7 CFR 301.52-9 - Movement of live pink bollworms.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 5 2010-01-01 2010-01-01 false Movement of live pink bollworms. 301.52-9 Section 301... Regulations § 301.52-9 Movement of live pink bollworms. Regulations requiring a permit for, and otherwise governing the movement of live pink bollworms in interstate or foreign commerce are contained in the Federal...
7 CFR 301.52-9 - Movement of live pink bollworms.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 7 Agriculture 5 2012-01-01 2012-01-01 false Movement of live pink bollworms. 301.52-9 Section 301.52-9 Agriculture Regulations of the Department of Agriculture (Continued) ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE DOMESTIC QUARANTINE NOTICES Pink Bollworm Quarantine and...
Mortality and reproductive effects of ingested spinosad on adult bollworm
USDA-ARS?s Scientific Manuscript database
Bollworm adults (Lepidoptera: Noctuidae) upon emergence from their pupal cells actively seek and feed on plant exudates before they disperse and reproduce on suitable host plants. This nocturnal behavior of the bollworm may be exploited as a pest management strategy for suppression of the insect. Th...
NASA Astrophysics Data System (ADS)
Huang, Jian; Hao, HongFei
2018-05-01
Current evidence suggests that climate change has directly affected the phenology of many invertebrate species associated with agriculture. Such changes in phenology have the potential to cause temporal mismatches between predators and prey and may lead to a disruption in natural pest control ecosystem. Understanding the synchrony between pest insects and host plant responses to climate change is a key step to improve integrated pest management strategies. Cotton bollworm larvae damage cotton, and thus, data from Magaiti County, China, collected during the period of 1990-2015 were analyzed to assess the effects of climate change on cotton bollworm larvae and cotton flowering. The results showed that a warming climate advanced the phenology of cotton bollworm larvae and cotton flowering. However, the phenological rate of change was faster in cotton bollworm larvae than that in cotton flowering, and the larval period was prolonged, resulting in a great increase of the larval population. The abrupt phenological changes in cotton bollworm larvae occurred earlier than that in cotton, and the abrupt phenological changes in cotton flowering occurred earlier than that in larval abundance. However, the timing of abrupt changes in larval abundance all occurred later than that in temperature. Thus, the abrupt changes that occurred in larvae, cotton flowering and climate were asynchronous. The interval days between the cotton flowering date (CFD) and the half-amount larvae date (HLD) expanded by 3.41 and 4.41 days with a 1 °C increase of T mean in May and June, respectively. The asynchrony between cotton bollworm larvae and cotton flowering will likely broaden as the climate changes. The effective temperature in March and April and the end date of larvae (ED) were the primary factors affecting asynchrony.
Huang, Jian; Hao, HongFei
2018-05-11
Current evidence suggests that climate change has directly affected the phenology of many invertebrate species associated with agriculture. Such changes in phenology have the potential to cause temporal mismatches between predators and prey and may lead to a disruption in natural pest control ecosystem. Understanding the synchrony between pest insects and host plant responses to climate change is a key step to improve integrated pest management strategies. Cotton bollworm larvae damage cotton, and thus, data from Magaiti County, China, collected during the period of 1990-2015 were analyzed to assess the effects of climate change on cotton bollworm larvae and cotton flowering. The results showed that a warming climate advanced the phenology of cotton bollworm larvae and cotton flowering. However, the phenological rate of change was faster in cotton bollworm larvae than that in cotton flowering, and the larval period was prolonged, resulting in a great increase of the larval population. The abrupt phenological changes in cotton bollworm larvae occurred earlier than that in cotton, and the abrupt phenological changes in cotton flowering occurred earlier than that in larval abundance. However, the timing of abrupt changes in larval abundance all occurred later than that in temperature. Thus, the abrupt changes that occurred in larvae, cotton flowering and climate were asynchronous. The interval days between the cotton flowering date (CFD) and the half-amount larvae date (HLD) expanded by 3.41 and 4.41 days with a 1 °C increase of T mean in May and June, respectively. The asynchrony between cotton bollworm larvae and cotton flowering will likely broaden as the climate changes. The effective temperature in March and April and the end date of larvae (ED) were the primary factors affecting asynchrony.
Variable selection based cotton bollworm odor spectroscopic detection
NASA Astrophysics Data System (ADS)
Lü, Chengxu; Gai, Shasha; Luo, Min; Zhao, Bo
2016-10-01
Aiming at rapid automatic pest detection based efficient and targeting pesticide application and shooting the trouble of reflectance spectral signal covered and attenuated by the solid plant, the possibility of near infrared spectroscopy (NIRS) detection on cotton bollworm odor is studied. Three cotton bollworm odor samples and 3 blank air gas samples were prepared. Different concentrations of cotton bollworm odor were prepared by mixing the above gas samples, resulting a calibration group of 62 samples and a validation group of 31 samples. Spectral collection system includes light source, optical fiber, sample chamber, spectrometer. Spectra were pretreated by baseline correction, modeled with partial least squares (PLS), and optimized by genetic algorithm (GA) and competitive adaptive reweighted sampling (CARS). Minor counts differences are found among spectra of different cotton bollworm odor concentrations. PLS model of all the variables was built presenting RMSEV of 14 and RV2 of 0.89, its theory basis is insect volatilizes specific odor, including pheromone and allelochemics, which are used for intra-specific and inter-specific communication and could be detected by NIR spectroscopy. 28 sensitive variables are selected by GA, presenting the model performance of RMSEV of 14 and RV2 of 0.90. Comparably, 8 sensitive variables are selected by CARS, presenting the model performance of RMSEV of 13 and RV2 of 0.92. CARS model employs only 1.5% variables presenting smaller error than that of all variable. Odor gas based NIR technique shows the potential for cotton bollworm detection.
Unique synteny and alternate splicing of the chitin synthases in closely related heliothine moths
USDA-ARS?s Scientific Manuscript database
Two chitin synthase genes were characterized in the genomes of two heliothine moths: the corn earworm/cotton bollworm, Helicoverpa zea (Boddie) (Lepidoptera: Noctuidae) and the cotton bollworm, Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae). In both moths, the coding sequences for the two ge...
USDA-ARS?s Scientific Manuscript database
Newly eclosed adult bollworm, Helicoverpa zea (Boddie) feeds on carbohydrate sources from plants and other exudates prior to dispersal and reproduction. The objective of this study was to determine whether or not this nocturnal behavior could be exploited for pest management by presenting the insect...
USDA-ARS?s Scientific Manuscript database
Hexaflumuron (Consult® 100 EC, Dow AgroSciences) is an insect growth regulator that inhibits chitin synthesis. The efficacy of hexaflumuron mixed with 2.5 M sucrose (ppm) was evaluated in the laboratory against bollworm, Helicoverpa zea (Boddie) (Lepidoptera: Noctuidae) for toxicity, proboscis exten...
USDA-ARS?s Scientific Manuscript database
Newly emerged bollworm adults, Helicoverpa zea (Boddie) require carbohydrate source from plant exudates and nectars for reproduction. Adults actively seek such feeding sites upon eclosion in their natural habitat. We wanted to evaluate this nocturnal behavior of the bollworm for potential use as a p...
USDA-ARS?s Scientific Manuscript database
Laboratory and field experiments were conducted to determine the effectiveness of microbial and chemical insecticides for supplemental control of bollworm (Helicoverpa zea Boddie) on non-Bt (DP1441®) and Bt (DP1321®) cottons. Neonate and 3rd instar larvae survival were evaluated on leaf tissue treat...
Pietrantonio, P V; Junek, T A; Parker, R; Mott, D; Siders, K; Troxclair, N; Vargas-Camplis, J; Westbrook, J K; Vassiliou, V A
2007-10-01
The bollworm, Helicoverpa zea (Boddie), is a key pest of cotton in Texas. Bollworm populations are widely controlled with pyrethroid insecticides in cotton and exposed to pyrethroids in other major crops such as grain sorghum, corn, and soybeans. A statewide program that evaluated cypermethrin resistance in male bollworm populations using an adult vial test was conducted from 2003 to 2006 in the major cotton production regions of Texas. Estimated parameters from the most susceptible field population currently available (Burleson County, September 2005) were used to calculate resistance ratios and their statistical significance. Populations from several counties had statistically significant (P < or = 0.05) resistance ratios for the LC(50), indicating that bollworm-resistant populations are widespread in Texas. The highest resistance ratios for the LC(50) were observed for populations in Burleson County in 2000 and 2003, Nueces County in 2004, and Williamson and Uvalde Counties in 2005. These findings explain the observed pyrethroid control failures in various counties in Texas. Based on the assumption that resistance is caused by a single gene, the Hardy-Weinberg equilibrium formula was used for estimation of frequencies for the putative resistant allele (q) using 3 and 10 microg/vial as discriminatory dosages for susceptible and heterozygote resistant insects, respectively. The influence of migration on local levels of resistance was estimated by analysis of wind trajectories, which partially clarifies the rapid evolution of resistance to cypermethrin in bollworm populations. This approach could be used in evaluating resistance evolution in other migratory pests.
Keszthelyi, S; Pál-Fám, F; Kerepesi, I
2011-03-01
The cotton bollworm (Helicoverpa armigera Hübner), which migrated in the Carpathian-basin from Mediterraneum in the last decades, is becoming an increasingly serious problem for maize producers in Hungary. In several regions the damage it causes has reached the threshold of economic loss, especially in the case of the sweet maize cultivation. The aim of the research was to determine the changing of ears weights and in-kernel accumulation and alteration in grain as a function of cotton bollworm mastication.Our investigation confirmed that there is an in-kernel and protein pattern change of maize grain by cotton bollworm. Our results proved the significant damaging of each part of ears by cotton bollworm masticating (the average weight loss of ears: 13.99%; the average weight loss of grains: 14.03%; the average weight loss of cobs: 13.74%), with the exception of the increasing of the grain-cob ratio. Our examinations did not prove the water loss - that is the "forced maturing" - caused by the damage. Decreasing of raw fat (control: 2.8%; part-damaged: 2.6%; damaged: 2.4%) and starch content (control: 53.1%; part-damaged: 46.6%; damaged: 44.7%) were registered as a function of injury. In contrast, the raw protein content was increased (control: 4.7%; part-damaged: 5.3%; damaged: 7.4%) by maize ear masticating. The most conspicuous effect on protein composition changing was proved by comparison of damaged grain samples by SDS PAGE. Increased amounts of 114, 50, 46 and 35 kDa molecular mass proteins were detected which explained the more than 50% elevation of raw protein content. The statistical analysis of molecular weights proved the protein realignment as a function of the pest injuries, too.
Evaluation of remote sensing in control of pink bollworm in cotton
NASA Technical Reports Server (NTRS)
Coleman, V. B.; Johnson, C. W.; Lewis, L. N.
1973-01-01
The use of satellite data from the ERTS-1 satellite for mapping the cotton acreage in the southern deserts of California is discussed. The differences between a growing, a defoliated, and a plowed down field can be identified using an optical color combiner. The specific application of the land use maps is to control the spread of the pink bollworms by establishing planting and plowdown dates.
Multi-Toxin Resistance Enables Pink Bollworm Survival on Pyramided Bt Cotton
Fabrick, Jeffrey A.; Unnithan, Gopalan C.; Yelich, Alex J.; DeGain, Ben; Masson, Luke; Zhang, Jie; Carrière, Yves; Tabashnik, Bruce E.
2015-01-01
Transgenic crops producing Bacillus thuringiensis (Bt) proteins kill key insect pests, providing economic and environmental benefits. However, the evolution of pest resistance threatens the continued success of such Bt crops. To delay or counter resistance, transgenic plant “pyramids” producing two or more Bt proteins that kill the same pest have been adopted extensively. Field populations of the pink bollworm (Pectinophora gossypiella) in the United States have remained susceptible to Bt toxins Cry1Ac and Cry2Ab, but field-evolved practical resistance to Bt cotton producing Cry1Ac has occurred widely in India. Here we used two rounds of laboratory selection to achieve 18,000- to 150,000-fold resistance to Cry2Ab in pink bollworm. Inheritance of resistance to Cry2Ab was recessive, autosomal, conferred primarily by one locus, and independent of Cry1Ac resistance. We created a strain with high resistance to both toxins by crossing the Cry2Ab-resistant strain with a Cry1Ac-resistant strain, followed by one selection with Cry2Ab. This multi-toxin resistant strain survived on field-collected Bt cotton bolls producing both toxins. The results here demonstrate the risk of evolution of resistance to pyramided Bt plants, particularly when toxins are deployed sequentially and refuges are scarce, as seen with Bt cotton and pink bollworm in India. PMID:26559899
Yu, Huahua; Li, Rongfeng; Dong, Xiangli; Xing, Ronge; Liu, Song; Li, Pengcheng
2014-01-01
Efficacy of venom from tentacle of jellyfish Stomolophus meleagris against the cotton bollworm Helicoverpa armigera was determined. Venom from tentacle of jellyfish Stomolophus meleagris could inhibit the growth of Helicoverpa armigera and the weight inhibiting rate of sample NFr-2 was 60.53%. Of the six samples, only NFr-2 had high insecticidal activity against Helicoverpa armigera and the corrected mortality recorded at 7 d was 74.23%. PMID:25162008
Tian, Geng; Cheng, Linlin; Qi, Xuewei; Ge, Zonghe; Niu, Changying; Zhang, Xianlong; Jin, Shuangxia
2015-01-01
RNA interference (RNAi) has been developed as a powerful technique in the research of functional genomics as well as plant pest control. In this report, double-stranded RNAs (dsRNA) targeting 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) gene, which catalyze a rate-limiting enzymatic reaction in the mevalonate pathway of juvenile hormone (JH) synthesis in cotton bollworm, was expressed in cotton plants via Agrobacterium tumefaciens-mediated transformation. PCR and Sothern analysis revealed the integration of HMGR gene into cotton genome. RT-PCR and qRT-PCR confirmed the high transcription level of dsHMGR in transgenic cotton lines. The HMGR expression both in transcription and translation level was significantly downregulated in cotton bollworms (helicoverpa armigera) larvae after feeding on the leaves of HMGR transgenic plants. The transcription level of HMGR gene in larvae reared on transgenic cotton leaves was as much as 80.68% lower than that of wild type. In addition, the relative expression level of vitellogenin (Vg, crucial source of nourishment for offspring embryo development) gene was also reduced by 76.86% when the insect larvae were fed with transgenic leaves. The result of insect bioassays showed that the transgenic plant harboring dsHMGR not only inhibited net weight gain but also delayed the growth of cotton bollworm larvae. Taken together, transgenic cotton plant expressing dsRNAs successfully downregulated HMGR gene and impaired the development and survival of target insect, which provided more option for plant pest control. PMID:26435695
Ouyang, Fang; Hui, Cang; Ge, Saiying; Men, Xin-Yuan; Zhao, Zi-Hua; Shi, Pei-Jian; Zhang, Yong-Sheng; Li, Bai-Lian
2014-01-01
Understanding drivers of population fluctuation, especially for agricultural pests, is central to the provision of agro-ecosystem services. Here, we examine the role of endogenous density dependence and exogenous factors of climate and human activity in regulating the 37-year population dynamics of an important agricultural insect pest, the cotton bollworm (Helicoverpa armigera), in North China from 1975 to 2011. Quantitative time-series analysis provided strong evidence explaining long-term population dynamics of the cotton bollworm and its driving factors. Rising temperature and declining rainfall exacerbated the effect of agricultural intensification on continuously weakening the negative density dependence in regulating the population dynamics of cotton bollworms. Consequently, ongoing climate change and agricultural intensification unleashed the tightly regulated pest population and triggered the regional outbreak of H. armigera in 1992. Although the negative density dependence can effectively regulate the population change rate to fluctuate around zero at stable equilibrium levels before and after outbreak in the 1992, the population equilibrium jumped to a higher density level with apparently larger amplitudes after the outbreak. The results highlight the possibility for exogenous factors to induce pest outbreaks and alter the population regulating mechanism of negative density dependence and, thus, the stable equilibrium of the pest population, often to a higher level, posing considerable risks to the provision of agro-ecosystem services and regional food security. Efficient and timely measures of pest management in the era of Anthropocene should target the strengthening and revival of weakening density dependence caused by climate change and human activities. PMID:25535553
Ouyang, Fang; Hui, Cang; Ge, Saiying; Men, Xin-Yuan; Zhao, Zi-Hua; Shi, Pei-Jian; Zhang, Yong-Sheng; Li, Bai-Lian
2014-09-01
Understanding drivers of population fluctuation, especially for agricultural pests, is central to the provision of agro-ecosystem services. Here, we examine the role of endogenous density dependence and exogenous factors of climate and human activity in regulating the 37-year population dynamics of an important agricultural insect pest, the cotton bollworm (Helicoverpa armigera), in North China from 1975 to 2011. Quantitative time-series analysis provided strong evidence explaining long-term population dynamics of the cotton bollworm and its driving factors. Rising temperature and declining rainfall exacerbated the effect of agricultural intensification on continuously weakening the negative density dependence in regulating the population dynamics of cotton bollworms. Consequently, ongoing climate change and agricultural intensification unleashed the tightly regulated pest population and triggered the regional outbreak of H. armigera in 1992. Although the negative density dependence can effectively regulate the population change rate to fluctuate around zero at stable equilibrium levels before and after outbreak in the 1992, the population equilibrium jumped to a higher density level with apparently larger amplitudes after the outbreak. The results highlight the possibility for exogenous factors to induce pest outbreaks and alter the population regulating mechanism of negative density dependence and, thus, the stable equilibrium of the pest population, often to a higher level, posing considerable risks to the provision of agro-ecosystem services and regional food security. Efficient and timely measures of pest management in the era of Anthropocene should target the strengthening and revival of weakening density dependence caused by climate change and human activities.
Tabashnik, Bruce E.; Fabrick, Jeffrey A.; Unnithan, Gopalan C.; Yelich, Alex J.; Masson, Luke; Zhang, Jie; Bravo, Alejandra; Soberón, Mario
2013-01-01
Evolution of resistance in pests threatens the long-term efficacy of insecticidal proteins from Bacillus thuringiensis (Bt) used in sprays and transgenic crops. Previous work showed that genetically modified Bt toxins Cry1AbMod and Cry1AcMod effectively countered resistance to native Bt toxins Cry1Ab and Cry1Ac in some pests, including pink bollworm (Pectinophora gossypiella). Here we report that Cry1AbMod and Cry1AcMod were also effective against a laboratory-selected strain of pink bollworm resistant to Cry2Ab as well as to Cry1Ab and Cry1Ac. Resistance ratios based on the concentration of toxin killing 50% of larvae for the resistant strain relative to a susceptible strain were 210 for Cry2Ab, 270 for Cry1Ab, and 310 for Cry1Ac, but only 1.6 for Cry1AbMod and 2.1 for Cry1AcMod. To evaluate the interactions among toxins, we tested combinations of Cry1AbMod, Cry1Ac, and Cry2Ab. For both the resistant and susceptible strains, the net results across all concentrations tested showed slight but significant synergism between Cry1AbMod and Cry2Ab, whereas the other combinations of toxins did not show consistent synergism or antagonism. The results suggest that the modified toxins might be useful for controlling populations of pink bollworm resistant to Cry1Ac, Cry2Ab, or both. PMID:24244692
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akey, D.H.; Kimball, B.A.; Mauney, J.R.
1988-06-01
The pink bollworm, Pectinophora gossypiella (Saunders), was reared on the bolls of cotton plants grown in CO/sub 2/-enriched (649 ..mu..l/liter) and ambient CO/sub 2/ (371 ..mu..l/liter) chambers and in two open field plots, one with free-air CO/sub 2/ enrichment (522 ..mu..l/liter) and one without enrichment (ambient CO/sub 2/, 360 ..mu..l/liter). The effects of increased CO/sub 2/ levels on growth and development were examined. There was no difference in pupal weights of pink bollworm raised on CO/sub 2/-enriched cotton compared with those raised on ambient CO/sub 2/ cotton (26.80 versus 26.64 mg, respectively). Also, there was no difference in developmental timemore » (21-27 d). Analysis of percent seed damage by larvae showed no differences between CO/sub 2/-enriched and ambient CO/sub 2/ cotton. These results were attributed to the nutritional qualities of the seed remaining the same (specifically the carbon/nitrogen ratio) despite CO/sub 2/ and photosynthetic changes in the plant.« less
Field performance of a genetically engineered strain of pink bollworm.
Simmons, Gregory S; McKemey, Andrew R; Morrison, Neil I; O'Connell, Sinead; Tabashnik, Bruce E; Claus, John; Fu, Guoliang; Tang, Guolei; Sledge, Mickey; Walker, Adam S; Phillips, Caroline E; Miller, Ernie D; Rose, Robert I; Staten, Robert T; Donnelly, Christl A; Alphey, Luke
2011-01-01
Pest insects harm crops, livestock and human health, either directly or by acting as vectors of disease. The Sterile Insect Technique (SIT)--mass-release of sterile insects to mate with, and thereby control, their wild counterparts--has been used successfully for decades to control several pest species, including pink bollworm, a lepidopteran pest of cotton. Although it has been suggested that genetic engineering of pest insects provides potential improvements, there is uncertainty regarding its impact on their field performance. Discrimination between released and wild moths caught in monitoring traps is essential for estimating wild population levels. To address concerns about the reliability of current marking methods, we developed a genetically engineered strain of pink bollworm with a heritable fluorescent marker, to improve discrimination of sterile from wild moths. Here, we report the results of field trials showing that this engineered strain performed well under field conditions. Our data show that attributes critical to SIT in the field--ability to find a mate and to initiate copulation, as well as dispersal and persistence in the release area--were comparable between the genetically engineered strain and a standard strain. To our knowledge, these represent the first open-field experiments with a genetically engineered insect. The results described here provide encouragement for the genetic control of insect pests.
7 CFR 301.52-10 - Nonliability of the Department.
Code of Federal Regulations, 2010 CFR
2010-01-01
... INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE DOMESTIC QUARANTINE NOTICES Pink Bollworm Quarantine and... for any costs incident to inspections or compliance with the provisions of the quarantine and...
7 CFR 301.52-10 - Nonliability of the Department.
Code of Federal Regulations, 2012 CFR
2012-01-01
... INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE DOMESTIC QUARANTINE NOTICES Pink Bollworm Quarantine and... for any costs incident to inspections or compliance with the provisions of the quarantine and...
7 CFR 301.52-5 - Compliance agreements; and cancellation thereof.
Code of Federal Regulations, 2010 CFR
2010-01-01
... PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE DOMESTIC QUARANTINE NOTICES Pink Bollworm Quarantine and Regulations § 301.52-5 Compliance agreements; and cancellation thereof. (a) Any person engaged...
7 CFR 301.52-5 - Compliance agreements; and cancellation thereof.
Code of Federal Regulations, 2012 CFR
2012-01-01
... PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE DOMESTIC QUARANTINE NOTICES Pink Bollworm Quarantine and Regulations § 301.52-5 Compliance agreements; and cancellation thereof. (a) Any person engaged...
7 CFR 301.52-7 - Attachment and disposition of certificates or permits.
Code of Federal Regulations, 2010 CFR
2010-01-01
... AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE DOMESTIC QUARANTINE NOTICES Pink Bollworm Quarantine and Regulations § 301.52-7 Attachment and disposition of certificates or permits. (a...
7 CFR 301.52-7 - Attachment and disposition of certificates or permits.
Code of Federal Regulations, 2012 CFR
2012-01-01
... AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE DOMESTIC QUARANTINE NOTICES Pink Bollworm Quarantine and Regulations § 301.52-7 Attachment and disposition of certificates or permits. (a...
Evaluation of remote sensing in control of pink bollworm in cotton. [Southern California deserts
NASA Technical Reports Server (NTRS)
Lewis, L. N. (Principal Investigator); Coleman, V. B.
1973-01-01
The author has identified the following significant results. The main objective is to evaluate the use of a satellite in monitoring the cotton production regulation program of the State of California as an aid in controlling pink bollworm infestation in the southern deserts of California. Color combined images of ERTS-1 multispectral images simulating color infrared are being used for crop identification. The status of each field (i.e., crop, bare, harvested, wet, plowed) is mapped from the imagery and is then compared to ground survey information taken at the time of ERTS-1 overflights. A computer analysis has been performed to compare field and satellite data to a crop calendar. Correlation to data has been 97% for field condition. Actual crop identification varies; cotton identification is only 63% due to lack of full season coverage.
7 CFR 301.52-8 - Inspection and disposal of regulated articles and pests.
Code of Federal Regulations, 2012 CFR
2012-01-01
...) ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE DOMESTIC QUARANTINE NOTICES Pink Bollworm Quarantine and Regulations § 301.52-8 Inspection and disposal of regulated articles and pests. Any...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-24
..., 2012. Contact: Marcel Howard. Vermont Department of Agriculture, Food, and Markets Specific Exemption...: Princess Campbell. EPA authorized the use of Bacillus thuringiensis on cotton to control pink bollworm; May...
Evaluation of remote sensing in control of pink cotton bollworm
NASA Technical Reports Server (NTRS)
Lewis, L. N. (Principal Investigator); Coleman, V. B.
1972-01-01
The author has identified the following significant results. This investigation is attempting to evaluate the use of a satellite in monitoring the cotton production regulation program of the State of California as an aid in controlling pink bollworm infestation in the southern deserts of California. Color combined images of ERTS-1 multispectral images simulating color infrared are being used in crop identification. The status of each field is mapped from the imagery and is then compared to ground surveys taken at the time of each ERTS-1 overflight. Correlation has been to date 100%. A computer analysis will be performed to compare field status with the crop calendar in order to identify crops. Correlation is expected to be 80 to 90%. Cotton fields, because of their state regulated season which is exactly coincident with no other crop, are expected to be easily identified.
NASA Technical Reports Server (NTRS)
Lewis, L. N. (Principal Investigator); Coleman, V. B.; Johnson, C. W.
1974-01-01
The author has identified the following significant results. This investigation is to evaluate the use of a satellite in monitoring the cotton production regulation program of the State of California as an aid in controlling pink bollworm infestation in the southern deserts of California. Color combined images of ERTS-1 multispectral images simulating color infrared are being used for crop identification. The status of each field (crop, bare, harvested, wet, plowed) is mapped from the imagery and is then compared to ground survey information taken at the time of ERTS-1 overflights. A computer analysis has been performed to compare field and satellite data to a crop calendar. Correlation to date has been 97% for field condition. Actual crop identification varies; cotton identification is only 63% due to lack of full season coverage.
Multi-toxin resistance enables pink bollworm survival on pyramided Bt cotton
USDA-ARS?s Scientific Manuscript database
Transgenic crops producing Bacillus thuringiensis (Bt) proteins kill key insect pests, providing economic and environmental benefits. However, the evolution of pest resistance threatens the continued success of such Bt crops. To delay or counter resistance, transgenic plant "pyramids" producing tw...
Code of Federal Regulations, 2012 CFR
2012-01-01
..., DEPARTMENT OF AGRICULTURE DOMESTIC QUARANTINE NOTICES Pink Bollworm Quarantine and Regulations § 301.52-1... Plant Protection and Quarantine Programs, wherein the former agrees to comply with the requirements of... Plant Protection and Quarantine Programs as applicable to the operations of such person. Deputy...
Zhao, J; Liu, X N; Li, F; Zhuang, S Z; Huang, L N; Ma, J; Gao, X W
2016-04-01
In insect, the cytochrome P450 plays a pivotal role in detoxification to toxic allelochemicals. Helicoverpa armigera can tolerate and survive in 2-tridecanone treatment owing to the CYP6B6 responsive expression, which is controlled by some regulatory DNA sequences and transcription regulators. Therefore, the 2-tridecanone responsive region and transcription regulators of the CYP6B6 are responsible for detoxification of cotton bollworm. In this study, we used yeast one-hybrid to screen two potential transcription regulators of the CYP6B6 from H. armigera that respond to the plant secondary toxicant 2-tridecanone, which were named Prey1 and Prey2, respectively. According to the NCBI database blast, Prey1 is the homology with FK506 binding protein (FKBP) of Manduca sexta and Bombyx mori that belongs to the FKBP-C superfamily, while Prey2 may be a homology of an unknown protein of Papilio or the fcaL24 protein homology of B. mori. The electrophoretic mobility shift assays revealed that the FKBP of prokaryotic expression could specifically bind to the active region of the CYP6B6 promoter. After the 6th instar larvae of H. armigera reared on 2-tridecanone artificial diet, we found there were similar patterns of CYP6B6 and FKBP expression of the cotton bollworm treated with 10 mg g-1 2-tridecanone for 48 h, which correlation coefficient was the highest (0.923). Thus, the FKBP is identified as a strong candidate for regulation of the CYP6B6 expression, when the cotton bollworm is treated with 2-tridecanone. This may lead us to a better understanding of transcriptional mechanism of CYP6B6 and provide very useful information for the pest control.
7 CFR 301.52-4 - Issuance and cancellation of certificates and permits.
Code of Federal Regulations, 2012 CFR
2012-01-01
... AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE DOMESTIC QUARANTINE NOTICES Pink Bollworm Quarantine and Regulations § 301.52-4 Issuance and cancellation of certificates and permits. (a... for certification for movement to any destination under all Federal domestic plant quarantines...
7 CFR 319.56-21 - Okra from certain countries.
Code of Federal Regulations, 2010 CFR
2010-01-01
..., Rhode Island, South Dakota, Utah, Vermont, Washington, West Virginia, Wisconsin, Wyoming, the District...) Importations into areas south of the 38th parallel that are not pink bollworm generally infested or suppressive..., Arkansas, Florida, Georgia, Louisiana, Mississippi, Nevada, North Carolina, South Carolina, Tennessee, or...
7 CFR 319.56-21 - Okra from certain countries.
Code of Federal Regulations, 2012 CFR
2012-01-01
..., New Hampshire, New Jersey, New York, North Dakota, Ohio, Oregon, Pennsylvania, Rhode Island, South...) Importations into areas south of the 38th parallel that are not pink bollworm generally infested or suppressive..., Arkansas, Florida, Georgia, Louisiana, Mississippi, Nevada, North Carolina, South Carolina, Tennessee, or...
NASA Astrophysics Data System (ADS)
Yin, Jin; Sun, Yucheng; Ge, Feng
2014-04-01
Estimating the immunocompetence of herbivore insects under elevated CO2 is an important step in understanding the effects of elevated CO2 on crop-herbivore-natural enemy interactions. Current study determined the effect of elevated CO2 on the immune response of Helicoverpa armigera against its parasitoid Microplitis mediator. H. armigera were reared in growth chambers with ambient or elevated CO2, and fed wheat grown in the concentration of CO2 corresponding to their treatment levels. Our results showed that elevated CO2 decreases the nutritional quality of wheat, and reduces the total hemocyte counts and impairs the capacity of hemocyte spreading of hemolymph of cotton bollworm larvae, fed wheat grown in the elevated CO2, against its parasitoid; however, this effect was insufficient to change the development and parasitism traits of M. mediator. Our results suggested that lower plant nutritional quality under elevated CO2 could decrease the immune response of herbivorous insects against their parasitoid natural enemies.
Identification and characterization of aldehyde oxidases (AOXs) in the cotton bollworm
NASA Astrophysics Data System (ADS)
Xu, Wei; Liao, Yalin
2017-12-01
Aldehyde oxidases (AOXs) are a family of metabolic enzymes that oxidize aldehydes into carboxylic acids; therefore, they play critical roles in detoxification and degradation of chemicals. By using transcriptomic and genomic approaches, we successfully identified six putative AOX genes (HarmAOX1-6) from cotton bollworm, Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae). In silico expression profile, reverse transcription (RT)-PCR, and quantitative PCR (qPCR) analyses showed that HarmAOX1 is highly expressed in adult antennae, tarsi, and larval mouthparts, so they may play an important role in degrading plant-derived compounds. HarmAOX2 is highly and specifically expressed in adult antennae, suggesting a candidate pheromone-degrading enzyme (PDE) to inactivate the sex pheromone components (Z)-11-hexadecenal and (Z)-9-hexadecenal. RNA sequencing data further demonstrated that a number of host plants they feed on could significantly upregulate the expression levels of HarmAOX1 in larvae. This study improves our understanding of insect aldehyde oxidases and insect-plant interactions.
Innate preference and learning of colour in the male cotton bollworm moth, Helicoverpa armigera.
Satoh, Aya; Kinoshita, Michiyo; Arikawa, Kentaro
2016-12-15
We investigated colour discrimination and learning in adult males of the nocturnal cotton bollworm moth, Helicoverpa armigera, under a dim light condition. The naive moths preferred blue and discriminated the innately preferred blue from several shades of grey, indicating that the moths have colour vision. After being trained for 2 days to take nectar at a yellow disc, an innately non-preferred colour, moths learned to select yellow over blue. The choice distribution between yellow and blue changed significantly from that of naive moths. However, the dual-choice distribution of the trained moths was not significantly biased to yellow: the preference for blue is robust. We also tried to train moths to grey, which was not successful. The limited ability to learn colours suggests that H armigera may not strongly rely on colours when searching for flowers in the field, although they have the basic property of colour vision. © 2016. Published by The Company of Biologists Ltd.
Wang, Manli; Wang, Xi; Yin, Mengyi; Wang, Qianran; Hu, Zhihong
2017-01-01
Melanization, an important insect defense mechanism, is mediated by clip-domain serine protease (cSP) cascades and is regulated by serpins. Here we show that proteolytic activation of prophenoloxidase (PPO) and PO-catalyzed melanization kill the baculovirus in vitro. Our quantitative proteomics and biochemical experiments revealed that baculovirus infection of the cotton bollworm, Helicoverpa armigera, reduced levels of most cascade members in the host hemolymph and PO activity. By contrast, serpin-9 and serpin-5 were sequentially upregulated after the viral infection. The H. armigera serpin-5 and serpin-9 regulate melanization by directly inhibiting their target proteases cSP4 and cSP6, respectively and cSP6 activates PPO purified from hemolymph. Furthermore, serpin-5/9-depleted insects exhibited high PO activities and showed resistance to baculovirus infection. Together, our results characterize a part of the melanization cascade in H. armigera, and suggest that natural insect virus baculovirus has evolved a distinct strategy to suppress the host immune system. PMID:28953952
Cis-mediated down-regulation of a trypsin gene associated with Bt resistance in cotton bollworm
USDA-ARS?s Scientific Manuscript database
Transgenic plants producing insecticidal proteins from the bacterium Bacillus thuringiensis (Bt) are useful for pest control, but their efficacy is reduced when pests evolve resistance. Previously identified mechanisms of resistance to Bt toxins include reduced binding of activated Bt toxins to m...
Jane Leslie Hayes; Marion Bell
1994-01-01
Pheromone trap counts of F1 male cotton bollworm, Helicoverpa zea (Bodie), and tobacco budworm, Heliothis virescens (F1) were used to assess the effect of areawide suppression achieved by early-season application of a Heliocoverpa/Heliothis specific nuclear...
7 CFR 301.52 - Quarantine; restriction on interstate movement of specified regulated articles.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 7 Agriculture 5 2013-01-01 2013-01-01 false Quarantine; restriction on interstate movement of... (Continued) ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE DOMESTIC QUARANTINE NOTICES Pink Bollworm Quarantine and Regulations § 301.52 Quarantine; restriction on interstate movement of...
7 CFR 301.52 - Quarantine; restriction on interstate movement of specified regulated articles.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 7 Agriculture 5 2014-01-01 2014-01-01 false Quarantine; restriction on interstate movement of... (Continued) ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE DOMESTIC QUARANTINE NOTICES Pink Bollworm Quarantine and Regulations § 301.52 Quarantine; restriction on interstate movement of...
7 CFR 301.52 - Quarantine; restriction on interstate movement of specified regulated articles.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 7 Agriculture 5 2011-01-01 2011-01-01 false Quarantine; restriction on interstate movement of... (Continued) ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE DOMESTIC QUARANTINE NOTICES Pink Bollworm Quarantine and Regulations § 301.52 Quarantine; restriction on interstate movement of...
7 CFR 301.52 - Quarantine; restriction on interstate movement of specified regulated articles.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 7 Agriculture 5 2012-01-01 2012-01-01 false Quarantine; restriction on interstate movement of... (Continued) ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE DOMESTIC QUARANTINE NOTICES Pink Bollworm Quarantine and Regulations § 301.52 Quarantine; restriction on interstate movement of...
Supplemental control with diamides for Heliothines1 in Bt Cotton
USDA-ARS?s Scientific Manuscript database
Supplemental control of bollworm, Helicoverpa zea (Boddie), in Bt cotton with diamides is becoming more frequent, but there is little information on the net returns to growers. Seven locations were established across the MS Delta cropping region between 2014 and 2015 to examine the value of spraying...
USDA-ARS?s Scientific Manuscript database
Transgenic crops producing insecticidal proteins from Bacillus thuringiensis (Bt) are cultivated extensively worldwide. However, their benefits are being eroded by increasingly rapid evolution of resistance in pests. In some previously analyzed strains of three major lepidopteran pests, resistance t...
7 CFR 319.37-6 - Specific treatment and other requirements.
Code of Federal Regulations, 2012 CFR
2012-01-01
...) of this section) Cuscuta spp., and other noxious weeds listed in 7 CFR 360.200. Hibiscus spp. (hibiscus, rose mallow) seeds All, with the exception of kenaf seed (Hibiscus cannabinus) from Mexico that... kenaf (Hibiscus cannabinus) seed from Mexico that are imported into pink bollworm generally infested...
7 CFR 319.37-6 - Specific treatment and other requirements.
Code of Federal Regulations, 2014 CFR
2014-01-01
...) of this section) Cuscuta spp., and other noxious weeds listed in 7 CFR 360.200. Hibiscus spp. (hibiscus, rose mallow) seeds All, with the exception of kenaf seed (Hibiscus cannabinus) from Mexico that... kenaf (Hibiscus cannabinus) seed from Mexico that are imported into pink bollworm generally infested...
7 CFR 319.37-6 - Specific treatment and other requirements.
Code of Federal Regulations, 2013 CFR
2013-01-01
...) of this section) Cuscuta spp., and other noxious weeds listed in 7 CFR 360.200. Hibiscus spp. (hibiscus, rose mallow) seeds All, with the exception of kenaf seed (Hibiscus cannabinus) from Mexico that... kenaf (Hibiscus cannabinus) seed from Mexico that are imported into pink bollworm generally infested...
USDA-ARS?s Scientific Manuscript database
Various Uzbek commercial varieties were grown in the field and these were exposed to cotton bollworm (Helicoverpa armigera) larvae. A significant negative correlation coefficient (r = -0.89) and linear regression (Y = 109.69-5.26X) was observed between the concentration of (+)-gossypol in cotton se...
7 CFR 301.52-2a - Regulated areas; suppressive and generally infested areas.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 5 2010-01-01 2010-01-01 false Regulated areas; suppressive and generally infested areas. 301.52-2a Section 301.52-2a Agriculture Regulations of the Department of Agriculture (Continued... Bollworm Quarantine and Regulations § 301.52-2a Regulated areas; suppressive and generally infested areas...
7 CFR 301.52-2a - Regulated areas; suppressive and generally infested areas.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 7 Agriculture 5 2014-01-01 2014-01-01 false Regulated areas; suppressive and generally infested areas. 301.52-2a Section 301.52-2a Agriculture Regulations of the Department of Agriculture (Continued... Bollworm Quarantine and Regulations § 301.52-2a Regulated areas; suppressive and generally infested areas...
7 CFR 301.52-2a - Regulated areas; suppressive and generally infested areas.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 7 Agriculture 5 2012-01-01 2012-01-01 false Regulated areas; suppressive and generally infested areas. 301.52-2a Section 301.52-2a Agriculture Regulations of the Department of Agriculture (Continued... Bollworm Quarantine and Regulations § 301.52-2a Regulated areas; suppressive and generally infested areas...
7 CFR 301.52-2a - Regulated areas; suppressive and generally infested areas.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 7 Agriculture 5 2013-01-01 2013-01-01 false Regulated areas; suppressive and generally infested areas. 301.52-2a Section 301.52-2a Agriculture Regulations of the Department of Agriculture (Continued... Bollworm Quarantine and Regulations § 301.52-2a Regulated areas; suppressive and generally infested areas...
7 CFR 301.52-2a - Regulated areas; suppressive and generally infested areas.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 7 Agriculture 5 2011-01-01 2011-01-01 false Regulated areas; suppressive and generally infested areas. 301.52-2a Section 301.52-2a Agriculture Regulations of the Department of Agriculture (Continued... Bollworm Quarantine and Regulations § 301.52-2a Regulated areas; suppressive and generally infested areas...
Evaluation of remote sensing in control of pink cotton bollworm
NASA Technical Reports Server (NTRS)
Lewis, L. N. (Principal Investigator); Coleman, V. B.
1973-01-01
The author has identified the following significant results. The U-2 underflight photography has shown that the critical stages in cotton plow down (defoliation, shredding, and plowing) can be identified. This result will prove invaluable to a user agency whose purpose is to monitor the cotton season for compliance with California State law.
USDA-ARS?s Scientific Manuscript database
Wolf spiders (Araneae: Lycosidae) are abundant soil-dwelling predators found in cotton fields and can contribute important pest management services. These spiders can kill and consume larvae of the cotton bollworm Helicoverpa spp. (Lepidoptera: Noctuidae) that survive foraging on Bt cotton and desce...
7 CFR 301.52-8 - Inspection and disposal of regulated articles and pests.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 5 2010-01-01 2010-01-01 false Inspection and disposal of regulated articles and pests. 301.52-8 Section 301.52-8 Agriculture Regulations of the Department of Agriculture (Continued... Bollworm Quarantine and Regulations § 301.52-8 Inspection and disposal of regulated articles and pests. Any...
Intra- and extracellular domains of the Helicoverpa armigera cadherin mediate Cry1Ac cytotoxicity
USDA-ARS?s Scientific Manuscript database
Diverse midgut cadherin mutations confer resistance to Cry1A toxins in at least three lepidopteran pests, including the cotton bollworm, Helicoverpa armigera. Most of these cadherin mutations are inherited as recessive alleles and result in changes within the cadherin repeat (CR) regions of the extr...
Evaluation of remote sensing in control of pink bollworm in cotton
NASA Technical Reports Server (NTRS)
Lewis, L. N. (Principal Investigator); Coleman, V. B.; Johnson, C. W.
1973-01-01
The author has identified the following significant results. This project is to identify and map cotton fields in the southern deserts of California. Cotton in the Imperial, Coachella, and Palo Verde Valleys is heavily infested by the pink bollworm which affects both the quantity and quality of cotton produced. In California the growing season of cotton is regulated by establishing planting and plowdown dates. These procedures ensure that the larvae, whose diapause or resting period occurs during the winter months, will have no plant material on which to feed, thus inhibiting spring moth emergence. the underflight data from the U-2 aircraft has shound that it is possible to detect the differences between a growing, a defoliated, and plowed down field providing the locations of the fields are known. The ERTS-1 MSS data are being analyzed using an I2S optical color combiner to determine which combinations of dates and colors will identify cotton fields and thus provide the data needed to produce maps of the fields for the forthcoming season.
Rab3 is involved in cellular immune responses of the cotton bollworm, Helicoverpa armigera.
Li, Jie; Song, Cai-Xia; Li, Yu-Ping; Li, Li; Wei, Xiu-Hong; Wang, Jia-Lin; Liu, Xu-Sheng
2015-06-01
Rab3, a member of the Rab GTPase family, has been found to be involved in innate immunity. However, the precise function of this GTPase in innate immunity remains unknown. In this study, we identified a Rab3 gene (Ha-Rab3) from the cotton bollworm, Helicoverpa armigera and studied its roles in innate immune responses. Expression of Ha-Rab3 was upregulated in the hemocytes of H. armigera larvae after the injection of Escherichia coli or chromatography beads. The dsRNA-mediated knockdown of Ha-Rab3 gene in H. armigera larval hemocytes led to significant reduction in the phagocytosis and nodulation activities of hemocytes against E. coli, significant increase in the bacterial load in larval hemolymph, and significant reduction in the encapsulation activities of hemocytes toward invading chromatography beads. Furthermore, Ha-Rab3 knockdown significantly suppressed spreading of plasmatocytes. These results suggest that Ha-Rab3 plays important roles in H. armigera cellular immune responses, possibly by mediating spreading of hemocytes. Copyright © 2015 Elsevier Ltd. All rights reserved.
7 CFR 319.8-13 - From Northwest Mexico.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 5 2010-01-01 2010-01-01 false From Northwest Mexico. 319.8-13 Section 319.8-13... for the Entry of Cotton and Covers from Mexico § 319.8-13 From Northwest Mexico. Contingent upon continued freedom of Northwest Mexico and of the West Coast of Mexico from infestations of the pink bollworm...
Code of Federal Regulations, 2013 CFR
2013-01-01
... regulated areas and suppressive or generally infested areas. 301.52-2 Section 301.52-2 Agriculture... shall list as regulated areas in a supplemental regulation designated as § 301.52-2a, the quarantined..., DEPARTMENT OF AGRICULTURE DOMESTIC QUARANTINE NOTICES Pink Bollworm Quarantine and Regulations § 301.52-2...
Code of Federal Regulations, 2012 CFR
2012-01-01
... regulated areas and suppressive or generally infested areas. 301.52-2 Section 301.52-2 Agriculture... shall list as regulated areas in a supplemental regulation designated as § 301.52-2a, the quarantined..., DEPARTMENT OF AGRICULTURE DOMESTIC QUARANTINE NOTICES Pink Bollworm Quarantine and Regulations § 301.52-2...
Code of Federal Regulations, 2010 CFR
2010-01-01
... regulated articles from quarantined States. 2 301.52-3 Section 301.52-3 Agriculture Regulations of the... DOMESTIC QUARANTINE NOTICES Pink Bollworm Quarantine and Regulations § 301.52-3 Conditions governing the... interstate from any quarantined State under the following conditions: (a) From any regulated area, with...
Code of Federal Regulations, 2012 CFR
2012-01-01
... regulated articles from quarantined States. 2 301.52-3 Section 301.52-3 Agriculture Regulations of the... DOMESTIC QUARANTINE NOTICES Pink Bollworm Quarantine and Regulations § 301.52-3 Conditions governing the... interstate from any quarantined State under the following conditions: (a) From any regulated area, with...
Code of Federal Regulations, 2011 CFR
2011-01-01
... regulated areas and suppressive or generally infested areas. 301.52-2 Section 301.52-2 Agriculture... shall list as regulated areas in a supplemental regulation designated as § 301.52-2a, the quarantined..., DEPARTMENT OF AGRICULTURE DOMESTIC QUARANTINE NOTICES Pink Bollworm Quarantine and Regulations § 301.52-2...
Code of Federal Regulations, 2010 CFR
2010-01-01
... regulated areas and suppressive or generally infested areas. 301.52-2 Section 301.52-2 Agriculture... shall list as regulated areas in a supplemental regulation designated as § 301.52-2a, the quarantined..., DEPARTMENT OF AGRICULTURE DOMESTIC QUARANTINE NOTICES Pink Bollworm Quarantine and Regulations § 301.52-2...
Code of Federal Regulations, 2014 CFR
2014-01-01
... regulated articles from quarantined States. 2 301.52-3 Section 301.52-3 Agriculture Regulations of the... DOMESTIC QUARANTINE NOTICES Pink Bollworm Quarantine and Regulations § 301.52-3 Conditions governing the... interstate from any quarantined State under the following conditions: (a) From any regulated area, with...
Code of Federal Regulations, 2011 CFR
2011-01-01
... regulated articles from quarantined States. 2 301.52-3 Section 301.52-3 Agriculture Regulations of the... DOMESTIC QUARANTINE NOTICES Pink Bollworm Quarantine and Regulations § 301.52-3 Conditions governing the... interstate from any quarantined State under the following conditions: (a) From any regulated area, with...
Code of Federal Regulations, 2013 CFR
2013-01-01
... regulated articles from quarantined States. 2 301.52-3 Section 301.52-3 Agriculture Regulations of the... DOMESTIC QUARANTINE NOTICES Pink Bollworm Quarantine and Regulations § 301.52-3 Conditions governing the... interstate from any quarantined State under the following conditions: (a) From any regulated area, with...
Code of Federal Regulations, 2014 CFR
2014-01-01
... regulated areas and suppressive or generally infested areas. 301.52-2 Section 301.52-2 Agriculture... shall list as regulated areas in a supplemental regulation designated as § 301.52-2a, the quarantined..., DEPARTMENT OF AGRICULTURE DOMESTIC QUARANTINE NOTICES Pink Bollworm Quarantine and Regulations § 301.52-2...
7 CFR 319.8-13 - From Northwest Mexico.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 7 Agriculture 5 2012-01-01 2012-01-01 false From Northwest Mexico. 319.8-13 Section 319.8-13... for the Entry of Cotton and Covers from Mexico § 319.8-13 From Northwest Mexico. Contingent upon continued freedom of Northwest Mexico and of the West Coast of Mexico from infestations of the pink bollworm...
7 CFR 319.8-13 - From Northwest Mexico.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 7 Agriculture 5 2014-01-01 2014-01-01 false From Northwest Mexico. 319.8-13 Section 319.8-13... for the Entry of Cotton and Covers from Mexico § 319.8-13 From Northwest Mexico. Contingent upon continued freedom of Northwest Mexico and of the West Coast of Mexico from infestations of the pink bollworm...
7 CFR 319.8-13 - From Northwest Mexico.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 7 Agriculture 5 2013-01-01 2013-01-01 false From Northwest Mexico. 319.8-13 Section 319.8-13... for the Entry of Cotton and Covers from Mexico § 319.8-13 From Northwest Mexico. Contingent upon continued freedom of Northwest Mexico and of the West Coast of Mexico from infestations of the pink bollworm...
7 CFR 319.8-13 - From Northwest Mexico.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 7 Agriculture 5 2011-01-01 2011-01-01 false From Northwest Mexico. 319.8-13 Section 319.8-13... for the Entry of Cotton and Covers from Mexico § 319.8-13 From Northwest Mexico. Contingent upon continued freedom of Northwest Mexico and of the West Coast of Mexico from infestations of the pink bollworm...
ERIC Educational Resources Information Center
Osteen, Craig; Suguiyama, Luis
This report examines the economic implications of losing chlordimeform use on cotton and considers chlordimeform's role in managing the resistance of bollworms and tobacco budworms to synthetic pyrethroids. It estimates changes in prices, production, acreage, consumer expenditures, aggregate producer returns, regional crop effects, and returns to…
USDA-ARS?s Scientific Manuscript database
The mitochondrial genome of the bollworm, Helicoverpa zea, was assembled using paired-end nucleotide sequence reads generated with a next-generation sequencing platform. Assembly resulted in a mitogenome of 15,348 bp with greater than 17,000-fold average coverage. Organization of the H. zea mitogen...
USDA-ARS?s Scientific Manuscript database
Evolution of resistance in pests threatens the long-term success of transgenic crops that produce insecticidal proteins from Bacillus thuringiensis (Bt). Previous work showed that genetically modified Bt toxins Cry1AbMod and Cry1AcMod effectively countered resistance to native Bt toxins Cry1Ab and ...
Abedi, Zahra; Saber, Moosa; Vojoudi, Samad; Mahdavi, Vahid; Parsaeyan, Ehsan
2014-01-01
Abstract The cotton bollworm, Helicoverpa armigera Hübner (Lepidoptera: Noctuidae) is a polyphagous and cosmopolitan insect pest that causes damage to various plants. In this study, the lethal and sublethal effects of azadirachtin and Bacillus thuringiensis Berliner sub sp . kurstaki (Bacillales: Bacillaceae) were evaluated on third instar H. armigera under laboratory conditions. The LC50 values of azadirachtin and Bt were 12.95 and 96.8 µg a.i./mL, respectively. A total mortality of 56.7% was caused on third instar larvae when LC20 values of the insecticides were applied in combination with each other. The LT50 values of azadirachtin and Bt were 4.8 and 3.6 days, respectively. The results of the sublethal study showed that the application of LC30 value of azadirachtin and Bt reduced the larval and pupal weight and increased larval and pupal duration of H. armigera . The longevity and fecundity of female adults were affected significantly by the insecticides. Female fecundity was reduced by the treatments, respectively. The lowest adult emergence ratio and pupation ratio were observed in the azadirachtin treatment. The results indicated that both insecticides have high potential for controlling of the pest. PMID:25373177
Sarate, P.J.; Tamhane, V.A.; Kotkar, H.M.; Ratnakaran, N.; Susan, N.; Gupta, V.S.; Giri, A.P.
2012-01-01
Developmental patterns and survival of the cotton bollworm, Helicoverpa armigera Hübner (Lepidoptera: Noctuidae), a polyphagous insect pest, have been studied with reference to the effect of diet on major gut digestive enzymes (amylases, proteases, and lipases). Significant correlations between nutritional quality of the diet and larval and pupal mass were observed when H. armigera larvae were fed on various host plants viz. legumes (chickpea and pigeonpea), vegetables (tomato and okra), flowers (rose and marigold), and cereals (sorghum and maize). Larvae fed on diets rich in proteins and/or carbohydrates (pigeonpea, chickpea, maize, and sorghum) showed higher larval mass and developed more rapidly than larvae fed on diets with low protein and carbohydrate content (rose, marigold, okra, and tomato). Low calorific value diets like rose and marigold resulted in higher mortality (25–35%) of H. armigera. Even with highly varying development efficiency and larval/pupal survival rates, H. armigera populations feeding on different diets completed their life cycles. Digestive enzymes of H. armigera displayed variable expression levels and were found to be regulated on the basis of macromolecular composition of the diet. Post—ingestive adaptations operating at the gut level, in the form of controlled release of digestive enzymes, might be a key factor contributing to the physiological plasticity in H. armigera. PMID:22954360
Jin, Lin; Wei, Yiyun; Zhang, Lei; Yang, Yihua; Tabashnik, Bruce E; Wu, Yidong
2013-01-01
Evolution of resistance by insect pests threatens the long-term benefits of transgenic crops that produce insecticidal proteins from Bacillus thuringiensis (Bt). Previous work has detected increases in the frequency of resistance to Bt toxin Cry1Ac in populations of cotton bollworm, Helicoverpa armigera, from northern China where Bt cotton producing Cry1Ac has been grown extensively for more than a decade. Confirming that trend, we report evidence from 2011 showing that the percentage of individuals resistant to a diagnostic concentration of Cry1Ac was significantly higher in two populations from different provinces of northern China (1.4% and 2.3%) compared with previously tested susceptible field populations (0%). We isolated two resistant strains: one from each of the two field-selected populations. Relative to a susceptible strain, the two strains had 460- and 1200-fold resistance to Cry1Ac, respectively. Both strains had dominant resistance to a diagnostic concentration of Cry1Ac in diet and to Bt cotton leaves containing Cry1Ac. Both strains had low, but significant cross-resistance to Cry2Ab (4.2- and 5.9-fold), which is used widely as the second toxin in two-toxin Bt cotton. Compared with resistance in other strains of H. armigera, the resistance in the two strains characterized here may be especially difficult to suppress. PMID:24478804
Xiao, Yutao; Dai, Qing; Hu, Ruqin; Pacheco, Sabino; Yang, Yongbo; Liang, Gemei; Soberón, Mario
2017-01-01
Transgenic plants that produce Bacillus thuringiensis (Bt) crystalline (Cry) toxins are cultivated worldwide to control insect pests. Resistance to B. thuringiensis toxins threatens this technology, and although different resistance mechanisms have been identified, some have not been completely elucidated. To gain new insights into these mechanisms, we performed multiple back-crossing from a 3000-fold Cry1Ac-resistant BtR strain from cotton bollworm (Helicoverpa armigera), isolating a 516-fold Cry1Ac-resistant strain (96CAD). Cry1Ac resistance in 96CAD was tightly linked to a mutant cadherin allele (mHaCad) that contained 35 amino acid substitutions compared with HaCad from a susceptible strain (96S). We observed significantly reduced levels of the mHaCad protein on the surface of the midgut epithelium in 96CAD as compared with 96S. Expression of both cadherin alleles from 96CAD and 96S in insect cells and immunofluorescence localization in insect midgut tissue sections showed that the HaCAD protein from 96S localizes on the cell membrane, whereas the mutant 96CAD-mHaCad was retained in the endoplasmic reticulum (ER). Mapping of the mutations identified a D172G substitution mainly responsible for cadherin mislocalization. Our finding of a mutation affecting membrane receptor trafficking represents an unusual and previously unrecognized B. thuringiensis resistance mechanism. PMID:28082675
Abedi, Zahra; Saber, Moosa; Vojoudi, Samad; Mahdavi, Vahid; Parsaeyan, Ehsan
2014-02-26
The cotton bollworm, Helicoverpa armigera Hübner (Lepidoptera: Noctuidae) is a polyphagous and cosmopolitan insect pest that causes damage to various plants. In this study, the lethal and sublethal effects of azadirachtin and Bacillus thuringiensis Berliner sub sp . kurstaki (Bacillales: Bacillaceae) were evaluated on third instar H. armigera under laboratory conditions. The LC50 values of azadirachtin and Bt were 12.95 and 96.8 µg a.i./mL, respectively. A total mortality of 56.7% was caused on third instar larvae when LC20 values of the insecticides were applied in combination with each other. The LT50 values of azadirachtin and Bt were 4.8 and 3.6 days, respectively. The results of the sublethal study showed that the application of LC30 value of azadirachtin and Bt reduced the larval and pupal weight and increased larval and pupal duration of H. armigera. The longevity and fecundity of female adults were affected significantly by the insecticides. Female fecundity was reduced by the treatments, respectively. The lowest adult emergence ratio and pupation ratio were observed in the azadirachtin treatment. The results indicated that both insecticides have high potential for controlling of the pest. This is an open access paper. We use the Creative Commons Attribution 3.0 license that permits unrestricted use, provided that the paper is properly attributed.
Shen, Li-Ze; Chen, Peng-Zhou; Xu, Zhi-Hong; Deng, Jian-Yu; Harris, Marvin-K; Wanna, Ruchuon; Wang, Fu-Min; Zhou, Guo-Xin; Yao, Zhang-Liang
2013-01-01
Third instar larvae of the cotton bollworm (Helicoverpa armigera) were reared with artificial diet containing a Bacillus thuringiensis - abamectin (BtA) biopesticide mixture that resulted in 20% mortality (LD20). The adult male survivors from larvae treated with BtA exhibited a higher percentage of “orientation” than control males but lower percentages of “approaching” and “landing” in wind tunnel bioassays. Adult female survivors from larvae treated with BtA produced higher sex pheromone titers and displayed a lower calling percentage than control females. The ratio of Z-11-hexadecenal (Z11–16:Ald) and Z-9-hexadecenal (Z9–16:Ald) in BtA-treated females changed and coefficients of variation (CV) of Z11–16:Ald and Z9–16:Ald were expanded compared to control females. The peak circadian calling time of BtA-treated females occurred later than that of control females. In mating choice experiment, both control males and BtA-treated males preferred to mate with control females and a portion of the Bt-A treated males did not mate whereas all control males did. Our Data support that treatment of larvae with BtA had an effect on the sex pheromone communication system in surviving H.armigera moths that may contribute to assortative mating. PMID:23874751
Carbon dioxide receptor genes in cotton bollworm Helicoverpa armigera
NASA Astrophysics Data System (ADS)
Xu, Wei; Anderson, Alisha
2015-04-01
Carbon dioxide (CO2) is important in insect ecology, eliciting a range of behaviours across different species. Interestingly, the numbers of CO2 gustatory receptors (GRs) vary among insect species. In the model organism Drosophila melanogaster, two GRs (DmelGR21a and DmelGR63a) have been shown to detect CO2. In the butterfly, moth, beetle and mosquito species studied so far, three CO2 GR genes have been identified, while in tsetse flies, four CO2 GR genes have been identified. In other species including honeybees, pea aphids, ants, locusts and wasps, no CO2 GR genes have been identified from the genome. These genomic differences may suggest different mechanisms for CO2 detection exist in different insects but, with the exception of Drosophila and mosquitoes, limited attention has been paid to the CO2 GRs in insects. Here, we cloned three putative CO2 GR genes from the cotton bollworm Helicoverpa armigera and performed phylogenetic and expression analysis. All three H. armigera CO2 GRs (HarmGR1, HarmGR2 and HarmGR3) are specifically expressed in labial palps, the CO2-sensing tissue of this moth. HarmGR3 is significantly activated by NaHCO3 when expressed in insect Sf9 cells but HarmGR1 and HarmGR2 are not. This is the first report characterizing the function of lepidopteran CO2 receptors, which contributes to our general understanding of the molecular mechanisms of insect CO2 gustatory receptors.
Lu, Yu-Xuan; Zhang, Qi; Xu, Wei-Hua
2014-01-01
A strategy known as diapause (developmental arrest) has evolved in insects to increase their survival rate under harsh environmental conditions. Diapause causes a dramatic reduction in the metabolic rate and drastically extends lifespan. However, little is known about the mechanisms underlying the metabolic changes involved. Using gas chromatography-mass spectrometry, we compared the changes in the metabolite levels in the brain and hemolymph of nondiapause- and diapause-destined cotton bollworm, Helicoverpa armigera, during the initiation, maintenance, and termination of pupal diapause. A total of 55 metabolites in the hemolymph and 52 metabolites in the brain were detected. Of these metabolites, 21 and 12 metabolite levels were altered in the diapause pupal hemolymph and brain, respectively. During diapause initiation and maintenance, the number of metabolites with increased levels in the hemolymph of the diapausing pupae is far greater than the number in the nondiapause pupae. These increased metabolites function as an energy source, metabolic intermediates, and cryoprotectants. The number of metabolites with decreased levels in the brain of diapausing pupae is far greater than the number in the nondiapause pupae. Low metabolite levels are likely to directly or indirectly repress the brain metabolic activity. During diapause termination, most of the metabolite levels in the hemolymph of the diapausing pupae rapidly decrease because they function as energy and metabolic sources that promote pupa-adult development. In conclusion, the metabolites with altered levels in the hemolymph and brain serve as energy and metabolic resources and help to maintain a low brain metabolic activity during diapause. PMID:24926789
Arrizubieta, Maite; Simón, Oihane; Williams, Trevor
2015-01-01
The genotypic diversity of two Spanish isolates of Helicoverpa armigera single nucleopolyhedrovirus (HearSNPV) was evaluated with the aim of identifying mixtures of genotypes with improved insecticidal characteristics for control of the cotton bollworm. Two genotypic variants, HearSP1A and HearSP1B, were cloned in vitro from the most pathogenic wild-type isolate of the Iberian Peninsula, HearSNPV-SP1 (HearSP1-wt). Similarly, six genotypic variants (HearLB1 to -6) were obtained by endpoint dilution from larvae collected from cotton crops in southern Spain that died from virus disease during laboratory rearing. Variants differed significantly in their insecticidal properties, pathogenicity, speed of kill, and occlusion body (OB) production (OBs/larva). HearSP1B was ∼3-fold more pathogenic than HearSP1-wt and the other variants. HearLB1, HearLB2, HeaLB5, and HearLB6 were the fastest-killing variants. Moreover, although highly virulent, HearLB1, HearLB4, and HearLB5 produced more OBs/larva than did the other variants. The co-occluded HearSP1B:LB6 mixture at a 1:1 proportion was 1.7- to 2.8-fold more pathogenic than any single variant and other mixtures tested and also killed larvae as fast as the most virulent genotypes. Serial passage resulted in modified proportions of the component variants of the HearSP1B:LB6 co-occluded mixture, suggesting that transmissibility could be further improved by this process. We conclude that the improved insecticidal phenotype of the HearSP1B:LB6 co-occluded mixture underlines the utility of the genotypic variant dissection and reassociation approach for the development of effective virus-based insecticides. PMID:25841011
Xu, Li; Li, Dongzhi; Qin, Jianying; Zhao, Weisong; Qiu, Lihong
2016-09-01
Pyrethroid resistance was one of the main reasons for control failure of cotton bollworm Helicoverpa armigera (Hübner) in China. The promotion of Bt crops decreased the application of chemical insecticides in controlling H.armigera. However, the cotton bollworm still kept high levels of resistance to fenvalerate. In this study, the resistance levels of 8 field-collected strains of H. armigera from north of China to 4 insecticides, as well as the expression levels of related P450 genes were investigated. The results of bioassay indicated that the resistance levels to fenvalerate in the field strains varied from 5.4- to 114.7-fold, while the resistance levels to lambda-cyhalothrin, phoxim and methomyl were low, which were ranged from 1.5- to 5.2-, 0.2- to 1.6-, and 2.9- to 8.3- fold, respectively, compared to a susceptible strain. Synergistic experiment showed that PBO was the most effective synergist in increasing the sensitivity of H. armigera to fenvalerate, suggesting that P450 enzymes were involved in the pyrethroid resistance in the field strains. The results of quantitative RT-PCR indicated that eight P450 genes (CYP332A1, CYP4L11, CYP4L5, CYP4M6, CYP4M7, CYP6B7, CYP9A12, CYP9A14) were all significantly overexpressed in Hejian1 and Xiajin1 strains of H. armigera collected in 2013, and CYP4L5 was significantly overexpressed in all the 6 field strains collected in 2014. CYP332A1, CYP6B7 and CYP9A12 had very high overexpression levels in all the field strains, indicating their important roles in fenvalerate resistance. The results suggested that multiple P450 genes were involved in the high-level fenvalerate-resistance in different field strains of H. armigera collected from north of China. Copyright © 2016 Elsevier B.V. All rights reserved.
Arrizubieta, Maite; Simón, Oihane; Williams, Trevor; Caballero, Primitivo
2015-06-15
The genotypic diversity of two Spanish isolates of Helicoverpa armigera single nucleopolyhedrovirus (HearSNPV) was evaluated with the aim of identifying mixtures of genotypes with improved insecticidal characteristics for control of the cotton bollworm. Two genotypic variants, HearSP1A and HearSP1B, were cloned in vitro from the most pathogenic wild-type isolate of the Iberian Peninsula, HearSNPV-SP1 (HearSP1-wt). Similarly, six genotypic variants (HearLB1 to -6) were obtained by endpoint dilution from larvae collected from cotton crops in southern Spain that died from virus disease during laboratory rearing. Variants differed significantly in their insecticidal properties, pathogenicity, speed of kill, and occlusion body (OB) production (OBs/larva). HearSP1B was ∼3-fold more pathogenic than HearSP1-wt and the other variants. HearLB1, HearLB2, HeaLB5, and HearLB6 were the fastest-killing variants. Moreover, although highly virulent, HearLB1, HearLB4, and HearLB5 produced more OBs/larva than did the other variants. The co-occluded HearSP1B:LB6 mixture at a 1:1 proportion was 1.7- to 2.8-fold more pathogenic than any single variant and other mixtures tested and also killed larvae as fast as the most virulent genotypes. Serial passage resulted in modified proportions of the component variants of the HearSP1B:LB6 co-occluded mixture, suggesting that transmissibility could be further improved by this process. We conclude that the improved insecticidal phenotype of the HearSP1B:LB6 co-occluded mixture underlines the utility of the genotypic variant dissection and reassociation approach for the development of effective virus-based insecticides. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Anilkumar, Konasale J.; Rodrigo-Simón, Ana; Ferré, Juan; Pusztai-Carey, Marianne; Sivasupramaniam, Sakuntala; Moar, William J.
2008-01-01
Laboratory-selected Bacillus thuringiensis-resistant colonies are important tools for elucidating B. thuringiensis resistance mechanisms. However, cotton bollworm, Helicoverpa zea, a target pest of transgenic corn and cotton expressing B. thuringiensis Cry1Ac (Bt corn and cotton), has proven difficult to select for stable resistance. Two populations of H. zea (AR and MR), resistant to the B. thuringiensis protein found in all commercial Bt cotton varieties (Cry1Ac), were established by selection with Cry1Ac activated toxin (AR) or MVP II (MR). Cry1Ac toxin reflects the form ingested by H. zea when feeding on Bt cotton, whereas MVP II is a Cry1Ac formulation used for resistance selection and monitoring. The resistance ratio (RR) for AR exceeded 100-fold after 11 generations and has been maintained at this level for nine generations. This is the first report of stable Cry1Ac resistance in H. zea. MR crashed after 11 generations, reaching only an RR of 12. AR was only partially cross-resistant to MVP II, suggesting that MVP II does not have the same Cry1Ac selection pressure as Cry1Ac toxin against H. zea and that proteases may be involved with resistance. AR was highly cross-resistant to Cry1Ab toxin but only slightly cross-resistant to Cry1Ab expressing corn leaf powder. AR was not cross-resistant to Cry2Aa2, Cry2Ab2-expressing corn leaf powder, Vip3A, and cypermethrin. Toxin-binding assays showed no significant differences, indicating that resistance was not linked to a reduction in binding. These results aid in understanding why this pest has not evolved B. thuringiensis resistance, and highlight the need to choose carefully the form of B. thuringiensis protein used in experiments. PMID:18024681
[Ecological fitness of transgenic GAFP cotton and its effects on the field insect community.
Luo, Jun Yu; Zhang, Shuai; Zhu, Xiang Zhen; Lu, Li Min; Wang, Chun Yi; Li, Chun Hua; Zhang, Li Juan; Wang, Li; Cui, Jin Jie
2016-11-18
The ecological fitness of transgenic cotton and its effects on the insect communities in cotton fields is one of the key aspects of the evaluation of the environmental safety of transgenic cotton. New transgenic GAFP (Gastrodia anti-fungal protein) cotton and its parental varieties were used in this study to explore their ecological fitness and their effects on insect community infield in Anyang, Henan Province in 2013 and 2014. The results showed that there was no significant difference in dry mass for transgenic cotton leaves compared to that of parental cotton. Specific leaf areas of transgenic cotton were lowered obviously at seedling stage, while enhanced significantly at budding, flowering and bolling stages relative to parental cotton. The plant height of transgenic cotton was lowered only at seedling stage, and no significant difference was showed between the two cultivars at budding, flowering and bolling stages. No significant differences were discovered on plant branch numbers, bud numbers and falling numbers between the transgenic cotton and control material in any of the four key stages during the cotton growth. However, the number of bolls per plant for transgenic cotton was lower than that of the control cotton at the bolling stage. In the 2nd, 3rd, and 4th generation of cotton bollworm (Helicoverpa armigera), the mortality rate of cotton bollworm and beet armyworm (Spodoptera exigua) of transgenic cotton had no significant difference with parental cotton. Compared to parental cotton, total individuals of insect community, pest sub-communities and enemy sub-communities in transgenic cotton field didn't show any significant difference. The above results showed that after the GAFP gene was imported into cotton, the cotton growth was enhanced significantly, while the whole yield component traits and the insect community in the field were not significantly changed. Our study on the competition of new transgenic cotton and survival of transgenic cotton insect communities in cotton field would provide the theoretical basis for the evaluation of new transgenic cotton and environmental safety, and accumulate scientific data for environmental safety evaluation of the transgenic cotton.
Wang, Qing; Zhu, Yi; Sun, Lin; Li, Lebin; Jin, Shuangxia; Zhang, Xianlong
2016-02-01
A promoter of the PNZIP (Pharbitis nil leucine zipper) gene (1.459 kb) was cloned from Pharbitis nil and fused to the GUS (β-glucuronidase) and Bacillus thuringiensis endotoxin (Cry9C) genes. Several transgenic PNZIP::GUS and PNZIP::Cry9C cotton lines were developed by Agrobacterium-mediated transformation. Strong GUS staining was detected in the green tissues of the transgenic PNZIP::GUS cotton plants. In contrast, GUS staining in the reproductive structures such as petals, anther, and immature seeds of PNZIP::GUS cotton was very faint. Two transgenic PNZIP::Cry9C lines and one transgenic cauliflower mosaic virus (CaMV) 35S::Cry9C line were selected for enzyme-linked immunosorbent assay (ELISA) and insect bioassays. Expression of the Cry9C protein in the 35S::Cry9C line maintained a high level in most tissues ranging from 24.6 to 45.5 μg g(-1) fresh weight. In green tissues such as the leaves, boll rinds, and bracts of the PNZIP::Cry9C line, the Cry9C protein accumulated up to 50.2, 39.7, and 48.3 μg g(-1) fresh weight respectively. In contrast, seeds of the PNZIP::Cry9C line (PZ1.3) accumulated only 0.26 μg g(-1) fresh weight of the Cry9C protein, which was 100 times lower than that recorded for the seeds of the CaMV 35S::Cry9C line. The insect bioassay showed that the transgenic PNZIP::Cry9C cotton plant exhibited strong resistance to both the cotton bollworm and the pink bollworm. The PNZIP promoter could effectively drive Bt toxin expression in green tissues of cotton and lower accumulated levels of the Bt protein in seeds. These features should allay public concerns about the safety of transgenic foods. We propose the future utility of PNZIP as an economical, environmentally friendly promoter in cotton biotechnology.
Paramasiva, Inakarla; Sharma, Hari C; Krishnayya, Pulipaka Venkata
2014-07-24
The cotton bollworm, Helicoverpa armigera is one of the most important crop pests worldwide. It has developed high levels of resistance to synthetic insecticides, and hence, Bacillus thuringiensis (Bt) formulations are used as a safer pesticide and the Bt genes have been deployed in transgenic crops for controlling this pest. There is an apprehension that H. armigera might develop resistance to transgenic crops in future. Therefore, we studied the role of gut microbes by eliminating them with antibiotics in H. armigera larvae on the toxicity of Bt toxins against this pest. Commercial formulation of Bt (Biolep®) and the pure Cry1Ab and Cry1Ac toxin proteins were evaluated at ED50, LC50, and LC90 dosages against the H. armigera larvae with and without antibiotics (which removed the gut microbes). Lowest H. armigera larval mortality due to Bt formulation and the Bt toxins Cry1Ab and Cry1Ac was recorded in insects reared on diets with 250 and 500 μg ml-1 diet of each of the four antibiotics (gentamicin, penicillin, rifampicin, and streptomycin), while the highest larval mortality was recorded in insects reared on diets without the antibiotics. Mortality of H. armigera larvae fed on diets with Bt formulation and the δ-endotoxins Cry1Ab and Cry1Ac was inversely proportional to the concentration of antibiotics in the artificial diet. Nearly 30% reduction in larval mortality was observed in H. armigera larvae from F1 to F3 generation when the larvae were reared on diets without antibiotics (with gut microbes) and fed on 0.15% Bt or 12 μg Cry1Ab or Cry1Ac ml-1 diet, indicating development of resistance to Bt in the presence of gut microflora. However, there were no differences in larval mortality due to Bt, Cry1Ab or Cry1Ac across generations in insects when they were reared on diets with 250 μg of each antibiotic ml-1 diet (without gut microflora). The results suggested that antibiotics which eliminated gut microflora influenced the toxicity of Bt towards H. armigera, and any variation in diversity and abundance of gut microflora will have a major bearing on development of resistance to Bt toxins applied as foliar sprays or deployed in transgenic crops for pest management.
NASA Astrophysics Data System (ADS)
2012-01-01
In situ Oxidation Study of Pt (110) and Its Interaction with CO Chinese Scientists Published a Paper on Prevention of Drug Craving and Relapse by Memory Retrieval-extinction Procedure in Science Series Papers Published in Energy Policy: Modeling Energy Use of China's Road Transport and Policy Evaluation Breakthrough in the Ambient Catalytic Destruction of Formaldehyde Novel Findings for High Altitude Adaptation from the Yak Genome Binary Colloidal Structures Assembled through Ising Interactions Reemergence of superconductivity at 48K in Compressed Iron Selenide Based Superconductors Nucleosomes Suppress Spontaneous Mutations Base-Specifically in Eukaryotes Single-Chain Fragmented Antibodies Guided SiRNA Delivery in Breast Cancer Does Yeast Suicide? China Scientists Developed Important Methodologies for Spatiotemporal Detecting and Manipulating of Cellular Activities Scorpions Inspire Chinese Scientists in Making Bionic Non-eroding Surfaces for Machinery Research on Phylogenetic Placement of Borthwickia and Description of a New Family of Angiosperms, Borthwickiaceae Plasmoid Ejection and Secondary Current Sheet Generation from Magnetic Reconnection in Laser-plasma Interaction Cotton Bollworm Adapts to Bt Cotton via Diverse Mutations A Histone Acetyltransferase Regulates Active DNA Demethylation in Arabidopsis
Akbar, S M D; Sharma, H C; Jayalakshmi, S K; Sreeramulu, K
2012-02-01
The cotton bollworm, Helicoverpa armigera is a polyphagous pest in Asia, Africa, and the Mediterranean Europe. Salicylic acid (SA) and jasmonic acid (JA) are the cell signaling molecules produced in response to insect attack in plants. The effect of these signaling molecules was investigated on the oxidative phosphorylation and oxidative stress of H. armigera. SA significantly inhibited the state III and state IV respiration, respiratory control index (RCI), respiratory complexes I and II, induced mitochondrial swelling, and cytochrome c release in vitro. Under in vivo conditions, SA induced state IV respiration as well as oxidative stress in time- and dose-dependent manner, and also inhibited the larval growth. In contrast, JA did not affect the mitochondrial respiration and oxidative stress. SA affected the growth and development of H. armigera, in addition to its function as signaling molecules involved in both local defense reactions at feeding sites and the induction of systemic acquired resistance in plants.
Xiong, Yehui; Zeng, Hongmei; Zhang, Yuliang; Xu, Dawei; Qiu, Dewen
2013-01-01
RNA interference (RNAi) caused by exogenous double-stranded RNA (dsRNA) has developed into a powerful technique in functional genomics, and to date it is widely used to down-regulate crucial physiology-related genes to control pest insects. A molt-regulating transcription factor gene, HaHR3, of cotton bollworm (Helicoverpa armigera) was selected as the target gene. Four different fragments covering the coding sequence (CDS) of HaHR3 were cloned into vector L4440 to express dsRNAs in Escherichia coli. The most effective silencing fragment was then cloned into a plant over-expression vector to express a hairpin RNA (hpRNA) in transgenic tobacco (Nicotiana tabacum). When H. armigera larvae were fed the E. coli or transgenic plants, the HaHR3 mRNA and protein levels dramatically decreased, resulting developmental deformity and larval lethality. The results demonstrate that both recombinant bacteria and transgenic plants could induce HaHR3 silence to disrupt H. armigera development, transgenic plant-mediated RNAi is emerging as a powerful approach for controlling insect pests. PMID:23630449
Yan, Shuo; Zhu, Jialin; Zhu, Weilong; Zhang, Xinfang; Li, Zhen; Liu, Xiaoxia; Zhang, Qingwen
2014-01-01
Visual genes may become inactive in species that inhabit poor light environments, and the function and regulation of opsin components in nocturnal moths are interesting topics. In this study, we cloned the ultraviolet (UV), blue (BL) and long-wavelength-sensitive (LW) opsin genes from the compound eye of the cotton bollworm and then measured their mRNA levels using quantitative real-time PCR. The mRNA levels fluctuated over a daily cycle, which might be an adaptation of a nocturnal lifestyle, and were dependent on a circadian clock. Cycling of opsin mRNA levels was disturbed by constant light or constant darkness, and the UV opsin gene was up-regulated after light exposure. Furthermore, the opsin genes tended to be down-regulated upon starvation. Thus, this study illustrates that opsin gene expression is determined by multiple endogenous and exogenous factors and is adapted to the need for nocturnal vision, suggesting that color vision may play an important role in the sensory ecology of nocturnal moths. PMID:25353953
A sugar gustatory receptor identified from the foregut of cotton bollworm Helicoverpa armigera.
Xu, Wei; Zhang, Hui-Jie; Anderson, Alisha
2012-12-01
Helicoverpa armigera (Hübner) is one of the most polyphagous and cosmopolitan pest species, the larvae of which feed on numerous important crops. The gustatory system is critical in guiding insect feeding behavior. Here, we identified a gustatory receptor from H. armigera, HaGR9, which shows high levels of identity to DmGR43a from Drosophila melanogaster and BmGR9 from Bombyx mori. Reverse transcriptase PCR (RT-PCR) revealed HaGR9 is highly expressed in larval foregut, with little or no expression in other chemosensory tissues. Membrane topology studies indicated that, like two previously studied B. mori GRs, BmGR8 and BmGR53, HaGR9 has an inverted topology relative to G protein-coupled receptors (GPCRs), an intracellular N-terminus and an extracellular C-terminus. Calcium imaging studies confirmed HaGR9 is a sugar receptor showing dose-dependent responses to D-galactose, D-maltose, and D-fructose. This highly-expressed foregut-specific gustatory receptor may contribute to the regulation of larval feeding behavior.
Han, Qiang; Wang, Zhenzhen; He, Yunxin; Xiong, Yehui; Lv, Shun; Li, Shupeng; Zhang, Zhigang; Qiu, Dewen; Zeng, Hongmei
2017-01-01
RNA interference (RNAi) has been developed as an efficient technology. RNAi insect-resistant transgenic plants expressing double-stranded RNA (dsRNA) that is ingested into insects to silence target genes can affect the viability of these pests or even lead to their death. HaHR3, a molt-regulating transcription factor gene, was previously selected as a target expressed in bacteria and tobacco plants to control Helicoverpa armigera by RNAi technology. In this work, we selected the dsRNA-HaHR3 fragment to silence HaHR3 in cotton bollworm for plant mediated-RNAi research. A total of 19 transgenic cotton lines expressing HaHR3 were successfully cultivated, and seven generated lines were used to perform feeding bioassays. Transgenic cotton plants expressing dsHaHR3 were shown to induce high larval mortality and deformities of pupation and adult eclosion when used to feed the newly hatched larvae, and 3rd and 5th instar larvae of H. armigera. Moreover, HaHR3 transgenic cotton also demonstrated an improved cotton yield when compared with controls. PMID:28867769
Safety and advantages of Bacillus thuringiensis-protected plants to control insect pests.
Betz, F S; Hammond, B G; Fuchs, R L
2000-10-01
Plants modified to express insecticidal proteins from Bacillus thuringiensis (referred to as Bt-protected plants) provide a safe and highly effective method of insect control. Bt-protected corn, cotton, and potato were introduced into the United States in 1995/1996 and grown on a total of approximately 10 million acres in 1997, 20 million acres in 1998, and 29 million acres globally in 1999. The extremely rapid adoption of these Bt-protected crops demonstrates the outstanding grower satisfaction of the performance and value of these products. These crops provide highly effective control of major insect pests such as the European corn borer, southwestern corn borer, tobacco budworm, cotton bollworm, pink bollworm, and Colorado potato beetle and reduce reliance on conventional chemical pesticides. They have provided notably higher yields in cotton and corn. The estimated total net savings to the grower using Bt-protected cotton in the United States was approximately $92 million in 1998. Other benefits of these crops include reduced levels of the fungal toxin fumonisin in corn and the opportunity for supplemental pest control by beneficial insects due to the reduced use of broad-spectrum insecticides. Insect resistance management plans are being implemented to ensure the prolonged effectiveness of these products. Extensive testing of Bt-protected crops has been conducted which establishes the safety of these products to humans, animals, and the environment. Acute, subchronic, and chronic toxicology studies conducted over the past 40 years establish the safety of the microbial Bt products, including their expressed insecticidal (Cry) proteins, which are fully approved for marketing. Mammalian toxicology and digestive fate studies, which have been conducted with the proteins produced in the currently approved Bt-protected plant products, have confirmed that these Cry proteins are nontoxic to humans and pose no significant concern for allergenicity. Food and feed derived from Bt-protected crops which have been fully approved by regulatory agencies have been shown to be substantially equivalent to the food and feed derived from conventional crops. Nontarget organisms exposed to high levels of Cry protein are virtually unaffected, except for certain insects that are closely related to the target pests. Because the Cry protein is contained within the plant (in microgram quantities), the potential for exposure to farm workers and nontarget organisms is extremely low. The Cry proteins produced in Bt-protected crops have been shown to rapidly degrade when crop residue is incorporated into the soil. Thus the environmental impact of these crops is negligible. The human and environmental safety of Bt-protected crops is further supported by the long history of safe use for Bt microbial pesticides around the world. Copyright 2000 Academic Press.
NASA Astrophysics Data System (ADS)
Fullard, James H.; Ratcliffe, John M.; Jacobs, David S.
2008-03-01
Noctuid moths listen for the echolocation calls of hunting bats and respond to these predator cues with evasive flight. The African bollworm moth, Helicoverpa armigera, feeds at flowers near intensely singing cicadas, Platypleura capensis, yet does not avoid them. We determined that the moth can hear the cicada by observing that both of its auditory receptors (A1 and A2 cells) respond to the cicada’s song. The firing response of the A1 cell rapidly adapts to the song and develops spike periods in less than a second that are in excess of those reported to elicit avoidance flight to bats in earlier studies. The possibility also exists that for at least part of the day, sensory input in the form of olfaction or vision overrides the moth’s auditory responses. While auditory tolerance appears to allow H. armigera to exploit a food resource in close proximity to acoustic interference, it may render their hearing defence ineffective and make them vulnerable to predation by bats during the evening when cicadas continue to sing. Our study describes the first field observation of an eared insect ignoring audible but innocuous sounds.
Zhang, D J; Liu, J X; Lu, Z Y; Li, C L; Comada, E; Yang, M S
2015-07-27
Poplar-cotton agro-ecosystems are the main agricultural planting modes of cotton fields in China. With increasing acres devoted to transgenic insect-resistant poplar and transgenic insect-resistant cotton, studies examining the effects of transgenic plants on target and non-target insects become increasingly important. We systematically surveyed populations of both target pests and non-target insects for 4 different combinations of poplar-cotton eco-systems over 3 years. Transgenic Bt cotton strongly resisted the target insects Fall webworm moth [Hyphantria cunea (Drury)], Sylepta derogata Fabrieius, and American bollworm (Heliothis armigera), but no clear impact on non-target insect cotton aphids (Aphis gossypii). Importantly, intercrops containing transgenic Pb29 poplar significantly increased the inhibitory effects of Bt cotton on Fall webworm moth in ecosystem IV. Highly resistant Pb29 poplar reduced populations of the target pests Grnsonoma minutara Hubner and non-target insect poplar leaf aphid (Chaitophorus po-pulialbae), while Fall webworm moth populations were unaffected. We determined the effects of Bt toxin from transgenic poplar and cotton on target and non-target pests in different ecosystems of cotton-poplar intercrops and identified the synergistic effects of such combinations toward both target and non-target insects.
Emamectin, a novel insecticide for controlling field crop pests.
Ishaaya, Isaac; Kontsedalov, Svetlana; Horowitz, A Rami
2002-11-01
Emamectin is a macrocyclic lactone insecticide with low toxicity to non-target organisms and the environment, and is considered an important component in pest-management programmes for controlling field crop pests. It is a powerful compound for controlling the cotton bollworm Helicoverpa armigera (Hübner). A spray concentration of 25 mg AI litre-1 in a cotton field resulted in over 90% suppression of H armigera larvae up to day 28 after treatment, while similar mortality of the Egyptian cotton leafworm Spodoptera littoralis Boisduval, under the same conditions, was maintained for 3 days only. Emamectin is a potent compound for controlling the western flower thrips Frankliniella occidentalis (Pergande) under both laboratory and field conditions and its activity on adults was over 10-fold greater than that of abamectin. Spray concentrations of 10 and 50 mg AI litre-1 in Ageratum houstonianum Mill flowers resulted in total suppression of adults up to day 11 and of larvae up to day 20 after treatment. Under standard laboratory conditions, emamectin exhibits a considerable activity on the whitefly Bemisia tabaci (Gennadius) and the leafminer Liriomyza huidobrensis (Blanchard). Further studies are required to evaluate its potential activity on the latter pests under field conditions.
Mironidis, George K; Kapantaidaki, Despina; Bentila, Maria; Morou, Evangelia; Savopoulou-Soultani, M; Vontas, John
2013-08-01
Helicoverpa armigera has been controlled effectively with chemical insecticides in the major cotton crop production areas of northern Greece for many years. However, a resurgence of the pest was observed in 2010, which significantly affected crop production. During a 4-year survey (2007-2010), we examined the insecticide resistance status of H. armigera populations from two major and representative cotton production areas in northern Greece against seven insecticides (chlorpyrifos, diazinon, methomyl, alpha-cypermethrin, cypermethrin, gamma-cyhalothrin and endosulfan). Full dose-response bioassays on third instar larvae were performed by topical application. Lethal doses at 50% were estimated by probit analysis and resistance factors (RF) were calculated, compared to a susceptible laboratory reference strain. Resistance levels were relatively moderate until 2009, with resistance ratios below 10-fold for organophosphates and carbamates and up to 16-fold for the pyrethroid alpha-cypermethrin. However, resistance rose to 46- and 81-fold for chlorpyrifos and alpha-cypermethrin, respectively in 2010, when the resurgence of the pest was observed. None of the known pyrethroid resistance mutations were found in the pyrethroid-resistant insects. The possible association between resistance and H. armigera resurgence in Greece is discussed. © 2012 Institute of Zoology, Chinese Academy of Sciences.
Tay, Wee Tek; Walsh, Thomas K.; Downes, Sharon; Anderson, Craig; Jermiin, Lars S.; Wong, Thomas K. F.; Piper, Melissa C.; Chang, Ester Silva; Macedo, Isabella Barony; Czepak, Cecilia; Behere, Gajanan T.; Silvie, Pierre; Soria, Miguel F.; Frayssinet, Marie; Gordon, Karl H. J.
2017-01-01
The Old World bollworm Helicoverpa armigera is now established in Brazil but efforts to identify incursion origin(s) and pathway(s) have met with limited success due to the patchiness of available data. Using international agricultural/horticultural commodity trade data and mitochondrial DNA (mtDNA) cytochrome oxidase I (COI) and cytochrome b (Cyt b) gene markers, we inferred the origins and incursion pathways into Brazil. We detected 20 mtDNA haplotypes from six Brazilian states, eight of which were new to our 97 global COI-Cyt b haplotype database. Direct sequence matches indicated five Brazilian haplotypes had Asian, African, and European origins. We identified 45 parsimoniously informative sites and multiple substitutions per site within the concatenated (945 bp) nucleotide dataset, implying that probabilistic phylogenetic analysis methods are needed. High diversity and signatures of uniquely shared haplotypes with diverse localities combined with the trade data suggested multiple incursions and introduction origins in Brazil. Increasing agricultural/horticultural trade activities between the Old and New Worlds represents a significant biosecurity risk factor. Identifying pest origins will enable resistance profiling that reflects countries of origin to be included when developing a resistance management strategy, while identifying incursion pathways will improve biosecurity protocols and risk analysis at biosecurity hotspots including national ports. PMID:28350004
Tay, Wee Tek; Walsh, Thomas K; Downes, Sharon; Anderson, Craig; Jermiin, Lars S; Wong, Thomas K F; Piper, Melissa C; Chang, Ester Silva; Macedo, Isabella Barony; Czepak, Cecilia; Behere, Gajanan T; Silvie, Pierre; Soria, Miguel F; Frayssinet, Marie; Gordon, Karl H J
2017-03-28
The Old World bollworm Helicoverpa armigera is now established in Brazil but efforts to identify incursion origin(s) and pathway(s) have met with limited success due to the patchiness of available data. Using international agricultural/horticultural commodity trade data and mitochondrial DNA (mtDNA) cytochrome oxidase I (COI) and cytochrome b (Cyt b) gene markers, we inferred the origins and incursion pathways into Brazil. We detected 20 mtDNA haplotypes from six Brazilian states, eight of which were new to our 97 global COI-Cyt b haplotype database. Direct sequence matches indicated five Brazilian haplotypes had Asian, African, and European origins. We identified 45 parsimoniously informative sites and multiple substitutions per site within the concatenated (945 bp) nucleotide dataset, implying that probabilistic phylogenetic analysis methods are needed. High diversity and signatures of uniquely shared haplotypes with diverse localities combined with the trade data suggested multiple incursions and introduction origins in Brazil. Increasing agricultural/horticultural trade activities between the Old and New Worlds represents a significant biosecurity risk factor. Identifying pest origins will enable resistance profiling that reflects countries of origin to be included when developing a resistance management strategy, while identifying incursion pathways will improve biosecurity protocols and risk analysis at biosecurity hotspots including national ports.
NASA Astrophysics Data System (ADS)
Tay, Wee Tek; Walsh, Thomas K.; Downes, Sharon; Anderson, Craig; Jermiin, Lars S.; Wong, Thomas K. F.; Piper, Melissa C.; Chang, Ester Silva; Macedo, Isabella Barony; Czepak, Cecilia; Behere, Gajanan T.; Silvie, Pierre; Soria, Miguel F.; Frayssinet, Marie; Gordon, Karl H. J.
2017-03-01
The Old World bollworm Helicoverpa armigera is now established in Brazil but efforts to identify incursion origin(s) and pathway(s) have met with limited success due to the patchiness of available data. Using international agricultural/horticultural commodity trade data and mitochondrial DNA (mtDNA) cytochrome oxidase I (COI) and cytochrome b (Cyt b) gene markers, we inferred the origins and incursion pathways into Brazil. We detected 20 mtDNA haplotypes from six Brazilian states, eight of which were new to our 97 global COI-Cyt b haplotype database. Direct sequence matches indicated five Brazilian haplotypes had Asian, African, and European origins. We identified 45 parsimoniously informative sites and multiple substitutions per site within the concatenated (945 bp) nucleotide dataset, implying that probabilistic phylogenetic analysis methods are needed. High diversity and signatures of uniquely shared haplotypes with diverse localities combined with the trade data suggested multiple incursions and introduction origins in Brazil. Increasing agricultural/horticultural trade activities between the Old and New Worlds represents a significant biosecurity risk factor. Identifying pest origins will enable resistance profiling that reflects countries of origin to be included when developing a resistance management strategy, while identifying incursion pathways will improve biosecurity protocols and risk analysis at biosecurity hotspots including national ports.
Liu, Shu-Min; Li, Jie; Zhu, Jin-Qi; Wang, Xiao-Wei; Wang, Cheng-Shu; Liu, Shu-Sheng; Chen, Xue-Xin; Li, Sheng
2016-04-01
The adoption of pest-resistant transgenic plants to reduce yield losses and decrease pesticide use has been successful. To achieve the goal of controlling both chewing and sucking pests in a given transgenic plant, we generated transgenic tobacco, Arabidopsis, and rice plants expressing the fusion protein, AaIT/GNA, in which an insecticidal scorpion venom neurotoxin (Androctonus australis toxin, AaIT) is fused to snowdrop lectin (Galanthus nivalis agglutinin, GNA). Compared with transgenic tobacco and Arabidopsis plants expressing AaIT or GNA, transgenic plants expressing AaIT/GNA exhibited increased resistance and toxicity to one chewing pest, the cotton bollworm, Helicoverpa armigera. Transgenic tobacco and rice plants expressing AaIT/GNA showed increased resistance and toxicity to two sucking pests, the whitefly, Bemisia tabaci, and the rice brown planthopper, Nilaparvata lugens, respectively. Moreover, in the field, transgenic rice plants expressing AaIT/GNA exhibited a significant improvement in grain yield when infested with N. lugens. This study shows that expressing the AaIT/GNA fusion protein in transgenic plants can be a useful approach for controlling pests, particularly sucking pests which are not susceptible to the toxin in Bt crops. © 2015 Institute of Zoology, Chinese Academy of Sciences.
Namin, Foroogh Rahimi; Naseri, Bahram; Razmjou, Jabraeil; Cohen, Allen
2014-01-01
Abstract Nutritional performance and activity of some digestive enzymes (protease and α -amylase) of Helicoverpa armigera Hübner (Lepidoptera: Noctuidae) in response to feeding on bean ( Phaseolus vulgaris L. (Fabales: Fabaceae)) cultivars (Shokufa, Akhtar, Sayyad, Naz, Pak, Daneshkadeh, and Talash) were evaluated under laboratory conditions (25 ± 1°C, 65 ± 5% RH, and a 16:8 L:D photoperiod). The highest and lowest respective values of approximate digestibility were observed when fourth, fifth, and sixth larval instar H. armigera were fed red kidney bean Akhtar and white kidney bean Daneshkadeh. The efficiency of conversion of ingested and digested food was highest when H. armigera was fed red kidney beans Akhtar and Naz and lowest when they were fed white kidney bean Pak. The highest protease activity of fifth instars was observed when they were fed red kidney bean Naz, and the highest amylase activity of fifth instars was observed when they were fed red kidney bean Sayyad. Sixth instar larvae that fed on red kidney bean Sayyad showed the highest protease activity. Larvae reared on common bean Talash and white kidney bean Pak showed the highest amylase activity. Among bean cultivars tested, red kidney bean Sayyad was the most unsuitable host for feeding H. armigera . PMID:25368049
Characterization of Three Novel SINE Families with Unusual Features in Helicoverpa armigera
Wang, Jianjun; Wang, Aina; Han, Zhaojun; Zhang, Zan; Li, Fei; Li, Xianchun
2012-01-01
Although more than 120 families of short interspersed nuclear elements (SINEs) have been isolated from the eukaryotic genomes, little is known about SINEs in insects. Here, we characterize three novel SINEs from the cotton bollworm, Helicoverpa armigera. Two of them, HaSE1 and HaSE2, share similar 5′ -structure including a tRNA-related region immediately followed by conserved central domain. The 3′ -tail of HaSE1 is significantly similar to that of one LINE retrotransposon element, HaRTE1.1, in H. armigera genome. The 3′ -region of HaSE2 showed high identity with one mariner-like element in H. armigera. The third family, termed HaSE3, is a 5S rRNA-derived SINE and shares both body part and 3′-tail with HaSE1, thus may represent the first example of a chimera generated by recombination between 5S rRNA and tRNA-derived SINE in insect species. Further database searches revealed the presence of these SINEs in several other related insect species, but not in the silkworm, Bombyx mori, indicating a relatively narrow distribution of these SINEs in Lepidopterans. Apart from above, we found a copy of HaSE2 in the GenBank EST entry for the cotton aphid, Aphis gossypii, suggesting the occurrence of horizontal transfer. PMID:22319625
Zhu, Jin-Qi; Liu, Shumin; Ma, Yao; Zhang, Jia-Qi; Qi, Hai-Sheng; Wei, Zhao-Jun; Yao, Qiong; Zhang, Wen-Qing; Li, Sheng
2012-01-01
The adoption of pest-resistant transgenic plants to reduce yield loss and pesticide utilization has been successful in the past three decades. Recently, transgenic plant expressing double-stranded RNA (dsRNA) targeting pest genes emerges as a promising strategy for improving pest resistance in crops. The steroid hormone, 20-hydroxyecdysone (20E), predominately controls insect molting via its nuclear receptor complex, EcR-USP. Here we report that pest resistance is improved in transgenic tobacco plants expressing dsRNA of EcR from the cotton bollworm, Helicoverpa armigera, a serious lepidopteran pest for a variety of crops. When H. armigera larvae were fed with the whole transgenic tobacco plants expressing EcR dsRNA, resistance to H. armigera was significantly improved in transgenic plants. Meanwhile, when H. armigera larvae were fed with leaves of transgenic tobacco plants expressing EcR dsRNA, its EcR mRNA level was dramatically decreased causing molting defects and larval lethality. In addition, the transgenic tobacco plants expressing H. armigera EcR dsRNA were also resistant to another lepidopteran pest, the beet armyworm, Spodoptera exigua, due to the high similarity in the nucleotide sequences of their EcR genes. This study provides additional evidence that transgenic plant expressing dsRNA targeting insect-associated genes is able to improve pest resistance.
Activation of Bt Protoxin Cry1Ac in Resistant and Susceptible Cotton Bollworm.
Wei, Jizhen; Liang, Gemei; Wang, Bingjie; Zhong, Feng; Chen, Lin; Khaing, Myint Myint; Zhang, Jie; Guo, Yuyuan; Wu, Kongming; Tabashnik, Bruce E
2016-01-01
Crystalline (Cry) proteins from Bacillus thuringiensis (Bt) are used extensively for insect control in sprays and transgenic plants, but their efficacy is reduced by evolution of resistance in pests. Here we evaluated reduced activation of Cry1Ac protoxin as a potential mechanism of resistance in the invasive pest Helicoverpa armigera. Based on the concentration killing 50% of larvae (LC50) for a laboratory-selected resistant strain (LF120) divided by the LC50 for its susceptible parent strain (LF), the resistance ratio was 1600 for Cry1Ac protoxin and 1200 for trypsin-activated Cry1Ac toxin. The high level of resistance to activated toxin as well as to protoxin indicates reduced activation of protoxin is not a major mechanism of resistance to Cry1Ac in LF120. For both insect strains, treatment with either the trypsin inhibitor N-a-tosyl-L-lysine chloromethyl ketone (TLCK) or the chymotrypsin inhibitor N-a-tosyl-L-phenylalanine chloromethyl ketone (TPCK) did not significantly affect the LC50 of Cry1Ac protoxin. Enzyme activity was higher for LF than LF120 for trypsin-like proteases, but did not differ between strains for chymotrypsin-like proteases. The results here are consistent with previous reports indicating that reduced activation of protoxin is generally not a major mechanism of resistance to Bt proteins.
Activation of Bt Protoxin Cry1Ac in Resistant and Susceptible Cotton Bollworm
Liang, Gemei; Wang, Bingjie; Zhong, Feng; Chen, Lin; Khaing, Myint Myint; Zhang, Jie; Guo, Yuyuan; Wu, Kongming; Tabashnik, Bruce E.
2016-01-01
Crystalline (Cry) proteins from Bacillus thuringiensis (Bt) are used extensively for insect control in sprays and transgenic plants, but their efficacy is reduced by evolution of resistance in pests. Here we evaluated reduced activation of Cry1Ac protoxin as a potential mechanism of resistance in the invasive pest Helicoverpa armigera. Based on the concentration killing 50% of larvae (LC50) for a laboratory-selected resistant strain (LF120) divided by the LC50 for its susceptible parent strain (LF), the resistance ratio was 1600 for Cry1Ac protoxin and 1200 for trypsin-activated Cry1Ac toxin. The high level of resistance to activated toxin as well as to protoxin indicates reduced activation of protoxin is not a major mechanism of resistance to Cry1Ac in LF120. For both insect strains, treatment with either the trypsin inhibitor N-a-tosyl-L-lysine chloromethyl ketone (TLCK) or the chymotrypsin inhibitor N-a-tosyl-L-phenylalanine chloromethyl ketone (TPCK) did not significantly affect the LC50 of Cry1Ac protoxin. Enzyme activity was higher for LF than LF120 for trypsin-like proteases, but did not differ between strains for chymotrypsin-like proteases. The results here are consistent with previous reports indicating that reduced activation of protoxin is generally not a major mechanism of resistance to Bt proteins. PMID:27257885
A Brave New World for an Old World Pest: Helicoverpa armigera (Lepidoptera: Noctuidae) in Brazil
Walsh, Thomas; Thomazoni, Danielle; Silvie, Pierre; Behere, Gajanan T.; Anderson, Craig; Downes, Sharon
2013-01-01
The highly polyphagous Old World cotton bollworm Helicoverpa armigera is a quarantine agricultural pest for the American continents. Historically H. armigera is thought to have colonised the American continents around 1.5 to 2 million years ago, leading to the current H. zea populations on the American continents. The relatively recent species divergence history is evident in mating compatibility between H. zea and H. armigera under laboratory conditions. Despite periodic interceptions of H. armigera into North America, this pest species is not believed to have successfully established significant populations on either continent. In this study, we provide molecular evidence via mitochondrial DNA (mtDNA) cytochrome oxidase I (COI) and cytochrome b (Cyt b) partial gene sequences for the successful recent incursion of H. armigera into the New World, with individuals being detected at two sites (Primavera do Leste, Pedra Preta) within the State of Mato Grosso in Brazil. The mtDNA COI and Cyt b haplotypes detected in the Brazilian H. armigera individuals are common throughout the Old World, thus precluding identification of the founder populations. Combining the two partial mtDNA gene sequences showed that at least two matrilines are present in Brazil, while the inclusion of three nuclear DNA Exon-Primed Intron-Crossing (EPIC) markers identified a further two possible matrilines in our samples. The economic, biosecurity, resistance management, ecological and evolutionary implications of this incursion are discussed in relation to the current agricultural practices in the Americas. PMID:24260345
Systems for harvesting and handling cotton plant residue
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coates, W.
1993-12-31
In the warmer regions of the United States, cotton plant residue must be buried to prevent it from serving as an overwintering site for insect pests such as the pink bollworm. Most of the field operations used to bury the residue are high energy consumers and tend to degrade soil structure, thereby increasing the potential for erosion. The residue is of little value as a soil amendment and consequently is considered a negative value biomass. A commercial system to harvest cotton plant residue would be of both economic and environmental benefit to cotton producers. Research has been underway at themore » University of Arizona since the spring of 1991 to develop a commercially viable system for harvesting cotton plant residue. Equipment durability, degree of densification, energy required, cleanliness of the harvested material, and ease of product handling and transport are some of the performance variables which have been measured. Two systems have proven superior. In both, the plants are pulled from the ground using an implement developed specifically for the purpose. In one system, the stalks are baled using a large round baler, while in the other the stalks are chopped with a forage harvester, and then made into packages using a cotton module maker. Field capacities, energy requirements, package density and durability, and ease of handling with commercially available equipment have been measured for both systems. Selection of an optimum system for a specific operation depends upon end use of the product, and upon equipment availability.« less
Liu, Ya-Hui; Li, Bao-Ping
2008-04-01
A single choice test was performed to examine developmental strategies in the uniparental endoparasitoid Meteorus pulchricornis and its host, the cotton bollworm Helicoverpa armigera. The results support the dome-shaped model in which the fitness functions are 'dome-shaped' relative to size (and age) of host at parasitism. Older and, hence, larger host larvae were simply not better hosts for the developing parasitoids. Although parasitoid size (measured as cocoon weight and adult hind tibia length) was positively correlated with host instars at parasitism, parasitoids developing in larger hosts (L5 and L6) suffered much higher mortality than conspecifics developing in smaller hosts (L2-L4). Furthermore, egg-to-adult development time in M. pulchricornis was significantly longer in older host larvae (L4-L6) than in the younger. Performance of M. pulchricornis, as indicated by fitness-related traits, strongly suggests that the L3 host is the most suitable for survival, growth and development of the parasitoid, followed by both L2 and L4 hosts; whereas, L1, L5 and L6 are the least favourable hosts. The oviposition tendency of M. pulchricornis, represented by parasitism level, was not perfectly consistent with the performance of the offspring; L2-L4 hosts, although with the same parasitism level, had offspring parasitoids with differences in fitness-related performance. Larval development in Helicoverpa armigera was usually suspended, but occasionally advanced, in the final instar.
Regulation of the seasonal population patterns of Helicoverpa armigera moths by Bt cotton planting.
Gao, Yu-Lin; Feng, Hong-Qiang; Wu, Kong-Ming
2010-08-01
Transgenic cotton expressing the Bacillus thuringiensis (Bt) Cry1Ac toxin has been commercially cultivated in China since 1997, and by 2000 Bt cotton had almost completely replaced non-transgenic cotton cultivars. To evaluate the impact of Bt cotton planting on the seasonal population patterns of cotton bollworm, Helicoverpa armigera, the dynamics of H. armigera moths were monitored with light traps from four locations (Xiajin, Linqing and Dingtao of Shandong Province; Guantao of Hebei Province) in high Bt density region and five locations (Anci and Xinji of Hebei Province; Dancheng and Fengqiu of Henan Province; Gaomi of Shandong Province) in low Bt density region from 1996 to 2008. A negative correlation was found between moth densities of H. armigera and the planting years of Bt cotton in both high and low Bt density areas. These data indicate that the moth population density of H. armigera was reduced with the introduction of Bt cotton in northern China. Three generations of moths occurred between early June and late September in the cotton regions. Interestingly, second-generation moths decreased and seemed to vanish in recent years in high Bt density region, but this tendency was not found in low Bt density region. The data suggest that the planting of Bt cotton in high Bt density region was effective in controlling the population density of second-generation moths. Furthermore, the seasonal change of moth patterns associated with Bt cotton planting may regulate the regional occurrence and population development of this migratory insect.
Kota, Madhuri; Daniell, Henry; Varma, Sam; Garczynski, Stephen F.; Gould, Fred; Moar, William J.
1999-01-01
Evolving levels of resistance in insects to the bioinsecticide Bacillus thuringiensis (Bt) can be dramatically reduced through the genetic engineering of chloroplasts in plants. When transgenic tobacco leaves expressing Cry2Aa2 protoxin in chloroplasts were fed to susceptible, Cry1A-resistant (20,000- to 40,000-fold) and Cry2Aa2-resistant (330- to 393-fold) tobacco budworm Heliothis virescens, cotton bollworm Helicoverpa zea, and the beet armyworm Spodoptera exigua, 100% mortality was observed against all insect species and strains. Cry2Aa2 was chosen for this study because of its toxicity to many economically important insect pests, relatively low levels of cross-resistance against Cry1A-resistant insects, and its expression as a protoxin instead of a toxin because of its relatively small size (65 kDa). Southern blot analysis confirmed stable integration of cry2Aa2 into all of the chloroplast genomes (5,000–10,000 copies per cell) of transgenic plants. Transformed tobacco leaves expressed Cry2Aa2 protoxin at levels between 2% and 3% of total soluble protein, 20- to 30-fold higher levels than current commercial nuclear transgenic plants. These results suggest that plants expressing high levels of a nonhomologous Bt protein should be able to overcome or at the very least, significantly delay, broad spectrum Bt-resistance development in the field. PMID:10051556
Biosafety management and commercial use of genetically modified crops in China.
Li, Yunhe; Peng, Yufa; Hallerman, Eric M; Wu, Kongming
2014-04-01
As a developing country with relatively limited arable land, China is making great efforts for development and use of genetically modified (GM) crops to boost agricultural productivity. Many GM crop varieties have been developed in China in recent years; in particular, China is playing a leading role in development of insect-resistant GM rice lines. To ensure the safe use of GM crops, biosafety risk assessments are required as an important part of the regulatory oversight of such products. With over 20 years of nationwide promotion of agricultural biotechnology, a relatively well-developed regulatory system for risk assessment and management of GM plants has been developed that establishes a firm basis for safe use of GM crops. So far, a total of seven GM crops involving ten events have been approved for commercial planting, and 5 GM crops with a total of 37 events have been approved for import as processing material in China. However, currently only insect-resistant Bt cotton and disease-resistant papaya have been commercially planted on a large scale. The planting of Bt cotton and disease-resistant papaya have provided efficient protection against cotton bollworms and Papaya ringspot virus (PRSV), respectively. As a consequence, chemical application to these crops has been significantly reduced, enhancing farm income while reducing human and non-target organism exposure to toxic chemicals. This article provides useful information for the colleagues, in particular for them whose mother tongue is not Chinese, to clearly understand the biosafety regulation and commercial use of genetically modified crops in China.
Gogi, Muhammad D; Sarfraz, Rana M; Dosdall, Lloyd M; Arif, Muhammad J; Keddie, Andrew B; Ashfaq, Muhammad
2006-10-01
Field efficacies of two insect growth regulators (IGRs) at two recommended application rates, buprofezin at 370 and 555 g AI ha(-1) and lufenuron at 37 and 49 g AI ha(-1), were determined against the sweet potato whitefly, Bemisia tabaci (Gennadius), and the cotton bollworm, Helicoverpa armigera (Hübner), in experimental plots of cotton at the Directorate of Cotton Research, Faisalabad, Pakistan. Adverse effects of the IGRs on populations of associated arthropod predators, namely geocorids, chrysopids, coccinellids, formicids and arachnids, were also assessed. Both IGRs significantly reduced populations of B. tabaci at each application rate 24, 48 and 72 h after treatment, and higher doses were more effective than lower doses. Buprofezin was not effective against H. armigera at any tested dose for any time of treatment in any spray. Lufenuron applied at 37 and 49 g AI ha(-1) effectively suppressed H. armigera populations, resulting in significant reductions in crop damage. At lower doses, both IGRs appeared safe to predator populations, which did not differ significantly in IGR-treated versus untreated control plots. Population densities of formicids and coccinellids were significantly lower at high concentrations of both IGRs in treatment plots, possibly as a result of reduced prey availability. The potential role of buprofezin and lufenuron for control of B. tabaci and H. armigera in a spray programme and the likelihood of direct toxic effects of IGRs on predatory fauna of cotton are discussed.
Mating Disruption as a Suppression Tactic in Programs Targeting Regulated Lepidopteran Pests in US.
Lance, David R; Leonard, Donna S; Mastro, Victor C; Walters, Michelle L
2016-07-01
Mating disruption, the broadcast application of sex-attractant pheromone to reduce the ability of insects to locate mates, has proven to be an effective method for suppressing populations of numerous moth pests. Since the conception of mating disruption, the species-specificity and low toxicity of pheromone applications has led to their consideration for use in area-wide programs to manage invasive moths. Case histories are presented for four such programs where the tactic was used in the United States: Pectinophora gossypiella (pink bollworm), Lymantria dispar (gypsy moth), Epiphyas postvittana (light brown apple moth), and Lobesia botrana (European grapevine moth). Use of mating disruption against P. gossypiella and L. botrana was restricted primarily to agricultural areas and relied in part (P. gossypiella) or wholly (L. botrana) on hand-applied dispensers. In those programs, mating disruption was integrated with other suppression tactics and considered an important component of overall efforts that are leading toward eradication of the invasive pests from North America. By contrast, L. dispar and E. postvittana are polyphagous pests, where pheromone formulations have been applied aerially as stand-alone treatments across broad areas, including residential neighborhoods. For L. dispar, mating disruption has been a key component in the program to slow the spread of the infestation of this pest, and the applications generally have been well tolerated by the public. For E. postvittana, public outcry halted the use of aerially applied mating disruption after an initial series of treatments, effectively thwarting an attempt to eradicate this pest from California. Reasons for the discrepancies between these two programs are not entirely clear.
Singh, G; Rup, P J; Koul, Opender
2007-08-01
The efficacy of neem (1500 ppm azadirachtin (AI)), Delfin WG, a biological insecticide based on selected strain of Bacillus thuringiensis Berliner (Bt) subspecies kurstaki, and Cry1Ac protein, either individually or in combination, were examined against first to fourth instar Helicoverpa armigera (Hübner) larvae. Using an oral administration method, various growth inhibitory concentrations (EC) and lethal concentrations (LC) were determined for each bioagent. Combinations of sublethal concentrations of Bt spray formulation with azadirachtin at EC50 or EC95 levels not only enhanced the toxicity, but also reduced the duration of action when used in a mixture. The LC20 and LC50 values for Cry1Ac toxin were 0.06 and 0.22 microg ml-1, respectively. Bt-azadirachtin combinations of LC50+EC20 and LC50+EC50 result in 100% mortality. The mortality also was significant in LC20+EC20 and LC20+EC50 mixtures. These studies imply that the combined action is not synergistic but complimentary, with azadirachtin particularly facilitating the action of Bt. The Bt spray-azadirachtin combination is more economical than combinations that involve isolating the toxic protein, as the Bt spray formulations can be combined in a spray mixture with neem. These combinations may be useful for controlling bollworm populations that have acquired resistance to Bt as they may not survive the effect of mixture. Azadirachtin may be useful as a means of reducing the endotoxin concentrations in a mixture, to promote increased economic savings and further reduce the probability of resistance development to either insect control agent.
Gilligan, Todd M.; Tembrock, Luke R.; Farris, Roxanne E.; Barr, Norman B.; van der Straten, Marja J.; van de Vossenberg, Bart T. L. H.; Metz-Verschure, Eveline
2015-01-01
The Old World bollworm, Helicoverpa armigera (Hübner), and the corn earworm, H. zea (Boddie), are two of the most important agricultural pests in the world. Diagnosing these two species is difficult—adults can only be separated with a complex dissection, and larvae cannot be identified to species using morphology, necessitating the use of geographic origin for identification in most instances. With the discovery of H. armigera in the New World, identification of immature Helicoverpa based on origin is no longer possible because H. zea also occurs in all of the geographic regions where H. armigera has been discovered. DNA barcoding and restriction fragment length polymorphism (RFLP) analyses have been reported in publications to distinguish these species, but these methods both require post-PCR processing (i.e., DNA sequencing or restriction digestion) to complete. We report the first real-time PCR assay to distinguish these pests based on two hydrolysis probes that bind to a segment of the internal transcribed spacer region 2 (ITS2) amplified using a single primer pair. One probe targets H. armigera, the second probe targets H. zea, and a third probe that targets a conserved segment of 18S rDNA is used as a control of DNA quality. The assay can be completed in 50 minutes when using isolated DNA and is successfully tested on larvae intercepted at ports of entry and adults captured during domestic surveys. We demonstrate that the assay can be run in triplex with no negative effects on sensitivity, can be run using alternative real-time PCR reagents and instruments, and does not cross react with other New World Heliothinae. PMID:26558366
Li, Shuyu; Wang, Bao; Huang, Tingting; Du, Minmin; Sun, Jiaqiang; Kang, Le; Li, Chang-Bao; Li, Chuanyou
2013-01-01
In response to insect attack and mechanical wounding, plants activate the expression of genes involved in various defense-related processes. A fascinating feature of these inducible defenses is their occurrence both locally at the wounding site and systemically in undamaged leaves throughout the plant. Wound-inducible proteinase inhibitors (PIs) in tomato (Solanum lycopersicum) provide an attractive model to understand the signal transduction events leading from localized injury to the systemic expression of defense-related genes. Among the identified intercellular molecules in regulating systemic wound response of tomato are the peptide signal systemin and the oxylipin signal jasmonic acid (JA). The systemin/JA signaling pathway provides a unique opportunity to investigate, in a single experimental system, the mechanism by which peptide and oxylipin signals interact to coordinate plant systemic immunity. Here we describe the characterization of the tomato suppressor of prosystemin-mediated responses8 (spr8) mutant, which was isolated as a suppressor of (pro)systemin-mediated signaling. spr8 plants exhibit a series of JA-dependent immune deficiencies, including the inability to express wound-responsive genes, abnormal development of glandular trichomes, and severely compromised resistance to cotton bollworm (Helicoverpa armigera) and Botrytis cinerea. Map-based cloning studies demonstrate that the spr8 mutant phenotype results from a point mutation in the catalytic domain of TomLoxD, a chloroplast-localized lipoxygenase involved in JA biosynthesis. We present evidence that overexpression of TomLoxD leads to elevated wound-induced JA biosynthesis, increased expression of wound-responsive genes and, therefore, enhanced resistance to insect herbivory attack and necrotrophic pathogen infection. These results indicate that TomLoxD is involved in wound-induced JA biosynthesis and highlight the application potential of this gene for crop protection against insects and pathogens. PMID:24348260
Han, Li-Bin; Yin, Li-Hong; Huang, Ling-Qiao; Wang, Chen-Zhu
2015-09-01
The ichneumonid wasp, Campoletis chlorideae Uchida, successfully develops in the cotton bollworm Helicoverpa armigera (Hübner), but rarely survives in the beet armyworm Spodoptera exigua (Hübner) due to the encapsulation by host immunity. In this study, we investigated the role of C. chlorideae ichnovirus (CcIV) and eggs in the evasion of the host immune system. Washed eggs of different types, immature, mature, newly laid, or pretreated with protease K, were injected alone or with the calyx fluid containing CcIV into the larvae of H. armigera and S. exigua. In H. armigera, when injected with washed eggs alone, only 9.5% of the mature eggs were encapsulated at 24h post-injection. This is much lower than that of the immature eggs (100%), mature eggs pretreated with protease K (100%) and newly laid eggs (54.4%). No encapsulation was observed when the washed eggs were co-injected with calyx fluid at 24h post-injection. Conversely, the eggs in all treatments were encapsulated in S. exigua. Electron microscopic observations of parasitoid eggs showed structural differences between the surfaces of the mature and other kinds of eggs. The injected CcIV decreased the numbers of host hemocytes and suppressed the spreading ability of plasmatocytes and granulocytes in H. armigera, but had little effect on the hemocytes from S. exigua. In conclusion, the C. chlorideae egg provides a passive protection against encapsulation by itself, and CcIV supplies an active protection through disrupting host immune responses. These coordinated protections are host-specific, implying their role in host range determination. Copyright © 2015 Elsevier Inc. All rights reserved.
Yan, Liuhua; Zhai, Qingzhe; Wei, Jianing; Li, Shuyu; Wang, Bao; Huang, Tingting; Du, Minmin; Sun, Jiaqiang; Kang, Le; Li, Chang-Bao; Li, Chuanyou
2013-01-01
In response to insect attack and mechanical wounding, plants activate the expression of genes involved in various defense-related processes. A fascinating feature of these inducible defenses is their occurrence both locally at the wounding site and systemically in undamaged leaves throughout the plant. Wound-inducible proteinase inhibitors (PIs) in tomato (Solanum lycopersicum) provide an attractive model to understand the signal transduction events leading from localized injury to the systemic expression of defense-related genes. Among the identified intercellular molecules in regulating systemic wound response of tomato are the peptide signal systemin and the oxylipin signal jasmonic acid (JA). The systemin/JA signaling pathway provides a unique opportunity to investigate, in a single experimental system, the mechanism by which peptide and oxylipin signals interact to coordinate plant systemic immunity. Here we describe the characterization of the tomato suppressor of prosystemin-mediated responses8 (spr8) mutant, which was isolated as a suppressor of (pro)systemin-mediated signaling. spr8 plants exhibit a series of JA-dependent immune deficiencies, including the inability to express wound-responsive genes, abnormal development of glandular trichomes, and severely compromised resistance to cotton bollworm (Helicoverpa armigera) and Botrytis cinerea. Map-based cloning studies demonstrate that the spr8 mutant phenotype results from a point mutation in the catalytic domain of TomLoxD, a chloroplast-localized lipoxygenase involved in JA biosynthesis. We present evidence that overexpression of TomLoxD leads to elevated wound-induced JA biosynthesis, increased expression of wound-responsive genes and, therefore, enhanced resistance to insect herbivory attack and necrotrophic pathogen infection. These results indicate that TomLoxD is involved in wound-induced JA biosynthesis and highlight the application potential of this gene for crop protection against insects and pathogens.
Gilligan, Todd M; Tembrock, Luke R; Farris, Roxanne E; Barr, Norman B; van der Straten, Marja J; van de Vossenberg, Bart T L H; Metz-Verschure, Eveline
2015-01-01
The Old World bollworm, Helicoverpa armigera (Hübner), and the corn earworm, H. zea (Boddie), are two of the most important agricultural pests in the world. Diagnosing these two species is difficult-adults can only be separated with a complex dissection, and larvae cannot be identified to species using morphology, necessitating the use of geographic origin for identification in most instances. With the discovery of H. armigera in the New World, identification of immature Helicoverpa based on origin is no longer possible because H. zea also occurs in all of the geographic regions where H. armigera has been discovered. DNA barcoding and restriction fragment length polymorphism (RFLP) analyses have been reported in publications to distinguish these species, but these methods both require post-PCR processing (i.e., DNA sequencing or restriction digestion) to complete. We report the first real-time PCR assay to distinguish these pests based on two hydrolysis probes that bind to a segment of the internal transcribed spacer region 2 (ITS2) amplified using a single primer pair. One probe targets H. armigera, the second probe targets H. zea, and a third probe that targets a conserved segment of 18S rDNA is used as a control of DNA quality. The assay can be completed in 50 minutes when using isolated DNA and is successfully tested on larvae intercepted at ports of entry and adults captured during domestic surveys. We demonstrate that the assay can be run in triplex with no negative effects on sensitivity, can be run using alternative real-time PCR reagents and instruments, and does not cross react with other New World Heliothinae.
Benelli, Giovanni; Govindarajan, Marimuthu; Rajeswary, Mohan; Vaseeharan, Baskaralingam; Alyahya, Sami A; Alharbi, Naiyf S; Kadaikunnan, Shine; Khaled, Jamal M; Maggi, Filippo
2018-02-01
The fast-growing resistance development to several synthetic and microbial insecticides currently marketed highlighted the pressing need to develop novel and eco-friendly pesticides. Among the latter, botanical ones are attracting high research interest due to their multiple mechanisms of action and reduced toxicity on non-target vertebrates. Helicoverpa armigera (Lepidoptera: Noctuidae) is a key polyphagous insect pest showing insecticide resistance to several synthetic molecules used for its control. Therefore, here we focused on the rhizome essential oil extracted from an overlooked Asian plant species, Cheilocostus speciosus (J. Konig) C. Specht (Costaceae), as a source of compounds showing ingestion toxicity against H. armigera third instar larvae, as well as ovicidal toxicity. In acute larvicidal assays conducted after 24h, the C. speciosus essential oil achieved a LC 50 value of 207.45µg/ml. GC and GC-MS analyses highlighted the presence of zerumbone (38.6%), α-humulene (14.5%) and camphene (9.3%) as the major compounds of the oil. Ingestion toxicity tests carried out testing these pure molecules showed LC 50 values of 10.64, 17.16 and 20.86µg/ml, for camphene, zerumbone and α-humulene, respectively. Moreover, EC 50 values calculated on H. armigera eggs were 35.39, 59.51 and 77.10µg/ml for camphene, zerumbone and α-humulene, respectively. Overall, this study represents the first report on the toxicity of C. speciosus essential oil against insect pests of agricultural and medical veterinary importance, highlighting that camphene, zerumbone and α-humulene have a promising potential as eco-friendly botanical insecticides. Copyright © 2017 Elsevier Inc. All rights reserved.
Luo, Jun-Yu; Zhang, Shuai; Peng, Jun; Zhu, Xiang-Zhen; Lv, Li-Min; Wang, Chun-Yi; Li, Chun-Hua; Zhou, Zhi-Guo; Cui, Jin-Jie
2017-01-01
An increasing area of transgenic Bacillus thuringiensis (Bt) cotton is being planted in saline-alkaline soil in China. The Bt protein level in transgenic cotton plants and its control efficiency can be affected by abiotic stress, including high temperature, water deficiency and other factors. However, how soil salinity affects the expression of Bt protein, thus influencing the control efficiency of Bt cotton against the cotton bollworm (CBW) Helicoverpa armigera (Hübner) in the field, is poorly understood. Our objective in the present study was to investigate the effects of soil salinity on the expression of Bt toxin (Cry1Ac) and the control efficiency of Helicoverpa armigera in field-grown transgenic Bt cotton using three natural saline levels (1.15 dS m-1 [low soil-salinity], 6.00 dS m-1 [medium soil-salinity] and 11.46 dS m-1 [high soil-salinity]). We found that the Bt protein content in the transgenic Bt cotton leaves and the insecticidal activity of Bt cotton against CBW decreased with the increasing soil salinity in laboratory experiments during the growing season. The Bt protein content of Bt cotton leaves in the laboratory were negatively correlated with the salinity level. The CBW populations were highest on the Bt cotton grown in medium-salinity soil instead of the high-salinity soil in field conditions. A possible mechanism may be that the relatively high-salinity soil changed the plant nutritional quality or other plant defensive traits. The results from this study may help to identify more appropriate practices to control CBW in Bt cotton fields with different soil salinity levels.
Luo, Jun-Yu; Zhang, Shuai; Peng, Jun; Zhu, Xiang-Zhen; Lv, Li-Min; Wang, Chun-Yi; Li, Chun-Hua; Zhou, Zhi-Guo; Cui, Jin-Jie
2017-01-01
An increasing area of transgenic Bacillus thuringiensis (Bt) cotton is being planted in saline-alkaline soil in China. The Bt protein level in transgenic cotton plants and its control efficiency can be affected by abiotic stress, including high temperature, water deficiency and other factors. However, how soil salinity affects the expression of Bt protein, thus influencing the control efficiency of Bt cotton against the cotton bollworm (CBW) Helicoverpa armigera (Hübner) in the field, is poorly understood. Our objective in the present study was to investigate the effects of soil salinity on the expression of Bt toxin (Cry1Ac) and the control efficiency of Helicoverpa armigera in field-grown transgenic Bt cotton using three natural saline levels (1.15 dS m-1 [low soil-salinity], 6.00 dS m-1 [medium soil-salinity] and 11.46 dS m-1 [high soil-salinity]). We found that the Bt protein content in the transgenic Bt cotton leaves and the insecticidal activity of Bt cotton against CBW decreased with the increasing soil salinity in laboratory experiments during the growing season. The Bt protein content of Bt cotton leaves in the laboratory were negatively correlated with the salinity level. The CBW populations were highest on the Bt cotton grown in medium-salinity soil instead of the high-salinity soil in field conditions. A possible mechanism may be that the relatively high-salinity soil changed the plant nutritional quality or other plant defensive traits. The results from this study may help to identify more appropriate practices to control CBW in Bt cotton fields with different soil salinity levels. PMID:28099508
Isolation of an Orally Active Insecticidal Toxin from the Venom of an Australian Tarantula
Hardy, Margaret C.; Daly, Norelle L.; Mobli, Mehdi; Morales, Rodrigo A. V.; King, Glenn F.
2013-01-01
Many insect pests have developed resistance to existing chemical insecticides and consequently there is much interest in the development of new insecticidal compounds with novel modes of action. Although spiders have deployed insecticidal toxins in their venoms for over 250 million years, there is no evolutionary selection pressure on these toxins to possess oral activity since they are injected into prey and predators via a hypodermic needle-like fang. Thus, it has been assumed that spider-venom peptides are not orally active and are therefore unlikely to be useful insecticides. Contrary to this dogma, we show that it is possible to isolate spider-venom peptides with high levels of oral insecticidal activity by directly screening for per os toxicity. Using this approach, we isolated a 34-residue orally active insecticidal peptide (OAIP-1) from venom of the Australian tarantula Selenotypus plumipes. The oral LD50 for OAIP-1 in the agronomically important cotton bollworm Helicoverpa armigera was 104.2±0.6 pmol/g, which is the highest per os activity reported to date for an insecticidal venom peptide. OAIP-1 is equipotent with synthetic pyrethroids and it acts synergistically with neonicotinoid insecticides. The three-dimensional structure of OAIP-1 determined using NMR spectroscopy revealed that the three disulfide bonds form an inhibitor cystine knot motif; this structural motif provides the peptide with a high level of biological stability that probably contributes to its oral activity. OAIP-1 is likely to be synergized by the gut-lytic activity of the Bacillus thuringiensis Cry toxin (Bt) expressed in insect-resistant transgenic crops, and consequently it might be a good candidate for trait stacking with Bt. PMID:24039872
Li, Xiaogang; Liu, Biao
2013-01-01
Transgenic insect-resistant cotton has been released into the environment for more than a decade in China to effectively control the cotton bollworm (Helicoverpa armigera) and other Lepidoptera. Because of concerns about undesirable ecological side-effects of transgenic crops, it is important to monitor the potential environmental impact of transgenic insect-resistant cotton after commercial release. Our 2-year study included 1 cotton field where non-transgenic cotton had been planted continuously and 2 other cotton fields where transgenic insect-resistant cotton had been planted for different lengths of time since 1997 and since 2002. In 2 consecutive years (2009 and 2010), we took soil samples from 3 cotton fields at 4 different growth stages (seedling, budding, boll-forming and boll-opening stages), collected soil nematodes from soil with the sugar flotation and centrifugation method and identified the soil nematodes to the genus level. The generic composition, individual densities and diversity indices of the soil nematodes did not differ significantly between the 2 transgenic cotton fields and the non-transgenic cotton field, but significant seasonal variation was found in the individual densities of the principal trophic groups and in the diversity indices of the nematodes in all 3 cotton fields. The study used a comparative perspective to monitor the impact of transgenic insect-resistant cotton grown in typical ‘real world’ conditions. The results of the study suggested that more than 10 years of cultivation of transgenic insect-resistant cotton had no significant effects–adverse or otherwise–on soil nematodes. This study provides a theoretical basis for ongoing environmental impact monitoring of transgenic plants. PMID:23613899
Ives, Anthony R; Paull, Cate; Hulthen, Andrew; Downes, Sharon; Andow, David A; Haygood, Ralph; Zalucki, Myron P; Schellhorn, Nancy A
2017-01-01
Transgenic crops that express insecticide genes from Bacillus thuringiensis (Bt) are used worldwide against moth and beetle pests. Because these engineered plants can kill over 95% of susceptible larvae, they can rapidly select for resistance. Here, we use a model for a pyramid two-toxin Bt crop to explore the consequences of spatio-temporal variation in the area of Bt crop and non-Bt refuge habitat. We show that variability over time in the proportion of suitable non-Bt breeding habitat, Q, or in the total area of Bt and suitable non-Bt habitat, K, can increase the overall rate of resistance evolution by causing short-term surges of intense selection. These surges can be exacerbated when temporal variation in Q and/or K cause high larval densities in refuges that increase density-dependent mortality; this will give resistant larvae in Bt fields a relative advantage over susceptible larvae that largely depend on refuges. We address the effects of spatio-temporal variation in a management setting for two bollworm pests of cotton, Helicoverpa armigera and H. punctigera, and field data on landscape crop distributions from Australia. Even a small proportion of Bt fields available to egg-laying females when refuges are sparse may result in high exposure to Bt for just a single generation per year and cause a surge in selection. Therefore, rapid resistance evolution can occur when Bt crops are rare rather than common in the landscape. These results highlight the need to understand spatio-temporal fluctuations in the landscape composition of Bt crops and non-Bt habitats in order to design effective resistance management strategies.
Rasool, Akhtar; Joußen, Nicole; Lorenz, Sybille; Ellinger, Renate; Schneider, Bernd; Khan, Sher Afzal; Ashfaq, Muhammad; Heckel, David G
2014-10-01
The increasing resistance level of insect pest species is a major concern to agriculture worldwide. The cotton bollworm, Helicoverpa armigera, is one of the most important pest species due to being highly polyphagous, geographically widespread, and resistant towards many chemical classes of insecticides. We previously described the mechanism of fenvalerate resistance in Australian populations conferred by the chimeric cytochrome P450 monooxygenase CYP337B3, which arose by unequal crossing-over between CYP337B1 and CYP337B2. Here, we show that this mechanism is also present in the cypermethrin-resistant FSD strain from Pakistan. The Pakistani and the Australian CYP337B3 alleles differ by 18 synonymous and three nonsynonymous SNPs and additionally in the length and sequence of the intron. Nevertheless, the activity of both CYP337B3 proteins is comparable. We demonstrate that CYP337B3 is capable of metabolizing cypermethrin (trans- and especially cis-isomers) to the main metabolite 4'-hydroxycypermethrin, which exhibits no intrinsic toxicity towards susceptible larvae. In a bioassay, CYP337B3 confers a 7-fold resistance towards cypermethrin in FSD larvae compared to susceptible larvae from the Australian TWB strain lacking CYP337B3. Linkage analysis shows that presence of CYP337B3 accounts for most of the cypermethrin resistance in the FSD strain; up-regulation of other P450s in FSD plays no detectable role in resistance. The presence or absence of CYP337B3 can be easily detected by a simple PCR screen, providing a powerful tool to rapidly distinguish resistant from susceptible individuals in the field and to determine the geographical distribution of this resistance gene. Our results suggest that CYP337B3 evolved twice independently by unequal crossing-over between CYP337B2 and two different CYP337B1 alleles. Copyright © 2014 Elsevier Ltd. All rights reserved.
2012-01-01
Background HearMNPV, a nucleopolyhedrovirus (NPV), which infects the cotton bollworm, Helicoverpa armigera, comprises multiple rod-shaped nucleocapsids in virion(as detected by electron microscopy). HearMNPV shows a different host range compared with H. armigera single-nucleocapsid NPV (HearSNPV). To better understand HearMNPV, the HearMNPV genome was sequenced and analyzed. Methods The morphology of HearMNPV was observed by electron microscope. The qPCR was used to determine the replication kinetics of HearMNPV infectious for H. armigera in vivo. A random genomic library of HearMNPV was constructed according to the “partial filling-in” method, the sequence and organization of the HearMNPV genome was analyzed and compared with sequence data from other baculoviruses. Results Real time qPCR showed that HearMNPV DNA replication included a decreasing phase, latent phase, exponential phase, and a stationary phase during infection of H. armigera. The HearMNPV genome consists of 154,196 base pairs, with a G + C content of 40.07%. 162 putative ORFs were detected in the HearMNPV genome, which represented 90.16% of the genome. The remaining 9.84% constitute four homologous regions and other non-coding regions. The gene content and gene arrangement in HearMNPV were most similar to those of Mamestra configurata NPV-B (MacoNPV-B), but was different to HearSNPV. Comparison of the genome of HearMNPV and MacoNPV-B suggested that HearMNPV has a deletion of a 5.4-kb fragment containing five ORFs. In addition, HearMNPV orf66, bro genes, and hrs are different to the corresponding parts of the MacoNPV-B genome. Conclusions HearMNPV can replicate in vivo in H. armigera and in vitro, and is a new NPV isolate distinguished from HearSNPV. HearMNPV is most closely related to MacoNPV-B, but has a distinct genomic structure, content, and organization. PMID:22913743
Optimal Cotton Insecticide Application Termination Timing: A Meta-Analysis.
Griffin, T W; Zapata, S D
2016-08-01
The concept of insecticide termination timing is generally accepted among cotton (Gossypium hirsutum) researchers; however, exact timings are often disputed. Specifically, there is uncertainty regarding the last economic insecticide application to control fruit-feeding pests including tarnished plant bug (Lygus lineolaris (Palisot de Beauvois)), boll weevil (Anthonomus grandis), bollworm (Helicoverpa zea), tobacco budworm (Heliothis virescens), and cotton fleahopper (Pseudatomoscelis seriatus). A systematic review of prior studies was conducted within a meta-analytic framework. Nine publicly available articles were amalgamated to develop an optimal timing principle. These prior studies reported 53 independent multiple means comparison field experiments for a total of 247 trial observations. Stochastic plateau theory integrated with econometric meta-analysis methodology was applied to the meta-database to determine the shape of the functional form of both the agronomic optimal insecticide termination timing and corresponding yield potential. Results indicated that current university insecticide termination timing recommendations are later than overall estimated timing suggested. The estimated 159 heat units (HU) after the fifth position above white flower (NAWF5) was found to be statistically different than the 194 HU termination used as the status quo recommended termination timing. Insecticides applied after 159 HU may have been applied in excess, resulting in unnecessary economic and environmental costs. Empirical results also suggested that extending the insecticide termination time by one unit resulted in a cotton lint yield increase of 0.27 kilograms per hectare up to the timing where the plateau began. Based on economic analyses, profit-maximizing producers may cease application as soon as 124 HU after NAWF5. These results provided insights useful to improve production systems by applying inputs only when benefits were expected to be in excess of the respective costs. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Gayen, Srimonta; Mandal, Chandi Charan; Samanta, Milan Kumar; Dey, Avishek; Sen, Soumitra Kumar
2016-04-01
Emergence of resistant insects limits the sustainability of Bacillus thuringiensis (Bt) transgenic crop plants for insect management. Beside this, the presence of unwanted marker gene(s) in the transgenic crops is also a major environmental and health concern. Thus, development of marker free transgenic crop plants expressing a new class of toxin having a different mortality mechanism is necessary for resistance management. In a previous study, we generated an engineered Cry2Aa (D42/K63F/K64P) toxin which has a different mortality mechanism as compared to first generation Bt toxin Cry1A, and this engineered toxin was found to enhance 4.1-6.6-fold toxicity against major lepidopteran insect pests of crop plants. In the present study, we have tested the potency of this engineered synthetic Cry2Aa (D42/K63F/K64P) toxin as a candidate in the development of insect resistant transgenic tobacco plants. Simultaneously, we have eliminated the selectable marker gene from the Cry2Aa (D42/K63F/K64P) expressing tobacco plants by exploiting the Cre/lox mediated recombination methodology, and successfully developed marker free T2 transgenic tobacco plants expressing the engineered Cry2Aa toxin. Realtime and western blot analysis demonstrated the expression of engineered toxin gene in transgenic plants. Insect feeding assays revealed that the marker free T2 progeny of transgenic plants expressing Cry2Aa (D42/K63F/K64P) toxin showed 82-92 and 52-61 % mortality to cotton leaf worm (CLW) and cotton bollworm (CBW) respectively. Thus, this engineered Cry2Aa toxin could be useful for the generation of insect resistant transgenic Bt lines which will protect the crop damages caused by different insect pests such as CLW and CBW.
Age-dependent trade-offs between immunity and male, but not female, reproduction.
McNamara, Kathryn B; van Lieshout, Emile; Jones, Therésa M; Simmons, Leigh W
2013-01-01
Immune function is costly and must be traded off against other life-history traits, such as gamete production. Studies of immune trade-offs typically focus on adult individuals, yet the juvenile stage can be a highly protracted period when reproductive resources are acquired and immune challenges are ubiquitous. Trade-offs during development are likely to be important, yet no studies have considered changes in adult responses to immune challenges imposed at different stages of juvenile development. By manipulating the timing of a bacterial immune challenge to the larvae of the cotton bollworm moth, we examined potential trade-offs between investment into immunity at different stages of juvenile development (early or late) and subsequent adult reproductive investment into sperm or egg production. Our data reveal an age-dependent trade-off between juvenile immune function and adult male reproductive investment. Activation of the immune response during late development resulted in a reduced allocation of resources to eupyrene (fertilizing) sperm production. Immune activation from the injection procedure itself (irrespective of whether individuals were injected with an immune elicitor or a control solution) also caused reproductive trade-offs; males injected early in development produced fewer apyrene (nonfertilizing) sperm. Contrary to many other studies, our study demonstrates these immune trade-offs under ad libitum nutritional conditions. No trade-offs were observed between female immune activation and adult reproductive investment. We suggest the differences in trade-offs observed between male sperm types and the absence of reproductive trade-offs in females may be the result of ontogenetic differences in gamete production in this species. Our data reveal developmental windows when trade-offs between immune function and gametic investment are made, and highlight the importance of considering multiple developmental periods when making inferences regarding the fundamental trade-offs expected between immune function and reproduction. © 2012 The Authors. Journal of Animal Ecology © 2012 British Ecological Society.
Tripathi, Monika; Kumar, Arvind; Kalia, Vinay; Saxena, A K; Gujar, Govind
2016-07-01
Both, the tobacco caterpillar Spodoptera litura (Fabricius) and the cotton bollworm Helicoverpa armigera (Hibner), are serious polyphagous pests causing considerable loss to crops. Indiscriminate use of chemical pesticides for controlling them has rather resulted in their resistance development. Microbial pesticides, Bacillus thuringiensis in particular, play an important role in pest management. Here, we isolated Bacillus thuringiensis-like bacteria from the soil samples primarily collected from North East region of India along with some states viz., Haryana, Punjab, Maharashtra, West Bengal and Uttarakhand and studied their toxicity against the above two insect pests at 10 gg/g along with standard strain B. thuringiensis subsp. kurstaki HD-I and at 1 pg/g Pseudomonasfluorescens based MVPII expressing CrylAc toxin and AUG-5. Isolates AUG-5 and GTG-7 proved toxic to more than 75% larvae on the 4h as well as 7h day of the treatment of the neonates of H. armigera. The AUG-5 isolate was also effective against S. litura. Ten effective isolates (AUG-5, GTG-4, GTG-7, GTG-9, GTG-42, GTG-64, GTG-70, GTG-3S, GTG-4S and GTG-6S) were characterized using biochemical and 16S rDNA analysis. Nearly, all the isolates tested positive for utilizing monosaccharides. All selected B. thuringiensis isolates showed resistance to ampicillin and co-trimoxazole except AUG-5 to- co-trimoxazole. AUG-5 and GTG-7 were highly toxic to both insects, and possessed cryl, cry1A and cry2 genes. These isolates AUG-5 and GTG-7 also contained high CrylAc (104.8 and 88.32 ng/mg) and Cry2Ab (3792 and 1305.9 ng/mg), respectively in their spore-crystal complex. Both, AUG-5 and GTG-7 isolates, could be considered for further development as bioinsecticides. The present study has established the diversity and richness of B. thuringiensis-like isolates in soils collected from north-eastern region of India.
Dourado, Patrick M; Bacalhau, Fabiana B; Amado, Douglas; Carvalho, Renato A; Martinelli, Samuel; Head, Graham P; Omoto, Celso
2016-01-01
The Old World bollworm, Helicoverpa armigera (Hübner), was recently introduced into Brazil, where it has caused extensive damage to cotton and soybean crops. MON 87701 × MON 89788 soybean, which expresses the Bt protein Cry1Ac, was recently deployed in Brazil, providing high levels of control against H. armigera. To assess the risk of resistance to the Cry1Ac protein expressed by MON 87701 × MON 89788 soybean in Brazil, we conducted studies to evaluate the baseline susceptibility of H. armigera to Cry1Ac, in planta efficacy including the assessment of the high-dose criterion, and the initial resistance allele frequency based on an F2 screen. The mean Cry1Ac lethal concentration (LC50) ranged from 0.11 to 1.82 μg·mL-1 of diet among all H. armigera field populations collected from crop seasons 2013/14 to 2014/15, which indicated about 16.5-fold variation. MON 87701 × MON 89788 soybean exhibited a high level of efficacy against H. armigera and most likely met the high dose criterion against this target species in leaf tissue dilution bioassays up to 50 times. A total of 212 F2 family lines of H. armigera were established from field collections sampled from seven locations across Brazil and were screened for the presence of MON 87701 × MON 89788 soybean resistance alleles. None of the 212 families survived on MON 87701 × MON 89788 soybean leaf tissue (estimated allele frequency = 0.0011). The responses of H. armigera to Cry1Ac protein, high susceptibility to MON 87701 × MON 89788 soybean, and low frequency of resistance alleles across the main soybean-producing regions support the assumptions of a high-dose/refuge strategy. However, maintenance of reasonable compliance with the refuge recommendation will be essential to delay the evolution of resistance in H. armigera to MON 87701 × MON 89788 soybean in Brazil.
Chemical profile and defensive function of the latex of Euphorbia peplus.
Hua, Juan; Liu, Yan; Xiao, Chao-Jiang; Jing, Shu-Xi; Luo, Shi-Hong; Li, Sheng-Hong
2017-04-01
Plant latex is an endogenous fluid secreted from highly specialized laticifer cells and has been suggested to act as a plant defense system. The chemical profile of the latex of Euphorbia peplus was investigated. A total of 13 terpenoids including two previously unknown diterpenoids, (2S*,3S*,4R*,5R*,6R*,8R*,l1R*,13S*,14S*,15R*, 16R*)-5,8,15-triacetoxy-3-benzoyloxy-11,16-dihydroxy-9-oxopepluane and (2R*,3R*, 4S*,5R*,7S*,8S*,9S*,l3S*,14S*,15R*)-2,5,8,9,14-pentaacetoxy-3-benzoyloxy-15-hydroxy-7-isobutyroyloxyjatropha-6(17),11E-diene), ten known diterpenoids, and a known acyclic triterpene alcohol peplusol, were identified, using HPLC and UPLC-MS/MS analyses and through comparison with the authentic compounds isolated from the whole plant. The diterpenoids exhibited significant antifeedant activity against a generalist plant-feeding insect, the cotton bollworm (Helicoverpa armigera), with EC 50 values ranging from 0.36 to 4.60 μg/cm 2 . In particular, (2R*,3R*,4S*,5R*,7S*,8S*,9S*,l3S*,14S*,15R*)-2,5,9,14-tetraacetoxy-3-benzoyloxy-8,15-dihydroxy-7-isobutyroyloxyjatropha-6(17),11E-diene and (2R*,3R*, 4S*,5R*,7S*,8S*,9S*,l3S*,14S*,15R*)-2,5,14-triacetoxy-3-benzoyloxy-8,15-dihydroxy-7-isobutyroyloxy-9-nicotinoyloxyjatropha-6(17),11E-diene had EC 50 values of 0.36 and 0.43 μg/cm 2 , respectively, which were approximately 7-fold more potent than commercial neem oil (EC 50 = 2.62 μg/cm 2 ). In addition, the major peplusol showed obvious antifungal activity against three strains of agricultural phytopathogenic fungi, Rhizoctonia solani, Colletotrichum litchi and Fusarium oxysporum f. sp. niveum. The results indicated that terpenoids in the latex of E. peplus are rich and highly diversified, and might function as constitutive defense metabolites against insect herbivores and pathogens for the plant. Copyright © 2016 Elsevier Ltd. All rights reserved.
Levine, Steven L; Mueller, Geoffrey M; Uffman, Joshua P
2016-08-01
Bollgard(®) III was developed by combining cotton events COT102 and MON 15985 through conventional breeding to improve efficacy against lepidopteran feeding damage. COT102 produces the Vip3Aa19 protein and MON 15985 produces the Cry1Ac and Cry2Ab2 proteins. COT102 × MON 15985 has also been bred with Roundup Ready Flex(®) cotton (MON 88913) that confers glyphosate tolerance. This study evaluated the activity of COT102 and MON 15985 and the combined activity of COT102 and MON 15985 against the cotton bollworm (CBW, Helicoverpa zea). COT102, MON 15985, COT102 × MON 15985 and COT102 × MON 15985 × MON 88913 have comparable Vip3Aa19 and/or Cry1Ac, Cry2Ab2 protein expression levels as determined by enzyme-linked immunosorbent assay. CBW demonstrated concentration-dependent growth inhibition after 7-days of feeding on lyophilized leaf tissue derived from COT102, MON 15985, COT102 × MON 15985 and COT102 × MON 15985 × MON 88913 incorporated into an artificial diet. Observed EC50 values for COT102 × MON 15985 and COT102 × MON 15985 × MON 88913 were comparable (≤4% deviation) with the predicted EC50 value under the assumption of additivity using the combined activity of COT102 and MON 15985. No interaction in biological activity between COT102 and MON 15985 is consistent with results from competition and ligand blotting assays that demonstrated that Vip3Aa does not inhibit the binding of either Cry1Ac or Cry2Ab2 and vice versa. The results from this study demonstrate that the activity of COT102 × MON 15985 against CBW is consistent with predictions of additivity. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Liu, Nai-Yong; Xu, Wei; Dong, Shuang-Lin; Zhu, Jia-Ying; Xu, Yu-Xing; Anderson, Alisha
2018-05-22
The functions of the Ionotropic Receptor (IR) family have been well studied in Drosophila melanogaster, but only limited information is available in Lepidoptera. Here, we conducted a large-scale genome-wide analysis of the IR gene repertoire in 13 moths and 16 butterflies. Combining a homology-based approach and manual efforts, totally 996 IR candidates are identified including 31 pseudogenes and 825 full-length sequences, representing the most current comprehensive annotation in lepidopteran species. The phylogeny, expression and sequence characteristics classify Lepidoptera IRs into three sub-families: antennal IRs (A-IRs), divergent IRs (D-IRs) and Lepidoptera-specific IRs (LS-IRs), which is distinct from the case of Drosophila IRs. In comparison to LS-IRs and D-IRs, A-IRs members share a higher degree of protein identity and are distinguished into 16 orthologous groups in the phylogeny, showing conservation of gene structure. Analysis of selective forces on 27 orthologous groups reveals that these lepidopteran IRs have evolved under strong purifying selection (dN/dS≪1). Most notably, lineage-specific gene duplications that contribute primarily to gene number variations across Lepidoptera not only exist in D-IRs, but are present in the two other sub-families including members of IR41a, 76b, 87a, 100a and 100b. Expression profiling analysis reveals that over 80% (21/26) of Helicoverpa armigera A-IRs are expressed more highly in antennae of adults or larvae than other tissues, consistent with its proposed function in olfaction. However, some are also detected in taste organs like proboscises and legs. These results suggest that some A-IRs in H. armigera likely bear a dual function with their involvement in olfaction and gustation. Results from mating experiments show that two HarmIRs (IR1.2 and IR75d) expression is significantly up-regulated in antennae of mated female moths. However, no expression difference is observed between unmated female and male adults, suggesting an association with female host-searching behaviors. Our current study has greatly extended the IR gene repertoire resource in Lepidoptera, and more importantly, identifies potential IR candidates for olfactory, gustatory and oviposition behaviors in the cotton bollworm. Crown Copyright © 2018. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Biradar, D. P.; Alagawadi, A. R.; Basavanneppa, M. A.; Udikeri, S. S.
2012-04-01
Field experiments were conducted over three rainy seasons of 2005-06 to 2007-08 on a Vertisol at Dharwad, Karnataka, India to study the effect of intercropping and plant protection schedules on productivity, soil microflora and enzyme activities in the rhizosphere of transgenic Bt cotton hybrid. The experiment consisted of four intercropping systems namely, Bt cotton + okra, Bt cotton + chilli, Bt cotton + onion + chilli and Bt cotton + redgram with four plant protection schedules (zero protection, protection for Bt cotton, protection for intercrop and protection for both crops). Observations on microbial populations and enzyme activities were recorded at 45, 90, 135 and 185 (at harvest) days after sowing (DAS). Averaged over years, Bt cotton + okra intercropping had significantly higher total productivity than Bt cotton + chilli and Bt cotton + redgram intercropping system and was similar to Bt cotton + chilli + onion intercropping system. With respect to plant protection schedules for bollworms, protection for both cotton and intercrops recorded significantly higher yield than the rest of the treatments. Population of total bacteria, fungi, actinomycetes, P-solubilizers, free-living N2 fixers as well as urease, phosphatase and dehydrogenase enzyme activities increased up to 135 days of crop growth followed by a decline. Among the intercropping systems, Bt cotton + chilli recorded significantly higher population of microorganisms and enzyme activities than other cropping systems. While Bt cotton with okra as intercrop recorded the least population of total bacteria and free-living N2 fixers as well as urease activity. Intercropping with redgram resulted in the least population of actinomycetes, fungi and P-solubilizers, whereas Bt cotton with chilli and onion recorded least activities of dehydrogenase and phosphatase. Among the plant protection schedules, zero protection recorded maximum population of microorganisms and enzyme activities. This was followed by the plant protection schedule taken up for main crop and for intercrops, but was least in the insecticide sprayed to both the crops. Data on interaction of intercropping and plant protection schedules indicated that Bt cotton with chilli as intercrop and with zero plant protection showed the highest population of P-solubilizers, N2 fixers as well as urease and phosphatase activities at 135 days of crop growth. Similarly, population of total bacteria, fungi and actinomycetes were highest in the treatment of Bt cotton + chilli + onion with zero protection but were on par with the treatment Bt cotton + chilli with zero protection at 135 days of crop growth. Dehydrogenase activity was found to be the highest in the treatment of Bt cotton + redgram with zero protection at 135 days of crop growth. Our studies showed harmful effects of insecticide sprays on soil microflora and enzyme activities.
Zhang, W N; Xiao, H J; Liang, G M; Guo, Y Y; Wu, K M
2014-08-01
Evolution of resistance to insecticides usually has fitness tradeoffs associated with adaptation to the stress. The basic regulation mechanism of tradeoff between reproduction and resistance evolution to Bacillus thuringiensis (Bt) toxin in the cotton bollworm, Helicoverpa armigera (Ha), based on the vitellogenin (Vg) gene expression was analyzed here. The full-length cDNA of the Vg gene HaVg (JX504706) was cloned and identified. HaVg has 5704 base pairs (bp) with an open reading frame (ORF) of 5265 bp, which encoded 1756 amino acid protein with a predicted molecular mass of 197.28 kDa and a proposed isoelectric point of 8.74. Sequence alignment analysis indicated that the amino acid sequence of HaVg contained all of the conserved domains detected in the Vgs of the other insects and had a high similarity with the Vgs of the Lepidoptera insects, especially Noctuidae. The resistance level to Cry1Ac Bt toxin and relative HaVg mRNA expression levels among the following four groups: Cry1Ac-susceptible strain (96S), Cry1Ac-resistant strain fed on artificial diet with Bt toxin for 135 generations (BtR stands for the Cry1Ac Bt resistance), progeny of the Cry1Ac-resistant strain with a non-Bt-toxin artificial diet for 38 generations (CK1) and the direct descendants of the 135th-generation resistant larvae which were fed on an artificial diet without the Cry1Ac protein (CK2) were analyzed. Compared with the 96S strain, the resistance ratios of the BtR strain, the CK1 strain and the CK2 strain were 2917.15-, 2.15- and 2037.67-fold, respectively. The maximum relative HaVg mRNA expression levels of the BtR strain were approximately 50% less than that of the 96S strain, and the coming of maximum expression was delayed for approximately 4 days. The overall trend of the HaVg mRNA expression levels in the CK1 strain was similar to that in the 96S strain, and the overall trend of the HaVg mRNA expression levels in the CK2 strain was similar to that in the BtR strain. Our results suggest that the changes in reproduction due to the Bt-toxin resistance evolution in the BtR strain may be regulated by the Vg gene expression. The down-regulation of HaVg at the early stages resulted in a period of delayed reproduction and decreased fecundity in the BtR strain. This performance disappeared when the Bt-toxin selection pressure was lost.