Behavior of a tapered hub flange with a bolted flat cover in transient temperature field
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sawa, T.; Nakagomi, Y.; Hirose, T.
1996-02-01
When bolted flange connections with gaskets are used in mechanical structures such as pipe connections, bolted covers of casks, and pressure vessels in nuclear and chemical plants and cylinder heads in internal combustion engines, they are usually subjected to transient thermal conditions. An experimental and analytical study was made on a bolted connection subjected to thermal loading. The connection consists of an aluminum alloy tapered hub flange and a flat cover, including a gasket fastened by steel bolts and nuts. Temperature distribution in the connection was measured with thermocouples, and the axial bolt force, the maximum bolt stress, and themore » hub stress were measured by strain gages under a thermal condition that the inner surface of the flanges was heated and the outer surfaces of the flanges and the cover were held at room temperature. Finite difference analysis was made to obtain the temperature distributions in the connection due to a transient thermal condition. This paper demonstrates the method for obtaining an increment in axial bolt force and the maximum bolt stress. In all cases, the analytical results were fairly consistent with the experimental results.« less
Biallas, George Herman
2017-07-04
A diaphragm flange for connecting the tubes in a particle accelerator while minimizing beamline impedance. The diaphragm flange includes an outer flange and a thin diaphragm integral with the outer flange. Bolt holes in the outer flange provide a means for bolting the diaphragm flange to an adjacent flange or beam tube having a mating bolt-hole pattern. The diaphragm flange includes a first surface for connection to the tube of a particle accelerator beamline and a second surface for connection to a CF flange. The second surface includes a recessed surface therein and a knife-edge on the recessed surface. The diaphragm includes a thickness that enables flexing of the integral diaphragm during assembly of beamline components. The knife-edge enables compression of a soft metal gasket to provide a leak-tight seal.
46 CFR 98.30-27 - Connections.
Code of Federal Regulations, 2013 CFR
2013-10-01
... joints and couplings to make a tight seal; (2) Use a bolt in at least every other hole and in no case... (ANSI) standard flange coupling; (3) Use a bolt in each hole of couplings other than ANSI standard flange couplings; (4) Use a bolt in each hole of each permanently connected flange coupling; (5) Use...
46 CFR 98.30-27 - Connections.
Code of Federal Regulations, 2011 CFR
2011-10-01
... joints and couplings to make a tight seal; (2) Use a bolt in at least every other hole and in no case... (ANSI) standard flange coupling; (3) Use a bolt in each hole of couplings other than ANSI standard flange couplings; (4) Use a bolt in each hole of each permanently connected flange coupling; (5) Use...
46 CFR 98.30-27 - Connections.
Code of Federal Regulations, 2012 CFR
2012-10-01
... joints and couplings to make a tight seal; (2) Use a bolt in at least every other hole and in no case... (ANSI) standard flange coupling; (3) Use a bolt in each hole of couplings other than ANSI standard flange couplings; (4) Use a bolt in each hole of each permanently connected flange coupling; (5) Use...
46 CFR 98.30-27 - Connections.
Code of Federal Regulations, 2010 CFR
2010-10-01
... joints and couplings to make a tight seal; (2) Use a bolt in at least every other hole and in no case... (ANSI) standard flange coupling; (3) Use a bolt in each hole of couplings other than ANSI standard flange couplings; (4) Use a bolt in each hole of each permanently connected flange coupling; (5) Use...
Code of Federal Regulations, 2012 CFR
2012-07-01
... material in joints and couplings to ensure a leak-free seal; (2) Use a bolt in at least every other hole... chapter; (3) Use a bolt in each hole in each temporary bolted connection that uses a flange other than one that meets ANSI standards; (4) Use a bolt in each hole of each permanently connected flange; (5) Use...
Code of Federal Regulations, 2011 CFR
2011-07-01
... material in joints and couplings to ensure a leak-free seal; (2) Use a bolt in at least every other hole... chapter; (3) Use a bolt in each hole in each temporary bolted connection that uses a flange other than one that meets ANSI standards; (4) Use a bolt in each hole of each permanently connected flange; (5) Use...
Code of Federal Regulations, 2014 CFR
2014-07-01
... material in joints and couplings to ensure a leak-free seal; (2) Use a bolt in at least every other hole... chapter; (3) Use a bolt in each hole in each temporary bolted connection that uses a flange other than one that meets ANSI standards; (4) Use a bolt in each hole of each permanently connected flange; (5) Use...
Code of Federal Regulations, 2013 CFR
2013-07-01
... material in joints and couplings to ensure a leak-free seal; (2) Use a bolt in at least every other hole... chapter; (3) Use a bolt in each hole in each temporary bolted connection that uses a flange other than one that meets ANSI standards; (4) Use a bolt in each hole of each permanently connected flange; (5) Use...
Code of Federal Regulations, 2010 CFR
2010-07-01
... material in joints and couplings to ensure a leak-free seal; (2) Use a bolt in at least every other hole... chapter; (3) Use a bolt in each hole in each temporary bolted connection that uses a flange other than one that meets ANSI standards; (4) Use a bolt in each hole of each permanently connected flange; (5) Use...
46 CFR 98.30-27 - Connections.
Code of Federal Regulations, 2014 CFR
2014-10-01
... other hole and in no case less than four bolts in each temporary connection utilizing an American National Standards Institute (ANSI) standard flange coupling; (3) Use a bolt in each hole of couplings other than ANSI standard flange couplings; (4) Use a bolt in each hole of each permanently connected...
An analysis of pipe flange connections using epoxy adhesives/anaerobic sealant instead of gaskets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sawa, T.; Sasaki, R.; Yoneno, M.
1995-11-01
This paper deals with the strength and the sealing performance of pipe flange connections combining the bonding force of adhesives with the clamping force of bolts. The epoxy adhesives or anaerobic sealants are bonded at the interface partially instead of gaskets in pipe flange connections. The stress distribution in the epoxy adhesives (anaerobic sealant), which governs the sealing performance, and the variations in axial bolt force are analyzed, using an axisymmetrical theory of elasticity, when an internal pressure is applied to a connection in which two pipe flanges are clamped together buy bolts and nuts with an initial clamping forcemore » after being joined by epoxy adhesives or anaerobic sealant. In addition, a method for estimating the strength of the combination connection is demonstrated. Experiments are performed and the analytical results are consistent with the experimental results concerning the variation in axial bolt force and the strength of combination connections. It can be seen that the strength of connections increases with a decrease in the bolt pitch circle diameter. Furthermore, it is seen that the sealing performance of such combination connections in which the interface is bonded partially is improved over that of pipe flange connections with metallic gaskets.« less
NASA Technical Reports Server (NTRS)
Belrose, Charles R. (Inventor)
1994-01-01
A saddle clamp assembly is presented. The assembly is comprised of a hollow cylindrical body centered about a longitudinal axis and being diametrically split into semicircular top and bottom sections. Each section has a pair of connection flanges, at opposite ends, that project radially outward. A pair of bolts are retained on the top section flanges and are threadable into nuts retained on the bottom section flanges. A base member is anchored to a central underside portion of the bottom clamp body section and has a pair of connection tabs positioned beneath the bottom clamp body section connection flanges on opposite sides of the clamp axis. A pair of bolts are retained on the base member connection tabs and are threadable into a pair of nuts retainable on a support structure. The connection tab and connection flanges on each side of the clamp body are axially offset in a manner permitting downward installation/removable tool access to the lower bolts past the connection flanges. An elongated retention tether is used to connect the top clamp body section to the balance of the clamp assembly. This prevents loss of the top clamp body section when it is removed from the bottom clamp body section.
Mechanics of Re-Torquing in Bolted Flange Connections
NASA Technical Reports Server (NTRS)
Gordon, Ali P.; Drilling Brian; Weichman, Kyle; Kammerer, Catherine; Baldwin, Frank
2010-01-01
It has been widely accepted that the phenomenon of time-dependent loosening of flange connections is a strong consequence of the viscous nature of the compression seal material. Characterizing the coupled interaction between gasket creep and elastic bolt stiffness has been useful in predicting conditions that facilitate leakage. Prior advances on this sub-class of bolted joints has lead to the development of (1) constitutive models for elastomerics, (2) initial tightening strategies, (3) etc. The effect of re-torque, which is a major consideration for typical bolted flange seals used on the Space Shuttle fleet, has not been fully characterized, however. The current study presents a systematic approach to characterizing bolted joint behavior as the consequence of sequentially applied torques. Based on exprimenta1 and numerical results, the optimal re-torquing parameters have been identified that allow for the negligible load loss after pre-load application
Sectional device handling tool
Candee, Clark B.
1988-07-12
Apparatus for remotely handling a device in an irradiated underwater environment includes a plurality of tubular sections interconnected end-to-end to form a handling structure, the bottom section being adapted for connection to the device. A support section is connected to the top tubular section and is adapted to be suspended from an overhead crane. Each section is flanged at its opposite ends. Axially retractable bolts in each bottom flange are threadedly engageable with holes in the top flange of an adjacent section, each bolt being biased to its retracted position and retained in place on the bottom flange. Guide pins on each top flange cooperate with mating holes on adjacent bottom flanges to guide movement of the parts to the proper interconnection orientation. Each section carries two hydraulic line segments provided with quick-connect/disconnect fittings at their opposite ends for connection to the segments of adjacent tubular sections upon interconnection thereof to form control lines which are connectable to the device and to an associated control console.
NASA Astrophysics Data System (ADS)
Madsen, C. A.; Kragh-Poulsen, J.-C.; Thage, K. J.; Andreassen, M. J.
2017-12-01
The monopile foundation is the dominant solution for support of wind turbines in offshore wind farms. It is normally grouted to the transition piece which connects the foundation to the turbine. Currently, the bolted steel ring flange connection is investigated as an alternative. The monopile--transition piece connection has specific problems, such as out-of-verticality and installation damage from driving the MP into the seabed and it is not fully known how to design for these. This paper presents the status of the ongoing development work and an estimate of what still needs to be covered in order to use the connection in practice. This involves presentation of an analytical and non-linear FE analysis procedure for the monopile-transition piece connection composed of two L flanges connected with preloaded bolts. The connection is verified for ultimate and fatigue limit states based on an integrated load simulation carried out by the turbine manufacturer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muresan, Ioana Cristina; Balc, Roxana
Beam-to-column end-plate bolted connections are usually used as moment-resistant connections in steel framed structures. For this joint type, the deformability is governed by the deformation capacity of the column flange and end-plate under tension and elongation of the bolts. All these elements around the beam tension flange form the tension region of the joint, which can be modeled by means of equivalent T-stubs. In this paper a beam-to-column end-plate bolted connection is substituted with a T-stub of appropriate effective length and it is analyzed using the commercially available finite element software ABAQUS. The performance of the model is validated bymore » comparing the behavior of the T-stub from the numerical simulation with the behavior of the connection as a whole. The moment-rotation curve of the T-stub obtained from the numerical simulation is compared with the behavior of the whole extended end-plate connection, obtained by numerical simulation, experimental tests and analytical approach.« less
Ballas, Gary J.; Fife, Alex Blair; Ganz, Israel
1998-01-01
A shroud for a nuclear reactor is described. In one embodiment, the shroud includes first and second shroud sections, and each shroud section includes a substantially cylindrical main body having a first end and a second end. With respect to each shroud section, a flange is located at the main body first end, and the flange has a plurality of bolt openings therein and a plurality of scalloped regions. The first shroud section is welded to the second shroud section, and at least some of the bolt openings in the first shroud section flange align with respective bolt openings in the second shroud section flange. In the event that the onset of inter-granular stress corrosion cracking is ever detected in the weld between the shroud section, bolts are inserted through bolt openings in the first shroud section flange and through aligned bolt openings the second shroud section flange. Each bolt, in one embodiment, has a shank section and first and second threaded end sections. Nuts are threadedly engaged to the threaded end sections and tightened against the respective flanges.
46 CFR 56.25-10 - Flange facings.
Code of Federal Regulations, 2011 CFR
2011-10-01
... (incorporated by reference; see 46 CFR 56.01-2). (b) When bolting class 150 standard steel flanges to flat face cast iron flanges, the steel flange must be furnished with a flat face, and bolting must be in accordance with § 56.25-20 of this part. Class 300 raised face steel flanges may be bolted to class 250...
46 CFR 56.25-10 - Flange facings.
Code of Federal Regulations, 2013 CFR
2013-10-01
... (incorporated by reference; see 46 CFR 56.01-2). (b) When bolting class 150 standard steel flanges to flat face cast iron flanges, the steel flange must be furnished with a flat face, and bolting must be in accordance with § 56.25-20 of this part. Class 300 raised face steel flanges may be bolted to class 250...
46 CFR 56.25-10 - Flange facings.
Code of Federal Regulations, 2012 CFR
2012-10-01
... (incorporated by reference; see 46 CFR 56.01-2). (b) When bolting class 150 standard steel flanges to flat face cast iron flanges, the steel flange must be furnished with a flat face, and bolting must be in accordance with § 56.25-20 of this part. Class 300 raised face steel flanges may be bolted to class 250...
46 CFR 56.25-10 - Flange facings.
Code of Federal Regulations, 2014 CFR
2014-10-01
... (incorporated by reference; see 46 CFR 56.01-2). (b) When bolting class 150 standard steel flanges to flat face cast iron flanges, the steel flange must be furnished with a flat face, and bolting must be in accordance with § 56.25-20 of this part. Class 300 raised face steel flanges may be bolted to class 250...
46 CFR 56.25-10 - Flange facings.
Code of Federal Regulations, 2010 CFR
2010-10-01
... (incorporated by reference; see 46 CFR 56.01-2). (b) When bolting class 150 standard steel flanges to flat face cast iron flanges, the steel flange must be furnished with a flat face, and bolting must be in accordance with § 56.25-20 of this part. Class 300 raised face steel flanges may be bolted to class 250...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ballas, G.J.; Fife, A.B.; Ganz, I.
1998-04-07
A shroud for a nuclear reactor is described. In one embodiment, the shroud includes first and second shroud sections, and each shroud section includes a substantially cylindrical main body having a first end and a second end. With respect to each shroud section, a flange is located at the main body first end, and the flange has a plurality of bolt openings therein and a plurality of scalloped regions. The first shroud section is welded to the second shroud section, and at least some of the bolt openings in the first shroud section flange align with respective bolt openings inmore » the second shroud section flange. In the event that the onset of inter-granular stress corrosion cracking is ever detected in the weld between the shroud section, bolts are inserted through bolt openings in the first shroud section flange and through aligned bolt openings the second shroud section flange. Each bolt, in one embodiment, has a shank section and first and second threaded end sections. Nuts are threadedly engaged to the threaded end sections and tightened against the respective flanges. 4 figs.« less
Ballas, G.J.; Fife, A.B.; Ganz, I.
1998-04-07
A shroud for a nuclear reactor is described. In one embodiment, the shroud includes first and second shroud sections, and each shroud section includes a substantially cylindrical main body having a first end and a second end. With respect to each shroud section, a flange is located at the main body first end, and the flange has a plurality of bolt openings therein and a plurality of scalloped regions. The first shroud section is welded to the second shroud section, and at least some of the bolt openings in the first shroud section flange align with respective bolt openings in the second shroud section flange. In the event that the onset of inter-granular stress corrosion cracking is ever detected in the weld between the shroud section, bolts are inserted through bolt openings in the first shroud section flange and through aligned bolt openings the second shroud section flange. Each bolt, in one embodiment, has a shank section and first and second threaded end sections. Nuts are threadedly engaged to the threaded end sections and tightened against the respective flanges. 4 figs.
33 CFR 154.810 - Vapor line connections.
Code of Federal Regulations, 2011 CFR
2011-07-01
..., and (ii) The middle yellow band 0.8 meter (2.64 feet) wide; and (2) Labeled “VAPOR” in black letters.... The stud must be located at the top of the flange, midway between bolt holes, and in line with the bolt hole pattern. (d) Each hose used for transferring vapors must: (1) Have a design burst pressure of...
33 CFR 154.810 - Vapor line connections.
Code of Federal Regulations, 2013 CFR
2013-07-01
..., and (ii) The middle yellow band 0.8 meter (2.64 feet) wide; and (2) Labeled “VAPOR” in black letters.... The stud must be located at the top of the flange, midway between bolt holes, and in line with the bolt hole pattern. (d) Each hose used for transferring vapors must: (1) Have a design burst pressure of...
33 CFR 154.810 - Vapor line connections.
Code of Federal Regulations, 2012 CFR
2012-07-01
..., and (ii) The middle yellow band 0.8 meter (2.64 feet) wide; and (2) Labeled “VAPOR” in black letters.... The stud must be located at the top of the flange, midway between bolt holes, and in line with the bolt hole pattern. (d) Each hose used for transferring vapors must: (1) Have a design burst pressure of...
33 CFR Appendix A to Part 155 - Specifications for Shore Connection
Code of Federal Regulations, 2013 CFR
2013-07-01
... of this part] Item Description Dimension 1 Outside diameter 215 mm. (8 in.). 2 Inside diameter According to pipe outside diameter. 3 Bolt circle diameter 183 mm. (7 3/16 in.). 4 Slots in flange 6 holes 22 mm. (7/8 in.) in diameter shall be equidistantly placed on a bolt circle of the above diameter...
33 CFR Appendix A to Part 155 - Specifications for Shore Connection
Code of Federal Regulations, 2011 CFR
2011-07-01
... of this part] Item Description Dimension 1 Outside diameter 215 mm. (8 in.). 2 Inside diameter According to pipe outside diameter. 3 Bolt circle diameter 183 mm. (7 3/16 in.). 4 Slots in flange 6 holes 22 mm. (7/8 in.) in diameter shall be equidistantly placed on a bolt circle of the above diameter...
33 CFR Appendix A to Part 155 - Specifications for Shore Connection
Code of Federal Regulations, 2014 CFR
2014-07-01
... of this part] Item Description Dimension 1 Outside diameter 215 mm. (8 in.). 2 Inside diameter According to pipe outside diameter. 3 Bolt circle diameter 183 mm. (7 3/16 in.). 4 Slots in flange 6 holes 22 mm. (7/8 in.) in diameter shall be equidistantly placed on a bolt circle of the above diameter...
33 CFR Appendix A to Part 155 - Specifications for Shore Connection
Code of Federal Regulations, 2012 CFR
2012-07-01
... of this part] Item Description Dimension 1 Outside diameter 215 mm. (8 in.). 2 Inside diameter According to pipe outside diameter. 3 Bolt circle diameter 183 mm. (7 3/16 in.). 4 Slots in flange 6 holes 22 mm. (7/8 in.) in diameter shall be equidistantly placed on a bolt circle of the above diameter...
Pressure-welded flange assembly provides leaktight seal at reduced bolt loads
NASA Technical Reports Server (NTRS)
Martenson, A. J.
1966-01-01
Vibration resistant flange-connector assembly provides a leaktight seal under reduced bolt loads. The assembly consists of ductile metal plates that are pressure welded between dies mounted in recessed flanges.
Fatigue behavior of welded connections enhanced with ultrasonic impact treatment (UIT) and bolting.
DOT National Transportation Integrated Search
2008-11-01
A common problem in bridges employing welded steel girders is development of fatigue cracks at the ends of girder coverplates. Fatigue cracks tend to form at the toes of the transverse welds connecting a coverplate to a girder flange since this detai...
Stress Analysis of Bolted, Segmented Cylindrical Shells Exhibiting Flange Mating-Surface Waviness
NASA Technical Reports Server (NTRS)
Knight, Norman F., Jr.; Phillips, Dawn R.; Raju, Ivatury S.
2009-01-01
Bolted, segmented cylindrical shells are a common structural component in many engineering systems especially for aerospace launch vehicles. Segmented shells are often needed due to limitations of manufacturing capabilities or transportation issues related to very long, large-diameter cylindrical shells. These cylindrical shells typically have a flange or ring welded to opposite ends so that shell segments can be mated together and bolted to form a larger structural system. As the diameter of these shells increases, maintaining strict fabrication tolerances for the flanges to be flat and parallel on a welded structure is an extreme challenge. Local fit-up stresses develop in the structure due to flange mating-surface mismatch (flange waviness). These local stresses need to be considered when predicting a critical initial flaw size. Flange waviness is one contributor to the fit-up stress state. The present paper describes the modeling and analysis effort to simulate fit-up stresses due to flange waviness in a typical bolted, segmented cylindrical shell. Results from parametric studies are presented for various flange mating-surface waviness distributions and amplitudes.
Simulating the Structural Response of a Preloaded Bolted Joint
NASA Technical Reports Server (NTRS)
Knight, Norman F., Jr.; Phillips, Dawn R.; Raju, Ivatury S.
2008-01-01
The present paper describes the structural analyses performed on a preloaded bolted-joint configuration. The joint modeled was comprised of two L-shaped structures connected together using a single bolt. Each L-shaped structure involved a vertical flat segment (or shell wall) welded to a horizontal segment (or flange). Parametric studies were performed using elasto-plastic, large-deformation nonlinear finite element analyses to determine the influence of several factors on the bolted-joint response. The factors considered included bolt preload, washer-surface-bearing size, edge boundary conditions, joint segment length, and loading history. Joint response is reported in terms of displacements, gap opening, and surface strains. Most of the factors studied were determined to have minimal effect on the bolted-joint response; however, the washer-bearing-surface size affected the response significantly.
NASA Technical Reports Server (NTRS)
Ahmed, Rafiq (Inventor); Wingate, Robert J. (Inventor)
2005-01-01
In the aerospace field spacecraft components are held together by separation systems until a specific time when they must be separated or deployed. Customarily a threaded joining bolt engages one of the components to be joined, and a threaded nut is placed on that bolt against the other component so they can be drawn together by a releasable locking assembly. The releasable locking assembly herein includes a plunger having one end coupled to one end of a plunger bolt. The other end is flanged to abut and compress a coil spring when the plunger is advanced toward the interface plane between the two components. When the plunger is so advanced toward the interface plane, the end of the plunger bolt can be connected to the joining bolt. Thus during retraction the joining bolt is drawn to one side of the interface plane by the force of the expanding spring.
NASA Technical Reports Server (NTRS)
Ahmed, Rafiq (Inventor); Wingate, Robert J. (Inventor)
2005-01-01
In the aerospace field spacecraft components are held together by separation systems until a specific time when they must be separated or deployed. Customarily a threaded joining bolt engages one of the components to be joined, and a threaded nut is placed on that bolt against the other component so they can be drawn together by a releasable locking assembly. The releasable locking assembly herein includes a plunger having one end coupled to one end of a plunger bolt. The other end is flanged to abut and compress a coil spring when the plunger is advanced toward the interface plane between the two components. When the plunger is so advanced toward the interface plane, the end of the plunger bolt can be connected to the joining bolt. Thus during retraction the joining bolt is drawn to one side of the interface plane by the force of the expanding spring.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 2 2011-10-01 2011-10-01 false Flanges. 56.25-5 Section 56.25-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING PIPING SYSTEMS AND APPURTENANCES Pipe Flanges, Blanks, Flange Facings, Gaskets, and Bolting § 56.25-5 Flanges. Each flange must conform to the design requirements of either the applicable...
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 2 2010-10-01 2010-10-01 false Flanges. 56.25-5 Section 56.25-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING PIPING SYSTEMS AND APPURTENANCES Pipe Flanges, Blanks, Flange Facings, Gaskets, and Bolting § 56.25-5 Flanges. Each flange must conform to the design requirements of either the applicable...
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 2 2013-10-01 2013-10-01 false Flanges. 56.25-5 Section 56.25-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING PIPING SYSTEMS AND APPURTENANCES Pipe Flanges, Blanks, Flange Facings, Gaskets, and Bolting § 56.25-5 Flanges. Each flange must conform to the design requirements of either the applicable...
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 2 2014-10-01 2014-10-01 false Flanges. 56.25-5 Section 56.25-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING PIPING SYSTEMS AND APPURTENANCES Pipe Flanges, Blanks, Flange Facings, Gaskets, and Bolting § 56.25-5 Flanges. Each flange must conform to the design requirements of either the applicable...
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 2 2012-10-01 2012-10-01 false Flanges. 56.25-5 Section 56.25-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING PIPING SYSTEMS AND APPURTENANCES Pipe Flanges, Blanks, Flange Facings, Gaskets, and Bolting § 56.25-5 Flanges. Each flange must conform to the design requirements of either the applicable...
DRAFT one year extension of the short-term national product waiver for stainless steel nuts and bolts used in pipe couplings, restraints, joints, flanges and saddles for State Revolving Fund projects.
Ultrasonic measurement and monitoring of loads in bolts used in structural joints
NASA Astrophysics Data System (ADS)
Koshti, Ajay M.
2015-04-01
The paper is an overview of work by the author in measuring and monitoring loads in bolts using an ultrasonic extensometer. A number of cases of bolted joints are covered. These include, a clamped joint with clearance fit between the bolt and hole, a clamped joint with bolt in an interference fit with the hole, a flanged joint which allows the flange and bolt to bend; and a shear joint in a clevis and tang configuration. These applications were initially developed for measuring and monitoring preload in National Aeronautics and Space Administration (NASA) Space Shuttle Orbiter critical joints but are also applicable for monitoring loads in other critical bolted joints of structures such as transportation bridges and other aerospace structures. The papers cited here explain how to set-up a model to estimate the ultrasonic load factor and accuracy for the ultrasonic preload application in a clamped joint with clearance fit. The ultrasonic preload application for clamped joint with bolt in an interference fit can also be used to measure diametrical interference between the bolt shank and hole, as well as interference pressure on the bolt shank. Results of simulation and experimental data are given to demonstrate use of ultrasonic measurements in a shear joint. A bolt in a flanged joint experiences both tensile and bending loads. This application involves measurement of bending and tensile preload in a bolt. The ultrasonic beam bends due to bending load on the bolt. Results of a numerical technique to compute the trace of ultrasonic ray are presented.
Code of Federal Regulations, 2011 CFR
2011-10-01
..., Blanks, Flange Facings, Gaskets, and Bolting § 56.25-20 Bolting. (a) General. (1) Bolts, studs, nuts, and....01-2). (2) Bolts and studs must extend completely through the nuts. (3) See § 58.30-15(c) of this... steel stud bolts must be threaded full length or, if desired, may have reduced shanks of a diameter not...
Pilot cryo tunnel: Attachments, seals, and insulation
NASA Technical Reports Server (NTRS)
Wilson, J. F.; Ware, G. D.; Ramsey, J. W., Jr.
1974-01-01
Several different tests are described which simulated the actual configuration of a cryogenic wind tunnel operating at pressures up to 5 atmospheres (507 kPa) and temperatures from -320 F (78K) to 120 F (322K) in order to determine compatible bolting, adequate sealing, and effective insulating materials. The evaluation of flange attachments (continuous threaded studs) considered bolting based on compatible flanges, attachment materials, and prescribed bolt elongations. Various types of seals and seal configurations were studied to determine suitability and reusability under the imposed pressure and temperature loadings. The temperature profile was established for several materials used for structural supports.
Design Considerations for Abrasive Blast Rooms and Recovery Systems
2010-02-01
COLUMN BOLT – ALLOWS FOR WIDER ENCLOSURES – STRONG ENOUGH TO SUPPORT MONORAIL Flange Bolt Room Column Bolt Room • Structural steel framework...OVERHEAD MONORAILS • EXTERIOR WORK STATIONS • TURNTABLES • HORIZONTAL ROTATION DEVICES OVERHEAD MONORAIL Workpiece Handling • Powered horizontal rotation
46 CFR 56.90-5 - Bolting procedure.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 2 2010-10-01 2010-10-01 false Bolting procedure. 56.90-5 Section 56.90-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING PIPING SYSTEMS AND APPURTENANCES Assembly § 56.90-5 Bolting procedure. (a) All flanged joints shall be fitted up so that the gasket...
NASA Technical Reports Server (NTRS)
Onstott, Joseph W.; Gilster, Mark; Rodriguez, Sergio; Larson, John E.; Wickham, Mark D.; Schoonover, Kevin E.
1995-01-01
Bolts that arrest (or, more precisely, retard) onset of fatigue cracking caused by inelastic strains developed. Specifically developed to be installed in flange holes of unrestrained rocket engine nozzle. Fanges sometimes used to bolt nozzle to test stand; however, when rocket engine operated without this restraint, region around bolt holes experience severe inelastic strains causing fatigue cracking. Interference fits introduce compressive preloads that retard fatigue by reducing ranges of strains. Principle of these fatigue-arrestor bolts also applicable to holes in plates made of other materials and/or used for different purposes.
Fasteners and fastening techniques: A compilation
NASA Technical Reports Server (NTRS)
1972-01-01
Technology on fasteners and fastening devices is presented, as part of NASA's TU program to provide technical information on devices, methods, and techniques resulting from aerospace research. The material is divided into two sections which include: (1) data concerning a selected group of fasteners and concept for fasteners such as locking devices, couplings, and connect and release mechanisms; and (2) discussions on a number of fastening techniques such as those for mounting panel lamps, clamping flange bolts, stretching fasteners, and transferring fuel from a tanker to another vehicle.
Remotely operated pipe connector
Josefiak, Leonard J.; Cramer, Charles E.
1988-01-01
An apparatus for remotely assembling and disassembling a Graylock type coctor between a pipe and a closure for the pipe includes a base and a receptacle on the base for the closure. The pipe is moved into position vertically above the closure by a suitable positioning device such that the flange on the pipe is immediately adjacent and concentric with the flange on the closure. A moving device then moves two semicircular collars from a position free of the closure to a position such that the interior cam groove of each collar contacts the two flanges. Finally, a tensioning device automatically allows remote tightening and loosening of a nut and bolt assembly on each side of the collar to cause a seal ring located between the flanges to be compressed and to seal the closure. Release of the pipe and the connector is accomplished in the reverse order. Preferably, the nut and bolt assembly includes an elongate shaft portion on which a removable sleeve is located.
Structural analysis of a bolted joint concept for the space shuttle's solid rocket motor casing
NASA Technical Reports Server (NTRS)
Lindell, Michael C.; Stalnaker, Winifred A.
1987-01-01
The Space Shuttle Challenger accident is thought to have been caused by the failure of one of the tang-clevis joints joining together the casing segments of the Solid Rocket Motors (SRM). Excessive displacement between the tang and clevis, possibly unseating the O-ring seals, may have initiated the resulting accident. An effort was made at NASA Langley Research Center to design an alternative concept for mating the casing segments. A bolted flange joint concept was designed and analyzed to determine if the concept would effectively maintain a seal while minimizing joint weight and controlling stress levels. It is shown that under the loading conditions analyzed the seal area of the joint remains seated. The only potential stress problem is a stress concentration in the flange at the edge of the bolt hole, which is highly localized. While heavier than the existing joint, this concept does have some advantages making the bolted joint an attractive alternative.
46 CFR 61.20-18 - Examination requirements.
Code of Federal Regulations, 2014 CFR
2014-10-01
... fitted) and propeller designed in accordance with American Bureau of Shipping standards to reduce stress... visual inspection of the entire shaft. (c) On tailshafts with a propeller fitted to the shaft by means of a coupling flange, the flange, the fillet at the propeller end, and each coupling bolt must be...
46 CFR 61.20-18 - Examination requirements.
Code of Federal Regulations, 2013 CFR
2013-10-01
... fitted) and propeller designed in accordance with American Bureau of Shipping standards to reduce stress... visual inspection of the entire shaft. (c) On tailshafts with a propeller fitted to the shaft by means of a coupling flange, the flange, the fillet at the propeller end, and each coupling bolt must be...
46 CFR 61.20-18 - Examination requirements.
Code of Federal Regulations, 2011 CFR
2011-10-01
... fitted) and propeller designed in accordance with American Bureau of Shipping standards to reduce stress... visual inspection of the entire shaft. (c) On tailshafts with a propeller fitted to the shaft by means of a coupling flange, the flange, the fillet at the propeller end, and each coupling bolt must be...
46 CFR 61.20-18 - Examination requirements.
Code of Federal Regulations, 2010 CFR
2010-10-01
... fitted) and propeller designed in accordance with American Bureau of Shipping standards to reduce stress... visual inspection of the entire shaft. (c) On tailshafts with a propeller fitted to the shaft by means of a coupling flange, the flange, the fillet at the propeller end, and each coupling bolt must be...
46 CFR 61.20-18 - Examination requirements.
Code of Federal Regulations, 2012 CFR
2012-10-01
... fitted) and propeller designed in accordance with American Bureau of Shipping standards to reduce stress... visual inspection of the entire shaft. (c) On tailshafts with a propeller fitted to the shaft by means of a coupling flange, the flange, the fillet at the propeller end, and each coupling bolt must be...
A Modelling Method of Bolt Joints Based on Basic Characteristic Parameters of Joint Surfaces
NASA Astrophysics Data System (ADS)
Yuansheng, Li; Guangpeng, Zhang; Zhen, Zhang; Ping, Wang
2018-02-01
Bolt joints are common in machine tools and have a direct impact on the overall performance of the tools. Therefore, the understanding of bolt joint characteristics is essential for improving machine design and assembly. Firstly, According to the experimental data obtained from the experiment, the stiffness curve formula was fitted. Secondly, a finite element model of unit bolt joints such as bolt flange joints, bolt head joints, and thread joints was constructed, and lastly the stiffness parameters of joint surfaces were implemented in the model by the secondary development of ABAQUS. The finite element model of the bolt joint established by this method can simulate the contact state very well.
NASA Astrophysics Data System (ADS)
Allen, Matthew S.; Mayes, Randall L.; Bergman, Elizabeth J.
2010-11-01
Modal substructuring or component mode synthesis (CMS) has been standard practice for many decades in the analytical realm, yet a number of significant difficulties have been encountered when attempting to combine experimentally derived modal models with analytical ones or when predicting the effect of structural modifications using experimental measurements. This work presents a new method that removes the effects of a flexible fixture from an experimentally obtained modal model. It can be viewed as an extension to the approach where rigid masses are removed from a structure. The approach presented here improves the modal basis of the substructure, so that it can be used to more accurately estimate the modal parameters of the built-up system. New types of constraints are also presented, which constrain the modal degrees of freedom of the substructures, avoiding the need to estimate the connection point displacements and rotations. These constraints together with the use of a flexible fixture enable a new approach for joining structures, especially those with statically indeterminate multi-point connections, such as two circular flanges that are joined by many more bolts than required to enforce compatibility if the substructures were rigid. Fixture design is discussed, one objective of which is to achieve a mass-loaded boundary condition that exercises the substructure at the connection point as it is in the built up system. The proposed approach is demonstrated with two examples using experimental measurements from laboratory systems. The first is a simple problem of joining two beams of differing lengths, while the second consists of a three-dimensional structure comprising a circular plate that is bolted at eight locations to a flange on a cylindrical structure. In both cases frequency response functions predicted by the substructuring methods agree well with those of the actual coupled structures over a significant range of frequencies.
Lowery, Guy B.
1991-01-01
A collar nut comprises a hollow cylinder having fine interior threads at one end for threadably engaging a pump mechanical seal assembly and an inwardly depending flange at the other end. The flange has an enlarged portion with a groove for receiving an O-ring for sealing against the intrusion of pumpage from the exterior. The enlarged portion engages a thrust ring about the pump shaft for crushing a hard O-ring, such as a graphite O-ring. The hard O-ring seals the interior of the mechanical seal assembly and pump housing against the loss of lubricants or leakage of pumpage. The fine threads of the hollow cylinder provide the mechanical advantage for crushing the hard O-ring evenly and easily with a hand tool from the side of the collar nut rather than by tightening a plurality of bolts from the end and streamlines the exterior surface of the mechanical seal. The collar nut avoids the spatial requirements of bolt heads at the end of a seal and associated bolt head turbulence.
Constitutive Modeling of a Glass Fiber-Reinforced PTFE Gasketed-Joint Under a Re-torque
NASA Astrophysics Data System (ADS)
Williams, James; Gordon, Ali P.
Joints gasketed with viscoelastic seals often receive an application of a secondary torque, i.e., retorque, in order to ensure joint tightness and proper sealing. The motivation of this study is to characterize and analytically model the load and deflection re-torque response of a single 25% glass-fiber reinforced polytetrafluorethylene (PTFE) gasket-bolted joint with serrated flange detail. The Burger-type viscoelastic modeling constants of the material are obtained through isolating the gasket from the bolt by performing a gasket creep test via a MTS electromechanical test frame. The re-load creep response is also investigated by re-loading the gasket after a period of initial creep to observe the response. The modeling constants obtained from the creep tests are used with a Burger-type viscoelastic model to predict the re-torque response of a single bolt-gasket test fixture in order to validate the ability of the model to simulate the re-torque response under various loading conditions and flange detail.
Pressure Dome for High-Pressure Electrolyzer
NASA Technical Reports Server (NTRS)
Norman, Timothy; Schmitt, Edwin
2012-01-01
A high-strength, low-weight pressure vessel dome was designed specifically to house a high-pressure [2,000 psi (approx. = 13.8 MPa)] electrolyzer. In operation, the dome is filled with an inert gas pressurized to roughly 100 psi (approx. = 690 kPa) above the high, balanced pressure product oxygen and hydrogen gas streams. The inert gas acts to reduce the clamping load on electrolyzer stack tie bolts since the dome pressure acting axially inward helps offset the outward axial forces from the stack gas pressure. Likewise, radial and circumferential stresses on electrolyzer frames are minimized. Because the dome is operated at a higher pressure than the electrolyzer product gas, any external electrolyzer leak prevents oxygen or hydrogen from leaking into the dome. Instead the affected stack gas stream pressure rises detectably, thereby enabling a system shutdown. All electrical and fluid connections to the stack are made inside the pressure dome and require special plumbing and electrical dome interfaces for this to be accomplished. Further benefits of the dome are that it can act as a containment shield in the unlikely event of a catastrophic failure. Studies indicate that, for a given active area (and hence, cell ID), frame outside diameter must become ever larger to support stresses at higher operating pressures. This can lead to a large footprint and increased costs associated with thicker and/or larger diameter end-plates, tie-rods, and the frames themselves. One solution is to employ rings that fit snugly around the frame. This complicates stack assembly and is sometimes difficult to achieve in practice, as its success is strongly dependent on frame and ring tolerances, gas pressure, and operating temperature. A pressure dome permits an otherwise low-pressure stack to operate at higher pressures without growing the electrolyzer hardware. The pressure dome consists of two machined segments. An O-ring is placed in an O-ring groove in the flange of the bottom segment and is trapped by the flange on the top dome segment when these components are bolted together with high-strength bolts. The pressure dome has several unique features. It is made (to ASME Pressure Vessel guidelines) in a high-strength aluminum alloy with the strength of stainless steel and the weight benefits of aluminum. The flange of the upper dome portion contains specially machined flats for mounting the dome, and other flats dedicated to the special feedthroughs for electrical connections. A pressure dome can be increased in length to house larger stacks (more cells) of the same diameter with the simple addition of a cylindrical segment. To aid in dome assembly, two stainless steel rings are employed. One is used beneath the heads of the high-strength bolts in lieu of individual hardened washers, and another is used instead of individual nuts. Like electrolyzers could be operated at low or high pressures simply by operating the electrolyzer outside or inside a pressurized dome.
Smith, Karl H.
2002-01-01
A radial wedge flange clamp comprising a pair of flanges each comprising a plurality of peripheral flat wedge facets having flat wedge surfaces and opposed and mating flat surfaces attached to or otherwise engaged with two elements to be joined and including a series of generally U-shaped wedge clamps each having flat wedge interior surfaces and engaging one pair of said peripheral flat wedge facets. Each of said generally U-shaped wedge clamps has in its opposing extremities apertures for the tangential insertion of bolts to apply uniform radial force to said wedge clamps when assembled about said wedge segments.
High power, high frequency, vacuum flange
Felker, B.; McDaniel, M.R.
1993-03-23
An improved waveguide flange is disclosed for high power operation that helps prevent arcs from being initiated at the junctions between waveguide sections. The flanges at the end of the waveguide sections have counter bores surrounding the waveguide tubes. When the sections are bolted together the counter bores form a groove that holds a fully annealed copper gasket. Each counterbore has a beveled step that is specially configured to insure the gasket forms a metal-to-metal vacuum seal without gaps or sharp edges. The resultant inner surface of the waveguide is smooth across the junctions between waveguide sections, and arcing is prevented.
Variable Spaced Grating (VSG) Snout, Rotator and Rails for use at LLE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mukherjee, S K; Emig, J A; Griffith, L V
2010-01-25
The Variable Spaced Grating (VSG) is a spectrometer snout mounted to an X-Ray Framing Camera (XRFC) through the Unimount flange. This equipment already exists and is used at the University of Rochester, Laboratory for Laser Energetics (LLE) facility. The XRFC and the Unimount flange are designed by LLE. The Tilt Rotator fixture that mounts next to the XRFC and the cart rails are designed by LLNL, and are included in this safety note. The other related components, such as the TIM rails and the Unimount flange, are addressed in a separate safety note, EDSN09-500005-AA. The Multipurpose Spectrometer (MSPEC) and VSGmore » are mounted on the TIM Boat through the cart rails that are very similar in design. The tilt rotator combination with the Unimount flange is also a standard mounting procedure. The later mounting system has been included in this safety note. Figure-1 shows the interface components and the VSG snout. Figure-2 shows the VSG assembly mounted on the Unimount flange. The calibration pointer attachment is shown in place of the snout. There are two types of VSG, one made of 6061-T6 aluminum, weighing approximately 3 pounds, and the other made of 304 stainless steel, weighing approximately 5.5 pounds. This safety note examines the VSG steel design. Specific experiments may require orienting the VSG snout in 90 degrees increment with respect to the Unimount flange. This is done by changing the bolts position on the VSG-main body adapter flange to the Unimount adapter plate. There is no hazard involved in handling the VSG during this procedure as it is done outside the target chamber on the cart rail before installing on the TIM. This safety note addresses the mechanical integrity of the VSG structure, the tilt rotating fixture, the cart rails with handle and their connections. Safety Factors are also calculated for the MSPEC in place of the VSG.« less
Nonlinear Analysis of a Bolted Marine Riser Connector Using NASTRAN Substructuring
NASA Technical Reports Server (NTRS)
Fox, G. L.
1984-01-01
Results of an investigation of the behavior of a bolted, flange type marine riser connector is reported. The method used to account for the nonlinear effect of connector separation due to bolt preload and axial tension load is described. The automated multilevel substructing capability of COSMIC/NASTRAN was employed at considerable savings in computer run time. Simplified formulas for computer resources, i.e., computer run times for modules SDCOMP, FBS, and MPYAD, as well as disk storage space, are presented. Actual run time data on a VAX-11/780 is compared with the formulas presented.
Experiment to Capture Gaseous Products from Shock-Decomposed Materials
NASA Astrophysics Data System (ADS)
Holt, William; Mock, Willis, Jr.
2001-06-01
Recent gas gun experiments have been performed in which initially porous polytetrafluoroethylene (PTFE) powder specimens were shock compressed inside a closed steel container and soft recovered^1,2. Although a powder decomposition residue was produced in the container and analyzed in situ, no attempt was made to recover any gaseous decomposition products for analysis. The purpose of the present experiment is to extend these earlier studies to include the capture of gaseous products. The specimen container is constructed from two metal flanges and a metal gasket, held together by high-strength bolts. A cavity between the flanges contains a porous powder specimen of material to be shock-decomposed, and is connected to a gas sample cylinder via a metal tube and a valve. The system is evacuated prior to the experiment. A gas-gun-accelerated metal disk impacts the flat surface of one of the flanges. On impact, a stress wave passes through the flange and into the specimen material. If gaseous products are formed, they can be collected in the sample cylinder for subsequent analyses by mass spectrometry. Results will be presented for PTFE powder specimens. Work supported by the NSWCDD Independent Research Office. ^1W. Mock, Jr., W. H. Holt, and G. I. Kerley, in Shock Compression of Condensed Matter - 1997, S. C. Schmidt, D. P. Dandekar, and J. W. Forbes (AIP, New York, 1998), p. 671. ^2W. H. Holt, W. Mock, Jr., and F. Santiago, J. Appl. Phys. 88, 5485 (2000).
NASA Technical Reports Server (NTRS)
Clark, K. H. (Inventor)
1983-01-01
A clamp-mount device is disclosed for mounting equipment to an associated I-beam and the like structural member of the type having oppositely extending flanges wherein the device comprises a base and a pair of oppositely facing clamping members carried diagonally on the base clamping flanges therebetween and having flange receiving openings facing one another. Lock means are carried diagonally by the base opposite the clamping members locking the flanges in the clamping members. A resilient hub is carried centrally of the base engaging and biasing a back side of the flanges maintaining tightly clamped and facilitating use on vertical as well as horizontal members. The base turns about the hub to receive the flanges within the clamping members. Equipment may be secured to the base by any suitable means such as bolts in openings. Slidable gate latches secure the hinged locks in an upright locking position. The resilient hub includes a recess opening formed in the base and a rubber-like pad carried in this opening being depressably and rotatably carried therein.
Millimeter Waves Techniques Conference (1974) Held on 26-28 March 1974. Volume 2
1974-03-01
GHz Coaxial Connector by M. A. Maury, Jr. and W. A. Wambach Maury Microwave Corp. Cucamonga, Cal. 91730 INTRODUCTION A new minature coax connector has...however, accurate joining depends upon such factors as the alignment of bolt holes , paint on the back of the flange that can affect the seating of the...of the locations of pins and holes to a close tolerance is crucial, 3) for low loss requirements a differently designed flange with a rectangular boss
Heater for Combustible-Gas Tanks
NASA Technical Reports Server (NTRS)
Ingle, Walter B.
1987-01-01
Proposed heater for pressurizing hydrogen, oxygen, or another combustible liquid or gas sealed in immersion cup in pressurized tank. Firmly supported in finned cup, coiled rod transfers heat through liquid metal to gas tank. Heater assembly welded or bolted to tank flange.
Failure mechanisms of laminates transversely loaded by bolt push-through
NASA Technical Reports Server (NTRS)
Waters, W. A., Jr.; Williams, J. G.
1985-01-01
Stiffened composite panels proposed for fuselage and wing design utilize a variety of stiffener-to-skin attachment concepts including mechanical fasteners. The attachment concept is an important factor influencing the panel's strength and can govern its performance following local damage. Mechanical fasteners can be an effective method for preventing stiffener-skin separation. One potential failure mode for bolted panels occurs when the bolts pull through the stiffener attachment flange or skin. The resulting loss of support by the skin to the stiffener and by the stiffener to the skin can result in local buckling and subsequent panel collapse. The characteristic failure modes associated with bolt push-through failure are described and the results of a parametric study of the effects that different material systems, boundary conditions, and laminates have on the forces and displacements required to cause damage and bolt pushthrough failure are presented.
Nuclear reactor pressure vessel support system
Sepelak, George R.
1978-01-01
A support system for nuclear reactor pressure vessels which can withstand all possible combinations of stresses caused by a postulated core disrupting accident during reactor operation. The nuclear reactor pressure vessel is provided with a flange around the upper periphery thereof, and the flange includes an annular vertical extension formed integral therewith. A support ring is positioned atop of the support ledge and the flange vertical extension, and is bolted to both members. The plug riser is secured to the flange vertical extension and to the top of a radially outwardly extension of the rotatable plug. This system eliminates one joint through which fluids contained in the vessel could escape by making the fluid flow path through the joint between the flange and the support ring follow the same path through which fluid could escape through the plug risers. In this manner, the sealing means to prohibit the escape of contained fluids through the plug risers can also prohibit the escape of contained fluid through the securing joint.
Trends in mechanical fasteners. [considering optimum metric fastener system
NASA Technical Reports Server (NTRS)
Levy, J. B.
1972-01-01
Some of the specialty fasteners which are enjoying increasing usage are: thread rolling screws, self drilling and tapping screws, locking screws, tamperproof fasteners, and flanged bolts and nuts. The development of an optimum metric fastener system is recommended for future fastener manufacturing.
Image Registration-Based Bolt Loosening Detection of Steel Joints
2018-01-01
Self-loosening of bolts caused by repetitive loads and vibrations is one of the common defects that can weaken the structural integrity of bolted steel joints in civil structures. Many existing approaches for detecting loosening bolts are based on physical sensors and, hence, require extensive sensor deployment, which limit their abilities to cost-effectively detect loosened bolts in a large number of steel joints. Recently, computer vision-based structural health monitoring (SHM) technologies have demonstrated great potential for damage detection due to the benefits of being low cost, easy to deploy, and contactless. In this study, we propose a vision-based non-contact bolt loosening detection method that uses a consumer-grade digital camera. Two images of the monitored steel joint are first collected during different inspection periods and then aligned through two image registration processes. If the bolt experiences rotation between inspections, it will introduce differential features in the registration errors, serving as a good indicator for bolt loosening detection. The performance and robustness of this approach have been validated through a series of experimental investigations using three laboratory setups including a gusset plate on a cross frame, a column flange, and a girder web. The bolt loosening detection results are presented for easy interpretation such that informed decisions can be made about the detected loosened bolts. PMID:29597264
Image Registration-Based Bolt Loosening Detection of Steel Joints.
Kong, Xiangxiong; Li, Jian
2018-03-28
Self-loosening of bolts caused by repetitive loads and vibrations is one of the common defects that can weaken the structural integrity of bolted steel joints in civil structures. Many existing approaches for detecting loosening bolts are based on physical sensors and, hence, require extensive sensor deployment, which limit their abilities to cost-effectively detect loosened bolts in a large number of steel joints. Recently, computer vision-based structural health monitoring (SHM) technologies have demonstrated great potential for damage detection due to the benefits of being low cost, easy to deploy, and contactless. In this study, we propose a vision-based non-contact bolt loosening detection method that uses a consumer-grade digital camera. Two images of the monitored steel joint are first collected during different inspection periods and then aligned through two image registration processes. If the bolt experiences rotation between inspections, it will introduce differential features in the registration errors, serving as a good indicator for bolt loosening detection. The performance and robustness of this approach have been validated through a series of experimental investigations using three laboratory setups including a gusset plate on a cross frame, a column flange, and a girder web. The bolt loosening detection results are presented for easy interpretation such that informed decisions can be made about the detected loosened bolts.
Light-weight spherical submergence vessel
NASA Technical Reports Server (NTRS)
Baker, I.
1974-01-01
Design vessel with very low thickness-to-radius ratio to obtain low weight, and fabricate it with aid of precision tracer-lathe to limit and control imperfections in spherical shape. Vessel is thin-walled, spherical, monocoque shell constructed from hemispheres joined with sealed and bolted meridional flange.
Development of a Laminar Flame Test Facility for Bio-Diesel Characterization
2009-12-01
heat from the fuel injector during operation. NPT Threaded Holes Bolts and Nuts Stainless Steel Pipes 17 Figure 3. Top Flange of the...3 2. Pre- Heat Temperature... Piping Systems........................... 37 2. Leak Test for Combustion Chamber .................................... 38 3. Calibration of High Speed
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walker, I.S.; Gaines, A.
1987-11-01
The W.R. Grace Chemical Division plant in Lake Charles, LA had to stop producing catalysts for the oil refining industry whenever a piping system for 98% sulfuric acid developed a leak. Gaskets of a nonasbestos material were being used between the flanges of the steel pipe lined with TFE or polypropylene. The flange bolts were kept tight, but the gaskets usually failed to maintain a leaktight seal with the acid at 60 psi for more than a few weeks or months. The acid lines had to be drained before the faulty gasket could be replaced, and production downtime would rangemore » from one to three hours. In July 1986, the plant decided to try a chemical resistant gasket of Teflon molded and bonded to a core of Shore A 65-66 durometer EPDM rubber in the acid lines. The resilient gasket also has patented double convex rings on both faces for optimum sealing with only one-eighth the bolt tightening torque commonly required with flat-faced gaskets. The low sealing force requirement prolongs the life of the gasket, eliminates plastic cold flow at the flange of lined steel pipe, and avoids stresses that can damage thermoplastic and fiberglass piping systems. The gasket has a temperature range of {minus}4 to 210{degree}F and is available in 1/2 through 12 inch sizes that conform to ANSI B16.1 flange dimensions. Alternative gasket materials are Kynar PVDF-bonded EPDM and EPDM without a fluoropolymer laminate. The Teflon-bonded EPDM gaskets eliminated unscheduled catalyst production downtime due to leakage from the sulfuric acid piping system. The plant maintains an inventory of the low torque gasket, but has never had to replace any that have been in service since July 1986.« less
Feasibility of fiberglass-reinforced bolted wood connections
D. F. Windorski; L. A. Soltis; R. J. Ross
Bolted connections often fail by a shear plug or a splitting beneath the bolt caused by tension perpendicular-to-grain stresses as the bolt wedges its way through the wood. Preventing this type of failure would enhance the capacity and reliability of the bolted connection, thus increasing the overall integrity of a timber structure and enabling wood to compete...
Lightweight structural design of a bolted case joint for the space shuttle solid rocket motor
NASA Technical Reports Server (NTRS)
Dorsey, John T.; Stein, Peter A.; Bush, Harold G.
1988-01-01
The structural design of a bolted joint with a static face seal which can be used to join Space Shuttle Solid Rocket Motor (SRM) case segments is given. Results from numerous finite element parametric studies indicate that the bolted joint meets the design requirement of preventing joint opening at the O-ring locations during SRM pressurization. A final design recommended for further development has the following parameters: 180 one-in.-diam. studs, stud centerline offset of 0.5 in radially inward from the shell wall center line, flange thickness of 0.75 in, bearing plate thickness of 0.25 in, studs prestressed to 70 percent of ultimate load, and the intermediate alcove. The design has a mass penalty of 1096 lbm, which is 164 lbm greater than the currently proposed capture tang redesign.
Failures in large gas turbines due to liquid-metal embrittlement
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cameron, D.W.
1994-07-01
The failures of three gas turbine components, attributed to liquid-metal embrittlement or solid-metal-induced embrittlement, are described. High temperatures inherent in the gas turbine can aggravate these phenomenon if the necessary conditions are present. Examples chosen include a power transmission shaft, flange bolts from a cooling steam line, and a turbine rotor bolt. The respective material couples involved are 17-4PH stainless steel-copper, AISI 4130-cadmium, and IN 718-cadmium. Each case includes information on the source of the aggressive material and relevant operating environment. The implications of the failures with regard to the general failure mechanism are briefly discussed.
Effect of fiberglass reinforcement on the behavior of bolted wood connections
Lawrence A. Soltis; Robert J. Ross; Daniel E. Windorski
1997-01-01
Bolted connections often fail by a shear plug or by splitting beneath the bolt caused by tension perpendicular-to-grain stress as the bolt wedges its way through the wood. Preventing this type of failure enhances both the capacity and reliability of bolted connections. This research investigated the use of fiberglass reinforcement to enhance the load-carrying capacity...
NASA Astrophysics Data System (ADS)
Ma, Jiansuo; Wang, Yuanqing; Li, Mingfeng; Bai, Runshan; Ban, Huiyong
2018-03-01
In the process of existing steel structure operation, in order to prevent the bolted joints from being damaged by insufficient carrying capacity, welds can be used for reinforcement. Weld reinforced combined connection with bolts and weld consists with high strength bolts and side fillet weld composition. The parameters and properties of high strength bolts and fillet welds have a direct effect on the connection. Based on the test results, We explore the influence that welding seam reinforcement and the performance of the connection between the number of high strength bolts and specifications changes in this paper. It will provide a theoretical reference for the design of connection nodes of steel structure reinforcement project.
Structural design of an in-line bolted joint for the space shuttle solid rocket motor case segments
NASA Technical Reports Server (NTRS)
Dorsey, John T.; Stein, Peter A.; Bush, Harold G.
1987-01-01
Results of a structural design study of an in-line bolted joint concept which can be used to assemble Space Shuttle Solid Rocket Motor (SRM) case segments are presented. Numerous parametric studies are performed to characterize the in-line bolted joint behavior as major design variables are altered, with the primary objective always being to keep the inside of the joint (where the O-rings are located) closed during the SRM firing. The resulting design has 180 1-inch studs, an eccentricity of -0.5 inch, a flange thickness of 3/4 inch, a bearing plate thickness of 1/4 inch, and the studs are subjected to a preload which is 70% of ultimate. The mass penalty per case segment joint for the in-line design is 346 lbm more than the weight penalty for the proposed capture tang fix.
NASA Astrophysics Data System (ADS)
Huong, Khang T.; Nguyen, Cung H.
2018-04-01
Nowadays, steel structure industry in Vietnam is in strong development. The construction of steel structure becomes larger span and heavier load. The issue spawned a number of issues arise from optimizing connections. Typical of steel connections in prefabricated steel structure that is an end plate (face plate) bolted connection. When the connection carried a heavy load, then the number of bolts is required much more. Increasing the number of rows bolts will less effective because can still not enough strength requirements, the bolts in row near rotational center will level arm reduction, then it cannot carry heavy loads. The current solution is doing multiple bolts in a row. Current standards such as EN [1], AISC [2] are no specific guidelines for calculating the connection four bolts in a row that primarily assumes the way works like a T-stub of the two bolts a row. Some articles studied T-stub four bolts in a row [3], [4], [5], [6] by component method but it has some components which weren’t considered. In this paper, in order to provide a contribution to improve the T-stub four bolts in a row, the stiffener component in T-stub will be added and compared with T-stub without stiffener by the finite element model to demonstrate effectiveness in reducing stress and displacement of T-stub. It gives ideas for the economic design of four bolts in a row end plate connection in Vietnam for future.
Quick-Connect, Slow-Disconnect Bolt
NASA Technical Reports Server (NTRS)
Weddendorf, Bruce
1995-01-01
Proposed bolt functions similarly to device described in article "Quick-Connect, Slow-Disconnect Nut" (MFS-28833). Bolt installed in standard threaded hole simply by pushing it into hole. Once inserted, bolt withdrawn only by turning it in conventional way.
NASA Technical Reports Server (NTRS)
Larsson, S. E.
1972-01-01
A part of the lower side of the main wing at the joint of the main spar with the fuselage frame was investigated. This wing beam area was simulated by a test specimen consisting of a spar boom of AZ 74 forging (7075 aluminum alloy modified with 0.3 percent Ag) and a portion of a honeycomb sandwich panel attached to the boom flange with steel bolts. The cross section was reduced to half scale. However, the flange thickness, the panel height, and the bolt size were full scale. Further, left and right portions of the fuselage frame intended to carry over the bending moment of the main wing were tested. Each of these frame halves consisted of a forward and a rear forging (7079 aluminum alloy, overaged) connected by an outer and inner skin (Alclad 7075) creating a box beam. These test specimens were full scale and were constructed principally of ordinary aircraft components. The test load spectrum was common to both types of specimens with regard to percentage levels. It consisted of maneuver and gust loads, touchdown loads, and loads due to ground roughness. A load history of 200 hours of flight with 15,000 load cycles was punched on a tape. The loads were randomized in groups according to the flight-by-flight principle. The highest positive load level was 90 percent of limit load and the largest negative load was -27 percent. A total of 20 load levels were used. Both types of specimens were provided with strain gages and had a nominal stress of about 300 MN/sq m in some local areas. As a result of the tests, steps were taken to reduce the risk of fatigue damage in aircraft. Thus stress levels were lowered, radii were increased, and demands on surface finish were sharpened.
49 CFR 571.209 - Standard No. 209; Seat belt assemblies.
Code of Federal Regulations, 2010 CFR
2010-10-01
.... (1) Eye bolts, shoulder bolts, or other bolt used to secure the pelvic restraint of seat belt... connecting webbing to an eye bolt shall be provided with a retaining latch or keeper which shall not move...) Single attachment hook for connecting webbing to any eye bolt shall be tested in the following manner...
NASA Astrophysics Data System (ADS)
Lu, Xiaofeng; Li, Gang; Liu, Luwei; Zhu, Xiaolei; Tu, Shan-Tung
2017-07-01
The improvement of the compressibility and recovery of the gaskets can decrease the leakage occurrence in bolted flange connections. In this study, the effect of aging treatment on the compressibility and recovery of NiTi shape memory alloys is investigated as static seals together with thermal analysis. The experimental results indicate that different phase transformations of NiTi alloys are exhibited in the DSC curves during aging treatment. The recovery coefficient of NiTi alloys aged at 500 °C for 2 h is quite low accompanied with a large residual strain. With increasing aging time at the aging temperature of 400 °C, the residual strain and area of hysteresis loop of NiTi alloys are both increased, whereas the recovery coefficient is decreased. Since the deformation associates the phase transformation behavior, aging treatment could improve the compressibility and recovery of NiTi alloys as static seals.
NASA Astrophysics Data System (ADS)
Parvasi, Seyed Mohammad; Ho, Siu Chun Michael; Kong, Qingzhao; Mousavi, Reza; Song, Gangbing
2016-08-01
Bolted joints are ubiquitous structural elements, and form critical connections in mechanical and civil structures. As such, loosened bolted joints may lead to catastrophic failures of these structures, thus inspiring a growing interest in monitoring of bolted joints. A novel energy based wave method is proposed in this study to monitor the axial load of bolted joint connections. In this method, the time reversal technique was used to focus the energy of a piezoelectric (PZT)-generated ultrasound wave from one side of the interface to be measured as a signal peak by another PZT transducer on the other side of the interface. A tightness index (TI) was defined and used to correlate the peak amplitude to the bolt axial load. The TI bypasses the need for more complex signal processing required in other energy-based methods. A coupled, electro-mechanical analysis with elasto-plastic finite element method was used to simulate and analyze the PZT based ultrasonic wave propagation through the interface of two steel plates connected by a single nut and bolt connection. Numerical results, backed by experimental results from testing on a bolted connection between two steel plates, revealed that the peak amplitude of the focused signal increases as the bolt preload (torque level) increases due to the enlarging true contact area of the steel plates. The amplitude of the focused peak saturates and the TI reaches unity as the bolt axial load reaches a threshold value. These conditions are associated with the maximum possible true contact area between the surfaces of the bolted connection.
Behaviour of steel-concrete composite beams using bolts as shear connectors
NASA Astrophysics Data System (ADS)
Tran, Minh-Tung; Nguyen Van Do, Vuong; Nguyen, Tuan-Anh
2018-04-01
The paper presents an experimental program on the application of bolts as shear connectors for steel-composite beams. Four steel- concrete composite beams and a reference steel beam were made and tested. The aim of the testing program is to examine which forms of the steel bolts can be used effectively for steel-composite beams. The four types of the bolts include: Type 1 the bolt with the nut at the end; Type 2 the bolt bending at 900 hook; Type 3 the bolt without the nut at the end and Type 4 the bolt with the nut at the end but connected with the steel beam by hand welding in other to be connected with the steel beam by bolt connection as in the first three types. The test results showed that beside the traditional shear connectors like shear studs, angle type, channel type, bolts can be used effectively as the shear connectors in steel-composite beams and the application of bolts in Types 1 and 2 in the composite beams gave the better performance for the tested beam.
Evaluation of bolted connections in wood-plastic composites
NASA Astrophysics Data System (ADS)
Arnandha, Yudhi; Satyarno, Iman; Awaludin, Ali; Irawati, Inggar Septia; Ihsan, Muhamad; Wijanarko, Felyx Biondy; William, Mahdinur, Fardhani, Arfiati
2017-03-01
Wood-plastic composite (WPC) is a relatively new material that consists of sawdust and plastic polymer using the extrusion process. Due to its attributes such as low water content, low maintenance, UV durability and being fungi and termite resistant. Nowadays, WPC has already been produced in Indonesia using sawdust from local wood such as Albizia (Paraserianthes falcataria) and Teak (Tectona grandis). Moreover preliminary studies about the physical and mechanical WPC board from Albizia sawdust and HDPE plastic have been carried out. Based on these studies, WPC has a high shear strength around 25-30 MPa higher than its original wood shear strength. This paper was a part of the research in evaluating WPC as potential sheathing in a shear wall system. Since still little is known about connection behavior in WPC using Indonesian local wood, this study evaluated the connection for both of these two types of wood-plastic composite. WPC board from Albizia sawdust will be projected as shear wall sheathing and WPC stud from Teak sawdust projected to be shear wall frame. For this study, the embedding strength for both WPC was determined according to ASTM D 5764 standard, using two types of bolts (stainless bolt and standard bolt) with several diameters as variation (6 mm, 8 mm, 10 and 12 mm). Hence, dowel-bearing test under fastened condition conducted accordance to ASTM D5652, hereby the yield strength then compared with the prediction yield strength from European Yield Model (EYM). According to both single and double shear connection, it can be concluded that yield strength from the EYM method tended to under-predict the 5% diameter offset yield than the actual yield strength from the test. The yield strength itself increase with the increase of bolt diameter. For single shear connection, the highest yield strength was 12 mm standard bolt around 9732 N, slightly higher than stainless bolt around 9393 N. Whereby for double shear connection, the highest yield strength was 12 mm standard bolt around 12009 N, slightly higher than stainless bolt around 12009 N. Using statistical approach ANOVA, the different type of bolt between stainless bolt and standard bolt gave an insignificant result. Both type of bolt can be used as structural connection, moreover it was recommended using a stainless bolt for outdoor purpose to reduce corrosion.
Lawrence A. Soltis; Thomas Lee Wilkinson
1987-01-01
Recent failures of bolted connections have raised doubts about our knowledge of their design. Some of the design criteria are based on research conducted more than 50 years ago. This paper compares results found in the literature, using the European Yield Theory as a basis of comparison, to summarize what is known about bolted-connection design and what needs further...
Structural Analysis of the Redesigned Ice/Frost Ramp Bracket
NASA Technical Reports Server (NTRS)
Phillips, D. R.; Dawicke, D. S.; Gentz, S. J.; Roberts, P. W.; Raju, I. S.
2007-01-01
This paper describes the interim structural analysis of a redesigned Ice/Frost Ramp bracket for the Space Shuttle External Tank (ET). The proposed redesigned bracket consists of mounts for attachment to the ET wall, supports for the electronic/instrument cables and propellant repressurization lines that run along the ET, an upper plate, a lower plate, and complex bolted connections. The eight nominal bolted connections are considered critical in the summarized structural analysis. Each bolted connection contains a bolt, a nut, four washers, and a non-metallic spacer and block that are designed for thermal insulation. A three-dimensional (3D) finite element model of the bracket is developed using solid 10-node tetrahedral elements. The loading provided by the ET Project is used in the analysis. Because of the complexities associated with accurately modeling the bolted connections in the bracket, the analysis is performed using a global/local analysis procedure. The finite element analysis of the bracket identifies one of the eight bolted connections as having high stress concentrations. A local area of the bracket surrounding this bolted connection is extracted from the global model and used as a local model. Within the local model, the various components of the bolted connection are refined, and contact is introduced along the appropriate interfaces determined by the analysts. The deformations from the global model are applied as boundary conditions to the local model. The results from the global/local analysis show that while the stresses in the bolts are well within yield, the spacers fail due to compression. The primary objective of the interim structural analysis is to show concept viability for static thermal testing. The proposed design concept would undergo continued design optimization to address the identified analytical assumptions and concept shortcomings, assuming successful thermal testing.
Low-Friction, Low-Profile, High-Moment Two-Axis Joint
NASA Technical Reports Server (NTRS)
Lewis, James L.; Le, Thang; Carroll, Monty B.
2010-01-01
The two-axis joint is a mechanical device that provides two-degrees-of-freedom motion between connected components. A compact, moment-resistant, two-axis joint is used to connect an electromechanical actuator to its driven structural members. Due to the requirements of the overall mechanism, the joint has a low profile to fit within the allowable space, low friction, and high moment-reacting capability. The mechanical arrangement of this joint can withstand high moments when loads are applied. These features allow the joint to be used in tight spaces where a high load capability is required, as well as in applications where penetrating the mounting surface is not an option or where surface mounting is required. The joint consists of one base, one clevis, one cap, two needle bearings, and a circular shim. The base of the joint is the housing (the base and the cap together), and is connected to the grounding structure via fasteners and a bolt pattern. Captive within the housing, between the base and the cap, are the rotating clevis and the needle bearings. The clevis is attached to the mechanical system (linear actuator) via a pin. This pin, and the rotational movement of the clevis with respect to the housing, provides two rotational degrees of freedom. The larger diameter flange of the clevis is sandwiched between a pair of needle bearings, one on each side of the flange. During the assembly of the two-axis joint, the circular shims are used to adjust the amount of preload that is applied to the needle bearings. The above arrangement enables the joint to handle high moments with minimal friction. To achieve the high-moment capability within a low-profile joint, the use of depth of engagement (like that of a conventional rotating shaft) to react moment is replaced with planar engagement parallel to the mounting surface. The needle bearings with the clevis flange provide the surface area to react the clevis loads/moments into the joint housing while providing minimal friction during rotation. The diameter of the flange and the bearings can be increased to react higher loads and still maintain a compact surface mounting capability. This type of joint can be used in a wide variety of mechanisms and mechanical systems. It is especially effective where precise, smooth, continuous motion is required. For example, the joint can be used at the end of a linear actuator that is required to extend and rotate simultaneously. The current design application is for use in a spacecraft docking-system capture mechanism. Other applications might include industrial robotic or assembly line apparatuses, positioning systems, or in the motion-based simulator industry that employs complex, multi-axis manipulators for various types of motions.
Structural aspects of cold-formed steel section designed as U-shape composite beam
NASA Astrophysics Data System (ADS)
Saggaff, Anis; Tahir, Mahmood Md.; Azimi, Mohammadamin; Alhajri, T. M.
2017-11-01
Composite beam construction usually associated with old-style Hot-Rolled Steel Section (HRSS) has proven to act much better in compare with Cold-Formed Steel Section (CFSS) sections due to thicker section. Due, it's getting popular to replace HRSS with CFSS in some aspects as a composite beam. The advantages such as lightweight, cost effective and easy to install have contributed to the apply CFSS as a preferred construction material for composite beam. There is a few technical data available regarding the application of the usage of CFSS as a composite system, despite the potentials use for residential and light-weight industrial constructions. This paper presents an experimental tests results which have been conducted using CFSS as composite beam. Composite action of CFSS arranged as double beam with Self-Compacting Concrete (SCC) slab are integrated together with bolted shear connectors were used. A full-scale test comprised of 3 proposed composite beam specimens with bolted shear connector spaced at 300 mm interval of grade 8.8 was using single nut with washer on flange of CFS, cast to the slab and loaded until failed. The test show that the bolted shear connector yielded better capacity of ultimate strength and ultimate moment for the proposed composite beam. It can be concluded that, bolted shear connectors of 16 mm in diameter performed better than the other diameter size of bolted shear connectors.
Amin, Muhammad Nasir; Zaheer, Salman; Alazba, Abdulrahman Ali; Saleem, Muhammad Umair; Niazi, Muhammad Umar Khan; Khurram, Nauman; Amin, Muhammad Tahir
2016-01-01
Structural hollow sections are gaining worldwide importance due to their structural and architectural advantages over open steel sections. The only obstacle to their use is their connection with other structural members. To overcome the obstacle of tightening the bolt from one side has given birth to the concept of blind bolts. Blind bolts, being the practical solution to the connection hindrance for the use of hollow and concrete filled hollow sections play a vital role. Flowdrill, the Huck High Strength Blind Bolt and the Lindapter Hollobolt are the well-known commercially available blind bolts. Although the development of blind bolts has largely resolved this issue, the use of structural hollow sections remains limited to shear resistance. Therefore, a new modified version of the blind bolt, known as the "Extended Hollo-Bolt" (EHB) due to its enhanced capacity for bonding with concrete, can overcome the issue of low moment resistance capacity associated with blind-bolted connections. The load transfer mechanism of this recently developed blind bolt remains unclear, however. This study uses a parametric approach to characterising the EHB, using diameter as the variable parameter. Stiffness and load-carrying capacity were evaluated at two different bolt sizes. To investigate the load transfer mechanism, a component-based study of the bond and anchorage characteristics was performed by breaking down the EHB into its components. The results of the study provide insight into the load transfer mechanism of the blind bolt in question. The proposed component-based model was validated by a spring model, through which the stiffness of the EHB was compared to that of its components combined. The combined stiffness of the components was found to be roughly equivalent to that of the EHB as a whole, validating the use of this component-based approach.
Debris protection cover assembly for cable connectors
NASA Technical Reports Server (NTRS)
Yovan, Roger D. (Inventor)
1999-01-01
A protective cover assembly for an end of a cable connector having a cable housing that encloses a plurality of connective pins or sockets and that satisfies all requirements for space applications. A connector body flange is formed at the extremity of a cable and is positioned so that it may register with a corresponding connector body flange on the end of a companion cable to which a connection is to be made, one cable end having cable lead pins and the companion cable end having lead sockets with which the pins register. A latch mechanism having a latch housing is received in the connector body flange and a crank connected to a manually rotatable cap actuates a spring-loaded latch element that is engageable with a connector body flange to secure or to release the cover assembly with the simple twisting motion of the cap, thereby simplifying the task of effecting coupling and decoupling of the cable ends.
Amin, Muhammad Nasir; Zaheer, Salman; Alazba, Abdulrahman Ali; Saleem, Muhammad Umair; Niazi, Muhammad Umar Khan; Khurram, Nauman; Amin, Muhammad Tahir
2016-01-01
Structural hollow sections are gaining worldwide importance due to their structural and architectural advantages over open steel sections. The only obstacle to their use is their connection with other structural members. To overcome the obstacle of tightening the bolt from one side has given birth to the concept of blind bolts. Blind bolts, being the practical solution to the connection hindrance for the use of hollow and concrete filled hollow sections play a vital role. Flowdrill, the Huck High Strength Blind Bolt and the Lindapter Hollobolt are the well-known commercially available blind bolts. Although the development of blind bolts has largely resolved this issue, the use of structural hollow sections remains limited to shear resistance. Therefore, a new modified version of the blind bolt, known as the “Extended Hollo-Bolt” (EHB) due to its enhanced capacity for bonding with concrete, can overcome the issue of low moment resistance capacity associated with blind-bolted connections. The load transfer mechanism of this recently developed blind bolt remains unclear, however. This study uses a parametric approach to characterising the EHB, using diameter as the variable parameter. Stiffness and load-carrying capacity were evaluated at two different bolt sizes. To investigate the load transfer mechanism, a component-based study of the bond and anchorage characteristics was performed by breaking down the EHB into its components. The results of the study provide insight into the load transfer mechanism of the blind bolt in question. The proposed component-based model was validated by a spring model, through which the stiffness of the EHB was compared to that of its components combined. The combined stiffness of the components was found to be roughly equivalent to that of the EHB as a whole, validating the use of this component-based approach. PMID:26901866
Nonlinear characterization of a bolted, industrial structure using a modal framework
NASA Astrophysics Data System (ADS)
Roettgen, Daniel R.; Allen, Matthew S.
2017-02-01
This article presents measurements from a sub assembly of an off-the-shelf automotive exhaust system containing a bolted-flange connection and uses a recently proposed modal framework to develop a nonlinear dynamic model for the structure. The nonlinear identification and characterization methods used are reviewed to highlight the strengths of the current approach and the areas where further development is needed. This marks the first use of these new testing and nonlinear identification tools, and the associated modal framework, on production hardware with a realistic joint and realistic torque levels. To screen the measurements for nonlinearities, we make use of a time frequency analysis routine designed for transient responses called the zeroed early-time fast Fourier transform (ZEFFT). This tool typically reveals the small frequency shifts and distortions that tend to occur near each mode that is affected by the nonlinearity. The damping in this structure is found to be significantly nonlinear and a Hilbert transform is used to characterize the damping versus amplitude behavior. A model is presented that captures these effects for each mode individually (e.g. assuming negligible nonlinear coupling between modes), treating each mode as a single degree-of-freedom oscillator with a spring and viscous damping element in parallel with a four parameter Iwan model. The parameters of this model are identified for each of the structure's modes that exhibited nonlinearity and the resulting nonlinear model is shown to capture the stiffness and damping accurately over a large range of response amplitudes.
Arrangement for connecting a fiber-reinforced plastic pipe to a stainless steel flange
Allais, Arnaud [D-30625 Hannover, DE; Hoffmann, Ernst [D-30855 Langenhagen, DE
2008-02-05
Arrangement for connecting a fiber-reinforced plastic pipe (18) to a stainless steel flange (12, 16), in which the end of the fiber-reinforced plastic pipe (18) is accommodated in a ring-shaped groove (12a, 16a) in the flange (12, 16), the groove conforming to the dimensions of the fiber-reinforced plastic pipe (18), where the gap remaining between the end of the fiber-reinforced plastic pipe (18) and the ring-shaped groove (12a, 16a) is filled with a sealant (19).
Steel shear strength of anchors with stand-off base plates.
DOT National Transportation Integrated Search
2013-09-01
Sign and signal structures are often connected to concrete foundations through a stand-off annular base plate with a double-nut anchor bolt connection, which leaves exposed anchor bolt lengths below leveling nuts used in these connections. Cantilever...
A Reduced Order Model of Force Displacement Curves for the Failure of Mechanical Bolts in Tension.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moore, Keegan J.; Sandia National Lab.; Brake, Matthew Robert
2015-12-01
Assembled mechanical systems often contain a large number of bolted connections. These bolted connections (joints) are integral aspects of the load path for structural dynamics, and, consequently, are paramount for calculating a structure's stiffness and energy dissipation prop- erties. However, analysts have not found the optimal method to model appropriately these bolted joints. The complexity of the screw geometry causes issues when generating a mesh of the model. This report will explore different approaches to model a screw-substrate connec- tion. Model parameters such as mesh continuity, node alignment, wedge angles, and thread to body element size ratios are examined. Themore » results of this study will give analysts a better understanding of the influences of these parameters and will aide in finding the optimal method to model bolted connections.« less
A Method to Capture Macroslip at Bolted Interfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hopkins, Ronald Neil; Heitman, Lili Anne Akin
2015-10-01
Relative motion at bolted connections can occur for large shock loads as the internal shear force in the bolted connection overcomes the frictional resistive force. This macroslip in a structure dissipates energy and reduces the response of the components above the bolted connection. There is a need to be able to capture macroslip behavior in a structural dynamics model. A linear model and many nonlinear models are not able to predict marcoslip effectively. The proposed method to capture macroslip is to use the multi-body dynamics code ADAMS to model joints with 3-D contact at the bolted interfaces. This model includesmore » both static and dynamic friction. The joints are preloaded and the pinning effect when a bolt shank impacts a through hole inside diameter is captured. Substructure representations of the components are included to account for component flexibility and dynamics. This method was applied to a simplified model of an aerospace structure and validation experiments were performed to test the adequacy of the method.« less
A Method to Capture Macroslip at Bolted Interfaces [PowerPoint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hopkins, Ronald Neil; Heitman, Lili Anne Akin
2016-01-01
Relative motion at bolted connections can occur for large shock loads as the internal shear force in the bolted connection overcomes the frictional resistive force. This macroslip in a structure dissipates energy and reduces the response of the components above the bolted connection. There is a need to be able to capture macroslip behavior in a structural dynamics model. A linear model and many nonlinear models are not able to predict marcoslip effectively. The proposed method to capture macroslip is to use the multi-body dynamics code ADAMS to model joints with 3-D contact at the bolted interfaces. This model includesmore » both static and dynamic friction. The joints are preloaded and the pinning effect when a bolt shank impacts a through hole inside diameter is captured. Substructure representations of the components are included to account for component flexibility and dynamics. This method was applied to a simplified model of an aerospace structure and validation experiments were performed to test the adequacy of the method.« less
Ultimate Limit State Assessment of Timber Bolt Connection Subjected to Double Unequal Shears
NASA Astrophysics Data System (ADS)
Musilek, Josef; Plachy, Jan
2017-10-01
Nowadays the problems occur when a structure engineer need to assess the ultimate limit state of timber bolt connection which is subjected to double unequal shears. This assessment of ultimate limit state shows the reliability of these connections. In assessing the reliability of this connection in ultimate limit state is a problem, because the formulas and equations that are currently available in design standards and available literature, describing only connections loaded symmetrically - this mean that they describe the timber bolt connection subjected to double equal shears. This fact causes problems because structural engineers have no available support, according to which they could assess reliability of the connection in terms of the ultimate limit state. They must therefore often report following an asymmetrically loaded connections carry about using formulas, which are primarily designed for checking connections loaded symmetrically. This leads logically to the fact that it is not respected by the actual behaviour of the connection in the ultimate limit state. Formulas derived in this paper provide the possibility to assess the ultimate limit state for such connection. The formulas derived in this article allow to carry out a reliability assessment of the ultimate limit state of timber bolt connection subjected to double shear. The using of the formulas derived in this paper leads to better description of the behaviour of this type of connection and also to the more economic design. An example of using these derived formulas is shown. There is shown in this example, how to assess the reliability of timber bolt connection subjected to double unequal shears in terms of ultimate limit states.
Suitable pitch difference to realize anti-loosening performance for various bolts-nuts diameter
NASA Astrophysics Data System (ADS)
Kubo, S.; Tateishi, K.; Noda, N.-A.; Sano, Y.; Takase, Y.; Honda, K.
2018-06-01
In bolt-nut connection, the anti-loosening performance and high fatigue strength are always required with low cost to ensure the connected structure’s safety. In the previous study, a suitable pitch difference between the bolt-nut was obtained as α = 33 μm for M16 JIS bolt- nut through loosening experiment and FEM simulation for tightening process. However, other bolt-nut diameters have not been considered yet. In this paper, therefore, suitable pitch difference is considered for various diameters to realize anti-loosening performance. Since bolt-nut thread geometries are different depending on the diameter, they are expressed as approximate formula. Then, loosening force and anti-loosening force are considered by varying the diameter. Finally, suitable pitch difference {α }minsuit< α < {α }maxsuit was determined from mechanical condition.
Shape memory alloy-based moment connections with superior self-centering properties
NASA Astrophysics Data System (ADS)
Farmani, Mohammad Amin; Ghassemieh, Mehdi
2016-07-01
Superelastic shape memory alloys (SMAs) have the potential to create a spontaneous recentering mechanism on the connections of a structural system under seismic actions, which results in mitigation of the damage in the main structural members. In this article, innovative types of steel beam-to-column moment connections incorporating SMA bolts and plates are introduced and studied through a numerical approach. First, SMA bolted end-plate connection model is produced and analyzed by means of the finite element method to validate the numerical analysis against the prior experimental results. Then, the performance of eleven different end-plate moment connection models subjected to cyclic loading is investigated. By selecting the lower values for the moment capacity based on bolts strength in comparison to the flexural resistance of the beam, the plastic hinge is transferred from the beam section to the beam-column interface. Hence, employing superelastic materials at the connection interface could be potentially effective in providing the desired self-centering effect in the connection. To this end, the impact of utilizing superelastic SMA bolts and end-plates instead of using the conventional structural steel on the overall cyclic response of the connections is evaluated in this study. Results show that extended end-plate connections equipped with SMA bolts and end-plates, if properly proportioned and detailed, not only exhibit a clear reduction in the residual drifts after a seismic event, but also can meet the ductility requirements with good energy dissipation and sufficient stiffness.
3-D Analysis of Flanged Joints Through Various Preload Methods Using ANSYS
NASA Astrophysics Data System (ADS)
Murugan, Jeyaraj Paul; Kurian, Thomas; Jayaprakash, Janardhan; Sreedharapanickar, Somanath
2015-10-01
Flanged joints are being employed in aerospace solid rocket motor hardware for the integration of various systems or subsystems. Hence, the design of flanged joints is very important in ensuring the integrity of motor while functioning. As these joints are subjected to higher loads due to internal pressure acting inside the motor chamber, an appropriate preload is required to be applied in this joint before subjecting it to the external load. Preload, also known as clamp load, is applied on the fastener and helps to hold the mating flanges together. Generally preload is simulated as a thermal load and the exact preload is obtained through number of iterations. Infact, more iterations are required when considering the material nonlinearity of the bolt. This way of simulation will take more computational time for generating the required preload. Now a days most commercial software packages use pretension elements for simulating the preload. This element does not require iterations for inducing the preload and it can be solved with single iteration. This approach takes less computational time and thus one can study the characteristics of the joint easily by varying the preload. When the structure contains more number of joints with different sizes of fasteners, pretension elements can be used compared to thermal load approach for simulating each size of fastener. This paper covers the details of analyses carried out simulating the preload through various options viz., preload through thermal, initial state command and pretension element etc. using ANSYS finite element package.
Z-2 Threaded Insert Design and Testing Abstract
NASA Technical Reports Server (NTRS)
Rhodes, RIchard; Graziosi, Dave; Jones, Bobby; Ferl, Jinny; Scarborough, Steve; Sweeney, Mitch
2016-01-01
The Z-2 Prototype Planetary Extravehicular Space Suit Assembly is a continuation of NASA's Z series of spacesuits. The Z-2 is another step in the NASA's technology development roadmap leading to human exploration of the Martian surface. To meet a more challenging set of requirements than previous suit systems standard design features, such as threaded inserts, have been re-analyzed and improved. NASA's Z-2 prototype space suit contains several components fabricated from an advanced hybrid composite laminate consisting of IM10 carbon fiber and fiber glass. One requirement NASA levied on the suit composites was the ability to have removable, replaceable helicoil inserts to which other suit components would be fastened. An approach utilizing bonded in inserts with helicoils inside of them was implemented. The design of the interface flanges of the composites allowed some of the inserts to be a "T" style insert that was installed through the entire thickness of the laminate. The flange portion of the insert provides a mechanical lock as a redundancy to the adhesive aiding in the pullout load that the insert can withstand. In some locations it was not possible to utilize at "T" style insert and a blind insert was used instead. These inserts rely completely on the bond strength of the adhesive to resist pullout. It was determined during the design of the suit that the inserts did not need to withstand loads induced from pressure cycling but instead tension induced from torqueing the screws to bolt on hardware which creates a much higher stress on them. Bolt tension is determined by dividing the torque on the screw by a k value multiplied by the thread diameter of the bolt. The k value is a factor that accounts for friction in the system. A common value used for k for a non-lubricated screw is 0.2. The k value can go down by as much as 0.1 if the screw is lubricated which means for the same torque, a much larger tension could be placed on the bolt and insert. This paper summarizes testing that was performed to determine a k value for helicoil inserts in the Z2 suit and how the insert design was modified to resist a higher pull out tension.
Analysis of Modeling Parameters on Threaded Screws.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vigil, Miquela S.; Brake, Matthew Robert; Vangoethem, Douglas
2015-06-01
Assembled mechanical systems often contain a large number of bolted connections. These bolted connections (joints) are integral aspects of the load path for structural dynamics, and, consequently, are paramount for calculating a structure's stiffness and energy dissipation prop- erties. However, analysts have not found the optimal method to model appropriately these bolted joints. The complexity of the screw geometry cause issues when generating a mesh of the model. This paper will explore different approaches to model a screw-substrate connec- tion. Model parameters such as mesh continuity, node alignment, wedge angles, and thread to body element size ratios are examined. Themore » results of this study will give analysts a better understanding of the influences of these parameters and will aide in finding the optimal method to model bolted connections.« less
Integral isolation valve systems for loss of coolant accident protection
Kanuch, David J.; DiFilipo, Paul P.
2018-03-20
A nuclear reactor includes a nuclear reactor core comprising fissile material disposed in a reactor pressure vessel having vessel penetrations that exclusively carry flow into the nuclear reactor and at least one vessel penetration that carries flow out of the nuclear reactor. An integral isolation valve (IIV) system includes passive IIVs each comprising a check valve built into a forged flange and not including an actuator, and one or more active IIVs each comprising an active valve built into a forged flange and including an actuator. Each vessel penetration exclusively carrying flow into the nuclear reactor is protected by a passive IIV whose forged flange is directly connected to the vessel penetration. Each vessel penetration carrying flow out of the nuclear reactor is protected by an active IIV whose forged flange is directly connected to the vessel penetration. Each active valve may be a normally closed valve.
Design of Multiple Bolted Connections for Laminated Veneer Lumber
Borjen Yeh; Douglas Rammer; Jeff Linville
2014-01-01
The design of multiple bolted connections in accordance with Appendix E of the National Design Specification for Wood Construction (NDS) has incorporated provisions for evaluating localized member failure modes of row and group tear-out when the connections are closely spaced. Originally based on structural glued laminated timber (glulam) members made with all L1...
Research on assessment of bolted joint state using elastic wave propagation
NASA Astrophysics Data System (ADS)
Kędra, R.; Rucka, M.
2015-07-01
The work contains results of experimental investigation of elastic wave propagation in a bolted single-lap joint. Tests were carried out for the excitation perpendicular to the connection plane. In experimental studies, PZT transducers were used for both excitation and registration of ultrasonic waves. The analyses took into account varying contact conditions between the elements of the connection depending on the value of the prestressing force. The influence of loosening/tightening of bolts on the energy dissipation was analysed. The experimental results proved the influence of bolt torque on quantitative characteristics of the signals. To improve the diagnostic possibilities only the initial parts of signals were analysed.
Trestle #1, detail of connecting bolts and spikes on upper ...
Trestle #1, detail of connecting bolts and spikes on upper northeast abutment. View to east - Promontory Route Railroad Trestles, S.P. Trestle 779.91, One mile southwest of junction of State Highway 83 and Blue Creek, Corinne, Box Elder County, UT
76 FR 13546 - Airworthiness Directives; The Boeing Company Model MD-90-30 Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-14
...We propose to adopt a new airworthiness directive (AD) for the products listed above. This proposed AD would require a detailed inspection to detect distress and existing repairs to the leading edge structure of the vertical stabilizer at the splice at Station Zfs=52.267; repetitive inspections for cracking in the front spar cap forward flanges of the vertical stabilizer, and either the aft flanges or side skins; repetitive inspections for loose and missing fasteners; and related investigative and corrective actions if necessary. This proposed AD was prompted by reports of cracked vertical stabilizer skin, a severed front spar cap, elongated fastener holes at the leading edge of the vertical stabilizer, and a cracked front spar web and front spar cap bolt holes in the vertical stabilizer. We are proposing this AD to detect and correct such cracking damage, which could result in the structure being unable to support limit load, and could lead to the loss of the vertical stabilizer.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-15
...We are adopting a new airworthiness directive (AD) for the products listed above. This AD requires a detailed inspection to detect distress and existing repairs to the leading edge structure of the vertical stabilizer at the splice at Station Zfs = 52.267; repetitive inspections for cracking in the front spar cap forward flanges of the vertical stabilizer, and either the aft flanges or side skins; repetitive inspections for loose and missing fasteners; and related investigative and corrective actions if necessary. This AD was prompted by reports of cracked vertical stabilizer skin, a severed front spar cap, elongated fastener holes at the leading edge of the vertical stabilizer, and a cracked front spar web and front spar cap bolt holes in the vertical stabilizer. We are issuing this AD to detect and correct such cracking damage, which could result in the structure being unable to support limit load, and could lead to the loss of the vertical stabilizer.
76 FR 35342 - Airworthiness Directives; The Boeing Company Model MD-90-30 Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-17
...We are adopting a new airworthiness directive (AD) for the products listed above. This AD requires a detailed inspection to detect distress and existing repairs to the leading edge structure of the vertical stabilizer at the splice at Station Zfs=52.267; repetitive inspections for cracking in the front spar cap forward flanges of the vertical stabilizer, and either the aft flanges or side skins; repetitive inspections for loose and missing fasteners; and related investigative and corrective actions if necessary. This AD was prompted by reports of cracked vertical stabilizer skin, a severed front spar cap, elongated fastener holes at the leading edge of the vertical stabilizer, and cracked front spar web and front spar cap bolt holes in the vertical stabilizer. We are issuing this AD to detect and correct such cracking damage, which could result in the structure being unable to support limit load, and could lead to the loss of the vertical stabilizer.
Trestle #1, detail of connecting bolts and spikes on northeast ...
Trestle #1, detail of connecting bolts and spikes on northeast abutment vertical support timbers. View to east - Promontory Route Railroad Trestles, S.P. Trestle 779.91, One mile southwest of junction of State Highway 83 and Blue Creek, Corinne, Box Elder County, UT
NASA Astrophysics Data System (ADS)
Kim, S. Y.; Yoo, J. H.; Kim, H. K.; Shin, K. Y.; Yoon, S. J.
2018-06-01
In this paper, we discussed the structural behavior of bolted lap-joint connections in pultruded FRP structural members. Especially, bolted connections in pultruded FRP members are investigated for their failure modes and strength. Specimens with single and multiple bolt-holes are tested in tension under bolt-loading conditions. All of the specimens are instrumented with strain gages and the load-strain responses are monitored. The failed specimens are examined for the cracks and failure patterns. The purpose of this paper is to predict the failure strength by using the ratio of the results obtained by the experiment and the finite element analysis. In the study, several tests are conducted to determine the mechanical properties of pultruded FRP materials before the main experiment. The results are used in the finite element analysis for single and multiple bolted lap-joint specimens. The results obtained by the experiment are compared with the results obtained by the finite element analysis.
NASA Technical Reports Server (NTRS)
Knight, Norman F., Jr.; Phillips, Dawn R.; Raju, Ivatury S.
2008-01-01
The structural analyses described in the present report were performed in support of the NASA Engineering and Safety Center (NESC) Critical Initial Flaw Size (CIFS) assessment for the ARES I-X Upper Stage Simulator (USS) common shell segment. The structural analysis effort for the NESC assessment had three thrusts: shell buckling analyses, detailed stress analyses of the single-bolt joint test; and stress analyses of two-segment 10 degree-wedge models for the peak axial tensile running load. Elasto-plastic, large-deformation simulations were performed. Stress analysis results indicated that the stress levels were well below the material yield stress for the bounding axial tensile design load. This report also summarizes the analyses and results from parametric studies on modeling the shell-to-gusset weld, flange-surface mismatch, bolt preload, and washer-bearing-surface modeling. These analyses models were used to generate the stress levels specified for the fatigue crack growth assessment using the design load with a factor of safety.
NASA Technical Reports Server (NTRS)
Purves, Lloyd R. (Inventor)
1992-01-01
A robot serviced space facility includes multiple modules which are identical in physical structure, but selectively differing in function. and purpose. Each module includes multiple like attachment points which are identically placed on each module so as to permit interconnection with immediately adjacent modules. Connection is made through like outwardly extending flange assemblies having identical male and female configurations for interconnecting to and locking to a complementary side of another flange. Multiple rows of interconnected modules permit force, fluid, data and power transfer to be accomplished by redundant circuit paths. Redundant modules of critical subsystems are included. Redundancy of modules and of interconnections results in a space complex with any module being removable upon demand, either for module replacement or facility reconfiguration. without eliminating any vital functions of the complex. Module replacement and facility assembly or reconfiguration are accomplished by a computer controlled articulated walker type robotic manipulator arm assembly having two identical end-effectors in the form of male configurations which are identical to those on module flanges and which interconnect to female configurations on other flanges. The robotic arm assembly moves along a connected set or modules by successively disconnecting, moving and reconnecting alternate ends of itself to a succession of flanges in a walking type maneuver. To transport a module, the robot keeps the transported module attached to one of its end-effectors and uses another flange male configuration of the attached module as a substitute end-effector during walking.
Thermal conductance measurements of bolted copper joints for SuperCDMS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schmitt, R.; Tatkowski, Greg; Ruschman, M.
2015-09-01
Joint thermal conductance testing has been undertaken for bolted copper to copper connections from 60 mK to 26 K. This testing was performed to validate an initial design basis for the SuperCDMS experiment, where a dilution refrigerator will be coupled to a cryostat via multiple bolted connections. Copper used during testing was either gold plated or passivated with citric acid to prevent surface oxidation. Results obtained are well fit by a power law regression of joint thermal conductance to temperature and match well with data collected during a literature review.
THE USE OF KF STYLE FLANGES IN LOW PARTICULATE APPLICATIONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kendziora, K. R.; Angelo, J.; Baffes, C.
As SCRF particle accelerator technology advances the need for “low particulate” and “particle free” vacuum sys-tems becomes greater and greater. In the course of the op-eration of these systems, there comes a time when various instruments have to be temporarily attached for diagnostic purposes: RGAs, leak detectors, and additional pumps. In an effort to make the additions of these instruments easier and more time effective, we propose to use KF style flanges for these types of temporary diagnostic connec-tions. This document will describe the tests used to com-pare the particles generated using the assembly of the, widely accepted for “particlemore » free” use, conflat flange to the proposed KF style flange, and demonstrate that KF flanges produce comparable or even less particles« less
Multiple-bolted joints in wood members : a literature review
Peter James Moss
1997-01-01
This study reviewed the literature on experimental and analytical research for the connection of wood members using multiple laterally loaded bolts. From this, the influence of geometric factors were ascertained, such as staggered and aligned fasteners, optimum fastener configurations, row factors and length-to-diameter bolt ratios, spacing, end and edge distances, and...
Mechanical Behavior of CFRP Lattice Core Sandwich Bolted Corner Joints
NASA Astrophysics Data System (ADS)
Zhu, Xiaolei; Liu, Yang; Wang, Yana; Lu, Xiaofeng; Zhu, Lingxue
2017-12-01
The lattice core sandwich structures have drawn more attention for the integration of load capacity and multifunctional applications. However, the connection of carbon fibers reinforced polymer composite (CFRP) lattice core sandwich structure hinders its application. In this paper, a typical connection of two lattice core sandwich panels, named as corner joint or L-joint, was investigated by experiment and finite element method (FEM). The mechanical behavior and failure mode of the corner joints were discussed. The results showed that the main deformation pattern and failure mode of the lattice core sandwich bolted corner joints structure were the deformation of metal connector and indentation of the face sheet in the bolt holes. The metal connectors played an important role in bolted corner joints structure. In order to save the calculation resource, a continuum model of pyramid lattice core was used to replace the exact structure. The computation results were consistent with experiment, and the maximum error was 19%. The FEM demonstrated the deflection process of the bolted corner joints structure visually. So the simplified FEM can be used for further analysis of the bolted corner joints structure in engineering.
NASA Technical Reports Server (NTRS)
Mcdougal, A. R.; Norman, R. M. (Inventor)
1976-01-01
A gear head wrench particularly suited for use in applying torque to bolts without transferring torsional stress to bolt-receiving structures is introduced. The wrench is characterized by a coupling including a socket, for connecting a bolt head with a torque multiplying gear train, provided within a housing having an annulus concentrically related to the socket and adapted to be coupled with a spacer interposed between the bolt head and the juxtaposed surface of the bolt-receiving structure for applying a balancing counter-torque to the spacer as torque is applied to the bolt head whereby the bolt-receiving structure is substantially isolated from torsional stress. As a result of the foregoing, the operator of the wrench is substantially isolated from any forces which may be imposed.
Thermal conductance measurements of bolted copper joints for SuperCDMS
Schmitt, R. L.; Tatkowski, G.; Ruschman, M.; ...
2015-04-28
Joint thermal conductance testing has been undertaken for bolted copper to copper connections from 60 mK to 26 K. This testing was performed to validate an initial design basis for the SuperCDMS experiment, where a dilution refrigerator will be coupled to a cryostat via multiple bolted connections. Copper used during testing was either gold plated or passivated with citric acid to prevent surface oxidation. Finally, the results we obtained are well fit by a power law regression of joint thermal conductance to temperature and match well with data collected during a literature review.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-14
...We propose to adopt a new airworthiness directive (AD) for the products listed above. This proposed AD would require a detailed inspection to detect distress and existing repairs to the leading edge structure of the vertical stabilizer at the splice at Station Zfs = 52.267; repetitive inspections for cracking in the front spar cap forward flanges of the vertical stabilizer, and either the aft flanges or side skins; repetitive inspections for loose and missing fasteners; and related investigative and corrective actions if necessary. This proposed AD was prompted by reports of cracked vertical stabilizer skin, a severed front spar cap, elongated fastener holes at the leading edge of the vertical stabilizer, and a cracked front spar web and front spar cap bolt holes in the vertical stabilizer. We are proposing this AD to detect and correct such cracking damage, which could result in the structure being unable to support limit load, and could lead to the loss of the vertical stabilizer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Groenendaal, J.C. Jr.; Anemone, J.J.
This patent describes low pressure steam turbine apparatus having inner and outer cylinders, the outer cylinder having a support shelf, and inner cylinder support means for providing flexible support of the inner cylinder on the outer cylinder. It comprises: a horizontal joint flange and at least one support foot integrally connected thereto which projects substantially radially outward form the horizontal joint flange.
14. DETAIL OF CONNECTIONS AT THE BOTTOM OF A POST ...
14. DETAIL OF CONNECTIONS AT THE BOTTOM OF A POST IN THE WEST TRUSS, SHOWING THE ASSEMBLY OF LOWER CHORD AND DIAGONAL EYE BOLTS AND THE SUSPENSION OF A FLOOR BEAM FROM THE POST BY A U-BOLT; VIEW FROM SOUTH BANK. - Mitchell's Mill Bridge, Spanning Winter's Run on Carrs Mill Road, west of Bel Air, Bel Air, Harford County, MD
FEB (Multifilter Electronics Box) lifting device analysis, revision A
NASA Astrophysics Data System (ADS)
Croskey, Charles L.
1988-02-01
This document is to determine the mechanical loads produced when the FEB is either lifted manually with handles or by a sling and overhead hoist. 2. Relevant Documents 2.1 JA418 2.2 ES-MAS-DS-003 MAS Ground Support Equipment Specification 2.3 An Introduction to the Design and Behavior of Bolted Joints John H. Bickford, MARCEL DEKKER, New York 3. Lifting Apparatus 3.1 For the lifting of FEB by either handles or a sling from an overhead hoist, four eyebolts are attached to the top mounting edge, through the top cover and into the top flange of the sidewalls. When the FEB is to be lifted manually without mechanical assistance, two long stainless steel rods are inserted lengthwise through the upright eyebolts. A small collar is then slipped over the rod so that the rod cannot shift lengthwise. The rod ends which extend beyond the eyebolt positions serve as handles for two people to lift the FEB. When an overhead hoist is to be used, the rods are not used. Instead a wire-rope sling is attached to each eyebolt. The four sling arms meet at a center jump ring which is lifted by the hook of the overhead crane. A spreader frame is used just above the eye-bolt attachments so that the load transfered to the bolts is strictly vertical.
Parametric study of extended end-plate connection using finite element modeling
NASA Astrophysics Data System (ADS)
Mureşan, Ioana Cristina; Bâlc, Roxana
2017-07-01
End-plate connections with preloaded high strength bolts represent a convenient, fast and accurate solution for beam-to-column joints. The behavior of framework joints build up with this type of connection are sensitive dependent on geometrical and material characteristics of the elements connected. This paper presents results of parametric analyses on the behavior of a bolted extended end-plate connection using finite element modeling program Abaqus. This connection was experimentally tested in the Laboratory of Faculty of Civil Engineering from Cluj-Napoca and the results are briefly reviewed in this paper. The numerical model of the studied connection was described in detail in [1] and provides data for this parametric study.
NASA Technical Reports Server (NTRS)
Sprague, Benny B. (Inventor)
1990-01-01
A coupling device has a transversely arranged, open-end groove in a flange attached to a pipe end. The groove in the flange receives a circumferentially arranged locking flange element on the other coupling member and permits alignment of the bores of the coupling members when the locking flange element is in the open end groove. Upon alignment of the bores of the coupling members, a trigger member is activated to automatically release a spring biased tubular member in one of the coupling members. The tubular member has a conical end which is displaced into the other coupling member to lock the coupling members to one another. A tensioning nut is threadedly movable on a coupling member so as to be moved into tightening engagement with the other coupling member.
A loose bolt delays loading of Endeavour's external tank
NASA Technical Reports Server (NTRS)
2000-01-01
This loose bracket, observed hanging down from the side of the White Room at Launch Pad 39B, delayed loading of Endeavour's external tank by several hours to allow technicians to remove it. A 'U' bolt connects the bracket to a fire suppression water line attached to the exterior of the White Room. The loose bolt could have possibly created a debris hazard.
Research on Creep Relaxation Non-uniformity and Effect on Performance of Combined Rotor
NASA Astrophysics Data System (ADS)
Liu, Qingya; He, Jingfei; Zhao, Lijia
2017-11-01
The combined rotor of gas turbine is connected by a certain number of rod bolts. It works in the high temperature environment for a long time, and the rod bolts will creep and relax. Under the influence of elastic interaction, the loss of pretightening force of rod bolts at different positions is non-uniform, which will cause the connection of the combined rotor to be out of tune. In this paper, the creep relaxation non-uniformity model for a class F heavy duty gas turbine is established. On the basis of this, the performance degradation and structural strength change of combined rotor resulting from creep relaxation non-uniformity of rod bolts are studied. The results show that the ratio of preload mistuning increases with time and then converges, and there is a threshold inflection point in about seven thousand hours.
Method Of Making A Vacuum-Tight Continuous Cable Feedthrough Device
Bazizi, Kamel Abdel; Haelen, Thomas Eugene; Lobkowicz, Frederick; Slattery, Paul Francis
2001-07-17
A vacuum-tight cable feedthrough device includes a metallic first flange that is penetrated by a slot. Passing through the slot is a flat stripline cable that includes a plurality of conductive signal channels encompassed by a dielectric material on whose upper and lower surfaces is disposed a conductive material includes a ground. The stripline cable is sealed within the slot to provide a substantially vacuum-tight seal between the cable and the first flange. In a preferred embodiment, the cable feedthrough device includes a plurality, at least 16, of stripline cables. In a further preferred embodiment, the device includes a second flange and a bellows sealably connecting the first and second flanges, thereby providing a substantially vacuum-tight, flexible housing for the plurality of cables.
A loose bolt delays loading of Endeavour's external tank
NASA Technical Reports Server (NTRS)
2000-01-01
A closeup reveals the loose bracket, observed hanging down from the side of the White Room at Launch Pad 39B, that delayed loading of Endeavour's external tank by several hours to allow technicians to remove it. A 'U' bolt connects the bracket to a fire suppression water line attached to the exterior of the White Room. The loose bolt could have possibly created a debris hazard.
NASA Technical Reports Server (NTRS)
2000-01-01
A licensing agreement between Marshall Space Flight Center and M&A Screw and Machineworks has brought the quick connect nut to the commerical market. Originally designed as part of a project seeking in-space assembly techniques, the quick connect nut is secured around a bolt merely by pushing it onto the bolt and giving it a single twist. Applications for the nuts include oil drilling platforms, mining industry, and other practices that rely on speedy assembly for success.
Tool For Driving Many Fasteners Simultaneously
NASA Technical Reports Server (NTRS)
Cook, Joseph S., Jr.
1995-01-01
Proposed tool tightens or loosens several bolts, screws, nuts, or other threaded fasteners arranged in circle on compressor head, automotive wheel, pipe-end flange, or similar object. Enables assembly or disassembly in fraction of time needed to tighten fasteners one at a time. Simultaneously applies same torque to all fasteners, preventing distortion and enhancing reliability. Concept not limited to circular fastener patterns. Adapted to rectangular configurations like on engine intake manifolds, by adding gears to drive train to provide proper spacing. Designed to deliver fixed or adjustable maximum torque. To ensure even seal loading, piston pressure simultaneously ramped from initial to final values to maintain relatively constant torque loading on all fasteners until final specifications limit achieved.
A Crew Exposure Study. Phase II. Volume 2. At Sea. Part B.
1985-04-01
flange and was bol ted i n pl ace. o The bolts were tightened and the strap removed. A/B-1 and A/8-2 hooked up the hoses on the bottom level of the...expansion trunk dome. This method effectively increased the sepa- ration distance between the ullage port and breathing zone, which permit- ted vapors...1 Cm OCVIVI 0.. U " 06IV WUn VI LU 5L>>fl 0, 4-C~0 cmO (U 4n0 - sa CL UK. I C (A 0 4)UO-c 4 0C 1 0 CIE SI. (A viM t ( ofS- 0. 1 w 0 cL CL. U1.- ac
Investigation of high-strength bolt-tightening verification techniques : tech transfer summary.
DOT National Transportation Integrated Search
2016-03-01
The primary objective of this project was to explore the current state-of-practice and the state-of-the-art techniques for high-strength bolt tightening and verification in structural steel connections. This project was completed so that insight coul...
A loose bolt delays loading of Endeavour's external tank
NASA Technical Reports Server (NTRS)
2000-01-01
This view shows the pipe (center top) leading toward Endeavour from the side of the White Room at Launch Pad 39B. A loose bracket observed hanging down from the pipe delayed loading of Endeavour's external tank by several hours to allow technicians to remove it. A 'U' bolt connects the bracket to a fire suppression water line attached to the exterior of the White Room. The loose bolt could have possibly created a debris hazard.
Ultrasonic flaw detection in a monorail box beam
NASA Astrophysics Data System (ADS)
Zheng, Peng; Greve, David W.; Oppenheim, Irving J.
2009-03-01
A steel box beam in a monorail application is constructed with an epoxy grout wearing surface, precluding visual inspection of its top flange. This paper describes a sequence of experimental research tasks to develop an ultrasonic system to detect flaws (such as fatigue cracks) in that flange, and the results of a field test to demonstrate system performance. The problem is constrained by the fact that the flange is exposed only along its longitudinal edges, and by the fact that permanent installation of transducers at close spacing was deemed to be impractical. The system chosen for development, after experimental comparison of alternate technologies, features angle-beam ultrasonic transducers with fluid coupling to the flange edge; the emitting transducers create transverse waves that travel diagonally across the width of the flange, where an array of receiving transducers detect flaw reflections and flaw shadows. The system rolls along the box beam, surveying (screening) the top flange for the presence of flaws. In a first research task, conducted on a full-size beam specimen, we compared waves generated from different transducer locations, either the flange edge or the web face, and at different frequency ranges. At relatively low frequencies, such as 100 kHz, we observed Lamb wave modes, and at higher frequency, in the MHz range, we observed nearlylongitudinal waves with trailing pulses. In all cases we observed little attenuation by the wearing surface and little influence of reflection at the web-flange joints. At the conclusion of this task we made the design decision to use edgemounted transducers at relatively high frequency, with correspondingly short wavelength, for best scattering from flaws. In a second research task we conducted experiments at 55% scale on a steel plate, with machined flaws of different size, and detected flaws of target size for the intended application. We then compared the performance of bonded transducers, fluid-coupled transducers, and angle-beam (wedge) transducers; from that comparison we made the design decision to use wedges, which beam the wave to increase the scattering from flaws. We also compared the performance of wired transducers using fluid coupling to that of wireless (inductively coupled) transducers mounted permanently. Although the wireless transducers achieved flaw detection, the necessary spacing (determined experimentally) would have required an impractical number of transducers. Therefore, we made the design decision to use wedge transducers with fluid coupling. In a third research task we developed and tested a rolling system with a water channel for acoustic coupling, including a study of its sensitivity to misalignment, and in a fourth task we devised a data display to create a pattern of reflections or shadows that could be easily interpreted as evidence of a flaw. Finally, we conducted a field test on the full-size system in a region containing bolt holes, which act as a physical simulation of a flaw, and show successful detection of reflections and shadows from those holes.
Bolted joints in graphite-epoxy composites
NASA Technical Reports Server (NTRS)
Hart-Smith, L. J.
1976-01-01
All-graphite/epoxy laminates and hybrid graphite-glass/epoxy laminates were tested. The tests encompassed a range of geometries for each laminate pattern to cover the three basic failure modes - net section tension failure through the bolt hole, bearing and shearout. Static tensile and compressive loads were applied. A constant bolt diameter of 6.35 mm (0.25 in.) was used in the tests. The interaction of stress concentrations associated with multi-row bolted joints was investigated by testing single- and double-row bolted joints and open-hole specimens in tension. For tension loading, linear interaction was found to exist between the bearing stress reacted at a given bolt hole and the remaining tension stress running by that hole to be reacted elsewhere. The interaction under compressive loading was found to be non-linear. Comparative tests were run using single-lap bolted joints and double-lap joints with pin connection. Both of these joint types exhibited lower strengths than were demonstrated by the corresponding double-lap joints. The analysis methods developed here for single bolt joints are shown to be capable of predicting the behavior of multi-row joints.
Monitoring bolt torque levels through signal processing of full-field ultrasonic data
NASA Astrophysics Data System (ADS)
Haynes, Colin; Yeager, Michael; Todd, Michael; Lee, Jung-Ryul
2014-03-01
Using full-field ultrasonic guided wave data can provide a wealth of information on the state of a structure through a detailed characterization of its wave propagation properties. However, the need for appropriate feature selection and quantified metrics for making rigorous assessments of the structural state is in no way lessened by the density of information. In this study, a simple steel bolted connection with two bolts is monitored for bolt loosening. The full-field data were acquired using a scanning-laser-generated ultrasound system with a single surface-mounted sensor. Such laser systems have many advantages that make them attractive for nondestructive evaluation, including their high-speed, high spatial resolution, and the ability to scan large areas of in-service structures. In order to characterize the relationship between bolt torque and the resulting wavefield in this specimen, the bolt torque in each of the bolts is independently varied from fully tightened to fully loosened in several steps. First, qualitative observations about the changes in the wavefield are presented. Next, an approach to quantifying the wave transmission through the bolted joint is discussed. Finally, a method of monitoring the bolt torque using the ultrasonic data is demonstrated.
NASA Technical Reports Server (NTRS)
Joynes, D.; Balut, J. P.
1974-01-01
The results are presented of static, fatigue and thermal testing of titanium honeycomb acoustic panels representing the acoustic tailpipe for the Pratt and Whitney Aircraft JT8D Refan engine which is being studied for use on the Boeing 727-200 airplane. Test specimens represented the engine and tailpipe flange joints, the rail to which the thrust reverser is attached and shear specimens of the tailpipe honeycomb. Specimens were made in four different batches with variations in configuration, materials and processes in each. Static strength of all test specimens exceeded the design ultimate load requirements. Fatigue test results confirmed that aluminum brazed titanium, as used in the Refan tailpipe design, meets the fatigue durability objectives. Quality of welding was found to be critical to life, with substandard welding failing prematurely, whereas welding within the process specification exceeded the panel skin life. Initial fatigue testing used short grip length bolts which failed prematurely. These were replaced with longer bolts and subsequent testing demonstrated the required life. Thermal tests indicate that perforated skin acoustic honeycomb has approximately twice the heat transfer of solid skin honeycomb.
Local buckling of composite channel columns
NASA Astrophysics Data System (ADS)
Szymczak, Czesław; Kujawa, Marcin
2018-05-01
The investigation concerns local buckling of compressed flanges of axially compressed composite channel columns. Cooperation of the member flange and web is taken into account here. The buckling mode of the member flange is defined by rotation angle a flange about the line of its connection with the web. The channel column under investigation is made of unidirectional fibre-reinforced laminate. Two approaches to member orthotropic material modelling are performed: the homogenization with the aid of theory of mixture and periodicity cell or homogenization upon the Voigt-Reuss hypothesis. The fundamental differential equation of local buckling is derived with the aid of the stationary total potential energy principle. The critical buckling stress corresponding to a number of buckling half-waves is assumed to be a minimum eigenvalue of the equation. Some numerical examples dealing with columns are given here. The analytical results are compared with the finite element stability analysis carried out by means of ABAQUS software. The paper is focused on a close analytical solution of the critical buckling stress and the associated buckling mode while the web-flange cooperation is assumed.
Development of stiffer and ductile glulam portal frame
NASA Astrophysics Data System (ADS)
Komatsu, Kohei
2017-11-01
Portal frame structures, which are constituted of straight glulam beams and columns connected semi-rigidly by steel insert gusset plate with a lot of drift pins, were the first successful glulam structures widely used in Japan. In addition to this connection system, the author invented also a new type of jointing devise for glulam structures named as "Lagscrewbolt" which had a full threaded portion at inner part to grip wooden member as well as another thread part at the end of shank to connect with other member. The initial type of "Lagscrewbolt" was successfully applied to a various types of glulam buildings which could be rapidly built-up on construction site. Its strength performance, however, was rather brittle therefore the improvement of the ductility was a crucial research subject. In order to give a sufficient ductility on the "Lagscrewbolted joint system", so-called "Slotted Bolted Connection" concept was adopted for making use of large energy dissipation characteristics due to high-tension bolted steel connection with slotted bolt holes. Static & dynamic performance of glulam portal frame specimens was evaluated by static cyclic loading test as well as shaking table test. Current latest form of the jointing system can show very high ductility as well as stable hysteretic cyclic loops by inserting brass-shim between steel-to-steel friction interfaces
Integrity of Bolted Angle Connections Subjected to Simulated Column Removal
Weigand, Jonathan M.; Berman, Jeffrey W.
2016-01-01
Large-scale tests of steel gravity framing systems (SGFSs) have shown that the connections are critical to the system integrity, when a column suffers damage that compromises its ability to carry gravity loads. When supporting columns were removed, the SGFSs redistributed gravity loads through the development of an alternate load path in a sustained tensile configuration resulting from large vertical deflections. The ability of the system to sustain such an alternate load path depends on the capacity of the gravity connections to remain intact after undergoing large rotation and axial extension demands, for which they were not designed. This study experimentally evaluates the performance of steel bolted angle connections subjected to loading consistent with an interior column removal. The characteristic connection behaviors are described and the performance of multiple connection configurations are compared in terms of their peak resistances and deformation capacities. PMID:27110059
Seating arrangement and structure of a spool within a well casing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lien, N.C.; Olsen, D.G.
1990-07-10
This patent describes a well construction having a vertical well casing and a spool. It comprises: the spool being insertable into the well casing and the spool having a flange with a skirt that bottoms against a collar in the well casing to form a seated contact engagement between the skirt and the collar, a support web connected to the flange and extending substantially perpendicular to the skirt. The support web has an undersurface which extends upwardly and radially inwardly from the flange,a sleeve section connected to the web radially inwardly thereof from which a pipe section is suspended therefrom,more » and a ring portion at a junction of the support web and the sleeve about which transmitted forces are resolved, the skirt and the collar being angled at an angle {theta} relative to the vertical such that {theta} has a value less than tan {theta} equal to 1/{mu} and greater than tan {theta} equal to {mu} where {mu} equals the coefficient of static friction between the skirt and the collar.« less
Duct attachment and extension for an air conditioning unit
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lang, R.D.; Frenia, F.J.
1986-12-16
An apparatus is described for attaching a fixed duct extension to the discharge opening of an air conditioning unit, the unit slidably inserted in and removed from a fixed through-the-wall sleeve, for supplying conditioned air to the space containing the unit and an adjacent space comprising: a discharge plenum assembly adapted to be connected to the unit encase the discharge opening. The discharge plenum assembly defines an air flow path for the conditioned air discharged from the unit and includes a first housing member having a forward wall, a rear wall, and a pair of opposed side walls joining themore » front wall to the rear wall, and a second housing member having a top wall connected to a front wall. The top wall and the front wall are fixedly attached to the rear wall and the forward wall respectively of the first housing member and forming a duct outlet in one of the side walls. The top wall and the front wall of the second housing member and one of the pair of opposed side walls of the lower housing member having longitudinal flanges extending therefrom forming a C-like flange; a bracket removably secured to the through the wall sleeve having an outwardly extending flange member at the top of the bracket; and a duct extension means secured to the outwardly extending flange of the bracket near one end and to the wall of the adjacent space at the opposite end. The duct extension means has a collar at one end configured to engage with the C-like flange whereby the unit with the discharge plenum assembly attached thereto slidably engages with and disengages from the through-the-wall sleeve while the duct extension is secured to the bracket.« less
Designing of Timber Bolt Connection Subjected To Double Unequal Shears
NASA Astrophysics Data System (ADS)
Musilek, Josef; Plachy, Jan
2017-10-01
The paper deals with load-carrying capacity of bolted connections subjected to unequal double shear with thin plates as outer members and inner timber member. This type of connection is usually widespread and in building support structures made of wood is commonly used. This may occur for example in skeletal structures which contain structural elements based on wood, but also for smaller wooden buildings. Specifically, this type of connection can be found in ceiling structures in the joint joists and beams. If one joist greater margin than the second, bringing the load on the side of the joists of a larger span greater loads than on the side with a smaller span joist. Structure engineer, who is designing such a connection, must use for the design of the connection design procedures and formulas from which he or she calculates the design resistance in order to carry out further assessment of the reliability of the connection in the ultimate limit state. The load-carrying capacity of this connections type can be calculated at present according to Johansen’s equations, which are also contained in present European standard for the design timber structures -Eurocode 5. These Johansen’s equations assume that the loads which act on the outer plates are equal. For this reason, the structure engineer is often forced to use formulas intended for the timber bolt connection subjected to double equal shear and he or she must find ways how to use them although the formulas are not suitable. This paper deals with the case, when the loads acting on the outer plates are unequal.
Rowley, James P.; Lewandowski, Edward F.; Groh, Edward F.
1976-01-01
Three cylindrical rollers are rotatably mounted equidistant from the center of a hollow tool head on radii spaced 120.degree. apart. Each roller has a thin flange; the three flanges lie in a single plane to form an internal circumferential rib in a rotating tubular workpiece. The tool head has two complementary parts with two rollers in one part of the head and one roller in the other part; the two parts are joined by a hinge. A second hinge, located so the rollers are between the two hinges, connects one of the parts to a tool bar mounted in a lathe tool holder. The axes of rotation of both hinges and all three rollers are parallel. A hole exposing equal portions of the three roller flanges is located in the center of the tool head. The two hinges permit the tool head to be opened and rotated slightly downward, taking the roller flanges out of the path of the workpiece which is supported on both ends and rotated by the lathe. The parts of the tool head are then closed on the workpiece so that the flanges are applied to the workpiece and form the rib. The tool is then relocated for forming of the next rib.
Experiments in Aligning Threaded Parts Using a Robot Hand
NASA Technical Reports Server (NTRS)
Diftler, M. A.; Walker, I. D.
1999-01-01
Techniques for determining and correcting threaded part alignment using force and angular position data are developed to augment currently limited techniques for align- ing threaded parts. These new techniques are based on backspinning a nut with respect to a bolt and measuring the force change that occurs when the bolt "falls" into the nut. Kinematic models that describe the relationship between threaded parts during backspinning are introduced and are used to show how angular alignment may be determined. The models indicate how to distinguish between the aligned and misaligned cases of a bolt and a nut connection by using axial force data only. In addition, by tracking the in-plane relative attitude of the bolt during spinning, data can be obtained on the direction of the angular misalignment which, in turn, is used to correct the misalignment. Results from experiments using a bolt held in a specialized fixture and a three fingers Stanford/JPL hand are presented.
NASA Technical Reports Server (NTRS)
Weddendorf, Bruce (Inventor)
1994-01-01
A quick connect fastener and method of use is presented wherein the quick connect fastener is suitable for replacing available bolts and screws, the quick connect fastener being capable of installation by simply pushing a threaded portion of the connector into a member receptacle hole, the inventive apparatus being comprised of an externally threaded fastener having a threaded portion slidably mounted upon a stud or bolt shaft, wherein the externally threaded fastener portion is expandable by a preloaded spring member. The fastener, upon contact with the member receptacle hole, has the capacity of presenting cylindrical threads of a reduced diameter for insertion purposes and once inserted into the receiving threads of the receptacle member hole, are expandable for engagement of the receptacle hole threads forming a quick connect of the fastener and the member to be fastened, the quick connect fastener can be further secured by rotation after insertion, even to the point of locking engagement, the quick connect fastener being disengagable only by reverse rotation of the mated thread engagement.
Improved Direct Methanol Fuel Cell Stack
Wilson, Mahlon S.; Ramsey, John C.
2005-03-08
A stack of direct methanol fuel cells exhibiting a circular footprint. A cathode and anode manifold, tie-bolt penetrations and tie-bolts are located within the circular footprint. Each fuel cell uses two graphite-based plates. One plate includes a cathode active area that is defined by serpentine channels connecting the inlet and outlet cathode manifold. The other plate includes an anode active area defined by serpentine channels connecting the inlet and outlet of the anode manifold, where the serpentine channels of the anode are orthogonal to the serpentine channels of the cathode. Located between the two plates is the fuel cell active region.
Behavior of single lap composite bolted joint under traction loading: Experimental investigation
NASA Astrophysics Data System (ADS)
Awadhani, L. V.; Bewoor, Anand
2018-04-01
Composite bolted joints are preferred connection in the composite structures to facilitate the dismantling for the replacements/ maintenance work. The joint behavior under tractive forces has been studied in order to understand the safety of the structure designed. The main objective of this paper is to investigate the behavior of single-lap joints in carbon fiber reinforced epoxy composites under traction loading conditions. The experiments were designed to identify the effect of bolt diameter, stacking sequence and loading rate on the properties of the joint. The experimental results show that the parameters influence the joint performance significantly.
Behaviour of Frictional Joints in Steel Arch Yielding Supports
NASA Astrophysics Data System (ADS)
Horyl, Petr; Šňupárek, Richard; Maršálek, Pavel
2014-10-01
The loading capacity and ability of steel arch supports to accept deformations from the surrounding rock mass is influenced significantly by the function of the connections and in particular, the tightening of the bolts. This contribution deals with computer modelling of the yielding bolt connections for different torques to determine the load-bearing capacity of the connections. Another parameter that affects the loading capacity significantly is the value of the friction coefficient of the contacts between the elements of the joints. The authors investigated both the behaviour and conditions of the individual parts for three values of tightening moment and the relation between the value of screw tightening and load-bearing capacity of the connections for different friction coefficients. ANSYS software and the finite element method were used for the computer modelling. The solution is nonlinear because of the bi-linear material properties of steel and the large deformations. The geometry of the computer model was created from designs of all four parts of the structure. The calculation also defines the weakest part of the joint's structure based on stress analysis. The load was divided into two loading steps: the pre-tensioning of connecting bolts and the deformation loading corresponding to 50-mm slip of one support. The full Newton-Raphson method was chosen for the solution. The calculations were carried out on a computer at the Supercomputing Centre VSB-Technical University of Ostrava.
Rotation Capacity of Bolted Flush End-Plate Stiffened Beam-to-Column Connection
NASA Astrophysics Data System (ADS)
Ostrowski, Krzysztof; Kozłowski, Aleksander
2017-06-01
One of the flexibility parameters of semi-rigid joints is rotation capacity. Plastic rotation capacity is especially important in plastic design of framed structures. Current design codes, including Eurocode 3, do not posses procedures enabling designers to obtain value of rotation capacity. In the paper the calculation procedure of the rotation capacity for stiffened bolted flush end-plate beam-to-column connections has been proposed. Theory of experiment design was applied with the use of Hartley's PS/DS-P:Ha3 plan. The analysis was performed with the use of finite element method (ANSYS), based on the numerical experiment plan. The determination of maximal rotation angle was carried out with the use of regression analysis. The main variables analyzed in parametric study were: pitch of the bolt "w" (120-180 mm), the distance between the bolt axis and the beam upper edge cg1 (50-90 mm) and the thickness of the end-plate tp (10-20 mm). Power function was proposed to describe available rotation capacity of the joint. Influence of the particular components on the rotation capacity was also investigated. In the paper a general procedure for determination of rotation capacity was proposed.
Code of Federal Regulations, 2013 CFR
2013-07-01
... bypassing of equipment without stopping production. Quarter means a 3-month period; the first quarter... process. Connector means flanged, screwed, or other joined fittings used to connect two pipe lines or a... means two block valves connected in series with a bleed valve or line that can vent the line between the...
Code of Federal Regulations, 2010 CFR
2010-07-01
... bypassing of equipment without stopping production. Quarter means a 3-month period; the first quarter... process. Connector means flanged, screwed, or other joined fittings used to connect two pipe lines or a... means two block valves connected in series with a bleed valve or line that can vent the line between the...
Code of Federal Regulations, 2011 CFR
2011-07-01
... bypassing of equipment without stopping production. Quarter means a 3-month period; the first quarter... process. Connector means flanged, screwed, or other joined fittings used to connect two pipe lines or a... means two block valves connected in series with a bleed valve or line that can vent the line between the...
Code of Federal Regulations, 2014 CFR
2014-07-01
... bypassing of equipment without stopping production. Quarter means a 3-month period; the first quarter... process. Connector means flanged, screwed, or other joined fittings used to connect two pipe lines or a... means two block valves connected in series with a bleed valve or line that can vent the line between the...
Code of Federal Regulations, 2012 CFR
2012-07-01
... bypassing of equipment without stopping production. Quarter means a 3-month period; the first quarter... process. Connector means flanged, screwed, or other joined fittings used to connect two pipe lines or a... means two block valves connected in series with a bleed valve or line that can vent the line between the...
Experimental Investigation of Tensile Test on Connection of Cold-formed Cut-curved Steel Section
NASA Astrophysics Data System (ADS)
Sani, Mohd Syahrul Hisyam Mohd; Muftah, Fadhluhartini; Rahman, Nurul Farraheeda Abdul; Fakri Muda, Mohd
2017-08-01
Cold-formed steel (CFS) is widely used as structural and non-structural components such as roof trusses and purlin. A CFS channel section with double intermediate web stiffener and lipped is chosen based on the broader usage in roof truss construction. CFS section is cut to form cold-formed pre-cut-curved steel section and lastly strengthened by several types of method or likely known as connection to establish the cold-formed cut-curved steel (CFCCS) section. CFCCS is proposed to be used as a top chord section in the roof truss system. The CFCCS is to resist the buckling phenomena of the roof truss structure and reduced the compression effect on the top chord. The tensile test connection of CFCCS section, especially at the flange element with eight types of connection by welding, plate with self-drilling screw and combination is investigated. The flange element is the weakest part that must be solved first other than the web element because they are being cut totally, 100% of their length for curving process. The testing is done using a universal testing machine for a tensile load. From the experiment, specimen with full welding has shown as a good result with an ultimate load of 13.37 kN and reported having 35.41% when compared with normal specimen without any of connection methods. Furthermore, the experimental result is distinguished by using Eurocode 3. The failure of a full welding specimen is due to breaking at the welding location. Additionally, all specimens with either full weld or spot weld or combination failed due to breaking on weld connection, but specimen with flange plate and self-drilling screw failed due to tilting and bearing. Finally, the full welding specimen is chosen as a good connection to perform the strengthening method of CFCCS section.
Quick-Connect/Disconnect Joint For Truss Structures
NASA Technical Reports Server (NTRS)
Sprague, Benny B.
1991-01-01
Simple connector used for temporary structures and pipes. Truss connector joins and aligns structural members. Consists of two sections, one flanged and other with mating internal groove. When flanged half inserted in groove, moves lever of trigger mechanism upward. Cone then shoots into grooved half. Attached without tools in less than 2 seconds and taken apart just as quickly and easily. Developed for assembling structures in outer space, also useful for temporary terrestrial structures like scaffolds and portable bleachers. With modifications, used to join sections of pipelines carrying liquids or gases.
Variable volume combustor with aerodynamic fuel flanges for nozzle mounting
DOE Office of Scientific and Technical Information (OSTI.GOV)
McConnaughhay, Johnie Franklin; Keener, Christopher Paul; Johnson, Thomas Edward
2016-09-20
The present application provides a combustor for use with a gas turbine engine. The combustor may include a number of micro-mixer fuel nozzles and a fuel injection system for providing a flow of fuel to the micro-mixer fuel nozzles. The fuel injection system may include a number of support struts supporting the fuel nozzles and for providing the flow of fuel therethrough. The fuel injection system also may include a number of aerodynamic fuel flanges connecting the micro-mixer fuel nozzles and the support struts.
NASA Astrophysics Data System (ADS)
Skrzypkowski, Krzysztof; Korzeniowski, Waldemar; Zagórski, Krzysztof; Dudek, Piotr
2017-09-01
In the underground mines of the Legnica-Głogów Copper District (LGOM) the main way to protect the room excavation is the use of a rock bolt support. For many years, it has proven to be an efficient security measure in excavations which met all safety standards and requirements. The article presents the consumption of the rock bolt support in the Mining Department "Polkowice-Sieroszowice" in the years 2010-2015 as well as the number of bolt supports that were used to secure the excavations. In addition, it shows the percentage of bolt supports that were used to conduct rebuilding work and cover the surface of exposed roofs. One of the factors contributing to the loss of the functionality of bolt supports is corrosion whose occurrence may lead directly to a reduction in the diameter of rock bolt support parts, in particular rods, bearing plates and nuts. The phenomenon of the corrosion of the bolt support and its elements in underground mining is an extremely common phenomenon due to the favorable conditions for its development in mines, namely high temperature and humidity, as well as the presence of highly aggressive water. This involves primarily a decrease in the capacity of bolt support construction, which entails the need for its strengthening, and often the need to perform the reconstruction of the excavation. The article presents an alternative for steel bearing plates, namely plates made using the spatial 3D printing technology. Prototype bearing plates were printed on a 3D printer Formiga P100 using the "Precymit" material. The used printing technology was SLS (Selective Laser Sintering), which is one of the most widely used technologies among all the methods of 3D printing for the short series production of the technical parts of the final product. The article presents the stress-strain characteristic of the long expansion connected rock bolt support OB25 with a length of 3.65 m. A rock bolt support longer than 2.6 m is an additional bolt support in excavations, and it is increasingly frequently used to reinforce roofs and in rebuilding the underground mines of KGHM Polish Copper S.A. In order to conduct the laboratory tests that are most suitable for the mine conditions, and yet are carried out on a laboratory test facility, the Authors used a steel cylinder with an external diameter of 102 mm and a length of 600 mm, which was filled with a core of rock (dolomite) from the roofs of the mine workings. In addition the maximum load that took over the bolt support made of rods and connected with sleeves was determined. For the initial tension, the elastic and plastic range of the maximal displacements, which were measured by the rope encoder, were determined. The statical tests of the expansion rock bolt support were carried out at the laboratory of the Department of Underground Mining in simulated mine conditions. The test facility enables the study of the long bolt rods on a geometric scale of 1:1 for the different ways of fixing. The aim of the laboratory research was to obtain the stress-strain characteristics, of the long expansion rock bolt support with a steel bearing plate and a plate printed on a 3D printer.
Video Intertank for the Core Stage for the first SLS Flight
2017-06-29
This video shows the Space Launch System interank, which recently completed assembly at NASA's Michoud Assembly Facility in New Orleans. This tank was bolted together with more than 7,000 bolts. It is the only part of the SLS core stage assembly with bolts rather than by welding. The rocket's interank is located between the core stage liquid oxygen and liquid hydrogen fuel tanks. It has to be strong because the two SLS solid rocket boosters attache to the sides of it. This flight article will be connected to four other parts to form the core stage for the first integrated flight of SLS and Orion.
29 CFR 1915.163 - Ship's piping systems.
Code of Federal Regulations, 2013 CFR
2013-07-01
... are taken: (1) The isolation and shutoff valves connecting the dead system with the live system or... welded instead of bolted, at least two isolation and shutoff valves connecting the dead system with the...) Drain connections to the atmosphere on all of the dead interconnecting systems shall be opened for...
29 CFR 1915.163 - Ship's piping systems.
Code of Federal Regulations, 2014 CFR
2014-07-01
... are taken: (1) The isolation and shutoff valves connecting the dead system with the live system or... welded instead of bolted, at least two isolation and shutoff valves connecting the dead system with the...) Drain connections to the atmosphere on all of the dead interconnecting systems shall be opened for...
29 CFR 1915.163 - Ship's piping systems.
Code of Federal Regulations, 2012 CFR
2012-07-01
... are taken: (1) The isolation and shutoff valves connecting the dead system with the live system or... welded instead of bolted, at least two isolation and shutoff valves connecting the dead system with the...) Drain connections to the atmosphere on all of the dead interconnecting systems shall be opened for...
Residential Wiring: Electrical Connections [and] Tools and Equipment.
ERIC Educational Resources Information Center
Texas A and M Univ., College Station. Vocational Instructional Services.
Intended for student use, this unit focuses on making good electrical splices and electrical connections, and discusses tools and equipment used in house wiring jobs. Specific areas covered in the connections section are types of splices, solder equipment and supplies, and solderless connectors (plastic caps, split bolt connectors, crimp-type…
Reider, Samuel B.
1979-01-01
An industrial gas turbine engine includes an inclined annular combustor made up of a plurality of support segments each including inner and outer walls of trapezoidally configured planar configuration extents and including side flanges thereon interconnected by means of air cooled connector bolt assemblies to form a continuous annular combustion chamber therebetween and wherein an air fuel mixing chamber is formed at one end of the support segments including means for directing and mixing fuel within a plenum and a perforated header plate for directing streams of air and fuel mixture into the combustion chamber; each of the outer and inner walls of each of the support segments having a ribbed lattice with tracks slidably supporting porous laminated replaceable panels and including pores therein for distributing combustion air into the combustion chamber while cooling the inner surface of each of the panels by transpiration cooling thereof.
NASA Technical Reports Server (NTRS)
Wingett, Paul (Inventor)
2001-01-01
A mounting assembly for mounting a composite pressure vessel to a vehicle includes a saddle having a curved surface extending between two pillars for receiving the vessel. The saddle also has flanged portions which can be bolted to the vehicle. Each of the pillars has hole in which is mounted the shaft portion of an attachment member. A resilient member is disposed between each of the shaft portions and the holes and loaded by a tightening nut. External to the holes, each of the attachment members has a head portion to which a steel band is attached. The steel band circumscribes the vessel and translates the load on the springs into a clamping force on the vessel. As the vessel expands and contracts, the resilient members expand and contract so that the clamping force applied by the band to the vessel remains constant.
HOUSINGS AND MOUNTINGS FOR CENTRIFUGES
Rushing, F.C.
1960-08-16
A protective housing for a gas centrifuge comprises a slidable connection between flanges and framework portions for absorbing rotational energy in case of bursting of the rotor and a sealing means for sealing the rotor chamber.
12. DETAIL OF CONNECTION BETWEEN SOUTHEAST END POST AND TOP ...
12. DETAIL OF CONNECTION BETWEEN SOUTHEAST END POST AND TOP CHORD, SHOWING BOLT, RIVETED PLATES, AND EYE BAR; VIEW FROM WEST. - Mitchell's Mill Bridge, Spanning Winter's Run on Carrs Mill Road, west of Bel Air, Bel Air, Harford County, MD
Experimental analysis of thread movement in bolted connections due to vibrations
NASA Technical Reports Server (NTRS)
Ramey, G. ED; Jenkins, Robert C.
1994-01-01
The objective of this study was to identify the main design parameters contributing to loosening of bolts due to vibration and to identify their relative importance and degree of contribution to bolt loosening. Vibration testing was conducted on a shaketable with a controlled-random input in the dynamic testing laboratory of the Structural Test Division of MSFC. Test specimens which contained one test bolt were vibrated for a fixed amount of time and percentage of pre-load loss was measured. Each specimen tested implemented some combination of eleven design parameters as dictated by the design of experiment methodology employed. The eleven design parameters were: bolt size (diameter), lubrication on bolt, hole tolerance, initial pre-load, nut locking device, grip length, thread pitch, lubrication between mating materials, class of fit, joint configuration and mass of configuration. These parameters were chosen for this experiment because they are believed to be the design parameters having the greatest impact on bolt loosening. Two values of each design parameter were used and each combination of parameters tested was subjected to two different directions of vibration and two different g-levels of vibration. One replication was made for each test to gain some indication of experimental error and repeatability and to give some degree of statistical credibility to the data, resulting in a total of 96 tests being performed. The results of the investigation indicated that nut locking devices, joint configuration, fastener size, and mass of configuration were significant in bolt loosening due to vibration. The results of this test can be utilized to further research the complex problem of bolt loosening due to vibration.
Hanging core support system for a nuclear reactor. [LMFBR
Burelbach, J.P.; Kann, W.J.; Pan, Y.C.; Saiveau, J.G.; Seidensticker, R.W.
1984-04-26
For holding the reactor core in the confining reactor vessel, a support is disclosed that is structurally independent of the vessel, that is dimensionally accurate and stable, and that comprises tandem tension linkages that act redundantly of one another to maintain stabilized core support even in the unlikely event of the complete failure of one of the linkages. The core support has a mounting platform for the reactor core, and unitary structure including a flange overlying the top edge of the reactor vessels, and a skirt and box beams between the flange and platform for establishing one of the linkages. A plurality of tension rods connect between the deck closing the reactor vessel and the platform for establishing the redundant linkage. Loaded Belleville springs flexibly hold the tension rods at the deck and separable bayonet-type connections hold the tension rods at the platform.
Shear fracture of jointed steel plates of bolted joints under impact load
NASA Astrophysics Data System (ADS)
Daimaruya, M.; Fujiki, H.; Ambarita, H.; Kobayashi, H.; Shin, H.-S.
2013-07-01
The present study is concerned with the development of a fracture criterion for the impact fracture of jointed steel plates of bolted joints used in a car body, which contributes to crash simulations by CAE. We focus our attention on the shear fracture of the jointed steel plates of lap-bolted joints in the suspension of a car under impact load. Members of lap-bolted joints are modelled as a pair of steel plates connected by a bolt. One of the plates is a specimen subjected to plastic deformation and fracture and the other is a jig subjected to elastic deformation only. Three kinds of steel plate specimens are examined, i.e., a common steel plate with a tensile strength of 270 MPa and high tensile strength steel plates of 440 and 590 MPa used for cars. The impact shear test was performed using the split Hopkinson bar technique for tension impact, together with the static test using a universal testing machine INSTRON 5586. The behaviour of the shear stress and deformation up to rupture taking place in the joint was discussed. The obtained results suggest that a stress-based fracture criterion may be developed for the impact fracture of jointed steel plates of a lap-bolted joint.
Steel shear strength of anchors with stand-off base plates : [technical summary].
DOT National Transportation Integrated Search
2013-09-01
Sign and signal structures are often connected : to concrete foundations through an annular base : plate set on anchor bolts. The plate is leveled : with nuts beneath it and secured with nuts : above it a double-nut connection. In many : in...
Design and Analysis of a Stiffened Composite Structure Repair Concept
NASA Technical Reports Server (NTRS)
Przekop, Adam
2011-01-01
A design and analysis of a repair concept applicable to a stiffened thin-skin composite panel based on the Pultruded Rod Stitched Efficient Unitized Structure is presented. Since the repair concept is a bolted repair using metal components, it can easily be applied in the operational environment. Initial analyses are aimed at validating the finite element modeling approach by comparing with available test data. Once confidence in the analysis approach is established several repair configurations are explored and the most efficient one presented. Repairs involving damage to the top of the stiffener alone are considered in addition to repairs involving a damaged stiffener, flange and underlying skin. High fidelity finite element modeling techniques such as mesh-independent definition of compliant fasteners, elastic-plastic metallic material properties and geometrically nonlinear analysis are utilized in the effort. The results of the analysis are presented and factors influencing the design are assessed and discussed.
Response phase mapping of nonlinear joint dynamics using continuous scanning LDV measurement method
NASA Astrophysics Data System (ADS)
Di Maio, D.; Bozzo, A.; Peyret, Nicolas
2016-06-01
This study aims to present a novel work aimed at locating discrete nonlinearities in mechanical assemblies. The long term objective is to develop a new metric for detecting and locating nonlinearities using Scanning LDV systems (SLDV). This new metric will help to improve the modal updating, or validation, of mechanical assemblies presenting discrete and sparse nonlinearities. It is well established that SLDV systems can scan vibrating structures with high density of measurement points and produc e highly defined Operational Deflection Shapes (ODSs). This paper will present some insights on how to use response phase mapping for locating nonlinearities of a bolted flange. This type of structure presents two types of nonlinearities, which are geometr ical and frictional joints. The interest is focussed on the frictional joints and, therefore, the ability to locate which joint s are responsible for nonlinearity is seen highly valuable for the model validation activities.
Structural fatigue test results for large wind turbine blade sections
NASA Technical Reports Server (NTRS)
Faddoul, J. R.; Sullivan, T. L.
1982-01-01
In order to provide quantitative information on the operating life capabilities of wind turbine rotor blade concepts for root-end load transfer, a series of cantilever beam fatigue tests was conducted. Fatigue tests were conducted on a laminated wood blade with bonded steel studs, a low cost steel spar (utility pole) with a welded flange, a utility pole with additional root-end thickness provided by a swaged collar, fiberglass spars with both bonded and nonbonded fittings, and, finally, an aluminum blade with a bolted steel fitting (Lockheed Mod-0 blade). Photographs, data, and conclusions for each of these tests are presented. In addition, the aluminum blade test results are compared to field failure information; these results provide evidence that the cantilever beam type of fatigue test is a satisfactory method for obtaining qualitative data on blade life expectancy and for identifying structurally underdesigned areas (hot spots).
Sapphire Viewports for a Venus Probe
NASA Technical Reports Server (NTRS)
Bates, Stephen
2012-01-01
A document discusses the creation of a viewport suitable for use on the surface of Venus. These viewports are rated for 500 C and 100 atm pressure with appropriate safety factors and reliability required for incorporation into a Venus Lander. Sapphire windows should easily withstand the chemical, pressure, and temperatures of the Venus surface. Novel fixture designs and seals appropriate to the environment are incorporated, as are materials compatible with exploration vessels. A test cell was fabricated, tested, and leak rate measured. The window features polish specification of the sides and corners, soft metal padding of the sapphire, and a metal C-ring seal. The system safety factor is greater than 2, and standard mechanical design theory was used to size the window, flange, and attachment bolts using available material property data. Maintenance involves simple cleaning of the window aperture surfaces. The only weakness of the system is its moderate rather than low leak rate for vacuum applications.
Code of Federal Regulations, 2011 CFR
2011-07-01
... containers, pressure regulators, safety relief devices, manifolds, interconnecting piping and controls. The... against physical damage and against tampering. (d) Cabinets or housings containing hydrogen control or... valve shall be of the remote control type with no connections, flanges, or other appurtenances (other...
Code of Federal Regulations, 2012 CFR
2012-07-01
... containers, pressure regulators, safety relief devices, manifolds, interconnecting piping and controls. The... against physical damage and against tampering. (d) Cabinets or housings containing hydrogen control or... valve shall be of the remote control type with no connections, flanges, or other appurtenances (other...
33 CFR 154.2101 - Requirements for facility vapor connections.
Code of Federal Regulations, 2014 CFR
2014-07-01
... band must be 0.8 meter (2.64 feet); and (2) Labeled with the word “VAPOR” painted in black letters at....9 millimeter (0.625 inch) diameter holes in the flange face, located midway between boltholes, and...
NASA Astrophysics Data System (ADS)
Amalia, A. R.; Suswanto, B.; Kristijanto, H.; Irawan, D.
2018-01-01
This paper discusses about the behaviour of two types of RCFT column connections with steel beams due to cyclic loads using software based on finite element method ABAQUS 6.14. This comparison involves modelling RCFT connections with rigid connection that do not allow any deformation and rotation in the joint. There are two types of model to be compared: BB and BRBS which include RCFT connections to ordinary beam without RBS (BB) and to Reduce Beam Section Beam (BRBS). The models behaviour can be discussed in this study are stress value, von misses stress pattern and rotational degree of each model. From the von misses stress pattern value, it found that the highest regions of stress occurs in vicinity of beam flange near column face for connection without RBS (BB). For earthquake resistant building, that behaviour needs to be avoided because sudden collapse often happen in that joint connection. Moreover, the connection with the presence of RBS (BRBS), the highest regions of stress occurs in reduced beam section of the beam, it means that the failure might be happen as proposed plan. The ultimate force that can be restrained by BB model (402 kN) is higher than BRBS model (257,18 kN) because of reducing of flange area. BRBS model has higher rotation angle (0,057 rad) than BB model (0,045 rad). The analysis results also observed that cyclic performances of the moment connection with RBS (BRBS) were more ductile than the connection with ordinary beam (BB).
NASA Astrophysics Data System (ADS)
Ahmed, Ali
2017-03-01
Finite element (FE) analyses were performed to explore the prying influence on moment-rotation behaviour and to locate yielding zones of top- and seat-angle connections in author's past research studies. The results of those FE analyses with experimental failure strategies of the connections were used to develop failure mechanisms of top- and seat-angle connections in the present study. Then a formulation was developed based on three simple failure mechanisms considering bending and shear deformations, effects of prying action on the top angle and stiffness of the tension bolts to estimate rationally the ultimate moment M u of the connection, which is a vital parameter of the proposed four-parameter power model. Applicability of the proposed formulation is assessed by comparing moment-rotation ( M- θ r ) curves and ultimate moment capacities with those measured by experiments and estimated by FE analyses and three-parameter power model. This study shows that proposed formulation and Kishi-Chen's method both achieved close approximation driving M- θ r curves of all given connections except a few cases of Kishi-Chen model, and M u estimated by the proposed formulation is more rational than that predicted by Kishi-Chen's method.
29 CFR 1915.163 - Ship's piping systems.
Code of Federal Regulations, 2010 CFR
2010-07-01
... are taken: (1) The isolation and shutoff valves connecting the dead system with the live system or.... Where valves are welded instead of bolted at least two isolation and shutoff valves connecting the dead... atmosphere on all of the dead interconnecting systems shall be opened for visual observation of drainage. [47...
29 CFR 1915.163 - Ship's piping systems.
Code of Federal Regulations, 2011 CFR
2011-07-01
... are taken: (1) The isolation and shutoff valves connecting the dead system with the live system or.... Where valves are welded instead of bolted at least two isolation and shutoff valves connecting the dead... atmosphere on all of the dead interconnecting systems shall be opened for visual observation of drainage. [47...
Free vibrations of a pultruded GFRP frame with different rotational stiffnesses of bolted joints
NASA Astrophysics Data System (ADS)
Boscato, G.; Russo, S.
2013-01-01
Experimental and numerical results for the dynamic response of an all-FRP (fiber-reinforced polymer) twodimensional frame in free vibration are presented. The frame was assembled of pultruded glass-fiber-reinforced polymer (GFRP) profiles and bolted beam-to-column connections with GFRP angles. To give a variable rotational stiffness to the four beam-to-column major-axis joints, all bolts were tightened by a constant torque of 10, 25, or 40 N · m. Experimental measurements were performed on the three configurations to identify the natural frequencies of the first vibration mode in the plane of the frame and to determine the ability of each structure to dissipate the initial acceleration imposed on it through damping. The results obtained are compared with analytical and finite-element calculations. It was found that an increased bolt torque improved the dynamic response of the GFRP frame by reducing its vibration time and maximum displacements and by enhancing its dissipation capacity.
3D finite element analysis of tightening process of bolt and nut connections with pitch difference
NASA Astrophysics Data System (ADS)
Liu, X.; Noda, N.-A.; Sano, Y.; Huang, Y. T.; Takase, Y.
2018-06-01
In a wide industrial field, the bolt-nut joint is unitized as an important machine element and anti-loosening performance is always required. In this paper, the effect of a slight pitch difference between a bolt and nut is studied. Firstly, by varying the pitch difference, the prevailing torque required for the nut rotation, before the nut touches the clamped body, is measured experimentally. Secondly, the tightening torque is determined as a function of the axial force of the bolt after the nut touches the clamped body. The results show that a large value of pitch difference may provide large prevailing torque that causes an anti-loosening effect although a very large pitch difference may deteriorate the bolt axial force under a certain tightening torque. Thirdly, a suitable pitch difference is determined taking into account the anti-loosening and clamping abilities. Furthermore, the chamfered corners at nut ends are considered, and it is found that the 3D finite element analysis with considering the chamfered nut threads has a good agreement with the experimental observation. Finally, the most desirable pitch difference required for improving anti-loosening is proposed.
Experimental analysis of thread movement in bolted connections due to vibrations
NASA Technical Reports Server (NTRS)
Ramsey, G. ED; Jenkins, Robert C.
1995-01-01
This is the final report of research project NAS8-39131 #33 sponsored by NASA's George C. Marshall Space Flight Center (MSFC) and carried out by the Civil Engineering Department of Auburn University (Auburn, Alabama) and personnel of MSFC. The objective of this study was to identify the main design parameters contributing to the loosening of bolts due to vibration and to identify their relative importance and degree of contribution to bolt loosening. Vibration testing was conducted on a shaketable with a controlled-random input in the dynamic testing laboratory of the Structural Test Division of MSFC. Test specimens which contained one test bolt were vibrated for a fixed amount of time and a percentage of pre-load loss was measured. Each specimen tested implemented some combination of eleven design parameters as dictated by the design of experiment methodology employed. The eleven design parameters were: bolt size (diameter), lubrication on bolt, hole tolerance, initial pre-load, nut locking device, grip length, thread pitch, lubrication between mating materials, class of fit, joint configuration, and mass of configuration. These parameters were chosen for this experiment because they are believed to be the design parameters having the greatest impact on bolt loosening. Two values of each design parameter were used and each combination of parameters tested was subjected to two different directions of vibration and two different g-levels of vibration. One replication was made for each test to gain some indication of experimental error and repeatability and to give some degree of statistical credibility to the data, resulting in a total of 96 tests being performed. The results of the investigation indicated that nut locking devices, joint configuration, fastener size, and mass of configuration were significant in bolt loosening due to vibration. The results of this test can be utilized to further research the complex problem of bolt loosening due to vibration.
High specific power, direct methanol fuel cell stack
Ramsey, John C [Los Alamos, NM; Wilson, Mahlon S [Los Alamos, NM
2007-05-08
The present invention is a fuel cell stack including at least one direct methanol fuel cell. A cathode manifold is used to convey ambient air to each fuel cell, and an anode manifold is used to convey liquid methanol fuel to each fuel cell. Tie-bolt penetrations and tie-bolts are spaced evenly around the perimeter to hold the fuel cell stack together. Each fuel cell uses two graphite-based plates. One plate includes a cathode active area that is defined by serpentine channels connecting the inlet manifold with an integral flow restrictor to the outlet manifold. The other plate includes an anode active area defined by serpentine channels connecting the inlet and outlet of the anode manifold. Located between the two plates is the fuel cell active region.
NASA Astrophysics Data System (ADS)
Li, Xiaodan; Huang, Shuangjun; Xu, Liang; Hui, Li; Zhou, Song
2017-12-01
The bolt structural properties of selective laser melted (SLM) samples produced from TC4 powder metal has been investigated. Two different connection molds relative to single lap joint and bilateral lap joint as well as two different state of surface quality were considered. Samples and test procedures were designed in accordance with HB 5143 and HB 5287 standard. The results show that there is a strong influence of connection molds on the dynamic behavior of SLM produced TC4. The mechanical properties of bilateral lap joint are better than those of the single lap joint. Meanwhile the fatigue performance of the bilateral lap joint is much stronger than that of the single lap joint which it is a symmetrical structure of the two-shear test on both sides of the force evenly, while the single lap joint is a single shear sample of the uneven force. There are two kinds of fracture form most of which are broken in the first row of screw and a small part in the middle of the connecting plate.
Retention sleeve for a thermal medium carrying tube in a gas turbine
Lathrop, Norman Douglas; Czachor, Robert Paul
2003-01-01
Multiple tubes are connected to steam supply and spent cooling steam return manifolds for supplying cooling steam to buckets and returning spent cooling steam from the buckets to the manifolds, respectively. The tubes are prevented from axial movement in one direction by flanges engaging end faces of the spacer between the first and second-stage wheels. Retention sleeves are disposed about cantilevered ends of the tubes. One end of the retention sleeve engages an enlarged flange on the tube, while an opposite end is spaced axially from an end face of the adjoining wheel, forming a gap, enabling thermal expansion of the tubes and limiting axial displacement of the tube in the opposite direction.
Hanging core support system for a nuclear reactor
Burelbach, James P.; Kann, William J.; Pan, Yen-Cheng; Saiveau, James G.; Seidensticker, Ralph W.
1987-01-01
For holding the reactor core in the confining reactor vessel, a support is disclosed that is structurally independent of the vessel, that is dimensionally accurate and stable, and that comprises tandem tension linkages that act redundantly of one another to maintain stabilized core support even in the unlikely event of the complete failure of one of the linkages. The core support has a mounting platform for the reactor core, and unitary structure including a flange overlying the top edge of the reactor vessels, and a skirt and box beams between the flange and platform for establishing one of the linkages. A plurality of tension rods connect between the deck closing the reactor vessel and the platform for establishing the redundant linkage. Loaded Belleville springs flexibly hold the tension rods at the deck and separable bayonet-type connections hold the tension rods at the platform. Motion or radiation sensing detectors can be provide at the lower ends of the tension rods for obtaining pertinent readings proximate the core.
Review on cold-formed steel connections.
Lee, Yeong Huei; Tan, Cher Siang; Mohammad, Shahrin; Tahir, Mahmood Md; Shek, Poi Ngian
2014-01-01
The concept of cold-formed light steel framing construction has been widespread after understanding its structural characteristics with massive research works over the years. Connection serves as one of the important elements for light steel framing in order to achieve its structural stability. Compared to hot-rolled steel sections, cold-formed steel connections perform dissimilarity due to the thin-walled behaviour. This paper aims to review current researches on cold-formed steel connections, particularly for screw connections, storage rack connections, welded connections, and bolted connections. The performance of these connections in the design of cold-formed steel structures is discussed.
Review on Cold-Formed Steel Connections
Tan, Cher Siang; Mohammad, Shahrin; Md Tahir, Mahmood; Shek, Poi Ngian
2014-01-01
The concept of cold-formed light steel framing construction has been widespread after understanding its structural characteristics with massive research works over the years. Connection serves as one of the important elements for light steel framing in order to achieve its structural stability. Compared to hot-rolled steel sections, cold-formed steel connections perform dissimilarity due to the thin-walled behaviour. This paper aims to review current researches on cold-formed steel connections, particularly for screw connections, storage rack connections, welded connections, and bolted connections. The performance of these connections in the design of cold-formed steel structures is discussed. PMID:24688448
Experimental and Numerical Assessment of a New Alternative of RBS Moment Connection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mirghaderi, Rasoul; Imanpour, Ali; Keshavarzi, Farhad
2008-07-08
Reduced beam section (RBS) connection has been known as a famous connection for steel moment-resisting seismic frames in high-rise buildings, because of their economical advantages and seismic ductility. In the ordinary RBS connection, often portions of the beam flanges are selectively trimmed in the region adjacent to the beam-to-column connection, and beam section is weakened in the plastic hinge region; section weakening concept in the plastic hinge region of beam cause to reduction of beam plastic section modulus in this region, and force plastic hinge to occur within the reduced section.This paper presents a new alternative of RBS connection thatmore » has been used aforesaid weakening concept in it, with this difference that corrugated steel plate webs instead of beam flange cutting has been used in limited specific length near the column face. Corrugated steel plates because of their accordion effect don't have bending rigidity, then using of these plates in plastic hinge region reduces the beam plastic section modulus and plastic hinge is formed in corrugated region. For investigating the seismic behavior and performance of new RBS moment connection, experimental specimen of new RBS connection were subjected to cyclic load, and finite element analysis were executed. The result of cyclic test and numerical analysis specified that the corrugated webs improved the plastic stability and provided capability of large plastic rotation at the plastic hinge location without any appreciable buckling and brittle fractures in this region. The test observations also showed that the specimens' plastic rotations exceeded 0.04 rad without any local and global buckling. All of the analytical results for proposed connection are generally in good agreement with the test observations.« less
International Space Station Powered Bolt Nut Anomaly and Failure Analysis Summary
NASA Technical Reports Server (NTRS)
Sievers, Daniel E.; Warden, Harry K.
2010-01-01
A key mechanism used in the on-orbit assembly of the International Space Station (ISS) pressurized elements is the Common Berthing Mechanism. The mechanism that effects the structural connection of the Common Berthing Mechanism halves is the Powered Bolt Assembly. There are sixteen Powered Bolt Assemblies per Common Berthing Mechanism. The Common Berthing Mechanism has a bolt which engages a self aligning Powered Bolt Nut (PBN) on the mating interface (Figure 1). The Powered Bolt Assemblies are preloaded to approximately 84.5 kN (19000 lb) prior to pressurization of the CBM. The PBNs mentioned below, manufactured in 2009, will be used on ISS future missions. An on orbit functional failure of this hardware would be unacceptable and in some instances catastrophic due to the failure of modules to mate and seal the atmosphere, risking loss of crew and ISS functions. The manufacturing processes that create the PBNs need to be strictly controlled. Functional (torque vs. tension) acceptance test failures will be the result of processes not being strictly followed. Without the proper knowledge of thread tolerances, fabrication techniques, and dry film lubricant application processes, PBNs will be, and have been manufactured improperly. The knowledge gained from acceptance test failures and the resolution of those failures, thread fabrication techniques and thread dry film lubrication processes can be applied to many aerospace mechanisms to enhance their performance. Test data and manufactured PBN thread geometry will be discussed for both failed and successfully accepted PBNs.
International Space Station Powered Bolt Nut Anomaly and Failure Analysis Summary
NASA Technical Reports Server (NTRS)
Sievers, Daniel E.; Warden, Harry K.
2010-01-01
A key mechanism used in the on-orbit assembly of the International Space Station (ISS) pressurized elements is the Common Berthing Mechanism (CBM). The mechanism that effects the structural connection of the CBM halves is the Powered Bolt Assembly. There are sixteen Powered Bolt Assemblies per CBM. The CBM has a bolt which engages a self aligning Powered Bolt Nut (PBN) on the mating interface; see Figure 1. The Powered Bolt Assemblies are preloaded to approximately 19 kilo pounds (KIPs) prior to pressurization of the CBM. The PBNs mentioned below, manufactured in 2009, will be used on ISS future missions. An on orbit functional failure of this hardware would be unacceptable and in some instances catastrophic due to the failure of modules to mate and seal the atmosphere, risking loss of crew and ISS functions. The manufacturing processes which create the PBNs need to be strictly controlled. Functional (torque vs. tension) acceptance test failures will be the result of processes not being strictly followed. Without the proper knowledge of thread tolerances, fabrication techniques, and dry film lubricant application processes, PBNs will be, and have been manufactured improperly. The knowledge gained from acceptance test failures and the resolution of those failures, thread fabrication techniques and thread dry film lubrication processes can be applied to many aerospace mechanisms to enhance their performance. Test data and manufactured PBN thread geometry will be discussed for both failed and successfully accepted PBNs.
7. VIEW OF NORTHWEST PYLONS ON NORTH ABUTMENT, SUSPENSION CABLE ...
7. VIEW OF NORTHWEST PYLONS ON NORTH ABUTMENT, SUSPENSION CABLE AND 'U'-BOLT CONNECTIONS, LOOKING SOUTH - San Rafael Bridge, Spanning San Rafael River near Buckhorn Wash, Castle Dale, Emery County, UT
46 CFR 35.01-25 - Sacrificial anode installations-TB/ALL.
Code of Federal Regulations, 2012 CFR
2012-10-01
... bolted connections to the supporting structure. Special consideration will be given to proprietary... utilize a mild steel core with necessary attachments. Other types may be used but will require special...
Angle to grain strength of dowel-type fasteners
Lawrence A. Soltis; Suparman Karnasudirdja; James K. Little
1987-01-01
Timber structures require adequate connections between components. Connection design is based on the performance criterion of a single fastener. This study is part of a research effort by the Forest Products Laboratory to establish a common basis design criteria for lateral strength of dowel-type fasteners that includes nails, screws, lag screws, and bolts. A general...
Seismic Stability of St. Stephen Hydropower Plant, South Carolina
2006-11-01
looking from the fish-lift side ....................................... 9 Figure 1-9. Upstream T- beam connection : shim plates welded to embedded wall (an...Figure 1-10. Downstream T- beam connection : T- beam bearing plate rests on Neoprene pad, bolt through plate with slotted holes (an ideal roller condition...37 Figure 4-1. Beam - column model of the erection bay
13. DETAIL OF CONNECTION BETWEEN TOP CHORD AND POST IN ...
13. DETAIL OF CONNECTION BETWEEN TOP CHORD AND POST IN WEST TRUSS, SHOWING CHANNELS AND REINFORCED CAST-IRON LACING, I-BEAMS FASTENED TOGETHER WITH RIVETTED PLATES, AND ASSEMBLY OF DIAGONAL EYE BEAM AND BOLT; VIEW FROM EAST SIDE. - Mitchell's Mill Bridge, Spanning Winter's Run on Carrs Mill Road, west of Bel Air, Bel Air, Harford County, MD
Hildebrand, Richard J.; Wozniak, John J.
2001-01-01
A compressed gas storage cell interconnecting manifold including a thermally activated pressure relief device, a manual safety shut-off valve, and a port for connecting the compressed gas storage cells to a motor vehicle power source and to a refueling adapter. The manifold is mechanically and pneumatically connected to a compressed gas storage cell by a bolt including a gas passage therein.
76 FR 423 - Airworthiness Directives; Fokker Services B.V. Model F.28 Mark 0100 Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-05
... dog-links was found broken (one on the nut side & one on the head side). In both occasions, the bolt... affected. If a single dog-link connection fails, the complete stabilizer load is taken up by the remaining dog-link connection. * * * To address and correct this unsafe condition EASA [European Aviation Safety...
75 FR 43876 - Airworthiness Directives; Fokker Services B.V. Model F.28 Mark 0100 Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-27
... aeroplanes, one of the bolts that connect the horizontal stabilizer control unit actuator with the dog-links... single dog-link connection fails, the complete stabilizer load is taken up by the remaining dog-link... the horizontal stabilizer control unit actuator with the dog-links was found broken (one on the nut...
MPLM On-Orbit Interface Dynamic Flexibility Modal Test
NASA Technical Reports Server (NTRS)
Bookout, Paul S.; Rodriguez, Pedro I.; Tinson, Ian; Fleming, Paolo
2001-01-01
Now that the International Space Station (ISS) is being constructed, payload developers have to not only verify the Shuttle-to-payload interface, but also the interfaces their payload will have with the ISS. The Multi Purpose Logistic Module (MPLM) being designed and built by Alenia Spazio in Torino, Italy is one such payload. The MPLM is the primary carrier for the ISS Payload Racks, Re-supply Stowage Racks, and the Resupply Stowage Platforms to re-supply the ISS with food, water, experiments, maintenance equipment and etc. During the development of the MPLM there was no requirement for verification of the on-orbit interfaces with the ISS. When this oversight was discovered, all the dynamic test stands had already been disassembled. A method was needed that would not require an extensive testing stand and could be completed in a short amount of time. The residual flexibility testing technique was chosen. The residual flexibility modal testing method consists of measuring the free-free natural frequencies and mode shapes along with the interface frequency response functions (FRF's). Analytically, the residual flexibility method has been investigated in detail by, MacNeal, Martinez, Carne, and Miller, and Rubin, but has not been implemented extensively for model correlation due to difficulties in data acquisition. In recent years improvement of data acquisition equipment has made possible the implementation of the residual flexibility method as in Admire, Tinker, and Ivey, and Klosterman and Lemon. The residual flexibility modal testing technique is applicable to a structure with distinct points (DOF) of contact with its environment, such as the MPLM-to-Station interface through the Common Berthing Mechanism (CBM). The CBM is bolted to a flange on the forward cone of the MPLM. During the fixed base test (to verify Shuttle interfaces) some data was gathered on the forward cone panels. Even though there was some data on the forward cones, an additional modal test was performed to better characterize its behavior. The CBM mounting flange is the only remaining structure of the MPLM that no test data was available. This paper discusses the implementation of the residual flexibility modal testing technique on the CBM flange and the modal test of the forward cone panels.
Code of Federal Regulations, 2011 CFR
2011-07-01
... stopping production. Quarter means a 3-month period; the first quarter concludes on the last day of the... means flanged, screwed, or other joined fittings used to connect two pipe lines or a pipe line and a..., separating the compressor cylinder from the crankcase. Double block and bleed system means two block valves...
Code of Federal Regulations, 2013 CFR
2013-07-01
... stopping production. Quarter means a 3-month period; the first quarter concludes on the last day of the... means flanged, screwed, or other joined fittings used to connect two pipe lines or a pipe line and a..., separating the compressor cylinder from the crankcase. Double block and bleed system means two block valves...
Code of Federal Regulations, 2014 CFR
2014-07-01
... stopping production. Quarter means a 3-month period; the first quarter concludes on the last day of the... means flanged, screwed, or other joined fittings used to connect two pipe lines or a pipe line and a..., separating the compressor cylinder from the crankcase. Double block and bleed system means two block valves...
Code of Federal Regulations, 2010 CFR
2010-07-01
... stopping production. Quarter means a 3-month period; the first quarter concludes on the last day of the... means flanged, screwed, or other joined fittings used to connect two pipe lines or a pipe line and a..., separating the compressor cylinder from the crankcase. Double block and bleed system means two block valves...
Code of Federal Regulations, 2012 CFR
2012-07-01
... stopping production. Quarter means a 3-month period; the first quarter concludes on the last day of the... means flanged, screwed, or other joined fittings used to connect two pipe lines or a pipe line and a..., separating the compressor cylinder from the crankcase. Double block and bleed system means two block valves...
Methods for Joining of Rails : Survey Report
DOT National Transportation Integrated Search
1977-07-01
The performance of track structures depends greatly on the integrity of the connections between rail sections. Because the majority of service and detected rail failures occur at joints, particularly conventional bolted joints, this survey was conduc...
17. INTERIOR VIEW OF WEST TRUSS, SHOWING RAILING, SUSPENSION CABLE, ...
17. INTERIOR VIEW OF WEST TRUSS, SHOWING RAILING, SUSPENSION CABLE, CONNECTION BOLTS AND 'U'-COUPLINGS, LOOKING SOUTHWEST - San Rafael Bridge, Spanning San Rafael River near Buckhorn Wash, Castle Dale, Emery County, UT
46 CFR 35.01-25 - Sacrificial anode installations-TB/ALL.
Code of Federal Regulations, 2011 CFR
2011-10-01
... attachments. (3) Each anode shall have at least two welded or bolted connections to the supporting structure.... (5) The recommended construction of the anode should utilize a mild steel core with necessary...
46 CFR 35.01-25 - Sacrificial anode installations-TB/ALL.
Code of Federal Regulations, 2010 CFR
2010-10-01
... attachments. (3) Each anode shall have at least two welded or bolted connections to the supporting structure.... (5) The recommended construction of the anode should utilize a mild steel core with necessary...
NASA Technical Reports Server (NTRS)
Barthelemy, Jean-Francois M.; Rogers, James L., Jr.; Chang, Kwan J.
1987-01-01
A structural optimization procedure is used to determine the shape of an alternate design for the Shuttle's solid rocket booster field joint. In contrast to the tang and clevis design of the existing joint, this alternate design consists of two flanges bolted together. Configurations with 150 studs of 1 1/8 in diameter and 135 studs of 1 3/16 in diameter are considered. Using a nonlinear programming procedure, the joint weight is minimized under constraints on either von Mises or maximum normal stresses, joint opening and geometry. The procedure solves the design problem by replacing it by a sequence of approximate (convex) subproblems; the pattern of contact between the joint halves is determined every few cycles by a nonlinear displacement analysis. The minimum weight design has 135 studs of 1 3/16 in diameter and is designed under constraints on normal stresses. It weighs 1144 lb per joint more than the current tang and clevis design.
1989-12-15
60000000000C c 0 000 C 0*0,0 0’ ’Ci0 0 00 cacao 0 0 &MUM~i .44OO N NOiO N "- aN"n~n~VW4 N Me cV-.4mo "MOONOMMV-M40N0 i) 0-Ŕ VOONMm00o ftV- N t- a*WV-i 444...105 ROLL BURNISH MOUNTING FLANGE BOLT 001 MNF RAHOLI.ES ( AFI END) 0 04 *::C/P MOVE 003 DE 4 56’ 110 AFT DOOR LEVER LUG HOLE (RIGF SITE 001 MiNR...TO DE ACCOMPLISHED MECHANIC p.... -275 PRIOR TO CAD PI..ATE, GRIT I’I. A"sT "I .L 001 MN IR C ’ A S REAS TO BE CAD PLA’T’ED *CIP MOVE 002 01 6
Fatigue performance of brass breakaway light pole couplings.
DOT National Transportation Integrated Search
2013-04-01
Breakaway couplings connect light pole bases to foundation anchor bolts and are intended to fracture on impact after vehicle collision to : protect drivers and passengers from severe injury. The coupling consists of an internally threaded hollow hexa...
Experimental investigation of connection performance for prefabricated timber beam
NASA Astrophysics Data System (ADS)
Lesmana, C.; Suhendi, S.
2017-06-01
This paper presents an investigation of connection performance for a simple supported prefabricated timber beams using Meranti hardwood (Shorea sp.). The good connection is crucial for the proper functioning of the timber structures. The adequate connection condition should be assured to achieve the requirement capacity design and performance of the system. The property of material was tested according to [1]. The proposed design of bolted connections has been evaluated through experimental investigation and compared to the simple supported beam without connection. The results demonstrate the effectiveness of the proposed connection design although the ultimate load of the beam with connection is only half of the beam without connection. The test results obtained the purposed connection should be improved.
46 CFR 151.50-84 - Sulfur dioxide.
Code of Federal Regulations, 2010 CFR
2010-10-01
... piping or manifold that carriers cargo liquid, except vapor lines connected to a common header, and (11... must be removed and cargo transfer piping must be disconnected at the cargo tanks. After the cargo piping is disconnected, both ends of the line must be plugged or fitted with blind flanges. [CGD 80-001...
2007-06-01
Joint At the exit of the expansion tank, a polymeric composition of ethylene-propylene- diene terpolymer ( EPDM ) rubber was used to mate the flange of...The final connection of the detonator was cumbersome for an operator wearing thick butyl rubber gloves. The detonator wire connection was made to a...operators were required to wear PPE, including rubber gloves. The decision was made to transfer the PLC components to outside the VCS. In Phase I, the
Calculation of Containment Concentrations While Coating the Interior of a Bulk Storage Fuel Tank
1990-05-01
connection plate Thief-hatch cutout-/ L7J * . Pipe -line connection 22’ B.C. Plan 28 1,15z holes(in top flange 20’ only) 234 1-20-diam dome Vent-line...inside tanks throughout course of work as required to maintain a vapor-free condition. Use exhaust fans, either explosion-proof electrically operated or...provide suction ductwork extending to areas of heaviest concentrations including lowest levels of tank. In no case shall exhaust fan capacity be less than
Photonic Choke-Joints for Dual Polarization Waveguides
NASA Technical Reports Server (NTRS)
Wollack, Edward J. (Inventor); U-Yen, Kongpop (Inventor); Chuss, David T. (Inventor)
2014-01-01
A waveguide structure for a dual polarization waveguide includes a first flange member, a second flange member, and a waveguide member disposed in each of the first flange member and second flange member. The first flange member and the second flange member are configured to be coupled together in a spaced-apart relationship separated by a gap. The first flange member has a substantially smooth surface, and the second flange member has an array of two-dimensional pillar structures formed therein.
Design Criteria for Low Profile Flange Calculations
NASA Technical Reports Server (NTRS)
Leimbach, K. R.
1973-01-01
An analytical method and a design procedure to develop flanged separable pipe connectors are discussed. A previously established algorithm is the basis for calculating low profile flanges. The characteristics and advantages of the low profile flange are analyzed. The use of aluminum, titanium, and plastics for flange materials is described. Mathematical models are developed to show the mechanical properties of various flange configurations. A computer program for determining the structural stability of the flanges is described.
Cooling/grounding mount for hybrid circuits
NASA Technical Reports Server (NTRS)
Bagstad, B.; Estrada, R.; Mandel, H.
1981-01-01
Extremely short input and output connections, adequate grounding, and efficient heat removal for hybrid integrated circuits are possible with mounting. Rectangular clamp holds hybrid on printed-circuit board, in contact with heat-conductive ground plate. Clamp is attached to ground plane by bolts.
Currie and Krikalev pull launch restraint bolts in the FGB/Zarya module
2013-11-19
STS088-359-037 (4-15 Dec. 1998) --- Astronaut Nancy J. Currie and cosmonaut Sergei K. Krikalev, both mission specialists, use rechargeable power tools to manipulate nuts and bolts on the Russian-built Zarya module. Astronaut Robert D. Cabana, mission commander, translates along the rail network in the background. The six STS-88 crew members had earlier entered the module through the U.S.-built Unity connecting module. Rails, straps and tools indicate the crewmembers had been working awhile when this photo was taken. Krikalev, representing the Russian Space Agency (RSA), has been assigned as a member of the three-man initial International Space Station (ISS) crew.
Kirkham, R.J.
1997-04-15
A boltless, reusable flange system for joining metal piping includes a circular, wedge-shaped tongue on an upper flange for mating with a groove containing a fusible alloy in a lower flange. The lower flange includes a heating element for melting the fusible alloy, and a thermocouple device to sense the alloy temperature. Heat can be controlled and supplied from a remote source and monitored by a remote temperature indicator. The upper flange is positioned above the lower flange, tongue and groove aligned, and the lower flange is heated until the fusible alloy melts to allow the upper tongue to settle down within the lower groove. Upon removal of the heat, the alloy hardens to further bring the two flanges together in a solid and sealed couple, compressing an optional gasket. 4 figs.
Kirkham, Robert J.
1997-01-01
A boltless, reusable flange system for joining metal piping includes a circular, wedge-shaped tongue on an upper flange for mating with a groove containing a fusible alloy in a lower flange. The lower flange includes a heating element for melting the fusible alloy, and a thermocouple device to sense the alloy temperature. Heat can be controlled and supplied from a remote source and monitored by a remote temperature indicator. The upper flange is positioned above the lower flange, tongue and groove aligned, and the lower flange is heated until the fusible alloy melts to allow the upper tongue to settle down within the lower groove. Upon removal of the heat, the alloy hardens to further bring the two flanges together in a solid and sealed couple, compressing an optional gasket.
Electrical servo actuator bracket. [fuel control valves on jet engines
NASA Technical Reports Server (NTRS)
Sawyer, R. V. (Inventor)
1981-01-01
An electrical servo actuator is mounted on a support arm which is allowed to pivot on a bolt through a fixed mounting bracket. The actuator is pivotally connected to the end of the support arm by a bolt which has an extension allowed to pass through a slot in the fixed mounting bracket. An actuator rod extends from the servo actuator to a crank arm which turns a control shaft. A short linear thrust of the rod pivots the crank arm through about 90 for full-on control with the rod contracted into the servo actuator, and full-off control when the rod is extended from the actuator. A spring moves the servo actuator and actuator rod toward the control crank arm once the actuator rod is fully extended in the full-off position. This assures the turning of the control shaft to a full-off position. A stop bolt and slot are provided to limit pivot motion. Once fully extended, the spring pivots the motion.
TEFLON BELLOWS PULSE GENERATORS FOR SOLVENT EXTRACTION PULSE COLUMNS
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCarthy, P.B.
1954-01-01
A Teflon bellows-type pulse generator is described which consists of two 3-in. nominal diameter Teflon bellows mounted on either end of a flanged spool piece and rigidly connected internally by a push rod so that the two of bellows move in tandem. The ends of the two bellows are closed by means of blind flanges. Tne spool piece is designed for insertion in a 6-in. diameter nozzle on a solvent extraction pulse column. The double bellows arrangement constitutes a safety feature to prevent loss of the column contents in the event of failure of the inner bellows in contact withmore » column solution. Failure of the inner bellows may be detected by a conductivity probe mounted in the air space inside of the double bellows assembly. Reciprocating motion is imcrank arm rigidly connected through a cross head and push rod to the face of the external bellows flange. The push rod is guided by means of linear ball bushings. Frequency variation over a range of 30 to 100 cycles/ min.was obtained by use of a Thymotrol-controlled electric motor to drive the crank arm. Variable stroke adjustment (0 to 1-in. range) was possible by adjustment of linkages on the crank arm. A load compensating spring was founnd desirable to counteract the thrust on the push rod resulting tom the static pressure at the bottom of the solvent extraction column. Without the spring, accelerated wear of the bearing on the crank arm occured. The pulse generator operated uneventfully for 1776 hours (6.61x lO/sup 6/ cycles) at a frequency of 62 cycles/min. and a bellows travel of l-in. (equivalent to a displacement of 1.6 in. in a 3-in. diam. column). (auth)« less
Finite Element Analysis of the Maximum Stress at the Joints of the Transmission Tower
NASA Astrophysics Data System (ADS)
Itam, Zarina; Beddu, Salmia; Liyana Mohd Kamal, Nur; Bamashmos, Khaled H.
2016-03-01
Transmission towers are tall structures, usually a steel lattice tower, used to support an overhead power line. Usually, transmission towers are analyzed as frame-truss systems and the members are assumed to be pin-connected without explicitly considering the effects of joints on the tower behavior. In this research, an engineering example of joint will be analyzed with the consideration of the joint detailing to investigate how it will affect the tower analysis. A static analysis using STAAD Pro was conducted to indicate the joint with the maximum stress. This joint will then be explicitly analyzed in ANSYS using the Finite Element Method. Three approaches were used in the software which are the simple plate model, bonded contact with no bolts, and beam element bolts. Results from the joint analysis show that stress values increased with joint details consideration. This proves that joints and connections play an important role in the distribution of stress within the transmission tower.
Mounting clips for panel installation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cavieres, Andres; Al-Haddad, Tristan; Goodman, Joseph
2017-02-14
An exemplary mounting clip for removably attaching panels to a supporting structure comprises a base, spring locking clips, a lateral flange, a lever flange, and a spring bonding pad. The spring locking clips extend upwardly from the base. The lateral flange extends upwardly from a first side of the base. The lateral flange comprises a slot having an opening configured to receive at least a portion of one of the one or more panels. The lever flange extends outwardly from the lateral flange. The spring bonding flange extends downwardly from the lever flange. At least a portion of the firstmore » spring bonding flange comprises a serrated edge for gouging at least a portion of the one or more panels when the one or more panels are attached to the mounting clip to electrically and mechanically couple the one or more panels to the mounting clip.« less
Behaviour of several fatigue prone bridge details
NASA Astrophysics Data System (ADS)
Kubiš, Petr; Ryjáček, Pavel
2017-09-01
Three fatigue welded bridge joints analysed in this work are the alternative details of the bottom flange connection. This construction detail is mainly used for the erection connection for steel and composite bridges. If applied in the place, where live load is significant, the fatigue becomes the main design criterion. The detail category is thus very important factor. The aim of this paper is to analyse the possibilities of the improving the behaviour of this detail, by various methods. First solution is to modify the shape of the cope hole to the elliptic shape. Second option is to use the “Olemutz” fully welded detail. This detail is often used in bridge designing despite there is no exact information about the fatigue category, and doubts of the performance exists. “Olemutz” is a long web plate slit that is filled by the double bevel weld after the execution of the bottom flange weld. The last detail is the elliptic cope hole filled by the plate-cap welded into an empty hole. The geometry is the same, as in the first case. The conclusion of the numerical analysis and the pilot fatigue experiments is discussed with several practical recommendations for designing.
Experimental determination of satellite bolted joints thermal resistance
NASA Technical Reports Server (NTRS)
Mantelli, Marcia Barbosa Henriques; Basto, Jose Edson
1990-01-01
The thermal resistance was experimentally determined of the bolted joints of the first Brazilian satellite (SCD 01). These joints, used to connect the satellite structural panels, are reproduced in an experimental apparatus, keeping, as much as possible, the actual dimensions and materials. A controlled amount of heat is forced to pass through the joint and the difference of temperature between the panels is measured. The tests are conducted in a vacuum chamber with liquid nitrogen cooled walls, that simulates the space environment. Experimental procedures are used to avoid much heat losses, which are carefully calculated. Important observations about the behavior of the joint thermal resistance with the variation of the mean temperature are made.
Repair Concepts as Design Constraints of a Stiffened Composite PRSEUS Panel
NASA Technical Reports Server (NTRS)
Przekop, Adam
2012-01-01
A design and analysis of a repair concept applicable to a stiffened thin-skin composite panel based on the Pultruded Rod Stitched Efficient Unitized Structure is presented. The concept is a bolted repair using metal components, so that it can easily be applied in the operational environment. The damage scenario considered is a midbay-to-midbay saw-cut with a severed stiffener, flange and skin. In a previous study several repair configurations were explored and their feasibility confirmed but refinement was needed. The present study revisits the problem under recently revised design requirements and broadens the suite of loading conditions considered. The repair assembly design is based on the critical tension loading condition and subsequently its robustness is verified for a pressure loading case. High fidelity modeling techniques such as mesh-independent definition of compliant fasteners, elastic-plastic material properties for metal parts and geometrically nonlinear solutions are utilized in the finite element analysis. The best repair design is introduced, its analysis results are presented and factors influencing the design are assessed and discussed.
Structural integrity of a confinement vessel for testing nuclear fuels for space propulsion
NASA Astrophysics Data System (ADS)
Bergmann, V. L.
Nuclear propulsion systems for rockets could significantly reduce the travel time to distant destinations in space. However, long before such a concept can become reality, a significant effort must be invested in analysis and ground testing to guide the development of nuclear fuels. Any testing in support of development of nuclear fuels for space propulsion must be safely contained to prevent the release of radioactive materials. This paper describes analyses performed to assess the structural integrity of a test confinement vessel. The confinement structure, a stainless steel pressure vessel with bolted flanges, was designed for operating static pressures in accordance with the ASME Boiler and Pressure Vessel Code. In addition to the static operating pressures, the confinement barrier must withstand static overpressures from off-normal conditions without releasing radioactive material. Results from axisymmetric finite element analyses are used to evaluate the response of the confinement structure under design and accident conditions. For the static design conditions, the stresses computed from the ASME code are compared with the stresses computed by the finite element method.
Behavior of Fiber Glass Bolts, Rock Bolts and Cable Bolts in Shear
NASA Astrophysics Data System (ADS)
Li, Xuwei; Aziz, Naj; Mirzaghorbanali, Ali; Nemcik, Jan
2016-07-01
This paper experimentally compares the shear behavior of fiber glass (FG) bolt, rock bolt (steel rebar bolt) and cable bolt for the bolt contribution to bolted concrete surface shear strength, and bolt failure mode. Two double shear apparatuses of different size were used for the study. The tensile strength, the shear strength and the deformation modulus of bolt control the shear behavior of a sheared bolted joint. Since the strength and deformation modulus of FG bolt, rock bolt and cable bolt obtained from uniaxial tensile tests are different, their shear behavior in reinforcing joints is accordingly different. Test results showed that the shear stiffness of FG bolted joints decreased gradually from the beginning to end, while the shear stiffness of joints reinforced by rock bolt and cable bolt decreased bi-linearly, which is clearly consistent with their tensile deformation modulus. The bolted joint shear stiffness was highly influenced by bolt pretension in the high stiffness stage for both rock bolt and cable bolt, but not in the low stiffness stage. The rock bolt contribution to joint shear strength standardised by the bolt tensile strength was the largest, followed by cable bolts, then FG bolts. Both the rock bolts and cable bolts tended to fail in tension, while FG bolts in shear due to their low shear strength and constant deformation modulus.
A case study to quantify prediction bounds caused by model-form uncertainty of a portal frame
NASA Astrophysics Data System (ADS)
Van Buren, Kendra L.; Hall, Thomas M.; Gonzales, Lindsey M.; Hemez, François M.; Anton, Steven R.
2015-01-01
Numerical simulations, irrespective of the discipline or application, are often plagued by arbitrary numerical and modeling choices. Arbitrary choices can originate from kinematic assumptions, for example the use of 1D beam, 2D shell, or 3D continuum elements, mesh discretization choices, boundary condition models, and the representation of contact and friction in the simulation. This work takes a step toward understanding the effect of arbitrary choices and model-form assumptions on the accuracy of numerical predictions. The application is the simulation of the first four resonant frequencies of a one-story aluminum portal frame structure under free-free boundary conditions. The main challenge of the portal frame structure resides in modeling the joint connections, for which different modeling assumptions are available. To study this model-form uncertainty, and compare it to other types of uncertainty, two finite element models are developed using solid elements, and with differing representations of the beam-to-column and column-to-base plate connections: (i) contact stiffness coefficients or (ii) tied nodes. Test-analysis correlation is performed to compare the lower and upper bounds of numerical predictions obtained from parametric studies of the joint modeling strategies to the range of experimentally obtained natural frequencies. The approach proposed is, first, to characterize the experimental variability of the joints by varying the bolt torque, method of bolt tightening, and the sequence in which the bolts are tightened. The second step is to convert what is learned from these experimental studies to models that "envelope" the range of observed bolt behavior. We show that this approach, that combines small-scale experiments, sensitivity analysis studies, and bounding-case models, successfully produces lower and upper bounds of resonant frequency predictions that match those measured experimentally on the frame structure. (Approved for unlimited, public release, LA-UR-13-27561).
NASA Astrophysics Data System (ADS)
Tesfa, B.; Horler, G.; Thobiani, F. Al; Gu, F.; Ball, A. D.
2012-05-01
Many industrial structures associated with railway infrastructures rely on a large number of bolted joint connections to ensure safe and reliable operation of the track and trackside furniture. Significant sums of money are spent annually to repair the damage caused by bolt failures and to maintain the integrity of bolted structures. In the UK, Network Rail (the organization responsible for rail network maintenance and safety) conducts corrective and preventive maintenance manually on 26,000 sets of points (each having approximately 30 bolted joints per set), in order to ensure operational success and safety for the travelling public. Such manual maintenance is costly, disruptive, unreliable and prone to human error. The aim of this work is to provide a means of automatically measuring the clamping force of each individual bolted joint, by means of an instrumented washer. This paper describes the development of a sensor means to be used in the washer, which satisfies the following criteria. Sense changes in the clamping force of the joint and report this fact. Provide compatibility with the large dynamic range of clamping force. Satisfy the limitations in terms of physical size. Provide the means to electronically interface with the washer. Provide a means of powering the washer in situ. Provide a solution at an acceptable cost. Specifically the paper focuses on requirements 1, 2 and 3 and presents the results that support further development of the proposed design and the realization of a pre-prototype system. In the paper, various options for the force sensing element (strain gage, capacitor, piezo-resistive) have been compared, using design optimization techniques. As a result of the evaluation, piezo-resistive sensors in concert with a proprietary force attenuation method, have been found to offer the best performance and cost trade-off The performance of the novel clamping force sensor has been evaluated experimentally and the results show that a smart washer can be developed to monitor the condition of bolted joints as found on railway track and points.
Views of Astronaut (Col.) Joe Engle and son Jon with L-5 Piper Cub
NASA Technical Reports Server (NTRS)
1981-01-01
Views of Astronaut (Col.) Joe Engle and son Jon with L-5 Piper Cub at Clover Airport. Photos includes Jon Engle sitting on side door frame working on portion of wing. Joe Engle is behind him working on a wing strut (34329); Joe Engle works on tightening bolt (34330); Jon Engle works on portion of wing which connects to the cockpit. Joe Engle works on connecting strut to wing (34331).
34. Photocopy of microfiched construction drawing by Galloway & Markwart ...
34. Photocopy of microfiched construction drawing by Galloway & Markwart Engineers, San Francisco, California, dated originally Jan. 23, 1917, with a revision dated April 20, 1917. (Microfiched drawing at the Denver Service Center, #104/60154 - 8 of 18) PENSTOCK PIPE, AIR VALVES - MAN HOLE - REDUCER & PIPE BENDS - EXPANSION JOINT & ANCHORS, 'Y' CONNECTION & BLIND FLANGE. - Yosemite Hydroelectric Power Plant, Highways 120 & 140, Yosemite Village, Mariposa County, CA
Batzer, Thomas H.; Call, Wayne R.
1989-01-01
This invention provides an all metal seal for vacuum or pressure vessels or systems. This invention does not use gaskets. The invention uses a flange which fits into a matching groove. Fluid pressure is applied in a chamber in the flange causing at least one of the flange walls to radially press against a side of the groove creating the seal between the flange wall and the groove side.
Batzer, T.H.; Call, W.R.
1989-01-24
This invention provides an all metal seal for vacuum or pressure vessels or systems. This invention does not use gaskets. The invention uses a flange which fits into a matching groove. Fluid pressure is applied in a chamber in the flange causing at least one of the flange walls to radially press against a side of the groove creating the seal between the flange wall and the groove side. 5 figs.
Structural health monitoring using a hybrid network of self-powered accelerometer and strain sensors
NASA Astrophysics Data System (ADS)
Alavi, Amir H.; Hasni, Hassene; Jiao, Pengcheng; Lajnef, Nizar
2017-04-01
This paper presents a structural damage identification approach based on the analysis of the data from a hybrid network of self-powered accelerometer and strain sensors. Numerical and experimental studies are conducted on a plate with bolted connections to verify the method. Piezoelectric ceramic Lead Zirconate Titanate (PZT)-5A ceramic discs and PZT-5H bimorph accelerometers are placed on the surface of the plate to measure the voltage changes due to damage progression. Damage is defined by loosening or removing one bolt at a time from the plate. The results show that the PZT accelerometers provide a fairly more consistent behavior than the PZT strain sensors. While some of the PZT strain sensors are not sensitive to the changes of the boundary condition, the bimorph accelerometers capture the mode changes from undamaged to missing bolt conditions. The results corresponding to the strain sensors are better indicator to the location of damage compared to the accelerometers. The characteristics of the overall structure can be monitored with even one accelerometer. On the other hand, several PZT strain sensors might be needed to localize the damage.
PBF Reactor Building (PER620). In subpile room, camera faces southeast ...
PBF Reactor Building (PER-620). In sub-pile room, camera faces southeast and looks up toward bottom of reactor vessel. Upper assembly in center of view is in-pile tube as it connects to vessel. Lower lateral constraints and rotating control cable are in position. Other connections have been bolted together. Note light bulbs for scale. Photographer: John Capek. Date: August 21, 1970. INEEL negative no. 70-3494 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID
NASA Astrophysics Data System (ADS)
Boyko, Y. S.
2002-01-01
Provision of high airtightness of joints of pipe- lines of pneumohydraulic systems (PHS) operating under high pressure, is an important task for designing and operation of launch vehicles. In the process of assembly and tests of PHS of launch vehicles, it was found that detachable flange joints do not lose their airtightness after removal of fastening elements, even in conditions of standard loads. The task of this work is in studying a phenomenon connected with initiation of the observed effect of adhesion and also stresses in the zone of contact at drawing- up the flange detachable joints with a plastic gasket. Investigations have shown that density of the joint is kept due to cold welding, as the created conditions are helpful for that process. As a result of the investigations performed, we have developed a mathematic model which is based on application of the theory of metal bonds; that theory explains the essence of the effect observed. Basic factors which provide optimum mode of cold welding, are effort which can cause microplastic deformation and form maximum contact, and also quality of processing the material of the surfaces joined. Strength of all- metal joint depends on factual area of contact. So, surface processing quality defines a configuration of microbulges which come into contact not simultaneously, and their stressed state is different, and it influences the character of dependence of the contact area on loading. Results of calculations by the mathematic model are expressed by dependencies of factual area of contact and a single diameter of the contact spot on the load applied which compresses the materials with various physical properties, and on the surface processing quality. The mathematic model allows to explain the common character of the cold welding process in detachable flange joints with the plastic gasket, to determine the nature and the character of acting forces, to define kinetics and the mechanism of formation of cold welding of detachable joints. It also helps to analyze the state of airtightness and to metal welding technology in the plastic state at drawing- up of detachable flange joints with a plastic gasket and to review cold welding as a positive phenomenon.
District CIO: Not Your Mother's Student Information System
ERIC Educational Resources Information Center
Finkel, Ed
2012-01-01
Like seemingly everyone else connected to K12 education, vendors that offer student information systems are being called upon to do more with less. Where past generations of these systems focused on nuts and bolts such as time, attendance and behavioral issues, the latest generation has created--and drawn inspiration from--districts' desires for…
Photonic Waveguide Choke Joint with Absorptive Loading
NASA Technical Reports Server (NTRS)
Wollack, Edward J. (Inventor); U-Yen, Kongpop (Inventor); Chuss, David T. (Inventor)
2016-01-01
A photonic waveguide choke includes a first waveguide flange member having periodic metal tiling pillars, a dissipative dielectric material positioned within an area between the periodic metal tiling pillars and a second waveguide flange member disposed to be coupled with the first waveguide flange member and in spaced-apart relationship separated by a gap. The first waveguide flange member has a substantially smooth surface, and the second waveguide flange member has an array of two-dimensional pillar structures formed therein.
Connection Capacity of the Transition Zone in Steel-Concrete Hybrid Beam
NASA Astrophysics Data System (ADS)
Kozioł, Piotr; Kożuch, Maciej; Lorenc, Wojciech; Rowiński, Sławomir
2017-06-01
The problem of transition zone of structural steel element connected to concrete is discussed in the following paper. This zone may be located for instance in specific bridge composite girder. In such case the composite beam passes smoothly into concrete beam. Because of several dowels usage in the transition zone, the problem of uneven force distribution were discussed through analogy to bolted and welded connections. The authors present innovative solution of transition zone and discuss the results, with emphasis put on the transition zone structural response in term of bending capacity, failure model and force distribution on the connection length. The article wider the already executed experimental test and presents its newest results.
Fuel cell separator plate with bellows-type sealing flanges
Louis, G.A.
1984-05-29
A fuel cell separator includes a rectangular flat plate having two unitary upper sealing flanges respectively comprising opposite marginal edges of the plate folded upwardly and back on themselves and two lower sealing flanges respectively comprising the other two marginal edges of the plate folded downwardly and back on themselves. Each of the sealing flanges includes a flat wall spaced from the plate and substantially parallel thereto and two accordion-pleated side walls, one of which interconnects the flat wall with the plate and the other of which steps just short of the plate, these side walls affording resilient compressibility to the sealing flange in a direction generally normal to the plane of the plate. Four corner members close the ends of the sealing flanges. An additional resiliently compressible reinforcing member may be inserted in the passages formed by each of the sealing flanges with the plate.
Fuel cell separator plate with bellows-type sealing flanges
Louis, George A.
1986-08-05
A fuel cell separator includes a rectangular flat plate having two unitary upper sealing flanges respectively comprising opposite marginal edges of the plate folded upwardly and back on themselves and two lower sealing flanges respectively comprising the other two marginal edges of the plate folded downwardly and back on themselves. Each of the sealing flanges includes a flat wall spaced from the plate and substantially parallel thereto and two accordion-pleated side walls, one of which interconnects the flat wall with the plate and the other of which stops just short of the plate, these side walls affording resilient compressibility to the sealing flange in a directiongenerally normal to the plane of the plate. Four corner members close the ends of the sealing flanges. An additional resiliently compressible reinforcing member may be inserted in the passages formed by each of the sealing flanges with the plate.
76 FR 31585 - Forged Stainless Steel Flanges From India: Notice of Rescission of Antidumping Duty...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-01
... Flanges From India: Notice of Rescission of Antidumping Duty Administrative Review AGENCY: Import... review of the antidumping duty order on forged stainless steel flanges from India. The period of review... administrative review of the antidumping duty order on forged stainless steel flanges from India. See Antidumping...
The stability of cassette walls in compression
NASA Astrophysics Data System (ADS)
Voutay, Pierre-Arnaud
Much research into the behaviour of cold formed steel columns in the last decade has focused on channel sections undergoing local, distortional and overall buckling. Light gauge steel cassette sections are a particular form of channel section which offers an alternative form of load-bearing wall assembly for use in low-rise steel framed construction. Cassette wall sections possess wide and slender flanges so that, by including intermediate stiffeners in these wide flanges, a significant increase in the ultimate load capacity may be achieved. However, the introduction of intermediate stiffeners also increases the number of buckling modes (stiffener buckling) and, therefore complicates the behaviour and increases the risk of interactive buckling between these modes. The work undertaken in this thesis aims to clarify the behaviour of wide flanges in compression with and without intermediate stiffeners. In this research, the distortional mode of web and narrow flange buckling was inhibited by connecting the narrow flanges of the cassettes together at suitable intervals. "Generalised Beam Theory" (GBT), which allows the individual buckling modes to be considered individually and in predetermined combinations, provides a particularly good tool with which to analyse and understand the buckling behaviour of cassette sections with and without intermediate stiffeners. "Generalised Beam Theory" (GBT) is used throughout this work to determine the elastic buckling stress of the sections studied (simply supported stiffened plates, as well as cassette sections). Since the economic design of cold-formed steel sections requires the consideration of post- buckling behaviour, elastic buckling values are not directly comparable with design code values which are usually based on the concept of effective width. Therefore, finite element analysis with both material and geometric nonlinearity has also been carried out in order to obtain the ultimate strength in the critical mode or mode combination. Firstly the results of experimental test are analysed and their behaviour reproduced numerically. This serves to explain the test results and verify the numerical model. Confidence in modelling non-linear instability phenomena with the finite element method is acquired. Secondly, an initial parametric study was undertaken on the behaviour of cassette sections with and without intermediate stiffeners. This study considers the effect of the length and overall buckling on the behaviour of cassette sections, the effect of load eccentricity and the effect of the rotational restraint given by the web to the stiffened wide flange. A second parametric study including 96 specimens was undertaken next. This study considered the effect of the number (up to three intermediate stiffeners) and sizes of intermediate stiffeners on slender flanges with a slenderness ratio between 150 ≤ w/t ≤ 600. A wide range of geometries was studied covering single and interactive buckling modes. Comparison of the ultimate strength obtained from finite element analysis with the ultimate strength obtained using the effective width approach of modem design codes such as Eurocode 3 part 1.3 (1996) and NAS (North American specification (2001)) was then possible. By integrating the stress distribution over the length of the specimen, the stiffened wide flange can be isolated from the rest of the section (webs and narrow flanges). Design procedures tor plate elements incorporating one or two intermediate stiffeners under compressive load are given in Eurocode 3; Part 1.3. However, cassette sections, which have wider and more slender flanges than typical sheeting and decking, are increasingly being used in practical construction. For such cases, the design procedures in Eurocode 3 are less well founded. An improvement of the Eurocode 3 procedure dealing with intermediate stiffeners is proposed and validated for one, two or three stiffeners. Throughout the work, simple expressions suitable for design calculations are presented. Modern design codes as well as Direct Strength Method are evaluated in the light of findings of this work and wherever possible suggestions for improvements are made.
Shim for sealing transition pieces
Lacy, Benjamin Paul [Greer, SC; Demiroglu, Mehmet [Troy, NY; Sarawate, Neelesh Nandkumar [Niskayuna, NY
2012-07-24
According to one aspect of the invention, a shim for sealing two adjacent turbine transition pieces is disclosed. The shim includes a circumferential member that includes a first lateral flange and a second lateral flange. Further, the first and second lateral flanges each comprise a tab configured to mate to a first surface plane and the first and second lateral flanges are configured to mate to a second surface plane, wherein the first and second surface planes are substantially parallel. In addition, the shim includes a first flange extending substantially perpendicular from the circumferential member.
Holden, James Elliott; Perez, Julieta
2001-01-01
A molded, flexible pipe flange cover for temporarily covering a pipe flange and a pipe opening includes a substantially round center portion having a peripheral skirt portion depending from the center portion, the center portion adapted to engage a front side of the pipe flange and to seal the pipe opening. The peripheral skirt portion is formed to include a plurality of circumferentially spaced tabs, wherein free ends of the flexible tabs are formed with respective through passages adapted to receive a drawstring for pulling the tabs together on a back side of the pipe flange.
Silent Flange Coupling Design Used for the Schenck Eddy Current Dynamometer
NASA Astrophysics Data System (ADS)
Schinteie, D.; Croitorescu, V.
2016-11-01
The silent flange used for coupling different machines/systems to an eddy current dynamometer represents one of the modular components each test-bench should use. By introducing a silent flange into a dynamometer, the coupling steps are easier and faster. For an appropriate design, the silent flange was analyzed using dedicated software during different operation procedures and scenarios, for materials that allow easy manufacturing. This study shows that the design for this silent flange model has no danger of failure due to the small deformation and the values for the equivalent stresses. The silent flange coupling is suitable for the dynamometer for his high positioning accuracy, the zero backlash and the fact that there is no motion between the shafts.
8. View of DR 3 antenna showing lower front connector, ...
8. View of DR 3 antenna showing lower front connector, third from left vertical member at first level above foundation level, showing small diameter turnbuckle stays, vertical member with flange connection, and various struts and connectors with antenna assembly in background. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK
Integral flange design program. [procedure for computing stresses
NASA Technical Reports Server (NTRS)
Wilson, J. F.
1974-01-01
An automated interactive flange design program utilizing an electronic desk top calculator is presented. The program calculates the operating and seating stresses for circular flanges of the integral or optional type subjected to internal pressure. The required input information is documented. The program provides an automated procedure for computing stresses in selected flange geometries for comparison to the allowable code values.
Ceramic blade attachment system
Frey, G.A.; Jimenez, O.D.
1996-12-03
A turbine blade having a preestablished rate of thermal expansion is attached to a turbine flange having a preestablished rate of thermal expansion being greater than the preestablished rate of thermal expansion of the turbine blade. The turbine flange includes a first upstanding flange and a second upstanding flange having a groove formed between them. The turbine flange further includes a recess. Each of the first and second upstanding flanges have a plurality of bores therein. A turbine blade has a first member and a second member positioned in one of the groove and the recess. Each of the first member and the second member have a plurality of bores therein. A pin is positioned in respective ones of the plurality of bores in the first and second upstanding members and the first and second members and attach the blade to the turbine flange. The pin has a preestablished rate of thermal expansion being substantially equal to the rate of thermal expansion of the blade. 4 figs.
Flange joint system for SRF cavities utilizing high force spring clamps for low particle generation
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
A flange joint system for SRF cavities. The flange joint system includes a set of high force spring clamps that produce high force on the simple flanges of Superconducting Radio Frequency (SRF) cavities to squeeze conventional metallic seals. The system establishes the required vacuum and RF-tight seal with minimum particle contamination to the inside of the cavity assembly. The spring clamps are designed to stay within their elastic range while being forced open enough to mount over the flange pair. Upon release, the clamps have enough force to plastically deform metallic seal surfaces and continue to a new equilibrium sprungmore » dimension where the flanges remain held against one another with enough preload such that normal handling will not break the seal.« less
Testing and Analysis Validation of a Metallic Repair Applied to a PRSEUS Tension Panel
NASA Technical Reports Server (NTRS)
Przekop, Adam; Jegley, Dawn C.
2013-01-01
A design and analysis of a repair concept applicable to a stiffened composite panel based on the Pultruded Rod Stitched Efficient Unitized Structure was recently completed. The damage scenario considered was a midbay-to-midbay saw-cut with a severed stiffener, flange and skin. Advanced modeling techniques such as mesh-independent definition of compliant fasteners and elastic-plastic material properties for metal parts were utilized in the finite element analysis supporting the design effort. A bolted metallic repair was selected so that it could be easily applied in the operational environment. The present work describes results obtained from a tension panel test conducted to validate both the repair concept and finite element analysis techniques used in the design effort. The test proved that the proposed repair concept is capable of sustaining load levels that are higher than those resulting from the current working stress allowables. This conclusion enables upward revision of the stress allowables that had been kept at an overly-conservative level due to concerns associated with repairability of the panels. Correlation of test data with finite element analysis results is also presented and assessed.
Embedded Heaters for Joining or Separating Plastic Parts
NASA Technical Reports Server (NTRS)
Bryant, Melvin A., III
2004-01-01
A proposed thermal-bonding technique would make it possible to join or separate thermoplastic parts quickly and efficiently. The technique would eliminate the need for conventional welding or for such conventional fastening components as bolted flanges or interlocking hooks. The technique could be particularly useful in the sign industry (in which large quantities of thermoplastics are used) or could be used to join plastic pipes. A thin sheet of a suitable electrically conductive material would be formed to fit between two thermoplastic parts to be joined (see figure). The electrically conductive sheet and the two parts would be put together tightly, then an electrical current would be sent through the conductor to heat the thermoplastic locally. The magnitude of the current and the heating time would be chosen to generate just enough heat to cause the thermoplastic to adhere to both sides of the electrically conductive sheet. Optionally, the electrically conductive sheet could contain many small holes to provide purchase or to increase electrical resistance to facilitate the generation of heat. After thermal bonding, the electrically conductive sheet remains as an integral part of the structure. If necessary, the electrically conductive sheet can be reheated later to separate the joined thermoplastic parts.
TUBE FLANGING APPARATUS HAVING SPIRAL CAM ACTUATED FLANGING ROLLERS
Bellarts, H.J.
1958-06-24
A tube flaring apparatus designed to roll flawless uniform flanges on tube ends suitable for use in a Van Stone joint is described. Tapered rollers are mounted on gear segnnents and placed in the end of the tube. The assembly is rotated axially within the tube, and periodically the gear segments are moved by a worm gear so as to force the rollers radially against the tube wall until eventually a perfect 90 d flange is formed on the tube. All flanges formed by this machine are uniform, stronger, and have fewer possibilities for leaks than conventional methods heretofore used.
NASA Astrophysics Data System (ADS)
Balagopal, R.; Prasad Rao, N.; Rokade, R. P.; Umesha, P. K.
2018-06-01
Due to increase in demand for power supply and increase in bandwidth for communication industry, the existing transmission line (TL) and communication towers needs to be strengthened. The strengthening of existing tower is economical rather than installation of new towers due to constraints in acquisition of land. The size of conductors have to be increased or additional number of antenna needs to be installed in existing TL/communication tower respectively. The compression and tension capacity of members in the existing towers have to be increased to sustain the additional loads due to wind and self-weight of these components. The tension capacity enhancement of existing angle sections in live line condition without power shut-down is a challenging task. In the present study, the use of Glass Fiber Reinforced Plastic (GFRP) plate/angle sections is explored to strengthen existing bolted connections in TL/communication towers. Experimental investigation conducted at component level on strengthening of existing two types of single cover steel butt joint, one made of steel plate and another joint made of steel angle sections respectively. First series of experiment conducted on strengthening the connection using GFRP plate/cleat angle sections. The second series of strengthening experiment is conducted using steel plate/angle sections to replace GFRP sections. The load sharing behaviour of strengthened GFRP and steel section is compared and suitable recommendations are given.
NASA Astrophysics Data System (ADS)
Balagopal, R.; Prasad Rao, N.; Rokade, R. P.; Umesha, P. K.
2018-02-01
Due to increase in demand for power supply and increase in bandwidth for communication industry, the existing transmission line (TL) and communication towers needs to be strengthened. The strengthening of existing tower is economical rather than installation of new towers due to constraints in acquisition of land. The size of conductors have to be increased or additional number of antenna needs to be installed in existing TL/communication tower respectively. The compression and tension capacity of members in the existing towers have to be increased to sustain the additional loads due to wind and self-weight of these components. The tension capacity enhancement of existing angle sections in live line condition without power shut-down is a challenging task. In the present study, the use of Glass Fiber Reinforced Plastic (GFRP) plate/angle sections is explored to strengthen existing bolted connections in TL/communication towers. Experimental investigation conducted at component level on strengthening of existing two types of single cover steel butt joint, one made of steel plate and another joint made of steel angle sections respectively. First series of experiment conducted on strengthening the connection using GFRP plate/cleat angle sections. The second series of strengthening experiment is conducted using steel plate/angle sections to replace GFRP sections. The load sharing behaviour of strengthened GFRP and steel section is compared and suitable recommendations are given.
Audio-based bolt-loosening detection technique of bolt joint
NASA Astrophysics Data System (ADS)
Zhang, Yang; Zhao, Xuefeng; Su, Wensheng; Xue, Zhigang
2018-03-01
Bolt joint, as the commonest coupling structure, is widely used in electro-mechanical system. However, it is the weakest part of the whole system. The increase of preload tension force can raise the reliability and strength of the bolt joint. Therefore, the pretension force is one of the most important factors to ensure the stability of bolt joint. According to the way of generating pretension force, the pretension force can be monitored by bolt torque, degrees and elongation. The existing bolt-loosening monitoring methods all require expensive equipment, which greatly restricts the practicality of the bolt-loosening monitoring. In this paper, a new method of bolt-loosening detection technique based on audio is proposed. The sound that bolt is hit by a hammer is recorded on the Smartphone, and the collected audio signal is classified and identified by support vector machine algorithm. First, a verification test was designed and the results show that this new method can identify the damage of bolt looseness accurately. Second, a variety of bolt-loosening was identified. The results indicate that this method has a high accuracy in multiclass classification of the bolt looseness. This bolt-loosening detection technique based on audio not only can reduce the requirements of technical and professional experience, but also make bolt-loosening monitoring simpler and easier.
Comparison of Measured and Calculated Stresses in Built-up Beams
NASA Technical Reports Server (NTRS)
Levin, L Ross; Nelson, David H
1946-01-01
Web stresses and flange stresses were measured in three built-up beams: one of constant depth with flanges of constant cross-section, one linearly tapered in depth with flanges of constant cross section, and one linearly tapered in depth with tapered flanges. The measured stresses were compared with the calculated stresses obtained by the methods outlined in order to determine the degree of accuracy that may be expected from the stress analysis formulas. These comparisons indicated that the average measured stresses for all points in the central section of the beams did not exceed the average calculated stresses by more than 5 percent. It also indicated that the difference between average measured flange stresses and average calculated flange stresses on the net area and a fully effective web did not exceed 6.1 percent.
Steam separator latch assembly
Challberg, Roy C.; Kobsa, Irvin R.
1994-01-01
A latch assembly removably joins a steam separator assembly to a support flange disposed at a top end of a tubular shroud in a nuclear reactor pressure vessel. The assembly includes an annular head having a central portion for supporting the steam separator assembly thereon, and an annular head flange extending around a perimeter thereof for supporting the head to the support flange. A plurality of latches are circumferentially spaced apart around the head flange with each latch having a top end, a latch hook at a bottom end thereof, and a pivot support disposed at an intermediate portion therebetween and pivotally joined to the head flange. The latches are pivoted about the pivot supports for selectively engaging and disengaging the latch hooks with the support flange for fixedly joining the head to the shroud or for allowing removal thereof.
Steam separator latch assembly
Challberg, R.C.; Kobsa, I.R.
1994-02-01
A latch assembly removably joins a steam separator assembly to a support flange disposed at a top end of a tubular shroud in a nuclear reactor pressure vessel. The assembly includes an annular head having a central portion for supporting the steam separator assembly thereon, and an annular head flange extending around a perimeter thereof for supporting the head to the support flange. A plurality of latches are circumferentially spaced apart around the head flange with each latch having a top end, a latch hook at a bottom end thereof, and a pivot support disposed at an intermediate portion therebetween and pivotally joined to the head flange. The latches are pivoted about the pivot supports for selectively engaging and disengaging the latch hooks with the support flange for fixedly joining the head to the shroud or for allowing removal thereof. 12 figures.
46 CFR 56.30-10 - Flanged joints (modifies 104.5.1(a)).
Code of Federal Regulations, 2011 CFR
2011-10-01
...-10 (b), Method 8. Welding neck flanges may be used on any piping provided the flanges are butt-welded..., refer to 46 CFR 56.30-5(b) for requirements. (9) Figure 56.30-10 (b), Method 9. Welding neck flanges may.... ER16DE08.002 Note to Fig. 56.30-10(b): “T” is the nominal pipe wall thickness used. Consult the text of...
Parametric Study of Single Bolted Composite Bolted Joint Subjected to Static Tensile Loading
NASA Astrophysics Data System (ADS)
Awadhani, L. V.; Bewoor, Anand, Dr.
2017-08-01
The use of composites is increasing in the engineering applications in order to reduce the weight, building energy efficient systems, designing a suitable material according to the requirements of the application. But at the same time, building a structure is possible only by bonding or bolting or combination of them. There are limitations for the bonding methods and problems with the bolting such as stress concentration near the neighborhood of the bolt hole, tensile or shear failure, delamination etc. Hence the design of a composite bolted structure needs a special attention. This paper focuses on the performance of the composite bolted joint under static tensile loading and the effect of variation in the parameters such as the bolt pitch, plate width, thickness, bolt tightening torque, composite material, coefficient of friction between the bolt and plate etc. A simple spring mass model is used to study the single bolted composite bolted joint. The influencing parameters are identified through the developed model and compared with the results from the literature. The best geometric parameters for the applied load are identified for the composite bolted joints.
NASA Technical Reports Server (NTRS)
Halila, Ely E. (Inventor)
1994-01-01
A mounting assembly includes an annular supporting flange disposed coaxially about a centerline axis which has a plurality of circumferentially spaced apart supporting holes therethrough. An annular liner is disposed coaxially with the supporting flange and includes a plurality of circumferentially spaced apart mounting holes aligned with respective ones of the supporting holes. Each of a plurality of mounting pins includes a proximal end fixedly joined to the supporting flange through a respective one of the supporting holes, and a distal end disposed through a respective one of the liner mounting holes for supporting the liner to the supporting flange while unrestrained differential thermal movement of the liner relative to the supporting flange.
Fuel cell separator with compressible sealing flanges
Mientek, A.P.
1984-03-30
A separator for separating adjacent fuel cells in a stack of such cells includes a flat, rectangular, gas-impermeable plate disposed between adjacent cells and having two opposite side margins thereof folded back over one side of the plate to form two first seal flanges and having the other side margins thereof folded back over the opposite side of the plate to form two second seal flanges, each of the seal flanges cooperating with the plate to define a channel in which is disposed a resiliently compressible stack of thin metal sheets. The two first seal flanges cooperate with the electrolyte matrix of one of the cells to form a gas-impermeable seal between an electrode of the one cell and one of two reactant gas manifolds. The second seal flanges cooperate with the electrolyte matrix of the other cell for forming a gas-impermeable seal between an electrode of the other cell and the other of the two reactant gas manifolds. The seal flanges cooperate with the associated compressible stacks of sheets for maintaining a spacing between the plate and the electrolyte matrices while accommodating variation of that spacing.
Fuel cell separator with compressible sealing flanges
Mientek, Anthony P.
1985-04-30
A separator for separating adjacent fuel cells in a stack of such cells includes a flat, rectangular, gas-impermeable plate disposed between adjacent cells and having two opposite side margins thereof folded back over one side of the plate to form two first seal flanges and having the other side margins thereof folded back over the opposite side of the plate to form two second seal flanges, each of the seal flanges cooperating with the plate to define a channel in which is disposed a resiliently compressible stack of thin metal sheets. The two first seal flanges cooperate with the electrolyte matrix of one of the cells to form a gas-impermeable seal between an electrode of the one cell and one of two reactant gas manifolds. The second seal flanges cooperate with the electrolyte matrix of the other cell for forming a gas-impermeable seal between an electrode of the other cell and the other of the two reactant gas manifolds. The seal flanges cooperate with the associated compressible stacks of sheets for maintaining a spacing between the plate and the electrolyte matrices while accommodating variation of that spacing.
NASA Astrophysics Data System (ADS)
Omar, R.; Rani, M. N. Abdul; Yunus, M. A.; Mirza, W. I. I. Wan Iskandar; Zin, M. S. Mohd
2018-04-01
A simple structure with bolted joints consists of the structural components, bolts and nuts. There are several methods to model the structures with bolted joints, however there is no reliable, efficient and economic modelling methods that can accurately predict its dynamics behaviour. Explained in this paper is an investigation that was conducted to obtain an appropriate modelling method for bolted joints. This was carried out by evaluating four different finite element (FE) models of the assembled plates and bolts namely the solid plates-bolts model, plates without bolt model, hybrid plates-bolts model and simplified plates-bolts model. FE modal analysis was conducted for all four initial FE models of the bolted joints. Results of the FE modal analysis were compared with the experimental modal analysis (EMA) results. EMA was performed to extract the natural frequencies and mode shapes of the test physical structure with bolted joints. Evaluation was made by comparing the number of nodes, number of elements, elapsed computer processing unit (CPU) time, and the total percentage of errors of each initial FE model when compared with EMA result. The evaluation showed that the simplified plates-bolts model could most accurately predict the dynamic behaviour of the structure with bolted joints. This study proved that the reliable, efficient and economic modelling of bolted joints, mainly the representation of the bolting, has played a crucial element in ensuring the accuracy of the dynamic behaviour prediction.
Laser rods with undoped, flanged end-caps for end-pumped laser applications
Meissner, Helmuth E.; Beach, Raymond J.; Bibeau, Camille; Sutton, Steven B.; Mitchell, Scott; Bass, Isaac; Honea, Eric
1999-01-01
A method and apparatus for achieving improved performance in a solid state laser is provided. A flanged, at least partially undoped end-cap is attached to at least one end of a laserable medium. Preferably flanged, undoped end-caps are attached to both ends of the laserable medium. Due to the low scatter requirements for the interface between the end-caps and the laser rod, a non-adhesive method of bonding is utilized such as optical contacting combined with a subsequent heat treatment of the optically contacted composite. The non-bonded end surfaces of the flanged end-caps are coated with laser cavity coatings appropriate for the lasing wavelength of the laser rod. A cooling jacket, sealably coupled to the flanged end-caps, surrounds the entire length of the laserable medium. Radiation from a pump source is focussed by a lens duct and passed through at least one flanged end-cap into the laser rod.
Improvement of formability of high strength steel sheets in shrink flanging
NASA Astrophysics Data System (ADS)
Hamedon, Z.; Abe, Y.; Mori, K.
2016-02-01
In the shrinkage flanging, the wrinkling tends to occur due to compressive stress. The wrinkling will cause a difficulty in assembling parts, and severe wrinkling may leads to rupture of parts. The shrinkage flange of the ultra-high strength steel sheets not only defects the product by the occurrence of the wrinkling but also causes seizure and wear of the dies and shortens the life of dies. In the present study, a shape of a punch having gradual contact was optimized in order to prevent the wrinkling in shrinkage flanging of ultra-high strength steel sheets. The sheet was gradually bent from the corner of the sheet to reduce the compressive stress. The wrinkling in the shrink flanging of the ultra-high strength steel sheets was prevented by the punch having gradual contact. It was found that the punch having gradual contact is effective in preventing the occurrence of wrinkling in the shrinkage flanging.
Mold bolt and means for achieving close tolerances between bolts and bolt holes
NASA Technical Reports Server (NTRS)
Johnston, David L. (Inventor); Bryant, Phillip G. (Inventor)
1993-01-01
In the space shuttle, a cargo bay storage rack was required which was to be manufactured from a metal-plastic composite and bolted to a cargo structure. Following completion, utilization of the rack was disallowed due to tolerances, that is, the size differences between the outside bolt diameter and the inside hole diameter. In addition to the space shuttle problem there are other close tolerance requirements for bolts. Such environments often benefit from close tolerance bolting. Frequently such fabrication is not cost effective. Consequently there is a need for means of achieving close tolerances between bolts and bolt holes. Such means are provided. After compressing the elements together a strong rigid plastic, ceramic, or ceramic plastic fluid is forced into a channel extending through the bolt.
Bolted Double-Lap Composite Joints Under Mechanical and Thermal Loading
NASA Technical Reports Server (NTRS)
Kradinov, V.; Barut, A.; Madenci, E.; Walker, Sandra P. (Technical Monitor)
2000-01-01
This study concerns the determination of the contact stresses and contact region around bolt holes and the bolt load distribution in single- and double-lap joints of composite laminates with arbitrarily located bolts under general mechanical loading conditions and uniform temperature change. The unknown contact stress distribution and contact region between the bolt and laminates and the interaction among the bolts require the bolt load distribution, as well as the contact stresses, to be as part of the solution. The present method is based on the complex potential theory and the variational formulation in order to account for bolt stiffness, bolt-hole clearance, and finite geometry of the composite laminates.
Stress Analysis for the Critical Metal Structure of Bridge Crane
NASA Astrophysics Data System (ADS)
Ling, Zhangwei; Wang, Min; Xia, Junfang; Wang, Songhua; Guo, Xiaolian
2018-01-01
Based on the type of connection between the main girder and end beam of electrical single beam crane, the finite element analysis model of a full portal crane was established. The stress distribution of the critical structure under different loading conditions was analyzed. The results shown that the maximum Mises stress and deflection of the main girder were within the allowable range. And the connecting location between end beam web and main girder had higher stress than other region, especially at the lower edge and upper edge of the end beam web and the area near the bolt hole of upper wing panel. Therefore it is important to inspect the connection status, the stress condition and the crack situation nearing connection location during the regular inspection process to ensure the safety of the connection between the main girder and end beam.
Measuring mine roof bolt strains
Steblay, Bernard J.
1986-01-01
A mine roof bolt and a method of measuring the strain in mine roof bolts of this type are disclosed. According to the method, a flat portion on the head of the mine roof bolt is first machined. Next, a hole is drilled radially through the bolt at a predetermined distance from the bolt head. After installation of the mine roof bolt and loading, the strain of the mine roof bolt is measured by generating an ultrasonic pulse at the flat portion. The time of travel of the ultrasonic pulse reflected from the hole is measured. This time of travel is a function of the distance from the flat portion to the hole and increases as the bolt is loaded. Consequently, the time measurement is correlated to the strain in the bolt. Compensation for various factors affecting the travel time are also provided.
Metallurgical failure analysis of MH-1A reactor core hold-down bolts. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hawthorne, J.R.; Watson, H.E.
1976-11-01
The Naval Research Laboratory has performed a failure analysis on two MH-1A reactor core hold-down bolts that broke in service. Adherence to fabrication specifications, post-service properties and possible causes of bolt failure were investigated. The bolt material was verified as 17-4PH precipitation hardening stainless steel. Measured bolt dimensions also were in accordance with fabrication drawing specifications. Bolt failure occurred in the region of a locking pin hole which reduced the bolt net section by 47 percent. The failure analysis indicates that the probable cause of failure was net section overloading resulting from a lateral bending force on the bolt. Themore » analysis indicates that net section overloading could also have resulted from combined tensile stresses (bolt preloading plus differential thermal expansion). Recommendations are made for improved bolting.« less
Universal Assembly for Captive Bolts
NASA Technical Reports Server (NTRS)
Marke, M. L.; Hagopian, B.
1982-01-01
New method allows for virtually any bolt to be easily converted to "captive" bolt. Method eliminates need for separate design for each application. Cup-shaped washer that is flattened secures tap to bolt. Wire attached to tab holds bolt assembly captive. Flattening washer can also be done during installation of bolt. Wash, tab and spacer are all made of corrosion-resistant steel.
Method of fabricating a flow device
Hale, Robert L.
1978-01-01
This invention is a novel method for fabricating leak-tight tubular articles which have an interior flow channel whose contour must conform very closely with design specifications but which are composed of metal which tends to warp if welded. The method comprises designing two longitudinal half-sections of the article, the half-sections being contoured internally to cooperatively form the desired flow passageway. Each half-section is designed with a pair of opposed side flanges extending between the end flanges and integral therewith. The half-sections are positioned with their various flanges in confronting relation and with elongated metal gaskets extending between the confronting flanges for the length of the array. The gaskets are a deformable metal which is fusion-weldable to the end flanges. The mating side flanges are joined mechanically to deform the gaskets and provide a longitudinally sealed assembly. The portions of the end flanges contiguous with the ends of the gaskets then are welded to provide localized end welds which incorporate ends of the gaskets, thus transversely sealing the assembly. This method of fabrication provides leak-tight articles having the desired precisely contoured flow channels, whereas various conventional methods have been found unsatisfactory.
Capacitively-coupled inductive sensor
Ekdahl, Carl A.
1984-01-01
A capacitively coupled inductive shunt current sensor which utilizes capacitive coupling between flanges having an annular inductive channel formed therein. A voltage dividing capacitor is connected between the coupling capacitor and ground to provide immediate capacitive division of the output signal so as to provide a high frequency response of the current pulse to be detected. The present invention can be used in any desired outer conductor such as the outer conductor of a coaxial transmission line, the outer conductor of an electron beam transmission line, etc.
Precision alignment and mounting apparatus
NASA Technical Reports Server (NTRS)
Preston, Dennis R. (Inventor)
1993-01-01
An alignment and mounting apparatus for mounting two modules (10,12) includes a first portion having a cylindrical alignment pin (16) projecting normal to a module surface, a second portion having a three-stage alignment guide (18) including a shoehorn flange (34), a Y-slot (42) and a V-block (22) which sequentially guide the alignment pin (16) with successively finer precision and a third portion in the form of a spring-loaded captive fastener (20) for connecting the two modules after alignment is achieved.
Effects of bending and heat on the ductility and fracture toughness of flange plate.
DOT National Transportation Integrated Search
2012-05-01
Bridge fabricators for the Texas Department of Transportation (TxDOT) have occasionally experienced the : formation of cracks in flange plate during bending operations, particularly when heat is applied. Bending the : flange plate is necessary for ce...
Hertelendy, N.A.
1987-04-22
A pressure resistant seal for a metallic container is formed between a cylindrical portion having one end open and a cap which seals the open end of the shell. The cap is in the form of a frusto-conical flange which is inserted narrow end first into the open end of the shell and the container is sealed by means of a capping tool which pulls the flange against a die, deforming the flange and forcing the edge of the flange into the wall of the shell. 6 figs.
Hertelendy, Nicholas A [Kennewick, WA
1989-01-01
A pressure resistant seal for a metallic container is formed between a cylindrical portion having one end open and a cap which seals the open end of the shell. The cap is in the form of a frusto-conical flange which is inserted narrow end first into the open end of the shell and the container is sealed by means of a capping tool which pulls the flange against a die, deforming the flange and forcing the edge of the flange into the wall of the shell.
Hertelendy, Nicholas A.
1989-04-04
A pressure resistant seal for a metallic container is formed between a cylindrical portion having one end open and a cap which seals the open end of the shell. The cap is in the form of a frusto-conical flange which is inserted narrow end first into the open end of the shell and the container is sealed by means of a capping tool which pulls the flange against a die, deforming the flange and forcing the edge of the flange into the wall of the shell.
A Review of Rock Bolt Monitoring Using Smart Sensors.
Song, Gangbing; Li, Weijie; Wang, Bo; Ho, Siu Chun Michael
2017-04-05
Rock bolts have been widely used as rock reinforcing members in underground coal mine roadways and tunnels. Failures of rock bolts occur as a result of overloading, corrosion, seismic burst and bad grouting, leading to catastrophic economic and personnel losses. Monitoring the health condition of the rock bolts plays an important role in ensuring the safe operation of underground mines. This work presents a brief introduction on the types of rock bolts followed by a comprehensive review of rock bolt monitoring using smart sensors. Smart sensors that are used to assess rock bolt integrity are reviewed to provide a firm perception of the application of smart sensors for enhanced performance and reliability of rock bolts. The most widely used smart sensors for rock bolt monitoring are the piezoelectric sensors and the fiber optic sensors. The methodologies and principles of these smart sensors are reviewed from the point of view of rock bolt integrity monitoring. The applications of smart sensors in monitoring the critical status of rock bolts, such as the axial force, corrosion occurrence, grout quality and resin delamination, are highlighted. In addition, several prototypes or commercially available smart rock bolt devices are also introduced.
A Review of Rock Bolt Monitoring Using Smart Sensors
Song, Gangbing; Li, Weijie; Wang, Bo; Ho, Siu Chun Michael
2017-01-01
Rock bolts have been widely used as rock reinforcing members in underground coal mine roadways and tunnels. Failures of rock bolts occur as a result of overloading, corrosion, seismic burst and bad grouting, leading to catastrophic economic and personnel losses. Monitoring the health condition of the rock bolts plays an important role in ensuring the safe operation of underground mines. This work presents a brief introduction on the types of rock bolts followed by a comprehensive review of rock bolt monitoring using smart sensors. Smart sensors that are used to assess rock bolt integrity are reviewed to provide a firm perception of the application of smart sensors for enhanced performance and reliability of rock bolts. The most widely used smart sensors for rock bolt monitoring are the piezoelectric sensors and the fiber optic sensors. The methodologies and principles of these smart sensors are reviewed from the point of view of rock bolt integrity monitoring. The applications of smart sensors in monitoring the critical status of rock bolts, such as the axial force, corrosion occurrence, grout quality and resin delamination, are highlighted. In addition, several prototypes or commercially available smart rock bolt devices are also introduced. PMID:28379167
DuBois, Neil J.; Amaral, Antonio M.
1992-10-27
A damped flexible seal assembly for a torpedo isolates the tailcone thereof rom vibrational energy present in the drive shaft assembly. A pair of outside flanges, each of which include an inwardly facing groove and an O-ring constrained therein, provide a watertight seal against the outer non-rotating surface of the drive shaft assembly. An inside flange includes an outwardly-facing groove and an O-ring constrained therein, and provides a watertight seal against the inner surface of the tail cone. Two cast-in-place elastomeric seals provide a watertight seal between the flanges and further provide a damping barrier between the outside flanges and the inside flanges for damping vibrational energy present in the drive shaft assembly before the energy can reach the tailcone through the seal assembly.
Torque Limits for Fasteners in Composites
NASA Technical Reports Server (NTRS)
Zhao, Yi
2002-01-01
The two major classes of laminate joints are bonded and bolted. Often the two classes are combined as bonded-bolted joints. Several characteristics of fiber reinforced composite materials render them more susceptible to joint problems than conventional metals. These characteristics include weakness in in-plane shear, transverse tension/compression, interlaminar shear, and bearing strength relative to the strength and stiffness in the fiber direction. Studies on bolted joints of composite materials have been focused on joining assembly subject to in-plane loads. Modes of failure under these loading conditions are net-tension failure, cleavage tension failure, shear-out failure, bearing failure, etc. Although the studies of torque load can be found in literature, they mainly discussed the effect of the torque load on in-plane strength. Existing methods for calculating torque limit for a mechanical fastener do not consider connecting members. The concern that a composite member could be crushed by a preload inspired the initiation of this study. The purpose is to develop a fundamental knowledge base on how to determine a torque limit when a composite member is taken into account. Two simplified analytical models were used: a stress failure analysis model based on maximum stress criterion, and a strain failure analysis model based on maximum strain criterion.
Prevention of crack in stretch flanging process using hot stamping technique
NASA Astrophysics Data System (ADS)
Syafiq, Y. Mohd; Hamedon, Z.; Azila Aziz, Wan; Razlan Yusoff, Ahmad
2017-10-01
Demand for enhancing of passenger safety as well as weight reduction of automobiles has increased the use of high strength steel sheets. As a sheet metal is a lightweight having high strength is suitable for producing automotive parts such as white body panel. The stretch flanging of the high strength steel sheet is a problem due to high springback and easy to crack. This study uses three methods to stretch flange the sheets; using lubricants, shear-edge polishing and hot stamping. The effectiveness of these methods will be measured by comparing the flange length of each methods can achieved. For stretch flange with lubricant and polished sheared edge, the flange length failed to achieve the target 15 mm while hot stamping improved the formability of the sheet and preventing the occurrence of the springback and crack. Hot stamping not only improved formability of the sheet but also transformed the microstructure into martensite thus improve the hardness and the strength of the sheet after been quenched with the dies.
Laser rods with undoped, flanged end-caps for end-pumped laser applications
Meissner, H.E.; Beach, R.J.; Bibeau, C.; Sutton, S.B.; Mitchell, S.; Bass, I.; Honea, E.
1999-08-10
A method and apparatus for achieving improved performance in a solid state laser is provided. A flanged, at least partially undoped end-cap is attached to at least one end of a laserable medium. Preferably flanged, undoped end-caps are attached to both ends of the laserable medium. Due to the low scatter requirements for the interface between the end-caps and the laser rod, a non-adhesive method of bonding is utilized such as optical contacting combined with a subsequent heat treatment of the optically contacted composite. The non-bonded end surfaces of the flanged end-caps are coated with laser cavity coatings appropriate for the lasing wavelength of the laser rod. A cooling jacket, sealably coupled to the flanged end-caps, surrounds the entire length of the laserable medium. Radiation from a pump source is focused by a lens duct and passed through at least one flanged end-cap into the laser rod. 14 figs.
76 FR 8773 - Forged Stainless Steel Flanges From India and Taiwan
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-15
... INTERNATIONAL TRADE COMMISSION [Investigation Nos. 731-TA-639 and 640 (Third Review)] Forged Stainless Steel Flanges From India and Taiwan AGENCY: United States International Trade Commission. ACTION... determine whether revocation of the antidumping duty orders on forged stainless steel flanges from India and...
External Tank (ET) Bipod Fitting Bolted Attachment Locking Insert Performance
NASA Technical Reports Server (NTRS)
Larsen, Curtis E.; Wilson, Tim R.; Elliott, Kenny B.; Raju, Ivatury S.; McManamen, John
2008-01-01
Following STS-107, the External Tank (ET) Project implemented corrective actions and configuration changes at the ET bipod fitting. Among the corrective actions, the existing bolt lock wire which provided resistance to potential bolt rotation was removed. The lock wire removal was because of concerns with creating voids during foam application and potential for lock wire to become debris. The bolts had been previously lubricated to facilitate assembly but, because of elimination of the lock wire, the ET Project wanted to enable the locking feature of the insert. Thus, the lubrication was removed from bolt threads and instead applied to the washer under the bolt head. Lubrication is necessary to maximize joint pre-load while remaining within the bolt torque specification. The locking feature is implemented by thread crimping in at four places in the insert. As the bolt is torqued into the insert the bolt threads its way past the crimped parts of the insert. This provides the locking of the bolt, as torque is required to loosen the joint after clamping.
Preload Monitoring of Bolted L-Shaped Lap Joints Using Virtual Time Reversal Method.
Du, Fei; Xu, Chao; Wu, Guannan; Zhang, Jie
2018-06-13
L-shaped bolt lap joints are commonly used in aerospace and civil structures. However, bolt joints are frequently subjected to loosening, and this has a significant effect on the safety and reliability of these structures. Therefore, bolt preload monitoring is very important, especially at the early stage of loosening. In this paper, a virtual time reversal guided wave method is presented to monitor preload of bolted L-shaped lap joints accurately and simply. In this method, a referenced reemitting signal (RRS) is extracted from the bolted structure in fully tightened condition. Then the RRS is utilized as the excitation signal for the bolted structure in loosening states, and the normalized peak amplitude of refocused wave packet is used as the tightness index (TI A ). The proposed method is experimentally validated by L-shaped bolt joints with single and multiple bolts. Moreover, the selections of guided wave frequency and tightness index are also discussed. The results demonstrate that the relationship between TI A and bolt preload is linear. The detection sensitivity is improved significantly compared with time reversal (TR) method, particularly when bolt loosening is at its embryo stage. The results also show that TR method is an effective method for detection of the number of loosening bolts.
Stress analysis of bolted joints under centrifugal force
NASA Astrophysics Data System (ADS)
Imura, Makoto; Iizuka, Motonobu; Nakae, Shigeki; Mori, Takeshi; Koyama, Takayuki
2014-06-01
Our objective is to develop a long-life rotary machine for synchronous generators and motors. To do this, it is necessary to design a high-strength bolted joint, which is responsible for fixing a salient pole on a rotor shaft. While the rotary machine is in operation, not only centrifugal force but also moment are loaded on a bolted joint, because a point of load is eccentric to a centre of a bolt. We tried to apply the theory proposed in VDI2230-Blatt1 to evaluate the bolted joint under eccentric force, estimate limited centrifugal force, which is the cause of partial separation between the pole and the rotor shaft, and then evaluate additional tension of a bolt after the partial separation has occurred. We analyzed the bolted joint by FEM, and defined load introduction factor in that case. Additionally, we investigated the effect of the variation of bolt preload on the partial separation. We did a full scale experiment with a prototype rotor to reveal the variation of bolt preload against tightening torque. After that, we verified limited centrifugal force and the strength of the bolted joint by the VDI2230-Blatt1 theory and FEM considering the variation of bolt preload. Finally, we could design a high-strength bolted joint verified by the theoretical study and FEM analysis.
Development of a Unified Rock Bolt Model in Discontinuous Deformation Analysis
NASA Astrophysics Data System (ADS)
He, L.; An, X. M.; Zhao, X. B.; Zhao, Z. Y.; Zhao, J.
2018-03-01
In this paper, a unified rock bolt model is proposed and incorporated into the two-dimensional discontinuous deformation analysis. In the model, the bolt shank is discretized into a finite number of (modified) Euler-Bernoulli beam elements with the degrees of freedom represented at the end nodes, while the face plate is treated as solid blocks. The rock mass and the bolt shank deform independently, but interact with each other through a few anchored points. The interactions between the rock mass and the face plate are handled via general contact algorithm. Different types of rock bolts (e.g., Expansion Shell, fully grouted rebar, Split Set, cone bolt, Roofex, Garford and D-bolt) can be realized by specifying the corresponding constitutive model for the tangential behavior of the anchored points. Four failure modes, namely tensile failure and shear failure of the bolt shank, debonding along the bolt/rock interface and loss of the face plate, are available in the analysis procedure. The performance of a typical conventional rock bolt (fully grouted rebar) and a typical energy-absorbing rock bolt (D-bolt) under the scenarios of suspending loosened blocks and rock dilation is investigated using the proposed model. The reliability of the proposed model is verified by comparing the simulation results with theoretical predictions and experimental observations. The proposed model could be used to reveal the mechanism of each type of rock bolt in realistic scenarios and to provide a numerical way for presenting the detailed profile about the behavior of bolts, in particular at intermediate loading stages.
Automatic, computerized testing of bolts
NASA Technical Reports Server (NTRS)
Carlucci, J., Jr.; Lobb, V. B.; Stoller, F. W.
1970-01-01
System for testing bolts with various platings, lubricants, nuts, and tightening procedures tests 200 fasteners, and processes and summarizes the results, within one month. System measures input torque, nut rotation, bolt clamping force, bolt shank twist, and bolt elongation, data is printed in report form. Test apparatus is described.
78 FR 17285 - Airworthiness Directives; The Boeing Company Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-21
... inspections for dirt, loose particles, or blockage of the flanged tube and drain hole for the pressure seals... aft pressure seals; doing repetitive inspections for dirt, loose particles, or blockage of the flanged... AD, do a general visual inspection for dirt, loose particles, and blockage of the flanged tube and...
Vertical bowing measurements, C Reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeMers, A.E.
1966-02-18
This report consists of a table which gives the change in height of tube No. 4674 at a specified distance from the inlet flange. Forty-one data points were taken beginning with a distance of 18 inches from the inlet flange and ending with a distance of 36 feet from the inlet flange.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beryland, V.I.; Glyadya, A.A.; Pozhidaev, A.V.
1982-07-01
One method for improving the operating flexibility of 150, 200, and 300 MW steam turbines is heating the flanges of the horizontal casing point during startup, both when cold and before cooling down. A design analysis was conducted of the comparative effectiveness of various heating systems from the standpoint of minimizing both temperature differences across the flange width, as well as the level of related thermal stresses. The effects of flange heating during the entire operating period are discussed.
Apparatus and methods for impingement cooling of a side wall of a turbine nozzle segment
Burdgick, Steven Sebastian
2002-01-01
A gas turbine nozzle segment has outer and inner bands and a vane therebetween. Each band includes a nozzle wall, a side wall, a cover and an impingement plate between the cover and the nozzle wall defining two cavities on opposite sides of the impingement plate. Cooling steam is supplied to one cavity for flow through apertures of the impingement plate to cool the nozzle wall. The side wall of the band and inturned flange define with the nozzle wall an undercut region. The impingement plate has a turned flange welded to the inturned flange. A backing plate overlies the turned flange and aligned apertures are formed through the backing plate and turned flange to direct and focus cooling flow onto the side wall of the nozzle segment.
Coupled 2D-3D finite element method for analysis of a skin panel with a discontinuous stiffener
NASA Technical Reports Server (NTRS)
Wang, J. T.; Lotts, C. G.; Davis, D. D., Jr.; Krishnamurthy, T.
1992-01-01
This paper describes a computationally efficient analysis method which was used to predict detailed stress states in a typical composite compression panel with a discontinuous hat stiffener. A global-local approach was used. The global model incorporated both 2D shell and 3D brick elements connected by newly developed transition elements. Most of the panel was modeled with 2D elements, while 3D elements were employed to model the stiffener flange and the adjacent skin. Both linear and geometrically nonlinear analyses were performed on the global model. The effect of geometric nonlinearity induced by the eccentric load path due to the discontinuous hat stiffener was significant. The local model used a fine mesh of 3D brick elements to model the region at the end of the stiffener. Boundary conditions of the local 3D model were obtained by spline interpolation of the nodal displacements from the global analysis. Detailed in-plane and through-the-thickness stresses were calculated in the flange-skin interface near the end of the stiffener.
Modifications of a Composite-Material Combustion Chamber
NASA Technical Reports Server (NTRS)
Williams, Brian E.; McNeal, Shawn R.
2005-01-01
Two short reports discuss modifications of a small, lightweight combustion chamber that comprises a carbon/carbon composite outer shell and an iridium/ rhenium inner liner. The first report discusses chamber design modifications made as results of hot-fire tests and post-test characterization. The Books & Reports 32 NASA Tech Briefs, June 2005 modifications were intended to serve a variety of purposes, including improving fabrication, reducing thermal-expansion mismatch stresses, increasing strength-to-weight ratios of some components, and improving cooling of some components. The second report discusses (1) the origin of stress in the mismatch between the thermal expansions of the Ir/Re liner and a niobium sleeve and flange attached to the carbon/ carbon shell and (2) a modification intended to relieve the stress. The modification involves the redesign of an inlet connection to incorporate a compressible seal between the Ir/Re liner and the Nb flange. A nickel alloy was selected as the seal material on the basis of its thermal-expansion properties and its ability to withstand the anticipated stresses, including the greatest stresses caused by the high temperatures to be used in brazing during fabrication.
Endocrinological correlates of male bimaturism in wild Bornean orangutans.
Marty, Pascal R; van Noordwijk, Maria A; Heistermann, Michael; Willems, Erik P; Dunkel, Lynda P; Cadilek, Manuela; Agil, Muhammad; Weingrill, Tony
2015-11-01
Among primates, orangutans are unique in having pronounced male bimaturism leading to two fully adult morphs that differ in both physical appearance and behavior. While unflanged males have a female-like appearance, flanged males have the full suite of secondary sexual characteristics, including cheek flanges and a large throat sac. So far, hormonal correlates of arrested development in unflanged males and the expression of secondary sexual characteristics in flanged males have only been studied in zoo-housed individuals. In this study, we investigated fecal androgen and glucocorticoid metabolites as hormonal correlates of male bimaturism in 17 wild adult Bornean orangutans (Pongo pygmaeus) in Central Kalimantan, Indonesia. We predicted and found higher androgen levels in flanged males compared to unflanged males, probably due to ongoing strong competition among flanged males who meet too infrequently to establish a clear linear dominance hierarchy. Furthermore, we found no difference in fecal glucocorticoid metabolite concentrations between flanged and unflanged males, indicating that social stress is unlikely to explain arrested development in unflanged wild orangutans. The only actively developing male in our study showed significantly higher androgen levels during the period of development than later as a fully flanged male. This supports earlier findings from zoo studies that elevated androgen levels are associated with the development of secondary sexual characteristics. © 2015 Wiley Periodicals, Inc.
Nondestructive test method accurately sorts mixed bolts
NASA Technical Reports Server (NTRS)
Dezeih, C. J.
1966-01-01
Neutron activation analysis method sorts copper plated steel bolts from nickel plated steel bolts. Copper and nickel plated steel bolt specimens of the same configuration are irradiated with thermal neutrons in a test reactor for a short time. After thermal neutron irradiation, the bolts are analyzed using scintillation energy readout equipment.
19 CFR 10.58 - Bolting cloths; marking.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 19 Customs Duties 1 2010-04-01 2010-04-01 false Bolting cloths; marking. 10.58 Section 10.58... TREASURY ARTICLES CONDITIONALLY FREE, SUBJECT TO A REDUCED RATE, ETC. General Provisions Bolting Cloths § 10.58 Bolting cloths; marking. (a) As a prerequisite to the free entry of bolting cloth for milling...
19 CFR 10.58 - Bolting cloths; marking.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 19 Customs Duties 1 2011-04-01 2011-04-01 false Bolting cloths; marking. 10.58 Section 10.58... TREASURY ARTICLES CONDITIONALLY FREE, SUBJECT TO A REDUCED RATE, ETC. General Provisions Bolting Cloths § 10.58 Bolting cloths; marking. (a) As a prerequisite to the free entry of bolting cloth for milling...
19 CFR 10.58 - Bolting cloths; marking.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 19 Customs Duties 1 2012-04-01 2012-04-01 false Bolting cloths; marking. 10.58 Section 10.58... TREASURY ARTICLES CONDITIONALLY FREE, SUBJECT TO A REDUCED RATE, ETC. General Provisions Bolting Cloths § 10.58 Bolting cloths; marking. (a) As a prerequisite to the free entry of bolting cloth for milling...
19 CFR 10.58 - Bolting cloths; marking.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 19 Customs Duties 1 2014-04-01 2014-04-01 false Bolting cloths; marking. 10.58 Section 10.58... TREASURY ARTICLES CONDITIONALLY FREE, SUBJECT TO A REDUCED RATE, ETC. General Provisions Bolting Cloths § 10.58 Bolting cloths; marking. (a) As a prerequisite to the free entry of bolting cloth for milling...
19 CFR 10.58 - Bolting cloths; marking.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 19 Customs Duties 1 2013-04-01 2013-04-01 false Bolting cloths; marking. 10.58 Section 10.58... TREASURY ARTICLES CONDITIONALLY FREE, SUBJECT TO A REDUCED RATE, ETC. General Provisions Bolting Cloths § 10.58 Bolting cloths; marking. (a) As a prerequisite to the free entry of bolting cloth for milling...
High-strength bolt corrosion fatigue life model and application.
Hui-li, Wang; Si-feng, Qin
2014-01-01
The corrosion fatigue performance of high-strength bolt was studied. Based on the fracture mechanics theory and the Gerberich-Chen formula, the high-strength bolt corrosion fracture crack model and the fatigue life model were established. The high-strength bolt crack depth and the fatigue life under corrosion environment were quantitatively analyzed. The factors affecting high-strength bolt corrosion fatigue life were discussed. The result showed that the high-strength bolt corrosion fracture biggest crack depth reduces along with the material yield strength and the applied stress increases. The material yield strength was the major factor. And the high-strength bolt corrosion fatigue life reduced along with the increase of material strength, the applied stress or stress amplitude. The stress amplitude influenced the most, and the material yield strength influenced the least. Low bolt strength and a low stress amplitude level could extend high-strength bolt corrosion fatigue life.
Analysis of alternatives for using cable bolts as primary support at two low-seam coal mines
Esterhuizen, Gabriel S.; Tulu, Ihsan B.
2016-01-01
Cable bolts are sometimes used in low-seam coal mines to provide support in difficult ground conditions. This paper describes cable bolting solutions at two low-seam coal mines in similar ground conditions. Both mines used support systems incorporating cable bolts as part of the primary support system. Two original cable bolt based support systems as well as two modified systems are evaluated to estimate their ability to prevent large roof falls. One of the support systems incorporated passive cable bolts, while the other used pre-tensioned cable bolts. The results and experience at the mines showed that the modified systems provided improved stability over the original support systems. The presence of the cable bolts is the most important contribution to stability against large roof falls, rather than the details of the support pattern. It was also found that a heavy steel channel can improve the safety of the system because of the ‘sling’ action it provides. Additionally, the analysis showed that fully-grouted rebar bolts load much earlier than the cable bolts, and pre-tensioning of the cable bolts can result in a more uniform distribution of loading in the roof. PMID:27722019
Analytical Study of the Mechanical Behavior of Fully Grouted Bolts in Bedding Rock Slopes
NASA Astrophysics Data System (ADS)
Liu, C. H.; Li, Y. Z.
2017-09-01
Bolting is widely used as a reinforcement means for rock slopes. The support force of a fully grouted bolt is often provided by the combination of the axial and shear forces acting at the cross section of the bolt, especially for bedding rock slopes. In this paper, load distribution and deformation behavior of the deflecting section of a fully grouted bolt were analyzed, and a structural mechanical model was established. Based on force method equations and deformation compatibility relationships, an analytical approach, describing the contribution of the axial and shear forces acting at the intersection between the bolt and the joint plane to the stability of a rock slope, was developed. Influence of the inclination of the bolt to the joint plane was discussed. Laboratory tests were conducted with different inclinations of the bolt to the joint plane. Comparisons between the proposed approach, the experimental data and a code method were made. The calculation results are in good agreement with the test data. It is shown that transverse shear resistance plays a significant role to the bolting contribution and that the bigger the dip of the bolt to the joint plane, the more significant the dowel effect. It is also shown that the design method suggested in the code overestimates the resistance of the bolt. The proposed model considering dowel effect provides a more precise description on bolting properties of bedding rock slopes than the code method and will be helpful to improve bolting design methods.
2015-03-12
submarine and ship systems required to survive the effects of mechanical shock must consider not only the system and foundation to which the system...See FIG. 1). In the figure, a Bragg grating sensor 1 is inserted and held by epoxy 2 in a mechanical fastener 10. Optical fiber 3 connects the...circumferential) strains. The sensing elements 120 are fixedly bonded to the vertical section 103 using conventional adhesives such as epoxies or
Effect of tip flange on tip leakage flow of small axial flow fans
NASA Astrophysics Data System (ADS)
Zhang, Li; Jin, Yingzi; Jin, Yuzhen
2014-02-01
Aerodynamic performance of an axial flow fan is closely related to its tip clearance leakage flow. In this paper, the hot-wire anemometer is used to measure the three dimensional mean velocity near the blade tips. Moreover, the filtered N-S equations with finite volume method and RNG k-ɛ turbulence model are adopted to carry out the steady simulation calculation of several fans that differ only in tip flange shape and number. The large eddy simulation and the FW-H noise models are adopted to carry out the unsteady numerical calculation and aerodynamic noise prediction. The results of simulation calculation agree roughly with that of tests, which proves the numerical calculation method is feasible.The effects of tip flange shapes and numbers on the blade tip vortex structure and the characteristics are analyzed. The results show that tip flange of the fan has a certain influence on the characteristics of the fan. The maximum efficiencies for the fans with tip flanges are shifted towards partial flow with respect to the design point of the datum fan. Furthermore, the noise characteristics for the fans with tip flanges have become more deteriorated than that for the datum fan. Tip flange contributes to forming tip vortex shedding and the effect of the half-cylinder tip flange on tip vortex shedding is obvious. There is a distinct relationship between the characteristics of the fan and tip vortex shedding. The research results provide the profitable reference for the internal flow mechanism of the performance optimization of small axial flow fans.
A new design concept of fully grouted rock bolts in underground construction
NASA Astrophysics Data System (ADS)
Phich Nguyen, Quang; Nguyen, Van Manh; Tuong Nguyen, Ke
2018-04-01
The main problem after excavating an underground excavation is to maintain the stability of the excavation for a certain period of time. Failure in meeting this demand is a threat to safety of men and equipment. Support and reinforcement are different instruments with different mechanisms. Among the common support systems in tunnelling and mining, rock bolts have been widely used to reinforce rock mass and also to reduce geological hazards. Furthermore rock bolts can be applied under varying different geological conditions with cost-effectiveness. Although different methods are developed for grouted rock bolts design until now, the interaction mechanism of the rock bolts and rock mass is still very complicated issue. The paper addresses an analytical model for the analysis and design of fully grouted rock bolts based on the reinforcement principle. According to this concept the jointed rock mass reinforced by grouted rock bolts is considered as composite material which includes rock mass, the grout material and the bolt shank. The mechanical properties of this composite material depend on the ratio of the components. The closed-form solution was developed based on the assumption that the rock mass arround a circular tunnel remained elastic after installing fully grouted rock bolts. The main parameters of the rock-bolt system (the diameter and length of bolt shank, the space between the bolts) are then easily estimated from the obtained solution.
USDA-ARS?s Scientific Manuscript database
A novel open-ended half-mode substrate integrated waveguide (HMSIW) sensor with ground flange for measuring complex permittivity of liquids, semisolids, and granular and particulate materials is presented. The open-ended HMSIW is designed and fabricated on FR4 substrate. The ground flange was custo...
46 CFR 56.30-10 - Flanged joints (modifies 104.5.1(a)).
Code of Federal Regulations, 2010 CFR
2010-10-01
... 104.5.1(a)). (a) Flanged or butt-welded joints are required for Classes I and I-L piping for nominal... Marine Safety Center. Pressure temperature ratings of the appropriate ANSI/ASME standard must not be... service pressure-temperature ratings for flanges of class 300 and lower, within the temperature...
Damage percolation during stretch flange forming of aluminum alloy sheet
NASA Astrophysics Data System (ADS)
Chen, Zengtao; Worswick, Michael J.; Keith Pilkey, A.; Lloyd, David J.
2005-12-01
A multi-scale finite element (FE)-damage percolation model was employed to simulate stretch flange forming of aluminum alloys AA5182 and AA5754. Material softening and strain gradients were captured using a Gurson-based FE model. FE results were then fed into the so-called damage percolation code, from which the damage development was modelled within measured microstructures. The formability of the stretch flange samples was predicted based upon the onset of catastrophic failure triggered by profuse void coalescence within the measured second-phase particle field. Damage development is quantified in terms of crack and void areal fractions, and compared to metallographic results obtained from interrupted stretch flange specimens. Parametric study is conducted on the effect of void nucleation strain in the prediction of formability of stretch flanges to "calibrate" proper nucleation strains for both alloys.
NASA Technical Reports Server (NTRS)
Hyman, J., Jr.
1974-01-01
A structural integrated ion thruster with 8-cm beam diameter (SIT-8) was developed for attitude control and stationkeeping of synchronous satellites. As optimized, the system demonstrates a thrust T=1.14 mlb (not corrected for beam V sub B = 1200 V (I sub sp = 2200 sec) total propellant utilization efficiency nu sub u = 59.8% (is approximately 72% without auxiliary pulse-igniter electrode), and electrical efficiency n sub E 61.9%. The thruster incorporates a wire-mesh anode and tantalum cover surfaces to control discharge chamber flake formation and employs an auxiliary pulse-igniter electrode for hollow-cathode ignition. When the SIT-8 is integrated with the compatible SIT-5 propellant tankage, the system envelope is 35 cm long by 13 cm flange bolt circle with a mass of 9.8 kg including 6.8 kg of mercury propellant. Two thrust vectoring systems which generate beam deflections in two orthogonal directions were also developed under the program and tested with the 8-cm thruster. One system vectors the beam over + or - 10 degrees by gimbaling of the entire thruster (not including tankage), while the other system vectors the beam over + or - 7 degrees by translating the accel electrode relative to the screen electrode.
NESC Peer-Review of the Flight Rationale for Expected Debris Report. Version 1.0
NASA Technical Reports Server (NTRS)
Harris, Charles E.; Raju, Ivatury S.; Stadler, John H.; Piascik, Robert S.; Kramer-White, Julie A.; Labbe, Steve G.; Ungar, Eugene K.; Rotter, Hank A.; Rogers, James H.; Null, Cynthia H.
2005-01-01
Since the loss of Columbia on February 1, 2003, the Space Shuttle Program (SSP) has significantly improved the understanding of launch and ascent debris, implemented hardware modifications to reduce debris, and conducted tests and analyses to understand the risks associated with expected debris. The STS-114 flight rationale for expected debris relies on a combination of all three of these factors. A number of design improvements have been implemented to reduce debris at the source. The External Tank (ET) thermal protection system (TPS) foam has been redesigned and/or process improvements have been implemented in the following locations: the bipod closeout, the first ten feet of the liquid hydrogen (LH2) tank protuberance air load (PAL) ramp, and the LH2 tank-to-intertank flange closeout. In addition, the forward bipod ramp has been eliminated and heaters have been installed on the bipod fittings and the liquid oxygen (LO2) feedline forward bellows to prevent ice formation. The Solid Rocket Booster (SRB) bolt catcher has been redesigned. The Orbiter reaction control system (RCS) thruster cover "butcher paper" has been replaced with a material that sheds at a low velocity. Finally, the pad area has been cleaned to reduce debris during lift-off.
21 CFR 137.280 - Bolted yellow corn meal.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Bolted yellow corn meal. 137.280 Section 137.280... Flours and Related Products § 137.280 Bolted yellow corn meal. Bolted yellow corn meal conforms to the definition and standard of identity prescribed by § 137.255 for bolted white corn meal except that cleaned...
21 CFR 137.280 - Bolted yellow corn meal.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Bolted yellow corn meal. 137.280 Section 137.280... Flours and Related Products § 137.280 Bolted yellow corn meal. Bolted yellow corn meal conforms to the definition and standard of identity prescribed by § 137.255 for bolted white corn meal except that cleaned...
NASA Astrophysics Data System (ADS)
Chen, Jinzhong; He, Renyang; Kang, Xiaowei; Yang, Xuyun
2015-10-01
The non-destructive testing of small-sized (M12-M20) stainless steel bolts in servicing is always a technical problem. This article focuses on the simulation and experimental research of stainless steel bolts with an artificial defect reflector using ultrasonic phased array inspection. Based on the observation of the sound field distribution of stainless steel bolts in ultrasonic phased array as well as simulation modelling and analysis of the phased array probes' detection effects with various defect sizes, different artificial defect reflectors of M16 stainless steel bolts are machined in reference to the simulation results. Next, those bolts are tested using a 10-wafer phased array probe with 5 MHz. The test results finally prove that ultrasonic phased array can detect 1-mm cracks in diameter with different depths of M16 stainless steel bolts and a metal loss of Φ1 mm of through-hole bolts, which provides technical support for future non-destructive testing of stainless steel bolts in servicing.
Code of Federal Regulations, 2010 CFR
2010-10-01
... chapter for exceptions on bolting used in fluid power and control systems. (b) Carbon steel bolts or bolt... less than that at the root of the threads. They must have heavy semifinished hexagonal nuts in...
Sutton, Jr., Harry G.
1984-01-01
Bolts of a liquid metal fast breeder reactor, each bolt provided with an internal chamber filled with a specific, unique radioactive tag gas. Detection of the tag gas is indicative of a crack in an identifiable bolt.
NASA Astrophysics Data System (ADS)
Zhang, Zhen; Liu, Menglong; Liao, Yaozhong; Su, Zhongqing; Xiao, Yi
2018-03-01
The significance of evaluating bolt tightness in engineering structures, preferably in a continuous manner, cannot be overemphasized. With hybrid use of high-order harmonics (HOH) and spectral sidebands, a contact acoustic nonlinearity (CAN)-based monitoring framework is developed for detecting bolt loosening and subsequently evaluating the residual torque on a loose bolt. Low-frequency pumping vibration is introduced into the bolted joint to produce a "breathing" effect at the joining interface that modulates the propagation characteristics of a high-frequency probing wave when it traverses the bolt, leading to the generation of HOH and vibro-acoustic nonlinear distortions (manifested as sidebands in the signal spectrum). To gain insight into the mechanism of CAN generation and to correlate the acquired nonlinear responses of a loose joint with the residual torque remaining on the bolt, an analytical model based on micro-contact theory is established. Two types of nonlinear index, respectively exploiting the induced HOH and spectral sidebands, are defined without dependence on excitation intensity and are experimentally demonstrated to be effective in continuously monitoring bolt loosening in both aluminum-aluminum and composite-composite bolted joints. Taking a step further, variation of the index pair is quantitatively associated with the residual torque on a loose bolt. The approach developed provides a reliable method of continuous evaluation of bolt tightness in both composite and metallic joints, regardless of their working conditions, from early awareness of bolt loosening at an embryonic stage to quantitative estimation of residual torque.
NASA Technical Reports Server (NTRS)
1999-01-01
Marshall Space Flight Center (MSFC) has developed a specially-designed nut, called the Quick-Connect Nut, for quick and easy assembly of components in the harsh environment of space, as in assembly of International Space Station. The design permits nuts to be installed simply by pushing them onto standard bolts, then giving a quick twist. To remove, they are unscrewed like conventional nuts. Possible applications include the mining industry for erecting support barriers, assembling underwater oil drilling platforms, fire-fighting equipment, scaffolding, assembly-line machinery, industrial cranes, and even changing lug nuts on race cars. The speed of assembly can make the difference between life and death in different aspects of life on Earth.
Failure Analysis on Tail Rotor Teeter Pivot Bolt on a Helicopter
NASA Astrophysics Data System (ADS)
Qiang, WANG; Zi-long, DONG
2018-03-01
Tail rotor teeter pivot bolt of a helicopter fractured when in one flight. Failure analysis on the bolt was finished in laboratory. Macroscopic observation of the tailor rotor teeter pivot bolt, macro and microscopic inspection on the fracture surface of the bolt was carried out. Chemical components and metallurgical structure was also carried out. Experiment results showed that fracture mode of the tail rotor teeter pivot bolt is fatigue fracture. Fatigue area is over 80% of the total fracture surface, obvious fatigue band characteristics can be found at the fracture face. According to the results were analyzed from the macroscopic and microcosmic aspects, fracture reasons of the tail rotor teeter pivot bolt were analyzed in detail
Thermal Behaviour of Beams with Slant End-Plate Connection Subjected to Nonsymmetric Gravity Load
Osman, Mohd Hanim; Talebi, Elnaz
2014-01-01
Research on the steel structures with confining of axial expansion in fixed beams has been quite intensive in the past decade. It is well established that the thermal behaviour has a key influence on steel structural behaviours. This paper describes mechanical behaviour of beams with bolted slant end-plate connection with nonsymmetric gravity load, subjected to temperature increase. Furthermore, the performance of slant connections of beams in steel moment frame structures in the elastic field is investigated. The proposed model proved that this flexible connection system could successfully decrease the extra thermal induced axial force by both of the friction force dissipation among two faces of slant connection and a small upward movement on the slant plane. The applicability of primary assumption is illustrated. The results from the proposed model are examined within various slant angles, thermal and friction factors. It can be concluded that higher thermal conditions are tolerable when slanting connection is used. PMID:24587720
Thermal behaviour of beams with slant end-plate connection subjected to nonsymmetric gravity load.
Zahmatkesh, Farshad; Osman, Mohd Hanim; Talebi, Elnaz
2014-01-01
Research on the steel structures with confining of axial expansion in fixed beams has been quite intensive in the past decade. It is well established that the thermal behaviour has a key influence on steel structural behaviours. This paper describes mechanical behaviour of beams with bolted slant end-plate connection with nonsymmetric gravity load, subjected to temperature increase. Furthermore, the performance of slant connections of beams in steel moment frame structures in the elastic field is investigated. The proposed model proved that this flexible connection system could successfully decrease the extra thermal induced axial force by both of the friction force dissipation among two faces of slant connection and a small upward movement on the slant plane. The applicability of primary assumption is illustrated. The results from the proposed model are examined within various slant angles, thermal and friction factors. It can be concluded that higher thermal conditions are tolerable when slanting connection is used.
Remote controlled vacuum joint closure mechanism
Doll, D.W.; Hager, E.R.
1984-02-22
A remotely operable and maintainable vacuum joint closure mechanism for a noncircular aperture is disclosed. The closure mechanism includes an extendible bellows coupled at one end to a noncircular duct and at its other end to a flange assembly having sealed grooves for establishing a high vacuum seal with the abutting surface of a facing flange which includes an aperture forming part of the system to be evacuated. A plurality of generally linear arrangements of pivotally coupled linkages and piston combinations are mounted around the outer surface of the duct and aligned along the length thereof. Each of the piston/linkage assemblies is adapted to engage the flange assembly by means of a respective piston and is further coupled to a remote controlled piston drive shaft to permit each of the linkages positioned on a respective flat outer surface of the duct to simultaneously and uniformly displace a corresponding piston and the flange assembly with which it is in contact along the length of the duct in extending the bellows to provide a high vacuum seal between the movable flange and the facing flange. A plurality of latch mechanisms are also pivotally mounted on the outside of the duct. A first end of each of the latch mechanisms is coupled to a remotely controlled latch control shaft for displacing the latch mechanism about its pivot point. In response to the pivoting displacement of the latch mechanism, a second end thereof is displaced so as to securely engage the facing flange and maintain the high vacuum seal established by the displacement of the flange assembly and extension of the bellows without displacing the entire duct.
NASA Technical Reports Server (NTRS)
Oconnor, J. W.; Orem, V. C. (Inventor)
1973-01-01
A description is given of a fastener stretcher used to apply a substantial pure axial tensile force to a structural bolt or similar fastening element. The system is comprised of a pair of telescoping elements, one of which is temporarily secured to the bolt. By spreading the telescoping elements axially, the bolt is tensioned axially to permit a nut or the like to be threaded with a minimum of torque; when the elements are then removed from the bolt, the axial forces on the bolt are taken up by the nut to retain the bolt in its stressed state.
The Fatigue Characteristics of Bolted Lap Joints of 24S-T Alclad Sheet Materials
1946-10-01
extremely close bolt fits are needed to o%tain maximum life of bolt ~oint~ under repeated etreseeci. -. Szvzral ty~+?+s of bolt patterns hava been tegted...Memorial Institute on spec~meris of 0.102-i.nch sheet. In particular, figure 4 shows, on a load- life diagram, . results of tests Qn single-bolt...results of tests at the Univer- sity of’ il~~nols on single—bolt specimens, Tables 10 and 11 give reeults of tests, made at the U“ uiversity of Illino~8 , on
Chu, Henry Shiu-Hung [Idaho Falls, ID; Lacy, Jeffrey M [Idaho Falls, ID
2008-04-01
An armor structure includes first and second layers individually containing a plurality of i-beams. Individual i-beams have a pair of longitudinal flanges interconnected by a longitudinal crosspiece and defining opposing longitudinal channels between the pair of flanges. The i-beams within individual of the first and second layers run parallel. The laterally outermost faces of the flanges of adjacent i-beams face one another. One of the longitudinal channels in each of the first and second layers faces one of the longitudinal channels in the other of the first and second layers. The channels of the first layer run parallel with the channels of the second layer. The flanges of the first and second layers overlap with the crosspieces of the other of the first and second layers, and portions of said flanges are received within the facing channels of the i-beams of the other of the first and second layers.
Giardia muris and Giardia duodenalis groups: ultrastructural differences between the trophozoites.
Sogayar, M I; Gregório, E A
1989-01-01
Trophozoites of the Giardia muris group from hamsters, domestic rats and mice and of the Giardia duodenalis group from hamsters and domestic rats were examined by transmission electron microscopy. The basic ultrastructure of the trophozoites was similar. Differences were shown in the morphology of the ventrolateral flange of the trophozoites of Giardia muris and Giardia duodenalis groups. Marginal plates are less developed in the species of the Giardia duodenalis group. In this group, the distal extremity of the lateral flange is short and thick and the marginal plate does not penetrate into the distal extremity of the flange. In the Giardia muris group, the ventro-lateral flange is well developed and narrow and the marginal plate penetrates the distal extremity of the flange. The osmiophilic lamella, which accompanies the dorsal surface of the marginal plate is seen only in the Giardia muris group.
Cryogenic Flange and Seal Evaluation
NASA Technical Reports Server (NTRS)
Ramirez, Adrian
2014-01-01
The assembly of flanges, seals, and pipes are used to carry cryogenic fluid from a storage tank to the vehicle at launch sites. However, after a certain amount of cycles these raised face flanges with glass-filled Teflon gaskets have been found to have torque relaxation and are as a result susceptible to cryogenic fluid leakage if not re-torqued. The intent of this project is to identify alternate combinations of flanges and seals which may improve thermal cycle performance and decrease re-torque requirements. The general approach is to design a test fixture to evaluate leak characteristics between spiral and concentric serrations and to test alternate flange and seal combinations. Due to insufficient time, it was not possible to evaluate these different types of combinations for the combination that improved thermal cycle performance the most. However, the necessary drawings for the test fixture were designed and assembled along with the collection of the necessary parts.
Flexible roof drill for low coal. Volume 2. Phase III and Phase IV
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shoup, N.H.
1977-09-01
Design specifications were developed for a flexible drilling and bolting system. The system configuration is based on the use of the Galis dual-boom roof drill as a vehicle for the drilling/bolting system. The WSU Flex-drill drivehead is mounted on the Galis drill boom and the Galis parts are modified to accommodate the revised system. The flexible drillhead supports a bolt bender/inserter designed by Bendix Corporation and is integrated into the system operation. A supplemental bolt thruster was designed to complete insertion of the roof bolt following operation and removal of the Bendix bender from the bolt shank. The complete cyclemore » of drilling a 1-3/8-in. diameter bolt hole, bending a roof bolt into the hole, thrusting the bolt head and washer to the roof surface, and final torquing of the bolt is manually controlled by the operator located in the new position behind the bolting line. The new operating position is beneath newly bolted roof in a safer location in back of the stab jack ad roof jacks positioning the drill boom and drivehead. The Flex-drill/bolting system prototype was constructed from both purchased components and parts specially fabricated in the shops for this design. This unit was assembled and test-operated with appropriate support equipment in a laboratory test stand. Numerous test holes were drilled in blocks of concrete at feed rates of 5 ft/min with drill rotation speeds of 360 rpm. The drill feeds uniformly and cuts smoothly with no difficulty in collection of dust or clogging of the drill bit. The holes drilled were straight, as evidence by passage of a 1-1/4-in. diameter bar full depth into the hole with no binding or evidence of curvature. The flexible drill is capable of drilling 8-ft-deep roof bolt holes in low coal 36 in. in height.« less
A Novel RFID-Based Sensing Method for Low-Cost Bolt Loosening Monitoring.
Wu, Jian; Cui, Xingmei; Xu, Yunpeng
2016-01-28
In coal mines, bolt loosening in the cage guide is affected by the harsh environmental factors and cage hoist vibration, leading to significant threats to work safety. It is crucial, to this effect, to successfully detect the status of multipoint bolts of guide structures. This paper proposes a system to monitor bolt status in harsh environments established based on the RFID technique. A proof-of-concept model was demonstrated consisting of a bolt gearing system, passive UHF RFID tags, a reader, and monitoring software. A tinfoil metal film is fixed on the retaining plate and an RFID tag bonded to a large gear, with the bolt to be detected fixed in the center of a smaller gear. The radio-frequency signal cannot be received by the reader if the tag is completely obscured by the tinfoil, and if the bolt is loose, the tag's antenna is exposed when the gear revolves. A radio-frequency signal that carries corresponding bolt's information is transmitted by the RFID tag to the RFID reader due to coil coupling, identifying loose bolt location and reporting them in the software. Confirmatory test results revealed that the system indeed successfully detects bolt loosening and comparative test results (based on a reed switch multipoint bolt loosening monitor system) provided valuable information regarding the strengths and weaknesses of the proposed system.
Bolt installation tool for tightening large nuts and bolts
NASA Technical Reports Server (NTRS)
Mcdougal, A. R.; Norman, R. M.
1974-01-01
Large bolts and nuts are accurately tightened to structures without damaging torque stresses. There are two models of bolt installation tool. One is rigidly mounted and one is hand held. Each model includes torque-multiplier unit.
Spline screw payload fastening system
NASA Technical Reports Server (NTRS)
Vranish, John M. (Inventor)
1993-01-01
A system for coupling an orbital replacement unit (ORU) to a space station structure via the actions of a robot and/or astronaut is described. This system provides mechanical and electrical connections both between the ORU and the space station structure and between the ORU and the ORU and the robot/astronaut hand tool. Alignment and timing features ensure safe, sure handling and precision coupling. This includes a first female type spline connector selectively located on the space station structure, a male type spline connector positioned on the orbital replacement unit so as to mate with and connect to the first female type spline connector, and a second female type spline connector located on the orbital replacement unit. A compliant drive rod interconnects the second female type spline connector and the male type spline connector. A robotic special end effector is used for mating with and driving the second female type spline connector. Also included are alignment tabs exteriorally located on the orbital replacement unit for berthing with the space station structure. The first and second female type spline connectors each include a threaded bolt member having a captured nut member located thereon which can translate up and down the bolt but are constrained from rotation thereabout, the nut member having a mounting surface with at least one first type electrical connector located on the mounting surface for translating with the nut member. At least one complementary second type electrical connector on the orbital replacement unit mates with at least one first type electrical connector on the mounting surface of the nut member. When the driver on the robotic end effector mates with the second female type spline connector and rotates, the male type spline connector and the first female type spline connector lock together, the driver and the second female type spline connector lock together, and the nut members translate up the threaded bolt members carrying the first type electrical connector up to the complementary second type connector for interconnection therewith.
Monitoring of Pre-Load on Rock Bolt Using Piezoceramic-Transducer Enabled Time Reversal Method.
Huo, Linsheng; Wang, Bo; Chen, Dongdong; Song, Gangbing
2017-10-27
Rock bolts ensure structural stability for tunnels and many other underground structures. The pre-load on a rock bolt plays an important role in the structural reinforcement and it is vital to monitor the pre-load status of rock bolts. In this paper, a rock bolt pre-load monitoring method based on the piezoceramic enabled time reversal method is proposed. A lead zirconate titanate (PZT) patch transducer, which works as an actuator to generate stress waves, is bonded onto the anchor plate of the rock bolt. A smart washer, which is fabricated by sandwiching a PZT patch between two metal rings, is installed between the hex nut and the anchor plate along the rock bolt. The smart washer functions as a sensor to detect the stress wave. With the increase of the pre-load values on the rock bolt, the effective contact surface area between the smart washer and the anchor plate, benefiting the stress wave propagation crossing the contact surface. With the help of time reversal technique, experimental results reveal that the magnitude of focused signal clearly increases with the increase of the pre-load on a rock bolt before the saturation which happens beyond a relatively high value of the pre-load. The proposed method provides an innovative and real time means to monitor the pre-load level of a rock bolt. By employing this method, the pre-load degradation process on a rock bolt can be clearly monitored. Please note that, currently, the proposed method applies to only new rock bolts, on which it is possible to install the PZT smart washer.
Code of Federal Regulations, 2012 CFR
2012-10-01
...) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179..., figure 10, of the AAR Specifications for Tank Cars (IBR, see § 171.7 of this subchapter). (b) The opening...
Code of Federal Regulations, 2014 CFR
2014-10-01
...) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179..., figure 10, of the AAR Specifications for Tank Cars (IBR, see § 171.7 of this subchapter). (b) The opening...
Code of Federal Regulations, 2010 CFR
2010-10-01
... HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS REGULATIONS SPECIFICATIONS FOR TANK CARS Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179..., figure 10, of the AAR Specifications for Tank Cars (IBR, see § 171.7 of this subchapter). (b) The opening...
Code of Federal Regulations, 2013 CFR
2013-10-01
...) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179..., figure 10, of the AAR Specifications for Tank Cars (IBR, see § 171.7 of this subchapter). (b) The opening...
46 CFR 154.528 - Piping joints: Flange type.
Code of Federal Regulations, 2010 CFR
2010-10-01
... and Process Piping Systems § 154.528 Piping joints: Flange type. (a) A flange must be one of the following types: (1) Welding neck. (2) Slip-on. (3) Socket weld. (b) If the piping is designed for a... less; or (3) Welding neck. (c) If the piping is designed for a temperature lower than −55 °C (−67 °F...
Investigation of vacuum properties of CuCrZr alloy for high-heat-load absorber
NASA Astrophysics Data System (ADS)
Shueh, C.; Chan, C. K.; Chang, C. C.; Sheng, I. C.
2017-01-01
The Taiwan Photon Source (TPS) uses high-heat-load (HHL) absorbers to protect downstream ultrahigh-vacuum chambers from overheating. In this work, we propose to use the CuCrZr alloy (ASTM C18150) for the HHL absorber body and the ConFlat® flanges. We use the throughput method to measure the thermal outgassing rate and a helium leak detector to verify the vacuum seal between the CuCrZr alloy and stainless-steel flanges. The measured outgassing rate of the CuCrZr alloy was 5.8×10-10 Pa m/s after 72 h of pumping and decreased to 2.0 × 10-10 Pa m/s after 100 h of pumping. The leak rate through the vacuum seal between a CuCrZr flange and a stainless-steel flange was less than 1 × 10-10 Pa m3/s even after mounting and unmounting the flanges ten times and baking them at 250 °C. These results indicate that CuCrZr alloy is suitable for integrating HHL components with ConFlat® CuCrZr flanges for the absorption of the synchrotron radiation generated by the TPS.
Piezoelectric Bolt Breakers and Bolt Fatigue Testers
NASA Technical Reports Server (NTRS)
Sherrit, Stewart; Badescu, Mircea; Bar-Cohen, Yoseph; Barengoltz, Jack; Heckman, Vanessa
2008-01-01
A proposed family of devices for inducing fatigue in bolts in order to break the bolts would incorporate piezoelectric actuators into resonant fixtures as in ultrasonic/ sonic drills/corers and similar devices described in numerous prior NASA Tech Briefs articles. These devices were originally intended primarily for use as safer, more-reliable, more-versatile alternatives to explosive bolts heretofore used to fasten spacecraft structures that must subsequently be separated from each other quickly on command during flight. On Earth, these devices could be used for accelerated fatigue testing of bolts. Fatigue theory suggests that a bolt subjected to both a constant-amplitude dynamic (that is, oscillatory) stress and a static tensile stress below the ultimate strength of the bolt material will fail faster than will a bolt subjected to only the dynamic stress. This suggestion would be applied in a device of the proposed type. The device would be designed so that the device and the bolt to be fatigue-tested or broken would be integral parts of an assembly (see figure). The static tension in the tightened bolt would apply not only the clamping force to hold the joined structures (if any) together but also the compression necessary for proper operation of the piezoelectric actuators as parts of a resonant structural assembly. The constant-amplitude dynamic stress would be applied to the bolt by driving the piezoelectric actuators with a sinusoidal voltage at the resonance frequency of longitudinal vibration of the assembly. The amplitude of the excitation would be made large enough so that the vibration would induce fatigue in the bolt within an acceptably short time. In the spacecraft applications or in similar terrestrial structural-separation applications, devices of the proposed type would offer several advantages over explosive bolts: Unlike explosive bolts, the proposed devices would be reusable, could be tested before final use, and would not be subject to catastrophic misfire. In fatigue-testing applications, devices of the proposed type would offer advantages of compactness and low cost, relative to conventional fatigue- testing apparatuses. In both structural- separation and fatigue-testing applications, bolts to be broken or tested could be instrumented with additional ultrasonic transducers for monitoring of pertinent physical properties and of fatigue failure processes.
Post-Service Examination of PWR Baffle Bolts, Part I. Examination and Test Plan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leonard, Keith J.; Sokolov, Mikhail A.; Gussev, Maxim N.
2015-04-30
In support of extended service and current operations of the US nuclear reactor plants, the Oak Ridge National Laboratory (ORNL), through the Department of Energy (DOE), Light Water Reactor Sustainability (LWRS) Program, is coordinating with Ginna Nuclear Power Plant, The Westinghouse Electric Company, LLC, and ATI Consulting, the selective procurement of baffle bolts that were withdrawn from service in 2011 and currently stored on site at Ginna. The goal of this program is to perform detailed microstructural and mechanical property characterization of baffle former bolts following in-service exposures. This report outlines the selection criteria of the bolts and the techniquesmore » to be used in this study. The bolts available are the original alloy 347 steel fasteners used in holding the baffle plates to the baffle former structures within the lower portion of the pressurized water reactor vessel. Of the eleven possible bolts made available for this work, none were identified to have specific damage. The bolts, however, did show varying levels of breakaway torque required in their removal. The bolts available for this study varied in peak fluence (highest dose within the head of the bolt) between 9.9 and 27.8x10 21 n/cm 2 (E>1MeV). As no evidence for crack initiation was determined for the available bolts from preliminary visual examination, two bolts with the higher fluence values were selected for further post-irradiation examination. The two bolts showed different breakaway torque levels necessary in their removal. The information from these bolts will be integral to the LWRS program initiatives in evaluating end of life microstructure and properties. Furthermore, valuable data will be obtained that can be incorporated into model predictions of long-term irradiation behavior and compared to results obtained in high flux experimental reactor conditions. The two bolts selected for the ORNL study will be shipped to Westinghouse with bolts of interest to their collaborative efforts with the Electric Power Research Institute. Westinghouse will section the ORNL bolts into samples specified in this report and return them to ORNL. Samples will include bend bars for fracture toughness and crack propagation studies along with thin sections from which specimens for bend testing, subscale tensile and microstructural analysis can be obtained. Additional material from the high stress concentration region at the transition between the bolt head and shank will also be preserved to allow for further investigation of possible crack initiation sites.« less
Remote controlled vacuum joint closure mechanism
Doll, David W.; Hager, E. Randolph
1986-01-01
A remotely operable and maintainable vacuum joint closure mechanism for a noncircular aperture is disclosed. The closure mechanism includes an extendible bellows coupled at one end to a noncircular duct and at its other end to a flange assembly having sealed grooves for establishing a high vacuum seal with the abutting surface of a facing flange which includes an aperture forming part of the system to be evacuated. A plurality of generally linear arrangements of pivotally coupled linkages and piston combinations are mounted around the outer surface of the duct and aligned along the length thereof. Each of the piston/linkage assemblies is adapted to engage the flange assembly by means of a respective piston and is further coupled to a remote controlled piston drive shaft to permit each of the linkages positioned on a respective flat outer surface of the duct to simultaneously and uniformly displace a corresponding piston and the flange assembly with which it is in contact along the length of the duct in extending the bellows to provide a high vacuum seal between the movable flange and the facing flange. A plurality of latch mechanisms are also pivotally mounted on the outside of the duct. A first end of each of the latch mechanisms is coupled to a remotely controlled latch control shaft for displacing the latch mechanism about its pivot point. In response to the pivoting displacement of the latch mechanism, a second end thereof is displaced so as to securely engage the facing flange.
Wang, Bo; Huo, Linsheng; Chen, Dongdong; Li, Weijie; Song, Gangbing
2017-01-27
Pre-stress degradation or looseness of rock bolts in mining or tunnel engineering threatens the stability and reliability of the structures. In this paper, an innovative piezoelectric device named a "smart washer" with the impedance method is proposed with the aim of developing a real-time device to monitor the pre-stress level of rock bolts. The proposed method was verified through tests on a rock bolt specimen. By applying high-frequency sweep excitations (typically >30 kHz) to the smart washer that was installed on the rock bolt specimen, we observed that the variation in impedance signatures indicated the rock bolt pre-stress status. With the degradation of rock bolt pre-stress, the frequency in the dominating peak of the real part of the electrical impedance signature increased. To quantify the effectiveness of the proposed technique, a normalized root mean square deviation (RMSD) index was developed to evaluate the degradation level of the rock bolt pre-stress. The experimental results demonstrated that the normalized RMSD-based looseness index, which was computed from the impedance value detected by the "smart washer", increased with loss of the pre-stress of the rock bolt. Therefore, the proposed method can effectively detect the degradation of rock bolt pre-stress, as demonstrated by experiments.
Study on the Optimal Groove Shape and Glue Material for Fiber Bragg Grating Measuring Bolts.
Zhao, Yiming; Zhang, Nong; Si, Guangyao; Li, Xuehua
2018-06-02
Fiber Bragg grating (FBG) measuring bolts, as a useful tool to evaluate the behaviors of steel bolts in underground engineering, can be manufactured by gluing the FBG sensors inside the grooves, which are usually symmetrical cuts along the steel bolt rod. The selection of the cut shape and the glue types could perceivably affect the final supporting strength of the bolts. Unfortunately, the impact of cut shape and glue type on bolting strength is not yet clear. In this study, based on direct tension tests, full tensile load⁻displacement curves of rock bolts with different groove shapes were obtained and analyzed. The effects of groove shape on the bolt strength were discussed, and the stress redistribution in the cross-section of a rock bolt with different grooves was simulated using ANSYS. The results indicated that the trapezoidal groove is best for manufacturing the FBG bolt due to its low reduction of supporting strength. Four types of glues commonly used for the FBG sensors were assessed by conducting tensile tests on the mechanical testing and simulation system and the static and dynamic optical interrogators system. Using linear regression analysis, the relationship between the reflected wavelength of FBG sensors and tensile load was obtained. Practical recommendations for glue selection in engineering practice are also provided.
Mine roof driller-bolter apparatus and method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hibbard, G.A.; Lumbra, R.C.; Morrison, W.D.
1983-12-13
An apparatus for bolting the roof of an underground mine is disclosed comprising a mobile frame, a boom extending from the frame and a housing provided at the end of the frame. The housing supports an upwardly extending stinger, a drilling mechanism including a drill centralizer having a central bore therethrough and a passageway in communication with the central bore, a device for delivering a container of roof bolting anchoring media through the passageway and through the drill centralizer and into a drilled hole, a device for indexing a roof bolt into alignment with the drilled hole and a spinnermore » for driving the roof bolt into the drilled hole. The present invention also provides a method for bolting the roof of an underground mine comprising the steps of stinging a housing against the roof of the mine, moving a drill centralizer into communication with the roof and drilling a hole in the roof. Without retracting the drill centralizer from communication with the roof, a container of roof bolt anchoring media is delivered through the centralizer and into the drilled hole. The drill centralizer is thereafter retracted and the housing is moved to align a roof bolt with a drilled hole. Then the roof bolt is driven into the drilled hole and the bolt anchoring media sets around the bolt.« less
Wang, Bo; Huo, Linsheng; Chen, Dongdong; Li, Weijie; Song, Gangbing
2017-01-01
Pre-stress degradation or looseness of rock bolts in mining or tunnel engineering threatens the stability and reliability of the structures. In this paper, an innovative piezoelectric device named a “smart washer” with the impedance method is proposed with the aim of developing a real-time device to monitor the pre-stress level of rock bolts. The proposed method was verified through tests on a rock bolt specimen. By applying high-frequency sweep excitations (typically >30 kHz) to the smart washer that was installed on the rock bolt specimen, we observed that the variation in impedance signatures indicated the rock bolt pre-stress status. With the degradation of rock bolt pre-stress, the frequency in the dominating peak of the real part of the electrical impedance signature increased. To quantify the effectiveness of the proposed technique, a normalized root mean square deviation (RMSD) index was developed to evaluate the degradation level of the rock bolt pre-stress. The experimental results demonstrated that the normalized RMSD-based looseness index, which was computed from the impedance value detected by the “smart washer”, increased with loss of the pre-stress of the rock bolt. Therefore, the proposed method can effectively detect the degradation of rock bolt pre-stress, as demonstrated by experiments. PMID:28134811
The research on delayed fracture behavior of high-strength bolts in steel structure
NASA Astrophysics Data System (ADS)
Li, Guo dong; Li, Nan
2017-07-01
High-strength bolts have been widely used in power plants. However, the high-strength bolts which being employed in pumping station, steel structure and pipeline anti-whip structure have been found delayed fracture for many times in a power plant, this will affect the reliability of steel fracture and bring blow risk caused by falling objects. The high-strength bolt with delayed fracture was carried out fracture analysis, metallurgical analysis, chemical analysis, mechanical analysis, as well as bolts installation analysis, it can be comprehensively confirmed that the direct cause of high-strength bolts delayed fracture is the stress corrosion, and the root cause of high-strength bolts delayed fracture should be the improper installation at the initial and the imperfect routine anti-corrosion maintenance.
NASA Technical Reports Server (NTRS)
1981-01-01
Ultrasonic P2L2 bolt monitor is a new industrial tool, developed at Langley Research Laboratory, which is lightweight, portable, extremely accurate because it is not subject to friction error, and it is cost-competitive with the least expensive of other types of accurate strain monitors. P2L2 is an acronym for Pulse Phase Locked Loop. The ultrasound system which measures the stress that occurs when a bolt becomes elongated in the process of tightening, transmits sound waves to the bolt being fastened and receives a return signal indicating changes in bolt stress. Results are translated into a digital reading of the actual stress on the bolt. Device monitors the bolt tensioning process on mine roof bolts that provide increased safety within the mine. Also has utility in industrial applications.
Damage Progression in Bolted Composites
NASA Technical Reports Server (NTRS)
Minnetyan, Levon; Chamis, Christos C.; Gotsis, Pascal K.
1998-01-01
Structural durability, damage tolerance, and progressive fracture characteristics of bolted graphite/epoxy composite laminates are evaluated via computational simulation. Constituent material properties and stress and strain limits are scaled up to the structure level to evaluate the overall damage and fracture propagation for bolted composites. Single and double bolted composite specimens with various widths and bolt spacings are evaluated. The effect of bolt spacing is investigated with regard to the structural durability of a bolted joint. Damage initiation, growth, accumulation, and propagation to fracture are included in the simulations. Results show the damage progression sequence and structural fracture resistance during different degradation stages. A procedure is outlined for the use of computational simulation data in the assessment of damage tolerance, determination of sensitive parameters affecting fracture, and interpretation of experimental results with insight for design decisions.
Damage Progression in Bolted Composites
NASA Technical Reports Server (NTRS)
Minnetyan, Levon; Chamis, Christos; Gotsis, Pascal K.
1998-01-01
Structural durability,damage tolerance,and progressive fracture characteristics of bolted graphite/epoxy composite laminates are evaluated via computational simulation. Constituent material properties and stress and strain limits are scaled up to the structure level to evaluate the overall damage and fracture propagation for bolted composites. Single and double bolted composite specimens with various widths and bolt spacings are evaluated. The effect of bolt spacing is investigated with regard to the structural durability of a bolted joint. Damage initiation, growth, accumulation, and propagation to fracture are included in the simulations. Results show the damage progression sequence and structural fracture resistance during different degradation stages. A procedure is outlined for the use of computational simulation data in the assessment of damage tolerance, determination of sensitive parameters affecting fracture, and interpretation of experimental results with insight for design decisions.
Face seal assembly for rotating drum
Morgan, J. Giles; Rennich, Mark J.; Whatley, Marvin E.
1982-01-01
A seal assembly comprises a tube rotatable about its longitudinal axis and having two longitudinally spaced flanges projecting radially outwardly from the outer surface thereof. Slidably positioned against one of the flanges is a seal ring, and disposed between this seal ring and the other flange are two rings that are forced apart by springs, one of the latter rings being attached to a flexible wall.
Code of Federal Regulations, 2010 CFR
2010-10-01
... the top edge of the flange and five holes in the bottom flange at a distance of 40 mm (1.6 in) from the bottom edge of the flange. The holes are spaced at 100 mm (3.9 in), 300 mm (11.8 in), 500 mm (19.7 in), 700 mm (27.5 in), 900 mm (35.4 in) horizontally, from either edge of the barrier. All holes are...
Natural frequency identification of smart washer by using adaptive observer
NASA Astrophysics Data System (ADS)
Ito, Hitoshi; Okugawa, Masayuki
2014-04-01
Bolted joints are used in many machines/structures and some of them have been loosened during long time use, and unluckily these bolt loosening may cause a great accident of machines/structures system. These bolted joint, especially in important places, are main object of maintenance inspection. Maintenance inspection with human- involvement is desired to be improved owing to time-consuming, labor-intensive and high-cost. By remote and full automation monitoring of the bolt loosening, constantly monitoring of bolted joint is achieved. In order to detect loosening of bolted joints without human-involvement, applying a structural health monitoring technique and smart structures/materials concept is the key objective. In this study, a new method of bolt loosening detection by adopting a smart washer has been proposed, and the basic detection principle was discussed with numerical analysis about frequency equation of the system, was confirmed experimentally. The smart washer used in this study is in cantilever type with piezoelectric material, which adds the washer the self-sensing and actuation function. The principle used to detect the loosening of the bolts is a method of a bolt loosening detection noted that the natural frequency of a smart washer system is decreasing by the change of the bolt tightening axial tension. The feature of this proposed method is achieving to identify the natural frequency at current condition on demand by adopting the self-sensing and actuation function and system identification algorithm for varying the natural frequency depending the bolt tightening axial tension. A novel bolt loosening detection method by adopting adaptive observer is proposed in this paper. The numerical simulations are performed to verify the possibility of the adaptive observer-based loosening detection. Improvement of the detection accuracy for a bolt loosening is confirmed by adopting initial parameter and variable adaptive gain by numerical simulation.
2013-01-01
Background Bolting reduces the quality and commercial yield of Welsh onion (Allium fistulosum L.) in production. However, seed production is directly dependent on flower induction and bolting. The Welsh onion belongs to the green plant vernalisation type, specific seedling characteristics and sufficient accumulated time at low temperature are indispensible for the completion of its vernalisation process. Only if these conditions for vernalisation are fulfilled, the plants will bolt in the following year. The present investigation evaluated the effects of cultivar, sowing date and transplant location in field on the bolting of Welsh onion at the Horticultural Farm of the College of Horticulture, Northwest A&F University, Yangling, Shannxi Province, China in two succeeding production years: 2010–2011 and 2011–2012. A strip split plot layout within a randomised complete block design with three replications was used. Results The results revealed that all three factors (cultivar, sowing date and transplant location) and their interaction had significant effects on the initiation and final rate of bolting observed by 30 April. The earliest bolting date (14 February, 2011 and 15 February, 2012) and the highest bolting rate (100% in 2011 and 62% in 2012) occurred when the JinGuan cultivar was sown on 20 August and transplanted in a plastic tunnel, whereas the latest date and lowest rate (no bolting observed until 30 April) of bolting occurred when the XiaHei cultivar was sown on 29 September and transplanted in an open field. Conclusions These results suggest that we can control bolting in Welsh onion production by choosing an appropriate cultivar, sowing date and transplant location. Choosing a late bolting cultivar, such as cultivar XiaHei, sowing around October, and transplanting in the open field can significantly delay bolting, while a sowing date in late August should be selected for seed production, and the seedlings should be transplanted in a plastic tunnel to accelerate development of the flower buds. PMID:24199907
Dong, Yinxin; Cheng, Zhihui; Meng, Huanwen; Liu, Hanqiang; Wu, Cuinan; Khan, Abdul Rehman
2013-10-07
Bolting reduces the quality and commercial yield of Welsh onion (Allium fistulosum L.) in production. However, seed production is directly dependent on flower induction and bolting. The Welsh onion belongs to the green plant vernalisation type, specific seedling characteristics and sufficient accumulated time at low temperature are indispensible for the completion of its vernalisation process. Only if these conditions for vernalisation are fulfilled, the plants will bolt in the following year. The present investigation evaluated the effects of cultivar, sowing date and transplant location in field on the bolting of Welsh onion at the Horticultural Farm of the College of Horticulture, Northwest A&F University, Yangling, Shannxi Province, China in two succeeding production years: 2010-2011 and 2011-2012. A strip split plot layout within a randomised complete block design with three replications was used. The results revealed that all three factors (cultivar, sowing date and transplant location) and their interaction had significant effects on the initiation and final rate of bolting observed by 30 April. The earliest bolting date (14 February, 2011 and 15 February, 2012) and the highest bolting rate (100% in 2011 and 62% in 2012) occurred when the JinGuan cultivar was sown on 20 August and transplanted in a plastic tunnel, whereas the latest date and lowest rate (no bolting observed until 30 April) of bolting occurred when the XiaHei cultivar was sown on 29 September and transplanted in an open field. These results suggest that we can control bolting in Welsh onion production by choosing an appropriate cultivar, sowing date and transplant location. Choosing a late bolting cultivar, such as cultivar XiaHei, sowing around October, and transplanting in the open field can significantly delay bolting, while a sowing date in late August should be selected for seed production, and the seedlings should be transplanted in a plastic tunnel to accelerate development of the flower buds.
Liu, Xueying; Lv, Shanshan; Liu, Ran; Fan, Shuangxi; Liu, Chaojie; Liu, Renyi; Han, Yingyan
2018-01-01
A cool temperature is preferred for lettuce cultivation, as high temperatures cause premature bolting. Accordingly, exploring the mechanism of bolting and preventing premature bolting is important for agriculture. To explore this relationship in depth, morphological, physiological, and transcriptomic analyses of the bolting-sensitive line S39 at the five-leaf stage grown at 37°C were performed in the present study. Based on paraffin section results, we observed that S39 began bolting on the seventh day at 37°C. During bolting in the heat-treated plants, GA3 and GA4 levels in leaves and the indoleacetic acid (IAA) level in the stem reached a maximum on the sixth day, and these high contents were maintained. Additionally, bolting begins in the fifth day after GA3 treatment in S39 plants, GA3 and GA4 increased and then decreased, reaching a maximum on the fourth day in leaves. Similarly, IAA contents reached a maximum in the stem on the fifth day. No bolting was observed in the control group grown at 25°C, and significant changes were not observed in GA3 and GA4 levels in the controls during the observation period. RNA-sequencing data implicated transcription factors (TFs) in regulating bolting in lettuce, suggesting that the high GA contents in the leaves and IAA in the stem promote bolting. TFs possibly modulate the expression of related genes, such as those encoding hormones, potentially regulating bolting in lettuce. Compared to the control group, 258 TFs were identified in the stem of the treatment group, among which 98 and 156 were differentially up- and down-regulated, respectively; in leaves, 202 and 115 TFs were differentially up- and down-regulated, respectively. Significant changes in the treated group were observed for C2H2 zinc finger, AP2-EREBP, and WRKY families, indicating that these TFs may play important roles in regulating bolting.
Meteoroid and Orbital Debris Threats to NASA's Docking Seals: Initial Assessment and Methodology
NASA Technical Reports Server (NTRS)
deGroh, Henry C., III; Nahra, Henry K.
2009-01-01
The Crew Exploration Vehicle (CEV) will be exposed to the Micrometeoroid Orbital Debris (MMOD) environment in Low Earth Orbit (LEO) during missions to the International Space Station (ISS) and to the micrometeoroid environment during lunar missions. The CEV will be equipped with a docking system which enables it to connect to ISS and the lunar module known as Altair; this docking system includes a hatch that opens so crew and supplies can pass between the spacecrafts. This docking system is known as the Low Impact Docking System (LIDS) and uses a silicone rubber seal to seal in cabin air. The rubber seal on LIDS presses against a metal flange on ISS (or Altair). All of these mating surfaces are exposed to the space environment prior to docking. The effects of atomic oxygen, ultraviolet and ionizing radiation, and MMOD have been estimated using ground based facilities. This work presents an initial methodology to predict meteoroid and orbital debris threats to candidate docking seals being considered for LIDS. The methodology integrates the results of ground based hypervelocity impacts on silicone rubber seals and aluminum sheets, risk assessments of the MMOD environment for a variety of mission scenarios, and candidate failure criteria. The experimental effort that addressed the effects of projectile incidence angle, speed, mass, and density, relations between projectile size and resulting crater size, and relations between crater size and the leak rate of candidate seals has culminated in a definition of the seal/flange failure criteria. The risk assessment performed with the BUMPER code used the failure criteria to determine the probability of failure of the seal/flange system and compared the risk to the allotted risk dictated by NASA's program requirements.
Meteoroid and Orbital Debris Threats to NASA's Docking Seals: Initial Assessment and Methodology
NASA Technical Reports Server (NTRS)
deGroh, Henry C., III; Gallo, Christopher A.; Nahra, Henry K.
2009-01-01
The Crew Exploration Vehicle (CEV) will be exposed to the Micrometeoroid Orbital Debris (MMOD) environment in Low Earth Orbit (LEO) during missions to the International Space Station (ISS) and to the micrometeoroid environment during lunar missions. The CEV will be equipped with a docking system which enables it to connect to ISS and the lunar module known as Altair; this docking system includes a hatch that opens so crew and supplies can pass between the spacecrafts. This docking system is known as the Low Impact Docking System (LIDS) and uses a silicone rubber seal to seal in cabin air. The rubber seal on LIDS presses against a metal flange on ISS (or Altair). All of these mating surfaces are exposed to the space environment prior to docking. The effects of atomic oxygen, ultraviolet and ionizing radiation, and MMOD have been estimated using ground based facilities. This work presents an initial methodology to predict meteoroid and orbital debris threats to candidate docking seals being considered for LIDS. The methodology integrates the results of ground based hypervelocity impacts on silicone rubber seals and aluminum sheets, risk assessments of the MMOD environment for a variety of mission scenarios, and candidate failure criteria. The experimental effort that addressed the effects of projectile incidence angle, speed, mass, and density, relations between projectile size and resulting crater size, and relations between crater size and the leak rate of candidate seals has culminated in a definition of the seal/flange failure criteria. The risk assessment performed with the BUMPER code used the failure criteria to determine the probability of failure of the seal/flange system and compared the risk to the allotted risk dictated by NASA s program requirements.
NASA Technical Reports Server (NTRS)
Crews, J. H., Jr.
1974-01-01
The stresses and strains in a uniaxially loaded sheet with an unloaded interference-fit bolt were calculated by an elastoplastic finite-element analysis. The material properties represented a 7075-T6 aluminum alloy sheet and a steel bolt. The analysis considered the two ideal cases of no slip and no friction at the bolt-sheet interface for a single combination of bolt diameter, interference level, and cyclic loading. When the bolt was inserted, the sheet deformed plastically near the hole; the first tensile load cycle produced additional yielding, but subsequent cycles to the same level caused only elastic cyclic stresses. These stresses together with fatigue data for unnotched specimens were used to estimate crack initiation periods and initiation sites. The cases analyzed with interference-fit bolts were predicted to have crack initiation periods which were about 50 times that for a clearance-fit bolt. Crack initiation was predicted to occur on the transverse axis at a distance of about one radius from the hole.
Numerical design and test on an assembled structure of a bolted joint with viscoelastic damping
NASA Astrophysics Data System (ADS)
Hammami, Chaima; Balmes, Etienne; Guskov, Mikhail
2016-03-01
Mechanical assemblies are subjected to many dynamic loads and modifications are often needed to achieve acceptable vibration levels. While modifications on mass and stiffness are well mastered, damping modifications are still considered difficult to design. The paper presents a case study on the design of a bolted connection containing a viscoelastic damping layer. The notion of junction coupling level is introduced to ensure that sufficient energy is present in the joints to allow damping. Static performance is then addressed and it is shown that localization of metallic contact can be used to meet objectives, while allowing the presence of viscoelastic materials. Numerical prediction of damping then illustrates difficulties in optimizing for robustness. Modal test results of three configurations of an assembled structure, inspired by aeronautic fuselages, are then compared to analyze the performance of the design. While validity of the approach is confirmed, the effect of geometric imperfections is shown and stresses the need for robust design.
Negative Stress Margins - Are They Real?
NASA Technical Reports Server (NTRS)
Raju, Ivatury S.; Lee, Darlene S.; Mohaghegh, Michael
2011-01-01
Advances in modeling and simulation, new finite element software, modeling engines and powerful computers are providing opportunities to interrogate designs in a very different manner and in a more detailed approach than ever before. Margins of safety are also often evaluated using local stresses for various design concepts and design parameters quickly once analysis models are defined and developed. This paper suggests that not all the negative margins of safety evaluated are real. The structural areas where negative margins are frequently encountered are often near stress concentrations, point loads and load discontinuities, near locations of stress singularities, in areas having large gradients but with insufficient mesh density, in areas with modeling issues and modeling errors, and in areas with connections and interfaces, in two-dimensional (2D) and three-dimensional (3D) transitions, bolts and bolt modeling, and boundary conditions. Now, more than ever, structural analysts need to examine and interrogate their analysis results and perform basic sanity checks to determine if these negative margins are real.
The Lateral Stability of Equal-flanged Aluminum-alloy I-beams Subjected to Pure Bending
NASA Technical Reports Server (NTRS)
Dumont, C; Hill, H N
1940-01-01
Equal-flange beams of a special extruded I-section of 27ST aluminum alloy were tested in pure bending. Complete end fixity was not attained. Loading was continued until a definite maximum value had been reached. Tensile tests were made on specimens cut from the flanges and the web of each beam. Compressive stress-strain characteristics were determined by pack compression tests on specimens cut from the flanges. Values computed from an equation previously suggested by one of the authors for the critical stress at which such beams become unstable were found to be in good agreement with values computed from experimentally determined critically bending moments.
Design, analysis, and testing of a metal matrix composite web/flange intersection
NASA Technical Reports Server (NTRS)
Biggers, S. B.; Knight, N. F., Jr.; Moran, S. G.; Olliffe, R.
1992-01-01
An experimental and analytical program to study the local design details of a typical T-shaped web/flange intersection made from a metal matrix composite is described. Loads creating flange bending were applied to specimens having different designs and boundary conditions. Finite element analyses were conducted on models of the test specimens to predict the structural response. The analyses correctly predict failure load, mode, and location in the fillet material in the intersection region of the web and the flange when specimen quality is good. The test program shows the importance of fabrication quality in the intersection region. The full-scale test program that led to the investigation of this local detail is also described.
Schematic construction of flanged nanobearings from double-walled carbon nanotubes.
Shenai, Prathamesh Mahesh; Zhao, Yang
2010-08-01
The performance of nanobearings constructed from double walled carbon nanotubes is considered to be crucially dependent on the initial rotational speed. Wearless rotation ceases for a nanobearing operating beyond a certain angular velocity. We propose a new design of nanobearings by manipulation of double walled carbon nanotubes leading to a flanged structure which possesses a built-in hindrance to the intertube oscillation without obstructing rotational motion. Through blocking the possible leakage path for rotational kinetic energy to the intertube oscillatory motion, the flanged bearing lowers its dissipative tendency when set into motion. Using molecular dynamics, it is shown that on account of its distinctive structure, the flanged bearing has superior operating characteristics and a broader working domain.
An elastic analysis of stresses in a uniaxially loaded sheet containing an interference-fit bolt
NASA Technical Reports Server (NTRS)
Crews, J. H., Jr.
1972-01-01
The stresses in a sheet with an interference-fit bolt have been calculated for two sheet-bolt interface conditions: a frictionless interface and a fixed (no-slip) interface. The stress distributions were calculated for various combinations of sheet and bolt moduli. The results show that for repeated loading the local stress range is significantly smaller if an interference bolt is used instead of a loosely fitting one. This reduction in local stress range is more pronounced when the ratio of bolt modulus to sheet modulus is large. The analysis also indicates that currently used standard values of interference cause yielding in the sheet.
Analysis on Sealing Reliability of Bolted Joint Ball Head Component of Satellite Propulsion System
NASA Astrophysics Data System (ADS)
Guo, Tao; Fan, Yougao; Gao, Feng; Gu, Shixin; Wang, Wei
2018-01-01
Propulsion system is one of the important subsystems of satellite, and its performance directly affects the service life, attitude control and reliability of the satellite. The Paper analyzes the sealing principle of bolted joint ball head component of satellite propulsion system and discuss from the compatibility of hydrazine anhydrous and bolted joint ball head component, influence of ground environment on the sealing performance of bolted joint ball heads, and material failure caused by environment, showing that the sealing reliability of bolted joint ball head component is good and the influence of above three aspects on sealing of bolted joint ball head component can be ignored.
MADS-Box Genes and Gibberellins Regulate Bolting in Lettuce (Lactuca sativa L.)
Han, Yingyan; Chen, Zijing; Lv, Shanshan; Ning, Kang; Ji, Xueliang; Liu, Xueying; Wang, Qian; Liu, Renyi; Fan, Shuangxi; Zhang, Xiaolan
2016-01-01
Bolting in lettuce is promoted by high temperature and bolting resistance is of great economic importance for lettuce production. But how bolting is regulated at the molecular level remains elusive. Here, a bolting resistant line S24 and a bolting sensitive line S39 were selected for morphological, physiological, transcriptomic and proteomic comparisons. A total of 12204 genes were differentially expressed in S39 vs. S24. Line S39 was featured with larger leaves, higher levels of chlorophyll, soluble sugar, anthocyanin and auxin, consistent with its up-regulation of genes implicated in photosynthesis, oxidation-reduction and auxin actions. Proteomic analysis identified 30 differentially accumulated proteins in lines S39 and S24 upon heat treatment, and 19 out of the 30 genes showed differential expression in the RNA-Seq data. Exogenous gibberellins (GA) treatment promoted bolting in both S39 and S24, while 12 flowering promoting MADS-box genes were specifically induced in line S39, suggesting that although GA regulates bolting in lettuce, it may be the MADS-box genes, not GA, that plays a major role in differing the bolting resistance between these two lettuce lines. PMID:28018414
Alignment Pins for Assembling and Disassembling Structures
NASA Technical Reports Server (NTRS)
Campbell, Oliver C.
2008-01-01
Simple, easy-to-use, highly effective tooling has been devised for maintaining alignment of bolt holes in mating structures during assembly and disassembly of the structures. The tooling was originally used during removal of a body flap from the space shuttle Atlantis, in which misalignments during removal of the last few bolts could cause the bolts to bind in their holes. By suitably modifying the dimensions of the tooling components, the basic design of the tooling can readily be adapted to other structures that must be maintained in alignment. The tooling includes tapered, internally threaded alignment pins designed to fit in the bolt holes in one of the mating structures, plus a draw bolt and a cup that are used to install or remove each alignment pin. In preparation for disassembly of two mating structures, external supports are provided to prevent unintended movement of the structures. During disassembly of the structures, as each bolt that joins the structures is removed, an alignment pin is installed in its place. Once all the bolts have been removed and replaced with pins, the pins maintain alignment as the structures are gently pushed or pulled apart on the supports. In assembling the two structures, one reverses the procedure described above: pins are installed in the bolt holes, the structures are pulled or pushed together on the supports, then the pins are removed and replaced with bolts. The figure depicts the tooling and its use. To install an alignment pin in a bolt hole in a structural panel, the tapered end of the pin is inserted from one side of the panel, the cup is placed over the pin on the opposite side of the panel, the draw bolt is inserted through the cup and threaded into the pin, the draw bolt is tightened to pull the pin until the pin is seated firmly in the hole, then the draw bolt and cup are removed, leaving the pin in place. To remove an alignment pin, the cup is placed over the pin on the first-mentioned side of the panel, the draw bolt is inserted through the cup and threaded into the pin, then the draw bolt is tightened to pull the pin out of the hole.
Sleeve expansion of bolt holes in railroad rail. volume III - field experiment results
DOT National Transportation Integrated Search
1998-02-01
The bolt-hole cold-expansion process has been demonstrated by laboratory tests to significantly affect the initiation and propagation of fatigue cracks from rail bolt holes such that a reduction of the incidence of rail-bolt-holde failure in cold-exp...
Behavior of Double-Web Angles Beam to column connections
NASA Astrophysics Data System (ADS)
Fakih, K. Al; Chin, S. C.; Doh, S. I.
2018-04-01
This paper contains the study performed on the behavior of double-web angles by using finite element analysis computer package known as “Abaqus”. The aim of this present study was simulating the behavior of double-web angles (DWA) steel connections. The purpose of this article is to provide the basis for the fastest and most economical design and analysis and to ensure the required steel connection strength. This study, started used review method of behavior of steel beam-to-column bolted connections. Two models of different cross-section were examined under the effect of concentrated load and different boundary conditions. In all the studied case, material nonlinearity was accounted. A sample study on DWA connections was carried out using both material and geometric nonlinearities. This object will be of great value to anyone who wants to better understand the behavior of the steel beam to column connection. The results of the study have a field of reference for future research for members of the development of the steel connection approach with simulation model design.
A Novel RFID-Based Sensing Method for Low-Cost Bolt Loosening Monitoring
Wu, Jian; Cui, Xingmei; Xu, Yunpeng
2016-01-01
In coal mines, bolt loosening in the cage guide is affected by the harsh environmental factors and cage hoist vibration, leading to significant threats to work safety. It is crucial, to this effect, to successfully detect the status of multipoint bolts of guide structures. This paper proposes a system to monitor bolt status in harsh environments established based on the RFID technique. A proof-of-concept model was demonstrated consisting of a bolt gearing system, passive UHF RFID tags, a reader, and monitoring software. A tinfoil metal film is fixed on the retaining plate and an RFID tag bonded to a large gear, with the bolt to be detected fixed in the center of a smaller gear. The radio-frequency signal cannot be received by the reader if the tag is completely obscured by the tinfoil, and if the bolt is loose, the tag’s antenna is exposed when the gear revolves. A radio-frequency signal that carries corresponding bolt’s information is transmitted by the RFID tag to the RFID reader due to coil coupling, identifying loose bolt location and reporting them in the software. Confirmatory test results revealed that the system indeed successfully detects bolt loosening and comparative test results (based on a reed switch multipoint bolt loosening monitor system) provided valuable information regarding the strengths and weaknesses of the proposed system. PMID:26828498
Optimum design of bolted composite lap joints under mechanical and thermal loading
NASA Astrophysics Data System (ADS)
Kradinov, Vladimir Yurievich
A new approach is developed for the analysis and design of mechanically fastened composite lap joints under mechanical and thermal loading. Based on the combined complex potential and variational formulation, the solution method satisfies the equilibrium equations exactly while the boundary conditions are satisfied by minimizing the total potential. This approach is capable of modeling finite laminate planform dimensions, uniform and variable laminate thickness, laminate lay-up, interaction among bolts, bolt torque, bolt flexibility, bolt size, bolt-hole clearance and interference, insert dimensions and insert material properties. Comparing to the finite element analysis, the robustness of the method does not decrease when modeling the interaction of many bolts; also, the method is more suitable for parametric study and design optimization. The Genetic Algorithm (GA), a powerful optimization technique for multiple extrema functions in multiple dimensions search spaces, is applied in conjunction with the complex potential and variational formulation to achieve optimum designs of bolted composite lap joints. The objective of the optimization is to acquire such a design that ensures the highest strength of the joint. The fitness function for the GA optimization is based on the average stress failure criterion predicting net-section, shear-out, and bearing failure modes in bolted lap joints. The criterion accounts for the stress distribution in the thickness direction at the bolt location by applying an approach utilizing a beam on an elastic foundation formulation.
Laboratory testing of a long expansion rock bolt support for energy-absorbing applications
NASA Astrophysics Data System (ADS)
Skrzypkowski, Krzysztof
2018-01-01
The main purpose of rock support and reinforcement in underground mining is to maintain excavations safe and open for their intended lifespan. The basic type of rock mass reinforcement method both in ore and hard coal mining is rock bolt support. Very often, existing bolt support systems are not always capable of providing a reliable controlled performance. Therefore, in recent years energy-absorbing bolts which are exposed to dynamic loading, for example from rock burst caused by high rock stresses, earthquakes, or blasting have appeared. In this article particular attention was paid to short and long expansion bolts. Quasi-static tests of expansion bolts were carried out at the laboratory test facility in simulated mining conditions, especially for the KGHM Polska Miedź S.A. mines. In the underground mines of the Legnica-Głogów Copper District (LGOM) the main way to protect the room excavation is rock bolt support with a length from 1.2 m to 2.6 m. Rock bolt support longer than 2.6 m is considered as additional support of excavations and is increasingly being used to reinforce the roofs. The comparisons of energy-absorbing short and long expansion bolts with a length of 1.8m, 3.6m and 5.2m were presented. In addition, for elastic and plastic range of each bolts were determined.
NASA Technical Reports Server (NTRS)
1978-01-01
In photo, an engineer is using a new Ultrasonic Bolt Stress Monitor developed by NASA's Langley Research Center to determine whether a bolt is properly tightened. A highly accurate device, the monitor is an important tool in construction of such structures as pressure vessels, bridges and power plants, wherein precise measurement of the stress on a tightened bolt is critical. Overtightened or undertightened bolts can fail and cause serious industrial accidents or costly equipment break-downs. There are a number of methods for measuring bolt stress. Most widely used and least costly is the torque wrench, which is inherently inaccurate; it does not take into account the friction between nut and bolt, which has an influence on stress. At the other end of the spectrum, there are accurate stress-measuring systems, but they are expensive and not portable. The battery-powered Langley monitor fills a need; it is inexpensive, lightweight, portable and extremely accurate because it is not subject to friction error. Sound waves are transmitted to the bolt and a return signal is received. As the bolt is tightened, it undergoes changes in resonance due to stress, in the manner that a violin string changes tone when it is tightened. The monitor measures the changes in resonance and provides a reading of real stress on the bolt. The device, patented by NASA, has aroused wide interest and a number of firms have applied for licenses to produce it for the commercial market.
Development of flange and reticulate wall ingrowths in maize (Zea mays L.) endosperm transfer cells.
Monjardino, Paulo; Rocha, Sara; Tavares, Ana C; Fernandes, Rui; Sampaio, Paula; Salema, Roberto; da Câmara Machado, Artur
2013-04-01
Maize (Zea mays L.) endosperm transfer cells are essential for kernel growth and development so they have a significant impact on grain yield. Although structural and ultrastructural studies have been published, little is known about the development of these cells, and prior to this study, there was a general consensus that they contain only flange ingrowths. We characterized the development of maize endosperm transfer cells by bright field microscopy, transmission electron microscopy, and confocal laser scanning microscopy. The most basal endosperm transfer cells (MBETC) have flange and reticulate ingrowths, whereas inner transfer cells only have flange ingrowths. Reticulate and flange ingrowths are mostly formed in different locations of the MBETC as early as 5 days after pollination, and they are distinguishable from each other at all stages of development. Ingrowth structure and ultrastructure and cellulose microfibril compaction and orientation patterns are discussed during transfer cell development. This study provides important insights into how both types of ingrowths are formed in maize endosperm transfer cells.
Shear joint capability versus bolt clearance
NASA Technical Reports Server (NTRS)
Lee, H. M.
1992-01-01
The results of a conservative analysis approach into the determination of shear joint strength capability for typical space-flight hardware as a function of the bolt-hole clearance specified in the design are presented. These joints are comprised of high-strength steel fasteners and abutments constructed of aluminum alloys familiar to the aerospace industry. A general analytical expression was first arrived at which relates bolt-hole clearance to the bolt shear load required to place all joint fasteners into a shear transferring position. Extension of this work allowed the analytical development of joint load capability as a function of the number of fasteners, shear strength of the bolt, bolt-hole clearance, and the desired factor of safety. Analysis results clearly indicate that a typical space-flight hardware joint can withstand significant loading when less than ideal bolt hole clearances are used in the design.
Nitrile O-ring Cracking: A Case of Vacuum Flange O-ring Failures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dees, Craig
2016-07-01
A review of recent nitrile O-ring failures in ISO-KF vacuum flange connections in glovebox applications is presented. An investigation of a single “isolated” o-ring failure leads to the discovery of cracked nitrile o-rings in a glovebox atmospheric control unit. The initial cause of the o-ring failure is attributed to ozone degradation. However, additional investigation reveals nitrile o-ring cracking on multiple gloveboxes and general purpose piping, roughly 85% of the nitrile o-rings removed for inspection show evidence of visible cracking after being in service for 18 months or less. The results of material testing and ambient air testing is presented, elevatedmore » ozone levels are not found. The contributing factors of o-ring failure, including nitrile air sensitivity, inadequate storage practices, and poor installation techniques, are discussed. A discussion of nitrile o-ring material properties, the benefits and limitations, and alternate materials are discussed. Considerations for o-ring material selection, purchasing, storage, and installation are presented in the context of lessons learned from the nitrile o-ring cracking investigation. This paper can be presented in 20 minutes and does not require special accommodations or special audio visual devices.« less
77 FR 63268 - Airworthiness Directives; Airbus Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-16
... link bolts, center sway link bolts, and thrust link bolts on the forward engine mounts. This proposed... forward engine mounts. This condition, if left uncorrected, could result in a deterioration of the structural integrity of the front engine mount bolts [and possible damage to an engine or wing]. For the...
Sleeve Expansion of Bolt Holes in Railroad Rail : Volume I, Description and Planning
DOT National Transportation Integrated Search
1980-02-01
The most predominant failure mode of rails with bolt joints is a web crack initiating at the rail bolt hole. This failure mode is of a classical fatigue nature induced by web stress concentration around the bolt hole. This program was conducted to ap...
Code of Federal Regulations, 2014 CFR
2014-07-01
... would not anchor in competent strata, corrective action shall be taken. (3) The installed torque or.... (4) In each roof bolting cycle, the actual torque or tension of the first tensioned roof bolt... drill head used, at least one roof bolt out of every four installed shall be measured for actual torque...
33. Three bolts on railing outside control house on north ...
33. Three bolts on railing outside control house on north tower, one bolt on first handrail post of the north span (bridge is in the open position). As the bridge opens or closes the single bolt on the handrail post moves past the three stationary bolts. This system is used by the bridge operator to judge speed and position of the north span as it opens or closes. Based on these bolts movement of the north span is speeded up or slowed down and the brakes applied during the opening and closing process. View facing east. - Henry Ford Bridge, Spanning Cerritos Channel, Los Angeles-Long Beach Harbor, Los Angeles, Los Angeles County, CA
Conceptual Design Study on Bolts for Self-Loosing Preventable Threaded Fasteners
NASA Astrophysics Data System (ADS)
Noma, Atsushi; He, Jianmei
2017-11-01
Threaded fasteners using bolts is widely applied in industrial field as well as various fields. However, threaded fasteners using bolts have loosing problems and cause many accidents. In this study, the purpose is to obtain self-loosing preventable threaded fasteners by applying spring characteristic effects on bolt structures. Helical-cutting applied bolt structures is introduced through three dimensional (3D) CAD modeling tools. Analytical approaches for evaluations on the spring characteristic effects helical-cutting applied bolt structures and self-loosing preventable performance of threaded fasteners were performed using finite element method and results are reported. Comparing slackness test results with analytical results and more details on evaluating mechanical properties will be executed in future study.
NASA Astrophysics Data System (ADS)
Fish, Philip E.
1995-05-01
In 1978, Wisconsin Department of Transportation discovered major cracking on a two-girder, fracture critical structure, just four years after it was constructed. In 1981, on the same structure, now seven years old, major cracking was discovered in the tie girder flange of the tied arch span. This is one example of the type of failures that transportation departments discovered on welded structures in the 1970's and '80's. The failures from welded details and pinned connections lead to much stricter standards for present day designs. All areas were affected: design with identification of fatigue-prone details and classification of fatigue categories; material requirements with emphasis on toughness and weldability; increased welding and fabrication standards with licensure of fabrication shops to minimum quality standards including personnel; and an increased effort on inspection of existing bridges, where critical details were overlooked or missed in the past. FHWA inspection requirements for existing structures increased through this same time period, in reaction to the failures that had occurred. Obviously, many structures in Wisconsin were not built to the standards now required, thus the importance for quality inspection techniques. The new FHWA inspection requirements now being implemented throughout the nation require an in-depth, hands-on type inspection at a specified frequency, on all fracture critical structures. Wisconsin Department of Transportation started an in-depth inspection program in 1985 and made it a full time program in 1987. This program included extensive nondestructive testing. Ultrasonic inspection has played a major role in this type of inspection. All fracture critical structures, pin and hanger systems, and pinned connections are inspected on a five-year cycle now. The program requires an experienced inspection team and a practical inspection approach. Extensive preparation is required with review of all design, construction, and maintenance documents. An inspection plan is developed from the review and downloaded to a laptop computer. Inspection emphasis are on 'hands on' visual and nondestructive evaluation. Report documentation includes all design plans, pictorial documentation of structural deficiencies, nondestructive evaluation reports, conclusions, and recommendations. Planned changes in the program include implementation of an engineering work station as a 'single source' information file and reporting file for the inspection program. This would include scanning all current information into the file such as design, construction, and maintenance history. It would also include all inspection data with pictures. Inspections would be performed by downloading data onto a laptop and then uploading after completion of inspection. Pictures and nondestructive data would be entered by digital disks.
NASA Technical Reports Server (NTRS)
2002-01-01
Developed in response to a NASA requirement to remotely measure tension in critical bolts on the International Space Station, the SureBolt(TM) Correlation Bolt Gage is the first ultrasonic system to capture an entire "echo" pulse for determining the change in time of flight of an ultrasonic signal traversing a fastener for tension measurement. The standard SureBolt system hardware has the capability of recording over 1 million bolt tension readings-with their complete waveforms-in Microsoft Excel-compatible format. The user- friendly Tension-Not-Torque(Copyright) software interface offers tension change graphing in real time, and a place to store field notes, special parameters, tension calibration constants, and temperature changes for each measurement. The technology has been used on fasteners as small as fine-threaded, 1-inch bolts, and as large as 18-inch-diameter by 30-foot-long tie rods. SureBolt is finding increased application within NASA and the aerospace industry, as well as in the automotive and nuclear industries.
Removable Type Expansion Bolt Innovative Design
NASA Astrophysics Data System (ADS)
Wang, Feng-Lan; Zhang, Bo; Gao, Bo; Liu, Yan-Xin; Gao, Bo
2016-05-01
Expansion bolt is a kind of the most common things in our daily life. Currently, there are many kinds of expansion bolts in the market. However, they have some shortcomings that mainly contain underuse and unremovement but our innovation of design makes up for these shortcomings very well. Principle of working follows this: expansion tube is fixed outside of bolt, steel balls and expansion covers are fixed inside. Meanwhile, the steel balls have 120° with each other. When using it ,expansion cover is moved in the direction of its internal part. So the front part of expansion bolt cover is increasingly becoming big and steel halls is moved outside. Only in this way can it be fixed that steel balls make expansion tube expand. When removing them, expansion bolt is moved outside. So the front part of expansion bolt cover is gradually becoming small and steel balls moves inside, after expansion tube shrinks, we can detach them.
Experimental study on the effect of shape of bolt and nut on fatigue strength for bolted joint
NASA Astrophysics Data System (ADS)
Matsunari, T.; Oda, K.; Tsutsumi, N.; Yakushiji, T.; Noda, N. A.; Sano, Y.
2018-06-01
In this study, the effect of curvature radius of the thread bottom and the pitch difference between of M16 bolt and nut on fatigue strength for bolted joint is considered experimentally. The M16 bolt-nut specimens having the two kinds of thread bottom radii and the pitch differences are prepared. The S-N curves for bolted specimens with different thread shapes are obtained by the stress-controlled fatigue test (stress ratio R>0). The experimental results are compared and discussed in terms of stress analysis. The finite element method is used to make a simulation of the fatigue experiment and the mean stress and stress amplitude at each thread bottom of bolt are analysed. It is found that the initiation and propagation of crack are changed by introducing the pitch difference of α=15 μm from the crack observation in cross section of the bolt specimens after the experiment. Furthermore, the fatigue life can be extended by increasing curvature radius of thread bottom and introducing the pitch difference.
Relationship between locking-bolt torque and load pre-tension in the Ilizarov frame.
Osei, N A; Bradley, B M; Culpan, P; Mitchell, J B; Barry, M; Tanner, K E
2006-10-01
The wire-bolt interface in an Ilizarov frame has been mechanically tested. The optimal torque to be applied to the frame locking-bolts during physiological loading has been defined. The set-up configuration was as is used clinically except a copper tube was used to simulate bone. The force-displacement curves of the Ilizarov wires are not altered by locking-bolt torque. The force in the bone model at which pre-tension is lost increases as the locking-bolts are tightened to 14 Nm torque, but decreases if torque exceeds 14 Nm. Thus, 14 Nm is the optimal locking-bolt torque in frame. The relationship between pre-tension versus load for different locking-bolt torques arises because at low and high clamping torques poor wire holding and plastic deformation respectively occur. Wire damage was seen under light and electron microscopy. Clinically, over or under-tightening locking-bolts will cause loss of pre-tension, reduction in frame stiffness and excessive movement at the fracture site, which may be associated with delayed union.
Causes of Failure of High-Tensile Stud Bolts Used for Joining Metal Parts of Tower Crane
NASA Astrophysics Data System (ADS)
Tingaev, A. K.; Gubaydulin, R. G.; Shaburova, N. A.
2017-11-01
The causes of the failure of a high-tensile stud 2M48-6gx500 10.9 made from steel grade 30HGSA which led to a temporary inoperability of a tower crane were investigated. The bolts were used to assemble the tower sections and collapsed after 45 days from the moment the crane was commissioned. The cracks in the fracture are identified as fatigue with the characteristic sites of nucleation, sustainable development and static dolomite. To determine the possible causes of stud bolts destruction, metallographic, durometric and mechanical tests were carried out from which it follows that the stud bolt material in its original state corresponded to the delivery conditions. The destruction of the stud bolt appears to have resulted from a combination of several unfavorable factors: uncertainty about the actual tension of the stud bolt due to the lack of information about the magnitude of the twist factor; partial displacement of the centers of the brackets holes and rotation of the stud bolt axis during the sections’ assembly; no tight contact on the support surfaces of the section brackets. All this led to a discrepancy between the actual design of the stud bolt, the appearance of additional forces and the destruction of the stud bolt.
NASA Technical Reports Server (NTRS)
Kradinov, V.; Madenci, E.; Ambur, D. R.
2004-01-01
Although two-dimensional methods provide accurate predictions of contact stresses and bolt load distribution in bolted composite joints with multiple bolts, they fail to capture the effect of thickness on the strength prediction. Typically, the plies close to the interface of laminates are expected to be the most highly loaded, due to bolt deformation, and they are usually the first to fail. This study presents an analysis method to account for the variation of stresses in the thickness direction by augmenting a two-dimensional analysis with a one-dimensional through the thickness analysis. The two-dimensional in-plane solution method based on the combined complex potential and variational formulation satisfies the equilibrium equations exactly, and satisfies the boundary conditions and constraints by minimizing the total potential. Under general loading conditions, this method addresses multiple bolt configurations without requiring symmetry conditions while accounting for the contact phenomenon and the interaction among the bolts explicitly. The through-the-thickness analysis is based on the model utilizing a beam on an elastic foundation. The bolt, represented as a short beam while accounting for bending and shear deformations, rests on springs, where the spring coefficients represent the resistance of the composite laminate to bolt deformation. The combined in-plane and through-the-thickness analysis produces the bolt/hole displacement in the thickness direction, as well as the stress state in each ply. The initial ply failure predicted by applying the average stress criterion is followed by a simple progressive failure. Application of the model is demonstrated by considering single- and double-lap joints of metal plates bolted to composite laminates.
Wosar, Marc A; Marcellin-Little, Denis J; Roe, Simon C
2002-01-01
To evaluate the effects of bolt torque, wire size, and component reuse on the ability to maintain wire tension in 3 external skeletal fixation systems. Biomechanical study. Yield strength in tension of 1.0-, 1.2-, 1.5-, and 1.6-mm-diameter wires, and yield strength in torque of Hofmann Small Bone Fixation (SBF) cannulated and slotted bolts and IMEX regular and miniature bolts were determined on a testing machine. The minimum bolt tightening torque needed to prevent wire slippage at clinically recommended wire tensions was determined. Components were tested 10 times, and loads at slippage were recorded. The IMEX system required a mean of 8 Nm of bolt tightening torque to maintain 900 N (1.6-mm wires). The SBF system required a mean of 3 Nm bolt torque to maintain 300 N (1.0-mm wires) and 5 Nm to maintain 600 N (1.2-mm wires). The SBF cannulated bolt required 9 Nm of torque to maintain 900 N (1.5-mm wires). The SBF slotted bolts could only maintain 800 N before yield. The IMEX miniature system required a mean bolt torque of 1.1 Nm to maintain 300 N. The cannulated and slotted bolts from both manufacturers failed to maintain 70% of initial wire tension after 7 and 4 uses, respectively. The IMEX systems and the SBF system using 1.0- and 1.2-mm wires could maintain clinically recommended wire tension safely. Only the IMEX system could maintain clinically recommended wire tension safely using 1.5- or 1.6-mm wires. The SBF system using 1.0- and 1.2-mm wires and the IMEX system using all wire sizes can maintain clinically relevant wire tension. The SBF system using 1.5-mm wires could not. Cannulated and slotted bolts should not be used more than 6 and 3 times, respectively. Nuts should not be reused. Copyright 2002 by The American College of Veterinary Surgeons
Non-destructive testing of full-length bonded rock bolts based on HHT signal analysis
NASA Astrophysics Data System (ADS)
Shi, Z. M.; Liu, L.; Peng, M.; Liu, C. C.; Tao, F. J.; Liu, C. S.
2018-04-01
Full-length bonded rock bolts are commonly used in mining, tunneling and slope engineering because of their simple design and resistance to corrosion. However, the length of a rock bolt and grouting quality do not often meet the required design standards in practice because of the concealment and complexity of bolt construction. Non-destructive testing is preferred when testing a rock bolt's quality because of the convenience, low cost and wide detection range. In this paper, a signal analysis method for the non-destructive sound wave testing of full-length bonded rock bolts is presented, which is based on the Hilbert-Huang transform (HHT). First, we introduce the HHT analysis method to calculate the bolt length and identify defect locations based on sound wave reflection test signals, which includes decomposing the test signal via empirical mode decomposition (EMD), selecting the intrinsic mode functions (IMF) using the Pearson Correlation Index (PCI) and calculating the instantaneous phase and frequency via the Hilbert transform (HT). Second, six model tests are conducted using different grouting defects and bolt protruding lengths to verify the effectiveness of the HHT analysis method. Lastly, the influence of the bolt protruding length on the test signal, identification of multiple reflections from defects, bolt end and protruding end, and mode mixing from EMD are discussed. The HHT analysis method can identify the bolt length and grouting defect locations from signals that contain noise at multiple reflected interfaces. The reflection from the long protruding end creates an irregular test signal with many frequency peaks on the spectrum. The reflections from defects barely change the original signal because they are low energy, which cannot be adequately resolved using existing methods. The HHT analysis method can identify reflections from the long protruding end of the bolt and multiple reflections from grouting defects based on mutations in the instantaneous frequency, which makes weak reflections more noticeable. The mode mixing phenomenon is observed in several tests, but this does not markedly affect the identification results due to the simple medium in bolt tests. The mode mixing can be reduced by ensemble EMD (EEMD) or complete ensemble EMD with adaptive noise (CEEMDAN), which are powerful tools to used analyze the test signal in a complex medium and may play an important role in future studies. The HHT bolt signal analysis method is a self-adaptive and automatic process, which can be programed as analysis software and will make bolt tests more convenient in practice.
NASA Technical Reports Server (NTRS)
Bishop, R.
1983-01-01
Threaded fastener locks parts securely together despite together large loosening torques, even under conditions of high temperature and vibration. Positive locking action is suitable for use where conventional fasteners tend to work loose--for example, on high-speed rotating machinery. Bolt, nut and key are joined together so key occupies alined slots in bolt and nut and prevents nut from rotating off bolt.
NASA Technical Reports Server (NTRS)
Crews, J. H., Jr.
1975-01-01
A fatigue analysis, based on finite-element calculations and fatigue tests, was conducted for an aluminum-alloy sheet specimen with a steel interference-fit bolt. The stress analysis of the region near the bolt hole showed that the beneficial effect of an interference-fit bolt can be interpreted as the combined result of two effects: (1) load transfer through the bolt and (2) the compressive interference stresses in the sheet. Results of the fatigue tests show that progressively higher interference levels produced longer fatigue lives. The tests also show that a high level of interference prevents fretting at the bolt-sheet interface and that interferences larger than this level produced little additional improvement in fatigue life.
Update on slip and wear in multi-layer azimuth track systems
NASA Astrophysics Data System (ADS)
Juneja, Gunjeet; Kan, Frank W.; Antebi, Joseph
2006-06-01
Many antennas, such as the 100-m Green Bank Telescope, use a wheel-on-track systems in which the track segments consist of wear plates mounted on base plates. The wear plates are typically 2 to 3 inches thick and are case hardened or through hardened. The base plates are usually 3 to 4 times thicker than the wear plates and are not hardened. The wear plates are typically connected to the base plates using bolts. The base plates are supported on grout and anchored to the underlying concrete foundation. For some antennas, slip has been observed between the wear plate and base plate, and between the base plate and the grout, with the migration in the wheel rolling direction. In addition, there has been wear at the wear plate/base plate interface. This paper is an update on the evaluation of GBT track retrofit. The paper describes the use of three-dimensional non-linear finite element analyses to understand and evaluate the behavior of (1) the existing GBT wheel-on-track system with mitered joints, and (2) the various proposed modifications. The modifications include welding of the base plate joints, staggering of the wear plate joints from the base plate joints, changing thickness of the wear plate, and increasing bolt diameter and length. Parameters included in the evaluation were contact pressure, relative slip, wear at the wear plate/base plate interface, and bolt shears and moments.
Development of elastomeric isolators to reduce roof bolting machine drilling noise
Michael, Robert; Yantek, David; Johnson, David; Ferro, Ernie; Swope, Chad
2015-01-01
Among underground coal miners, hearing loss remains one of the most common occupational illnesses. In response to this problem, the National Institute for Occupational Safety and Health (NIOSH) Office of Mine Safety and Health Research (OMSHR) conducts research to reduce the noise emission of underground coal-mining equipment, an example of which is a roof bolting machine. Field studies show that, on average, drilling noise is the most significant contributor to a roof bolting machine operator’s noise exposure. NIOSH OMSHR has determined that the drill steel and chuck are the dominant sources of drilling noise. NIOSH OMSHR, Corry Rubber Corporation, and Kennametal, Inc. have developed a bit isolator that breaks the steel-to-steel link between the drill bit and drill steel and a chuck isolator that breaks the mechanical connection between the drill steel and the chuck, thus reducing the noise radiated by the drill steel and chuck, and the noise exposure of the roof bolter operator. This paper documents the evolution of the bit isolator and chuck isolator including various alternative designs which may enhance performance. Laboratory testing confirms that production bit and chuck isolators reduce the A-weighted sound level generated during drilling by 3.7 to 6.6 dB. Finally, this paper summarizes results of a finite element analysis used to explore the key parameters of the drill bit isolator and chuck isolator to understand the impact these parameters have on noise. PMID:26568650
Bulkhead insert for an internal combustion engine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maki, Clifford E.; Chottiner, Jeffrey Eliot; Williams, Rick L.
An engine includes a cylinder block defining at least one main bearing bulkhead adjacent to a cylinder, and a crankshaft rotatably housed within the block by a main bearing. A bulkhead insert has a cap portion, and an insert portion provided within the bulkhead. The insert portion has having first and second end regions connected by first and second straps. Each strap having a flanged beam cross section. The first and second ends of the insert portion are configured to connect a main bearing cap column to a cylinder head column. Each of the first and second end regions definemore » at least one protrusion having a surface substantially normal to engine combustion and reactive loads. The cap portion is configured to mate with the first end region at the main bearing cap column and support the main bearing.« less
High performance fuel element with end seal
Lee, Gary E.; Zogg, Gordon J.
1987-01-01
A nuclear fuel element comprising an elongate block of refractory material having a generally regular polygonal cross section. The block includes parallel, spaced, first and second end surfaces. The first end surface has a peripheral sealing flange formed thereon while the second end surface has a peripheral sealing recess sized to receive the flange. A plurality of longitudinal first coolant passages are positioned inwardly of the flange and recess. Elongate fuel holes are separate from the coolant passages and disposed inwardly of the flange and the recess. The block is further provided with a plurality of peripheral second coolant passages in general alignment with the flange and the recess for flowing coolant. The block also includes two bypasses for each second passage. One bypass intersects the second passage adjacent to but spaced from the first end surface and intersects a first passage, while the other bypass intersects the second passage adjacent to but spaced from the second end surface and intersects a first passage so that coolant flowing through the second passages enters and exits the block through the associated first passages.
Do flexible acrylic resin lingual flanges improve retention of mandibular complete dentures?
Ahmed Elmorsy, Ayman Elmorsy; Ahmed Ibraheem, Eman Mostafa; Ela, Alaa Aboul; Fahmy, Ahmed; Nassani, Mohammad Zakaria
2015-01-01
Objectives: The aim of this study was to compare the retention of conventional mandibular complete dentures with that of mandibular complete dentures having lingual flanges constructed with flexible acrylic resin “Versacryl.” Materials and Methods: The study sample comprised 10 completely edentulous patients. Each patient received one maxillary complete denture and two mandibular complete dentures. One mandibular denture was made of conventional heat-cured acrylic resin and the other had its lingual flanges made of flexible acrylic resin Versacryl. Digital force-meter was used to measure retention of mandibular dentures at delivery and at 2 weeks and 45 days following denture insertion. Results: The statistical analysis showed that at baseline and follow-up appointments, retention of mandibular complete dentures with flexible lingual flanges was significantly greater than retention of conventional mandibular dentures (P < 0.05). In both types of mandibular dentures, retention of dentures increased significantly over the follow-up period (P < 0.05). Conclusions: The use of flexible acrylic resin lingual flanges in the construction of mandibular complete dentures improved denture retention. PMID:26539387
Test and Analysis of Composite Hat Stringer Pull-off Test Specimens
NASA Technical Reports Server (NTRS)
Li, Jian; OBrien, T. Kevin; Rousseau, Carl Q.
1996-01-01
Hat stringer pull-off tests were performed to evaluate the delamination failure mechanisms in the flange region for a rod-reinforced hat stringer section. A special test fixture was used to pull the hat off the stringer while reacting the pull-off load through roller supports at both stringer flanges. Microscopic examinations of the failed specimens revealed that failure occurred at the ply termination in the flange area where the flange of the stiffener is built up by adding 45/-45 tape plies on the top surface. Test results indicated that the as-manufactured microstructure in the flange region has a strong influence on the delamination initiation and the associated pull-off loads. Finite element models were created for each specimen with a detailed mesh based on micrographs of the critical location. A fracture mechanics approach and a mixed mode delamination criterion were used to predict the onset of delamination and the pull-off load. By modeling the critical local details of each specimen from micrographs, the model was able to accurately predict the hat stringer pull-off loads and replicate the variability in the test results.
Waveguide Power-Amplifier Module for 80 to 150 GHz
NASA Technical Reports Server (NTRS)
Samoska, Lorene; Weinreb, Sander; Peralta, Alejandro
2006-01-01
A waveguide power-amplifier module capable of operating over the frequency range from 80 to 150 GHz has been constructed. The module comprises a previously reported power amplifier packaged in a waveguide housing that is compatible with WR-8 waveguides. (WR- 8 is a standard waveguide size for the nominal frequency range from 90 to 140 GHz.) The waveguide power-amplifier module is robust and can be bolted to test equipment and to other electronic circuits with which the amplifier must be connected for normal operation.
NASA Astrophysics Data System (ADS)
Faria, J.; Silva, J.; Bernardo, P.; Araújo, M.; Alves, J. L.
2016-08-01
The manufacturing process and the behaviour of a spring manufactured from an aluminium sheet is described and investigated in this work considering the specifications for the in-service conditions. The spring is intended to be applied in car multimedia industry to replace bolted connections. Among others, are investigated the roles of the constitutive parameters and the hypothesis of evolutive elastic properties with the plastic work in the multistep forming process and in working conditions.
NASA Astrophysics Data System (ADS)
Sumaidi; Suprobo, P.; Wahyuni, E. dan
2018-01-01
Screw connection is prefered used by apllicator because of it’s simple. Type of screw usually used is Self Drilling Screw (SDS). This type of screw will become fix as it’s screwed by the applicator until its head . almost all applicator able to make this connection and do not need some course or sertificate to become an applicator, does not like applicator of High Tension Bolt, HTB. But this type of connection has some disadvantages, for example it’s connection doest not suit to dynamic loading. the experiment results that galvalume material has Yeilding Force, fy = 580 Mpa and Ultimate Force, fu = 590 Mpa. Connection of 2 SDS screw vertically configured fail on about tension loading 6000 N less than horizontally configured that fail on about 7500 N. Displacement of 2 SDS screw vertically configure on about 0.6 mm less than horizontally one that fail on displacement 0.85 mm. For adhesive of Sikadur CF 31 connection fail on loading about 6000 N tension loading but its displacement is less than 0.5 mm when it fail, for 2 type of connection configured.
Concept of modernization of input device of oil and gas separator
NASA Astrophysics Data System (ADS)
Feodorov, A. B.; Afanasov, V. I.; Miroshnikov, R. S.; Bogachev, V. V.
2017-10-01
The process of defoaming in oil production is discussed. This technology is important in oil and gas fields. Today, the technology of separating the gas fraction is based on chemical catalysis. The use of mechanical technologies improves the economics of the process. Modernization of the separator input device is based on the use of long thin tubes. The chosen length of the tubes is two orders of magnitude larger than the diameter. The separation problem is solved by creating a high centrifugal acceleration. The tubes of the input device are connected in parallel and divide the input stream into several arms. The separated fluid flows are directed tangentially into the working tubes to create a vortex motion. The number of tubes connected in parallel is calculated in accordance with the flow rate of the fluid. The connection of the working tubes to the supply line is made in the form of a flange. This connection allows carrying out maintenance without stopping the flow of fluid. An important feature of this device is its high potential for further modernization. It is concerned with the determination of the parameters of the tubes and the connection geometry in the construction of a single product.
NASA Astrophysics Data System (ADS)
Lin, Shan
2018-04-01
There have been lots of reports about the occurrence of cracks in bolts in aging nuclear and thermal power plants. Sizing of such cracks is crucial for assessing the integrity of bolts. Currently, hammering and visual tests are used to detect cracks in bolts. However, they are not applicable for sizing cracks. Although the tip diffraction method is well known as a crack sizing technique, reflection echoes from threads make it difficult to apply this technique to bolts. This paper addresses a method for depth sizing of cracks in bolts by means of ultrasonic phased array technology. Numerical results of wave propagation in bolts by the finite element method (FEM) shows that a peak associated within the vicinity of a crack tip can be observed in the curve of echo intensity versus refraction angle for deep cracks. The refraction angle with respect to this peak decreases as crack depth increases. Such numerical results are verified by experiments on bolt specimens that have electrical discharge machining notches or fatigue cracks with different depths. In the experiment, a 10-MHz linear array probe is used. Depth of cracks in bolts using the refraction angle associated with the peak is determined and compared to actual depths. The comparison shows that accurately determining a crack depth from the inspection results is possible.
Effects of bolt-hole contact on bearing-bypass damage-onset strength
NASA Technical Reports Server (NTRS)
Crews, John H., Jr.; Naik, Rajiv A.
1991-01-01
A combined experimental and analytical study was conducted to investigate the effects of bolt-hole contact on the bearing bypass strength of a graphite-epoxy laminate. Tests were conducted on specimens consisting of 16-ply quasi-isotropic T300/5208 laminates with a centrally located hole. Bearing loads were applied through a clearance-fit steel bolt. Damage onset strength and damage mode were determined for each test case. A finite element procedure was used to calculate the bolt-hole stresses and bolt contact for each test case. A finite element procedure was used to calculate the bolt-hole stresses and bolt contact for each measured damage-onset strength. For the tension bearing-bypass cases tested, the bolt contact half-angle was approximately 60 degrees at damage onset. For compression, the contact angle was 20 degrees as the bypass load increased. A corresponding decrease in the bearing damage onset strength was attributed to the decrease in contact angle which made the bearing loads more severe. Hole boundary stresses were also computed by superimposing stresses for separate bearing and bypass loading. Stresses at the specimen net section were accurately approximated by the superposition procedure. However, the peak bearing stresses had large errors because the bolt contact angles were not represented correctly. For compression, peak bearing stress errors of nearly 50 percent were calculated.
NASA Technical Reports Server (NTRS)
Goldie, James H.; Bushko, Dariusz A.; Gerver, Michael J.
1995-01-01
In technique for measuring tensile force of bolt, specially fabricated magnetostrictive washer used as force transducer. Compact, portable inductive electronic sensor placed against washer to measure tension force. New system provides accurate, economical, and convenient way to measure bolt tension in field. Measurements on test assembly shows that tension can be measured to accuracy of about plus or minus 1 percent of load capacity of typical bolt.
Thrust bolting: roof bolt support apparatus
Tadolini, Stephen C.; Dolinar, Dennis R.
1992-01-01
A method of installing a tensioned roof bolt in a borehole of a rock formation without the aid of a mechanical anchoring device or threaded tensioning threads by applying thrust to the bolt (19) as the bonding material (7') is curing to compress the strata (3) surrounding the borehole (1), and then relieving the thrust when the bonding material (7') has cured.
Crashworthiness Design of the Shear Bolts for Light Collision Safety Devices
NASA Astrophysics Data System (ADS)
Kim, Jin Sung; Huh, Hoon; Kwon, Tae Soo
This paper introduces the jig set for the crash test and the crash test results of shear bolts which are designed to fail at train crash conditions. The tension and shear bolts are attached to Light Collision Safety Devices(LCSD) as a mechanical fuse when tension and shear bolts reach their failure load designed. The kinetic energy due to the crash is absorbed by the secondary energy absorbing device after LCSD are detached from the main body by the fracture of shear bolts. A single shear bolt was designed to fail at the load of 250 kN. The jig set designed to convert a compressive loading to a shear loading was installed to the high speed crash tester for dynamic shear tests. Two strain gauges were attached at the parallel section of the jig set to measure the load responses acting on the shear bolts. Crash tests were performed with a carrier whose mass was 250 kg and the initial speed of the carrier was 9 m/sec. From the quasi-static and dynamic experiments as well as the numerical analysis, the capacity of the shear bolts were accurately predicted for the crashworthiness design.
Partially integrated exhaust manifold
Hayman, Alan W; Baker, Rodney E
2015-01-20
A partially integrated manifold assembly is disclosed which improves performance, reduces cost and provides efficient packaging of engine components. The partially integrated manifold assembly includes a first leg extending from a first port and terminating at a mounting flange for an exhaust gas control valve. Multiple additional legs (depending on the total number of cylinders) are integrally formed with the cylinder head assembly and extend from the ports of the associated cylinder and terminate at an exit port flange. These additional legs are longer than the first leg such that the exit port flange is spaced apart from the mounting flange. This configuration provides increased packaging space adjacent the first leg for any valving that may be required to control the direction and destination of exhaust flow in recirculation to an EGR valve or downstream to a catalytic converter.
NASA Astrophysics Data System (ADS)
Grzejda, R.
2017-12-01
The paper deals with modelling and calculations of asymmetrical multi-bolted joints at the assembly stage. The physical model of the joint is based on a system composed of four subsystems, which are: a couple of joined elements, a contact layer between the elements, and a set of bolts. The contact layer is assumed as the Winkler model, which can be treated as a nonlinear or linear model. In contrast, the set of bolts are modelled using simplified beam models, known as spider bolt models. The theorem according to which nonlinearity of the contact layer has a negligible impact on the final preload of the joint in the case of its sequential tightening has been verified. Results of sample calculations for the selected multi-bolted system, in the form of diagrams of preloads in the bolts as well as normal contact pressure between the joined elements during the assembly process and at its end, are presented.
3-Dimensional Analysis of Deformation of Disk Wheels and Transverse Force of Wheel Bolts
NASA Astrophysics Data System (ADS)
Kagiwada, Tadao; Harada, Hiroyuki
Loosening of the wheel nuts, which fix the disk wheels of automobiles to the wheel hub, may be the cause of accidents where the wheel falls off while the automobile is running. When the transverse force of wheel bolts exceeds a certain proportion of the bolt shaft force, the wheel nut begins to loosen. Further, the force on the bolt shaft may also be influenced by the loads acting to the wheel through the moment caused by the offset of the wheel. This study determined the 3-dimensional deformation of the disk wheels and the transverse forces on the wheel bolt by 3-dimensional numerical analysis. The results established that the transverse force was influenced by the bolt shaft force caused by the bolt fastening and was superposed on that due to the load, and that it fluctuated greatly during the revolution of the wheel. This phenomenon may be a large factor in the loosening of wheel nuts.
On-line bolt-loosening detection method of key components of running trains using binocular vision
NASA Astrophysics Data System (ADS)
Xie, Yanxia; Sun, Junhua
2017-11-01
Bolt loosening, as one of hidden faults, affects the running quality of trains and even causes serious safety accidents. However, the developed fault detection approaches based on two-dimensional images cannot detect bolt-loosening due to lack of depth information. Therefore, we propose a novel online bolt-loosening detection method using binocular vision. Firstly, the target detection model based on convolutional neural network (CNN) is used to locate the target regions. And then, stereo matching and three-dimensional reconstruction are performed to detect bolt-loosening faults. The experimental results show that the looseness of multiple bolts can be characterized by the method simultaneously. The measurement repeatability and precision are less than 0.03mm, 0.09mm respectively, and its relative error is controlled within 1.09%.
Strain measurements in composite bolted-joint specimens
NASA Technical Reports Server (NTRS)
Hyer, M. W.; Lightfoot, M. C.; Perry, J. C.
1979-01-01
Strain data from a series of bolted joint tests is presented. Double lap, double hole, double lap, single hole, and open hole tensile specimens were tested and the strain gage locations, load strain responses, and load axial displacement responses are presented. The open hole specimens were gaged to determine strain concentration factors. The double lap, double hole specimens were gaged to determine the uniformity of the strain in the joint and the amount of load transferred past the first bolt. The measurements indicated roughly half the load passed the first bolt to be reacted by the second bolt.
1985-09-01
ke l aBit porn of ceeturlifie (atofer md) Sleeelig Gar Room 1iI ¶1 Fitt’ Natfore eck 7 3IMao hlie 01 A VVi Bolkifuad otiffteel2i 1~ Zn ft ov SIS frst...stiffener flange 33 Too of hull Centerline "R SS A Hull stiffener flange 33 Top of hull Centerline 9 R VM Hull stiffener flange 33 45 dog port from top 45 deg
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-20
... require recurring visual inspections of the tail rotor (T/R) blade retaining bolts (bolts) for a crack, corrosion, damage, or missing cadmium plating in the central part of the bolt. If a crack is not detected by.... Replacing a cracked or damaged bolt would be required before further flight. This proposed AD is prompted by...
Epigenomics and bolting tolerance in sugar beet genotypes.
Hébrard, Claire; Peterson, Daniel G; Willems, Glenda; Delaunay, Alain; Jesson, Béline; Lefèbvre, Marc; Barnes, Steve; Maury, Stéphane
2016-01-01
In sugar beet (Beta vulgaris altissima), bolting tolerance is an essential agronomic trait reflecting the bolting response of genotypes after vernalization. Genes involved in induction of sugar beet bolting have now been identified, and evidence suggests that epigenetic factors are involved in their control. Indeed, the time course and amplitude of DNA methylation variations in the shoot apical meristem have been shown to be critical in inducing sugar beet bolting, and a few functional targets of DNA methylation during vernalization have been identified. However, molecular mechanisms controlling bolting tolerance levels among genotypes are still poorly understood. Here, gene expression and DNA methylation profiles were compared in shoot apical meristems of three bolting-resistant and three bolting-sensitive genotypes after vernalization. Using Cot fractionation followed by 454 sequencing of the isolated low-copy DNA, 6231 contigs were obtained that were used along with public sugar beet DNA sequences to design custom Agilent microarrays for expression (56k) and methylation (244k) analyses. A total of 169 differentially expressed genes and 111 differentially methylated regions were identified between resistant and sensitive vernalized genotypes. Fourteen sequences were both differentially expressed and differentially methylated, with a negative correlation between their methylation and expression levels. Genes involved in cold perception, phytohormone signalling, and flowering induction were over-represented and collectively represent an integrative gene network from environmental perception to bolting induction. Altogether, the data suggest that the genotype-dependent control of DNA methylation and expression of an integrative gene network participate in bolting tolerance in sugar beet, opening up perspectives for crop improvement. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.
Wheel inspection system environment.
DOT National Transportation Integrated Search
2008-11-18
International Electronic Machines Corporation (IEM) has developed and is now marketing a state-of-the-art Wheel Inspection System Environment (WISE). WISE provides wheel profile and dimensional measurements, i.e. rim thickness, flange height, flange ...
More Nuts and Bolts of Michaelis-Menten Enzyme Kinetics
ERIC Educational Resources Information Center
Lechner, Joseph H.
2011-01-01
Several additions to a classroom activity are proposed in which an "enzyme" (the student) converts "substrates" (nut-bolt assemblies) into "products" (separated nuts and bolts) by unscrewing them. (Contains 1 table.)
Study on Fatigue Performance of Composite Bolted Joints with Bolt-Hole Delamination
NASA Astrophysics Data System (ADS)
Liu, M. J.; Yu, S.; Zhao, Q. Y.
2018-03-01
Fatigue performance of composite structure with imperfections is a challenging subject at present. Based on cohesive zone method and multi-continuum theory, delamination evolution response and fatigue life prediction of a 3D composite single-lap joint with a bolt-hole have been investigated through computer codes Abaqus and Fe-safe. Results from the comparison of a perfect composite bolted joint with another defect one indicates that a relatively small delamination damage around the bolt hole brings about significant degradation of local material performance. More notably, fatigue life of stress concentration region of composite bolted joints is highly sensitive to external loads, as an increase of 67% cyclic load amplitude leads to an decrease of 99.5% local fatigue life in this study. However, the numerical strategy for solving composite fatigue problems is meaningful to engineering works.
Luo, Mingzhang; Li, Weijie; Wang, Bo; Fu, Qingqing; Song, Gangbing
2017-02-23
Rock bolts, as a type of reinforcing element, are widely adopted in underground excavations and civil engineering structures. Given the importance of rock bolts, the research outlined in this paper attempts to develop a portable non-destructive evaluation method for assessing the length of installed rock bolts for inspection purposes. Traditionally, piezoelectric elements or hammer impacts were used to perform non-destructive evaluation of rock bolts. However, such methods suffered from many major issues, such as the weak energy generated and the requirement for permanent installation for piezoelectric elements, and the inconsistency of wave generation for hammer impact. In this paper, we proposed a portable device for the non-destructive evaluation of rock bolt conditions based on a giant magnetostrictive (GMS) actuator. The GMS actuator generates enough energy to ensure multiple reflections of the stress waves along the rock bolt and a lead zirconate titantate (PZT) sensor is used to detect the reflected waves. A new integrated procedure that involves correlation analysis, wavelet denoising, and Hilbert transform was proposed to process the multiple reflection signals to determine the length of an installed rock bolt. The experimental results from a lab test and field tests showed that, by analyzing the instant phase of the periodic reflections of the stress wave generated by the GMS transducer, the length of an embedded rock bolt can be accurately determined.
Luo, Mingzhang; Li, Weijie; Wang, Bo; Fu, Qingqing; Song, Gangbing
2017-01-01
Rock bolts, as a type of reinforcing element, are widely adopted in underground excavations and civil engineering structures. Given the importance of rock bolts, the research outlined in this paper attempts to develop a portable non-destructive evaluation method for assessing the length of installed rock bolts for inspection purposes. Traditionally, piezoelectric elements or hammer impacts were used to perform non-destructive evaluation of rock bolts. However, such methods suffered from many major issues, such as the weak energy generated and the requirement for permanent installation for piezoelectric elements, and the inconsistency of wave generation for hammer impact. In this paper, we proposed a portable device for the non-destructive evaluation of rock bolt conditions based on a giant magnetostrictive (GMS) actuator. The GMS actuator generates enough energy to ensure multiple reflections of the stress waves along the rock bolt and a lead zirconate titantate (PZT) sensor is used to detect the reflected waves. A new integrated procedure that involves correlation analysis, wavelet denoising, and Hilbert transform was proposed to process the multiple reflection signals to determine the length of an installed rock bolt. The experimental results from a lab test and field tests showed that, by analyzing the instant phase of the periodic reflections of the stress wave generated by the GMS transducer, the length of an embedded rock bolt can be accurately determined. PMID:28241503
49 CFR 192.147 - Flanges and flange accessories.
Code of Federal Regulations, 2010 CFR
2010-10-01
... maintain its physical and chemical properties at any temperature to which it is anticipated that it might... NATURAL AND OTHER GAS BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Design of Pipeline Components § 192...
Skin-stiffener interface stresses in composite stiffened panels
NASA Technical Reports Server (NTRS)
Wang, J. T. S.; Biggers, S. B.
1984-01-01
A model and solution method for determining the normal and shear stresses in the interface between the skin and the stiffener attached flange were developed. An efficient, analytical solution procedure was developed and incorporated in a sizing code for stiffened panels. The analysis procedure described provides a means to study the effects of material and geometric design parameters on the interface stresses. These stresses include the normal stress, and the shear stresses in both the longitudinal and the transverse directions. The tendency toward skin/stiffener separation may therefore be minimized by choosing appropriate values for the design variables. The most important design variables include the relative bending stiffnesses of the skin and stiffener attached flange, the bending stiffness of the stiffener web, and the flange width. The longitudinal compressive loads in the flange and skin have significant effects on the interface stresses.
Stress distribution in and equivalent width of flanges of wide, thin-wall steel beams
NASA Technical Reports Server (NTRS)
Winter, George
1940-01-01
The use of different forms of wide-flange, thin-wall steel beams is becoming increasingly widespread. Part of the information necessary for a national design of such members is the knowledge of the stress distribution in and the equivalent width of the flanges of such beams. This problem is analyzed in this paper on the basis of the theory of plane stress. As a result, tables and curves are given from which the equivalent width of any given beam can be read directly for use in practical design. An investigation is given of the limitations of this analysis due to the fact that extremely wide and thin flanges tend to curve out of their plane toward the neutral axis. A summary of test data confirms very satisfactorily the analytical results.
Yield of pallet cants and lumber from hardwood poletimber thinnings
E. Paul Craft; David M. Emanuel
1981-01-01
Woods-run bolts in 4- and 6-foot length from poletimber stand thininings were classified into five quality classes, and the absolute sweep was measured for each bolt. Cants 4 by 4 and 4 by 6 inches were sawn from these bolts. The cants were classified by an interim classification system for the production of pallet parts. In contrast to straight bolts, sweep from 0.6...
A microprocessor based portable bolt tension monitor
NASA Technical Reports Server (NTRS)
Perey, D. F.
1991-01-01
A bolt tension monitor (BTM) which uses ultrasonics and a pulsed phase locked loop circuit to measure load-induced acoustic phase shifts which are independent of friction is described. The BTM makes it possible to measure the load in a bolt that was tightened at some time in the past. This capability to recertify a load after-the-fact will help to insure the integrity of a bolted joint.
System 6: making frame-quality blanks from white oak thinnings
Hugh W. Reynolds; Philip A. Araman
1983-01-01
Low-grade white oak timber removed during a timber stand improvement cut on the Jefferson National Forest in Virginia was made into sawlogs, poles, 6-foot bolts, 4-foot bolts, pulpwood, and firewood. The 6-foot bolts were sawed to two cants per bolt; cants were resawed to 4/4 System 6 boards; boards were dried to 6 percent moisture content and made into frame blanks...
Ding, Xu; Wu, Xinjun; Wang, Yugang
2014-03-01
A method is proposed to measure the stress on a tightened bolt using an electromagnetic acoustic transducer (EMAT). A shear wave is generated by the EMAT, and a longitudinal wave is obtained from the reflection of the shear wave due to the mode conversion. The ray paths of the longitudinal and the shear wave are analyzed, and the relationship between the bolt axial stress and the ratio of time of flight between two mode waves is then formulated. Based on the above outcomes, an EMAT is developed to measure the bolt axial stress without loosening the bolt, which is required in the conventional EMAT test method. The experimental results from the measurement of the bolt tension show that the shear and the mode-converted longitudinal waves can be received successfully, and the ratio of the times of flight of the shear and the mode-converted longitudinal waves is linearly proportional to the bolt axial tension. The non-contact characteristic of EMAT eliminates the effect of the couplant and also makes the measurement more convenient than the measurement performed using the piezoelectric transducer. This method provides a promising way to measure the stress on tightened bolts. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Gleman, Stuart M. (Inventor); Rowe, Geoffrey K. (Inventor)
1999-01-01
An ultrasonic bolt gage is described which uses a crosscorrelation algorithm to determine a tension applied to a fastener, such as a bolt. The cross-correlation analysis is preferably performed using a processor operating on a series of captured ultrasonic echo waveforms. The ultrasonic bolt gage is further described as using the captured ultrasonic echo waveforms to perform additional modes of analysis, such as feature recognition. Multiple tension data outputs, therefore, can be obtained from a single data acquisition for increased measurement reliability. In addition, one embodiment of the gage has been described as multi-channel, having a multiplexer for performing a tension analysis on one of a plurality of bolts.
Matching nuts and bolts in O(n log n) time
DOE Office of Scientific and Technical Information (OSTI.GOV)
Komlos, J.; Ma, Yuan; Szemeredi, E.
Given a set of n nuts of distinct widths and a set of n bolts such that each nut corresponds to a unique bolt of the same width, how should we match every nut with its corresponding bolt by comparing nuts with bolts (no comparison is allowed between two nuts or between two bolts)? The problem can be naturally viewed as a variant of the classic sorting problem as follows. Given two lists of n numbers each such that one list is a permutation of the other, how should we sort the lists by comparisons only between numbers in differentmore » lists? We give an O(n log n)-time deterministic algorithm for the problem. This is optimal up to a constant factor and answers an open question posed by Alon, Blum, Fiat, Kannan, Naor, and Ostrovsky. Moreover, when copies of nuts and bolts are allowed, our algorithm runs in optimal O(log n) time on n processors in Valiant`s parallel comparison tree model. Our algorithm is based on the AKS sorting algorithm with substantial modifications.« less
Evaluation of mounting bolt loads for Space Shuttle Get Away Special (GAS) adapter beam
NASA Technical Reports Server (NTRS)
Talapatra, D. C.
1983-01-01
During the prototype vibration tests of the GAS adapter beam, significant impacting of the beam at its support points was observed. The cause of the impacting was traced to gaps under the mounting bolt heads. Because of the nonlinear nature of the response, it was difficult to evaluate the effects which Shuttle launch dynamics might have on the mounting bolt loads. A series of tests were conducted on an electrodynamic exciter in which the transient acceleration time histories, which had been measured during the Space Transportation System-1 (STS-1; Space Shuttle mission 1) launch, were simulated. The actual flight data had to be filtered and compensated so that it could be reproduced on the shaker without exceeding displacement and velocity limitations. Mounting bolt loads were measured directly by strain gages applied to the bolts. Various gap thicknesses and bolt torques were investigated. Although increased gap thickness resulted in greater accelerations due to impacting, the bolt loads were not significantly affected. This is attributed to the fact that impacting excited mostly higher frequency modes which do not have significant modal mass.
Improved design of special boundary elements for T-shaped reinforced concrete walls
NASA Astrophysics Data System (ADS)
Ji, Xiaodong; Liu, Dan; Qian, Jiaru
2017-01-01
This study examines the design provisions of the Chinese GB 50011-2010 code for seismic design of buildings for the special boundary elements of T-shaped reinforced concrete walls and proposes an improved design method. Comparison of the design provisions of the GB 50011-2010 code and those of the American code ACI 318-14 indicates a possible deficiency in the T-shaped wall design provisions in GB 50011-2010. A case study of a typical T-shaped wall designed in accordance with GB 50011-2010 also indicates the insufficient extent of the boundary element at the non-flange end and overly conservative design of the flange end boundary element. Improved designs for special boundary elements of T-shaped walls are developed using a displacement-based method. The proposed design formulas produce a longer boundary element at the non-flange end and a shorter boundary element at the flange end, relative to those of the GB 50011-2010 provisions. Extensive numerical analysis indicates that T-shaped walls designed using the proposed formulas develop inelastic drift of 0.01 for both cases of the flange in compression and in tension.
Critical Initial Flaw Size Analysis
NASA Technical Reports Server (NTRS)
Dawicke, David S.; Raju, Ivatury S.; Cheston, Derrick J.
2008-01-01
An independent assessment was conducted to determine the critical initial flaw size (CIFS) for the flange-to-skin weld in the Ares I-X Upper Stage Simulator (USS). The USS consists of several "tuna can" segments that are approximately 216 inches in diameter, 115 inches tall, and 0.5 inches thick. A 6 inch wide by 1 inch thick flange is welded to the skin and is used to fasten adjacent tuna cans. A schematic of a "tuna can" and the location of the flange-to-skin weld are shown in Figure 1. Gussets (shown in yellow in Figure 1) are welded to the skin and flange every 10 degrees around the circumference of the "tuna can". The flange-to-skin weld is a flux core butt weld with a fillet weld on the inside surface, as illustrated in Figure 2. The welding process may create loss of fusion defects in the weld that could develop into fatigue cracks and jeopardize the structural integrity of the Ares I-X vehicle. The CIFS analysis was conducted to determine the largest crack in the weld region that will not grow to failure within 4 lifetimes, as specified by NASA standard 5001 & 5019 [1].
NASA Technical Reports Server (NTRS)
Long, M. J.
1983-01-01
"Built-in" gage determines whether large bolt or stud has been torqued to desired load and provides for continuous inspection to ensure proper load is being maintained. Gage detects longitudinal stress/strain bolt; requires no electronic or sonic test equipment.
B. E. Carpenter
1959-01-01
But how about bolts from cull oaks on upland pine sites? Though a bolt operation in such material offers many difficulties, at least one Southern firm is currently trying it. That firm is Potlatch Forests, Inc., of Warren, Arkansas.
Clamshell closure for metal drum
Blanton, Paul S
2014-09-30
Closure ring to retain a lid in contact with a metal drum in central C-section conforming to the contact area between a lid and the rim of a drum and further having a radially inwardly directed flange and a vertically downwardly directed flange attached to the opposite ends of the C-section. The additional flanges reinforce the top of the drum by reducing deformation when the drum is dropped and maintain the lid in contact with the drum. The invention is particularly valuable in transportation and storage of fissile material.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schindel, Joshua; Muruganandham, Manickam; Pigge, F. Christopher
Purpose: To present a novel marker-flange, addressing source-reconstruction uncertainties due to the artifacts of a titanium intracavitary applicator used for magnetic resonance imaging (MRI)-guided high-dose-rate (HDR) brachytherapy (BT); and to evaluate 7 different MRI marker agents used for interstitial prostate BT and intracavitary gynecologic HDR BT when treatment plans are guided by MRI. Methods and Materials: Seven MRI marker agents were analyzed: saline solution, Conray-60, copper sulfate (CuSO{sub 4}) (1.5 g/L), liquid vitamin E, fish oil, 1% agarose gel (1 g agarose powder per 100 mL distilled water), and a cobalt–chloride complex contrast (C4) (CoCl{sub 2}/glycine = 4:1). A plastic,more » ring-shaped marker-flange was designed and tested on both titanium and plastic applicators. Three separate phantoms were designed to test the marker-flange, interstitial catheters for prostate BT, and intracavitary catheters for gynecologic HDR BT. T1- and T2-weighted MRI were analyzed for all markers in each phantom and quantified as percentages compared with a 3% agarose gel background. The geometric accuracy of the MR signal for the marker-flange was measured using an MRI-CT fusion. Results: The CuSO{sub 4} and C4 markers on T1-weighted MRI and saline on T2-weighted MRI showed the highest signals. The marker-flange showed hyper-signals of >500% with CuSO{sub 4} and C4 on T1-weighted MRI and of >400% with saline on T2-weighted MRI on titanium applicators. On T1-weighted MRI, the MRI signal inaccuracies of marker-flanges were measured <2 mm, regardless of marker agents, and that of CuSO{sub 4} was 0.42 ± 0.14 mm. Conclusion: The use of interstitial/intracavitary markers for MRI-guided prostate/gynecologic BT was observed to be feasible, providing accurate source pathway reconstruction. The novel marker-flange can produce extremely intense, accurate signals, demonstrating its feasibility for gynecologic HDR BT.« less
A One-Hand Nut and Bolt Assembly Tool
NASA Technical Reports Server (NTRS)
Spencer, J. M.
1984-01-01
Special wrench speeds nut and bolt assembly when insufficient room to hold nut behind bolthole with standard tool. C-clamp shaped box-andsocket-wrench assembly holds nut on blind side in alinement to receive bolt from open side.
Single wrench separates nuts from free-floating bolts
NASA Technical Reports Server (NTRS)
Thompson, C.
1967-01-01
Pneumatic impact wrench removes the nuts from freely turning bolts when the heads cannot be reached or the shafts anchored. It uses a fixed screwdriver blade that fits a slot cut into the threaded end of the bolt shaft.
Pneumatic wrench retains or discharges nuts or bolts as desired
NASA Technical Reports Server (NTRS)
Bouille, J. R.
1966-01-01
Pneumatic wrench grips, screws or unscrews, and discharges a nut or bolt as desired. The device consists of a standard pneumatic wrench modified with a special hex bolt head socket assembly and a diaphragm air cylinder.
Tapping and listening: a new approach to bolt looseness monitoring
NASA Astrophysics Data System (ADS)
Kong, Qingzhao; Zhu, Junxiao; Ho, Siu Chun Michael; Song, Gangbing
2018-07-01
Bolted joints are among the most common building blocks used across different types of structures, and are often the key components that sew all other structural parts together. Monitoring and assessment of looseness in bolted structures is one of the most attractive topics in mechanical, aerospace, and civil engineering. This paper presents a new percussion-based non-destructive approach to determine the health condition of bolted joints with the help of machine learning. The proposed method is very similar to the percussive diagnostic techniques used in clinical examinations to diagnose the health of patients. Due to the different interfacial properties among the bolts, nuts and the host structure, bolted joints can generate unique sounds when it is excited by impacts, such as from tapping. Power spectrum density, as a signal feature, was used to recognize and classify recorded tapping data. A machine learning model using the decision tree method was employed to identify the bolt looseness level. Experiments demonstrated that the newly proposed method for bolt looseness detection is very easy to implement by ‘listening to tapping’ and the monitoring accuracy is very high. With the rapid in robotics, the proposed approach has great potential to be implemented with intimately weaving robotics and machine learning to produce a cyber-physical system that can automatically inspect and determine the health of a structure.
Evaluation of Rock Bolt Support for Polish Hard Rock Mines
NASA Astrophysics Data System (ADS)
Skrzypkowski, Krzysztof
2018-03-01
The article presents different types of rock bolt support used in Polish ore mining. Individual point resin and expansion rock bolt support were characterized. The roof classes for zinc and lead and copper ore mines were presented. Furthermore, in the article laboratory tests of point resin rock bolt support in a geometric scale of 1:1 with minimal fixing length of 0.6 m were made. Static testing of point resin rock bolt support were carried out on a laboratory test facility of Department of Underground Mining which simulate mine conditions for Polish ore and hard coal mining. Laboratory tests of point resin bolts were carried out, especially for the ZGH Bolesław, zinc and lead "Olkusz - Pomorzany" mine. The primary aim of the research was to check whether at the anchoring point length of 0.6 m by means of one and a half resin cartridge, the type bolt "Olkusz - 20A" is able to overcome the load.The second purpose of the study was to obtain load - displacement characteristic with determination of the elastic and plastic range of the bolt. For the best simulation of mine conditions the station steel cylinders with an external diameter of 0.1 m and a length of 0.6 m with a core of rock from the roof of the underground excavations were used.
George, C.M.
1957-12-31
A liquid piston gas pump is described, capable of pumping minute amounts of gas in accurately measurable quantities. The pump consists of a flanged cylindrical regulating chamber and a mercury filled bellows. Sealed to the ABSTRACTS regulating chamber is a value and having a gas inlet and outlet, the inlet being connected by a helical channel to the bellows. A gravity check valve is in the gas outlet, so the gas passes through the inlet and the helical channel to the bellows where the pumping action as well as the metering is accomplished by the actuation of the mercury filled bellows. The gas then flows through the check valve and outlet to any associated apparatus.
75 FR 13682 - Airworthiness Directives; Bombardier, Inc. Model DHC-8-400 Series Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-23
... retention bolt, a reverse orientation of the retention bolt and a rework of the weight on wheel (WOW... reverse orientation of the retention bolt and a rework of the weight on wheel (WOW) proximity sensor cover...
Trimming Line Design using New Development Method and One Step FEM
NASA Astrophysics Data System (ADS)
Chung, Wan-Jin; Park, Choon-Dal; Yang, Dong-yol
2005-08-01
In most of automobile panel manufacturing, trimming is generally performed prior to flanging. To find feasible trimming line is crucial in obtaining accurate edge profile after flanging. Section-based method develops blank along section planes and find trimming line by generating loop of end points. This method suffers from inaccurate results for regions with out-of-section motion. On the other hand, simulation-based method can produce more accurate trimming line by iterative strategy. However, due to limitation of time and lack of information in initial die design, it is still not widely accepted in the industry. In this study, new fast method to find feasible trimming line is proposed. One step FEM is used to analyze the flanging process because we can define the desired final shape after flanging and most of strain paths are simple in flanging. When we use one step FEM, the main obstacle is the generation of initial guess. Robust initial guess generation method is developed to handle bad-shaped mesh, very different mesh size and undercut part. The new method develops 3D triangular mesh in propagational way from final mesh onto the drawing tool surface. Also in order to remedy mesh distortion during development, energy minimization technique is utilized. Trimming line is extracted from the outer boundary after one step FEM simulation. This method shows many benefits since trimming line can be obtained in the early design stage. The developed method is successfully applied to the complex industrial applications such as flanging of fender and door outer.
Bottom flange reinforcement in NU I-girders.
DOT National Transportation Integrated Search
2010-08-01
"The 1996 edition of AASHTO Standard Specifications for Highway Bridges stated that nominal confinement reinforcement be placed to enclose prestressing steel in the bottom flange of bridge girders from girder ends to at least a distance eq changed th...
DOT National Transportation Integrated Search
2009-03-20
International Electronic Machines Corporation (IEM) has developed and is now marketing a state-of-the-art Wheel Inspection System Environment (WISE). WISE provides wheel profile and dimensional measurements, i.e. rim thickness, flange height, flange ...
Square cants from round bolts without slabs or sawdust
Peter Koch
1960-01-01
For maximum efficiency a headrig for converting bark-free bolts into cants must (1) have a fast cycle time, (2) require minimum handling of bolts and refuse, and (3) convert the volume represented by slabs and kerf into a salable byproduct.
Explosive Bolt Dual-Initiated from One Side
NASA Technical Reports Server (NTRS)
Snow, Eric
2011-01-01
An explosive bolt has been developed that has a one-sided dual initiation train all the way down to the pyro charge for high reliability, while still allowing the other side of the bolt to remain in place after actuation to act as a thermal seal in an extremely high-temperature environment. This lightweight separation device separates at a single fracture plane, and has as much redundancy/reliability as possible. The initiation train comes into the explosive bolt from one side.
Easing The Calculation Of Bolt-Circle Coordinates
NASA Technical Reports Server (NTRS)
Burley, Richard K.
1995-01-01
Bolt Circle Calculation (BOLT-CALC) computer program used to reduce significant time consumed in manually computing trigonometry of rectangular Cartesian coordinates of holes in bolt circle as shown on blueprint or drawing. Eliminates risk of computational errors, particularly in cases involving many holes or in cases in which coordinates expressed to many significant digits. Program assists in many practical situations arising in machine shops. Written in BASIC. Also successfully compiled and implemented by use of Microsoft's QuickBasic v4.0.
An efficient cooling loop for connecting cryocooler to a helium reservoir
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taylor, C.E.; Abbott, C.S.R.; Leitner, D.
2003-09-21
The magnet system of the VENUS ECR Ion Source at LBNL has two 1.5-watt cryocoolers suspended in the cryostat vacuum. Helium vapor from the liquid reservoir is admitted to a finned condenser bolted to the cryocooler 2nd stage and returns as liquid via gravity. Small-diameter flexible tubes allow the cryocoolers to be located remotely from the reservoir. With 3.1 watts load, the helium reservoir is maintained at 4.35 K, 0.05K above the cryocooler temperature. Design, analysis, and performance are presented.
Thermal Conductances Of Metal Contacts
NASA Technical Reports Server (NTRS)
Salerno, L. J.; Kittel, P.; Scherkenbach, F. E.; Spivak, A. L.
1988-01-01
Report presents results of measurements of thermal conductances of aluminum and stainless-steel contacts at temperatures from 1.6 to 6.0 K. Measurement apparatus includes gearmotor assembly connected to rocker arm by music wire to load sample pair with forces up to 670 N. Heater placed above upper sample. Germanium resistance thermometers in upper and lower samples measured temperature difference across interface over range of heater powers from 0.1 to 10.0 mW. The thermal conductance calculated from temperature difference. Measurements provide data for prediction of thermal conductances of bolted joints in cryogenic infrared instruments.
High precision NC lathe feeding system rigid-flexible coupling model reduction technology
NASA Astrophysics Data System (ADS)
Xuan, He; Hua, Qingsong; Cheng, Lianjun; Zhang, Hongxin; Zhao, Qinghai; Mao, Xinkai
2017-08-01
This paper proposes the use of dynamic substructure method of reduction of order to achieve effective reduction of feed system for high precision NC lathe feeding system rigid-flexible coupling model, namely the use of ADAMS to establish the rigid flexible coupling simulation model of high precision NC lathe, and then the vibration simulation of the period by using the FD 3D damper is very effective for feed system of bolt connection reduction of multi degree of freedom model. The vibration simulation calculation is more accurate, more quickly.
Fixtures Hold Nuts During Tightening Of Bolts
NASA Technical Reports Server (NTRS)
Gyekenyesi, John Z.
1993-01-01
Two fixtures designed for use on cross-head of tensile testing machine simplify adjustments of crosshead to accommodate specimens of various lengths. Two cagelike fixtures hold pairs of nuts, preventing nuts from turning while bolts are tightened. Enable one person acting alone to tighten bolts.
Evidence for a pheromone in the locust borer
Jimmy R. Galford
1977-01-01
Laboratory studies have suggested the existence of a pheromone in the locust borer. Male beetles spent more time on bolts of wood exposed to virgin females than on control bolts. The females apparently deposited the pheromone on the bolts of wood and filter paper.
Cable clamp bolt fixture facilitates assembly in close quarters
NASA Technical Reports Server (NTRS)
Sunderland, G. H.
1967-01-01
Cable clamp bolt holding fixture facilitates forming of electrical cable runs in limited equipment space. The fixture engages the threads of the short clamp bolt through the clamp and maintains tension against clamp tendency to open while the operator installs the nut without difficulty.
Deformation of Extruded Titanium Alloys Under Superplastic Conditions
1988-07-01
176mm wide with a flange wall 37mm high x 27mm wide and a central web 122mm wide x 18mm thick. Round-bar test pieces aligned parallel to the principal...directions L, T and ST were extrac- ted from the flange and web as shown in Fig 1; gauge length dimensions were 15mm x 5.5mm diameter for the FST test...ares. in the gauge length. Flange Web X 9 NTIS GFA&I v FL Distribut I oc / A es ’- n:ia or Fig I Position of test pieces in extruded section iste i
Design and Fabrication of Quadrupole Ion Mass Spectrometer for Upper Atmosphere.
1981-09-30
34 diameter con-flat flange were T.I.G. welded to the end of each of three bowls. All bowls were then electro- polished, cleaned and sent out to have...plated surface was .0001" to .0002" thick. After gold plating, the hemispheres were mated and T.I.G. welded to form a sphere with a con-flat flange at...Valve Rotatable Conflat to fit k" Swage Lock Weld Adaptors. 5 2 3/4" Conflat Flanges machined to fit Swage Lock unions. 12 10-24 x 2 " Brass Screws necket
Analysis of Bonded Joints Between the Facesheet and Flange of Corrugated Composite Panels
NASA Technical Reports Server (NTRS)
Yarrington, Phillip W.; Collier, Craig S.; Bednarcyk, Brett A.
2008-01-01
This paper outlines a method for the stress analysis of bonded composite corrugated panel facesheet to flange joints. The method relies on the existing HyperSizer Joints software, which analyzes the bonded joint, along with a beam analogy model that provides the necessary boundary loading conditions to the joint analysis. The method is capable of predicting the full multiaxial stress and strain fields within the flange to facesheet joint and thus can determine ply-level margins and evaluate delamination. Results comparing the method to NASTRAN finite element model stress fields are provided illustrating the accuracy of the method.
Load apparatus and method for bolt-loaded compact tension test specimen
Buescher, B.J. Jr.; Lloyd, W.R.; Ward, M.B.; Epstein, J.S.
1997-02-04
A bolt-loaded compact tension test specimen load apparatus includes: (a) a body having first and second opposing longitudinal ends, the first end comprising an externally threaded portion sized to be threadedly received within the test specimen threaded opening; (b) a longitudinal loading rod having first and second opposing longitudinal ends, the loading rod being slidably received in a longitudinal direction within the body internally through the externally threaded portion and slidably extending longitudinally outward of the body first longitudinal end; (c) a force sensitive transducer slidably received within the body and positioned to engage relative to the loading rod second longitudinal end; and (d) a loading bolt threadedly received relative to the body, the loading bolt having a bearing end surface and being positioned to bear against the transducer to forcibly sandwich the transducer between the loading bolt and loading rod. Also disclosed is a method of in situ determining applied force during crack propagation in a bolt-loaded compact tension test specimen. 6 figs.
Load apparatus and method for bolt-loaded compact tension test specimen
Buescher, Jr., Brent J.; Lloyd, W. Randolph; Ward, Michael B.; Epstein, Jonathan S.
1997-01-01
A bolt-loaded compact tension test specimen load apparatus includes: a) a body having first and second opposing longitudinal ends, the first end comprising an externally threaded portion sized to be threadedly received within the test specimen threaded opening; b) a longitudinal loading rod having first and second opposing longitudinal ends, the loading rod being slidably received in a longitudinal direction within the body internally through the externally threaded portion and slidably extending longitudinally outward of the body first longitudinal end; c) a force sensitive transducer slidably received within the body and positioned to engage relative to the loading rod second longitudinal end; and d) a loading bolt threadedly received relative to the body, the loading bolt having a bearing end surface and being positioned to bear against the transducer to forcibly sandwich the transducer between the loading bolt and loading rod. Also disclosed is a method of in situ determining applied force during crack propagation in a bolt-loaded compact tension test specimen.
Inflorescence Development and the Role of LsFT in Regulating Bolting in Lettuce (Lactuca sativa L.).
Chen, Zijing; Han, Yingyan; Ning, Kang; Ding, Yunyu; Zhao, Wensheng; Yan, Shuangshuang; Luo, Chen; Jiang, Xiaotang; Ge, Danfeng; Liu, Renyi; Wang, Qian; Zhang, Xiaolan
2017-01-01
Lettuce ( Lactuca sativa L.) is one of the most important leafy vegetable that is consumed during its vegetative growth. The transition from vegetative to reproductive growth is induced by high temperature, which has significant economic effect on lettuce production. However, the progression of floral transition and the molecular regulation of bolting are largely unknown. Here we morphologically characterized the inflorescence development and functionally analyzed the FLOWERING LOCUS T (LsFT) gene during bolting regulation in lettuce. We described the eight developmental stages during floral transition process. The expression of LsFT was negatively correlated with bolting in different lettuce varieties, and was promoted by heat treatment. Overexpression of LsFT could recover the late-flowering phenotype of ft-2 mutant. Knockdown of LsFT by RNA interference dramatically delayed bolting in lettuce, and failed to respond to high temperature. Therefore, this study dissects the process of inflorescence development and characterizes the role of LsFT in bolting regulation in lettuce.
Inflorescence Development and the Role of LsFT in Regulating Bolting in Lettuce (Lactuca sativa L.)
Chen, Zijing; Han, Yingyan; Ning, Kang; Ding, Yunyu; Zhao, Wensheng; Yan, Shuangshuang; Luo, Chen; Jiang, Xiaotang; Ge, Danfeng; Liu, Renyi; Wang, Qian; Zhang, Xiaolan
2018-01-01
Lettuce (Lactuca sativa L.) is one of the most important leafy vegetable that is consumed during its vegetative growth. The transition from vegetative to reproductive growth is induced by high temperature, which has significant economic effect on lettuce production. However, the progression of floral transition and the molecular regulation of bolting are largely unknown. Here we morphologically characterized the inflorescence development and functionally analyzed the FLOWERING LOCUS T (LsFT) gene during bolting regulation in lettuce. We described the eight developmental stages during floral transition process. The expression of LsFT was negatively correlated with bolting in different lettuce varieties, and was promoted by heat treatment. Overexpression of LsFT could recover the late-flowering phenotype of ft-2 mutant. Knockdown of LsFT by RNA interference dramatically delayed bolting in lettuce, and failed to respond to high temperature. Therefore, this study dissects the process of inflorescence development and characterizes the role of LsFT in bolting regulation in lettuce. PMID:29403510
Testing and Analysis of Composite Skin/Stringer Debonding Under Multi-Axial Loading
NASA Technical Reports Server (NTRS)
Krueger, Ronald; Cvitkovich, Michael K.; OBrien, T. Kevin; Minguet, Pierre J.
1999-01-01
Damage mechanisms in composite bonded skin/stringer constructions under uniaxial and biaxial (in-plane/out- of-plane) loading conditions were examined. Specimens consisted of a tapered composite flange bonded onto a composite skin. Tests were performed under monotonic loading conditions in tension, three-point bending, and combined tension/bending . For combined tension/bending testing, a unique servohydraulic load frame was used that was capable of applying both in-plane tension and out-of-plane bending loads simultaneously. Specimen edges were examined on the microscope to document the damage occurrence and to identify typical damage patterns. The observations showed that, for all three load cases, failure initiated in the flange, near the flange tip, causing the flange to almost fully debond from the skin. A two-dimensional plane-strain finite element model was developed to analyze the different test cases using a geometrically nonlinear solution. For all three loading conditions, principal stresses exceeded the transverse strength of the material in the flange area. Additionally, delaminations of various lengths were simulated in two locations where delaminations were observed. The analyses showed that unstable delamination propagation is likely to occur in one location at the loads corresponding to matrix ply crack initiation for all three load cases.
Sleeve Expansion of Bolt Holes in Railroad Rail : Volume II, Process Parameters and Procedures
DOT National Transportation Integrated Search
1980-02-01
The bolt-hole cold-expansion process has been applied to railroad rail in laboratory tests and has demonstrated a potential for the reduction of rail-bolt-hole-failure incidence. Limited field tests also have been conducted and are currently under lo...
ERIC Educational Resources Information Center
Scott, Alan
2013-01-01
A simple apparatus is described which serves as a materials testing laboratory. Bolts are placed in it and subjected to tensile and torsional stress while being tightened. The tensile and torsional stress and strain can be measured, which enables the determination of several mechanical properties of the bolt material, including Young's…
Code of Federal Regulations, 2011 CFR
2011-10-01
... replaced. (d) Each rail shall be bolted with at least two bolts at each joint. (e) Each joint bar shall be... in this subpart. (f) No rail shall have a bolt hole which is torch cut or burned. (g) No joint bar shall be reconfigured by torch cutting. ...
26. INTERIOR VIEW WITH CLEANING OF A 12 INCH FLANGE ...
26. INTERIOR VIEW WITH CLEANING OF A 12 INCH FLANGE ELBOW CASTING. JAMES CRUMB USED A SWING FRAME GRINDER TO CLEAN (GRIND SEAMS FROM) THIS 'EL.' - Stockham Pipe & Fittings Company, Grey Iron Foundry, 4000 Tenth Avenue North, Birmingham, Jefferson County, AL
49 CFR 231.17 - Specifications common to all steam locomotives.
Code of Federal Regulations, 2011 CFR
2011-10-01
... shall be securely fastened with bolts, rivets, or studs. (ii) Locomotives having Wootten type boilers... inches above outside edge of running boards, securely fastened with bolts, rivets, or studs. (c... inches in height, measured from the top of end sill, and securely fastened with bolts or rivets. (f...
77 FR 29212 - Airworthiness Directives; The Boeing Company Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-17
... Company Model 777 airplanes. This AD was prompted by reports of fractured and missing latch pin retention... inspections for fractured or missing latch pin retention bolts, replacement of existing titanium bolts with... AD to detect and correct fractured and missing latch pin retention bolts, which could result in...
Calculation of parameters of combined frame and roof bolting
NASA Astrophysics Data System (ADS)
Ivanov, S. I.; Titov, N. V.; Privalov, A. A.; Trunov, I. T.; Sarychev, V. I.
2017-10-01
The paper presents the method of calculation of the combined frame and roof bolting. Recommendations on providing joint operation of roof bolting with steel support frames are given. Graphs for determining standard rock movement, as well as for defining proof load on the yielding support, were developed.
77 FR 40828 - Airworthiness Directives; The Boeing Company Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-11
... certain main landing gear (MLG) upper torque link bolts is reduced significantly due to incorrect fabrication. This proposed AD would require replacing certain MLG upper torque link bolts with a new or... safe life limit on certain MLG upper torque link bolts is reduced significantly due to incorrect...
Torquing preload in a lubricated bolt
NASA Technical Reports Server (NTRS)
Seegmiller, H. L.
1978-01-01
The tension preload obtained by torquing a 7/8 in. diam UNC high strength bolt was determined for lubricated and dry conditions. Consistent preload with a variation of + or - 3% was obtained when the bolt head area was lubricated prior to each torque application. Preload tensions nearly 70% greater than the value predicted with the commonly used formula occurred with the lubricated bolt. A reduction to 39% of the initial preload was observed during 50 torque applications without relubrication. Little evidence of wear was noted after 203 cycles of tightening.
Cheng, Liang; Zhang, Yidong; Ji, Ming; Zhang, Kai; Zhang, Minglei
2016-01-01
Roadways supported by bolts contain support structures that are built into the rock surrounding the roadway, referred to as reinforced rocks in this paper. Using physical model simulation, the paper investigates the bearing characteristics of the reinforced rock under different bolt parameters with incrementally increased load. The experimental results show that the stress at the measurement point inside the structure varies with the kinetic pressure. The stress increases slowly as the load is initially applied, displays accelerated growth in the middle of the loading application, and decreases or remains constant in the later stage of the loading application. The change in displacement of the surrounding rock exhibits the following characteristics: a slow increase when the load is first applied, accelerated growth in the middle stage, and violent growth in the later stage. There is a good correlation between the change in the measured stress and the change in the surrounding rock displacement. Increasing the density of the bolt support and the length and diameter of the bolt improves the load-bearing performance of the reinforced rock, including its strength, internal peak stress, and residual stress. Bolting improves the internal structure of the surrounding rocks, and the deterioration of the surrounding rock decreases with the distance between the bolt supports.
Accidental Bolt Gun Injury to Femur - A Case Report.
Kattimani, Ravi Prasad; Shetty, Sanath; Mirza, Humayun
2016-01-01
Bolt gun or slaughterer's guns are used in meat industry for "humane killing" of animals. Injuries caused by bolt gun are rare, reported exclusively from central European countries. We report a case of 28 year old male, who accidentally shot himself with a bolt gun to his right thigh. A 28 years old male presented to our Accident and Emergency department after accidental injury to his right thigh with bolt gun. He had an entry wound measuring 2 cm in length and 1 cm in breadth over anterior aspect of lower one third of thigh at lower and sustained Grade II compound fracture of right femur shaft at distal one third. The wound was treated with multiple debridements, negative pressure wound therapy and intravenous antibiotics based on culture and sensitivity. Bolt gun or slaughterer's guns are weapons used in meat industry for slaughtering animals. Wounds inflicted by bolt guns have specific morphological feature, distinctive from wounds made by other kinds of hand firearms. Most of the time wound will be infected at presentation. Lesions caused by these weapons are likely to have a more serious character than is to be expected from the size of the entrance wound. The mainstay of treatment is liberal wound exploration, multiple debridement's and intra venous antibiotics based on culture reports to treat infection and prevent morbidity.
Integrated Thermal Insulation System for Spacecraft
NASA Technical Reports Server (NTRS)
Kolodziej, Paul (Inventor); Bull, Jeff (Inventor); Kowalski, Thomas (Inventor); Switzer, Matthew (Inventor)
1998-01-01
An integrated thermal protection system (TPS) for a spacecraft includes a grid that is bonded to skin of the spacecraft, e.g., to support the structural loads of the spacecraft. A plurality of thermally insulative, relatively large panels are positioned on the grid to cover the skin of the spacecraft to which the grid has been bonded. Each panel includes a rounded front edge and a front flange depending downwardly from the front edge. Also, each panel includes a rear edge formed with a rounded socket for receiving the rounded front edge of another panel therein, and a respective rear flange depends downwardly from each rear edge. Pins are formed on the front flanges, and pin receptacles are formed on the rear flanges, such that the pins of a panel mechanically interlock with the receptacles of the immediately forward panel. To reduce the transfer to the skin of heat which happens to leak through the panels to the grid, the grid includes stringers that are chair-shaped in cross-section.