OnSite Leishmania rK39-Plus, CTK Biotech, USA). LAMP was performed on peripheral blood (whole blood and buffy coat) previously processed by: i) a direct boil and spin method, and ii) the QIAamp DNA Mini Kit (QIAgen). Ninety seven of the VL suspects were confirmed as cases by microscopy of lymph node aspirates. The sensitivity and specificity for each of the tests were: rK28 RDT 98.81% and 100%; DAT 88.10% and 78.22%; LAMP-boil and spin 97.65% and 99.01%; LAMP-QIAgen 100% and 99.01%. Conclusions/Significance Due to its simplicity and high sensitivity, rK28 RDT can be used first in the diagnostic algorithm for primary VL diagnosis, the excellent performance of LAMP using peripheral blood indicates that it can be also included in the algorithm for diagnosis of VL as a simple test when parasitological confirmatory diagnosis is required in settings that are lower than the reference laboratory, avoiding the need for invasive lymph node aspiration. PMID:29444079
Explosive Venting Technology for Cook-Off Response Mitigation
2010-07-01
endplate blew off 188.3 PAX-28 Go 6.4 Explode, HE boiled out, body banana peeled 177.8 PAX-28 No go 7.6 Burn, HE boiled out of fixture, smoking, then burn...PAX-28 5.1-mm diameter vent test was to blow off the top fixture and peel off three out of the four heating bands while leaving the fixture in its
Glycaemic and satiating properties of potato products.
Leeman, M; Ostman, E; Björck, I
2008-01-01
To investigate glycaemic and satiating properties of potato products in healthy subjects using energy-equivalent or carbohydrate-equivalent test meals, respectively. Thirteen healthy subjects volunteered for the first study, and 14 for the second. The tests were performed at Applied Nutrition and Food Chemistry, Lund University, Sweden. EXPERIMENTAL DESIGN AND TEST MEALS: All meals were served as breakfast in random order after an overnight fast. Study 1 included four energy-equivalent (1000 kJ) meals of boiled potatoes, french fries, or mashed potatoes; the latter varying in portion size by use of different amounts of water. The available carbohydrate content varied between 32.5 and 50.3 g/portion. Capillary blood samples were collected during 240 min for analysis of glucose, and satiety was measured with a subjective rating scale. Study 2 included four carbohydrate-equivalent meals (50 g available carbohydrates) of french fries, boiled potatoes served with and without addition of oil, and white wheat bread (reference). The energy content varied between 963 and 1534 kJ/portion. Capillary blood samples were collected during 180 min for analysis of glucose, and satiety was measured using a subjective rating scale. Study 1: boiled potatoes induced higher subjective satiety than french fries when compared on an energy-equivalent basis. The french fries elicited the lowest early glycaemic response and was less satiating in the early postprandial phase (area under the curve (AUC) 0-45 min). No differences were found in glycaemic or satiety response between boiled or mashed potatoes. Study 2: french fries resulted in a significantly lower glycaemic response (glycaemic index (GI)=77) than boiled potatoes either with or without addition of oil (GI=131 and 111, respectively). No differences were found in subjective satiety response between the products served on carbohydrate equivalence. Boiled potatoes were more satiating than french fries on an energy-equivalent basis, the effect being most prominent in the early postprandial phase, whereas no difference in satiety could be seen on a carbohydrate-equivalent basis. The lowered GI for french fries, showing a typical prolonged low-GI profile, could not be explained by the fat content per se.
Lee, In-Hee; Chung, Hwa-Jin; Shin, Joon-Shik; Ha, In-Hyuk; Kim, Me-Riong; Koh, Wonil; Lee, Jinho
2017-01-01
GCSB-5, an herbal drug composition with an anti-inflammatory effect, is prepared by boiling, which is the most common herbal extraction method in traditional Korean medicine. Several parameters are involved in the process, i.e., extractant type, herb-to-extractant ratio, extraction temperature and pressure, and total boiling time. The aim of this study was to examine the influence of boiling time on index compound amount and the antioxidative and anti-inflammatory activities of GCSB-5. Different samples of GCSB-5 were obtained by decocting for 30, 60, 90, 120, 150, and 240 min. Each sample was tested for hydrogen ion concentration (pH), total soluble solid content (TSSC), marker compound profiles, and antioxidative and anti-inflammatory activity. pH was found to decrease while TSSC increased with extended decoction. Marker compound contents for GCSB-5 (acanthoside D for Acanthopanax sessiliflorus Seem, 20-hydroxyecdysone for Achyranthes japonica Nakai, and pinoresinol diglucoside for Eucommia ulmoides Oliver) remained relatively constant regardless of the length of boiling. Total D-glucose amount increased with longer boiling. The antioxidative and anti-inflammatory potentials of GCSB-5 were not substantially affected by decoction duration. Biological characteristics and marker compound content of GCSB-5 were not altered significantly in prolonged boiling. Longer boiling duration of GCSB-5 did not increase yield in a time-dependent manner, but yields of 210 and 240 min samples were significantly higherHydrogen ion concentration of GCSB-5 samples decreased while total soluble solid content and D-glucose concentration levels increased with boiling durationAlthough concentrations of some index compounds increased with extended boiling duration of GCSB-5, increase was small and not in a direct proportional relationshipAntioxidative and anti-inflammatory properties of GCSB-5 were not substantially affected by decoction duration. Abbreviations used: CAM: Complementary and alternative medicine; KIOM: Korea Institute of Oriental Medicine; KMD: Korean medicine doctor; TSSC: Total soluble solid content; pH: Hydrogen ion concentration; HPLC: High-performance liquid chromatography; NO: Nitric oxide; NO 2 : Nitric dioxide; LPS: Lipopolysaccharide; DMSO: Dimethyl sulfoxide.
Marangoni Effects in the Boiling of Binary Fluid Mixtures
NASA Technical Reports Server (NTRS)
Ahmed, Sayeed; Carey, Van P.; Motil, Brian
1996-01-01
Results of very recent experimental studies indicate that during nucleate boiling in some binary mixture, Marangoni effects augment the gravity driven flow of liquid towards the heated surface. With gravity present, it is impossible to separate the two effects. The reduced gravity environment gives an unique opportunity to explore th role of Marangoni effects on the boiling mechanisms free of gravitational body forces that obscure the role of such effects. However, recent experimental results suggest that under reduced gravity conditions, Marangoni effects is the dominant mechanism of vapor-liquid exchange at the surface for some binary mixture. To further explore such effects, experiments have been conducted with water/2-propanol mixtures at three different concentrations under normal gravity with different orientations of the heater surface and under reduce gravity aboard the DC-9 aircraft at NASA Lewis Research Center. The system pressure was sub atmospheric (approx. 8 kP at 1g(n)) and the bulk liquid temperature varied from low subcooling to near saturation. The molar concentrations of 2-propanol tested were 0.015, 0.025, and 0.1. Boiling curves were obtained both for high gravity (approx. 2g(n)) and reduce gravity (approx. 0.01g(n)). For each concentration of 2-propanol, the critical heat flux has been determined in the flight experiments only for reduced gravity conditions. Comparison of boiling curves and CHF obtained under l-g(n) an reduced gravity indicates that boiling mechanism in this mixtures is nearly independent of gravity. The results also indicate that the Marangoni mechanism is strong enough in these mixtures to sustain the boiling under reduced gravity conditions.
Cork boiling wastewater treatment and reuse through combination of advanced oxidation technologies.
Ponce-Robles, L; Miralles-Cuevas, S; Oller, I; Agüera, A; Trinidad-Lozano, M J; Yuste, F J; Malato, S
2017-03-01
Industrial preparation of cork consists of its immersion for approximately 1 hour in boiling water. The use of herbicides and pesticides in oak tree forests leads to absorption of these compounds by cork; thus, after boiling process, they are present in wastewater. Cork boiling wastewater shows low biodegradability and high acute toxicity involving partial inhibition of their biodegradation when conventional biological treatment is applied. In this work, a treatment line strategy based on the combination of advanced physicochemical technologies is proposed. The final objective is the reuse of wastewater in the cork boiling process; thus, reducing consumption of fresh water in the industrial process itself. Coagulation pre-treatment with 0.5 g/L of FeCl 3 attained the highest turbidity elimination (86 %) and 29 % of DOC elimination. Similar DOC removal was attained when using 1 g/L of ECOTAN BIO (selected for ozonation tests), accompanied of 64 % of turbidity removal. Ozonation treatments showed less efficiency in the complete oxidation of cork boiling wastewater, compared to solar photo-Fenton process, under the studied conditions. Nanofiltration system was successfully employed as a final purification step with the aim of obtaining a high-quality reusable permeate stream. Monitoring of unknown compounds by LC-QTOF-MS allowed the qualitative evaluation of the whole process. Acute and chronic toxicity as well as biodegradability assays were performed throughout the whole proposed treatment line.
Cryogenic two-phase flow during chilldown: Flow transition and nucleate boiling heat transfer
NASA Astrophysics Data System (ADS)
Jackson, Jelliffe Kevin
The recent interest in space exploration has placed a renewed focus on rocket propulsion technology. Cryogenic propellants are the preferred fuel for rocket propulsion since they are more energetic and environmentally friendly compared with other storable fuels. Voracious evaporation occurs while transferring these fluids through a pipeline that is initially in thermal equilibrium with the environment. This phenomenon is referred to as line chilldown. Large temperature differences, rapid transients, pressure fluctuations and the transition from the film boiling to the nucleate boiling regime characterize the chilldown process. Although the existence of the chilldown phenomenon has been known for decades, the process is not well understood. Attempts have been made to model the chilldown process; however the results have been fair at best. A major shortcoming of these models is the use of correlations that were developed for steady, non-cryogenic flows. The development of reliable correlations for cryogenic chilldown has been hindered by the lack of experimental data. An experimental facility was constructed that allows the flow structure, the temperature history and the pressure history to be recorded during the line chilldown process. The temperature history is then utilized in conjunction with an inverse heat conduction procedure that was developed, which allows the unsteady heat transfer coefficient on the interior of the pipe wall to be extracted. This database is used to evaluate present predictive models and correlations for flow regime transition and nucleate boiling heat transfer. It is found that by calibrating the transition between the stratified-wavy and the intermittent/annular regimes of the Taitel and Dukler flow regime map, satisfactory predictions are obtained. It is also found that by utilizing a simple model that includes the effect of flow structure and incorporating the enhancement provided by the local heat flux, significant improvement in the predictive capabilities of the Muller-Steinhagen and Jamialahmadi correlation for nucleate flow boiling is achieved.
Pool boiler heat transport system for a 25 kWe advanced Stirling conversion system
NASA Astrophysics Data System (ADS)
Anderson, W. G.; Rosenfeld, J. H.; Saaski, E. L.; Noble, J.; Tower, L.
Experiments to determine alkali metal/enhanced surface combinations that have stable boiling at the temperatures and heat fluxes that occur in the Stirling engine are reported. Two enhanced surfaces and two alkali metal working fluids were evaluated. The enhanced surfaces were an EDM hole covered surface and a sintered-powder-metal porous layer surface. The working fluids tested were potassium and eutectic sodium-potasium alloy (NaK), both with and without undissolved noncondensible gas. Noncondensible gas (He and Xe) was added to the system to provide gas in the nucleation sites, preventing quenching of the sites. The experiments demonstrated the potential of an alkali metal pool boiler heat transport system for use in a solar-powered Stirling engine. The most favorable fluid/surface combination tested was NaK boiling on a -100 +140 mesh 304L stainless steel sintered porous layer with no undissolved noncondensible gas. This combination provided stable, high-performance boiling at the operating temperature of 700 C. Heat fluxes into the system ranged from 10 to 50 W/sq cm. The transition from free convection to nucleate boiling occurred at temperatures near 540 C. Based on these experiments, a pool boiler was designed for a full-scale 25-kWe Stirling system.
Pool boiler heat transport system for a 25 kWe advanced Stirling conversion system
NASA Technical Reports Server (NTRS)
Anderson, W. G.; Rosenfeld, J. H.; Saaski, E. L.; Noble, J.; Tower, L.
1990-01-01
Experiments to determine alkali metal/enhanced surface combinations that have stable boiling at the temperatures and heat fluxes that occur in the Stirling engine are reported. Two enhanced surfaces and two alkali metal working fluids were evaluated. The enhanced surfaces were an EDM hole covered surface and a sintered-powder-metal porous layer surface. The working fluids tested were potassium and eutectic sodium-potasium alloy (NaK), both with and without undissolved noncondensible gas. Noncondensible gas (He and Xe) was added to the system to provide gas in the nucleation sites, preventing quenching of the sites. The experiments demonstrated the potential of an alkali metal pool boiler heat transport system for use in a solar-powered Stirling engine. The most favorable fluid/surface combination tested was NaK boiling on a -100 +140 mesh 304L stainless steel sintered porous layer with no undissolved noncondensible gas. This combination provided stable, high-performance boiling at the operating temperature of 700 C. Heat fluxes into the system ranged from 10 to 50 W/sq cm. The transition from free convection to nucleate boiling occurred at temperatures near 540 C. Based on these experiments, a pool boiler was designed for a full-scale 25-kWe Stirling system.
Impact of different thickness of the smooth heated surface on flow boiling heat transfer
NASA Astrophysics Data System (ADS)
Strąk, Kinga; Piasecka, Magdalena
2018-06-01
This paper presents a comparison of the performance of three smooth heated surfaces with different thicknesses. Analysis was carried out on an experimental setup for flow boiling heat transfer. The most important element of the setup was the test section with a rectangular minichannel, 1.7 mm deep, 16 mm wide and 180 mm long, oriented vertically. The heated element for the FC-72 Fluorinert flowing in the minichannel was designated as a Haynes-230 alloy plate (0.10 mm and 0.45 mm thick) or a Hastelloy X alloy plate (0.65 mm thick). Infrared thermography was used to measure the temperature of the outer plate surface. The local values of the heat transfer coefficient for stationary state conditions were calculated using a simple one-dimensional method. The experimental results were presented as the relationship between the heat transfer coefficients in the subcooled boiling region and the distance along the minichannel length and boiling curves. The highest local heat transfer coefficients were recorded for the surface of 0.10 mm thick heated plate at the outlet and 0.45 mm thick plate at the minichannel inlet. All boiling curves were typical in shape.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-02-02
...). Pilgrim is a boiling water nuclear reactor that is owned by Entergy Nuclear and operated by ENO. The... Generating Unit No. 1 (IP1). IP1 is a pressurized water nuclear reactor that is owned by ENIP2 and maintained... nuclear reactors that are owned by ENIP2 and ENIP3, respectively, and operated by ENO. The facilities are...
Enhanced Boiling on Micro-Configured Composite Surfaces Under Microgravity Conditions
NASA Technical Reports Server (NTRS)
Zhang, Nengli; Chai, An-Ti
1999-01-01
In order to accommodate the growing thermal management needs of future space platforms, several two-phase active thermal control systems (ATCSs) have evolved and were included in the designs of space stations. Compared to the pumped single-phase liquid loops used in the conventional Space Transportation System and Spacelab, ATCSs offer significant benefits that may be realized by adopting a two-phase fluid-loop system. Alternately, dynamic power systems (DPSs), based on the Rankine cycle, seem inevitably to be required to supply the electrical power requirements of expanding space activities. Boiling heat transfer is one of the key technologies for both ATCSs and DPSs. Nucleate boiling near critical heat flux (CHF) can transport very large thermal loads with much smaller device size and much lower pumping power. However, boiling performance deteriorates in a reduced gravity environment and operation in the CHF regime is precarious because any slight overload will cause the heat transfer to suddenly move to the film boiling regime, which in turn, will result in burnout of the heat transfer surfaces. New materials, such as micro-configured metal-graphite composites, can provide a solution for boiling enhancement. It has been shown experimentally that this type of material manifests outstanding boiling heat transfer performance and their CHF is also extended to higher values. Due to the high thermal conductivity of graphite fiber (up to 1,200 W/m-K in the fiber direction), the composite surfaces are non-isothermal during the boiling process. The composite surfaces are believed to have a much wider safe operating region (a more uniform boiling curve in the CHF regime) because non-isothermal surfaces have been found to be less sensitive to variations of wall superheat in the CHF regime. The thermocapillary forces formed by the temperature difference between the fiber tips and the metal matrix play a more important role than the buoyancy in the bubble detachment, for the bubble detachment manifests itself by a necking process which should not be weakened by reduced gravity. In addition, the composite surfaces introduce no extra pressure drop, no fouling and do not impose significant primary or maintenance costs. All of these suggest that this type of composite is an ideal material for the challenge of accounting for both reliability and economy of the relevant components applied in the ATCSs, the DPSs and other devices in future space missions. The aim of the proposed work is to experimentally investigate high nucleate pool boiling performance on a micro-configured metal-graphite composite surface and to determine the mechanisms of the nucleate boiling heat transfer both experimentally and theoretically. Freon-113 and water will be used as the test liquids to investigate wettability effects on boiling characteristics. The Cu-Gr and Al-Gr composites with various volume fractions of graphite fibers will be tested to obtain the heat transfer characteristic data in the nucleate boiling region and in the CHF regime. In the experiments, the bubble emission and coalescence processes will be recorded by a video camera with a magnifying borescope probe immersed in the working fluid. The temperature profile in the thermal boundary layer on the composite surfaces will be measured by a group of micro thermocouples consisting of four ultra fine micro thermocouples. This instrument was developed and successfully used to measure the temperature profile of evaporating liquid thin layers by the proposers in a study performed at the NASA/Lewis Research Center. A two tier model to explain the nucleate boiling process and the performance enhancement on the composite surfaces has been suggested by the authors. According to the model, the thicknesses of the microlayer and the macrolayer underneath the bubbles and mushrooms, can be estimated by the geometry of the composite surface. The experimental results will be compared to the predictions from the model, and in turn, to revise and improve it.
(Boiling water reactor (BWR) CORA experiments)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ott, L.J.
To participate in the 1990 CORA Workshop at Kernforschungszentrum Karlsruhe (KfK) GmbH, Karlsruhe, FRG, on October 1--4, and to participate in detailed discussions on October 5 with the KfK CORA Boiling Water Reactor (BWR) experiments. The traveler attended the 1990 CORA Workshop at KfK, FRG. Participation included the presentation of a paper on work performed by the Boiling Water Reactor Core Melt Progression Phenomena Program at Oak Ridge National Laboratory (ORNL) on posttest analyses of CORA BWR experiments. The Statement of Work (November 1989) for the BWR Core Melt Progression Phenomena Program provides for pretest and posttest analyses of themore » BWR CORA experiments performed at KfK. Additionally, it is intended that ORNL personnel participate in the planning process for future CORA BWR experiments. For these purposes, meetings were held with KfK staff to discuss such topics as (1) experimental test schedule, (2) BWR test conduct, (3) perceived BWR experimental needs, and (4) KfK operational staff needs with respect to ORNL support. 19 refs.« less
Sodium reflux pool-boiler solar receiver on-sun test results
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andraka, C E; Moreno, J B; Diver, R B
1992-06-01
The efficient operation of a Stirling engine requires the application of a high heat flux to the relatively small area occupied by the heater head tubes. Previous attempts to couple solar energy to Stirling engines generally involved directly illuminating the heater head tubes with concentrated sunlight. In this study, operation of a 75-kW{sub t} sodium reflux pool-boiler solar receiver has been demonstrated and its performance characterized on Sandia's nominal 75-kW{sub t} parabolic-dish concentrator, using a cold-water gas-gap calorimeter to simulate Stirling engine operation. The pool boiler (and more generally liquid-metal reflux receivers) supplies heat to the engine in the formmore » of latent heat released from condensation of the metal vapor on the heater head tubes. The advantages of the pool boiler include uniform tube temperature, leading to longer life and higher temperature available to the engine, and decoupling of the design of the solar absorber from the engine heater head. The two-phase system allows high input thermal flux, reducing the receiver size and losses, therefore improving system efficiency. The receiver thermal efficiency was about 90% when operated at full power and 800{degree}C. Stable sodium boiling was promoted by the addition of 35 equally spaced artificial cavities in the wetted absorber surface. High incipient boiling superheats following cloud transients were suppressed passively by the addition of small amounts of xenon gas to the receiver volume. Stable boiling without excessive incipient boiling superheats was observed under all operating conditions. The receiver developed a leak during performance evaluation, terminating the testing after accumulating about 50 hours on sun. The receiver design is reported here along with test results including transient operations, steady-state performance evaluation, operation at various temperatures, infrared thermography, x-ray studies of the boiling behavior, and a postmortem analysis.« less
Liquid Nitrogen Zero Boiloff Testing
NASA Technical Reports Server (NTRS)
Plachta, David; Feller, Jeffrey; Johnson, Wesley; Robinson, Craig
2017-01-01
Cryogenic propellants such as liquid hydrogen (LH2) and liquid oxygen (LO2) are a part of NASAs future space exploration due to their high specific impulse for rocket motors of upper stages suitable for transporting 10s to 100s of metric tons of payload mass to destinations outside of low earth orbit and for their return. However, the low storage temperatures of LH2 and LO2 cause substantial boil-off losses for missions with durations greater than several months. These losses can be eliminated by incorporating high performance cryocooler technology to intercept heat load to the propellant tanks and modulating the cryocooler to control tank pressure. The active thermal control technology being developed by NASA is the reverse turbo-Brayton cycle cryocooler and its integration to the propellant tank through a distributed cooling tubing network coupled to the tank wall. This configuration was recently tested at NASA Glenn Research Center, in a vacuum chamber and cryo-shroud that simulated the essential thermal aspects of low Earth orbit, its vacuum and temperature. Testing consisted of three passive tests with the active cryo-cooler system off, and 7 active tests, with the cryocooler powered up. The test matrix included zero boil-off tests performed at 90 full and 25 full, and several demonstrations at excess cooling capacity and reduced cooling capacity. From this, the tank pressure response with varied cryocooler power inputs was determined. This test series established that the active cooling system integrated with the propellant tank eliminated boil-off and robustly controlled tank pressure.
Spectral measurements of direct and scattered gamma radiation at a boiling-water reactor site
NASA Astrophysics Data System (ADS)
Block, R. C.; Preiss, I. L.; Ryan, R. M.; Vargo, G. J.
1990-12-01
Quantitative surveys of direct and scattered gamma radiation emitted from the steam-power conversion systems of a boiling-water reactor and other on-site radiation sources were made using a directionally shielded HPGe gamma spectrometry system. The purpose of this study was to obtain data on the relative contributions and energy distributions of direct and scattered gamma radiation in the site environs. The principal radionuclide of concern in this study is 16N produced by the 16O(n,p) 16N reaction in the reactor coolant. Due to changes in facility operation resulting from the implementation of hydrogen water chemistry (HWC), the amount of 16N transported from the reactor to the main steam system under full power operation is excepted to increase by a factor of 1.2 to 5.0. This increase in the 16N source term in the nuclear steam must be considered in the design of new facilities to be constructed on site as well as the evaluation of existing facilities with repect to ALARA (As Low As Reasonably Achievable) dose limits in unrestricted areas. This study consisted of base-line measurements taken under normal BWR chemistry conditions in October, 1987 and a corresponding set taken under HWC conditions in July, 1988. Ground-level and elevated measurements, corresponding to second-story building height, were obtained. The primary conclusion of this study is that direct radiation from the steam-power conversion system is the predominant source of radiation in the site environs of this reactor and that air scattering (i.e. skyshine) does not appear to be significant.
Experimental Testing and Numerical Modeling of Spray Cooling Under Terrestrial Gravity Conditions
2005-01-01
running safely. Mudawar (2000) identifies two heat flux ranges relative to the amount of heat dissipation. The high-flux range includes heat fluxes on...inferior to those of water ( Mudawar , 2000). Phase change cooling can exist in several forms, or cooling schemes. Pool boiling may be used in...addition to reducing the significant effects of flow orientation ( Mudawar , 2000). It is not fully known how low gravity affects flow boiling, as
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lambert, Dan P.; Woodham, Wesley H.; Williams, Matthew S.
Testing was completed to develop a chemical processing flowsheet for the Defense Waste Processing Facility (DWPF), designed to vitrify and stabilize high level radioactive waste. DWPF processing uses a reducing acid (formic acid) and an oxidizing acid (nitric acid) to rheologically thin the slurry and complete the necessary acid base and reduction reactions (primarily mercury and manganese). Formic acid reduces mercuric oxide to elemental mercury, allowing the mercury to be removed during the boiling phase of processing through steam stripping. In runs with active catalysts, formic acid can decompose to hydrogen and nitrate can be reduced to ammonia, both flammablemore » gases, due to rhodium and ruthenium catalysis. Replacement of formic acid with glycolic acid eliminates the generation of rhodium- and ruthenium-catalyzed hydrogen and ammonia. In addition, mercury reduction is still effective with glycolic acid. Hydrogen, ammonia and mercury are discussed in the body of the report. Ten abbreviated tests were completed to develop the operating window for implementation of the flowsheet and determine the impact of changes in acid stoichiometry and the blend of nitric and glycolic acid as it impacts various processing variables over a wide processing region. Three full-length 4-L lab-scale simulations demonstrated the viability of the flowsheet under planned operating conditions. The flowsheet is planned for implementation in early 2017.« less
Modeling of two-phase flow instabilities during startup transients utilizing RAMONA-4B methodology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paniagua, J.; Rohatgi, U.S.; Prasad, V.
1996-10-01
RAMONA-4B code is currently under development for simulating thermal hydraulic instabilities that can occur in Boiling Water Reactors (BWRs) and the Simplified Boiling Water Reactor (SBWR). As one of the missions of RAMONA-4B is to simulate SBWR startup transients, where geysering or condensation-induced instability may be encountered, the code needs to be assessed for this application. This paper outlines the results of the assessments of the current version of RAMONA-4B and the modifications necessary for simulating the geysering or condensation-induced instability. The test selected for assessment are the geysering tests performed by Prof Aritomi (1993).
Establishment and assessment of code scaling capability
NASA Astrophysics Data System (ADS)
Lim, Jaehyok
In this thesis, a method for using RELAP5/MOD3.3 (Patch03) code models is described to establish and assess the code scaling capability and to corroborate the scaling methodology that has been used in the design of the Purdue University Multi-Dimensional Integral Test Assembly for ESBWR applications (PUMA-E) facility. It was sponsored by the United States Nuclear Regulatory Commission (USNRC) under the program "PUMA ESBWR Tests". PUMA-E facility was built for the USNRC to obtain data on the performance of the passive safety systems of the General Electric (GE) Nuclear Energy Economic Simplified Boiling Water Reactor (ESBWR). Similarities between the prototype plant and the scaled-down test facility were investigated for a Gravity-Driven Cooling System (GDCS) Drain Line Break (GDLB). This thesis presents the results of the GDLB test, i.e., the GDLB test with one Isolation Condenser System (ICS) unit disabled. The test is a hypothetical multi-failure small break loss of coolant (SB LOCA) accident scenario in the ESBWR. The test results indicated that the blow-down phase, Automatic Depressurization System (ADS) actuation, and GDCS injection processes occurred as expected. The GDCS as an emergency core cooling system provided adequate supply of water to keep the Reactor Pressure Vessel (RPV) coolant level well above the Top of Active Fuel (TAF) during the entire GDLB transient. The long-term cooling phase, which is governed by the Passive Containment Cooling System (PCCS) condensation, kept the reactor containment system that is composed of Drywell (DW) and Wetwell (WW) below the design pressure of 414 kPa (60 psia). In addition, the ICS continued participating in heat removal during the long-term cooling phase. A general Code Scaling, Applicability, and Uncertainty (CSAU) evaluation approach was discussed in detail relative to safety analyses of Light Water Reactor (LWR). The major components of the CSAU methodology that were highlighted particularly focused on the scaling issues of experiments and models and their applicability to the nuclear power plant transient and accidents. The major thermal-hydraulic phenomena to be analyzed were identified and the predictive models adopted in RELAP5/MOD3.3 (Patch03) code were briefly reviewed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
Exhaust emission and fuel economy tests (1975 Federal Test Procedure) were performed on a 1972 Plymouth Cricket equipped with a turbocharged four-cylinder stratified charge engine (Texaco Controlled Combustion System) and an exhaust catalyst. The tests were conducted for three different fuels; unleaded gasoline, number 2 diesel fuel, and a wide boiling range distillate fuel supplied by Texaco. Average hydrocarbon, carbon monoxide, and nitrogen oxide emissions (without throttling) obtained with diesel fuel were 0.89, 1.88, and 1.91 g/mi, respectively. Hydrocarbon, carbon monoxide and nitrogen oxide levels of 0.88, 0.97, and 1.61 g/mi, respectively, were obtained with the wide boiling range fuel;more » and emission levels of 1.37, 0.50, and 1.84 g/mi, respectively, were obtained with the unleaded gasoline. Average fuel economies for the diesel fuel, wide boiling range fuel, and unleaded gasoline were 30.8, 29.7, and 28.4 mi/gal., respectively. Thus, the turbocharged catalyst equipped stratified charge engine demonstrated the ability to meet 1975 interim levels on three different fuels with high fuel economy. Compliance with the 1977 hydrocarbon standard of 0.41 g/mi will require additional control devices or basic combustion improvement.« less
Effects of gamma radiation on cork wastewater: Antioxidant activity and toxicity.
Madureira, Joana; Pimenta, Andreia I; Popescu, Larisa; Besleaga, Alexandra; Dias, Maria Inês; Santos, Pedro M P; Melo, Rita; Ferreira, Isabel C F R; Cabo Verde, Sandra; Margaça, Fernanda M A
2017-02-01
A comprehensive assessment of the toxicity and antioxidant activity of cork boiling wastewater and the effects of gamma radiation on these parameters was performed. Antioxidant activity was evaluated using different methodologies as DPPH radical scavenging activity, reducing power and inhibition of β-carotene bleaching. The results have shown that gamma radiation can induce an increase on the antioxidant activity of cork boiling wastewater. Toxicity tests were performed to access the potential added value of the irradiated wastewaters and/or minimization of the impact for discharge in the environment. Two different methods for toxicity evaluation were followed, bacterial growth inhibition test and cytotoxicity assay, in order to predict the behavior of different cells (prokaryotic and eukaryotic) in the presence of cork wastewater. Non-treated cork boiling wastewater seemed to be non-toxic for prokaryotic cells (Pseudomonas fluorescens and Bacillus subtilis) but toxic for eukaryotic cells (A549 human cells and RAW264.7 mouse cells). The gamma radiation treatment at doses of 100 kGy appeared to increase the toxicity of cork compounds for all tested cells, which could be related to a toxic effect of radiolytic products of cork compounds in the wastewaters. Copyright © 2016 Elsevier Ltd. All rights reserved.
The effects of high-power microwaves on the ultrastructure of Bacillus subtilis.
Kim, S-Y; Jo, E-K; Kim, H-J; Bai, K; Park, J-K
2008-07-01
To investigate the microbicidal mechanisms of high-power microwave (2.0 kW) irradiation on Bacillus subtilis and to determine the effect of this procedure on the ultrastructure of the cell wall. We performed viability test, examined cells using transmission electron microscopy (TEM), and measured the release of intracellular proteins and nucleic acids. The inactivation rate of B. subtilis by 2.0-kW microwave irradiation was higher than that of a domestic microwave (0.5 kW). Few proteins were released from either microwaved or boiled cells. However, the leakage of nucleic acids from 2.0-kW-microwaved cells was significantly higher than that of 0.5-kW-microwaved or boiled cells. Therefore, we examined ultrastructural alterations of microwaved or boiled cells to analyse the pattern of release of cytoplasmic contents. Although boiled cells did not show any ultrastructural changes on TEM, 2.0-kW-microwaved cells showed disruption of the cell wall. The microbicidal mechanisms of 2.0-kW microwave irradiation include damage to the microbial cell wall, breakage of the genomic DNA, and thermal coagulation of cytoplasmic proteins. TEM images showed that the cytoplasmic protein aggregation and cell envelope damage by microwave irradiation were different from the ultrastructural changes observed after boiling.
Insulation Test Cryostat with Lift Mechanism
NASA Technical Reports Server (NTRS)
Dokos, Adam G. (Inventor); Fesmire, James E. (Inventor)
2014-01-01
A multi-purpose, cylindrical thermal insulation test apparatus is used for testing insulation materials and systems of materials using a liquid boil-off calorimeter system for absolute measurement of the effective thermal conductivity (k-value) and heat flux of a specimen material at a fixed environmental condition (cold-side temperature, warm-side temperature, vacuum pressure level, and residual gas composition). The apparatus includes an inner vessel for receiving a liquid with a normal boiling point below ambient temperature, such as liquid nitrogen, enclosed within a vacuum chamber. A cold mass assembly, including the upper and lower guard chambers and a middle test vessel, is suspended from a lid of the vacuum canister. Each of the three chambers is filled and vented through a single feedthrough. All fluid and instrumentation feedthroughs are mounted and suspended from a top domed lid to allow easy removal of the cold mass. A lift mechanism allows manipulation of the cold mass assembly and insulation test article.
Insulation Test Cryostat with Lift Mechanism
NASA Technical Reports Server (NTRS)
Fesmire, James E. (Inventor); Dokos, Adam G. (Inventor)
2016-01-01
A multi-purpose, cylindrical thermal insulation test apparatus is used for testing insulation materials and systems of materials using a liquid boil-off calorimeter system for absolute measurement of the effective thermal conductivity (k-value) and heat flux of a specimen material at a fixed environmental condition (cold-side temperature, warm-side temperature, vacuum pressure level, and residual gas composition). An inner vessel receives liquid with a normal boiling point below ambient temperature, such as liquid nitrogen, enclosed within a vacuum chamber. A cold mass assembly, including upper and lower guard chambers and middle test vessel, is suspended from a lid of the vacuum canister. Each of the three chambers is filled and vented through a single feedthrough. All fluid and instrumentation feedthroughs are mounted and suspended from a top domed lid allowing easy removal of the cold mass. A lift mechanism allows manipulation of the cold mass assembly and insulation test article.
Preliminary Study of a Piston Pump for Cryogenic Fluids
NASA Technical Reports Server (NTRS)
Biermann, Arnold E.; Kohl, Robert C.
1959-01-01
Preliminary data are presented covering the performance of a low-speed, five-cylinder piston pump designed for handling boiling hydrogen. This pump was designed for a flow of 55 gallons per minute at 240 rpm with a discharge pressure of 135 pounds per square inch. Tests were made using JP-4 fuel, liquid nitrogen, and liquid hydrogen. Pump delivery and endurance characteristics were satisfactory for the range of operation covered. In connection with the foregoing pump development, the cavitation characteristics of a preliminary visual model, glass-cylinder pump and of a simple reciprocating disk were studied. Subcooling of approximately 0.60 F was obtained from the cavitation produced by reciprocating a disk in boiling nitrogen and in boiling water. The subcooling obtained in a similar manner with liquid hydrogen was somewhat less.
On the critical temperature, normal boiling point, and vapor pressure of ionic liquids.
Rebelo, Luis P N; Canongia Lopes, José N; Esperança, José M S S; Filipe, Eduardo
2005-04-07
One-stage, reduced-pressure distillations at moderate temperature of 1-decyl- and 1-dodecyl-3-methylimidazolium bistriflilamide ([Ntf(2)](-)) ionic liquids (ILs) have been performed. These liquid-vapor equilibria can be understood in light of predictions for normal boiling points of ILs. The predictions are based on experimental surface tension and density data, which are used to estimate the critical points of several ILs and their corresponding normal boiling temperatures. In contrast to the situation found for relatively unstable ILs at high-temperature such as those containing [BF(4)](-) or [PF(6)](-) anions, [Ntf(2)](-)-based ILs constitute a promising class in which reliable, accurate vapor pressure measurements can in principle be performed. This property is paramount for assisting in the development and testing of accurate molecular models.
An experimental study of evaporation waves in a superheated liquid
NASA Astrophysics Data System (ADS)
Hill, Larry G.
1990-01-01
Evaporation waves in superheated liquids are studied using a rapid-depressurization facility consisting of a vertical glass test cell situated beneath a large, low-pressure reservoir. The objective of this study is to learn more about the physical mechanisms of explosive boiling (of which an evaporation wave is a specific example), as well as properties of the flow it produces.The test cell is initially sealed from the reservoir by a foil diaphragm, and is partially filled with a volatile liquid (Refrigerant 12 or 114). An experiment is initiated by rupturing the diaphragm via a pneumatically driven cutter. The instrumentation consists of fast-response pressure measurements, high-speed motion pictures, and spark-illuminated still photographs. The liquid temperature is typically 20°C; the liquid superheat is controlled by setting the reservoir pressure to values between vacuum and 1 atm. The pressures subsequent to depressurization are very much less than the critical pressure, and the initial temperatures are sufficiently low that, although the test liquid is highly superheated, the superheat limit is not approached. Evaporation waves in which bubble nucleation within the liquid column is suppressed entirely are considered almost exclusively.When the diaphragm is ruptured, the liquid pressure drops to virtually the reservoir value within a few milliseconds. Provided that the liquid superheat so obtained is sufficiently high, the free surface then erupts in a process known as explosive boiling, which is characterized by violent, fine-scale fragmentation of the superheated liquid and extremely rapid evaporation. The explosive boiling process proceeds as a "wavefront" into the liquid column, producing a highspeed, two-phase flow that travels upward into the low-pressure reservoir, emptying the test cell in a few hundred milliseconds. The speed of the wavefront varies between 0.2 and 0.6 m/s, depending on run conditions; the corresponding two-phase flow varies between about 5 and 35 m/s.In the highest superheat case for the more volatile liquid (Refrigerant 12), explosive boiling usually initiates by the rapid formation of nucleation sites at random spots on the liquid free surface and at the glass/free-surface contact line. Boiling spreads to the remaining surface within 160 [...]. In the highest superheat case for the less volatile liquid (Refrigerant 114), nucleation begins only at the glass/free-surface contact line. Boiling then spreads radially inward toward the center. In the lower superheated cases for both liquids, nucleation begins at one or more sites on the glass/free-surface contact line, and propagates across the free surface.At the higher superheats, explosive boiling initiates within a few milliseconds from diaphragm burst, the same time scale as that of liquid depressurization. No distinction is made between the onset of nucleation and that of explosive boiling. However, if the reservoir pressure is raised above a certain approximate value, the onset of explosive boiling is delayed. During the delay period, relatively slow bubbling (initiated at one or more nucleation sites at the glass/free-surface contact line) occurs, and a cluster of bubbles forms in the vicinity of the initial site. The bubble cluster then "explodes," marking the transition to explosive boiling. The delay period increases significantly as the reservoir pressure is raised slightly further. Reservoir pressures corresponding to a delay period of order 100 ms define an approximate self-start threshold pressure, above which the transition to explosive boiling does not occur. Within about 10 ms of initiation, the wave reaches a quasi-steady condition in which the average wave speed, two-phase flow speed, and base and exit pressures are constant. However, the instantaneous propagation rate and the mechanisms that generate the mean flow are observed to be highly nonsteady. The wavefront appears to propagate by heterogeneous bubble nucleation at its leading edge, and any given region of the wavefront tends to propagate in surges associated with new nucleation and/or very fine-scale surface perturbations. Measurements of the instantaneous position of the upstream tip of the wavefront indicate that local velocity fluctuations are the same order as the mean velocity. The leading-edge bubble lifetimes and diameters are statistically distributed; mean values are of order 1 ms and 1 mm, respectively. The leading-edge bubbles are fragmented in violent "bursts" of aerosol. Bursts have a tendency to sweep over the leading-edge bubble layer in a wavelike manner: They are "large-scale structures" associated with the fragmentation of many bubbles.Fragmentation, rapid evaporation, flow acceleration, and pressure drop occur primarily within about 1 cm of the leading edge. Downstream of this region, the average speed and appearance of the flow are virtually constant. This developed flow is a highly nonuniform, two-phase spray containing streaklike structures. Its liquid phase is composed of drops (with a maximum diameter of about 100 [...]), as well as clusters and chains of bubbles (with a diameter of a few hundred microns). A thin liquid layer begins climbing the wall upon wave initiation. Its speed is a few m/s-significantly slower than that of the two-phase flow through the center. Exit pressure measurements indicate that the flow chokes for sufficiently low reservoir pressure; at higher reservoir pressures the flow is unchoked.The self-start threshold is not a propagation threshold, as waves are observed to propagate at somewhat lower superheats if started artificially. This is accomplished in Refrigerant 114 by "jump-starting" the wave, using the more volatile Refrigerant 12. For sufficiently high reservoir pressures, an "absolute" threshold is reached at which the quasi-steady rapid evaporation processes break down.Possible mechanisms for explosive boiling are discussed in light of the present results. While neither of the two previous schools of thought (interfacial instability hypotheses and the secondary nucleation hypothesis) are alone adequate to explain the observed behavior, there is evidence that both may play a role. It is here proposed that the bursting phenomenon and bubble nucleation at the wavefront leading edge are mutually interactive processes-bursting occurring as the violent breakup of interstitial bubble liquid, and nucleation (and fine-scale perturbations) being caused by burst-generated aerosol striking the leading-edge surface. It is not understood what role interfacial instability may play in the bursting process.An evaporation wave is analogous to a premixed flame in that both are classified as "weak deflagration" waves in gasdynamic theory. It is shown that using several approximations that are valid for the type of evaporation waves studied, the conservation equations (jump conditions) can be reduced to a single, simple expression in terms of readily measured and inferred properties.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kwang-Won, Lee; Sang-Yong, Lee
1995-09-01
A mechanistic model for forced convective transition boiling has been developed to investigate transition boiling mechanisms and to predict transition boiling heat flux realistically. This model is based on a postulated multi-stage boiling process occurring during the passage time of the elongated vapor blanket specified at a critical heat flux (CHF) condition. Between the departure from nucleate boiling (DNB) and the departure from film boiling (DFB) points, the boiling heat transfer is established through three boiling stages, namely, the macrolayer evaporation and dryout governed by nucleate boiling in a thin liquid film and the unstable film boiling characterized by themore » frequent touches of the interface and the heated wall. The total heat transfer rates after the DNB is weighted by the time fractions of each stage, which are defined as the ratio of each stage duration to the vapor blanket passage time. The model predictions are compared with some available experimental transition boiling data. The parametric effects of pressure, mass flux, inlet subcooling on the transition boiling heat transfer are also investigated. From these comparisons, it can be seen that this model can identify the crucial mechanisms of forced convective transition boiling, and that the transition boiling heat fluxes including the maximum heat flux and the minimum film boiling heat flux are well predicted at low qualities/high pressures near 10 bar. In future, this model will be improved in the unstable film boiling stage and generalized for high quality and low pressure situations.« less
DOT National Transportation Integrated Search
2015-06-01
For years, the Kansas Department of Transportation (KDOT) and concrete producers in the state have used a : Rapid Chloride Test for concrete cylinders, AASHTO T277. This test has been thought of as an appropriate quality : control test to evaluate pe...
2003-11-19
Higher boiling point (29.4o F) 39.5 1.36 1,1- difluoroethane HFA 152a – Not used for pharmaceutical inhalers , is used for personal products Boiling...technologies have been implemented. One aspect of this rapid development that has kept biodetection Page 1 Report Documentation Page Form...ApprovedOMB No. 0704-0188 Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for
Fundamental Boiling and RP-1 Freezing Experiments
NASA Technical Reports Server (NTRS)
Goode, Brian; Turner, Larry D. (Technical Monitor)
2001-01-01
This paper describes results from experiments performed to help understand certain aspects of the MC-1 engine prestart thermal conditioning procedure. The procedure was constrained by the fact that the engine must chill long enough to get quality LOX at the LOX pump inlet but must be short enough to prevent freezing of RP-1 in the fuel pump. A chill test of an MC-1 LOX impeller was performed in LN2 to obtain data on film boiling, transition boiling and impeller temperature histories. The transition boiling data was important to the chill time so a subsequent experiment was performed chilling simple steel plates in LOX to obtain similar data for LOX. To address the fuel freezing concern, two experiments were performed. First, fuel was frozen in a tray and its physical characteristics were observed and temperatures of the fuel were measured. The result was physical characteristics as a function of temperature. Second was an attempt to measure the frozen thickness of RP-1 on a cold wall submerged in warm RP-1 and to develop a method for calculating that thickness for other conditions.
NASA Astrophysics Data System (ADS)
Yamashiro, Hikaru; Nakashima, Ryou
The effects of ultrasonic vibration on heat transfer characteristics of lithium bromide aqueous solution under the reduced pressures are studied experimentally. Pool boiling curves on horizontal smooth tube are obtained using distilled water and 50 % LiBr aqueous solution as test liquids. The system pressure p is varied from 12 to 101 kPa and the liquid subcooling ΔTsub ranges from 0 to 70 K. The frequency of ultrasonic vibration vi s set at 24 and 44 kHz, and the power input to the vibrator P is varied from 0 to 35 W. The wall superheat at the boiling incipience is found to decrease with increasing P, and the nucleate boiling curve shifts toward the lower wall temperature region. However, the effect of P is not found to be very significant in the high heat flux region, especially in the case of small liquid subcooling. Ultrasonic vibration is also found to improve the nucleate boiling heat transfer coefficient by up to a maximum of 3.5 times and to prevent crystallization of the solution and precipitation of additives.
Investigation of sources, properties and preparation of distillate test fuels
NASA Technical Reports Server (NTRS)
Bowden, J. N.; Erwin, J.
1983-01-01
Distillate test fuel blends were generated for prescribed variations in composition and physical properties. Fuels covering a wide range in properties and composition which would provide a matrix of fuels for possible use in future combustion research programs were identified. Except for tetralin the blending components were all from typical refinery streams. Property variation blends span a boiling range within 150 C to 335 C, freezing point -23 C to -43 C, aromatic content 20 to 50 volume percent, hydrogen content 11.8 to 14.2 mass percent, viscosity 4 and 11 cSt (-20 C), and naphthalenes 8 and 16 volume percent. Composition variation blends were made with two base stocks, one paraffinic and the other napthenic. To each base stock was added each of three aromatic type fuels (alkyl benzenes, tetralin, and naphthalenes) for assigned initial boiling point, final boiling point, and hydrogen content. The hydrogen content was 13.5 mass percent for the paraffinic base stock blends and 12.5 mass percent and 11.5 mass percent for the naphthenic base stock blends. Sample 5-gallon quantities of all blends were prepared and analyzed.
Pool boiling with high heat flux enabled by a porous artery structure
NASA Astrophysics Data System (ADS)
Bai, Lizhan; Zhang, Lianpei; Lin, Guiping; Peterson, G. P.
2016-06-01
A porous artery structure utilizing the concept of "phase separation and modulation" is proposed to enhance the critical heat flux of pool boiling. A series of experiments were conducted on a range of test articles in which multiple rectangular arteries were machined directly into the top surface of a 10.0 mm diameter copper rod. The arteries were then covered by a 2.0 mm thickness microporous copper plate through silver brazing. The pool wall was fabricated from transparent Pyrex glass to allow a visualization study, and water was used as the working fluid. Experimental results confirmed that the porous artery structure provided individual flow paths for the liquid supply and vapor venting, and avoided the detrimental effects of the liquid/vapor counter flow. As a result, a maximum heat flux of 610 W/cm2 over a heating area of 0.78 cm2 was achieved with no indication of dryout, prior to reaching the heater design temperature limit. Following the experimental tests, the mechanisms responsible for the boiling critical heat flux and performance enhancement of the porous artery structure were analyzed.
Institute for High Heat Flux Removal (IHHFR). Phases I, II, and III
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boyd, Ronald D.
2014-08-31
The IHHFR focused on interdisciplinary applications as it relates to high heat flux engineering issues and problems which arise due to engineering systems being miniaturized, optimized, or requiring increased high heat flux performance. The work in the IHHFR focused on water as a coolant and includes: (1) the development, design, and construction of the high heat flux flow loop and facility; (2) test section development, design, and fabrication; and, (3) single-side heat flux experiments to produce 2-D boiling curves and 3-D conjugate heat transfer measurements for single-side heated test sections. This work provides data for comparisons with previously developed andmore » new single-side heated correlations and approaches that address the single-side heated effect on heat transfer. In addition, this work includes the addition of single-side heated circular TS and a monoblock test section with a helical wire insert. Finally, the present work includes: (1) data base expansion for the monoblock with a helical wire insert (only for the latter geometry), (2) prediction and verification using finite element, (3) monoblock model and methodology development analyses, and (4) an alternate model development for a hypervapotron and related conjugate heat transfer controlling parameters.« less
Thermoplastic fusion bonding using a pressure-assisted boiling point control system.
Park, Taehyun; Song, In-Hyouk; Park, Daniel S; You, Byoung Hee; Murphy, Michael C
2012-08-21
A novel thermoplastic fusion bonding method using a pressure-assisted boiling point (PABP) control system was developed to apply precise temperatures and pressures during bonding. Hot embossed polymethyl methacrylate (PMMA) components containing microchannels were sealed using the PABP system. Very low aspect ratio structures (AR = 1/100, 10 μm in depth and 1000 μm in width) were successfully sealed without collapse or deformation. The integrity and strength of the bonds on the sealed PMMA devices were evaluated using leakage and rupture tests; no leaks were detected and failure during the rupture tests occurred at pressures greater than 496 kPa. The PABP system was used to seal 3D shaped flexible PMMA devices successfully.
NASA Technical Reports Server (NTRS)
Cuan, Winston M.; Schwartz, Sidney H.
1988-01-01
Results are presented for a preliminary experiment involving a saturated pool boiling at 1 atm from rotating 2 and 3 inch diameter spheres which were immersed in LN2. Additional results are presented for a stationary 2 inch diameter sphere quenched in LN2, which were obtained with a more versatile and complete experimental apparatus. The speed of the rotational tests varied from 0 to 10,000 rpm. The stationary experiments parametrically varied pressure and subcooling levels from 0 to 600 psig and from 0 to 50 F, respectively. During the rotational tests, a high speed photographic analysis was undertaken to measure the thickness of the vapor film surrounding the sphere.
NASA Astrophysics Data System (ADS)
Sajedi-Moghaddam, Ali; Saievar-Iranizad, Esmaiel
2018-01-01
Developing high-throughput, reliable, and facile approaches for producing atomically thin sheets of transition metal dichalcogenides is of great importance to pave the way for their use in real applications. Here, we report a highly promising route for exfoliating two-dimensional tungsten disulphide sheets by using binary combination of low-boiling-point solvents. Experimental results show significant dependence of exfoliation yield on the type of solvents as well as relative volume fraction of each solvent. The highest yield was found for appropriate combination of isopropanol/water (20 vol% isopropanol and 80 vol% water) which is approximately 7 times higher than that in pure isopropanol and 4 times higher than that in pure water. The dramatic increase in exfoliation yield can be attributed to perfect match between the surface tension of tungsten disulphide and binary solvent system. Furthermore, solvent molecular size also has a profound impact on the exfoliation efficiency, due to the steric repulsion.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abe, Yoshiyuki; Iwasaki, Akira
1999-07-01
Although non-azeotropic mixtures are considered to be promising working fluids in advanced energy conversion systems, the primary technical problems in the heat transfer degradation in phase change processes cause economical handicap to wide-spread applications. The boiling behavior of mixtures still remains a number of basic questions being not answered yet, and the present authors believe that the most essential information for the boiling process in non-azeotropic mixtures is how temperature and concentration profiles are developed around the bubbles. The present study attempts at understanding fundamental heat and mass transfer mechanisms in nucleate pool boiling of non-azeotropic binary mixtures, and withmore » the knowledge to develop a passive boiling heat transfer enhancement eventually. To this end, the authors have employed microgravity environment for rather detailed observation around vapor bubbles in the course of boiling inception and bubble growth. A two-wavelength Mach-Zehnder interferometer has been developed, which withstands mechanical shock caused by gravity change from very low gravity of the order of 10{sup {minus}5} g to relatively high gravity of approximately 8 g exposed during deceleration period. A series of experiments on single vapor bubbles for CFC113 single component and CFC12/CFC112 non-azeotropic binary mixture have been conducted under a high quality microgravity conditions available in 10-second free-fall facility of Japan Microgravity Center (JAMIC). The results for single component liquid showed a strong influence due to Marangoni effect caused by the temperature profile around the bubble. The results for non-azeotropic binary mixture showed, however, considerably different behavior from single component liquid. Both temperature and concentration profiles around a single vapor bubble were evaluated from the interferograms. The temperature and concentration layers established around the bubbles were nearly one order of magnitude larger than those predicted by thermal diffusion and mass diffusion. The temperature and concentration profiles evaluated from the present experiments suggest the role of Marangoni effects due to both concentration profile and temperature profile around the bubble interface.« less
Li, Q.; Kang, Q. J.; Francois, M. M.; ...
2015-03-03
A hybrid thermal lattice Boltzmann (LB) model is presented to simulate thermal multiphase flows with phase change based on an improved pseudopotential LB approach (Li et al., 2013). The present model does not suffer from the spurious term caused by the forcing-term effect, which was encountered in some previous thermal LB models for liquid–vapor phase change. Using the model, the liquid–vapor boiling process is simulated. The boiling curve together with the three boiling stages (nucleate boiling, transition boiling, and film boiling) is numerically reproduced in the LB community for the first time. The numerical results show that the basic featuresmore » and the fundamental characteristics of boiling heat transfer are well captured, such as the severe fluctuation of transient heat flux in the transition boiling and the feature that the maximum heat transfer coefficient lies at a lower wall superheat than that of the maximum heat flux. Moreover, the effects of the heating surface wettability on boiling heat transfer are investigated. It is found that an increase in contact angle promotes the onset of boiling but reduces the critical heat flux, and makes the boiling process enter into the film boiling regime at a lower wall superheat, which is consistent with the findings from experimental studies.« less
Shabalovskaya, S; Rondelli, G; Anderegg, J; Simpson, B; Budko, S
2003-07-15
The effect of chemical etching in a HF/HNO(3) acid solution and aging in boiling water on the corrosion resistance of Nitinol wires with black oxide has been evaluated with the use of potentiodynamic, modified potentiostatic ASTM F746, and scratch tests. Scanning-electron microscopy, elemental XPS, and Auger analysis were employed to characterize surface alterations induced by surface treatment and corrosion testing. The effect of aging in boiling water on the temperatures of martensitic transformations and shape recovery was evaluated by means of measuring the wire electroresistance. After corrosion tests, as-received wires revealed uniformly cracked surfaces reminiscent of the stress-corrosion-cracking phenomenon. These wires exhibited negative breakdown potentials in potentiostatic tests and variable breakdown potentials in potentiodynamic tests (- 100 mV to + 400 mV versus SCE). Wires with treated surfaces did not reveal cracking or other traces of corrosion attacks in potentiodynamic tests up to + 900-1400-mV potentials and no pitting after stimulation at + 800 mV in potentiostatic tests. They exhibited corrosion behavior satisfactory for medical applications. Significant improvement of corrosion parameters was observed on the reverse scans in potentiodynamic tests after exposure of treated wires to potentials > 1000 mV. In scratch tests, the prepared surfaces repassivated only at low potentials, comparable to that of stainless steel. Tremendous improvement of the corrosion behavior of treated Nitinol wires is associated with the removal of defect surface material and the growth of stable TiO(2) oxide. The role of precipitates in the corrosion resistance of Nitinol-scratch repassivation capacity in particular-is emphasized in the discussion. Copyright 2003 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 66B: 331-340, 2003
Experimental and numerical investigation of HyperVapotron heat transfer
NASA Astrophysics Data System (ADS)
Wang, Weihua; Deng, Haifei; Huang, Shenghong; Chu, Delin; Yang, Bin; Mei, Luoqin; Pan, Baoguo
2014-12-01
The divertor first wall and neutral beam injection (NBI) components of tokamak devices require high heat flux removal up to 20-30 MW m-2 for future fusion reactors. The water cooled HyperVapotron (HV) structure, which relies on internal grooves or fins and boiling heat transfer to maximize the heat transfer capability, is the most promising candidate. The HV devices, that are able to transfer large amounts of heat (1-20 MW m-2) efficiently, have therefore been developed specifically for this application. Until recently, there have been few attempts to observe the detailed bubble characteristics and vortex evolvement of coolant flowing inside their various parts and understand of the internal two-phase complex heat transfer mechanism behind the vapotron effect. This research builds the experimental facilities of HyperVapotron Loop-I (HVL-I) and Pressure Water HyperVapotron Loop-II (PWHL-II) to implement the subcooled boiling principle experiment in terms of typical flow parameters, geometrical parameters of test section and surface heat flux, which are similar to those of the ITER-like first wall and NBI components (EAST and MAST). The multiphase flow and heat transfer phenomena on the surface of grooves and triangular fins when the subcooled water flowed through were observed and measured with the planar laser induced fluorescence (PLIF) and high-speed photography (HSP) techniques. Particle image velocimetry (PIV) was selected to reveal vortex formation, the flow structure that promotes the vapotron effect during subcooled boiling. The coolant flow data for contributing to the understanding of the vapotron phenomenon and the assessment of how the design and operational conditions that might affect the thermal performance of the devices were collected and analysed. The subcooled flow boiling model and methods of HV heat transfer adopted in the considered computational fluid dynamics (CFD) code were evaluated by comparing the calculated wall temperatures with the experimentally measured values. It was discovered that the bubble and vortex characteristics in the HV are clearly heavily dependent on the internal geometry, flow conditions and input heat flux. The evaporation latent heat is the primary heat transfer mechanism of HV flow under the condition of high heat flux, and the heat transfer through convection is very limited. The percentage of wall heat flux going into vapour production is almost 70%. These relationships between the flow phenomena and thermal performance of the HV device are essential to study the mechanisms for the flow structure alterations for design optimization and improvements of the ITER-like devices' water cooling structure and plasma facing components for future fusion reactors.
Lahaye, T; Chau, Q; Ménard, S; Lacoste, V; Muller, H; Luszik-Bhadra, M; Reginatto, M; Bruguier, P
2006-01-01
This paper mainly aims at presenting the measurements and the results obtained with the electronic personal neutron dosemeter Saphydose-N at different facilities. Three campaigns were led in the frame of the European contract EVIDOS ('Evaluation of Individual Dosimetry in Mixed Neutron and Photon Radiation Fields'). The first one consisted in the measurements at the IRSN French research laboratory in reference neutron fields generated by a thermal facility (SIGMA), radionuclide ISO sources ((241)AmBe; (252)Cf; (252)Cf(D(2)O)\\Cd) and a realistic spectrum (CANEL/T400). The second one was performed at the Krümmel Nuclear Power Plant (Germany) close to the boiling water reactor and to a spent fuel transport cask. The third one was realised at Mol (Belgium), at the VENUS Research Reactor and at Belgonucléaire, a fuel processing factory.
NASA Astrophysics Data System (ADS)
Shustov, M. V.; Kuzma-Kichta, Yu. A.; Lavrikov, A. V.
2017-04-01
Results are presented of an investigation into water boiling in a single microchannel 0.2 mm high, 3 mm wide, and 13.7 mm long with a smooth heating surface or with a coating from aluminum oxide nanoparticles. The experimental procedure and the test setup are described. The top wall of the microchannel is made of glass so that video recording in the reflected light of the process can be made. A coating of Al2O3 particles is applied onto the heating surface before the experiments using a method developed by the authors of the paper. The experiments yielded data on heat transfer and void fraction and its fluctuations for the bubble and transient boiling in the microchannel. The dependence was established of the heat flux on the temperature of the microchannel wall with a smooth surface or a surface with Al2O3 nanoparticle coating for various mass flows in the microchannel. The boiling crisis has been found to occur in the microchannel with a nanoparticle coating at a considerably higher heat flux than that in the channel without coating. The experimental data also suggest that the nanoparticle coating improves heat transfer in the transition boiling region. Processing of the data obtained using a high-speed video revealed void fraction fluctuations enabling us to describe two-phase flow regimes with the flow boiling in a microchannel. It has been found that a return flow occurs in the microchannel under certain conditions. A hypothesis for its causes is proposed. The dependence of the void fraction on the steam quality in the microchannel with or without a nanoparticle coating was determined from the video records. The experimental data on void fraction for boiling in the microchannel without coating are approximated by an empirical correlation. The experiments demonstrate that the void fraction during boiling in the microchannel with a nanoparticle coating is higher than during boiling in the channel without coating (where φ and x are the void fraction and the steam quality, respectively) in the region of a sharp increase in the φ( x) curve.
FILM-30: A Heat Transfer Properties Code for Water Coolant
DOE Office of Scientific and Technical Information (OSTI.GOV)
MARSHALL, THERON D.
2001-02-01
A FORTRAN computer code has been written to calculate the heat transfer properties at the wetted perimeter of a coolant channel when provided the bulk water conditions. This computer code is titled FILM-30 and the code calculates its heat transfer properties by using the following correlations: (1) Sieder-Tate: forced convection, (2) Bergles-Rohsenow: onset to nucleate boiling, (3) Bergles-Rohsenow: partially developed nucleate boiling, (4) Araki: fully developed nucleate boiling, (5) Tong-75: critical heat flux (CHF), and (6) Marshall-98: transition boiling. FILM-30 produces output files that provide the heat flux and heat transfer coefficient at the wetted perimeter as a function ofmore » temperature. To validate FILM-30, the calculated heat transfer properties were used in finite element analyses to predict internal temperatures for a water-cooled copper mockup under one-sided heating from a rastered electron beam. These predicted temperatures were compared with the measured temperatures from the author's 1994 and 1998 heat transfer experiments. There was excellent agreement between the predicted and experimentally measured temperatures, which confirmed the accuracy of FILM-30 within the experimental range of the tests. FILM-30 can accurately predict the CHF and transition boiling regimes, which is an important advantage over current heat transfer codes. Consequently, FILM-30 is ideal for predicting heat transfer properties for applications that feature high heat fluxes produced by one-sided heating.« less
Phase transformation of dental zirconia following artificial aging.
Lucas, Thomas J; Lawson, Nathaniel C; Janowski, Gregg M; Burgess, John O
2015-10-01
Low-temperature degradation (LTD) of yttria-stabilized zirconia can produce increased surface roughness with a concomitant decrease in strength. This study determined the effectiveness of artificial aging (prolonged boiling/autoclaving) to induce LTD of Y-TZP (yttria-tetragonal zirconia-polycrystals) and used artificial aging for transformation depth progression analyses. The null hypothesis is aging techniques tested produce the same amount of transformation, transformation is not time/temperature dependent and LTD causes a constant transformation throughout the Y-TZP samples. Dental-grade Y-TZP samples were randomly divided into nine subgroups (n = 5): as received, 3.5 and 7 day boiling, 1 bar autoclave (1, 3, 5 h), and 2 bar autoclave (1, 3, 5 h). A 4-h boil treatment (n = 2) was performed post-experiment for completion of data. Transformation was measured using traditional X-ray diffraction and low-angle X-ray diffraction. The fraction of t → m transformation increased with aging time. The 3.5 day boil and 2 bar 5 h autoclave produced similar transformation results, while the 7 day boiling treatment revealed the greatest transformation. The surface layer of the aged specimen underwent the most transformation while all samples displayed decreasing transformation with depth. Surface transformation was evident, which can lead to rougher surfaces and increased wear of opposing dentition/materials. Therefore, wear studies addressing LTD of Y-TZP are needed utilizing accelerated aging. © 2014 Wiley Periodicals, Inc.
Carrasco-Turigas, Glòria; Villanueva, Cristina M.; Goñi, Fernando; Rantakokko, Panu; Nieuwenhuijsen, Mark J.
2013-01-01
Disinfection by-products (DBPs) are ubiquitous contaminants in tap drinking water with the potential to produce adverse health effects. Filtering and boiling tap water can lead to changes in the DBP concentrations and modify the exposure through ingestion. Changes in the concentration of 4 individual trihalomethanes (THM4) (chloroform (TCM), bromodichloromethane (BDCM), dibromochloromethane (DBCM), and bromoform (TBM)), MX, and bromate were tested when boiling and filtering high bromine-containing tap water from Barcelona. For filtering, we used a pitcher-type filter and a household reverse osmosis filter; for boiling, an electric kettle, a saucepan, and a microwave were used. Samples were taken before and after each treatment to determine the change in the DBP concentration. pH, conductivity, and free/total chlorine were also measured. A large decrease of THM4 (from 48% to 97%) and MX concentrations was observed for all experiments. Bromine-containing trihalomethanes were mostly eliminated when filtering while chloroform when boiling. There was a large decrease in the concentration of bromate with reverse osmosis, but there was a little effect in the other experiments. These findings suggest that the exposure to THM4 and MX through ingestion is reduced when using these household appliances, while the decrease of bromate is device dependent. This needs to be considered in the exposure assessment of the epidemiological studies. PMID:23476675
77 FR 36014 - Initial Test Program of Emergency Core Cooling Systems for Boiling-Water Reactors
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-15
... NUCLEAR REGULATORY COMMISSION [NRC-2012-0134] Initial Test Program of Emergency Core Cooling... for public comment draft regulatory guide (DG), DG-1277, ``Initial Test Program of Emergency Core... acceptable to implement with regard to initial testing features of emergency core cooling systems (ECCSs) for...
NASA Astrophysics Data System (ADS)
Molnar, I. L.; Krol, M.; Mumford, K. G.
2016-12-01
Geoenvironmental models are becoming increasingly sophisticated as they incorporate rising numbers of mechanisms and process couplings to describe environmental scenarios. When combined with advances in computing and numerical techniques, these already complicated models are experiencing large increases in code complexity and simulation time. Although, this complexity has enabled breakthroughs in the ability to describe environmental problems, it is difficult to ensure that complex models are sufficiently robust and behave as intended. Many development tools used for testing software robustness have not seen widespread use in geoenvironmental sciences despite an increasing reliance on complex numerical models, leaving many models at risk of undiscovered errors and potentially improper validations. This study explores the use of unit testing, which independently examines small code elements to ensure each unit is working as intended as well as their integrated behaviour, to test the functionality and robustness of a coupled Electrical Resistive Heating (ERH) - Macroscopic Invasion Percolation (MIP) model. ERH is a thermal remediation technique where the soil is heated until boiling and volatile contaminants are stripped from the soil. There is significant interest in improving the efficiency of ERH, including taking advantage of low-temperature co-boiling behaviour which may reduce energy consumption. However, at lower co-boiling temperatures gas bubbles can form, mobilize and collapse in cooler areas, potentially contaminating previously clean zones. The ERH-MIP model was created to simulate the behaviour of gas bubbles in the subsurface and to evaluate ERH during co-boiling1. This study demonstrates how unit testing ensures that the model behaves in an expected manner and examines the robustness of every component within the ERH-MIP model. Once unit testing is established, the MIP module (a discrete gas transport algorithm for gas expansion, mobilization and fragmentation2) was validated against a two-dimensional light transmission visualization experiment 3. 1. Krol, M. M., et al. (2011), Adv. Water Resour. 2011, 34 (4), 537-549. 2. Mumford, K. G., et al. (2010), Adv. Water Resour. 2010, 33 (4), 504-513. 3. Hegele, P. R. and Mumford, K. G. Journal of Contaminant Hydrology 2014, 165, 24-36.
A Low Cost, Self Acting, Liquid Hydrogen Boil-Off Recovery System
NASA Technical Reports Server (NTRS)
Pelfrey, Joy W.; Sharp, Kirk V. (Technical Monitor)
2001-01-01
The purpose of this research was to develop a prototype liquid hydrogen boll-off recovery system. Perform analyses to finalize recovery system cycle, design detail components, fabricate hardware, and conduct sub-component, component, and system level tests leading to the delivery of a prototype system. The design point and off-design analyses identified cycle improvements to increase the robustness of the system by adding a by-pass heat exchanger. Based on the design, analysis, and testing conducted, the recovery system will liquefy 31% of the gaseous boil off from a liquid hydrogen storage tank. All components, including a high speed, miniature turbocompressor, were designed and manufacturing drawings were created. All hardware was fabricated and tests were conducted in air, helium, and hydrogen. Testing validated the design, except for the turbocompressor. A rotor-to-stator clearance issue was discovered as a result of a concentricity tolerance stack-up.
Cryogenic Propellant Long-term Storage With Zero Boil-off
NASA Technical Reports Server (NTRS)
Hedayat, A.; Hastings, L. J.; Sims, J.; Plachta, D. W.
2001-01-01
Significant boil-off losses of cryogenic propellant storage systems in long-duration space mission applications result in additional propellant and large tanks. The zero boil-off (ZBO) concept consists of an active cryo-cooling system integrated with traditional passive thermal insulation. The potential mass reductions with the ZBO concept are Substantial; therefore, further exploration through technology programs has been initiated within NASA. A large-scale demonstration of the ZBO concept has been devised utilizing the Marshall Space Flight Center (MSFC) Multipurpose Hydrogen Test Bed (MHTB) along with a cryo-cooler unit. The cryo-cooler with the MHTB and spraybar recirculation/mixer system in a manner that enables thermal energy removal at a rate that equals the total tank heat leak. The liquid hydrogen is withdrawn from the tank, passed through a heat exchanger, and then the chilled liquid is sprayed back into the tank through a spraybar. The test series will be performed over a 30-40 day period. Tests will be conducted at multiple fill levels and various mixer operational cycles to demonstrate concept viability and to provide benchmark data to be used in analytical model development. In this paper. analytical models for heat flows through the MHTB tank, cryo-cooler performance. and spraybar performance will be presented.
DOT National Transportation Integrated Search
2015-06-01
For years, the Kansas Department of Transportation (KDOT) and concrete producers in : the state have used a Rapid Chloride Test for concrete cylinders, AASHTO T277. This : test has been thought of as an appropriate quality control test to evaluate pe...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kazantsev, A. A., E-mail: kazantsevanatoly@gmail.com; Sergeev, V. V.; Kochnov, O. Yu.
The temperature regime is calculated for two different designs of containers with uranium-bearing material for the upgraded VVR-Ts research reactor facility (IVV.10M). The containers are to be used in the production of {sup 99}Mo. It is demonstrated that the modification of the container design leads to a considerable temperature reduction and an increase in the near-wall boiling margin and allows one to raise the amount of material loaded into the container. The calculations were conducted using the international thermohydraulic contour code TRAC intended to analyze the technical safety of water-cooled nuclear power units.
Pimenova, Anastasiya V; Goldobin, Denis S
2014-11-01
We consider the problem of boiling of the direct contact of two immiscible liquids. An intense vapour formation at such a direct contact is possible below the bulk boiling points of both components, meaning an effective decrease of the boiling temperature of the system. Although the phenomenon is known in science and widely employed in technology, the direct contact boiling process was thoroughly studied (both experimentally and theoretically) only for the case where one of liquids is becoming heated above its bulk boiling point. On the contrary, we address the case where both liquids remain below their bulk boiling points. In this paper we construct the theoretical description of the boiling process and discuss the actualisation of the case we consider for real systems.
An experimental study of the flow boiling of refrigerant-based nanofluids
NASA Astrophysics Data System (ADS)
Kolekar, Rahul Dadasaheb
The use of nanofluids for various heat transfer applications has been a topic of intense research over the last decade. A number of studies to evaluate the thermophysical properties and single-phase heat transfer behavior of nanofluids have been reported. The current study is focused on the use of nanofluids in flow boiling applications, with CO2 and R134a used as the base refrigerants. CuO nanoparticles 40nm in size, and TiO2 nanoparticles 200nm in size are used to create partially stable CO2-based nanofluids. Stable nanofluids are created in R134a by mixing it with dispersions of surface-treated nanoparticles in polyolester (POE) oil (RL22H and RL68H). The particles (Al 2O3, ZnO, CuO, and ATO) at particle mass fractions from 0.08% to 1.34%, with particle sizes of 20nm and 40nm are coated with polar and non-polar surface treatments. The thermal properties of R134a-based nanofluids are measured. Thermal conductivity shows limited improvements; the largest increase of 13% is observed with CuO nanoparticles. Significant increases in viscosity, as high as 2147%, are observed due to CuO nanoparticles. Only the ATO nanofluid exhibited a decrease in the measured viscosity. Heat transfer coefficients during flow boiling of nanofluids are measured over a range of mass flux from 100 to 1000 kg/m2s, with a heat flux from 5 to 25kW/m2, and vapor quality up to 1. The test section is a smooth copper tube, 6.23mm in diameter and 1.8m in length. Average decreases of 5% and 28% are observed in heat transfer coefficients during flow boiling of CuO/CO2 and TiO2/CO2 nanofluids, respectively. For the R134a-based nanofluids, average decreases in heat transfer during flow boiling at the highest particle mass fraction are 15% and 22% for Al2O3 and ZnO nanoparticles, respectively. CuO nanoparticles exhibit an average decrease of 7% for particle mass fraction of 0.08%. An average increase of 10% is observed with ATO nanoparticles at a 0.22% mass fraction. Heat transfer performance deteriorates with increase in viscosity and particle number density. The performance is also worse for partially stable nanofluids that modify the test section surface. Modifications to the thermophysical properties is the primary mechanism that affects heat transfer performance during flow boiling of nanofluids; increased thermal conductivity enhances while increased viscosity and surface tension reduce heat transfer in nucleate boiling-dominated flows. A secondary mechanism of nanoparticles filling up the micro-cavities on test surface is also responsible for decreased heat transfer and is a strong function of particle number density.
NASA Astrophysics Data System (ADS)
Ruiz, Maritza
Thermal management of systems under high heat fluxes on the order of hundreds of W/cm2 is important for the safety, performance and lifetime of devices, with innovative cooling technologies leading to improved performance of electronics or concentrating solar photovoltaics. A novel, spiraling radial inflow microchannel heat sink for high flux cooling applications, using a single phase or vaporizing coolant, has demonstrated enhanced heat transfer capabilities. The design of the heat sink provides an inward swirl flow between parallel, coaxial disks that form a microchannel of 1 cm radius and 300 micron channel height with a single inlet and a single outlet. The channel is heated on one side through a conducting copper surface, and is essentially adiabatic on the opposite side to simulate a heat sink scenario for electronics or concentrated photovoltaics cooling. Experimental results on the heat transfer and pressure drop characteristics in the heat sink, using single phase water as a working fluid, revealed heat transfer enhancements due to flow acceleration and induced secondary flows when compared to unidirectional laminar fully developed flow between parallel plates. Additionally, thermal gradients on the surface are small relative to the bulk fluid temperature gain, a beneficial feature for high heat flux cooling applications. Heat flux levels of 113 W/cm2 at a surface temperature of 77 deg C were reached with a ratio of pumping power to heat rate of 0.03%. Analytical models on single phase flow are used to explore the parametric trends of the flow rate and passage geometry on the streamlines and pressure drop through the device. Flow boiling heat transfer and pressure drop characteristics were obtained for this heat sink using water at near atmospheric pressure as the working fluid for inlet subcooling levels ranging from 20 to 80 deg C and mean mass flux levels ranging from 184-716 kg/m. 2s. Flow enhancements similar to singlephase flow were expected, as well as enhancements due to increased buoyant forces on vapor bubbles resulting from centripetal acceleration in the flow which will tend to draw the vapor towards the outlet. This can also aid in the reduction of vapor obstruction of the flow. The flow was identified as transitioning through three regimes as the heat rate was increased: partial subcooled flow boiling, oscillating boiling and fully developed flow boiling. During partial subcooled flow boiling, both forced convective and nucleate boiling effects are important. During oscillating boiling, the system fluctuated between partial subcooled flow boiling and fully developed nucleate boiling. Temperature and pressure oscillations were significant in this regime and are likely due to bubble constriction of flow in the microchannel. This regime of boiling is generally undesirable due to the large oscillations in temperatures and pressure and design constraints should be established to avoid large oscillations from occurring. During fully developed flow boiling, water vapor rapidly leaves the surface and the flow does not sustain large oscillations. Reducing inlet subcooling levels was found to reduce the magnitude of oscillations in the oscillating boiling regime. Additionally, reduced inlet subcooling levels reduced the average surface temperature at the highest heat flux levels tested when heat transfer was dominated by nucleate boiling, yet increased the average surface temperatures at low heat flux levels when heat transfer was dominated by forced convection. Experiments demonstrated heat fluxes up to 301 W/cm. 2at an average surface temperature of 134 deg C under partial subcooled flow boiling conditions. At this peak heat flux, the system required a pumping power to heat rate ratio of 0.01%. This heat flux is 2.4 times the typical values for critical heat flux in pool boiling under similar conditions.
Universality of oscillating boiling in Leidenfrost transition
NASA Astrophysics Data System (ADS)
Tran, Tuan; Khavari, Mohammad
2017-11-01
The Leidenfrost transition leads a boiling system to the boiling crisis, a state in which the liquid loses contact with the heated surface due to excessive vapor generation. Here, using experiments of liquid droplets boiling on a heated surface, we report a new phenomenon, termed oscillating boiling, at the Leidenfrost transition. We show that oscillating boiling results from the competition between two effects: separation of liquid from the heated surface due to localized boiling, and rewetting. We argue theoretically that the Leidenfrost transition can be predicted based on its link with the oscillating boiling phenomenon, and verify the prediction experimentally for various liquids. This work was funded by Nanyang Technological University and A*STAR, Singapore.
Bach, Vibe; Mikkelsen, Laerke; Kidmose, Ulla; Edelenbos, Merete
2015-07-01
Beetroot is a diverse vegetable available in different shapes and colours. The objectives of this study were to evaluate sensory qualities, and sugar and dry matter content of five beetroot varieties in relationship to the appropriateness for raw, boiled and pan-fried preparation. Sensory evaluation by descriptive sensory analysis and consumer tests showed clear distinctions between red varieties Taunus, Rocket and Pablo, and the pink-white striped Chioggia and yellow Burpee's Golden in raw preparations. However, variety delimination was more difficult after boiling and pan-frying. Different sensory qualities were important for beetroot appropriateness in raw, boiled and pan-fried preparations. Appropriateness of raw beetroots was associated with high sensory scores in beetroot flavour, crispness and juiciness, and low scores in bitterness. Appropriateness of boiled beetroots was related to high scores in beetroot and earthy flavours. Pan-fried beetroot appropriateness was associated with high scores in beetroot flavour, colour intensity and crispness. This study showed that the quality of raw materials is integral in culinary preparations. These results can be used to guide consumers in the use of beetroot in culinary preparations and subsequently increase consumption. © 2014 Society of Chemical Industry.
Evaluation of CASL boiling model for DNB performance in full scale 5x5 fuel bundle with spacer grids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Seung Jun
As one of main tasks for FY17 CASL-THM activity, Evaluation study on applicability of the CASL baseline boiling model for 5x5 DNB application is conducted and the predictive capability of the DNB analysis is reported here. While the baseline CASL-boiling model (GEN- 1A) approach has been successfully implemented and validated with a single pipe application in the previous year’s task, the extended DNB validation for realistic sub-channels with detailed spacer grid configurations are tasked in FY17. The focus area of the current study is to demonstrate the robustness and feasibility of the CASL baseline boiling model for DNB performance inmore » a full 5x5 fuel bundle application. A quantitative evaluation of the DNB predictive capability is performed by comparing with corresponding experimental measurements (i.e. reference for the model validation). The reference data are provided from the Westinghouse Electricity Company (WEC). Two different grid configurations tested here include Non-Mixing Vane Grid (NMVG), and Mixing Vane Grid (MVG). Thorough validation studies with two sub-channel configurations are performed at a wide range of realistic PWR operational conditions.« less
A Correlation for Forced Convective Boiling Heat Transfer of Refrigerants in a Microfin Tube
NASA Astrophysics Data System (ADS)
Momoki, Satoru; Yu, Jian; Koyama, Shigeru; Fujii, Tetsu; Honda, Hiroshi
The experimental study is reported on the forced convective boiling of pure refrigerants HCFC22, HFC134a and HCFC123 flowing in a horizontal microfin tube. The local heat transfer coefficient defined based on the actual inside surface area is measured in the ranges of mass velocity of 200 to 400 kg/m2s, heat flux of 5 to 64 kW/m2 and reduced pressure of 0.07 to 0.24. Using the Chen-type model, a new correlation for microfin tubes is proposed considering the enhancement effect of microfins on both the convective heat transfer and the nucleate boiling components. In the convective heat transfer component, the correlation to predict the heat transfer coefficient of liquid-only flow is determined from preliminary experiments on single-phase flow in microfin tubes, and the two-phase flow enhancement factor is determined from the present experimental data. For the nucleate boiling component, the correlation of Takamatsu et al. for smooth tube is modified. The prediction of the present correlation agrees well with present experimental data, and is available for several microfin tubes which were tested by other researchers.
A 4 K tactical cryocooler using reverse-Brayton machines
NASA Astrophysics Data System (ADS)
Zagarola, M.; Cragin, K.; McCormick, J.; Hill, R.
2017-12-01
Superconducting electronics and spectral-spatial holography have the potential to revolutionize digital communications, but must operate at cryogenic temperatures, near 4 K. Liquid helium is undesirable for military missions due to logistics and scarcity, and commercial low temperature cryocoolers are unable to meet size, weight, power, and environmental requirements for many missions. To address this need, Creare is developing a reverse turbo-Brayton cryocooler that provides refrigeration at 4.2 K and rejects heat at 77 K to an upper-stage cryocooler or through boil-off of liquid nitrogen. The cooling system is predicted to reduce size, weight, and input power by at least an order of magnitude as compared to the current state-of-the-art 4.2 K cryocooler. For systems utilizing nitrogen boil-off, the boil-off rate is reasonable. This paper reviews the design of the cryocooler, the key components, and component test results.
Effect of Protein-Based Edible Coating from Red Snapper (Lutjanus sp.) Surimi on Cooked Shrimp
NASA Astrophysics Data System (ADS)
Rostini, I.; Ibrahim, B.; Trilaksani, W.
2018-02-01
Surimi can be used as a raw material for making protein based edible coating to protect cooked shrimp color. The purpose of this study was to determine consumers preference level on cooked shrimp which coated by surimi edible coating from red snapper and to know the microscopic visualization of edible coating layer on cooked shrimp. The treatments for surimi edible coating were without and added by sappan wood (Caesalpinia sappan Linn) extract. Application of surimi edible coating on cooked shrimp was comprised methods (1) boiled then coated and (2) coated then boiled. Edible coating made from surimi with various concentrations which were 2, 6, 10 and 14% of distillated water. The analysis were done using hedonic test and microscopic observation with microscope photographs. Effect of surimi edible coating on cooked shrimp based on the hedonic and colour test results showed that the 14% surimi concentration, added by sappan wood (Caesalpinia sappan Linn) extract on edible coating was the most preferable by panellist and giving the highest shrimp colour. The edible coating surimi application on cooked shrimp which gave the best result was processed by boiling followed by coating.
The decrease of cylindrical pempek quality during boiling
NASA Astrophysics Data System (ADS)
Karneta, R.; Gultom, N. F.
2017-09-01
The research objective was to study the effects of temperature and formulation on quality of pempek lenjer during boiling. Treatments in this study were four levels of pempek formulation and five levels of temperature. Data was processed by using analysis of variance (Anova). If test results showed that samples were significantly different or highly significantly different, then further test was conducted by using Honestly Significant Different. The results showed that chemical analysis showed that fish dominant formula of cylindrical pempek had higher water content, protein content, lipid content and ash content than that of tapioca starch dominant formula, but it had lower carbohydrate content and fibre content than that of tapioca starch dominant formula.The higher the temperature at center point of cylindrical pempek, the lower the chemical quality of cylindrical pempek. The effect of formula on physical quality of cylindrical pempek showed that tapioca starch dominant formula had more rubbery texture, more neutral pH and brighter color than that of fish dominant formula.The temperature change had no significant effect on texture and pH of cylindrical pempek, but it had significant effect on lightness, intensity and chromatic color especially after exceeding optimum time of boiling.
NASA Astrophysics Data System (ADS)
Bellur, K.; Médici, E. F.; Hermanson, J. C.; Choi, C. K.; Allen, J. S.
2018-04-01
Control of boil-off of cryogenic propellants is a continuing technical challenge for long duration space missions. Predicting phase change rates of cryogenic liquids requires an accurate estimation of solid-fluid interface temperature distributions in regions where a contact line or a thin liquid film exists. This paper described a methodology to predict inner wall temperature gradients with and without evaporation using discrete temperature measurements on the outer wall of a container. Phase change experiments with liquid hydrogen and methane in cylindrical test cells of various materials and sizes were conducted at the Neutron Imaging Facility at the National Institute of Standards and Technology. Two types of tests were conducted. The first type of testing involved thermal cycling of an evacuated cell (dry) and the second involved controlled phase change with cryogenic liquids (wet). During both types of tests, temperatures were measured using Si-diode sensors mounted on the exterior surface of the test cells. Heat is transferred to the test cell by conduction through a helium exchange gas and through the cryostat sample holder. Thermal conduction through the sample holder is shown to be the dominant mode with the rate of heat transfer limited by six independent contact resistances. An iterative methodology is employed to determine contact resistances between the various components of the cryostat stick insert, test cell and lid using the dry test data. After the contact resistances are established, inner wall temperature distributions during wet tests are calculated.
Li, Cong; Ning, Li-Dan; Si, Jin-Ping; Wu, Ling-Shang; Liu, Jing-Jing; Song, Xian-Shui; Yu, Qiao-Xian
2013-02-01
To reveal the quality variation of polysaccharide in Dendrobium officinale by post-harvest processing and extraction methods, and provide a basis for post-harvest processing and clinical and hygienical applications of Tiepifengdou (Dendrobii Officinalis Caulis). The content of polysaccharides were studied by 4 post-harvest processing methods, i. e. drying by drying closet, drying after scalding by boiling water, drying while twisting, and drying while twisting after scalding by boiling water. And a series of temperatures were set in each processing procedure. An orthogonal test L9 (3(4)) with crushed degrees, solid-liquid ratio, extraction time and extraction times as factors were designed to analyze the dissolution rate of polysaccharides in Tiepifengdou processed by drying while twisting at 80 degrees C. The content of polysaccharides was ranged from 26.59% to 32.70% in different samples processed by different processing methods, among which drying while twisting at 80 degrees C and 100 degrees C respectively were the best. Crushed degree was the most important influence on the dissolution rate of polysaccharides. The dissolution rate of polysaccharides was extremely low when the sample was boiled directly without crushing and sieving. Drying while twisting at 80 degrees C was the best post-harvest processing method, which can help to dry the fresh herbs and improve the accumulation of polysaccharides. Boiling the uncrushed Tiepifengdou for a long time as traditional method could not fully extract polysaccharides, while boiling the crushed Tiepifengdou can efficiently extract polysaccharides.
21 CFR 872.6710 - Boiling water sterilizer.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Boiling water sterilizer. 872.6710 Section 872...) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6710 Boiling water sterilizer. (a) Identification. A boiling water sterilizer is an AC-powered device that consists of a container for boiling water...
21 CFR 872.6710 - Boiling water sterilizer.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Boiling water sterilizer. 872.6710 Section 872...) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6710 Boiling water sterilizer. (a) Identification. A boiling water sterilizer is an AC-powered device that consists of a container for boiling water...
21 CFR 872.6710 - Boiling water sterilizer.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Boiling water sterilizer. 872.6710 Section 872...) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6710 Boiling water sterilizer. (a) Identification. A boiling water sterilizer is an AC-powered device that consists of a container for boiling water...
21 CFR 872.6710 - Boiling water sterilizer.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Boiling water sterilizer. 872.6710 Section 872...) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6710 Boiling water sterilizer. (a) Identification. A boiling water sterilizer is an AC-powered device that consists of a container for boiling water...
Ren, Biye
2003-01-01
Structure-boiling point relationships are studied for a series of oxo organic compounds by means of multiple linear regression (MLR) analysis. Excellent MLR models based on the recently introduced Xu index and the atom-type-based AI indices are obtained for the two subsets containing respectively 77 ethers and 107 carbonyl compounds and a combined set of 184 oxo compounds. The best models are tested using the leave-one-out cross-validation and an external test set, respectively. The MLR model produces a correlation coefficient of r = 0.9977 and a standard error of s = 3.99 degrees C for the training set of 184 compounds, and r(cv) = 0.9974 and s(cv) = 4.16 degrees C for the cross-validation set, and r(pred) = 0.9949 and s(pred) = 4.38 degrees C for the prediction set of 21 compounds. For the two subsets containing respectively 77 ethers and 107 carbonyl compounds, the quality of the models is further improved. The standard errors are reduced to 3.30 and 3.02 degrees C, respectively. Furthermore, the results obtained from this study indicate that the boiling points of the studied oxo compound dominantly depend on molecular size and also depend on individual atom types, especially oxygen heteroatoms in molecules due to strong polar interactions between molecules. These excellent structure-boiling point models not only provide profound insights into the role of structural features in a molecule but also illustrate the usefulness of these indices in QSPR/QSAR modeling of complex compounds.
Ukwuani, Anayo T; Tao, Wendong
2016-12-01
To prevent acetoclastic methanogens from ammonia inhibition in anaerobic digestion of protein-rich substrates, ammonia needs to be removed or recovered from digestate. This paper presents an innovative ammonia recovery process that couples vacuum thermal stripping with acid absorption. Ammonia is stripped out of digestate boiling at a temperature below the normal boiling point due to vacuum. Stripped ammonia is absorbed to a sulfuric acid solution, forming ammonium sulfate crystals as a marketable product. Three common types of digestate were found to have boiling point temperature-vacuum curves similar to water. Seven combinations of boiling temperature and vacuum (50 °C 16.6 kPa, 58 °C 20.0 kPa, 65 °C 25.1 kPa, 70 °C 33.6 kPa, 80 °C 54.0 kPa, 90 °C 74.2 kPa, and 100 °C 101.3 kPa) were tested for batch stripping of ammonia in dairy manure digestate. 93.3-99.9% of ammonia was stripped in 3 h. The Lewis-Whitman model fitted ammonia stripping process well. Ammonia mass transfer coefficient was significantly higher at boiling temperature 65-100 °C and vacuum pressure 25.1-101.3 kPa than 50-58 °C and 16.6-20.0 kPa. The low ammonia saturation concentrations (0-24 mg N/L) suggested a large driving force to strip ammonia. The optimum boiling point temperature - vacuum pressure for ammonia recovery in a recirculation line of a mesophilic digester was 65 °C and 25.1 kPa, at which the ammonia mass transfer coefficient was as high as 37.3 mm/h. Installation of a demister and liquid trap could avoid negative effects of higher stripping temperature and stronger vacuum on formation of ammonium sulfate crystals. Pilot tests demonstrated that high-purity ammonium sulfate crystals could be produced by controlling sulfuric acid content and maintaining acid solution saturated with ammonium sulfate. Although volatile organic compounds such as cyclohexene were found in the final acid solutions, no volatile organic compounds were found in the recovered crystals. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Yeom, Hwasung
Experimental results investigating the feasibility of zirconium-silicide coating for accident tolerance of LWR fuel cladding coating was presented. The oxidation resistance of ZrSi2 appeared to be superior to bare Zircaloy-4 in high temperature air. It was shown that micro- and nanostructures consisting of alternating SiO2 and ZrO2 evolved during transient oxidation of ZrSi2, which was explained by spinodal phase decomposition of Zr-Si-O oxide. Coating optimization regarding oxidation resistance was performed mainly using magnetron sputter deposition method. ZrSi 2 coatings ( 3.9 microm) showed improvement of almost two orders of magnitude when compared to bare Zircaloy-4 after air-oxidation at 700 °C for 20-hours. Pre-oxidation of ZrSi2 coating at 700 °C for 5 h significantly mitigated oxygen diffusion in air-oxidation tests at 1000 °C for 1-hour and 1200 °C for 10-minutes. The ZrSi2 coating with the pre-oxidation was found to be the best condition to prevent oxide formation in Zircaloy-4 substrate in the steam condition even if the top surface of the coating was degraded by formation of zirconium-rich oxide layer. Only the ZrSiO4 phase, formed by exposing the ZrSi2 coating at 1400 °C in air, allowed for immobilization of silicon species in the oxide scale in the aqueous environments. A quench test facility was designed and built to study transient boiling heat transfer of modified Zircaloy-4 surfaces (e.g., roughened surfaces, oxidized surfaces, ZrSi2 coated surfaces) at various system conditions (e.g., elevated pressures and water subcooling). The minimum film boiling temperature increased with increasing system pressure and water subcooling, consistent with past literature. Quenching behavior was affected by the types of surface modification regardless of the environmental conditions. Quenching heat transfer was improved by the ZrSi 2 coating, a degree of surface oxidation (deltaox = 3 to 50 microm), and surface roughening (Ra 20 microm). A plausible hypothesis based on transient heat conduction models for liquid-solid contact in quenching process was proposed to explain the enhanced quenching performance. The theoretical model incorporated localized temperature behavior on superheated surface and elucidated bubble dynamics qualitatively, and predicts minimum film boiling temperature of oxidized Zirc-4 surfaces, which were in good agreement with experimental data.
Secondary pool boiling effects
NASA Astrophysics Data System (ADS)
Kruse, C.; Tsubaki, A.; Zuhlke, C.; Anderson, T.; Alexander, D.; Gogos, G.; Ndao, S.
2016-02-01
A pool boiling phenomenon referred to as secondary boiling effects is discussed. Based on the experimental trends, a mechanism is proposed that identifies the parameters that lead to this phenomenon. Secondary boiling effects refer to a distinct decrease in the wall superheat temperature near the critical heat flux due to a significant increase in the heat transfer coefficient. Recent pool boiling heat transfer experiments using femtosecond laser processed Inconel, stainless steel, and copper multiscale surfaces consistently displayed secondary boiling effects, which were found to be a result of both temperature drop along the microstructures and nucleation characteristic length scales. The temperature drop is a function of microstructure height and thermal conductivity. An increased microstructure height and a decreased thermal conductivity result in a significant temperature drop along the microstructures. This temperature drop becomes more pronounced at higher heat fluxes and along with the right nucleation characteristic length scales results in a change of the boiling dynamics. Nucleation spreads from the bottom of the microstructure valleys to the top of the microstructures, resulting in a decreased surface superheat with an increasing heat flux. This decrease in the wall superheat at higher heat fluxes is reflected by a "hook back" of the traditional boiling curve and is thus referred to as secondary boiling effects. In addition, a boiling hysteresis during increasing and decreasing heat flux develops due to the secondary boiling effects. This hysteresis further validates the existence of secondary boiling effects.
Choi, Yun-Sang; Kim, Hyun-Wook; Kim, Young-Boong; Kim, Cheon-Jei
2015-01-01
The combined effects of smoking and boiling on the proximate composition, technological quality traits, shear force, and sensory characteristics of the Korean traditional boiled loin were studied. Cooking loss, processing loss, and shear force were lower in the smoked/boiled samples than those in the control (without smoking treatment) (p<0.05). The results showed that the boiled loin samples between the control and treatment did not differ significantly in protein, fat, or ash contents, or pH values (p>0.05). The treated samples had higher score for overall acceptability than the control (p<0.05). Thus, these results show that the Korean traditional boiled loin treated with smoking for 60 min before boiling had improved physicochemical properties and sensory characteristics. PMID:26761822
Ramakrishna, S.; Santhosh Kumar, K. S.; Mathew, Dona; Reghunadhan Nair, C. P.
2015-01-01
Superhydrophobic (SH) materials are essential for a myriad of applications such as anti-icing and self-cleaning due to their extreme water repellency. A single, robust material simultaneously possessing melt-coatability, bulk water repellency, self-cleanability, self-healability, self-refreshability, and adhesiveness has been remaining an elusive goal. We demonstrate a unique class of melt-processable, bulk SH coating by grafting long alkyl chains on silica nanoparticle surface by a facile one-step method. The well-defined nanomaterial shows SH property in the bulk and is found to heal macro-cracks on gentle heating. It retains wettability characteristics even after abrading with a sand paper. The surface regenerates SH features (due to reversible self-assembly of nano structures) quickly at ambient temperature even after cyclic water impalement, boiling water treatment and multiple finger rubbing tests. It exhibits self-cleaning properties on both fresh and cut surfaces. This kind of coating, hitherto undisclosed, is expected to be a breakthrough in the field of melt-processable SH coatings. PMID:26679096
Heat Transfer Performances of Pool Boiling on Metal-Graphite Composite Surfaces
NASA Technical Reports Server (NTRS)
Zhang, Nengli; Chao, David F.; Yang, Wen-Jei
2000-01-01
Nucleate boiling, especially near the critical heat flux (CHF), can provide excellent economy along with high efficiency of heat transfer. However, the performance of nucleate boiling may deteriorate in a reduced gravity environment and the nucleate boiling usually has a potentially dangerous characteristic in CHF regime. That is, any slight overload can result in burnout of the boiling surface because the heat transfer will suddenly move into the film-boiling regime. Therefore, enhancement of nucleate boiling heat transfer becomes more important in reduced gravity environments. Enhancing nucleate boiling and critical heat flux can be reached using micro-configured metal-graphite composites as the boiling surface. Thermocapillary force induced by temperature difference between the graphite-fiber tips and the metal matrix, which is independent of gravity, will play an important role in bubble detachment. Thus boiling heat transfer performance does not deteriorate in a reduced-gravity environment. Based on the existing experimental data, and a two-tier theoretical model, correlation formulas are derived for nucleate boiling on the copper-graphite and aluminum-graphite composite surfaces, in both the isolated and coalesced bubble regimes. Experimental studies were performed on nucleate pool boiling of pentane on cooper-graphite (Cu-Gr) and aluminum-graphite (Al-Gr) composite surfaces with various fiber volume concentrations for heat fluxes up to 35 W per square centimeter. It is revealed that a significant enhancement in boiling heat transfer performance on the composite surfaces is achieved, due to the presence of micro-graphite fibers embedded in the matrix. The onset of nucleate boiling (the isolated bubble regime) occurs at wall superheat of about 10 C for the Cu-Gr surface and 15 C for the Al-Gr surface, much lower than their respective pure metal surfaces. Transition from an isolated bubble regime to a coalesced bubble regime in boiling occurs at a superheat of about 14 C on Cu-Gr surface and 19 C on Al-Gr surface.
Coal liquefaction process with increased naphtha yields
Ryan, Daniel F.
1986-01-01
An improved process for liquefying solid carbonaceous materials wherein the solid carbonaceous material is slurried with a suitable solvent and then subjected to liquefaction at elevated temperature and pressure to produce a normally gaseous product, a normally liquid product and a normally solid product. The normally liquid product is further separated into a naphtha boiling range product, a solvent boiling range product and a vacuum gas-oil boiling range product. At least a portion of the solvent boiling-range product and the vacuum gas-oil boiling range product are then combined and passed to a hydrotreater where the mixture is hydrotreated at relatively severe hydrotreating conditions and the liquid product from the hydrotreater then passed to a catalytic cracker. In the catalytic cracker, the hydrotreater effluent is converted partially to a naphtha boiling range product and to a solvent boiling range product. The naphtha boiling range product is added to the naphtha boiling range product from coal liquefaction to thereby significantly increase the production of naphtha boiling range materials. At least a portion of the solvent boiling range product, on the other hand, is separately hydrogenated and used as solvent for the liquefaction. Use of this material as at least a portion of the solvent significantly reduces the amount of saturated materials in said solvent.
40 CFR 180.1056 - Boiled linseed oil; exemption from requirement of tolerance.
Code of Federal Regulations, 2010 CFR
2010-07-01
... “boiled linseed oil.” This exemption is limited to use on rice before edible parts form. [46 FR 33270... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Boiled linseed oil; exemption from... From Tolerances § 180.1056 Boiled linseed oil; exemption from requirement of tolerance. Boiled linseed...
Flow Visualization of Liquid Hydrogen Line Chilldown Tests
NASA Technical Reports Server (NTRS)
Rame, Enrique; Hartwig, Jason W.; McQuillen John B.
2014-01-01
We present experimental measurements of wall and fluid temperature during chill-down tests of a warm cryogenic line with liquid hydrogen. Synchronized video and fluid temperature measurements are used to interpret stream temperature profiles versus time. When cold liquid hydrogen starts to flow into the warm line, a sequence of flow regimes, spanning from all-vapor at the outset to bubbly with continuum liquid at the end can be observed at a location far downstream of the cold inlet. In this paper we propose interpretations to the observed flow regimes and fluid temperature histories for two chilldown methods, viz. trickle (i.e. continuous) flow and pulse flow. Calculations of heat flux from the wall to the fluid versus wall temperature indicate the presence of the transition/nucleate boiling regimes only. The present tests, run at typical Reynolds numbers of approx O(10 (exp 5)), are in sharp contrast to similar tests conducted at lower Reynolds numbers where a well-defined film boiling region is observed.
Environmental qualification testing of the prototype pool boiling experiment
NASA Technical Reports Server (NTRS)
Sexton, J. Andrew
1992-01-01
The prototype Pool Boiling Experiment (PBE) flew on the STS-47 mission in September 1992. This report describes the purpose of the experiment and the environmental qualification testing program that was used to prove the integrity of the prototype hardware. Component and box level vibration and thermal cycling tests were performed to give an early level of confidence in the hardware designs. At the system level, vibration, thermal extreme soaks, and thermal vacuum cycling tests were performed to qualify the complete design for the expected shuttle environment. The system level vibration testing included three axis sine sweeps and random inputs. The system level hot and cold soak tests demonstrated the hardware's capability to operate over a wide range of temperatures and gave the project team a wider latitude in determining which shuttle thermal altitudes were compatible with the experiment. The system level thermal vacuum cycling tests demonstrated the hardware's capability to operate in a convection free environment. A unique environmental chamber was designed and fabricated by the PBE team and allowed most of the environmental testing to be performed within the project's laboratory. The completion of the test program gave the project team high confidence in the hardware's ability to function as designed during flight.
Surface Deformation by Thermo-capillary Convection -Sounding Rocket COMPERE Experiment SOURCE
NASA Astrophysics Data System (ADS)
Fuhrmann, Eckart; Dreyer, Michael E.
The sounding rocket COMPERE experiment SOURCE was successfully flown on MASER 11, launched in Kiruna (ESRANGE), May 15th, 2008. SOURCE has been intended to partly ful-fill the scientific objectives of the European Space Agency (ESA) Microgravity Applications Program (MAP) project AO-2004-111 (Convective boiling and condensation). Three parties of principle investigators have been involved to design the experiment set-up: ZARM for thermo-capillary flows, IMFT (Toulouse, France) for boiling studies, EADS Astrium (Bremen, Ger-many) for depressurization. The scientific aims are to study the effect of wall heat flux on the contact line of the free liquid surface and to obtain a correlation for a convective heat transfer coefficient. The experiment has been conducted along a predefined time line. A preheating sequence at ground was the first operation to achieve a well defined temperature evolution within the test cell and its environment inside the rocket. Nearly one minute after launch, the pressurized test cell was filled with the test liquid HFE-7000 until a certain fill level was reached. Then the free surface could be observed for 120 s without distortion. Afterwards, the first depressurization was started to induce subcooled boiling, the second one to start saturated boiling. The data from the flight consists of video images and temperature measurements in the liquid, the solid, and the gaseous phase. Data analysis provides the surface shape versus time and the corresponding apparent contact angle. Computational analysis provides information for the determination of the heat transfer coefficient in a compensated gravity environment where a flow is caused by the temperature difference between the hot wall and the cold liquid. Correlations for the effective contact angle and the heat transfer coefficient shall be delivered as a function of the relevant dimensionsless parameters. The data will be used for benchmarking of commercial CFD codes and the tank design (using these codes) of future cryogenic upper stages.
ERIC Educational Resources Information Center
LeMaire, Peter; Waiveris, Charles
1995-01-01
Describes experiments designed to investigate the cooling rate of microwave-boiled water as compared to that of stove-boiled water. Concludes that within experimental limits, microwave-boiled water and stove-boiled water cool at the same rate. (JRH)
Boiling incipience and convective boiling of neon and nitrogen
NASA Technical Reports Server (NTRS)
Papell, S. S.; Hendricks, R. C.
1977-01-01
Forced convection and subcooled boiling heat transfer data for liquid nitrogen and liquid neon were obtained in support of a design study for a 30 tesla cryomagnet cooled by forced convection of liquid neon. This design precludes nucleate boiling in the flow channels as they are too small to handle vapor flow. Consequently, it was necessary to determine boiling incipience under the operating conditions of the magnet system. The cryogen data obtained over a range of system pressures, fluid flow rates, and applied heat fluxes were used to develop correlations for predicting boiling incipience and convective boiling heat transfer coefficients in uniformly heated flow channels. The accuracy of the correlating equations was then evaluated. A technique was also developed to calculate the position of boiling incipience in a uniformly heated flow channel. Comparisons made with the experimental data showed a prediction accuracy of plus or minus 15 percent
A review on boiling heat transfer enhancement with nanofluids
2011-01-01
There has been increasing interest of late in nanofluid boiling and its use in heat transfer enhancement. This article covers recent advances in the last decade by researchers in both pool boiling and convective boiling applications, with nanofluids as the working fluid. The available data in the literature is reviewed in terms of enhancements, and degradations in the nucleate boiling heat transfer and critical heat flux. Conflicting data have been presented in the literature on the effect that nanofluids have on the boiling heat-transfer coefficient; however, almost all researchers have noted an enhancement in the critical heat flux during nanofluid boiling. Several researchers have observed nanoparticle deposition at the heater surface, which they have related back to the critical heat flux enhancement. PMID:21711794
Tanaka, Sachi; Yamamoto, Kana; Yamada, Kazuki; Furuya, Kanon
2016-01-01
This study was performed to determine the effects of feeding a fiber-rich fraction of Brassica vegetables on the immune response through changes in enteric bacteria and short-chain fatty acid (SCFA) production in normal mice. The boiled-water-insoluble fraction of Brassica rapa L. (nozawana), which consists mainly of dietary fiber, was chosen as a test material. A total of 31 male C57BL/6J mice were divided into two groups and housed in a specific-pathogen-free facility. The animals were fed either a control diet or the control diet plus the insoluble B. rapa L. fraction for 2 weeks and sacrificed to determine microbiological and SCFA profiles in lower-gut samples and immunological molecules. rRNA-based quantification indicated that the relative population of Bacteroidetes was markedly lower in the colon samples of the insoluble B. rapa L. fraction-fed group than that in the controls. Populations of the Eubacterium rectale group and Faecalibacterium prausnitzii, both of which are representative butyrate-producing bacteria, doubled after 2 weeks of fraction intake, accompanying a marginal increase in the proportion of colonic butyrate. In addition, feeding with the fraction significantly increased levels of the anti-inflammatory cytokine interleukin-10 (IL-10) and tended to increase splenic regulatory T cell numbers but significantly reduced the population of cells expressing activation markers. We demonstrated that inclusion of the boiled-water-insoluble fraction of B. rapa L. can alter the composition of the gut microbiota to decrease the numbers of Bacteroidetes and to increase the numbers of butyrate-producing bacteria, either of which may be involved in the observed shift in the production of splenic IL-10. PMID:26921420
Explosive Boiling at Very Low Heat Fluxes: A Microgravity Phenomenon
NASA Technical Reports Server (NTRS)
Hasan, M. M.; Lin, C. S.; Knoll, R. H.; Bentz, M. D.
1993-01-01
The paper presents experimental observations of explosive boiling from a large (relative to bubble sizes) flat heating surface at very low heat fluxes in microgravity. The explosive boiling is characterized as either a rapid growth of vapor mass over the entire heating surface due to the flashing of superheated liquid or a violent boiling spread following the appearance of single bubbles on the heating surface. Pool boiling data with saturated Freon 113 was obtained in the microgravity environment of the space shuttle. The unique features of the experimental results are the sustainability of high liquid superheat for long periods and the occurrence of explosive boiling at low heat fluxes (0.2 to 1.2 kW/sq m). For a heat flux of 1.0 kW/sq m a wall superheat of 17.9 degrees C was attained in ten minutes of heating. This was followed by an explosive boiling accompanied with a pressure spike and a violent bulk liquid motion. However, at this heat flux the vapor blanketing the heating surface could not be sustained. Stable nucleate boiling continued following the explosive boiling.
16 CFR 1201.4 - Test procedures.
Code of Federal Regulations, 2010 CFR
2010-01-01
... rigidity. (ii) The structural framing shall be welded or securely bolted at the corners and braced by one... figure 5 on this section. The bag shall be filled with No. 71/2 chilled lead shot to a total weight of... durability test equipment—(i) Boil test. Two containers of water shall be provided with means to maintain one...
16 CFR 1201.4 - Test procedures.
Code of Federal Regulations, 2012 CFR
2012-01-01
... rigidity. (ii) The structural framing shall be welded or securely bolted at the corners and braced by one... figure 5 on this section. The bag shall be filled with No. 71/2 chilled lead shot to a total weight of... durability test equipment—(i) Boil test. Two containers of water shall be provided with means to maintain one...
ERIC Educational Resources Information Center
Struyf, Jef
2011-01-01
The boiling point of a monofunctional organic compound is expressed as the sum of two parts: a contribution to the boiling point due to the R group and a contribution due to the functional group. The boiling point in absolute temperature of the corresponding RH hydrocarbon is chosen for the contribution to the boiling point of the R group and is a…
Correlational approach to turbulent saturated film boiling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chu, T.Y.
A correlation method for saturated film boiling is proposed. The correlation is based on the analogy between film boiling and natural convection. As in the case of natural convection, the turbulent film boiling correlation takes the form of a Nusselt number versus the Raleigh number power law, Nu[sub B] [proportional to] Ra[sub B][sup 1.3]. The proposed correlation shows very good agreement with current data for film boiling of water from vertical surfaces. The general applicability of the correlation is established by comparisons with film boiling data from R-113 and cryogenic fluids. 25 refs., 8 figs.
The myth of the boiling point.
Chang, Hasok
2008-01-01
Around 1800, many reputable scientists reported significant variations in the temperature of pure water boiling under normal atmospheric pressure. The reported variations included a difference of over 1 degree C between boiling in metallic and glass vessels (Gay-Lussac), and "superheating" up to 112 degrees C on extracting dissolved air out of water (De Luc). I have confirmed most of these observations in my own experiments, many of which are described in this paper. Water boils at the "boiling point" only under very particular circumstances. Our common-sense intuition about the fixedness of the boiling point is only sustained by our limited experience.
Boczkaj, Grzegorz; Przyjazny, Andrzej; Kamiński, Marian
2015-03-01
The paper describes a new procedure for the determination of boiling point distribution of high-boiling petroleum fractions using size-exclusion chromatography with refractive index detection. Thus far, the determination of boiling range distribution by chromatography has been accomplished using simulated distillation with gas chromatography with flame ionization detection. This study revealed that in spite of substantial differences in the separation mechanism and the detection mode, the size-exclusion chromatography technique yields similar results for the determination of boiling point distribution compared with simulated distillation and novel empty column gas chromatography. The developed procedure using size-exclusion chromatography has a substantial applicability, especially for the determination of exact final boiling point values for high-boiling mixtures, for which a standard high-temperature simulated distillation would have to be used. In this case, the precision of final boiling point determination is low due to the high final temperatures of the gas chromatograph oven and an insufficient thermal stability of both the gas chromatography stationary phase and the sample. Additionally, the use of high-performance liquid chromatography detectors more sensitive than refractive index detection allows a lower detection limit for high-molar-mass aromatic compounds, and thus increases the sensitivity of final boiling point determination. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
The effect of reduced gravity on cryogenic nitrogen boiling and pipe chilldown.
Darr, Samuel; Dong, Jun; Glikin, Neil; Hartwig, Jason; Majumdar, Alok; Leclair, Andre; Chung, Jacob
2016-01-01
Manned deep space exploration will require cryogenic in-space propulsion. Yet, accurate prediction of cryogenic pipe flow boiling heat transfer is lacking, due to the absence of a cohesive reduced gravity data set covering the expected flow and thermodynamic parameter ranges needed to validate cryogenic two-phase heat transfer models. This work provides a wide range of cryogenic chilldown data aboard an aircraft flying parabolic trajectories to simulate reduced gravity. Liquid nitrogen is used to quench a 1.27 cm diameter tube from room temperature. The pressure, temperature, flow rate, and inlet conditions are reported from 10 tests covering liquid Reynolds number from 2,000 to 80,000 and pressures from 80 to 810 kPa. Corresponding terrestrial gravity tests were performed in upward, downward, and horizontal flow configurations to identify gravity and flow direction effects on chilldown. Film boiling heat transfer was lessened by up to 25% in reduced gravity, resulting in longer time and more liquid to quench the pipe to liquid temperatures. Heat transfer was enhanced by increasing the flow rate, and differences between reduced and terrestrial gravity diminished at high flow rates. The new data set will enable the development of accurate and robust heat transfer models of cryogenic pipe chilldown in reduced gravity.
The effect of reduced gravity on cryogenic nitrogen boiling and pipe chilldown
Darr, Samuel; Dong, Jun; Glikin, Neil; Hartwig, Jason; Majumdar, Alok; Leclair, Andre; Chung, Jacob
2016-01-01
Manned deep space exploration will require cryogenic in-space propulsion. Yet, accurate prediction of cryogenic pipe flow boiling heat transfer is lacking, due to the absence of a cohesive reduced gravity data set covering the expected flow and thermodynamic parameter ranges needed to validate cryogenic two-phase heat transfer models. This work provides a wide range of cryogenic chilldown data aboard an aircraft flying parabolic trajectories to simulate reduced gravity. Liquid nitrogen is used to quench a 1.27 cm diameter tube from room temperature. The pressure, temperature, flow rate, and inlet conditions are reported from 10 tests covering liquid Reynolds number from 2,000 to 80,000 and pressures from 80 to 810 kPa. Corresponding terrestrial gravity tests were performed in upward, downward, and horizontal flow configurations to identify gravity and flow direction effects on chilldown. Film boiling heat transfer was lessened by up to 25% in reduced gravity, resulting in longer time and more liquid to quench the pipe to liquid temperatures. Heat transfer was enhanced by increasing the flow rate, and differences between reduced and terrestrial gravity diminished at high flow rates. The new data set will enable the development of accurate and robust heat transfer models of cryogenic pipe chilldown in reduced gravity. PMID:28725740
Kubota, Shohei; Nozawa, Asako; Yanai, Takanori; Ozasa, Koji; Mori, Satomi; Kurihara, Kazuyuki
2017-01-01
We report a case of jellyfish allergy diagnosed via an oral food challenge. A 14-year-old boy had no history of jellyfish stings and had been eating commercially available jellyfish products twice yearly for the past 5-6 years. Five minutes after eating a commercially available boiled jellyfish product (100g), he experienced nausea, wheezing, and erythema and had visited our hospital. We suspected an anaphylactic reaction and treated him with intramuscular adrenaline injection, corticosteroid and antihistamine infusions, volume resuscitation, and salbutamol sulfate inhalation, which resulted in an improvement of the symptoms. One-month later in our hospital, we administered an oral food challenge of the same boiled jellyfish product bought at the same grocery store to the patient. After ingesting 14g of boiled jellyfish, he experienced erythema, wheezing, nausea, and abdominal pain. Several reports have described anaphylaxis caused by the ingestion of jellyfish, but the allergens in jellyfish have not been analyzed. A skin prick test for poly-gamma-glutamic acid (PGA) which is a component of jellyfish stings was negative. This suggests that he was sensitized to some allergen other than PGA via a route different from that of jellyfish sting. Our skin prick test for several kinds of edible jellyfish suggests that allergenicity may be different for different jellyfish.
Numerical Modeling of Saturated Boiling in a Heated Tube
NASA Technical Reports Server (NTRS)
Majumdar, Alok; LeClair, Andre; Hartwig, Jason
2017-01-01
This paper describes a mathematical formulation and numerical solution of boiling in a heated tube. The mathematical formulation involves a discretization of the tube into a flow network consisting of fluid nodes and branches and a thermal network consisting of solid nodes and conductors. In the fluid network, the mass, momentum and energy conservation equations are solved and in the thermal network, the energy conservation equation of solids is solved. A pressure-based, finite-volume formulation has been used to solve the equations in the fluid network. The system of equations is solved by a hybrid numerical scheme which solves the mass and momentum conservation equations by a simultaneous Newton-Raphson method and the energy conservation equation by a successive substitution method. The fluid network and thermal network are coupled through heat transfer between the solid and fluid nodes which is computed by Chen's correlation of saturated boiling heat transfer. The computer model is developed using the Generalized Fluid System Simulation Program and the numerical predictions are compared with test data.
Roussis; Fitzgerald
2000-04-01
The coupling of gas chromatographic simulated distillation with mass spectrometry for the determination of the distillation profiles of crude oils is reported. The method provides the boiling point distributions of both weight and volume percent amounts. The weight percent distribution is obtained from the measured total ion current signal. The total ion current signal is converted to weight percent amount by calibration with a reference crude oil of a known distillation profile. Knowledge of the chemical composition of the crude oil across the boiling range permits the determination of the volume percent distribution. The long-term repeatability is equivalent to or better than the short-term repeatability of the currently available American Society for Testing and Materials (ASTM) gas chromatographic method for simulated distillation. Results obtained by the mass spectrometric method are in very good agreement with results obtained by conventional methods of physical distillation. The compositional information supplied by the method can be used to extensively characterize crude oils.
Guillén, Sofía; Mir-Bel, Jorge; Oria, Rosa; Salvador, María L
2017-02-15
Colour, pigments, total phenolic content and antioxidant activity were investigated in artichokes, green beans, broccoli and carrots cooked under different conditions. Domestic induction hobs with temperature control were used to evaluate the effect of boiling, sous-vide cooking and water immersion cooking at temperatures below 100°C on the properties of each vegetable. Sous-vide cooking preserved chlorophyll, carotenoids, phenolic content and antioxidant activity to a greater extent than boiling for all of the vegetables tested and retained colour better, as determined by a(∗). A reduction of only 10-15°C in the cooking temperature was enough to improve the properties of the samples cooked by water immersion, except for green beans. Artichokes and carrots suffered pronounced losses of antioxidant activity during boiling (17.0 and 9.2% retention, respectively), but the stability of this parameter significantly increased with sous-vide cooking (84.9 and 55.3% retention, respectively). Copyright © 2016 Elsevier Ltd. All rights reserved.
Experimental analysis of refrigerants flow boiling inside small sized microfin tubes
NASA Astrophysics Data System (ADS)
Diani, Andrea; Rossetto, Luisa
2017-07-01
The refrigerant charge reduction is one of the most challenging issues that the scientific community has to cope to reduce the anthropic global warming. Recently, mini microfin tubes have been matter of research, since they can reach better thermal performance in small domains, leading to a further refrigerant charge reduction. This paper presents experimental results about R134a flow boiling inside a microfin tube having an internal diameter at the fin tip of 2.4 mm. The mass flux was varied between 375 and 940 kg m-2 s-1, heat flux from 10 to 50 kW m-2, vapor quality from 0.10 to 0.99. The saturation temperature at the inlet of the test section was kept constant and equal to 30 °C. R134a thermal and fluid dynamic performances are presented and compared against those obtained with R1234ze(E) and R1234yf and against values obtained during R134a flow boiling inside a 3.4 mm ID microfin tube.
Vivienne, Ezenduka Ekene; Josephine, Okorie-kanu Onyinye; Anaelom, Nwanta John
2018-01-01
Aim: The objective of this study was to determine the effect of varying temperatures (different cooking methods and freezing) on the concentration of oxytetracycline (OTC) residues in tissues of broiler birds. Materials and Methods: Fifty, 5-week-old birds were purchased and acclimatized for 3 weeks while being fed antibiotic-free feed and water. Four birds were then tested for residue and in the absence; the remaining birds were injected intramuscularly with oxytetracycline at its therapeutic dose. Muscle and liver samples of the treated birds were harvested and checked for OTC residues before subjecting them to boiling, microwaving, and roasting. The three plate test was used for the residue detection. Result: OTC was detected at both pH 6.0 and pH 7.2 but not detected at pH 8.0. Roasting and boiling significantly reduced the concentration of oxytetracycline in muscle by 53.6% and 69.6%, respectively, at pH 6.0, microwaving reduced the concentration by 49.1% but was not statistically significant. The same pattern was followed at pH 7.2 with reduction of 34.3%, 53.2%, and 67.7% for microwaved, roasted, and boiled. For the liver tissues, there was a significant reduction in the concentration for both pH: 6.0 (57.75%, 79.75%, and 89%; pH 7.2 (48.06%, 79.6%, and 88.79%) for boiled, microwaved, and roasted samples. Boiling had a greater reduction effect for muscle samples while roasting had a greater reduction in liver samples at both pHs. Freezing at −10°C had no effect on the concentration of OTC even after 9 days. Conclusion: The significant reduction of OTC concentration by cooking indicates that consumers may not be at risk of the effects of OTC residues in meat, but microwaving meat may not reduce the concentration below the maximum residue limit if the initial concentration is very high. Therefore, routine monitoring of drug residues in farms and abattoirs is still advocated. PMID:29657398
ERIC Educational Resources Information Center
Gilbert, George L., Ed.
1988-01-01
Details three demonstrations for use in chemistry classrooms. Includes: "A Demonstration of Corrosion by Differential Aeration"; "A Simple Demonstration of the Activation Energy Concept"; and "A Boiling Demonstration at Room Temperature." Each description includes equipment, materials, and methods. (CW)
Sasada, M.; Roedder, E.; Belkin, H.E.
1986-01-01
Fluid inclusion studies have been used to derive a model for fluid evolution in the Hohi geothermal area, Japan. Six types of fluid inclusions are found in quartz obtained from the drill core of DW-5 hole. They are: (I) primary liquid-rich with evidence of boiling; (II) primary liquid-rich without evidence of boiling; (III) primary vapor-rich (assumed to have been formed by boiling); (IV) secondary liquid-rich with evidence of boiling; (V) secondary liquid-rich without evidence of boiling; (VI) secondary vapor-rich (assumed to have been formed by boiling). Homogenization temperatures (Th) range between 196 and 347??C and the final melting point of ice (Tm) between -0.2 and -4.3??C. The CO2 content was estimated semiquantitatively to be between 0 and 0.39 wt. % based on the bubble behavior on crushing. NaCl equivalent solid solute salinity of fluid inclusions was determined as being between 0 and 6.8 wt. % after minor correction for CO2 content. Fluid inclusions in quartz provide a record of geothermal activity of early boiling and later cooling. The CO2 contents and homogenization temperatures of fluid inclusions with evidence of boiling generally increase with depth; these changes, and NaCl equivalent solid solute salinity of the fluid can be explained by an adiabatic boiling model for a CO2-bearing low-salinity fluid. Some high-salinity inclusions without CO2 are presumed to have formed by a local boiling process due to a temperature increase or a pressure decrease. The liquid-rich primary and secondary inclusions without evidence of boiling formed during the cooling process. The salinity and CO2 content of these inclusions are lower than those in the boiling fluid at the early stage, probably as a result of admixture with groundwater. ?? 1986.
Feasibility study of a brine boiling machine by solar energy
NASA Astrophysics Data System (ADS)
Phayom, W.
2018-06-01
This study presented the technical and operational feasibility of brine boiling machine by using solar energy instead of firewood or husk for salt production. The solar salt brine boiling machine consisted of a boiling chamber with an enhanced thermal efficiency through use of a solar brine heater. The stainless steel solar salt brine boiling chamber had dimensions of 60 cm x 70 cm x 20 cm. The steel brine heater had dimensions of 70 cm x 80 cm x 20 cm. The tilt angle of both the boiling chamber and brine heater was 20 degrees from horizontal. The brine temperature in the reservoir tank was 42°C with a flow rate of 6.64 L/h discharging into the solar boiling machine. It was found that the thermal efficiency and overall efficiency of the solar salt brine boiling machine were 0.63 and 0.38, respectively at a solar irradiance of 787.6 W/m2. The results shows that the potential of using solar energy for salt production system is feasible.
Design and Testing for a New Thermosyphon Irradiation Vehicle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Felde, David K.; Carbajo, Juan J.; McDuffee, Joel Lee
The High Flux Isotope Reactor (HFIR) at the Oak Ridge National Laboratory (ORNL) requires most materials and all fuel experiments to be placed in a pressure containment vessel to ensure that internal contaminants such as fission products cannot be released into the primary coolant. It also requires that all experiments be capable of withstanding various accident conditions (e.g., loss of coolant) without generating vapor bubbles on the surface of the experiment in the primary coolant. These requirements are intended to artificially increase experiment temperatures by introducing a barrier between the experimental materials and the HFIR coolant, and by reducing heatmore » loads to the HFIR primary coolant, thus ensuring that no boiling can occur. A proposed design for materials irradiation would remove these limitations by providing the required primary containment with an internal cooling flow. This would allow for experiments to be irradiated without concern for coolant contamination (e.g., from cladding failure of advanced fuel pins) or for specimen heat load. This report describes a new materials irradiation experiment design that uses a thermosyphon cooling system to allow experimental materials direct access to a liquid coolant. The new design also increases the range of conditions that can be tested in HFIR. This design will provide a unique capability to validate the performance of current and advanced fuels and materials. Because of limited supporting data for this kind of irradiation vehicle, a test program was initiated to obtain operating data that can be used to (1) qualify the vehicle for operation in HFIR and (2) validate computer models used to perform design- and safety-basis calculations. This report also describes the test facility and experimental data, and it provides a comparison of the experimental data to computer simulations. A total of 51 tests have been completed: four tests with pure steam, 12 tests with argon, and 35 tests with helium. A total of 10 tests were performed at subatmospheric pressure, and four of these were performed with pure steam. One test was conducted at a high power of 92.7 kW, six tests were HFIR startups, and two tests were HFIR loss of offsite power (LOOP). Pressures up to 10 MPa, vapor temperatures up to 583 K (310°C), and heater temperatures above 600 K (327°C) have been reached in these tests. Two computer programs, RELAP5-3D and TRACE, have been used to simulate the tests. The TRACE code has shown good agreement with the test data and has been used to model a variety of tests. This experimental facility has been very useful in demonstrating the viability of this new type of irradiation facility.« less
NASA Astrophysics Data System (ADS)
Zell, M.; Straub, J.; Weinzierl, A.
1984-12-01
Experiments on subcooled nucleate pool boiling in microgravity were carried out to separate gravity driven effects on heat transfer within the boiling process. A ballistic trajectory by sounding rocket flight (TEXUS 5 and 10) achieved a gravity level of a/g = 0.0001 for 360 sec. For determination of geometrical effects on heat transport two different experimental configurations (platinum wire and flat plate) were employed. Boiling curves and bubble dynamics recorded by cinematography lead to gravity independent modelling of the boiling phenomena. The results ensure the applicability and high efficiency of nucleate pool boiling for heat exchangers in space laboratories.
Ram, Pavani K.; Blanton, Elizabeth; Klinghoffer, Debra; Platek, Mary; Piper, Janet; Straif-Bourgeois, Susanne; Bonner, Matthew R.; Mintz, Eric D.
2007-01-01
Objectives. Thousands of Louisiana residents were asked to boil water because of widespread disruptions in electricity and natural gas services after Hurricane Rita. We sought to assess awareness of boil water orders and familiarity with household water disinfection techniques other than boiling. Methods. We conducted a cross-sectional survey in randomly selected mobile home communities in Louisiana. Results. We interviewed 196 respondents from 8 communities, which had boil water orders instituted. Of 97 who were home while communities were still under orders to boil water, 30 (31%) were aware of the orders and, of those, 24 (80%) said the orders were active while they were living at home; of the 24, 10 (42%) reported boiling water. Overall, 163 (83%) respondents were aware of a method of water disinfection at the household level: boiling (78%), chlorination (27%), and filtration (25%); 87% had a container of chlorine bleach at home. Conclusions. Few hurricane-affected respondents were aware of boil water orders and of alternate water disinfection techniques. Most had access to chlorine and could have practiced household chlorination if disruption in natural gas and electricity made boiling impossible. PMID:17413065
Results of an Advanced Development Zero Boil-Off Cryogenic Propellant Storage Test
NASA Technical Reports Server (NTRS)
Plachta, David
2004-01-01
A zero boil-off (ZBO) cryogenic propellant storage concept was recently tested in a thermally relevant low-earth orbit environment, an important development in the effort to apply this concept to flight projects. Previous efforts documented the benefits of ZBO for launch vehicle upper stages in a low-earth orbit (LEO). Central to that analysis is a ZBO Cryogenic Analysis Tool that estimates the performance of each component and the ZBO system. This test is essential to the validation of that tool, and was the first flight representative configuration tested in a thermally representative environment. The test article was comprised of a spherical 1.4 m diameter insulated propellant tank, with a submerged mixer, a cryogenic heat pipe, flight design cryocooler, and a radiator. All were enclosed in a thermal shroud and inserted into and tested in a vacuum chamber that simulated an LEO thermal environment. Thermal and pressure control tests were performed at sub-critical LN2 temperatures and approximately 2 atmospheres pressure. The cold side of the ZBO system performed well. In particular, the heat pipe performed better than expected, which suggests that the cryocooler could be located further from the tank than anticipated, i.e. on a spacecraft bus, while maintaining the desired efficiency. Also, the mixer added less heat than expected. The tank heating rate through the insulation was higher than expected; also the temperatures on the cryocooler hot side were higher than planned. This precluded the cryocooler from eliminating the boil-off. The results show the cryocooler was successful at removing 6.8 W of heat at approximately 75 K and 150 W of input power, with a heat rejection temperature of 311 K. The data generated on the ZBO components is essential for the upgrade of the ZBO Cryogenic Analysis Tool to more accurately apply the concept to future missions.
Acoustic emission feedback control for control of boiling in a microwave oven
White, Terry L.
1991-01-01
An acoustic emission based feedback system for controlling the boiling level of a liquid medium in a microwave oven is provided. The acoustic emissions from the medium correlated with surface boiling is used to generate a feedback control signal proportional to the level of boiling of the medium. This signal is applied to a power controller to automatically and continuoulsly vary the power applied to the oven to control the boiling at a selected level.
Water boiling inside carbon nanotubes: toward efficient drug release.
Chaban, Vitaly V; Prezhdo, Oleg V
2011-07-26
We show using molecular dynamics simulation that spatial confinement of water inside carbon nanotubes (CNTs) substantially increases its boiling temperature and that a small temperature growth above the boiling point dramatically raises the inside pressure. Capillary theory successfully predicts the boiling point elevation down to 2 nm, below which large deviations between the theory and atomistic simulation take place. Water behaves qualitatively different inside narrow CNTs, exhibiting transition into an unusual phase, where pressure is gas-like and grows linearly with temperature, while the diffusion constant is temperature-independent. Precise control over boiling by CNT diameter, together with the rapid growth of inside pressure above the boiling point, suggests a novel drug delivery protocol. Polar drug molecules are packaged inside CNTs; the latter are delivered into living tissues and heated by laser. Solvent boiling facilitates drug release.
When water does not boil at the boiling point.
Chang, Hasok
2007-03-01
Every schoolchild learns that, under standard pressure, pure water always boils at 100 degrees C. Except that it does not. By the late 18th century, pioneering scientists had already discovered great variations in the boiling temperature of water under fixed pressure. So, why have most of us been taught that the boiling point of water is constant? And, if it is not constant, how can it be used as a 'fixed point' for the calibration of thermometers? History of science has the answers.
Nucleate Pool Boiling Performance of Smooth and Finned Tube Bundles in R-113 and R-114/Oil Mixtures
1989-06-01
tfilm Film thermodynamic temperature (K) Tfilm Film Celcius temperature (C) Tldl Liquid temperature (C) Tld2 Liquid temperature (C) Tn Tube wall local...surface immersed in a pool of saturated liquid is the most thoroughly studied boiling heat-transfer mechanism, when compared to partial film boiling and... film boiling. Figure 2.1 shows the characteristic boiling curve of a heated surface immersed in a froon. As the surface is heated up, heat is
Environmental qualification testing of payload G-534, the Pool Boiling Experiment
NASA Technical Reports Server (NTRS)
Sexton, J. Andrew
1992-01-01
Payload G-534, the prototype Pool Boiling Experiment (PBE), is scheduled to fly on the STS-47 mission in September 1992. This paper describes the purpose of the experiment and the environmental qualification testing program that was used to prove the integrity of the hardware. Component and box level vibration and thermal cycling tests were performed to give an early level of confidence in the hardware designs. At the system level, vibration, thermal extreme soaks, and thermal vacuum cycling tests were performed to qualify the complete design for the expected shuttle environment. The system level vibration testing included three axis sine sweeps and random inputs. The system level hot and cold soak tests demonstrated the hardware's capability to operate over a wide range of temperatures and gave wider latitude in determining which shuttle thermal attitudes were compatible with the experiment. The system level thermal vacuum cycling tests demonstrated the hardware's capability to operate in a convection free environment. A unique environmental chamber was designed and fabricated by the PBE team and allowed most of the environmental testing to be performed within the hardware build laboratory. The completion of the test program gave the project team high confidence in the hardware's ability to function as designed during flight.
Cools, Katherine; Terry, Leon A
2012-07-15
Glucosinolates are β-thioglycosides which are found naturally in Cruciferae including the genus Brassica. When enzymatically hydrolysed, glucosinolates yield isothiocyanates and give a pungent taste. Both glucosinolates and isothiocyanates have been linked with anticancer activity as well as antifungal and antibacterial properties and therefore the quantification of these compounds is scientifically important. A wide range of literature exists on glucosinolates, however the extraction and quantification procedures differ greatly resulting in discrepancies between studies. The aim of this study was therefore to compare the most popular extraction procedures to identify the most efficacious method and whether each extraction can also be used for the quantification of total isothiocyanates. Four extraction techniques were compared for the quantification of sinigrin from mustard cv. Centennial (Brassica juncea L.) seed; boiling water, boiling 50% (v/v) aqueous acetonitrile, boiling 100% methanol and 70% (v/v) aqueous methanol at 70 °C. Prior to injection into the HPLC, the extractions which involved solvents (acetonitrile or methanol) were freeze-dried and resuspended in water. To identify whether the same extract could be used to measure total isothiocyanates, a dichloromethane extraction was carried out on the sinigrin extracts. For the quantification of sinigrin alone, boiling 50% (v/v) acetonitrile was found to be the most efficacious extraction solvent of the four tested yielding 15% more sinigrin than the water extraction. However, the removal of the acetonitrile by freeze-drying had a negative impact on the isothiocyanate content. Quantification of both sinigrin and total isothiocyanates was possible when the sinigrin was extracted using boiling water. Two columns were compared for the quantification of sinigrin revealing the Zorbax Eclipse to be the best column using this particular method. Copyright © 2012 Elsevier B.V. All rights reserved.
Wada, Shinichi; Kawate, Nobuyuki; Mizuma, Masazumi
2017-10-01
This study determines if older adults can masticate regular foods via a simple test conducted using a color-changeable chewing gum. Seventy-nine consecutive inpatients of our clinic receiving rehabilitation and general medicine were assessed for eligibility. The inclusion criterion was >65 years. Thirty patients consented to participate. The main outcome variable was the food bolus texture at the swallowing threshold for five regular foods. The main explanatory variable was the a* value of the color-changeable chewing gum after 120 s of chewing (a* represents the degree of color between red and green, and a positive a* value indicates red). The mean age ± standard deviation of the participants was 81.6 ± 8.6 years, and 40% were men. Participants being able to prepare the food with suitable texture for swallowing was positively associated with the a* values in boiled rice, ginger-fried pork loin, boiled fish-paste, and rice cracker (Crude OR 1.18, 1.15, 1.17, and 1.50; P < 0.001, = 0.026, <0.001, and <0.001, respectively). The cut-off a* values had markedly high specificities (1.0) for boiled rice and boiled fish-paste and high sensitivities (0.86-0.94) for three foods, except boiled rice. We believe that mastication evaluation using the color-changeable chewing gum is not only useful but also extremely practical, even for older adults in a wide range of settings, including an individual's home. This approach would lead to a reduction in unnecessary mechanically altered or pureed food for older adults who can eat pureed food and safely provide palatable food.
Boiling incipience and convective boiling of neon and nitrogen
NASA Technical Reports Server (NTRS)
Papell, S. S.; Hendricks, R. C.
1977-01-01
Forced convection and subcooled boiling heat transfer data for liquid nitrogen and liquid neon were obtained in support of a design study for a 30 tesla cryomagnet cooled by forced convection of liquid neon. The cryogen data obtained over a range of system pressures, fluid flow rates, and applied heat fluxes were used to develop correlations for predicting boiling incipience and convective boiling heat transfer coefficients in uniformly heated flow channels. The accuracy of the correlating equations was then evaluated. A technique was also developed to calculate the position of boiling incipience in a uniformly heated flow channel. Comparisons made with the experimental data showed a prediction accuracy of + or - 15 percent.
Goyak, Katy O; Kung, Ming H; Chen, Min; Aldous, Keith K; Freeman, James J
2016-12-15
Residual aromatic extracts (RAE) are petroleum substances with variable composition predominantly containing aromatic hydrocarbons with carbon numbers greater than C25. Because of the high boiling nature of RAEs, the aromatics present are high molecular weight, with most above the range of carcinogenic polycyclic aromatic hydrocarbons (PAHs). However, refinery distillations are imperfect; some PAHs and their heteroatom-containing analogs (collectively referred to as polycyclic aromatic content or PAC) may remain in the parent stream and be extracted into the RAE, and overall PAC content is related to the carcinogenic potential of an RAE. We describe here a real-time analytical chemistry-based tool to assess the carcinogenic hazard of RAE via the development of a functional relationship between carcinogenicity and boiling point. Samples representative of steps along the RAE manufacturing process were obtained from five refineries to evaluate relationships between mutagenicity index (MI), PAC ring content and gas chromatographic distillation (GCD) curves. As expected, a positive linear relationship between MI and PAC ring content occurred, most specifically for 3-6 ring PAC (R 2 =0.68). A negative correlation was found between MI and temperature at 5% vaporization by GCD (R 2 =0.72), indicating that samples with greater amounts of lower boiling constituents were more likely to be carcinogenic. The inverse relationship between boiling range and carcinogenicity was further demonstrated by fractionation of select RAE samples (MI=0.50+0.07; PAC=1.70+0.51wt%; n=5) into low and high boiling fractions, where lower boiling fractions were both more carcinogenic than the higher boiling fractions (MI=2.36±0.55 and 0.17±0.11, respectively) and enriched in 3-6 ring PACs (5.20+0.70wt% and 0.97+0.35wt%, respectively). The criteria defining carcinogenicity was established as 479°C for the 5% vaporization points by GCD, with an approximate 95% probability of a future sample having an MI below the recommended limit of 0.4 for RAEs. Overall, these results provide a cost-efficient and real-time tool by which the carcinogenic potential of RAEs can be assessed at the refinery level, ultimately providing a means to readily monitor and minimize the carcinogenic potential of RAEs. Copyright © 2016. Published by Elsevier Ireland Ltd.
A numerical investigation of the effect of surface wettability on the boiling curve.
Hsu, Hua-Yi; Lin, Ming-Chieh; Popovic, Bridget; Lin, Chii-Ruey; Patankar, Neelesh A
2017-01-01
Surface wettability is recognized as playing an important role in pool boiling and the corresponding heat transfer curve. In this work, a systematic study of pool boiling heat transfer on smooth surfaces of varying wettability (contact angle range of 5° - 180°) has been conducted and reported. Based on numerical simulations, boiling curves are calculated and boiling dynamics in each regime are studied using a volume-of-fluid method with contact angle model. The calculated trends in critical heat flux and Leidenfrost point as functions of surface wettability are obtained and compared with prior experimental and theoretical predictions, giving good agreement. For the first time, the effect of contact angle on the complete boiling curve is shown. It is demonstrated that the simulation methodology can be used for studying pool boiling and related dynamics and providing more physical insights.
A numerical investigation of the effect of surface wettability on the boiling curve
Lin, Ming-Chieh; Popovic, Bridget; Lin, Chii-Ruey; Patankar, Neelesh A.
2017-01-01
Surface wettability is recognized as playing an important role in pool boiling and the corresponding heat transfer curve. In this work, a systematic study of pool boiling heat transfer on smooth surfaces of varying wettability (contact angle range of 5° − 180°) has been conducted and reported. Based on numerical simulations, boiling curves are calculated and boiling dynamics in each regime are studied using a volume-of-fluid method with contact angle model. The calculated trends in critical heat flux and Leidenfrost point as functions of surface wettability are obtained and compared with prior experimental and theoretical predictions, giving good agreement. For the first time, the effect of contact angle on the complete boiling curve is shown. It is demonstrated that the simulation methodology can be used for studying pool boiling and related dynamics and providing more physical insights. PMID:29125847
A Novel Role of Three Dimensional Graphene Foam to Prevent Heater Failure during Boiling
Ahn, Ho Seon; Kim, Ji Min; Park, Chibeom; Jang, Ji-Wook; Lee, Jae Sung; Kim, Hyungdae; Kaviany, Massoud; Kim, Moo Hwan
2013-01-01
We report a novel boiling heat transfer (NBHT) in reduced graphene oxide (RGO) suspended in water (RGO colloid) near critical heat flux (CHF), which is traditionally the dangerous limitation of nucleate boiling heat transfer because of heater failure. When the heat flux reaches the maximum value (CHF) in RGO colloid pool boiling, the wall temperature increases gradually and slowly with an almost constant heat flux, contrary to the rapid wall temperature increase found during water pool boiling. The gained time by NBHT would provide the safer margin of the heat transfer and the amazing impact on the thermal system as the first report of graphene application. In addition, the CHF and boiling heat transfer performance also increase. This novel boiling phenomenon can effectively prevent heater failure because of the role played by the self-assembled three-dimensional foam-like graphene network (SFG). PMID:23743619
Effects of moisture on aspen-fiber/polypropylene composites
Roger M. Rowell
2002-01-01
Aspen fiber/polypropylene composites were made using several different levels of aspen fiber (0 to 60% by weight) with and without the addition of a compatibilizer (maleic anhydride grafted polypropylene, MAPP). These composites were tested under various relative humidity conditions and in water soaking, boiling water, cyclic liquid water and oven drying tests. In all...
78 FR 6400 - Results of FAA Nitrous Oxide BLEVE Characterization Testing
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-30
... point. The FAA's Office of Commercial Space Transportation sponsored tests of liquid-phase nitrous oxide... storage and handling is a Boiling Liquid Expanding Vapor Explosion (BLEVE), which results from a sudden... nitrous oxide, and to demonstrate that a BLEVE would not occur if the liquid is maintained at temperatures...
ERIC Educational Resources Information Center
Pinarbasi, Tacettin; Sozbilir, Mustafa; Canpolat, Nurtac
2009-01-01
This study aimed at identifying prospective chemistry teachers' misconceptions of colligative properties. In order to fulfill this aim, a diagnostic test composed of four open-ended questions was used. The test was administered to seventy-eight prospective chemistry teachers just before qualifying to teaching in secondary schools. Nine different…
Forced Convection Boiling and Critical Heat Flux of Ethanol in Electrically Heated Tube Tests
NASA Technical Reports Server (NTRS)
Meyer, Michael L.; Linne, Diane L.; Rousar, Donald C.
1998-01-01
Electrically heated tube tests were conducted to characterize the critical heat flux (transition from nucleate to film boiling) of subcritical ethanol flowing at conditions relevant to the design of a regeneratively cooled rocket engine thrust chamber. The coolant was SDA-3C alcohol (95% ethyl alcohol, 5% isopropyl alcohol by weight), and tests were conducted over the following ranges of conditions: pressure from 144 to 703 psia, flow velocities from 9.7 to 77 ft/s, coolant subcooling from 33 to 362 F, and critical heat fluxes up to 8.7 BTU/in(exp 2)/sec. For the data taken near 200 psia, critical heat flux was correlated as a function of the product of velocity and fluid subcooling to within +/- 20%. For data taken at higher pressures, an additional pressure term is needed to correlate the critical heat flux. It was also shown that at the higher test pressures and/or flow rates, exceeding the critical heat flux did not result in wall burnout. This result may significantly increase the engine heat flux design envelope for higher pressure conditions.
Lubkowitz, Joaquin A; Meneghini, Roberto I
2002-01-01
This work presents the carrying out of boiling-point distributions by simulated distillation with direct-column heating rather than oven-column heating. Column-heating rates of 300 degrees C/min are obtained yielding retention times of 73 s for n-tetratetracontane. The calibration curves of the retention time versus the boiling point, in the range of n-pentane to n-tetratetracontane, are identical to those obtained by slower oven-heating rates. The boiling-point distribution of the reference gas oil is compared with that obtained with column oven heating at rates of 15 to 40 degrees C/min. The results show boiling-point distribution values nearly the same (1-2 degrees F) as those obtained with oven column heating from the initial boiling point to 80% distilled off. Slightly higher differences are obtained (3-4 degrees F) for the 80% distillation to final boiling-point interval. Nonetheless, allowed consensus differences are never exceeded. Precision of the boiling-point distributions (expressed as standard deviations) are 0.1-0.3% for the data obtained in the direct column-heating mode.
NASA Astrophysics Data System (ADS)
Mitrakusuma, Windy H.; Deendarlianto, Kamal, Samsul; Indarto, Nuriyadi, M.
2016-06-01
Onset of nucleate boiling of a droplet when impacted onto hot surface was investigated. Three kinds of surfaces, normal stainless steel (NSS), stainless steel with TiO2 coating (UVN), and stainless steel with TiO2 coating and radiated by ultraviolet ray were employed to examine the effect of wettability. The droplet size was 2.4 mm diameter, and dropped under different We number. The image is generated by high speed camera with the frame speed of 1000 fps. The boiling conditions are identified as natural convection, nucleate boiling, critical heat flux, transition, and film boiling. In the present report, the discussion will be focused on the beginning of nucleate boiling on the droplet. Nucleate boiling occurs when bubbles are generated. These bubbles are probably caused by nucleation on the impurities within the liquid rather than at nucleation sites on the heated surface because the bubbles appear to be in the bulk of the liquid instead of at the liquid-solid interface. In addition, the smaller the contact angle, the fastest the boiling.
Evaluation of fresh pasta-making properties of extra-strong common wheat (Triticum aestivum L.).
Ito, Miwako; Maruyama-Funatsuki, Wakako; Ikeda, Tatsuya M; Nishio, Zenta; Nagasawa, Koichi; Tabiki, Tadashi; Yamauchi, Hiroaki
2012-12-01
The relationship between characterictics of flour of common wheat varieties and fresh pasta-making qualitites was examined, and the fresh pasta-making properties of extra-strong varieties that have extra-strong dough were evaluated. There was a positive correlation between mixing time (PT) and hardness of boiled pasta, indicating that the hardness of boiled pasta was affected by dough properties. Boiled pasta made from extra-strong varieties, Yumechikara, Hokkai 262 and Hokkai 259, was harder than that from other varieties and commercial flour. There was a negative correlation between flour protein content and brightness of boiled pasta. The colors of boiled pasta made from Yumechikara and Hokkai 262 grown under the condition of standard manuring culture were superior to those of boiled pasta made from other varieties. Discoloration of boiled pasta made from Yumechikara grown under the condition of heavy manuring culture was caused by increase of flour protein content. On the other hand, discoloration of boiled pasta made from Hokkai 262 grown under the condition of heavy manuring culture was less than that of boiled pasta made from Yumechikara. These results indicate that pasta made from extra-strong wheat varieties has good hardness and that Hokkai 262 has extraordinary fresh pasta-making properties.
Evaluation of fresh pasta-making properties of extra-strong common wheat (Triticum aestivum L.)
Ito, Miwako; Maruyama-Funatsuki, Wakako; Ikeda, Tatsuya M.; Nishio, Zenta; Nagasawa, Koichi; Tabiki, Tadashi; Yamauchi, Hiroaki
2012-01-01
The relationship between characterictics of flour of common wheat varieties and fresh pasta-making qualitites was examined, and the fresh pasta-making properties of extra-strong varieties that have extra-strong dough were evaluated. There was a positive correlation between mixing time (PT) and hardness of boiled pasta, indicating that the hardness of boiled pasta was affected by dough properties. Boiled pasta made from extra-strong varieties, Yumechikara, Hokkai 262 and Hokkai 259, was harder than that from other varieties and commercial flour. There was a negative correlation between flour protein content and brightness of boiled pasta. The colors of boiled pasta made from Yumechikara and Hokkai 262 grown under the condition of standard manuring culture were superior to those of boiled pasta made from other varieties. Discoloration of boiled pasta made from Yumechikara grown under the condition of heavy manuring culture was caused by increase of flour protein content. On the other hand, discoloration of boiled pasta made from Hokkai 262 grown under the condition of heavy manuring culture was less than that of boiled pasta made from Yumechikara. These results indicate that pasta made from extra-strong wheat varieties has good hardness and that Hokkai 262 has extraordinary fresh pasta-making properties. PMID:23341748
Matrix effect on baked egg tolerance in children with IgE-mediated hen's egg allergy.
Miceli Sopo, Stefano; Greco, Monica; Cuomo, Barbara; Bianchi, Annamaria; Liotti, Lucia; Monaco, Serena; Dello Iacono, Iride
2016-08-01
Children with IgE-mediated hen's egg allergy (IgE-HEA) often tolerate baked egg within a wheat matrix. To evaluate the influence of wheat matrix and the effects of little standardized cooking procedures on baked egg tolerance. Fifty-four children with IgE-HEA were enrolled. They underwent prick-by-prick (PbP) tests and open oral food challenges (OFC) performed with baked HE within a wheat matrix (a home-made cake, locally called ciambellone), baked HE without a wheat matrix (in the form of an omelet, locally named frittata) and boiled HE. Three months after passing ciambellone OFC, parents were asked to answer a survey. About 88% of children tolerated ciambellone, 74% frittata, and 56% boiled HE. Negative predictive value of PbP performed with ciambellone, frittata, and boiled HE was 100%. No IgE-mediated adverse reactions were detected at follow-up carried out by the survey. Wheat matrix seemed to be relevant only in few cases. If our results will be confirmed by larger studies, a negative PbP with ciambellone, frittata, or boiled HE will allow patients with IgE-HEA to eat these foods without undergoing OFC. Moreover, our study showed that very strict standardized cooking procedures do not seem to be essential, to guarantee tolerance toward baked HE. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Bigham, Sajjad; Fazeli, Abdolreza; Moghaddam, Saeed
2017-01-01
Performance enhancement of the two-phase flow boiling heat transfer process in microchannels through implementation of surface micro- and nanostructures has gained substantial interest in recent years. However, the reported results range widely from a decline to improvements in performance depending on the test conditions and fluid properties, without a consensus on the physical mechanisms responsible for the observed behavior. This gap in knowledge stems from a lack of understanding of the physics of surface structures interactions with microscale heat and mass transfer events involved in the microchannel flow boiling process. Here, using a novel measurement technique, the heat and mass transfer process is analyzed within surface structures with unprecedented detail. The local heat flux and dryout time scale are measured as the liquid wicks through surface structures and evaporates. The physics governing heat transfer enhancement on textured surfaces is explained by a deterministic model that involves three key parameters: the drying time scale of the liquid film wicking into the surface structures (τd), the heating length scale of the liquid film (δH) and the area fraction of the evaporating liquid film (Ar). It is shown that the model accurately predicts the optimum spacing between surface structures (i.e. pillars fabricated on the microchannel wall) in boiling of two fluids FC-72 and water with fundamentally different wicking characteristics. PMID:28303952
Flow boiling with enhancement devices for cold plate coolant channel design
NASA Technical Reports Server (NTRS)
Boyd, Ronald D., Sr.; Smith, Alvin
1990-01-01
The use of flow boiling for thermal energy transport is intended to provide an alternative for accommodating higher heat fluxes in commercial space systems. The objectives are to: (1) examine the variations in both the mean and local (axial and circumferential) heat transfer coefficients for a circular coolant channel with either smooth walls, spiral fins, or both spiral fins and a twisted tape; (2) examine the effects of channel diameter and subcooling; and (3) develop an improved reduction analysis and/or suggest possible heat transfer correlation of the present data. Freon-11 is the working fluid. Two-dimensional (circumferential and axial) wall temperature distributions were measured for coolant channels with the above noted internal geometries. The flow regimes which are being studied are: (1) single phase; (2) subcooled flow boiling; and (3) stratified flow boiling. The inside diameter of all test sections is near 1.0 cm. Cicumferentially averaged heat transfer coefficients at several axial locations were obtained for selected coolant channels for a mass velocity of 210 kg/sq m s, an exit pressure of 0.19 MPa (absolute), and an inlet subcooling of 20.8 C. Overall (averaged over the entire channel) heat transfer coefficients were compared for the above channel geometries. This comparison showed that the channel with large pitch spiral fins had higher heat transfer coefficients at all power levels.
Enabling Highly Effective Boiling from Superhydrophobic Surfaces
NASA Astrophysics Data System (ADS)
Allred, Taylor P.; Weibel, Justin A.; Garimella, Suresh V.
2018-04-01
A variety of industrial applications such as power generation, water distillation, and high-density cooling rely on heat transfer processes involving boiling. Enhancements to the boiling process can improve the energy efficiency and performance across multiple industries. Highly wetting textured surfaces have shown promise in boiling applications since capillary wicking increases the maximum heat flux that can be dissipated. Conversely, highly nonwetting textured (superhydrophobic) surfaces have been largely dismissed for these applications as they have been shown to promote formation of an insulating vapor film that greatly diminishes heat transfer efficiency. The current Letter shows that boiling from a superhydrophobic surface in an initial Wenzel state, in which the surface texture is infiltrated with liquid, results in remarkably low surface superheat with nucleate boiling sustained up to a critical heat flux typical of hydrophilic wetting surfaces, and thus upends this conventional wisdom. Two distinct boiling behaviors are demonstrated on both micro- and nanostructured superhydrophobic surfaces based on the initial wetting state. For an initial surface condition in which vapor occupies the interstices of the surface texture (Cassie-Baxter state), premature film boiling occurs, as has been commonly observed in the literature. However, if the surface texture is infiltrated with liquid (Wenzel state) prior to boiling, drastically improved thermal performance is observed; in this wetting state, the three-phase contact line is pinned during vapor bubble growth, which prevents the development of a vapor film over the surface and maintains efficient nucleate boiling behavior.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luk, V.K.; Hessheimer, M.F.; Matsumoto, T.
A high pressure test of a mixed-scaled model (1:10 in geometry and 1:4 in shell thickness) of a steel containment vessel (SCV), representing an improved boiling water reactor (BWR) Mark II containment, was conducted on December 11--12, 1996 at Sandia National Laboratories. This paper describes the preliminary results of the high pressure test. In addition, the preliminary post-test measurement data and the preliminary comparison of test data with pretest analysis predictions are also presented.
Liquid neon heat transfer as applied to a 30 tesla cryomagnet
NASA Technical Reports Server (NTRS)
Papell, S. S.; Hendricks, R. C.
1975-01-01
Since superconducting magnets cooled by liquid helium are limited to magnetic fields of about 18 teslas, the design of a 30 tesla cryomagnet necessitates forced convection liquid neon heat transfer in small coolant channels. As these channels are too small to handle the vapor flow if the coolant were to boil, the design philosophy calls for suppressing boiling by subjecting the fluid to high pressures. Forced convection heat transfer data are obtained by using a blowdown technique to force the fluid vertically through a resistance-heated instrumented tube. The data are obtained at inlet temperatures between 28 and 34 K and system pressures between 28 to 29 bars. Data correlation is limited to a very narrow range of test conditions, since the tests were designed to simulate the heat transfer characteristics in the coolant channels of the 30 tesla cryomagnet concerned. The results can therefore be applied directly to the design of the magnet system.-
Characteristics of Pool Boiling on Graphite-Copper Composite Surfaces
NASA Technical Reports Server (NTRS)
Zhang, Nengli; Chao, David F.; Yang, Wen-Jei
2002-01-01
Nucleate pool boiling performance of different liquids on graphite-copper composite (Gr-Cu) surfaces has been experimentally studied and modeled. Both highly wetting fluids, such as freon-113 and pentane, and a moderately wetting fluid (water) were tested on the Gr-Cu surfaces with different graphite-fiber volume fractions to reveal the enhancement effects of the composite surfaces on the nucleate pool boiling. Results of the experiments show that the graphite-fiber volume fraction has an optimum value. The Gr-Cu composite surface with 25 percent graphite-fiber volume (f=0.25) has a maximum enhancement effect on the nucleate boiling heat transfer comparing to the pure copper surface. For the highly wetting fluid, the nucleate boiling heat transfer is generally enhanced on the Gr- Cu composite surfaces by 3 to 6 times shown. In the low heat flux region, the enhancement is over 6 times, but in the high heat flux region, the enhancement is reduced to about 40%. For the moderately wetting fluid (water), stronger enhancement of nucleate boiling heat transfer is achieved on the composite surface. It shown the experimental results in which one observes the nucleate boiling heat transfer enhancement of 5 to 10 times in the low heat flux region and an enhancement of 3 to 5 times in the high heat flux region. Photographs of bubble departure during the initial stage of nucleate boiling indicate that the bubbles detached from the composite surface are much smaller in diameter than those detached from the pure copper surface. Typical photographs are presented.It shows that the bubbles departed from the composite surface have diameters of only O(0.1) mm, while those departed from the pure copper surface have diameters of O(1) mm. It is also found that the bubbles depart from the composite surface at a much higher frequency, thus forming vapor columns. These two phenomena combined with high thermal conductivity of the graphite fiber are considered the mechanisms for such a significant augmentation in nucleate boiling heat transfer on the composite surfaces. A physical model is developed to describe the phenomenon of bubble departure from the composite surface: The preferred site of bubble nucleation is the fiber tip because of higher tip temperature than the surrounding copper base and poor wettability of the graphite tip compared with that of the base material (copper). The high evaporation rate near the contact line produces the vapor cutback due to the vapor recoil pushing the three-phase line outwards from the fiber tip, and so a neck of the bubble is formed near the bubble bottom. Evaporation and surface tension accelerate the necking process and finally result in the bubble departure while a new small bubble is formed at the tip when the surface tension pushes the three-phase line back to the tip. The process is schematically shown. The proposed model is based on and confirmed by experimental results.
Experimental evidence of the vapor recoil mechanism in the boiling crisis.
Nikolayev, V S; Chatain, D; Garrabos, Y; Beysens, D
2006-11-03
Boiling crisis experiments are carried out in the vicinity of the liquid-gas critical point of H2. A magnetic gravity compensation setup is used to enable nucleate boiling at near critical pressure. The measurements of the critical heat flux that defines the threshold for the boiling crisis are carried out as a function of the distance from the critical point. The obtained power law behavior and the boiling crisis dynamics agree with the predictions of the vapor recoil mechanism and disagree with the classical vapor column mechanism.
Conversion of direct process high-boiling residue to monosilanes
Brinson, Jonathan Ashley; Crum, Bruce Robert; Jarvis, Jr., Robert Frank
2000-01-01
A process for the production of monosilanes from the high-boiling residue resulting from the reaction of hydrogen chloride with silicon metalloid in a process typically referred to as the "direct process." The process comprises contacting a high-boiling residue resulting from the reaction of hydrogen chloride and silicon metalloid, with hydrogen gas in the presence of a catalytic amount of aluminum trichloride effective in promoting conversion of the high-boiling residue to monosilanes. The present process results in conversion of the high-boiling residue to monosilanes. At least a portion of the aluminum trichloride catalyst required for conduct of the process may be formed in situ during conduct of the direct process and isolation of the high-boiling residue.
A Compilation of Hazard and Test Data for Pyrotechnic Compositions
1980-10-01
heated. These changes may be related to dehydration , decomposition , crystal- line transition, melting, boiling, vaporization, polymerization, oxidation...123 180 + 66 162 + 16 506 +169 447 +199 448+ 159 Decomposition temperature °C 277 + 102 561 j; 135 205 + 75 182 + 24 550 + 168 505 +224 517 + 153...of compatibility or classification. The following tests are included in the parametric tests: 1. Autoignition Temperature 2. Decomposition
Long-Term Cryogenic Propellant Storage on Mars with Hercules Propellant Storage Facility
NASA Technical Reports Server (NTRS)
Liu, Gavin
2017-01-01
This report details the process and results of roughly sizing the steady state, zero boil-off thermal and power parameters of the Hercules Propellant Storage Facility. For power analysis, isothermal and isobaric common bulkhead tank scenarios are considered. An estimated minimum power requirement of 8.3 kW for the Reverse Turbo-Brayton Cryocooler is calculated. Heat rejection concerns in soft vacuum Mars atmosphere are noted and potential solutions are proposed. Choice of coolant for liquid propellant conditioning and issues with current proposed cryocooler cycle are addressed; recommendations are made, e.g. adding a Joule-Thomson expansion valve after the Reverse Turbo-Brayton turbine in order to have two-phase, isothermal heat exchange through the Broad Area Cooling system. Issues with cross-country transfer lines from propellant storage to flight vehicle are briefly discussed: traditional vacuum jacketed lines are implausible, and Mars insulation needs to be developed.
Atmospheric Pressure Effects on Cryogenic Storage Tank Boil-Off
NASA Technical Reports Server (NTRS)
Sass, J. P.; Frontier, C. R.
2007-01-01
The Cryogenics Test Laboratory (CTL) at the Kennedy Space Center (KSC) routinely utilizes cryostat test hardware to evaluate comparative and absolute thermal conductivities of a wide array of insulation systems. The test method is based on measurement of the flow rate of gas evolved due to evaporative boil-off of a cryogenic liquid. The gas flow rate typically stabilizes after a period of a couple of hours to a couple of days, depending upon the test setup. The stable flow rate value is then used to calculate the thermal conductivity for the insulation system being tested. The latest set of identical cryostats, 1,000-L spherical tanks, exhibited different behavior. On a macro level, the flow rate did stabilize after a couple of days; however the stable flow rate was oscillatory with peak to peak amplitude of up to 25 percent of the nominal value. The period of the oscillation was consistently 12 hours. The source of the oscillation has been traced to variations in atmospheric pressure due to atmospheric tides similar to oceanic tides. This paper will present analysis of this phenomenon, including a calculation that explains why other cryostats are not affected by it.
Characterizing preferential groundwater discharge through boils using temperature
NASA Astrophysics Data System (ADS)
Vandenbohede, A.; de Louw, P. G. B.; Doornenbal, P. J.
2014-03-01
In The Netherlands, preferential groundwater discharge trough boils is a key process in the salinization of deep polders. Previous work showed that boils also influence the temperature in the subsurface and of surface water. This paper elaborates on this process combining field observations with numerical modeling. As is the case for salinity, a distinct anomaly in the subsurface and surface water temperature can be attributed to boils. Lines of equal temperature are distorted towards the boil, which can be considered as an upconing of the temperature profile by analogy of the upconing of a fresh-saltwater interface. The zone of this distortion is limited to the immediate vicinity of the boil, being about 5 m in the aquitard which holds the boil's conduit, or maximum a few dozens of meters in the underlying aquifer. In the aquitard, heat transport is conduction dominated whereas this is convection dominated in the aquifer. The temperature anomaly differs from the salinity anomaly by the smaller radius of influence and faster time to reach a new steady-state of the former. Boils discharge water with a temperature equal to the mean groundwater temperature. This influences the yearly and diurnal variation of ditch water temperature in the immediate vicinity of the boil importantly but also the temperature in the downstream direction. Temporary nature of the boil (e.g. stability of the conduit, discharge rate), uncertainty on the 3D construction of the conduit and heterogeneity of the subsoil make it unlikely that temperature measurements can be interpreted further than a qualitative level.
NASA Astrophysics Data System (ADS)
Nerdy
2018-01-01
Vegetables from the cabbage family vegetables consumed by many people, which is known healthful, by eaten raw, boiled, or cooked (stir fry or soup). Vegetables like broccoli and cauliflower contain vitamins, minerals, and fiber. This study aims to determine the decrease percentage of sodium, potassium, magnesium, and calcium minerals level caused by boiled broccoli and cauliflower by atomic absorption spectrometry. Boiled broccoli and cauliflower prepared by given boiled treatment in boiling water for 3 minutes. Fresh and boiled broccoli and cauliflower carried out dry destruction, followed by quantitative analysis of sodium, potassium, magnesium, and calcium minerals respectively at a wavelength of 589.0 nm; 766.5 nm; 285.2 nm; and 422.7 nm, using atomic absorption spectrometry methods. After the determination of the sodium, potassium, magnesium, and calcium minerals level followed by validation of analytical methods with accuracy, precision, linearity, range, limit of detection (LOD), and limit of quantitation (LOQ) parameters. Research results show a decrease in the sodium, potassium, magnesium, and calcium minerals level in boiled broccoli and cauliflower compared with fresh broccoli and cauliflower. Validation of analytical methods gives results that spectrometry methods used for determining sodium, potassium, magnesium, and calcium minerals level are valid. It concluded that the boiled gives the effect of decreasing the minerals level significantly in broccoli and cauliflower.
Heat Transfer by Thermo-capillary Convection -Sounding Rocket COMPERE Experiment SOURCE
NASA Astrophysics Data System (ADS)
Dreyer, Michael; Fuhrmann, Eckart
The sounding rocket COMPERE experiment SOURCE was successfully flown on MASER 11, launched in Kiruna (ESRANGE), May 15th, 2008. SOURCE has been intended to partly ful-fill the scientific objectives of the European Space Agency (ESA) Microgravity Applications Program (MAP) project AO-2004-111 (Convective boiling and condensation). Three parties of principle investigators have been involved to design the experiment set-up: ZARM for thermo-capillary flows, IMFT (Toulouse, France) for boiling studies, EADS Astrium (Bremen, Ger-many) for depressurization. The topic of this paper is to study the effect of wall heat flux on the contact line of the free liquid surface and to obtain a correlation for a convective heat trans-fer coefficient. The experiment has been conducted along a predefined time line. A preheating sequence at ground was the first operation to achieve a well defined temperature evolution within the test cell and its environment inside the rocket. Nearly one minute after launch, the pressurized test cell was filled with the test liquid HFE-7000 until a certain fill level was reached. Then the free surface could be observed for 120 s without distortion. Afterwards, the first depressurization was started to induce subcooled boiling, the second one to start saturated boiling. The data from the flight consists of video images and temperature measurements in the liquid, the solid, and the gaseous phase. Data analysis provides the surface shape versus time and the corresponding apparent contact angle. Computational analysis provides information for the determination of the heat transfer coefficient in a compensated gravity environment where a flow is caused by the temperature difference between the hot wall and the cold liquid. The paper will deliver correlations for the effective contact angle and the heat transfer coefficient as a function of the relevant dimensionsless parameters as well as physical explanations for the observed behavior. The data will be used for benchmarking of commercial CFD codes and the tank design (using these codes) of future cryogenic upper stages. References Eckart Fuhrmann, Michael E. Dreyer, Description of the Sounding Rocket Experiment SOURCE, Microgravity sci. technol., 20/3-4, 206 (2008)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mitrakusuma, Windy H., E-mail: windyhm@polban.ac.id; Refrigeration and Airconditioning Department, Politeknik Negeri Bandung, Jl. Gegerkalong Hilir, Ds. Ciwaruga Kotak Pos 1234 Bandung; Deendarlianto,
2016-06-03
Onset of nucleate boiling of a droplet when impacted onto hot surface was investigated. Three kinds of surfaces, normal stainless steel (NSS), stainless steel with TiO{sub 2} coating (UVN), and stainless steel with TiO{sub 2} coating and radiated by ultraviolet ray were employed to examine the effect of wettability. The droplet size was 2.4 mm diameter, and dropped under different We number. The image is generated by high speed camera with the frame speed of 1000 fps. The boiling conditions are identified as natural convection, nucleate boiling, critical heat flux, transition, and film boiling. In the present report, the discussionmore » will be focused on the beginning of nucleate boiling on the droplet. Nucleate boiling occurs when bubbles are generated. These bubbles are probably caused by nucleation on the impurities within the liquid rather than at nucleation sites on the heated surface because the bubbles appear to be in the bulk of the liquid instead of at the liquid-solid interface. In addition, the smaller the contact angle, the fastest the boiling.« less
On the pulse boiling frequency in thermosyphons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, J.F.; Wang, J.C.Y.
1992-02-01
The unsteady periodic boiling phenomenon, pulse boiling, appearing in the evaporator of thermosyphons has been mentioned and investigated by many researchers. The heat transfer coefficient in evaporators was predicted according to different considerations of flow patterns. For instance, Shiraishi et al. proposed a method based on a combination flow pattern: the nucleate boiling in a liquid pool and the evaporation from a falling condensate film. Liu et al. only considered a pure pulse boiling flow pattern, and Xin et al. focused on the flow pattern of the continuous boiling process without pulse phenomenon. Besides, the forming conditions of pulse boilingmore » were also described differently. Xin et al. also reported that pulse boiling cannot occur in a carbon-steel/water heat pipe; Ma et al., however, observed this phenomenon in a carbon-steel/water thermosyphon. Nearly all researchers mentioned that this phenomenon indeed exists in glass/water thermosyphons. Although the influential factors have been discussed qualitatively, the quantitative analysis has yet to be conducted. This study focuses on the pulse boiling frequency as a criterion for the determination of flow patterns, and attempts are made to predict the frequency both experimentally and theoretically.« less
Cooling of hot bubbles by surface texture during the boiling crisis
NASA Astrophysics Data System (ADS)
Dhillon, Navdeep; Buongiorno, Jacopo; Varanasi, Kripa
2015-11-01
We report the existence of maxima in critical heat flux (CHF) enhancement for pool boiling on textured hydrophilic surfaces and reveal the interaction mechanism between bubbles and surface texture that governs the boiling crisis phenomenon. Boiling is a process of fundamental importance in many engineering and industrial applications but the maximum heat flux that can be absorbed by the boiling liquid (or CHF) is limited by the boiling crisis. Enhancing the CHF of industrial boilers by surface texturing can lead to substantial energy savings and reduction in greenhouse gas emissions on a global scale. However, the fundamental mechanisms behind this enhancement are not well understood, with some previous studies indicating that CHF should increase monotonically with increasing texture density. However, using pool boiling experiments on a parametrically designed set of plain and nano-textured micropillar surfaces, we show that there is an optimum intermediate texture density that maximizes CHF and further that the length scale of this texture is of fundamental significance. Using imbibition experiments and high-speed optical and infrared imaging, we reveal the fundamental mechanisms governing the CHF enhancement maxima in boiling crisis. We acknowledge funding from the Chevron corporation.
Transient boiling heat transfer in saturated liquid nitrogen and F113 at standard and zero gravity
NASA Technical Reports Server (NTRS)
Oker, E.; Merte, H., Jr.
1973-01-01
Transient and steady state nucleate boiling in saturated LN2 and F113 at standard and near zero gravity conditions were investigated for the horizontal up, vertical and horizontal down orientations of the heating surface. Two distinct regimes of heat transfer mechanisms were observed during the interval from the step increase of power input to the onset of nucleate boiling: the conduction and convection dominated regimes. The time duration in each regime was considerably shorter with LN2 than with F113, and decreased as heat flux increased, as gravity was reduced, and as the orientation was changed from horizontal up to horizontal down. In transient boiling, boiling initiates at a single point following the step increase in power, and then spreads over the surface. The delay time for the inception of boiling at the first site, and the velocity of spread of boiling varies depending upon the heat flux, orientation, body force, surface roughness and liquid properties, and are a consequence of changes in boundary layer temperature levels associated with changes in natural convection. Following the step increase in power input, surface temperature overshoot and undershoot occur before the steady state boiling temperature level is established.
NASA Technical Reports Server (NTRS)
Tomsik, Thomas M.
2002-01-01
Propellant densification has been identified as a critical technology in the development of single-stage-to-orbit reusable launch vehicles. Technology to create supercooled high-density liquid oxygen (LO2) and liquid hydrogen (LH2) is a key means to lowering launch vehicle costs. The densification of cryogenic propellants through subcooling allows 8 to 10 percent more propellant mass to be stored in a given unit volume, thereby improving the launch vehicle's overall performance. This allows for higher propellant mass fractions than would be possible with conventional normal boiling point cryogenic propellants, considering the normal boiling point of LO2 and LH2.
Fundamental Boiling and RP-1 Freezing Experiments
NASA Technical Reports Server (NTRS)
Goode, Brian
2002-01-01
The prestart thermal conditioning of the hardware in LOX (liquid oxygen) systems involve heat transfer between LOX and metal where boiling plays a large role. Information is easily found on nucleate boiling, maximum heat flux, minimum heat flux and film boiling for common fluids like water. After looking at these standard correlations it was felt more data was needed for the cool down side transition boiling for the LN2 and LOX. In particular interest is the film boiling values, the temperature at which transition begins and the slope as peak heat flux is approached. The ultimate goal is an array of boiling heat transfer coefficient as a function of surface temperature which can be used in the chilldown model of the feed system, engine and bleed system for X-34. The first experiment consisted of an actual MC-1 LOX Impeller which had been machined backwards, that was instrumented with 17 surface thermocouples and submerged in liquid nitrogen. The thermocouples were installed on metal thicknesses varying from the thin inducer to the thick hub.
Beauchamp, Guy
2008-10-23
This study explores via structural clues the influence of weak intermolecular hydrogen-halogen bonds on the boiling point of halogenated ethanes. The plot of boiling points of 86 halogenated ethanes versus the molar refraction (linked to polarizability) reveals a series of straight lines, each corresponding to one of nine possible arrangements of hydrogen and halogen atoms on the two-carbon skeleton. A multiple linear regression model of the boiling points could be designed based on molar refraction and subgroup structure as independent variables (R(2) = 0.995, standard error of boiling point 4.2 degrees C). The model is discussed in view of the fact that molar refraction can account for approximately 83.0% of the observed variation in boiling point, while 16.5% could be ascribed to weak C-X...H-C intermolecular interactions. The difference in the observed boiling point of molecules having similar molar refraction values but differing in hydrogen-halogen intermolecular bonds can reach as much as 90 degrees C.
Folate content and retention in commonly consumed vegetables in the South Pacific.
Maharaj, Prayna P P; Prasad, Surendra; Devi, Riteshma; Gopalan, Romila
2015-09-01
This paper reports the effect of boiling and frying on the retention of folate in commonly consumed Fijian vegetables (drumstick leaves, taro leaves, bele leaves, amaranth leaves, fern/ota, okra and French bean). The folate content was determined by microbiological assay (Lactobacillus casei rhamnosus) and tri-enzyme (protease, α-amylase and chicken pancreas conjugase) extraction treatment. The folate loss varied among the vegetables from 10-64% on boiling while 1-36% on frying. The higher folate loss was observed during boiling. The folate content in the water derived after boiling different vegetables ranged from 11.9 ± 0.5 to 61.6 ± 2.5 μg/100mL. The folate loss on boiling was accounted for in the cooking water. The predominant way of folate loss on boiling was leaching rather than thermal degradation which makes boiling the better choice of cooking the studied vegetables for folate intake, provided the cooking water is consumed together with the vegetables. Copyright © 2015 Elsevier Ltd. All rights reserved.
Material distribution in light water reactor-type bundles tested under severe accident conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Noack, V.; Hagen, S.J.L.; Hofmann, P.
1997-02-01
Severe fuel damage experiments simulating small-break loss-of-coolant accidents have been carried out in the CORA out-of-pile test facility at Forschungszentrum Karlsruhe. Rod bundles with electrically heated fuel rod simulators containing annular UO{sub 2} pellets, UO{sub 2} full pellet rods, and absorber rods of two kinds (Ag/In/Cd to represent pressurized water reactor conditions and B{sub 4}C to represent boiling water reactor and VVER-1000 fuel elements) were subjected to temperature transients up to 2,300 K. A special method was applied to determine the axial mass distribution of bundle materials. The low-temperature melt formation by various interactions between zirconium and components of absorbermore » and spacer grids strongly influences the bundle degradation and material relocation. Absorber materials can separate from the fuel by a noncoherent relocation of the materials at different temperatures. The distributions of solidified materials in the different test bundles show a clear dependence on the axial temperature profile. Coolant channel blockages are observed mainly at the lower end of the bundle, i.e., near the lowest elevation at which an oxidation excursion resulting from the highly exothermic zirconium-steam reaction had been experienced. This elevation corresponds with a steep axial temperature gradient in the maximum temperature attained. Oxide layers on Zircaloy result in reduced melt formation.« less
Does boiling affect the bioaccessibility of selenium from cabbage?
Funes-Collado, Virginia; Rubio, Roser; López-Sánchez, J Fermín
2015-08-15
The bioaccessible selenium species from cabbage were studied using an in vitro physiologically-based extraction test (PBET) which establishes conditions that simulate the gastric and gastrointestinal phases of human digestion. Samples of cabbage (Brassica oleracea) grown in peat fortified with different concentrations of Se(IV) and Se(VI) were analysed, and several enzymes (pepsin, pancreatin and amylase) were used in the PBET. The effect of boiling before extraction was also assayed. Selenium speciation in the PBET extracts was determined using anionic exchange and LC-ICP/MS. The selenocompounds in the extracts were Se(IV), SeMet and, mostly, Se(VI) species. The results show that the activity of the enzymes increased the concentration of the selenocompounds slightly, although the use of amylase had no effect on the results. The PBET showed the concentration of inorganic selenium in the extracts from boiled cabbage decreased as much as 4-fold while the release of SeMet and its concentration increased (up to 6-fold), with respect to raw cabbage. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Wengler, C.; Addy, J.; Luke, A.
2018-03-01
Due to high energy demand required for chemical processes, refrigeration and process industries the increase of efficiency and performance of thermal systems especially evaporators is indispensable. One of the possibilities to meet this purpose are investigations in enhancement of the heat transfer in nucleate boiling where high heat fluxes at low superheat are transferred. In the present work, the heat transfer in pool boiling is investigated with pure R134a over wide ranges of reduced pressures and heat fluxes. The heating materials of the test tubes are aluminum and stainless steel. The influence of the thermal conductivity on the heat transfer coefficients is analysed by the surface roughness of sandblasted surfaces. The heat transfer coefficient increases with increasing thermal conductivity, surface roughness and reduced pressures. The experimental results show a small degradation of the heat transfer coefficients between the two heating materials aluminum and stainless steel. In correlation with the VDI Heat Atlas, the experimental results are matching well with the predictions but do not accurately consider the stainless steel material reference properties.
Cunha, L A; Mota, T C; Cardoso, P C S; Alcântara, D D F Á; Burbano, R M R; Guimarães, A C; Khayat, A S; Rocha, C A M; Bahia, M O
2016-10-05
The population of Pará (a state in Brazil) has a very characteristic food culture, as a majority of the carbohydrates consumed are obtained from cassava (Manihot esculenta Crantz) derivatives. Tucupi is the boiled juice of cassava roots that plays a major role in the culinary footprint of Pará. Before boiling, this juice is known as manipueira and contains linamarin, a toxic glycoside that can decompose to hydrogen cyanide. In this study, the cytotoxic and genotoxic effects of tucupi on cultured human lymphocytes were assessed using the comet assay and detection of apoptosis and necrosis by differential fluorescent staining with acridine orange-ethidium bromide. Tucupi concentrations (v/v) were determined using the methylthiazole tetrazolium biochemical test. Concentrations of tucupi that presented no genotoxic effects (2, 4, 8, and 16%) were used in our experiments. The results showed that under our study conditions, tucupi exerted no genotoxic effects; however, cytotoxic effects were observed with cell death mainly induced by necrosis. These effects may be related to the presence of hydrogen cyanide in the juice.
NASA Astrophysics Data System (ADS)
Strąk, Kinga; Piasecka, Magdalena
This paper discusses test results concerning flow boiling heat transfer in a minichannel 1.7 mm in depth, 16 mm in width and 180 mm in length. The essential part of the experimental stand was a vertically oriented rectangular minichannel, which was heated asymmetrically with a plate made of Haynes-230 alloy. Distilled water was used as the cooling fluid. Changes in the temperature on the outer side of the heated plate in the central, axially symmetric part of the channel were measured using infrared thermography. Simultaneously, the other side of the heated plate in contact with the fluid was observed through a glass pane to identify the two-phase flow patterns. The one-dimensional model used for the heat transfer analysis took into account the heat flow direction, which was perpendicular to the direction of the fluid flow in the minichannel. The study involved determining local values of the heat transfer coefficient and generating boiling curves. The data for water were compared with the findings reported for the FC-72 fluid.
Transition from Pool to Flow Boiling: The Effect of Reduced Gravity
NASA Technical Reports Server (NTRS)
Dhir, Vijay K.
2004-01-01
Applications of boiling heat transfer in space can be found in the areas of thermal management, fluid handling and control, power systems, on-orbit storage and supply systems for cryogenic propellants and life support fluids, and for cooling of electronic packages for power systems associated with various instrumentation and control systems. Recent interest in exploration of Mars and other planets, and the concepts of in-situ resource utiliLation on Mars highlights the need to understand the effect of gravity on boiling heat transfer at gravity levels varying from 1>= g/g(sub e) >=10(exp -6). The objective of the proposed work was to develop a mechanistic understanding of nucleate boiling and critical heat flux under low and micro-gravity conditions when the velocity of the imposed flow is small. For pool boiling, the effect of reduced gravity is to stretch both the length scale as well as the time scale for the boiling process. At high flow velocities, the inertia of the liquid determines the time and the length scales and as such the gravitational acceleration plays little role. However, at low velocities and at low gravity levels both liquid inertia and buoyancy are of equal importance. At present, we have little understanding of the interacting roles of gravity and liquid inertia on the nucleate boiling process. Little data that has been reported in the literature does not have much practical value in that it can not serve as a basis for design of heat exchange components to be used in space. Both experimental and complete numerical simulations of the low velocity, low-gravity nucleate boiling process were carried out. A building block type of approach was used in that first the growth and detachment process of a single bubble and flow and heat transfer associated with the sliding motion of the bubble over the heater surface after detachment was studied. Liquid subcooling and flow velocity were varied parametrically. The experiments were conducted at 1 g(sub e), while varying the orientation of surface with respect to the gravity vector. In the laboratory experiments, holographic interferometry was used to obtain data on velocity and temperature fields associated with a bubble prior to, and after detachment and during sliding motion. A test rig for conducting experiments in the KC-135 was developed, but experiments could not be conducted due to the unavailability of the aircraft prior to completion of the project. Numerical simulations modeling the micro and macro regions of the bubble were carried out in three dimensions. The results of the experiments were used to validate analytical/numerical models.
Wort free amino nitrogen analysis adapted to a microplate format
USDA-ARS?s Scientific Manuscript database
The standard method for determining wort free amino nitrogen content calls for the use of test tubes and glass marbles, as well as boiling and 20°C water baths. In this paper we describe how the standard method can be updated and streamlined by replacing water baths, test tubes and marbles with a th...
Extended hydrodynamic theory of the peak and minimum pool boiling heat fluxes
NASA Technical Reports Server (NTRS)
Linehard, J. H.; Dhir, V. K.
1973-01-01
The hydrodynamic theory of the extreme pool boiling heat fluxes is expanded to embrace a variety of problems that have not previously been analyzed. These problems include the prediction of the peak heat flux on a variety of finite heaters, the influence of viscosity on the Taylor and Helmoltz instability mechanisms with application to film boiling and to the peak heat flux in viscous liquids, the formalization of the analogy between high-current-density electrolysis and boiling, and the description of boiling in the low-gravity limit. The predictions are verified with a large number of new data.
NASA's Hydrogen Outpost: The Rocket Systems Area at Plum Brook Station
NASA Technical Reports Server (NTRS)
Arrighi, Robert S.
2016-01-01
"There was pretty much a general knowledge about hydrogen and its capabilities," recalled former researcher Robert Graham. "The question was, could you use it in a rocket engine? Do we have the technology to handle it? How will it cool? Will it produce so much heat release that we can't cool the engine? These were the questions that we had to address." The National Aeronautics and Space Administration's (NASA) Glenn Research Center, referred to historically as the Lewis Research Center, made a concerted effort to answer these and related questions in the 1950s and 1960s. The center played a critical role transforming hydrogen's theoretical potential into a flight-ready propellant. Since then NASA has utilized liquid hydrogen to send humans and robots to the Moon, propel dozens of spacecraft across the universe, orbit scores of satellite systems, and power 135 space shuttle flights. Rocket pioneers had recognized hydrogen's potential early on, but its extremely low boiling temperature and low density made it impracticable as a fuel. The Lewis laboratory first demonstrated that liquid hydrogen could be safely utilized in rocket and aircraft propulsion systems, then perfected techniques to store, pump, and cleanly burn the fuel, as well as use it to cool the engine. The Rocket Systems Area at Lewis's remote testing area, Plum Brook Station, played a little known, but important role in the center's hydrogen research efforts. This publication focuses on the activities at the Rocket Systems Area, but it also discusses hydrogen's role in NASA's space program and Lewis's overall hydrogen work. The Rocket Systems Area included nine physically modest test sites and three test stands dedicated to liquid-hydrogen-related research. In 1962 Cleveland Plain Dealer reporter Karl Abram claimed, "The rocket facility looks more like a petroleum refinery. Its test rigs sprout pipes, valves and tanks. During the night test runs, excess hydrogen is burned from special stacks in the best Oklahoma oil field tradition." Besides the Rocket Systems Area, Plum Brook Station also included a nuclear test reactor, a large vacuum tank, a hypersonic wind tunnel, and a full-scale upper-stage rocket stand. The Rocket Systems Area operated from 1961 until NASA shut down all of Plum Brook in 1974. The center reopened Plum Brook in the late 1980s and continues to use several test facilities. The Rocket Systems Area, however, was not restored. Today Plum Brook resembles a nature preserve more than an oil refinery. Lush fields and forests separate the large test facilities. Until recently, the abandoned Rocket Systems Area structures and equipment were visible amongst the greenery. These space-age ruins, particularly the three towers, stood as silent sentinels over the sparsely populated reservation. Few knew the story of these mysterious facilities when NASA removed them in the late 2000s.
Gaines, Joanna; Bulkow, Lisa R.; Kinzer, Michael H.; Hennessy, Thomas W.; Klejka, Joseph A.; Bruce, Michael G.
2016-01-01
Background Community-acquired methicillin-resistant Staphylococcus aureus and methicillin-sensitive S. aureus infections are common to south-western Alaska and have been associated with traditional steambaths. More than a decade ago, recommendations were made to affected communities that included preventive skin care, cleaning methods for steambath surfaces, and the use of protective barriers while in steambaths to reduce the risk of S. aureus infection. Objective A review of community medical data suggested that the number of skin infection clinical encounters has increased steadily over the last 3 years and we designed a public health investigation to seek root causes. Study design Using a mixed methods approach with in-person surveys, a convenience sample (n=492) from 3 rural communities assessed the range of knowledge, attitudes and practices concerning skin infections, skin infection education messaging, prevention activities and home self-care of skin infections. Results We described barriers to implementing previous recommendations and evaluated the acceptability of potential interventions. Prior public health messages appear to have been effective in reaching community members and appear to have been understood and accepted. We found no major misconceptions regarding what a boil was or how someone got one. Overall, respondents seemed concerned about boils as a health problem and reported that they were motivated to prevent boils. We identified current practices used to avoid skin infections, such as the disinfection of steambaths. We also identified barriers to engaging in protective behaviours, such as lack of access to laundry facilities. Conclusions These findings can be used to help guide public health strategic planning and identify appropriate evidence-based interventions tailored to the specific needs of the region. PMID:26928370
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pointer, William David; Shaver, Dillon; Liu, Yang
The U.S. Department of Energy, Office of Nuclear Energy charges participants in the Nuclear Energy Advanced Modeling and Simulation (NEAMS) program with the development of advanced modeling and simulation capabilities that can be used to address design, performance and safety challenges in the development and deployment of advanced reactor technology. The NEAMS has established a high impact problem (HIP) team to demonstrate the applicability of these tools to identification and mitigation of sources of steam generator flow induced vibration (SGFIV). The SGFIV HIP team is working to evaluate vibration sources in an advanced helical coil steam generator using computational fluidmore » dynamics (CFD) simulations of the turbulent primary coolant flow over the outside of the tubes and CFD simulations of the turbulent multiphase boiling secondary coolant flow inside the tubes integrated with high resolution finite element method assessments of the tubes and their associated structural supports. This report summarizes the demonstration of a methodology for the multiphase boiling flow analysis inside the helical coil steam generator tube. A helical coil steam generator configuration has been defined based on the experiments completed by Polytecnico di Milano in the SIET helical coil steam generator tube facility. Simulations of the defined problem have been completed using the Eulerian-Eulerian multi-fluid modeling capabilities of the commercial CFD code STAR-CCM+. Simulations suggest that the two phases will quickly stratify in the slightly inclined pipe of the helical coil steam generator. These results have been successfully benchmarked against both empirical correlations for pressure drop and simulations using an alternate CFD methodology, the dispersed phase mixture modeling capabilities of the open source CFD code Nek5000.« less
Terrestrial Applications of Zero Boil-Off Cryogen Storage
NASA Technical Reports Server (NTRS)
Salerno, L. J.; Gaby, J.; Hastings, L.; Johnson, R.; Kittel, P.; Marquardt, E.; Plachta, D.; Arnold, James O. (Technical Monitor)
2000-01-01
Storing cryogenic propellants with zero boil off (ZBO) using a combination of active (cryocoolers) and passive technologies has recently received a great deal of attention for applications such as future long-term space missions. This paper will examine a variety of potential near-term terrestrial applications for ZBO and, where appropriate, provide a rough order of magnitude cost benefit of implementing ZBO technology. NASA's Space Shuttle power system uses supercritical propellant tanks, which are filled several days before launch. If the launch does not occur within 48-96 hours, the tanks must be drained and refilled, further delaying the launch. By implementing ZBO, boil off could be eliminated and pad hold time extended. At the launch site, vented liquid hydrogen (LH2) storage dewars lose 1200-1600 gal/day through boiloff. Implementing ZBO would eliminate this, saving $300,000-$400,000 per year. Similarly, overland trucking of LH2 from the supplier to the launch site via roadable dewars results in a cryogen loss of ten percent per tanker (1500 gal/tanker). Providing a cryocooler on board the rig would prevent this loss. Previous work investigating variable density insulation found that a 50% reduction in evaporation from a 6000 gallon dewar would save $5000 per year. For a 20 year dewar lifetime, the payback period would be less than two years. Similar benefits could be realized at other storage facilities across the nation. Within the superconductivity community, there is skepticism about using coolers, based upon reliability concerns. By providing a cooler on the dewar, lifetime could be extended while retaining fail-safe capability. If the cooler failed, it would merely lower the storage life of the dewar.
Verifying Sensor Response to Difficult Chemicals with a New Test Chamber Concept
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maughan, A. D.; Birnbaum, Jerome C.; Probasco, Kathleen M.
In this article we discuss the application of technology innovations to optimize detection of hard-to-measure (less- or semi-volatile) compounds. These chemicals are found all around us: in pesticides and herbicides, the higher boiling polyaromatic hydrocarbons in diesel exhaust, and linked polyurethane foams in products ranging from hiking boots to acoustic ceilings. They appear in low concentrations and evaporate very slowly. These heavier chemicals are rarely measured accurately because they stick to surfaces and sampling equipment and, consequently, are not reliably sampled or delivered to analytical detectors. It’s like trying to identify cold, sticky honey by getting it to flow inmore » through a sampling tube to a detector –it will hardly move. Honey generally coats out on surfaces and sample lines to the extent that even if it is detected, the amount present is vastly underestimated. Researchers at Pacific Northwest National Laboratory (PNNL) addressed the problem by developing a chamber facility with instrumentation that can overcome the under-reporting of these ubiquitous chemical compounds. The atmospheric chemistry chamber provides a controlled environment in which to certify the accuracy of and conditions under which sensors can best respond to volatile and semi-volatile chemicals. The facility is designed to handle and measure chemicals at the levels at which they are found in nature. Test environments can be created in which atmospheric concentrations are at low part-per-trillion concentrations. These concentrations are equivalent to an herbicide off-gassing from a commercially grown apple. The chamber can be set up to simulate releases ranging from industrial vents with high concentrations to releases from surfaces, soils, and/or vegetation where the concentrations are low.« less
NASA Astrophysics Data System (ADS)
Molnar, I. L.; Krol, M.; Mumford, K. G.
2017-12-01
Developing numerical models for subsurface thermal remediation techniques - such as Electrical Resistive Heating (ERH) - that include multiphase processes such as in-situ water boiling, gas production and recovery has remained a significant challenge. These subsurface gas generation and recovery processes are driven by physical phenomena such as discrete and unstable gas (bubble) flow as well as water-gas phase mass transfer rates during bubble flow. Traditional approaches to multiphase flow modeling soil remain unable to accurately describe these phenomena. However, it has been demonstrated that Macroscopic Invasion Percolation (MIP) can successfully simulate discrete and unstable gas transport1. This has lead to the development of a coupled Electro Thermal-MIP Model2 (ET-MIP) capable of simulating multiple key processes in the thermal remediation and gas recovery process including: electrical heating of soil and groundwater, water flow, geological heterogeneity, heating-induced buoyant flow, water boiling, gas bubble generation and mobilization, contaminant mass transport and removal, and additional mechanisms such as bubble collapse in cooler regions. This study presents the first rigorous validation of a coupled ET-MIP model against two-dimensional water boiling and water/NAPL co-boiling experiments3. Once validated, the model was used to explore the impact of water and co-boiling events and subsequent gas generation and mobilization on ERH's ability to 1) generate, expand and mobilize gas at boiling and NAPL co-boiling temperatures, 2) efficiently strip contaminants from soil during both boiling and co-boiling. In addition, a quantification of the energy losses arising from steam generation during subsurface water boiling was examined with respect to its impact on the efficacy of thermal remediation. While this study specifically targets ERH, the study's focus on examining the fundamental mechanisms driving thermal remediation (e.g., water boiling) renders these results applicable to a wide range of thermal and gas-based remediation techniques. 1. Mumford, K. G., et al. (2010), Adv. Water Resour. 2010, 33 (4), 504-513. 2. Krol, M. M., et al. (2011), Adv. Water Resour. 2011, 34 (4), 537-549. 3. Hegele, P. R. and Mumford, K. G. Journal of Contaminant Hydrology 2014, 165, 24-36.
Passive gamma analysis of the boiling-water-reactor assemblies
NASA Astrophysics Data System (ADS)
Vo, D.; Favalli, A.; Grogan, B.; Jansson, P.; Liljenfeldt, H.; Mozin, V.; Schwalbach, P.; Sjöland, A.; Tobin, S.; Trellue, H.; Vaccaro, S.
2016-09-01
This research focused on the analysis of a set of stationary passive gamma measurements taken on the spent nuclear fuel assemblies from a boiling water reactor (BWR) using pulse height analysis data acquisition. The measurements were performed on 25 different BWR assemblies in 2014 at Sweden's Central Interim Storage Facility for Spent Nuclear Fuel (Clab). This study was performed as part of the Next Generation of Safeguards Initiative-Spent Fuel project to research the application of nondestructive assay (NDA) to spent fuel assemblies. The NGSI-SF team is working to achieve the following technical goals more easily and efficiently than in the past using nondestructive assay (NDA) measurements of spent fuel assemblies: (1) verify the initial enrichment, burnup, and cooling time of facility declaration; (2) detect the diversion or replacement of pins, (3) estimate the plutonium mass, (4) estimate the decay heat, and (5) determine the reactivity of spent fuel assemblies. The final objective of this project is to quantify the capability of several integrated NDA instruments to meet the aforementioned goals using the combined signatures of neutrons, gamma rays, and heat. This report presents a selection of the measured data and summarizes an analysis of the results. Specifically, trends in the count rates measured for spectral lines from the following isotopes were analyzed as a function of the declared burnup and cooling time: 137Cs, 154Eu, 134Cs, and to a lesser extent, 106Ru and 144Ce. From these measured count rates, predictive algorithms were developed to enable the estimation of the burnup and cooling time. Furthermore, these algorithms were benchmarked on a set of assemblies not included in the standard assemblies set used by this research team.
Passive gamma analysis of the boiling-water-reactor assemblies
Vo, D.; Favalli, A.; Grogan, B.; ...
2016-09-01
This research focused on the analysis of a set of stationary passive gamma measurements taken on the spent nuclear fuel assemblies from a boiling water reactor (BWR) using pulse height analysis data acquisition. The measurements were performed on 25 different BWR assemblies in 2014 at Sweden’s Central Interim Storage Facility for Spent Nuclear Fuel (Clab). This study was performed as part of the Next Generation of Safeguards Initiative–Spent Fuel project to research the application of nondestructive assay (NDA) to spent fuel assemblies. The NGSI–SF team is working to achieve the following technical goals more easily and efficiently than in themore » past using nondestructive assay (NDA) measurements of spent fuel assemblies: (1) verify the initial enrichment, burnup, and cooling time of facility declaration; (2) detect the diversion or replacement of pins, (3) estimate the plutonium mass, (4) estimate the decay heat, and (5) determine the reactivity of spent fuel assemblies. The final objective of this project is to quantify the capability of several integrated NDA instruments to meet the aforementioned goals using the combined signatures of neutrons, gamma rays, and heat. This report presents a selection of the measured data and summarizes an analysis of the results. Specifically, trends in the count rates measured for spectral lines from the following isotopes were analyzed as a function of the declared burnup and cooling time: 137Cs, 154Eu, 134Cs, and to a lesser extent, 106Ru and 144Ce. From these measured count rates, predictive algorithms were developed to enable the estimation of the burnup and cooling time. Furthermore, these algorithms were benchmarked on a set of assemblies not included in the standard assemblies set used by this research team.« less
Zheng, Min-Lin; Zhang, Dong-Jing; Damiens, David D; Lees, Rosemary Susan; Gilles, Jeremie R L
2015-06-26
Management of large quantities of eggs will be a crucial aspect of the efficient and sustainable mass production of mosquitoes for programmes with a Sterile Insect Technique component. The efficiency of different hatching media and effectiveness of long term storage methods are presented here. The effect on hatch rate of storage duration and three hatching media was analysed: deionized water, boiled deionized water and a bacterial broth, using Two-way ANOVA and Post hoc Tukey tests, and the Pearson correlation coefficient was used to find the effect on the proportion of collapsed eggs. Two long term storage methods were also tested: conventional storage (egg paper strips stored in zip lock bags within a sealed plastic box), and water storage (egg papers in a covered plastic cup with deionized water). Regression analyses were used to find the effect of water storage and storage duration on hatch rate. Both species hatched most efficiently in bacterial broth. Few eggs hatched in deionized water, and pre-boiling the water increased the hatch rate of Ae. aegypti, but not Ae. albopictus. A hatch rate greater than 80% was obtained after 10 weeks of conventional storage in Ae. aegypti and 11 weeks in Ae. albopictus. After this period, hatching decreased dramatically; no eggs hatched after 24 weeks. Storing eggs in water produced an 85% hatch rate after 5 months in both species. A small but significant proportion of eggs hatched in the water, probably due to combined effects of natural deoxygenation of the water over time and the natural instalment hatching typical of the species. The demonstrated efficiency of the bacterial broth hatching medium for both Ae. albopictus and Ae. aegypti facilitates mass production of these two important vector species in the same facility, with use of a common hatching medium reducing cost and operational complexity. Similarly the increased hatch rate of eggs stored in water would allow greater flexibility of egg management in a large programme over the medium term, particularly if oxygenation of the water by bubbling oxygen through the storage tray could be applied to prevent hatching during storage.
Ojo, Kristen D.; Soneja, Sutyajeet I.; Scrafford, Carolyn G.; Khatry, Subarna K.; LeClerq, Steven C.; Checkley, William; Katz, Joanne; Breysse, Patrick N.; Tielsch, James M.
2015-01-01
Alternative cookstoves are designed to improve biomass fuel combustion efficiency to reduce the amount of fuel used and lower emission of air pollutants. The Nepal Cookstove Trial (NCT) studies effects of alternative cookstoves on family health. Our study measured indoor particulate matter concentration (PM2.5), boiling time, and fuel use of cookstoves during a water-boiling test in a house-like setting in rural Nepal. Study I was designed to select a stove to be used in the NCT; Study II evaluated stoves used in the NCT. In Study I, mean indoor PM2.5 using wood fuel was 4584 μg/m3, 1657 μg/m3, and 2414 μg/m3 for the traditional, alternative mud brick stove (AMBS-I) and Envirofit G-series, respectively. The AMBS-I reduced PM2.5 concentration but increased boiling time compared to the traditional stove (p-values < 0.001). Unlike AMBS-I, Envirofit G-series did not significantly increase overall fuel consumption. In Phase II, the manufacturer altered Envirofit stove (MAES) and Nepal Nutrition Intervention Project Sarlahi (NNIPS) altered Envirofit stove (NAES), produced lower mean PM2.5, 1573 μg/m3 and 1341 μg/m3, respectively, relative to AMBS-II 3488 μg/m3 for wood tests. The liquid propane gas stove had the lowest mean PM2.5 concentrations, with measurements indistinguishable from background levels. Results from Study I and II showed significant reduction in PM2.5 for all alternative stoves in a controlled setting. In study I, the AMBS-I stove required more fuel than the traditional stove. In contrast, in study II, the MAES and NAES stoves required statistically less fuel than the AMBS-II. Reductions and increases in fuel use should be interpreted with caution because the composition of fuels was not standardized—an issue which may have implications for generalizability of other findings as well. Boiling times for alternative stoves in Study I were significantly longer than the traditional stove—a trade-off that may have implications for acceptability of the stoves among end users. These extended cooking times may increase cumulative exposure during cooking events where emission rates are lower; these differences must be carefully considered in the evaluation of alternative stove designs. PMID:26198238
Ojo, Kristen D; Soneja, Sutyajeet I; Scrafford, Carolyn G; Khatry, Subarna K; LeClerq, Steven C; Checkley, William; Katz, Joanne; Breysse, Patrick N; Tielsch, James M
2015-07-07
Alternative cookstoves are designed to improve biomass fuel combustion efficiency to reduce the amount of fuel used and lower emission of air pollutants. The Nepal Cookstove Trial (NCT) studies effects of alternative cookstoves on family health. Our study measured indoor particulate matter concentration (PM2.5), boiling time, and fuel use of cookstoves during a water-boiling test in a house-like setting in rural Nepal. Study I was designed to select a stove to be used in the NCT; Study II evaluated stoves used in the NCT. In Study I, mean indoor PM2.5 using wood fuel was 4584 μg/m3, 1657 μg/m3, and 2414 μg/m3 for the traditional, alternative mud brick stove (AMBS-I) and Envirofit G-series, respectively. The AMBS-I reduced PM2.5 concentration but increased boiling time compared to the traditional stove (p-values < 0.001). Unlike AMBS-I, Envirofit G-series did not significantly increase overall fuel consumption. In Phase II, the manufacturer altered Envirofit stove (MAES) and Nepal Nutrition Intervention Project Sarlahi (NNIPS) altered Envirofit stove (NAES), produced lower mean PM2.5, 1573 μg/m3 and 1341 μg/m3, respectively, relative to AMBS-II 3488 μg/m3 for wood tests. The liquid propane gas stove had the lowest mean PM2.5 concentrations, with measurements indistinguishable from background levels. Results from Study I and II showed significant reduction in PM2.5 for all alternative stoves in a controlled setting. In study I, the AMBS-I stove required more fuel than the traditional stove. In contrast, in study II, the MAES and NAES stoves required statistically less fuel than the AMBS-II. Reductions and increases in fuel use should be interpreted with caution because the composition of fuels was not standardized--an issue which may have implications for generalizability of other findings as well. Boiling times for alternative stoves in Study I were significantly longer than the traditional stove--a trade-off that may have implications for acceptability of the stoves among end users. These extended cooking times may increase cumulative exposure during cooking events where emission rates are lower; these differences must be carefully considered in the evaluation of alternative stove designs.
BURAL, Canan; AKTAŞ, Esin; DENIZ, Günnur; ÜNLÜÇERÇI, Yeşim; BAYRAKTAR, Gülsen
2011-01-01
Objectives Residual methyl methacrylate (MMA) may leach from the acrylic resin denture bases and have adverse effects on the oral mucosa. This in vitro study evaluated and correlated the effect of the leaching residual MMA concentrations ([MMA]r) on in vitro cytotoxicity of L-929 fibroblasts. Material and Methods A total of 144 heat-polymerized acrylic resin specimens were fabricated using 4 different polymerization cycles: (1) at 74ºC for 9 h, (2) at 74ºC for 9 h and terminal boiling (at 100ºC) for 30 min, (3) at 74ºC for 9 h and terminal boiling for 3 h, (4) at 74ºC for 30 min and terminal boiling for 30 min. Specimens were eluted in a complete cell culture medium at 37ºC for 1, 2, 5 and 7 days. [MMA]r in eluates was measured using high-performance liquid chromatography. In vitro cytotoxicity of eluates on L-929 fibroblasts was evaluated by means of cell proliferation using a tetrazolium salt XTT (sodium 3´-[1-phenyl-aminocarbonyl)-3,4-tetrazolium]bis(4-methoxy-6-nitro)benzenesulphonic acid) assay. Differences in [MMA]r of eluates and cell proliferation values between polymerization cycles were statistically analyzed by Kruskal-Wallis, Friedman and Dunn's multiple comparison tests. The correlation between [MMA]r of eluates and cell proliferation was analyzed by Pearson's correlation test (p<0.05). Results [MMA]r was significantly (p≤0.001) higher in eluates of specimens polymerized with cycle without terminal boiling after elution of 1 and 2 days. Cell proliferation values for all cycles were significantly (p<0.01) lower in eluates of 1 day than those of 2 days. The correlation between [MMA]r and cell proliferation values was negative after all elution periods, showing significance (p<0.05) for elution of 1 and 2 days. MMA continued to leach from acrylic resin throughout 7 days and leaching concentrations markedly reduced after elution of 1 and 2 days. Conclusion Due to reduction of leaching residual MMA concentrations, use of terminal boiling in the polymerization process for at least 30 min and water storage of the heat-polymerized denture bases for at least 1 to 2 days before denture delivery is clinically recommended for minimizing the residual MMA and possible cytotoxic effects. PMID:21956586
Sludge batch 9 simulant runs using the nitric-glycolic acid flowsheet
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lambert, D. P.; Williams, M. S.; Brandenburg, C. H.
Testing was completed to develop a Sludge Batch 9 (SB9) nitric-glycolic acid chemical process flowsheet for the Defense Waste Processing Facility’s (DWPF) Chemical Process Cell (CPC). CPC simulations were completed using SB9 sludge simulant, Strip Effluent Feed Tank (SEFT) simulant and Precipitate Reactor Feed Tank (PRFT) simulant. Ten sludge-only Sludge Receipt and Adjustment Tank (SRAT) cycles and four SRAT/Slurry Mix Evaporator (SME) cycles, and one actual SB9 sludge (SRAT/SME cycle) were completed. As has been demonstrated in over 100 simulations, the replacement of formic acid with glycolic acid virtually eliminates the CPC’s largest flammability hazards, hydrogen and ammonia. Recommended processingmore » conditions are summarized in section 3.5.1. Testing demonstrated that the interim chemistry and Reduction/Oxidation (REDOX) equations are sufficient to predict the composition of DWPF SRAT product and SME product. Additional reports will finalize the chemistry and REDOX equations. Additional testing developed an antifoam strategy to minimize the hexamethyldisiloxane (HMDSO) peak at boiling, while controlling foam based on testing with simulant and actual waste. Implementation of the nitric-glycolic acid flowsheet in DWPF is recommended. This flowsheet not only eliminates the hydrogen and ammonia hazards but will lead to shorter processing times, higher elemental mercury recovery, and more concentrated SRAT and SME products. The steady pH profile is expected to provide flexibility in processing the high volume of strip effluent expected once the Salt Waste Processing Facility starts up.« less
2009-07-01
presented a summary of recent research on boiling in microchannels . He addressed the topics of macro scale versus micro scale heat transfer , two phase...flow regime, flow boiling 14 heat transfer results for microchannels , heat transfer mechanisms in microchannels , and flow boiling models for... Heat Transfer Boiling In Minichannel And Microchannel Flow Passages Of Compact Evaporators, Keynote Lecture Presented at the Engineering Foundation
Criticality in the slowed-down boiling crisis at zero gravity.
Charignon, T; Lloveras, P; Chatain, D; Truskinovsky, L; Vives, E; Beysens, D; Nikolayev, V S
2015-05-01
Boiling crisis is a transition between nucleate and film boiling. It occurs at a threshold value of the heat flux from the heater called CHF (critical heat flux). Usually, boiling crisis studies are hindered by the high CHF and short transition duration (below 1 ms). Here we report on experiments in hydrogen near its liquid-vapor critical point, in which the CHF is low and the dynamics slow enough to be resolved. As under such conditions the surface tension is very small, the experiments are carried out in the reduced gravity to preserve the conventional bubble geometry. Weightlessness is created artificially in two-phase hydrogen by compensating gravity with magnetic forces. We were able to reveal the fractal structure of the contour of the percolating cluster of the dry areas at the heater that precedes the boiling crisis. We provide a direct statistical analysis of dry spot areas that confirms the boiling crisis at zero gravity as a scale-free phenomenon. It was observed that, in agreement with theoretical predictions, saturated boiling CHF tends to zero (within the precision of our thermal control system) in zero gravity, which suggests that the boiling crisis may be observed at any heat flux provided the experiment lasts long enough.
Multicomponent gas sorption Joule-Thomson refrigeration
NASA Technical Reports Server (NTRS)
Jones, Jack A. (Inventor); Petrick, S. Walter (Inventor); Bard, Steven (Inventor)
1991-01-01
The present invention relates to a cryogenic Joule-Thomson refrigeration capable of pumping multicomponent gases with a single stage sorption compressor system. Alternative methods of pumping a multicomponent gas with a single stage compressor are disclosed. In a first embodiment, the sorbent geometry is such that a void is defined near the output of the sorption compressor. When the sorbent is cooled, the sorbent primarily adsorbs the higher boiling point gas such that the lower boiling point gas passes through the sorbent to occupy the void. When the sorbent is heated, the higher boiling point gas is desorbed at high temperature and pressure and thereafter propels the lower boiling point gas out of the sorption compressor. A mixing chamber is provided to remix the constituent gases prior to expansion of the gas through a Joule-Thomson valve. Other methods of pumping a multicomponent gas are disclosed. For example, where the sorbent is porous and the low boiling point gas does not adsorb very well, the pores of the sorbent will act as a void space for the lower boiling point gas. Alternatively, a mixed sorbent may be used where a first sorbent component physically adsorbs the high boiling point gas and where the second sorbent component chemically absorbs the low boiling point gas.
NASA Astrophysics Data System (ADS)
Wang, Qi; Ikegame, Keita; Takahashi, Koretaro; Xue, Changhu; Zhang, Weinong; Wang, Hongxun; Hou, Wenfu; Wang, Yuming
2013-09-01
Lipids were extracted from organs of the starfish Asterias amurensis associated with different treatments (raw-control, boiling and heating), and then analyzed for lipid content, lipid oxidation index, lipid classes and fatty acid composition. Results showed that boiling softened the hard starfish shells, thus facilitating the collection of starfish organs. As compared with raw organs, the boiled organs had lower water content and higher lipid content, possibly due to the loss of water-holding capacity caused by protein denaturation. Both boiling and heating increased the peroxide value (PV), thiobarbituric acid (TBA) value and carbon value (CV) of lipids. Despite slight increases in the content of complex lipids, associated lipid composition had no substantial variations upon boiling and heating. For simple lipids, the content of 1, 2-diglyceride decreased in boiled and heated organs, with free fatty acids observed on thin layer chromatography (TLC). However, neither boiling nor heating significantly changed the fatty acid compositions of simple or complex lipids in starfish organs, suggesting that these two treatments had no significant effects on complex lipids in starfish organs. Together, our results indicated that boiling of starfish soon after capture facilitated the handling and extraction of useful complex lipids consisting of abundant glucosylceramide and eicosapentaenoic acid (EPA)-bounded phospholipids.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mudawar, I.; Galloway, J.E.; Gersey, C.O.
Pool boiling and flow boiling were examined for near-saturated bulk conditions in order to determine the critical heat flux (CHF) trigger mechanism for each. Photographic studies of the wall region revealed features common to both situations. At fluxes below CHF, the vapor coalesces into a wavy layer which permits wetting only in wetting fronts, the portions of the liquid-vapor interface which contact the wall as a result of the interfacial waviness. Close examination of the interfacial features revealed the waves are generated from the lower edge of the heater in pool boiling and the heater`s upstream region in flow boiling.more » Wavelengths follow predictions based upon the Kelvin-Helmholtz instability criterion. Critical heat flux in both cases occurs when the pressure force exerted upon the interface due to interfacial curvature, which tends to preserve interfacial contact with the wall prior to CHF, is overcome by the momentum of vapor at the site of the first wetting front, causing the interface to lift away from the wall. It is shown this interfacial lift-off criterion facilitates accurate theoretical modeling of CHF in pool boiling and in flow boiling in both straight and curved channels.« less
2000-04-01
system, 8 - experiments on a study of boundary layer spectrum infrared window). before boiling of glass- silicide coating. This simple 3. SAMPLES AND...dependencies of surface temperature of tested materials and make conclusions concerned joint gllass- silicide coating and anode power of generator...obtained using test stagnation point configuration. glass- silicide coating vs anode power of HF-generator. Temperature peak at constant power
T-111 Rankine system corrosion test loop, volume 1
NASA Technical Reports Server (NTRS)
Harrison, R. W.; Hoffman, E. E.; Smith, J. P.
1975-01-01
Results are given of a program whose objective was to determine the performance of refractory metal alloys in a two loop Rankine test system. The test system consisted of a circulating lithium circuit heated to 1230 C maximum transferring heat to a boiling potassium circuit with a 1170 C superheated vapor temperature. The results demonstrate the suitability of the selected refractory alloys to perform from a chemical compatibility standpoint.
Beraud, L; Gervasoni, K; Freydiere, A M; Descours, G; Ranc, A G; Vandenesch, F; Lina, G; Gaia, V; Jarraud, S
2015-09-01
The Sofia Legionella Fluorescence Immunoassay (FIA; Quidel) is a recently introduced rapid immunochromatographic diagnostic test for Legionnaires' disease using immunofluorescence technology designed to enhance its sensitivity. The aim of this study was to evaluate its performance for the detection of urinary antigens for Legionella pneumophila serogroup 1 in two National Reference Centers for Legionella. The sensitivity and specificity of the Sofia Legionella FIA test were determined in concentrated and nonconcentrated urine samples, before and after boiling, in comparison with the BinaxNOW® Legionella Urinary Antigen Card (UAC; Alere). Compared with BinaxNOW® Legionella UAC, the sensitivity of the Sofia Legionella test was slightly higher in nonconcentrated urine samples and was identical in concentrated urine samples. The specificity of the Sofia Legionella FIA test was highly reduced by the concentration of urine samples. In nonconcentrated samples, a lack of specificity was observed in 2.3 % of samples, all of them resolved by heat treatment. The Sofia Legionella FIA is a sensitive test for detecting Legionella urinary antigens with no previous urine concentration. However, all positive samples have to be re-tested after boiling to reach a high specificity. The reading is automatized on the Sofia analyzer, which can be connected to laboratory information systems, facilitating accurate and rapid reporting of results.
Film Boiling Heat Transfer Properties of Liquid Hydrogen in Natural Convection
NASA Astrophysics Data System (ADS)
Horie, Y.; Shirai, Y.; Shiotsu, M.; Matsuzawa, T.; Yoneda, K.; Shigeta, H.; Tatsumoto, H.; Hata, K.; Naruo, Y.; Kobayashi, H.; Inatani, Y.
Film boiling heat transfer properties of LH2 for various pressures and subcooling conditions were measured by applying electric current to give an exponential heat input to a PtCo wire with a diameter of 1.2 mm submerged in LH2. The heated wire was set to be horizontal to the ground. The heat transfer coefficient in the film boiling region was higher for higher pressure and higher subcooling. The experimental results are compared with the equation of pool film boiling heat transfer. It is confirmed that the pool film boiling heat transfer coefficients in LH2 can be expressed by this equation.
46 CFR 154.705 - Cargo boil-off as fuel: General.
Code of Federal Regulations, 2010 CFR
2010-10-01
... STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Cargo Pressure and Temperature Control § 154.705 Cargo boil-off as fuel: General. (a) Each cargo boil-off fuel...
46 CFR 154.705 - Cargo boil-off as fuel: General.
Code of Federal Regulations, 2014 CFR
2014-10-01
... STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Cargo Pressure and Temperature Control § 154.705 Cargo boil-off as fuel: General. (a) Each cargo boil-off fuel...
46 CFR 154.705 - Cargo boil-off as fuel: General.
Code of Federal Regulations, 2011 CFR
2011-10-01
... STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Cargo Pressure and Temperature Control § 154.705 Cargo boil-off as fuel: General. (a) Each cargo boil-off fuel...
46 CFR 154.705 - Cargo boil-off as fuel: General.
Code of Federal Regulations, 2013 CFR
2013-10-01
... STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Cargo Pressure and Temperature Control § 154.705 Cargo boil-off as fuel: General. (a) Each cargo boil-off fuel...
46 CFR 154.705 - Cargo boil-off as fuel: General.
Code of Federal Regulations, 2012 CFR
2012-10-01
... STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Cargo Pressure and Temperature Control § 154.705 Cargo boil-off as fuel: General. (a) Each cargo boil-off fuel...
NASA Astrophysics Data System (ADS)
Rajabzadeh Dareh, F.; Haghshenasfard, M.; Nasr Esfahany, M.; Salimi Jazi, H.
2018-06-01
Pool boiling heat transfer of pure water and nanofluids on a copper block has been studied experimentally. Nanofluids with various concentrations of 0.0025, 0.005 and 0.01 vol.% are employed and two simple surfaces (polished and machined copper surface) are used as the heating surfaces. The results indicated that the critical heat flux (CHF) in boiling of fluids on the polished surface is 7% higher than CHF on the machined surface. In the case of machined surface, the heat transfer coefficient (HTC) of 0.01 vol.% nanofluid is about 37% higher than HTC of base fluid, while in the polished surface the average HTC of 0.01% nanofluid is about 19% lower than HTC of the pure water. The results also showed that the boiling time and boiling cycles on the polished surface changes the heat transfer performance. By increasing the boiling time from 5 to 10 min, the roughness enhances about 150%, but by increasing the boiling time to 15 min, the roughness enhancement is only 8%.
Xiao, Qingtai; Xu, Jianxin; Wang, Hua
2016-08-16
A new index, the estimate of the error variance, which can be used to quantify the evolution of the flow patterns when multiphase components or tracers are difficultly distinguishable, was proposed. The homogeneity degree of the luminance space distribution behind the viewing windows in the direct contact boiling heat transfer process was explored. With image analysis and a linear statistical model, the F-test of the statistical analysis was used to test whether the light was uniform, and a non-linear method was used to determine the direction and position of a fixed source light. The experimental results showed that the inflection point of the new index was approximately equal to the mixing time. The new index has been popularized and applied to a multiphase macro mixing process by top blowing in a stirred tank. Moreover, a general quantifying model was introduced for demonstrating the relationship between the flow patterns of the bubble swarms and heat transfer. The results can be applied to investigate other mixing processes that are very difficult to recognize the target.
Thermal properties and chemical reactivity. Quarterly report, October 1971--December 1971
DOE Office of Scientific and Technical Information (OSTI.GOV)
Myers, L.C.
1998-12-31
A very high boiling impurity was concentrated from a sample of FEFO with a hexane wash. Additional washing of this sample has increased the concentration of this impurity. A mass spectrum was obtained but an identification has not been made. The results of the analysis of the products from the thermal decomposition of FEFO at 120, 135, 150 C are discussed. A chromatogram of FEFO heated for 22 hours at 150 C shows a definite increase in low and high boiling impurities. The evaluation of the condition of the two coupon test assemblies aged at 80 C for 21 andmore » 27 months are discussed. Thermal analysis of the LX-09 from these two coupon tests, a PASS A mechanical test specimen and a control sample are reported. A PDP-12/30 was interfaced with a Perkin Elmer DSC-1 to measure the heat of fusion of PETN. Some of the problems associated with getting reproducible data are discussed. The heat of fusion for six lots of LX-13 grade PETN are given.« less
Xiao, Qingtai; Xu, Jianxin; Wang, Hua
2016-01-01
A new index, the estimate of the error variance, which can be used to quantify the evolution of the flow patterns when multiphase components or tracers are difficultly distinguishable, was proposed. The homogeneity degree of the luminance space distribution behind the viewing windows in the direct contact boiling heat transfer process was explored. With image analysis and a linear statistical model, the F-test of the statistical analysis was used to test whether the light was uniform, and a non-linear method was used to determine the direction and position of a fixed source light. The experimental results showed that the inflection point of the new index was approximately equal to the mixing time. The new index has been popularized and applied to a multiphase macro mixing process by top blowing in a stirred tank. Moreover, a general quantifying model was introduced for demonstrating the relationship between the flow patterns of the bubble swarms and heat transfer. The results can be applied to investigate other mixing processes that are very difficult to recognize the target. PMID:27527065
RUBI -a Reference mUltiscale Boiling Investigation for the Fluid Science Laboratory
NASA Astrophysics Data System (ADS)
Schweizer, Nils; Stelzer, Marco; Schoele-Schulz, Olaf; Picker, Gerold; Ranebo, Hans; Dettmann, Jan; Minster, Olivier; Toth, Balazs; Winter, Josef; Tadrist, Lounes; Stephan, Peter; Grassi, Walter; di Marco, Paolo; Colin, Catherine; Piero Celata, Gian; Thome, John; Kabov, Oleg
Boiling is a two-phase heat transfer process where large heat fluxes can be transferred with small driving temperature differences. The high performance of boiling makes the process very interesting for heat transfer applications and it is widely used in industry for example in power plants, refrigeration systems, and electronics cooling. Nevertheless, due to the large number of involved phenomena and their often highly dynamic nature a fundamental understanding and closed theoretical description is not yet accomplished. The design of systems incorporating the process is generally based on empirical correlations, which are commonly accompanied by large uncertainties and, thus, has to be verified by expensive test campaigns. Hence, strong efforts are currently made to develop applicable numerical tools for a reliable prediction of the boiling heat transfer performance and limits. In order to support and validate this development and, in particular as a precondition, to enhance the basic knowledge about boiling the comprehensive multi-scale experiment RUBI (Reference mUlti-scale Boiling Investigation) for the Fluid Science Laboratory on board the ISS is currently in preparation. The scientific objectives and requirements of RUBI have been defined by the members of the ESA topical team "Boiling and Multiphase Flow" and addresses fundamental aspects of boiling phenomena. The main objectives are the measurement of wall temperature and heat flux distribution underneath vapour bubbles with high spatial and tem-poral resolution by means of IR thermography accompanied by the synchronized high-speed observation of the bubble shapes. Furthermore, the fluid temperature in the vicinity and inside of the bubbles will be measured by a micro sensor array. Additional stimuli are the generation of an electric field above the heating surface and a shear flow created by a forced convection loop. The objective of these stimuli is to impose forces on the bubbles and investigate the resulting bubble behaviour such as bubble sliding on and detaching from the surface. The experiments benefits from the absence of vapour buoyancy and natural convection in the high quality and long-term microgravity of the ISS. Effects and phenomena like thermocapillary convection that are hardly observable in normal gravity conditions can be investigated. Clearly predefined conditions particularly of the thermal layer at the heating surface can be established without disturbances by natural convection. Vapour buoyancy as the main detaching force in normal gravity is missing. Hence, it is possible to study stationary, attached bubbles and alternative detaching forces. With RUBI a long history of boiling experiments is perpetuated that used microgravity as a tool for a deeper understanding of the fundamental phenomena. Several precursor experiments closely related to the RUBI project have already been conducted on parabolic flights. The subject of the paper is to provide an overview on the RUBI project, its scientific objectives and the corresponding experimental principle. The current design of the experiment container that is under development at ASTRIUM Space Transportation in Friedrichshafen will be introduced. Furthermore, results from the precursor experiments are presented. The industrial activities of the RUBI project are funded and the science team is supported by ESA.
Marangoni Effects on Near-Bubble Microscale Transport During Boiling of Binary Fluid Mixtures
NASA Technical Reports Server (NTRS)
V. Carey; Sun, C.; Carey, V. P.
2000-01-01
In earlier investigations, Marangoni effects were observed to be the dominant mechanism of boiling transport in 2-propanol/water mixtures under reduced gravity conditions. In this investigation we have examined the mechanisms of binary mixture boiling by exploring the transport near a single bubble generated in a binary mixture between a heated surface and cold surface. The temperature field created in the liquid around the bubble produces vaporization over the portion of its interface near the heated surface and condensation over portions of its interface near the cold surface. Experiments were conducted using different mixtures of water and 2-propanol under 1g conditions and under reduced gravity conditions aboard the KC135 aircraft. Since 2-propanol is more volatile than water, there is a lower concentration of 2-propanol near the hot surface and a higher concentration of 2-propanol near the cold plate relative to the bulk quantity. This difference in interface concentration gives rise to strong Marangoni effects that move liquid toward the hot plate in the near bubble region for 2-propanol and water mixtures. In the experiments in this study, the pressure of the test system was maintained at about 5 kPa to achieve the full spectrum of boiling behavior (nucleate boiling, critical heat flux and film boiling) at low temperature and heat flux levels. Heat transfer data and visual documentation of the bubble shape were extracted from the experimental results. In the 1-g experiments at moderate to high heat flux levels, the bubble was observed to grow into a mushroom shape with a larger top portion near the cold plate due to the buoyancy effect. The shape of the bubble was somewhat affected by the cold plate subcooling and the superheat of the heated surface. At low superheat levels for the heated surface, several active nucleation sites were observed, and the vapor stems from them merged to form a larger bubble. The generation rate of vapor is moderate in this regime and the bubble shape is cylindrical in appearance. In some instances, the bubble interface appeared to oscillate. At higher applied heat flux levels, the top of the bubble became larger, apparently to provide more condensing interface area adjacent to the cold plate. Increasing the applied heat flux ultimately led to dry-out of the heated surface, with conditions just prior to dryout corresponding to the maximum heat flux (CHF). A more stable bubble was observed when the system attained the minimum heat flux (for film boiling). In this regime, most of the surface under the bottom of the bubble was dry with nucleate boiling sometimes occuring around the contact perimeter of the bubble at heated surface. Different variations (e.g. gap between two plates, molar concentration of the liquid mixture) of the experiments were examined to determine parametric effects on the boiling process and to determine the best conditions for the KC135 reduced gravity tests. Variation of the gap was found to have a minor impact on the CHF. However, reducing the gap between the hot and cold surface was observed to significantly reduce the minimum heat flux for fixed molar concentration of 2-propanol. In the reduced gravity experiments aboard the KC135 aircraft, the bubble formed in the 6.4 mm gap was generally cylindrical or barrel shaped and it increased its extent laterally as the surface superheat increased. In reduced gravity experiments, dryout of the heated surface under the bubble was observed to occur at a lower superheated temperature than for 1g conditions. Observed features of the boiling process and heat transfer data under reduced gravity will be discussed in detail. The results of the reduced gravity experiments will also be compared to those obtained in comparable 1g experiments. In tandem with the experiments we are also developing a computational model of the transport in the liquid surrounding the bubble during the boiling process. The computational model uses a level set method to model motion of the interface. It will incorporate a macroscale treatment of the transport in the liquid gap between the surfaces and a microscale treatment of transport in the regions between the bubble interface and the solid surfaces. The features of the model will be described in detail. Future research directions suggested by the results to date will also be discussed.
Direct production of fractionated and upgraded hydrocarbon fuels from biomass
Felix, Larry G.; Linck, Martin B.; Marker, Terry L.; Roberts, Michael J.
2014-08-26
Multistage processing of biomass to produce at least two separate fungible fuel streams, one dominated by gasoline boiling-point range liquids and the other by diesel boiling-point range liquids. The processing involves hydrotreating the biomass to produce a hydrotreatment product including a deoxygenated hydrocarbon product of gasoline and diesel boiling materials, followed by separating each of the gasoline and diesel boiling materials from the hydrotreatment product and each other.
Microbiological effectiveness of disinfecting water by boiling in rural Guatemala.
Rosa, Ghislaine; Miller, Laura; Clasen, Thomas
2010-03-01
Boiling is the most common means of treating water in the home and the benchmark against which alternative point-of-use water treatment options must be compared. In a 5-week study in rural Guatemala among 45 households who claimed they always or almost always boiled their drinking water, boiling was associated with a 86.2% reduction in geometric mean thermotolerant coliforms (TTC) (N = 206, P < 0.0001). Despite consistent levels of fecal contamination in source water, 71.2% of stored water samples from self-reported boilers met the World Health Organization guidelines for safe drinking water (0 TTC/100 mL), and 10.7% fell within the commonly accepted low-risk category of (1-10 TTC/100 mL). As actually practiced in the study community, boiling significantly improved the microbiological quality of drinking water, though boiled and stored drinking water is not always free of fecal contaminations.
Evaluation of correlations of flow boiling heat transfer of R22 in horizontal channels.
Zhou, Zhanru; Fang, Xiande; Li, Dingkun
2013-01-01
The calculation of two-phase flow boiling heat transfer of R22 in channels is required in a variety of applications, such as chemical process cooling systems, refrigeration, and air conditioning. A number of correlations for flow boiling heat transfer in channels have been proposed. This work evaluates the existing correlations for flow boiling heat transfer coefficient with 1669 experimental data points of flow boiling heat transfer of R22 collected from 18 published papers. The top two correlations for R22 are those of Liu and Winterton (1991) and Fang (2013), with the mean absolute deviation of 32.7% and 32.8%, respectively. More studies should be carried out to develop better ones. Effects of channel dimension and vapor quality on heat transfer are analyzed, and the results provide valuable information for further research in the correlation of two-phase flow boiling heat transfer of R22 in channels.
Evaluation of Correlations of Flow Boiling Heat Transfer of R22 in Horizontal Channels
Fang, Xiande; Li, Dingkun
2013-01-01
The calculation of two-phase flow boiling heat transfer of R22 in channels is required in a variety of applications, such as chemical process cooling systems, refrigeration, and air conditioning. A number of correlations for flow boiling heat transfer in channels have been proposed. This work evaluates the existing correlations for flow boiling heat transfer coefficient with 1669 experimental data points of flow boiling heat transfer of R22 collected from 18 published papers. The top two correlations for R22 are those of Liu and Winterton (1991) and Fang (2013), with the mean absolute deviation of 32.7% and 32.8%, respectively. More studies should be carried out to develop better ones. Effects of channel dimension and vapor quality on heat transfer are analyzed, and the results provide valuable information for further research in the correlation of two-phase flow boiling heat transfer of R22 in channels. PMID:23956695
Microbiological Effectiveness of Disinfecting Water by Boiling in Rural Guatemala
Rosa, Ghislaine; Miller, Laura; Clasen, Thomas
2010-01-01
Boiling is the most common means of treating water in the home and the benchmark against which alternative point-of-use water treatment options must be compared. In a 5-week study in rural Guatemala among 45 households who claimed they always or almost always boiled their drinking water, boiling was associated with a 86.2% reduction in geometric mean thermotolerant coliforms (TTC) (N = 206, P < 0.0001). Despite consistent levels of fecal contamination in source water, 71.2% of stored water samples from self-reported boilers met the World Health Organization guidelines for safe drinking water (0 TTC/100 mL), and 10.7% fell within the commonly accepted low-risk category of (1–10 TTC/100 mL). As actually practiced in the study community, boiling significantly improved the microbiological quality of drinking water, though boiled and stored drinking water is not always free of fecal contaminations. PMID:20207876
Boiling-induced formation of colloidal gold in black smoker hydrothermal fluids
Gartman, Amy; Hannington, Mark; Jamieson, John W.; Peterkin, Ben; Garbe-Schönberg, Dieter; Findlay, Alyssa J; Fuchs, Sebastian; Kwasnitschka, Tom
2017-01-01
Gold colloids occur in black smoker fluids from the Niua South hydrothermal vent field, Lau Basin (South Pacific Ocean), confirming the long-standing hypothesis that gold may undergo colloidal transport in hydrothermal fluids. Six black smoker vents, varying in temperature from 250 °C to 325 °C, were sampled; the 325 °C vent was boiling at the time of sampling and the 250 °C fluids were diffusely venting. Native gold particles ranging from <50 nm to 2 µm were identified in 4 of the fluid samples and were also observed to precipitate on the sampler during collection from the boiling vent. Total gold concentrations (dissolved and particulate) in the fluid samples range from 1.6 to 5.4 nM in the high-temperature, focused flow vents. Although the gold concentrations in the focused flow fluids are relatively high, they are lower than potential solubilities prior to boiling and indicate that precipitation was boiling induced, with sulfide lost upon boiling to exsolution and metal sulfide formation. Gold concentrations reach 26.7 nM in the 250 °C diffuse flow sample, and abundant native gold particles were also found in the fluids and associated sulfide chimney and are interpreted to be a product of colloid accumulation and growth following initial precipitation upon boiling. These results indicate that colloid-driven precipitation as a result of boiling, the persistence of colloids after boiling, and the accumulation of colloids in diffuse flow fluids are important mechanisms for the enrichment of gold in seafloor hydrothermal systems.
Li, Jin-Lin; Tu, Zong-Cai; Zhang, Lu; Sha, Xiao-Mei; Wang, Hui; Pang, Juan-Juan; Tang, Ping-Ping
2016-08-01
Ginger and garlic have long been used in Asian countries to enhance the flavor and to neutralize any unpleasant odors present in fish soup. The purpose of this study was to evaluate the change in the amount of volatile components present in fish soup compared to boiled water solutions of ginger and garlic. The fish soup was prepared by boiling oil-fried grass carp ( Ctenopharyngodon idella ) with or without ginger and/or garlic. Generally, boiling garlic and ginger in water led to a decrease in the amount of the principal volatile constituents of these spices, together with the formation of some new volatiles such as pentanal, hexanal, and nonanal. The results showed that 16 terpenes present in raw ginger, predominantly camphene, β -phellandrene, β -citral, α -zingiberene, and ( E )-neral, were detected in fish soup with added ginger and thus remained in the solution even after boiling. Similarly, 2-propen-1-ol and three sulfur compounds (allyl sulfide, diallyl disulfide, and diallyl trisulfide) present in raw garlic, were present in trace amounts in the boiled garlic solution, but were present in considerably larger amounts in the boiled fish solution with garlic or garlic plus ginger. In conclusion, the effect of adding spices on the volatile profile of grass carp soup can be attributed to the dissolution of flavor volatiles mainly derived from raw spices into the solution, with few additional volatiles being formed during boiling. In addition, boiling previously fried grass carp with spices led to enhanced volatile levels compared to boiled spice solutions.
Science 101: Why Does It Take Longer to Boil Potatoes at High Altitudes?
ERIC Educational Resources Information Center
Robertson, Bill
2017-01-01
Why Does It Take Longer to Boil Potatoes at High Altitudes? This column provides background science information for elementary teachers. This month's issue looks at why water boils at different temperatures at different altitudes.
An Investigation of Graduate Scientists' Understandings of Evaporation and Boiling.
ERIC Educational Resources Information Center
Goodwin, Alan; Orlik, Yuri
2000-01-01
Uses a video presentation of six situations relating to the evaporation and boiling of liquids and the escape of dissolved gases from solution and investigates graduate scientists' understanding of the concepts of boiling and evaporation. (Author/YDS)
Electric kettles as a source of human lead exposure.
Wigle, D T; Charlebois, E J
1978-01-01
Five hundred and seventy-four households in Ottawa were surveyed to evaluate water boiled in electric kettles as a source of lead exposure. Samples of boiled water exceeded the World Health Organization mandatory limit for drinking water (50 microgram/l) in 42.5% of the households. Excessive lead concentrations were observed in 62.8% of water samples from kettles more than 5 years old. Multiple regression analysis indicated that age, sex, and cigarette smoking habits, but not lead concentration in boiled water, nor weekly consumption of boiled water were significantly associated with blood-lead concentration. Lead exposure from electric kettles may be a significant problem only in infants receiving formula prepared with boiled water.
Mehmandoust, Babak; Sanjari, Ehsan; Vatani, Mostafa
2013-01-01
The heat of vaporization of a pure substance at its normal boiling temperature is a very important property in many chemical processes. In this work, a new empirical method was developed to predict vaporization enthalpy of pure substances. This equation is a function of normal boiling temperature, critical temperature, and critical pressure. The presented model is simple to use and provides an improvement over the existing equations for 452 pure substances in wide boiling range. The results showed that the proposed correlation is more accurate than the literature methods for pure substances in a wide boiling range (20.3–722 K). PMID:25685493
Mehmandoust, Babak; Sanjari, Ehsan; Vatani, Mostafa
2014-03-01
The heat of vaporization of a pure substance at its normal boiling temperature is a very important property in many chemical processes. In this work, a new empirical method was developed to predict vaporization enthalpy of pure substances. This equation is a function of normal boiling temperature, critical temperature, and critical pressure. The presented model is simple to use and provides an improvement over the existing equations for 452 pure substances in wide boiling range. The results showed that the proposed correlation is more accurate than the literature methods for pure substances in a wide boiling range (20.3-722 K).
Polyphenols in the woody roots of Norway spruce and European beech reduce TTC.
Richter, Anika K; Frossard, Emmanuel; Brunner, Ivano
2007-01-01
A common method to determine the vitality of fine root tissue is the measurement of respiratory activity with triphenyltetrazolium chloride (TTC). The colorless TTC is reduced to the red-colored triphenyl formazan (TF) as a result of the dehydrogenase activity of the mitochondrial respiratory chain. However, measurements with woody fine roots of adult Norway spruce and European beech trees showed that dead control roots had a high potential to react with TTC. High reactivity was found in boiled fine roots and the bark of coarse roots, but not in the boiled wood of coarse roots. By sequential extraction of dried and ground adult Norway spruce fine roots, reactivity with TTC was reduced by about 75% (water extraction), 93% (water/methanol extraction) and 94% (water/acetone extraction). The water extract reacted with TTC in the same way as polyphenols such as lignin, catechin and epicatechin. Boiling did not affect the extent to which fine roots of adult trees reduced TTC, whereas it greatly reduced TTC reduction by seedling roots. Application of the TTC test to roots of spruce seedlings subjected to increasing drought showed a progressive decrease in TTC reduction. The decrease in TTC reduction was paralleled by a reduction in O(2) consumption, thus supporting the conclusion that for roots with a low polyphenol content the TTC test provides a valid assessment of tissue vitality. Our results suggest, however, that the TTC test should not be applied to the fine roots of adult trees because of their high content of polyphenolic compounds whose reaction with TTC masks changes in TTC reduction due to changes in the respiratory capacity of the tissue.
Heat Transfer Enhancement due to Bubble Pumping in FC-72 Near the Saturation Temperature
1991-03-01
boiling, (2) reducing wall superheat during nucleate boiling and (3) enhancing critical heat flux ( Mudawar , 1990) . Since the heat transfer potential of...flux from a simulated electronic chip attached to the wall of a vertical rectangular channel was determined by Mudawar and Madox (1988). They concluded...Surface Boiling," Industrial and Engineering Chemistry, vol. 41, No. 9, 1949. Mudawar , I., and D.E. Maddox, Critical Heat Flux in Subcooled Flow Boiling
Boiling regimes of impacting drops on a heated substrate under reduced pressure
NASA Astrophysics Data System (ADS)
van Limbeek, Michiel A. J.; Hoefnagels, Paul B. J.; Shirota, Minori; Sun, Chao; Lohse, Detlef
2018-05-01
We experimentally investigate the boiling behavior of impacting ethanol drops on a heated smooth sapphire substrate at pressures ranging from P =0.13 bar to atmospheric pressure. We employ frustrated total internal reflection imaging to study the wetting dynamics of the contact between the drop and the substrate. The spreading drop can be in full contact (contact boiling), it can partially touch (transition boiling), or the drop can be fully levitated (Leidenfrost boiling). We show that the temperature of the boundary between contact and transition boiling shows at most a weak dependence on the impact velocity, but a significant decrease with decreasing ambient gas pressure. A striking correspondence is found between the temperature of this boundary and the static Leidenfrost temperature for all pressures. We therefore conclude that both phenomena share the same mechanism and are dominated by the dynamics taking place at the contact line. On the other hand, the boundary between transition boiling and Leidenfrost boiling, i.e., the dynamic Leidenfrost temperature, increases for increasing impact velocity for all ambient gas pressures. Moreover, the dynamic Leidenfrost temperature coincides for pressures between P =0.13 and 0.54 bar, whereas for atmospheric pressure the dynamic Leidenfrost temperature is slightly elevated. This indicates that the dynamic Leidenfrost temperature is at most weakly dependent on the enhanced evaporation by the lower saturation temperature of the liquid.
Reduced Boil-Off System Sizing
NASA Technical Reports Server (NTRS)
Guzik, Monica C.; Plachta, David W.; Feller, Jeffrey R.
2015-01-01
NASA is currently developing cryogenic propellant storage and transfer systems for future space exploration and scientific discovery missions by addressing the need to raise the technology readiness level of cryogenic fluid management technologies. Cryogenic propellants are baselined in many propulsion systems due to their inherently high specific impulse; however, their low boiling points can cause substantial boil-off losses over time. Recent efforts such as the Reduced Boil-off Testing and the Active Thermal Control Scaling Study provide important information on the benefit of an active cooling system applied to LH2 propellant storage. Findings show that zero-boil off technologies can reduce overall mass in LH2 storage systems when low Earth orbit loiter periods extend beyond two months. A significant part of this mass reduction is realized by integrating two stages of cooling: a 20 K stage to intercept heat at the tank surface, and a 90 K stage to reduce the heat entering the less efficient 20 K stage. A missing element in previous studies, which is addressed in this paper, is the development of a direct method for sizing the 90 K cooling stage. Such a method requires calculation of the heat entering both the 90 K and 20 K stages as compared to the overall system masses, and is reliant upon the temperature distribution, performance, and unique design characteristics of the system in question. By utilizing the known conductance of a system without active thermal control, the heat being intercepted by a 90 K stage can be calculated to find the resultant lift and mass of each active thermal control stage. Integral to this is the thermal conductance of the cooling straps and the broad area cooling shield, key parts of the 90 K stage. Additionally, a trade study is performed to show the ability of the 90 K cooling stage to reduce the lift on the 20 K cryocooler stage, which is considerably less developed and efficient than 90 K cryocoolers.
Bjeldanes, L F; Morris, M M; Felton, J S; Healy, S; Stuermer, D; Berry, P; Timourian, H; Hatch, F T
1982-08-01
A survey of mutagen formation during the cooking of a variety of protein-rich foods that are minor sources of protein intake in the American diet is reported (see Bjeldanes, Morris, Felton et al. (1982) for survey of major protein foods). Milk, cheese, tofu and organ meats showed negligible mutagen formation except following high-temperature cooking for long periods of time. Even under the most extreme conditions, tofu, cheese and milk exhibited fewer than 500 Ames/Salmonella typhimurium revertants/100 g equivalents (wet weight of uncooked food), and organ meats only double that amount. Beans showed low mutagen formation after boiling and boiling followed by frying (with and without oil). Only boiling of beans followed by baking for 1 hr gave appreciable mutagenicity (3650 revertants/100g equivalents). Seafood samples gave a variety of results: red snapper, salmon, trout, halibut and rock cod all gave more than 1000 revertants/100 g wet weight equivalents when pan-fried or griddle-fried for about 6 min/side. Baked or poached rock and deep-fried shrimp showed no significant mutagen formation. Broiled lamb chops showed mutagen formation similar to that in red meats tested in the preceding paper: 16,000 revertants/100 g equivalents. These findings show that as measured by bioassay in S. typhimurium, most of the foods that are minor sources of protein in the American diet are also minor sources of cooking-induced mutagens.
PHYSICAL PROPERTIES OF FLUORINATED PROPANE AND BUTANE DERIVATIVES AS ALTERNATIVE REFRIGERANTS
Physical property measurements are presented for 24 fluorinated propane and butane derivatives and one fluorinated ether. These measurements include melting point, boiling point, vapor pressure below the boiling point, heat of vaporization at the boiling point, critical propertie...
NASA Technical Reports Server (NTRS)
Flachbart, R. H.; Hedayat, A.; Holt, K. A.; Sims, J.; Johnson, E. F.; Hastings, L. J.; Lak, T.
2013-01-01
Cryogenic upper stages in the Space Shuttle program were prohibited primarily due to a safety risk of a 'return to launch site' abort. An upper stage concept addressed this concern by proposing that the stage be launched empty and filled using shuttle external tank residuals after the atmospheric pressure could no longer sustain an explosion. However, only about 5 minutes was allowed for tank fill. Liquid hydrogen testing was conducted within a near-ambient environment using the multipurpose hydrogen test bed 638.5 ft3 (18m3) cylindrical tank with a spray bar mounted longitudinally inside. Although the tank was filled within 5 minutes, chilldown of the tank structure was incomplete, and excessive tank pressures occurred upon vent valve closure. Elevated tank wall temperatures below the liquid level were clearly characteristic of film boiling. The test results have substantial implications for on-orbit cryogen transfer since the formation of a vapor film would be much less inhibited due to the reduced gravity. However, the heavy tank walls could become an asset in normal gravity testing for on-orbit transfer, i.e., if film boiling in a nonflight weight tank can be inhibited in normal gravity, then analytical modeling anchored with the data could be applied to reduced gravity environments with increased confidence.
NASA Astrophysics Data System (ADS)
Zhukov, Yu. M.; Urtenov, D. S.
2017-12-01
The problems of simulation of heterogeneous nucleate pool boiling on a horizontal surface on the ascending branch of the boiling curve from the formation of a steam lens (SL) to the boiling crisis are considered. The proposed hypothesis provides in a number of cases a logically consistent interpretation of experiments and outlines the organizational principle of transferring the wall-liquid-steam system into the regime of nonwettable "dry spot" formation. The model includes the following types of nucleate boiling: (a) cyclic boiling with the contact line reverse to the bubble bottom center and bubble departure from the surface (at low heat flux q and the contact angle θ < 90°); (b) single steam bubble conversion into a steam lens, i.e., local film boiling with the possibility of spreading of a single "dry spot" at the variation of the contact angle θ ≥ 90°, and substantial growth of the departure diameter D d and SL lifetime τd; (c) formation of a single steam cluster of four SLs at a given pressure, the liquid underheating, and the average wall overheating.
NASA Astrophysics Data System (ADS)
Depczyński, Wojciech; Piasecki, Artur; Piasecka, Magdalena; Strąk, Kinga
2017-10-01
This paper focuses on identification of the impact of porous heated surface on flow boiling heat transfer in a rectangular minichannel. The heated element for Fluorinert FC-72 was a thin plate made of Haynes-230. Infrared thermography was used to determine changes in the temperature on its outer smooth side. The porous surface in contact with the fluid in the minichannel was produced in two processes: sintering or soldering of Fe powder to the plate. The results were presented as relationships between the heat transfer coefficient and the distance from the minichannel inlet and as boiling curves. Results obtained for using a smooth heated plate at the saturated boiling region were also presented to compare. In the subcooled boiling region, at a higher heat flux, the heat transfer coefficient was slightly higher for the surface prepared via soldering. In the saturated boiling region, the local heat transfer coefficients obtained for the smooth plate surface were slightly higher than those achieved from the sintered plate surface. The porous structures formed have low thermal conductivity. This may induce noticeable thermal resistance at the diffusion bridges of the sintered structures, in particular within the saturated boiling region.
Bach, Vibe; Kidmose, Ulla; Thybo, Anette K; Edelenbos, Merete
2013-03-30
The aim of the present study was to investigate the sensory attributes, dry matter and sugar content of five varieties of Jerusalem artichoke tubers and their relation to the appropriateness of the tubers for raw and boiled preparation. Sensory evaluation of raw and boiled Jerusalem artichoke tubers was performed by a trained sensory panel and a semi-trained consumer panel of 49 participants, who also evaluated the appropriateness of the tubers for raw and boiled preparation. The appropriateness of raw Jerusalem artichoke tubers was related to Jerusalem artichoke flavour, green nut flavour, sweetness and colour intensity, whereas the appropriateness of boiled tubers was related to celeriac aroma, sweet aroma, sweetness and colour intensity. In both preparations the variety Dwarf stood out from the others by being the least appropriate tuber. A few sensory attributes can be used as predictors of the appropriateness of Jerusalem artichoke tubers for raw and boiled consumption. Knowledge on the quality of raw and boiled Jerusalem artichoke tubers can be used to inform consumers on the right choice of raw material and thereby increase the consumption of the vegetable. © 2012 Society of Chemical Industry.
NASA Astrophysics Data System (ADS)
Nursiwi, A.; Ishartani, D.; Sari, AM; Nisyah, K.
2018-01-01
Lamtoro (Leucaena leucocephala) seed is one of the leguminosae which have high level of protein but it contains toxic compound such as mimosine and some anti nutritional compounds such as phitic acid and tannin. The objectives of the research was to investigate the sensory characteristic and the changes onanti nutritional compounds and mimosine level in Leucaena leucochepala seed during fermentation. Lamtoro tempeh processing was carried out by boiling the seed, crushing to separate the hull, soaking, boiling, and fermentation. The best concentration inoculum in lamtoro tempeh processing was determined by hedonic test. Fermentation was carried out in 36 hours and every 6 hours mimosine, tannin, and phitic acid content was analyzed. From hedonic test, inoculum concentration of 1% was used in lamtoro tempeh processing. During 36 hours fermentation, phytic acid content and mimosine content was decreased significantly, from 0.0558 % to 0.0453 % and from 0.00393 % to 0.00173 % respectively. Whereas tannin content was increased signifacantly, from 0.0822 % to 0.00173 %.
A study of the flow boiling heat transfer in an annular heat exchanger with a mini gap
NASA Astrophysics Data System (ADS)
Musiał, Tomasz; Piasecka, Magdalena; Hożejowska, Sylwia
In this paper the research on flow boiling heat transfer in an annular mini gap was discussed. A one- dimensional mathematical approach was proposed to describe stationary heat transfer in the gap. The mini gap 1 mm wide was created between a metal pipe with enhanced exterior surface and an external tempered glass pipe positioned along the same axis. The experimental test stand consists of several systems: the test loop in which distilled water circulates, the data and image acquisition system and the supply and control system. Known temperature distributions of the metal pipe with enhanced surface and of the working fluid helped to determine, from the Robin boundary condition, the local heat transfer coefficients at the fluid - heated surface contact. In the proposed mathematical model it is assumed that the cylindrical wall is a planar multilayer wall. The numerical results are presented on a chart as function of the heat transfer coefficient along the length of the mini gap.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kanemoto, S.; Andoh, Y.; Sandoz, S.A.
1984-10-01
A method for evaluating reactor stability in boiling water reactors has been developed. The method is based on multivariate autoregressive (M-AR) modeling of steady-state neutron and process noise signals. In this method, two kinds of power spectral densities (PSDs) for the measured neutron signal and the corresponding noise source signal are separately identified by the M-AR modeling. The closed- and open-loop stability parameters are evaluated from these PSDs. The method is applied to actual plant noise data that were measured together with artificial perturbation test data. Stability parameters identified from noise data are compared to those from perturbation test data,more » and it is shown that both results are in good agreement. In addition to these stability estimations, driving noise sources for the neutron signal are evaluated by the M-AR modeling. Contributions from void, core flow, and pressure noise sources are quantitatively evaluated, and the void noise source is shown to be the most dominant.« less
Film boiling of mercury droplets
NASA Technical Reports Server (NTRS)
Baumeister, K. J.; Schoessow, G. J.; Chmielewski, C. E.
1975-01-01
Vaporization times of mercury droplets in Leidenfrost film boiling on a flat horizontal plate are measured in an air atmosphere. Extreme care was used to prevent large amplitude droplet vibrations and surface wetting; therefore, these data can be compared to film boiling theory. Diffusion from the upper surface of the drop appears as a dominant mode of mass transfer from the drop. A closed-form analytical film boiling theory is developed to account for the diffusive evaporation. Reasonable agreement between data and theory is seen.
New Technique for Cryogenically Cooling Small Test Articles
NASA Technical Reports Server (NTRS)
Rodriquez, Karen M.; Henderson, Donald J.
2011-01-01
Convective heat removal techniques to rapidly cool small test articles to Earth-Moon L2 temperatures of 77 K were accomplished through the use of liquid nitrogen (LN2). By maintaining a selected pressure range on the saturation curve, test articles were cooled below the LN2 boiling point at ambient pressure in less than 30 min. Difficulties in achieving test pressures while maintaining the temperature tolerance necessitated a modification to the original system to include a closed loop conductive cold plate and cryogenic shroud
NASA Technical Reports Server (NTRS)
Goodman, Irving A; Wise, Paul H
1952-01-01
Three homologous series of related dicyclic hydrocarbons are presented for comparison on the basis of their physical properties, which include net heat of combustion, density, melting point, boiling point, and kinematic viscosity. The three series investigated include the 2-n-alkylbiphenyl, 2-n-alkylbicyclohexyl (high boiling), and 2-n-alkylbiphenyls (low boiling) series through c sub 16, in addition to three branched-chain (isopropyl, sec-butyl, and isobutyl) 2-alkylbiphenyls and their corresponding 2-alkylbicyclohexyls. The physical properties of the low-boiling and high-boiling isomers of 2-sec-butylbicyclohexyl and 2-isobutylbicyclohexyl are reported herein for the first time.
Detection of vapor nanobubbles by small angle neutron scattering (SANS)
NASA Astrophysics Data System (ADS)
Popov, Emilian; He, Lilin; Dominguez-Ontiveros, Elvis; Melnichenko, Yuri
2018-04-01
Experiments using boiling water on untreated (roughness 100-300 nm) metal surfaces using small-angle neutron scattering (SANS) show the appearance of structures that are 50-70 nm in size when boiling is present. The scattering signal disappears when the boiling ceases, and no change in the signal is detected at any surface temperature condition below saturation. This confirms that the signal is caused by vapor nanobubbles. Two boiling regimes are evaluated herein that differ by the degree of subcooling (3-10 °C). A polydisperse spherical model with a log-normal distribution fits the SANS data well. The size distribution indicates that a large number of nanobubbles exist on the surface during boiling, and some of them grow into large bubbles.
NASA Astrophysics Data System (ADS)
Al-Ajmi, R. M.; Abou-Ziyan, H. Z.; Mahmoud, M. A.
2012-01-01
This paper reports the results of a comprehensive study that aimed at identifying best neural network architecture and parameters to predict subcooled boiling characteristics of engine oils. A total of 57 different neural networks (NNs) that were derived from 14 different NN architectures were evaluated for four different prediction cases. The NNs were trained on experimental datasets performed on five engine oils of different chemical compositions. The performance of each NN was evaluated using a rigorous statistical analysis as well as careful examination of smoothness of predicted boiling curves. One NN, out of the 57 evaluated, correctly predicted the boiling curves for all cases considered either for individual oils or for all oils taken together. It was found that the pattern selection and weight update techniques strongly affect the performance of the NNs. It was also revealed that the use of descriptive statistical analysis such as R2, mean error, standard deviation, and T and slope tests, is a necessary but not sufficient condition for evaluating NN performance. The performance criteria should also include inspection of the smoothness of the predicted curves either visually or by plotting the slopes of these curves.
Microbial contamination and disinfection methods of pacifiers.
Nelson-Filho, Paulo; Louvain, Márcia Costa; Macari, Soraia; Lucisano, Marília Pacífico; Silva, Raquel Assed Bezerra da; Queiroz, Alexandra Mussolino de; Gaton-Hernández, Patrícia; Silva, Léa Assed Bezerra da
2015-10-01
To evaluate the microbial contamination of pacifiers by Mutans Streptococci(MS) and the efficacy of different methods for their disinfection. Twenty-eight children were assigned to a 4-stage changeover system with a 1-week interval. In each stage, children received a new pacifier and the parents were instructed to maintain their normal habits for 1 week. After this time, the pacifiers were subjected to the following 4 disinfection methods: spraying with 0.12% chlorhexidine solution, Brushtox or sterile tap water, and immersion in boiling tap water for 15 minutes. Microbiological culture for MS and Scanning Electron Microscopy (SEM) were performed. The results were analyzed statistically by Friedman's non-parametric test (a=0.05). The 0.12% chlorhexidine spray was statistically similar to the boiling water (p>0.05) and more effective than the Brushtox spray and control (p<0.05). The analysis of SEM showed the formation of a cariogenic biofilm in all groups with positive culture. Pacifiers become contaminated by MS after their use by children and should be disinfected routinely. Spraying with a 0.12% chlorhexidine solution and immersion in boiling water promoted better disinfection of the pacifiers compared with a commercial antiseptic toothbrush cleanser (Brushtox).
Experimental Study of the Relation Between Heat Transfer and Flow Behavior in a Single Microtube
NASA Astrophysics Data System (ADS)
Huang, Shih-Che; Kawanami, Osamu; Kawakami, Kazunari; Honda, Itsuro; Kawashima, Yousuke; Ohta, Haruhiko
2008-09-01
The flow boiling heat transfer in microchannels have become important issue because it is extremely high-performance heat exchanger for electronic devices. For a detailed study on flow boiling heat transfer in a microtube, we have used a transparent heated microtube, which is coated with a thin gold film on its inner wall. The gold film is used as a resistance thermometer to directly evaluate the inner wall temperature averaged over the entire temperature measurement length. At the same time, the transparency of the film enables the observation of fluid behavior. Flow boiling experiments have been carried out using the microtube under the following conditions; mass velocity of 105 kg/m2 s, tube diameter of 1 mm, heat flux in the range of 10 380 kW/m2 s, and the test fluid used is ionized water. Under low heat flux conditions, the fluctuations in the inner wall temperature and mass velocity are closely related; the frequency of these fluctuations is the same. However, the fluctuations in the inner wall temperature and heat transfer coefficient are found to be independent of the fluctuation in the mass velocity under high heat flux conditions.
Wang, Yan-Bin; Hu, Yu-Zhong; Li, Wen-Le; Zhang, Wei-Song; Zhou, Feng; Luo, Zhi
2014-10-01
In the present paper, based on the fast evaluation technique of near infrared, a method to predict the yield of atmos- pheric and vacuum line was developed, combined with H/CAMS software. Firstly, the near-infrared (NIR) spectroscopy method for rapidly determining the true boiling point of crude oil was developed. With commercially available crude oil spectroscopy da- tabase and experiments test from Guangxi Petrochemical Company, calibration model was established and a topological method was used as the calibration. The model can be employed to predict the true boiling point of crude oil. Secondly, the true boiling point based on NIR rapid assay was converted to the side-cut product yield of atmospheric/vacuum distillation unit by H/CAMS software. The predicted yield and the actual yield of distillation product for naphtha, diesel, wax and residual oil were compared in a 7-month period. The result showed that the NIR rapid crude assay can predict the side-cut product yield accurately. The near infrared analytic method for predicting yield has the advantages of fast analysis, reliable results, and being easy to online operate, and it can provide elementary data for refinery planning optimization and crude oil blending.
Condensation of vapor bubble in subcooled pool
NASA Astrophysics Data System (ADS)
Horiuchi, K.; Koiwa, Y.; Kaneko, T.; Ueno, I.
2017-02-01
We focus on condensation process of vapor bubble exposed to a pooled liquid of subcooled conditions. Two different geometries are employed in the present research; one is the evaporation on the heated surface, that is, subcooled pool boiling, and the other the injection of vapor into the subcooled pool. The test fluid is water, and all series of the experiments are conducted under the atmospheric pressure condition. The degree of subcooling is ranged from 10 to 40 K. Through the boiling experiment, unique phenomenon known as microbubble emission boiling (MEB) is introduced; this phenomenon realizes heat flux about 10 times higher than the critical heat flux. Condensation of the vapor bubble is the key phenomenon to supply ambient cold liquid to the heated surface. In order to understand the condensing process in the MEB, we prepare vapor in the vapor generator instead of the evaporation on the heated surface, and inject the vapor to expose the vapor bubble to the subcooled liquid. Special attention is paid to the dynamics of the vapor bubble detected by the high-speed video camera, and on the enhancement of the heat transfer due to the variation of interface area driven by the condensation.
17. RW Meyer Sugar Mill: 18761889. Boiling House, 1878. View: ...
17. RW Meyer Sugar Mill: 1876-1889. Boiling House, 1878. View: Southwest corner of boiling house. The amimal-powered cane mill is located in the undergrowth in the right foreground, - R. W. Meyer Sugar Mill, State Route 47, Kualapuu, Maui County, HI
Structural changes of malt proteins during boiling.
Jin, Bei; Li, Lin; Liu, Guo-Qin; Li, Bing; Zhu, Yu-Kui; Liao, Liao-Ning
2009-03-09
Changes in the physicochemical properties and structure of proteins derived from two malt varieties (Baudin and Guangmai) during wort boiling were investigated by differential scanning calorimetry, SDS-PAGE, two-dimensional electrophoresis, gel filtration chromatography and circular dichroism spectroscopy. The results showed that both protein content and amino acid composition changed only slightly during boiling, and that boiling might cause a gradual unfolding of protein structures, as indicated by the decrease in surface hydrophobicity and free sulfhydryl content and enthalpy value, as well as reduced alpha-helix contents and markedly increased random coil contents. It was also found that major component of both worts was a boiling-resistant protein with a molecular mass of 40 kDa, and that according to the two-dimensional electrophoresis and SE-HPLC analyses, a small amount of soluble aggregates might be formed via hydrophobic interactions. It was thus concluded that changes of protein structure caused by boiling that might influence beer quality are largely independent of malt variety.
Peng, Xin; Yu, Ke-Qiang; Deng, Guan-Hua; Jiang, Yun-Xia; Wang, Yu; Zhang, Guo-Xia; Zhou, Hong-Wei
2013-12-01
Low cost and high throughput capacity are major advantages of using next generation sequencing (NGS) techniques to determine metagenomic 16S rRNA tag sequences. These methods have significantly changed our view of microorganisms in the fields of human health and environmental science. However, DNA extraction using commercial kits has shortcomings of high cost and time constraint. In the present study, we evaluated the determination of fecal microbiomes using a direct boiling method compared with 5 different commercial extraction methods, e.g., Qiagen and MO BIO kits. Principal coordinate analysis (PCoA) using UniFrac distances and clustering showed that direct boiling of a wide range of feces concentrations gave a similar pattern of bacterial communities as those obtained from most of the commercial kits, with the exception of the MO BIO method. Fecal concentration by boiling method affected the estimation of α-diversity indices, otherwise results were generally comparable between boiling and commercial methods. The operational taxonomic units (OTUs) determined through direct boiling showed highly consistent frequencies with those determined through most of the commercial methods. Even those for the MO BIO kit were also obtained by the direct boiling method with high confidence. The present study suggested that direct boiling could be used to determine the fecal microbiome and using this method would significantly reduce the cost and improve the efficiency of the sample preparation for studying gut microbiome diversity. © 2013 Elsevier B.V. All rights reserved.
Numerical and Experimental Study of Mechanisms Involved in Boiling Histotripsy.
Pahk, Ki Joo; Gélat, Pierre; Sinden, David; Dhar, Dipok Kumar; Saffari, Nader
2017-12-01
The aim of boiling histotripsy is to mechanically fractionate tissue as an alternative to thermal ablation for therapeutic applications. In general, the shape of a lesion produced by boiling histotripsy is tadpole like, consisting of a head and a tail. Although many studies have demonstrated the efficacy of boiling histotripsy for fractionating solid tumors, the exact mechanisms underpinning this phenomenon are not yet well understood, particularly the interaction of a boiling vapor bubble with incoming incident shockwaves. To investigate the mechanisms involved in boiling histotripsy, a high-speed camera with a passive cavitation detection system was used to observe the dynamics of bubbles produced in optically transparent tissue-mimicking gel phantoms exposed to the field of a 2.0-MHz high-intensity focused ultrasound (HIFU) transducer. We observed that boiling bubbles were generated in a localized heated region and cavitation clouds were subsequently induced ahead of the expanding bubble. This process was repeated with HIFU pulses and eventually resulted in a tadpole-shaped lesion. A simplified numerical model describing the scattering of the incident ultrasound wave by a vapor bubble was developed to help interpret the experimental observations. Together with the numerical results, these observations suggest that the overall size of a lesion induced by boiling histotripsy is dependent on the sizes of (i) the heated region at the HIFU focus and (ii) the backscattered acoustic field by the original vapor bubble. Copyright © 2017 World Federation for Ultrasound in Medicine and Biology. Published by Elsevier Inc. All rights reserved.
Ismail, Maznah; Mariod, Abdalbasit; Pin, Sia Soh
2013-01-01
The effect of preparation methods (raw, half-boiled and hard-boiled) on protein and amino acid contents, as well as the protein quality (amino acid score) of regular, kampung and nutrient enriched Malaysian eggs was investigated. The protein content was determined using a semi-micro Kjeldahl method whereas the amino acid composition was determined using HPLC. The protein content of raw regular, kampung and nutrient enriched eggs were 49.9 ±0.2%, 55.8 ±0.2% and 56.5 ±0.5%, respectively. The protein content of hard-boiled eggs of regular, kampung and nutrient enriched eggs was 56.8 ±0.1%, 54.7 ±0.1%, and 53.7 ±0.5%, while that for half-boiled eggs of regular, kampung and nutrient enriched eggs was 54.7 ±0.6%, 53.4 ±0.4%, and 55.1 ±0.7%, respectively. There were significant differences (p < 0.05) in protein and amino acid contents of half-boiled, hard-boiled as compared with raw samples, and valine was found as the limiting amino acid. It was found that there were significant differences (p < 0.05) of total amino score in regular, kampung and nutrient enriched eggs after heat treatments.Furthermore, hard-boiling (100°C) for 10 minutes and half-boiling (100°C) for 5 minutes affects the total amino score, which in turn alter the protein quality of the egg.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suriyawong, Adirek; Wongwises, Somchai
2010-11-15
A study of nucleate pool boiling heat transfer of TiO{sub 2}-water nanofluids is experimentally conducted. Nanofluids with various concentrations of 0.00005, 0.0001, 0.0005, 0.005, and 0.01 vol.% are employed. Horizontal circular plates made from copper and aluminium with different roughness values of 0.2 and 4 {mu}m are used as heating surfaces. The experiments are performed to explore the effects of nanofluids concentration as well as heating surface material and roughness on nucleate pool boiling characteristics and the heat transfer coefficient under ambient pressure. The results show that based on the copper heated surface which is tested with a concentration ofmore » 0.0001 vol.%, higher nucleate pool boiling heat transfer coefficient is obtained when compared with the base fluid. A 15% increase is obtained for the surface roughness of 0.2 {mu}m and a 4% increase is obtained for roughness of 4 {mu}m. For concentrations higher than 0.0001 vol.%, however, the higher the concentration, the lower the heat transfer coefficient. In the case of aluminium heated surface, the corresponding heat transfer coefficients are larger than for the copper surface by around 30% with a roughness of 0.2 {mu}m and around 27% with a roughness of 4 {mu}m. Moreover, the results also indicate that the heat transfer coefficient obtained based on a roughness of 4 {mu}m is higher than that for a roughness of 0.2 {mu}m by around 12% for aluminium and by around 13% for copper. (author)« less
R1234yf vs. R134a Flow Boiling Heat Transfer Inside a 3.4 mm ID Microfin Tube
NASA Astrophysics Data System (ADS)
Diani, A.; Mancin, S.; Rossetto, L.
2014-11-01
The refrigerant charge minimization as well as the use of eco-friendly fluids can be considered two of the most important targets for these applications to cope with the new environmental challenges. This paper compares the R1234yf and R134a flow boiling heat transfer and pressure drop measurements inside a small microfin tube with internal diameter at the fin tip of 3.4 mm. This study is carried out in an experimental facility built at the Dipartimento di Ingegneria Industriale of the University of Padova especially designed to study both single and two phase heat transfer processes. The microfin tube is brazed inside a copper plate and electrically heated from the bottom. Several T -type thermocouples are inserted in the wall to measure the temperature distribution during the phase change process. In particular, the experimental measurements were carried out at constant saturation temperature of 30 °C, by varying the refrigerant mass velocity between 190 kg m-2 s-1 and 940 kg m-2 s-1, the vapour quality from 0.2 to 0.99, at different imposed heat fluxes. The two refrigerants are compared considering the values of the two-phase heat transfer coefficient and pressure drop.
Anti-obesity effects of boiled tuna extract in mice with obesity induced by a high-fat diet.
Kim, Youngmin; Kwon, Mi-Jin; Choi, Jeong-Wook; Lee, Min-Kyeong; Kim, Chorong; Jung, Jaehun; Aprianita, Heny; Nam, Heesop; Nam, Taek-Jeong
2016-10-01
The aim of this study was to examine the anti-obesity effects of boiled tuna extract in C57BL/6N mice with obesity induced by a high-fat diet (HFD). We determined the anti-obesity effects of boiled tuna extract (100, 200, or 400 mg/kg) on the progression of HFD-induced obesity for 10 weeks. The mice were divided into 5 groups as follows: the normal diet (ND) group (n=10); the HFD group (n=10); the mice fed HFD and 100 mg/kg boiled tuna extract group (n=10); those fed a HFD and 200 mg/kg boiled tuna extract group (n=10); and those fed a HFD and 400 mg/kg boiled tuna extract group (n=10). Changes in body weight, fat content, serum lipid levels and lipogenic enzyme levels were measured. The consumption of boiled tuna extract lowered epididymal tissue weight and exerted anti-obesity effects, as reflected by the serum glucose, triglyceride (TG), total cholesterol (TC), high-density lipoprotein cholesterol (HDL‑C), low-density lipoprotein cholesterol (LDL-C), insulin and leptin levels. In addition, we demonstrated changes in liver adipogenic- and lipogenic-related protein expression by western blot analysis. Boiled tuna extract downregulated the levels of the CCAAT/enhancer-binding protein α, β and δ (C/EBPα, β, δ), and peroxisome proliferator-activated receptor-γ (PPAR-γ) adipocyte marker genes. Boiled tuna extract also attenuated adipogenic and lipogenic gene expression, namely the levels of fatty acid synthase (FAS), lipoprotein lipase (LPL), acetyl-CoA carboxylase (ACC), glucose transporter type 4 (Glut4) and phosphorylated adenosine monophosphate-activated protein kinase α and β (AMPKα, β) in a dose-dependent manner. Moreover, the consumption of boiled tuna extract restored the levels of superoxide dismutase (SOD), catalase (CAT), glutamic oxaloacetic transaminase (GOT), glutamic-pyruvate transaminase (GPT), aspartate transaminase (AST) and alanine transaminase (ALT) to those of the control group. These results suggest that boiled tuna extract attenuates the progression of obesity by stimulating fatty acid oxidation through the upregulation of AMPK genes, as well as by inhibiting the synthesis of adipogenic and lipogenic enzymes. These characteristics of boiled tuna extract highlight its potential anti-obesity effects.
The prototype computer program SPARC has been under development for several years to estimate physical properties and chemical reactivity parameters of organic compounds strictly from molecular structure. SPARC solute-solute physical process models have been developed and tested...
United States Department of Energy solar receiver technology development
NASA Astrophysics Data System (ADS)
Klimas, P. C.; Diver, R. B.; Chavez, J. M.
The United States Department of Energy (DOE), through Sandia National Laboratories, has been conducting a Solar Thermal Receiver Technology Development Program, which maintains a balance between analytical modeling, bench and small scale testing, and experimentation conducted at scales representative of commercially-sized equipment. Central receiver activities emphasize molten salt-based systems on large scales and volumetric devices in the modeling and small scale testing. These receivers are expected to be utilized in solar power plants rated between 100 and 200 MW. Distributed receiver research focuses on liquid metal refluxing devices. These are intended to mate parabolic dish concentrators with Stirling cycle engines in the 5 to 25 kW(sub e) power range. The effort in the area of volumetric receivers is less intensive and highly cooperative in nature. A ceramic foam absorber of Sandia design was successfully tested on the 200 kW(sub t) test bed at Plataforma Solar during 1989. Material integrity during the approximately 90-test series was excellent. Significant progress has been made with parabolic dish concentrator-mounted receivers using liquid metals (sodium or a potassium/sodium mixture) as heat transport media. Sandia has successfully solar-tested a pool boiling reflux receiver sized to power a 25 kW Stirling engine. Boiling stability and transient operation were both excellent. This document describes these activities in detail and will outline plans for future development.
Assessment of in situ butanol recovery by vacuum during acetone butanol ethanol (ABE) fermentation
USDA-ARS?s Scientific Manuscript database
Butanol fermentation is product limiting due to butanol toxicity to microbial cells. Butanol (boiling point: 118 deg C) boils at a greater temperature than water (boiling point: 100 deg C) and application of vacuum technology to integrated acetone-butanol-ethanol (ABE) fermentation and recovery may ...
NASA Astrophysics Data System (ADS)
Xu, Bin; Shi, Yumei; Chen, Dongsheng
2014-03-01
This paper presents an experimental investigation on the heat transfer characteristics of liquefied natural gas flow boiling in a vertical micro-fin tube. The effect of heat flux, mass flux and inlet pressure on the flow boiling heat transfer coefficients was analyzed. The Kim, Koyama, and two kinds of Wellsandt correlations with different Ftp coefficients were used to predict the flow boiling heat transfer coefficients. The predicted results showed that the Koyama correlation was the most accurate over the range of experimental conditions.
Occurrence of nitrate, nitrite and volatile nitrosamines in certain feedstuffs and animal products.
Ologhobo, A D; Adegede, H I; Maduagiwu, E N
1996-01-01
Nitrate, nitrite and nitrosamines were analysed in poultry feeds, meat and eggs. The poultry meat was boiled and roasted while the eggs were raw and boiled, and the effects of these processing treatments on the level of these compounds were investigated. Nitrate levels in the meat samples were significantly (P < 0.05) reduced by boiling and roasting, with boiling being more effective. Nitrite levels were also reduced significantly by processing (P < 0.05). The feed samples contained levels of nitrate which were significantly different (P < 0.05) from one producer to another. Nitrite levels were generally low in all feed samples. Nitrosamines were not detected in any of the feed samples and in the meat samples except in two samples of boiled meat which contained 0.001 g/kg each.
20. RW Meyer Sugar Mill: 18761889. Boiling House Interior, 1878. ...
20. RW Meyer Sugar Mill: 1876-1889. Boiling House Interior, 1878. View: Remains of south wall. The molasses storage pits are below the floor in the foreground. The remaining piece of floor indicates the form of the entire floor. The sorghum pan and boiling range flue slope from left to right (east to west) and permitted batches of cane juice to flow through the boiling pan by gravity. The beams, joists, truss work are built of northwest pine. The sides and floor boards are built of redwood. The boiling range flue is built of fire-brick, masonry, and portland cement. The corrugated roof appears to be a later addition, not contemporary with mill operation. - R. W. Meyer Sugar Mill, State Route 47, Kualapuu, Maui County, HI
Capillary hydrodynamics and transport processes during phase change in microscale systems
NASA Astrophysics Data System (ADS)
Kuznetsov, V. V.
2017-09-01
The characteristics of two-phase gas-liquid flow and heat transfer during flow boiling and condensing in micro-scale heat exchangers are discussed in this paper. The results of numerical simulation of the evaporating liquid film flowing downward in rectangular minichannel of the two-phase compact heat exchanger are presented and the peculiarities of microscale heat transport in annular flow with phase changes are discussed. Presented model accounts the capillarity induced transverse flow of liquid and predicts the microscale heat transport processes when the nucleate boiling becomes suppressed. The simultaneous influence of the forced convection, nucleate boiling and liquid film evaporation during flow boiling in plate-fin heat exchangers is considered. The equation for prediction of the flow boiling heat transfer at low flux conditions is presented and verified using experimental data.
Khokhlova, Tatiana D.; Canney, Michael S.; Khokhlova, Vera A.; Sapozhnikov, Oleg A.; Crum, Lawrence A.; Bailey, Michael R.
2011-01-01
In high intensity focused ultrasound (HIFU) applications, tissue may be thermally necrosed by heating, emulsified by cavitation, or, as was recently discovered, emulsified using repetitive millisecond boiling caused by shock wave heating. Here, this last approach was further investigated. Experiments were performed in transparent gels and ex vivo bovine heart tissue using 1, 2, and 3 MHz focused transducers and different pulsing schemes in which the pressure, duty factor, and pulse duration were varied. A previously developed derating procedure to determine in situ shock amplitudes and the time-to-boil was refined. Treatments were monitored using B-mode ultrasound. Both inertial cavitation and boiling were observed during exposures, but emulsification occurred only when shocks and boiling were present. Emulsified lesions without thermal denaturation were produced with shock amplitudes sufficient to induce boiling in less than 20 ms, duty factors of less than 0.02, and pulse lengths shorter than 30 ms. Higher duty factors or longer pulses produced varying degrees of thermal denaturation combined with mechanical emulsification. Larger lesions were obtained using lower ultrasound frequencies. The results show that shock wave heating and millisecond boiling is an effective and reliable way to emulsify tissue while monitoring the treatment with ultrasound. PMID:22088025
NASA Astrophysics Data System (ADS)
Swastawati, F.
2018-03-01
Food processing using high temperatures can cause changes in pigment color and chemical characteristics in food stuffs, including prawn. The aim of this research was to evaluate the changes in pigment and chemical characteristics of tiger prawn caused by boiling, smoking and frying. Ten kg of tiger prawn was boiled, smoked and fried at the temperature of ± 100 °C for ± 10 min. The results showed that boiling, smoking and frying gave a significant effect (P < 0.05) on the astaxanthin pigment, pH, moisture, protein, salt content, Aw and color. The content of astaxanthin pigments in fresh prawn, boiled prawn, smoked prawn and fried prawn was: 132.79 ± 1.5 μg·g-1 82.89 ± 0.92 μg·g-1 78.28 ± 0.1 μg·g-1 and 91.35 ± 2.59 μg·g-1, respectively. The value of °Hue on fresh prawn, boiled prawn, smoked prawn and fried prawn was: 87.85° 52.5° 55.94° and 53.98°. The tiger prawn processed by the smoking method has preferable by panelist rather than processed by boiling and frying.
Infrared thermometry study of nanofluid pool boiling phenomena
2011-01-01
Infrared thermometry was used to obtain first-of-a-kind, time- and space-resolved data for pool boiling phenomena in water-based nanofluids with diamond and silica nanoparticles at low concentration (<0.1 vol.%). In addition to macroscopic parameters like the average heat transfer coefficient and critical heat flux [CHF] value, more fundamental parameters such as the bubble departure diameter and frequency, growth and wait times, and nucleation site density [NSD] were directly measured for a thin, resistively heated, indium-tin-oxide surface deposited onto a sapphire substrate. Consistent with other nanofluid studies, the nanoparticles caused deterioration in the nucleate boiling heat transfer (by as much as 50%) and an increase in the CHF (by as much as 100%). The bubble departure frequency and NSD were found to be lower in nanofluids compared with water for the same wall superheat. Furthermore, it was found that a porous layer of nanoparticles built up on the heater surface during nucleate boiling, which improved surface wettability compared with the water-boiled surfaces. Using the prevalent nucleate boiling models, it was possible to correlate this improved surface wettability to the experimentally observed reductions in the bubble departure frequency, NSD, and ultimately to the deterioration in the nucleate boiling heat transfer and the CHF enhancement. PMID:21711754
Cohen, Alasdair; Zhang, Qi; Luo, Qing; Tao, Yong; Colford, John M; Ray, Isha
2017-06-20
Approximately two billion people drink unsafe water. Boiling is the most commonly used household water treatment (HWT) method globally and in China. HWT can make water safer, but sustained adoption is rare and bottled water consumption is growing. To successfully promote HWT, an understanding of associated socioeconomic factors is critical. We collected survey data and water samples from 450 rural households in Guangxi Province, China. Covariates were grouped into blocks to hierarchically construct modified Poisson models and estimate risk ratios (RR) associated with boiling methods, bottled water, and untreated water. Female-headed households were most likely to boil (RR = 1.36, p < 0.01), and among boilers those using electric kettles rather than pots had higher income proxies (e.g., per capita TV ownership RR = 1.42, p < 0.01). Higher-income households with younger, literate, and male heads were more likely to purchase (frequently contaminated) bottled water, or use electric kettles if they boiled. Our findings show that boiling is not an undifferentiated practice, but one with different methods of varying effectiveness, environmental impact, and adoption across socioeconomic strata. Our results can inform programs to promote safer and more efficient boiling using electric kettles, and suggest that if rural China's economy continues to grow then bottled water use will increase.
Sulfate turpentine: a resource of tick repellent compounds.
Schubert, Fredrik; Pålsson, Katinka; Santangelo, Ellen; Borg-Karlson, Anna-Karin
2017-07-01
Compounds with tick (Ixodes ricinus) repellent properties were isolated from sulfate turpentine consisting of Norway spruce (80%) and Scots pine (20%) from southern Sweden. The turpentine was divided into two fractions by distillation under reduced pressure resulting in one monoterpene hydrocarbon fraction and a residual containing higher boiling terpenoids. The monoterpene fraction was further oxidized with SeO 2 to obtain oxygenated monoterpenes with potential tick repellent properties. The oxidized fraction and the high boiling distillation residual were each separated by medium pressure liquid chromatography. The fractions were tested for tick repellency and the compounds in those with highest tick repellency were identified by GC-MS. The fractions with highest repellency contained, mainly (-)-borneol, and mixtures of (+)- and (-)-1-terpineol and terpinen-4-ol. The enantiomers of borneol showed similar tick repellent properties.
Fermentative hydrogen gas production using biosolids pellets as the inoculum source.
Kalogo, Youssouf; Bagley, David M
2008-02-01
Biosolids pellets produced from anaerobically digested municipal wastewater sludge by drying to greater than 90% total solids at 110-115 degrees C for at least 75 min, were tested for their suitability as an inoculum source for fermentative hydrogen production. The hydrogen recoveries (mg gaseous H(2) produced as COD/mg added substrate COD) for glucose-fed batch systems were equal, 20.2-21.5%, between biosolids pellets and boiled anaerobic digester sludge as inoculum sources. Hydrogen recoveries from primary sludge were 2.4% and 3.5% using biosolids pellets and boiled sludge, respectively, and only 0.2% and 0.8% for municipal wastewater. Biosolids pellets should be a practical inoculum source for fermentative hydrogen reactors, although the effectiveness will depend on the wastewater treated.
242-A Evaporator quality assurance plan. Revision 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Basra, T.S.
1995-05-04
The purpose of this quality assurance project plan (Plan) is to provide requirements for activities pertaining to sampling, shipping, and analyses associated with candidate feed tank samples for the 242-A Evaporator project. The purpose of the 242-A Evaporator project is to reduce the volume of aqueous waste in the Double Shell Tank (DST) System and will result in considerable savings to the disposal of mixed waste. The 242-A Evaporator feed stream originates from DSTs identified as candidate feed tanks. The 242-A Evaporator reduces the volume of aqueous waste contained in DSTs by boiling off water and sending the condensate (calledmore » process condensate) to the Liquid Effluent Retention Facility (LEPF) storage basin where it is stored prior to treatment in the Effluent Treatment Facility (ETF). The objective of this quality assurance project plan is to provide the planning, implementation, and assessment of sample collection and analysis, data issuance, and validation activities for the candidate feed tanks.« less
Shallcross, Laura J; Hayward, Andrew C; Johnson, Anne M; Petersen, Irene
2015-01-01
Background Boils and abscesses are common in primary care but the burden of recurrent infection is unknown. Aim To investigate the incidence of and risk factors for recurrence of boil or abscess for individuals consulting primary care. Design and setting Cohort study using electronic health records from primary care in the UK. Method The Health Improvement Network (THIN) database was used to identify patients who had consulted their GP for a boil or abscess. Poisson regression was used to examine the relationship between age, sex, social deprivation, and consultation and to calculate the incidence of, and risk factors for, repeat consultation for a boil or abscess. Results Overall, 164 461 individuals were identified who consulted their GP for a boil or abscess between 1995 and 2010. The incidence of first consultation for a boil or abscess was 512 (95% CI = 509 to 515) per 100 000 person-years in females and 387 (95% CI = 385 to 390) per 100 000 person-years in males. First consultations were most frequent in younger age groups (16–34 years) and those with the greatest levels of social deprivation. The rate of repeat consultation for a new infection during follow up was 107.5 (95% confidence interval [CI] = 105.6 to 109.4) per 1000 person-years. Obesity (relative risk [RR] 1.3, 95% CI = 1.2 to 1.3), diabetes (RR 1.3, 95% CI = 1.2 to 1.3), smoking (RR 1.3, 95% CI = 1.2 to 1.4), age <30 years (RR 1.2, 95% CI = 1.2 to 1.3), and prior antibiotic use (RR 1.4, 95% CI = 1.3–1.4) were all associated with repeat consultation for a boil or abscess. Conclusion Ten percent of patients with a boil or abscess develop a repeat boil or abscess within 12 months. Obesity, diabetes, young age, smoking, and prescription of an antibiotic in the 6 months before initial presentation were independently associated with recurrent infection, and may represent options for prevention. PMID:26412844
77 FR 41814 - Entergy Operations, Inc.; Grand Gulf Nuclear Station, Unit 1
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-16
... Unit 1 result primarily from periodic testing of diesel generators and fire water pump diesel engines... rural. GGNS Unit 1 is a General Electric Mark 3 boiling-water reactor. Identification of the Proposed... following: replacing the reactor feed pump turbine rotors; replacing the main generator current transformers...
Students' Understanding of Molecular Structure and Properties of Organic Compounds.
ERIC Educational Resources Information Center
Schmidt, Hans-Jurgen
The purpose of this study was to investigate senior high school students' difficulties predicting the existence of hydrogen bridge bonds between organic molecules, investigate students' difficulties predicting the relative boiling points of simple organic compounds, and develop test questions that enable teachers to quickly get information about…
77 FR 55877 - Initial Test Program of Condensate and Feedwater Systems for Light-Water Reactors
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-11
...-492- 3668; email: [email protected] . NRC's Agencywide Documents Access and Management System... Systems for Light-Water Reactors AGENCY: Nuclear Regulatory Commission. ACTION: Regulatory guide; issuance... Systems for Boiling Water Reactor Power Plants.'' This regulatory guide is being revised to: (1) Expand...
Psutka, Rebecca; Peletz, Rachel; Michelo, Sandford; Kelly, Paul; Clasen, Thomas
2011-07-15
Boiling is the most common method of disinfecting water in the home and the benchmark against which other point-of-use water treatment is measured. In a six-week study in peri-urban Zambia, we assessed the microbiological effectiveness and potential cost of boiling among 49 households without a water connection who reported "always" or "almost always" boiling their water before drinking it. Source and household drinking water samples were compared weekly for thermotolerant coliforms (TTC), an indicator of fecal contamination. Demographics, costs, and other information were collected through surveys and structured observations. Drinking water samples taken at the household (geometric mean 7.2 TTC/100 mL, 95% CI, 5.4-9.7) were actually worse in microbiological quality than source water (geometric mean 4.0 TTC/100 mL, 95% CI, 3.1-5.1) (p < 0.001), although both are relatively low levels of contamination. Only 60% of drinking water samples were reported to have actually been boiled at the time of collection from the home, suggesting over-reporting and inconsistent compliance. However, these samples were of no higher microbiological quality. Evidence suggests that water quality deteriorated after boiling due to lack of residual protection and unsafe storage and handling. The potential cost of fuel or electricity for boiling was estimated at 5% and 7% of income, respectively. In this setting where microbiological water quality was relatively good at the source, safe-storage practices that minimize recontamination may be more effective in managing the risk of disease from drinking water at a fraction of the cost of boiling.
Modular control subsystems for use in solar heating systems for multi-family dwellings
NASA Technical Reports Server (NTRS)
1977-01-01
Progress in the development of solar heating modular control subsystems is reported. Circuit design, circuit drawings, and printed circuit board layout are discussed along with maintenance manuals, installation instructions, and verification and acceptance tests. Calculations made to determine the predicted performance of the differential thermostat are given including details and results of tests for the offset temperature, and boil and freeze protect points.
Teaching Structure-Property Relationships: Investigating Molecular Structure and Boiling Point
ERIC Educational Resources Information Center
Murphy, Peter M.
2007-01-01
A concise, well-organized table of the boiling points of 392 organic compounds has facilitated inquiry-based instruction in multiple scientific principles. Many individual or group learning activities can be derived from the tabulated data of molecular structure and boiling point based on the instructor's education objectives and the students'…
Acoustic Behavior of Vapor Bubbles
NASA Technical Reports Server (NTRS)
Prosperetti, Andrea; Oguz, Hasan N.
1996-01-01
In a microgravity environment vapor bubbles generated at a boiling surface tend to remain near it for a long time. This affects the boiling heat transfer and in particular promotes an early transition to the highly inefficient film boiling regime. This paper describes the physical basis underlying attempts to remove the bubbles by means of pressure radiation forces.
Evaporation, Boiling and Bubbles
ERIC Educational Resources Information Center
Goodwin, Alan
2012-01-01
Evaporation and boiling are both terms applied to the change of a liquid to the vapour/gaseous state. This article argues that it is the formation of bubbles of vapour within the liquid that most clearly differentiates boiling from evaporation although only a minority of chemistry textbooks seems to mention bubble formation in this context. The…
Generation of shockwave and vortex structures at the outflow of a boiling water jet
NASA Astrophysics Data System (ADS)
Alekseev, M. V.; Lezhnin, S. I.; Pribaturin, N. A.; Sorokin, A. L.
2014-12-01
Results of numerical simulation for shock waves and generation of vortex structures during unsteady outflow of boiling liquid jet are presented. The features of evolution of shock waves and vortex structures formation during unsteady outflow of boiling water are compared with corresponding structures during unsteady gas outflow.
Early Onset of Nucleate Boiling on Gas-covered Biphilic Surfaces.
Shen, Biao; Yamada, Masayuki; Hidaka, Sumitomo; Liu, Jiewei; Shiomi, Junichiro; Amberg, Gustav; Do-Quang, Minh; Kohno, Masamichi; Takahashi, Koji; Takata, Yasuyuki
2017-05-17
For phase-change cooling schemes for electronics, quick activation of nucleate boiling helps safeguard the electronics components from thermal shocks associated with undesired surface superheating at boiling incipience, which is of great importance to the long-term system stability and reliability. Previous experimental studies show that bubble nucleation can occur surprisingly early on mixed-wettability surfaces. In this paper, we report unambiguous evidence that such unusual bubble generation at extremely low temperatures-even below the boiling point-is induced by a significant presence of incondensable gas retained by the hydrophobic surface, which exhibits exceptional stability even surviving extensive boiling deaeration. By means of high-speed imaging, it is revealed that the consequently gassy boiling leads to unique bubble behaviour that stands in sharp contrast with that of pure vapour bubbles. Such findings agree qualitatively well with numerical simulations based on a diffuse-interface method. Moreover, the simulations further demonstrate strong thermocapillary flows accompanying growing bubbles with considerable gas contents, which is associated with heat transfer enhancement on the biphilic surface in the low-superheat region.
Zhang, Wendy Li; Chen, Jian-Ping; Lam, Kelly Yin-Ching; Zhan, Janis Ya-Xian; Yao, Ping; Dong, Tina Ting-Xia; Tsim, Karl Wah-Keung
2014-01-01
Chemical change during boiling of herbal mixture is a puzzle. By using Danggui Buxue Tang (DBT), a herbal decoction that contains Astragali Radix (AR) and Angelicae Sinensis Radix (ASR), we developed a model in analyzing the hydrolysis of flavonoid glycosides during the boiling of herbal mixture in water. A proper preparation of DBT is of great benefit to the complete extraction of bioactive ingredients. Boiling of DBT in water increased the solubility of AR-derived astragaloside IV, calycosin, formononetin, calycosin-7-O-β-D-glucoside, and ononin in a time- and temperature-dependent manner: the amounts of these chemicals reached a peak at 2 h. The glycosidic resides of AR, calycosin-7-O-β-D-glucoside, and ononin could be hydrolyzed during the moderate boiling process to form calycosin and formononetin, respectively. The hydrolysis efficiency was strongly affected by pH, temperature, and amount of herbs. Interestingly, the preheated herbs were not able to show this hydrolytic activity. The current results supported the rationality of ancient preparation of DBT in boiling water by moderate heat. PMID:24744813
Nucleate pool boiling: High gravity to reduced gravity; liquid metals to cryogens
NASA Technical Reports Server (NTRS)
Merte, Herman, Jr.
1988-01-01
Requirements for the proper functioning of equipment and personnel in reduced gravity associated with space platforms and future space station modules introduce unique problems in temperature control; power generation; energy dissipation; the storage, transfer, control and conditioning of fluids; and liquid-vapor separation. The phase change of boiling is significant in all of these. Although both pool and flow boiling would be involved, research results to date include only pool boiling because buoyancy effects are maximized for this case. The effective application of forced convection boiling heat transfer in the microgravity of space will require a well grounded and cogent understanding of the mechanisms involved. Experimental results are presented for pool boiling from a single geometrical configuration, a flat surface, covering a wide range of body forces from a/g = 20 to 1 to a/g = 0 to -1 for a cryogenic liquid, and from a/g = 20 to 1 for water and a liquid metal. Similarities in behavior are noted for these three fluids at the higher gravity levels, and may reasonably be expected to continue at reduced gravity levels.
Large-scale Generation of Patterned Bubble Arrays on Printed Bi-functional Boiling Surfaces
NASA Astrophysics Data System (ADS)
Choi, Chang-Ho; David, Michele; Gao, Zhongwei; Chang, Alvin; Allen, Marshall; Wang, Hailei; Chang, Chih-Hung
2016-04-01
Bubble nucleation control, growth and departure dynamics is important in understanding boiling phenomena and enhancing nucleate boiling heat transfer performance. We report a novel bi-functional heterogeneous surface structure that is capable of tuning bubble nucleation, growth and departure dynamics. For the fabrication of the surface, hydrophobic polymer dot arrays are first printed on a substrate, followed by hydrophilic ZnO nanostructure deposition via microreactor-assisted nanomaterial deposition (MAND) processing. Wettability contrast between the hydrophobic polymer dot arrays and aqueous ZnO solution allows for the fabrication of heterogeneous surfaces with distinct wettability regions. Heterogeneous surfaces with various configurations were fabricated and their bubble dynamics were examined at elevated heat flux, revealing various nucleate boiling phenomena. In particular, aligned and patterned bubbles with a tunable departure frequency and diameter were demonstrated in a boiling experiment for the first time. Taking advantage of our fabrication method, a 6 inch wafer size heterogeneous surface was prepared. Pool boiling experiments were also performed to demonstrate a heat flux enhancement up to 3X at the same surface superheat using bi-functional surfaces, compared to a bare stainless steel surface.
Lima, Adriano; Pereira, José Alberto; Baraldi, Ilton; Malheiro, Ricardo
2017-04-15
Grapevine leaves (Vitis vinifera L. var. Malvasia Fina and Touriga Franca) under culinary treatment (blanching and boiling at 60, 75 and 90min) were studied for their color, pigments and volatile fraction changes. Blanching and boiling caused a decrease in luminosity and a loss of green coloration in both varieties, while a yellow-brownish color arose. Significant correlations were established between the loss of green color (monochromatic variable a ∗ ) and the total chlorophylls content. The main volatiles in fresh leaves [(Z)-3-hexenal, (Z)-3-hexen-1-ol, and (Z)-3-hexenyl acetate] were drastically reduced by blanching and suppressed by boiling. Other compounds like pentanal and 6-methyl-5-hepten-2 one arose from blanching and boiling. A boiling time of 60min is adequate for the culinary process of grapevine leaves, since the product is considered edible and the pigments and volatile changes are not as drastic as observed at 75 and 90min of boiling. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Wu, Zan; Wadekar, Vishwas; Wang, Chenglong; Sunden, Bengt
2018-01-01
This study aims to reveal the effects of liquid entrainment, initial entrained fraction and tube diameter on liquid film dryout in vertical upward annular flow for flow boiling. Entrainment and deposition rates of droplets were included in mass conservation equations to estimate the local liquid film mass flux in annular flow, and the critical vapor quality at dryout conditions. Different entrainment rate correlations were evaluated using flow boiling data of water and organic liquids including n-pentane, iso-octane and R134a. Effect of the initial entrained fraction (IEF) at the churn-to-annular flow transition was also investigated. A transitional Boiling number was proposed to separate the IEF-sensitive region at high Boiling numbers and the IEF-insensitive region at low Boiling numbers. Besides, the diameter effect on dryout vapor quality was studied. The dryout vapor quality increases with decreasing tube diameter. It needs to be pointed out that the dryout characteristics of submillimeter channels might be different because of different mechanisms of dryout, i.e., drying of liquid film underneath long vapor slugs and flow boiling instabilities.
Formation and Growth of Micro and Macro Bubbles on Copper-Graphite Composite Surfaces
NASA Technical Reports Server (NTRS)
Chao, David F.; Sankovic, John M.; Motil, Brian J.; Zhang, Nengli
2007-01-01
Micro scale boiling behavior in the vicinity of graphite micro-fiber tips on the coppergraphite composite boiling surfaces is investigated. It is discovered that a large number of micro bubbles are formed first at the micro scratches and cavities on the copper matrix in pool boiling. In virtue of the non-wetting property of graphite, once the growing micro bubbles touch the graphite tips, the micro bubbles are sucked by the tips and merged into larger micro bubbles sitting on the tips. The micro bubbles grow rapidly and coalesce to form macro bubbles, each of which sitting on several tips. The growth processes of the micro and macro bubbles are analyzed and formulated followed by an analysis of bubble departure on the composite surfaces. Based on these analyses, the enhancement mechanism of the pool boiling heat transfer on the composite surfaces is clearly revealed. Experimental results of pool boiling heat transfer both for water and Freon-113 on the composite surfaces convincingly demonstrate the enhancement effects of the unique structure of Cu-Gr composite surfaces on boiling heat transfer.
Effect of magnetic field on the physical properties of water
NASA Astrophysics Data System (ADS)
Wang, Youkai; Wei, Huinan; Li, Zhuangwen
2018-03-01
In this study, the effect of magnetic field (MF) on the partial physical properties of water are reported, tap water (TW) and 4 types of magnetized water (MW) were measured in the same condition. It was found that the properties of TW were changed following the MF treatment, shown as the increase of evaporation amount, the decrease of specific heat and boiling point after magnetization, the changes depend on the magnetization effect. In addition, magnetic field strength (MFS) has a marked influence on the magnetization effect, the optimal magnetizing condition was determined as the MFS of 300 mT. The findings of this study offered a facile approach to improve cooling and power generation efficiency in industrial.
NASA Astrophysics Data System (ADS)
Zhang, Gaoming; Hung, David L. S.; Xu, Min
2014-08-01
Flash boiling sprays of liquid injection under superheated conditions provide the novel solutions of fast vaporization and better air-fuel mixture formation for internal combustion engines. However, the physical mechanisms of flash boiling spray vaporization are more complicated than the droplet surface vaporization due to the unique bubble generation and boiling process inside a superheated bulk liquid, which are not well understood. In this study, the vaporization of flash boiling sprays was investigated experimentally through the quantitative measurements of vapor concentration and liquid temperature. Specifically, the laser-induced exciplex fluorescence technique was applied to distinguish the liquid and vapor distributions. Quantitative vapor concentration was obtained by correlating the intensity of vapor-phase fluorescence with vapor concentration through systematic corrections and calibrations. The intensities of two wavelengths were captured simultaneously from the liquid-phase fluorescence spectra, and their intensity ratios were correlated with liquid temperature. The results show that both liquid and vapor phase of multi-hole sprays collapse toward the centerline of the spray with different mass distributions under the flash boiling conditions. Large amount of vapor aggregates along the centerline of the spray to form a "gas jet" structure, whereas the liquid distributes more uniformly with large vortexes formed in the vicinity of the spray tip. The vaporization process under the flash boiling condition is greatly enhanced due to the intense bubble generation and burst. The liquid temperature measurements show strong temperature variations inside the flash boiling sprays with hot zones present in the "gas jet" structure and vortex region. In addition, high vapor concentration and closed vortex motion seem to have inhibited the heat and mass transfer in these regions. In summary, the vapor concentration and liquid temperature provide detailed information concerning the heat and mass transfer inside flash boiling sprays, which is important for the understanding of its unique vaporization process.
Study to evaluate the impact of heat treatment on water soluble vitamins in milk.
Asadullah; Khair-un-nisa; Tarar, Omer Mukhtar; Ali, Syed Abdul; Jamil, Khalid; Begum, Askari
2010-11-01
To evaluate the effect of domestic boiling practice on the contents of water soluble vitamins of loose milk and quantitative comparison of these vitamins in Ultra High Temperature (UHT) treated packaged milk with that of boiled loose milk. Loose milk samples were collected from various localities of Karachi city (Pakistan). These samples were boiled in simulated household conditions for 5, 10 and 15 minutes. Ultra High Temperature (UHT) treated packaged milk samples of various brands were obtained from the local market. The aliquots were analyzed for water-soluble vitamins using High Performance Liquid Chromatography (HPLC) technique. The mean values and standard deviations for data were computed and compared as well as level of variations were also determined. Conventional boiling caused destruction of water soluble vitamins in milk i.e. vitamin 81 content in fresh milk decreased from 0.037 mg/100 g to 0.027 mg/100 g after 15 min boiling, whereas vitamin B2 from 0.115 to 0.084 mg/100 g, vitamin B3 0.062 to 0.044 mg/100 g, vitamin B6 0.025 to 0.019 mg/100 g and folic acid 3.38 to 2.40 microg/100 g. This accounted for a post-boiling decrease of about 27, 27, 29, 24 and 36% in vitamins B1, B2, B3, B6 and folic acid respectively. The values for vitamins B1, B2, B3, B6 and folic acid determined in boiled milk were significantly lower than UHT treated packaged milk samples by 25.9, 75.0, 54.5, 63.16 and 38.1% respectively. Conventional boiling caused drastic reduction in vitamin levels of loose milk samples. In comparison to this, UHT milk retained high levels of water soluble B-vitamins. Thus it could be envisaged that UHT treated milk provides better water soluble vitamins' nourishment than conventionally boiled milk (JPMA 60:909; 2010).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boyd, R.D.
Microconvective, instability, experimental, and correlational aspects of subcooled flow boiling critical heat flux (CHF) are summarized. The present understanding of CHF in subcooled flow boiling is reviewed and research directions that will permit the accommodation of higher heat fluxes are outlined. This survey (Parts I and II), which contains a representative coverage of the literature over the last 30 years, is concerned only with CHF in the subcooled flow boiling regime, and unless otherwise noted, all references to CHF are confined to that regime.
Identification of quantitative trait loci associated with boiled seed hardness in soybean
Hirata, Kaori; Masuda, Ryoichi; Tsubokura, Yasutaka; Yasui, Takeshi; Yamada, Tetsuya; Takahashi, Koji; Nagaya, Taiko; Sayama, Takashi; Ishimoto, Masao; Hajika, Makita
2014-01-01
Boiled seed hardness is an important factor in the processing of soybean food products such as nimame and natto. Little information is available on the genetic basis for boiled seed hardness, despite the wide variation in this trait. DNA markers linked to the gene controlling this trait should be useful in soybean breeding programs because of the difficulty of its evaluation. In this report, quantitative trait locus (QTL) analysis was performed to reveal the genetic factors associated with boiled seed hardness using a recombinant inbred line population developed from a cross between two Japanese cultivars, ‘Natto-shoryu’ and ‘Hyoukei-kuro 3’, which differ largely in boiled seed hardness, which in ‘Natto-shoryu’ is about twice that of ‘Hyoukei-kuro 3’. Two significantly stable QTLs, qHbs3-1 and qHbs6-1, were identified on chromosomes 3 and 6, for which the ‘Hyoukei-kuro 3’ alleles contribute to decrease boiled seed hardness for both QTLs. qHbs3-1 also showed significant effects in progeny of a residual heterozygous line and in a different segregating population. Given its substantial effect on boiled seed hardness, SSR markers closely linked to qHbs3-1, such as BARCSOYSSR_03_0165 and BARCSOYSSR_03_0185, could be useful for marker-assisted selection in soybean breeding. PMID:25914591
Thorenz, Ute R; Kundel, Michael; Müller, Lars; Hoffmann, Thorsten
2012-11-01
In this work, we describe a simple diffusion capillary device for the generation of various organic test gases. Using a set of basic equations the output rate of the test gas devices can easily be predicted only based on the molecular formula and the boiling point of the compounds of interest. Since these parameters are easily accessible for a large number of potential analytes, even for those compounds which are typically not listed in physico-chemical handbooks or internet databases, the adjustment of the test gas source to the concentration range required for the individual analytical application is straightforward. The agreement of the predicted and measured values is shown to be valid for different groups of chemicals, such as halocarbons, alkanes, alkenes, and aromatic compounds and for different dimensions of the diffusion capillaries. The limits of the predictability of the output rates are explored and observed to result in an underprediction of the output rates when very thin capillaries are used. It is demonstrated that pressure variations are responsible for the observed deviation of the output rates. To overcome the influence of pressure variations and at the same time to establish a suitable test gas source for highly volatile compounds, also the usability of permeation sources is explored, for example for the generation of molecular bromine test gases.
10 CFR Appendix A to Part 52 - Design Certification Rule for the U.S. Advanced Boiling Water Reactor
Code of Federal Regulations, 2010 CFR
2010-01-01
... Water Reactor A Appendix A to Part 52 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSES... Rule for the U.S. Advanced Boiling Water Reactor I. Introduction Appendix A constitutes the standard design certification for the U.S. Advanced Boiling Water Reactor (ABWR) design, in accordance with 10 CFR...
10 CFR Appendix A to Part 52 - Design Certification Rule for the U.S. Advanced Boiling Water Reactor
Code of Federal Regulations, 2011 CFR
2011-01-01
... Water Reactor A Appendix A to Part 52 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSES... Rule for the U.S. Advanced Boiling Water Reactor I. Introduction Appendix A constitutes the standard design certification for the U.S. Advanced Boiling Water Reactor (ABWR) design, in accordance with 10 CFR...
4. RW Meyer Sugar Mill: 18761889. Furnace doer for sugar ...
4. RW Meyer Sugar Mill: 1876-1889. Furnace doer for sugar boiling range. Manufactured by Honolulu Iron Works, Honolulu, 1879. Cost: $15.30. View: the furnace for the sugar boiling range was stoked from outside of the east wall of the boiling house. - R. W. Meyer Sugar Mill, State Route 47, Kualapuu, Maui County, HI
76 FR 70331 - List of Approved Spent Fuel Storage Casks: MAGNASTOR ® System, Revision 2
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-14
... various boron-10 areal densities for use with Pressurized Water Reactor and Boiling Water Reactor baskets... add various boron-10 areal densities for use with Pressurized Water Reactor and Boiling Water Reactor....1.1 to add various boron-10 areal densities for use with Pressurized Water Reactor and Boiling Water...
Mad Kids: How To Help Your Child Manage Anger.
ERIC Educational Resources Information Center
Beekman, Susan; Holmes, Jeanne
2002-01-01
Children move through the same anger cycle as adults and need similar coping strategies and problem solving skills. This paper presents pre-anger approaches, discussing what to do before the "boil-over" occurs, when the boiling point is reached, and after the boil-over. A sidebar presents a list of questions and activities parents can use with…
Cooking under Pressure: Applying the Ideal Gas Law in the Kitchen
ERIC Educational Resources Information Center
Chen, Ling; Anderson, Jennifer Y.; Wang, Diane R.
2010-01-01
This case study uses a daily cooking scenario to demonstrate how the boiling point of water is directly related to the external pressures in order to reinforce the concepts of boiling and boiling point, apply ideal gas law, and relate chemical reaction rates with temperatures. It also extends its teaching to autoclaves used to destroy…
Cryogenic Boil-Off Reduction System
NASA Astrophysics Data System (ADS)
Plachta, David W.; Guzik, Monica C.
2014-03-01
A computational model of the cryogenic boil-off reduction system being developed by NASA as part of the Cryogenic Propellant Storage and Transfer technology maturation project has been applied to a range of propellant storage tanks sizes for high-performing in-space cryogenic propulsion applications. This effort focuses on the scaling of multi-layer insulation (MLI), cryocoolers, broad area cooling shields, radiators, solar arrays, and tanks for liquid hydrogen propellant storage tanks ranging from 2 to 10 m in diameter. Component scaling equations were incorporated into the Cryogenic Analysis Tool, a spreadsheet-based tool used to perform system-level parametric studies. The primary addition to the evolution of this updated tool is the integration of a scaling method for reverse turbo-Brayton cycle cryocoolers, as well as the development and inclusion of Self-Supporting Multi-Layer Insulation. Mass, power, and sizing relationships are traded parametrically to establish the appropriate loiter period beyond which this boil-off reduction system application reduces mass. The projected benefit compares passive thermal control to active thermal control, where active thermal control is evaluated for reduced boil-off with a 90 K shield, zero boil-off with a single heat interception stage at the tank wall, and zero boil-off with a second interception stage at a 90 K shield. Parametric studies show a benefit over passive storage at loiter durations under one month, in addition to showing a benefit for two-stage zero boil-off in terms of reducing power and mass as compared to single stage zero boil-off. Furthermore, active cooling reduces the effect of varied multi-layer insulation performance, which, historically, has been shown to be significant.
An Experimental Study of Boiling in Reduced and Zero Gravity Fields
NASA Technical Reports Server (NTRS)
Usiskin, C. M.; Siegel, R.
1961-01-01
A pool boiling apparatus was mounted on a counterweighted platform which could be dropped a distance of nine feet. By varying the size of the counterweight, the effective gravity field on the equipment was adjusted between zero and unity. A study of boiling burnout in water indicated that a variation in the critical heat flux according to the one quarter power of gravity was reasonable. A consideration of the transient burnout process was necessary in order to properly interpret the data. A photographic study of nucleate boiling showed how the velocity of freely rising vapor bubbles decreased as gravity was reduced. The bubble diameters at the time of breakoff from the heated surface were found to vary inversely as gravity to the 1/3.5 power. Motion pictures were taken to illustrate both nucleate and film boiling in the low gravity range.
Boiling point measurement of a small amount of brake fluid by thermocouple and its application.
Mogami, Kazunari
2002-09-01
This study describes a new method for measuring the boiling point of a small amount of brake fluid using a thermocouple and a pear shaped flask. The boiling point of brake fluid was directly measured with an accuracy that was within approximately 3 C of that determined by the Japanese Industrial Standards method, even though the sample volume was only a few milliliters. The method was applied to measure the boiling points of brake fluid samples from automobiles. It was clear that the boiling points of brake fluid from some automobiles dropped to approximately 140 C from about 230 C, and that one of the samples from the wheel cylinder was approximately 45 C lower than brake fluid from the reserve tank. It is essential to take samples from the wheel cylinder, as this is most easily subjected to heating.
Köppel, René; Eugster, Albert; Ruf, Jürg; Rentsch, Jürg
2012-01-01
The quantification of meat proportions in raw and boiled sausage according to the recipe was evaluated using three different calibrators. To measure the DNA contents from beef, pork, sheep (mutton), and horse, a tetraplex real-time PCR method was applied. Nineteen laboratories analyzed four meat products each made of different proportions of beef, pork, sheep, and horse meat. Three kinds of calibrators were used: raw and boiled sausages of known proportions ranging from 1 to 55% of meat, and a dilution series of DNA from muscle tissue. In general, results generated using calibration sausages were more accurate than those resulting from the use of DNA from muscle tissue, and exhibited smaller measurement uncertainties. Although differences between uses of raw and boiled calibration sausages were small, the most precise and accurate results were obtained by calibration with fine-textured boiled reference sausages.
Effects of different cooking methods on health-promoting compounds of broccoli*
Yuan, Gao-feng; Sun, Bo; Yuan, Jing; Wang, Qiao-mei
2009-01-01
The effects of five domestic cooking methods, including steaming, microwaving, boiling, stir-frying, and stir-frying followed by boiling (stir-frying/boiling), on the nutrients and health-promoting compounds of broccoli were investigated. The results show that all cooking treatments, except steaming, caused significant losses of chlorophyll and vitamin C and significant decreases of total soluble proteins and soluble sugars. Total aliphatic and indole glucosinolates were significantly modified by all cooking treatments but not by steaming. In general, the steaming led to the lowest loss of total glucosinolates, while stir-frying and stir-frying/boiling presented the highest loss. Stir-frying and stir-frying/boiling, the two most popular methods for most homemade dishes in China, cause great losses of chlorophyll, soluble protein, soluble sugar, vitamin C, and glucosinolates, but the steaming method appears the best in retention of the nutrients in cooking broccoli. PMID:19650196
Turning bubbles on and off during boiling using charged surfactants
Cho, H. Jeremy; Mizerak, Jordan P.; Wang, Evelyn N.
2015-01-01
Boiling—a process that has powered industries since the steam age—is governed by bubble formation. State-of-the-art boiling surfaces often increase bubble nucleation via roughness and/or wettability modification to increase performance. However, without active in situ control of bubbles, temperature or steam generation cannot be adjusted for a given heat input. Here we report the ability to turn bubbles ‘on and off' independent of heat input during boiling both temporally and spatially via molecular manipulation of the boiling surface. As a result, we can rapidly and reversibly alter heat transfer performance up to an order of magnitude. Our experiments show that this active control is achieved by electrostatically adsorbing and desorbing charged surfactants to alter the wettability of the surface, thereby affecting nucleation. This approach can improve performance and flexibility in existing boiling technologies as well as enable emerging or unprecedented energy applications. PMID:26486275
NASA Technical Reports Server (NTRS)
Herman, Cila
1999-01-01
In boiling high heat fluxes are possible driven by relatively small temperature differences, which make its use increasingly attractive in aerospace applications. The objective of the research is to develop ways to overcome specific problems associated with boiling in the low gravity environment by substituting the buoyancy force with the electric force to enhance bubble removal from the heated surface. Previous studies indicate that in terrestrial applications nucleate boiling heat transfer can be increased by a factor of 50, as compared to values obtained for the same system without electric fields. The goal of our research is to experimentally explore the mechanisms responsible for EHD heat transfer enhancement in boiling in low gravity conditions, by visualizing the temperature distributions in the vicinity of the heated surface and around the bubble during boiling using real-time holographic interferometry (HI) combined with high-speed cinematography. In the first phase of the project the influence of the electric field on a single bubble is investigated. Pool boiling is simulated by injecting a single bubble through a nozzle into the subcooled liquid or into the thermal boundary layer developed along the flat heater surface. Since the exact location of bubble formation is known, the optical equipment can be aligned and focused accurately, which is an essential requirement for precision measurements of bubble shape, size and deformation, as well as the visualization of temperature fields by HI. The size of the bubble and the frequency of bubble departure can be controlled by suitable selection of nozzle diameter and mass flow rate of vapor. In this approach effects due to the presence of the electric field can be separated from effects caused by the temperature gradients in the thermal boundary layer. The influence of the thermal boundary layer can be investigated after activating the heater at a later stage of the research. For the visualization experiments a test cell was developed. All four vertical walls of the test cell are transparent, and they allow transillumination with laser light for visualization experiments by HI. The bottom electrode is a copper cylinder, which is electrically grounded. The copper block is heated with a resistive heater and it is equipped with 6 thermocouples that provide reference temperatures for the measurements with HI. The top electrode is a mesh electrode. Bubbles are injected with a syringe into the test cell through the bottom electrode. The working fluids presently used in the interferometric visualization experiments, water and PF 5052, satisfy requirements regarding thermophysical, optical and electrical properties. A 30kV power supply equipped with a voltmeter allows to apply the electric field to the electrodes during the experiments. The magnitude of the applied voltage can be adjusted either manually or through the LabVIEW data acquisition and control system connected to a PC. Temperatures of the heated block are recorded using type-T thermocouples, whose output is read by a data acquisition system. Images of the bubbles are recorded with 35mm photographic and 16mm high-speed cameras, scanned and analyzed using various software packages. Visualized temperature fields HI allows the visualization of temperature fields in the vicinity of bubbles during boiling in the form of fringes. Typical visualized temperature distributions around the air bubbles injected into the thermal boundary layer in PF5052 are shown. The temperature of the heated surface is 35 C. The temperature difference for a pair of fringes is approximately 0.05 C. The heat flux applied to the bottom surface is moderate, and the fringe patterns are regular. In the image a bubble penetrating the thermal boundary layer is visible. Because of the axial symmetry of the problem, simplified reconstruction techniques can be applied to recover the temperature field. The thermal plume developing above the heated surface for more intensive heating is shown. The temperature distribution in the liquid is clearly 3D, and tomographic techniques have to be applied to recover the temperature distribution in such a physical situation. A sequence of interferometric images showing the temperature distribution around the rising bubble, recorded with a high-speed camera is shown. Again, the temperature distribution is 3D, and a more complex approach to the evaluation, the tomographic reconstruction has to be taken. Measurement of the temperature distribution from the fringe pattern temperature distributions that yield important information regarding heat transfer are determined. Two algorithms that allow the quantitative evaluation of interferometric fringe patterns and the reconstruction of temperature fields during boiling have been developed at the Heat Transfer Laboratory of the Johns Hopkins University. In the first algorithm the bubble is assumed to be axially symmetrical, which significantly reduces the computational effort for quantifying the temperature distribution around the bubble. For this purpose the thermal boundary layer around the bubble is divided into equidistant concentric shells, and the refractive index is assumed to be constant in each of the shells. Since large temperature gradients are expected in the vicinity of the bubble during boiling, the deflection of the light beam cannot be neglected in boiling experiments. Since the exit angle of the light beam is known, this allows to account for the deflections and phase shifts outside the boundary layer (in the bulk fluid and in the windows of the test cell). Three dimensional temperature distributions in the vicinity of the bubble are reconstructed using tomographic techniques. In tomography, the measurement volume is sliced into 2D planes. In the present study these planes are parallel to the heated surface. The objective is to determine the values of the field parameter of interest in form of the field function in these 2D planes. The field parameter is the change of the refractive index of the liquid in the measurement volume caused by temperature changes. By superimposing data for many 2D planes recorded at the same time instant, the 3D temperature distribution in the measurement volume is recovered.
Soejima, Mikiko; Egashira, Kouichi; Kawano, Hiroyuki; Kawaguchi, Atsushi; Sagawa, Kimitaka; Koda, Yoshiro
2011-01-01
Anhaptoglobinemic patients run the risk of severe anaphylactic transfusion reaction because they produce serum haptoglobin antibodies. Being homozygous for the haptoglobin gene deletion allele (HPdel) is the only known cause of congenital anhaptoglobinemia, and detection of HPdel before transfusion is important to prevent anaphylactic shock. In this study, we developed a loop-mediated isothermal amplification (LAMP)-based screening for HPdel. Optimal primer sets and temperature for LAMP were selected for HPdel and the 5′ region of the HP using genomic DNA as a template. Then, the effects of diluent and boiling on LAMP amplification were examined using whole blood as a template. Blood samples diluted 1:100 with 50 mmol/L NaOH without boiling gave optimal results as well as those diluted 1:2 with water followed by boiling. The results from 100 blood samples were fully concordant with those obtained by real-time PCR methods. Detection of the HPdel allele by LAMP using alkaline-denatured blood samples is rapid, simple, accurate, and cost effective, and is readily applicable in various clinical settings because this method requires only basic instruments. In addition, the simple preparation of blood samples using NaOH saves time and effort for various genetic tests. PMID:21497293
Microbial contamination and disinfection methods of pacifiers
NELSON, Paulo; LOUVAIN, Márcia Costa; MACARI, Soraia; LUCISANO, Marília Pacífico; da SILVA, Raquel Assed Bezerra; de QUEIROZ, Alexandra Mussolino; GATON-HERNÁNDEZ, Patrícia; da SILVA, Léa Assed Bezerra
2015-01-01
Objectives To evaluate the microbial contamination of pacifiers by Mutans Streptococci (MS) and the efficacy of different methods for their disinfection. Methods Twenty-eight children were assigned to a 4-stage changeover system with a 1-week interval. In each stage, children received a new pacifier and the parents were instructed to maintain their normal habits for 1 week. After this time, the pacifiers were subjected to the following 4 disinfection methods: spraying with 0.12% chlorhexidine solution, Brushtox® or sterile tap water, and immersion in boiling tap water for 15 minutes. Microbiological culture for MS and Scanning Electron Microscopy (SEM) were performed. The results were analyzed statistically by Friedman’s non-parametric test (a=0.05). Results The 0.12% chlorhexidine spray was statistically similar to the boiling water (p>0.05) and more effective than the Brushtox® spray and control (p<0.05). The analysis of SEM showed the formation of a cariogenic biofilm in all groups with positive culture. Conclusions Pacifiers become contaminated by MS after their use by children and should be disinfected routinely. Spraying with a 0.12% chlorhexidine solution and immersion in boiling water promoted better disinfection of the pacifiers compared with a commercial antiseptic toothbrush cleanser (Brushtox®). PMID:26537723
Gravity Effects in Microgap Flow Boiling
NASA Technical Reports Server (NTRS)
Robinson, Franklin; Bar-Cohen, Avram
2017-01-01
Increasing integration density of electronic components has exacerbated the thermal management challenges facing electronic system developers. The high power, heat flux, and volumetric heat generation of emerging devices are driving the transition from remote cooling, which relies on conduction and spreading, to embedded cooling, which facilitates direct contact between the heat-generating device and coolant flow. Microgap coolers employ the forced flow of dielectric fluids undergoing phase change in a heated channel between devices. While two phase microcoolers are used routinely in ground-based systems, the lack of acceptable models and correlations for microgravity operation has limited their use for spacecraft thermal management. Previous research has revealed that gravitational acceleration plays a diminishing role as the channel diameter shrinks, but there is considerable variation among the proposed gravity-insensitive channel dimensions and minimal research on rectangular ducts. Reliable criteria for achieving gravity-insensitive flow boiling performance would enable spaceflight systems to exploit this powerful thermal management technique and reduce development time and costs through reliance on ground-based testing. In the present effort, the authors have studied the effect of evaporator orientation on flow boiling performance of HFE7100 in a 218 m tall by 13.0 mm wide microgap cooler. Similar heat transfer coefficients and critical heat flux were achieved across five evaporator orientations, indicating that the effect of gravity was negligible.
NASA Astrophysics Data System (ADS)
Pang, Xuming; Wang, Runqiu; Wei, Qian; Zhou, Jianxin
2018-01-01
Arc-sprayed Al coating was sealed with epoxy resin using the cathode electrophoresis method. The anti-corrosion performance of the coatings sealed with epoxy resin was studied by means of a 3.5 wt.% NaCl solution test at 40 °C. For comparison, the anti-corrosion performance of Al coating sealed with boiling water was also performed under the same conditions. The results show that epoxy resin with a thickness of about 20 microns can entirely cover open pores and decreases the surface roughness of the as-sprayed Al coating, and the epoxy resin even permeates into the gaps among lamellar splats from open pores. After corrosion, the thickness of the epoxy resin layer is unchanged and can still cover the as-sprayed Al coating entirely. However, the thickness of Al coating sealed with boiling water decreases from 100 to 40 microns, which indicates that the arc-sprayed Al coating has much better corrosion resistance than the Al coating sealed with boiling water. Meanwhile, the content of substituted benzene ring in the epoxy resin increases, but aromatic ring decreases according to the fourier transform infrared spectra, which will cause the rigidity of the epoxy resin to increase, but the toughness slightly decreases after corrosion.
Insulation effect on thermal stability of Coated Conductors wires in liquid nitrogen
NASA Astrophysics Data System (ADS)
Rubeli, Thomas; Dutoit, Bertrand; Martynova, Irina; Makarevich, Artem; Molodyk, Alexander; Samoilenkov, Sergey
2017-02-01
Superconducting wires are not perfectly homogeneous in term of critical current as well as stabilization. In resistive fault current limiter applications this could lead to hot spots if the fault current is only slightly above the nominal current of the device. Increasing stabilization by using thicker silver coating for example may prevent this problem but this method implies longer wire length to maintain the same impedance during a fault. Very efficient cooling in another way to prevent hot spots, this can be achieved in nucleate boiling regime. Optimal insulation can be used to prevent film boiling regime, staying in nucleate boiling regime in a much broader temperature range. In this work a novel technique is used to monitor in real time the temperature of the wire during the quench. Using this method several increasing insulation thicknesses are tested, measuring for each the heat exchange rate to the nitrogen bath. Exchange rate measurements are made in quasistatic regime and during the re-cooling of the wire. SuperOx wires provided with different insulation thicknesses exhibit an excellent stability, far above a bare wire. On the other side, for very thick insulations the stability gain is lost. Re-cooling speeds dependency on insulation thicknesses is measured too.
Forced convection flow boiling and two-phase flow phenomena in a microchannel
NASA Astrophysics Data System (ADS)
Na, Yun Whan
2008-07-01
The present study was performed to numerically analyze the evaporation phenomena through the liquid-vapor interface and to investigate bubble dynamics and heat transfer behavior during forced convective flow boiling in a microchannel. Flow instabilities of two-phase flow boiling in a microchannel were studied as well. The main objective of this research is to investigate the fundamental mechanisms of two-phase flow boiling in a microchannel and provide predictive tools to design thermal management systems, for example, microchannel heat sinks. The numerical results obtained from this study were qualitatively and quantitatively compared with experimental results in the open literature. Physical and mathematical models, accounting for evaporating phenomena through the liquid-vapor interface in a microchannel at constant heat flux and constant wall temperature, have been developed, respectively. The heat transfer mechanism is affected by the dominant heat conduction through the thin liquid film and vaporization at the liquid-vapor interface. The thickness of the liquid film and the pressure of the liquid and vapor phases were simultaneously solved by the governing differential equations. The developed semi-analytical evaporation model that takes into account of the interfacial phenomena and surface tension effects was used to obtain solutions numerically using the fourth-order Runge-Kutta method. The effects of heat flux 19 and wall temperature on the liquid film were evaluated. The obtained pressure drops in a microchannel were qualitatively consistent with the experimental results of Qu and Mudawar (2004). Forced convective flow boiling in a single microchannel with different channel heights was studied through a numerical simulation to investigate bubble dynamics, flow patterns, and heat transfer. The momentum and energy equations were solved using the finite volume method while the liquid-vapor interface of a bubble is captured using the VOF (Volume of Fluid) technique. The effects of different constant heat fluxes and different channel heights on the boiling mechanisms were investigated. The effects of liquid velocity on the bubble departure diameter were analyzed. The obtained results showed that the wall superheats at the position of nucleate boiling are relatively independent of the mass flow rates at the same channel height. The obtained results, however, showed that the heat flux at the onset of nucleate boiling strongly depends on the channel height. With a decrease of the channel height and an increase of the liquid velocity at the channel inlet, the departure diameter of a bubble was smaller. The periodic flow patterns, such as the bubbly flow, elongated slug flow, and churn flow were observed in the microchannel. Flow instabilities of two-phase flow boiling in a trapezoidal microchannel using a three-dimensional model were investigated. Fluctuation behaviors of flow boiling parameters such as wall temperature and inlet pressure caused by periodic flow patterns were studied at different heat fluxes and mass fluxes. The numerical results showed large amplitude and short period oscillations for wall temperature and inlet pressure fluctuations. Stable and unstable flow boiling regime with short period oscillations were investigated. Those flow boiling regimes were not listed in stable and unstable boiling regime map proposed by Wang et al. (2007).
Crocker, A D; Cronshaw, J; Holmes, W N
1975-01-01
Ducklings given hypertonic saline drinking water show significant increases in the rates of Na+ and water transfer across the intestinal mucosa. These increased rates of transfer are maintained as long as the birds are fed dypertonic saline. Oral administration of a single small dose of crude oil had no effect on the basal rate of mucosal transfer in freshwater-maintained ducklings but the adaptive response of the mucosa is suppressed in birds given hypertonic saline. When crude oils from eight different geographical locations were tested, the degree of inhibition varied between them; the greatest and smallest degrees of inhibition being observed following administration of Kuwait and North Slope, Alaska, crude oils respectively. The effects of distallation fractions derived from two chemically different crude oils were also examined. The volume of each distallation fraction administered corresponded to its relative abundance in the crude oil from which it was derived. The inhibitory effect was not associated exclusively with the same distallation fractions from each oil. A highly naphthenic crude oil from the San Joaquin Valley, California, showed the greatest inhibitory activity in the least abundant (2%), low boiling point (smaller than 245 degrees C) fraction and the least inhibitory activity in the highest boiling point (greater than 482 degrees C) most abundant (47%) fraction. In contrast, a highly paraffinic crude oil from Paradox Basin, Utah, showed the greatest inhibitory effect with the highest boiling point fraction and a minimal effect with the lowest boiling point fraction; the relative abundances of these two fractions in the crude oil represented 27 and 28% respectively. Water-soluble extracts of both crude oils also had inhibitory effects on mucosal transfer rates and these roughly proportionate to the inhibitory potency of the low boiling point fraction of each oil. Weathered samples of San Joaquin Valley, California, and the Paradox Basin, Utah, oils showed greater effects than corresponding samples of unweathered oils even though most of the low molecular weight material from both oils was either evaporated or solubilized in the underlying water during the 36-h weathering period.
Electrical design of payload G-534: The Pool Boiling Experiment
NASA Technical Reports Server (NTRS)
Francisco, David R.
1992-01-01
Payload G-534, the Pool Boiling Experiment (PBE), is a Get Away Special that is scheduled to fly on the shuttle in 1992. This paper will give a brief overall description of the experiment with the main discussion being the electrical design with a detailed description of the power system and interface to the GAS electronics. The batteries used and their interface to the experiment Power Control Unit (PCU) and GAS electronics will be examined. The design philosophy for the PCU will be discussed in detail. The criteria for selection of fuses, relays, power semiconductors and other electrical components along with grounding and shielding policy for the entire experiment will be presented. The intent of this paper is to discuss the use of military tested parts and basic design guidelines to build a quality experiment for minimal additional cost.
Making Usable, Quality Opaque or Transparent Soap
ERIC Educational Resources Information Center
Mabrouk, Suzanne T.
2005-01-01
The experiment to make opaque and transparent soap, using cold and semi boiled processes respectively, and surfactant tests that measure the pH of the prepared soap, is introduced. The experiment shows an easy method to make soap by giving a choice to select oils and scents for the soap, which can be used at home.
27 CFR 21.101 - tert-Butyl alcohol.
Code of Federal Regulations, 2013 CFR
2013-04-01
... needle). Above 20 °C. (f) Identification test. Place five drops of a solution containing approximately 0... (dissolve 5 grams of red mercuric oxide in 20 ml of concentrated sulfuric acid; add this solution to 80 ml of distilled water, and filter when cool). Heat the mixture just to the boiling point and remove from...
27 CFR 21.101 - tert-Butyl alcohol.
Code of Federal Regulations, 2014 CFR
2014-04-01
... needle). Above 20 °C. (f) Identification test. Place five drops of a solution containing approximately 0... (dissolve 5 grams of red mercuric oxide in 20 ml of concentrated sulfuric acid; add this solution to 80 ml of distilled water, and filter when cool). Heat the mixture just to the boiling point and remove from...
27 CFR 21.101 - tert-Butyl alcohol.
Code of Federal Regulations, 2012 CFR
2012-04-01
... needle). Above 20 °C. (f) Identification test. Place five drops of a solution containing approximately 0... (dissolve 5 grams of red mercuric oxide in 20 ml of concentrated sulfuric acid; add this solution to 80 ml of distilled water, and filter when cool). Heat the mixture just to the boiling point and remove from...
The Gibbs Energy Basis and Construction of Boiling Point Diagrams in Binary Systems
ERIC Educational Resources Information Center
Smith, Norman O.
2004-01-01
An illustration of how excess Gibbs energies of the components in binary systems can be used to construct boiling point diagrams is given. The underlying causes of the various types of behavior of the systems in terms of intermolecular forces and the method of calculating the coexisting liquid and vapor compositions in boiling point diagrams with…
Production of High Density Aviation Fuels via Novel Zeolite Catalyst Routes
1989-10-23
range fraction of a naphthenic crude; saturation of an aromatic FCC cycle stock I the appropriate boiling range: saturation of an appropriate boiling...aromatic hydrocarbons and selected aromatic feedstocks to the corresponding mono- and dicyclic naphthenes in the aviation turbine fuel boiling range; and...Paraffins from Naphthenic Refinery Feed Streams .......... 8 Solvent Extraction ........................................... 8 Shape Selective Catalytic
ERIC Educational Resources Information Center
Paik, Seoung-Hey
2015-01-01
The purpose of this study was to explore how examples used in teaching may influence elementary school students' conceptions of evaporation and boiling. To this end, the examples traditionally used to explain evaporation and boiling in Korean 4th grade science textbooks were analyzed. The functions of these published examples were explanation…
QSPR using MOLGEN-QSPR: the challenge of fluoroalkane boiling points.
Rücker, Christoph; Meringer, Markus; Kerber, Adalbert
2005-01-01
By means of the new software MOLGEN-QSPR, a multilinear regression model for the boiling points of lower fluoroalkanes is established. The model is based exclusively on simple descriptors derived directly from molecular structure and nevertheless describes a broader set of data more precisely than previous attempts that used either more demanding (quantum chemical) descriptors or more demanding (nonlinear) statistical methods such as neural networks. The model's internal consistency was confirmed by leave-one-out cross-validation. The model was used to predict all unknown boiling points of fluorobutanes, and the quality of predictions was estimated by means of comparison with boiling point predictions for fluoropentanes.
Enhancements of Nucleate Boiling Under Microgravity Conditions
NASA Technical Reports Server (NTRS)
Zhang, Nengli; Chao, David F.; Yang, W. J.
2000-01-01
This paper presents two means for enhancing nucleate boiling and critical heat flux under microgravity conditions: using micro-configured metal-graphite composites as the boiling surface and dilute aqueous solutions of long-chain alcohols as the working fluid. In the former, thermocapillary force induced by temperature difference between the graphite-fiber tips and the metal matrix plays an important role in bubble detachment. Thus boiling-heat transfer performance does not deteriorate in a reduced-gravity environment. In the latter cases, the surface tension-temperature gradient of the long-chain alcohol solutions turns positive as the temperature exceeds a certain value. Consequently, the Marangoni effect does not impede, but rather aids in bubble departure from the heating surface. This feature is most favorable in microgravity. As a result, the bubble size of departure is substantially reduced at higher frequencies. Based on the existing experimental data, and a two-tier theoretical model, correlation formulas are derived for nucleate boiling on the copper-graphite and aluminum-graphite composite surfaces, in both the isolated and coalesced bubble regimes. In addition, performance equations for nucleate boiling and critical heat flux in dilute aqueous solutions of long-chain alcohols are obtained.
Noise analysis of nucleate boiling
NASA Technical Reports Server (NTRS)
Mcknight, R. D.; Ram, K. S.
1971-01-01
The techniques of noise analysis have been utilized to investigate nucleate pool boiling. A simple experimental setup has been developed for obtaining the power spectrum of a nucleate boiling system. These techniques were first used to study single bubbles, and a method of relating the two-dimensional projected size and the local velocity of the bubbles to the auto-correlation functions is presented. This method is much less time consuming than conventional methods of measurement and has no probes to disturb the system. These techniques can be used to determine the contribution of evaporation to total heat flux in nucleate boiling. Also, these techniques can be used to investigate the effect of various parameters upon the frequency response of nucleate boiling. The predominant frequencies of the power spectrum correspond to the frequencies of bubble generation. The effects of heat input, degree of subcooling, and liquid surface tension upon the power spectra of a boiling system are presented. It was found that the degree of subcooling has a more pronounced effect upon bubble size than does heat flux. Also the effect of lowering surface tension can be sufficient to reduce the effect of the degree of subcooling upon the size of the bubbles.
Large-scale Generation of Patterned Bubble Arrays on Printed Bi-functional Boiling Surfaces
Choi, Chang-Ho; David, Michele; Gao, Zhongwei; Chang, Alvin; Allen, Marshall; Wang, Hailei; Chang, Chih-hung
2016-01-01
Bubble nucleation control, growth and departure dynamics is important in understanding boiling phenomena and enhancing nucleate boiling heat transfer performance. We report a novel bi-functional heterogeneous surface structure that is capable of tuning bubble nucleation, growth and departure dynamics. For the fabrication of the surface, hydrophobic polymer dot arrays are first printed on a substrate, followed by hydrophilic ZnO nanostructure deposition via microreactor-assisted nanomaterial deposition (MAND) processing. Wettability contrast between the hydrophobic polymer dot arrays and aqueous ZnO solution allows for the fabrication of heterogeneous surfaces with distinct wettability regions. Heterogeneous surfaces with various configurations were fabricated and their bubble dynamics were examined at elevated heat flux, revealing various nucleate boiling phenomena. In particular, aligned and patterned bubbles with a tunable departure frequency and diameter were demonstrated in a boiling experiment for the first time. Taking advantage of our fabrication method, a 6 inch wafer size heterogeneous surface was prepared. Pool boiling experiments were also performed to demonstrate a heat flux enhancement up to 3X at the same surface superheat using bi-functional surfaces, compared to a bare stainless steel surface. PMID:27034255
Effect of Different Cooking Methods on Histamine Levels in Selected Foods
Chung, Bo Young; Park, Sook Young; Byun, Yun Sun; Son, Jee Hee; Choi, Yong Won; Cho, Yong Se
2017-01-01
Background Histamine in food is known to cause food poisoning and allergic reactions. We usually ingest histamine in cooked food, but there are few studies about the influence of cooking method on the histamine level. Objective The purpose of this study was to determine the influence of cooking methods on the concentration of histamine in foods. Methods The foods chosen were those kinds consumed frequently and cooked by grilling, boiling, and frying. The histamine level of the food was measured using enzyme-linked immunosorbent assay. Results Grilled seafood had higher histamine levels than raw or boiled seafood. For meat, grilling increased the histamine level, whereas boiling decreased it. For eggs, there was not much difference in histamine level according to cooking method. Fried vegetables had higher histamine levels than raw vegetables. And fermented foods didn't show much difference in histamine level after being boiled. Conclusion The histamine level in food has changed according to the cooking method used to prepare it. Frying and grilling increased histamine level in foods, whereas boiling had little influence or even decreased it. The boiling method might be helpful to control the effect of histamine in histamine-sensitive or susceptible patients, compared with frying and grilling. PMID:29200758
NASA Astrophysics Data System (ADS)
Alavi Fazel, S. Ali
2017-09-01
A new optimized model which can predict the heat transfer in the nucleate boiling at isolated bubble regime is proposed for pool boiling on a horizontal rod heater. This model is developed based on the results of direct observations of the physical boiling phenomena. Boiling heat flux, wall temperature, bubble departing diameter, bubble generation frequency and bubble nucleation site density have been experimentally measured. Water and ethanol have been used as two different boiling fluids. Heating surface was made by several metals and various degrees of roughness. The mentioned model considers various mechanisms such as latent heat transfer due to micro-layer evaporation, transient conduction due to thermal boundary layer reformation, natural convection, heat transfer due to the sliding bubbles and bubble super-heating. The fractional contributions of individual mentioned heat transfer mechanisms have been calculated by genetic algorithm. The results show that at wall temperature difference more that about 3 K, bubble sliding transient conduction, non-sliding transient conduction, micro-layer evaporation, natural convection, radial forced convection and bubble super-heating have higher to lower fractional contributions respectively. The performance of the new optimized model has been verified by comparison of the existing experimental data.
Post-test examination of a pool boiler receiver
NASA Technical Reports Server (NTRS)
Dreshfield, Robert L.; Moore, Thomas J.; Bartolotta, Paul A.
1992-01-01
A subscale pool boiler test apparatus to evaluate boiling stability developed a leak after being operated with boiling NaK for 791.4 hr at temperatures from 700 to 750 C. The boiler was constructed using Inconel 625 with a type 304L stainless steel wick for the boiler and type 316 stainless steel for the condenser. The boiler assembly was metallurgically evaluated to determine the cause of the leak and to assess the effects of the NaK on the materials. It was found that the leak was caused by insufficient (about 30 pct.) joint penetration in a butt joint. There was no general corrosion of the construction materials, but the room temperature ductility of the Inconel 625 was only about 6.5 pct. A crack in the heat affected zone of the Inconel 625 near the Inconel 625 to type 316 stainless steel butt joint was probably caused by excessive heat input. The crack was observed to have a zone depleted of iron at the crack surface and porosity below that zone. The mechanism of the iron depletion was not conclusively determined.
A Cryogen Recycler with Pulse Tube Cryocooler for Recondensing Helium and Nitrogen
NASA Astrophysics Data System (ADS)
Wang, C.; Lichtenwalter, B.
2015-12-01
We have developed a cryogen recycler using a 4 K pulse tube cryocooler for recondensing helium and nitrogen in a NMR magnet. The liquid helium cooled NMR magnet has a liquid nitrogen cooled radiation shield. The magnet boils off 0.84 L/day of liquid helium and 6 L/day of liquid nitrogen. The recycler is designed with both a liquid helium return tube and a liquid nitrogen return tube, which are inserted into the fill ports of liquid helium and nitrogen. Therefore the recycler forms closed loops for helium and nitrogen. A two-stage 4 K pulse tube cryocooler, Cryomech model PT407 (0.7W at 4.2 K), is selected for the recycler. The recycler was first tested with a Cryomech's test cryostat and resulted in the capacities of recondensing 8.2 L/day of nitrogen and liquefying 4 L/day of helium from room temperature gas. The recycler has been installed in the NMR magnet at University of Sydney since August, 2014 and continuously maintains a zero boil off for helium and nitrogen.
Proof of concept: temperature sensing waders for environmental sciences
NASA Astrophysics Data System (ADS)
Hut, R.; Tyler, S.; van Emmerik, T.
2015-12-01
A prototype temperature sensing pair of waders is introduced and tested. The water temperature at the stream-bed is interesting both for scientist studying the hyporheic zone as well as for, e.g., fishers spotting good fishing locations. A temperature sensor incorporated in waders worn by members of the public can give scientists an additional source of information on streamwater-groundwater interaction. A pair of waders was equipped with a thermistor and calibrated in the lab. Tests with both the waders and a reference thermometer in a deep polder ditch with a known localized groundwater contribution (i.e. boil) showed that the temperature sensing waders are capable of identifying the boil location. However, the temperature sensing waders showed a less pronounced response to changing water temperature compared to the reference thermometer, most likely due to the heat capacity of the person in the waders. This research showed that data from temperature sensing waders worn by the public and shared with scientists can be used by to decide where the most interesting places are to do more detailed and more expensive, research.
Proof of concept: temperature-sensing waders for environmental sciences
NASA Astrophysics Data System (ADS)
Hut, Rolf; Tyler, Scott; van Emmerik, Tim
2016-02-01
A prototype temperature-sensing pair of waders is introduced and tested. The water temperature at the streambed is interesting both for scientists studying the hyporheic zone and for, e.g., fishers spotting good fishing locations. A temperature sensor incorporated into waders worn by members of the public can give scientists an additional source of information on stream-water-groundwater interaction. A pair of waders was equipped with a thermistor and calibrated in the lab. Tests with both the waders and a reference thermometer in a deep polder ditch with a known localized groundwater contribution (i.e., boil) showed that the temperature-sensing waders are capable of identifying the boil location. However, the temperature-sensing waders showed a less pronounced response to changing water temperature compared to the reference thermometer, most likely due to the heat capacity of the person in the waders. This research showed that data from temperature-sensing waders worn by the public and shared with scientists can be used to decide where the most interesting places are to do more detailed and more expensive research.
ERIC Educational Resources Information Center
Kaminsky, Kenneth; Scheman, Naomi
2010-01-01
At a Shabbat lunch in Madrid not long ago, the conversation turned to the question of boiling eggs. One of the guests mentioned that a Dutch rabbi he knew had heard that in order to make it more likely that boiled eggs be kosher, you should add an egg to the pot if the number you began with was even. According to the laws of Kashruth, Jews may not…
The Influence of a Lower Heated Tube on Nucleate Pool Boiling from a Horizontal Tube
1992-06-01
9 C. CONDENSER SECTION .................................... 12 D. COOLING SECTION...lower tube kc thermal conductivity of copper L active boiling tube length Lu non-boiling tube length x Nu Nusselt number p tube outside wall perimeter Pr...teflon endplates. 2. A condenser , assembled using a similar Pyrex-glass tee with aluminum endplates. 3. A reservoir for R- 114 liquid storage. 4. A
18. RW Meyer Sugar Mill: 18761889. Boiling House Interior, 1878. ...
18. RW Meyer Sugar Mill: 1876-1889. Boiling House Interior, 1878. View: Detail of floor with molasses pits below floor level. The remaining floor boards indicate the structure of the floor covering the entire inside of the boiling house. In the left background the base of the centrifugals are in view. - R. W. Meyer Sugar Mill, State Route 47, Kualapuu, Maui County, HI
Heat Transfer in Boiling Dilute Emulsion with Strong Buoyancy
NASA Astrophysics Data System (ADS)
Freeburg, Eric Thomas
Little attention has been given to the boiling of emulsions compared to that of boiling in pure liquids. The advantages of using emulsions as a heat transfer agent were first discovered in the 1970s and several interesting features have since been studied by few researchers. Early research focuses primarily on pool and flow boiling and looks to determine a mechanism by which the boiling process occurs. This thesis looks at the boiling of dilute emulsions in fluids with strong buoyant forces. The boiling of dilute emulsions presents many favorable characteristics that make it an ideal agent for heat transfer. High heat flux electronics, such as those seen in avionics equipment, produce high heat fluxes of 100 W/cm2 or more, but must be maintained at low temperatures. So far, research on single phase convection and flow boiling in small diameter channels have yet to provide an adequate solution. Emulsions allow the engineer to tailor the solution to the specific problem. The fluid can be customized to retain the high thermal conductivity and specific heat capacity of the continuous phase while enhancing the heat transfer coefficient through boiling of the dispersed phase component. Heat transfer experiments were carried out with FC-72 in water emulsions. FC-72 has a saturation temperature of 56 °C, far below that of water. The parameters were varied as follows: 0% ≤ epsilon ≤ 1% and 1.82 x 1012 ≤ RaH ≤ 4.42 x 1012. Surface temperatures along the heated surface reached temperature that were 20 °C in excess of the dispersed phase saturation temperature. An increase of ˜20% was seen in the average Nusselt numbers at the highest Rayleigh numbers. Holography was used to obtain images of individual and multiple FC-72 droplets in the boundary layer next to the heated surface. The droplet diameters ranged from 0.5 mm to 1.3 mm. The Magnus effect was observed when larger individual droplets were injected into the boundary layer, causing the droplets to be pushed outside the boundary layer. Vaporization of FC-72 droplets in the boundary layer next to the heated surface was not observed.
Boiling process modelling peculiarities analysis of the vacuum boiler
NASA Astrophysics Data System (ADS)
Slobodina, E. N.; Mikhailov, A. G.
2017-06-01
The analysis of the low and medium powered boiler equipment development was carried out, boiler units possible development directions with the purpose of energy efficiency improvement were identified. Engineering studies for the vacuum boilers applying are represented. Vacuum boiler heat-exchange processes where boiling water is the working body are considered. Heat-exchange intensification method under boiling at the maximum heat- transfer coefficient is examined. As a result of the conducted calculation studies, heat-transfer coefficients variation curves depending on the pressure, calculated through the analytical and numerical methodologies were obtained. The conclusion about the possibility of numerical computing method application through RPI ANSYS CFX for the boiling process description in boiler vacuum volume was given.
Estimating surface temperature in forced convection nucleate boiling - A simplified method
NASA Technical Reports Server (NTRS)
Hendricks, R. C.; Papell, S. S.
1977-01-01
A simplified expression to estimate surface temperatures in forced convection boiling was developed using a liquid nitrogen data base. Using the principal of corresponding states and the Kutateladze relation for maximum pool boiling heat flux, the expression was normalized for use with other fluids. The expression was applied also to neon and water. For the neon data base, the agreement was acceptable with the exclusion of one set suspected to be in the transition boiling regime. For the water data base at reduced pressure greater than 0.05 the agreement is generally good. At lower reduced pressures, the water data scatter and the calculated temperature becomes a function of flow rate.
3. RW Meyer Sugar Mill: 18761889. Sorghum pan and boiling ...
3. RW Meyer Sugar Mill: 1876-1889. Sorghum pan and boiling range flue. Manufactured by John Nott & Co., Honolulu, Hawaii, 1878. View: South side of sorghum pan and boiling range flue. In the sorghum pan heat was applied to the cane juice to clarify it, evaporate its water content, and concentrate the sugar crystals. Hot gasses moved through the flue underneath the entire copper bottom of the sorghum pan from the furnace (east) end to the smokestack (west) end of the boiling range. The sorghum pan sides are of redwood. The flue is built of fire-brick, masonry, and portland cement. - R. W. Meyer Sugar Mill, State Route 47, Kualapuu, Maui County, HI
Critical heat flux for free convection boiling in thin rectangular channels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, Lap Y.; Tichler, P.R.
A review of the experimental data on free convection boiling critical heat flux (CHF) in vertical rectangular channels reveals three mechanisms of burnout. They are the pool boiling limit, the circulation limit, and the flooding limit associated with a transition in flow regime from churn to annular flow. The dominance of a particular mechanism depends on the dimensions of the channel. Analytical models were developed for each free convection boiling limit. Limited agreement with data is observed. A CHF correlation, which is valid for a wide range of gap sizes, was constructed from the CHFs calculated according to the threemore » mechanisms of burnout. 17 refs., 7 figs.« less
The purity of water at hospital and at home as a problem of intercultural understanding.
Burghart, R
1996-03-01
Women in a provincial town in southern Nepal were instructed by medical doctors and compounders to boil water, and to keep it boiling for 15 minutes before mixing it with infant formula or oral rehydration salts. Most women ignored the advice. Those who seemed to follow it merely brought the water to boil. This report describes how and why women boil water and assesses the health implications of their practices. The failure of women to adopt "proper" procedures procedures provides a point of entry into an analysis of the role of intercultural dialogue in exposing one's presuppositions about health and empowering one to change them.
In-vessel coolability and retention of a core melt
DOE Office of Scientific and Technical Information (OSTI.GOV)
Theofanous, T.G.; Liu, C.; Additon, S.
1997-02-01
The efficacy of external flooding of a reactor vessel as a severe accident management strategy is assessed for an AP600-like reactor design. The overall approach is based on the Risk Oriented Accident Analysis Methodology (ROAAM), and the assessment includes consideration of bounding scenarios and sensitivity studies, as well as arbitrary parametric evaluations that allow the delineation of the failure boundaries. The technical treatment in this assessment includes: (a) new data on energy flow from either volumetrically heated pools or non-heated layers on top, boiling and critical heat flux in inverted, curved geometries, emissivity of molten (superheated) samples of steel, andmore » chemical reactivity proof tests, (b) a simple but accurate mathematical formulation that allows prediction of thermal loads by means of convenient hand calculations, (c) a detailed model programmed on the computer to sample input parameters over the uncertainty ranges, and to produce probability distributions of thermal loads and margins for departure from nucleate boiling at each angular position on the lower head, and (d) detailed structural evaluations that demonstrate that departure from nucleate boiling is a necessary and sufficient criterion for failure. Quantification of the input parameters is carried out for an AP600-like design, and the results of the assessment demonstrate that lower head failure is {open_quotes}physically unreasonable.{close_quotes} Use of this conclusion for any specific application is subject to verifying the required reliability of the depressurization and cavity-flooding systems, and to showing the appropriateness (in relation to the database presented here, or by further testing as necessary) of the thermal insulation design and of the external surface properties of the lower head, including any applicable coatings.« less
Ramdath, D Dan; Wolever, Thomas M S; Siow, Yaw Chris; Ryland, Donna; Hawke, Aileen; Taylor, Carla; Zahradka, Peter; Aliani, Michel
2018-05-11
The consumption of pulses is associated with many health benefits. This study assessed post-prandial blood glucose response (PPBG) and the acceptability of food items containing green lentils. In human trials we: (i) defined processing methods (boiling, pureeing, freezing, roasting, spray-drying) that preserve the PPBG-lowering feature of lentils; (ii) used an appropriate processing method to prepare lentil food items, and compared the PPBG and relative glycemic responses (RGR) of lentil and control foods; and (iii) conducted consumer acceptability of the lentil foods. Eight food items were formulated from either whole lentil puree (test) or instant potato (control). In separate PPBG studies, participants consumed fixed amounts of available carbohydrates from test foods, control foods, or a white bread standard. Finger prick blood samples were obtained at 0, 15, 30, 45, 60, 90, and 120 min after the first bite, analyzed for glucose, and used to calculate incremental area under the blood glucose response curve and RGR; glycemic index (GI) was measured only for processed lentils. Mean GI (± standard error of the mean) of processed lentils ranged from 25 ± 3 (boiled) to 66 ± 6 (spray-dried); the GI of spray-dried lentils was significantly ( p < 0.05) higher than boiled, pureed, or roasted lentil. Overall, lentil-based food items all elicited significantly lower RGR compared to potato-based items (40 ± 3 vs. 73 ± 3%; p < 0.001). Apricot chicken, chicken pot pie, and lemony parsley soup had the highest overall acceptability corresponding to "like slightly" to "like moderately". Processing influenced the PPBG of lentils, but food items formulated from lentil puree significantly attenuated PPBG. Formulation was associated with significant differences in sensory attributes.
Wolever, Thomas M. S.; Hawke, Aileen; Zahradka, Peter; Aliani, Michel
2018-01-01
The consumption of pulses is associated with many health benefits. This study assessed post-prandial blood glucose response (PPBG) and the acceptability of food items containing green lentils. In human trials we: (i) defined processing methods (boiling, pureeing, freezing, roasting, spray-drying) that preserve the PPBG-lowering feature of lentils; (ii) used an appropriate processing method to prepare lentil food items, and compared the PPBG and relative glycemic responses (RGR) of lentil and control foods; and (iii) conducted consumer acceptability of the lentil foods. Eight food items were formulated from either whole lentil puree (test) or instant potato (control). In separate PPBG studies, participants consumed fixed amounts of available carbohydrates from test foods, control foods, or a white bread standard. Finger prick blood samples were obtained at 0, 15, 30, 45, 60, 90, and 120 min after the first bite, analyzed for glucose, and used to calculate incremental area under the blood glucose response curve and RGR; glycemic index (GI) was measured only for processed lentils. Mean GI (± standard error of the mean) of processed lentils ranged from 25 ± 3 (boiled) to 66 ± 6 (spray-dried); the GI of spray-dried lentils was significantly (p < 0.05) higher than boiled, pureed, or roasted lentil. Overall, lentil-based food items all elicited significantly lower RGR compared to potato-based items (40 ± 3 vs. 73 ± 3%; p < 0.001). Apricot chicken, chicken pot pie, and lemony parsley soup had the highest overall acceptability corresponding to “like slightly” to “like moderately”. Processing influenced the PPBG of lentils, but food items formulated from lentil puree significantly attenuated PPBG. Formulation was associated with significant differences in sensory attributes. PMID:29751679
Critical Heat Flux in Pool Boiling on Metal-Graphite Composite Surfaces
NASA Technical Reports Server (NTRS)
Zhang, Nengli; Yang, Wen-Jei; Chao, David F.; Chao, David F. (Technical Monitor)
2000-01-01
A study is conducted on high heat-flux pool boiling of pentane on micro-configured composite surfaces. The boiling surfaces are copper-graphite (Cu-Gr) and aluminum-graphite (Al-Gr) composites with a fiber volume concentration of 50%. The micro-graphite fibers embedded in the matrix contribute to a substantial enhancement in boiling heat-transfer performance. Correlation equations are obtained for both the isolated and coalesced bubble regimes, utilizing a mathematical model based on a metal-graphite, two-tier configuration with the aid of experimental data. A new model to predict the critical heat flux (CHF) on the composites is proposed to explain the fundamental aspects of the boiling phenomena. Three different factors affecting the CHF are considered in the model. Two of them are expected to become the main agents driving vapor volume detachment under microgravity conditions, using the metal-graphite composite surfaces as the heating surface and using liquids with an unusual Marangoni effect as the working fluid.