Sample records for bond forming processes

  1. Investigation of ball bond integrity for 0.8 mil (20 microns) diameter gold bonding wire on low k die in wire bonding technology

    NASA Astrophysics Data System (ADS)

    Kudtarkar, Santosh Anil

    Microelectronics technology has been undergoing continuous scaling to accommodate customer driven demand for smaller, faster and cheaper products. This demand has been satisfied by using novel materials, design techniques and processes. This results in challenges for the chip connection technology and also the package technology. The focus of this research endeavor was restricted to wire bond interconnect technology using gold bonding wires. Wire bond technology is often regarded as a simple first level interconnection technique. In reality, however, this is a complex process that requires a thorough understanding of the interactions between the design, material and process variables, and their impact on the reliability of the bond formed during this process. This research endeavor primarily focused on low diameter, 0.8 mil thick (20 mum) diameter gold bonding wire. Within the scope of this research, the integrity of the ball bond formed by 1.0 mil (25 mum) and 0.8 mil (20 mum) diameter wires was compared. This was followed by the evaluation of bonds formed on bond pads having doped SiO2 (low k) as underlying structures. In addition, the effect of varying the percentage of the wire dopant, palladium and bonding process parameters (bonding force, bond time, ultrasonic energy) for 0.8 mil (20 mum) bonding wire was also evaluated. Finally, a degradation empirical model was developed to understand the decrease in the wire strength. This research effort helped to develop a fundamental understanding of the various factors affecting the reliability of a ball bond from a design (low diameter bonding wire), material (low k and bonding wire dopants), and process (wire bonding process parameters) perspective for a first level interconnection technique, namely wire bonding. The significance of this research endeavor was the systematic investigation of the ball bonds formed using 0.8 mil (20 microm) gold bonding wire within the wire bonding arena. This research addressed low k structures on 90 nm silicon technology, bonding wires with different percentage of doping element (palladium), and different levels of bonding process parameters. An empirical model to understand the high temperature effects for bonds formed using the low diameter wire was also developed.

  2. Diffusion bonding aeroengine components

    NASA Astrophysics Data System (ADS)

    Fitzpatrick, G. A.; Broughton, T.

    1988-10-01

    The use of diffusion bonding processes at Rolls-Royce for the manufacture of titanium-alloy aircraft engine components and structures is described. A liquid-phase diffusion bonding process called activated diffusion bonding has been developed for the manufacture of the hollow titanium wide chord fan blade. In addition, solid-state diffusion bonding is being used in the manufacture of hollow vane/blade airfoil constructions mainly in conjunction with superplastic forming and hot forming techniques.

  3. Large Area Active Brazing of Multi-tile Ceramic-Metal Structures

    DTIC Science & Technology

    2012-05-01

    metallurgical bonds. The major disadvantage of using active brazing for metals and ceramics is the high processing temperature required that results in...steels) and form strong, metallurgical bonds. However, the high processing temperatures result in large strain (stress) build-up from the inherent...metals such as titanium alloys and stainless steels) and form strong, metallurgical bonds. However, the high processing temperatures result in large

  4. Cross-dehydrogenative coupling and oxidative-amination reactions of ethers and alcohols with aromatics and heteroaromatics

    PubMed Central

    Vuram, Prasanna K.

    2017-01-01

    Cross-dehydrogenative coupling (CDC) is a process in which, typically, a C–C bond is formed at the expense of two C–H bonds, either catalyzed by metals or other organic compounds, or via uncatalyzed processes. In this perspective, we present various modes of C–H bond-activation at sp3 centers adjacent to ether oxygen atoms, followed by C–C bond formation with aromatic systems as well as with heteroaromatic systems. C–N bond-formation with NH-containing heteroaromatics, leading to hemiaminal ethers, is also an event that can occur analogously to C–C bond formation, but at the expense of C–H and N–H bonds. A large variety of hemiaminal ether-forming reactions have recently appeared in the literature and this perspective also includes this complementary chemistry. In addition, the participation of C–H bonds in alcohols in such processes is also described. Facile access to a wide range of compounds can be attained through these processes, rendering such reactions useful for synthetic applications via Csp3 bond activations. PMID:28970941

  5. 25 CFR 162.561 - What is the release process for a performance bond or alternative form of security under a WSR...

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 25 Indians 1 2014-04-01 2014-04-01 false What is the release process for a performance bond or alternative form of security under a WSR lease? 162.561 Section 162.561 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR LAND AND WATER LEASES AND PERMITS Wind and Solar Resource Leases Wsr Lease Bonding...

  6. 25 CFR 162.561 - What is the release process for a performance bond or alternative form of security under a WSR...

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 25 Indians 1 2013-04-01 2013-04-01 false What is the release process for a performance bond or alternative form of security under a WSR lease? 162.561 Section 162.561 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR LAND AND WATER LEASES AND PERMITS Wind and Solar Resource Leases Wsr Lease Bonding...

  7. Coated substrates and process

    DOEpatents

    Chu, Wei-kan; Childs, Charles B.

    1991-01-01

    Disclosed herein is a coated substrate and a process for forming films on substrates and for providing a particularly smooth film on a substrate. The method of this invention involves subjecting a surface of a substrate to contact with a stream of ions of an inert gas having sufficient force and energy to substantially change the surface characteristics of said substrate, and then exposing a film-forming material to a stream of ions of an inert gas having sufficient energy to vaporize the atoms of said film-forming material and to transmit the vaporized atoms to the substrate surface with sufficient force to form a film bonded to the substrate. This process is particularly useful commercially because it forms strong bonds at room temperature. This invention is particularly useful for adhering a gold film to diamond and forming ohmic electrodes on diamond, but also can be used to bond other films to substrates.

  8. Utilization of Induction Bonding for Automated Fabrication of TIGR

    NASA Technical Reports Server (NTRS)

    Hinkley, Jeffrey A.; Johnston, Norman J.; Hulcher, A. Bruce; Marchello, Joseph M.; Messier, Bernadette C.

    1999-01-01

    A laboratory study of magnetic induction heat bonding of titanium foil and graphite fiber reinforced polymer prepreg tape, TiGr, demonstrated that the process is a viable candidate for low cost fabrication of aircraft structure made of this new material form. Data were obtained on weld bonding of PIXA and PETI-5 prepreg to titanium. Both the foil and honeycomb forms of titanium were investigated. The process relies on magnetic susceptor heating of titanium, not on high frequency heating of graphite fiber. The experiments showed that with a toroid magnet configuration, good weld bonds might be obtained with heating times of a few seconds. These results suggest the potential is good for the induction heating process to achieve acceptable commercial production rates.

  9. Brazing process provides high-strength bond between aluminum and stainless steel

    NASA Technical Reports Server (NTRS)

    Huschke, E. G., Jr.; Nord, D. B.

    1966-01-01

    Brazing process uses vapor-deposited titanium and an aluminum-zirconium-silicon alloy to prevent formation of brittle intermetallic compounds in stainless steel and aluminum bonding. Joints formed by this process maintain their high strength, corrosion resistance, and hermetic sealing properties.

  10. Iterative reactions of transient boronic acids enable sequential C-C bond formation

    NASA Astrophysics Data System (ADS)

    Battilocchio, Claudio; Feist, Florian; Hafner, Andreas; Simon, Meike; Tran, Duc N.; Allwood, Daniel M.; Blakemore, David C.; Ley, Steven V.

    2016-04-01

    The ability to form multiple carbon-carbon bonds in a controlled sequence and thus rapidly build molecular complexity in an iterative fashion is an important goal in modern chemical synthesis. In recent times, transition-metal-catalysed coupling reactions have dominated in the development of C-C bond forming processes. A desire to reduce the reliance on precious metals and a need to obtain products with very low levels of metal impurities has brought a renewed focus on metal-free coupling processes. Here, we report the in situ preparation of reactive allylic and benzylic boronic acids, obtained by reacting flow-generated diazo compounds with boronic acids, and their application in controlled iterative C-C bond forming reactions is described. Thus far we have shown the formation of up to three C-C bonds in a sequence including the final trapping of a reactive boronic acid species with an aldehyde to generate a range of new chemical structures.

  11. Solder extrusion pressure bonding process and bonded products produced thereby

    DOEpatents

    Beavis, L.C.; Karnowsky, M.M.; Yost, F.G.

    1992-06-16

    Disclosed is a process for production of soldered joints which are highly reliable and capable of surviving 10,000 thermal cycles between about [minus]40 C and 110 C. Process involves interposing a thin layer of a metal solder composition between the metal surfaces of members to be bonded and applying heat and up to about 1000 psi compression pressure to the superposed members, in the presence of a reducing atmosphere, to extrude the major amount of the solder composition, contaminants including fluxing gases and air, from between the members being bonded, to form a very thin, strong intermetallic bonding layer having a thermal expansion tolerant with that of the bonded members.

  12. Bonded polyimide fuel cell package

    DOEpatents

    Morse, Jeffrey D.; Jankowski, Alan; Graff, Robert T.; Bettencourt, Kerry

    2010-06-08

    Described herein are processes for fabricating microfluidic fuel cell systems with embedded components in which micron-scale features are formed by bonding layers of DuPont Kapton.TM. polyimide laminate. A microfluidic fuel cell system fabricated using this process is also described.

  13. Living olefin polymerization processes

    DOEpatents

    Schrock, Richard R.; Baumann, Robert

    1999-01-01

    Processes for the living polymerization of olefin monomers with terminal carbon-carbon double bonds are disclosed. The processes employ initiators that include a metal atom and a ligand having two group 15 atoms and a group 16 atom or three group 15 atoms. The ligand is bonded to the metal atom through two anionic or covalent bonds and a dative bond. The initiators are particularly stable under reaction conditions in the absence of olefin monomer. The processes provide polymers having low polydispersities, especially block copolymers having low polydispersities. It is an additional advantage of these processes that, during block copolymer synthesis, a relatively small amount of homopolymer is formed.

  14. Living olefin polymerization processes

    DOEpatents

    Schrock, R.R.; Baumann, R.

    1999-03-30

    Processes for the living polymerization of olefin monomers with terminal carbon-carbon double bonds are disclosed. The processes employ initiators that include a metal atom and a ligand having two group 15 atoms and a group 16 atom or three group 15 atoms. The ligand is bonded to the metal atom through two anionic or covalent bonds and a dative bond. The initiators are particularly stable under reaction conditions in the absence of olefin monomer. The processes provide polymers having low polydispersities, especially block copolymers having low polydispersities. It is an additional advantage of these processes that, during block copolymer synthesis, a relatively small amount of homopolymer is formed.

  15. Living olefin polymerization processes

    DOEpatents

    Schrock, Richard R.; Baumann, Robert

    2003-08-26

    Processes for the living polymerization of olefin monomers with terminal carbon-carbon double bonds are disclosed. The processes employ initiators that include a metal atom and a ligand having two group 15 atoms and a group 16 atom or three group 15 atoms. The ligand is bonded to the metal atom through two anionic or covalent bonds and a dative bond. The initiators are particularly stable under reaction conditions in the absence of olefin monomer. The processes provide polymers having low polydispersities, especially block copolymers having low polydispersities. It is an additional advantage of these processes that, during block copolymer synthesis, a relatively small amount of homopolymer is formed.

  16. Living olefin polymerization processes

    DOEpatents

    Schrock, Richard R.; Bauman, Robert

    2006-11-14

    Processes for the living polymerization of olefin monomers with terminal carbon-carbon double bonds are disclosed. The processes employ initiators that include a metal atom and a ligand having two group 15 atoms and a group 16 atom or three group 15 atoms. The ligand is bonded to the metal atom through two anionic or covalent bonds and a dative bond. The initiators are particularly stable under reaction conditions in the absence of olefin monomer. The processes provide polymers having low polydispersities, especially block copolymers having low polydispersities. It is an additional advantage of these processes that, during block copolymer synthesis, a relatively small amount of homopolymer is formed.

  17. Joining of Silicon Carbide: Diffusion Bond Optimization and Characterization

    NASA Technical Reports Server (NTRS)

    Halbig, Michael C.; Singh, Mrityunjay

    2008-01-01

    Joining and integration methods are critically needed as enabling technologies for the full utilization of advanced ceramic components in aerospace and aeronautics applications. One such application is a lean direct injector for a turbine engine to achieve low NOx emissions. In the application, several SiC substrates with different hole patterns to form fuel and combustion air channels are bonded to form the injector. Diffusion bonding is a joining approach that offers uniform bonds with high temperature capability, chemical stability, and high strength. Diffusion bonding was investigated with the aid of titanium foils and coatings as the interlayer between SiC substrates to aid bonding. The influence of such variables as interlayer type, interlayer thickness, substrate finish, and processing time were investigated. Optical microscopy, scanning electron microscopy, and electron microprobe analysis were used to characterize the bonds and to identify the reaction formed phases.

  18. Superplastic Forming/Adhesive Bonding of Aluminum (SPF/AB) Multi-Sheet Structures

    NASA Technical Reports Server (NTRS)

    Wagner, John A. (Technical Monitor); Will, Jeff D.; Cotton, James D.

    2003-01-01

    A significant fraction of airframe structure consists of stiffened panels that are costly and difficult to fabricate. This program explored a potentially lower-cost processing route for producing such panels. The alternative process sought to apply concurrent superplastic forming and adhesive bonding of aluminum alloy sheets. Processing conditions were chosen to balance adequate superplasticity of the alloy with thermal stability of the adhesive. As a first objective, an air-quenchable, superplastic aluminum-lithium alloy and a low-volatile content, low-viscosity adhesive with compatible forming/curing cycles were identified. A four-sheet forming pack was assembled which consisted of a welded two-sheet core separated from the face sheets by a layer of adhesive. Despite some preliminary success, of over 30 forming trials none was completely successful. The main problem was inadequate superplasticity in the heat-affected zones of the rib welds, which generally fractured prior to completion of the forming cycle. The welds are a necessary component in producing internal ribs by the 'four-sheet' process. Other challenges, such as surface preparation and adhesive bonding, were adequately solved. But without the larger issue of tearing at the weld locations, complex panel fabrication by SPF/AB does not appear viable.

  19. Bond layer for a solid oxide fuel cell, and related processes and devices

    DOEpatents

    Wu, Jian; Striker, Todd-Michael; Renou, Stephane; Gaunt, Simon William

    2017-03-21

    An electrically-conductive layer of material having a composition comprising lanthanum and strontium is described. The material is characterized by a microstructure having bimodal porosity. Another concept in this disclosure relates to a solid oxide fuel cell attached to at least one cathode interconnect by a cathode bond layer. The bond layer includes a microstructure having bimodal porosity. A fuel cell stack which incorporates at least one of the cathode bond layers is also described herein, along with related processes for forming the cathode bond layer.

  20. The Influence of the Coating Deposition Process on the Interdiffusion Behavior Between Nickel-Based Superalloys and MCrAlY Bond Coats

    NASA Astrophysics Data System (ADS)

    Elsaß, M.; Frommherz, M.; Oechsner, M.

    2018-02-01

    In this work, interdiffusion between two nickel-based superalloys and two MCrAlY bond coats is investigated. The MCrAlY bond coats were applied using two different spraying processes, high velocity oxygen fuel spraying (HVOF) and low-pressure plasma spraying. Of primary interest is the evolution of Kirkendall porosity, which can form at the interface between substrate and bond coat and depends largely on the chemical compositions of the coating and substrate. Experimental evidence further suggested that the formation of Kirkendall porosity depends on the coating deposition process. Formation of porosity at the interface causes a degradation of the bonding strength between substrate and coating. After coating deposition, the samples were annealed at 1050 °C for up to 2000 h. Microstructural and compositional analyses were performed to determine and evaluate the Kirkendall porosity. The results reveal a strong influence of both the coating deposition process and the chemical compositions. The amount of Kirkendall porosity formed, as well as the location of appearance, is largely influenced by the coating deposition process. In general, samples with bond coats applied by means of HVOF show accelerated element diffusion. It is hypothesized that recrystallization of the substrate material is a main root cause for these observations.

  1. Method for fabricating laminated uranium composites

    DOEpatents

    Chapman, L.R.

    1983-08-03

    The present invention is directed to a process for fabricating laminated composites of uranium or uranium alloys and at least one other metal or alloy. The laminated composites are fabricated by forming a casting of the molten uranium with the other metal or alloy which is selectively positioned in the casting and then hot-rolling the casting into a laminated plate in or around which the casting components are metallurgically bonded to one another to form the composite. The process of the present invention provides strong metallurgical bonds between the laminate components primarily since the bond disrupting surface oxides on the uranium or uranium alloy float to the surface of the casting to effectively remove the oxides from the bonding surfaces of the components.

  2. Statistical analysis of native contact formation in the folding of designed model proteins

    NASA Astrophysics Data System (ADS)

    Tiana, Guido; Broglia, Ricardo A.

    2001-02-01

    The time evolution of the formation probability of native bonds has been studied for designed sequences which fold fast into the native conformation. From this analysis a clear hierarchy of bonds emerge: (a) local, fast forming highly stable native bonds built by some of the most strongly interacting amino acids of the protein; (b) nonlocal bonds formed late in the folding process, in coincidence with the folding nucleus, and involving essentially the same strongly interacting amino acids already participating in the fast bonds; (c) the rest of the native bonds whose behavior is subordinated, to a large extent, to that of the strong local and nonlocal native contacts.

  3. Bonded polyimide fuel cell package and method thereof

    DOEpatents

    Morse, Jeffrey D.; Jankowski, Alan; Graff, Robert T.; Bettencourt, Kerry

    2005-11-01

    Described herein are processes for fabricating microfluidic fuel cell systems with embedded components in which micron-scale features are formed by bonding layers of DuPont Kapton.TM. polyimide laminate. A microfluidic fuel cell system fabricated using this process is also described.

  4. Method of preparation of bonded polyimide fuel cell package

    DOEpatents

    Morse, Jeffrey D [Martinez, CA; Jankowski, Alan [Livermore, CA; Graff, Robert T [Modesto, CA; Bettencourt, Kerry [Dublin, CA

    2011-04-26

    Described herein are processes for fabricating microfluidic fuel cell systems with embedded components in which micron-scale features are formed by bonding layers of DuPont Kapton.TM. polyimide laminate. A microfluidic fuel cell system fabricated using this process is also described.

  5. Mechanics of wafer bonding: Effect of clamping

    NASA Astrophysics Data System (ADS)

    Turner, K. T.; Thouless, M. D.; Spearing, S. M.

    2004-01-01

    A mechanics-based model is developed to examine the effects of clamping during wafer bonding processes. The model provides closed-form expressions that relate the initial geometry and elastic properties of the wafers to the final shape of the bonded pair and the strain energy release rate at the interface for two different clamping configurations. The results demonstrate that the curvature of bonded pairs may be controlled through the use of specific clamping arrangements during the bonding process. Furthermore, it is demonstrated that the strain energy release rate depends on the clamping configuration and that using applied loads usually leads to an undesirable increase in the strain energy release rate. The results are discussed in detail and implications for process development and bonding tool design are highlighted.

  6. Analysis of factors influencing the bond strength in roll bonding processes

    NASA Astrophysics Data System (ADS)

    Khaledi, Kavan; Wulfinghoff, Stephan; Reese, Stefanie

    2018-05-01

    Cold Roll Bonding (CRB) is recognized as an industrial technique in which the metal sheets are joined together in order to produce laminate metal composites. In this technique, a metallurgical bond resulting from severe plastic deformation is formed between the rolled metallic layers. The main objective of this paper is to analyse different factors which may affect the bond formation in rolling processes. To achieve this goal, first, an interface model is employed which describes both the bonding and debonding. In this model, the bond strength evolution between the metallic layers is calculated based on the film theory of bonding. On the other hand, the debonding process is modelled by means of a bilinear cohesive zone model. In the numerical section, different scenarios are taken into account to model the roll bonding process of metal sheets. The numerical simulation includes the modelling of joining during the roll bonding process followed by debonding in a Double Cantilever Beam (DCB) peeling test. In all simulations, the metallic layers are regarded as elastoplastic materials subjected to large plastic deformations. Finally, the effects of some important factors on the bond formation are numerically investigated.

  7. A Novel Process for Joining Ti Alloy and Al Alloy using Two-Stage Sintering Powder Metallurgy

    NASA Astrophysics Data System (ADS)

    Long, Luping; Liu, Wensheng; Ma, Yunzhu; Wu, Lei; Liu, Chao

    2018-04-01

    The major challenges for conventional diffusion bonding of joining Ti alloy and Al alloy are the undesirable interfacial reaction, low matrixes and joint strength. To avoid the problem in diffusion bonding, a novel two-stage sintering powder metallurgy process is developed. In the present work, the interface characterization and joint performance of the bonds obtained by powder metallurgy bonding are investigated and are compared with the diffusion bonded Ti/Al joints obtained with the same and the optimized process parameters. The results show that no intermetallic compound is visible in the Ti/Al joint obtained by powder metallurgy bonding, while a new layer formed at the joint diffusion bonded with the same parameters. The maximum tensile strength of joint obtained by diffusion bonding is 58 MPa, while a higher tensile strength reaching 111 MPa for a bond made by powder metallurgy bonding. Brittle fractures occur at all the bonds. It is shown that the powder metallurgy bonding of Ti/Al is better than diffusion bonding. The results of this study should benefit the bonding quality.

  8. Influence of heat-pretreatments on the microstructural and mechanical properties of galfan-coated metal bonds

    NASA Astrophysics Data System (ADS)

    Hordych, Illia; Rodman, Dmytro; Nürnberger, Florian; Schmidt, Hans Christian; Orive, Alejandro Gonzalez; Homberg, Werner; Grundmeier, Guido; Maier, Hans Jürgen

    2018-05-01

    In the present study, heat-treatment assisted bonding of galfan-coated low-carbon steel sheets was investigated. Steel sheets were bonded by cold rolling subsequently to a heat treatment in the temperature range from 400 °C to 550°C. The reduction ratio during cold rolling was varied in the range from 50% to 80%. Such high reduction ratios were achieved by splitting the bonding process into three stages. By employing heat-treatments, the mechanical properties of the bonds were improved. The heat-pretreatment allowed the formation of brittle intermetallic phases that were easily fractured in the rolling gap during the bonding process. Thus, juvenile non-oxidized surfaces were formed, which facilitated the bonding between the steel layers, and thus increased the bond strength. The intermetallic phases were actively formed at temperatures of 450 °C and above; however increasing temperatures resulted in decreasing mechanical properties due to oxidation processes. The local microstructure was analyzed by scanning electron microscopy in order to characterize the contact zone on the micro level with a focus on the formation of intermetallic phases. The mechanical properties were determined in tensile shear tests. Interestingly, it was found that the galfan coating allowed for bonding at room temperature, and the aluminum fraction was primarily responsible for the enhanced oxide formation during the heat-pretreatment.

  9. A static induction device manufactured by silicon direct bonding

    NASA Astrophysics Data System (ADS)

    Chen, Xin'an; Liu, Su; Huang, Qing'an

    2004-07-01

    It is always a key problem how to improve the gate-source breakdown voltage (VGK) of static induction devices during manufacturing. By using a silicon direct bonding process to replace the high resistivity epitaxy process, a bonding buried gate structure is formed, which is different from an epitaxy buried gate structure. The new structure can improve the gate-source breakdown voltage from the process and the structure. It is shown that the bonding buried gate structure is a promising structure, that can improve the VGK and other performances of devices, by manufacture of a static induction thyristor.

  10. Solder extrusion pressure bonding process and bonded products produced thereby

    DOEpatents

    Beavis, Leonard C.; Karnowsky, Maurice M.; Yost, Frederick G.

    1992-01-01

    Production of soldered joints which are highly reliable and capable of surviving 10,000 thermal cycles between about -40.degree. C. and 110.degree. C. Process involves interposing a thin layer of a metal solder composition between the metal surfaces of members to be bonded and applying heat and up to about 1000 psi compression pressure to the superposed members, in the presence of a reducing atmosphere, to extrude the major amount of the solder composition, contaminants including fluxing gases and air, from between the members being bonded, to form a very thin, strong intermetallic bonding layer having a thermal expansion tolerant with that of the bonded members.

  11. Solder extrusion pressure bonding process and bonded products produced thereby

    NASA Astrophysics Data System (ADS)

    Beavis, L. C.; Karnowsky, M. M.; Yost, F. G.

    1990-04-01

    The production of soldered joints are highly reliable and capable of surviving 10,000 thermal cycles between about -40 and 110 C. The process involves interposing a thin layer of a metal solder composition between the metal surfaces of members to be bonded and applying heat up to about 1000 psi compression pressure to the superposed members, in the presence of a reducing atmosphere, to extrude the major amount of the solder composition, contaminants including fluxing gases and air, from between the members being bonded, to form a very thin, strong intermetallic bonding layer having a thermal expansion tolerant with that of the bonded members.

  12. Development and Characterization of the Bonding and Integration Technologies Needed for Fabricating Silicon Carbide Based Injector Components

    NASA Technical Reports Server (NTRS)

    Halbig,Michael C.; Singh, Mrityunjay

    2008-01-01

    Advanced ceramic bonding and integration technologies play a critical role in the fabrication and application of silicon carbide based components for a number of aerospace and ground based applications. One such application is a lean direct injector for a turbine engine to achieve low NOx emissions. Ceramic to ceramic diffusion bonding and ceramic to metal brazing technologies are being developed for this injector application. For the diffusion bonding technology, titanium interlayers (coatings and foils) were used to aid in the joining of silicon carbide (SiC) substrates. The influence of such variables as surface finish, interlayer thickness, and processing time were investigated. Electron microprobe analysis was used to identify the reaction formed phases. In the diffusion bonds, an intermediate phase, Ti5Si3Cx, formed that is thermally incompatible in its thermal expansion and caused thermal stresses and cracking during the processing cool-down. Thinner interlayers of pure titanium and/or longer processing times resulted in an optimized microstructure. Tensile tests on the joined materials resulted in strengths of 13-28 MPa depending on the SiC substrate material. Nondestructive evaluation using ultrasonic immersion showed well formed bonds. For the joining technology of brazing Kovar fuel tubes to silicon carbide, preliminary development of the joining approach has begun. Various technical issues and requirements for the injector application are addressed.

  13. Resolving the molecular mechanism of cadherin catch bond formation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manibog, Kristine; Li, Hui; Rakshit, Sabyasachi

    2014-06-02

    Classical cadherin Ca(2+)-dependent cell-cell adhesion proteins play key roles in embryogenesis and in maintaining tissue integrity. Cadherins mediate robust adhesion by binding in multiple conformations. One of these adhesive states, called an X-dimer, forms catch bonds that strengthen and become longer lived in the presence of mechanical force. Here we use single-molecule force-clamp spectroscopy with an atomic force microscope along with molecular dynamics and steered molecular dynamics simulations to resolve the molecular mechanisms underlying catch bond formation and the role of Ca(2+) ions in this process. Our data suggest that tensile force bends the cadherin extracellular region such that theymore » form long-lived, force-induced hydrogen bonds that lock X-dimers into tighter contact. When Ca(2+) concentration is decreased, fewer de novo hydrogen bonds are formed and catch bond formation is eliminated« less

  14. Mechanism of bonding and debonding using surface activated bonding method with Si intermediate layer

    NASA Astrophysics Data System (ADS)

    Takeuchi, Kai; Fujino, Masahisa; Matsumoto, Yoshiie; Suga, Tadatomo

    2018-04-01

    Techniques of handling thin and fragile substrates in a high-temperature process are highly required for the fabrication of semiconductor devices including thin film transistors (TFTs). In our previous study, we proposed applying the surface activated bonding (SAB) method using Si intermediate layers to the bonding and debonding of glass substrates. The SAB method has successfully bonded glass substrates at room temperature, and the substrates have been debonded after heating at 450 °C, in which TFTs are fabricated on thin glass substrates for LC display devices. In this study, we conducted the bonding and debonding of Si and glass in order to understand the mechanism in the proposed process. Si substrates are also successfully bonded to glass substrates at room temperature and debonded after heating at 450 °C using the proposed bonding process. By the composition analysis of bonding interfaces, it is clarified that the absorbed water on the glass forms interfacial voids and cause the decrease in bond strength.

  15. Molding cork sheets to complex shapes

    NASA Technical Reports Server (NTRS)

    Sharpe, M. H.; Simpson, W. G.; Walker, H. M.

    1977-01-01

    Partially cured cork sheet is easily formed to complex shapes and then final-cured. Temperature and pressure levels required for process depend upon resin system used and final density and strength desired. Sheet can be bonded to surface during final cure, or can be first-formed in mold and bonded to surface in separate step.

  16. Enantioselective functionalization of allylic C-H bonds following a strategy of functionalization and diversification.

    PubMed

    Sharma, Ankit; Hartwig, John F

    2013-11-27

    We report the enantioselective functionalization of allylic C-H bonds in terminal alkenes by a strategy involving the installation of a temporary functional group at the terminal carbon atom by C-H bond functionalization, followed by the catalytic diversification of this intermediate with a broad scope of reagents. The method consists of a one-pot sequence of palladium-catalyzed allylic C-H bond oxidation under neutral conditions to form linear allyl benzoates, followed by iridium-catalyzed allylic substitution. This overall transformation forms a variety of chiral products containing a new C-N, C-O, C-S, or C-C bond at the allylic position in good yield with a high branched-to-linear selectivity and excellent enantioselectivity (ee ≤97%). The broad scope of the overall process results from separating the oxidation and functionalization steps; by doing so, the scope of nucleophile encompasses those sensitive to direct oxidative functionalization. The high enantioselectivity of the overall process is achieved by developing an allylic oxidation that occurs without acid to form the linear isomer with high selectivity. These allylic functionalization processes are amenable to an iterative sequence leading to (1,n)-functionalized products with catalyst-controlled diastereo- and enantioselectivity. The utility of the method in the synthesis of biologically active molecules has been demonstrated.

  17. Room-temperature bonding of epitaxial layer to carbon-cluster ion-implanted silicon wafers for CMOS image sensors

    NASA Astrophysics Data System (ADS)

    Koga, Yoshihiro; Kadono, Takeshi; Shigematsu, Satoshi; Hirose, Ryo; Onaka-Masada, Ayumi; Okuyama, Ryousuke; Okuda, Hidehiko; Kurita, Kazunari

    2018-06-01

    We propose a fabrication process for silicon wafers by combining carbon-cluster ion implantation and room-temperature bonding for advanced CMOS image sensors. These carbon-cluster ions are made of carbon and hydrogen, which can passivate process-induced defects. We demonstrated that this combination process can be used to form an epitaxial layer on a carbon-cluster ion-implanted Czochralski (CZ)-grown silicon substrate with a high dose of 1 × 1016 atoms/cm2. This implantation condition transforms the top-surface region of the CZ-grown silicon substrate into a thin amorphous layer. Thus, an epitaxial layer cannot be grown on this implanted CZ-grown silicon substrate. However, this combination process can be used to form an epitaxial layer on the amorphous layer of this implanted CZ-grown silicon substrate surface. This bonding wafer has strong gettering capability in both the wafer-bonding region and the carbon-cluster ion-implanted projection range. Furthermore, this wafer inhibits oxygen out-diffusion to the epitaxial layer from the CZ-grown silicon substrate after device fabrication. Therefore, we believe that this bonding wafer is effective in decreasing the dark current and white-spot defect density for advanced CMOS image sensors.

  18. Alkyl Aryl Ether Bond Formation with PhenoFluor**

    PubMed Central

    Shen, Xiao; Neumann, Constanze N.; Kleinlein, Claudia; Claudia, Nathaniel W.; Ritter, Tobias

    2015-01-01

    An alkyl aryl ether bond formation reaction between phenols and primary and secondary alcohols with PhenoFluor has been developed. The reaction features a broad substrate scope and tolerates many functional groups, and substrates that are challenging for more conventional ether bond forming processes may be coupled. A preliminary mechanistic study indicates reactivity distinct from conventional ether bond formation. PMID:25800679

  19. Method for producing bio-fuel that integrates heat from carbon-carbon bond-forming reactions to drive biomass gasification reactions

    DOEpatents

    Cortright, Randy D [Madison, WI; Dumesic, James A [Verona, WI

    2012-04-10

    A low-temperature catalytic process for converting biomass (preferably glycerol recovered from the fabrication of bio-diesel) to synthesis gas (i.e., H.sub.2/CO gas mixture) in an endothermic gasification reaction is described. The synthesis gas is used in exothermic carbon-carbon bond-forming reactions, such as Fischer-Tropsch, methanol, or dimethylether syntheses. The heat from the exothermic carbon-carbon bond-forming reaction is integrated with the endothermic gasification reaction, thus providing an energy-efficient route for producing fuels and chemicals from renewable biomass resources.

  20. Method for producing bio-fuel that integrates heat from carbon-carbon bond-forming reactions to drive biomass gasification reactions

    DOEpatents

    Cortright, Randy D.; Dumesic, James A.

    2013-04-02

    A low-temperature catalytic process for converting biomass (preferably glycerol recovered from the fabrication of bio-diesel) to synthesis gas (i.e., H.sub.2/CO gas mixture) in an endothermic gasification reaction is described. The synthesis gas is used in exothermic carbon-carbon bond-forming reactions, such as Fischer-Tropsch, methanol, or dimethylether syntheses. The heat from the exothermic carbon-carbon bond-forming reaction is integrated with the endothermic gasification reaction, thus providing an energy-efficient route for producing fuels and chemicals from renewable biomass resources.

  1. Method for producing bio-fuel that integrates heat from carbon-carbon bond-forming reactions to drive biomass gasification reactions

    DOEpatents

    Cortright, Randy D [Madison, WI; Dumesic, James A [Verona, WI

    2011-01-18

    A low-temperature catalytic process for converting biomass (preferably glycerol recovered from the fabrication of bio-diesel) to synthesis gas (i.e., H.sub.2/CO gas mixture) in an endothermic gasification reaction is described. The synthesis gas is used in exothermic carbon-carbon bond-forming reactions, such as Fischer-Tropsch, methanol, or dimethylether syntheses. The heat from the exothermic carbon-carbon bond-forming reaction is integrated with the endothermic gasification reaction, thus providing an energy-efficient route for producing fuels and chemicals from renewable biomass resources.

  2. A study on an unusual SN2 mechanism in the methylation of benzyne through nickel-complexation.

    PubMed

    Hatakeyama, Makoto; Sakamoto, Yuki; Ogata, Koji; Sumida, Yuto; Sumida, Tomoe; Hosoya, Takamitsu; Nakamura, Shinichiro

    2017-10-11

    In this study, three reaction mechanisms of a benzyne-nickel (Ni) complex ([Ni(C 6 H 4 )(dcpe)]) with iodomethane during the methylation process were investigated, namely (a) S N 2 reaction of the benzyne-Ni complex with iodomethane, (b) concerted σ-bond metathesis during the bond breaking/forming processes, and (c) oxidative addition of iodomethane to the Ni-center and the subsequent reductive elimination process. DFT calculations revealed that the reaction barrier of the S N 2 reaction is slightly lower than those of the other mechanisms. The results of orbital analyses suggest that [Ni(C 6 H 4 )(dcpe)] forms a metallacycle structure between benzyne and the Ni II (3d 8 ) center instead of the η 2 -structure with the Ni 0 (3d 10 ) center. The metallacycle structures became inappropriate as the intermediates of oxidative addition in the formation of the Ni II -Me bond, avoiding further oxidation to the high-valent Ni IV . The high free energy along σ-bond metathesis was generated from the steric hindrance, thus invoking methylation and Ni-I bond formation concertedly.

  3. Method for forming an abrasive surface on a tool

    DOEpatents

    Seals, Roland D.; White, Rickey L.; Swindeman, Catherine J.; Kahl, W. Keith

    1999-01-01

    A method for fabricating a tool used in cutting, grinding and machining operations, is provided. The method is used to deposit a mixture comprising an abrasive material and a bonding material on a tool surface. The materials are propelled toward the receiving surface of the tool substrate using a thermal spray process. The thermal spray process melts the bonding material portion of the mixture, but not the abrasive material. Upon impacting the tool surface, the mixture or composition solidifies to form a hard abrasive tool coating.

  4. Rate Kinetics and Molecular Dynamics of the Structural Transitions in Amyloidogenic Proteins

    NASA Astrophysics Data System (ADS)

    Steckmann, Timothy M.

    Amyloid fibril aggregation is associated with several horrific diseases such as Alzheimer's, Creutzfeld-Jacob, diabetes, Parkinson's and others. The process of amyloid aggregation involves forming myriad different metastable intermediate aggregates. Amyloid fibrils are composed of proteins that originate in an innocuous alpha-helix or random-coil structure. The alpha-helices convert their structure to beta-strands that aggregate into beta-sheets, and then into protofibrils, and ultimately into fully formed amyloid fibrils. On the basis of experimental data, I have developed a mathematical model for the kinetics of the reaction pathways and determined rate parameters for peptide secondary structural conversion and aggregation during the entire fibrillogenesis process from random coil to fibrils, including the molecular species that accelerate the conversions. The specific steps of the model and the rate constants that are determined by fitting to experimental data provide insight on the molecular species involved in the fibril formation process. To better understand the molecular basis of the protein structural transitions and aggregation, I report on molecular dynamics (MD) computational studies on the formation of amyloid protofibrillar structures in the small model protein ccbeta, which undergoes many of the structural transitions of the larger, naturally occurring amyloid forming proteins. Two different structural transition processes involving hydrogen bonds are observed for aggregation into fibrils: the breaking of intrachain hydrogen bonds to allow beta-hairpin proteins to straighten, and the subsequent formation of interchain hydrogen bonds during aggregation into amyloid fibrils. For my MD simulations, I found that the temperature dependence of these two different structural transition processes results in the existence of a temperature window that the ccbeta protein experiences during the process of forming protofibrillar structures. Both the mathematical modeling of the kinetics and the MD simulations show that molecular structural heterogeneity is a major factor in the process. The MD simulations also show that intrachain and interchain hydrogen bonds breaking and forming is strongly correlated to the process of amyloid formation.

  5. Power module packaging with double sided planar interconnection and heat exchangers

    DOEpatents

    Liang, Zhenxian; Marlino, Laura D.; Ning, Puqi; Wang, Fei

    2015-05-26

    A double sided cooled power module package having a single phase leg topology includes two IGBT and two diode semiconductor dies. Each IGBT die is spaced apart from a diode semiconductor die, forming a switch unit. Two switch units are placed in a planar face-up and face-down configuration. A pair of DBC or other insulated metallic substrates is affixed to each side of the planar phase leg semiconductor dies to form a sandwich structure. Attachment layers are disposed on outer surfaces of the substrates and two heat exchangers are affixed to the substrates by rigid bond layers. The heat exchangers, made of copper or aluminum, have passages for carrying coolant. The power package is manufactured in a two-step assembly and heating process where direct bonds are formed for all bond layers by soldering, sintering, solid diffusion bonding or transient liquid diffusion bonding, with a specially designed jig and fixture.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clarke, Kester Diederik

    The intent of this report is to document a procedure used at LANL for HIP bonding aluminum cladding to U-10Mo fuel foils using a formed HIP can for the Domestic Reactor Conversion program in the NNSA Office of Material, Management and Minimization, and provide some details that may not have been published elsewhere. The HIP process is based on the procedures that have been used to develop the formed HIP can process, including the baseline process developed at Idaho National Laboratory (INL). The HIP bonding cladding process development is summarized in the listed references. Further iterations with Babcock & Wilcoxmore » (B&W) to refine the process to meet production and facility requirements is expected.« less

  7. Transition metal-catalyzed process for addition of amines to carbon-carbon double bonds

    DOEpatents

    Hartwig, John F.; Kawatsura, Motoi; Loeber, Oliver

    2002-01-01

    The present invention is directed to a process for addition of amines to carbon-carbon double bonds in a substrate, comprising: reacting an amine with a compound containing at least one carbon-carbon double bond in the presence a transition metal catalyst under reaction conditions effective to form a product having a covalent bond between the amine and a carbon atom of the former carbon-carbon double bond. The transition metal catalyst comprises a Group 8 metal and a ligand containing one or more 2-electron donor atoms. The present invention is also directed to enantioselective reactions of amine compounds with compounds containing carbon-carbon double bonds, and a calorimetric assay to evaluate potential catalysts in these reactions.

  8. A quantum informational approach for dissecting chemical reactions

    NASA Astrophysics Data System (ADS)

    Duperrouzel, Corinne; Tecmer, Paweł; Boguslawski, Katharina; Barcza, Gergely; Legeza, Örs; Ayers, Paul W.

    2015-02-01

    We present a conceptionally different approach to dissect bond-formation processes in metal-driven catalysis using concepts from quantum information theory. Our method uses the entanglement and correlation among molecular orbitals to analyze changes in electronic structure that accompany chemical processes. As a proof-of-principle example, the evolution of nickel-ethene bond-formation is dissected, which allows us to monitor the interplay of back-bonding and π-donation along the reaction coordinate. Furthermore, the reaction pathway of nickel-ethene complexation is analyzed using quantum chemistry methods, revealing the presence of a transition state. Our study supports the crucial role of metal-to-ligand back-donation in the bond-forming process of nickel-ethene.

  9. Modeling evolution of hydrogen bonding and stabilization of transition states in the process of cocaine hydrolysis catalyzed by human butyrylcholinesterase.

    PubMed

    Gao, Daquan; Zhan, Chang-Guo

    2006-01-01

    Molecular dynamics (MD) simulations and quantum mechanical/molecular mechanical (QM/MM) calculations were performed on the prereactive enzyme-substrate complex, transition states, intermediates, and product involved in the process of human butyrylcholinesterase (BChE)-catalyzed hydrolysis of (-)-cocaine. The computational results consistently reveal a unique role of the oxyanion hole (consisting of G116, G117, and A199) in BChE-catalyzed hydrolysis of cocaine, compared to acetylcholinesterase (AChE)-catalyzed hydrolysis of acetylcholine. During BChE-catalyzed hydrolysis of cocaine, only G117 has a hydrogen bond with the carbonyl oxygen (O31) of the cocaine benzoyl ester in the prereactive BChE-cocaine complex, and the NH groups of G117 and A199 are hydrogen-bonded with O31 of cocaine in all of the transition states and intermediates. Surprisingly, the NH hydrogen of G116 forms an unexpected hydrogen bond with the carboxyl group of E197 side chain and, therefore, is not available to form a hydrogen bond with O31 of cocaine in the acylation. The NH hydrogen of G116 is only partially available to form a weak hydrogen bond with O31 of cocaine in some structures involved in the deacylation. The change of the estimated hydrogen-bonding energy between the oxyanion hole and O31 of cocaine during the reaction process demonstrates how the protein environment can affect the energy barrier for each step of the BChE-catalyzed hydrolysis of cocaine. These insights concerning the effects of the oxyanion hole on the energy barriers provide valuable clues on how to rationally design BChE mutants with a higher catalytic activity for the hydrolysis of (-)-cocaine. 2005 Wiley-Liss, Inc.

  10. Modeling Evolution of Hydrogen Bonding and Stabilization of Transition States in the Process of Cocaine Hydrolysis Catalyzed by Human Butyrylcholinesterase

    PubMed Central

    Gao, Daquan; Zhan, Chang-Guo

    2010-01-01

    Molecular dynamics (MD) simulations and quantum mechanical/molecular mechanical (QM/MM) calculations were performed on the prereactive enzyme-substrate complex, transition states, intermediates, and product involved in the process of human butyrylcholinesterase (BChE)-catalyzed hydrolysis of (−)-cocaine. The computational results consistently reveal a unique role of the oxyanion hole (consisting of G116, G117, and A199) in BChE-catalyzed hydrolysis of cocaine, as compared to acetylcholinesterase (AChE)-catalyzed hydrolysis of acetylcholine. During BChE-catalyzed hydrolysis of cocaine, only G117 has a hydrogen bond with the carbonyl oxygen (O31) of the cocaine benzoyl ester in the prereactive BChE-cocaine complex, and the NH groups of G117 and A199 are hydrogen-bonded with O31 of cocaine in all of the transition states and intermediates. Surprisingly, the NH hydrogen of G116 forms an unexpected hydrogen bond with the carboxyl group of E197 side chain and, therefore, is not available to form a hydrogen bond with O31 of cocaine in the acylation. The NH hydrogen of G116 is only partially available to form a weak hydrogen bond with O31 of cocaine in some structures involved in the deacylation. The change of the estimated hydrogen bonding energy between the oxyanion hole and O31 of cocaine during the reaction process demonstrates how the protein environment can affect the energy barrier for each step of the BChE-catalyzed hydrolysis of cocaine. These insights concerning the effects of the oxyanion hole on the energy barriers provide valuable clues on how to rationally design BChE mutants with a higher catalytic activity for the hydrolysis of (−)-cocaine. PMID:16288482

  11. Mo/Ti Diffusion Bonding for Making Thermoelectric Devices

    NASA Technical Reports Server (NTRS)

    Sakamoto, Jeffrey; Kisor, Adam; Caillat, Thierry; Lara, Liana; Ravi, Vilupanur; Firdosy, Samad; Fleuiral, Jean-Pierre

    2007-01-01

    An all-solid-state diffusion bonding process that exploits the eutectoid reaction between molybdenum and titanium has been developed for use in fabricating thermoelectric devices based on skutterudite compounds. In essence, the process is one of heating a flat piece of pure titanium in contact with a flat piece of pure molybdenum to a temperature of about 700 C while pushing the pieces together with a slight pressure [a few psi (of the order of 10 kPa)]. The process exploits the energy of mixing of these two metals to form a strong bond between them. These two metals were selected partly because the bonds formed between them are free of brittle intermetallic phases and are mechanically and chemically stable at high temperatures. The process is a solution of the problem of bonding hot-side metallic interconnections (denoted hot shoes in thermoelectric jargon) to titanium-terminated skutterudite n and p legs during the course of fabrication of a unicouple, which is the basic unit cell of a thermoelectric device (see figure). The hot-side operating temperature required for a skutterudite thermoelectric device is 700 C. This temperature precludes the use of brazing to attach the hot shoe; because brazing compounds melt at lower temperatures, the hot shoe would become detached during operation. Moreover, the decomposition temperature of one of the skutterudite compounds is 762 C; this places an upper limit on the temperature used in bonding the hot shoe. Molybdenum was selected as the interconnection metal because the eutectoid reaction between it and the titanium at the ends of the p and n legs has characteristics that are well suited for this application. In addition to being suitable for use in the present bonding process, molybdenum has high electrical and thermal conductivity and excellent thermal stability - characteristics that are desired for hot shoes of thermoelectric devices. The process takes advantage of the chemical potential energy of mixing between molybdenum and titanium. These metals have a strong affinity for each other. They are almost completely soluble in each other and remain in the solid state at temperatures above the eutectoid temperature of 695 C. As a result, bonds formed by interdiffusion of molybdenum and titanium are mechanically stable at and well above the original bonding temperature of about 700 C. Inasmuch as the bonds are made at approximately the operating temperature, thermomechanical stresses associated with differences in thermal expansion are minimized.

  12. The influence of Cu+ binding to hypoxanthine on stabilization of mismatches involving hypoxanthine and DNA bases: A DFT study.

    PubMed

    Masoodi, Hamid Reza; Bagheri, Sotoodeh; Ghaderi, Zahra

    2018-05-14

    In the present work, the influence of Cu + binding to N3- and N7-positions of hypoxanthine on energetic, geometrical and topological properties of hypoxanthine-guanine, hypoxanthine-adenine, hypoxanthine-cytosine, hypoxanthine-thymine and hypoxanthine-hypoxanthine mismatches is theoretically investigated. The calculations, in gas phase, are performed at B3LYP/6-311++G(3df,3pd) level of theory. Unlike the other mispairs, Cu + binding to N3-position of hypoxanthine causes the proton transfer process from enol form of hypoxanthine to imino forms of adenine and cytosine. This process also occurs in all mismatches having enol form of hypoxanthine when Cu + binds to N7-position of hypoxanthine. The mismatches are stabilized by hydrogen bonds. The influence of Cu + on hydrogen bonds is also examined by atoms in molecules (AIM) and natural bond orbital (NBO) analyses.

  13. Bonding thermoplastic polymers

    DOEpatents

    Wallow, Thomas I [Fremont, CA; Hunter, Marion C [Livermore, CA; Krafcik, Karen Lee [Livermore, CA; Morales, Alfredo M [Livermore, CA; Simmons, Blake A [San Francisco, CA; Domeier, Linda A [Danville, CA

    2008-06-24

    We demonstrate a new method for joining patterned thermoplastic parts into layered structures. The method takes advantage of case-II permeant diffusion to generate dimensionally controlled, activated bonding layers at the surfaces being joined. It is capable of producing bonds characterized by cohesive failure while preserving the fidelity of patterned features in the bonding surfaces. This approach is uniquely suited to production of microfluidic multilayer structures, as it allows the bond-forming interface between plastic parts to be precisely manipulated at micrometer length scales. The bond enhancing procedure is easily integrated in standard process flows and requires no specialized equipment.

  14. The Structure and Properties of Diffusion Assisted Bonded Joints in 17-4 PH, Type 347, 15-5 PH and Nitronic 40 Stainless Steels

    NASA Technical Reports Server (NTRS)

    Wigley, D. A.

    1981-01-01

    Diffusion assisted bonds are formed in 17-4 PH, 15-5 PH, type 347 and Nitronic 40 stainless steels using electrodeposited copper as the bonding agent. The bonds are analyzed by conventional metallographic, electron microprobe analysis, and scanning electron microscopic techniques as well as Charpy V-notch impact tests at temperatures of 77 and 300 K. Results are discussed in terms of a postulated model for the bonding process.

  15. Formation of polycyclic lactones through a ruthenium-catalyzed ring-closing metathesis/hetero-Pauson-Khand reaction sequence.

    PubMed

    Finnegan, David F; Snapper, Marc L

    2011-05-20

    Processes that form multiple carbon-carbon bonds in one operation can generate molecular complexity quickly and therefore be used to shorten syntheses of desirable molecules. We selected the hetero-Pauson-Khand (HPK) cycloaddition and ring-closing metathesis (RCM) as two unique carbon-carbon bond-forming reactions that could be united in a tandem ruthenium-catalyzed process. In doing so, complex polycyclic products can be obtained in one reaction vessel from acyclic precursors using a single ruthenium additive that can catalyze sequentially two mechanistically distinct transformations.

  16. Fabricating a hybrid imaging device

    NASA Technical Reports Server (NTRS)

    Wadsworth, Mark (Inventor); Atlas, Gene (Inventor)

    2003-01-01

    A hybrid detector or imager includes two substrates fabricated under incompatible processes. An array of detectors, such as charged-coupled devices, are formed on the first substrate using a CCD fabrication process, such as a buried channel or peristaltic process. One or more charge-converting amplifiers are formed on a second substrate using a CMOS fabrication process. The two substrates are then bonded together to form a hybrid detector.

  17. Process for catalytically oxidizing cycloolefins, particularly cyclohexene

    DOEpatents

    Mizuno, Noritaka; Lyon, David K.; Finke, Richard G.

    1993-01-01

    This invention is a process for catalytically oxidizing cycloolefins, particularly cyclohexenes, to form a variety of oxygenates. The catalyst used in the process is a covalently bonded iridium-heteropolyanion species. The process uses the catalyst in conjunction with a gaseous oxygen containing gas to form 2-cyclohexen-1-ol and also 2-cyclohexen-1-one.

  18. Impact resistance and energies of intermetallic bonded diamond composites and polycrystalline diamond compacts and their comparison

    NASA Astrophysics Data System (ADS)

    Gorla, Sai Prasanth

    Chemistry of intermetallic bonded diamond is studied. The impact resistance and energies of intermetallic bonded diamond is compared to current poly crystalline diamond compacts. IBD's are found to have high standards of hardness and have more impact energies absorbed. Intermetallic bonded diamond composite comprises of diamond particles dispersed in Tungsten carbide using Nickel aluminide (Ni3Al) as binder. In previous research conducted on IBD's, diamonds are successfully dispersed in intermetallic alloy of nickel aluminide and processed at 1350°C such that diamond particles remain intact without forming graphite. Composites are formed by milling, pressing the intermetallic binder and diamond particles and sintering at high temperature conditions.

  19. Fabrication of stainless steel clad tubing. [gas pressure bonding

    NASA Technical Reports Server (NTRS)

    Kovach, C. W.

    1978-01-01

    The feasibility of producing stainless steel clad carbon steel tubing by a gas pressure bonding process was evaluated. Such a tube product could provide substantial chromium savings over monolithic stainless tubing in the event of a serious chromium shortage. The process consists of the initial assembly of three component tubesets from conventionally produced tubing, the formation of a strong metallurgical bond between the three components by gas pressure bonding, and conventional cold draw and anneal processing to final size. The quality of the tubes produced was excellent from the standpoint of bond strength, mechanical, and forming properties. The only significant quality problem encountered was carburization of the stainless clad by the carbon steel core which can be overcome by further refinement through at least three different approaches. The estimated cost of clad tubing produced by this process is greater than that for monolithic stainless tubing, but not so high as to make the process impractical as a chromium conservation method.

  20. Diffusion Bonding Beryllium to Reduced Activation Ferritic Martensitic Steel: Development of Processes and Techniques

    NASA Astrophysics Data System (ADS)

    Hunt, Ryan Matthew

    Only a few materials are suitable to act as armor layers against the thermal and particle loads produced by magnetically confined fusion. These candidates include beryllium, tungsten, and carbon fiber composites. The armor layers must be joined to the plasma facing components with high strength bonds that can withstand the thermal stresses resulting from differential thermal expansion. While specific joints have been developed for use in ITER (an experimental reactor in France), including beryllium to CuCrZr as well as tungsten to stainless steel interfaces, joints specific to commercially relevant fusion reactors are not as well established. Commercial first wall components will likely be constructed front Reduced Activation Ferritic Martensitic (RAFM) steel, which will need to be coating with one of the three candidate materials. Of the candidates, beryllium is particularly difficult to bond, because it reacts during bonding with most elements to form brittle intermetallic compounds. This brittleness is unacceptable, as it can lead to interface crack propagation and delamination of the armor layer. I have attempted to overcome the brittle behavior of beryllium bonds by developing a diffusion bonding process of beryllium to RAFM steel that achieves a higher degree of ductility. This process utilized two bonding aids to achieve a robust bond: a. copper interlayer to add ductility to the joint, and a titanium interlayer to prevent beryllium from forming unwanted Be-Cu intermetallics. In addition, I conducted a series of numerical simulations to predict the effect of these bonding aids on the residual stress in the interface. Lastly, I fabricated and characterized beryllium to ferritic steel diffusion bonds using various bonding parameters and bonding aids. Through the above research, I developed a process to diffusion bond beryllium to ferritic steel with a 150 M Pa tensile strength and 168 M Pa shear strength. This strength was achieved using a Hot Isostatic Pressing (HIP) process (at a temperature between 700 °C and 750 °C for 2 hours at 103 M Pa) with 10 mu m of titanium and 20 mum of copper deposited between substrates. Without the copper and titanium interlayers, the bond formed an intermetallic that lead to fracture from internal residual stresses. Also, slowing the rate of cooling and adding an intermediate hold temperature during cool-down significantly increased bond strength. These beneficial effects were confirmed by the numerical simulations, which showed reduced residual stress resulting from all bonding techniques. Both metals interlayers, as well as the reduced cooling rate were critical in overcoming the otherwise brittle quality of the beryllium to ferritic steel joint. However, the introduced interlayers are not an ideal solution to the problem. They introduced both Be-Ti and Cu-Ti compounds, which proved to be the eventual failure location in the bond. Further optimization of this joint is necessary, and can potentially be achieved with variation of cooling rates. To make the joint ready for implementation will require larger scale fabrication to verify reliability and to test the joint under operational loads.

  1. Process Of Bonding Copper And Tungsten

    DOEpatents

    Slattery, Kevin T.; Driemeyer, Daniel E.; Davis, John W.

    2000-07-18

    Process for bonding a copper substrate to a tungsten substrate by providing a thin metallic adhesion promoting film bonded to a tungsten substrate and a functionally graded material (FGM) interlayer bonding the thin metallic adhesion promoting film to the copper substrate. The FGM interlayer is formed by sintering a stack of individual copper and tungsten powder blend layers having progressively higher copper content/tungsten content, by volume, ratio values in successive powder blend layers in a lineal direction extending from the tungsten substrate towards the copper substrate. The resulting copper to tungsten joint well accommodates the difference in the coefficient of thermal expansion of the materials.

  2. Adhesion of leukocytes under oscillating stagnation point conditions: a numerical study.

    PubMed

    Walker, P G; Alshorman, A A; Westwood, S; David, T

    2002-01-01

    Leukocyte recruitment from blood to the endothelium plays an important role in atherosclerotic plaque formation. Cells show a primary and secondary adhesive process with primary bonds responsible for capture and rolling and secondary bonds for arrest. Our objective was to investigate the role played by this process on the adhesion of leukocytes in complex flow. Cells were modelled as rigid spheres with spring like adhesion molecules which formed bonds with endothelial receptors. Models of bond kinetics and Newton's laws of motion were solved numerically to determine cell motion. Fluid force was obtained from the local shear rate obtained from a CFD simulation of the flow over a backward facing step.In stagnation point flow the shear rate near the stagnation point has a large gradient such that adherent cells in this region roll to a high shear region preventing permanent adhesion. This is enhanced if a small time dependent perturbation is imposed upon the stagnation point. For lower shear rates the cell rolling velocity may be such that secondary bonds have time to form. These bonds resist the lower fluid forces and consequently there is a relatively large permanent adhesion region.

  3. Process Of Bonding A Metal Brush Structure To A Planar Surface Of A Metal Substrate

    DOEpatents

    Slattery, Kevin T.; Driemeyer, Daniel E.; Wille; Gerald W.

    1999-11-02

    Process for bonding a metal brush structure to a planar surface of a metal substrate in which an array of metal rods are retained and immobilized at their tips by a common retention layer formed of metal, and the brush structure is then joined to a planar surface of a metal substrate via the retention layer.

  4. Bonding and Integration Technologies for Silicon Carbide Based Injector Components

    NASA Technical Reports Server (NTRS)

    Halbig, Michael C.; Singh, Mrityunjay

    2008-01-01

    Advanced ceramic bonding and integration technologies play a critical role in the fabrication and application of silicon carbide based components for a number of aerospace and ground based applications. One such application is a lean direct injector for a turbine engine to achieve low NOx emissions. Ceramic to ceramic diffusion bonding and ceramic to metal brazing technologies are being developed for this injector application. For the diffusion bonding, titanium interlayers (PVD and foils) were used to aid in the joining of silicon carbide (SiC) substrates. The influence of such variables as surface finish, interlayer thickness (10, 20, and 50 microns), processing time and temperature, and cooling rates were investigated. Microprobe analysis was used to identify the phases in the bonded region. For bonds that were not fully reacted an intermediate phase, Ti5Si3Cx, formed that is thermally incompatible in its thermal expansion and caused thermal stresses and cracking during the processing cool-down. Thinner titanium interlayers and/or longer processing times resulted in stable and compatible phases that did not contribute to microcracking and resulted in an optimized microstructure. Tensile tests on the joined materials resulted in strengths of 13-28 MPa depending on the SiC substrate material. Non-destructive evaluation using ultrasonic immersion showed well formed bonds. For the joining technology of brazing Kovar fuel tubes to silicon carbide, preliminary development of the joining approach has begun. Various technical issues and requirements for the injector application are addressed.

  5. Fabricating a hybrid imaging device having non-destructive sense nodes

    NASA Technical Reports Server (NTRS)

    Wadsworth, Mark (Inventor); Atlas, Gene (Inventor)

    2001-01-01

    A hybrid detector or imager includes two substrates fabricated under incompatible processes. An array of detectors, such as charged-coupled devices, are formed on the first substrate using a CCD fabrication process, such as a buried channel or peristaltic process. One or more charge-converting amplifiers are formed on a second substrate using a CMOS fabrication process. The two substrates are then bonded together to form a hybrid detector.

  6. Turn-Directed α-β Conformational Transition of α-syn12 Peptide at Different pH Revealed by Unbiased Molecular Dynamics Simulations

    PubMed Central

    Liu, Lei; Cao, Zanxia

    2013-01-01

    The transition from α-helical to β-hairpin conformations of α-syn12 peptide is characterized here using long timescale, unbiased molecular dynamics (MD) simulations in explicit solvent models at physiological and acidic pH values. Four independent normal MD trajectories, each 2500 ns, are performed at 300 K using the GROMOS 43A1 force field and SPC water model. The most clustered structures at both pH values are β-hairpin but with different turns and hydrogen bonds. Turn9-6 and four hydrogen bonds (HB9-6, HB6-9, HB11-4 and HB4-11) are formed at physiological pH; turn8-5 and five hydrogen bonds (HB8-5, HB5-8, HB10-3, HB3-10 and HB12-1) are formed at acidic pH. A common folding mechanism is observed: the formation of the turn is always before the formation of the hydrogen bonds, which means the turn is always found to be the major determinant in initiating the transition process. Furthermore, two transition paths are observed at physiological pH. One of the transition paths tends to form the most-clustered turn and improper hydrogen bonds at the beginning, and then form the most-clustered hydrogen bonds. Another transition path tends to form the most-clustered turn, and turn5-2 firstly, followed by the formation of part hydrogen bonds, then turn5-2 is extended and more hydrogen bonds are formed. The transition path at acidic pH is as the same as the first path described at physiological pH. PMID:23708094

  7. Materials Research for High Speed Civil Transport and Generic Hypersonics-Metals Durability

    NASA Technical Reports Server (NTRS)

    Schulz, Paul; Hoffman, Daniel

    1996-01-01

    This report covers a portion of an ongoing investigation of the durability of titanium alloys for the High Speed Civil Transport (HSCT). Candidate alloys need to possess an acceptable combination of properties including strength and toughness as well as fatigue and corrosion resistance when subjected to the HSCT operational environment. These materials must also be capable of being processed into required product forms while maintaining their properties. Processing operations being considered for this airplane include forming, welding, adhesive bonding, and superplastic forming with or without diffusion bonding. This program was designed to develop the material properties database required to lower the risk of using advanced titanium alloys on the HSCT.

  8. Apatite-forming PEEK with TiO2 surface layer coating.

    PubMed

    Kizuki, Takashi; Matsushita, Tomiharu; Kokubo, Tadashi

    2015-01-01

    Polyetheretherketone (PEEK) is widely used in orthopedic implants, such as spinal fusion devices, because of its moderate elastic modulus, as well as relatively high mechanical strength. However, it does not bond to living bone, and hence it needs autograft to be fixed to the bone. In this study, we attempted to add bone-bonding properties to PEEK by coating with TiO2 synthesized by the sol-gel process. When a TiO2 sol solution consisting of titanium isopropoxide, water, ethanol, and nitric acid was deposited on a PEEK substrate without any pretreatment, the formed TiO2 gel layer was easily peeled off after subsequent treatments. However, when the same solution was deposited on PEEK that was preliminarily subjected to UV or O2 plasma treatment, the deposited TiO2 gel layer strongly adhered to the substrate even after subsequent treatments. The strong adhesion was attributed to the interaction among the C-O, C=O, and O-C=O groups on the PEEK owing to the UV or O2 plasma treatment and the Ti-O bond of the TiO2 gel. Apatite did not form on the as-formed TiO2 gel layer in a simulated body fluid (SBF) even within 3 days; however, apatite formed after soaking in 0.1 M HCl solution at 80 °C for 24 h. This apatite formation was attributed to positive surface charge of the TiO2 gel layer induced by the acid treatment. The PEEK with the TiO2 gel layer coating formed by the proposed process is expected to bond to living bone, because a positively charged titanium oxide which facilitates the formation of apatite in SBF within a short period is known to bond to living bone.

  9. BONDING ALUMINUM METALS

    DOEpatents

    Noland, R.A.; Walker, D.E.

    1961-06-13

    A process is given for bonding aluminum to aluminum. Silicon powder is applied to at least one of the two surfaces of the two elements to be bonded, the two elements are assembled and rubbed against each other at room temperature whereby any oxide film is ruptured by the silicon crystals in the interface; thereafter heat and pressure are applied whereby an aluminum-silicon alloy is formed, squeezed out from the interface together with any oxide film, and the elements are bonded.

  10. THz spectra and corresponding vibrational modes of DNA base pair cocrystals and polynucleotides

    NASA Astrophysics Data System (ADS)

    Wang, Fang; Zhao, Dongbo; Dong, Hao; Jiang, Ling; Huang, Lin; Liu, Yunfei; Li, Shuhua

    2018-07-01

    The generalized energy-based fragmentation (GEBF) approach has been applied to study the THz spectra and vibrational modes of base pair cocrystals under periodic boundary conditions (denoted as PBC-GEBF). Results of vibrational mode reveal that hydrogen bonds play a pivotal role in the pairing process of base crystals, where most Nsbnd H and Csbnd H bonds stretch to some extent. We also found that hydrogen bonds of a self-made A:T cocrystal completely break in a transition from liquid to the solid state, while self-made C:G cocrystal is different and easier to form a cocrystal, as confirmed by X-ray diffraction (XRD) and terahertz (THz) spectra. Furthermore, we have studied DNA polynucleotides (in both A and B forms) found that the vibrational modes changed a lot during the process of their forming double strand. Despite the key role played by hydrogen bonds, the key contribution originates from collective motions of the main skeleton. A comparative study of the spectra of some stranded fragments suggests that different sequences or forms have similar spectra in THz band. They distinguish from each other mainly in the low-frequency regions, especially below 1 THz. This study would make great contributions to the molecular dynamics model based DNA long-chain structure simulation in the future study.

  11. Ultrasonic friction power during Al wire wedge-wedge bonding

    NASA Astrophysics Data System (ADS)

    Shah, A.; Gaul, H.; Schneider-Ramelow, M.; Reichl, H.; Mayer, M.; Zhou, Y.

    2009-07-01

    Al wire bonding, also called ultrasonic wedge-wedge bonding, is a microwelding process used extensively in the microelectronics industry for interconnections to integrated circuits. The bonding wire used is a 25μm diameter AlSi1 wire. A friction power model is used to derive the ultrasonic friction power during Al wire bonding. Auxiliary measurements include the current delivered to the ultrasonic transducer, the vibration amplitude of the bonding tool tip in free air, and the ultrasonic force acting on the bonding pad during the bond process. The ultrasonic force measurement is like a signature of the bond as it allows for a detailed insight into mechanisms during various phases of the process. It is measured using piezoresistive force microsensors integrated close to the Al bonding pad (Al-Al process) on a custom made test chip. A clear break-off in the force signal is observed, which is followed by a relatively constant force for a short duration. A large second harmonic content is observed, describing a nonsymmetric deviation of the signal wave form from the sinusoidal shape. This deviation might be due to the reduced geometrical symmetry of the wedge tool. For bonds made with typical process parameters, several characteristic values used in the friction power model are determined. The ultrasonic compliance of the bonding system is 2.66μm/N. A typical maximum value of the relative interfacial amplitude of ultrasonic friction is at least 222nm. The maximum interfacial friction power is at least 11.5mW, which is only about 4.8% of the total electrical power delivered to the ultrasonic generator.

  12. Bond Testing for Effects of Silicone Contamination

    NASA Technical Reports Server (NTRS)

    Plaia, James; Evans, Kurt

    2005-01-01

    In 2003 ATK Thiokol discovered that the smocks and coveralls worn by its operations personnel for safety and contamination control were themselves contaminated with a silicone defoamer and a silicone oil. As a growing list of items have been identified as having this form of contamination, it was desirable to devise a test method to determine if the contamination level detected could cause subsequent processing concerns. The smocks and coveralls could potentially contact bonding surfaces during processing so the test method focused on dry transfer of the silicone from the clothing to the bonding surface.

  13. Effect of laser parameters on the microstructure of bonding porcelain layer fused on titanium

    NASA Astrophysics Data System (ADS)

    Chen, Xiaoyuan; Guo, Litong; Liu, Xuemei; Feng, Wei; Li, Baoe; Tao, Xueyu; Qiang, Yinghuai

    2017-09-01

    Bonding porcelain layer was fused on Ti surface by laser cladding process using a 400 W pulse CO2 laser. The specimens were studied by field-emission scanning electron microscopy, X-ray diffraction and bonding tests. During the laser fusion process, the porcelain powders were heated by laser energy and melted on Ti to form a chemical bond with the substrate. When the laser scanning speed decreased, the sintering temperature and the extent of the oxidation of Ti surface increased accordingly. When the laser scanning speed is 12.5 mm/s, the bonding porcelain layers were still incomplete sintered and there were some micro-cracks in the porcelain. When the laser scanning speed decreased to 7.5 mm/s, vitrified bonding porcelain layers with few pores were synthesized on Ti.

  14. Fabrication and Characterization of Diffusion Bonds for Silicon Carbide

    NASA Technical Reports Server (NTRS)

    Halbig, Michael; Singh, Mrityunjay; Martin, Richard E.; Cosgriff, Laura M.

    2007-01-01

    Diffusion bonds of silicon carbide (SiC) were fabricated using several different types of titanium (Ti) based interlayers between the SiC substrates. The interlayers were an alloyed Ti foil, a pure Ti foil, and a physically vapor deposited (PVD) Ti coating. Microscopy was conducted to evaluate the cross-sections of the resulting bonds. Microprobe analysis identified reaction formed phases in the diffusion bonded region. Uniform and well adhered bonds were formed between the SiC substrates. In the case where the alloyed Ti foil or a thick Ti coating (i.e. 20 micron) was used as the interlayer, microcracks and several phases were present in the diffusion bonds. When a thinner interlayer was used (i.e. 10 micron PVD Ti), no microcracks were observed and only two reaction formed phases were present. The two phases were preferred and fully reacted phases that did not introduce thermal stresses or microcracks during the cool-down stage after processing. Diffusion bonded samples were evaluated with the non-destructive evaluation (NDE) methods of pulsed thermography and immersion ultrasonic testing. Joined SiC substrates that were fully bonded and that had simulated bond flaws in the interlayer were also evaluated using immersion ultrasound. Pull testing was conducted on the bonds to determine the tensile strength. To demonstrate the joining approach for a complex multilayered component for a low NOx injector application, the diffusion bonding approach was used to join three 4" diameter SiC discs that contained complex fuel and air flow channels.

  15. Manufacture of thin-walled clad tubes by pressure welding of roll bonded sheets

    NASA Astrophysics Data System (ADS)

    Schmidt, Hans Christian; Grydin, Olexandr; Stolbchenko, Mykhailo; Homberg, Werner; Schaper, Mirko

    2017-10-01

    Clad tubes are commonly manufactured by fusion welding of roll bonded metal sheets or, mechanically, by hydroforming. In this work, a new approach towards the manufacture of thin-walled tubes with an outer diameter to wall thickness ratio of about 12 is investigated, involving the pressure welding of hot roll bonded aluminium-steel strips. By preparing non-welded edges during the roll bonding process, the strips can be zip-folded and (cold) pressure welded together. This process routine could be used to manufacture clad tubes in a continuous process. In order to investigate the process, sample tube sections with a wall thickness of 2.1 mm were manufactured by U-and O-bending from hot roll bonded aluminium-stainless steel strips. The forming and welding were carried out in a temperature range between RT and 400°C. It was found that, with the given geometry, a pressure weld is established at temperatures starting above 100°C. The tensile tests yield a maximum bond strength at 340°C. Micrograph images show a consistent weld of the aluminium layer over the whole tube section.

  16. Laminated composite of magnetic alloy powder and ceramic powder and process for making same

    DOEpatents

    Moorhead, Arthur J.; Kim, Hyoun-Ee

    1999-01-01

    A laminated composite structure of alternating metal powder layers, and layers formed of an inorganic bonding media powder, and a method for manufacturing same are discosed. The method includes the steps of assembling in a cavity alternating layers of a metal powder and an inorganic bonding media of a ceramic, glass, and glass-ceramic. Heat, with or without pressure, is applied to the alternating layers until the particles of the metal powder are sintered together and bonded into the laminated composite structure by the layers of sintered inorganic bonding media to form a strong composite structure. The method finds particular application in the manufacture of high performance magnets wherein the metal powder is a magnetic alloy powder.

  17. Laminated composite of magnetic alloy powder and ceramic powder and process for making same

    DOEpatents

    Moorhead, A.J.; Kim, H.

    1999-08-10

    A laminated composite structure of alternating metal powder layers, and layers formed of an inorganic bonding media powder, and a method for manufacturing same are disclosed. The method includes the steps of assembling in a cavity alternating layers of a metal powder and an inorganic bonding media of a ceramic, glass, and glass-ceramic. Heat, with or without pressure, is applied to the alternating layers until the particles of the metal powder are sintered together and bonded into the laminated composite structure by the layers of sintered inorganic bonding media to form a strong composite structure. The method finds particular application in the manufacture of high performance magnets wherein the metal powder is a magnetic alloy powder. 9 figs.

  18. High performance low cost interconnections for flip chip attachment with electrically conductive adhesive. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1998-05-01

    This final report is a compilation of final reports from each of the groups participating in the program. The main three groups involved in this effort are the Thomas J. Watson Research Center of IBM Corporation in Yorktown Heights, New York, Assembly Process Design of IBM Corporation in Endicott, New York, and SMT Laboratory of Universal Instruments Corporation in Binghamton, New York. The group at the research center focused on the conductive adhesive materials development and characterization. The group in process development focused on processing of the Polymer-Metal-Solvent Paste (PMSP) to form conductive adhesive bumps, formation of the Polymer-Metal Compositemore » (PMC) on semiconductor devices and study of the bonding process to circuitized organic carriers, and the long term durability and reliability of joints formed using the process. The group at Universal Instruments focused on development of an equipment set and bonding parameters for the equipment to produce bond assembly tooling. Reports of each of these individual groups are presented here reviewing their technical efforts and achievements.« less

  19. Deactivation of 6-Aminocoumarin Intramolecular Charge Transfer Excited State through Hydrogen Bonding

    PubMed Central

    Krystkowiak, Ewa; Dobek, Krzysztof; Maciejewski, Andrzej

    2014-01-01

    This paper presents results of the spectral (absorption and emission) and photophysical study of 6-aminocoumarin (6AC) in various aprotic hydrogen-bond forming solvents. It was established that solvent polarity as well as hydrogen-bonding ability influence solute properties. The hydrogen-bonding interactions between S1-electronic excited solute and solvent molecules were found to facilitate the nonradiative deactivation processes. The energy-gap dependence on radiationless deactivation in aprotic solvents was found to be similar to that in protic solvents. PMID:25244014

  20. Fabrication of five-level ultraplanar micromirror arrays by flip-chip assembly

    NASA Astrophysics Data System (ADS)

    Michalicek, M. Adrian; Bright, Victor M.

    2001-10-01

    This paper reports a detailed study of the fabrication of various piston, torsion, and cantilever style micromirror arrays using a novel, simple, and inexpensive flip-chip assembly technique. Several rectangular and polar arrays were commercially prefabricated in the MUMPs process and then flip-chip bonded to form advanced micromirror arrays where adverse effects typically associated with surface micromachining were removed. These arrays were bonded by directly fusing the MUMPs gold layers with no complex preprocessing. The modules were assembled using a computer-controlled, custom-built flip-chip bonding machine. Topographically opposed bond pads were designed to correct for slight misalignment errors during bonding and typically result in less than 2 micrometers of lateral alignment error. Although flip-chip micromirror performance is briefly discussed, the means used to create these arrays is the focus of the paper. A detailed study of flip-chip process yield is presented which describes the primary failure mechanisms for flip-chip bonding. Studies of alignment tolerance, bonding force, stress concentration, module planarity, bonding machine calibration techniques, prefabrication errors, and release procedures are presented in relation to specific observations in process yield. Ultimately, the standard thermo-compression flip-chip assembly process remains a viable technique to develop highly complex prototypes of advanced micromirror arrays.

  1. Polyfibroblast: A Self-Healing and Galvanic Protection Additive

    DTIC Science & Technology

    2011-06-27

    Isocyanatopropyltrimethoxy silane (ITS): This silane forms a covalent bond with both the oxide layer of the underlying steel and the polyurea resin released from the...group that can react with amines in the polyurea to form a covalent bond. The fact that it reacts more slowly than ITS makes it easier to process, but...it may take longer to develop stronger adhesion with the polyurea scar. • Methacryloxypropyltrimethoxy silane (MPTMS): With an exposed vinyl group

  2. Corrosion protection

    DOEpatents

    Brown, Donald W.; Wagh, Arun S.

    2003-05-27

    There has been invented a chemically bonded phosphate corrosion protection material and process for application of the corrosion protection material for corrosion prevention. A slurry of iron oxide and phosphoric acid is used to contact a warm surface of iron, steel or other metal to be treated. In the presence of ferrous ions from the iron, steel or other metal, the slurry reacts to form iron phosphates which form grains chemically bonded onto the surface of the steel.

  3. Repairable chip bonding/interconnect process

    DOEpatents

    Bernhardt, Anthony F.; Contolini, Robert J.; Malba, Vincent; Riddle, Robert A.

    1997-01-01

    A repairable, chip-to-board interconnect process which addresses cost and testability issues in the multi-chip modules. This process can be carried out using a chip-on-sacrificial-substrate technique, involving laser processing. This process avoids the curing/solvent evolution problems encountered in prior approaches, as well is resolving prior plating problems and the requirements for fillets. For repairable high speed chip-to-board connection, transmission lines can be formed on the sides of the chip from chip bond pads, ending in a gull wing at the bottom of the chip for subsequent solder.

  4. Turbine airfoil fabricated from tapered extrusions

    DOEpatents

    Marra, John J

    2013-07-16

    An airfoil (30) and fabrication process for turbine blades with cooling channels (26). Tapered tubes (32A-32D) are bonded together in a parallel sequence, forming a leading edge (21), a trailing edge (22), and pressure and suction side walls (23, 24) connected by internal ribs (25). The tapered tubes may be extruded without camber to simplify the extrusion process, then bonded along matching surfaces (34), forming a non-cambered airfoil (28), which may be cambered in a hot forming process and cut (48) to length. The tubes may have tapered walls that are thinner at the blade tip (T1) than at the base (T2), reducing mass. A cap (50) may be attached to the blade tip. A mounting lug (58) may be forged (60) on the airfoil base and then machined, completing the blade for mounting in a turbine rotor disk.

  5. Method for providing adhesion to a metal surface

    DOEpatents

    Harrah, L.A.; Allred, R.E.; Wilson, K.V. Jr.

    1992-02-18

    A process for treating metal surfaces to obtain improved susceptibility to bonding with adhesive compositions is disclosed. A metal surface is oxidized with a halogen to form a monolayer of halide ions on the surface. The halide ions are then exchanged with azide ions to form an azide monolayer on the metal surface. Upon contact of the treated surface with an adhesive composition, the azide layer may be thermally or photochemically decomposed to form active nitrene species, which react to bond the adhesive composition to the metal surface.

  6. Method for providing adhesion to a metal surface

    DOEpatents

    Harrah, Larry A.; Allred, Ronald E.; Wilson, Jr., Kennard V.

    1992-01-01

    A process for treating metal surfaces to obtain improved susceptibility to bonding with adhesive compositions is disclosed. A metal surface is oxidized with a halogen to form a monolayer of halide ions on the surface. The halide ions are then exchanged with azide ions to form an azide monolayer on the metal surface. Upon contact of the treated surface with an adhesive composition, the azide layer may be thermally or photochemically decomposed to form active nitrene species, which react to bond the adhesive composition to the metal surface.

  7. A preference to bond? Male prairie voles form pair bonds even in the presence of multiple receptive females

    PubMed Central

    Blocker, Tomica D.; Ophir, Alexander G.

    2016-01-01

    Pair bonds are the cornerstone of a monogamous relationship. When individuals of the same species engage in monogamy and promiscuity (i.e. alternative reproductive tactics) it can be difficult to determine which tactic confers greater fitness, as measures of fitness can be difficult to ascertain. However, in these circumstances, whether animals preferentially establish pair bonds can reveal decisions that presumably reflect the animals’ assessment of how to best maximize reproductive success. In nature, the majority of prairie voles, Microtus ochrogaster, establishes pair bonds and engages in social monogamy while a minority of individuals remains single and presumably mates promiscuously. The existence of these two tactics raises the interesting question: do bonded male prairie voles choose to ‘settle’ (for just one partner) or are they preferentially ‘settling down’? To determine which of these two tactics is preferred, we provided single male prairie voles simultaneous access to two sexually receptive females for 24 h and then subsequently tested males in ‘partner preference tests’ with each female independently contrasted with a novel female. We aimed to determine whether males would form a pair bond with one, both or none of the original females. We found that males formed pair bonds with one of the two females. We also investigated male- and female-initiated aggression and found that during the bonding process males were more aggressive with females that they did not ultimately form a bond with. In the partner preference tests, males showed more aggression towards unfamiliar females than towards familiar females. Mismatches in male- and female-initiated aggression suggest that aggressive interactions may be perpetuated more by males than by females. Taken together, our results demonstrate that under conditions that are ideal for forgoing bonding and engaging in multiple matings, males choose to establish a pair bond, suggesting that selective pressures may have facilitated bonding by males. PMID:28579618

  8. Development of monolithic nuclear fuels for RERTR by hot isostatic pressing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jue, J.-F.; Park, Blair; Chapple, Michael

    2008-07-15

    The RERTR Program (Reduced Enrichment for Research and Test Reactors) is developing advanced nuclear fuels for high power test reactors. Monolithic fuel design provides a higher uranium loading than that of the traditional dispersion fuel design. In order to bond monolithic fuel meat to aluminum cladding, several bonding methods such as roll bonding, friction stir bonding and hot isostatic pressing, have been explored. Hot isostatic pressing is a promising process for low cost, batch fabrication of monolithic RERTR fuel plates. The progress on the development of this process at the Idaho National Laboratory will be presented. Due to the relativelymore » high processing temperature used, the reaction between fuel meat and aluminum cladding to form brittle intermetallic phases may be a concern. The effect of processing temperature and time on the fuel/cladding reaction will be addressed. The influence of chemical composition on the reaction will also be discussed. (author)« less

  9. Gold-based electrical interconnections for microelectronic devices

    DOEpatents

    Peterson, Kenneth A.; Garrett, Stephen E.; Reber, Cathleen A.; Watson, Robert D.

    2002-01-01

    A method of making an electrical interconnection from a microelectronic device to a package, comprising ball or wedge compression bonding a gold-based conductor directly to a silicon surface, such as a polysilicon bonding pad in a MEMS or IMEMS device, without using layers of aluminum or titanium disposed in-between the conductor and the silicon surface. After compression bonding, optional heating of the bond above 363 C. allows formation of a liquid gold-silicon eutectic phase containing approximately 3% (by weight) silicon, which significantly improves the bond strength by reforming and enhancing the initial compression bond. The same process can be used for improving the bond strength of Au--Ge bonds by forming a liquid Au-12Ge eutectic phase.

  10. Superplastic Forming/Diffusion Bonding Without Interlayer of 5A90 Al-Li Alloy Hollow Double-Layer Structure

    NASA Astrophysics Data System (ADS)

    Jiang, Shaosong; Jia, Yong; Lu, Zhen; Shi, Chengcheng; Zhang, Kaifeng

    2017-09-01

    The hollow double-layer structure of 5A90 Al-Li alloy was fabricated by SPF/DB process in this study. The characteristics and mechanism of 5A90 Al-Li alloy with respect to superplasticity and diffusion bonding were investigated. Tensile tests showed that the optimal elongation of tensile specimens was 243.97% at the temperature of 400 °C and the strain rate of 0.001 s-1. Effect of the surface roughness, bonding temperature and bonding time to determine the microstructure and mechanical properties of diffusion bonding joints was investigated, and the optimum bonding parameters were 540 °C/2.5 h/Ra18. Through the finite element simulation, it could be found that the SPF/DB process of hollow double-layer structure was feasible. The hollow double-layer structure of 5A90 Al-Li alloy was manufactured, showing that the thickness distribution of the bonding area was uniform and the thinnest part was the round corner. The SEM images of diffusion bonding joints showed that sound bonding interfaces were obtained in which no discontinuity existed.

  11. THz spectra and corresponding vibrational modes of DNA base pair cocrystals and polynucleotides.

    PubMed

    Wang, Fang; Zhao, Dongbo; Dong, Hao; Jiang, Ling; Huang, Lin; Liu, Yunfei; Li, Shuhua

    2018-07-05

    The generalized energy-based fragmentation (GEBF) approach has been applied to study the THz spectra and vibrational modes of base pair cocrystals under periodic boundary conditions (denoted as PBC-GEBF). Results of vibrational mode reveal that hydrogen bonds play a pivotal role in the pairing process of base crystals, where most NH and CH bonds stretch to some extent. We also found that hydrogen bonds of a self-made A:T cocrystal completely break in a transition from liquid to the solid state, while self-made C:G cocrystal is different and easier to form a cocrystal, as confirmed by X-ray diffraction (XRD) and terahertz (THz) spectra. Furthermore, we have studied DNA polynucleotides (in both A and B forms) found that the vibrational modes changed a lot during the process of their forming double strand. Despite the key role played by hydrogen bonds, the key contribution originates from collective motions of the main skeleton. A comparative study of the spectra of some stranded fragments suggests that different sequences or forms have similar spectra in THz band. They distinguish from each other mainly in the low-frequency regions, especially below 1 THz. This study would make great contributions to the molecular dynamics model based DNA long-chain structure simulation in the future study. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Spectroscopic Identification of the Au-C Bond Formation upon Electroreduction of an Aryl Diazonium Salt on Gold.

    PubMed

    Guo, Limin; Ma, Lipo; Zhang, Yelong; Cheng, Xun; Xu, Ye; Wang, Jin; Wang, Erkang; Peng, Zhangquan

    2016-11-08

    Electroreduction of aryl diazonium salts on gold can produce organic films that are more robust than their analogous self-assembled monolayers formed from chemical adsorption of organic thiols on gold. However, whether the enhanced stability is due to the Au-C bond formation remains debated. In this work, we report the electroreduction of an aryl diazonium salt of 4,4'-disulfanediyldibenzenediazonium on gold forming a multilayer of Au-(Ar-S-S-Ar) n , which can be further degraded to a monolayer of Au-Ar-S - by electrochemical cleavage of the S-S moieties within the multilayer. By conducting an in situ surface-enhanced Raman spectroscopic study of both the multilayer formation/degradation and the monolayer reduction/oxidation processes, coupled to density functional theory calculations, we provide compelling evidence that an Au-C bond does form upon electroreduction of aryl diazonium salts on gold and that the enhanced stability of the electrografted organic films is due to the Au-C bond being intrinsically stronger than the Au-S bond for a given phenylthiolate compound by ca. 0.4 eV.

  13. The impact of processing parameters on the properties of Zn-bonded Nd-Fe-B magnets

    NASA Astrophysics Data System (ADS)

    Kelhar, Luka; Zavašnik, Janez; McGuiness, Paul; Kobe, Spomenka

    2016-12-01

    We report on the effect of loading factor and pressure on the density and the magnetic properties of Zn-bonded Nd-Fe-B magnets produced by pulsed-electric-current sintering (PECS). The idea behind this study is to fabricate bonded magnets with a metallic binder in order for the bonded magnet to operate at temperatures higher than 180 °C: the current upper-limit for polymer-bonded magnets. These composites are made of hard-magnetic powder in the form of melt-spun ribbons bonded with the low-melting-point metal Zn. The binder additions were varied from 10 to 30 wt%, and pressures of 50 and 500 MPa were applied. The high-pressure mode with 20 wt% Zn resulted in a 24% increase of Jr, compared to the low-pressure mode. The magnetic measurements revealed a maximum remanence of 0.64 T for 10 wt% Zn, while the coercivity is largely unaffected by the processing conditions. The density of the composites was up to 7.0 g/cm3, corresponding to 94% of the theoretical density. Compared to commercial polymer-bonded magnets, the Zn-bonded counterparts exhibit a slightly lower Jr, but the coercivity is retained. We show that there is a minor diffusion of Zn into the Nd-Fe-B, forming a 1 μm thin transition layer, but it does not harm the magnetic properties. These metal-bonded Nd-Fe-B magnets are ideal for use in high-temperature automotive applications like under-the-hood sensors and other magnet-based devices that are close to the engine.

  14. Bridged transition-metal complexes and uses thereof for hydrogen separation, storage and hydrogenation

    DOEpatents

    Lilga, Michael A.; Hallen, Richard T.

    1990-01-01

    The present invention constitutes a class of organometallic complexes which reversibly react with hydrogen to form dihydrides and processes by which these compounds can be utilized. The class includes bimetallic complexes in which two cyclopentadienyl rings are bridged together and also separately .pi.-bonded to two transition metal atoms. The transition metals are believed to bond with the hydrogen in forming the dihydride. Transition metals such as Fe, Mn or Co may be employed in the complexes although Cr constitutes the preferred metal. A multiple number of ancilliary ligands such as CO are bonded to the metal atoms in the complexes. Alkyl groups and the like may be substituted on the cyclopentadienyl rings. These organometallic compounds may be used in absorption/desorption systems and in facilitated transport membrane systems for storing and separating out H.sub.2 from mixed gas streams such as the produce gas from coal gasification processes.

  15. Bridged transition-metal complexes and uses thereof for hydrogen separation, storage and hydrogenation

    DOEpatents

    Lilga, M.A.; Hallen, R.T.

    1991-10-15

    The present invention constitutes a class of organometallic complexes which reversibly react with hydrogen to form dihydrides and processes by which these compounds can be utilized. The class includes bimetallic complexes in which two cyclopentadienyl rings are bridged together and also separately [pi]-bonded to two transition metal atoms. The transition metals are believed to bond with the hydrogen in forming the dihydride. Transition metals such as Fe, Mn or Co may be employed in the complexes although Cr constitutes the preferred metal. A multiple number of ancillary ligands such as CO are bonded to the metal atoms in the complexes. Alkyl groups and the like may be substituted on the cyclopentadienyl rings. These organometallic compounds may be used in absorption/desorption systems and in facilitated transport membrane systems for storing and separating out H[sub 2] from mixed gas streams such as the product gas from coal gasification processes. 3 figures.

  16. Bridged transition-metal complexes and uses thereof for hydrogen separation, storage and hydrogenation

    DOEpatents

    Lilga, M.A.; Hallen, R.T.

    1990-08-28

    The present invention constitutes a class of organometallic complexes which reversibly react with hydrogen to form dihydrides and processes by which these compounds can be utilized. The class includes bimetallic complexes in which two cyclopentadienyl rings are bridged together and also separately [pi]-bonded to two transition metal atoms. The transition metals are believed to bond with the hydrogen in forming the dihydride. Transition metals such as Fe, Mn or Co may be employed in the complexes although Cr constitutes the preferred metal. A multiple number of ancillary ligands such as CO are bonded to the metal atoms in the complexes. Alkyl groups and the like may be substituted on the cyclopentadienyl rings. These organometallic compounds may be used in absorption/desorption systems and in facilitated transport membrane systems for storing and separating out H[sub 2] from mixed gas streams such as the producer gas from coal gasification processes. 3 figs.

  17. Bridged transition-metal complexes and uses thereof for hydrogen separation, storage and hydrogenation

    DOEpatents

    Lilga, Michael A.; Hallen, Richard T.

    1991-01-01

    The present invention constitutes a class of organometallic complexes which reversibly react with hydrogen to form dihydrides and processes by which these compounds can be utilized. The class includes bimetallic complexes in which two cyclopentadienyl rings are bridged together and also separately .pi.-bonded to two transition metal atoms. The transition metals are believed to bond with the hydrogen in forming the dihydride. Transition metals such as Fe, Mn or Co may be employed in the complexes although Cr constitutes the preferred metal. A multiple number of ancilliary ligands such as CO are bonded to the metal atoms in the complexes. Alkyl groups and the like may be substituted on the cyclopentadienyl rings. These organometallic compounds may be used in absorption/desorption systems and in facilitated transport membrane systems for storing and separating out H.sub.2 from mixed gas streams such as the product gas from coal gasification processes.

  18. Transition State Geometry Measurements from 13C Isotope Effects. The Experimental Transition State for the Epoxidation of Alkenes with Oxaziridines

    PubMed Central

    Hirschi, Jennifer S.; Takeya, Tetsuya; Hang, Chao; Singleton, Daniel A.

    2009-01-01

    We suggest here and evaluate a methodology for the measurement of specific interatomic distances from a combination of theoretical calculations and experimentally measured 13C kinetic isotope effects. This process takes advantage of a broad diversity of transition structures available for the epoxidation of 2-methyl-2-butene with oxaziridines. From the isotope effects calculated for these transition structures, a theory-independent relationship between the C-O bond distances of the newly forming bonds and the isotope effects is established. Within the precision of the measurement, this relationship in combination with the experimental isotope effects provides a highly accurate picture of the C-O bonds forming at the transition state. The diversity of transition structures also allows an evaluation of the Schramm process for defining transition state geometries based on calculations at non-stationary points, and the methodology is found to be reasonably accurate. PMID:19146405

  19. Development and fabrication of an autoclave molded PES/Quartz sandwich radome

    NASA Astrophysics Data System (ADS)

    Stanton, Leonard E.; Levin, Stephen D.

    1993-04-01

    A cohesively bonded, thermoplastic composite sandwich radome for a leading edge supersonic aircraft has been built using autoclave processing with PES/Quartz prepreg and a PES coated honeycomb core. Processes were developed for solvent removal, thermoplastic laminate consolidation, surface etching to improve adhesion, honeycomb coating and forming, and ultrasound testing of bond integrity. Environmental testing was also conducted to verify the structural integrity of the radome for its intended application.

  20. Repairable chip bonding/interconnect process

    DOEpatents

    Bernhardt, A.F.; Contolini, R.J.; Malba, V.; Riddle, R.A.

    1997-08-05

    A repairable, chip-to-board interconnect process which addresses cost and testability issues in the multi-chip modules is disclosed. This process can be carried out using a chip-on-sacrificial-substrate technique, involving laser processing. This process avoids the curing/solvent evolution problems encountered in prior approaches, as well is resolving prior plating problems and the requirements for fillets. For repairable high speed chip-to-board connection, transmission lines can be formed on the sides of the chip from chip bond pads, ending in a gull wing at the bottom of the chip for subsequent solder. 10 figs.

  1. Magnetic filtration process, magnetic filtering material, and methods of forming magnetic filtering material

    DOEpatents

    Taboada-Serrano, Patricia; Tsouris, Constantino; Contescu, Cristian I; McFarlane, Joanna

    2013-10-08

    The present invention provides magnetically responsive activated carbon, and a method of forming magnetically responsive activated carbon. The method of forming magnetically responsive activated carbon typically includes providing activated carbon in a solution containing ions of ferrite forming elements, wherein at least one of the ferrite forming elements has an oxidation state of +3 and at least a second of the ferrite forming elements has an oxidation state of +2, and increasing pH of the solution to precipitate particles of ferrite that bond to the activated carbon, wherein the activated carbon having the ferrite particles bonded thereto have a positive magnetic susceptibility. The present invention also provides a method of filtering waste water using magnetic activated carbon.

  2. Solid-state Bonding of Superplastic Aluminum Alloy 7475 Sheet

    NASA Technical Reports Server (NTRS)

    Byun, T. D. S.; Vastava, R. B.

    1985-01-01

    Experimental works were carried out to study the feasibility of solid state bonding of superplastic aluminum 7475 sheet. Amount of deformation, bonding time, surface cleaning method and intermediate layer were the process parameters investigated. Other parameters, held constant by the superplastic forming condition which is required to obtain a concurrent solid state bonding, are bonding temperature, bonding pressure and atmosphere. Bond integrity was evaluated through metallographic examination, X-ray line scan analysis, SEM fractographic analysis and lap shear tests. The early results of the development program indicated that sound solid state bonding was accomplished for this high strength 7475 alloy with significant amounts of deformation. A thin intermediate layer of the soft 5052 aluminum alloy aided in achieving a solid state bonding by reducing the required amount of plastic deformation at the interface. Bond strength was substantially increased by a post bond heat treatment.

  3. 48 CFR 1228.106-1 - Bonds and bond-related forms.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... GENERAL CONTRACTING REQUIREMENTS BONDS AND INSURANCE Bonds and Other Financial Protections 1228.106-1 Bonds and bond-related forms. (b) Standard Form (SF) 25, Performance Bond, prescribed at (FAR) 48 CFR 28...) shall not be used by contractors when a performance bond is required. ...

  4. Simulating Self-Assembly with Simple Models

    NASA Astrophysics Data System (ADS)

    Rapaport, D. C.

    Results from recent molecular dynamics simulations of virus capsid self-assembly are described. The model is based on rigid trapezoidal particles designed to form polyhedral shells of size 60, together with an atomistic solvent. The underlying bonding process is fully reversible. More extensive computations are required than in previous work on icosahedral shells built from triangular particles, but the outcome is a high yield of closed shells. Intermediate clusters have a variety of forms, and bond counts provide a useful classification scheme

  5. Process for forming unusually strong joints between metals and ceramics by brazing at temperatures that do not exceed 750/sup 0/C

    DOEpatents

    Hammond, J.P.; David, S.A.; Woodhouse, J.J.

    1984-12-04

    This invention is a process for joining metals to ceramics to form very strong bonds using low brazing temperature, i.e., less than 750/sup 0/C, and particularly for joining nodular cast iron to partially stabilized zirconia. The process provides that the ceramic be coated with an active metal, such as titanium, that can form an intermetallic with a low melting point brazing alloy such as 60Ag-30Cu-10Sn. The nodular cast iron is coated with a noncarbon containing metal, such as copper, to prevent carbon in the nodular cast iron from dissolving in the brazing alloy. These coated surfaces can be brazed together with the brazing alloy between at less than 750/sup 0/C to form a very strong joint. An even stronger bond can be formed if a transition piece is used between the metal and ceramic. It is preferred for the transition piece to have a coefficient of thermal expansion compatible with the coefficient of thermal expansion of the ceramic, such as titanium.

  6. Process for forming unusually strong joints between metals and ceramics by brazing at temperatures that do no exceed 750 degree C.

    DOEpatents

    Hammond, Joseph P.; David, Stan A.; Woodhouse, John J.

    1986-01-01

    This invention is a process for joining metals to ceramics to form very strong bonds using low brazing temperature, i.e., less than 750.degree. C., and particularly for joining nodular cast iron to partially stabilized zirconia. The process provides that the ceramic be coated with an active metal, such as titanium, that can form an intermetallic with a low melting point brazing alloy such as 60Ag-30Cu-10Sn. The nodular cast iron is coated with a noncarbon containing metal, such as copper, to prevent carbon in the nodular cast iron from dissolving in the brazing alloy. These coated surfaces can be brazed together with the brazing alloy between at less than 750.degree. C. to form a very strong joint. An even stronger bond can be formed if a transition piece is used between the metal and ceramic. It is preferred for the transition piece to have a coefficient of thermal compatible with the coefficient of thermal expansion of the ceramic, such as titanium.

  7. Cooperative structural transitions in amyloid-like aggregation

    NASA Astrophysics Data System (ADS)

    Steckmann, Timothy; Bhandari, Yuba R.; Chapagain, Prem P.; Gerstman, Bernard S.

    2017-04-01

    Amyloid fibril aggregation is associated with several horrific diseases such as Alzheimer's, Creutzfeld-Jacob, diabetes, Parkinson's, and others. Although proteins that undergo aggregation vary widely in their primary structure, they all produce a cross-β motif with the proteins in β-strand conformations perpendicular to the fibril axis. The process of amyloid aggregation involves forming myriad different metastable intermediate aggregates. To better understand the molecular basis of the protein structural transitions and aggregation, we report on molecular dynamics (MD) computational studies on the formation of amyloid protofibrillar structures in the small model protein ccβ, which undergoes many of the structural transitions of the larger, naturally occurring amyloid forming proteins. Two different structural transition processes involving hydrogen bonds are observed for aggregation into fibrils: the breaking of intrachain hydrogen bonds to allow β-hairpin proteins to straighten, and the subsequent formation of interchain H-bonds during aggregation into amyloid fibrils. For our MD simulations, we found that the temperature dependence of these two different structural transition processes results in the existence of a temperature window that the ccβ protein experiences during the process of forming protofibrillar structures. This temperature dependence allows us to investigate the dynamics on a molecular level. We report on the thermodynamics and cooperativity of the transformations. The structural transitions that occurred in a specific temperature window for ccβ in our investigations may also occur in other amyloid forming proteins but with biochemical parameters controlling the dynamics rather than temperature.

  8. Friction Stir Welding of SiC/Aluminum Metal Matrix Composites

    NASA Technical Reports Server (NTRS)

    Lee, Jonathan A.

    1999-01-01

    Friction Stir Welding (FSW) is a new solid state process for joining metals by plasticizing and consolidating materials around the bond line using thermal energy producing from frictional forces. A feasibility study for FSW of Metal Matrix Composites (MMC) was investigated using aluminum 6092 alloy reinforced with 17% SiC particulates. FSW process consists of a special rotating pin tool that is positioned to plunge into the MMC surface at the bond line. As the tool rotates and move forward along the bond line, the material at the bond line is heated up and forced to flow around the rotating tip to consolidate on the tip's backside to form a solid state joint. FSW has the potential for producing sound welds with MMC because the processing temperature occurs well below the melting point of the metal matrix; thereby eliminating the reinforcement-to-matrix solidification defects, reducing the undesirable chemical reactions and porosity problems.

  9. Microorganism mediated liquid fuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Troiano, Richard

    Herein disclosed is a method for producing liquid hydrocarbon product, the method comprising disintegrating a hydrocarbon source; pretreating the disintegrated hydrocarbon source; solubilizing the disintegrated hydrocarbon source to form a slurry comprising a reactant molecule of the hydrocarbon source; admixing a biochemical liquor into the slurry, wherein the biochemical liquor comprises at least one conversion enzyme configured to facilitate bond selective photo-fragmentation of said reactant molecule of the hydrocarbon source, to form liquid hydrocarbons via enzyme assisted bond selective photo-fragmentation, wherein said conversion enzyme comprises reactive sites configured to restrict said reactant molecule such that photo-fragmentation favorably targets a preselectedmore » internal bond of said reactant molecule; separating the liquid hydrocarbons from the slurry, wherein contaminants remain in the slurry; and enriching the liquid hydrocarbons to form a liquid hydrocarbon product. Various aspects of such method/process are also discussed.« less

  10. Tacky COC: a solvent bonding technique for fabrication of microfluidic systems

    NASA Astrophysics Data System (ADS)

    Keller, Nico; Nargang, Tobias M.; Helmer, Dorothea; Rapp, Bastian E.

    2016-03-01

    The academic community knows cyclic olefin copolymer (COC) as a well suited material for microfluidic applications because COC has numerous interesting properties such as high transmittance, good chemical resistance and good biocompatibility. Here we present a fast and cost-effective method for bonding of two COC substrates: exposure to appropriate solvents gives a tacky COC surface which when brought in contact with untreated COC forms a strong and optical clear bond. The bonding process is carried out at room temperature and takes less than three minutes which makes it significantly faster than currently described methods: This method does not require special lab equipment such as hot plates or hydraulic presses. The mild conditions of the bond process also allow for such "tacky COC" lids to be used for sealing of microfluidic chips containing immobilized protein patterns which is of high interest for immunodiagnostic testing inside microfluidic chips.

  11. Spectroscopic investigation on cocrystal formation between adenine and fumaric acid based on infrared and Raman techniques

    NASA Astrophysics Data System (ADS)

    Du, Yong; Fang, Hong Xia; Zhang, Qi; Zhang, Hui Li; Hong, Zhi

    2016-01-01

    As an important component of double-stranded DNA, adenine has powerful hydrogen-bond capability, due to rich hydrogen bond donors and acceptors existing within its molecular structure. Therefore, it is easy to form cocrystal between adenine and other small molecules with intermolecular hydrogen-bond effect. In this work, cocrystal of adenine and fumaric acid has been characterized as model system by FT-IR and FT-Raman spectral techniques. The experimental results show that the cocrystal formed between adenine and fumaric acid possesses unique spectroscopical characteristic compared with that of starting materials. Density functional theory (DFT) calculation has been performed to optimize the molecular structures and simulate vibrational modes of adenine, fumaric acid and the corresponding cocrystal. Combining the theoretical and experimental vibrational results, the characteristic bands corresponding to bending and stretching vibrations of amino and carbonyl groups within cocrystal are shifted into lower frequencies upon cocrystal formation, and the corresponding bond lengths show some increase due to the effect of intermolecular hydrogen bonding. Different vibrational modes shown in the experimental spectra have been assigned based on the simulation DFT results. The study could provide experimental and theoretical benchmarks to characterize cocrystal formed between active ingredients and cocrystal formers and also the intermolecular hydrogen-bond effect within cocrystal formation process by vibrational spectroscopic techniques.

  12. Ultrafast Hydrogen-Bonding Dynamics in Amyloid Fibrils.

    PubMed

    Pazos, Ileana M; Ma, Jianqiang; Mukherjee, Debopreeti; Gai, Feng

    2018-06-08

    While there are many studies on the subject of hydrogen bonding dynamics in biological systems, few, if any, have investigated this fundamental process in amyloid fibrils. Herein, we seek to add insight into this topic by assessing the dynamics of a hydrogen bond buried in the dry interface of amyloid fibrils. To prepare a suitable model peptide system for this purpose, we introduce two mutations into the amyloid-forming Aβ(16-22) peptide. The first one is a lysine analog at position 19, which is used to help form structurally homogeneous fibrils, and the second one is an aspartic acid derivative (DM) at position 17, which is intended (1) to be used as a site-specific infrared probe and (2) to serve as a hydrogen-bond acceptor to lysine so that an inter-β-sheet hydrogen bond can be formed in the fibrils. Using both infrared spectroscopy and atomic force microscopy, we show that (1) this mutant peptide indeed forms well defined fibrils, (2) when bulk solvent is removed, there is no detectable water present in the fibrils, (3) infrared results obtained with the DM probe are consistent with a protofibril structure that is composed of two antiparallel β-sheets stacked in a parallel fashion, leading to formation of the expected hydrogen bond. Using two-dimensional infrared spectroscopy, we further show that the dynamics of this hydrogen bond occur on a timescale of ~2.3 ps, which is attributed to the rapid rotation of the -NH3+ group of lysine around its Cε-Nζ bond. Taken together, these results suggest that (1) DM is a useful infrared marker in facilitating structure determination of amyloid fibrils and (2) even in the tightly packed core of amyloid fibrils certain amino acid sidechains can undergo ultrafast motions, hence contributing to the thermodynamic stability of the system.

  13. Process Of Bonding Copper And Tungsten

    DOEpatents

    Slattery, Kevin T.; Driemeyer, Daniel E.

    1999-11-23

    Process for bonding a copper substrate to a tungsten substrate by providing a thin metallic adhesion promoting film bonded to a tungsten substrate and a functionally graded material (FGM) interlayer bonding the thin metallic adhesion promoting film to the copper substrate. The FGM interlayer is formed by thermal plasma spraying mixtures of copper powder and tungsten powder in a varied blending ratio such that the blending ratio of the copper powder and the tungsten powder that is fed to a plasma torch is intermittently adjusted to provide progressively higher copper content/tungsten content, by volume, ratio values in the interlayer in a lineal direction extending from the tungsten substrate towards the copper substrate. The resulting copper to tungsten joint well accommodates the difference in the coefficient of thermal expansion of the materials.

  14. Nickel-Catalyzed Coupling Reactions of Alkyl Electrophiles, Including Unactivated Tertiary Halides, to Generate Carbon–Boron Bonds

    PubMed Central

    Dudnik, Alexander S.

    2012-01-01

    Through the use of a catalyst formed in situ from NiBr2•diglyme and a pybox ligand (both of which are commercially available), we have achieved our first examples of coupling reactions of unactivated tertiary alkyl electrophiles, as well as our first success with nickel-catalyzed couplings that generate bonds other than C–C bonds. Specifically, we have determined that this catalyst accomplishes Miyaura-type borylations of unactivated tertiary, secondary, and primary alkyl halides with diboron reagents to furnish alkylboronates, a family of compounds with substantial (and expanding) utility, under mild conditions; indeed, the umpolung borylation of a tertiary alkyl bromide can be achieved at a temperature as low as −10 °C. The method exhibits good functional-group compatibility and is regiospecific, both of which can be issues with traditional approaches to the synthesis of alkylboronates. In contrast to seemingly related nickel-catalyzed C–C bond-forming processes, tertiary halides are more reactive than secondary or primary halides in this nickel-catalyzed C–B bond-forming reaction; this divergence is particularly noteworthy in view of the likelihood that both transformations follow an inner-sphere electron-transfer pathway for oxidative addition. PMID:22668072

  15. Genes from the medicinal leech (Hirudo medicinalis) coding for unusual enzymes that specifically cleave endo-epsilon (gamma-Glu)-Lys isopeptide bonds and help to dissolve blood clots.

    PubMed

    Zavalova, L; Lukyanov, S; Baskova, I; Snezhkov, E; Akopov, S; Berezhnoy, S; Bogdanova, E; Barsova, E; Sverdlov, E D

    1996-11-27

    We previously detected in salivary gland secretions of the medicinal leech (Hirudo medicinalis) a novel enzymatic activity, endo-epsilon(gamma-Glu)-Lys isopeptidase, which cleaves isopeptide bonds formed by transglutaminase (Factor XIIIa) between glutamine gamma-carboxamide and the epsilon-amino group of lysine. Such isopeptide bonds, either within or between protein polypeptide chains are formed in many biological processes. However, before we started our work no enzymes were known to be capable of specifically splitting isopeptide bonds in proteins. The isopeptidase activity we detected was specific for isopeptide bonds. The enzyme was termed destabilase. Here we report the first purification of destabilase, part of its amino acid sequence isolation and sequencing of two related cDNAs derived from the gene family that encodes destabilase proteins, and the detection of isopeptidase activity encoded by one of these cDNAs cloned in a baculovirus expression vector. The deduced mature protein products of these cDNAs contain 115 and 116 amino acid residues, including 14 highly conserved Cys residues, and are formed from precursors containing specific leader peptides. No homologous sequences were found in public databases.

  16. Molecular-specific urokinase antibodies

    NASA Technical Reports Server (NTRS)

    Atassi, M. Zouhair (Inventor); Morrison, Dennis R. (Inventor)

    2009-01-01

    Antibodies have been developed against the different molecular forms of urokinase using synthetic peptides as immunogens. The peptides were synthesized specifically to represent those regions of the urokinase molecules which are exposed in the three-dimensional configuration of the molecule and are uniquely homologous to urokinase. Antibodies are directed against the lysine 158-isoleucine 159 peptide bond which is cleaved during activation from the single-chain (ScuPA) form to the bioactive double chain (54 KDa and 33 KDa) forms of urokinase and against the lysine 135 lysine 136 bond that is cleaved in the process of removing the alpha-chain from the 54 KDa form to produce the 33 KDa form of urokinase. These antibodies enable the direct measurement of the different molecular forms of urokinase from small samples of conditioned medium harvested from cell cultures.

  17. An Attachment Perspective on the Child--Dog Bond: Interdisciplinary and International Research Findings

    ERIC Educational Resources Information Center

    Jalongo, Mary Renck

    2015-01-01

    Understanding the process of attachment formation in young children has been a focal point in child development research for decades. However, young children's attachments are not only with human beings; they also form bonds with companion animals, particularly dogs ("Canis familiaris"). Given the number of dogs that are kept by families…

  18. Copper-catalyzed aerobic oxidative N-S bond functionalization for C-S bond formation: regio- and stereoselective synthesis of sulfones and thioethers.

    PubMed

    Li, Xianwei; Xu, Yanli; Wu, Wanqing; Jiang, Chang; Qi, Chaorong; Jiang, Huanfeng

    2014-06-23

    A regio- and stereoselective synthesis of sulfones and thioethers by means of Cu(I)-catalyzed aerobic oxidative N-S bond cleavage of sulfonyl hydrazides, followed by cross-coupling reactions with alkenes and aromatic compounds to form the C sp 2-S bond, is described herein. N2 and H2O are the byproducts of this transformation, thus offering an environmentally benign process with a wide range of potential applications in organic synthesis and medicinal chemistry. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Development of high-performance biodegradable rigid polyurethane foams using all bioresource-based polyols: Lignin and soy oil-derived polyols.

    PubMed

    Luo, Xiaogang; Xiao, Yuqin; Wu, Qiangxian; Zeng, Jian

    2018-04-25

    Development of biodegradable polyurethane materials is the most promising in the wider context of the "greening" of industrial chemistry. To tackle this challenge, a novel biodegradable polyurethane foam from all bioresource-based polyols (lignin and soy oil-derived polyols) and polymeric methyldiphenyl diisocyanate (pMDI) have been synthesized via a one-pot and self-rising process. All these foam samples have the internal cellular morphology and microstructure. FTIR result exhibits characteristic peaks of polyurethane, and indicates covalent bonds between soy-based polyurethane and lignin, and the lignin powders can react with pMDI via active -H and -CNO. In addition, hydrogen bonding also plays an important role in forming the 3D structures. These interactions and chemical bonds made the prepared foam samples form the 3D macromolecular structure with improved mechanical, thermal, and biodegradable properties. The reaction process is time-saving and cost-effective as it requires no blowing agent and minimum processing steps, while exploring the potential of using the higher content of nature bioresource constituents. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Which one among the Pt-containing anticancer drugs more easily forms monoadducts with G and A DNA bases? A comparative study among oxaliplatin, nedaplatin, and carboplatin.

    PubMed

    Alberto, Marta E; Butera, Valeria; Russo, Nino

    2011-08-01

    The platination processes of DNA bases with second- and third-generation Pt(II) anticancer drugs have been investigated using density functional theory (DFT) combined with the conductor-like dielectric continuum model (CPCM) approach, in order to describe their binding mechanisms and to obtain detailed data on the reaction energy profiles. Although there is no doubt that a Pt-N7 bond forms during initial attack, the energetic profiles for the formation of the monofunctional adducts are not known. Herein, a direct comparison between the rate of formation of the monofunctional adducts of the second- and third-generation anticancer drugs with guanine (G) and adenine (A) DNA bases has been made in order to spotlight possible common or different behavior. The guanine as target for platination process is confirmed to be preferred over adenine for all the investigated compounds and for both the hydrolyzed forms considered in our investigation. The preference for G purine base is dominated by electronic factors and promoted by a more favorable hydrogen-bonds pattern, confirming the important role played by H-bonds in determining both structural and kinetic control on the purine platination process. © 2011 American Chemical Society

  1. Size effects in tin-based lead-free solder joints: Kinetics of bond formation and mechanical characteristics

    NASA Astrophysics Data System (ADS)

    Abdelhadi, Ousama Mohamed Omer

    Continuous miniaturization of microelectronic interconnects demands smaller joints with comparable microstructural and structural sizes. As the size of joints become smaller, the volume of intermetallics (IMCs) becomes comparable with the joint size. As a result, the kinetics of bond formation changes and the types and thicknesses of IMC phases that form within the constrained region of the bond varies. This dissertation focuses on investigating combination effects of process parameters and size on kinetics of bond formation, resulting microstructure and the mechanical properties of joints that are formed under structurally constrained conditions. An experiment is designed where several process parameters such as time of bonding, temperature, and pressure, and bond thickness as structural chracteristic, are varied at multiple levels. The experiment is then implemented on the process. Scanning electron microscope (SEM) is then utilized to determine the bond thickness, IMC phases and their thicknesses, and morphology of the bonds. Electron backscatter diffraction (EBSD) is used to determine the grain size in different regions, including the bulk solder, and different IMC phases. Physics-based analytical models have been developed for growth kinetics of IMC compounds and are verified using the experimental results. Nanoindentation is used to determine the mechanical behavior of IMC phases in joints in different scales. Four-point bending notched multilayer specimen and four-point bending technique were used to determine fracture toughness of the bonds containing IMCs. Analytical modeling of peeling and shear stresses and fracture toughness in tri-layer four-point bend specimen containing intermetallic layer was developed and was verified and validated using finite element simulation and experimental results. The experiment is used in conjunction with the model to calculate and verify the fracture toughness of Cu6Sn5 IMC materials. As expected two different IMC phases, η-phase (Cu6Sn 5) and epsilon-phase (Cu3Sn), were found in almost all the cases regardless of the process parameters and size levels. The physics-based analytical model was successfully able to capture the governing mechanisms of IMC growth: chemical reaction controlled and diffusion-controlled. Examination of microstructures of solder joints of different sizes revealed the size of the solder joint has no effect on the type of IMCs formed during the process. Joint size, however, affected the thickness of IMC layers significantly. IMC layers formed in the solder joints of smaller sizes were found to be thicker than those in the solder joints of larger sizes. The growth rate constants and activation energies of Cu3Sn IMC layer were also reported and related to joint thickness. In an effort to optimize the EBSD imaging in the multi-layer configuration, an improved specimen preparation technique and optimum software parameters were determined. Nanoindentation results show that size effects play a major role on the mechanical properties of micro-scale solder joints. Smaller joints show higher Young's modulus, hardness, and yield strength and lower work hardening exponents comparing to thicker joints. To obtain the stress concentration factors in a multilayer specimen with IMC layer as bonding material, a four-point bending notched configuration was used. The analytical solutions developed for peeling and shear stresses in notched structure were used to evaluate the stresses at IMC interface layers. Results were in good agreement with the finite-element simulation. The values of interfacial stresses were utilized in obtaining fracture toughness of the IMC material. (Abstract shortened by UMI.)

  2. Joining of Silicon Carbide Through the Diffusion Bonding Approach

    NASA Technical Reports Server (NTRS)

    Halbig, Michael .; Singh, Mrityunjay

    2009-01-01

    In order for ceramics to be fully utilized as components for high-temperature and structural applications, joining and integration methods are needed. Such methods will allow for the fabrication the complex shapes and also allow for insertion of the ceramic component into a system that may have different adjacent materials. Monolithic silicon carbide (SiC) is a ceramic material of focus due to its high temperature strength and stability. Titanium foils were used as an interlayer to form diffusion bonds between chemical vapor deposited (CVD) SiC ceramics with the aid of hot pressing. The influence of such variables as interlayer thickness and processing time were investigated to see which conditions contributed to bonds that were well adhered and crack free. Optical microscopy, scanning electron microscopy, and electron microprobe analysis were used to characterize the bonds and to identify the reaction formed phases.

  3. Tetrel bond-σ-hole bond as a preliminary stage of the SN2 reaction.

    PubMed

    Grabowski, Sławomir J

    2014-02-07

    MP2/aug-cc-pVTZ calculations were carried out on complexes of ZH4, ZFH3 and ZF4 (Z = C, Si and Ge) molecules with HCN, LiCN and Cl(-) species acting as Lewis bases through nitrogen centre or chlorine ion. Z-Atoms in these complexes usually act as Lewis acid centres forming σ-hole bonds with Lewis bases. Such noncovalent interactions may adopt a name of tetrel bonds since they concern the elements of the group IV. There are exceptions for complexes of CH4 and CF4, as well as for the F4SiNCH complex where the tetrel bond is not formed. The energetic and geometrical parameters of the complexes were analyzed and numerous correlations between them were found. The Quantum Theory of 'Atoms in Molecules' and Natural Bonds Orbital (NBO) method used here should deepen the understanding of the nature of the tetrel bond. An analysis of the electrostatic potential surfaces of the interacting species is performed. The electron charge redistribution, being the result of the tetrel bond formation, is the same as that of the SN2 reaction. The energetic and geometrical parameters of the complexes analyzed here correspond to different stages of the SN2 process.

  4. 12 CFR 713.4 - What bond forms may be used?

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ....4 Banks and Banking NATIONAL CREDIT UNION ADMINISTRATION REGULATIONS AFFECTING CREDIT UNIONS FIDELITY BOND AND INSURANCE COVERAGE FOR FEDERAL CREDIT UNIONS § 713.4 What bond forms may be used? (a) A... basic bond form; or (2) Any rider or endorsement that limits coverage of approved basic bond forms. [64...

  5. Nonadiabatic dynamics simulation of photoisomerization mechanism of the second stablest isomer of N-salicilydenemethylfurylamine

    NASA Astrophysics Data System (ADS)

    Gao, Aihua; Li, Jianpeng; Wang, Dehua; Ma, Xiaoguang; Wang, Meishan

    2018-02-01

    The photoisomerization processes of the second stablest isomer in the aromatic Schiff base, N-salicilydenemethylfurylamine, in the gas phase have been studied by static electronic structure calculations and surface-hopping dynamics simulations based on the Zhu-Nakamura theory. Various stable structures are obtained in the optimization because of different orientations of methyl-furyl part with respect to the salicylaldimine part and different orientations of hydroxy group with respect to the benzene ring. Upon photoexcitation into the first excited state, bond isomerization in the salicylaldimine part is completely suppressed until the strong excited-state hydrogen bond is broken. The decay pathway involves two excited-state minima, one in cis-enol form and the other in cis-keto form. After the excited-state proton transfer, twists of bonds lead to a conical intersection between the ground and excited states. After internal conversion around a conical intersection, the molecule is stabilized in cis- or trans-keto form. If the reverse hydrogen transfer process occurs in the ground state, the molecule will finally end up in the cis-enol region. The cis-keto and trans-keto isomers are observed as photoproducts. According to our full-dimensional nonadiabatic dynamics simulations, we find the excited-state intramolecular proton transfer and torsions of three single bonds in the chain to be responsible for photoisomerization of the second stablest isomer of N-salicilydenemethylfurylamine.

  6. On the development of an intrinsic hybrid composite

    NASA Astrophysics Data System (ADS)

    Kießling, R.; Ihlemann, J.; Riemer, M.; Drossel, W.-G.; Scharf, I.; Lampke, T.; Sharafiev, S.; Pouya, M.; F-X Wagner, M.

    2016-03-01

    Hybrid parts, which combine low weight with high strength, are moving into the focus of the automotive industry, due to their high potential for usage in the field of crash-relevant structures. In this contribution, the development of an intrinsic hybrid composite is presented, with a focus on the manufacturing process, complex simulations of the material behaviour and material testing. The hybrid composite is made up of a continuous fibre- reinforced plastic (FRP), in which a metallic insert is integrated. The mechanical behaviour of the individual components is characterised. For material modelling, an approach is pointed out that enables modelling at large strains by directly connected rheological elements. The connection between the FRP and the metallic insert is realised by a combination of form fit and adhesive bonds. On the one hand, adhesive bonds are generated within a sol gel process. On the other hand, local form elements of the metallic insert are pressed into the FRP. We show how these form elements are generated during the macroscopic forming process. In addition, the applied sol gel process is explained. Finally, we consider design concepts for a specimen type for high strain testing of the resulting interfaces.

  7. Radioactive Demonstration Of Mineralized Waste Forms Made From Hanford Low Activity Waste (Tank SX-105 And AN-103) By Fluidized Bed Steam Reformation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jantzen, Carol; Herman, Connie; Crawford, Charles

    One of the immobilization technologies under consideration as a Supplemental Treatment for Hanford’s Low Activity Waste (LAW) is Fluidized Bed Steam Reforming (FBSR). The FBSR technology forms a mineral waste form at moderate processing temperatures thus retaining and atomically bonding the halides, sulfates, and technetium in the mineral phases (nepheline, sodalite, nosean, carnegieite). Additions of kaolin clay are used instead of glass formers and the minerals formed by the FBSR technology offers (1) atomic bonding of the radionuclides and constituents of concern (COC) comparable to glass, (2) short and long term durability comparable to glass, (3) disposal volumes comparable tomore » glass, and (4) higher Na2O and SO{sub 4} waste loadings than glass. The higher FBSR Na{sub 2}O and SO{sub 4} waste loadings contribute to the low disposal volumes but also provide for more rapid processing of the LAW. Recent FBSR processing and testing of Hanford radioactive LAW (Tank SX-105 and AN-103) waste is reported and compared to previous radioactive and non-radioactive LAW processing and testing.« less

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jankowski, A.F.; Hayes, J.P.; Kanna, R.L.

    The formation of high energy density, storage devices is achievable using composite material systems. Alternate layering of carbon aerogel wafers and Ni foils with rnicroporous separators is a prospective composite for capacitor applications. An inherent problem exists to form a physical bond between Ni and the porous carbon wafer. The bonding process must be limited to temperatures less than 1000{degrees}C, at which point the aerogel begins to degrade. The advantage of a low temperature eutectic in the Ni-Ti alloy system solves this problem. Ti, a carbide former, is readily adherent as a sputter deposited thin film onto the carbon wafer.more » A vacuum bonding process is then used to join the Ni foil and Ti coating through eutectic phase formation. The parameters required for successfld bonding are described along with a structural characterization of the Ni foil-carbon aerogel wafer interface.« less

  9. Bonded Lubricants

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Another spinoff to the food processing industry involves a dry lubricant developed by General Magnaplate Corp. of Linden, N.J. Used in such spacecraft as Apollo, Skylab and Viking, the lubricant is a coating bonded to metal surfaces providing permanent lubrication and corrosion resistance. The coating lengthens equipment life and permits machinery to be operated at greater speed, thus increasing productivity and reducing costs. Bonded lubricants are used in scores of commercia1 applications. They have proved particularly valuable to food processing firms because, while increasing production efficiency, they also help meet the stringent USDA sanitation codes for food-handling equipment. For example, a cookie manufacturer plagued production interruptions because sticky batter was clogging the cookie molds had the brass molds coated to solve the problem. Similarly, a pasta producer faced USDA action on a sanitation violation because dough was clinging to an automatic ravioli-forming machine; use of the anti-stick coating on the steel forming plates solved the dual problem of sanitation deficiency and production line downtime.

  10. Modified pulse laser deposition of Ag nanostructure as intermediate for low temperature Cu-Cu bonding

    NASA Astrophysics Data System (ADS)

    Liu, Ziyu; Cai, Jian; Wang, Qian; Liu, Lei; Zou, Guisheng

    2018-07-01

    To lower the Cu-Cu bonding temperature and save the time of the bonding process applied for 3D integration, the Ag nanostructure deposited by pulsed laser deposition (PLD) was designed and decorated on the Cu pads as intermediate. Influences of different PLD process parameters on the designed Ag nanostructure morphology were investigated in this work. The large nanoparticles (NP) defects, NPs coverage rate on the Cu pad, and NPs size distribution were adopted to evaluate the PLD parameters based on the NPs morphology observation and the Cu-Cu bonding quality. The medium laser power of 0.8 W, smaller distance between target and substrate, and protective container should be applied in the optimized PLD to obtain the Ag nanostructure. Then a loose 3D mesh Ag nanostructure consisted of the protrusions and grooves was formed and the morphology observation proved the nanostructure deposition mechanism was contributed to the block of nano-film nucleation and nanoparticles absorption. Finally, the relationship between the bonding temperature and pressure suitable for the Ag nanostructure had been determined based on shear strength and interface observation. The results revealed the combination of higher bonding temperature (250 °C) and lower pressure (20 MPa), or lower bonding temperature (180 °C) and higher pressure (50 MPa) can both achieve the bonding process with the short bonding time of 5 min and annealing at 200 °C for 25 min in vacuum furnace.

  11. Spectroscopic investigation on cocrystal formation between adenine and fumaric acid based on infrared and Raman techniques.

    PubMed

    Du, Yong; Fang, Hong Xia; Zhang, Qi; Zhang, Hui Li; Hong, Zhi

    2016-01-15

    As an important component of double-stranded DNA, adenine has powerful hydrogen-bond capability, due to rich hydrogen bond donors and acceptors existing within its molecular structure. Therefore, it is easy to form cocrystal between adenine and other small molecules with intermolecular hydrogen-bond effect. In this work, cocrystal of adenine and fumaric acid has been characterized as model system by FT-IR and FT-Raman spectral techniques. The experimental results show that the cocrystal formed between adenine and fumaric acid possesses unique spectroscopical characteristic compared with that of starting materials. Density functional theory (DFT) calculation has been performed to optimize the molecular structures and simulate vibrational modes of adenine, fumaric acid and the corresponding cocrystal. Combining the theoretical and experimental vibrational results, the characteristic bands corresponding to bending and stretching vibrations of amino and carbonyl groups within cocrystal are shifted into lower frequencies upon cocrystal formation, and the corresponding bond lengths show some increase due to the effect of intermolecular hydrogen bonding. Different vibrational modes shown in the experimental spectra have been assigned based on the simulation DFT results. The study could provide experimental and theoretical benchmarks to characterize cocrystal formed between active ingredients and cocrystal formers and also the intermolecular hydrogen-bond effect within cocrystal formation process by vibrational spectroscopic techniques. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Thread bonds in molecules

    NASA Astrophysics Data System (ADS)

    Ivlev, B.

    2017-07-01

    Unusual chemical bonds are proposed. Each bond is characterized by the thread of a small radius, 10-11 cm, extended between two nuclei in a molecule. An analogue of a potential well, of the depth of MeV scale, is formed within the thread. This occurs due to the local reduction of zero point electromagnetic energy. This is similar to formation of the Casimir well. The electron-photon interaction only is not sufficient for formation of thread state. The mechanism of electron mass generation is involved in the close vicinity, 10-16 cm, of the thread. Thread bonds are stable and cannot be created or destructed in chemical or optical processes.

  13. Transition metal catalyzed manipulation of non-polar carbon–hydrogen bonds for synthetic purpose

    PubMed Central

    MURAI, Shinji

    2011-01-01

    The direct addition of ortho C–H bonds in various aromatic compounds such as ketones, esters, imines, imidates, nitriles, and aldehydes to olefins and acetylenes can be achieved with the aid of transition metal catalysts. The ruthenium catalyzed reaction is usually highly efficient and useful as a general synthetic method. The coordination to the metal center by a heteroatom in a directing group such as carbonyl and imino groups in aromatic compounds is the key step in this process. Mechanistically, the reductive elimination to form a C–C bond is the rate-determining step, while the C–H bond cleavage step is not. PMID:21558759

  14. Titanium Insertion into CO Bonds in Anionic Ti-CO2 Complexes.

    PubMed

    Dodson, Leah G; Thompson, Michael C; Weber, J Mathias

    2018-03-22

    We explore the structures of [Ti(CO 2 ) y ] - cluster anions using infrared photodissociation spectroscopy and quantum chemistry calculations. The existence of spectral signatures of metal carbonyl CO stretching modes shows that insertion of titanium atoms into C-O bonds represents an important reaction during the formation of these clusters. In addition to carbonyl groups, the infrared spectra show that the titanium center is coordinated to oxalato, carbonato, and oxo ligands, which form along with the metal carbonyls. The presence of a metal oxalato ligand promotes C-O bond insertion in these systems. These results highlight the affinity of titanium for C-O bond insertion processes.

  15. New solid state forms of antineoplastic 5-fluorouracil with anthelmintic piperazine

    NASA Astrophysics Data System (ADS)

    Moisescu-Goia, C.; Muresan-Pop, M.; Simon, V.

    2017-12-01

    The aim of the present study was to asses the formation of solid forms between the 5-fluorouracil chemotherapy drug and the anthelmintic piperazine. Two new solid forms of antineoplastic agent 5-fluorouracil with anthelmintic piperazine were obtained by liquid assisted ball milling and slurry crystallization methods. The Nsbnd H hydrogen bonding donors and C = O hydrogen bonding acceptors of 5-fluorouracil allow to form co-crystals with other drugs delivering improved properties for medical applications, as proved for other compounds of pharmaceutical interest. Both new solid forms were investigated using X-ray powder diffraction (XRD), differential thermal analysis (DTA) and Fourier transform infrared (FTIR) spectroscopy. The XRD results show that by both methods were successfully synthesized new solid forms of 5-fluorouracil with piperazine. According to FTIR results the form prepared by lichid assisted grinding process was obtained as co-crystal and the other one, prepared by slurry method, resulted as a salt.

  16. Molecular Dynamics Simulation of Mahkota Dewa (Phaleria Macrocarpa) Extract in Subcritical Water Extraction Process

    NASA Astrophysics Data System (ADS)

    Hashim, N. A.; Mudalip, S. K. Abdul; Harun, N.; Che Man, R.; Sulaiman, S. Z.; Arshad, Z. I. M.; Shaarani, S. M.

    2018-05-01

    Mahkota Dewa (Phaleria Macrocarpa), a good source of saponin, flavanoid, polyphenol, alkaloid, and mangiferin has an extensive range of medicinal effects. The intermolecular interactions between solute and solvents such as hydrogen bonding considered as an important factor that affect the extraction of bioactive compounds. In this work, molecular dynamics simulation was performed to elucidate the hydrogen bonding exists between Mahkota Dewa extracts and water during subcritical extraction process. A bioactive compound in the Mahkota Dewa extract, namely mangiferin was selected as a model compound. The simulation was performed at 373 K and 4.0 MPa using COMPASS force field and Ewald summation method available in Material Studio 7.0 simulation package. The radial distribution functions (RDF) between mangiferin and water signify the presence of hydrogen bonding in the extraction process. The simulation of the binary mixture of mangiferin:water shows that strong hydrogen bonding was formed. It is suggested that, the intermolecular interaction between OH2O••HMR4(OH1) has been identified to be responsible for the mangiferin extraction process.

  17. Theoretical modeling of the catch-slip bond transition in biological adhesion

    NASA Astrophysics Data System (ADS)

    Gunnerson, Kim; Pereverzev, Yuriy; Prezhdo, Oleg

    2006-05-01

    The mechanism by which leukocytes leave the blood stream and enter inflamed tissue is called extravasation. This process is facilitated by the ability of selectin proteins, produced by the endothelial cells of blood vessels, to form transient bonds with the leukocytes. In the case of P-selectin, the protein bonds with P-selectin glycoprotein ligands (PSGL-1) produced by the leukocyte. Recent atomic force microscopy and flow chamber analyses of the binding of P-selectin to PSGL-1 provide evidence for an unusual biphasic catch-bond/slip-bond behavior in response to the strength of exerted force. This biphasic process is not well-understood. There are several theoretical models for describing this phenomenon. These models use different profiles for potential energy landscapes and how they change under forces. We are exploring these changes using molecular dynamics. We will present a simple theoretical model as well as share some of our early MD results for describing this phenomenon.

  18. Low energy electron induced cytosine base release in 2′-deoxycytidine-3′-monophosphate via glycosidic bond cleavage: A time-dependent wavepacket study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhaskaran, Renjith; Sarma, Manabendra, E-mail: msarma@iitg.ernet.in

    2014-09-14

    Low energy electron (LEE) induced cytosine base release in a selected pyrimidine nucleotide, viz., 2′-deoxycytidine-3′-monophosphate is investigated using ab initio electronic structure methods and time dependent quantum mechanical calculations. It has been noted that the cytosine base scission is comparatively difficult process than the 3′ C–O bond cleavage from the lowest π{sup *} shape resonance in energy region <1 eV. This is mainly due to the high activation energy barrier associated with the electron transfer from the π{sup *} orbital of the base to the σ{sup *} orbital of the glycosidic N–C bond. In addition, the metastable state formed aftermore » impinging LEE (0–1 eV) has very short lifetime (10 fs) which may decay in either of the two competing auto-detachment or dissociation process simultaneously. On the other hand, the selected N–C mode may cleave to form the cytosine base anion at higher energy regions (>2 eV) via tunneling of the glycosidic bond. Resonance states generated within this energy regime will exist for a duration of ∼35–55 fs. Comparison of salient features of the two dissociation events, i.e., 3′ C–O single strand break and glycosidic N–C bond cleavage in 3′-dCMPH molecule are also provided.« less

  19. Palladium-Catalyzed [3 + 2]-C-C/N-C Bond-Forming Annulation.

    PubMed

    Liu, Yang; Mao, Zhongyi; Pradal, Alexandre; Huang, Pei-Qiang; Oble, Julie; Poli, Giovanni

    2018-06-13

    The synthesis of bi- and tricyclic structures incorporating pyrrolidone rings is disclosed, starting from resonance-stabilized acetamides and cyclic α,β-unsaturated-γ-oxycarbonyl derivatives. This process involves an intermolecular Tsuji-Trost allylation/intramolecular nitrogen 1,4-addition sequence. Crucial for the success of this bis-nucleophile/bis-electrophile [3 + 2] annulation is its well-defined step chronology in combination with the total chemoselectivity of the former step. When the newly formed annulation product carries a properly located o-haloaryl moiety at the nitrogen substituent, a further intramolecular keto α-arylation can join the cascade, thereby forming two new cycles and three new bonds in the same synthetic operation.

  20. Effects of single bond-ion and single bond-diradical form on the stretching vibration of Cdbnd N bridging bond in 4,4‧-disubstituted benzylidene anilines

    NASA Astrophysics Data System (ADS)

    Cao, Chao-Tun; Bi, Yakun; Cao, Chenzhong

    2016-06-01

    Fifty-seven samples of model compounds, 4,4‧-disubstituted benzylidene anilines, p-X-ArCH = NAr-p-Y were synthesized. Their infrared absorption spectra were recorded, and the stretching vibration frequencies νCdbnd N of the Cdbnd N bridging bond were determined. New stretching vibration mode was proposed by means of the analysis of the factors affecting νCdbnd N, that is there are mainly three modes in the stretching vibration of Cdbnd N bond: (I) polar double bond form Cdbnd N, (II) single bond-ion form C+-N- and (III) single bond-diradical form Crad -Nrad . The contributions of the forms (I) and (II) to the change of νCdbnd N can be quantified by using Hammett substituent constant (including substituent cross-interaction effects between X and Y groups), whereas the contribution of the form (III) can be quantified by employing the excited-state substituent constant. The most contribution of these three forms is the form (III), the next is the form (II), whose contribution difference was discussed with the viewpoint of energy requirements in vibration with the form (III) and form (II).

  1. Discrete and polymeric self-assembled dendrimers: Hydrogen bond-mediated assembly with high stability and high fidelity

    PubMed Central

    Corbin, Perry S.; Lawless, Laurence J.; Li, Zhanting; Ma, Yuguo; Witmer, Melissa J.; Zimmerman, Steven C.

    2002-01-01

    Hydrogen bond-mediated self-assembly is a powerful strategy for creating nanoscale structures. However, little is known about the fidelity of assembly processes that must occur when similar and potentially competing hydrogen-bonding motifs are present. Furthermore, there is a continuing need for new modules and strategies that can amplify the relatively weak strength of a hydrogen bond to give more stable assemblies. Herein we report quantitative complexation studies on a ureidodeazapterin-based module revealing an unprecedented stability for dimers of its self-complementary acceptoracceptor-donor-donor (AADD) array. Linking two such units together with a semirigid spacer that carries a first-, second-, or third-generation Fréchet-type dendron affords a ditopic structure programmed to self assemble. The specific structure that is formed depends both on the size of the dendron and the solvent, but all of the assemblies have exceptionally high stability. The largest discrete nanoscale assembly is a hexamer with a molecular mass of about 17.8 kDa. It is stabilized by 30 hydrogen bonds, including six AADD⋅DDAA contacts. The hexamer forms and is indefinitely stable in the presence of a hexamer containing six ADD⋅DAA hydrogen-bonding arrays. PMID:11917113

  2. Process optimization for diffusion bonding of tungsten with EUROFER97 using a vanadium interlayer

    NASA Astrophysics Data System (ADS)

    Basuki, Widodo Widjaja; Aktaa, Jarir

    2015-04-01

    Solid-state diffusion bonding is a selected joining technology to bond divertor components consisting of tungsten and EUROFER97 for application in fusion power plants. Due to the large mismatch in their coefficient of thermal expansions, which leads to serious thermally induced residual stresses after bonding, a thin vanadium plate is introduced as an interlayer. However, the diffusion of carbon originated from EUROFER97 in the vanadium interlayer during the bonding process can form a vanadium carbide layer, which has detrimental influences on the mechanical properties of the joint. For optimal bonding results, the thickness of this layer and the residual stresses has to be decreased sufficiently without a significant reduction of material transport especially at the vanadium/tungsten interface, which can be achieved by varying the diffusion bonding temperature and duration. The investigation results show that at a sufficiently low bonding temperature of 700 °C and a bonding duration of 4 h, the joint reaches a reasonable high ductility and toughness especially at elevated test temperature of 550 °C with elongation to fracture of 20% and mean absorbed Charpy impact energy of 2 J (using miniaturized Charpy impact specimens). The strength of the bonded materials is about 332 MPa at RT and 291 MPa at 550 °C. Furthermore, a low bonding temperature of 700 °C can also help to avoid the grain coarsening and the alteration of the grain structure especially of the EUROFER97 close to the bond interface.

  3. Solid Liquid Interdiffusion Bonding of (Pb, Sn)Te Thermoelectric Modules with Cu Electrodes Using a Thin-Film Sn Interlayer

    NASA Astrophysics Data System (ADS)

    Chuang, T. H.; Lin, H. J.; Chuang, C. H.; Yeh, W. T.; Hwang, J. D.; Chu, H. S.

    2014-12-01

    A (Pb, Sn)Te thermoelectric element plated with a Ni barrier layer and a Ag reaction layer has been joined with a Cu electrode coated with Ag and Sn thin films using a solid-liquid interdiffusion bonding method. This method allows the interfacial reaction between Ag and Sn such that Ag3Sn intermetallic compounds form at low temperature and are stable at high temperature. In this study, the bonding strength was about 6.6 MPa, and the specimens fractured along the interface between the (Pb, Sn)Te thermoelectric element and the Ni barrier layer. Pre-electroplating a film of Sn with a thickness of about 1 μm on the thermoelectric element and pre-heating at 250°C for 3 min ensures the adhesion between the thermoelectric material and the Ni barrier layer. The bonding strength is thus increased to a maximal value of 12.2 MPa, and most of the fractures occur inside the thermoelectric material. During the bonding process, not only the Ag3Sn intermetallics but also Cu6Sn5 forms at the Ag3Sn/Cu interface, which transforms into Cu3Sn with increases in the bonding temperature or bonding time.

  4. 31 CFR 351.83 - May Public Debt issue Series EE savings bonds only in book-entry form?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... savings bonds only in book-entry form? 351.83 Section 351.83 Money and Finance: Treasury Regulations... Debt issue Series EE savings bonds only in book-entry form? We reserve the right to issue bonds only in book-entry form. ...

  5. A demonstration of glass bonding using patterned nanocomposite thermites deposited from fluid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodriguez, Juan Carlos

    2015-01-01

    Ceramics and other nonmetals are widely used in industrial and research applications. Although these materials provide many advantages, they often pose unique challenges during bonding. This work aims to expand on current processes, which have much narrower applications, to nd a more universal method for nonmetal bonding. We utilize inks comprised of aluminum-based nanoenergetics, (a heat source) and tin (a bonding agent). Requirements for successful bonding are explored and four key criteria are established. Through statistical simulation and thermochemical equilibrium calculations, we conclude that the presence of a diluent in large percentages negatively impacts reaction kinetics. Conversely, we show smallmore » percentages of added tin enhance gas generation and drive faster reaction rates. The bulk bonding material, thermite plus tin, forms a continuous structure during reaction, adhering well to the substrate surface. In some cases, these bonds failed above 1200 kPa.« less

  6. Polymerization initated at sidewalls of carbon nanotubes

    NASA Technical Reports Server (NTRS)

    Tour, James M. (Inventor); Hudson, Jared L. (Inventor); Krishnamoorti, Ramanan (Inventor); Yurekli, Koray (Inventor); Mitchell, Cynthia A. (Inventor)

    2011-01-01

    The present invention is directed to aryl halide (such as aryl bromide) functionalized carbon nanotubes that can be utilized in anionic polymerization processes to form polymer-carbon nanotube materials with improved dispersion ability in polymer matrices. In this process the aryl halide is reacted with an alkyllithium species or is reacted with a metal to replace the aryl-bromine bond with an aryl-lithium or aryl-metal bond, respectively. It has further been discovered that other functionalized carbon nanotubes, after deprotonation with a deprotonation agent, can similarly be utilized in anionic polymerization processes to form polymer-carbon nanotube materials. Additionally or alternatively, a ring opening polymerization process can be performed. The resultant materials can be used by themselves due to their enhanced strength and reinforcement ability when compared to their unbound polymer analogs. Additionally, these materials can also be blended with pre-formed polymers to establish compatibility and enhanced dispersion of nanotubes in otherwise hard to disperse matrices resulting in significantly improved material properties. The resultant polymer-carbon nanotube materials can also be used in drug delivery processes due to their improved dispersion ability and biodegradability, and can also be used for scaffolding to promote cellular growth of tissue.

  7. Morphology, topography, and hardness of diffusion bonded sialon to AISI 420 at different bonding time

    NASA Astrophysics Data System (ADS)

    Ibrahim, Nor Nurulhuda Md.; Hussain, Patthi; Awang, Mokhtar

    2015-07-01

    Sialon and AISI 420 martensitic stainless steel were diffusion bonded in order to study the effect of bonding time on reaction layer's growth. Joining of these materials was conducted at 1200°C under a uniaxial pressure of 17 MPa in a vacuum ranging from 5.0 to 8.0×10-6 Torr with bonding time varied for 0.5, 2, and 3 h. Thicker reaction layer was formed in longer bonded sample since the elements from sialon could diffuse further into the steel. Sialon retained its microstructure but it was affected at the initial contact with the steel to form the new interface layer. Diffusion layer grew toward the steel and it was segregated with the parent steel as a result of the difference in properties between these regions. The segregation formed a stream-like structure and its depth decreased when the bonding time was increased. The microstructure of the steel transformed into large grain size with precipitates. Prolonging the bonding time produced more precipitates in the steel and reduced the steel thickness as well. Interdiffusions of elements occurred between the joined materials and the concentrations were decreasing toward the steel and vice versa. Silicon easily diffused into the steel because it possessed lower ionization potential compared to nitrogen. Formation of silicide and other compounds such as carbides were detected in the interface layer and steel grain boundary, respectively. These compounds were harmful due to silicide brittleness and precipitation of carbides in the grain boundary might cause intergranular corrosion cracking. Sialon retained its hardness but it dropped very low at the interface layer. The absence of crack at the joint in all samples could be contributed from the ductility characteristic of the reaction layer which compensated the residual stress that was formed upon the cooling process.

  8. Empirical Force Fields for Mechanistic Studies of Chemical Reactions in Proteins.

    PubMed

    Das, A K; Meuwly, M

    2016-01-01

    Following chemical reactions in atomistic detail is one of the most challenging aspects of current computational approaches to chemistry. In this chapter the application of adiabatic reactive MD (ARMD) and its multistate version (MS-ARMD) are discussed. Both methods allow to study bond-breaking and bond-forming processes in chemical and biological processes. Particular emphasis is put on practical aspects for applying the methods to investigate the dynamics of chemical reactions. The chapter closes with an outlook of possible generalizations of the methods discussed. © 2016 Elsevier Inc. All rights reserved.

  9. Technical Assessment of the National Full Scale Aerodynamic Complex Fan Blades Repair

    NASA Technical Reports Server (NTRS)

    Young, Clarence P., Jr.; Dixon, Peter G.; St.Clair, Terry L.; Johns, William E.

    1998-01-01

    This report describes the principal activities of a technical review team formed to address National Full Scale Aerodynamic Complex (NFAC) blade repair problems. In particular, the problem of lack of good adhesive bonding of the composite overwrap to the Hyduliginum wood blade material was studied extensively. Description of action plans and technical elements of the plans are provided. Results of experiments designed to optimize the bonding process and bonding strengths obtained on a full scale blade using a two-step cure process with adhesive primers are presented. Consensus recommendations developed by the review team in conjunction with the NASA Ames Fan Blade Repair Project Team are provided along with lessons learned on this program. Implementation of recommendations resulted in achieving good adhesive bonds between the composite materials and wooden blades, thereby providing assurance that the repaired fan blades will meet or exceed operational life requirements.

  10. Understanding metallic bonding: Structure, process and interaction by Rasch analysis

    NASA Astrophysics Data System (ADS)

    Cheng, Maurice M. W.; Oon, Pey-Tee

    2016-08-01

    This paper reports the results of a survey of 3006 Year 10-12 students on their understandings of metallic bonding. The instrument was developed based on Chi's ontological categories of scientific concepts and students' understanding of metallic bonding as reported in the literature. The instrument has two parts. Part one probed into students' understanding of metallic bonding as (a) a submicro structure of metals, (b) a process in which individual metal atoms lose their outermost shell electrons to form a 'sea of electrons' and octet metal cations or (c) an all-directional electrostatic force between delocalized electrons and metal cations, that is, an interaction. Part two assessed students' explanation of malleability of metals, for example (a) as a submicro structural rearrangement of metal atoms/cations or (b) based on all-directional electrostatic force. The instrument was validated by the Rasch Model. Psychometric assessment showed that the instrument possessed reasonably good properties of measurement. Results revealed that it was reliable and valid for measuring students' understanding of metallic bonding. Analysis revealed that the structure, process and interaction understandings were unidimensional and in an increasing order of difficulty. Implications for the teaching of metallic bonding, particular through the use of diagrams, critiques and model-based learning, are discussed.

  11. Computational study of the process of hydrogen bond breaking: the case of the formamide-formic acid complex.

    PubMed

    Pacios, Luis F

    2006-11-15

    MP2/6-311++G(d,p) and B3LYP/6-311++G(d,p) quantum calculations are used to study the formamide-formic acid complex (FFAC), a system bound by two hydrogen bonds, N--H...O and O--H...O, that forms a bond ring at equilibrium. When the intermolecular separation between monomers R increases, this ring opens at a distance for which the weaker N--H...O bond breaks remaining the stronger O--H...O bond. The computational study characterizes that process addressing changes of interaction energy DeltaE, structure and properties of the electron density rho(r) as well as spatial distributions of rho(r), the electrostatic potential U(r), and the electron localization function eta(r). It is shown that the spatial derivatives of DeltaE, the topology of rho(r), and qualitative changes noticed in U(r) = 0 isocontours allow to identify a precise distance R for which one can say the N--H...O hydrogen bond has broken. Both levels of theory predict essentially the same changes of structure and electron properties associated to the process of breaking and virtually identical distances at which it takes place. (c) 2006 Wiley Periodicals, Inc. J Comput Chem, 2006.

  12. 27 CFR 26.67 - Bond, Form 2897-Wine.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Bond, Form 2897-Wine. 26... Liquors and Articles in Puerto Rico Bonds § 26.67 Bond, Form 2897—Wine. Where a proprietor intends to withdraw, for purpose of shipment to the United States, wine of Puerto Rican manufacture from bonded...

  13. Low-pressure, high-temperature thermal bonding of polymeric microfluidic devices and their applications for electrophoretic separation

    NASA Astrophysics Data System (ADS)

    Sun, Yi; Chian Kwok, Yien; Nguyen, Nam-Trung

    2006-08-01

    A new method for thermally bonding poly(methyl methacrylate) (PMMA) substrates has been demonstrated. PMMA substrates are first engraved by CO2-laser micromachining to form microchannels. Both channel width and depth can be adjusted by varying the laser power and scanning speed. Channel depths from 50 µm to 1500 µm and widths from 150 µm to 400 µm are attained. CO2 laser is also used for drilling and dicing of the PMMA parts. Considering the thermal properties of PMMA, a novel thermal bonding process with high temperature and low bonding pressure has been developed for assembling PMMA sheets. A high bonding strength of 2.15 MPa is achieved. Subsequent inspection of the cross sections of several microdevices reveals that the dimensions of the channels are well preserved during the bonding process. Electroosmotic mobility of the ablated channel is measured to be 2.47 × 10-4 cm2 V-1 s-1. The functionality of these thermally bonded microfluidic substrates is demonstrated by performing rapid and high-resolution electrophoretic separations of mixture of fluorescein and carboxyfluorescein as well as double-stranded DNA ladders (ΦX174-Hae III dsDNA digest). The performance of the CO2 laser ablated and thermally bonded PMMA devices compares favorably with those fabricated by other professional means.

  14. System analysis through bond graph modeling

    NASA Astrophysics Data System (ADS)

    McBride, Robert Thomas

    2005-07-01

    Modeling and simulation form an integral role in the engineering design process. An accurate mathematical description of a system provides the design engineer the flexibility to perform trade studies quickly and accurately to expedite the design process. Most often, the mathematical model of the system contains components of different engineering disciplines. A modeling methodology that can handle these types of systems might be used in an indirect fashion to extract added information from the model. This research examines the ability of a modeling methodology to provide added insight into system analysis and design. The modeling methodology used is bond graph modeling. An investigation into the creation of a bond graph model using the Lagrangian of the system is provided. Upon creation of the bond graph, system analysis is performed. To aid in the system analysis, an object-oriented approach to bond graph modeling is introduced. A framework is provided to simulate the bond graph directly. Through object-oriented simulation of a bond graph, the information contained within the bond graph can be exploited to create a measurement of system efficiency. A definition of system efficiency is given. This measurement of efficiency is used in the design of different controllers of varying architectures. Optimal control of a missile autopilot is discussed within the framework of the calculated system efficiency.

  15. Co-Curing of CFRP-Steel Hybrid Joints Using the Vacuum Assisted Resin Infusion Process

    NASA Astrophysics Data System (ADS)

    Streitferdt, Alexander; Rudolph, Natalie; Taha, Iman

    2017-10-01

    This study focuses on the one-step co-curing process of carbon fiber reinforced plastics (CFRP) joined with a steel plate to form a hybrid structure. In this process CFRP laminate and bond to the metal are realized simultaneously by resin infusion, such that the same resin serves for both infusion and adhesion. For comparison, the commonly applied two-step process of adhesive bonding is studied. In this case, the CFRP laminate is fabricated in a first stage through resin infusion of Non Crimp Fabric (NCF) and joined to the steel plate in a further step through adhesive bonding. For this purpose, the commercially available epoxy-based Betamate 1620 is applied. CFRP laminates were fabricated using two different resin systems, namely the epoxy (EP)-based RTM6 and a newly developed fast curing polyurethane (PU) resin. Results show comparable mechanical performance of the PU and EP based CFRP laminates. The strength of the bond of the co-cured samples was in the same order as the samples adhesively bonded with the PU resin and the structural adhesive. The assembly adhesive with higher ductility showed a weaker performance compared to the other tests. It could be shown that the surface roughness had the highest impact on the joint performance under the investigated conditions.

  16. The role of multivalency in the association kinetics of patchy particle complexes.

    PubMed

    Newton, Arthur C; Groenewold, Jan; Kegel, Willem K; Bolhuis, Peter G

    2017-06-21

    Association and dissociation of particles are elementary steps in many natural and technological relevant processes. For many such processes, the presence of multiple binding sites is essential. For instance, protein complexes and regular structures such as virus shells are formed from elementary building blocks with multiple binding sites. Here we address a fundamental question concerning the role of multivalency of binding sites in the association kinetics of such complexes. Using single replica transition interface sampling simulations, we investigate the influence of the multivalency on the binding kinetics and the association mechanism of patchy particles that form polyhedral clusters. When the individual bond strength is fixed, the kinetics naturally is very dependent on the multivalency, with dissociation rate constants exponentially decreasing with the number of bonds. In contrast, we find that when the total bond energy per particle is kept constant, association and dissociation rate constants turn out rather independent of multivalency, although of course still very dependent on the total energy. The association and dissociation mechanisms, however, depend on the presence and nature of the intermediate states. For instance, pathways that visit intermediate states are less prevalent for particles with five binding sites compared to the case of particles with only three bonds. The presence of intermediate states can lead to kinetic trapping and malformed aggregates. We discuss implications for natural forming complexes such as virus shells and for the design of artificial colloidal patchy particles.

  17. The role of multivalency in the association kinetics of patchy particle complexes

    NASA Astrophysics Data System (ADS)

    Newton, Arthur C.; Groenewold, Jan; Kegel, Willem K.; Bolhuis, Peter G.

    2017-06-01

    Association and dissociation of particles are elementary steps in many natural and technological relevant processes. For many such processes, the presence of multiple binding sites is essential. For instance, protein complexes and regular structures such as virus shells are formed from elementary building blocks with multiple binding sites. Here we address a fundamental question concerning the role of multivalency of binding sites in the association kinetics of such complexes. Using single replica transition interface sampling simulations, we investigate the influence of the multivalency on the binding kinetics and the association mechanism of patchy particles that form polyhedral clusters. When the individual bond strength is fixed, the kinetics naturally is very dependent on the multivalency, with dissociation rate constants exponentially decreasing with the number of bonds. In contrast, we find that when the total bond energy per particle is kept constant, association and dissociation rate constants turn out rather independent of multivalency, although of course still very dependent on the total energy. The association and dissociation mechanisms, however, depend on the presence and nature of the intermediate states. For instance, pathways that visit intermediate states are less prevalent for particles with five binding sites compared to the case of particles with only three bonds. The presence of intermediate states can lead to kinetic trapping and malformed aggregates. We discuss implications for natural forming complexes such as virus shells and for the design of artificial colloidal patchy particles.

  18. Tellurite glasses for vitrification of technetium-99 from pyrochemical processing

    NASA Astrophysics Data System (ADS)

    Pyo, Jae-Young; Lee, Cheong Won; Park, Hwan-Seo; Yang, Jae Hwan; Um, Wooyong; Heo, Jong

    2017-09-01

    A new alkali-alumino tellurite glass composition was developed to immobilize highly-volatile technetium (Tc) wastes generated from the pyrochemical processing technology. Tellurite glass can incorporate up to 7 mass% of rhenium (Re, used as a surrogate for Tc) with an average retention of 86%. Normalized elemental releases evaluated by seven-day product consistency test (PCT) satisfied the immobilized low activity waste requirements of United States when concentration of Ca(ReO4)2 in the glass was <12 mass%. Re ions form Re7+ and are coordinated with four oxygens to form ReO4- tetrahedra. These tetrahedra bond to modifiers such as Ca2+ or Na+ that are further connected to the tellurite glass network by Ca2+ (or Na+) - non-bridging oxygen bonds.

  19. Suppression of interfacial voids formation during silane (SiH4)-based silicon oxide bonding with a thin silicon nitride capping layer

    NASA Astrophysics Data System (ADS)

    Lee, Kwang Hong; Bao, Shuyu; Wang, Yue; Fitzgerald, Eugene A.; Seng Tan, Chuan

    2018-01-01

    The material properties and bonding behavior of silane-based silicon oxide layers deposited by plasma-enhanced chemical vapor deposition were investigated. Fourier transform infrared spectroscopy was employed to determine the chemical composition of the silicon oxide films. The incorporation of hydroxyl (-OH) groups and moisture absorption demonstrates a strong correlation with the storage duration for both as-deposited and annealed silicon oxide films. It is observed that moisture absorption is prevalent in the silane-based silicon oxide film due to its porous nature. The incorporation of -OH groups and moisture absorption in the silicon oxide films increase with the storage time (even in clean-room environments) for both as-deposited and annealed silicon oxide films. Due to silanol condensation and silicon oxidation reactions that take place at the bonding interface and in the bulk silicon, hydrogen (a byproduct of these reactions) is released and diffused towards the bonding interface. The trapped hydrogen forms voids over time. Additionally, the absorbed moisture could evaporate during the post-bond annealing of the bonded wafer pair. As a consequence, defects, such as voids, form at the bonding interface. To address the problem, a thin silicon nitride capping film was deposited on the silicon oxide layer before bonding to serve as a diffusion barrier to prevent moisture absorption and incorporation of -OH groups from the ambient. This process results in defect-free bonded wafers.

  20. 27 CFR 26.68 - Bond, Form 2898-Beer.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Bond, Form 2898-Beer. 26... Liquors and Articles in Puerto Rico Bonds § 26.68 Bond, Form 2898—Beer. Where a brewer intends to withdraw, for purpose of shipment to the United States, beer of Puerto Rican manufacture from bonded storage in...

  1. 27 CFR 26.68 - Bond, Form 2898-Beer.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2013-04-01 2013-04-01 false Bond, Form 2898-Beer. 26... Liquors and Articles in Puerto Rico Bonds § 26.68 Bond, Form 2898—Beer. Where a brewer intends to withdraw, for purpose of shipment to the United States, beer of Puerto Rican manufacture from bonded storage in...

  2. 27 CFR 26.68 - Bond, Form 2898-Beer.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2014-04-01 2014-04-01 false Bond, Form 2898-Beer. 26... Liquors and Articles in Puerto Rico Bonds § 26.68 Bond, Form 2898—Beer. Where a brewer intends to withdraw, for purpose of shipment to the United States, beer of Puerto Rican manufacture from bonded storage in...

  3. 27 CFR 26.68 - Bond, Form 2898-Beer.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Bond, Form 2898-Beer. 26... Liquors and Articles in Puerto Rico Bonds § 26.68 Bond, Form 2898—Beer. Where a brewer intends to withdraw, for purpose of shipment to the United States, beer of Puerto Rican manufacture from bonded storage in...

  4. Effects of Water-Extractable Arabinoxylan on the Physicochemical Properties and Structure of Wheat Gluten by Thermal Treatment.

    PubMed

    Zhu, Yunping; Wang, Yu; Li, Jinlong; Li, Fang; Teng, Chao; Li, Xiuting

    2017-06-14

    This study investigated the effects of water-extractable arabinoxylan (WEAX) on gluten by thermal treatment. Fourier transform infrared spectroscopy (FTIR) results showed that heating significantly decreased β-sheets and β-turn structures in gluten proteins between 25 and 55 °C. The addition of WEAX caused a transition from β-turn to β-sheets at >55 °C. The ratio of weakly hydrogen-bonded β-sheets to strongly hydrogen-bonded β-sheets demonstrated an increasing trend with temperature increasing, but WEAX can hinder this process. FT-Raman results revealed that a hydrophilic environment was developed with 5% WEAX at 25 °C, and phenolic hydroxyl on ferulic acid can form new H-bonds with the phenyl groups of the nondissociated Tyr residues. A 5% WEAX content is helpful for gluten to maintain its original gauche-gauche-gauche conformation of disulfide bond upon heating. In addition, WEAX can reduce the elasticity of gluten and form a soft texture at 25, 55, and 75 °C.

  5. L-selectin mechanochemistry restricts neutrophil priming in vivo.

    PubMed

    Liu, Zhenghui; Yago, Tadayuki; Zhang, Nan; Panicker, Sumith R; Wang, Ying; Yao, Longbiao; Mehta-D'souza, Padmaja; Xia, Lijun; Zhu, Cheng; McEver, Rodger P

    2017-05-12

    Circulating neutrophils must avoid premature activation to prevent tissue injury. The leukocyte adhesion receptor L-selectin forms bonds with P-selectin glycoprotein ligand-1 (PSGL-1) on other leukocytes and with peripheral node addressin (PNAd) on high endothelial venules. Mechanical forces can strengthen (catch) or weaken (slip) bonds between biological molecules. How these mechanochemical processes influence function in vivo is unexplored. Here we show that mice expressing an L-selectin mutant (N138G) have altered catch bonds and prolonged bond lifetimes at low forces. Basal lymphocyte homing and neutrophil recruitment to inflamed sites are normal. However, circulating neutrophils form unstable aggregates and are unexpectedly primed to respond robustly to inflammatory mediators. Priming requires signals transduced through L-selectin N138G after it engages PSGL-1 or PNAd. Priming enhances bacterial clearance but increases inflammatory injury and enlarges venous thrombi. Thus, L-selectin mechanochemistry limits premature activation of neutrophils. Our results highlight the importance of probing how mechanochemistry functions in vivo.

  6. L-selectin mechanochemistry restricts neutrophil priming in vivo

    PubMed Central

    Liu, Zhenghui; Yago, Tadayuki; Zhang, Nan; Panicker, Sumith R.; Wang, Ying; Yao, Longbiao; Mehta-D'souza, Padmaja; Xia, Lijun; Zhu, Cheng; McEver, Rodger P.

    2017-01-01

    Circulating neutrophils must avoid premature activation to prevent tissue injury. The leukocyte adhesion receptor L-selectin forms bonds with P-selectin glycoprotein ligand-1 (PSGL-1) on other leukocytes and with peripheral node addressin (PNAd) on high endothelial venules. Mechanical forces can strengthen (catch) or weaken (slip) bonds between biological molecules. How these mechanochemical processes influence function in vivo is unexplored. Here we show that mice expressing an L-selectin mutant (N138G) have altered catch bonds and prolonged bond lifetimes at low forces. Basal lymphocyte homing and neutrophil recruitment to inflamed sites are normal. However, circulating neutrophils form unstable aggregates and are unexpectedly primed to respond robustly to inflammatory mediators. Priming requires signals transduced through L-selectin N138G after it engages PSGL-1 or PNAd. Priming enhances bacterial clearance but increases inflammatory injury and enlarges venous thrombi. Thus, L-selectin mechanochemistry limits premature activation of neutrophils. Our results highlight the importance of probing how mechanochemistry functions in vivo. PMID:28497779

  7. Regioselectivity of enzymatic and photochemical single electron transfer promoted carbon-carbon bond fragmentation reactions of tetrameric lignin model compounds.

    PubMed

    Cho, Dae Won; Latham, John A; Park, Hea Jung; Yoon, Ung Chan; Langan, Paul; Dunaway-Mariano, Debra; Mariano, Patrick S

    2011-04-15

    New types of tetrameric lignin model compounds, which contain the common β-O-4 and β-1 structural subunits found in natural lignins, have been prepared and carbon-carbon bond fragmentation reactions of their cation radicals, formed by photochemical (9,10-dicyanoanthracene) and enzymatic (lignin peroxidase) SET-promoted methods, have been explored. The results show that cation radical intermediates generated from the tetrameric model compounds undergo highly regioselective C-C bond cleavage in their β-1 subunits. The outcomes of these processes suggest that, independent of positive charge and odd-electron distributions, cation radicals of lignins formed by SET to excited states of sensitizers or heme-iron centers in enzymes degrade selectively through bond cleavage reactions in β-1 vs β-O-4 moieties. In addition, the findings made in the enzymatic studies demonstrate that the sterically large tetrameric lignin model compounds undergo lignin peroxidase-catalyzed cleavage via a mechanism involving preliminary formation of an enzyme-substrate complex.

  8. Tetra-ammine-(carbonato-κ(2) O,O')cobalt(III) nitrate: a powder X-ray diffraction study.

    PubMed

    Le Bail, Armel

    2013-01-01

    Practical chemistry courses at universities very frequently propose the synthesis and characterization of [Co(CO3)(NH3)4]NO3, but this goal is never achieved since students only obtain the hemihydrated form. The anhydrous form can be prepared, however, and its structure is presented here. Similar to the hemihydrate form, the anhydrous phase contains the Co(III) ion in an octahedral O2N4 coordination by a chelating carbonate group and four ammine ligands. The structure reveals an intricate array of N-H⋯O hydrogen bonds involving both the chelating and the non-chelating O atoms of the carbonate ligand as hydrogen-bond acceptors of the amine H atoms, which are also involved in hydrogen-bonding inter-actions with the nitrate O atoms. The structure of the anhydrous form is close to that of the hemihydrate phase, suggesting a probable topotactic reaction with relatively small rotations and translations of the [Co(CO3)(NH3)4](+) and NO3 (-) groups during the dehydration process, which produces an unusual volume increase of 4.3%.

  9. Tetra­ammine­(carbonato-κ2 O,O′)cobalt(III) nitrate: a powder X-ray diffraction study

    PubMed Central

    Le Bail, Armel

    2013-01-01

    Practical chemistry courses at universities very frequently propose the synthesis and characterization of [Co(CO3)(NH3)4]NO3, but this goal is never achieved since students only obtain the hemihydrated form. The anhydrous form can be prepared, however, and its structure is presented here. Similar to the hemihydrate form, the anhydrous phase contains the CoIII ion in an octahedral O2N4 coordination by a chelating carbonate group and four ammine ligands. The structure reveals an intricate array of N—H⋯O hydrogen bonds involving both the chelating and the non-chelating O atoms of the carbonate ligand as hydrogen-bond acceptors of the amine H atoms, which are also involved in hydrogen-bonding inter­actions with the nitrate O atoms. The structure of the anhydrous form is close to that of the hemihydrate phase, suggesting a probable topotactic reaction with relatively small rotations and translations of the [Co(CO3)(NH3)4]+ and NO3 − groups during the dehydration process, which produces an unusual volume increase of 4.3%. PMID:24046543

  10. Characteristics of AFB interfaces of dissimilar crystal composites as components for solid state lasers

    NASA Astrophysics Data System (ADS)

    Lee, H. C.; Meissner, O. R.; Meissner, H. E.

    2005-06-01

    Adhesive-free bonded (AFB®) composite crystals have proven to be useful components in diode-pumped solid-state lasers (DPSSL). The combination of a lasing medium of higher index of refraction with laser-inactive cladding layers of lower index results in light- or wave-guided slab architectures. The cladding layers also serve to provide mechanical support, thermal uniformity and a heat sink during laser operation. Therefore, the optical and mechanical properties of these components are of interest for the design of DPSSL, especially at high laser fluencies and output power. We report on process parameters and material attributes that result in stress-free AFB® composites that are resistant to thermally induced failure. Formation of stress-free and durable bonds between two dissimilar materials requires heat-treatment of composites to a temperature high enough to ensure durable bonds and low enough to prevent forming of permanent chemical bonds. The onset temperature for forming permanent bonds at the interface sets the upper limit for heat treatment. This limiting temperature is dependent on the chemical composition, crystallographic orientation, and surface characteristics. We have determined the upper temperature limits for forming stress-free bonds between YAG and sapphire, YAG and GGG, YAG and spinel, spinel and sapphire, spinel and GGG, and sapphire and GGG composites. We also deduce the relative magnitude of thermal expansion coefficients amongst the respective single crystals as αGGG > αsapp_c > αspinel > αYAG > αsapp_a from interferometric analysis.

  11. Co-extrusion of semi-finished aluminium-steel compounds

    NASA Astrophysics Data System (ADS)

    Thürer, S. E.; Uhe, J.; Golovko, O.; Bonk, C.; Bouguecha, A.; Klose, C.; Behrens, B.-A.; Maier, H. J.

    2017-10-01

    The combination of light metals and steels allows for new lightweight components with wear-resistant functional surfaces. Within the Collaborative Research Centre 1153 novel process chains are developed for the manufacture of such hybrid components. Here, the production process of a hybrid bearing bushing made of the aluminium alloy EN AW-6082 and the case-hardened steel 20MnCr5 is developed. Hybrid semi-finished products are an attractive alternative to conventional ones resulting from massive forming processes where the individual components are joined after the forming process. The actual hybrid semi-finished products were manufactured using a lateral angular co-extrusion (LACE) process. The bearing bushings are subsequently produced by die forging. In the present study, a tool concept for the LACE process is described, which renders the continuous joining of a steel rod with an aluminium tube possible. During the LACE process, the rod is fed into the extrusion die at an angle of approx. 90°. Metallographic analysis of the hybrid profile showed that the mechanical bonding between the different materials begins about 75 mm after the edge of the aluminium sheath. In order to improve the bonding strength, the steel rod is to be preheated during extrusion. Systematic investigations using a dilatometer, considering the maximum possible co-extrusion process parameters, were carried out. The variable parameters for the dilatometer experiments were determined by numerical simulation. In order to form a bond between the materials, the oxide layer needs to be disrupted during the co-extrusion process. In an attempt to better understand this effect, a modified sample geometry with chamfered steel was developed for the dilatometer experiments. The influence of the process parameters on the formation of the intermetallic phase at the interface was analysed by scanning electron microscopy and X-ray diffraction. This article, which was originally published online on 16 October 2017, contained an error in the press ratio, where 9:1 should be 6:1. The corrected ratio appears in the Corrigendum attached to the pdf.

  12. Copper-Catalyzed Oxidative Reaction of β-Keto Sulfones with Alcohols via C-S Bond Cleavage: Reaction Development and Mechanism Study.

    PubMed

    Du, Bingnan; Wang, Wenmin; Wang, Yang; Qi, Zhenghang; Tian, Jiaqi; Zhou, Jie; Wang, Xiaochen; Han, Jianlin; Ma, Jing; Pan, Yi

    2018-02-16

    A Cu-catalyzed cascade oxidative radical process of β-keto sulfones with alcohols has been achieved by using oxygen as an oxidant. In this reaction, β-keto sulfones were converted into sulfinate esters under the oxidative conditions via cleavage of C-S bond. Experimental and computational studies demonstrate that a new pathway is involved in this reaction, which proceeds through the formation of the key four-coordinated Cu II intermediate, O-O bond homolysis induced C-S bond cleavage and Cu-catalyzed esterification to form the final products. This reaction provides a new strategy to sulfonate esters and enriches the research content of C-S bond cleavage and transformations. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Cohesive zone model for direct silicon wafer bonding

    NASA Astrophysics Data System (ADS)

    Kubair, D. V.; Spearing, S. M.

    2007-05-01

    Direct silicon wafer bonding and decohesion are simulated using a spectral scheme in conjunction with a rate-dependent cohesive model. The cohesive model is derived assuming the presence of a thin continuum liquid layer at the interface. Cohesive tractions due to the presence of a liquid meniscus always tend to reduce the separation distance between the wafers, thereby opposing debonding, while assisting the bonding process. In the absence of the rate-dependence effects the energy needed to bond a pair of wafers is equal to that needed to separate them. When rate-dependence is considered in the cohesive law, the experimentally observed asymmetry in the energetics can be explained. The derived cohesive model has the potential to form a bridge between experiments and a multiscale-modelling approach to understand the mechanics of wafer bonding.

  14. Method for producing components with internal architectures, such as micro-channel reactors, via diffusion bonding sheets

    DOEpatents

    Alman, David E [Corvallis, OR; Wilson, Rick D [Corvallis, OR; Davis, Daniel L [Albany, OR

    2011-03-08

    This invention relates to a method for producing components with internal architectures, and more particularly, this invention relates to a method for producing structures with microchannels via the use of diffusion bonding of stacked laminates. Specifically, the method involves weakly bonding a stack of laminates forming internal voids and channels with a first generally low uniaxial pressure and first temperature such that bonding at least between the asperites of opposing laminates occurs and pores are isolated in interfacial contact areas, followed by a second generally higher isostatic pressure and second temperature for final bonding. The method thereby allows fabrication of micro-channel devices such as heat exchangers, recuperators, heat-pumps, chemical separators, chemical reactors, fuel processing units, and combustors without limitation on the fin aspect ratio.

  15. Two-Dimensional Nanoporous Networks Formed by Liquid-to-Solid Transfer of Hydrogen-Bonded Macrocycles Built from DNA Bases.

    PubMed

    Bilbao, Nerea; Destoop, Iris; De Feyter, Steven; González-Rodríguez, David

    2016-01-11

    We present an approach that makes use of DNA base pairing to produce hydrogen-bonded macrocycles whose supramolecular structure can be transferred from solution to a solid substrate. A hierarchical assembly process ultimately leads to two-dimensional nanostructured porous networks that are able to host size-complementary guests. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Interaction of Al with O2 exposed Mo2BC

    NASA Astrophysics Data System (ADS)

    Bolvardi, Hamid; Music, Denis; Schneider, Jochen M.

    2015-03-01

    A Mo2BC(0 4 0) surface was exposed to O2. The gas interaction was investigated using ab initio molecular dynamics and X-ray photoelectron spectroscopy (XPS) of air exposed surfaces. The calculations suggest that the most dominating physical mechanism is dissociative O2 adsorption whereby Mosbnd O, Osbnd Mosbnd O and Mo2sbnd Csbnd O bond formation is observed. To validate these results, Mo2BC thin films were synthesized utilizing high power pulsed magnetron sputtering and air exposed surfaces were probed by XPS. MoO2 and MoO3 bond formation is observed and is consistent with here obtained ab initio data. Additionally, the interfacial interactions of O2 exposed Mo2BC(0 4 0) surface with an Al nonamer is studied with ab initio molecular dynamics to describe on the atomic scale the interaction between this surface and Al to mimic the interface present during cold forming processes of Al based alloys. The Al nonamer was disrupted and Al forms chemical bonds with oxygen contained in the O2 exposed Mo2BC(0 4 0) surface. Based on the comparison of here calculated adsorption energy with literature data, Alsbnd Al bonds are shown to be significantly weaker than the Alsbnd O bonds formed across the interface. Hence, Alsbnd Al bond rupture is expected for a mechanically loaded interface. Therefore the adhesion of a residual Al on the native oxide layer is predicted. This is consistent with experimental observations. The data presented here may also be relevant for other oxygen containing surfaces in a contact with Al or Al based alloys for example during forming operations.

  17. Catalytic activation of carbon-carbon bonds in cyclopentanones.

    PubMed

    Xia, Ying; Lu, Gang; Liu, Peng; Dong, Guangbin

    2016-11-24

    In the chemical industry, molecules of interest are based primarily on carbon skeletons. When synthesizing such molecules, the activation of carbon-carbon single bonds (C-C bonds) in simple substrates is strategically important: it offers a way of disconnecting such inert bonds, forming more active linkages (for example, between carbon and a transition metal) and eventually producing more versatile scaffolds. The challenge in achieving such activation is the kinetic inertness of C-C bonds and the relative weakness of newly formed carbon-metal bonds. The most common tactic starts with a three- or four-membered carbon-ring system, in which strain release provides a crucial thermodynamic driving force. However, broadly useful methods that are based on catalytic activation of unstrained C-C bonds have proven elusive, because the cleavage process is much less energetically favourable. Here we report a general approach to the catalytic activation of C-C bonds in simple cyclopentanones and some cyclohexanones. The key to our success is the combination of a rhodium pre-catalyst, an N-heterocyclic carbene ligand and an amino-pyridine co-catalyst. When an aryl group is present in the C3 position of cyclopentanone, the less strained C-C bond can be activated; this is followed by activation of a carbon-hydrogen bond in the aryl group, leading to efficient synthesis of functionalized α-tetralones-a common structural motif and versatile building block in organic synthesis. Furthermore, this method can substantially enhance the efficiency of the enantioselective synthesis of some natural products of terpenoids. Density functional theory calculations reveal a mechanism involving an intriguing rhodium-bridged bicyclic intermediate.

  18. Method of processing materials using an inductively coupled plasma

    DOEpatents

    Hull, D.E.; Bieniewski, T.M.

    1987-04-13

    A method of processing materials. The invention enables ultrafine, ultrapure powders to be formed from solid ingots in a gas free environment. A plasma is formed directly from an ingot which insures purity. The vaporized material is expanded through a nozzle and the resultant powder settles on a cold surface. An inductively coupled plasma may also be used to process waste chemicals. Noxious chemicals are directed through a series of plasma tubes, breaking molecular bonds and resulting in relatively harmless atomic constituents. 3 figs.

  19. Failure of Alzheimer's Aβ(1-40) amyloid nanofibrils under compressive loading

    NASA Astrophysics Data System (ADS)

    Paparcone, Raffaella; Buehler, Markus J.

    2010-04-01

    Amyloids are associated with severe degenerative diseases and show exceptional mechanical properties, in particular great stiffhess. Amyloid fibrils, forming protein nanotube structures, are elongated fibers with a diameter of ≈8 nm with a characteristic dense hydrogen-bond (H-bond)patterning in the form of beta-sheets (β-sheets). Here we report a series of molecular dynamics simulations to study mechanical failure properties of a twofold symmetric Aβ(l-40) amyloid fibril, a pathogen associated with Alzheimer’s disease. We carry out computational experiments to study the response of the amyloid fibril to compressive loading. Our investigations reveal atomistic details of the failure process, and confirm that the breakdown of H-bonds plays a critical role during the failure process of amyloid fibrils. We obtain a Young’s modulus of ≈12.43 GPa, in dose agreement with earlier experimental results. Our simulations show that failure by buck-ling and subsequent shearing in one of the layers initiates at ≈1% compressive strain, suggesting that amyloid fibrils can be rather brittle mechanical elements.

  20. Probing hydrogen bond networks in half-sandwich Ru(II) building blocks by a combined 1H DQ CRAMPS solid-state NMR, XRPD, and DFT approach.

    PubMed

    Chierotti, Michele R; Gobetto, Roberto; Nervi, Carlo; Bacchi, Alessia; Pelagatti, Paolo; Colombo, Valentina; Sironi, Angelo

    2014-01-06

    The hydrogen bond network of three polymorphs (1α, 1β, and 1γ) and one solvate form (1·H2O) arising from the hydration-dehydration process of the Ru(II) complex [(p-cymene)Ru(κN-INA)Cl2] (where INA is isonicotinic acid), has been ascertained by means of one-dimensional (1D) and two-dimensional (2D) double quantum (1)H CRAMPS (Combined Rotation and Multiple Pulses Sequences) and (13)C CPMAS solid-state NMR experiments. The resolution improvement provided by homonuclear decoupling pulse sequences, with respect to fast MAS experiments, has been highlighted. The solid-state structure of 1γ has been fully characterized by combining X-ray powder diffraction (XRPD), solid-state NMR, and periodic plane-wave first-principles calculations. None of the forms show the expected supramolecular cyclic dimerization of the carboxylic functions of INA, because of the presence of Cl atoms as strong hydrogen bond (HB) acceptors. The hydration-dehydration process of the complex has been discussed in terms of structure and HB rearrangements.

  1. Composite pipe to metal joint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leslie, James C.; Leslie, II, James C.; Heard, James

    A method for making a metal to composite tube joint including selecting an elongated interior fitting constructed with an exterior barrel, reduced in exterior diameter to form a distally facing annular shoulder and then projecting still further distally to form an interior sleeve having a radially outwardly facing bonding surface. Selecting an elongated metal outer sleeve formed proximally with a collar constructed for receipt over the barrel and increased in interior diameter and projecting distally to form an exterior sleeve having a radially inwardly facing bonding surface cooperating with the first bonding surface to form an annulus receiving an extremitymore » of a composite tube and a bond bonding the extremity of the tube to the bonding surfaces.« less

  2. Graphene-like Networks in the lattice of Ag, Cu and Al metals

    NASA Astrophysics Data System (ADS)

    Salamanca-Riba, Lourdes; Ge, Xiaoxiao; Isaacs, Romaine; Jaim, Hm Iftekar; Wuttig, Manfred; Rashkeev, Sergey; Kuklja, Maija; Hu, Lianbing; Covetics Team Team

    Graphene-like networks form in the lattice of metals such as silver, copper and aluminum via an electrocharging assisted process. In this process a high current of >80A is applied to the liquid metal containing particles of activated carbon. The resulting material is called M covetic (M =Al, Ag Cu). We have previously reported that this process gives rise to carbon nanostructures with sp2 bonding embedded in the lattice of the metal. The carbon bonds to the metal as evidenced by Raman scattering and first principles simulation of the phonon density of states. With this process we have observed that graphene nanoribbons form along preferential crystalline directions and form 3D epitaxial structures with Al and Ag hosts. Bulk Cu covetic was used to deposit films by e-beam deposition and PLD. The PLD films contain higher C content and show higher transmittance (~90%) and resistance to oxidation than pure copper films of the same thickness. We compare the electrical and mechanical properties of covetics containing C in the 0 to 10 wt % and the transmittance of Cu covetic films compared to pure Cu films of the same thickness. Supported by ONR Grant N000141410042

  3. Bonded exciplex formation: electronic and stereoelectronic effects.

    PubMed

    Wang, Yingsheng; Haze, Olesya; Dinnocenzo, Joseph P; Farid, Samir; Farid, Ramy S; Gould, Ian R

    2008-12-18

    As recently proposed, the singlet-excited states of several cyanoaromatics react with pyridine via bonded-exciplex formation, a novel concept in photochemical charge transfer reactions. Presented here are electronic and steric effects on the quenching rate constants, which provide valuable support for the model. Additionally, excited-state quenching in poly(vinylpyridine) is strongly inhibited both relative to that in neat pyridine and also to conventional exciplex formation in polymers, consistent with a restrictive orientational requirement for the formation of bonded exciplexes. Examples of competing reactions to form both conventional and bonded exciplexes are presented, which illustrate the delicate balance between these two processes when their reaction energetics are similar. Experimental and computational evidence is provided for the formation of a bonded exciplex in the reaction of the singlet excited state of 2,6,9,10-tetracyanoanthracene (TCA) with an oxygen-substituted donor, dioxane, thus expanding the scope of bonded exciplexes.

  4. Peculiar bonding associated with atomic doping and hidden honeycombs in borophene

    NASA Astrophysics Data System (ADS)

    Lee, Chi-Cheng; Feng, Baojie; D'angelo, Marie; Yukawa, Ryu; Liu, Ro-Ya; Kondo, Takahiro; Kumigashira, Hiroshi; Matsuda, Iwao; Ozaki, Taisuke

    2018-02-01

    Engineering atomic-scale structures allows great manipulation of physical properties and chemical processes for advanced technology. We show that the B atoms deployed at the centers of honeycombs in boron sheets, borophene, behave as nearly perfect electron donors for filling the graphitic σ bonding states without forming additional in-plane bonds by first-principles calculations. The dilute electron density distribution owing to the weak bonding surrounding the center atoms provides easier atomic-scale engineering and is highly tunable via in-plane strain, promising for practical applications, such as modulating the extraordinarily high thermal conductance that exceeds the reported value in graphene. The hidden honeycomb bonding structure suggests an unusual energy sequence of core electrons that has been verified by our high-resolution core-level photoelectron spectroscopy measurements. With the experimental and theoretical evidence, we demonstrate that borophene exhibits a peculiar bonding structure and is distinctive among two-dimensional materials.

  5. Realization of MEMS-IC Vertical Integration Utilizing Smart Bumpless Bonding

    NASA Astrophysics Data System (ADS)

    Shiozaki, Masayoshi; Moriguchi, Makoto; Sasaki, Sho; Oba, Masatoshi

    This paper reports fundamental technologies, properties, and new experimental results of SBB (Smart Bumpless Bonding) to realize MEMS-IC vertical integration. Although conventional bonding technologies have had difficulties integrating MEMS and its processing circuit because of their rough bonding surfaces, fragile structures, and thermal restriction, SBB technology realized the vertical integration without thermal treatment, any adhesive materials including bumps, and chemical mechanical polishing. The SBB technology bonds sealing parts for vacuum sealing and electrodes for electrical connection simultaneously as published in previous experimental study. The plasma CVD SiO2 is utilized to realize vacuum sealing as sealing material. And Au projection studs are formed on each electrode and connected electrically between two wafers by compressive plastic deformation and surface activation. In this paper, new experimental results including vacuum sealing properties, electrical improvement, IC bonding results on the described fundamental concept and properties are reported.

  6. Diffusion Bonding of Microduplex Stainless Steel and Ti Alloy with and without Interlayer: Interface Microstructure and Strength Properties

    NASA Astrophysics Data System (ADS)

    Kundu, S.; Sam, S.; Mishra, B.; Chatterjee, S.

    2014-01-01

    The interface microstructure and strength properties of solid state diffusion bonding of microduplex stainless steel (MDSS) to Ti alloy (TiA) with and without a Ni alloy (NiA) intermediate material were investigated at 1173 K (900 °C) for 0.9 to 5.4 ks in steps of 0.9 ks in vacuum. The effects of bonding time on the microstructure of the bonded joint have been analyzed by light optical microscopy and scanning electron microscopy in the backscattered mode. In the direct bonded joints of MDSS and TiA, the layer-wise σ phase and the λ + FeTi phase mixture were observed at the bond interface when the joint was processed for 2.7 ks and above holding times. However, when NiA was used as an intermediate material, the results indicated that TiNi3, TiNi, and Ti2Ni are formed at the NiA-TiA interface, and the irregular shaped particles of Fe22Mo20Ni45Ti13 have been observed within the TiNi3 intermetallic layer. The stainless steel-NiA interface is free from intermetallics and the layer of austenitic phase was observed at the stainless steel side. A maximum tensile strength of ~520 MPa, shear strength of ~405 MPa, and impact toughness of ~18 J were obtained for the directly bonded joint when processed for 2.7 ks. However, when nickel base alloy was used as an intermediate material in the same materials, the bond tensile and shear strengths increase to ~640 and ~479 MPa, respectively, and the impact toughness to ~21 J when bonding was processed for 4.5 ks. Fracture surface observations in scanning electron microscopy using energy dispersive spectroscopy demonstrate that in MDSS-TiA joints, failure takes place through the FeTi + λ phase when bonding was processed for 2.7 ks; however, failure takes place through σ phase for the diffusion joints processed for 3.6 ks and above processing times. However, in MDSS-NiA-TiA joints, the fracture takes place through NiTi2 layer at the NiA-TiA interface for all bonding times.

  7. Relaxation processes in disaccharide sugar glasses

    NASA Astrophysics Data System (ADS)

    Hwang, Yoon-Hwae; Kwon, Hyun-Joung; Seo, Jeong-Ah; Shin, Dong-Myeong; Ha, Ji-Hye; Kim, Hyung-Kook

    2013-02-01

    We represented relaxation processes of disaccharide sugars (anhydrous trehalose and maltose) in supercooled and glassy states by using several spectroscopy techniques which include a broadband dielectric loss spectroscopy, photon correlation spectroscopy and X-ray diffraction (Retvield analysis) methods which are powerful tools to measure the dynamics in glass forming materials. In a dielectric loss spectroscopy study, we found that anhydrous trehalose and maltose glasses have an extra relaxation process besides α-, JG β- and γ-relaxations which could be related to a unique property of glycoside bond in disaccharides. In photon correlation spectroscopy study, we found an interesting compressed exponential relaxation at temperatures above 140°C. The q-1 dependence of its relaxation time corresponds to an ultraslow ballistic motion due to the local structure rearrangements. In the same temperature range, we found the glycosidic bond structure changes in trehalose molecule from the Raman and the Retvield X-ray diffraction measurements indicating that the observed compressed exponential relaxation in supercooled liquid trehalose could be resulted in the glycosidic bond structure change. Therefore, the overall results from this study might support the fact that the superior bioprotection ability of disaccharide sugar glasses might originate from this unique relaxation process of glycosidic bond.

  8. Detection and structural characterization of nitrosamide H2NNO: A central intermediate in deNOx processes.

    PubMed

    McCarthy, Michael C; Lee, Kin Long Kelvin; Stanton, John F

    2017-10-07

    The structure and bonding of H 2 NNO, the simplest N-nitrosamine, and a key intermediate in deNO x processes, have been precisely characterized using a combination of rotational spectroscopy of its more abundant isotopic species and high-level quantum chemical calculations. Isotopic spectroscopy provides compelling evidence that this species is formed promptly in our discharge expansion via the NH 2 + NO reaction and is collisionally cooled prior to subsequent unimolecular rearrangement. H 2 NNO is found to possess an essentially planar geometry, an NNO angle of 113.67(5)°, and a N-N bond length of 1.342(3) Å; in combination with the derived nitrogen quadrupole coupling constants, its bonding is best described as an admixture of uncharged dipolar (H 2 N-N=O, single bond) and zwitterion (H 2 N + =N-O - , double bond) structures. At the CCSD(T) level, and extrapolating to the complete basis set limit, the planar geometry appears to represent the minimum of the potential surface, although the torsional potential of this molecule is extremely flat.

  9. Detection and structural characterization of nitrosamide H2NNO: A central intermediate in deNOx processes

    NASA Astrophysics Data System (ADS)

    McCarthy, Michael C.; Lee, Kin Long Kelvin; Stanton, John F.

    2017-10-01

    The structure and bonding of H2NNO, the simplest N-nitrosamine, and a key intermediate in deNOx processes, have been precisely characterized using a combination of rotational spectroscopy of its more abundant isotopic species and high-level quantum chemical calculations. Isotopic spectroscopy provides compelling evidence that this species is formed promptly in our discharge expansion via the NH2 + NO reaction and is collisionally cooled prior to subsequent unimolecular rearrangement. H2NNO is found to possess an essentially planar geometry, an NNO angle of 113.67(5)°, and a N-N bond length of 1.342(3) Å; in combination with the derived nitrogen quadrupole coupling constants, its bonding is best described as an admixture of uncharged dipolar (H2N-N=O, single bond) and zwitterion (H2N+=N-O-, double bond) structures. At the CCSD(T) level, and extrapolating to the complete basis set limit, the planar geometry appears to represent the minimum of the potential surface, although the torsional potential of this molecule is extremely flat.

  10. Method of making a composite tube to metal joint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leslie, James C.; Leslie, II, James C.; Heard, James

    A method for making a metal to composite tube joint including selecting an elongated interior fitting constructed with an exterior barrel, reduced in exterior diameter to form a distally facing annular shoulder and then projecting still further distally to form an interior sleeve having a radially outwardly facing bonding surface. Selecting an elongated metal outer sleeve formed proximally with a collar constructed for receipt over the barrel and increased in interior diameter and projecting distally to form an exterior sleeve having a radially inwardly facing bonding surface cooperating with the first bonding surface to form an annulus receiving an extremitymore » of a composite tube and a bond bonding the extremity of the tube to the bonding surfaces.« less

  11. Analysis of splicing complexes on native gels.

    PubMed

    Ares, Manuel

    2013-10-01

    Splicing requires a complex set of ATP-dependent macromolecular associations that lead to the rearrangement of just a few covalent bonds in the pre-mRNA substrate. Seeing only the covalent bonds breaking and forming is seeing only a very small part of the process. Analysis of native splicing complexes into which the radiolabeled substrate has been assembled, but not necessarily completely reacted, has provided a good understanding of the process. This protocol describes a gel method for detecting and analyzing yeast splicing complexes formed in vitro on a radiolabeled pre-mRNA substrate. Complexes formed during the splicing reaction are quenched by dilution and addition of an excess of RNA, which is thought to strip nonspecifically bound proteins from the labeled substrate RNA. After loading on a low-percentage, low-cross-linking ratio composite agarose-acrylamide gel (in 10% glycerol), labeled bands are detected. These can be extracted and shown to contain small nuclear RNAs (snRNAs) and partly reacted pre-mRNA.

  12. Enhanced adhesion by high energy bombardment

    NASA Technical Reports Server (NTRS)

    Griffith, Joseph E. (Inventor); Qiu, Yuanxun (Inventor); Tombrello, Thomas A. (Inventor)

    1984-01-01

    Films (12) of gold, copper, silicon nitride, or other materials are firmly bonded to insulator substrates (12) such as silica, a ferrite, or Teflon (polytetrafluorethylene) by irradiating the interface with high energy ions. Apparently, track forming processes in the electronic stopping region cause intermixing in a thin surface layer resulting in improved adhesion without excessive doping. Thick layers can be bonded by depositing or doping the interfacial surfaces with fissionable elements or alpha emitters.

  13. Calculation of the structure of carbon clusters based on fullerene-like C24 and C48 molecules

    NASA Astrophysics Data System (ADS)

    Krylova, K. A.; Baimova, Yu. A.; Dmitriev, S. V.; Mulyukov, R. R.

    2016-02-01

    Equilibrium structures obtained by linking with valence bonds the carbon carcasses of two fullerene-like molecules have been studied by molecular dynamics simulation. In free fullerene, carbon atoms form sp 2 hybridized bonds, but at places of links between fullerenes, sp 3 hybridized bonds are formed, which determines the changes in the properties of such structures. In the literature, the topology of diamond-like phases is described, but equilibrium clusters based on fullerene-like molecules are underexplored. The right angles between the C-C bonds are energetically unfavorable, and the reduction in the energy of clusters in the process of relaxation is connected with the optimization of valence angles, which leads to a reduction in the symmetry of clusters and, in a number of cases, even to disruption of some valence bonds. It is shown that different fashions of linking two fullerenes result in the formation of clusters with different structures and energies. Different initial conditions can lead to different configurations of clusters with the same topology. Among the analyzed clusters, a structure with the minimum potential energy per atom was found. The results of this work contribute to the study of the real structure of carbon clusters.

  14. 75 FR 55849 - Proposed Collection; Comment Request for Form 1097-BTC, Bond Tax Credit

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-14

    ... 1097-BTC, Bond Tax Credit AGENCY: Internal Revenue Service (IRS), Treasury. ACTION: Notice and request... comments concerning Form 1097-BTC, Bond Tax Credit. DATES: Written comments should be received on or before... INFORMATION: Title: Form 1097-BTC, Bond Tax Credit. Abstract: This is an information return for reporting tax...

  15. 43 CFR 3504.51 - How do I file my bond?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false How do I file my bond? 3504.51 Section... AND OIL SHALE Fees, Rental, Royalty and Bonds Bonding § 3504.51 How do I file my bond? File one copy... approved BLM form. You must sign the form if you are the principal of a personal bond. For surety bonds...

  16. Binding matter with antimatter: the covalent positron bond.

    PubMed

    Charry, Jorge Alfonso; Varella, Marcio T Do N; Reyes, Andrés

    2018-05-16

    We report sufficient theoretical evidence of the energy stability of the e⁺H₂²⁻ molecule, formed by two H⁻ anions and one positron. Analysis of the electronic and positronic densities of the latter compound undoubtedly points out the formation of a positronic covalent bond between the otherwise repelling hydride anions. The lower limit for the bonding energy of the e⁺H₂²⁻ molecule is 74 kJ/mol (0.77 eV), accounting for the zero-point vibrational correction. The formation of a non electronic covalent bond is fundamentally distinct from positron attachment to stable molecules, as the latter process is characterized by a positron affinity, analogous to the electron affinity. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Analysis of stochastic crystallization in micron-sized droplets of undercooled liquid l-arabitol.

    PubMed

    Guinet, Yannick; Carpentier, Laurent; Paccou, Laurent; Derollez, Patrick; Hédoux, Alain

    2016-11-29

    Kinetics of isothermal crystallization of l-arabitol were analyzed from the undercooled liquid state within micron-sized droplets from micro-Raman spectroscopy. This study reveals that crystallization slightly above T g is controlled by stochastic heterogeneous nucleation inherent to the droplet size. Microscopic Raman investigations performed in droplets give the unique opportunity to analyze the pure metastable Form II of l-arabitol. It was found that Form II is characterized by a molecular packing more compact than that of the stable Form I, inherent to strong intermolecular hydrogen bonding. Kinetics laws obtained by analyzing several droplets at different temperatures, reveal the transient character of Form II, quasi systematically detected during the crystallization process of form I. Form II appears as the first step of crystallization prior to successive short-living metastable states which is necessary to achieve a complete crystallization in Form I. It was found that the kinetics of conversion between the metastable states (Form II) into Form I is dependent on the amount of strong hydrogen bonding distinctive of Form II. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. 43 CFR 3904.12 - Where to file bonds.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false Where to file bonds. 3904.12 Section 3904....12 Where to file bonds. File one copy of the bond form with original signatures in the proper BLM state office. Bonds must be filed on an approved BLM form. The obligor of a personal bond must sign the...

  19. Why are sec-alkylperoxyl bimolecular self-reactions orders of magnitude faster than the analogous reactions of tert-alkylperoxyls? The unanticipated role of CH hydrogen bond donation.

    PubMed

    Lee, Richmond; Gryn'ova, Ganna; Ingold, K U; Coote, Michelle L

    2016-08-24

    High-level ab initio calculations are used to identify the mechanism of secondary (and primary) alkylperoxyl radical termination and explain why their reactions are much faster than their tertiary counterparts. Contrary to existing literature, the decomposition of both tertiary and non-tertiary tetroxides follows the same asymmetric two-step bond cleavage pathway to form a caged intermediate of overall singlet multiplicity comprising triplet oxygen and two alkoxyl radicals. The alpha hydrogen atoms of non-tertiary species facilitate this process by forming unexpected CHO hydrogen bonds to the evolving O2. For non-tertiary peroxyls, subsequent alpha hydrogen atom transfer then yields the experimentally observed non-radical products, ketone, alcohol and O2, whereas for tertiary species, this reaction is precluded and cage escape of the (unpaired) alkoxyl radicals is a likely outcome with important consequences for autoxidation.

  20. Catalytic activation of carbon–carbon bonds in cyclopentanones

    PubMed Central

    Xia, Ying; Lu, Gang; Liu, Peng; Dong, Guangbin

    2017-01-01

    In the chemical industry, molecules of interest are based primarily on carbon skeletons. When synthesizing such molecules, the activation of carbon–carbon single bonds (C–C bonds) in simple substrates is strategically important: it offers a way of disconnecting such inert bonds, forming more active linkages (for example, between carbon and a transition metal) and eventually producing more versatile scaffolds1–13. The challenge in achieving such activation is the kinetic inertness of C–C bonds and the relative weakness of newly formed carbon–metal bonds6,14. The most common tactic starts with a three- or four-membered carbon-ring system9–13, in which strain release provides a crucial thermodynamic driving force. However, broadly useful methods that are based on catalytic activation of unstrained C–C bonds have proven elusive, because the cleavage process is much less energetically favourable. Here we report a general approach to the catalytic activation of C–C bonds in simple cyclopentanones and some cyclohexanones. The key to our success is the combination of a rhodium pre-catalyst, an N-heterocyclic carbene ligand and an amino-pyridine co-catalyst. When an aryl group is present in the C3 position of cyclopentanone, the less strained C–C bond can be activated; this is followed by activation of a carbon–hydrogen bond in the aryl group, leading to efficient synthesis of functionalized α-tetralones—a common structural motif and versatile building block in organic synthesis. Furthermore, this method can substantially enhance the efficiency of the enantioselective synthesis of some natural products of terpenoids. Density functional theory calculations reveal a mechanism involving an intriguing rhodium-bridged bicyclic intermediate. PMID:27806379

  1. Reactive molecular dynamics simulation of solid nitromethane impact on (010) surfaces induced and nonimpact thermal decomposition.

    PubMed

    Guo, Feng; Cheng, Xin-lu; Zhang, Hong

    2012-04-12

    Which is the first step in the decomposition process of nitromethane is a controversial issue, proton dissociation or C-N bond scission. We applied reactive force field (ReaxFF) molecular dynamics to probe the initial decomposition mechanisms of nitromethane. By comparing the impact on (010) surfaces and without impact (only heating) for nitromethane simulations, we found that proton dissociation is the first step of the pyrolysis of nitromethane, and the C-N bond decomposes in the same time scale as in impact simulations, but in the nonimpact simulation, C-N bond dissociation takes place at a later time. At the end of these simulations, a large number of clusters are formed. By analyzing the trajectories, we discussed the role of the hydrogen bond in the initial process of nitromethane decompositions, the intermediates observed in the early time of the simulations, and the formation of clusters that consisted of C-N-C-N chain/ring structures.

  2. Use of Cement Kiln Dust, Blast Furnace Slag and Marble Sludge in the Manufacture of Sustainable Artificial Aggregates by Means of Cold Bonding Pelletization.

    PubMed

    Colangelo, Francesco; Cioffi, Raffaele

    2013-07-25

    In this work, three different samples of solid industrial wastes cement kiln dust (CKD), granulated blast furnace slag and marble sludge were employed in a cold bonding pelletization process for the sustainable production of artificial aggregates. The activating action of CKD components on the hydraulic behavior of the slag was explored by evaluating the neo-formed phases present in several hydrated pastes. Particularly, the influence of free CaO and sulfates amount in the two CKD samples on slag reactivity was evaluated. Cold bonded artificial aggregates were characterized by determining physical and mechanical properties of two selected size fractions of the granules for each studied mixture. Eighteen types of granules were employed in C28/35 concrete manufacture where coarser natural aggregate were substituted with the artificial ones. Finally, lightweight concretes were obtained, proving the suitability of the cold bonding pelletization process in artificial aggregate sustainable production.

  3. Use of Cement Kiln Dust, Blast Furnace Slag and Marble Sludge in the Manufacture of Sustainable Artificial Aggregates by Means of Cold Bonding Pelletization

    PubMed Central

    Colangelo, Francesco; Cioffi, Raffaele

    2013-01-01

    In this work, three different samples of solid industrial wastes cement kiln dust (CKD), granulated blast furnace slag and marble sludge were employed in a cold bonding pelletization process for the sustainable production of artificial aggregates. The activating action of CKD components on the hydraulic behavior of the slag was explored by evaluating the neo-formed phases present in several hydrated pastes. Particularly, the influence of free CaO and sulfates amount in the two CKD samples on slag reactivity was evaluated. Cold bonded artificial aggregates were characterized by determining physical and mechanical properties of two selected size fractions of the granules for each studied mixture. Eighteen types of granules were employed in C28/35 concrete manufacture where coarser natural aggregate were substituted with the artificial ones. Finally, lightweight concretes were obtained, proving the suitability of the cold bonding pelletization process in artificial aggregate sustainable production. PMID:28811427

  4. 78 FR 49761 - Agency Information Collection Activities: Application for Exportation of Articles Under Special Bond

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-15

    ... Activities: Application for Exportation of Articles Under Special Bond AGENCY: U.S. Customs and Border... Articles under Special Bond (CBP Form 3495). This request for comment is being made pursuant to the...: Application for Exportation of Articles Under Special Bond. OMB Number: 1651-0004. Form Number: CBP Form 3495...

  5. 7 CFR 1726.27 - Contractor's bonds.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 11 2010-01-01 2010-01-01 false Contractor's bonds. 1726.27 Section 1726.27... AGRICULTURE ELECTRIC SYSTEM CONSTRUCTION POLICIES AND PROCEDURES General § 1726.27 Contractor's bonds. (a) RUS Form 168b, Contractor's Bond, shall be used when a contractor's bond is required by RUS Forms 200, 257...

  6. 77 FR 40703 - Proposed Collection; Comment Request for Form 1097-BTC

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-10

    ... 1097-BTC AGENCY: Internal Revenue Service (IRS), Treasury. ACTION: Notice and request for comments... Form 1097-BTC, Bond Tax Credit. DATES: Written comments should be received on or before September 10... INFORMATION: Title: Bond Tax Credit. OMB Number: 1545-2197. Form Number: Form 1097-BTC. Abstract: Bond tax...

  7. Hydroxide-catalyzed bonding

    NASA Technical Reports Server (NTRS)

    Gwo, Dz-Hung (Inventor)

    2003-01-01

    A method of bonding substrates by hydroxide-catalyzed hydration/dehydration involves applying a bonding material to at least one surface to be bonded, and placing the at least one surface sufficiently close to another surface such that a bonding interface is formed between them. A bonding material of the invention comprises a source of hydroxide ions, and may optionally include a silicate component, a particulate filling material, and a property-modifying component. Bonding methods of the invention reliably and reproducibly provide bonds which are strong and precise, and which may be tailored according to a wide range of possible applications. Possible applications for bonding materials of the invention include: forming composite materials, coating substrates, forming laminate structures, assembly of precision optical components, and preparing objects of defined geometry and composition. Bonding materials and methods of preparing the same are also disclosed.

  8. Chemoselective phototransformation of C-H bonds on a polymer surface through a photoinduced cerium recycling redox reaction.

    PubMed

    Huang, Zhenhua; Wu, Zhengfang; Yang, Peng; Yang, Wantai

    2014-09-01

    It is generally accepted that Ce(4+) is unable to directly oxidize unreactive alkyl C-H bonds without the assistance of adjacent polar groups. Herein, we demonstrate in our newly developed confined photochemical reaction system that this recognized issue may be challenged. As we found, when a thin layer of a CeCl(3)/HCl aqueous solution was applied to a polymeric substrate and the substrate subjected to UV irradiation, Ce(3+) was first photooxidized to form Ce(4+) in the presence of H(+), and the in situ formed Ce(4+) then performs an oxidation reaction on the C-H bonds of the polymer surface to form surface-carbon radicals for radical graft polymerization reactions and functional-group transformations, while reducing to Ce(3+) and releasing H(+) in the process. This photoinduced cerium recycling redox (PCRR) reaction behaved as a biomimetic system in an artificial recycling reaction, leading to a sustainable chemical modification strategy for directly transforming alkyl C-H bonds on polymer surfaces into small-molecule groups and polymer brushes. This method is expected to provide a green and economical tool for industrial applications of polymer-surface modification. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Copper-catalyzed synthesis of phenanthridine derivatives under an oxygen atmosphere starting from biaryl-2-carbonitriles and Grignard reagents.

    PubMed

    Zhang, Line; Ang, Gim Yean; Chiba, Shunsuke

    2010-08-20

    A copper-catalyzed synthesis of phenanthridine derivatives was developed starting from biaryl-2-carbonitriles and Grignard reagents. The present transformation is carried out by a sequence of nucleophilic addition of Grignard reagents to biaryl-2-carbonitriles to form N-H imines and their Cu-catalyzed C-N bond formation on the aromatic C-H bond, where molecular oxygen is a prerequisite to achieve the catalytic process.

  10. Dissolving process of a cellulose bunch in ionic liquids: a molecular dynamics study.

    PubMed

    Li, Yao; Liu, Xiaomin; Zhang, Suojiang; Yao, Yingying; Yao, Xiaoqian; Xu, Junli; Lu, Xingmei

    2015-07-21

    In recent years, a variety of ionic liquids (ILs) were found to be capable of dissolving cellulose and mechanistic studies were also reported. However, there is still a lack of detailed information at the molecular level. Here, long time molecular dynamics simulations of cellulose bunch in 1-ethyl-3-methylimidazolium acetate (EmimAc), 1-ethyl-3-methylimidazolium chloride (EmimCl), 1-butyl-3-methylimidazolium chloride (BmimCl) and water were performed to analyze the inherent interaction and dissolving mechanism. Complete dissolution of the cellulose bunch was observed in EmimAc, while little change took place in EmimCl and BmimCl, and nothing significant happened in water. The deconstruction of the hydrogen bond (H-bond) network in cellulose was found and analyzed quantitatively. The synergistic effect of cations and anions was revealed by analyzing the whole dissolving process. Initially, cations bind to the side face of the cellulose bunch and anions insert into the cellulose strands to form H-bonds with hydroxyl groups. Then cations start to intercalate into cellulose chains due to their strong electrostatic interaction with the entered anions. The H-bonds formed by Cl(-) cannot effectively separate the cellulose chain and that is the reason why EmimCl and BmimCl dissolve cellulose more slowly. These findings deepen people's understanding on how ILs dissolve cellulose and would be helpful for designing new efficient ILs to dissolve cellulose.

  11. Compression selective solid-state chemistry

    NASA Astrophysics Data System (ADS)

    Hu, Anguang

    Compression selective solid-state chemistry refers to mechanically induced selective reactions of solids under thermomechanical extreme conditions. Advanced quantum solid-state chemistry simulations, based on density functional theory with localized basis functions, were performed to provide a remarkable insight into bonding pathways of high-pressure chemical reactions in all agreement with experiments. These pathways clearly demonstrate reaction mechanisms in unprecedented structural details, showing not only the chemical identity of reactive intermediates but also how atoms move along the reaction coordinate associated with a specific vibrational mode, directed by induced chemical stress occurred during bond breaking and forming. It indicates that chemical bonds in solids can break and form precisely under compression as we wish. This can be realized through strongly coupling of mechanical work to an initiation vibrational mode when all other modes can be suppressed under compression, resulting in ultrafast reactions to take place isothermally in a few femtoseconds. Thermodynamically, such reactions correspond to an entropy minimum process on an isotherm where the compression can force thermal expansion coefficient equal to zero. Combining a significantly brief reaction process with specific mode selectivity, both statistical laws and quantum uncertainty principle can be bypassed to precisely break chemical bonds, establishing fundamental principles of compression selective solid-state chemistry. Naturally this leads to understand the ''alchemy'' to purify, grow, and perfect certain materials such as emerging novel disruptive energetics.

  12. Solid Liquid Interdiffusion Bonding of Zn4Sb3 Thermoelectric Material with Cu Electrode

    NASA Astrophysics Data System (ADS)

    Lin, Y. C.; Lee, K. T.; Hwang, J. D.; Chu, H. S.; Hsu, C. C.; Chen, S. C.; Chuang, T. H.

    2016-10-01

    The ZnSb intermetallic compound may have thermoelectric applications because it is low in cost and environmentally friendly. In this study, a Zn4Sb3 thermoelectric element coated with a Ni barrier layer and a Ag reaction layer was bonded with a Ag-coated Cu electrode using a Ag/Sn/Ag solid-liquid interdiffusion bonding process. The results indicated that a Ni5Zn21 intermetallic phase formed easily at the Zn4Sb3/Ni interface, leading to sound adhesion. In addition, Sn film was found to react completely with the Ag layer to form a Ag3Sn intermetallic layer having a melting point of 480°C. The resulting Zn4Sb3 thermoelectric module can be applied at the optimized operation temperature (400°C) of Zn4Sb3 material as a thermoelectric element. The bonding strengths ranged from 14.9 MPa to 25.0 MPa, and shear tests revealed that the Zn4Sb3/Cu-joints fractured through the interior of the thermoelectric elements.

  13. Advanced Sodium Ion Battery Anode Constructed via Chemical Bonding between Phosphorus, Carbon Nanotube, and Cross-Linked Polymer Binder.

    PubMed

    Song, Jiangxuan; Yu, Zhaoxin; Gordin, Mikhail L; Li, Xiaolin; Peng, Huisheng; Wang, Donghai

    2015-12-22

    Maintaining structural stability is a great challenge for high-capacity conversion electrodes with large volume change but is necessary for the development of high-energy-density, long-cycling batteries. Here, we report a stable phosphorus anode for sodium ion batteries by the synergistic use of chemically bonded phosphorus-carbon nanotube (P-CNT) hybrid and cross-linked polymer binder. The P-CNT hybrid was synthesized through ball-milling of red phosphorus and carboxylic group functionalized carbon nanotubes. The P-O-C bonds formed in this process help maintain contact between phosphorus and CNTs, leading to a durable hybrid. In addition, cross-linked carboxymethyl cellulose-citric acid binder was used to form a robust electrode. As a result, this anode delivers a stable cycling capacity of 1586.2 mAh/g after 100 cycles, along with high initial Coulombic efficiency of 84.7% and subsequent cycling efficiency of ∼99%. The unique electrode framework through chemical bonding strategy reported here is potentially inspirable for other electrode materials with large volume change in use.

  14. Intramolecular CH···O hydrogen bonds in the AI and BI DNA-like conformers of canonical nucleosides and their Watson-Crick pairs. Quantum chemical and AIM analysis.

    PubMed

    Yurenko, Yevgen P; Zhurakivsky, Roman O; Samijlenko, Svitlana P; Hovorun, Dmytro M

    2011-08-01

    The aim of this work is to cast some light on the H-bonds in double-stranded DNA in its AI and BI forms. For this purpose, we have performed the MP2 and DFT quantum chemical calculations of the canonical nucleoside conformers, relative to the AI and BI DNA forms, and their Watson-Crick pairs, which were regarded as the simplest models of the double-stranded DNA. Based on the atoms-in-molecules analysis (AIM), five types of the CH···O hydrogen bonds, involving bases and sugar, were detected numerically from 1 to 3 per a conformer: C2'H···O5', C1'H···O2, C6H···O5', C8H···O5', and C6H···O4'. The energy values of H-bonds occupy the range of 2.3-5.6 kcal/mol, surely exceeding the kT value (0.62 kcal/mol). The nucleoside CH···O hydrogen bonds appeared to "survive" turns of bases against the sugar, sometimes in rather large ranges of the angle values, pertinent to certain conformations, which points out to the source of the DNA lability, necessary for the conformational adaptation in processes of its functioning. The calculation of the interactions in the dA·T nucleoside pair gives evidence, that additionally to the N6H···O4 and N1···N3H canonical H-bonds, between the bases adenine and thymine the third one (C2H···O2) is formed, which, though being rather weak (about 1 kcal/mol), satisfies the AIM criteria of H-bonding and may be classified as a true H-bond. The total energy of all the CH···O nontraditional intramolecular H-bonds in DNA nucleoside pairs appeared to be commensurable with the energy of H-bonds between the bases in Watson-Crick pairs, which implies their possible important role in the DNA shaping.

  15. Composite drill pipe and method for forming same

    DOEpatents

    Leslie, James C; Leslie, II, James C; Heard, James; Truong, Liem; Josephson, Marvin

    2014-04-15

    Metal inner and outer fittings configured, the inner fitting configured proximally with an external flange and projecting distally to form a cylindrical barrel and stepped down-in-diameter to form an abutment shoulder and then projecting further distally to form a radially inwardly angled and distally extending tapered inner sleeve. An outer sleeve defining a torque tube is configured with a cylindrical collar to fit over the barrel and is formed to be stepped up in diameter in alignment with the first abutment shoulder to then project distally forming a radially outwardly tapered and distally extending bonding surface to cooperate with the inner sleeve to cooperate with the inner sleeve in forming a annular diverging bonding cavity to receive the extremity of a composite pipe to abut against the abutment shoulders and to be bonded to the respective bonding surfaces by a bond.

  16. Enormous Hydrogen Bond Strength Enhancement through π-Conjugation Gain: Implications for Enzyme Catalysis.

    PubMed

    Wu, Chia-Hua; Ito, Keigo; Buytendyk, Allyson M; Bowen, K H; Wu, Judy I

    2017-08-22

    Surprisingly large resonance-assistance effects may explain how some enzymes form extremely short, strong hydrogen bonds to stabilize reactive oxyanion intermediates and facilitate catalysis. Computational models for several enzymic residue-substrate interactions reveal that when a π-conjugated, hydrogen bond donor (XH) forms a hydrogen bond to a charged substrate (Y - ), XH can become significantly more π-electron delocalized, and this "extra" stabilization may boost the [XH···Y - ] hydrogen bond strength by ≥15 kcal/mol. This reciprocal relationship departs from the widespread pK a concept (i.e., the idea that short, strong hydrogen bonds form when the interacting moieties have matching pK a values), which has been the rationale for enzymic acid-base reactions. The findings presented here provide new insight into how short, strong hydrogen bonds could form in enzymes.

  17. 46 CFR 308.528 - Surety Bond A, Form MA-308.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Shipping MARITIME ADMINISTRATION, DEPARTMENT OF TRANSPORTATION EMERGENCY OPERATIONS WAR RISK INSURANCE War Risk Cargo Insurance Ii-Open Policy War Risk Cargo Insurance § 308.528 Surety Bond A, Form MA-308. The Standard Form of Surety Bond A, Form MA-308, which may be obtained from the American War Risk Agency or...

  18. 46 CFR 308.528 - Surety Bond A, Form MA-308.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Shipping MARITIME ADMINISTRATION, DEPARTMENT OF TRANSPORTATION EMERGENCY OPERATIONS WAR RISK INSURANCE War Risk Cargo Insurance Ii-Open Policy War Risk Cargo Insurance § 308.528 Surety Bond A, Form MA-308. The Standard Form of Surety Bond A, Form MA-308, which may be obtained from the American War Risk Agency or...

  19. 46 CFR 308.528 - Surety Bond A, Form MA-308.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Shipping MARITIME ADMINISTRATION, DEPARTMENT OF TRANSPORTATION EMERGENCY OPERATIONS WAR RISK INSURANCE War Risk Cargo Insurance Ii-Open Policy War Risk Cargo Insurance § 308.528 Surety Bond A, Form MA-308. The Standard Form of Surety Bond A, Form MA-308, which may be obtained from the American War Risk Agency or...

  20. 46 CFR 308.528 - Surety Bond A, Form MA-308.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Shipping MARITIME ADMINISTRATION, DEPARTMENT OF TRANSPORTATION EMERGENCY OPERATIONS WAR RISK INSURANCE War Risk Cargo Insurance Ii-Open Policy War Risk Cargo Insurance § 308.528 Surety Bond A, Form MA-308. The Standard Form of Surety Bond A, Form MA-308, which may be obtained from the American War Risk Agency or...

  1. Modeling the archetype cysteine protease reaction using dispersion corrected density functional methods in ONIOM-type hybrid QM/MM calculations; the proteolytic reaction of papain.

    PubMed

    Fekete, Attila; Komáromi, István

    2016-12-07

    A proteolytic reaction of papain with a simple peptide model substrate N-methylacetamide has been studied. Our aim was twofold: (i) we proposed a plausible reaction mechanism with the aid of potential energy surface scans and second geometrical derivatives calculated at the stationary points, and (ii) we investigated the applicability of the dispersion corrected density functional methods in comparison with the popular hybrid generalized gradient approximations (GGA) method (B3LYP) without such a correction in the QM/MM calculations for this particular problem. In the resting state of papain the ion pair and neutral forms of the Cys-His catalytic dyad have approximately the same energy and they are separated by only a small barrier. Zero point vibrational energy correction shifted this equilibrium slightly to the neutral form. On the other hand, the electrostatic solvation free energy corrections, calculated using the Poisson-Boltzmann method for the structures sampled from molecular dynamics simulation trajectories, resulted in a more stable ion-pair form. All methods we applied predicted at least a two elementary step acylation process via a zwitterionic tetrahedral intermediate. Using dispersion corrected DFT methods the thioester S-C bond formation and the proton transfer from histidine occur in the same elementary step, although not synchronously. The proton transfer lags behind (or at least does not precede) the S-C bond formation. The predicted transition state corresponds mainly to the S-C bond formation while the proton is still on the histidine Nδ atom. In contrast, the B3LYP method using larger basis sets predicts a transition state in which the S-C bond is almost fully formed and the transition state can be mainly featured by the Nδ(histidine) to N(amid) proton transfer. Considerably lower activation energy was predicted (especially by the B3LYP method) for the next amide bond breaking elementary step of acyl-enzyme formation. Deacylation appeared to be a single elementary step process in all the methods we applied.

  2. Bonding by Hydroxide-Catalyzed Hydration and Dehydration

    NASA Technical Reports Server (NTRS)

    Gwo, Dz-Hung

    2008-01-01

    A simple, inexpensive method for bonding solid objects exploits hydroxide-catalyzed hydration and dehydration to form silicate-like networks in thin surface and interfacial layers between the objects. The method can be practiced at room temperature or over a wide range of temperatures. The method was developed especially to enable the formation of precise, reliable bonds between precise optical components. The bonds thus formed exhibit the precision and transparency of bonds formed by the conventional optical-contact method and the strength and reliability of high-temperature frit bonds. The method also lends itself to numerous non-optical applications in which there are requirements for precise bonds and/or requirements for bonds, whether precise or imprecise, that can reliably withstand severe environmental conditions. Categories of such non-optical applications include forming composite materials, coating substrates, forming laminate structures, and preparing objects of defined geometry and composition. The method is applicable to materials that either (1) can form silicate-like networks in the sense that they have silicate-like molecular structures that are extensible into silicate-like networks or (2) can be chemically linked to silicate-like networks by means of hydroxide-catalyzed hydration and dehydration. When hydrated, a material of either type features surface hydroxyl (-OH) groups. In this method, a silicate-like network that bonds two substrates can be formed either by a bonding material alone or by the bonding material together with material from either or both of the substrates. Typically, an aqueous hydroxide bonding solution is dispensed and allowed to flow between the mating surfaces by capillary action. If the surface figures of the substrates do not match precisely, bonding could be improved by including a filling material in the bonding solution. Preferably, the filling material should include at least one ingredient that can be hydrated to have exposed hydroxyl groups and that can be chemically linked, by hydroxide catalysis, to a silicate-like network. The silicate-like network could be generated in situ from the filling material and/or substrate material, or could be originally present in the bonding material.

  3. Material, process, and product design of thermoplastic composite materials

    NASA Astrophysics Data System (ADS)

    Dai, Heming

    Thermoplastic composites made of polypropylene (PP) and E-glass fibers were investigated experimentally as well as theoretically for two new classes of product designs. The first application was for reinforcement of wood. Commingled PP/glass yarn was consolidated and bonded on wood panel using a tie layer. The processing parameters, including temperature, pressure, heating time, cooling time, bonding strength, and bending strength were tested experimentally and evaluated analytically. The thermoplastic adhesive interface was investigated with environmental scanning electron microscopy. The wood/composite structural design was optimized and evaluated using a Graphic Method. In the second application, we evaluated use of thermoplastic composites for explosion containment in an arrester. PP/glass yarn was fabricated in a sleeve form and wrapped around the arrester. After consolidation, the flexible composite sleeve forms a solid composite shell. The composite shell acts as a protection layer in a surge test to contain the fragments of the arrester. The manufacturing process for forming the composite shell was designed. Woven, knitted, and braided textile composite shells made of commingled PP/glass yarn were tested and evaluated. Mechanical performance of the woven, knitted, and braided composite shells was examined analytically. The theoretical predictions were used to verify the experimental results.

  4. Direct local solvent probing by transient infrared spectroscopy reveals the mechanism of hydrogen-bond induced nonradiative deactivation† †Electronic supplementary information (ESI) available: Experimental details, basic photophysics of ADA, transient electronic absorption, additional steady-state and transient IR spectra. See DOI: 10.1039/c7sc00437k Click here for additional data file.

    PubMed Central

    Dereka, Bogdan

    2017-01-01

    The fluorescence quenching of organic dyes via H-bonding interactions is a well-known phenomenon. However, the mechanism of this Hydrogen-Bond Induced Nonradiative Deactivation (HBIND) is not understood. Insight into this process is obtained by probing in the infrared the O–H stretching vibration of the solvent after electronic excitation of a dye with H-bond accepting cyano groups. The fluorescence lifetime of this dye was previously found to decrease from 1.5 ns to 110 ps when going from an aprotic solvent to the strongly protic hexafluoroisopropanol (HFP). Prompt strengthening of the H-bond with the dye was identified by the presence of a broad positive O–H band of HFP, located at lower frequency than the O–H band of the pure solvent. Further strengthening occurs within a few picoseconds before the excited H-bonded complex decays to the ground state in 110 ps. The latter process is accompanied by the dissipation of energy from the dye to the solvent and the rise of a characteristic hot solvent band in the transient spectrum. Polarization-resolved measurements evidence a collinear alignment of the nitrile and hydroxyl groups in the H-bonded complex, which persists during the whole excited-state lifetime. Measurements in other fluorinated alcohols and in chloroform/HFP mixtures reveal that the HBIND efficiency depends not only on the strength of the H-bond interactions between the dye and the solvent but also on the ability of the solvent to form an extended H-bond network. The HBIND process can be viewed as an enhanced internal conversion of an excited complex consisting of the dye molecule connected to a large H-bond network. PMID:28970892

  5. In vitro folding of inclusion body proteins.

    PubMed

    Rudolph, R; Lilie, H

    1996-01-01

    Insoluble, inactive inclusion bodies are frequently formed upon recombinant protein production in transformed microorganisms. These inclusion bodies, which contain the recombinant protein in an highly enriched form, can be isolated by solid/liquid separation. After solubilization, native proteins can be generated from the inactive material by using in vitro folding techniques. New folding procedures have been developed for efficient in vitro reconstitution of complex hydrophobic, multidomain, oligomeric, or highly disulfide-bonded proteins. These protocols take into account process parameters such as protein concentration, catalysis of disulfide bond formation, temperature, pH, and ionic strength, as well as specific solvent ingredients that reduce unproductive side reactions. Modification of the protein sequence has been exploited to improve in vitro folding.

  6. Reversible Self-Assembly of Supramolecular Vesicles and Nanofibers Driven by Chalcogen-Bonding Interactions.

    PubMed

    Chen, Liang; Xiang, Jun; Zhao, Yue; Yan, Qiang

    2018-05-29

    Chalcogen-bonding interactions have been viewed as new noncovalent forces in supramolecular chemistry. However, harnessing chalcogen bonds to drive molecular self-assembly processes is still unexplored. Here we report for the first time a novel class of supra-amphiphiles formed by Te···O or Se···O chalcogen-bonding interactions, and their self-assembly into supramolecular vesicles and nanofibers. A quasi-calix[4]chalcogenadiazole (C4Ch) as macrocyclic donor and a tailed pyridine N-oxide surfactant as molecular acceptor are designed to construct the donor-acceptor complex via chalcogen-chalcogen connection between the chalcogenadiazole moieties and oxide anion. The affinity of such chalcogen-bonding can dictate the geometry of supra-amphiphiles, driving diverse self-assembled morphologies. Furthermore, the reversible disassembly of these nanostructures can be promoted by introducing competing anions, such as halide ions, or by decreasing the systemic pH value.

  7. Role of intramolecular hydrogen bonding in the excited-state intramolecular double proton transfer (ESIDPT) of calix[4]arene: A TDDFT study

    NASA Astrophysics Data System (ADS)

    Wang, Se; Wang, Zhuang; Hao, Ce

    2016-01-01

    The time-dependent density functional theory (TDDFT) method was performed to investigate the excited-state intramolecular double proton transfer (ESIDPT) reaction of calix[4] arene (C4A) and the role of the intramolecular hydrogen bonds in the ESIDPT process. The geometries of C4A in the ground state and excited states (S1, S2 and T1) were optimized. Four intramolecular hydrogen bonds formed in the C4A are strengthened or weakened in the S2 and T1 states compared to those in the ground state. Interestingly, upon excitation to the S1 state of C4A, two protons H1 and H2 transfer along the two intramolecular hydrogen bonds O1-H1···O2 and O2-H2···O3, while the other two protons do not transfer. The ESIDPT reaction breaks the primary symmetry of C4A in the ground state. The potential energy curves of proton transfer demonstrate that the ESIDPT process follows the stepwise mechanism but not the concerted mechanism. Findings indicate that intramolecular hydrogen bonding is critical to the ESIDPT reactions in intramolecular hydrogen-bonded systems.

  8. Enhanced adhesion of films to semiconductors or metals by high energy bombardment

    NASA Technical Reports Server (NTRS)

    Tombrello, Thomas A. (Inventor); Qiu, Yuanxun (Inventor); Mendenhall, Marcus H. (Inventor)

    1985-01-01

    Films (12) of a metal such as gold or other non-insulator materials are firmly bonded to other non-insulators such as semiconductor substrates (10), suitably silicon or gallium arsenide by irradiating the interface with high energy ions. The process results in improved adhesion without excessive doping and provides a low resistance contact to the semiconductor. Thick layers can be bonded by depositing or doping the interfacial surfaces with fissionable elements or alpha emitters. The process can be utilized to apply very small, low resistance electrodes (78) to light-emitting solid state laser diodes (60) to form a laser device 70.

  9. 31 CFR 359.68 - May Public Debt issue Series I savings bonds only in book-entry form?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 31 Money and Finance:Treasury 2 2011-07-01 2011-07-01 false May Public Debt issue Series I savings bonds only in book-entry form? 359.68 Section 359.68 Money and Finance: Treasury Regulations Relating to... Series I savings bonds only in book-entry form? We reserve the right to issue bonds only in book-entry...

  10. The role of hydrogen bonding in the fluorescence quenching of 2,6-bis((E)-2-(benzoxazol-2-yl)vinyl)naphthalene (BBVN) in methanol

    NASA Astrophysics Data System (ADS)

    Hammam, Essam; Basahi, Jalal; Ismail, Iqbal; Hassan, Ibrahim; Almeelbi, Talal

    2017-02-01

    The excited state hydrogen bonding dynamics of BBVN in hydrogen donating methanol solvent was explored at the TD-BMK/cc-pVDZ level of theory with accounting for the bulk environment effects at the polarizable continuum model (PCM). The heteroatoms of the BBVN laser dye form hydrogen bonds with four methanol molecules. In the formed BBVN-(MeOH)4 complex, the A-type hydrogen bond (N…HO), of an average strength of 25 kJ mol- 1, is twofold stronger than the B-type (O…HO) one. Upon photon absorption, the total HB binding energy increases from 78.5 kJ mol- 1 in the ground state to 82.6 kJ mol- 1 in the first singlet (S1) excited state. In consequence of the hydrogen bonding interaction, the absorption band maximum of the BBVN-(MeOH)4 complex, which was anticipated at 398 nm (exp. 397), is redshifted by 5 nm relative to that of the free dye in methanol. The spectral shift of the stretching vibrational mode for the hydrogen bonded hydroxyl groups (with a maximum shift of 285 cm- 1) from that of the free methanol indicated the elevated strengthening of hydrogen bonds in the excited state. The vibrational modes associated with hydrogen bonding provide effective accepting modes for the dissipation of the excitation energy, thus, decreasing the fluorescence quantum yield of BBVN in alcohols as compared to that in the polar aprotic solvents. Since there is no sign of photochemistry or phosphorescence, it seems reasonable in view of the outcomes of this study to assign the major decay process of the excited singlet (S1) of BBVN in alcohols to vibronically induced internal conversion (IC) facilitated by hydrogen bonding.

  11. Stability of peptides in high-temperature aqueous solutions

    NASA Astrophysics Data System (ADS)

    Shock, Everett L.

    1992-09-01

    Estimated standard molal thermodynamic properties of aqueous dipeptides and their constituent amino acids indicate that temperature increases correspond to increased stability of peptide bonds relative to hydrolysis reactions. Pressure increases cause slight decreases in peptide bond stability, which are generally offset by greater stability caused by temperature increases along geothermal gradients. These calculations suggest that peptides, polypeptides, and proteins may survive hydrothermal alteration of organic matter depending on the rates of the hydrolysis reactions. Extremely thermophilic organisms may be able to take advantage of the decreased energy required to form peptide bonds in order to maintain structural proteins and enzymes at elevated temperatures and pressures. As the rates of hydrolysis reactions increase with increasing temperature, formation of peptide bonds may become a facile process in hydrothermal systems and deep in sedimentary basins.

  12. Metallization for Yb14MnSb11-Based Thermoelectric Materials

    NASA Technical Reports Server (NTRS)

    Firdosy, Samad; Li, Billy Chun-Yip; Ravi, Vilupanur; Sakamoto, Jeffrey; Caillat, Thierry; Ewell, Richard C.; Brandon, Erik J.

    2011-01-01

    Thermoelectric materials provide a means for converting heat into electrical power using a fully solid-state device. Power-generating devices (which include individual couples as well as multicouple modules) require the use of ntype and p-type thermoelectric materials, typically comprising highly doped narrow band-gap semiconductors which are connected to a heat collector and electrodes. To achieve greater device efficiency and greater specific power will require using new thermoelectric materials, in more complex combinations. One such material is the p-type compound semiconductor Yb14MnSb11 (YMS), which has been demonstrated to have one of the highest ZT values at 1,000 C, the desired operational temperature of many space-based radioisotope thermoelectric generators (RTGs). Despite the favorable attributes of the bulk YMS material, it must ultimately be incorporated into a power-generating device using a suitable joining technology. Typically, processes such as diffusion bonding and/or brazing are used to join thermoelectric materials to the heat collector and electrodes, with the goal of providing a stable, ohmic contact with high thermal conductivity at the required operating temperature. Since YMS is an inorganic compound featuring chemical bonds with a mixture of covalent and ionic character, simple metallurgical diffusion bonding is difficult to implement. Furthermore, the Sb within YMS readily reacts with most metals to form antimonide compounds with a wide range of stoichiometries. Although choosing metals that react to form high-melting-point antimonides could be employed to form a stable reaction bond, it is difficult to limit the reactivity of Sb in YMS such that the electrode is not completely consumed at an operating temperature of 1,000 C. Previous attempts to form suitable metallization layers resulted in poor bonding, complete consumption of the metallization layer or fracture within the YMS thermoelement (or leg).

  13. Are epoxy-wood bonds durable enough?

    Treesearch

    Charles R. Frihart

    2005-01-01

    An important aspect of any adhesive bond is that the bond maintains its integrity during its end use. Epoxies form highly durable bonds with many substrates but are usually not considered capable of forming completely durable bonds with wood by standard accelerated tests. However, epoxies are sold for wood boat construction, and some data have indicated that epoxies...

  14. Slow dielectric response of Debye-type in water and other hydrogen bonded liquids

    NASA Astrophysics Data System (ADS)

    Jansson, Helén; Bergman, Rikard; Swenson, Jan

    2010-05-01

    The slow dynamics of some hydrogen bonded glass-forming liquids has been investigated by broadband dielectric spectroscopy. We show that the polyalcohols glycerol, xylitol, and sorbitol, and mixtures of glycerol and water, and in fact, even pure water exhibit a process of Debye character at longer time-scales than the glass transition and viscosity related α-relaxation. Even if it is less pronounced, this process displays many similarities to the well-studied Debye-like process in monoalcohols. It can be observed in both the negative derivative of the real part of the permittivity or in the imaginary part of the permittivity, if the conductivity contribution is reduced. In the present study the conductivity contribution has been suppressed by use of a thin Teflon film placed between the sample and one of the electrodes. The new findings might have important implications for the structure and dynamics of hydrogen bonded liquids in general, and for water in particular.

  15. Fast Rotational Diffusion of Water Molecules in a 2D Hydrogen Bond Network at Cryogenic Temperatures

    NASA Astrophysics Data System (ADS)

    Prisk, T. R.; Hoffmann, C.; Kolesnikov, A. I.; Mamontov, E.; Podlesnyak, A. A.; Wang, X.; Kent, P. R. C.; Anovitz, L. M.

    2018-05-01

    Individual water molecules or small clusters of water molecules contained within microporous minerals present an extreme case of confinement where the local structure of hydrogen bond networks are dramatically altered from bulk water. In the zinc silicate hemimorphite, the water molecules form a two-dimensional hydrogen bond network with hydroxyl groups in the crystal framework. Here, we present a combined experimental and theoretical study of the structure and dynamics of water molecules within this network. The water molecules undergo a continuous phase transition in their orientational configuration analogous to a two-dimensional Ising model. The incoherent dynamic structure factor reveals two thermally activated relaxation processes, one on a subpicosecond timescale and another on a 10-100 ps timescale, between 70 and 130 K. The slow process is an in-plane reorientation of the water molecule involving the breaking of hydrogen bonds with a framework that, despite the low temperatures involved, is analogous to rotational diffusion of water molecules in the bulk liquid. The fast process is a localized motion of the water molecule with no apparent analogs among known bulk or confined phases of water.

  16. Fast Rotational Diffusion of Water Molecules in a 2D Hydrogen Bond Network at Cryogenic Temperatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prisk, Timothy; Hoffmann, Christina; Kolesnikov, Alexander I.

    Individual water molecules or small clusters of water molecules contained within microporous minerals present an extreme case of confinement where the local structure of hydrogen bond networks are dramatically altered from bulk water. In the zinc silicate hemimorphite, the water molecules form a two-dimensional hydrogen bond network with hydroxyl groups in the crystal framework. Here in this paper, we present a combined experimental and theoretical study of the structure and dynamics of water molecules within this network. The water molecules undergo a continuous phase transition in their orientational configuration analogous to a two-dimensional Ising model. The incoherent dynamic structure factormore » reveals two thermally activated relaxation processes, one on a subpicosecond timescale and another on a 10–100 ps timescale, between 70 and 130 K. The slow process is an in-plane reorientation of the water molecule involving the breaking of hydrogen bonds with a framework that, despite the low temperatures involved, is analogous to rotational diffusion of water molecules in the bulk liquid. The fast process is a localized motion of the water molecule with no apparent analogs among known bulk or confined phases of water.« less

  17. Fast Rotational Diffusion of Water Molecules in a 2D Hydrogen Bond Network at Cryogenic Temperatures

    DOE PAGES

    Prisk, Timothy; Hoffmann, Christina; Kolesnikov, Alexander I.; ...

    2018-05-09

    Individual water molecules or small clusters of water molecules contained within microporous minerals present an extreme case of confinement where the local structure of hydrogen bond networks are dramatically altered from bulk water. In the zinc silicate hemimorphite, the water molecules form a two-dimensional hydrogen bond network with hydroxyl groups in the crystal framework. Here in this paper, we present a combined experimental and theoretical study of the structure and dynamics of water molecules within this network. The water molecules undergo a continuous phase transition in their orientational configuration analogous to a two-dimensional Ising model. The incoherent dynamic structure factormore » reveals two thermally activated relaxation processes, one on a subpicosecond timescale and another on a 10–100 ps timescale, between 70 and 130 K. The slow process is an in-plane reorientation of the water molecule involving the breaking of hydrogen bonds with a framework that, despite the low temperatures involved, is analogous to rotational diffusion of water molecules in the bulk liquid. The fast process is a localized motion of the water molecule with no apparent analogs among known bulk or confined phases of water.« less

  18. Multiple hydrogen bonding in excited states of aminopyrazine in methanol solution: time-dependent density functional theory study.

    PubMed

    Chai, Shuo; Yu, Jie; Han, Yong-Chang; Cong, Shu-Lin

    2013-11-01

    Aminopyrazine (AP) and AP-methanol complexes have been theoretically studied by using density functional theory (DFT) and time-dependent density functional theory (TDDFT). The excited-state hydrogen bonds are discussed in detail. In the ground state the intermolecular multiple hydrogen bonds can be formed between AP molecule and protic solvents. The AP monomer and hydrogen-bonded complex of AP with one methanol are photoexcited initially to the S2 state, and then transferred to the S1 state via internal conversion. However the complex of AP with two methanol molecules is directly excited to the S1 state. From the calculated electronic excited energies and simulated absorption spectra, we find that the intermolecular hydrogen bonds are strengthened in the electronic excited states. The strengthening is confirmed by the optimized excited-state geometries. The photochemical processes in the electronic excited states are significantly influenced by the excited-state hydrogen bond strengthening. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Interstellar hydrogen bonding

    NASA Astrophysics Data System (ADS)

    Etim, Emmanuel E.; Gorai, Prasanta; Das, Ankan; Chakrabarti, Sandip K.; Arunan, Elangannan

    2018-06-01

    This paper reports the first extensive study of the existence and effects of interstellar hydrogen bonding. The reactions that occur on the surface of the interstellar dust grains are the dominant processes by which interstellar molecules are formed. Water molecules constitute about 70% of the interstellar ice. These water molecules serve as the platform for hydrogen bonding. High level quantum chemical simulations for the hydrogen bond interaction between 20 interstellar molecules (known and possible) and water are carried out using different ab-intio methods. It is evident that if the formation of these species is mainly governed by the ice phase reactions, there is a direct correlation between the binding energies of these complexes and the gas phase abundances of these interstellar molecules. Interstellar hydrogen bonding may cause lower gas abundance of the complex organic molecules (COMs) at the low temperature. From these results, ketenes whose less stable isomers that are more strongly bonded to the surface of the interstellar dust grains have been observed are proposed as suitable candidates for astronomical observations.

  20. Hydrogen release at metal-oxide interfaces: A first principle study of hydrogenated Al/SiO2 interfaces

    NASA Astrophysics Data System (ADS)

    Huang, Jianqiu; Tea, Eric; Li, Guanchen; Hin, Celine

    2017-06-01

    The Anode Hydrogen Release (AHR) mechanism at interfaces is responsible for the generation of defects, that traps charge carriers and can induce dielectric breakdown in Metal-Oxide-Semiconductor Field Effect Transistors. The AHR has been extensively studied at Si/SiO2 interfaces but its characteristics at metal-silica interfaces remain unclear. In this study, we performed Density Functional Theory (DFT) calculations to study the hydrogen release mechanism at the typical Al/SiO2 metal-oxide interface. We found that interstitial hydrogen atoms can break interfacial Alsbnd Si bonds, passivating a Si sp3 orbital. Interstitial hydrogen atoms can also break interfacial Alsbnd O bonds, or be adsorbed at the interface on aluminum, forming stable Alsbnd Hsbnd Al bridges. We showed that hydrogenated Osbnd H, Sisbnd H and Alsbnd H bonds at the Al/SiO2 interfaces are polarized. The resulting bond dipole weakens the Osbnd H and Sisbnd H bonds, but strengthens the Alsbnd H bond under the application of a positive bias at the metal gate. Our calculations indicate that Alsbnd H bonds and Osbnd H bonds are more important than Sisbnd H bonds for the hydrogen release process.

  1. Evolution of C−H Bond Functionalization from Methane to Methodology

    PubMed Central

    2016-01-01

    This Perspective presents the fundamental principles, the elementary reactions, the initial catalytic systems, and the contemporary catalysts that have converted C−H bond functionalization from a curiosity to a reality for synthetic chemists. Many classes of elementary reactions involving transition-metal complexes cleave C−H bonds at typically unreactive positions. These reactions, coupled with a separate or simultaneous functionalization process lead to products containing new C−C, C−N, and C−O bonds. Such reactions were initially studied for the conversion of light alkanes to liquid products, but they have been used (and commercialized in some cases) most often for the synthesis of the more complex structures of natural products, medicinally active compounds, and aromatic materials. Such a change in direction of research in C−H bond functionalization is remarkable because the reactions must occur at an unactivated C−H bond over functional groups that are more reactive than the C−H bond toward classical reagents. The scope of reactions that form C−C bonds or install functionality at an unactivated C−H bond will be presented, and the potential future utility of these reactions will be discussed. PMID:26566092

  2. Direct reciprocity in animals: The roles of bonding and affective processes.

    PubMed

    Freidin, Esteban; Carballo, Fabricio; Bentosela, Mariana

    2017-04-01

    The presence of direct reciprocity in animals is a debated topic, because, despite its evolutionary plausibility, it is believed to be uncommon. Some authors claim that stable reciprocal exchanges require sophisticated cognition which has acted as a constraint on its evolution across species. In contrast, a more recent trend of research has focused on the possibility that direct reciprocity occurs within long-term bonds and relies on simple as well as more complex affective mechanisms such as emotional book-keeping, rudimentary and higher forms of empathy, and inequity aversion, among others. First, we present evidence supporting the occurrence of long-term reciprocity in the context of existing bonds in social birds and mammals. Second, we discuss the evidence for affective responses which, modulated by bonding, may underlie altruistic behaviours in different species. We conclude that the mechanisms that may underlie reciprocal exchanges are diverse, and that some act in interaction with bonding processes. From simple associative learning in social contexts, through emotional contagion and behavioural mimicry, to empathy and a sense of fairness, widespread and diverse social affective mechanisms may explain why direct reciprocity may not be a rare phenomenon among social vertebrates. © 2015 International Union of Psychological Science.

  3. Binding branched and linear DNA structures: From isolated clusters to fully bonded gels

    NASA Astrophysics Data System (ADS)

    Fernandez-Castanon, J.; Bomboi, F.; Sciortino, F.

    2018-01-01

    The proper design of DNA sequences allows for the formation of well-defined supramolecular units with controlled interactions via a consecution of self-assembling processes. Here, we benefit from the controlled DNA self-assembly to experimentally realize particles with well-defined valence, namely, tetravalent nanostars (A) and bivalent chains (B). We specifically focus on the case in which A particles can only bind to B particles, via appropriately designed sticky-end sequences. Hence AA and BB bonds are not allowed. Such a binary mixture system reproduces with DNA-based particles the physics of poly-functional condensation, with an exquisite control over the bonding process, tuned by the ratio, r, between B and A units and by the temperature, T. We report dynamic light scattering experiments in a window of Ts ranging from 10 °C to 55 °C and an interval of r around the percolation transition to quantify the decay of the density correlation for the different cases. At low T, when all possible bonds are formed, the system behaves as a fully bonded network, as a percolating gel, and as a cluster fluid depending on the selected r.

  4. Final Report: Superconducting Joints Between (RE)Ba 2Cu 3O 7-x Coated Conductors via Electric Field Assisted Processing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwartz, Justin

    Here we report the results from a project aimed at developing a fully superconducting joint between two REBCO coated conductors using electric field processing (EFP). Due to a reduction in the budget and time period of this contract, we reduced the project scope and focused first on the key scientific issues for forming a strong bond between conductors, and subsequently focused on improving through-the-joint transport. A modified timeline and task list is shown in Table 1, summarizing accomplishments to date. In the first period, we accomplished initial surface characterization as well as rounds of EFP experiments to begin to understandmore » processing parameters which produce well-bonded tapes. In the second phase, we explored the effects of two fundamental EFP parameters, voltage and pressure, and the limitations they place on the process. In the third phase, we achieved superconducting joints and established base characteristics of both the bonding process and the types of tapes best suited to this process. Finally, we investigated some of the parameters related to kinetics which appeared inhibit joint quality and performance.« less

  5. Perforating Thin Metal Sheets

    NASA Technical Reports Server (NTRS)

    Davidson, M. E.

    1985-01-01

    Sheets only few mils thick bonded together, punched, then debonded. Three-step process yields perforated sheets of metal. (1): Individual sheets bonded together to form laminate. (2): laminate perforated in desired geometric pattern. (3): After baking, laminate separates into individual sheets. Developed for fabricating conductive layer on blankets that collect and remove ions; however, perforated foils have other applications - as conductive surfaces on insulating materials; stiffeners and conductors in plastic laminates; reflectors in antenna dishes; supports for thermal blankets; lightweight grille cover materials; and material for mockup of components.

  6. System and process for the abatement of casting pollution, reclaiming resin bonded sand, and/or recovering a low BTU fuel from castings

    DOEpatents

    Scheffer, Karl D.

    1984-07-03

    Air is caused to flow through the resin bonded mold to aid combustion of the resin binder to form a low BTU gas fuel. Casting heat is recovered for use in a waste heat boiler or other heat abstraction equipment. Foundry air pollution is reduced, the burned portion of the molding sand is recovered for immediate reuse and savings in fuel and other energy is achieved.

  7. System and process for the abatement of casting pollution, reclaiming resin bonded sand, and/or recovering a low Btu fuel from castings

    DOEpatents

    Scheffer, K.D.

    1984-07-03

    Air is caused to flow through the resin bonded mold to aid combustion of the resin binder to form a low Btu gas fuel. Casting heat is recovered for use in a waste heat boiler or other heat abstraction equipment. Foundry air pollutis reduced, the burned portion of the molding sand is recovered for immediate reuse and savings in fuel and other energy is achieved. 5 figs.

  8. Fabrication of Robust, Flat, Thinned, UV-Imaging CCDs

    NASA Technical Reports Server (NTRS)

    Grunthaner, Paula; Elliott, Stythe; Jones, Todd; Nikzad, Shouleh

    2004-01-01

    An improved process that includes a high-temperature bonding subprocess has been developed to enable the fabrication of robust, flat, silicon-based charge-coupled devices (CCDs) for imaging in ultraviolet (UV) light and/or for detecting low-energy charged particles. The CCDs in question are devices on which CCD circuitry has already been formed and have been thinned for backsurface illumination. These CCDs may be delta doped, and aspects of this type of CCD have been described in several prior articles in NASA Tech Briefs. Unlike prior low-temperature bonding subprocesses based on the use of epoxies or waxes, the high-temperature bonding subprocess is compatible with the deltadoping process as well as with other CCD-fabrication processes. The present improved process and its bonding, thinning, and delta-doping subprocesses, are characterized as postfabrication processes because they are undertaken after the fabrication of CCD circuitry on the front side of a full-thickness silicon substrate. In a typical case, it is necessary to reduce the thickness of the CCD to between 10 and 20 m in order to take advantage of back-side illumination and in order to perform delta doping and/or other back-side treatment to enhance the quantum efficiency. In the prior approach to the fabrication of back-side-illuminated CCDs, the thinning subprocess turned each CCD into a free-standing membrane that was fragile and tended to become wrinkled. In the present improved process, prior to thinning and delta doping, a CCD is bonded on its front side to a silicon substrate that has been prefabricated to include cutouts to accommodate subsequent electrical connections to bonding pads on the CCD circuitry. The substrate provides structural support to increase ruggedness and maintain flatness. At the beginning of this process, the back side of a CCD as fabricated on a full-thickness substrate is polished. Silicon nitride is deposited on the back side, opposite the bonding pads on the front side, in order to define a relatively thick frame. The portion of the CCD not covered by the frame is the portion to be thinned by etching.

  9. In Situ Study of Reduction Process of CuO Paste and Its Effect on Bondability of Cu-to-Cu Joints

    NASA Astrophysics Data System (ADS)

    Yao, Takafumi; Matsuda, Tomoki; Sano, Tomokazu; Morikawa, Chiaki; Ohbuchi, Atsushi; Yashiro, Hisashi; Hirose, Akio

    2018-04-01

    A bonding method utilizing redox reactions of metallic oxide microparticles achieves metal-to-metal bonding in air, which can be alternative to lead-rich high-melting point solder. However, it is known that the degree of the reduction of metallic oxide microparticles have an influence on the joint strength using this bonding method. In this paper, the reduction behavior of CuO paste and its effect on Cu-to-Cu joints were investigated through simultaneous microstructure-related x-ray diffraction and differential scanning calorimetry measurements. The CuO microparticles in the paste were gradually reduced to submicron Cu2O particles at 210-250°C. Subsequently, Cu nanoparticles were generated instantaneously at 300-315°C. There was a marked difference in the strengths of the joints formed at 300°C and 350°C. Thus, the Cu nanoparticles play a critical role in sintering-based bonding using CuO paste. Furthermore, once the Cu nanoparticles have formed, the joint strength increases with higher bonding temperature (from 350°C to 500°C) and pressure (5-15 MPa), which can exceed the strength of Pb-5Sn solder at higher temperature and pressure.

  10. Binderless fiberboard from two different types of fiber furnishes

    Treesearch

    Otto Suchsland; George Woodson; Charles W. McMillin

    1985-01-01

    Fiber furnishes from two commercial processes were used to make experimental hardboards by all four possible methods: wet formed (pressed dry and wet), and dry formed (pressed dry and wet). Since no adhesives were added, all bonding was due to natural agents. Results of mechanical and physical testing of the hardboards indicated that high quality hardboard can be made...

  11. Microstructure of SiC-Si-Al2O3 composites derived from silicone resin - metal aluminum filler compounds by low temperature reduction process

    NASA Astrophysics Data System (ADS)

    Narisawa, M.; Abe, Y.

    2011-06-01

    Concentrated slurry of a silicone resin with low carbon content, 3 μm aluminum particles and ethanol were prepared. After casting, addition of cross-linking agent and drying, silicone resin-aluminum composite with thick sheet form was obtained. The prepared sheet was heat-treated at 933 or 1073K with various holding times to characterize formed phases during the heat treatments. XRD patterns and FT-IR spectra revealed free Si formation and existence of Si-O-Si bond at 933K. The Si-O-Si bond, however, disappeared and silicon carbide was formed at 1073K. SEM observation indicated formation of cracks bridged with a number of tiny struts at 933K and conversion to wholly porous structure at 1073K.

  12. Aluminum and its effect in the equilibrium between folded/unfolded conformation of NADH.

    PubMed

    Formoso, Elena; Mujika, Jon I; Grabowski, Slawomir J; Lopez, Xabier

    2015-11-01

    Nicotinamide adenine dinucleotide (NADH) is one of the most abundant cofactor employed by proteins and enzymes. The molecule is formed by two nucleotides that can lead to two main conformations: folded/closed and unfolded/open. Experimentally, it has been determined that the closed form is about 2 kcal/mol more stable than the open formed. Computationally, a correct description of the NADH unfolding process is challenging due to different reasons: 1) The unfolding process shows a very low energy difference between the two conformations 2) The molecule can form a high number of internal hydrogen bond interactions 3) Subtle effects such as dispersion may be important. In order to tackle all these effects, we have employed a number of different state of the art computational techniques, including: a) well-tempered metadynamics, b) geometry optimizations, and c) Quantum Theory of Atoms in Molecules (QTAIM) calculations, to investigate the conformational change of NADH in solution and interacting with aluminum. All the results indicate that aluminum indeed favors the closed conformation of NADH, due mainly to the formation of a more rigid structure through key hydrogen bond interactions. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Process for 3D chip stacking

    DOEpatents

    Malba, V.

    1998-11-10

    A manufacturable process for fabricating electrical interconnects which extend from a top surface of an integrated circuit chip to a sidewall of the chip using laser pantography to pattern three dimensional interconnects. The electrical interconnects may be of an L-connect or L-shaped type. The process implements three dimensional (3D) stacking by moving the conventional bond or interface pads on a chip to the sidewall of the chip. Implementation of the process includes: (1) holding individual chips for batch processing, (2) depositing a dielectric passivation layer on the top and sidewalls of the chips, (3) opening vias in the dielectric, (4) forming the interconnects by laser pantography, and (5) removing the chips from the holding means. The process enables low cost manufacturing of chips with bond pads on the sidewalls, which enables stacking for increased performance, reduced space, and higher functional per unit volume. 3 figs.

  14. Process for 3D chip stacking

    DOEpatents

    Malba, Vincent

    1998-01-01

    A manufacturable process for fabricating electrical interconnects which extend from a top surface of an integrated circuit chip to a sidewall of the chip using laser pantography to pattern three dimensional interconnects. The electrical interconnects may be of an L-connect or L-shaped type. The process implements three dimensional (3D) stacking by moving the conventional bond or interface pads on a chip to the sidewall of the chip. Implementation of the process includes: 1) holding individual chips for batch processing, 2) depositing a dielectric passivation layer on the top and sidewalls of the chips, 3) opening vias in the dielectric, 4) forming the interconnects by laser pantography, and 5) removing the chips from the holding means. The process enables low cost manufacturing of chips with bond pads on the sidewalls, which enables stacking for increased performance, reduced space, and higher functional per unit volume.

  15. Controlling the Sn-C bonds content in SnO2@CNTs composite to form in situ pulverized structure for enhanced electrochemical kinetics.

    PubMed

    Cheng, Yayi; Huang, Jianfeng; Qi, Hui; Cao, Liyun; Luo, Xiaomin; Li, Jiayin; Xu, Zhanwei; Yang, Jun

    2017-12-07

    The Sn-C bonding content between the SnO 2 and CNTs interface was controlled by the hydrothermal method and subsequent heat treatment. Electrochemical analysis found that the SnO 2 @CNTs with high Sn-C bonding content exhibited much higher capacity contribution from alloying and conversion reaction compared with the low content of Sn-C bonding even after 200 cycles. The high Sn-C bonding content enabled the SnO 2 nanoparticles to stabilize on the CNTs surface, realizing an in situ pulverization process of SnO 2 . The in situ pulverized structure was beneficial to maintain the close electrochemical contact of the working electrode during the long-term cycling and provide ultrafast transfer paths for lithium ions and electrons, which promoted the alloying and conversion reaction kinetics greatly. Therefore, the SnO 2 @CNTs composite with high Sn-C bonding content displayed highly reversible alloying and conversion reaction. It is believed that the composite could be used as a reference for design chemically bonded metal oxide/carbon composite anode materials in lithium-ion batteries.

  16. 46 CFR Sec. 10 - Bonds.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... REPAIRS UNDER NATIONAL SHIPPING AUTHORITY MASTER LUMP SUM REPAIR CONTRACT-NSA-LUMPSUMREP Sec. 10 Bonds. (a... awarded work and the furnishing of the performance and payment bonds required by Article 14 of the NSA... of the NSA-LUMPSUMREP Contract, the standard form of individual performance bond (Standard Form 25...

  17. 46 CFR Sec. 10 - Bonds.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... REPAIRS UNDER NATIONAL SHIPPING AUTHORITY MASTER LUMP SUM REPAIR CONTRACT-NSA-LUMPSUMREP Sec. 10 Bonds. (a... awarded work and the furnishing of the performance and payment bonds required by Article 14 of the NSA... of the NSA-LUMPSUMREP Contract, the standard form of individual performance bond (Standard Form 25...

  18. 46 CFR Sec. 10 - Bonds.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... REPAIRS UNDER NATIONAL SHIPPING AUTHORITY MASTER LUMP SUM REPAIR CONTRACT-NSA-LUMPSUMREP Sec. 10 Bonds. (a... awarded work and the furnishing of the performance and payment bonds required by Article 14 of the NSA... of the NSA-LUMPSUMREP Contract, the standard form of individual performance bond (Standard Form 25...

  19. 46 CFR Sec. 10 - Bonds.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... REPAIRS UNDER NATIONAL SHIPPING AUTHORITY MASTER LUMP SUM REPAIR CONTRACT-NSA-LUMPSUMREP Sec. 10 Bonds. (a... awarded work and the furnishing of the performance and payment bonds required by Article 14 of the NSA... of the NSA-LUMPSUMREP Contract, the standard form of individual performance bond (Standard Form 25...

  20. 46 CFR Sec. 10 - Bonds.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... REPAIRS UNDER NATIONAL SHIPPING AUTHORITY MASTER LUMP SUM REPAIR CONTRACT-NSA-LUMPSUMREP Sec. 10 Bonds. (a... awarded work and the furnishing of the performance and payment bonds required by Article 14 of the NSA... of the NSA-LUMPSUMREP Contract, the standard form of individual performance bond (Standard Form 25...

  1. Development of chemically bonded phosphate ceramics for stabilizing low-level mixed wastes

    NASA Astrophysics Data System (ADS)

    Jeong, Seung-Young

    1997-11-01

    Novel chemically bonded phosphate ceramics have been developed by acid-base reactions between magnesium oxide and an acid phosphate at room temperature for stabilizing U.S. Department of Energy's low-level mixed waste streams that include hazardous chemicals and radioactive elements. Newberyite (MgHPOsb4.3Hsb2O)-rich magnesium phosphate ceramic was formed by an acid-base reaction between phosphoric acid and magnesium oxide. The reaction slurry, formed at room-temperature, sets rapidly and forms stable mineral phases of newberyite, lunebergite, and residual MgO. Rapid setting also generates heat due to exothermic acid-base reaction. The reaction was retarded by partially neutralizing the phosphoric acid solution by adding sodium or potassium hydroxide. This reduced the rate of reaction and heat generation and led to a practical way of producing novel magnesium potassium phosphate ceramic. This ceramic was formed by reacting stoichiometric amount of monopotassium dihydrogen phosphate crystals, MgO, and water, forming pure-phase of MgKPOsb4.6Hsb2O (MKP) with moderate exothermic reaction. Using this chemically bonded phosphate ceramic matrix, low-level mixed waste streams were stabilized, and superior waste forms in a monolithic structure were developed. The final waste forms showed low open porosity and permeability, and higher compression strength than the Land Disposal Requirements (LDRs). The novel MKP ceramic technology allowed us to develop operational size waste forms of 55 gal with good physical integrity. In this improved waste form, the hazardous contaminants such as RCRA heavy metals (Hg, Pb, Cd, Cr, Ni, etc) were chemically fixed by their conversion into insoluble phosphate forms and physically encapsulated by the phosphate ceramic. In addition, chemically bonded phosphate ceramics stabilized radioactive elements such U and Pu. This was demonstrated with a detailed stabilization study on cerium used as a surrogate (chemically equivalent but nonradioactive) of U and Pu as well as on actual U-contaminated waste water. In particular, the leaching level of mercury in the Toxicity Characteristic Leaching Procedure (TCLP) test was reduced from 5000 to 0.00085 ppm, and the leaching level of cerium in the long term leaching test (ANS 16.1 test) was below the detection limit. These results show that the chemically bonded phosphate ceramics process may be a simple, inexpensive, and efficient method for stabilizing low-level mixed waste streams.

  2. Investigation of flavonoid influence on peroxidation processes intensity in the blood

    NASA Astrophysics Data System (ADS)

    Navolokin, N. A.; Mudrak, D. A.; Plastun, I. L.; Bucharskaya, A. B.; Agandeeva, K. E.; Ivlichev, A. V.; Tychina, S. A.; Afanasyeva, G. A.; Polukonova, N. V.; Maslyakova, G. N.

    2017-03-01

    Influence of flavonoids on the intensity of peroxidation processes in the blood is investigated by numerical modeling and by experiment in vivo. As an example we consider the effects of flavonoid-containing extract of Helichrysum arenarium L. with antitumor activity on serum of rats with transplanted liver cancer PC-1. It was found that the content of malondialdehyde, lipid hydroperoxides and average mass molecules were decreased in animals with transplanted liver cancer after intramuscular and oral administration of Helichrysum arenarium L extract in a dose of 1000 mg/mL. The extract reduces the intensity of lipid peroxidation processes in animals. The compound formation possibility of flavonoids and products of lipid peroxidation is investigated by numerical simulations. Using the density functional theory method of molecular modeling, we analyze hydrogen bonds formation and their influence on IR - spectra and structure of molecular complex which is formed due to interaction between flavonoids and products of lipid peroxidation processes on example of naringine and malondialdehyde. We have found that naringine can form a steady molecular complex with malondialdehyde by hydrogen bonds formation. Thus, the application of Helichrysum arenarium L. extract for suppression processes of lipid peroxidation and activation of enzymatic and non-enzymatic antioxidant systems is promising.

  3. Nucleation, Growth, Annealing, and Coagulation of Refractory Oxides and Metals: Recent Experimental Progress and Applications to Astrophysical Systems

    NASA Technical Reports Server (NTRS)

    Nuth, J. A.; Rietmeijer, F. J. M.; Hallenbeck, S. L.; Withey, P. A.

    1999-01-01

    Starting with cooling, refractory vapors diluted in significant quantities of H and He there are four processes that most natural systems will undergo: nucleation, growth, annealing, and coagulation. Nucleation is the processes by which the first stable refractory nuclei form in the vapor. These are the seeds onto which the remaining vapors will condense during the growth stage. Solids of any composition will try to arrange themselves into the least energetic configuration, provided that there is sufficient energy available to support such processes as diffusion and the breaking of chemical bonds. There is a significant activation energy associated with the annealing process in refractory solids due to the relatively high energy of the chemical bonds in solids. The grains formed in most cosmochemical systems are extremely small and often tightly coupled to the gas. Because of their small physical cross sections coagulation may be a very slow process unless there is another driving force involved in addition to normal Brownian motion. In what follows we will briefly cover each of these four stages for refractory oxide and metal grains, although in inverse order.

  4. Energy efficient engine. Volume 2. Appendix A: Component development and integration program

    NASA Technical Reports Server (NTRS)

    Moracz, D. J.; Cook, C. R.

    1981-01-01

    The large size and the requirement for precise lightening cavities in a considerable portion of the titanium fan blades necessitated the development of a new manufacturing method. The approach which was selected for development incorporated several technologies including HIP diffusion bonding of titanium sheet laminates containing removable cores and isothermal forging of the blade form. The technology bases established in HIP/DB for composite blades and in isothermal forging for fan blades were applicable for development of the manufacturing process. The process techniques and parameters for producing and inspecting the cored diffusion bonded titanium laminate blade preform were established. The method was demonstrated with the production of twelve hollow simulated blade shapes for evaluation. Evaluations of the critical experiments conducted to establish procedures to produce hollow structures by a laminate/core/diffusion bonding approach are included. In addition the transfer of this technology to produce a hollow fan blade is discussed.

  5. Influence of Impact Conditions on Feedstock Deposition Behavior of Cold-Sprayed Fe-Based Metallic Glass

    NASA Astrophysics Data System (ADS)

    Ziemian, Constance W.; Wright, Wendelin J.; Cipoletti, David E.

    2018-05-01

    Cold spray is a promising method by which to deposit dense Fe-based metallic glass coatings on conventional metal substrates. Relatively low process temperatures offer the potential to prevent the crystallization of amorphous feedstock powders while still providing adequate particle softening for bonding and coating formation. In this study, Fe48Mo14Cr15Y2C15B6 powder was sprayed onto a mild steel substrate, using a variety of process conditions, to investigate the feasibility of forming well-bonded amorphous Fe-based coatings. Particle splat adhesion was examined relative to impact conditions, and the limiting values of temperature and velocity associated with successful softening and adhesion were empirically established. Variability of particle sizes, impact temperatures, and impact velocities resulted in splat morphologies ranging from well-adhered deformed particles to substrate craters formed by rebounded particles and a variety of particle/substrate interface conditions. Transmission electron microscopy studies revealed the presence of a thin oxide layer between well-adhered particles and the substrate, suggesting that bonding is feasible even with an increased oxygen content at the interface. Results indicate that the proper optimization of cold spray process parameters supports the formation of Fe-based metallic glass coatings that successfully retain their amorphous structure, as well as the superior corrosion and wear-resistant properties of the feedstock powder.

  6. Effects of different production technologies on mechanical and metallurgical properties of precious metal denture alloys

    NASA Astrophysics Data System (ADS)

    Ferro, Paolo; Battaglia, Eleonora; Capuzzi, Stefano; Berto, Filippo

    2017-12-01

    Precious metal alloys can be supplied in traditional plate form or innovative drop form with high degree of purity. The aim of the present work is to evaluate the influence of precious metal alloy form on metallurgical and mechanical properties of the final dental products with particular reference to metal-ceramic bond strength and casting defects. A widely used alloy for denture was selected; its nominal composition was close to 55 wt% Pd - 34 wt% Ag - 6 wt% In - 3 wt% Sn. Specimens were produced starting from the alloy in both plate and drop forms. A specific test method was developed to obtain results that could be representative of the real conditions of use. In order to achieve further information about the adhesion behaviour and resistance, the fracture surfaces of the samples were observed using `Scanning Electron Microscopy (SEM)'. Moreover, material defects caused by the moulding process were studied. The form of the alloy before casting does not significantly influence the shear bond strength between the metal and the ceramic material (p-value=0,976); however, according to SEM images, products from drop form alloy show less solidification defects compared to products obtained with plate form alloy. This was attributed to the absence of polluting additives used in the production of drop form alloy. This study shows that the use of precious metal denture alloys supplied in drop form does not affect the metal-ceramic bond strength compared to alloys supplied in the traditional plate form. However, compared to the plate form, the drop form is found free of solidification defects, less expensive to produce and characterized by minor environmental impacts.

  7. 75 FR 4449 - Submission for OMB Review; Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-27

    ... Number: 1545-2025. Type of Review: Revision of a currently approved collection. Title: Clean Renewable Energy Bond Credit and Gulf Bond Credit. Form: 8912. Description: Form 8912, Clean Renewable Energy Bond... 54 and 1400N(l). The form provides a means for the taxpayer to compute the clean renewable energy...

  8. 78 FR 75576 - Agency Information Collection Activities: Importation Bond Structure

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-12

    ... Activities: Importation Bond Structure AGENCY: U.S. Customs and Border Protection (CBP), Department of... requirement concerning the Importation Bond Structure. This request for comment is being made pursuant to the...: Title: Importation Bond Structure. OMB Number: 1651-0050. Form Number: CBP Forms 301 and 5297. Abstract...

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Samavatian, Majid, E-mail: m.samavatian@srbiau.ac.ir; Halvaee, Ayoub; Amadeh, Ahmad Ali

    Joining mechanism of Ti/Al dissimilar alloys was studied during liquid state diffusion bonding process using Cu/Sn/Cu interlayer at 510 °C under vacuum of 7.5 × 10{sup −5} Torr for various bonding times. The microstructure and compositional changes in the joint zone were analyzed by scanning electron microscopy equipped with energy dispersive spectroscopy and X-ray diffraction. Microhardness and shear strength tests were also applied to study the mechanical properties of the joints. It was found that with an increase in bonding time, the elements of interlayer diffused into the parent metals and formed various intermetallic compounds at the interface. Diffusion processmore » led to the isothermal solidification and the bonding evolution in the joint zone. The results from mechanical tests showed that microhardness and shear strength values have a straight relation with bonding time so that the maximum shear strength of joint was obtained for a bond made with 60 min bonding time. - Highlights: • Liquid state diffusion bonding of Al2024 to Ti–6Al–4V was performed successfully. • Diffusion of the elements caused the formation of various intermetallics at the interface. • Microhardness and shear strength values have a straight relation with bonding time. • The maximum shear strength reached to 36 MPa in 60 min bonding time.« less

  10. Granular shear flows of flexible rod-like particles

    NASA Astrophysics Data System (ADS)

    Guo, Y.; Curtis, J.; Wassgren, C.; Ketterhagen, W.; Hancock, B.

    2013-06-01

    Flexible particles are widely encountered in nature, e.g., stalks of plants, fiberglass particles, and ceramic nanofibers. Early studies indicated that the deformability of particles has a significant impact on the properties of granular materials and fiber suspensions. In this study, shear flows of flexible particles are simulated using the Discrete Element Method (DEM) to explore the effect of particle flexibility on the flow behavior and constitutive laws. A flexible particle is formed by connecting a number of constituent spheres in a straight line using elastic bonds. The forces/moments due to the normal, tangential, bending, and torsional deformation of a bond resist the relative movement between two bonded constituent spheres. The bond stiffness determines how difficult it is to make a particle deform, and the bond damping accounts for the energy dissipation in the particle vibration process. The simulation results show that elastically bonded particles have smaller coefficients of restitution compared to rigidly connected particles, due to the fact that kinetic energy is partially converted to potential energy in a contact between flexible particles. The coefficient of restitution decreases as the bond stiffness decreases and the bond damping coefficient increases. As a result, smaller stresses are obtained for granular flows of the flexible particles with smaller bond stiffness and larger bond damping coefficient.

  11. Altering intra- to inter-molecular hydrogen bonding by dimethylsulfoxide: A TDDFT study of charge transfer for coumarin 343

    NASA Astrophysics Data System (ADS)

    Liu, Xiaochun; Yin, Hang; Li, Hui; Shi, Ying

    2017-04-01

    DFT and TDDFT methods were carried out to investigate the influences of intramolecular and intermolecular hydrogen bonding on excited state charge transfer for coumarin 343 (C343). Intramolecular hydrogen bonding is formed between carboxylic acid group and carbonyl group in C343 monomer. However, in dimethylsulfoxide (DMSO) solution, DMSO 'opens up' the intramolecular hydrogen bonding and forms solute-solvent intermolecular hydrogen bonded C343-DMSO complex. Analysis of frontier molecular orbitals reveals that intramolecular charge transfer (ICT) occurs in the first excited state both for C343 monomer and complex. The results of optimized geometric structures indicate that the intramolecular hydrogen bonding interaction is strengthened while the intermolecular hydrogen bonding is weakened in excited state, which is confirmed again by monitoring the shifts of characteristic peaks of infrared spectra. We demonstrated that DMSO solvent can not only break the intramolecular hydrogen bonding to form intermolecular hydrogen bonding with C343 but also alter the mechanism of excited state hydrogen bonding strengthening.

  12. Novel Bonding Technology for Hermetically Sealed Silicon Micropackage

    NASA Astrophysics Data System (ADS)

    Lee, Duck-Jung; Ju, Byeong-Kwon; Choi, Woo-Beom; Jeong, Jee-Won; Lee, Yun-Hi; Jang, Jin; Lee, Kwang-Bae; Oh, Myung-Hwan

    1999-01-01

    We performed glass-to-silicon bonding and fabricated a hermetically sealed silicon wafer using silicon direct bonding followed by anodic bonding (SDAB). The hydrophilized glass and silicon wafers in solution were dried and initially bonded in atmosphere as in the silicon direct bonding (SDB) process, but annealing at high temperature was not performed. Anodic bonding was subsequently carried out for the initially bonded specimens. Then the wafer pairs bonded by the SDAB method were different from those bonded by the anodic bonding process only. The effects of the bonding process on the bonded area and tensile strength were investigated as functions of bonding temperature and voltage. Using scanning electron microscopy (SEM), the cross-sectional view of the bonded interface region was observed. In order to investigate the migration of the sodium ions in the bonding process, the concentration of the bonded glass was compared with that of standard glass. The specimen bonded using the SDAB process had higher efficiency than that using the anodic bonding process only.

  13. Guar gum: processing, properties and food applications-A Review.

    PubMed

    Mudgil, Deepak; Barak, Sheweta; Khatkar, Bhupendar Singh

    2014-03-01

    Guar gum is a novel agrochemical processed from endosperm of cluster bean. It is largely used in the form of guar gum powder as an additive in food, pharmaceuticals, paper, textile, explosive, oil well drilling and cosmetics industry. Industrial applications of guar gum are possible because of its ability to form hydrogen bonding with water molecule. Thus, it is chiefly used as thickener and stabilizer. It is also beneficial in the control of many health problems like diabetes, bowel movements, heart disease and colon cancer. This article focuses on production, processing, composition, properties, food applications and health benefits of guar gum.

  14. Modified low-temperture direct bonding method for vacuum microelectronics application

    NASA Astrophysics Data System (ADS)

    Ju, Byeong-Kwon; Lee, Duck-Jung; Choi, Woo-Beom; Lee, Yun-Hi; Jang, Jin; Lee, Kwang-Bae; Oh, Myung-Hwan

    1997-06-01

    This paper presents the process and experimental results for the improved silicon-to-glass bonding using silicon direct bonding (SDB) followed by anodic bonding. The initial bonding between glass and silicon was caused by the hydrophilic surfaces of silicon-glass ensemble using SDB method. Then the initially bonded specimen had to be strongly bonded by anodic bonding process. The effects of the bonding process parameters on the interface energy were investigated as functions of the bonding temperature and voltage. We found that the specimen which was bonded using SDB process followed by anodic bonding process had higher interface energy than one using anodic bonding process only. The main factor contributing to the higher interface energy in the glass-to-silicon assemble bonded by SDB followed by anodic bonding was investigated by secondary ion mass spectroscopy analysis.

  15. A study of laser surface treatment in bonded repair of composite aircraft structures.

    PubMed

    Li, Shaolong; Sun, Ting; Liu, Chang; Yang, Wenfeng; Tang, Qingru

    2018-03-01

    Surface pre-treatment is one of the key processes in bonded repair of aircraft carbon fibre reinforced polymer composites. This paper investigates the surface modification of physical and chemical properties by laser ablation and conventional polish treatment techniques. Surface morphology analysed by laser scanning confocal microscopy and scanning electron microscopy showed that a laser-treated surface displayed higher roughness than that of a polish-treated specimen. The laser-treated laminate exhibited more functional groups in the form of O 1 s/C 1 s atomic ratio of 30.89% for laser-treated and 20.14% for polish-treated as evidenced by X-ray photoelectron spectroscopy observation. Contact angle goniometry demonstrated that laser treatment can provide increased surface free energy and wettability. In the light of mechanical interlocking, molecular bonding and thermodynamics theories on adhesion, laser etching process displayed enhanced bonding performance relative to the polishing surface treatment. These properties resulted in an increased single lap shear strength and a cohesive failure mode for laser etching while an adhesive failure mode occurred in polish-treated specimen.

  16. A study of laser surface treatment in bonded repair of composite aircraft structures

    NASA Astrophysics Data System (ADS)

    Li, Shaolong; Sun, Ting; Liu, Chang; Yang, Wenfeng; Tang, Qingru

    2018-03-01

    Surface pre-treatment is one of the key processes in bonded repair of aircraft carbon fibre reinforced polymer composites. This paper investigates the surface modification of physical and chemical properties by laser ablation and conventional polish treatment techniques. Surface morphology analysed by laser scanning confocal microscopy and scanning electron microscopy showed that a laser-treated surface displayed higher roughness than that of a polish-treated specimen. The laser-treated laminate exhibited more functional groups in the form of O 1 s/C 1 s atomic ratio of 30.89% for laser-treated and 20.14% for polish-treated as evidenced by X-ray photoelectron spectroscopy observation. Contact angle goniometry demonstrated that laser treatment can provide increased surface free energy and wettability. In the light of mechanical interlocking, molecular bonding and thermodynamics theories on adhesion, laser etching process displayed enhanced bonding performance relative to the polishing surface treatment. These properties resulted in an increased single lap shear strength and a cohesive failure mode for laser etching while an adhesive failure mode occurred in polish-treated specimen.

  17. A study of laser surface treatment in bonded repair of composite aircraft structures

    PubMed Central

    Sun, Ting; Liu, Chang; Yang, Wenfeng; Tang, Qingru

    2018-01-01

    Surface pre-treatment is one of the key processes in bonded repair of aircraft carbon fibre reinforced polymer composites. This paper investigates the surface modification of physical and chemical properties by laser ablation and conventional polish treatment techniques. Surface morphology analysed by laser scanning confocal microscopy and scanning electron microscopy showed that a laser-treated surface displayed higher roughness than that of a polish-treated specimen. The laser-treated laminate exhibited more functional groups in the form of O 1 s/C 1 s atomic ratio of 30.89% for laser-treated and 20.14% for polish-treated as evidenced by X-ray photoelectron spectroscopy observation. Contact angle goniometry demonstrated that laser treatment can provide increased surface free energy and wettability. In the light of mechanical interlocking, molecular bonding and thermodynamics theories on adhesion, laser etching process displayed enhanced bonding performance relative to the polishing surface treatment. These properties resulted in an increased single lap shear strength and a cohesive failure mode for laser etching while an adhesive failure mode occurred in polish-treated specimen. PMID:29657748

  18. Investigation of the feasibility of developing low permeability polymeric films

    NASA Technical Reports Server (NTRS)

    Hoggatt, J. T.

    1971-01-01

    The feasibility of reducing the gas permeability rate of Mylar and Kapton films without drastically effecting their flexibility characteristics at cryogenic temperatures was considered. This feasibility was established using a concept of diffusion bonding two layers of metallized films together forming a film-metal-film sandwich laminate. The permeability of kapton film to gaseous helium was reduced from a nominal ten = to the minus 9 power cc-mm/sq cm sec. cm Hg to ten to the minus 13 power cc-mm/ sq cm - sec. cm Hg with some values as low as ten to the minus 15 power cc - mm/sq cm m-sec - cm Hg being obtained. Similar reductions occurred in the liquid hydrogen permeability at -252 C. In the course of the program the permeability, flexibility and bond strength of plain, metalized and diffusion bond film were determined at +25 C, -195 C and -252 C. The cryogenic flexibility of Kapton film was reduced slightly due to the metallization process but no additional loss in flexibility resulted from the diffusion bonding process.

  19. Indirect Versus Direct Heating of Sheet Materials: Superplastic Forming and Diffusion Bonding Using Lasers

    NASA Astrophysics Data System (ADS)

    Jocelyn, Alan; Kar, Aravinda; Fanourakis, Alexander; Flower, Terence; Ackerman, Mike; Keevil, Allen; Way, Jerome

    2010-06-01

    Many from within manufacturing industry consider superplastic forming (SPF) to be ‘high tech’, but it is often criticized as too complicated, expensive, slow and, in general, an unstable process when compared to other methods of manipulating sheet materials. Perhaps, the fundamental cause of this negative perception of SPF, and also of diffusion bonding (DB), is the fact that the current process of SPF/DB relies on indirect sources of heating to produce the conditions necessary for the material to be formed. Thus, heat is usually derived from the electrically heated platens of hydraulic presses, to a lesser extent from within furnaces and, sometimes, from heaters imbedded in ceramic moulds. Recent evaluations of these isothermal methods suggest they are slow, thermally inefficient and inappropriate for the process. In contrast, direct heating of only the material to be formed by modern, electrically efficient, lasers could transform SPF/DB into the first choice of designers in aerospace, automotive, marine, medical, architecture and leisure industries. Furthermore, ‘variable temperature’ direct heating which, in theory, is possible with a laser beam(s) may provide a means to control material thickness distribution, a goal of enormous importance as fuel efficient, lightweight structures for transportation systems are universally sought. This paper compares, and contrasts, the two systems and suggests how a change to laser heating might be achieved.

  20. An XPS study on the chemical bond structure at the interface between SiO{sub x}N{sub y} and N doped polyethylene terephthalate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ding Wanyu; Key Laboratory of Materials Modification by Laser, Ion and Electron Beams, Ministry of Education, Dalian University of Technology, Dalian 116024; Li Li

    2013-03-14

    The super-thin silicon oxynitride (SiO{sub x}N{sub y}) films were deposited onto the N doped polyethylene terephthalate (PET) surface. Varying the N doping parameters, the different chemical bond structures were obtained at the interface between the SiO{sub x}N{sub y} film and the PET surface. X-ray photoelectron spectra results showed that at the initial stage of SiO{sub x}N{sub y} film growth, the C=N bonds could be broken and C-N-Si crosslink bonds could be formed at the interface of SiO{sub x}N{sub y}/PET, which C=N bonds could be formed onto the PET surface during the N doping process. At these positions, the SiO{sub x}N{submore » y} film could be crosslinked well onto the PET surface. Meanwhile, the doped N could crosslink the [SiO{sub 4}] and [SiN{sub 4}] tetrahedrons, which could easily form the dense layer structure at the initial stage of SiO{sub x}N{sub y} film growth, instead of the ring and/or chain structures of [SiO{sub 4}] tetrahedrons crosslinked by O. Finally, from the point of applying SiO{sub x}N{sub y}/PET complex as the substrate, the present work reveals a simple way to crosslink them, as well as the crosslink model and physicochemical mechanism happened at the interface of complex.« less

  1. 48 CFR 53.301-25 - Performance Bond.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 2 2014-10-01 2014-10-01 false Performance Bond. 53.301-25 Section 53.301-25 Federal Acquisition Regulations System FEDERAL ACQUISITION REGULATION (CONTINUED) CLAUSES AND FORMS FORMS Illustrations of Forms 53.301-25 Performance Bond. ER29AP14.003 ER29AP14.004 [79...

  2. 48 CFR 53.301-25 - Performance Bond.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 48 Federal Acquisition Regulations System 2 2012-10-01 2012-10-01 false Performance Bond. 53.301-25 Section 53.301-25 Federal Acquisition Regulations System FEDERAL ACQUISITION REGULATION (CONTINUED) CLAUSES AND FORMS FORMS Illustrations of Forms 53.301-25 Performance Bond. ER18DE98.007 ER18DE98.008 [63...

  3. 48 CFR 53.301-25 - Performance Bond.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 2 2010-10-01 2010-10-01 false Performance Bond. 53.301-25 Section 53.301-25 Federal Acquisition Regulations System FEDERAL ACQUISITION REGULATION (CONTINUED) CLAUSES AND FORMS FORMS Illustrations of Forms 53.301-25 Performance Bond. ER18DE98.007 ER18DE98.008 [63...

  4. 48 CFR 53.301-25 - Performance Bond.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 48 Federal Acquisition Regulations System 2 2013-10-01 2013-10-01 false Performance Bond. 53.301-25 Section 53.301-25 Federal Acquisition Regulations System FEDERAL ACQUISITION REGULATION (CONTINUED) CLAUSES AND FORMS FORMS Illustrations of Forms 53.301-25 Performance Bond. ER18DE98.007 ER18DE98.008 [63...

  5. 48 CFR 53.301-25 - Performance Bond.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 2 2011-10-01 2011-10-01 false Performance Bond. 53.301-25 Section 53.301-25 Federal Acquisition Regulations System FEDERAL ACQUISITION REGULATION (CONTINUED) CLAUSES AND FORMS FORMS Illustrations of Forms 53.301-25 Performance Bond. ER18DE98.007 ER18DE98.008 [63...

  6. 46 CFR 308.528 - Surety Bond A, Form MA-308.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 8 2014-10-01 2014-10-01 false Surety Bond A, Form MA-308. 308.528 Section 308.528 Shipping MARITIME ADMINISTRATION, DEPARTMENT OF TRANSPORTATION EMERGENCY OPERATIONS WAR RISK INSURANCE War Risk Cargo Insurance Open Policy War Risk Cargo Insurance § 308.528 Surety Bond A, Form MA-308. The...

  7. 46 CFR 308.529 - Surety Bond B, Form MA-309.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 8 2014-10-01 2014-10-01 false Surety Bond B, Form MA-309. 308.529 Section 308.529 Shipping MARITIME ADMINISTRATION, DEPARTMENT OF TRANSPORTATION EMERGENCY OPERATIONS WAR RISK INSURANCE War Risk Cargo Insurance Open Policy War Risk Cargo Insurance § 308.529 Surety Bond B, Form MA-309. An...

  8. Advanced thermal barrier coatings for operation in high hydrogen content fueled gas turbines.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sampath, Sanjay

    2015-04-02

    The Center for Thermal Spray Research (CTSR) at Stony Brook University in partnership with its industrial Consortium for Thermal Spray Technology is investigating science and technology related to advanced metallic alloy bond coats and ceramic thermal barrier coatings for applications in the hot section of gasified coal-based high hydrogen turbine power systems. In conjunction with our OEM partners (GE and Siemens) and through strategic partnership with Oak Ridge National Laboratory (ORNL) (materials degradation group and high temperature materials laboratory), a systems approach, considering all components of the TBC (multilayer ceramic top coat, metallic bond coat & superalloy substrate) is beingmore » taken during multi-layered coating design, process development and subsequent environmental testing. Recent advances in process science and advanced in situ thermal spray coating property measurement enabled within CTSR has been incorporated for full-field enhancement of coating and process reliability. The development of bond coat processing during this program explored various aspects of processing and microstructure and linked them to performance. The determination of the bond coat material was carried out during the initial stages of the program. Based on tests conducted both at Stony Brook University as well as those carried out at ORNL it was determined that the NiCoCrAlYHfSi (Amdry) bond coats had considerable benefits over NiCoCrAlY bond coats. Since the studies were also conducted at different cycling frequencies, thereby addressing an associated need for performance under different loading conditions, the Amdry bond coat was selected as the material of choice going forward in the program. With initial investigations focused on the fabrication of HVOF bond coats and the performance of TBC under furnace cycle tests , several processing strategies were developed. Two-layered HVOF bond coats were developed to render optimal balance of density and surface roughness and resulted in improved TBC lifetimes. Processing based approaches of identifying optimal processing regimes deploying advanced in-situ coating property measurements and in-flight diagnostic tools were used to develop process maps for bond coats. Having established a framework for the bond coat processing using the HVOF process, effort were channeled towards fabrication of APS and VPS bond coats with the same material composition. Comparative evaluation of the three deposition processes with regard to their microstrcuture , surface profiles and TBC performance were carried out and provided valuable insights into factors that require concurrent consideration for the development of bond coats for advanced TBC systems. Over the course of this program several advancements were made on the development of durable thermal barrier coatings. Process optimization techniques were utilized to identify processing regimes for both conventional YSZ as well as other TBC compositions such as Gadolinium Zirconate and other Co-doped materials. Measurement of critical properties for these formed the initial stages of the program to identify potential challenges in their implementation as part of a TBC system. High temperature thermal conductivity measurements as well as sintering behavior of both YSZ and GDZ coatings were evaluated as part of initial efforts to undersand the influence of processing on coating properties. By effectively linking fundamental coating properties of fracture toughness and elastic modulus to the cyclic performance of coatings, a durability strategy for APS YSZ coatings was developed. In order to meet the goals of fabricating a multimaterial TBC system further research was carried out on the development of a gradient thermal conductivity model and the evaluation of sintering behavior of multimaterial coatings. Layer optimization for desired properties in the multimaterial TBC was achieved by an iterative feedback approach utilizing process maps and in-situ and ex-situ coating property sensors. Addressing the challenges pertaining to the integration of the two materials YSZ and GDZ led to one of most the critical outcomes of this program, the development of durable multimaterial, multifunctional TBC systems.« less

  9. Molecular Dynamic Simulation of Diffusion Coefficients for Alkanols in Supercritical CO2 1

    NASA Astrophysics Data System (ADS)

    Li, Zhiwei; Lai, Shuhui; Gao, Wei; Chen, Liuping

    2018-07-01

    The infinite dilution diffusion coefficients ( D 12) of methanol, ethanol, 1-propanol, 1-butanol and 1-pentanol in supercritical CO2 (scCO2) at 313.2 K and 10-16 MPa were simulated by molecular dynamics (MD) simulation. The microscopic structure was also analyzed by calculation of the radial distribution function, coordination number (CN) between the center mass of solute and solvent molecules, and the average number of hydrogen bonding of this system. In infinite dilute solution, the probability of forming hydrogen bond between alkanol molecules is greatly reduced relative to pure alkanol fluid, and the weak hydrogen bonds formed between alkanol and CO2 molecules. In general, this work provides a reliable simulation method for transfer properties of solutes in scCO2. The prediction data were provides for the design and development of chemical processing. The results are helpful for one to deeper understand the relationship between microscopic structures of fluid and its transfer properties.

  10. 27 CFR 26.66 - Bond, TTB Form 5110.50-Distilled spirits.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS LIQUORS AND ARTICLES FROM PUERTO RICO AND THE VIRGIN ISLANDS Taxpayment of Liquors and Articles in Puerto Rico Bonds § 26.66 Bond, TTB Form 5110.50—Distilled... Puerto Rican manufacture from bonded storage in Puerto Rico on computation, but before payment, of the...

  11. 78 FR 66038 - Agency Information Collection Activities: Application for Exportation of Articles Under Special Bond

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-04

    ... Activities: Application for Exportation of Articles Under Special Bond AGENCY: U.S. Customs and Border...: Application for Exportation of Articles under Special Bond (CBP Form 3495). This is a proposed extension of an... forms of information. Title: Application for Exportation of Articles under Special Bond. OMB Number...

  12. Durable soy-based adhesive dispersions

    Treesearch

    James M. Wescott; Amy Traska; Charles R. Frihart; Linda Lorenz

    2005-01-01

    An important aspect of any adhesive bond is that the bond maintains its integrity during its end use. Epoxies form highly durable bonds with many substrates but are usually not considered capable of forming completely durable bonds with wood by standard accelerated tests. However, epoxies are sold for wood boat construction, and some data have indicated that epoxies...

  13. Homolytic cleavage of both heme-bound hydrogen peroxide and hydrogen sulfide leads to the formation of sulfheme

    DOE PAGES

    Arbelo-Lopez, Hector D.; Simakov, Nikolay A.; Smith, Jeremy C.; ...

    2016-06-29

    Many heme-containing proteins with a histidine in the distal E7 (HisE7) position can form sulfheme in the presence of hydrogen sulfide (H 2S) and a reactive oxygen species such as hydrogen peroxide. For reasons unknown, sulfheme derivatives are formed specifically on solvent-excluded heme pyrrole B. Sulfhemes severely decrease the oxygen-binding affinity in hemoglobin (Hb) and myoglobin (Mb). Here, use of hybrid quantum mechanical/molecular mechanical methods has permitted characterization of the entire process of sulfheme formation in the HisE7 mutant of hemoglobin I (HbI) from Lucina pectinata. This process includes a mechanism for H 2S to enter the solvent-excluded active sitemore » through a hydrophobic channel to ultimately form a hydrogen bond with H 2O 2 bound to Fe(III). Proton transfer from H 2O 2 to His64 to form compound (Cpd) 0, followed by hydrogen transfer from H 2S to the Fe(III) H 2O 2 complex, results in homolytic cleavage of the O–O and S–H bonds to form a reactive thiyl radical (HS*), ferryl heme Cpd II, and a water molecule. Subsequently, the addition of HS to Cpd II, followed by three proton transfer reactions, results in the formation of a three-membered ring ferric sulfheme that avoids migration of the radical to the protein matrix, in contrast to that in other peroxidative reactions. The transformation of this three-membered episulfide ring structure to the five-membered thiochlorin ring structure occurs through a significant potential energy barrier, although both structures are nearly isoenergetic. Both three- and five-membered ring structures reveal longer N B–Fe(III) bonds compared with other pyrrole nitrogen–Fe(III) bonds, which would lead to decreased oxygen binding. Altogether, these results are in agreement with a wide range of experimental data and provide fertile ground for further investigations of sulfheme formation in other heme proteins and additional effects of H 2S on cell signaling and reactivity.« less

  14. Homolytic cleavage of both heme-bound hydrogen peroxide and hydrogen sulfide leads to the formation of sulfheme

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arbelo-Lopez, Hector D.; Simakov, Nikolay A.; Smith, Jeremy C.

    Many heme-containing proteins with a histidine in the distal E7 (HisE7) position can form sulfheme in the presence of hydrogen sulfide (H 2S) and a reactive oxygen species such as hydrogen peroxide. For reasons unknown, sulfheme derivatives are formed specifically on solvent-excluded heme pyrrole B. Sulfhemes severely decrease the oxygen-binding affinity in hemoglobin (Hb) and myoglobin (Mb). Here, use of hybrid quantum mechanical/molecular mechanical methods has permitted characterization of the entire process of sulfheme formation in the HisE7 mutant of hemoglobin I (HbI) from Lucina pectinata. This process includes a mechanism for H 2S to enter the solvent-excluded active sitemore » through a hydrophobic channel to ultimately form a hydrogen bond with H 2O 2 bound to Fe(III). Proton transfer from H 2O 2 to His64 to form compound (Cpd) 0, followed by hydrogen transfer from H 2S to the Fe(III) H 2O 2 complex, results in homolytic cleavage of the O–O and S–H bonds to form a reactive thiyl radical (HS*), ferryl heme Cpd II, and a water molecule. Subsequently, the addition of HS to Cpd II, followed by three proton transfer reactions, results in the formation of a three-membered ring ferric sulfheme that avoids migration of the radical to the protein matrix, in contrast to that in other peroxidative reactions. The transformation of this three-membered episulfide ring structure to the five-membered thiochlorin ring structure occurs through a significant potential energy barrier, although both structures are nearly isoenergetic. Both three- and five-membered ring structures reveal longer N B–Fe(III) bonds compared with other pyrrole nitrogen–Fe(III) bonds, which would lead to decreased oxygen binding. Altogether, these results are in agreement with a wide range of experimental data and provide fertile ground for further investigations of sulfheme formation in other heme proteins and additional effects of H 2S on cell signaling and reactivity.« less

  15. Thermal barrier coating for alloy systems

    DOEpatents

    Seals, Roland D.; White, Rickey L.; Dinwiddie, Ralph B.

    2000-01-01

    An alloy substrate is protected by a thermal barrier coating formed from a layer of metallic bond coat and a top coat formed from generally hollow ceramic particles dispersed in a matrix bonded to the bond coat.

  16. Lightweight Ceramic Insulation

    NASA Technical Reports Server (NTRS)

    Wheeler, W. H.; Creedon, J. F.

    1986-01-01

    Fiber burnout process yields low densities. Low density attained by process of sacrificial burnout. Graphite or carbon fibers mixed into slurry of silica, alumina, and boron-compound fibers in amounts ranging from 25 to 75 percent of total fiber content by weight. Mixture formed into blocks and dried. Blocks placed in kiln and heated to 1,600 degrees F(870 degrees C) for several hours. Graphite or carbon fibers slowly oxidize away, leaving voids and reducing block density. Finally, blocks heated to 2,350 degrees F (1,290 degrees C) for 90 minutes to bond remaining ceramic fibers together. Developed for use on Space Shuttle and other spacecraft, rigid insulation machined to requisite shape and bonded in place.

  17. Characterisation of CFRP surface contamination by laser induced fluorescence

    NASA Astrophysics Data System (ADS)

    Malinowski, Pawel H.; Sawczak, Miroslaw; Wandowski, Tomasz; Ostachowicz, Wieslaw M.; Cenian, Adam

    2014-03-01

    The application of Carbon Fibre Reinforced Polymers (CFRP) in aeronautics has been increasing. The CFRP elements are joint using rivets and adhesive bonding. The reliability of the bonding limits the use of adhesive bonding for primary aircraft structures, therefore it is important to assess the bond quality. The performance of adhesive bonds depends on the physico-chemical properties of the adhered surfaces. This research is focused on characterization of surfaces before bonding. In-situ examination of large surface materials, determine the group of methods that are preferred. The analytical methods should be non-destructive, enabling large surface analysis in relatively short time. In this work a spectroscopic method was tested that can be potentially applied for surface analysis. Four cases of surface condition were investigated that can be encountered either in the manufacturing process or during aircraft service. The first case is related to contamination of CFRP surface with hydraulic fluid. This fluid reacts with water forming a phosphoric acid that can etch the CFRP. Second considered case was related to silicone-based release agent contamination. These agents are used during the moulding process of composite panels. Third case involved moisture content in CFRP. Moisture content lowers the adhesion quality and leads to reduced performance of CFRP resulting in reduced performance of the adhesive bond. The last case concentrated on heat damage of CFRP. It was shown that laser induced fluorescence method can be useful for non-destructive evaluation of CFRP surface and some of the investigated contaminants can be easily detected.

  18. Optical characterisation of hydroxide catalysed bonds applied to phosphate glass

    NASA Astrophysics Data System (ADS)

    Lacaille, Grégoire; Mangano, Valentina; van Veggel, Anna-Maria A.; Killow, Christian J.; MacKay, Peter E.; Rowan, Sheila; Hough, James

    2017-10-01

    We apply the Hydroxide Catalysis Bonding (HCB) technique to phosphate glass and measure the reflectivity and Light Induced Damage Threshold (LITD) of the newly formed interface. HCB is a room temperature, high performing process which was designed for astronomical research glass assemblies and played a key role in the detection of gravitational waves, a breakthrough in contemporary science. The bonds have numerous assets including mechanical strength, stability, no outgassing and resistance to contamination which are of high interest in the precision optics industry. However only little research has been done on their optical properties and mostly on silica based materials. In this paper, we use HCB to bond phosphate glass at room temperature with the goal of designing composite components for solid state laser gain media. We change the solution parameters to identify how they influence the final properties of the bonds: the LIDT at 1535 nm in long pulse regime and the reflectivity at 532 nm are investigated. The measurement of the incidence dependent reflectance allows estimating the thickness and refractive index of the bond in a non destructive process. The best performing set of parameters yields a LIDT of 1.6 GW/cm2 (16 J/cm2) and a reflectivity below 0.03 % which makes it suitable for use in high power lasers. The bond thickness is derived both from Scanning Electron Microscopy and the reflectivity measurements and is in the range of 50-150 nm depending on the parameters. Finally, the bonds survive cutting and polishing which is promising for manufacturing purpose.

  19. Elucidation of metal-ion accumulation induced by hydrogen bonds on protein surfaces by using porous lysozyme crystals containing Rh(III) ions as the model surfaces.

    PubMed

    Ueno, Takafumi; Abe, Satoshi; Koshiyama, Tomomi; Ohki, Takahiro; Hikage, Tatsuo; Watanabe, Yoshihito

    2010-03-01

    Metal-ion accumulation on protein surfaces is a crucial step in the initiation of small-metal clusters and the formation of inorganic materials in nature. This event is expected to control the nucleation, growth, and position of the materials. There remain many unknowns, as to how proteins affect the initial process at the atomic level, although multistep assembly processes of the materials formation by both native and model systems have been clarified at the macroscopic level. Herein the cooperative effects of amino acids and hydrogen bonds promoting metal accumulation reactions are clarified by using porous hen egg white lysozyme (HEWL) crystals containing Rh(III) ions, as model protein surfaces for the reactions. The experimental results reveal noteworthy implications for initiation of metal accumulation, which involve highly cooperative dynamics of amino acids and hydrogen bonds: i) Disruption of hydrogen bonds can induce conformational changes of amino-acid residues to capture Rh(III) ions. ii) Water molecules pre-organized by hydrogen bonds can stabilize Rh(III) coordination as aqua ligands. iii) Water molecules participating in hydrogen bonds with amino-acid residues can be replaced by Rh(III) ions to form polynuclear structures with the residues. iv) Rh(III) aqua complexes are retained on amino-acid residues through stabilizing hydrogen bonds even at low pH (approximately 2). These metal-protein interactions including hydrogen bonds may promote native metal accumulation reactions and also may be useful in the preparation of new inorganic materials that incorporate proteins.

  20. Microstructural Evolution of Ni-Sn Transient Liquid Phase Sintering Bond during High-Temperature Aging

    NASA Astrophysics Data System (ADS)

    Feng, Hongliang; Huang, Jihua; Peng, Xianwen; Lv, Zhiwei; Wang, Yue; Yang, Jian; Chen, Shuhai; Zhao, Xingke

    2018-05-01

    For high-temperature-resistant packaging of new generation power chip, a chip packaging simulation structure of Ni/Ni-Sn/Ni was bonded by a transient liquid-phase sintering process. High-temperature aging experiments were carried out to investigate joint heat stability. The microstructural evolution and mechanism during aging, and mechanical properties after aging were analyzed. The results show that the 30Ni-70Sn bonding layer as-bonded at 340°C for 240 min is mainly composed of Ni3Sn4 and residual Ni particles. When aged at 350°C, because of the difficulty of nucleation for Ni3Sn and quite slow growth of Ni3Sn2, the bonding layer is stable and the strength of that doesn't change obviously with aging time. When aging temperature increased to 500°C, however, the residual Ni particles were gradually dissolved and the bonding layer formed a stable structure with dominated Ni3Sn2 after 36 h. Meanwhile, due to the volume shrinkage (4.43%) from Ni3Sn2 formation, a number of voids were formed. The shear strength shows an increase, resulting from Ni3Sn2 formation, but then it decreases slightly caused by voids. After aging at 500°C for 100 h, shear strength is still maintained at 29.6 MPa. In addition, the mechanism of void formation was analyzed and microstructural evolution model was also established.

  1. Diethyl [(4-bromo­phen­yl)(5-chloro-2-hydroxy­anilino)meth­yl]phospho­nate

    PubMed Central

    Babu, V. H. H. Surendra; Krishnaiah, M.; Prasad, G. Syam; C. Suresh Reddy; Kant, Rajni

    2009-01-01

    In the title compound, C17H20BrClNO4P, inter­molecular C—H⋯O and N—H⋯O hydrogen bonds form centrosymmetric R 2 2(10) dimers linked through O—H⋯O inter­molecular hydrogen bonds, which form centrosymmetric R 2 2(16) dimers. All these hydrogen bonds form chains along [010]. In addition, the crystal structure is stabilized by weak C—H⋯Br hydrogen bonds. The very weak intramolecular N—H⋯O interaction forms a five-membered ring. PMID:21578446

  2. Fabrication of uniform nanoscale cavities via silicon direct wafer bonding.

    PubMed

    Thomson, Stephen R D; Perron, Justin K; Kimball, Mark O; Mehta, Sarabjit; Gasparini, Francis M

    2014-01-09

    Measurements of the heat capacity and superfluid fraction of confined (4)He have been performed near the lambda transition using lithographically patterned and bonded silicon wafers. Unlike confinements in porous materials often used for these types of experiments(3), bonded wafers provide predesigned uniform spaces for confinement. The geometry of each cell is well known, which removes a large source of ambiguity in the interpretation of data. Exceptionally flat, 5 cm diameter, 375 µm thick Si wafers with about 1 µm variation over the entire wafer can be obtained commercially (from Semiconductor Processing Company, for example). Thermal oxide is grown on the wafers to define the confinement dimension in the z-direction. A pattern is then etched in the oxide using lithographic techniques so as to create a desired enclosure upon bonding. A hole is drilled in one of the wafers (the top) to allow for the introduction of the liquid to be measured. The wafers are cleaned(2) in RCA solutions and then put in a microclean chamber where they are rinsed with deionized water(4). The wafers are bonded at RT and then annealed at ~1,100 °C. This forms a strong and permanent bond. This process can be used to make uniform enclosures for measuring thermal and hydrodynamic properties of confined liquids from the nanometer to the micrometer scale.

  3. New Coarse-Grained Model and Its Implementation in Simulations of Graphene Assemblies.

    PubMed

    Shang, Jun-Jun; Yang, Qing-Sheng; Liu, Xia

    2017-08-08

    Graphene is a one-atom thick layer of carbon atoms arranged in a hexagonal pattern, which makes it the strongest material in the world. The Tersoff potential is a suitable potential for simulating the mechanical behavior of the complex covalently bonded system of graphene. In this paper, we describe a new coarse-grained (CG) potential, TersoffCG, which is based on the function form of the Tersoff potential. The TersoffCG applies to a CG model of graphene that uses the same hexagonal pattern as the atomistic model. The parameters of the TersoffCG potential are determined using structural feature and potential-energy fitting between the CG model and the atomic model. The modeling process of graphene is highly simplified using the present CG model as it avoids the necessity to define bonds/angles/dihedrals connectivity. What is more, the present CG model provides a new perspective of coarse-graining scheme for crystal structures of nanomaterials. The structural changes and mechanical properties of multilayer graphene were calculated using the new potential. Furthermore, a CG model of a graphene aerogel was built in a specific form of assembly. The chemical bonding in the joints of graphene-aerogel forms automatically during the energy relaxation process. The compressive and recover test of the graphene aerogel was reproduced to study its high elasticity. Our computational examples show that the TersoffCG potential can be used for simulations of graphene and its assemblies, which have many applications in areas of environmental protection, aerospace engineering, and others.

  4. The dynamics of solvation dictates the conformation of polyethylene oxide in aqueous, isobutyric acid and binary solutions.

    PubMed

    Dahal, Udaya R; Dormidontova, Elena E

    2017-04-12

    Polymers hydrogen-bonding with solvent represent an important broad class of polymers, properties of which depend on solvation. Using atomistic molecular dynamics simulations with the OPLS/AA force field we investigate the effect of hydrogen bonding on PEO conformation and chain mobility by comparing its behavior in isobutyric acid and aqueous solutions. In agreement with experimental data, we found that in isobutyric acid PEO forms a rather rigid extended helical structure, while in water it assumes a highly flexible coil conformation. We show that the difference in PEO conformation and flexibility is the result of the hydrogen bond stability and overall solvent dynamics near PEO. Isobutyric acid forms up to one hydrogen bond per repeat unit of PEO and interacts with PEO for a prolonged period of time, thereby stabilizing the helical structure of the polymer and reducing its segmental mobility. In contrast, water forms on average 1.2 hydrogen bonds per repeat unit of PEO (with 60% of water forming a single hydrogen bond and 40% of water forming two hydrogen bonds) and resides near PEO for a noticeably shorter time than isobutyric acid, leading to the well-documented high segmental mobility of PEO in water. We also analyze PEO conformation, hydrogen bonding and segmental mobility in binary water/isobutyric acid solutions and find that in the phase separated region PEO resides in the isobutyric-rich phase forming about 25% of its hydrogen bonds with isobutyric acid and 75% with water. We show that the dynamics of solvation affects the equilibrium properties of macromolecules, such as conformation, and by mixing of hydrogen bond-donating solvents one can significantly alter both polymer conformation and its local dynamics.

  5. 30 CFR 256.58 - Termination of the period of liability and cancellation of a bond.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... provide an alternative form of security, and the Regional Director determines that the alternative form of... cancellation of a bond. 256.58 Section 256.58 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, REGULATION... retain other forms of security as shown in the following table: For the following type of bond The period...

  6. 30 CFR 556.58 - Termination of the period of liability and cancellation of a bond.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... alternative form of security, and the Regional Director determines that the alternative form of security... cancellation of a bond. 556.58 Section 556.58 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, DEPARTMENT... retain other forms of security as shown in the following table: For the following type of bond The period...

  7. 30 CFR 556.58 - Termination of the period of liability and cancellation of a bond.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... alternative form of security, and the Regional Director determines that the alternative form of security... cancellation of a bond. 556.58 Section 556.58 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, DEPARTMENT... retain other forms of security as shown in the following table: For the following type of bond The period...

  8. 30 CFR 556.58 - Termination of the period of liability and cancellation of a bond.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... alternative form of security, and the Regional Director determines that the alternative form of security... cancellation of a bond. 556.58 Section 556.58 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, DEPARTMENT... retain other forms of security as shown in the following table: For the following type of bond The period...

  9. Process for removal of hazardous air pollutants from coal

    DOEpatents

    Akers, David J.; Ekechukwu, Kenneth N.; Aluko, Mobolaji E.; Lebowitz, Howard E.

    2000-01-01

    An improved process for removing mercury and other trace elements from coal containing pyrite by forming a slurry of finely divided coal in a liquid solvent capable of forming ions or radicals having a tendency to react with constituents of pyrite or to attack the bond between pyrite and coal and/or to react with mercury to form mercury vapors, and heating the slurry in a closed container to a temperature of at least about 50.degree. C. to produce vapors of the solvent and withdrawing vapors including solvent and mercury-containing vapors from the closed container, then separating mercury from the vapors withdrawn.

  10. 31 CFR 351.4 - In what form are Series EE savings bonds issued?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (Continued) FISCAL SERVICE, DEPARTMENT OF THE TREASURY BUREAU OF THE PUBLIC DEBT OFFERING OF UNITED STATES SAVINGS BONDS, SERIES EE General Information § 351.4 In what form are Series EE savings bonds issued...

  11. C-H bond activation of hydrocarbons by an imidozirconocene complex.

    PubMed

    Hoyt, Helen M; Michael, Forrest E; Bergman, Robert G

    2004-02-04

    Monomeric imidozirconocene complexes of the type Cp2(L)Zr=NCMe3 (Cp = cyclopentadienyl, L = Lewis base) have been shown to activate the carbon-hydrogen bonds of benzene, but not the C-H bonds of saturated hydrocarbons. To our knowledge, this singularly important class of C-H activation reactions has heretofore not been observed in imidometallocene systems. The M=NR bond formed on heating the racemic ethylenebis(tetrahydro)indenyl methyl tert-butyl amide complex, however, cleanly and quantitatively activates a wide range of n-alkane, alkene, and arene C-H bonds. Mechanistic experiments support the proposal of intramolecular elimination of methane followed by a concerted addition of the hydrocarbon C-H bond. Products formed by activation of sp2 C-H bonds are generally more thermodynamically stable than those formed by activation of sp3 C-H bonds, and those resulting from reaction at primary C-H bonds are preferred over secondary sp3 C-H activation products. There is also evidence that thermodynamic selectivity among C-H bonds is sterically rather than electronically controlled.

  12. Integral resonator gyroscope

    NASA Technical Reports Server (NTRS)

    Shcheglov, Kirill V. (Inventor); Challoner, A. Dorian (Inventor); Hayworth, Ken J. (Inventor); Wiberg, Dean V. (Inventor); Yee, Karl Y. (Inventor)

    2008-01-01

    The present invention discloses an inertial sensor having an integral resonator. A typical sensor comprises a planar mechanical resonator for sensing motion of the inertial sensor and a case for housing the resonator. The resonator and a wall of the case are defined through an etching process. A typical method of producing the resonator includes etching a baseplate, bonding a wafer to the etched baseplate, through etching the wafer to form a planar mechanical resonator and the wall of the case and bonding an end cap wafer to the wall to complete the case.

  13. Method of producing an integral resonator sensor and case

    NASA Technical Reports Server (NTRS)

    Challoner, A. Dorian (Inventor); Yee, Karl Y. (Inventor); Shcheglov, Kirill V. (Inventor); Hayworth, Ken J. (Inventor); Wiberg, Dean V. (Inventor)

    2005-01-01

    The present invention discloses an inertial sensor having an integral resonator. A typical sensor comprises a planar mechanical resonator for sensing motion of the inertial sensor and a case for housing the resonator. The resonator and a wall of the case are defined through an etching process. A typical method of producing the resonator includes etching a baseplate, bonding a wafer to the etched baseplate, through etching the wafer to form a planar mechanical resonator and the wall of the case and bonding an end cap wafer to the wall to complete the case.

  14. Recent advances in transition metal-catalyzed N -atom transfer reactions of azides

    PubMed Central

    Driver, Tom G.

    2011-01-01

    Transition metal-catalyzed N-atom transfer reactions of azides provide efficient ways to construct new carbon–nitrogen and sulfur–nitrogen bonds. These reactions are inherently green: no additive besides catalyst is needed to form the nitrenoid reactive intermediate, and the by-product of the reaction is environmentally benign N2 gas. As such, azides can be useful precursors for transition metal-catalyzed N-atom transfer to sulfides, olefins and C–H bonds. These methods offer competitive selectivities and comparable substrate scope as alternative processes to generate metal nitrenoids. PMID:20617243

  15. Transition metal-catalyzed C-H activation reactions: diastereoselectivity and enantioselectivity.

    PubMed

    Giri, Ramesh; Shi, Bing-Feng; Engle, Keary M; Maugel, Nathan; Yu, Jin-Quan

    2009-11-01

    This critical review discusses historical and contemporary research in the field of transition metal-catalyzed carbon-hydrogen (C-H) bond activation through the lens of stereoselectivity. Research concerning both diastereoselectivity and enantioselectivity in C-H activation processes is examined, and the application of concepts in this area for the development of novel carbon-carbon and carbon-heteroatom bond-forming reactions is described. Throughout this review, an emphasis is placed on reactions that are (or may soon become) relevant in the realm of organic synthesis (221 references).

  16. From Strong to Fragile Glass Formers: Secondary Relaxation in Polyalcohols

    NASA Astrophysics Data System (ADS)

    Döß, A.; Paluch, M.; Sillescu, H.; Hinze, G.

    2002-03-01

    We have studied details of the molecular origin of slow secondary relaxation near Tg in a series of neat polyalcohols by means of dielectric spectroscopy and 2H NMR. From glycerol to threitol, xylitol, and sorbitol the appearance of the secondary relaxation changes gradually from a wing-type scenario to a pronounced β peak. It is found that in sorbitol the dynamics of the whole molecule contributes equally to the β process, while in glycerol the hydrogen bond forming OH groups remain rather rigid compared to the hydrogens bonded to the carbon skeleton.

  17. Diffusion bonding of Ti-48Ni-2Mn-2Nb (at.%)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Godfrey, S.P.; Strangwood, M.; Threadgill, P.L.

    The diffusion bonding behavior of Ti-48at. % Al-2at. % Mn-2at. %Nb has been studied as a function of temperature (in the range 1,200--1,350C), time (15--45 minutes) and starting microstructure (lamellar, duplex and near {gamma}) at constant bonding pressure of 10 MPa. It was found, that under the above conditions, small twin related {gamma} grains, approximately 10-20 {mu}m in size, nucleated at the original interface and grew into the matrix forming a double necklace grain structure. Particles of {alpha}{sub 2} were observed around the interface, the formation of {alpha}{sub 2} particles was believed to be related to oxygen partitioning and stabilizationmore » effects from dissolved oxide films during the bonding process. Evidence for this mechanism was obtained from parallel electron energy loss spectroscopy (PEELS), which identified oxygen partitioning in the (X2) particles. For the fully lamellar structure bonded at 1,250 C for 45 minutes the failure strength of the bond was found to be 250 MPa, approximately 50 MPa lower than the failure strength of the base material.« less

  18. Dopamine and opioid systems interact within the nucleus accumbens to maintain monogamous pair bonds

    PubMed Central

    Resendez, Shanna L; Keyes, Piper C; Day, Jeremy J; Hambro, Caely; Austin, Curtis J; Maina, Francis K; Eidson, Lori N; Porter-Stransky, Kirsten A; Nevárez, Natalie; McLean, J William; Kuhnmuench, Morgan A; Murphy, Anne Z; Mathews, Tiffany A; Aragona, Brandon J

    2016-01-01

    Prairie vole breeder pairs form monogamous pair bonds, which are maintained through the expression of selective aggression toward novel conspecifics. Here, we utilize behavioral and anatomical techniques to extend the current understanding of neural mechanisms that mediate pair bond maintenance. For both sexes, we show that pair bonding up-regulates mRNA expression for genes encoding D1-like dopamine (DA) receptors and dynorphin as well as enhances stimulated DA release within the nucleus accumbens (NAc). We next show that D1-like receptor regulation of selective aggression is mediated through downstream activation of kappa-opioid receptors (KORs) and that activation of these receptors mediates social avoidance. Finally, we also identified sex-specific alterations in KOR binding density within the NAc shell of paired males and demonstrate that this alteration contributes to the neuroprotective effect of pair bonding against drug reward. Together, these findings suggest motivational and valence processing systems interact to mediate the maintenance of social bonds. DOI: http://dx.doi.org/10.7554/eLife.15325.001 PMID:27371827

  19. Anisotropic toughness and strength in graphene and its atomistic origin

    NASA Astrophysics Data System (ADS)

    Hossain, M. Zubaer; Ahmed, Tousif; Silverman, Benjamin; Khawaja, M. Shehroz; Calderon, Justice; Rutten, Andrew; Tse, Stanley

    2018-01-01

    This paper presents the implication of crystallographic orientation on toughness and ideal strength in graphene under lattice symmetry-preserving and symmetry-breaking deformations. In symmetry-preserving deformation, both toughness and strength are isotropic, regardless of the chirality of the lattice; whereas, in symmetry-breaking deformation they are strongly anisotropic, even in the presence of vacancy defects. The maximum and minimum of toughness or strength occur for loading along the zigzag direction and the armchair direction, respectively. The anisotropic behavior is governed by a complex interplay among bond-stretching deformation, bond-bending deformation, and the chirality of the lattice. Nevertheless, the condition for crack-nucleation is dictated by the maximum bond-force required for bond rupture, and it is independent of the chiral angle of the lattice or loading direction. At the onset of crack-nucleation a localized nucleation zone is formed, wherein the bonds rupture locally satisfying the maximum bond-force criterion. The nucleation zone acts as the physical origin in triggering the fracture nucleation process, but its presence is undetectable from the macroscopic stress-strain data.

  20. Bond and fracture strength of metal-ceramic restorations formed by selective laser sintering

    PubMed Central

    Bae, Eun-Jeong; Kim, Woong-Chul; Kim, Hae-Young

    2014-01-01

    PURPOSE The purpose of this study was to compare the fracture strength of the metal and the bond strength in metal-ceramic restorations produced by selective laser sintering (SLS) and by conventional casting (CAST). MATERIALS AND METHODS Non-precious alloy (StarLoy C, DeguDent, Hanau, Germany) was used in CAST group and metal powder (SP2, EOS GmbH, Munich, Germany) in SLS group. Metal specimens in the form of sheets (25.0 × 3.0 × 0.5 mm) were produced in accordance with ISO 9693:1999 standards (n=30). To measure the bond strength, ceramic was fired on a metal specimen and then three-point bending test was performed. In addition, the metal fracture strength was measured by continuing the application of the load. The values were statistically analyzed by performing independent t-tests (α=.05). RESULTS The mean bond strength of the SLS group (50.60 MPa) was higher than that of the CAST group (46.29 MPa), but there was no statistically significant difference. The metal fracture strength of the SLS group (1087.2 MPa) was lower than that of the CAST group (2399.1 MPa), and this difference was statistically significant. CONCLUSION In conclusion the balling phenomenon and the gap formation of the SLS process may increase the metal-ceramic bond strength. PMID:25177469

  1. Optical and Chemical Characterization of Polyimide in a GEO-like Environment

    NASA Astrophysics Data System (ADS)

    Engelhart, D.; Plis, E.; Ferguson, D.; Cooper, R.; Hoffmann, R.

    2016-09-01

    Ground- and space-based optical observations of space objects rely on knowledge about how spacecraft materials interact with light. However, this is not a static property. Each material's optical fingerprint changes continuously throughout a spacecraft's orbital lifetime. These changes in optical signature occur because energetic particles break bonds within a material and new bonds subsequently form. The newly formed bonds can be identical to the original bonds or different, resulting in a new material. The chemical bonds comprising the material dictate which wavelengths of light are absorbed. Understanding the processes of material damage and recovery individually will allow development of a predictive model for materials' optical properties as a function of exposure to the space environment. In order to characterize the properties, we have exposed samples of polyimide to high energy electrons comparable to those found in a geostationary earth orbit in order to simulate damage on orbit. The resultant changes in the material's optical fingerprint were then characterized in the wavelength range of 0.2 to 25 microns. The chemical modifications to the material that result in these optical changes have also been identified. After initial electron-induced damage, the rate and mechanism of material recovery have been monitored and found to be extremely sensitive to the exposure of the damaged material to air. The implications of that fact and experimental progress toward complete in vacuo characterization will be discussed.

  2. Surface Treatment

    NASA Technical Reports Server (NTRS)

    Park, Cheol (Inventor); Lowther, Sharon E. (Inventor); St.Clair, Terry L. (Inventor)

    2003-01-01

    A simple surface treatment process is provided which offers a high performance surface for a variety of applications at low cost. This novel surface treatment, which is particularly useful for Ti-6Al-4V alloys, is achieved by forming oxides on the surface with a two-step chemical process and without mechanical abrasion. First, after solvent degreasing, sulfuric acid is used to generate a fresh titanium surface. Next, an alkaline perborate solution is used to form an oxide on the surface. This acid-followed-by-base treatment is cost effective and relatively safe to use in commercial applications. In addition, it is chromium-free, and has been successfully used with a sol-gel coating to afford a strong adhesive bond that exhibits excellent durability after the bonded specimens have been subjected to a harsh 72 hour water boil immersion. Phenylethynyl containing adhesives were used to evaluate this surface treatment with a novel coupling agent containing both trialkoxysilane and phenylethynyl groups. 8 Claims, 16 Drawing Sheets

  3. Evaluation of superplastic forming and co-diffusion bonding of Ti-6Al-4V titanium alloy expanded sandwich structures

    NASA Technical Reports Server (NTRS)

    Arvin, G. H.; Israeli, L.; Stolpestad, J. H.; Stacher, G. W.

    1981-01-01

    The application of the superplastic forming/diffusion bonding (SPF/DB) process to supersonic cruise research is investigated. The capability of an SPF/DB titanium structure to meet the structural requirements of the inner wing area of the NASA arrow-wing advanced supersonic transport design is evaluated. Selection of structural concepts and their optimization for minimum weight, SPF/DB process optimization, fabrication of representative specimens, and specimen testing and evaluation are described. The structural area used includes both upper and lower wing panels, where the upper wing panel is used for static compression strength evaluation and the lower panel, in tension, is used for fracture mechanics evaluations. The individual test specimens, cut from six large panels, consist of 39 static specimens, 10 fracture mechanics specimens, and one each full size panel for compression stability and fracture mechanics testing. Tests are performed at temperatures of -54 C (-65 F), room temperature, and 260 C (500 F).

  4. 31 CFR 359.4 - In what form are Series I savings bonds issued?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (Continued) FISCAL SERVICE, DEPARTMENT OF THE TREASURY BUREAU OF THE PUBLIC DEBT OFFERING OF UNITED STATES SAVINGS BONDS, SERIES I General Information § 359.4 In what form are Series I savings bonds issued? Series...

  5. Low-Temperature Bonding of Bi0.5Sb1.5Te3 Thermoelectric Material with Cu Electrodes Using a Thin-Film In Interlayer

    NASA Astrophysics Data System (ADS)

    Lin, Yan-Cheng; Yang, Chung-Lin; Huang, Jing-Yi; Jain, Chao-Chi; Hwang, Jen-Dong; Chu, Hsu-Shen; Chen, Sheng-Chi; Chuang, Tung-Han

    2016-09-01

    A Bi0.5Sb1.5Te3 thermoelectric material electroplated with a Ni barrier layer and a Ag reaction layer was bonded with a Ag-coated Cu electrode at low temperatures of 448 K (175 °C) to 523 K (250 °C) using a 4- μm-thick In interlayer under an external pressure of 3 MPa. During the bonding process, the In thin film reacted with the Ag layer to form a double layer of Ag3In and Ag2In intermetallic compounds. No reaction occurred at the Bi0.5Sb1.5Te3/Ni interface, which resulted in low bonding strengths of about 3.2 MPa. The adhesion of the Bi0.5Sb1.5Te3/Ni interface was improved by precoating a 1- μm Sn film on the surface of the thermoelectric element and preheating it at 523 K (250 °C) for 3 minutes. In this case, the bonding strengths increased to a range of 9.1 to 11.5 MPa after bonding at 473 K (200 °C) for 5 to 60 minutes, and the shear-tested specimens fractured with cleavage characteristics in the interior of the thermoelectric material. The bonding at 448 K (175 °C) led to shear strengths ranging from 7.1 to 8.5 MPa for various bonding times between 5 and 60 minutes, which were further increased to the values of 10.4 to 11.7 MPa by increasing the bonding pressure to 9.8 MPa. The shear strengths of Bi0.5Sb1.5Te3/Cu joints bonded with the optimized conditions of the modified solid-liquid interdiffusion bonding process changed only slightly after long-term exposure at 473 K (200 °C) for 1000 hours.

  6. Experimental Design for Evaluation of Co-extruded Refractory Metal/Nickel Base Superalloy Joints

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    ME Petrichek

    2005-12-16

    Prior to the restructuring of the Prometheus Program, the NRPCT was tasked with delivering a nuclear space reactor. Potential NRPCT nuclear space reactor designs for the Prometheus Project required dissimilar materials to be in contact with each other while operating at extreme temperatures under irradiation. As a result of the high reactor core temperatures, refractory metals were the primary candidates for many of the reactor structural and cladding components. They included the tantalum-base alloys ASTAR-811C and Ta-10W, the niobium-base alloy FS-85, and the molybdenum base alloys Moly 41-47.5 Rhenium. The refractory metals were to be joined to candidate nickel basemore » alloys such as Haynes 230, Alloy 617, or Nimonic PE 16 either within the core if the nickel-base alloys were ultimately selected to form the outer core barrel, or at a location exterior to the core if the nickel-base alloys were limited to components exterior to the core. To support the need for dissimilar metal joints in the Prometheus Project, a co-extrusion experiment was proposed. There are several potential methods for the formation of dissimilar metal joints, including explosive bonding, friction stir welding, plasma spray, inertia welding, HIP, and co-extrusion. Most of these joining methods are not viable options because they result in the immediate formation of brittle intermetallics. Upon cooling, intermetallics form in the weld fusion zone between the joined metals. Because brittle intermetallics do not form during the initial bonding process associated with HIP, co-extrusion, and explosive bonding, these three joining procedures are preferred for forming dissimilar metal joints. In reference to a Westinghouse Astronuclear Laboratory report done under a NASA sponsored program, joints that were fabricated between similar materials via explosive bonding had strengths that were directly affected by the width of the diffusion barrier. It was determined that the diffusion zone should not exceed a critical thickness (0.0005 in.). A diffusion barrier that exceeded this thickness would likely fail. The joint fabrication method must therefore mechanically bond the two materials causing little or no interdiffusion upon formation. Co-extrusion fits this description since it forms a mechanical joint between two materials by using heat and pressure. The two materials to be extruded are first assembled and sealed within a co-extrusion billet which is subsequently heated and then extruded through a die. For a production application, once the joint is formed, it is dejacketed to remove the outer canister. The remaining piece consists of two materials bonded together with a thin diffusion barrier. Therefore, the long-term stability of the joint is determined primarily by the kinetics of interdiffusion reaction between the two materials. An experimental design for co-extrusion of refractory metals and nickel-based superalloys was developed to evaluate this joining process and determine the long-term stability of the joints.« less

  7. Bimetallic catalysis for C–C and C–X coupling reactions

    PubMed Central

    Pye, Dominic R.

    2017-01-01

    Bimetallic catalysis represents an alternative paradigm for coupling chemistry that complements the more traditional single-site catalysis approach. In this perspective, recent advances in bimetallic systems for catalytic C–C and C–X coupling reactions are reviewed. Behavior which complements that of established single-site catalysts is highlighted. Two major reaction classes are covered. First, generation of catalytic amounts of organometallic species of e.g. Cu, Au, or Ni capable of transmetallation to a Pd co-catalyst (or other traditional cross-coupling catalyst) has allowed important new C–C coupling technologies to emerge. Second, catalytic transformations involving binuclear bond-breaking and/or bond-forming steps, in some cases involving metal–metal bonds, represent a frontier area for C–C and C–X coupling processes.

  8. A theoretical and mass spectrometry study of the fragmentation of mycosporine-like amino acids

    NASA Astrophysics Data System (ADS)

    Cardozo, Karina H. M.; Vessecchi, Ricardo; Carvalho, Valdemir M.; Pinto, Ernani; Gates, Paul J.; Colepicolo, Pio; Galembeck, Sérgio E.; Lopes, Norberto P.

    2008-06-01

    In the present study, the mycosporine-like amino acids (MAAs) were isolated from the marine red alga Gracilaria tenuistipitata and analysed by high-resolution accurate-mass sequential mass spectrometry (MSn). In addition to the proposed fragmentation mechanism based on the MSn analysis, it is clearly demonstrated that the elimination of mass 15 is a radical processes taking place at the methoxyl substituent of the double bond. This characteristic loss of a methyl radical was studied by theoretical calculations and the homolytic cleavage of the OC bond is suggested to be dependent on the bond weakening. The protonation site of the MAAs was indicated by analysis of the Fukui functions and the relative Gibbs energies of the several possible protonated forms.

  9. Swift heavy ion irradiation of Pt nanocrystals: II. Structural changes and H desorption

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giulian, R.; Araujo, L.L.; Kluth, P.

    2014-09-24

    The structural properties and H desorption from embedded Pt nanocrystals (NCs) following irradiation with swift heavy ions were investigated as a function of energy and fluence. From x-ray absorption near-edge spectroscopy analysis, Pt-H bonding was identified in NCs annealed in a forming gas (95% N{sub 2} + 5% H{sub 2}) ambient. The H content decreased upon irradiation and the desorption process was NC-size dependent such that larger NCs required a higher fluence to achieve a H-free state. Pt-H bonding and NC dissolution both perturbed the NC structural parameters (coordination number, bond-length and mean-square relative displacement) as determined with extended x-raymore » absorption fine structure measurements.« less

  10. Nonholonomic Hamiltonian Method for Molecular Dynamics Simulations of Reacting Shocks

    NASA Astrophysics Data System (ADS)

    Fahrenthold, Eric; Bass, Joseph

    2015-06-01

    Conventional molecular dynamics simulations of reacting shocks employ a holonomic Hamiltonian formulation: the breaking and forming of covalent bonds is described by potential functions. In general these potential functions: (a) are algebraically complex, (b) must satisfy strict smoothness requirements, and (c) contain many fitted parameters. In recent research the authors have developed a new noholonomic formulation of reacting molecular dynamics. In this formulation bond orders are determined by rate equations and the bonding-debonding process need not be described by differentiable functions. This simplifies the representation of complex chemistry and reduces the number of fitted model parameters. Example applications of the method show molecular level shock to detonation simulations in nitromethane and RDX. Research supported by the Defense Threat Reduction Agency.

  11. 12 CFR 563.190 - Bonds for directors, officers, employees, and agents; form of and amount of bonds.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 12 Banks and Banking 5 2010-01-01 2010-01-01 false Bonds for directors, officers, employees, and agents; form of and amount of bonds. 563.190 Section 563.190 Banks and Banking OFFICE OF THRIFT... association's potential exposure to risk; provided, such determination shall be subject to approval by the...

  12. Anomalously enhanced hydration of aqueous electrolyte solution in hydrophobic carbon nanotubes to maintain stability.

    PubMed

    Ohba, Tomonori

    2014-02-24

    An understanding of the structure and behavior of electrolyte solutions in nanoenvironements is crucial not only for a wide variety of applications, but also for the development of physical, chemical, and biological processes. We demonstrate the structure and stability of electrolyte in carbon nanotubes using hybrid reverse Monte Carlo simulations of X-ray diffraction patterns. Hydrogen bonds between water are adequately formed in carbon nanotubes, although some hydrogen bonds are restricted by the interfaces of carbon nanotubes. The hydrogen bonding network of water in electrolyte in the carbon nanotubes is further weakened. On the other hand, formation of the ion hydration shell is significantly enhanced in the electrolyte in the carbon nanotubes in comparison to ion hydration in bulk electrolyte. The significant hydrogen bond and hydration shell formation are a result of gaining stability in the hydrophobic nanoenvironment. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Fabrication of Al/Mg/Al Composites via Accumulative Roll Bonding and Their Mechanical Properties

    PubMed Central

    Nie, Jinfeng; Liu, Mingxing; Wang, Fang; Zhao, Yonghao; Li, Yusheng; Cao, Yang; Zhu, Yuntian

    2016-01-01

    Al(1060)/Mg(AZ31)/Al(1060) multilayered composite was successfully produced using an accumulative roll bonding (ARB) process for up to four cycles at an elevated temperature (400 °C). The microstructure evolution of the composites and the bonding characteristics at the interfaces between Al and Mg layers with increasing ARB cycles were characterized through optical microscopy, field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM). It was found that the grains of Al and Mg layers were significantly refined and Al3Mg2 and Al12 Mg17 intermetallic compound layers formed at the Al/Mg bonding interfaces. The strength increased gradually and the ultimate tensile strength (UTS) reached a maximum value of about 240 MPa at the third pass. Furthermore, the strengthening mechanism of the composite was analyzed based on the fracture morphologies. PMID:28774072

  14. Synthesis of palm-based polyurethane-LiClO{sub 4} via prepolymerization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sien, Jason Wong Chee; School of Biosciences, Taylor’s University, Subang Jaya; Badri, Khairiah Haji

    2015-09-25

    Palm-based polyurethane (pPU) with varying lithium salt (LiClO{sub 4}) content was synthesized. Higher loading percentage of LiClO{sub 4} in the pPU led to the inhibition of prepolymerization process from taking place. Hydrogen bonded C=O was detected in the FTIR spectrum indicating the hydrogen bonding between the urethane bonds. Ordered complexed C=O was observed in the FTIR spectrum confirming the complex formation between urethane bond and Li{sup +} ion. DSC thermogram showed the increase in the LiClO{sub 4} content could increase the glass transition temperature. SEM micrographs exhibited that more bubbles were formed when the LiClO{sub 4} increased from 10 tomore » 30wt% indicating the reaction between free isocyanate groups with moisture presence in the salt due to the hygroscopic properties of LiClO{sub 4}.« less

  15. Observation of structure transition as a function of temperature in depositing hydrogenated sp2-rich carbon films

    NASA Astrophysics Data System (ADS)

    Wang, Yongfu; Gao, Kaixiong; Zhang, Junyan

    2018-05-01

    In this study, we carried out the transition experiments of graphite-like (GL) to fullerene-like (FL) structures by placing high temperature steel substrates in the depositing environment which can form FL hydrogenated carbon films. We investigated the changes of bond mixtures, H content, aromatic clusters and internal stress at the transition process, and proposed the transformation mechanism inferred from Raman, TEM cross-section, FTIR and XPS results. It was found that the size of aromatic clusters and accordingly graphene planes and the formation of edge dangling bonds were the key steps. H+ bombardment leaded to the splitting of large graphene planes (at GL stage) into more and smaller planes (at FL stage) and the formation of edge dangling bonds; Some of these dangling bonds were reduced by the formation of pentagons and subsequent curving of the smaller planes, which were an indicator of FL structures.

  16. The role of hydrogen bonding in the fluorescence quenching of 2,6-bis((E)-2-(benzoxazol-2-yl)vinyl)naphthalene (BBVN) in methanol.

    PubMed

    Hammam, Essam; Basahi, Jalal; Ismail, Iqbal; Hassan, Ibrahim; Almeelbi, Talal

    2017-02-15

    The excited state hydrogen bonding dynamics of BBVN in hydrogen donating methanol solvent was explored at the TD-BMK/cc-pVDZ level of theory with accounting for the bulk environment effects at the polarizable continuum model (PCM). The heteroatoms of the BBVN laser dye form hydrogen bonds with four methanol molecules. In the formed BBVN-(MeOH) 4 complex, the A-type hydrogen bond (N…HO), of an average strength of 25kJmol -1 , is twofold stronger than the B-type (O…HO) one. Upon photon absorption, the total HB binding energy increases from 78.5kJmol -1 in the ground state to 82.6kJmol -1 in the first singlet (S 1 ) excited state. In consequence of the hydrogen bonding interaction, the absorption band maximum of the BBVN-(MeOH) 4 complex, which was anticipated at 398nm (exp. 397), is redshifted by 5nm relative to that of the free dye in methanol. The spectral shift of the stretching vibrational mode for the hydrogen bonded hydroxyl groups (with a maximum shift of 285cm -1 ) from that of the free methanol indicated the elevated strengthening of hydrogen bonds in the excited state. The vibrational modes associated with hydrogen bonding provide effective accepting modes for the dissipation of the excitation energy, thus, decreasing the fluorescence quantum yield of BBVN in alcohols as compared to that in the polar aprotic solvents. Since there is no sign of photochemistry or phosphorescence, it seems reasonable in view of the outcomes of this study to assign the major decay process of the excited singlet (S 1 ) of BBVN in alcohols to vibronically induced internal conversion (IC) facilitated by hydrogen bonding. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Direct bonding of gallium nitride to silicon carbide: Physical, and electrical characterization

    NASA Astrophysics Data System (ADS)

    Lee, Jaeseob

    The direct bonding method is applied to the GaN/SiC system, and the processing conditions for successful direct bonding are clarified. Direct bonding of GaN/SiC is achieved at 900°C. The direct bonding of GaN to Si-face SiC is very dependent on the choice of chemical treatments, but the bonding of GaN to C-face SiC is less dependent on surface preparation. If a native oxide is present when the bonded interface is prepared, the current through the interface is decreased, which is attributed to an energy barrier due to the presence of charged interface states. TEM images indicate 10nm spaced dislocations at the interface for the GaN/SiC (Si-face), and ˜6nm for the GaN/SiC (C-face), which form to accommodate the lattice mismatch (3.4%) and twist (1˜2°) and tilt misfit (0.2° for Si-face SiC and 3° for C-face SiC). In some regions (˜30%) an amorphous oxide layer forms at the interface, which is attributed to inadequate surface preparation prior to bonding. The strain of the GaN film with a Ga/C interface was ˜0.1%, tensile strain, and that of GaN with a Ga/Si interface was ˜0.2%, tensile strain. Our analysis indicates that the GaN/SiC thermal misfit dominates the strain of the GaN after bonding. The electrical characteristics of n-p GaN/SiC heterojunctions display diode ideality factors, saturation currents, energy barrier heights, and band offsets of 1.5 +/- 0.1, 10-13 A/cm 2, 0.75 +/- 0.10 eV, and DeltaEC = 0.87 +/- 0.10 eV for the Ga/Si interface and 1.2 +/- 0.1, 10 -16 A/cm2, 0.56 +/- 0.10 eV, and Delta EC = 0.46 +/- 0.10 eV for the Ga/C interface.

  18. Tautomeric and ionisation forms of dopamine and tyramine in the solid state

    NASA Astrophysics Data System (ADS)

    Cruickshank, Laura; Kennedy, Alan R.; Shankland, Norman

    2013-11-01

    Crystallisation of the phenylethylamine neurotransmitter dopamine from basic aqueous solution yielded the 3-phenoxide Zwitterionic tautomer, despite this being a minority form in the solution state. In the crystal structure, dopamine has a dimeric [OCCOH]2 hydrogen bonded catechol motif that expands through Nsbnd H⋯O interactions to give a 2-dimensional sheet of classical hydrogen bonds. These sheets are further interconnected by Nsbnd H⋯π interactions. The structurally related base tyramine crystallises under similar conditions as a hemihydrate with all four possible species of tyramine present (cationic, anionic, Zwitterionic and neutral) in the crystal structure. Single crystal X-ray diffraction studies at 121 and 293 K showed dynamic hydrogen atom disorder for the phenol/phenoxide group, suggesting that the tyramine speciation observed arises from a solid-state process.

  19. Tautomerism of monochalcogenosilanoic acids CH3Si(=O)XH (X D S, Se, Te) in the gas phase and in the polar and aprotic solution: An ab initio computational investigation

    NASA Astrophysics Data System (ADS)

    Li, Qiang-Gen; Deng, Chao; Ren, Yi; Wong, Ning-Bew; Chu, San-Yan; Wang, Xin

    Computational investigations by an ab initio molecular orbital method (HF and MP2) with the 6-311+G(d,p) and 6-311++G(2df, 2pd) basis sets on the tautomerism of three monochalcogenosilanoic acids CH3Si(=O)XH (X D S, Se, and Te) in the gas phase and a polar and aprotic solution tetrahydrofuran (THF) was undertaken. Calculated results show that the silanol forms CH3Si(=X)OH are much more stable than the silanone forms CH3Si(=O)XH in the gas-phase, which is different from the monochalcogenocarboxylic acids, where the keto forms CH3C(=O)XH are dominant. This situation may be attributed to the fact that the Si=O and O=H single bonds in the silanol forms are stronger than the Si=X and X=H single bonds in the silanone forms, respectively, even though the Si=X (X D S, Se, and Te) double bonds are much weaker than the Si=O double bondE These results indicate that the stability of the monochalcogenosilanoic acid tautomers is not determined by the double bond energies, contrary to the earlier explanation based on the incorrect assumption that the Si=S double bond is stronger than the S=O double bond for the tautomeric equilibrium of RSi(=O)SH (R=H, F, Cl, CH3, OH, NH2) to shift towards the thione forms [RSi(=S)OH]. The binding with CH3OCH3 enhances the preference of the silanol form in the tautomeric equilibrium, and meanwhile significantly lowers the tautomeric barriers by more than 34 kJ/mol in THF solution.0

  20. 32 CFR Appendix E to Part 623 - Surety Bond (DA Form 4881-3-R)

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 3 2010-07-01 2010-07-01 true Surety Bond (DA Form 4881-3-R) E Appendix E to Part 623 National Defense Department of Defense (Continued) DEPARTMENT OF THE ARMY SUPPLIES AND EQUIPMENT LOAN OF ARMY MATERIEL Pt. 623, App. E Appendix E to Part 623—Surety Bond (DA Form 4881-3-R...

  1. Selective Loss of Cysteine Residues and Disulphide Bonds in a Potato Proteinase Inhibitor II Family

    PubMed Central

    Li, Xiu-Qing; Zhang, Tieling; Donnelly, Danielle

    2011-01-01

    Disulphide bonds between cysteine residues in proteins play a key role in protein folding, stability, and function. Loss of a disulphide bond is often associated with functional differentiation of the protein. The evolution of disulphide bonds is still actively debated; analysis of naturally occurring variants can promote understanding of the protein evolutionary process. One of the disulphide bond-containing protein families is the potato proteinase inhibitor II (PI-II, or Pin2, for short) superfamily, which is found in most solanaceous plants and participates in plant development, stress response, and defence. Each PI-II domain contains eight cysteine residues (8C), and two similar PI-II domains form a functional protein that has eight disulphide bonds and two non-identical reaction centres. It is still unclear which patterns and processes affect cysteine residue loss in PI-II. Through cDNA sequencing and data mining, we found six natural variants missing cysteine residues involved in one or two disulphide bonds at the first reaction centre. We named these variants Pi7C and Pi6C for the proteins missing one or two pairs of cysteine residues, respectively. This PI-II-7C/6C family was found exclusively in potato. The missing cysteine residues were in bonding pairs but distant from one another at the nucleotide/protein sequence level. The non-synonymous/synonymous substitution (Ka/Ks) ratio analysis suggested a positive evolutionary gene selection for Pi6C and various Pi7C. The selective deletion of the first reaction centre cysteine residues that are structure-level-paired but sequence-level-distant in PI-II illustrates the flexibility of PI-II domains and suggests the functionality of their transient gene versions during evolution. PMID:21494600

  2. Topology of charge density of flucytosine and related molecules and characteristics of their bond charge distributions.

    PubMed

    Murgich, Juan; Franco, Héctor J; San-Blas, Gioconda

    2006-08-24

    The molecular charge distribution of flucytosine (4-amino-5-fluoro-2-pyrimidone), uracil, 5-fluorouracil, and thymine was studied by means of density functional theory calculations (DFT). The resulting distributions were analyzed by means of the atoms in molecules (AIM) theory. Bonds were characterized through vectors formed with the charge density value, its Laplacian, and the bond ellipticity calculated at the bond critical point (BCP). Within each set of C=O, C-H, and N-H bonds, these vectors showed little dispersion. C-C bonds formed three different subsets, one with a significant degree of double bonding, a second corresponding to single bonds with a finite ellipticity produced by hyperconjugation, and a third one formed by a pure single bond. In N-C bonds, a decrease in bond length (an increase in double bond character) was not reflected as an increase in their ellipticity, as in all C-C bonds studied. It was also found that substitution influenced the N-C, C-O, and C-C bond ellipticity much more than density and its Laplacian at the BCP. The Laplacian of charge density pointed to the existence of both bonding and nonbonding maxima in the valence shell charge concentration of N, O, and F, while only bonding ones were found for the C atoms. The nonbonding maxima related to the sites for electrophilic attack and H bonding in O and N, while sites of nucleophilic attack were suggested by the holes in the valence shell of the C atoms of the carbonyl groups.

  3. 77 FR 37098 - Proposed Collection; Comment Request for Form 8038-CP

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-20

    ... 8038-CP AGENCY: Internal Revenue Service (IRS), Treasury. ACTION: Notice and request for comments... Form 8038-CP, Return for Credit Payments to Issuers of Qualified Bonds. DATES: Written comments should... Issuers of Qualified Bonds. OMB Number: 1545-2142. Form Number: Form 8038-CP. Abstract: Form 8038-CP...

  4. Investigation of kinetics and morphology development for polyurethane-urea extended by DMTDA

    NASA Astrophysics Data System (ADS)

    Li, Zai-feng; Li, Jin-yan; Sun, Jian; Sun, Bao-qun; Wang, Jin-jing; Shen, Qiang

    2008-06-01

    The relationship between the reactions kinetics and morphology development during the polyurethaneurea (PUU) curing process has been investigated simultaneously by in situ Fourier transform infrared spectroscopy (FTIR). The data of the FTIR spectra showed that with the increase of conversion, the absorbance of NH bands increases and its band sites shifts to lower wavenumbers; the absorbance of free urethane carbonyl kept nearly constant at low conversion, and then decreased much because of the interaction of the formed urea links, and then changed little at high conversion owing to the diffuse control. The band sites of hydrogen bonded urea carbonyl similarly shifted to lower wavenumbers and the absorbance of the hydrogen bonded urea carbonyl, associated with the phase separation of hard segments, became stronger with buildup of hydrogen bond between urea links. The carbonyl bands available during curing process were further assigned. Both interactions, such as hydrogenised effect and phase separation, played a major role in the matrix formation of the PUU polymer.

  5. Fundamental aspects of recoupled pair bonds. I. Recoupled pair bonds in carbon and sulfur monofluoride

    NASA Astrophysics Data System (ADS)

    Dunning, Thom H.; Xu, Lu T.; Takeshita, Tyler Y.

    2015-01-01

    The number of singly occupied orbitals in the ground-state atomic configuration of an element defines its nominal valence. For carbon and sulfur, with two singly occupied orbitals in their 3P ground states, the nominal valence is two. However, in both cases, it is possible to form more bonds than indicated by the nominal valence—up to four bonds for carbon and six bonds for sulfur. In carbon, the electrons in the 2s lone pair can participate in bonding, and in sulfur the electrons in both the 3p and 3s lone pairs can participate. Carbon 2s and sulfur 3p recoupled pair bonds are the basis for the tetravalence of carbon and sulfur, and 3s recoupled pair bonds enable sulfur to be hexavalent. In this paper, we report generalized valence bond as well as more accurate calculations on the a4Σ- states of CF and SF, which are archetypal examples of molecules that possess recoupled pair bonds. These calculations provide insights into the fundamental nature of recoupled pair bonds and illustrate the key differences between recoupled pair bonds formed with the 2s lone pair of carbon, as a representative of the early p-block elements, and recoupled pair bonds formed with the 3p lone pair of sulfur, as a representative of the late p-block elements.

  6. Process for producing an activated carbon adsorbent with integral heat transfer apparatus

    NASA Technical Reports Server (NTRS)

    Jones, Jack A. (Inventor); Yavrouian, Andre H. (Inventor)

    1996-01-01

    A process for producing an integral adsorbent-heat exchanger apparatus useful in ammonia refrigerant heat pump systems. In one embodiment, the process wets an activated carbon particles-solvent mixture with a binder-solvent mixture, presses the binder wetted activated carbon mixture on a metal tube surface and thereafter pyrolyzes the mixture to form a bonded activated carbon matrix adjoined to the tube surface. The integral apparatus can be easily and inexpensively produced by the process in large quantities.

  7. Reduction of Surface Errors over a Wide Range of Spatial Frequencies Using a Combination of Electrolytic In-Process Dressing Grinding and Magnetorheological Finishing

    NASA Astrophysics Data System (ADS)

    Kunimura, Shinsuke; Ohmori, Hitoshi

    We present a rapid process for producing flat and smooth surfaces. In this technical note, a fabrication result of a carbon mirror is shown. Electrolytic in-process dressing (ELID) grinding with a metal bonded abrasive wheel, then a metal-resin bonded abrasive wheel, followed by a conductive rubber bonded abrasive wheel, and finally magnetorheological finishing (MRF) were performed as the first, second, third, and final steps, respectively in this process. Flatness over the whole surface was improved by performing the first and second steps. After the third step, peak to valley (PV) and root mean square (rms) values in an area of 0.72 x 0.54 mm2 on the surface were improved. These values were further improved after the final step, and a PV value of 10 nm and an rms value of 1 nm were obtained. Form errors and small surface irregularities such as surface waviness and micro roughness were efficiently reduced by performing ELID grinding using the above three kinds of abrasive wheels because of the high removal rate of ELID grinding, and residual small irregularities were reduced by short time MRF. This process makes it possible to produce flat and smooth surfaces in several hours.

  8. Anisotropy of atomic bonds formed by p-type dopants in bulk GaN crystals

    NASA Astrophysics Data System (ADS)

    Lawniczak-Jablonska, K.; Suski, T.; Gorczyca, I.; Christensen, N. E.; Libera, J.; Kachniarz, J.; Lagarde, P.; Cortes, R.; Grzegory, I.

    The anisotropy of atomic bonds formed by acceptor dopants with nitrogen in bulk wurtzite GaN crystals was studied by means of linearly polarized synchrotron radiation used in measurements of X-ray-absorption spectra for the K-edgeof Mg and Zn dopants. These spectra correspond to i) a single acceptor N bond along the c-axis and ii) three bonds realized with N atoms occupying the ab-plane perpendicular to the c-axis. The Zn dopant formed resonant spectra similar to that characteristic for Ga cations. In the case of the Mg dopant, similarity to Ga cations was observed for triple bonds in the ab-plane, only. Practically no resonant structure for spectra detected along the c-axis was observed. The absorption spectra were compared with ab initio calculations using the full-potential linear muffin-tin-orbital method. These calculations were also used for determination of the bond length for Mg-N and Zn-N in wurtzite GaN crystals and show that introducing dopants causes an increase of the lengths of the bonds formed by both dopants. Extended X-ray-absorption fine-structure measurements performed for bulk GaN:Zn confirmed the prediction of the theory in the case of the Zn-N bond. Finally, it is suggested that the anisotropy in the length of the Mg-N bonds, related to their larger strength in the case of bonds in the ab-plane, can explain preferential formation of a superlattice consisting of Mg-rich layers arranged in ab-planes of several bulk GaN:Mg crystals observed by transmission electron microscopy. Within the sensitivity of the method used, no parasitic metallic clusters or oxide compounds formed by the considered acceptors in GaN crystals were found.

  9. Specificity Determinants of Proteolytic Processing of Aspergillus PacC Transcription Factor Are Remote from the Processing Site, and Processing Occurs in Yeast If pH Signalling Is Bypassed

    PubMed Central

    Mingot, José-Manuel; Tilburn, Joan; Diez, Eliecer; Bignell, Elaine; Orejas, Margarita; Widdick, David A.; Sarkar, Sovan; Brown, Christopher V.; Caddick, Mark X.; Espeso, Eduardo A.; Arst, Herbert N.; Peñalva, Miguel A.

    1999-01-01

    The Aspergillus nidulans transcription factor PacC, which mediates pH regulation, is proteolytically processed to a functional form in response to ambient alkaline pH. The full-length PacC form is unstable in the presence of an operational pH signal transduction pathway, due to processing to the relatively stable short functional form. We have characterized and used an extensive collection of pacC mutations, including a novel class of “neutrality-mimicking” pacC mutations having aspects of both acidity- and alkalinity-mimicking phenotypes, to investigate a number of important features of PacC processing. Analysis of mutant proteins lacking the major translation initiation residue or truncated at various distances from the C terminus showed that PacC processing does not remove N-terminal residues, indicated that processing yields slightly heterogeneous products, and delimited the most upstream processing site to residues ∼252 to 254. Faithful processing of three mutant proteins having deletions of a region including the predicted processing site(s) and of a fourth having 55 frameshifted residues following residue 238 indicated that specificity determinants reside at sequences or structural features located upstream of residue 235. Thus, the PacC protease cuts a peptide bond(s) remote from these determinants, possibly thereby resembling type I endonucleases. Downstream of the cleavage site, residues 407 to 678 are not essential for processing, but truncation at or before residue 333 largely prevents it. Ambient pH apparently regulates the accessibility of PacC to proteolytic processing. Alkalinity-mimicking mutations L259R, L266F, and L340S favor the protease-accessible conformation, whereas a protein with residues 465 to 540 deleted retains a protease-inaccessible conformation, leading to acidity mimicry. Finally, not only does processing constitute a crucial form of modulation for PacC, but there is evidence for its conservation during fungal evolution. Transgenic expression of a truncated PacC protein, which was processed in a pH-independent manner, showed that appropriate processing can occur in Saccharomyces cerevisiae. PMID:9891072

  10. 21 CFR 1316.98 - Substitute res bond in a judicial forfeiture action against a conveyance.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... characteristics that particularly suit it for use in illegal activities. This bond must be in the form of a.... A bond in the form of a cashier's check will be considered as paid once the check has been accepted...

  11. 21 CFR 1316.98 - Substitute res bond in a judicial forfeiture action against a conveyance.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... characteristics that particularly suit it for use in illegal activities. This bond must be in the form of a.... A bond in the form of a cashier's check will be considered as paid once the check has been accepted...

  12. 21 CFR 1316.98 - Substitute res bond in a judicial forfeiture action against a conveyance.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... characteristics that particularly suit it for use in illegal activities. This bond must be in the form of a.... A bond in the form of a cashier's check will be considered as paid once the check has been accepted...

  13. Evolutionary Cell Computing: From Protocells to Self-Organized Computing

    NASA Technical Reports Server (NTRS)

    Colombano, Silvano; New, Michael H.; Pohorille, Andrew; Scargle, Jeffrey; Stassinopoulos, Dimitris; Pearson, Mark; Warren, James

    2000-01-01

    On the path from inanimate to animate matter, a key step was the self-organization of molecules into protocells - the earliest ancestors of contemporary cells. Studies of the properties of protocells and the mechanisms by which they maintained themselves and reproduced are an important part of astrobiology. These studies also have the potential to greatly impact research in nanotechnology and computer science. Previous studies of protocells have focussed on self-replication. In these systems, Darwinian evolution occurs through a series of small alterations to functional molecules whose identities are stored. Protocells, however, may have been incapable of such storage. We hypothesize that under such conditions, the replication of functions and their interrelationships, rather than the precise identities of the functional molecules, is sufficient for survival and evolution. This process is called non-genomic evolution. Recent breakthroughs in experimental protein chemistry have opened the gates for experimental tests of non-genomic evolution. On the basis of these achievements, we have developed a stochastic model for examining the evolutionary potential of non-genomic systems. In this model, the formation and destruction (hydrolysis) of bonds joining amino acids in proteins occur through catalyzed, albeit possibly inefficient, pathways. Each protein can act as a substrate for polymerization or hydrolysis, or as a catalyst of these chemical reactions. When a protein is hydrolyzed to form two new proteins, or two proteins are joined into a single protein, the catalytic abilities of the product proteins are related to the catalytic abilities of the reactants. We will demonstrate that the catalytic capabilities of such a system can increase. Its evolutionary potential is dependent upon the competition between the formation of bond-forming and bond-cutting catalysts. The degree to which hydrolysis preferentially affects bonds in less efficient, and therefore less well-ordered, peptides is also critical to evolution of a non-genomic system. Based on these results, a new computational object called a "molnet" is defined. Like a neural network, it is formed of interconnected units that send "signals" to each other. Like molecules, neural networks have a specific function once their structure is defined. The difference between a molnet and traditional neural networks, is that input to molnets is not simply passed along and processed from input to output units, but rather it is utilized to form and break connections(bonds), and thus to form new structures. Molnets represent a powerful tool that can be used to understand the conditions under which chemical systems can form large molecules, such as proteins, and display ever more complex functions. This has direct applications, for example to the design of smart,synthetic fabrics. Additional information is contained in the original.

  14. TEM Observation of the Ti Interlayer Between SiC Substrates During Diffusion Bonding

    NASA Technical Reports Server (NTRS)

    Tsuda, Hiroshi; Mori, Shigeo; Halbig, Michael C.; Singh, Mori

    2012-01-01

    Diffusion bonding was carried out to join SiC to SiC substrates using titanium interlayers. In this study, 10 m and 20 m thick physical vapor deposited (PVD) Ti surface coatings, and 10 and 20 m thick Ti foils were used. Diffusion bonding was performed at 1250 C for PVD Ti coatings and 1200 C for Ti foil. This study investigates the microstructures of the phases formed during diffusion bonding through TEM and selected-area diffraction analysis of a sample prepared with an FIB, which allows samples to be taken from the reacted area. In all samples, Ti3SiC2, Ti5Si3Cx and TiSi2 phases were identified. In addition, TiC and unknown phases also appeared in the samples in which Ti foils were used as interlayers. Furthermore, Ti3SiC2 phases show high concentration and Ti5Si3Cx formed less when samples were processed at a higher temperature and thinner interlayer samples were used. It appears that the formation of microcracks is caused by the presence of intermediate phase Ti5Si3Cx, which has anisotropic thermal expansion, and by the presence of an unidentified Ti-Si-C ternary phase with relatively low Si content.

  15. Development of a Novel Ni-Fe-Cr-B-Si Interlayer Material for Transient Liquid Phase Bonding of Inconel 718

    NASA Astrophysics Data System (ADS)

    Tarai, U. K.; Robi, P. S.; Pal, Sukhomay

    2018-04-01

    A Ni-Cr-Fe-Si-B based interlayer material was developed by mechanical alloying (MA) process in a high-energy planetary ball mill. Equiaxed alloy powders of size 12 µm was obtained after milling for 50 hours. X-ray diffraction analysis of the milled powder revealed that milling of elemental powders initially resulted in microcrystalline alloy powder having face centered cubic structure, which on subsequent milling resulted in nano-crystallice alloy powder with a crystallite size of 3.2 nm. XRD analysis also reveals formation of metastable eutectic alloys resulting in lowering of the melting point of the interlayer material to 1025 °C. IN 718 superalloy samples were joined at 1050°C using the developed interlayer. A homogeneous joint was formed by the newly developed interlayer material. Three different zones were observed at the bond (i) isothermally solidified zone, (ii) diffusion affected zone and (iii) unaffected base metal. In the diffusion-affected zone, boron was present at the grain boundaries of Ni γ matrix in bulky metal borides form. The diffusion of boron from interlayer material into the base material was mechanism of isothermal solidification and bond formation in transient liquid phase bonding of IN 718.

  16. Method of waste stabilization via chemically bonded phosphate ceramics

    DOEpatents

    Wagh, Arun S.; Singh, Dileep; Jeong, Seung-Young

    1998-01-01

    A method for regulating the reaction temperature of a ceramic formulation process is provided comprising supplying a solution containing a monovalent alkali metal; mixing said solution with an oxide powder to create a binder; contacting said binder with bulk material to form a slurry; and allowing the slurry to cure. A highly crystalline waste form is also provided consisting of a binder containing potassium and waste substrate encapsulated by the binder.

  17. Method of waste stabilization via chemically bonded phosphate ceramics

    DOEpatents

    Wagh, A.S.; Singh, D.; Jeong, S.Y.

    1998-11-03

    A method for regulating the reaction temperature of a ceramic formulation process is provided comprising supplying a solution containing a monovalent alkali metal; mixing said solution with an oxide powder to create a binder; contacting said binder with bulk material to form a slurry; and allowing the slurry to cure. A highly crystalline waste form is also provided consisting of a binder containing potassium and waste substrate encapsulated by the binder. 3 figs.

  18. Numerical Simulation of Transient Liquid Phase Bonding under Temperature Gradient

    NASA Astrophysics Data System (ADS)

    Ghobadi Bigvand, Arian

    Transient Liquid Phase bonding under Temperature Gradient (TG-TLP bonding) is a relatively new process of TLP diffusion bonding family for joining difficult-to-weld aerospace materials. Earlier studies have suggested that in contrast to the conventional TLP bonding process, liquid state diffusion drives joint solidification in TG-TLP bonding process. In the present work, a mass conservative numerical model that considers asymmetry in joint solidification is developed using finite element method to properly study the TG-TLP bonding process. The numerical results, which are experimentally verified, show that unlike what has been previously reported, solid state diffusion plays a major role in controlling the solidification behavior during TG-TLP bonding process. The newly developed model provides a vital tool for further elucidation of the TG-TLP bonding process.

  19. Transient liquid phase ceramic bonding

    DOEpatents

    Glaeser, Andreas M.

    1994-01-01

    Ceramics are joined to themselves or to metals using a transient liquid phase method employing three layers, one of which is a refractory metal, ceramic or alloy. The refractory layer is placed between two metal layers, each of which has a lower melting point than the refractory layer. The three layers are pressed between the two articles to be bonded to form an assembly. The assembly is heated to a bonding temperature at which the refractory layer remains solid, but the two metal layers melt to form a liquid. The refractory layer reacts with the surrounding liquid and a single solid bonding layer is eventually formed. The layers may be designed to react completely with each other and form refractory intermetallic bonding layers. Impurities incorporated into the refractory metal may react with the metal layers to form refractory compounds. Another method for joining ceramic articles employs a ceramic interlayer sandwiched between two metal layers. In alternative embodiments, the metal layers may include sublayers. A method is also provided for joining two ceramic articles using a single interlayer. An alternate bonding method provides a refractory-metal oxide interlayer placed adjacent to a strong oxide former. Aluminum or aluminum alloys are joined together using metal interlayers.

  20. Polymorphs and polymorphic cocrystals of temozolomide.

    PubMed

    Babu, N Jagadeesh; Reddy, L Sreenivas; Aitipamula, Srinivasulu; Nangia, Ashwini

    2008-07-07

    Crystal polymorphism in the antitumor drug temozolomide (TMZ), cocrystals of TMZ with 4,4'-bipyridine-N,N'-dioxide (BPNO), and solid-state stability were studied. Apart from a known X-ray crystal structure of TMZ (form 1), two new crystalline modifications, forms 2 and 3, were obtained during attempted cocrystallization with carbamazepine and 3-hydroxypyridine-N-oxide. Conformers A and B of the drug molecule are stabilized by intramolecular amide N--HN(imidazole) and N--HN(tetrazine) interactions. The stable conformer A is present in forms 1 and 2, whereas both conformers crystallized in form 3. Preparation of polymorphic cocrystals I and II (TMZBPNO 1:0.5 and 2:1) were optimized by using solution crystallization and grinding methods. The metastable nature of polymorph 2 and cocrystal II is ascribed to unused hydrogen-bond donors/acceptors in the crystal structure. The intramolecularly bonded amide N-H donor in the less stable structure makes additional intermolecular bonds with the tetrazine C==O group and the imidazole N atom in stable polymorph 1 and cocrystal I, respectively. All available hydrogen-bond donors and acceptors are used to make intermolecular hydrogen bonds in the stable crystalline form. Synthon polymorphism and crystal stability are discussed in terms of hydrogen-bond reorganization.

  1. Metallic Thin-Film Bonding and Alloy Generation

    NASA Technical Reports Server (NTRS)

    Peotter, Brian S. (Inventor); Fryer, Jack Merrill (Inventor); Campbell, Geoff (Inventor); Droppers, Lloyd (Inventor)

    2016-01-01

    Diffusion bonding a stack of aluminum thin films is particularly challenging due to a stable aluminum oxide coating that rapidly forms on the aluminum thin films when they are exposed to atmosphere and the relatively low meting temperature of aluminum. By plating the individual aluminum thin films with a metal that does not rapidly form a stable oxide coating, the individual aluminum thin films may be readily diffusion bonded together using heat and pressure. The resulting diffusion bonded structure can be an alloy of choice through the use of a carefully selected base and plating metals. The aluminum thin films may also be etched with distinct patterns that form a microfluidic fluid flow path through the stack of aluminum thin films when diffusion bonded together.

  2. 75 FR 10025 - Proposed Collection; Comment Request for Forms 8038, 8038-G, and 8038-GC

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-04

    ... 8038, 8038-G, and 8038-GC AGENCY: Internal Revenue Service (IRS), Treasury. ACTION: Notice and request... comments concerning Form 8038, Information Return for Tax-Exempt Private Activity Bond Issues, Form 8038-G... Bond Issues (Form 8038), Information Return for Tax-Exempt Governmental Obligation (Form 8038-G), and...

  3. Characterisation of the aqueous corrosion process in NdFeB melt spun ribbon and MQI bonded magnets

    NASA Astrophysics Data System (ADS)

    McCain, Stephen

    A major factor limiting the use and longevity of rare earth based magnetic materials is their susceptibility to aqueous corrosion and associated detrimental effects upon the magnetic properties of the material. This process was investigated through a combination of exposure to simulated environmental conditions and hydrogen absorption/desorption studies (HADS) in conjunction with magnetic characterisation. This study utilises NdFeB MQP-B melt-spun ribbon manufactured by Magnequench, in the form of MQI bonded magnets and also in its unbonded state as MQ powder. Specifically, it was concerned with how effective a variety of bonding media (epoxy resin,PTFE, zinc) and surface coatings (PTFE, Qsil, zinc LPPS, Dex-Cool) were at limiting the impact of aqueous corrosion in MQI bonded magnets. To characterise the effect of hydrogen absorption upon the magnetic properties of the MQP-B, hydrogen uptake was induced followed by a series of outgassing heat treatments with subsequent magnetic characterisation accompanied by HADS techniques performed after each outgas. This allowed comparisons to be made between the effects of aqueous corrosion process and hydrogen absorption upon the magnetic properties of the alloy.. This study has clearly demonstrated the link between the abundance of environmental moisture and rate of Hci losses in MQI bonded magnets. In addition to this the key mechanism responsible for the degradation of magnetic properties has been identified. These losses have been attributed to the absorption of hydrogen generated by the dissociation of water in the presence of NdFeB during the aqueous corrosion process. It has been shown that the use of a bonding media that is impermeable to water can limit the effects of aqueous corrosion by limiting water access to the Magnequench particles (MQP) and also the positive effects of the use of suitable surface coatings has been shown to be effective for the same reason..

  4. Effect of temperature on compact layer of Pt electrode in PEMFCs by first-principles molecular dynamics calculations

    NASA Astrophysics Data System (ADS)

    He, Yang; Chen, Changfeng; Yu, Haobo; Lu, Guiwu

    2017-01-01

    Formation of the double-layer electric field and capacitance of the water-metal interface is of significant interest in physicochemical processes. In this study, we perform first- principles molecular dynamics simulations on the water/Pt(111) interface to investigate the temperature dependence of the compact layer electric field and capacitance based on the calculated charge densities. On the Pt (111) surface, water molecules form ice-like structures that exhibit more disorder along the height direction with increasing temperature. The Osbnd H bonds of more water molecules point toward the Pt surface to form Ptsbnd H covalent bonds with increasing temperature, which weaken the corresponding Osbnd H bonds. In addition, our calculated capacitance at 300 K is 15.2 mF/cm2, which is in good agreement with the experimental results. As the temperature increases from 10 to 450 K, the field strength and capacitance of the compact layer on Pt (111) first increase and then decrease slightly, which is significant for understanding the water/Pt interface from atomic level.

  5. Molecular Determinants and Bottlenecks in the Dissociation Dynamics of Biotin-Streptavidin.

    PubMed

    Tiwary, Pratyush

    2017-12-07

    Biotin-streptavidin is a very popular system used to gain insight into protein-ligand interactions. In its tetrameric form, it is well-known for its exceptionally high kinetic stability, being one of the strongest known noncovalent interactions in nature, and it is heavily used across the biotechnological industry. In this work, we gain understanding of the molecular determinants and bottlenecks in the dissociation of the dimeric biotin-streptavidin system in wild type and with a point mutation. Using recently proposed enhanced sampling methods with full atomistic resolution, we reproduce the experimentally reported effect of the mutation on the dissociation rate. We also answer a longstanding question regarding cause/effect in the coupled events of bond stretching and bond hydration during dissociation and establish that in this system, it is the bond stretching and not hydration which forms the bottleneck in the early parts of the dissociation process. We believe these calculations represent a step forward in the use of atomistic simulations to study pharmacokinetics. An improved understanding of biotin-streptavidin dissociation dynamics should also have direct benefits in biotechnological and nanobiotechnological applications.

  6. Urethane/Silicone Adhesives for Bonding Flexing Metal Parts

    NASA Technical Reports Server (NTRS)

    Edwards, Paul D.

    2004-01-01

    Adhesives that are blends of commercially available urethane and silicone adhesives have been found to be useful for bonding metal parts that flex somewhat during use. These urethane/silicone adhesives are formulated for the specific metal parts to be bonded. The bonds formed by these adhesives have peel and shear strengths greater than those of bonds formed by double-sided tapes and by other adhesives, including epoxies and neat silicones. In addition, unlike the bonds formed by epoxies, the bonds formed by these adhesives retain flexibility. In the initial application for which the urethane/silicone adhesives were devised, there was a need to bond spring rings, which provide longitudinal rigidity for inflatable satellite booms, with the blades that provide the booms axial strength. The problem was to make the bonds withstand the stresses, associated with differences in curvature between the bonded parts, that arose when the booms were deflated and the springs were compressed. In experiments using single adhesives (that is, not the urethane/ silicone blends), the bonds were broken and, in each experiment, it was found that the adhesive bonded well with either the ring or with the blade, but not both. After numerous experiments, the adhesive that bonded best with the rings and the adhesive that bonded best with the blades were identified. These adhesives were then blended and, as expected, the blend bonded well with both the rings and the blades. The two adhesives are Kalex (or equivalent) high-shear-strength urethane and Dow Corning 732 (or equivalent) silicone. The nominal mixture ratio is 5 volume parts of the urethane per 1 volume part of the silicone. Increasing the proportion of silicone makes the bond weaker but more flexible, and decreasing the proportion of silicone makes the bond stronger but more brittle. The urethane/silicone blend must be prepared and used quickly because of the limited working time of the urethane: The precursor of the urethane adhesive is supplied in a two-part form, comprising a resin and a hardener that must be mixed. The resulting urethane adhesive has a working time of 3 to 5 minutes. To prepare the urethane/silicone blend, one must quickly add the silicone to the urethane adhesive and mix it in thoroughly within the working time of the urethane. Once the urethane/silicone blend has been mixed and applied to the bond surfaces, it takes about 2 hours for the adhesive to cure under pressure. However, it takes about 24 hours for the adhesive to reach full strength.

  7. 46 CFR Appendix A to Subpart C of... - Ocean Transportation Intermediary (OTI) Bond Form [Form 48

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 9 2011-10-01 2011-10-01 false Ocean Transportation Intermediary (OTI) Bond Form [Form... OCEAN SHIPPING IN FOREIGN COMMERCE LICENSING, FINANCIAL RESPONSIBILITY REQUIREMENTS, AND GENERAL DUTIES FOR OCEAN TRANSPORTATION INTERMEDIARIES Financial Responsibility Requirements; Claims Against Ocean...

  8. 46 CFR Appendix A to Subpart C of... - Ocean Transportation Intermediary (OTI) Bond Form [Form 48

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 9 2013-10-01 2013-10-01 false Ocean Transportation Intermediary (OTI) Bond Form [Form... OCEAN SHIPPING IN FOREIGN COMMERCE LICENSING, FINANCIAL RESPONSIBILITY REQUIREMENTS, AND GENERAL DUTIES FOR OCEAN TRANSPORTATION INTERMEDIARIES Financial Responsibility Requirements; Claims Against Ocean...

  9. 46 CFR Appendix A to Subpart C of... - Ocean Transportation Intermediary (OTI) Bond Form [Form 48

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 9 2012-10-01 2012-10-01 false Ocean Transportation Intermediary (OTI) Bond Form [Form... OCEAN SHIPPING IN FOREIGN COMMERCE LICENSING, FINANCIAL RESPONSIBILITY REQUIREMENTS, AND GENERAL DUTIES FOR OCEAN TRANSPORTATION INTERMEDIARIES Financial Responsibility Requirements; Claims Against Ocean...

  10. 46 CFR Appendix A to Subpart C of... - Ocean Transportation Intermediary (OTI) Bond Form [Form 48

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 9 2014-10-01 2014-10-01 false Ocean Transportation Intermediary (OTI) Bond Form [Form... OCEAN SHIPPING IN FOREIGN COMMERCE LICENSING, FINANCIAL RESPONSIBILITY REQUIREMENTS, AND GENERAL DUTIES FOR OCEAN TRANSPORTATION INTERMEDIARIES Financial Responsibility Requirements; Claims Against Ocean...

  11. Method for applying a high-temperature bond coat on a metal substrate, and related compositions and articles

    DOEpatents

    Hasz, Wayne Charles; Sangeeta, D

    2006-04-18

    A method for applying a bond coat on a metal-based substrate is described. A slurry which contains braze material and a volatile component is deposited on the substrate. The slurry can also include bond coat material. Alternatively, the bond coat material can be applied afterward, in solid form or in the form of a second slurry. The slurry and bond coat are then dried and fused to the substrate. A repair technique using this slurry is also described, along with related compositions and articles.

  12. Method for applying a high-temperature bond coat on a metal substrate, and related compositions and articles

    DOEpatents

    Hasz, Wayne Charles; Sangeeta, D

    2002-01-01

    A method for applying a bond coat on a metal-based substrate is described. A slurry which contains braze material and a volatile component is deposited on the substrate. The slurry can also include bond coat material. Alternatively, the bond coat material can be applied afterward, in solid form or in the form of a second slurry. The slurry and bond coat are then dried and fused to the substrate. A repair technique using this slurry is also described, along with related compositions and articles.

  13. Activation of H2 over the Ru-Zn Bond in the Transition Metal-Lewis Acid Heterobimetallic Species [Ru(IPr)2(CO)ZnEt](.).

    PubMed

    Riddlestone, Ian M; Rajabi, Nasir A; Lowe, John P; Mahon, Mary F; Macgregor, Stuart A; Whittlesey, Michael K

    2016-09-07

    Reaction of [Ru(IPr)2(CO)H]BAr(F)4 with ZnEt2 forms the heterobimetallic species [Ru(IPr)2(CO)ZnEt]BAr(F)4 (2), which features an unsupported Ru-Zn bond. 2 reacts with H2 to give [Ru(IPr)2(CO)(η(2)-H2)(H)2ZnEt]BAr(F)4 (3) and [Ru(IPr)2(CO)(H)2ZnEt]BAr(F)4 (4). DFT calculations indicate that H2 activation at 2 proceeds via oxidative cleavage at Ru with concomitant hydride transfer to Zn. 2 can also activate hydridic E-H bonds (E = B, Si), and computed mechanisms for the facile H/H exchange processes observed in 3 and 4 are presented.

  14. Characterization of stainless steel surface processed using electrolytic oxidation and titanium complex ion solution

    NASA Astrophysics Data System (ADS)

    Kang, Yubin; Choi, Jaeyoung; Park, Jinju; Kim, Woo-Byoung; Lee, Kun-Jae

    2017-09-01

    This study attempts to improve the physical and chemical adhesion between metals and ceramics by using electrolytic oxidation and a titanium organic/inorganic complex ion solution on the SS-304 plate. Surface analysis confirmed the existence of the Tisbnd Osbnd Mx bonds formed by the bonding between the metal ions and the Ti oxide at the surface of the pre-processed SS plate, and improved chemical adhesion during ceramic coating was expected by confirming the presence of the carboxylic group. The adhesion was evaluated by using the ceramic coating solution in order to assess the improved adhesion of the SS plate under conditions. The results showed that both the adhesion and durability were largely improved in the sample processed with all the pre-processing steps, thus confirming that the physical and chemical adhesion between metals and ceramics can be improved by enhancing the physical roughness via electrolytic oxidation and pre-processing using a Ti complex ion solution.

  15. Program Criteria Specifications Document. Computer Program TWDA for Design and Analysis of Inverted-T Retaining Walls and Floodwalls.

    DTIC Science & Technology

    1981-02-01

    or analysis IloduIls,* each pCr forming one specific step in the design or analysis process. These modules will be callable , in any logical sequence...tempt to 1)l 1cC Cind cut of I bar, hut Will slow the required steel area and bond r i u I rl- t t)s per I oot at Uitablt intervals across the base... bond strength) shall be as required in ACI 318-71 Chapter 12, except that computed shear V shall be multiplied by 2.0 and substituted for V u. Tn

  16. Structure and thermotropic phase behavior of sodium and potassium carboxylate ionomers

    NASA Astrophysics Data System (ADS)

    Mantsch, H. H.; Weng, S. F.; Yang, P. W.; Eysel, H. H.

    1994-07-01

    A molecular complex is formed between long-chain carboxylic acids and their alkali salts in a 1 : 1 mixture. These so-called "acid soaps" or carboxylate ionomers have multilamellar bilayer-type structures in solid state, which are retained in the presence of excess water, resembling the dispersions (gels) formed by typical two-chain amphiphiles, e.g. lipids. The special arrangement of hydrogen-bonded pairs of carboxylic acid and carboxylate groups into a unique "head-group" is supported by frequency shifts and partial or total disappearance of the characteristic vibrations of carboxylic acid dimers and of carboxylate groups. The existence of well-ordered hydrocarbon chains is demonstrated by the existence and polarization properties of the methylene rocking and wagging propagation modes. The gel to liquid-crystal phase transition of the hydrated acid soaps shows practically no cation dependence, unlike the corresponding phase transition in neutral soaps which varies considerably with the nature of the counterion. There is spectroscopic evidence to suggest a cooperative process that involves "melting" of the alkyl chains and disintegration of the hydrogen-bonded carboxylate—carboxylic acid complex, followed by a cation-dependent equilibrium that favors the formation of acid dimers at elevated temperatures and some form of hydrogen-bonded ion pair aggregates at intermediate temperatures.

  17. Neuropeptides and the social brain: potential rodent models of autism.

    PubMed

    Lim, Miranda M; Bielsky, Isadora F; Young, Larry J

    2005-01-01

    Conducting basic scientific research on a complex psychiatric disorder, such as autism, is a challenging prospect. It is difficult to dissociate the fundamental neurological and psychological processes that are disturbed in autism and, therefore, it is a challenge to discover accurate and reliable animal models of the disease. Because of their role in animal models of social processing and social bonding, the neuropeptides oxytocin and vasopressin are strong candidates for dysregulation in autism. In this review, we discuss the current animal models which have investigated oxytocin and vasopressin systems in the brain and their effects on social behavior. For example, mice lacking the oxytocin gene have profound deficits in social processing and social recognition, as do rats lacking vasopressin or mice lacking the vasopressin V1a receptor (V1aR). In another rodent model, monogamous prairie voles are highly social and form strong pair bonds with their mates. Pair bonds can be facilitated or disrupted by perturbing the oxytocin and vasopressin systems. Non-monogamous vole species that do not pair bond have different oxytocin and V1aR distribution patterns in the brain than monogamous vole species. Potential ties from these rodent models to the human autistic condition are then discussed. Given the hallmark disturbances in social function, the study of animal models of social behavior may provide novel therapeutic targets for the treatment of autism.

  18. Investigation on the cold rolling and structuring of cold sprayed copper-coated steel sheets

    NASA Astrophysics Data System (ADS)

    Bobzin, K.; Öte, M.; Wiesner, S.; Gerdt, L.; Senge, S.; Hirt, G.

    2017-03-01

    A current driving force of research is lightweight design. One of the approaches to reduce the weight of a component without causing an overall stiffness decrease is the use of multi-material components. One of the main challenges of this approach is the low bonding strength between different materials. Focusing on steel-aluminum multi-material components, thermally sprayed copper coatings can come into use as a bonding agent between steel sheets and high pressure die cast aluminum to improve the bonding strength. This paper presents a combination of cold gas spraying of copper coatings and their subsequent structuring by rolling as surface pretreatment method of the steel inserts. Therefore, flat rolling experiments are performed with samples in “as sprayed” and heat treated conditions to determine the influence of the rolling process on the bond strength and the formability of the coating. Furthermore, the influence of the rolling on the roughness and the hardness of the coating was examined. In the next step, the coated surface was structured, to create a surface topology suited for a form closure connection in a subsequent high-pressure die casting process. No cracks were observed after the cold rolling process with a thickness reduction of up to ε = 14 % for heat treated samples. Structuring of heat treated samples could be realized without delamination and cracking.

  19. Metal-Free Oxidative C-C Bond Formation through C-H Bond Functionalization.

    PubMed

    Narayan, Rishikesh; Matcha, Kiran; Antonchick, Andrey P

    2015-10-12

    The formation of C-C bonds embodies the core of organic chemistry because of its fundamental application in generation of molecular diversity and complexity. C-C bond-forming reactions are well-known challenges. To achieve this goal through direct functionalization of C-H bonds in both of the coupling partners represents the state-of-the-art in organic synthesis. Oxidative C-C bond formation obviates the need for prefunctionalization of both substrates. This Minireview is dedicated to the field of C-C bond-forming reactions through direct C-H bond functionalization under completely metal-free oxidative conditions. Selected important developments in this area have been summarized with representative examples and discussions on their reaction mechanisms. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Vacuum die attach for integrated circuits

    DOEpatents

    Schmitt, E.H.; Tuckerman, D.B.

    1991-09-10

    A thin film eutectic bond for attaching an integrated circuit die to a circuit substrate is formed by coating at least one bonding surface on the die and substrate with an alloying metal, assembling the die and substrate under compression loading, and heating the assembly to an alloying temperature in a vacuum. A very thin bond, 10 microns or less, which is substantially void free, is produced. These bonds have high reliability, good heat and electrical conduction, and high temperature tolerance. The bonds are formed in a vacuum chamber, using a positioning and loading fixture to compression load the die, and an IR lamp or other heat source. For bonding a silicon die to a silicon substrate, a gold silicon alloy bond is used. Multiple dies can be bonded simultaneously. No scrubbing is required. 1 figure.

  1. Vacuum die attach for integrated circuits

    DOEpatents

    Schmitt, Edward H.; Tuckerman, David B.

    1991-01-01

    A thin film eutectic bond for attaching an integrated circuit die to a circuit substrate is formed by coating at least one bonding surface on the die and substrate with an alloying metal, assembling the die and substrate under compression loading, and heating the assembly to an alloying temperature in a vacuum. A very thin bond, 10 microns or less, which is substantially void free, is produced. These bonds have high reliability, good heat and electrical conduction, and high temperature tolerance. The bonds are formed in a vacuum chamber, using a positioning and loading fixture to compression load the die, and an IR lamp or other heat source. For bonding a silicon die to a silicon substrate, a gold silicon alloy bond is used. Multiple dies can be bonded simultaneously. No scrubbing is required.

  2. Laser engineered multilayer coating of biphasic calcium phosphate/titanium nanocomposite on metal substrates.

    PubMed

    Zhang, Martin Yi; Ye, Chang; Erasquin, Uriel Joseph; Huynh, Toan; Cai, Chengzhi; Cheng, Gary J

    2011-02-01

    In this work, laser coating of biphasic calcium phosphate/titanium (BCP/Ti) nanocomposite on Ti-6Al-4 V substrates was developed. A continuous wave neodymium-doped yttrium aluminium garnet (Nd:YAG) laser was used to form a robust multilayer of BCP/Ti nanocomposite starting from hydroxyapatite and titanium nanoparticles. In this process, low power coating is realized because of the strong laser-nanoparticle interaction and good sinterability of nanosized titanium. To guide the optimization of laser processing conditions for the coating process, a multiphysics model coupling electromagnetic module with heat transfer module was developed. This model was validated by laser coating experiments. Important features of the coated samples, including microstructures, chemical compositions, and interfacial bonding strength, were characterized. We found that a multilayer of BCP, consisting of 72% hydroxyapatite (HA) and 28% beta-tricalcium phosphate (β-TCP), and titanium nanocomposite was formed on Ti-6Al-4 V substrates. Significantly, the coating/substrate interfacial bonding strength was found to be two times higher than that of the commercial plasma sprayed coatings. Preliminary cell culture studies showed that the resultant BCP/Ti nanocomposite coating supported the adhesion and proliferation of osteoblast-like UMR-106 cells.

  3. Fundamental aspects of recoupled pair bonds. I. Recoupled pair bonds in carbon and sulfur monofluoride

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dunning, Thom H., E-mail: thdjr@uw.edu; Xu, Lu T.; Takeshita, Tyler Y.

    2015-01-21

    The number of singly occupied orbitals in the ground-state atomic configuration of an element defines its nominal valence. For carbon and sulfur, with two singly occupied orbitals in their {sup 3}P ground states, the nominal valence is two. However, in both cases, it is possible to form more bonds than indicated by the nominal valence—up to four bonds for carbon and six bonds for sulfur. In carbon, the electrons in the 2s lone pair can participate in bonding, and in sulfur the electrons in both the 3p and 3s lone pairs can participate. Carbon 2s and sulfur 3p recoupled pairmore » bonds are the basis for the tetravalence of carbon and sulfur, and 3s recoupled pair bonds enable sulfur to be hexavalent. In this paper, we report generalized valence bond as well as more accurate calculations on the a{sup 4}Σ{sup −} states of CF and SF, which are archetypal examples of molecules that possess recoupled pair bonds. These calculations provide insights into the fundamental nature of recoupled pair bonds and illustrate the key differences between recoupled pair bonds formed with the 2s lone pair of carbon, as a representative of the early p-block elements, and recoupled pair bonds formed with the 3p lone pair of sulfur, as a representative of the late p-block elements.« less

  4. Self-assembly of endohedral metallofullerenes: a decisive role of cooling gas and metal-carbon bonding

    NASA Astrophysics Data System (ADS)

    Deng, Qingming; Heine, Thomas; Irle, Stephan; Popov, Alexey A.

    2016-02-01

    The endohedral metallofullerene (EMF) self-assembly process in Sc/carbon vapor in the presence and absence of an inert cooling gas (helium) is systematically investigated using quantum chemical molecular dynamics simulations. It is revealed that the presence of He atoms accelerates the formation of pentagons and hexagons and reduces the size of the self-assembled carbon cages in comparison with analogous He-free simulations. As a result, the Sc/C/He system simulations produce a larger number of successful trajectories (i.e. leading to Sc-EMFs) with more realistic cage-size distribution than simulations of the Sc/C system. The main Sc encapsulation mechanism involves nucleation of several hexagons and pentagons with Sc atoms already at the early stages of carbon vapor condensation. In such proto-cages, both Sc-C σ-bonds and coordination bonds between Sc atoms and the π-system of the carbon network are present. Sc atoms are thus rather labile and can move along the carbon network, but the overall bonding is sufficiently strong to prevent dissociation even at temperatures around 2000 kelvin. Further growth of the fullerene cage results in the encapsulation of one or two Sc atoms within the fullerene. In agreement with experimental studies, an extension of the simulations to Fe and Ti as the metal component showed that Fe-EMFs are not formed at all, whereas Ti is prone to form Ti-EMFs with small cage sizes, including Ti@C28-Td and Ti@C30-C2v(3).The endohedral metallofullerene (EMF) self-assembly process in Sc/carbon vapor in the presence and absence of an inert cooling gas (helium) is systematically investigated using quantum chemical molecular dynamics simulations. It is revealed that the presence of He atoms accelerates the formation of pentagons and hexagons and reduces the size of the self-assembled carbon cages in comparison with analogous He-free simulations. As a result, the Sc/C/He system simulations produce a larger number of successful trajectories (i.e. leading to Sc-EMFs) with more realistic cage-size distribution than simulations of the Sc/C system. The main Sc encapsulation mechanism involves nucleation of several hexagons and pentagons with Sc atoms already at the early stages of carbon vapor condensation. In such proto-cages, both Sc-C σ-bonds and coordination bonds between Sc atoms and the π-system of the carbon network are present. Sc atoms are thus rather labile and can move along the carbon network, but the overall bonding is sufficiently strong to prevent dissociation even at temperatures around 2000 kelvin. Further growth of the fullerene cage results in the encapsulation of one or two Sc atoms within the fullerene. In agreement with experimental studies, an extension of the simulations to Fe and Ti as the metal component showed that Fe-EMFs are not formed at all, whereas Ti is prone to form Ti-EMFs with small cage sizes, including Ti@C28-Td and Ti@C30-C2v(3). Electronic supplementary information (ESI) available: Additional information on metal-carbon bonding and MD simulations. See DOI: 10.1039/c5nr08645k

  5. Method of making sintered ductile intermetallic-bonded ceramic composites

    DOEpatents

    Plucknett, Kevin; Tiegs, Terry N.; Becher, Paul F.

    1999-01-01

    A method of making an intermetallic-bonded ceramic composite involves combining a particulate brittle intermetallic precursor with a particulate reactant metal and a particulate ceramic to form a mixture and heating the mixture in a non-oxidizing atmosphere at a sufficient temperature and for a sufficient time to react the brittle intermetallic precursor and the reactant metal to form a ductile intermetallic and sinter the mixture to form a ductile intermetallic-bonded ceramic composite.

  6. Hydrogen bonding in ionic liquids.

    PubMed

    Hunt, Patricia A; Ashworth, Claire R; Matthews, Richard P

    2015-03-07

    Ionic liquids (IL) and hydrogen bonding (H-bonding) are two diverse fields for which there is a developing recognition of significant overlap. Doubly ionic H-bonds occur when a H-bond forms between a cation and anion, and are a key feature of ILs. Doubly ionic H-bonds represent a wide area of H-bonding which has yet to be fully recognised, characterised or explored. H-bonds in ILs (both protic and aprotic) are bifurcated and chelating, and unlike many molecular liquids a significant variety of distinct H-bonds are formed between different types and numbers of donor and acceptor sites within a given IL. Traditional more neutral H-bonds can also be formed in functionalised ILs, adding a further level of complexity. Ab initio computed parameters; association energies, partial charges, density descriptors as encompassed by the QTAIM methodology (ρBCP), qualitative molecular orbital theory and NBO analysis provide established and robust mechanisms for understanding and interpreting traditional neutral and ionic H-bonds. In this review the applicability and extension of these parameters to describe and quantify the doubly ionic H-bond has been explored. Estimating the H-bonding energy is difficult because at a fundamental level the H-bond and ionic interaction are coupled. The NBO and QTAIM methodologies, unlike the total energy, are local descriptors and therefore can be used to directly compare neutral, ionic and doubly ionic H-bonds. The charged nature of the ions influences the ionic characteristics of the H-bond and vice versa, in addition the close association of the ions leads to enhanced orbital overlap and covalent contributions. The charge on the ions raises the energy of the Ylp and lowers the energy of the X-H σ* NBOs resulting in greater charge transfer, strengthening the H-bond. Using this range of parameters and comparing doubly ionic H-bonds to more traditional neutral and ionic H-bonds it is clear that doubly ionic H-bonds cover the full range of weak through to very strong H-bonds.

  7. Vapor-Gas Bubble Evolution and Growth in Extremely Viscous Fluids Under Vacuum

    NASA Technical Reports Server (NTRS)

    Kizito, John; Balasubramaniam, R.; Nahra, Henry; Agui, Juan; Truong, Duc

    2008-01-01

    Formation of vapor and gas bubbles and voids is normal and expected in flow processes involving extremely viscous fluids in normal gravity. Practical examples of extremely viscous fluids are epoxy-like filler materials before the epoxy fluids cure to their permanent form to create a mechanical bond between two substrates. When these fluids flow with a free liquid interface exposed to vacuum, rapid bubble expansion process may ensue. Bubble expansion might compromise the mechanical bond strength. The potential sources for the origin of the gases might be incomplete out-gassing process prior to filler application; regasification due to seal leakage in the filler applicator; and/or volatiles evolved from cure reaction products formed in the hardening process. We embarked on a study that involved conducting laboratory experiments with imaging diagnostics in order to deduce the seriousness of bubbling caused by entrained air and volatile fluids under space vacuum and low gravity environment. We used clear fluids with the similar physical properties as the epoxy-like filler material to mimic the dynamics of bubbles. Another aspect of the present study was to determine the likelihood of bubbling resulting from dissolved gases nucleating from solution. These experimental studies of the bubble expansion are compared with predictions using a modified Rayleigh- Plesset equation, which models the bubble expansion.

  8. Method for Selective Cleaning of Mold Release from Composite Honeycomb Surfaces

    NASA Technical Reports Server (NTRS)

    Pugel, Diane

    2011-01-01

    Honeycomb structures are commonly employed as load- and force-bearing structures as they are structurally strong and lightweight. Manufacturing processes for heat-molded composite honeycomb structures commence with the placement of pre-impregnated composite layups over metal mandrels. To prevent permanent bonding between the composite layup and the metal mandrels, an agent, known as a mold release agent, is used. Mold release agents allow the molded composite material to be removed from mandrels after a heat-forming process. Without a specific removal process, mold release agents may continue to adhere to the surface of the composite material, thereby affecting the bonding of other materials that may come into contact with the composite surface in later stages of processing A constituent common to commercially available household cleaning agents is employed for the removal of mold release agents common to the manufacturing of heat-formed composite materials. The reliability of the solvent has been proven by the longevity and reliability of commercial household cleaners. At the time of this reporting, no one has attempted using constituent for this purpose. The material to be cleaned is immersed in the solution, vertically removed so that the solution is allowed to drain along cell walls and into a solvent bath, and then placed on a compressed airflow table for drying.

  9. Vaginocervical stimulation of Ewes induces the rapid formation of a new bond with an alien young without interfering with a previous bond.

    PubMed

    Lévy, F; Keller, M; Cornilleau, F; Moussu, C; Ferreira, G

    2010-09-01

    Ewes form a selective olfactory memory for their lambs after 2 hr of mother-young interaction following parturition. Mothers will subsequently reject any strange lamb at suckling. The present study investigated whether artificial vaginocervical stimulation (VCS) allows the formation of a selective bond with an unfamiliar lamb and whether it interferes with the maintenance of the bond formed with the familiar lamb. At 2 hr postpartum, mothers were separated from their familiar lamb after having formed a selective bond with it and were given 10 min of mechanical VCS. In the "VCS + lamb" group (n = 24) an unfamiliar lamb was left with the ewe for 2 hr whereas in the "VCS no lamb" group (n = 26) the mother was left alone for the same period of time. Ewes of the "no VCS" group (n = 14) did not receive any VCS. In the majority of animals of the "VCS + lamb" group (23/24) VCS induced a complete acceptance of the unfamiliar lamb without any disruption of the bond previously formed with the familiar lamb. VCS or 2 hr of separation did not disrupt the maintenance of the selective bond initially formed with the familiar lamb since all the ewes of the "VCS no lamb" and "no VCS" groups accepted it at suckling.

  10. 75 FR 5855 - Proposed Collection; Comment Request for Form 8038-TC

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-04

    ... 8038-TC AGENCY: Internal Revenue Service (IRS), Treasury. ACTION: Notice and request for comments... comments concerning Form 8038-TC, Information Return for Tax Credit Bonds. DATES: Written comments should...: Form 8038-TC. Abstract: Form 8038-TC will be used by issuers of qualified tax- exempt credit bonds...

  11. 46 CFR 308.532 - Release of surety bond, Form MA-312.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 8 2014-10-01 2014-10-01 false Release of surety bond, Form MA-312. 308.532 Section 308.532 Shipping MARITIME ADMINISTRATION, DEPARTMENT OF TRANSPORTATION EMERGENCY OPERATIONS WAR RISK INSURANCE War Risk Cargo Insurance Open Policy War Risk Cargo Insurance § 308.532 Release of surety bond...

  12. Faster proton transfer dynamics of water on SnO2 compared to TiO2.

    PubMed

    Kumar, Nitin; Kent, Paul R C; Bandura, Andrei V; Kubicki, James D; Wesolowski, David J; Cole, David R; Sofo, Jorge O

    2011-01-28

    Proton jump processes in the hydration layer on the iso-structural TiO(2) rutile (110) and SnO(2) cassiterite (110) surfaces were studied with density functional theory molecular dynamics. We find that the proton jump rate is more than three times faster on cassiterite compared with rutile. A local analysis based on the correlation between the stretching band of the O-H vibrations and the strength of H-bonds indicates that the faster proton jump activity on cassiterite is produced by a stronger H-bond formation between the surface and the hydration layer above the surface. The origin of the increased H-bond strength on cassiterite is a combined effect of stronger covalent bonding and stronger electrostatic interactions due to differences of its electronic structure. The bridging oxygens form the strongest H-bonds between the surface and the hydration layer. This higher proton jump rate is likely to affect reactivity and catalytic activity on the surface. A better understanding of its origins will enable methods to control these rates.

  13. Pressure activated interconnection of micro transfer printed components

    NASA Astrophysics Data System (ADS)

    Prevatte, Carl; Guven, Ibrahim; Ghosal, Kanchan; Gomez, David; Moore, Tanya; Bonafede, Salvatore; Raymond, Brook; Trindade, António Jose; Fecioru, Alin; Kneeburg, David; Meitl, Matthew A.; Bower, Christopher A.

    2016-05-01

    Micro transfer printing and other forms of micro assembly deterministically produce heterogeneously integrated systems of miniaturized components on non-native substrates. Most micro assembled systems include electrical interconnections to the miniaturized components, typically accomplished by metal wires formed on the non-native substrate after the assembly operation. An alternative scheme establishing interconnections during the assembly operation is a cost-effective manufacturing method for producing heterogeneous microsystems, and facilitates the repair of integrated microsystems, such as displays, by ex post facto addition of components to correct defects after system-level tests. This letter describes pressure-concentrating conductor structures formed on silicon (1 0 0) wafers to establish connections to preexisting conductive traces on glass and plastic substrates during micro transfer printing with an elastomer stamp. The pressure concentrators penetrate a polymer layer to form the connection, and reflow of the polymer layer bonds the components securely to the target substrate. The experimental yield of series-connected test systems with >1000 electrical connections demonstrates the suitability of the process for manufacturing, and robustness of the test systems against exposure to thermal shock, damp heat, and mechanical flexure shows reliability of the resulting bonds.

  14. Understanding Nitrogen Fixation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paul J. Chirik

    The purpose of our program is to explore fundamental chemistry relevant to the discovery of energy efficient methods for the conversion of atmospheric nitrogen (N{sub 2}) into more value-added nitrogen-containing organic molecules. Such transformations are key for domestic energy security and the reduction of fossil fuel dependencies. With DOE support, we have synthesized families of zirconium and hafnium dinitrogen complexes with elongated and activated N-N bonds that exhibit rich N{sub 2} functionalization chemistry. Having elucidated new methods for N-H bond formation from dihydrogen, C-H bonds and Broensted acids, we have since turned our attention to N-C bond construction. These reactionsmore » are particularly important for the synthesis of amines, heterocycles and hydrazines with a range of applications in the fine and commodity chemicals industries and as fuels. One recent highlight was the discovery of a new N{sub 2} cleavage reaction upon addition of carbon monoxide which resulted in the synthesis of an important fertilizer, oxamide, from the diatomics with the two strongest bonds in chemistry. Nitrogen-carbon bonds form the backbone of many important organic molecules, especially those used in the fertilizer and pharamaceutical industries. During the past year, we have continued our work in the synthesis of hydrazines of various substitution patterns, many of which are important precursors for heterocycles. In most instances, the direct functionalization of N{sub 2} offers a more efficient synthetic route than traditional organic methods. In addition, we have also discovered a unique CO-induced N{sub 2} bond cleavage reaction that simultaneously cleaves the N-N bond of the metal dinitrogen compound and assembles new C-C bond and two new N-C bonds. Treatment of the CO-functionalized core with weak Broensted acids liberated oxamide, H{sub 2}NC(O)C(O)NH{sub 2}, an important slow release fertilizer that is of interest to replace urea in many applications. The synthesis of ammonia, NH{sub 3}, from its elements, H{sub 2} and N{sub 2}, via the venerable Haber-Bosch process is one of the most significant technological achievements of the past century. Our research program seeks to discover new transition metal reagents and catalysts to disrupt the strong N {triple_bond} N bond in N{sub 2} and create new, fundamental chemical linkages for the construction of molecules with application as fuels, fertilizers and fine chemicals. With DOE support, our group has discovered a mild method for ammonia synthesis in solution as well as new methods for the construction of nitrogen-carbon bonds directly from N{sub 2}. Ideally these achievements will evolve into more efficient nitrogen fixation schemes that circumvent the high energy demands of industrial ammonia synthesis. Industrially, atmospheric nitrogen enters the synthetic cycle by the well-established Haber-Bosch process whereby N{sub 2} is hydrogenated to ammonia at high temperature and pressure. The commercialization of this reaction represents one of the greatest technological achievements of the 20th century as Haber-Bosch ammonia is responsible for supporting approximately 50% of the world's population and serves as the source of half of the nitrogen in the human body. The extreme reaction conditions required for an economical process have significant energy consequences, consuming 1% of the world's energy supply mostly in the form of pollution-intensive coal. Moreover, industrial H{sub 2} synthesis via the water gas shift reaction and the steam reforming of methane is fossil fuel intensive and produces CO{sub 2} as a byproduct. New synthetic methods that promote this thermodynamically favored transformation ({Delta}G{sup o} = -4.1 kcal/mol) under milder conditions or completely obviate it are therefore desirable. Most nitrogen-containing organic molecules are derived from ammonia (and hence rely on the Haber-Bosch and H{sub 2} synthesis processes) and direct synthesis from atmospheric nitrogen could, in principle, be more energy-efficient. This is particularly attractive given the interest in direct hydrazine fuel cells.« less

  15. Backbone conformation affects duplex initiation and duplex propagation in hybridisation of synthetic H-bonding oligomers.

    PubMed

    Iadevaia, Giulia; Núñez-Villanueva, Diego; Stross, Alexander E; Hunter, Christopher A

    2018-06-06

    Synthetic oligomers equipped with complementary H-bond donor and acceptor side chains form multiply H-bonded duplexes in organic solvents. Comparison of the duplex forming properties of four families of oligomers with different backbones shows that formation of an extended duplex with three or four inter-strand H-bonds is more challenging than formation of complexes that make only two H-bonds. The stabilities of 1 : 1 complexes formed between length complementary homo-oligomers equipped with either phosphine oxide or phenol recognition modules were measured in toluene. When the backbone is very flexible (pentane-1,5-diyl thioether), the stability increases uniformly by an order of magnitude for each additional base-pair added to the duplex: the effective molarities for formation of the first intramolecular H-bond (duplex initiation) and subsequent intramolecular H-bonds (duplex propagation) are similar. This flexible system is compared with three more rigid backbones that are isomeric combinations of an aromatic ring and methylene groups. One of the rigid systems behaves in exactly the same way as the flexible backbone, but the other two do not. For these systems, the effective molarity for formation of the first intramolecular H-bond is the same as that found for the other two backbones, but additional H-bonds are not formed between the longer oligomers. The effective molarities are too low for duplex propagation in these systems, because the oligomer backbones cannot adopt conformations compatible with formation of an extended duplex.

  16. Ultra precision and reliable bonding method

    NASA Technical Reports Server (NTRS)

    Gwo, Dz-Hung (Inventor)

    2001-01-01

    The bonding of two materials through hydroxide-catalyzed hydration/dehydration is achieved at room temperature by applying hydroxide ions to at least one of the two bonding surfaces and by placing the surfaces sufficiently close to each other to form a chemical bond between them. The surfaces may be placed sufficiently close to each other by simply placing one surface on top of the other. A silicate material may also be used as a filling material to help fill gaps between the surfaces caused by surface figure mismatches. A powder of a silica-based or silica-containing material may also be used as an additional filling material. The hydroxide-catalyzed bonding method forms bonds which are not only as precise and transparent as optical contact bonds, but also as strong and reliable as high-temperature frit bonds. The hydroxide-catalyzed bonding method is also simple and inexpensive.

  17. Bonding of sapphire to sapphire by eutectic mixture of aluminum oxide and zirconium oxide

    NASA Technical Reports Server (NTRS)

    Deluca, J. J. (Inventor)

    1975-01-01

    Bonding of an element comprising sapphire, ruby or blue sapphire to another element of such material with a eutectic mixture of aluminum oxide and zirconium oxide is discussed. The bonding mixture may be applied in the form of a distilled water slurry or by electron beam vapor deposition. In one embodiment the eutectic is formed in situ by applying a layer of zirconium oxide and then heating the assembly to a temperature above the eutectic temperature and below the melting point of the material from which the elements are formed. The formation of a sapphire rubidium maser cell utilizing eutectic bonding is shown.

  18. Translational vibrations between chains of hydrogen-bonded molecules in solid-state aspirin form I

    NASA Astrophysics Data System (ADS)

    Takahashi, Masae; Ishikawa, Yoichi

    2013-06-01

    We perform dispersion-corrected first-principles calculations, and far-infrared (terahertz) spectroscopic experiments at 4 K, to examine translational vibrations between chains of hydrogen-bonded molecules in solid-state aspirin form I. The calculated frequencies and relative intensities reproduce the observed spectrum to accuracy of 11 cm-1 or less. The stronger one of the two peaks assigned to the translational mode includes the stretching vibration of the weak hydrogen bond between the acetyl groups of a neighboring one-dimensional chain. The calculation of aspirin form II performed for comparison gives the stretching vibration of the weak hydrogen bond in one-dimensional chain.

  19. Synergistic damage effects of vacuum ultraviolet photons and O2 in SiCOH ultra-low-k dielectric films

    NASA Astrophysics Data System (ADS)

    Lee, J.; Graves, D. B.

    2010-10-01

    Damage incurred during plasma processing, leading to increases in dielectric constant k, is a persistent problem with porous ultra-low-k dielectric films, such as SiCOH. Although most of the proposed mechanisms of plasma-induced damage focus on the role of ion bombardment and radical attack, we show that plasma-generated vacuum ultraviolet (VUV) photons can play a role in creating damage leading to increases in the dielectric constant of this material. Using a vacuum beam apparatus with a calibrated VUV lamp, we show that 147 nm VUV photons impacting SiCOH results in post-exposure adsorption and reaction with water vapour from the atmosphere to form silanol bonds, thereby raising the dielectric constant. Furthermore, the level of damage increases synergistically under simultaneous exposure to VUV photons and O2. The vacuum beam photon fluences are representative of typical plasma processes, as measured in a separate plasma tool. Fourier-transform infrared (FTIR) spectroscopy (ex situ) and mass spectrometry (in situ) imply that O2 reacts with methyl radicals formed from scissioned Si-C bonds to create CO2 and H2O, the latter combining with Si dangling bonds to generate more SiOH groups than with photon exposure alone. In addition, sample near-surface diffusivity, manipulated through ion bombardment and sample heating, can be seen to affect this process. These results demonstrate that VUV photo-generated surface reactions can be potent contributors to ultra-low-k dielectric SiCOH film plasma-induced damage, and suggest that they could play analogous roles in other plasma-surface interactions.

  20. Molecular recognition of naphthalene diimide ligands by telomeric quadruplex-DNA: the importance of the protonation state and mediated hydrogen bonds.

    PubMed

    Spinello, A; Barone, G; Grunenberg, J

    2016-01-28

    In depth Monte Carlo conformational scans in combination with molecular dynamics (MD) simulations and electronic structure calculations were applied in order to study the molecular recognition process between tetrasubstituted naphthalene diimide (ND) guests and G-quadruplex (G4) DNA receptors. ND guests are a promising class of telomere stabilizers due to which they are used in novel anticancer therapeutics. Though several ND guests have been studied experimentally in the past, the protonation state under physiological conditions is still unclear. Based on chemical intuition, in the case of N-methyl-piperazine substitution, different protonation states are possible and might play a crucial role in the molecular recognition process by G4-DNA. Depending on the proton concentration, different nitrogen atoms of the N-methyl-piperazine might (or might not) be protonated. This fact was considered in our simulation in terms of a case by case analysis, since the process of molecular recognition is determined by possible donor or acceptor positions. The results of our simulations show that the electrostatic interactions between the ND ligands and the G4 receptor are maximized in the case of the protonation of the terminal nitrogen atoms, forming compact ND G4 complexes inside the grooves. The influence of different protonation states in terms of the ability to form hydrogen bonds with the sugar-phosphate backbone, as well as the importance of mediated vs. direct hydrogen bonding, was analyzed in detail by MD and relaxed force constant (compliance constant) simulations.

  1. Study on the failure temperature of Ti/Pt/Au and Pt5Si2-Ti/Pt/Au metallization systems

    NASA Astrophysics Data System (ADS)

    Zhang, Jie; Han, Jianqiang; Yin, Yijun; Dong, Lizhen; Niu, Wenju

    2017-09-01

    The Ti/Pt/Au metallization system has an advantage of resisting KOH or TMAH solution etching. To form a good ohmic contact, the Ti/Pt/Au metallization system must be alloyed at 400 °C. However, the process temperatures of typical MEMS packaging technologies, such as anodic bonding, glass solder bonding and eutectic bonding, generally exceed 400 °C. It is puzzling if the Ti/Pt/Au system is destroyed during the subsequent packaging process. In the present work, the resistance of doped polysilicon resistors contacted by the Ti/Pt/Au metallization system that have undergone different temperatures and time are measured. The experimental results show that the ohmic contacts will be destroyed if heated to 500 °C. But if a 20 nm Pt film is sputtered on heavily doped polysilicon and alloyed at 700 °C before sputtering Ti/Pt/Au films, the Pt5Si2-Ti/Pt/Au metallization system has a higher service temperature of 500 °C, which exceeds process temperatures of most typical MEMS packaging technologies. Project supported by the National Natural Science Foundation of China (No. 61376114).

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bierhuizen, Serge J.; Wang, Nanze Patrick; Eng, Gregory W.

    An array of housings with housing bodies and lenses is molded, or an array of housing bodies is molded and bonded with lenses to form an array of housings with housing bodies and lenses. Light-emitting diodes (LEDs) are attached to the housings in the array. An array of metal pads may be bonded to the back of the array or insert molded with the housing array to form bond pads on the back of the housings. The array is singulated to form individual LED modules.

  3. Method of making sintered ductile intermetallic-bonded ceramic composites

    DOEpatents

    Plucknett, K.; Tiegs, T.N.; Becher, P.F.

    1999-05-18

    A method of making an intermetallic-bonded ceramic composite involves combining a particulate brittle intermetallic precursor with a particulate reactant metal and a particulate ceramic to form a mixture and heating the mixture in a non-oxidizing atmosphere at a sufficient temperature and for a sufficient time to react the brittle intermetallic precursor and the reactant metal to form a ductile intermetallic and sinter the mixture to form a ductile intermetallic-bonded ceramic composite. 2 figs.

  4. Microfluidic systems with embedded materials and structures and method thereof

    DOEpatents

    Morse, Jeffrey D [Martinez, CA; Rose, Klint A [Boston, MA; Maghribi, Mariam [Livermore, CA; Benett, William [Livermore, CA; Krulevitch, Peter [Pleasanton, CA; Hamilton, Julie [Tracy, CA; Graff, Robert T [Modesto, CA; Jankowski, Alan [Livermore, CA

    2007-03-06

    Described herein is a process for fabricating microfluidic systems with embedded components in which micron-scale features are molded into the polymeric material polydimethylsiloxane (PDMS). Micromachining is used to create a mold master and the liquid precursors for PDMS are poured over the mold and allowed to cure. The PDMS is then removed form the mold and bonded to another material such as PDMS, glass, or silicon after a simple surface preparation step to form sealed microchannels.

  5. Modeling single molecule junction mechanics as a probe of interface bonding

    NASA Astrophysics Data System (ADS)

    Hybertsen, Mark S.

    2017-03-01

    Using the atomic force microscope based break junction approach, applicable to metal point contacts and single molecule junctions, measurements can be repeated thousands of times resulting in rich data sets characterizing the properties of an ensemble of nanoscale junction structures. This paper focuses on the relationship between the measured force extension characteristics including bond rupture and the properties of the interface bonds in the junction. A set of exemplary model junction structures has been analyzed using density functional theory based calculations to simulate the adiabatic potential surface that governs the junction elongation. The junction structures include representative molecules that bond to the electrodes through amine, methylsulfide, and pyridine links. The force extension characteristics are shown to be most effectively analyzed in a scaled form with maximum sustainable force and the distance between the force zero and force maximum as scale factors. Widely used, two parameter models for chemical bond potential energy versus bond length are found to be nearly identical in scaled form. Furthermore, they fit well to the present calculations of N-Au and S-Au donor-acceptor bonds, provided no other degrees of freedom are allowed to relax. Examination of the reduced problem of a single interface, but including relaxation of atoms proximal to the interface bond, shows that a single-bond potential form renormalized by an effective harmonic potential in series fits well to the calculated results. This allows relatively accurate extraction of the interface bond energy. Analysis of full junction models shows cooperative effects that go beyond the mechanical series inclusion of the second bond in the junction, the spectator bond that does not rupture. Calculations for a series of diaminoalkanes as a function of molecule length indicate that the most important cooperative effect is due to the interactions between the dipoles induced by the donor-acceptor bond formation at the junction interfaces. The force extension characteristic of longer molecules such as diaminooctane, where the dipole interaction effects drop to a negligible level, accurately fit to the renormalized single-bond potential form. The results suggest that measured force extension characteristics for single molecule junctions could be analyzed with a modified potential form that accounts for the energy stored in deformable mechanical components in series.

  6. Modeling single molecule junction mechanics as a probe of interface bonding

    DOE PAGES

    Hybertsen, Mark S.

    2017-03-07

    Using the atomic force microscope based break junction approach, applicable to metal point contacts and single molecule junctions, measurements can be repeated thousands of times resulting in rich data sets characterizing the properties of an ensemble of nanoscale junction structures. This paper focuses on the relationship between the measured force extension characteristics including bond rupture and the properties of the interface bonds in the junction. We analyzed a set of exemplary model junction structures using density functional theory based calculations to simulate the adiabatic potential surface that governs the junction elongation. The junction structures include representative molecules that bond tomore » the electrodes through amine, methylsulfide, and pyridine links. The force extension characteristics are shown to be most effectively analyzed in a scaled form with maximum sustainable force and the distance between the force zero and force maximum as scale factors. Widely used, two parameter models for chemical bond potential energy versus bond length are found to be nearly identical in scaled form. Furthermore, they fit well to the present calculations of N–Au and S–Au donor-acceptor bonds, provided no other degrees of freedom are allowed to relax. Examination of the reduced problem of a single interface, but including relaxation of atoms proximal to the interface bond, shows that a single-bond potential form renormalized by an effective harmonic potential in series fits well to the calculated results. This, then, allows relatively accurate extraction of the interface bond energy. Analysis of full junction models shows cooperative effects that go beyond the mechanical series inclusion of the second bond in the junction, the spectator bond that does not rupture. Calculations for a series of diaminoalkanes as a function of molecule length indicate that the most important cooperative effect is due to the interactions between the dipoles induced by the donor-acceptor bond formation at the junction interfaces. The force extension characteristic of longer molecules such as diaminooctane, where the dipole interaction effects drop to a negligible level, accurately fit to the renormalized single-bond potential form. Our results suggest that measured force extension characteristics for single molecule junctions could be analyzed with a modified potential form that accounts for the energy stored in deformable mechanical components in series.« less

  7. Modeling single molecule junction mechanics as a probe of interface bonding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hybertsen, Mark S.

    Using the atomic force microscope based break junction approach, applicable to metal point contacts and single molecule junctions, measurements can be repeated thousands of times resulting in rich data sets characterizing the properties of an ensemble of nanoscale junction structures. This paper focuses on the relationship between the measured force extension characteristics including bond rupture and the properties of the interface bonds in the junction. We analyzed a set of exemplary model junction structures using density functional theory based calculations to simulate the adiabatic potential surface that governs the junction elongation. The junction structures include representative molecules that bond tomore » the electrodes through amine, methylsulfide, and pyridine links. The force extension characteristics are shown to be most effectively analyzed in a scaled form with maximum sustainable force and the distance between the force zero and force maximum as scale factors. Widely used, two parameter models for chemical bond potential energy versus bond length are found to be nearly identical in scaled form. Furthermore, they fit well to the present calculations of N–Au and S–Au donor-acceptor bonds, provided no other degrees of freedom are allowed to relax. Examination of the reduced problem of a single interface, but including relaxation of atoms proximal to the interface bond, shows that a single-bond potential form renormalized by an effective harmonic potential in series fits well to the calculated results. This, then, allows relatively accurate extraction of the interface bond energy. Analysis of full junction models shows cooperative effects that go beyond the mechanical series inclusion of the second bond in the junction, the spectator bond that does not rupture. Calculations for a series of diaminoalkanes as a function of molecule length indicate that the most important cooperative effect is due to the interactions between the dipoles induced by the donor-acceptor bond formation at the junction interfaces. The force extension characteristic of longer molecules such as diaminooctane, where the dipole interaction effects drop to a negligible level, accurately fit to the renormalized single-bond potential form. Our results suggest that measured force extension characteristics for single molecule junctions could be analyzed with a modified potential form that accounts for the energy stored in deformable mechanical components in series.« less

  8. Effect of Sorbitol Plasticizer on the Structure and Properties of Melt Processed Polyvinyl Alcohol Films.

    PubMed

    Tian, Huafeng; Liu, Di; Yao, Yuanyuan; Ma, Songbai; Zhang, Xing; Xiang, Aimin

    2017-12-01

    Poly (vinyl alcohol) (PVA) possesses wide applications as food packaging materials, but is difficult to melt process for its strong inter/intra hydrogen bonding. In this work, flexible PVA films with different content of sorbitol plasticizers were prepared by melt processing with the assistance of water. And the influence of sorbitol plasticizer content on the crystallinity, optical transparency, water-retaining capability, mechanical properties, thermal stability and oxygen and water permeability were investigated. The results indicated that sorbitol dramatically improved the melt processing ability of PVA. Sorbitol could interact with PVA to form strong hydrogen bonding interactions, which would decrease the original hydrogen bonding of the matrix, resulting in the decrease of crystallinity degrees. The glass transition, melting and crystallization peak temperatures decreased with the increase of sorbitol. All the films exhibited fine optical transparency. The water retaining capability were improved with the increase of sorbitol. Especially, an increase in elongation at break and decrease in Young's modulus and tensile strength were observed indicating good plasticizing effect of sorbitol on PVA films. In addition, the PVA films prepared in this work exhibited fine barrier properties against oxygen and water, suggesting wide application potential as packaging materials. © 2017 Institute of Food Technologists®.

  9. Method of densifying an article formed of reaction bonded silicon nitride

    NASA Technical Reports Server (NTRS)

    Mangels, John A. (Inventor)

    1982-01-01

    A method of densifying an article formed of reaction bonded silicon nitride is disclosed. The reaction bonded silicon nitride article is packed in a packing mixture consisting of silicon nitride powder and a densification aid. The reaction bonded silicon nitride article and packing powder are sujected to a positive, low pressure nitrogen gas treatment while being heated to a treatment temperature and for a treatment time to cause any open porosity originally found in the reaction bonded silicon nitride article to be substantially closed. Thereafter, the reaction bonded silicon nitride article and packing powder are subjected to a positive high pressure nitrogen gas treatment while being heated to a treatment temperature and for a treatment time to cause a sintering of the reaction bonded silicon nitride article whereby the strength of the reaction bonded silicon nitride article is increased.

  10. The First Row Anomaly and Recoupled Pair Bonding in the Halides of the Late p-Block Elements

    PubMed Central

    2012-01-01

    The dramatic differences between the properties of molecules formed from the late p-block elements of the first row of the periodic table (N–F) and those of the corresponding elements in subsequent rows is well recognized as the first row anomaly. Certain properties of the atoms, such as the relative energies and spatial extents of the ns and np orbitals, can explain some of these differences, but not others. In this Account, we summarize the results of our recent computational studies of the halides of the late p-block elements. Our studies point to a single underlying cause for many of these differences: the ability of the late p-block elements in the second and subsequent rows of the periodic table to form recoupled pair bonds and recoupled pair bond dyads with very electronegative ligands. Recoupled pair bonds form when an electron in a singly occupied ligand orbital recouples the pair of electrons in a doubly occupied lone pair orbital on the central atom, leading to a central atom-ligand bond. Recoupled pair bond dyads occur when a second ligand forms a bond with the orbital left over from the initial recoupled pair bond. Recoupled pair bonds and recoupled pair bond dyads enable the late p-block elements to form remarkably stable hypervalent compounds such as PF5 and SF6 and lead to unexpected excited states in smaller halides of the late p-block elements such as SF and SF2. Recoupled pair bonding also causes the Fn–1X–F bond energies to oscillate dramatically once the normal valences of the central atoms have been satisfied. In addition, recoupled pair bonding provides a lower-energy pathway for inversion in heavily fluorinated compounds (PF3 and PF2H, but not PH2F and PH3) and leads to unusual intermediates and products in reactions involving halogens and late p-block element compounds, such as (CH3)2S + F2. Although this Account focuses on the halides of the second row, late p-block elements, recoupled pair bonds and recoupled pair bond dyads are important in the chemistry of p-block elements beyond the second row (As, Se, and Br) and for compounds of these elements with other very electronegative ligands, such as OH and O. Knowledge of recoupled pair bonding is thus critical to understanding the properties and reactivity of molecules containing the late p-block elements beyond the first row. PMID:23151313

  11. The first row anomaly and recoupled pair bonding in the halides of the late p-block elements.

    PubMed

    Dunning, Thom H; Woon, David E; Leiding, Jeff; Chen, Lina

    2013-02-19

    The dramatic differences between the properties of molecules formed from the late p-block elements of the first row of the periodic table (N-F) and those of the corresponding elements in subsequent rows is well recognized as the first row anomaly. Certain properties of the atoms, such as the relative energies and spatial extents of the ns and np orbitals, can explain some of these differences, but not others. In this Account, we summarize the results of our recent computational studies of the halides of the late p-block elements. Our studies point to a single underlying cause for many of these differences: the ability of the late p-block elements in the second and subsequent rows of the periodic table to form recoupled pair bonds and recoupled pair bond dyads with very electronegative ligands. Recoupled pair bonds form when an electron in a singly occupied ligand orbital recouples the pair of electrons in a doubly occupied lone pair orbital on the central atom, leading to a central atom-ligand bond. Recoupled pair bond dyads occur when a second ligand forms a bond with the orbital left over from the initial recoupled pair bond. Recoupled pair bonds and recoupled pair bond dyads enable the late p-block elements to form remarkably stable hypervalent compounds such as PF(5) and SF(6) and lead to unexpected excited states in smaller halides of the late p-block elements such as SF and SF(2). Recoupled pair bonding also causes the F(n-1)X-F bond energies to oscillate dramatically once the normal valences of the central atoms have been satisfied. In addition, recoupled pair bonding provides a lower-energy pathway for inversion in heavily fluorinated compounds (PF(3) and PF(2)H, but not PH(2)F and PH(3)) and leads to unusual intermediates and products in reactions involving halogens and late p-block element compounds, such as (CH(3))(2)S + F(2). Although this Account focuses on the halides of the second row, late p-block elements, recoupled pair bonds and recoupled pair bond dyads are important in the chemistry of p-block elements beyond the second row (As, Se, and Br) and for compounds of these elements with other very electronegative ligands, such as OH and O. Knowledge of recoupled pair bonding is thus critical to understanding the properties and reactivity of molecules containing the late p-block elements beyond the first row.

  12. Process development and tooling design for intrinsic hybrid composites

    NASA Astrophysics Data System (ADS)

    Riemer, M.; Müller, R.; Drossel, W. G.; Landgrebe, D.

    2017-09-01

    Hybrid parts, which combine the advantages of different material classes, are moving into the focus of lightweight applications. This development is amplified by their high potential for usage in the field of crash relevant structures. By the current state of the art, hybrid parts are mainly made in separate, subsequent forming and joining processes. By using the concept of an intrinsic hybrid, the shaping of the part and the joining of the different materials are performed in a single process step for shortening the overall processing time and thereby the manufacturing costs. The investigated hybrid part is made from continuous fibre reinforced plastic (FRP), in which a metallic reinforcement structure is integrated. The connection between these layered components is realized by a combination of adhesive bonding and a geometrical form fit. The form fit elements are intrinsically generated during the forming process. This contribution regards the development of the forming process and the design of the forming tool for the single step production of a hybrid part. To this end a forming tool, which combines the thermo-forming and the metal forming process, is developed. The main challenge by designing the tool is the temperature management of the tool elements for the variothermal forming process. The process parameters are determined in basic tests and finite element (FE) simulation studies. On the basis of these investigations a control concept for the steering of the motion axes and the tool temperature is developed. Forming tests are carried out with the developed tool and the manufactured parts are analysed by computer assisted tomography (CT) scans.

  13. Geometric and electronic structures of phenoxyl radicals hydrogen bonded to neutral and cationic partners.

    PubMed

    Orio, Maylis; Jarjayes, Olivier; Baptiste, Benoit; Philouze, Christian; Duboc, Carole; Mathias, Jenny-Lee; Benisvy, Laurent; Thomas, Fabrice

    2012-04-23

    Two di-tert-butylphenols incorporating an N-methylbenzimidazole moiety in the ortho or para position have been synthesised ((Me)OH and (pMe)OH, respectively). Their X-ray structures evidence a hydrogen bond between the phenolic proton and the iminic nitrogen atom, whose nature is intra- and intermolecular, respectively. The present studies demonstrate that (Me)OH is readily oxidised by an intramolecular PET mechanism to form the hydrogen-bonded phenoxyl-N-methylbenzimidazolium system ((Me)OH)(.+) , whereas oxidation of (pMe)OH occurs by intermolecular PET, affording the neutral phenoxyl benzimidazole ((pMe)O)(.) system. The deprotonations of (Me)OH and (pMe)OH yield the corresponding phenolate species ((Me)O)(-) and ((pMe)O)(-), respectively, whilst that of the previously reported (H)OH (analogous to (Me)OH but lacking the N-methyl group) produces an unprecedented hydrogen-bonded phenol benzimidazolate species, as evidenced by its X-ray structure. The latter is believed to be in equilibrium in solution with its tautomeric phenolate form, as suggested by NMR, electrochemistry and DFT studies. The one-electron oxidations of the anions occur by a simple ET process affording phenoxyl radical species, whose electronic structure has been studied by HF-EPR spectroscopy and DFT calculations. In particular, analysis of the g(1) tensor shows the order 2.0079>2.0072>2.0069>2.0067 for ((Me)O)(.), ((H)O)(.), ((Me)OH)(.+) and ((H)OH)(.+), respectively. ((Me)O)(.) exhibits the largest g(1) tensor (2.0079), consistent with the absence of intramolecular hydrogen bond. The g(1) tensor of ((H)O)(.) is intermediate between those of ((Me)OH)(.+) and ((Me)O)(.) (g(1)=2.0072), indicating that the phenoxyl oxygen is hydrogen-bonded with a neutral benzimidazole partner. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Caul and method for bonding and curing intricate composite structures

    NASA Technical Reports Server (NTRS)

    Willden, Kurtis S. (Inventor); Goodno, Kenneth N. (Inventor)

    1993-01-01

    The invention disclosed here is a method for forming and curing an intricate structure of criss-crossing composite stringers and frames that are bonded to a skin panel. A structure constructed in accordance with the invention would be well-suited for use as a portion of an aircraft fuselage, a boat hull, or the like. The method is preferably practiced by applying uncured composite stringers to an uncured composite sheet panel. This is followed by placing cured frames crosswise over the stringers. The frames have openings at the locations where they intersect with the stringers which enables the frames to come into direct contact with the skin along most of their length. During the forming and curing process, the stringers are covered with a plurality of cauls, and the entire assembly of skin panel, stringers, frames and cauls is subjected to a vacuum bagging and curing process. The cauls serve to maintain both part shape and to control the flow of resin within the stringers as they are cured. Further, they probably eliminate the need for intermediate protective materials between the vacuum bag and the stringers.

  15. Competition and cooperativity between tetrel bond and chalcogen bond in complexes involving F2CX (X = Se and Te)

    NASA Astrophysics Data System (ADS)

    Guo, Xin; Liu, Yan-Wen; Li, Qing-Zhong; Li, Wen-Zuo; Cheng, Jian-Bo

    2015-01-01

    F2CX (X = Se and Te) have two Lewis acid sites of σ-hole and π-hole located respectively in the vicinity of X and C ends, participating in the chalcogen and tetrel bonds with HCN and NH3, respectively. F2CSe forms a stronger tetrel bond, while F2CTe forms a stronger chalcogen bond. F2CX shows weaker tetrel and chalcogen bonds in the ternary system, exhibiting anticooperativity with some different features from positive one. The nature of two interactions and the origin of anticooperativity have been analyzed by means of energy decomposition, molecular electrostatic potential, and orbital interaction.

  16. 27 CFR 26.67 - Bond, Form 2897-Wine.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ..., DEPARTMENT OF THE TREASURY LIQUORS LIQUORS AND ARTICLES FROM PUERTO RICO AND THE VIRGIN ISLANDS Taxpayment of Liquors and Articles in Puerto Rico Bonds § 26.67 Bond, Form 2897—Wine. Where a proprietor intends to... storage in Puerto Rico on computation, but before payment, of the tax imposed by 26 U.S.C. 7652(a), equal...

  17. 25 CFR 141.32 - Reservation pawnbroker license required.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... valid reservation pawnbroker license, and (3) Posts a bond on a form provided by the commissioner in the... applicant for a reservation pawnbroker license shall apply in writing on a form provided by the Commissioner... customer recovering such a judgment may bring suit on the bond in his or her own name. The bond shall be...

  18. 25 CFR 141.32 - Reservation pawnbroker license required.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... valid reservation pawnbroker license, and (3) Posts a bond on a form provided by the commissioner in the... applicant for a reservation pawnbroker license shall apply in writing on a form provided by the Commissioner... customer recovering such a judgment may bring suit on the bond in his or her own name. The bond shall be...

  19. 25 CFR 141.32 - Reservation pawnbroker license required.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... valid reservation pawnbroker license, and (3) Posts a bond on a form provided by the commissioner in the... applicant for a reservation pawnbroker license shall apply in writing on a form provided by the Commissioner... customer recovering such a judgment may bring suit on the bond in his or her own name. The bond shall be...

  20. 25 CFR 141.32 - Reservation pawnbroker license required.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... valid reservation pawnbroker license, and (3) Posts a bond on a form provided by the commissioner in the... applicant for a reservation pawnbroker license shall apply in writing on a form provided by the Commissioner... customer recovering such a judgment may bring suit on the bond in his or her own name. The bond shall be...

  1. 25 CFR 141.32 - Reservation pawnbroker license required.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... valid reservation pawnbroker license, and (3) Posts a bond on a form provided by the commissioner in the... applicant for a reservation pawnbroker license shall apply in writing on a form provided by the Commissioner... customer recovering such a judgment may bring suit on the bond in his or her own name. The bond shall be...

  2. Towards the synthesis of prenylated phloroglucinol derivatives: An X-ray crystallographic and DFT study of unexpected reaction products

    NASA Astrophysics Data System (ADS)

    Akerman, Matthew P.; Mkhize, Zimbili; van Heerden, Fanie R.

    2018-07-01

    Owing to their bioactivity and prevalence in medicinal plant extracts, prenylated phloroglucinols have garnered significant interest. Towards the synthesis of prenylated phloroglucinol derivatives, 2,4,6-trihydroxy-3-(3-methylbut-2-enyl)acetophenone is required as an intermediate. Herein, this was synthesised by a tandem Claisen-Cope rearrangement reaction on 2,4-bis(methoxymethoxy)-6-(3-methylbut-2-enyloxy)acetophenone and a subsequent hydrolysis to remove protecting groups. This reaction yielded the desired product as well as three by-products. Two of these by-products were isomeric chromane derivatives (2 and 3) and the third was a methoxy derivative (4). These compounds have been studied by single crystal X-ray crystallography and DFT methods. Compound (2) crystallised in the P21/c space group with two hydrogen-bonded molecules in the asymmetric unit (Z = 8). Compound (4) crystallised in the Pbca space group with a single molecule in the asymmetric unit (Z = 8). Both compounds formed extensive supramolecular structures supported by hydrogen bonds in the solid state. Compound (2) forms a simple one-dimensional hydrogen-bonded chain co-linear with the a-axis. Compound (4) forms a two-dimensional supramolecular structure comprising "pentameric" hydrogen-bonded motifs linked by additional H-bonds to form the supramolecular structure. Both structures showed intramolecular hydrogen bonds between the acetyl oxygen and adjacent OH group. DFT simulations were used to probe the relative energies of the molecules and hydrogen bonds. These simulations showed that the intramolecular hydrogen bond has a substantial stabilising effect with an interaction strength of 70.64 kJ mol-1. The formation of the hydrogen-bonded dimer of (2) from which the supramolecular structure is formed has a ΔHassoc constant of -42.32 kJ mol-1, illustrating that the formation of the hydrogen-bonded structure is energetically favourable.

  3. Development of extraction method for characterization of free and bonded polyphenols in barley (Hordeum vulgare L.) grown in Czech Republic using liquid chromatography-tandem mass spectrometry.

    PubMed

    Arigò, Adriana; Česla, Petr; Šilarová, Petra; Calabrò, Maria Luisa; Česlová, Lenka

    2018-04-15

    Complete characterizations of free and bonded phenolic compounds, presented in four cultivars of barley from two regions of Czech Republic, were achieved, using optimized solvent extraction and liquid chromatography coupled with tandem mass spectrometry. The optimization of extraction of free polyphenols was performed using Box-Behnken design and response surface methodology. The intra-day and extra-day precision of developed method were below 6% and 12%, respectively. The isolation of polyphenols bonded to the cell wall structure was carried out by a hydrolysis process. In all cultivars, p-hydroxybenzoic, p-coumaric and ferulic acids were the most abundant compounds. Their average amounts in barley samples were 17.6, 15.2 and 54.4% (m/m), respectively. The highest amount of these compounds was found in the bonded form, proving the importance of this procedure for the correct characterization of total polyphenols in food matrices. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. On the Extraction of Aromatic Compounds from Hydrocarbons by Imidazolium Ionic Liquids

    PubMed Central

    Cassol, Cláudia C.; Umpierre, Alexandre P.; Ebeling, Günter; Ferrera, Bauer; Chiaro, Sandra S. X.; Dupont, Jairton

    2007-01-01

    The liquid-liquid equilibrium for the ternary system formed by n-octane and aromatic (alkylbenzenes) and heteroaromatic compounds (nitrogen and sulfur containing heterocyles) and 1-alkyl-3-methylimidazolium ionic liquids (ILs) associated with various anions has been investigated. The selectivity on the extraction of a specific aromatic compound is influenced by anion volume, hydrogen bond strength between the anion and the imidazolium cation and the length of the 1-methyl-3-alkylimidazolium alkyl side chain. The interaction of alkylbenzenes and sulfur heterocyles with the IL is preferentially through CH-π hydrogen bonds and the quantity of these aromatics in the IL phase decreases with the increase of the steric hindrance imposed by the substituents on the aromatic nucleus. In the case of nitrogen heterocycles the interaction occurs preferentially through N(heteroaromatic)-H(imidazolium) hydrogen bonds and the extraction process is largely controlled by the nitrogen heterocycle pKa. Competitive extraction experiments suggest that benzene, pyridine and dibenzothiophene do not compete for the same hydrogen bond sites of the IL.

  5. The excited-state intramolecular proton transfer in Nsbnd H-type dye molecules with a seven-membered-ring intramolecular hydrogen bond: A theoretical insight

    NASA Astrophysics Data System (ADS)

    Yuan, Huijuan; Feng, Songyan; Wen, Keke; Guo, Xugeng; Zhang, Jinglai

    2018-02-01

    Excited-state intramolecular proton transfer (ESIPT) reactions of a series of N(R)sbnd H ⋯ N-type seven-membered-ring hydrogen-bonding compounds were explored by employing density functional theory/time-dependent density functional theory calculations with the PBE0 functional. Our results indicate that the absorption and emission spectra predicted theoretically match very well the experimental findings. Additionally, as the electron-withdrawing strength of R increases, the intramolecular H-bond of the Nsbnd S1 form gradually enhances, and the forward energy barrier along the ESIPT reaction gradually decreases. For compound 4, its ESIPT reaction is found to be a barrierless process due to the involvement of a strong electron-withdrawing COCF3 group. It is therefore a reasonable presumption that the ESIPT efficiency of these N(R)sbnd H ⋯ N-type seven-membered-ring H-bonding systems can be improved when a strong electron-withdrawing group in R is introduced.

  6. Recrystallization texture in nickel heavily deformed by accumulative roll bonding

    NASA Astrophysics Data System (ADS)

    Mishin, O. V.; Zhang, Y. B.; Godfrey, A.

    2017-07-01

    The recrystallization behavior of Ni processed by accumulative roll bonding to a total accumulated von Mises strain of 4.8 has been examined, and analyzed with respect to heterogeneity in the deformation microstructure. The regions near the bonding interface are found to be more refined and contain particle deformation zones around fragments of the steel wire brush used to prepare the surface for bonding. Sample-scale gradients are also observed, manifested as differences between the subsurface, intermediate and central layers, where the distributions of texture components are different. These heterogeneities affect the progress of recrystallization. While the subsurface and near-interface regions typically contain lower frequencies of cube-oriented grains than anywhere else in the sample, a strong cube texture forms in the sample during recrystallization, attributed to both a high nucleation rate and fast growth rate of cube-oriented grains. The observations highlight the sensitivity of recrystallization to heterogeneity in the deformation microstructure and demonstrate the importance of characterizing this heterogeneity over several length scales.

  7. Synthesis and Properties of Gelators Derived from Tetraphenylethylene and Gallic Acid with Aggregation-Induced Emission

    NASA Astrophysics Data System (ADS)

    Luo, Miao; Zhou, Xie; Chi, Zhenguo; Ma, Chunping; Zhang, Yi; Liu, Siwei; Xu, Jiarui

    2013-09-01

    Two novel organogelators (TEG and TAG) based on tetraphenylethylene and 3,4,5-tris(dodecyloxy) benzoic acid were synthesized through ester bond and amido bond linkages, respectively. Compounds TEG and TAG were able to induce gelation in ethanol. Aggregation-induced enhanced emission was observed in these organogelator molecules, with increased fluorescence intensity from the solutions to the gels. The completely thermoreversible gelation occurred due to the aggregation of the organogelators. In the process, a fibrous network was formed by a combination of intermolecular hydrogen bonding, π-π stacking and van der Waals interactions. These phenomena were observed in the xerogels by field-emission scanning electron microscopy and Fourier-transform infrared spectroscopy. The results of differential scanning calorimetry and polarized optical microscopy indicated that compound TAG exhibited stable liquid crystalline phases over a wide temperature range. The linking groups have severe influence on the properties of the organogelators, which was mainly attributed to the hydrogen bonding interaction in compound TAG.

  8. Some aspects of radical cascade and relay reactions

    PubMed Central

    Quiclet-Sire, Béatrice; Zard, Samir Z.

    2017-01-01

    The ability to create carbon–carbon bonds is at the heart of organic synthesis. Radical processes are particularly apt at creating such bonds, especially in cascade or relay sequences where more than one bond is formed, allowing for a rapid assembly of complex structures. In the present brief overview, examples taken from the authors' laboratory will serve to illustrate the strategic impact of radical-based approaches on synthetic planning. Transformations involving nitrogen-centred radicals, electron transfer from metallic nickel and the reversible degenerative exchange of xanthates will be presented and discussed. The last method has proved to be a particularly powerful tool for the intermolecular creation of carbon–carbon bonds by radical additions even to unactivated alkenes. Various functional groups can be brought into the same molecule in a convergent manner and made to react together in order to further increase the structural complexity. One important benefit of this chemistry is the so-called RAFT/MADIX technology for the manufacture of block copolymers of almost any desired architecture. PMID:28484329

  9. Simultaneous bond degradation and bond formation during phenol-formaldehyde curing with wood

    Treesearch

    Daniel J. Yelle; John Ralph

    2016-01-01

    Bonding of wood using phenol–formaldehyde adhesive develops highly durable bonds. Phenol– formaldehyde is believed to form primary bonds with wood cell wall polymers (e.g., lignin). However, it is unclear how this adhesive interacts and bonds to lignin. Through wood solubilisation methodologies, earlywood and latewood bonded assemblies were characterized using two-...

  10. Theoretical verification and extension of the McKean relationship between bond lengths and stretching frequencies

    NASA Astrophysics Data System (ADS)

    Larsson, J. A.; Cremer, D.

    1999-08-01

    Vibrational spectra contain explicit information on the electronic structure and the bonding situation of a molecule, which can be obtained by transforming the vibrational normal modes of a molecule into appropriate internal coordinate modes, which are localized in a fragment of the molecule and which are associated to that internal coordinate that describes the molecular fragment in question. It is shown that the adiabatic internal modes derived recently (Int. J. Quant. Chem., 67 (1998) 1) are the theoretical counterparts of McKean's isolated CH stretching modes (Chem. Soc. Rev., 7 (1978) 399). Adiabatic CH stretching frequencies obtained from experimental vibrational spectra can be used to determine CH bond lengths with high accuracy. Contrary to the concept of isolated stretching frequencies a generalization to any bond of a molecule is possible as is demonstrated for the CC stretching frequencies. While normal mode frequencies do not provide a basis to determine CC bond lengths and CC bond strengths, this is possible with the help of the adiabatic CC stretching frequencies. Measured vibrational spectra are used to describe different types of CC bonds in a quantitative way. For CH bonds, it is also shown that adiabatic stretching frequency leads to the definition of an ideal dissociation energy, which contrary to the experimentally determined dissociation energy is a direct measure of the bond strength. The difference between measured and ideal dissociation energies gives information on stabilization or destabilization of the radicals formed in a dissociation process.

  11. Composite neutron absorbing coatings for nuclear criticality control

    DOEpatents

    Wright, Richard N.; Swank, W. David; Mizia, Ronald E.

    2005-07-19

    Thermal neutron absorbing composite coating materials and methods of applying such coating materials to spent nuclear fuel storage systems are provided. A composite neutron absorbing coating applied to a substrate surface includes a neutron absorbing layer overlying at least a portion of the substrate surface, and a corrosion resistant top coat layer overlying at least a portion of the neutron absorbing layer. An optional bond coat layer can be formed on the substrate surface prior to forming the neutron absorbing layer. The neutron absorbing layer can include a neutron absorbing material, such as gadolinium oxide or gadolinium phosphate, dispersed in a metal alloy matrix. The coating layers may be formed by a plasma spray process or a high velocity oxygen fuel process.

  12. Chemical origin of blue- and redshifted hydrogen bonds: intramolecular hyperconjugation and its coupling with intermolecular hyperconjugation.

    PubMed

    Li, An Yong

    2007-04-21

    Upon formation of a H bond Y...H-XZ, intramolecular hyperconjugation n(Z)-->sigma*(X-H) of the proton donor plays a key role in red- and blueshift characters of H bonds and must be introduced in the concepts of hyperconjugation and rehybridization. Intermolecular hyperconjugation transfers electron density from Y to sigma*(X-H) and causes elongation and stretch frequency redshift of the X-H bond; intramolecular hyperconjugation couples with intermolecular hyperconjugation and can adjust electron density in sigma*(X-H); rehybridization causes contraction and stretch frequency blueshift of the X-H bond on complexation. The three factors--intra- and intermolecular hyperconjugations and rehybridization--determine commonly red- or blueshift of the formed H bond. A proton donor that has strong intramolecular hyperconjugation often forms blueshifted H bonds.

  13. Cutting Costs on Computer Forms.

    ERIC Educational Resources Information Center

    Rupp, Robert V., Jr.

    1989-01-01

    Using the experience of Ford Motor Company, Oscar Meyer, and IBM, this article shows that companies are enjoying high quality product performance and substantially lower costs by converting from premium white bond computer stock forms to blended bond forms. School administrators are advised to do likewise. (MLH)

  14. LED module with high index lens

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bierhuizen, Serge J.; Wang, Nanze Patrick; Eng, Gregory W.

    2016-07-05

    An array of housings with housing bodies and lenses is molded, or an array of housing bodies is molded and bonded with lenses to form an array of housings with housing bodies and lenses. Light-emitting diodes (LEDs) are attached to the housings in the array. An array of metal pads may be bonded to the back of the array or insert molded with the housing array to form bond pads on the back of the housings. The array is singulated to form individual LED modules.

  15. Vertical integration of array-type miniature interferometers at wafer level by using multistack anodic bonding

    NASA Astrophysics Data System (ADS)

    Wang, Wei-Shan; Wiemer, Maik; Froemel, Joerg; Enderlein, Tom; Gessner, Thomas; Lullin, Justine; Bargiel, Sylwester; Passilly, Nicolas; Albero, Jorge; Gorecki, Christophe

    2016-04-01

    In this work, vertical integration of miniaturized array-type Mirau interferometers at wafer level by using multi-stack anodic bonding is presented. Mirau interferometer is suitable for MEMS metrology and for medical imaging according to its vertical-, lateral- resolutions and working distances. Miniaturized Mirau interferometer can be a promising candidate as a key component of an optical coherence tomography (OCT) system. The miniaturized array-type interferometer consists of a microlens doublet, a Si-based MEMS Z scanner, a spacer for focus-adjustment and a beam splitter. Therefore, bonding technologies which are suitable for heterogeneous substrates are of high interest and necessary for the integration of MEMS/MOEMS devices. Multi-stack anodic bonding, which meets the optical and mechanical requirements of the MOEMS device, is adopted to integrate the array-type interferometers. First, the spacer and the beam splitter are bonded, followed by bonding of the MEMS Z scanner. In the meanwhile, two microlenses, which are composed of Si and glass wafers, are anodically bonded to form a microlens doublet. Then, the microlens doublet is aligned and bonded with the scanner/spacer/beam splitter stack. The bonded array-type interferometer is a 7- wafer stack and the thickness is approximately 5mm. To separate such a thick wafer stack with various substrates, 2-step laser cutting is used to dice the bonded stack into Mirau chips. To simplify fabrication process of each component, electrical connections are created at the last step by mounting a Mirau chip onto a flip chip PCB instead of through wafer vias. Stability of Au/Ti films on the MEMS Z scanner after anodic bonding, laser cutting and flip chip bonding are discussed as well.

  16. [Bonding strength of resin and tooth enamel after teeth bleaching with cold plasma].

    PubMed

    Zhu, Meng-meng; Wang, Guo-min; Sun, Ke; Li, Ying-long; Pan, Jie

    2016-02-18

    To investigate the immediate bond strength and surface structure of resin and the tooth enamel which treated by cold plasma. In the study, 40 bovine incisors were divided into two equal parts. In this sense, all enamel adhesive samples were prepared and then randomly divided into 4 groups (n =20). group 1: acid + single bond 2+resin composite (control group); group 2:beyond bleaching+ acid+single bond 2+resin composite; group 3: treated by cold plasma for 5 minutes+ acid+single bond 2+resin composite; group 4: treated by cold plasma for 5 minutes+single bond 2+resin composite. Single bond 2 bonding system and Filtek Z250 resin were used in this experiment. The shear bond strength was tested by universal testing machine. The surface of the enamel in different processes was observed by scanning electron microscope (SEM). Statistical analyses by the single factor analysis of variance and multiple pairwise comparisons were performed with SPSS 17.0 . The shear bond strength of group 4 (8.60 MPa) was significantly lower than that of the other three groups (P<0.05). The shear bond strength of group 2 (17.89 MPa) was higher than that of group 4, but lower than group 1 and group 3 (P<0.05).There was no significant difference between group 1 (34.82 MPa) and group 3 (34.69 MPa). Scanning electron microscope indicated that the enamel treated by cold plasma had slight molten form, which was different from etched enamel surface.The fractured surface of group 3 was mix fracture, which was similar to the control group (group 1). Compared with the conventional clinic bleaching, immediate bond strength of resin-enamel that treated by cold plasma has not been affected.

  17. HSQC-1,n-ADEQUATE: a new approach to long-range 13C-13C correlation by covariance processing.

    PubMed

    Martin, Gary E; Hilton, Bruce D; Willcott, M Robert; Blinov, Kirill A

    2011-10-01

    Long-range, two-dimensional heteronuclear shift correlation NMR methods play a pivotal role in the assembly of novel molecular structures. The well-established GHMBC method is a high-sensitivity mainstay technique, affording connectivity information via (n)J(CH) coupling pathways. Unfortunately, there is no simple way of determining the value of n and hence no way of differentiating two-bond from three- and occasionally four-bond correlations. Three-bond correlations, however, generally predominate. Recent work has shown that the unsymmetrical indirect covariance or generalized indirect covariance processing of multiplicity edited GHSQC and 1,1-ADEQUATE spectra provides high-sensitivity access to a (13)C-(13) C connectivity map in the form of an HSQC-1,1-ADEQUATE spectrum. Covariance processing of these data allows the 1,1-ADEQUATE connectivity information to be exploited with the inherent sensitivity of the GHSQC spectrum rather than the intrinsically lower sensitivity of the 1,1-ADEQUATE spectrum itself. Data acquisition times and/or sample size can be substantially reduced when covariance processing is to be employed. In an extension of that work, 1,n-ADEQUATE spectra can likewise be subjected to covariance processing to afford high-sensitivity access to the equivalent of (4)J(CH) GHMBC connectivity information. The method is illustrated using strychnine as a model compound. Copyright © 2011 John Wiley & Sons, Ltd.

  18. Pancake π–π Bonding Goes Double: Unexpected 4e/All-Sites Bonding in Boron- and Nitrogen-Doped Phenalenyls

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tian, Yong-Hui; Sumpter, Bobby G.; Du, Shiyu

    Phenalenyl is an important neutral pi-radical due to its capability to form unconventional pancake pi-pi bonding interactions, whereas its analogues with graphitic boron (B) or nitrogen (N)-doping have been regarded as closed-shell systems and therefore received much less attention. By using high-level quantum chemistry calculations, we also show that the B- and N-doped closed-shell phenalenyls unexpectedly form open-shell singlet pi-dimers with diradicaloid character featuring 2e/all-sites double pi-pi bonding. Moreover, by proper substitutions, the doped phenalenyl derivatives can be made open-shell species that form closed shell singlet pi-dimers bound by stronger 4e/all-sites double pi-pi bonding. Moreover, covalent pi-pi bonding overlap ismore » distributed on all of the atomic sites giving robust and genuine pancake-shaped pi-dimers which, depending on the number of electrons available in the bonding interactions, are equally or more stable than the pi-dimers of the pristine phenalenyl.« less

  19. Pancake π–π Bonding Goes Double: Unexpected 4e/All-Sites Bonding in Boron- and Nitrogen-Doped Phenalenyls

    DOE PAGES

    Tian, Yong-Hui; Sumpter, Bobby G.; Du, Shiyu; ...

    2015-06-03

    Phenalenyl is an important neutral pi-radical due to its capability to form unconventional pancake pi-pi bonding interactions, whereas its analogues with graphitic boron (B) or nitrogen (N)-doping have been regarded as closed-shell systems and therefore received much less attention. By using high-level quantum chemistry calculations, we also show that the B- and N-doped closed-shell phenalenyls unexpectedly form open-shell singlet pi-dimers with diradicaloid character featuring 2e/all-sites double pi-pi bonding. Moreover, by proper substitutions, the doped phenalenyl derivatives can be made open-shell species that form closed shell singlet pi-dimers bound by stronger 4e/all-sites double pi-pi bonding. Moreover, covalent pi-pi bonding overlap ismore » distributed on all of the atomic sites giving robust and genuine pancake-shaped pi-dimers which, depending on the number of electrons available in the bonding interactions, are equally or more stable than the pi-dimers of the pristine phenalenyl.« less

  20. Processing and Development of Nano-Scale HA Coatings for Biomedical Application

    DTIC Science & Technology

    2005-01-01

    thickness of the film has been processed and tested as a more effective orthopedic/ dental implant coating. The present study aims to increase the service...life of an orthopedic/ dental implant by creating materials that form a strong, long lasting, bond with the Ti substrate as well as juxtaposed bone... dental replacement surgery may quickly return to a normal active lifestyle. Cross-sectional transmission electron microscopy analysis displayed that the

  1. Polymer sol-gel composite inverse opal structures.

    PubMed

    Zhang, Xiaoran; Blanchard, G J

    2015-03-25

    We report on the formation of composite inverse opal structures where the matrix used to form the inverse opal contains both silica, formed using sol-gel chemistry, and poly(ethylene glycol), PEG. We find that the morphology of the inverse opal structure depends on both the amount of PEG incorporated into the matrix and its molecular weight. The extent of organization in the inverse opal structure, which is characterized by scanning electron microscopy and optical reflectance data, is mediated by the chemical bonding interactions between the silica and PEG constituents in the hybrid matrix. Both polymer chain terminus Si-O-C bonding and hydrogen bonding between the polymer backbone oxygens and silanol functionalities can contribute, with the polymer mediating the extent to which Si-O-Si bonds can form within the silica regions of the matrix due to hydrogen-bonding interactions.

  2. Low-temperature sintering of lanthanum strontium manganite-based contact pastes for SOFCs

    NASA Astrophysics Data System (ADS)

    McCarthy, B. P.; Pederson, L. R.; Chou, Y. S.; Zhou, X.-D.; Surdoval, W. A.; Wilson, L. C.

    Electrical contact pastes of composition (La 0.90Sr 0.10) 0.98MnO 3 + δ (LSM-10) formed strong bonds (∼3 MPa) to (Co,Mn) 3O 4 spinel-coated Crofer 22 APU ferritic steel coupons when exposed to alternating flows of air and nitrogen (10 ppm O 2) at 900 °C for 2 h or longer. When held at 900 °C in air only, bond strengths were negligible. Substantial bonds could also be created between LSM-10 contact paste and (La 0.80Sr 0.20) 0.98MnO 3 + δ (LSM-20) porous cathodes by processing in alternating air and nitrogen, without simultaneous densification of the cathode. Enhanced sintering of LSM-10 is attributed to transients in the defect structure induced by oxygen partial pressure changes.

  3. C–C Bond formation catalyzed by natural gelatin and collagen proteins

    PubMed Central

    Kühbeck, Dennis; Bijayi Dhar, Basab; Schön, Eva-Maria; Cativiela, Carlos; Gotor-Fernández, Vicente

    2013-01-01

    Summary The activity of gelatin and collagen proteins towards C–C bond formation via Henry (nitroaldol) reaction between aldehydes and nitroalkanes is demonstrated for the first time. Among other variables, protein source, physical state and chemical modification influence product yield and kinetics, affording the nitroaldol products in both aqueous and organic media under mild conditions. Significantly, the scale-up of the process between 4-nitrobenzaldehyde and nitromethane is successfully achieved at 1 g scale and in good yield. A comparative kinetic study with other biocatalysts shows an increase of the first-order rate constant in the order chitosan < gelatin < bovine serum albumin (BSA) < collagen. The results of this study indicate that simple edible gelatin can promote C–C bond forming reactions under physiological conditions, which may have important implications from a metabolic perspective. PMID:23843902

  4. Method for bonding a transmission line to a downhole tool

    DOEpatents

    Hall, David R.; Fox, Joe

    2007-11-06

    An apparatus for bonding a transmission line to the central bore of a downhole tool includes a pre-formed interface for bonding a transmission line to the inside diameter of a downhole tool. The pre-formed interface includes a first surface that substantially conforms to the outside contour of a transmission line and a second surface that substantially conforms to the inside diameter of a downhole tool. In another aspect of the invention, a method for bonding a transmission line to the inside diameter of a downhole tool includes positioning a transmission line near the inside wall of a downhole tool and placing a mold near the transmission line and the inside wall. The method further includes injecting a bonding material into the mold and curing the bonding material such that the bonding material bonds the transmission line to the inside wall.

  5. Challenges in molecular simulation of homogeneous ice nucleation

    NASA Astrophysics Data System (ADS)

    Brukhno, Andrey V.; Anwar, Jamshed; Davidchack, Ruslan; Handel, Richard

    2008-12-01

    We address the problem of recognition and growth of ice nuclei in simulation of supercooled bulk water. Bond orientation order parameters based on the spherical harmonics analysis are shown to be ineffective when applied to ice nucleation. Here we present an alternative method which robustly differentiates between hexagonal and cubic ice forms. The method is based on accumulation of the maximum projection of bond orientations onto a set of predetermined vectors, where different terms can contribute with opposite signs with the result that the irrelevant or incompatible molecular arrangements are damped out. We also introduce an effective cluster size by assigning a quality weight to each molecule in an ice-like cluster. We employ our cluster analysis in Monte Carlo simulation of homogeneous ice formation. Replica-exchange umbrella sampling is used for biasing the growth of the largest cluster and calculating the associated free energy barrier. Our results suggest that the ice formation can be seen as a two-stage process. Initially, short tetrahedrally arranged threads and rings are present; these become correlated and form a diffuse ice-genic network. Later, hydrogen bond arrangements within the amorphous ice-like structure gradually settle down and simultaneously 'tune-up' nearby water molecules. As a result, a well-shaped ice core emerges and spreads throughout the system. The process is very slow and diverse owing to the rough energetic landscape and sluggish molecular motion in supercooled water, while large configurational fluctuations are needed for crystallization to occur. In the small systems studied so far the highly cooperative molecular rearrangements eventually lead to a relatively fast percolation of the forming ice structure through the periodic boundaries, which inevitably affects the simulation results.

  6. Concentration-dependent multiple chirality transition in halogen-bond-driven 2D self-assembly process

    NASA Astrophysics Data System (ADS)

    Miao, Xinrui; Li, Jinxing; Zha, Bao; Miao, Kai; Dong, Meiqiu; Wu, Juntian; Deng, Wenli

    2018-03-01

    The concentration-dependent self-assembly of iodine substituted thienophenanthrene derivative (5,10-DITD) is investigated at the 1-octanic acid/graphite interface using scanning tunneling microscopy. Three kinds of chiral arrangement and transition of 2D molecular assembly mainly driven by halogen bonding is clearly revealed. At high concentration the molecules self-assembled into a honeycomb-like chiral network. Except for the interchain van der Waals forces, this pattern is stabilized by intermolecular continuous Cdbnd O⋯I⋯S halogen bonds in each zigzag line. At moderate concentration, a chiral kite-like nanoarchitecture are observed, in which the Cdbnd O⋯I⋯S and I⋯Odbnd C halogen bonds, along with the molecule-solvent Cdbnd O⋯I⋯H halogen bonds are the dominated forces to determine the structural formation. At low concentration, the molecules form a chiral cyclic network resulting from the solvent coadsorption mainly by molecule-molecule Cdbnd O⋯I⋯S halogen bonds and molecule-solvent Cdbnd O⋯I⋯H halogen bonds. The density of molecular packing becomes lower with the decreasing of the solution concentration. The solution-concentration dependent self-assembly of thienophenanthrene derivative with iodine and ester chain moieties reveals that the type of intermolecular halogen bond and the number of the co-adsorbing 1-octanic acids by molecule-solvent Cdbnd O⋯I⋯H halogen bonds determine the formation and transformation of chirality. This research emphasizes the role of different types of halogen (I) bonds in the controllable supramolecular structures and provides an approach for the fabrication of chirality.

  7. Aqueous phase hydrodeoxygenation of polyols over Pd/WO3-ZrO2: Role of Pd-WO3 interaction and hydrodeoxygenation pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Changjun; Sun, Junming; Brown, Heather M.

    Aqueous-phase hydrodeoxygenation of sugar and sugar-derived molecules can be used to produce a range of alkanes and oxygenates. In this paper, we have identified the reaction intermediates and reaction chemistry for the aqueous-phase hydrodeoxygenation of sorbitol over a bifunctional catalyst (Pt/SiO2–Al2O3) that contains both metal (Pt) and acid (SiO2–Al2O3) sites. A wide variety of reactions occur in this process including Csingle bondC bond cleavage, Csingle bondO bond cleavage, and hydrogenation reactions. The key Csingle bondC bond cleavage reactions include: retro-aldol condensation and decarbonylation, which both occur on metal catalytic sites. Dehydration is the key Csingle bondO bond cleavage reaction andmore » occurs on acid catalytic sites. Sorbitol initially undergoes dehydration and ring closure to produce cyclic C6 molecules or retro-aldol condensation reactions to produce primarily C3 polyols. Isosorbide is the major final product from sorbitol dehydration. Isosorbide then undergoes ring opening hydrogenation reactions and a dehydration/hydrogenation step to form 1,2,6-hexanetriol. The hexanetriol is then converted into hexanol and hexane by dehydration/hydrogenation. Smaller oxygenates are produced by Csingle bondC bond cleavage. These smaller oxygenates undergo dehydration/hydrogenation reactions to produce alkanes from C1–C5. The results from this paper suggest that hydrodeoxygenation chemistry can be tuned to make a wide variety of products from biomass-derived oxygenates.« less

  8. 77 FR 41663 - Surety Bond Guarantee Program-Quick Bond Application and Agreement

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-16

    ... other things, clarify the procedures for submitting application forms and paying fees, and deletes an obsolete reference to a form. DATES: This rule is effective August 15, 2012. FOR FURTHER INFORMATION... SBG Program regulations, including clarifying the procedures for submitting application forms and...

  9. 46 CFR 308.529 - Surety Bond B, Form MA-309.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Shipping MARITIME ADMINISTRATION, DEPARTMENT OF TRANSPORTATION EMERGENCY OPERATIONS WAR RISK INSURANCE War Risk Cargo Insurance Ii-Open Policy War Risk Cargo Insurance § 308.529 Surety Bond B, Form MA-309. An..., which may be obtained form the American War Risk Agency or MARAD. ...

  10. 46 CFR 308.529 - Surety Bond B, Form MA-309.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Shipping MARITIME ADMINISTRATION, DEPARTMENT OF TRANSPORTATION EMERGENCY OPERATIONS WAR RISK INSURANCE War Risk Cargo Insurance Ii-Open Policy War Risk Cargo Insurance § 308.529 Surety Bond B, Form MA-309. An..., which may be obtained form the American War Risk Agency or MARAD. ...

  11. 46 CFR 308.529 - Surety Bond B, Form MA-309.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Shipping MARITIME ADMINISTRATION, DEPARTMENT OF TRANSPORTATION EMERGENCY OPERATIONS WAR RISK INSURANCE War Risk Cargo Insurance Ii-Open Policy War Risk Cargo Insurance § 308.529 Surety Bond B, Form MA-309. An..., which may be obtained form the American War Risk Agency or MARAD. ...

  12. 46 CFR 308.529 - Surety Bond B, Form MA-309.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Shipping MARITIME ADMINISTRATION, DEPARTMENT OF TRANSPORTATION EMERGENCY OPERATIONS WAR RISK INSURANCE War Risk Cargo Insurance Ii-Open Policy War Risk Cargo Insurance § 308.529 Surety Bond B, Form MA-309. An..., which may be obtained form the American War Risk Agency or MARAD. ...

  13. Tool and process for miniature explosive joining of tubes

    NASA Technical Reports Server (NTRS)

    Bement, Laurence J. (Inventor); Bailey, James W. (Inventor)

    1987-01-01

    A tool and process to be used in the explosive joining of tubes is disclosed. The tool consists of an initiator, a tool form, and a ribbon explosive. The assembled tool is a compact, storable, and safe device suitable for explosive joining of small, lightweight tubes down to 0.20 inch in diameter. The invention is inserted into either another tube or a tube plate. A shim or standoff between the two surfaces to be welded is necessary. Initiation of the explosive inside the tube results in a high velocity, angular collision between the mating surfaces. This collision creates surface melts and collision bonding wherein electron-sharing linkups are formed.

  14. Activated carbon fiber composite material and method of making

    DOEpatents

    Burchell, Timothy D.; Weaver, Charles E.; Chilcoat, Bill R.; Derbyshire, Frank; Jagtoyen, Marit

    2000-01-01

    An activated carbon fiber composite for separation and purification, or catalytic processing of fluids is described. The activated composite comprises carbon fibers rigidly bonded to form an open, permeable, rigid monolith capable of being formed to near-net-shape. Separation and purification of gases are effected by means of a controlled pore structure that is developed in the carbon fibers contained in the composite. The open, permeable structure allows the free flow of gases through the monolith accompanied by high rates of adsorption. By modification of the pore structure and bulk density the composite can be rendered suitable for applications such as gas storage, catalysis, and liquid phase processing.

  15. Activated carbon fiber composite material and method of making

    DOEpatents

    Burchell, Timothy D.; Weaver, Charles E.; Chilcoat, Bill R.; Derbyshire, Frank; Jagtoyen, Marit

    2001-01-01

    An activated carbon fiber composite for separation and purification, or catalytic processing of fluids is described. The activated composite comprises carbon fibers rigidly bonded to form an open, permeable, rigid monolith capable of being formed to near-net-shape. Separation and purification of gases are effected by means of a controlled pore structure that is developed in the carbon fibers contained in the composite. The open, permeable structure allows the free flow of gases through the monolith accompanied by high rates of adsorption. By modification of the pore structure and bulk density the composite can be rendered suitable for applications such as gas storage, catalysis, and liquid phase processing.

  16. 27 CFR 26.68 - Bond, Form 2898-Beer.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ..., DEPARTMENT OF THE TREASURY LIQUORS LIQUORS AND ARTICLES FROM PUERTO RICO AND THE VIRGIN ISLANDS Taxpayment of Liquors and Articles in Puerto Rico Bonds § 26.68 Bond, Form 2898—Beer. Where a brewer intends to withdraw... Puerto Rico on computation, but before payment, of the tax imposed by 26 U.S.C. 7652(a), equal to the tax...

  17. Vertical density profile and internal bond strength of wet-formed particleboard bonded with cellulose nanofibrils

    Treesearch

    John F. Hunt; Weiqi Leng; Mehdi Tajvidi

    2017-01-01

    In this study, the effects of cellulose nanofibrils (CNFs) ratio, press program, particle size, and density on the vertical density profile (VDP) and internal bond (IB) strength of the wet-formed particleboard were investigated. Results revealed that the VDP was significantly influenced by the press program. Pressing using a constant pressure (CP) press program...

  18. Study on the mechanism of Si-glass-Si two step anodic bonding process

    NASA Astrophysics Data System (ADS)

    Hu, Lifang; Wang, Hao; Xue, Yongzhi; Shi, Fangrong; Chen, Shaoping

    2018-04-01

    Si-glass-Si was successfully bonded together through a two-step anodic bonding process. The bonding current in each step of the two-step bonding process was investigated, and found to be quite different. The first bonding current decreased quickly to a relatively small value, but for the second bonding step, there were two current peaks; the current first decreased, then increased, and then decreased again. The second current peak occurred earlier with higher temperature and voltage. The two-step anodic bonding process was investigated in terms of bonding current. SEM and EDS tests were conducted to investigate the interfacial structure of the Si-glass-Si samples. The two bonding interfaces were almost the same, but after an etching process, transitional layers could be found in the bonding interface and a deeper trench with a thickness of ~1.5 µm could be found in the second bonding interface. Atomic force microscopy mapping results indicated that sodium precipitated from the back of the glass, which makes the roughness of the surface become coarse. Tensile tests indicated that the fracture occurred at the glass substrate and that the bonding strength increased with the increment of bonding temperature and voltage with the maximum strength of 6.4 MPa.

  19. 31 CFR 316.2 - Description of bonds.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., DEPARTMENT OF THE TREASURY BUREAU OF THE FISCAL SERVICE OFFERING OF UNITED STATES SAVINGS BONDS, SERIES E § 316.2 Description of bonds. (a) General. Definitive (paper) Series E bonds bear a facsimile of the... issued only in registered form and are nontransferable. (b) Denominations and prices. Series E bonds were...

  20. 31 CFR 316.2 - Description of bonds.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., DEPARTMENT OF THE TREASURY BUREAU OF THE PUBLIC DEBT OFFERING OF UNITED STATES SAVINGS BONDS, SERIES E § 316.2 Description of bonds. (a) General. Definitive (paper) Series E bonds bear a facsimile of the... issued only in registered form and are nontransferable. (b) Denominations and prices. Series E bonds were...

  1. 31 CFR 316.2 - Description of bonds.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., DEPARTMENT OF THE TREASURY BUREAU OF THE PUBLIC DEBT OFFERING OF UNITED STATES SAVINGS BONDS, SERIES E § 316.2 Description of bonds. (a) General. Definitive (paper) Series E bonds bear a facsimile of the... issued only in registered form and are nontransferable. (b) Denominations and prices. Series E bonds were...

  2. Fabrication of tungsten wire reinforced nickel-base alloy composites

    NASA Technical Reports Server (NTRS)

    Brentnall, W. D.; Toth, I. J.

    1974-01-01

    Fabrication methods for tungsten fiber reinforced nickel-base superalloy composites were investigated. Three matrix alloys in pre-alloyed powder or rolled sheet form were evaluated in terms of fabricability into composite monotape and multi-ply forms. The utility of monotapes for fabricating more complex shapes was demonstrated. Preliminary 1093C (2000F) stress rupture tests indicated that efficient utilization of fiber strength was achieved in composites fabricated by diffusion bonding processes. The fabrication of thermal fatigue specimens is also described.

  3. Microfluidic fuel cell systems with embedded materials and structures and method thereof

    DOEpatents

    Morse, Jeffrey D.; Rose, Klint A; Maghribi, Mariam; Benett, William; Krulevitch, Peter; Hamilton, Julie; Graff, Robert T.; Jankowski, Alan

    2005-07-26

    Described herein is a process for fabricating microfluidic systems with embedded components in which micron-scale features are molded into the polymeric material polydimethylsiloxane (PDMS). Micromachining is used to create a mold master and the liquid precursors for PDMS are poured over the mold and allowed to cure. The PDMS is then removed form the mold and bonded to another material such as PDMS, glass, or silicon after a simple surface preparation step to form sealed microchannels.

  4. Lightning - Estimates of the rates of energy dissipation and nitrogen fixation

    NASA Technical Reports Server (NTRS)

    Borucki, W. J.; Chameides, W. L.

    1984-01-01

    The nitrogen needed by plants can normally not be directly obtained from the nitrogen present in molecular form in the atmosphere. The reason for this situation is related to the great energy required to break the N-N bond. Only a few organisms, such as algae and certain bacteria, can 'fix' nitrogen. An abiological process for breaking the N-N bond is provided by lightning. The present investigation is concerned with this possibility. It is found that lightning produces approximately 2.6 x 10 to the 9th kg N per year. There are, however, uncertainties, which are mainly related to the energy of a lightning flash.

  5. Oxidation mechanism of formic acid on the bismuth adatom-modified Pt(111) surface.

    PubMed

    Perales-Rondón, Juan Victor; Ferre-Vilaplana, Adolfo; Feliu, Juan M; Herrero, Enrique

    2014-09-24

    In order to improve catalytic processes, elucidation of reaction mechanisms is essential. Here, supported by a combination of experimental and computational results, the oxidation mechanism of formic acid on Pt(111) electrodes modified by the incorporation of bismuth adatoms is revealed. In the proposed model, formic acid is first physisorbed on bismuth and then deprotonated and chemisorbed in formate form, also on bismuth, from which configuration the C-H bond is cleaved, on a neighbor Pt site, yielding CO2. It was found computationally that the activation energy for the C-H bond cleavage step is negligible, which was also verified experimentally.

  6. Interactions between graphene oxide and wide band gap semiconductors

    NASA Astrophysics Data System (ADS)

    Kawa, M.; Podborska, A.; Szaciłowski, K.

    2016-09-01

    The graphene oxide (GO) and GO@TiO2 nanocomposite have been synthesised by using modified Hummers method and ultrasonics respectively. The materials were characterized by using X-ray diffraction, Fourier transform infrared spectroscopy and UV-Vis absorption spectroscopy. It was found that the interaction between GO and TiO2 affects the average interlayer spacing in carbonaceous material. The formation of bonds between various oxygen-containing functional groups and surface of titanium dioxide was investigated. One of them formed between the quinone structures (occur in graphene oxide) and titanium atoms exhibited 1.5 bond order. Furthermore the charge-transfer processes in GO@TiO2 composite were observed.

  7. Using ALD To Bond CNTs to Substrates and Matrices

    NASA Technical Reports Server (NTRS)

    Wong, Eric W.; Bronikowski, Michael J.; Kowalczyk, Robert S.

    2008-01-01

    Atomic-layer deposition (ALD) has been shown to be effective as a means of coating carbon nanotubes (CNTs) with layers of Al2O3 that form strong bonds between the CNTs and the substrates on which the CNTs are grown. ALD is a previously developed vaporphase thin-film-growth technique. ALD differs from conventional chemical vapor deposition, in which material is deposited continually by thermal decomposition of a precursor gas. In ALD, material is deposited one layer of atoms at a time because the deposition process is self-limiting and driven by chemical reactions between the precursor gas and the surface of the substrate or the previously deposited layer.

  8. Nature of alpha and beta particles in glycogen using molecular size distributions.

    PubMed

    Sullivan, Mitchell A; Vilaplana, Francisco; Cave, Richard A; Stapleton, David; Gray-Weale, Angus A; Gilbert, Robert G

    2010-04-12

    Glycogen is a randomly hyperbranched glucose polymer. Complex branched polymers have two structural levels: individual branches and the way these branches are linked. Liver glycogen has a third level: supramolecular clusters of beta particles which form larger clusters of alpha particles. Size distributions of native glycogen were characterized using size exclusion chromatography (SEC) to find the number and weight distributions and the size dependences of the number- and weight-average masses. These were fitted to two distinct randomly joined reference structures, constructed by random attachment of individual branches and as random aggregates of beta particles. The z-average size of the alpha particles in dimethylsulfoxide does not change significantly with high concentrations of LiBr, a solvent system that would disrupt hydrogen bonding. These data reveal that the beta particles are covalently bonded to form alpha particles through a hitherto unsuspected enzyme process, operative in the liver on particles above a certain size range.

  9. Supramolecular amplification of amyloid self-assembly by iodination

    NASA Astrophysics Data System (ADS)

    Bertolani, Arianna; Pirrie, Lisa; Stefan, Loic; Houbenov, Nikolay; Haataja, Johannes S.; Catalano, Luca; Terraneo, Giancarlo; Giancane, Gabriele; Valli, Ludovico; Milani, Roberto; Ikkala, Olli; Resnati, Giuseppe; Metrangolo, Pierangelo

    2015-06-01

    Amyloid supramolecular assemblies have found widespread exploitation as ordered nanomaterials in a range of applications from materials science to biotechnology. New strategies are, however, required for understanding and promoting mature fibril formation from simple monomer motifs through easy and scalable processes. Noncovalent interactions are key to forming and holding the amyloid structure together. On the other hand, the halogen bond has never been used purposefully to achieve control over amyloid self-assembly. Here we show that single atom replacement of hydrogen with iodine, a halogen-bond donor, in the human calcitonin-derived amyloidogenic fragment DFNKF results in a super-gelator peptide, which forms a strong and shape-persistent hydrogel at 30-fold lower concentration than the wild-type pentapeptide. This is remarkable for such a modest perturbation in structure. Iodination of aromatic amino acids may thus develop as a general strategy for the design of new hydrogels from unprotected peptides and without using organic solvents.

  10. L-Tryptophan on Cu(111): engineering a molecular labyrinth driven by indole groups

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yitamben, E. N.; Clayborne, A.; Darling, Seth B.

    2015-05-21

    The present article investigates the adsorption and molecular orientation of L-Tryptophan, which is both an essential amino acid important for protein synthesis and of particular interest for the development of chiral molecular electronics and biocompatible processes and devices, on Cu(111) using scanning tunneling microscopy and spectroscopy at 55 K and at room temperature. The arrangement of chemisorbed L-Tryptophan on the copper surface varies with both temperature and surface coverage. At low coverage, small clusters form on the surface irrespective of temperature, while at high coverage an ordered chain structure emerges at room temperature, and a tightly packed structure forms amore » molecular labyrinth at low temperature. The dominating superstructure of the adsorbates arises from intermolecular hydrogen bonding, and pi-bonding interactions between the indole groups of neighboring molecules and the Cu surface.« less

  11. Redox and Lewis acid-base activities through an electronegativity-hardness landscape diagram.

    PubMed

    Das, Ranjita; Vigneresse, Jean-Louis; Chattaraj, Pratim Kumar

    2013-11-01

    Chemistry is the science of bond making and bond breaking which requires redistribution of electron density among the reactant partners. Accordingly acid-base and redox reactions form cardinal components in all branches of chemistry, e.g., inorganic, organic, physical or biochemistry. That is the reason it forms an integral part of the undergraduate curriculum all throughout the globe. In an electronegativity (χ)- hardness (η) landscape diagram the diagonal χ = η line separates reducing agents from oxidizing agents as well as Lewis acids from Lewis bases. While electronegativity is related to the degree of electron transfer between two reactants, hardness is related to the resistance to that process. Accordingly the electronegativities of oxidizing agents/Lewis acids are generally greater than the corresponding hardness values and the reverse is true for reducing agents/Lewis bases. Electrophiles and nucleophiles are also expected to follow similar trends.

  12. Monitoring the osseointegration process in porous Ti6Al4V implants produced by additive manufacturing: an experimental study in sheep.

    PubMed

    Kayacan, Mehmet C; Baykal, Yakup B; Karaaslan, Tamer; Özsoy, Koray; Alaca, İlker; Duman, Burhan; Delikanlı, Yunus E

    2018-04-01

    This study investigated the design and osseointegration process of transitive porous implants that can be used in humans and all trabecular and compact bone structure animals. The aim was to find a way of forming a strong and durable tissue bond on the bone-implant interface. Massive and transitive porous implants were produced on a direct metal laser sintering machine, surgically implanted into the skulls of sheep and kept in place for 12 weeks. At the end of the 12-week period, the Massive and porous implants removed from the sheep were investigated by scanning electron microscopy (SEM) to monitor the osseointegration process. In the literature, each study has selected standard sizes for pore diameter in the structures they use. However, none of these involved transitional porous structures. In this study, as opposed to standard pores, there were spherical or elliptical pores at the micro level, development channels and an inner region. Bone cells developed in the inner region. Transitive pores grown gradually in accordance with the natural structure of the bone were modeled in the inner region for cells to develop. Due to this structure, a strong and durable tissue bond could be formed at the bone-implant interface. Osseointegration processes of Massive vs. porous implants were compared. It was observed that cells were concentrated on the surface of Massive implants. Therefore, osseointegration between implant and bone was less than that of porous implants. In transitive porous implants, as opposed to Massive implants, an outer region was formed in the bone-implant interface that allowed tissue development.

  13. Crystallographic controls on the frictional behavior of dry and water-saturated sheet structure minerals

    USGS Publications Warehouse

    Moore, Diane E.; Lockner, D.A.

    2004-01-01

    We compare the frictional strengths of 17 sheet structure mineral powders, measured under dry and water-saturated conditions, to identify the factors that cause many of them to be relatively weak. The dry coefficient of friction ?? ranges upward from 0.2 for graphite, leveling off at 0.8 for margarite, clintonite, gibbsite, kaolinite, and lizardite. The values of ?? (dry) correlate directly with calculated (001) interlayer bond strengths of the minerals. This correlation occurs because shear becomes localized along boundary and Riedel shears and the platy minerals in them rotate into alignment with the shear planes. For those gouges with ?? (dry) < 0.8, shear occurs by breaking the interlayer bonds to form new cleavage surfaces. Where ?? (dry) = 0.8, consistent with Byerlee's law, the interlayer bonds are sufficiently strong that other frictional processes dominate. The transition in dry friction mechanisms corresponds to calculated surface energies of 2-3 J/m2. Adding water causes ?? to decrease for every mineral tested except graphite. If the minerals are separated into groups with similar crystal structures, ?? (wet) increases with increasing interlayer bond strength within each group. This relationship also holds for the swelling clay montmorillonite, whose water-saturated strength is consistent with the strengths of nonswelling clays of similar crystal structure. Water in the saturated gouges forms thin, structured films between the plate surfaces. The polar water molecules are bonded to the plate surfaces in proportion to the mineral's surface energy, and ?? (wet) reflects the stresses required to shear through the water films. Copyright 2004 by the American Geophysical Union.

  14. Diffusion Bonding of Silicon Carbide Ceramics using Titanium Interlayers

    NASA Technical Reports Server (NTRS)

    Halbig, Michael C.; Singh, Mrityunjay; Shpargel, Tarah P.; Kiser, James D.

    2006-01-01

    Robust joining approaches for silicon carbide ceramics are critically needed to fabricate leak free joints with high temperature mechanical capability. In this study, titanium foils and physical vapor deposited (PVD) titanium coatings were used to form diffusion bonds between SiC ceramics using hot pressing. Silicon carbide substrate materials used for bonding include sintered SiC and two types of CVD SiC. Microscopy results show the formation of well adhered diffusion bonds. The bond strengths as determined from pull tests are on the order of several ksi, which is much higher than required for a proposed application. Microprobe results show the distribution of silicon, carbon, titanium, and other minor elements across the diffusion bond. Compositions of several phases formed in the joint region were identified. Potential issues of material compatibility and optimal bond formation will also be discussed.

  15. 78 FR 40824 - Proposed Collection; Comment Request for Form 8038-TC

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-08

    ... 8038-TC AGENCY: Internal Revenue Service (IRS), Treasury. ACTION: Notice and request for comments... Form 8038-TC, Information Return for Tax Credit Bonds. DATES: Written comments should be received on or...-TC. Abstract: Form 8038-TC will be used by issuers of qualified tax- exempt credit bonds, including...

  16. Spectroscopic Evidence of Uranium Immobilization in Acidic ...

    EPA Pesticide Factsheets

    Biogeochemistry of uranium in wetlands plays important roles in U immobilization in storage ponds of U mining and processing facilities but has not been well understood. The objective of this work was to study molecular mechanisms responsible for high U retention by Savannah River Site (SRS) wetland sediments under varying redox and acidic (pH = 2.6-5.8) conditions using U L3-edge X-ray absorption spectroscopy. Uranium in the SRS wetland sediments existed primarily as U(VI) bonded as a bidentate to carboxylic sites (U-C bond distance at ~2.88 Å), rather than phenolic or other sites of natural organic matter (NOM). In microcosms simulating the SRS wetland process, U immobilization on roots was 2 orders of magnitude higher than on the adjacent brown or more distant white sands in which U was U(VI). Uranium on the roots were both U(IV) and U(VI), which were bonded as a bidentate to carbon, but the U(VI) may also form a U phosphate mineral. After 140 days of air exposure, all U(IV) was reoxidized to U(VI) but remained as a bidentate bonding to carbon. This study demonstrated NOM and plant roots can highly immobilize U(VI) in the SRS acidic sediments, which has significant implication on the long-term stewardship of U-contaminated wetlands. There were several former U processing facilities at the Savannah River Site (SRS), Aiken, SC. As a result of their operations, uranium has entered the surrounding environments. For example, approximately 45,000 kg o

  17. [Spectroscopic study on film formation mechanism and structure of composite silanes-V-Zr passive film].

    PubMed

    Wang, Lei; Liu, Chang-sheng; Shi, Lei; An, Cheng-qiang

    2015-02-01

    A composite silanes-V-Zr passive film was overlayed on hot-dip galvanized steel. Attenuated total reflection Fourier transformed infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectrometer (XPS) and radio frequency glow discharge optical emission spectrometry (rf-GD-OES) were used to characterize the molecular structure of the silanes-V-Zr passive film. The mechanism of film formation was discussed: The results show that the silane molecules are crosslinked as the main film former and inorganic inhibitor is even distributed in the film. The fitting peak of 100.7 eV in XPS single Si2p energy range spectra of the composite silanes-V-Zr passive film and the widening and strengthening of the Si--O infrared absorption peak at 1100 cm(-1) indicate that the silanes were adsorbed on the surface of zinc with chemical bond of Si--O--Zn, and the silane molecules were connected with each other by bond of Si--O--Si. Two characteristic absorption peaks of amide at 1650 and 1560 cm(-1) appear in the infrared spectroscopy of the composite silanes-V-Zr passive film, and a characteristic absorption peak of epoxy groups at 910 cm(-1) disappears in the infrared spectroscopy of the passive film. The results indicate that gamma-APT can be prepared through nucleophilic ring-opening of ethylene oxide in gamma-GPT molecule to form C--N covalent bonds. The rf-GD-OES results indicate that there is a oxygen enriched layer in 0.3 microm depth of the composite silanes-V-Zr passive film. Moreover, ZrF4, ZrO2 and some inorganic matter obtained by the reaction during the forming processof the composite silanes-V-Zr passive film are distributed evenly throughout the film. According to the film composition, the physical processes and chemical reactions during the film forming process were studied by using ATR-FTIR. Based on this, the film forming mechanism was proposed.

  18. Method for hot press forming articles

    DOEpatents

    Baker, Robert R.; Hartsock, Dale L.

    1982-01-01

    This disclosure relates to an improved method for achieving the best bond strength and for minimizing distortion and cracking of hot pressed articles. In particular, in a method for hot press forming both an outer facing circumferential surface of and an inner portion of a hub, and of bonding that so-formed outer facing circumferential surface to an inner facing circumferential surface of a pre-formed ring thereby to form an article, the following improvement is made. Normally, in this method, the outside ring is restrained by a restraining sleeve of ring-shaped cross-section having an inside diameter. A die member, used to hot press form the hub, is so-formed as to have an outside diameter sized to engage the inside diameter of the restraining sleeve in a manner permitting relative movement therebetween. The improved method is one in which several pairs of matched restraining sleeve and die member are formed with each matched pair having a predetermined diameter. The predetermined diameter of each matched pair is different from another matched pair by stepped increments. The largest inside diameter of a restraining sleeve is equal to the diameter of the outer facing circumferential surface of the hub. Each pair of the matched restraining sleeve and die member is used to form an article in which an inside hub is bonded to an outside ring. The several samples so-formed are evaluated to determine which sample has the best bond formed between the hub and the ring with the least or no cracking or distortion in the ring portion of the article. Thereafter, the matched restraining sleeve and die member which form the article having the best bonding characteristics and least distortion cracking is then used for repeated formations of articles.

  19. A fluorescent-based HPLC assay for quantification of cysteine and cysteamine adducts in Escherichia coli-derived proteins.

    PubMed

    Soriano, Brian D; Tam, Lei-Ting T; Lu, Hsieng S; Valladares, Violeta G

    2012-01-01

    Recombinant proteins expressed in Escherichia coli are often produced as unfolded, inactive forms accumulated in inclusion bodies. Redox-coupled thiols are typically employed in the refolding process in order to catalyze the formation of correct disulfide bonds at maximal folding efficiency. These thiols and the recombinant proteins can form mixed disulfide bonds to generate thiol-protein adducts. In this work, we apply a fluorescent-based assay for the quantification of cysteine and cysteamine adducts as observed in E. coli-derived proteins. The thiols are released by reduction of the adducted protein, collected and labeled with a fluorescent reagent, 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate. The derivatized thiols are separated by reversed-phase HPLC and can be accurately quantified after method optimization. The estimated thiol content represents total amount of adducted forms present in the analyzed samples. The limit of quantification (LOQ) was established; specifically, the lowest amount of quantifiable cysteine adduction is 30 picograms and the lowest amount of quantifiable cysteamine adduction is 60 picograms. The assay is useful for quantification of adducts in final purified products as well as in-process samples from various purification steps. The assay indicates that the purification process accomplishes a decrease in cysteine adduction from 0.19 nmol adduct/nmol protein to 0.03 nmol adduct/nmol protein as well as a decrease in cysteamine adduction from 0.24 nmol adduct/nmol protein to 0.14 nmol adduct/nmol protein. Copyright © 2011. Published by Elsevier B.V.

  20. Covalent bonding of polycations to small polymeric particles

    NASA Technical Reports Server (NTRS)

    Rembaum, A.

    1975-01-01

    Process produces small spherical polymeric particles which have polycations bound to them. In emulsion form, particles present large positively charged surface which is available to absorb polyanions. This properly can be used in removing heparin from blood or bile acids from the digestive tract. Other anions, such as DNA and RNA, can also be removed from aqueous solutions.

  1. 76 FR 20448 - Submission for OMB Review; Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-12

    ... approved collection. Title: Bond Tax Credit. Form: 1097-BTC. Abstract: This is an information return for... will send Form 1097-BTC to the bond holders quarterly and file the return with the IRS annually...

  2. Hydrogen bonding: part 78. Ab initio molecular orbital study of intra- and intermolecular hydrogen bonding in choline and betaine and their compounds with HF and H 2O

    NASA Astrophysics Data System (ADS)

    Harmon, K. M.; Avci, G. F.; Madeira, S. L.; Mounts, P. A.; Thiel, A. C.

    2001-10-01

    We previously prepared several compounds of the zwitterions [(CH3)3NCH2CH2O]0 (deprotonated choline, herein named cholaine) and [(CH3)3NCH2CO2]0 (betaine) and proposed structures based on infrared spectroscopy. We now examine these compounds with use of ab initio molecular orbital methods to further elucidate possible structure. These calculations demonstrate that: (1) cholaine and betaine both have internal CHO hydrogen bonds, and these are retained in some form in all other compounds. (2) Cholaine hydrate and hydrofluoride and betaine hydrofluoride monomers have covalent three-center hydrogen bonds between H2O or HF and negative zwitterion oxygen, and additional CHX hydrogen bonds to H2O oxygen or HF fluorine. (3) Cholaine monohydrate and cholaine hydrofluoride monohydrate form dimers of Ci symmetry which contain planar C2h (H2O·O)2 and (HOH·F)2 clusters. (4) Cholaine hydrofluoride forms head-to-tail dimers bound by intermolecular CHX hydrogen bonds; this arrangement could lead to extended linear structures in the solid state. (5) Betaine hydrofluoride, in contrast, forms a tightly bound discrete dimeric unit in which two molecules join in a head-to-head manner held together by five intermolecular hydrogen bonds and by the mutual proximities of negative fluorides to positive nitrogens.

  3. Microscopic progression in the free radical addition reaction: modeling, geometry, energy, and kinetics.

    PubMed

    Zhang, Yun; Huang, Hong; Liang, Zhiling; Liu, Houhe; Yi, Ling; Zhang, Jinhong; Zhang, Zhiqiang; Zhong, Cheng; Huang, Yugang; Ye, Guodong

    2017-03-01

    The free radical addition reaction is very important in UV curing. The benzoyl radical is the most commonly observed radical. In the addition process, the benzoyl radical adds to an acrylate monomer, forming a primary radical that has great value for subsequent research. In this article, a quantum chemical method was used to study the microscopic progression from the reactive complex to the saddle point. The reactions of three monomers (amylene, allyl methyl ether and methyl acrylate) with a benzoyl radical were evaluated in terms of geometry and energy. The results were also interpreted with an expanded version of the Polanyi rules and the interaction/deformation theory. The deformation energy of methyl acrylate was found to be the smallest, and the bond formation index showed that the transition state in the methyl acrylate system forms early, and can easily reach the saddle point. The activity of the monomer was ascertained by charge analysis and was further confirmed by the reaction rate. Mayer bond order curves depicted the constantly changing chemical bonds during formation and dissociation. Reduced density gradient analysis showed a weak interaction between the monomer and the benzoyl radical.

  4. Multifunctional nanocomposites of lanthanide (Eu3+, Tb3+) complexes functionalized magnetic mesoporous silica nanospheres covalently bonded with polymer modified ZnO.

    PubMed

    Yan, Bing; Shao, Yan-Fei

    2013-07-14

    Methacrylic-group-modified ZnO nanoparticles (designated ZnO-MAA) prepared through the sol-gel process are copolymerized with 2-hydroxyethyl methacrylate (HEMA) to form ZnO-MAA-PHEMA hybrid system. ZnO-MAA-PHEMA unit is functionalized with 3-(triethoxysilyl)-propyl isocyanate (TEPIC) to form ZnO-MAA-PHEMA-Si hybrids, and then is incorporated with oleic acid-modified Fe3O4 nanoparticles by co-condensation of tetraethoxysilane (TEOS) and ZnO-MAA-PHEMA-Si. Subsequently, ZnO-polymer covalently bonded mesoporous silica nanospheres are assembled using cetyltrimethylammonium bromide (CTAB) surfactant as template. Furthermore, lanthanide (Eu(3+), Tb(3+)) complexes with nicotinic acid (NTA), isonicotinic acid (INTA) and 2-chloronicotinic (CNTA) are introduced by coordination bonds, resulting in the final multifunctional nanocomposites. The detailed physical characterization of these hybrids is discussed in detail. It reveals that they possess both magnetic and luminescent properties. Especially Eu(ZnO-MMS)(CNTA)3 and Tb(ZnO-MMS)(NTA)3 present high quantum yield values of 32.2% and 68.5%, respectively. The results will lay the foundation for further application in biomedical and biopharmaceutical fields.

  5. Refolding of autodisplayed anti-NEF scFv through oxidation with glutathione for immunosensors.

    PubMed

    Bong, Ji-Hong; Song, Hyun-Woo; Kim, Tae-Hun; Kang, Min-Jung; Jose, Joachim; Pyun, Jae-Chul

    2018-04-15

    In this study, a single-domain antibody against negative regulatory factor (anti-NEF scFv) was autodisplayed on the outer membrane of Escherichia coli and used to detect NEF in an immunoassay based on fluorescence-activated cell sorting, enzyme-linked immunosorbent assay, and surface plasmon resonance biosensors. Next, the autodisplayed single-domain antibody was oxidized to form disulfide bonds by using glutathione, and the change in NEF-binding activity of anti-NEF scFv was analyzed by fluorescence-activated cell sorting-based immunoassay, chromogenic immunoassay, and surface plasmon resonance biosensor. For each type of immunoassays the anti-NEF scFv on the isolated outer membrane showed more NEF binding activity after the disulfide bond formation by glutathione. To determine the role of cysteines in anti-NEF scFv, three mutants were prepared, and the NEF binding activity of mutants was compared with that of wild-type anti-NEF scFv in a competitive immunoassay based on FACS. In these mutant studies, the refolding process of autodisplayed anti-NEF scFv by following oxidation via GSH/GSSG revealed that disulfide bonds formed and increased NEF binding activity. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Concerted electron-proton transfer in the optical excitation of hydrogen-bonded dyes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Westlake, Brittany C.; Brennaman, Kyle M.; Concepcion, Javier J.

    2011-05-24

    The simultaneous, concerted transfer of electrons and protons—electron-proton transfer (EPT)—is an important mechanism utilized in chemistry and biology to avoid high energy intermediates. There are many examples of thermally activated EPT in ground-state reactions and in excited states following photoexcitation and thermal relaxation. Here we report application of ultrafast excitation with absorption and Raman monitoring to detect a photochemically driven EPT process (photo-EPT). In this process, both electrons and protons are transferred during the absorption of a photon. Photo-EPT is induced by intramolecular charge-transfer (ICT) excitation of hydrogen-bonded-base adducts with either a coumarin dye or 4-nitro-4'-biphenylphenol. Femtosecond transient absorption spectralmore » measurements following ICT excitation reveal the appearance of two spectroscopically distinct states having different dynamical signatures. One of these states corresponds to a conventional ICT excited state in which the transferring H⁺ is initially associated with the proton donor. Proton transfer to the base (B) then occurs on the picosecond time scale. The other state is an ICT-EPT photoproduct. Upon excitation it forms initially in the nuclear configuration of the ground state by application of the Franck–Condon principle. However, due to the change in electronic configuration induced by the transition, excitation is accompanied by proton transfer with the protonated base formed with a highly elongated ⁺H–B bond. Coherent Raman spectroscopy confirms the presence of a vibrational mode corresponding to the protonated base in the optically prepared state.« less

  7. Concerted electron-proton transfer in the optical excitation of hydrogen-bonded dyes.

    PubMed

    Westlake, Brittany C; Brennaman, M Kyle; Concepcion, Javier J; Paul, Jared J; Bettis, Stephanie E; Hampton, Shaun D; Miller, Stephen A; Lebedeva, Natalia V; Forbes, Malcolm D E; Moran, Andrew M; Meyer, Thomas J; Papanikolas, John M

    2011-05-24

    The simultaneous, concerted transfer of electrons and protons--electron-proton transfer (EPT)--is an important mechanism utilized in chemistry and biology to avoid high energy intermediates. There are many examples of thermally activated EPT in ground-state reactions and in excited states following photoexcitation and thermal relaxation. Here we report application of ultrafast excitation with absorption and Raman monitoring to detect a photochemically driven EPT process (photo-EPT). In this process, both electrons and protons are transferred during the absorption of a photon. Photo-EPT is induced by intramolecular charge-transfer (ICT) excitation of hydrogen-bonded-base adducts with either a coumarin dye or 4-nitro-4'-biphenylphenol. Femtosecond transient absorption spectral measurements following ICT excitation reveal the appearance of two spectroscopically distinct states having different dynamical signatures. One of these states corresponds to a conventional ICT excited state in which the transferring H(+) is initially associated with the proton donor. Proton transfer to the base (B) then occurs on the picosecond time scale. The other state is an ICT-EPT photoproduct. Upon excitation it forms initially in the nuclear configuration of the ground state by application of the Franck-Condon principle. However, due to the change in electronic configuration induced by the transition, excitation is accompanied by proton transfer with the protonated base formed with a highly elongated (+)H ─ B bond. Coherent Raman spectroscopy confirms the presence of a vibrational mode corresponding to the protonated base in the optically prepared state.

  8. Hydrogen bonding directed self-assembly of small-molecule amphiphiles in water.

    PubMed

    Xu, Jiang-Fei; Niu, Li-Ya; Chen, Yu-Zhe; Wu, Li-Zhu; Tung, Chen-Ho; Yang, Qing-Zheng

    2014-08-01

    Compounds comprising one or two quadruply hydrogen bonding units, 2-ureido-4[1H]-pyrimidinone (UPy) and tris(tetraethylene glycol monomethyl ether) moieties, were reported to form highly stable hydrogen-bonded assemblies in water. Compound 1, containing one UPy, assembles into vesicles, and compound 2, containing two UPy units, forms micelles. The aggregates disassemble reversibly when the solution pH is raised to 9.0 or above. The results demonstrate the utility of hydrogen bonding to direct the self-assembly of small-molecule building blocks in aqueous media.

  9. Transition-Metal-Catalyzed Laboratory-Scale Carbon–Carbon Bond-Forming Reactions of Ethylene

    PubMed Central

    Saini, Vaneet; Stokes, Benjamin J.; Sigman, Matthew S.

    2014-01-01

    Ethylene, the simplest alkene, is the most abundantly synthesized organic molecule by volume. It is readily incorporated into transitionmetal–catalyzed carbon-carbon bond-forming reactions through migratory insertions into alkylmetal intermediates. Because of its D2h symmetry, only one insertion outcome is possible. This limits byproduct formation and greatly simplifies analysis. As described within this Minireview, many carbon–carbon bond-forming reactions incorporate a molecule (or more) of ethylene at ambient pressure and temperature. In many cases, a useful substituted alkene is incorporated into the product. PMID:24105881

  10. Identification of hydrophilic group formation on polymer surface during Ar{sup +} ion irradiation in O{sub 2} environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cho, J.S.; Choi, W.K.; Jung, H.J.

    1997-12-01

    Ar{sup +} ion irradiation on low density polyethylene (LDPE), and polystyrene (PS) was performed in an O{sub 2} environment in order to improve wettability of polymers to water and to identify the formation of hydrophilic groups originated from chemical reactions on the surface of polymers. Doses of a broad Ar{sup +} ion beam of 1 keV energy were changed from 5 {times} 10{sup 15} to 1 {times} 10{sup 17}/cm{sup 2} and the rate of oxygen gas flowing near the sample surface was varied from 0 to 7 ml/min. The contact angle of polymers was not reduced much by Ar{sup +}more » ion irradiation without oxygen gas. However, it dropped largely to a minimum of 35{degree} and 26{degree} for Ar{sup +} ion irradiation in the presence of flowing oxygen gas on LDPE and PS, respectively. From x-ray photoelectron spectroscopy analysis, it was observed that hydrophilic groups were formed on the surface of polymers through an ion-assisted chemical reaction between the ion-induced unstable chains and oxygen. The newly formed hydrophilic group was identified as {single_bond}(C{double_bond}){single_bond} bond and {single_bond}(C{double_bond}O){single_bond}O{single_bond} bond. The contact angle of polymer was greatly dependent on the hydrophilic group formed on the surface.« less

  11. Evaluation of interlocking bond strength between structured 1.0338 steel sheets and high pressure die cast AlMg5Si2

    NASA Astrophysics Data System (ADS)

    Senge, S.; Brachmann, J.; Hirt, G.; Bührig-Polaczek, A.

    2018-05-01

    Multi-material components open up new possibilities for functional design. Such components combine beneficial physical properties of different materials in a single component as for instance chemical resistance, high strength or low density. The challenge is a reliable bond between both materials to enable a long term usage. This paper deals with a form closure connection to ensure a solid connection between steel strips and high pressure die cast aluminium. Two different sizes of channel structures with width ratios of 1.0 and 1.35 are produced on a steel sheet. An ensuing flat rolling pass is performed to create undercuts with a width of up to 50 µm, enabling an interlocking of the molten aluminium in the concluding casting process. For both rolling processes the resulting geometry is analysed depending on the thickness reduction. In a subsequent high pressure die casting process, aluminium is applied resulting in a complete form filling for the coarser structure. Comparing structures with and without undercuts, only structures suited with undercuts remain gap-free after solidification contraction. The finer structure could not be filled completely; nevertheless these structures result in shear strength of up to 45 MPa transversal to the channel-direction.

  12. Processing and properties of Ti-6Al-4V hollow sphere foams from hydride powder

    NASA Astrophysics Data System (ADS)

    Hardwicke, Canan Uslu

    Honeycomb structures currently used in aerospace systems are expensive to manufacture, limited to sheet form, and present joining problems and mechanical anisotropy that promotes shear failure at low stresses. Metallic foams produced by point contact bonding of monosized hollow spheres offer an alternative if they can be processed into strong, light-weight, and reasonably priced structural materials. In this work, technology has been established for fabricating good quality, Ti-6Al-4V hollow sphere foams using the coaxial nozzle powder slurry technique. It was shown that hydride form of Ti-ELI can be used as the starting precursor powder and processed into fine particles of 1-10 mum size range without increasing the impurity levels. Hydride dispersion in acetone was provided by the addition of polyester/polyamine copolymers through electrosteric stabilization. Addition of PMMA to the pseudoplastically dispersed organic slurries helped bind hydride powder spherical shells. Furthermore, monosized Ti-6Al-4V hollow spheres were sintered to 98% dense cell walls in Ar and point-contact bonded into closed-cell foams through solid-state diffusion. These findings suggest that near-net shape Ti-6Al-4V structures may be produced with isotropic properties, strength, toughness, and densities as low as 10% of the bulk. Findings concerning the optimum processing parameters and implications for future research are discussed.

  13. Role of Thermal Process on Self-Assembled Structures of 4′-([2,2′:6′,2″-Terpyridin]-4′-Yl)-[1,1′-Biphenyl]-4-Carboxylic Acid on Au(III)

    PubMed Central

    Liu, Xiaoqing; Wang, Yongli; Song, Xin; Chen, Feng; Ouyang, Hongping; Zhang, Xueao; Cai, Yingxiang; Liu, Xiaoming; Wang, Li

    2013-01-01

    The role of dynamic processes on self-assembled structures of 4′-([2,2′:6′, 2″-terpyridin]-4′-yl)-[1,1′-biphenyl]-4-carboxylic acid (l) molecules on Au(III) has been studied by scanning tunneling microscopy. The as-deposited monolayer is closed-packed and periodic in a short-range due to dipole forces. A thermal annealing process at 110 degrees drives such disordered monolayer into ordered chain-like structures, determined by the combination of the dipole forces and hydrogen bonding. Further annealing at 130 degrees turns the whole monolayer into a bowknot-like structure in which hydrogen bonding plays the dominant role in the formation of assembled structures. Such dependence of an assembled structure on the process demonstrates that an assembled structure can be regulated and controlled not only by the molecular structure but also by the thermal process to form the assembled structure. PMID:23478440

  14. Molecular complexes of alprazolam with carboxylic acids, boric acid, boronic acids, and phenols. Evaluation of supramolecular heterosynthons mediated by a triazole ring.

    PubMed

    Varughese, Sunil; Azim, Yasser; Desiraju, Gautam R

    2010-09-01

    A series of molecular complexes, both co-crystals and salts, of a triazole drug-alprazolam-with carboxylic acids, boric acid, boronic acids, and phenols have been analyzed with respect to heterosynthons present in the crystal structures. In all cases, the triazole ring behaves as an efficient hydrogen bond acceptor with the acidic coformers. The hydrogen bond patterns exhibited with aromatic carboxylic acids were found to depend on the nature and position of the substituents. Being a strong acid, 2,6-dihydroxybenzoic acid forms a salt with alprazolam. With aliphatic dicarboxylic acids alprazolam forms hydrates and the water molecules play a central role in synthon formation and crystal packing. The triazole ring makes two distinct heterosynthons in the molecular complex with boric acid. Boronic acids and phenols form consistent hydrogen bond patterns, and these are seemingly independent of the substitutional effects. Boronic acids form noncentrosymmetric cyclic synthons, while phenols form O--H...N hydrogen bonds with the triazole ring.

  15. Excited-State Dynamics of Dithienylethenes Functionalized for Self-Supramolecular Assembly.

    PubMed

    Hamdi, I; Buntinx, G; Poizat, O; Perrier, A; Le Bras, L; Delbaere, S; Barrau, S; Louati, M; Takeshita, M; Tokushige, K; Takao, M; Aloïse, S

    2018-04-12

    The photoswitching and competitive processes of two photochromic dithienylethenes (DTEs) functionalized at both sides with 2-ureido-4[1H]-pyrimidone (UPy) quadruple hydrogen-bonding recognition patterns have been investigated with NMR experiments, ultrafast spectroscopy, and density functional theory (DFT) calculations. The originality of these molecules is their ability to form large supramolecular assemblies induced by light for the closed form (CF) species while the open form (OF) species exist as small oligomers. Photochromic parameters have been determined and photochemical pathways have been rationalized with clear distinction between the antiparallel (OF-AP) and parallel (OF-P) species. A new photocyclization pathway via triplet manifold has been evidenced. The effect of the supramolecular assembly on the photochemical response is discussed. Unlike the photoreversion process, which is unaffected by supramolecular assembly, rate constants of the photocyclization reaction and intersystem crossing process are sensitive to the presence of small OF oligomers.

  16. Single-crystal micromachining using multiple fusion-bonded layers

    NASA Astrophysics Data System (ADS)

    Brown, Alan; O'Neill, Garry; Blackstone, Scott C.

    2000-08-01

    Multi-layer structures have been fabricated using Fusion bonding. The paper shows void free layers of between 2 and 100 microns that have been bonded to form multi-layer structures. Silicon layers have been bonded both with and without interfacial oxide layers.

  17. 25 CFR 141.7 - Bond requirement for a reservation business.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... reservation business shall at the time the application is submitted furnish a bond on a form provided by the... bring suit on the bond in his or her own name. The bond shall be conditioned on payment by the licensee...

  18. 25 CFR 141.7 - Bond requirement for a reservation business.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... reservation business shall at the time the application is submitted furnish a bond on a form provided by the... bring suit on the bond in his or her own name. The bond shall be conditioned on payment by the licensee...

  19. 25 CFR 141.7 - Bond requirement for a reservation business.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... reservation business shall at the time the application is submitted furnish a bond on a form provided by the... bring suit on the bond in his or her own name. The bond shall be conditioned on payment by the licensee...

  20. 25 CFR 141.7 - Bond requirement for a reservation business.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... reservation business shall at the time the application is submitted furnish a bond on a form provided by the... bring suit on the bond in his or her own name. The bond shall be conditioned on payment by the licensee...

Top